Sample records for dynamic contour tonometer

  1. [How does central cornea thickness influence intraocular pressure during applanation and contour tonometry?].

    PubMed

    Schwenteck, T; Knappe, M; Moros, I

    2012-09-01

    Golmann applanation tonometry represents a well-established procedure for measuring intraocular pressure (IOP). This implies the necessity of an accurate measurement of IOP with the reference tonometer. One example is the contour tonometer Pascal with a measuring probe, adapted to the cornea geometry, for measuring the IOP and the ocular pulse amplitude. There is controversy of how strongly corneal thickness affects the measurement of IOP. We thus analysed, for a number of eyes, the correlation of IOP, as measured by two types of applanation tonometers and one contour tonometer and the central corneal thickness. In all 158 patient eyes were investigated in a clinical comparison of applanation tonometers AT 870 and Ocuton-A. The study was performed by a trained ophthalmologist and the comparison was in accordance with international standard ISO 8612. In addition, the corneal thickness in the vertex was repeatedly determined using an Oculus Pentacam. The potential effect of central corneal thickness on the IOP as measured by the mentioned tonometers was statistically evaluated by rank correlation analysis. We found that the measured IOP values for the three investigated tonometers were not normally distributed. The central corneal thickness values, in contrast, measured on 158 eyes by means of an ultrasound pachymeter and additionally on 235 eyes by the Pentacam, obeyed a Gaussian distribution. For the correlation analysis of both parameters the Spearman linear rank correlation coefficient (r) was considered. We found a very weak (|r| < 0.2) correlation between central corneal thickness and IOP for all 3 tonometers. The softness of the correlation is also illustrated by a large standard deviation of the regression line. A comparison of the different devices for corneal-thickness measurements shows less variance and a smaller variation coefficient when the ultrasoundpachymeter AL-1000 is used. The measured values for IOP are only very weakly correlated to the central corneal thickness. For the 3 tonometer types studied there is no need to correct the indicated pressure values according to the central corneal thickness of the investigated eye. Clinical comparisons according to the ISO 8612 standard between a tonometer under test and a reference Goldmann applanation tonometer are always a time-consuming procedure. Additional measures to determine the central corneal thickness of every investigated eyes are dispensable. © Georg Thieme Verlag KG Stuttgart · New York.

  2. Correlations between different tonometries and ocular biometric parameters in patients with primary congenital glaucoma.

    PubMed

    Mendes, Marcio Henrique; Betinjane, Alberto Jorge; Quiroga, Veronica Andrea

    2013-01-01

    To identify the correlation between the difference of intraocular pressure measurements (IOP) obtained using the Goldmann applanation tonometer (GAT) and three others tonometers (Handheld applanation tonometer - HAT, Dynamic contour tonometer - DCT and Tono-Pen®) with biometric characteristics (corneal diameter, pachymetry, keratometry and axial length) in patients with congenital glaucoma. A cross-sectional study was performed on 46 eyes from 46 patients with congenital glaucoma. IOP measurements were obtained in all patients using GAT, HAT, DCT and Tono-Pen®. Keratometry, pachymetry, biometry and corneal diameter measurements were performed after the IOP measurement. The order of the tonometries was randomized. The correlations between the differences of IOP values of GAT and the other tonometers (Delta-IOP), and the different biometric parameters were studied. Tono-Pen® Delta IOP revealed moderate positive correlation to keratometry (r=0.41, p=0.004). The other Delta-IOPs showed no correlation with any of the biometric characteristics evaluated. IOP differences between GAT (gold standard) and GAT, HAT, DCT or Tono-Pen tonometers seem not to correlate with majority of ocular biometric characteristics. The only exception was the keratometry, which correlated in a positive and moderate way with Tono-Pen® Delta-IOP. This result suggests that the differences of IOP values of Tono-Pen® and GAT increase with the steepness of the cornea.

  3. [A comparison of rebound tonometry (ICare) with TonoPenXL and Goldmann applanation tonometry].

    PubMed

    Schreiber, W; Vorwerk, C K; Langenbucher, A; Behrens-Baumann, W; Viestenz, A

    2007-04-01

    Goldmann applanation tonometry and dynamic contour tonometry (PASCAL) are two well established slit lamp mounted tonometric methods. Intraocular pressure measurement in bedridden patients and children is often only possible using hand held tonometers (TonoPenXL, Perkins tonometer, Draeger tonometer). This study was performed to evaluate the hand held ICare tonometer, which is based on the rebound method. A total of 102 eyes were examined by two highly experienced ophthalmologists for: 1) ophthalmological status, 2) central corneal power (Zeiss IOL-Master), 3) central corneal thickness (Tomey ultrasound pachymetry, five successive measurements, SD<5%), 4) intraocular pressure (IOP) measurement with the Goldmann applantation tonometer (GAT) 1x, 5) TonoPenXL (1x), 6) ICare with three successive measurement series of 6 single measurements. The mean IOP(GAT) was 13.2+/-3.0 mmHg compared with the mean IOP(TonoPenXL) (13.4+/-3.1 mmHg) and with the IOP(ICare) (mean value of first measurement series: 13.4+/-3.1 mmHg). The series of measurements with the ICare showed a tonography effect (decrease of IOP from 14.6 mmHg at the first measurement and 14.2 mmHg at the second to 14.0 at the third measurement). The ICare-measurements were highly reliable (Cronbach's alpha=0.974) and showed a good correlation between the measurement series (r=0.592-0.642; p<0.001). There was a great intra-individual variability of up to 17 mmHg between the GAT, TonoPenXL and ICare methods. The ICare tonometer is easy to handle and high reliability. The data are comparable with those from the Goldmann tonometer. A tonography effect of 0.6 mmHg in the successive measurement series was found.

  4. Correlation between ocular pulse amplitude measured by dynamic contour tonometer and colour Doppler flow imaging of the arteric retrobulbar vessels.

    PubMed

    Marjanović, Ivan; Mijajlović, Milija; Covicković-Sternić, Nadezda; Kontić, Djordje; Hentova-Senćanić, Paraskeva; Marković, Vujica; Bozić, Marija

    2011-01-01

    An altered perfusion of the optic nerve head has been proposed as a pathogenic factor in glaucoma. The aim of this study was to evaluate the correlation between ocular pulse amplitude (OPA), measured by Dynamic contour tonometer (DCT) and colour Doppler imaging (CDI) of the arteric retrobulbar vessels. Twenty patients older than 50 years were examined, and divided into two equal groups. The first group comprised of patients with normal tension glaucoma treated with topical antiglaucomatous therapy, and the second group included patients with ocular hypertension and glaucoma suspicious without any antiglaucomatous therapy. Ocular pulse amplitude (OPA) was measured with DCT. CDI was also performed. We measured haemodynamic parameters of the internal carotid artery (ICA), ophthalmic artery (OA), central retinal artery (CRA), and posterior ciliary arteries (PCA). Peak systolic (PSV), end-diastolic (EDV) velocities were measured, and resistance index (RI) and pulsatility index (PI) were calculated. Correlation with OPA showed indirect servitude in the RI of the ICA, RI and PI of the CRA, in the first group; and in the PSV and EDV of the ICA, in the RI and PI of the OA, EDV and RI of the CRA, and RI of the PCA, in the second group Increase of OPA was mostly followed by the increase of the parameters (PSV, EDV, RI, and PI) of the arteric retrobulbar vessels in the first group; in the second group, increase of OPA was in almost 50% of parameters followed by their decrease.

  5. Retrobulbar hemodynamic parameters in men and women with open angle glaucoma.

    PubMed

    Marjanović, Ivan; Marjanović, Marija; Gvozdenović, Ranko; Risović, Dušica

    2014-12-01

    Several factors may have influence on systemic circulation. Additionally, peripheral circulation also demonstrates sex differences, in young women presenting significantly lower finger blood flow in comparison to men of the same age, a finding that disappears in women after menopause. The aim of this study was to compare the retrobulbar hemodynamic parameters measured by means of color Doppler imaging in women and men with open-angle glaucoma and elevated intraocular pressure. A total of 52 eyes from 52 open-angle glaucoma (OAG) patients, with elevated intraocular pressure (lOP), were included in this cross-sectional study. Peak-systolic velocity (PSV), end-diastolic velocity (EDV), and Pourcelot resistivity index (RI) were assessed in the ophtalmic artery (OA), central retinal artery (CRA), and posterior cilliary arteries (PCA). IOP was measured both with Goldmann Applanation tonometer (GAT) and with the dynamic contour tonometer (DCT), three times respectively. Ocular pulse amplitude (OPA) appeared during the DCT measurement. The retrobulbar hemodynamic parameters did not show any difference between men and post-menopausal women. The results of our study did not find any difference between sexes in patients with open-angle glaucoma and elevated intraocular pressure.

  6. Intraocular pressure values obtained by ocular response analyzer, dynamic contour tonometry, and goldmann tonometry in keratokonic corneas.

    PubMed

    Bayer, Atilla; Sahin, Afsun; Hürmeriç, Volkan; Ozge, Gökhan

    2010-01-01

    To determine the agreement between dynamic contour tonometer (DCT), Goldmann applanation tonometer (GAT), and Ocular Response Analyzer (ORA) in keratoconic corneas and to find out the effect of corneal biomechanics on intraocular pressure (IOP) measurements obtained by these devices. IOP was measured with the ORA, DCT, and GAT in random order in 120 eyes of 61 keratoconus patients. Central corneal thickness (CCT) and keratometry were measured after all IOP determinations had been made. The mean IOP measurement by the ORA and DCT was compared with the measurement by the GAT, using Student t test. Bland-Altman analysis was performed to assess the clinical agreement between these methods. The effect of corneal hysteresis (CH), corneal resistance factor (CRF), and CCT on measured IOP was explored by multiple backward stepwise linear regression analysis. The mean±SD patient age was 30.6±11.2 years. The mean±SD IOP measurement obtained with GAT, ORA Goldmann-correlated IOP (IOPg), ORA corneal-compensated IOP (IOPcc), and DCT was 10.96±2.8, 10.23±3.5, 14.65±2.8, and 15.42±2.7 mm Hg, respectively. The mean±SD CCT was 464.08±58.4 microns. The mean difference between IOPcc and GAT (P<0.0001), IOPcc and DCT (P<0.001), GAT and DCT (P<0.0001), IOPg and GAT (P<0.002), and IOPg and DCT (P<0.0001), was highly statistically significant. In multivariable regression analysis, DCT IOP and GAT IOP measurements were significantly associated with CH and CRF (P<0.0001 for both). DCT seemed to be affected by CH and CRF, and the IOP values tended to be higher when compared with GAT. ORA-measured IOPcc was found to be independent of CCT and suitable in comparison to the DCT in keratoconic eyes.

  7. Ocular pulse amplitude after panretinal photocoagulation in normotensive eyes with proliferative diabetic retinopathy.

    PubMed

    Bozic, Marija M; Karadzic, Jelena B; Kovacevic, Igor M; Marjanovic, Ivan S

    2017-06-26

    To assess the effect of panretinal laser photocoagulation on ocular pulse amplitude (OPA) in normotensive eyes with proliferative diabetic retinopathy. Prospectively, we performed unilateral argon laser panretinal photocoagulation (PRP) in 30 patients with diabetes mellitus type II and previously untreated bilateral proliferative diabetic retinopathy. Before and 7 and 30 days after the treatment, OPA was measured using dynamic contour tonometer. Compared with the untreated contralateral eyes, laser photocoagulation led to a reduction of OPA. Ocular pulse amplitude did not significantly differ in photocoagulated eyes 7 days after the treatment, but there was a significant difference in OPA 30 days after the treatment. The decrease in OPA values was 15% 7 days after PRP and 40% 30 days after PRP. Ocular pulse amplitude reduction after PRP indirectly informs us about choriocapillary closure, already reported in previous studies.

  8. Resonance frequency of fluid-filled and prestressed spherical shell-A model of the human eyeball.

    PubMed

    Shih, Po-Jen; Guo, Yi-Ren

    2016-04-01

    An acoustic tonometer that measures shifts in resonance frequencies associated with intraocular pressure (IOP) could provide an opportunity for a type of tonometer that can be operated at home or worn by patients. However, there is insufficient theoretical background, especially with respect to the uncertainty in operating frequency ranges and the unknown relationships between IOPs and resonance frequencies. The purpose of this paper is to develop a frequency function for application in an acoustic tonometer. A linear wave theory is used to derive an explicit frequency function, consisting of an IOP and seven other physiological parameters. In addition, impulse response experiments are performed to measure the natural frequencies of porcine eyes to validate the provided function. From a real-time detection perspective, explicitly providing a frequency function can be the best way to set up an acoustic tonometer. The theory shows that the resonance oscillation of the eyeball is mainly dominated by liquid inside the eyeball. The experimental validation demonstrates the good prediction of IOPs and resonance frequencies. The proposed explicit frequency function supports further modal analysis not only of the dynamics of eyeballs, but also of the natural frequencies, for further development of the acoustic tonometer.

  9. Changes in the retrobulbar arterial circulation after decrease of elevated intraocular pressue in patients with primary open angle glaucoma.

    PubMed

    Marjanović, Ivan; Sundić, Ana; Mijajlović, Milija; Covicković-Sternić, Nadezda; Kontić, Djordje; Hentova-Senćanić, Paraskeva; Marković, Vujica; Bozić, Marija; Knezević, Miroslav

    2011-01-01

    An altered perfusion of the optic nerve head has been proposed as a pathogenic factor in glaucoma. To evaluate changes of haemodynamic parameters in the retrobulbar arterial circulation after a decrease of elevated intraocular pressure (IOP) in patients with primary open angle glaucoma (POAG). Twenty-six patients were examined, 14 men and 12 women, 21 up to 50 years old and 5 below, all with previously diagnosed and treated POAG, and all examined at the Eye Clinic, Clinical Centre of Serbia. IOP was measured both with a Goldmann aplanation tonometer and dynamic contour tonometer. Central corneal thickness was measured with ultrasound pachymeter. Imaging of the retrobulbar arterial circulation by colour Doppler was performed at the Neurology Clinic, Clinical Centre of Serbia. It involved measuring of haemodynamic parameters of the ophthalmic artery, central retinal artery, and posterior ciliary arteries. Peak systolic velocity (PSV) and end-diastolic velocity (EDV) were measured, and resistive index (RI) and pulsatility index (PI) were calculated. Haemodynamic arterial parameters PSV and EDV in the ophthalmic and central retinal artery after decrease of IOP were lower, while RI and PI were higher. In the posterior ciliary arteries PSV, EDV and PI were lower, and RI was higher. Changes of the retrobulbar arterial circulation after elevated LOP in POAG patients are important for approach and treatment, while the role of vascular factors in the supplement of the optic disc neuroretinal rim could be a key for progression backlash of glaucoma and the radix of neuroprotection.

  10. Evaluation of a rebound tonometer (Tonovet) in clinically normal cat eyes.

    PubMed

    Rusanen, Elina; Florin, Marion; Hässig, Michael; Spiess, Bernhard M

    2010-01-01

    To determine the accuracy of and to establish reference values for a rebound tonometer (Tonovet) in normal feline eyes, to compare it with an applanation tonometer (Tonopen Vet) and to evaluate the effect of topical anesthesia on rebound tonometry. Six enucleated eyes were used to compare both tonometers with direct manometry. Intraocular pressure (IOP) was measured in 100 cats to establish reference values for rebound tonometry. Of these, 22 cats were used to compare rebound tonometry with and without topical anesthesia and 33 cats to compare the rebound and applanation tonometers. All evaluated eyes were free of ocular disease. Both tonometers correlated well with direct manometry. The best agreement with the rebound tonometer was achieved between 25-50 mmHg. The applanation tonometer was accurate at pressures between 0 and 30 mmHg. The mean IOP in clinically normal cats was 20.74 mmHg with the rebound tonometer and 18.4 mmHg with the applanation tonometer. Topical anesthesia did not significantly affect rebound tonometry. As the rebound tonometer correlated well with direct manometry in the clinically important pressure range and was well tolerated by cats, it appears suitable for glaucoma diagnosis. The mean IOP obtained with the rebound tonometer was 2-3 mmHg higher than that measured with the applanation tonometer. This difference is within clinically acceptable limits, but indicates that the same type of tonometer should be used in follow-up examinations in a given cat.

  11. The impact of intraocular pressure reduction on retrobulbar hemodynamic parameters in patients with open-angle glaucoma.

    PubMed

    Marjanovic, Ivan; Milic, Natasa; Martinez, Antonio

    2012-01-01

    To assess the retrobulbar hemodynamic parameters in the ophthalmic artery (OA), central retinal artery (CRA), and short posterior ciliary arteries (PCA) after decreasing elevated intraocular pressure (IOP) in patients with open-angle glaucoma (OAG) by using color Doppler imaging. A total of 46 eyes from 46 patients with OAG, with elevated IOP, were consecutively included in this prospective study. Peak-systolic velocity, end-diastolic velocity, and Pourcelot resistivity index were assessed in the OA, CRA, and PCA. The IOP was measured with Goldmann applanation tonometer (GAT) and the dynamic contour tonometer (DCT), 3 times respectively. Ocular pulse amplitude (OPA) appeared during the DCT measurement. After decreasing the elevated IOP, measured with both GAT and DCT, the retrobulbar parameters showed no differences as compared with baseline measurements. After Bonferroni correction (p ≤ 0.0042, alpha/12), statistical significance appeared in retrobulbar hemodynamics only in DCT (29.3 ± 6.4 vs 15.5 ± 4.2 mmHg), GAT (33.0 ± 8.3 vs 15.8 ± 7.0 mmHg), and OPA measurements (4.1 ± 1.3 vs 2.7 ± 1.4 mmHg), in comparison to baseline. There was no correlation between the changes in IOP measured with either DCT or GAT and the changes in the retrobulbar hemodynamic parameters (p>0.05 for all). The results of our study suggested a lack of correlation between the changes in IOP, measured with either DCT or GAT, and the changes in the retrobulbar hemodynamic parameters. The results of our study might suggest that the blood flow disturbances found in glaucoma patients are independent of the IOP.

  12. Agreement among Goldmann applanation tonometer, iCare, and Icare PRO rebound tonometers; non-contact tonometer; and Tonopen XL in healthy elderly subjects.

    PubMed

    Kato, Yoshitake; Nakakura, Shunsuke; Matsuo, Naoko; Yoshitomi, Kayo; Handa, Marina; Tabuchi, Hitoshi; Kiuchi, Yoshiaki

    2018-04-01

    To evaluate the inter-device agreement among the Goldmann applanation tonometer (GAT), iCare and Icare PRO rebound tonometers, non-contact tonometer (NCT), and Tonopen XL tonometer. Sixty healthy elderly subjects were enrolled. The intraocular pressure (IOP) in each subject's right eye was measured thrice using each of the five tonometers. Intra-device agreement was evaluated by calculating intraclass correlation coefficients (ICCs). Inter-device agreement was evaluated by ICC and Bland-Altman analyses. ICCs for intra-device agreement for each tonometer were >0.8. IOP as measured by iCare (mean ± SD, 11.6 ± 2.5 mmHg) was significantly lower (p < 0.05) than that measured by GAT (14.0 ± 2.8 mmHg), NCT (13.6 ± 2.5 mmHg), Tonopen XL (13.7 ± 4.1 mmHg), and Icare PRO (12.6 ± 2.2 mmHg; Bonferroni test). There was no significant difference in mean IOP among GAT, NCT, and Tonopen XL. Regarding inter-device agreement, ICC was lower between Tonopen XL and other tonometers (all ICCs < 0.4). However, ICCs of GAT, iCare, Icare PRO, and NCT showed good agreement (0.576-0.700). The Bland-Altman analysis revealed that the width of the 95% limits of agreement was larger between the Tonopen XL and the other tonometers ranged from 14.94 to 16.47 mmHg. Among the other tonometers, however, the widths of 95% limits of agreement ranged from 7.91 to 9.24 mmHg. There was good inter-device agreement among GAT, rebound tonometers, and NCT. Tonopen XL shows the worst agreement with the other tonometers; therefore, we should pay attention to its' respective IOP. Japan Clinical Trials Register; number: UMIN000011544.

  13. [Reliability and reproducibility of introcular pressure (IOP) measurement with the Icare® Home rebound tonometer (model TA022) and comparison with Goldmann applanation tonometer in glaucoma patients].

    PubMed

    Valero, B; Fénolland, J-R; Rosenberg, R; Sendon, D; Mesnard, C; Sigaux, M; Giraud, J-M; Renard, J-P

    2017-12-01

    The Icare ® Home tonometer is a new rebound tonometer, developed for intraocular pressure (IOP) self-monitoring. The main objective of our study was to evaluate the reliability and reproducibility of measurements taken with the Icare ® Home tonometer in glaucoma patients compared to the Goldmann applanation tonometer. A secondary objective was to investigate factors that could influence the reproducibility of these measurements. Fifty-two glaucoma patients were included in this prospective, non-randomized, monocentric study. IOP measurements were performed on the right eye and then on the left eye in the following order (3 measurements of IOP for each method): air tonometer (T-Air), Icare ® Home tonometer by the patient (RT-P), Icare ® Home tonometer by an ophthalmologist (RT-O), Goldmann applanation tonometer (GAT). Forty-four patients (85%) managed to take their IOP on both eyes with the Icare ® Home tonometer. Mean IOPs were 14.35±3.93mmHg (T-Air), 13.43±4.65mmHg (RT-P), 14.13±4.29mmHg (RT-O), 14.74±3.84mmHg (GAT). The intraclass correlation indices (ICC) on the 3 repeated IOP measurements were 0.924, 0.872, 0.947 and 0.957, respectively. Bland-Altman analysis found a mean difference (bias) between GAT and RT-P, between GAT and RT-O, and between RT-O and RT-P, respectively, of 1.31, 0.61 and 0.70mmHg, with a 95% confidence interval of -3.34 to 5.96, -3.91 to 5.14 and -3.44 to 4.84mmHg, respectively. The reproducibility of the measurements taken with the Icare ® Home tonometer did not vary according to corneal thickness or age of the patients. The Icare ® Home tonometer provides reliable and reproducible IOP values in glaucoma patients, although it appears to slightly underestimate the IOP measurements compared to the Goldmann applanation tonometer. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  14. An evaluation of the effects of eyeball structure on ocular pulse amplitude in healthy subjects.

    PubMed

    Ishii, Kotaro; Mori, Mikiro; Oshika, Tetsuro

    2012-12-01

    To evaluate the effects of eyeball structure on ocular pulse amplitude (OPA) measured using dynamic contour tonometer (DCT). In 86 eyes of 43 healthy subjects, we measured OPA and intraocular pressure (IOP) with DCT (DCT-IOP), IOP with Goldmann applanation tonometry (GAT-IOP), central corneal thickness (CCT), corneal thickness 2 mm (2 mmCT) and 4 mm (4 mmCT) apart from the center, corneal volume within a 3.5-mm radius from the corneal center, corneal curvature, anterior chamber depth, anterior chamber volume, and axial length (AL). OPA had a significant positive correlation with GAT-IOP (Pearson's r = 0.412, p < 0.001), DCT-IOP (r = 0.350, p < 0.001), and 4 mmCT (r = 0.244, p = 0.0231), and had a significant negative correlation with AL (r = -0.268, p = 0.0122). In a multiple linear regression analysis, AL and GAT-IOP were significantly associated with OPA. OPA measured with DCT is significantly influenced by several factors, such as IOP, peripheral corneal thickness (4 mmCT), and AL.

  15. Clinical tonometric measurements comparing three non-contact tonometers.

    PubMed

    Walby, M A; Augsburger, A; Polasky, M

    1975-06-01

    Three American Optical Non-contact Tonometers were used to compare readings against each other. The attempt was to determine if all three tonometers were measuring the same IOP over a wide range of pressures. The assumption in practice is that all Non-contact Tonometers are manufactured within tolerance that should allow the examiner to find that same IOP on a patient regardless of the Non-contact Tonometer used. A preliminary study found no significant difference between the instruments.

  16. Changes in the retrobulbar hemodynamic parameters after decreasing the elevated intraocular pressure in primary open-angle glaucoma patients.

    PubMed

    Marjanović, Ivan; Martinez, Antonio; Marjanović, Marija; Milić, Natasa; Kontić, Djordje; Hentova-Senćanić, Paraskeva; Marković, Vujica; Bozić, Marija

    2014-01-01

    Ocular blood flow (OBF) disturbances could be involved both in the pathogenesis and in progression of glaucomatous damage. The aim of the study was to compare the retrobulbar hemodynamic parameters in the ophthalmic artery (OA), central retinal artery (CRA) and short posterior cilliary arteries (SPCA) after decreasing the elevated intraocular pressure (IOP) in primary open-angle glaucoma (POAG) patients by using color Doppler imaging (CDI). We examined 60 patients (21 male and 39 female) with diagnosed and treated POAG. Thirty-nine patients had increased IOP (> 25 mm Hg). Peak-systolic velocity (PSV), end-diastolic velocity (EDV), Pourcelot resistance index (RI), and pulsatility index (PI) were assessed in the OA, CRA, and SPCA. IOP was measured both with the Goldmann Applanation tonometer (GAT) and with the Dynamic Contour tonometer (DCT), three times respectively. Ocular pulse amplitude (OPA) was measured using DCT. The retrobulbar parameters between the baseline and after IOP reduction showed no difference in measurements. After Bonferroni correction (p < or = 0.0056, alpha/9) statistical significance was recorded only in the following retrobulbar hemodynamic parameters; DCT (29.8 +/- 6.2 vs. 15.5 +/- 5.0), GAT (33.8 +/- 9.0 vs. 15.0 +/- 6.6) and OPA measurements (4.3 +/- 1.0 vs. 3.0 +/- 1.6), as compared to the baseline. There was no correlation between the changes in IOP measured with either DCT or GAT and changes in the hemodynamic parameters (p > 0.05 for all). Pearson correlation coefficient (95% CI) showed very good correlation for IOP measurements between DCT and GAT: at baseline 0.83 (0.71 to 0.90) and at the end 0.71 (0.55 to 0.83); p < 0.0001 for both measurements, but without any difference between them (p > 0.05). There was a lack of correlation between the changes in IOP measured with either DCT or GAT and the changes in the hemodynamic parameters.

  17. Disinfection of Tonometers: A Report by the American Academy of Ophthalmology.

    PubMed

    Junk, Anna K; Chen, Philip P; Lin, Shan C; Nouri-Mahdavi, Kouros; Radhakrishnan, Sunita; Singh, Kuldev; Chen, Teresa C

    2017-12-01

    To examine the efficacy of various disinfection methods for reusable tonometer prisms in eye care and to highlight how disinfectants can damage tonometer tips and cause subsequent patient harm. Literature searches were conducted last in October 2016 in the PubMed and the Cochrane Library databases for original research investigations. Reviews, non-English language articles, nonophthalmology articles, surveys, and case reports were excluded. The searches initially yielded 64 unique citations. After exclusion criteria were applied, 10 laboratory studies remained for this review. Nine of the 10 studies used tonometer prisms and 1 used steel discs. The infectious agents covered in this assessment include adenovirus 8 and 19, herpes simplex virus (HSV) 1 and 2, human immunodeficiency virus 1, hepatitis C virus, enterovirus 70, and variant Creutzfeldt-Jakob disease. All 4 studies of adenovirus 8 concluded that after sodium hypochlorite (dilute bleach) disinfection, the virus was undetectable, but only 2 of the 4 studies found that 70% isopropyl alcohol (e.g., alcohol wipes or soaks) eradicated all viable virus. All 3 HSV studies concluded that both sodium hypochlorite and 70% isopropyl alcohol eliminated HSV. Ethanol, 70% isopropyl alcohol, dilute bleach, and mechanical cleaning all lack the ability to remove cellular debris completely, which is necessary to prevent prion transmission. Therefore, single-use tonometer tips or disposable tonometer covers should be considered when treating patients with suspected prion disease. Damage to tonometer prisms can be caused by sodium hypochlorite, 70% isopropyl alcohol, 3% hydrogen peroxide, ethyl alcohol, water immersion, ultraviolet light, and heat exposure. Disinfectants can cause tonometer tips to swell and crack by dissolving the glue that holds the hollow tip together. The tonometer tip cracks can irritate the cornea, harbor microbes, or allow disinfectants to enter the interior of the tonometer tip. Sodium hypochlorite (dilute bleach) offers effective disinfection against adenovirus and HSV, the viruses commonly associated with nosocomial outbreaks in eye care. Tonometer prisms should be examined regularly for signs of damage. Copyright © 2017 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  18. 21 CFR 886.1930 - Tonometer and accessories.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1930 Tonometer and accessories. (a) Identification. A tonometer and accessories is a manual device intended to measure intraocular pressure by applying a known force on the globe of the eye and measuring the amount of indentation produced (Schiotz...

  19. Tonometer disinfection practice in the United Kingdom: a national survey.

    PubMed

    Hillier, R J; Kumar, N

    2008-08-01

    To assess current tonometer disinfection practice in the UK, and compare with published recommendations. Every ophthalmology unit with training recognition in the UK was contacted (n=155). A senior nurse at each institution completed a telephone questionnaire regarding local tonometer disinfection practice. The response rate was 100%. Thirty-five units (23%) reported exclusive use of disposable tonometer heads and were excluded from further analysis. One hundred and twenty units (77%) used either reusable or a combination of reusable and disposable tonometer heads. Where reusable heads were used, 80 units (67%) immersed them in a chlorine-based solution such as sodium hypochlorite or sodium dichloroisocyanurate. Others used isopropyl alcohol (18 units), hydrogen peroxide (12 units), chloramine (5 units), chlorhexidine (4 units) and peracetic acid (1 unit). Where a chlorine-based agent was used, the concentration of available chlorine ranged from 125 to 30 000 p.p.m., with 50 units (63%) using a concentration of less than 5 000 p.p.m. (i.e., inadequate based on published recommendations). Where the tonometer head was immersed in disinfectant between patients (n=101), 29 units (29%) provided just one tonometer head per practitioner, making adequate soak time between patients unlikely. Every unit replenished the disinfectant at least daily, deemed sufficient for most agents. However, hydrogen peroxide solutions should be replenished twice daily, which did not take place in nine units. This survey reveals disparity between current tonometer disinfection practice and published international recommendations, with some institutions using practices that may render patients susceptible to transmissible infection.

  20. Numerical and clinical investigation on the material model of the cornea in Corvis tonometry tests: differentiation between hyperelasticity and viscoelasticity

    NASA Astrophysics Data System (ADS)

    Jannesari, Mohammad; Mosaddegh, Peiman; Kadkhodaei, Mahmoud; Kasprzak, Henryk; Jabbarvand Behrouz, Mahmoud

    2018-05-01

    Non-contact tonometers, including ORA and Corvis ST, are not only used to estimate intraocular pressure (IOP) in clinical surveys but are also utilized to evaluate biomechanical properties of the cornea or anterior eye. However, for the cornea a realistic material model is still a controversial issue, and the main goal of the present study is to make this clearer. To this aim, the corneal biomechanical response is modeled by using a four-element linear viscoelastic model, which is characterized by in-vivo clinical data from Corvis ST tonometer. IOP tonometry tests on 5 normal and 5 keratoconic cases are accomplished by Corvis ST tonometer. Images from cornea deformation due to applied air jet are acquired from Corvis ST and are converted to the corneal deformation profiles by image processing techniques. By excluding the eye globe rigid body motion (retraction) from the total eye displacement, pure deformation of the cornea is obtained and used to calculate the required material properties. By calculating retardation time, contribution of the material viscosity during the test is estimated. The results show that viscosity effects do not substantially contribute to the cornea response during dynamic tests for both normal and keratoconic corneas. Indeed, the viscous effect comes from the eye globe rigid body motion.

  1. Corneal Vibrations during Intraocular Pressure Measurement with an Air-Puff Method

    PubMed Central

    Wilczyński, Sławomir

    2018-01-01

    Introduction The paper presents a commentary on the method of analysis of corneal vibrations occurring during eye pressure measurements with air-puff tonometers, for example, Corvis. The presented definition and measurement method allow for the analysis of image sequences of eye responses—cornea deformation. In particular, the outer corneal contour and sclera fragments are analysed, and 3D reconstruction is performed. Methods On this basis, well-known parameters such as eyeball reaction or corneal response are determined. The next steps of analysis allow for automatic and reproducible separation of four different corneal vibrations. These vibrations are associated with (1) the location of the maximum of cornea deformation; (2) the cutoff area measured in relation to the cornea in a steady state; (3) the maximum of peaks occurring between applanations; and (4) the other characteristic points of the corneal contour. Results The results obtained enable (1) automatic determination of the amplitude of vibrations; (2) determination of the frequency of vibrations; and (3) determination of the correlation between the selected types of vibrations. Conclusions These are diagnostic features that can be directly applied clinically for new and archived data. PMID:29610655

  2. [Comparison between Goldmann, Icare Pro and Corvis ST tonometry].

    PubMed

    Bañeros-Rojas, P; Martinez de la Casa, J M; Arribas-Pardo, P; Berrozpe-Villabona, C; Toro-Utrera, P; García-Feijoó, J

    2014-07-01

    To compare intraocular pressure (IOP) between the new non-contact tonometer Corvis ST (CST), the Goldmann applanation tonometry (GAT) and Icare Pro rebound tonometer (PRO). A total of 178 eyes of 178 healthy subjects were selected for the study. Measurements of IOP were made in a random order with GAT, PRO and CST. Central corneal thickness (CCT) was determined by ultrasound pachymetry. The mean of three valid measurements of each variable was used in the statistical analysis. The relationship between the tonometers was established using Bland-Altman plots. Mean IOP was 15.5 ± 2.8 mmHg for GAT, 15.4 ± 2.8 mmHg for CST, and 14.6 ± 2.3 mmHg for PRO. The mean differences between pairs of tonometers were: GAT-PRO=0.9 ± 1.7 mmHg (P<.001), GAT-CST: 0.1 ± 2.2 (P=.398), and PRO-CST: -0.8 ±-0.7 mmHg, p<0.001. A positive relationship was detected between CCT and the three tonometers: GAT: r=0.325, P<.001; PRO: r = 0.385, P<.001, and CST: r = 0.428; P<.001. The differences found between PRO and GAT were significantly higher than those found between CST and GAT, which showed non-significant differences. The measurements of the three tonometers were affected by the CCT. Copyright © 2013 Sociedad Española de Oftalmología. Published by Elsevier Espana. All rights reserved.

  3. Analysis of stress-strain state of a human eye by the method of elastotonometry after the surgical correction of hyperopia

    NASA Astrophysics Data System (ADS)

    Bauer, S. M.; Venatovskaya, L. A.

    2018-05-01

    The mathematical model of measuring of the intraocular pressure (IOP) by Maklakoff tonometer in the software package ANSYS, Inc. is presented. The dependence of the tonometric pressure on the weight of the tonometer before and after LASIK and Femto LASIK surgical corrections of hyperopia is analized. Cornea-scleral eye shell is modeled as two thin transversely isotropic joint spherical shells with different radii of curvature and biomechanical properties. To analyze the biomechanical state of the corneoscleral shell of the eye after the surgery the elastotonometry method is used. Firstly sequential measurements of intraocular pressure by Maklakoff tonometers weighting 5; 7.5; 10 and 15 g is carried out, then the dependence curve of tonometric IOP vs. tonometer weight is plotted and analyzed. The results of the calculations are compared with the clinical data.

  4. Rectifying calibration error of Goldmann applanation tonometer is easy!

    PubMed

    Choudhari, Nikhil S; Moorthy, Krishna P; Tungikar, Vinod B; Kumar, Mohan; George, Ronnie; Rao, Harsha L; Senthil, Sirisha; Vijaya, Lingam; Garudadri, Chandra Sekhar

    2014-11-01

    Purpose: Goldmann applanation tonometer (GAT) is the current Gold standard tonometer. However, its calibration error is common and can go unnoticed in clinics. Its company repair has limitations. The purpose of this report is to describe a self-taught technique of rectifying calibration error of GAT. Materials and Methods: Twenty-nine slit-lamp-mounted Haag-Streit Goldmann tonometers (Model AT 900 C/M; Haag-Streit, Switzerland) were included in this cross-sectional interventional pilot study. The technique of rectification of calibration error of the tonometer involved cleaning and lubrication of the instrument followed by alignment of weights when lubrication alone didn't suffice. We followed the South East Asia Glaucoma Interest Group's definition of calibration error tolerance (acceptable GAT calibration error within ±2, ±3 and ±4 mm Hg at the 0, 20 and 60-mm Hg testing levels, respectively). Results: Twelve out of 29 (41.3%) GATs were out of calibration. The range of positive and negative calibration error at the clinically most important 20-mm Hg testing level was 0.5 to 20 mm Hg and -0.5 to -18 mm Hg, respectively. Cleaning and lubrication alone sufficed to rectify calibration error of 11 (91.6%) faulty instruments. Only one (8.3%) faulty GAT required alignment of the counter-weight. Conclusions: Rectification of calibration error of GAT is possible in-house. Cleaning and lubrication of GAT can be carried out even by eye care professionals and may suffice to rectify calibration error in the majority of faulty instruments. Such an exercise may drastically reduce the downtime of the Gold standard tonometer.

  5. Reliability of tonosafe disposable tonometer prisms: clinical implications from the Veterans Affairs Boston Healthcare System Quality Assurance Study.

    PubMed

    Thomas, V; Daly, M K; Cakiner-Egilmez, T; Baker, E

    2011-05-01

    Given the Veterans Affairs Boston Healthcare System's recent introduction of single-use Tonosafe disposable tonometer prisms as an alternative to Goldmann applanation tonometers (GATs), this study had two aims: to conduct a large-scale quality assurance trial to assess the reliability of intraocular pressure (IOP) measurements of the Tonosafe disposable tonometer compared with GAT, particularly at extremes of pressure; to evaluate the suitability of Tonosafe disposable tonometer prisms as an acceptable substitute for GATs and for clinic-wide implementation in an academic tertiary referral setting. Ophthalmology resident physicians measured the IOPs of patients in general and specialty eye clinics with the Tonosafe disposable tonometer and GAT. Tonosafe test-retest reliability data were also collected. A retrospective review of patient charts and data analysis were performed to determine the reliability of measurements. The IOPs of 652 eyes (326 patients) were measured with both GAT and Tonosafe, with a range of 3-34 mm Hg. Linear regression analysis showed R=0.93, slope=0.91, both of which supported the proposed hypothesis, and the y-intercept=-1.05 was significantly different from the hypothesized value. The Tonosafe test-retest repeatability (40 eyes of 40 patients), r=0.977, was very high, which was further supported by linear regression slope=0.993, y-intercept=0.118, and a Tonosafe repeatability coefficient of 2.06, similar to GAT repeatability. The IOP measurements by Tonosafe disposable prisms correlated closely with Goldmann measurements, with similar repeated measurement variability to GAT. This suggests that the Tonosafe is an acceptable substitute for GAT to measure IOP in ophthalmology clinic settings.

  6. Reliability of tonosafe disposable tonometer prisms: clinical implications from the Veterans Affairs Boston Healthcare System Quality Assurance Study

    PubMed Central

    Thomas, V; Daly, M K; Cakiner-Egilmez, T; Baker, E

    2011-01-01

    Purpose Given the Veterans Affairs Boston Healthcare System's recent introduction of single-use Tonosafe disposable tonometer prisms as an alternative to Goldmann applanation tonometers (GATs), this study had two aims: to conduct a large-scale quality assurance trial to assess the reliability of intraocular pressure (IOP) measurements of the Tonosafe disposable tonometer compared with GAT, particularly at extremes of pressure; to evaluate the suitability of Tonosafe disposable tonometer prisms as an acceptable substitute for GATs and for clinic-wide implementation in an academic tertiary referral setting. Methods Ophthalmology resident physicians measured the IOPs of patients in general and specialty eye clinics with the Tonosafe disposable tonometer and GAT. Tonosafe test–retest reliability data were also collected. A retrospective review of patient charts and data analysis were performed to determine the reliability of measurements. Results The IOPs of 652 eyes (326 patients) were measured with both GAT and Tonosafe, with a range of 3–34 mm Hg. Linear regression analysis showed R=0.93, slope=0.91, both of which supported the proposed hypothesis, and the y-intercept=−1.05 was significantly different from the hypothesized value. The Tonosafe test–retest repeatability (40 eyes of 40 patients), r=0.977, was very high, which was further supported by linear regression slope=0.993, y-intercept=0.118, and a Tonosafe repeatability coefficient of 2.06, similar to GAT repeatability. Conclusions The IOP measurements by Tonosafe disposable prisms correlated closely with Goldmann measurements, with similar repeated measurement variability to GAT. This suggests that the Tonosafe is an acceptable substitute for GAT to measure IOP in ophthalmology clinic settings. PMID:21455241

  7. A Systematic Review Regarding Tonometry and the Transmission of Infectious Diseases.

    PubMed

    Atkins, Nicole; Hodge, William; Li, Bruce

    2018-03-01

    Tonometry has been identified as a common method for measuring the intraocular pressure in patients. The direct contact between the tonometer and the eye may contribute to the risk of cross infection, especially of viral particles, from one patient to another. A systematic review was undertaken to address the likelihood of human immunodeficiency virus (HIV), hepatitis B virus, hepatitis C virus, and prion diseases transmission through the use of tonometers. Additionally, a comparison of the current tonometer disinfection methods is provided to assist with identifying which technique effectively reduces the risk of disease transmission. An electronic literature search was conducted using the following databases: Web of Science, EMBASE, CINAHL, SCOPUS, Biosis Previews, Cochrane Library, PubMed, and Google Scholar. Dissertation indexes were also searched, and these included: Dissertations and Abstracts, and Dissertations and Abstracts - UK/Ireland. Additionally, the Clinicaltrials.gov trial registry was searched to identify any other relevant literature. Two independent reviewers critically appraised the articles retrieved through the literature search. In total, 11 unique studies were deemed relevant for this systematic review. The available evidence demonstrated that the use of tonometers contributes to the transmission of these infectious diseases in vitro . The results also demonstrated variability in determining the most effective tonometer sterilization technique against these infectious diseases in vitro . There was limited evidence available regarding the transmission of HIV, hepatitis B, hepatitis C, and prion diseases through the use of tonometers. Additionally, due to the variability regarding the most effective sterilization techniques, it is difficult to identify which sterilization technique is most effective or adequately effective against these infectious diseases. Future research studies regarding infectious disease transmission through tonometry and sterilization techniques should be completed to more adequately inform infectious disease control guidelines.

  8. Evaluation of monkey intraocular pressure by rebound tonometer

    PubMed Central

    Yu, Wenhan; Cao, Guiqun; Qiu, Jinghua; Ma, Jia; Li, Ni; Yu, Man; Yan, Naihong; Chen, Lei; Pang, Iok-Hou

    2009-01-01

    Purpose To evaluate the usefulness of the TonoVet™ rebound tonometer in measuring intraocular pressure (IOP) of monkeys. Methods The accuracy of the TonoVet™ rebound tonometer was determined in cannulated eyes of anesthetized rhesus monkeys where IOP was controlled by adjusting the height of a connected perfusate reservoir. To assess the applicability of the equipment through in vivo studies, the diurnal fluctuation of IOP and effects of IOP-lowering compounds were evaluated in monkeys. Results IOP readings generated by the TonoVet™ tonometer correlated very well with the actual pressure in the cannulated monkey eye. The linear correlation had a slope of 0.922±0.014 (mean±SEM, n=4), a y-intercept of 3.04±0.61, and a correlation coefficient of r2=0.97. Using this method, diurnal IOP fluctuation of the rhesus monkey was demonstrated. The tonometer was also able to detect IOP changes induced by pharmacologically active compounds. A single topical ocular instillation (15 μg) of the rho kinase inhibitor, H1152, produced a 5–6 mmHg reduction (p<0.001) in IOP, lasting at least 4 h. In addition, topical administration of Travatan®, a prostaglandin agonist, induced a small transient IOP increase (1.1 mmHg versus vehicle control; p=0.26) at 2 h after treatment followed by a pressure reduction at 23 h (−2.4 mmHg; p<0.05). Multiple daily dosing with the drug produced a persistent IOP-lowering effect. Three consecutive days of Travatan treatment produced ocular hypotension of −2.0 to −2.2 mmHg (p<0.05) the following day. Conclusions The rebound tonometer was easy to use and accurately measured IOP in the rhesus monkey eye. PMID:19898690

  9. Quantitative assessment of responses of the eyeball based on data from the Corvis tonometer.

    PubMed

    Koprowski, Robert; Wilczyński, Sławomir; Nowinska, Anna; Lyssek-Boron, Anita; Teper, Sławomir; Wylegala, Edward; Wróbel, Zygmunt

    2015-03-01

    The "air-puff" tonometers, include the Corvis, are a type of device for measuring intraocular pressure and biomechanics parameters. The paper attempts to analyse this response and its relationship with other parameters measured in the Corvis tonometer. A number of 13,400 2D images were acquired from the Corvis device and analysed (32 healthy and 16 ill people). A new method has been proposed for the analysis of responses of the eyeball based on morphological transformations and contextual operations. The proposed algorithm enables to determine responses of the eyeball to an air puff coming from the Corvis tonometer. Additionally, responses of the eyeball have been linked to some selected features of corneal deformation. The results include, among others: (1) distinguishability between the left and right eye with an error of 7%; (2) the correlation between the area under the curve in corneal deformation and the response of the eyeball -0.26; (3) the correlation between the highest concavity time and the maximum deformation amplitude of 0.4. All these features are obtained fully automatically and repetitively at a time of 3.8s per patient (Core i7 10GB RAM). It is possible to measure additional parameters of the eye deformation which are not available in the original software of the Corvis tonometer. The use of the proposed methods of image analysis and processing provides results directly from the eye response measurement when measuring intraocular pressure. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Contamination of disposable tonometer prisms during tonometry.

    PubMed

    Rajak, S N; Paul, J; Sharma, V; Vickers, S

    2006-03-01

    Due to the theoretical possibility of prion transmission in applanation tonometry, many ophthalmological units in the United Kingdom now use disposable tonometer prisms. We have investigated the potential for bacterial and viral transmission from the health practitioner to the patient via disposable prisms. All staff who perform applanation tonometry at the Sussex Eye Hospital (SEH) received a questionnaire to evaluate if the applanating face of the prism is touched during tonometry and the ease of use of the disposable prism compared to the reusable prisms that were previously used. We then cultured prisms handled by a random sample of staff members for common bacteria. Finally, we constructed a model to investigate the possibility of interpatient adenoviral transmission via disposable tonometer prisms. The questionnaire revealed that almost 50% of the staff admit to touching the applanating face of the tonometer prism prior to applanation. Cultures of the prisms grew a range of bacteria including Staphylococcus epidermidis, Staphylococcus aureus, and Bacillus species. The viral model suggested that adenovirus could be transmitted by applanation tonometry. The use of disposable prisms for applanation tonometry may reduce the risk of prion transmission but is not bacteriologically or virologically aseptic. This is a potential infection risk to patients.

  11. [Disinfecting contact tonometers - a systematic review].

    PubMed

    Neubauer, A S; Heeg, P; Kampik, A; Hirneiss, C

    2009-05-01

    The aim of this study is to provide the best available evidence on how to disinfect contact Goldman tonometers. A systematic review of all articles on disinfection of contact tonometers was conducted. Articles published up to July 2008 were identified in Medline, Embase and references from included articles. Two observers participated in the data retrieval and assessment of the studies identified. A total of 89 articles was retrieved, of which 58 could be included. Of those, 18 were clinical studies, 17 experimental microbiological studies, 8 expert assessments or guidelines and 15 reviews, surveys, descriptions of new methods. The clinical studies illustrate the importance of the problem, possible side effects of some disinfection methods but yield inconclusive results regarding efficacy. Experimental studies investigated a variety of bacterial and virological questions as well as material damage by disinfection. Both chlorine-based and hydrogen peroxide-based liquid disinfection were shown to be effective if applied for 5 min. Inconsistent results exist for alcohol wipes and UV disinfection - material damage has been described for both. The US guidelines and most expert recommendations are supported by evidence of the existing data. Chlorine-based and hydrogen peroxide-based liquid disinfections for 5 minutes are effective and relatively safe for disinfecting contact tonometers.

  12. Goldmann tonometer calibration: a national survey.

    PubMed

    Kumar, N; Hillier, R J

    2009-02-01

    Recent studies suggest that Goldmann tonometers can rapidly develop calibration errors (CEs) in clinical use and routine checks are necessary to ensure accuracy. To determine current practice regarding CE checks in the United Kingdom and assess the views of senior nursing staff in charge of running ophthalmology outpatient clinics as to whom they feel to be responsible for CE checks. Every ophthalmology unit with training recognition in England, Northern Ireland, Scotland, and Wales was contacted. Senior nurses responded to a structured telephone questionnaire regarding local tonometer calibration practice and their views regarding who is responsible for CE checks. A total of 155 eye units were identified and contacted. The response rate was 100%. CEs were checked for daily in 8 units (5.2%), weekly in 20 units (12.9%), fortnightly in 1 unit (0.6%), monthly in 12 units (7.7%), trimonthly in 5 units (3.2%), biannually in 27 units (17.4%), and annually in 21 units (13.5%). CEs were either never checked or checked in a very random manner (no identifiable pattern) in 61 units (39.4%). Sixty-three (40.6%) of the respondents felt CE checks were a departmental responsibility, 48 (31.0%) felt it to be the doctor's responsibility, and 44 (28.4%) felt CE checks should be performed by the nursing staff. Our national survey suggests that very few units check their tonometers for CEs at intervals which ensure their accuracy. Our previous survey of doctors suggests that they believe nurses should check for CE, whereas the nursing staff believe CE checks are not their responsibility. This lack of communication between health-care professionals may lead to inaccurate tonometers being used in clinical practice. We suggest that every eye unit should have a protocol, which clearly identifies individuals responsible for checking for CEs at least on a monthly basis.

  13. Active contour-based visual tracking by integrating colors, shapes, and motions.

    PubMed

    Hu, Weiming; Zhou, Xue; Li, Wei; Luo, Wenhan; Zhang, Xiaoqin; Maybank, Stephen

    2013-05-01

    In this paper, we present a framework for active contour-based visual tracking using level sets. The main components of our framework include contour-based tracking initialization, color-based contour evolution, adaptive shape-based contour evolution for non-periodic motions, dynamic shape-based contour evolution for periodic motions, and the handling of abrupt motions. For the initialization of contour-based tracking, we develop an optical flow-based algorithm for automatically initializing contours at the first frame. For the color-based contour evolution, Markov random field theory is used to measure correlations between values of neighboring pixels for posterior probability estimation. For adaptive shape-based contour evolution, the global shape information and the local color information are combined to hierarchically evolve the contour, and a flexible shape updating model is constructed. For the dynamic shape-based contour evolution, a shape mode transition matrix is learnt to characterize the temporal correlations of object shapes. For the handling of abrupt motions, particle swarm optimization is adopted to capture the global motion which is applied to the contour in the current frame to produce an initial contour in the next frame.

  14. Contour junctions defined by dynamic image deformations enhance perceptual transparency.

    PubMed

    Kawabe, Takahiro; Nishida, Shin'ya

    2017-11-01

    The majority of work on the perception of transparency has focused on static images with luminance-defined contour junctions, but recent work has shown that dynamic image sequences with dynamic image deformations also provide information about transparency. The present study demonstrates that when part of a static image is dynamically deformed, contour junctions at which deforming and nondeforming contours are connected facilitate the deformation-based perception of a transparent layer. We found that the impression of a transparent layer was stronger when a dynamically deforming area was adjacent to static nondeforming areas than when presented alone. When contour junctions were not formed at the dynamic-static boundaries, however, the impression of a transparent layer was not facilitated by the presence of static surrounding areas. The effect of the deformation-defined junctions was attenuated when the spatial pattern of luminance contrast at the junctions was inconsistent with the perceived transparency related to luminance contrast, while the effect did not change when the spatial luminance pattern was consistent with it. In addition, the results showed that contour completions across the junctions were required for the perception of a transparent layer. These results indicate that deformation-defined junctions that involve contour completion between deforming and nondeforming regions enhance the perception of a transparent layer, and that the deformation-based perceptual transparency can be promoted by the simultaneous presence of appropriately configured luminance and contrast-other features that can also by themselves produce the sensation of perceiving transparency.

  15. Importance of intraocular pressure in glaucoma

    NASA Astrophysics Data System (ADS)

    Joos, Karen M.

    1999-06-01

    Glaucoma results in permanent vision loss and affects the peripheral vision initially. It is presented in 22.5 million people worldwide and is the 3rd cause of blindness. Present tonometers are not ideal for intraocular pressure measurements in all eyes. Of concern, PRK and LASIK may result in lower intraocular pressure readings. A challenges now exists for the development of a tonometer which can easily compensate for corneas with many parameters to avoid a future increase in normal-tension glaucoma or glaucoma which is advanced.

  16. Tissue tonometry is a simple, objective measure for pliability of burn scar: is it reliable?

    PubMed

    Lye, Ian; Edgar, Dale W; Wood, Fiona M; Carroll, Sara

    2006-01-01

    Objective measurement of burn scar response to treatment is important to facilitate individual patient care, research, and service development. This work examines the validity and reliability of the tonometer as a means of quantifying scar pliability. Ten burn survivors were recruited into the study. Triplicate measures were taken for each of four scar and one normal skin point. The pliability score from the Vancouver Scar Scale also was used as a comparison. The tonometer demonstrated a high degree of reliability (intraclass correlation coefficients 0.91-0.94). It also was shown to provide a valid measure of pliability by quantifying decreased tissue deformation for scar (2.04 +/- 0.45 mm) compared with normal tissue (3.02 +/- 0.92 mm; t = 4.28, P = .004) and a moderate correlation with Vancouver Scar Scale scores. The tissue tonometer provides a repeatable, objective index of burn scar pliability. Using the methods described, it is a simple, clinically useful technique for monitoring an individual's scar.

  17. Disposable versus non-disposable tonometer prisms: a UK national survey

    PubMed Central

    Jasani, Kirti M; Putri, Christine; Pearl, Amy; Sattar, Nayeem; Mercieca, Karl; Spaeth, George; Bhan-Bhargava, Archana

    2017-01-01

    Purpose To determine the prevalence of disposable tonometer versus non-disposable tonometer use in the UK and to determine methods of decontamination and frequency of replacement of prisms. A total of 137 ophthalmology departments were interviewed by telephone using a structured questionnaire. The main outcome measured were:types of tonometer prisms used in clinic (disposable, non-disposable and/or other)average disposable prisms used per clinic sessionaverage lifespan of non-disposable prismsprism preference by glaucoma and other teams within department. A cost and benefit analysis was then performed on the data acquired. Results One hundred and fifty-five departments were identified for the survey. Of these, 137 (88.3%) responded. Eighty-one departments (59.1%) used Tonosafe prisms alone, whereas 22 departments (16.1%) used Goldmann non-disposable prisms exclusively. Thirty-five departments (64%) on average have a change rate of 26.5% per year (range: 0–100, median: 20) attributed to damage, loss or theft. Sixteen departments (29%) reported that prisms were used until damaged or lost. Four departments (7%) were uncertain of their prism usage and could not provide further information. Conclusions Majority of eye departments in the UK opt for disposable prisms. This survey shows the perceived cost-effectiveness of disposable prisms is overestimated when the true cost of disinfection and damage is taken into account. Significant cost savings coupled with the low risk of infectivity (if decontaminated properly) should prompt clinicians and ophthalmic departments worldwide to reconsider the use of non-disposable prisms. PMID:29354698

  18. Uterus segmentation in dynamic MRI using LBP texture descriptors

    NASA Astrophysics Data System (ADS)

    Namias, R.; Bellemare, M.-E.; Rahim, M.; Pirró, N.

    2014-03-01

    Pelvic floor disorders cover pathologies of which physiopathology is not well understood. However cases get prevalent with an ageing population. Within the context of a project aiming at modelization of the dynamics of pelvic organs, we have developed an efficient segmentation process. It aims at alleviating the radiologist with a tedious one by one image analysis. From a first contour delineating the uterus-vagina set, the organ border is tracked along a dynamic mri sequence. The process combines movement prediction, local intensity and texture analysis and active contour geometry control. Movement prediction allows a contour intitialization for next image in the sequence. Intensity analysis provides image-based local contour detection enhanced by local binary pattern (lbp) texture descriptors. Geometry control prohibits self intersections and smoothes the contour. Results show the efficiency of the method with images produced in clinical routine.

  19. Goldmann tonometer error correcting prism: clinical evaluation.

    PubMed

    McCafferty, Sean; Lim, Garrett; Duncan, William; Enikov, Eniko T; Schwiegerling, Jim; Levine, Jason; Kew, Corin

    2017-01-01

    Clinically evaluate a modified applanating surface Goldmann tonometer prism designed to substantially negate errors due to patient variability in biomechanics. A modified Goldmann prism with a correcting applanation tonometry surface (CATS) was mathematically optimized to minimize the intraocular pressure (IOP) measurement error due to patient variability in corneal thickness, stiffness, curvature, and tear film adhesion force. A comparative clinical study of 109 eyes measured IOP with CATS and Goldmann prisms. The IOP measurement differences between the CATS and Goldmann prisms were correlated to corneal thickness, hysteresis, and curvature. The CATS tonometer prism in correcting for Goldmann central corneal thickness (CCT) error demonstrated a reduction to <±2 mmHg in 97% of a standard CCT population. This compares to only 54% with CCT error <±2 mmHg using the Goldmann prism. Equal reductions of ~50% in errors due to corneal rigidity and curvature were also demonstrated. The results validate the CATS prism's improved accuracy and expected reduced sensitivity to Goldmann errors without IOP bias as predicted by mathematical modeling. The CATS replacement for the Goldmann prism does not change Goldmann measurement technique or interpretation.

  20. Red-free light for measurement of intraocular pressure using Goldmann applanation tonometer without fluorescein.

    PubMed

    Ghoneim, Ehab M

    2014-01-01

    To evaluate the use of red-free light for the measurement of intraocular pressure (IOP) using a Goldmann applanation tonometer without fluorescein. This cross-sectional study was carried out on 500 eyes in 250 patients attending the Ophthalmology Outpatient Clinic at Suez Canal University Hospital. The IOP was measured using a Goldmann applanation tonometer mounted on a Haag-Streit slit-lamp. The measurements were performed first using red-free light without fluorescein. Then the measurements were repeated with cobalt blue light and topical fluorescein on the same eyes. The mean IOP was 15.23 ± 3.3 (SD) mm Hg using the red-free light without fluorescein, whereas it was 15.78 ± 3.7 (SD) mm Hg when measured using cobalt blue light after the application of fluorescein to the conjunctival sac. This difference was not statistically significant. Measurement of IOP with a Goldmann applanationtonometer with red-free light and without the use of fluorescein is simple, saves time, and gives an accurate IOP measurement relative to the traditional measurement technique with cobalt blue light and topical fluorescein.

  1. A novel three-dimensional smile analysis based on dynamic evaluation of facial curve contour

    PubMed Central

    Lin, Yi; Lin, Han; Lin, Qiuping; Zhang, Jinxin; Zhu, Ping; Lu, Yao; Zhao, Zhi; Lv, Jiahong; Lee, Mln Kyeong; Xu, Yue

    2016-01-01

    The influence of three-dimensional facial contour and dynamic evaluation decoding on factors of smile esthetics is essential for facial beauty improvement. However, the kinematic features of the facial smile contour and the contribution from the soft tissue and underlying skeleton are uncharted. Here, the cheekbone-maxilla contour and nasolabial fold were combined into a “smile contour” delineating the overall facial topography emerges prominently in smiling. We screened out the stable and unstable points on the smile contour using facial motion capture and curve fitting, before analyzing the correlation between soft tissue coordinates and hard tissue counterparts of the screened points. Our finding suggests that the mouth corner region was the most mobile area characterizing smile expression, while the other areas remained relatively stable. Therefore, the perioral area should be evaluated dynamically while the static assessment outcome of other parts of the smile contour contribute partially to their dynamic esthetics. Moreover, different from the end piece, morphologies of the zygomatic area and the superior part of the nasolabial crease were determined largely by the skeleton in rest, implying the latter can be altered by orthopedic or orthodontic correction and the former better improved by cosmetic procedures to improve the beauty of smile. PMID:26911450

  2. A novel three-dimensional smile analysis based on dynamic evaluation of facial curve contour

    NASA Astrophysics Data System (ADS)

    Lin, Yi; Lin, Han; Lin, Qiuping; Zhang, Jinxin; Zhu, Ping; Lu, Yao; Zhao, Zhi; Lv, Jiahong; Lee, Mln Kyeong; Xu, Yue

    2016-02-01

    The influence of three-dimensional facial contour and dynamic evaluation decoding on factors of smile esthetics is essential for facial beauty improvement. However, the kinematic features of the facial smile contour and the contribution from the soft tissue and underlying skeleton are uncharted. Here, the cheekbone-maxilla contour and nasolabial fold were combined into a “smile contour” delineating the overall facial topography emerges prominently in smiling. We screened out the stable and unstable points on the smile contour using facial motion capture and curve fitting, before analyzing the correlation between soft tissue coordinates and hard tissue counterparts of the screened points. Our finding suggests that the mouth corner region was the most mobile area characterizing smile expression, while the other areas remained relatively stable. Therefore, the perioral area should be evaluated dynamically while the static assessment outcome of other parts of the smile contour contribute partially to their dynamic esthetics. Moreover, different from the end piece, morphologies of the zygomatic area and the superior part of the nasolabial crease were determined largely by the skeleton in rest, implying the latter can be altered by orthopedic or orthodontic correction and the former better improved by cosmetic procedures to improve the beauty of smile.

  3. Effects of inverting contour and features on processing for static and dynamic face perception: an MEG study.

    PubMed

    Miki, Kensaku; Takeshima, Yasuyuki; Watanabe, Shoko; Honda, Yukiko; Kakigi, Ryusuke

    2011-04-06

    We investigated the effects of inverting facial contour (hair and chin) and features (eyes, nose and mouth) on processing for static and dynamic face perception using magnetoencephalography (MEG). We used apparent motion, in which the first stimulus (S1) was replaced by a second stimulus (S2) with no interstimulus interval and subjects perceived visual motion, and presented three conditions as follows: (1) U&U: Upright contour and Upright features, (2) U&I: Upright contour and Inverted features, and (3) I&I: Inverted contour and Inverted features. In static face perception (S1 onset), the peak latency of the fusiform area's activity, which was related to static face perception, was significantly longer for U&I and I&I than for U&U in the right hemisphere and for U&I than for U&U and I&I in the left. In dynamic face perception (S2 onset), the strength (moment) of the occipitotemporal area's activity, which was related to dynamic face perception, was significantly larger for I&I than for U&U and U&I in the right hemisphere, but not the left. These results can be summarized as follows: (1) in static face perception, the activity of the right fusiform area was more affected by the inversion of features while that of the left fusiform area was more affected by the disruption of the spatial relation between the contour and features, and (2) in dynamic face perception, the activity of the right occipitotemporal area was affected by the inversion of the facial contour. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Contour advection with surgery: A technique for investigating finescale structure in tracer transport

    NASA Technical Reports Server (NTRS)

    Waugh, Darryn W.; Plumb, R. Alan

    1994-01-01

    We present a trajectory technique, contour advection with surgery (CAS), for tracing the evolution of material contours in a specified (including observed) evolving flow. CAS uses the algorithms developed by Dritschel for contour dynamics/surgery to trace the evolution of specified contours. The contours are represented by a series of particles, which are advected by a specified, gridded, wind distribution. The resolution of the contours is preserved by continually adjusting the number of particles, and finescale features are produced that are not present in the input data (and cannot easily be generated using standard trajectory techniques). The reliability, and dependence on the spatial and temporal resolution of the wind field, of the CAS procedure is examined by comparisons with high-resolution numerical data (from contour dynamics calculations and from a general circulation model), and with routine stratospheric analyses. These comparisons show that the large-scale motions dominate the deformation field and that CAS can accurately reproduce small scales from low-resolution wind fields. The CAS technique therefore enables examination of atmospheric tracer transport at previously unattainable resolution.

  5. Figure-ground assignment to a translating contour: a preference for advancing vs. receding motion.

    PubMed

    Barenholtz, Elan; Tarr, Michael J

    2009-05-28

    Past research on figure-ground assignment to contours has largely considered static stimuli. Here we report a simple and extremely robust dynamic cue to figural assignment, based on whether the bounding region of a contour is growing larger within the field of view ("advancing") rather than smaller ("receding"). Subjects viewed a straight or jagged contour dividing two colored regions translating behind a virtual aperture and had to report which color they had seen "moving in front", effectively assigning figure to that side of the contour. Across three experiments, subjects showed a strong preference to assign figure such that the bounded contour was advancing. This was true regardless of the direction of motion of the contour and regardless of the initial/ending size of the bounded regions (i.e., the motion cue served to override the conventional cue to figure-ground of smaller area). In a fourth, control experiment, subjects showed no such bias when it was the aperture, rather than the contour, that moved, demonstrating that the effect depends on contour motion and not simply an increase in area. We discuss a possible explanation for this bias as well as the general implications regarding dynamic factors in form perception.

  6. Intraocular pressure measurement over soft contact lens by rebound tonometer: a comparative study

    PubMed Central

    Nacaroglu, Senay Asik; Un, Emine Seker; Ersoz, Mehmet Giray; Tasci, Yelda

    2015-01-01

    AIM To evaluate the intraocular pressure (IOP) measurements by Icare rebound tonometer over a contact lens in comparison with Goldmann applanation tonometry (GAT). METHODS Fifty patients using contact lens were included in this study. One of the eyes of the patients was selected randomly and their IOP were measured by rebound tonometer with and without contact lens (RTCL, RT respectively) and by GAT, as well as their central corneal thickness (CCT) by optical pachymeter. The results of both methods were compared by correlation analysis, general linear method repeated measure and Bland-Altman analysis. RESULTS Mean IOP values measured by RTCL, RT and GAT were 15.68±3.7, 14.50±3.4 and 14.16±2.8 (P<0.001), respectively. Mean IOP by RTCL was significantly higher than the measurements implemented by RT and GAT (P<0.001), while there was no difference between the measurements by GAT and RT (P=0.629). There was a good level of positive correlation between GAT and RTCL as well as RT (r=0.786 P<0.001, r=0.833 P<0.001, respectively). We have observed that CCT increase did not show any correlation with the differences of the measurements between RTCL and RT (P=0.329), RTCL and GAT (P=0.07) as well as RT and GAT (P=0.189) in linear regression model. CONCLUSION The average of the measurements over contact lens by rebound tonometer was found to be higher than what was measured by GAT. Although this difference is statistically significant, it may be clinically negligible in the normal population. PMID:26086004

  7. Automatic segmentation of closed-contour features in ophthalmic images using graph theory and dynamic programming.

    PubMed

    Chiu, Stephanie J; Toth, Cynthia A; Bowes Rickman, Catherine; Izatt, Joseph A; Farsiu, Sina

    2012-05-01

    This paper presents a generalized framework for segmenting closed-contour anatomical and pathological features using graph theory and dynamic programming (GTDP). More specifically, the GTDP method previously developed for quantifying retinal and corneal layer thicknesses is extended to segment objects such as cells and cysts. The presented technique relies on a transform that maps closed-contour features in the Cartesian domain into lines in the quasi-polar domain. The features of interest are then segmented as layers via GTDP. Application of this method to segment closed-contour features in several ophthalmic image types is shown. Quantitative validation experiments for retinal pigmented epithelium cell segmentation in confocal fluorescence microscopy images attests to the accuracy of the presented technique.

  8. Automatic segmentation of closed-contour features in ophthalmic images using graph theory and dynamic programming

    PubMed Central

    Chiu, Stephanie J.; Toth, Cynthia A.; Bowes Rickman, Catherine; Izatt, Joseph A.; Farsiu, Sina

    2012-01-01

    This paper presents a generalized framework for segmenting closed-contour anatomical and pathological features using graph theory and dynamic programming (GTDP). More specifically, the GTDP method previously developed for quantifying retinal and corneal layer thicknesses is extended to segment objects such as cells and cysts. The presented technique relies on a transform that maps closed-contour features in the Cartesian domain into lines in the quasi-polar domain. The features of interest are then segmented as layers via GTDP. Application of this method to segment closed-contour features in several ophthalmic image types is shown. Quantitative validation experiments for retinal pigmented epithelium cell segmentation in confocal fluorescence microscopy images attests to the accuracy of the presented technique. PMID:22567602

  9. Goldmann Tonometer Prism with an Optimized Error Correcting Applanation Surface.

    PubMed

    McCafferty, Sean; Lim, Garrett; Duncan, William; Enikov, Eniko; Schwiegerling, Jim

    2016-09-01

    We evaluate solutions for an applanating surface modification to the Goldmann tonometer prism, which substantially negates the errors due to patient variability in biomechanics. A modified Goldmann or correcting applanation tonometry surface (CATS) prism is presented which was optimized to minimize the intraocular pressure (IOP) error due to corneal thickness, stiffness, curvature, and tear film. Mathematical modeling with finite element analysis (FEA) and manometric IOP referenced cadaver eyes were used to optimize and validate the design. Mathematical modeling of the optimized CATS prism indicates an approximate 50% reduction in each of the corneal biomechanical and tear film errors. Manometric IOP referenced pressure in cadaveric eyes demonstrates substantial equivalence to GAT in nominal eyes with the CATS prism as predicted by modeling theory. A CATS modified Goldmann prism is theoretically able to significantly improve the accuracy of IOP measurement without changing Goldmann measurement technique or interpretation. Clinical validation is needed but the analysis indicates a reduction in CCT error alone to less than ±2 mm Hg using the CATS prism in 100% of a standard population compared to only 54% less than ±2 mm Hg error with the present Goldmann prism. This article presents an easily adopted novel approach and critical design parameters to improve the accuracy of a Goldmann applanating tonometer.

  10. Convexities move because they contain matter.

    PubMed

    Barenholtz, Elan

    2010-09-22

    Figure-ground assignment to a contour is a fundamental stage in visual processing. The current paper introduces a novel, highly general dynamic cue to figure-ground assignment: "Convex Motion." Across six experiments, subjects showed a strong preference to assign figure and ground to a dynamically deforming contour such that the moving contour segment was convex rather than concave. Experiments 1 and 2 established the preference across two different kinds of deformational motion. Additional experiments determined that this preference was not due to fixation (Experiment 3) or attentional mechanisms (Experiment 4). Experiment 5 found a similar, but reduced bias for rigid-as opposed to deformational-motion, and Experiment 6 demonstrated that the phenomenon depends on the global motion of the effected contour. An explanation of this phenomenon is presented on the basis of typical natural deformational motion, which tends to involve convex contour projections that contain regions consisting of physical "matter," as opposed to concave contour indentations that contain empty space. These results highlight the fundamental relationship between figure and ground, perceived shape, and the inferred physical properties of an object.

  11. Comparison of iCare tonometer and Goldmann applanation tonometry in normal corneas and in eyes with automated lamellar and penetrating keratoplasty

    PubMed Central

    Salvetat, M L; Zeppieri, M; Miani, F; Tosoni, C; Parisi, L; Brusini, P

    2011-01-01

    Purpose To compare intraocular pressure (IOP) measurements with Goldmann applanation tonometry (GAT) and iCare tonometry in normal and post-keratoplasty corneas and to assess the influence of central corneal thickness (CCT), corneal curvature (CC), and corneal astigmatism (CA) on IOP. Methods This prospective cross-sectional study included one eye of 101 subjects with normal corneas (58 healthy subjects, 43 glaucoma); and 90 post-keratoplasty patients: 34 penetrating keratoplasties (PK); 20 automated-lamellar-therapeutic keratoplasties (ALTK); 19 Descemet-stripping-automated-endothelial keratoplasties (DSAEK); 17 edematous grafts. All subjects underwent GAT and iCare IOP measurements in random order, and CCT, CC, and CA evaluation. The Bland–Altman method and multivariate regression analysis were used to assess inter-tonometer agreement and the influence of CCT, CC, and CA on IOP. Results iCare significantly underestimated IOP in all groups compared with GAT (GAT minus iCare of 3.5±3.5 mm Hg, P<0.001), but overestimated IOP in the edematous grafts (GAT minus iCare of −6.5±1.9 mm Hg, P<0.001). In normal corneas, both tonometer measurements were directly related to CCT values; iCare readings appeared inversely related to CC. There was no significant relationship between IOP and CCT, CC and CA in post-keratoplasty eyes, except between CC and iCare measurements for PK eyes. Conclusions The agreement between GAT and iCare was clinically acceptable in control, ALTK and DSAEK groups, and poor in PK and edematous grafts eyes. In normal corneas, GAT was significantly affected by CCT; iCare was influenced by CCT and CC. The iCare appeared less influenced by corneal edema when compared with GAT. High IOP readings taken with both tonometers in grafts should raise suspicion of true elevated IOP. PMID:21436848

  12. Fuzzy and process modelling of contour ridge water dynamics

    NASA Astrophysics Data System (ADS)

    Mhizha, Alexander; Ndiritu, John

    2018-05-01

    Contour ridges are an in-situ rainwater harvesting technology developed initially for soil erosion control but are currently also widely promoted for rainwater harvesting. The effectiveness of contour ridges depends on geophysical, hydro-climatic and socio economic factors that are highly varied in time and space. Furthermore, field-scale data on these factors are often unavailable. This together with the complexity of hydrological processes at field scale limits the application of classical distributed process modelling to highly-instrumented experimental fields. This paper presents a framework that combines fuzzy logic and process-based approach for modelling contour ridges for rainwater harvesting where detailed field data are not available. Water balance for a representative contour-ridged field incorporating the water flow processes across the boundaries is integrated with fuzzy logic to incorporate the uncertainties in estimating runoff. The model is tested using data collected during the 2009/2010 and 2010/2011 rainfall seasons from two contour-ridged fields in Zhulube located in the semi-arid parts of Zimbabwe. The model is found to replicate soil moisture in the root zone reasonably well (NSE = 0.55 to 0.66 and PBIAS = -1.3 to 6.1 %). The results show that combining fuzzy logic and process based approaches can adequately model soil moisture in a contour ridged-field and could help to assess the water dynamics in contour ridged fields.

  13. Axisymmetric contour dynamics for buoyant vortex rings

    NASA Astrophysics Data System (ADS)

    Chang, Ching; Llewellyn Smith, Stefan

    2017-11-01

    Vortex rings are important in many fluid flows in engineering and environmental applications. A family of steady propagating vortex rings including thin-core rings and Hill's spherical vortex was obtained by Norbury (1973). However, the dynamics of vortex rings in the presence of buoyancy has not been investigated yet in detail. When the core of a ring is thin, we may formulate reduced equations using momentum balance for vortex filaments, but that is not the case for ``fat'' rings. In our study, we use contour dynamics to study the time evolution of axisymmetric vortex rings when the density of the fluid inside the ring differs from that of the ambient. Axisymmetry leads to an almost-conserved material variable when the Boussinesq approximation is made. A set of integro-differential equations is solved numerically for these buoyant vortex rings. The same physical settings are also used to run a DNS code and compare to the results from contour dynamics.

  14. Automatic classification of killer whale vocalizations using dynamic time warping.

    PubMed

    Brown, Judith C; Miller, Patrick J O

    2007-08-01

    A set of killer whale sounds from Marineland were recently classified automatically [Brown et al., J. Acoust. Soc. Am. 119, EL34-EL40 (2006)] into call types using dynamic time warping (DTW), multidimensional scaling, and kmeans clustering to give near-perfect agreement with a perceptual classification. Here the effectiveness of four DTW algorithms on a larger and much more challenging set of calls by Northern Resident whales will be examined, with each call consisting of two independently modulated pitch contours and having considerable overlap in contours for several of the perceptual call types. Classification results are given for each of the four algorithms for the low frequency contour (LFC), the high frequency contour (HFC), their derivatives, and weighted sums of the distances corresponding to LFC with HFC, LFC with its derivative, and HFC with its derivative. The best agreement with the perceptual classification was 90% attained by the Sakoe-Chiba algorithm for the low frequency contours alone.

  15. Application of snakes and dynamic programming optimisation technique in modeling of buildings in informal settlement areas

    NASA Astrophysics Data System (ADS)

    Rüther, Heinz; Martine, Hagai M.; Mtalo, E. G.

    This paper presents a novel approach to semiautomatic building extraction in informal settlement areas from aerial photographs. The proposed approach uses a strategy of delineating buildings by optimising their approximate building contour position. Approximate building contours are derived automatically by locating elevation blobs in digital surface models. Building extraction is then effected by means of the snakes algorithm and the dynamic programming optimisation technique. With dynamic programming, the building contour optimisation problem is realized through a discrete multistage process and solved by the "time-delayed" algorithm, as developed in this work. The proposed building extraction approach is a semiautomatic process, with user-controlled operations linking fully automated subprocesses. Inputs into the proposed building extraction system are ortho-images and digital surface models, the latter being generated through image matching techniques. Buildings are modeled as "lumps" or elevation blobs in digital surface models, which are derived by altimetric thresholding of digital surface models. Initial windows for building extraction are provided by projecting the elevation blobs centre points onto an ortho-image. In the next step, approximate building contours are extracted from the ortho-image by region growing constrained by edges. Approximate building contours thus derived are inputs into the dynamic programming optimisation process in which final building contours are established. The proposed system is tested on two study areas: Marconi Beam in Cape Town, South Africa, and Manzese in Dar es Salaam, Tanzania. Sixty percent of buildings in the study areas have been extracted and verified and it is concluded that the proposed approach contributes meaningfully to the extraction of buildings in moderately complex and crowded informal settlement areas.

  16. Evaluation of a contact lens-embedded sensor for intraocular pressure measurement.

    PubMed

    Twa, Michael D; Roberts, Cynthia J; Karol, Huikai J; Mahmoud, Ashraf M; Weber, Paul A; Small, Robert H

    2010-08-01

    To evaluate a novel contact lens-embedded pressure sensor for continuous measurement of intraocular pressure (IOP). Repeated measurements of IOP and ocular pulse amplitude (OPA) were recorded in 12 eyes of 12 subjects in sitting and supine positions using 3 configurations of the dynamic contour tonometer: slit-lamp mounted (DCT), hand-held (HH), and contact lens-embedded sensor (CL). The IOP and OPA for each condition were compared using repeated measures ANOVA and the 95% limits of agreement were calculated. The sitting IOP (mean and 95% CI) for each configuration was DCT: 16.3 mm Hg (15.6 to 17.1 mm Hg), HH: 16.6 mm Hg (15.6 to 17.6 mm Hg), and CL: 15.7 mm Hg (15 to 16.3 mm Hg). The sitting OPA for each configuration was DCT: 2.4 mm Hg (2.1 to 2.6 mm Hg), HH: 2.4 mm Hg (2.1 to 2.7 mm Hg), and CL: 2.1 mm Hg (1.8 to 2.3 mm Hg). Supine IOP and OPA measurements with the CL and HH sensors were both greater than their corresponding sitting measurements, but were significantly less with the CL sensor than the HH sensor. The mean difference and 95% Limits of Agreement were smallest for the DCT and CL sensor comparisons (0.7+/-3.9 mm Hg) and widest for the CL and HH sensors (-1.9+/-7.25 mm Hg); these wider limits were attributed to greater HH measurement variability. The CL sensor was comparable to HH and DCT sensors with sitting subjects and is a viable method for measuring IOP and OPA. Supine measurements of IOP and OPA were greater than sitting conditions and were comparatively lower with the CL sensor. HH measurements were more variable than CL measurements and this influenced the Limits of Agreement for both sitting and supine conditions.

  17. Contour Tracking in Echocardiographic Sequences via Sparse Representation and Dictionary Learning

    PubMed Central

    Huang, Xiaojie; Dione, Donald P.; Compas, Colin B.; Papademetris, Xenophon; Lin, Ben A.; Bregasi, Alda; Sinusas, Albert J.; Staib, Lawrence H.; Duncan, James S.

    2013-01-01

    This paper presents a dynamical appearance model based on sparse representation and dictionary learning for tracking both endocardial and epicardial contours of the left ventricle in echocardiographic sequences. Instead of learning offline spatiotemporal priors from databases, we exploit the inherent spatiotemporal coherence of individual data to constraint cardiac contour estimation. The contour tracker is initialized with a manual tracing of the first frame. It employs multiscale sparse representation of local image appearance and learns online multiscale appearance dictionaries in a boosting framework as the image sequence is segmented frame-by-frame sequentially. The weights of multiscale appearance dictionaries are optimized automatically. Our region-based level set segmentation integrates a spectrum of complementary multilevel information including intensity, multiscale local appearance, and dynamical shape prediction. The approach is validated on twenty-six 4D canine echocardiographic images acquired from both healthy and post-infarct canines. The segmentation results agree well with expert manual tracings. The ejection fraction estimates also show good agreement with manual results. Advantages of our approach are demonstrated by comparisons with a conventional pure intensity model, a registration-based contour tracker, and a state-of-the-art database-dependent offline dynamical shape model. We also demonstrate the feasibility of clinical application by applying the method to four 4D human data sets. PMID:24292554

  18. Learning to Link Visual Contours

    PubMed Central

    Li, Wu; Piëch, Valentin; Gilbert, Charles D.

    2008-01-01

    SUMMARY In complex visual scenes, linking related contour elements is important for object recognition. This process, thought to be stimulus driven and hard wired, has substrates in primary visual cortex (V1). Here, however, we find contour integration in V1 to depend strongly on perceptual learning and top-down influences that are specific to contour detection. In naive monkeys the information about contours embedded in complex backgrounds is absent in V1 neuronal responses, and is independent of the locus of spatial attention. Training animals to find embedded contours induces strong contour-related responses specific to the trained retinotopic region. These responses are most robust when animals perform the contour detection task, but disappear under anesthesia. Our findings suggest that top-down influences dynamically adapt neural circuits according to specific perceptual tasks. This may serve as a general neuronal mechanism of perceptual learning, and reflect top-down mediated changes in cortical states. PMID:18255036

  19. The effects of anesthesia and gender on intraocular pressure in lions (Panthera leo).

    PubMed

    Ofri, R; Horowitz, I; Jacobson, S; Kass, P H

    1998-09-01

    Intraocular pressure (IOP) was measured in a pride of 22 (11 males, 11 females) lions (Panthera leo) using a Schiotz tonometer. Two anesthetic protocols were used in the study. Lions in group I (n = 14) were anesthetized using xylazine, atropine sulfate, and ketamine. Lions in group II (n = 8) were anesthetized using ketamine and diazepam. Five sequential readings were taken from each eye of every lion. There were no significant differences in IOP between the two anesthetic groups, between left and right eyes, or over the five readings. The IOP was significantly higher in males than in females, controlling for age and weight. The mean (+/-SD) tonometer reading in 22 eyes of 11 male lions was 2.9 (+/-0.5) mm; with a 95% confidence interval (CI) of 1.6-4.5 mm. The mean tonometer reading in 22 eyes of 11 female lions was 4.0 (+/-0.7) mm, with a 95% CI of 1.8-6.3 mm. Using the 1955 Friedenwald human calibration table, the estimated mean IOP in 22 eyes of 11 male lions was 24.9 (+/-2.0) mm Hg, with a 95% CI of 20.4-29.4 mm Hg. The estimated mean IOP in 22 eyes of 11 female lions was 20.9 (+/-2.4) mm Hg, with a 95% CI of 15.6-26.3 mm Hg.

  20. Automatic Contour Extraction of Facial Organs for Frontal Facial Images with Various Facial Expressions

    NASA Astrophysics Data System (ADS)

    Kobayashi, Hiroshi; Suzuki, Seiji; Takahashi, Hisanori; Tange, Akira; Kikuchi, Kohki

    This study deals with a method to realize automatic contour extraction of facial features such as eyebrows, eyes and mouth for the time-wise frontal face with various facial expressions. Because Snakes which is one of the most famous methods used to extract contours, has several disadvantages, we propose a new method to overcome these issues. We define the elastic contour model in order to hold the contour shape and then determine the elastic energy acquired by the amount of modification of the elastic contour model. Also we utilize the image energy obtained by brightness differences of the control points on the elastic contour model. Applying the dynamic programming method, we determine the contour position where the total value of the elastic energy and the image energy becomes minimum. Employing 1/30s time-wise facial frontal images changing from neutral to one of six typical facial expressions obtained from 20 subjects, we have estimated our method and find it enables high accuracy automatic contour extraction of facial features.

  1. Evidence of singularities for a family of contour dynamics equations

    PubMed Central

    Córdoba, Diego; Fontelos, Marco A.; Mancho, Ana M.; Rodrigo, Jose L.

    2005-01-01

    In this work, we show evidence of the existence of singularities developing in finite time for a class of contour dynamics equations depending on a parameter 0 < α ≤ 1. The limiting case α → 0 corresponds to 2D Euler equations, and α = 1 corresponds to the surface quasi-geostrophic equation. The singularity is point-like, and it is approached in a self-similar manner. PMID:15837929

  2. Evaluating performance of a user-trained MR lung tumor autocontouring algorithm in the context of intra- and interobserver variations.

    PubMed

    Yip, Eugene; Yun, Jihyun; Gabos, Zsolt; Baker, Sarah; Yee, Don; Wachowicz, Keith; Rathee, Satyapal; Fallone, B Gino

    2018-01-01

    Real-time tracking of lung tumors using magnetic resonance imaging (MRI) has been proposed as a potential strategy to mitigate the ill-effects of breathing motion in radiation therapy. Several autocontouring methods have been evaluated against a "gold standard" of a single human expert user. However, contours drawn by experts have inherent intra- and interobserver variations. In this study, we aim to evaluate our user-trained autocontouring algorithm with manually drawn contours from multiple expert users, and to contextualize the accuracy of these autocontours within intra- and interobserver variations. Six nonsmall cell lung cancer patients were recruited, with institutional ethics approval. Patients were imaged with a clinical 3 T Philips MR scanner using a dynamic 2D balanced SSFP sequence under free breathing. Three radiation oncology experts, each in two separate sessions, contoured 130 dynamic images for each patient. For autocontouring, the first 30 images were used for algorithm training, and the remaining 100 images were autocontoured and evaluated. Autocontours were compared against manual contours in terms of Dice's coefficient (DC) and Hausdorff distances (d H ). Intra- and interobserver variations of the manual contours were also evaluated. When compared with the manual contours of the expert user who trained it, the algorithm generates autocontours whose evaluation metrics (same session: DC = 0.90(0.03), d H  = 3.8(1.6) mm; different session DC = 0.88(0.04), d H  = 4.3(1.5) mm) are similar to or better than intraobserver variations (DC = 0.88(0.04), and d H  = 4.3(1.7) mm) between two sessions. The algorithm's autocontours are also compared to the manual contours from different expert users with evaluation metrics (DC = 0.87(0.04), d H  = 4.8(1.7) mm) similar to interobserver variations (DC = 0.87(0.04), d H  = 4.7(1.6) mm). Our autocontouring algorithm delineates tumor contours (<20 ms per contour), in dynamic MRI of lung, that are comparable to multiple human experts (several seconds per contour), but at a much faster speed. At the same time, the agreement between autocontours and manual contours is comparable to the intra- and interobserver variations. This algorithm may be a key component of the real time tumor tracking workflow for our hybrid Linac-MR device in the future. © 2017 American Association of Physicists in Medicine.

  3. Ocean current surface measurement using dynamic elevations obtained by the GEOS-3 radar altimeter

    NASA Technical Reports Server (NTRS)

    Leitao, C. D.; Huang, N. E.; Parra, C. G.

    1977-01-01

    Remote Sensing of the ocean surface from the GEOS-3 satellite using radar altimeter data has confirmed that the altimeter can detect the dynamic ocean topographic elevations relative to an equipotential surface, thus resulting in a reliable direct measurement of the ocean surface. Maps of the ocean dynamic topography calculated over a one month period and with 20 cm contour interval are prepared for the last half of 1975. The Gulf Stream is observed by the rapid slope change shown by the crowding of contours. Cold eddies associated with the current are seen as roughly circular depressions.

  4. A complete system for head tracking using motion-based particle filter and randomly perturbed active contour

    NASA Astrophysics Data System (ADS)

    Bouaynaya, N.; Schonfeld, Dan

    2005-03-01

    Many real world applications in computer and multimedia such as augmented reality and environmental imaging require an elastic accurate contour around a tracked object. In the first part of the paper we introduce a novel tracking algorithm that combines a motion estimation technique with the Bayesian Importance Sampling framework. We use Adaptive Block Matching (ABM) as the motion estimation technique. We construct the proposal density from the estimated motion vector. The resulting algorithm requires a small number of particles for efficient tracking. The tracking is adaptive to different categories of motion even with a poor a priori knowledge of the system dynamics. Particulary off-line learning is not needed. A parametric representation of the object is used for tracking purposes. In the second part of the paper, we refine the tracking output from a parametric sample to an elastic contour around the object. We use a 1D active contour model based on a dynamic programming scheme to refine the output of the tracker. To improve the convergence of the active contour, we perform the optimization over a set of randomly perturbed initial conditions. Our experiments are applied to head tracking. We report promising tracking results in complex environments.

  5. Normal contour error measurement on-machine and compensation method for polishing complex surface by MRF

    NASA Astrophysics Data System (ADS)

    Chen, Hua; Chen, Jihong; Wang, Baorui; Zheng, Yongcheng

    2016-10-01

    The Magnetorheological finishing (MRF) process, based on the dwell time method with the constant normal spacing for flexible polishing, would bring out the normal contour error in the fine polishing complex surface such as aspheric surface. The normal contour error would change the ribbon's shape and removal characteristics of consistency for MRF. Based on continuously scanning the normal spacing between the workpiece and the finder by the laser range finder, the novel method was put forward to measure the normal contour errors while polishing complex surface on the machining track. The normal contour errors was measured dynamically, by which the workpiece's clamping precision, multi-axis machining NC program and the dynamic performance of the MRF machine were achieved for the verification and security check of the MRF process. The unit for measuring the normal contour errors of complex surface on-machine was designed. Based on the measurement unit's results as feedback to adjust the parameters of the feed forward control and the multi-axis machining, the optimized servo control method was presented to compensate the normal contour errors. The experiment for polishing 180mm × 180mm aspherical workpiece of fused silica by MRF was set up to validate the method. The results show that the normal contour error was controlled in less than 10um. And the PV value of the polished surface accuracy was improved from 0.95λ to 0.09λ under the conditions of the same process parameters. The technology in the paper has been being applied in the PKC600-Q1 MRF machine developed by the China Academe of Engineering Physics for engineering application since 2014. It is being used in the national huge optical engineering for processing the ultra-precision optical parts.

  6. Predictability of the North Atlantic Oscillation on Intraseasonal Time Scales

    DTIC Science & Technology

    2013-09-30

    skill when realistic MJO-related tropical diabatic heating is added to the models. (4) To diagnose the dynamical mechanisms by which the tropical...was added to each of the 50 simulations, has also been completed. Figure 1 shows the 50-member ensemble mean of the 500 hPa diabatic heating (averaged...contour interval of 2 oC/day. Separately, the added MJO diabatic heating is shown in black contours in the left panel with a contour interval of 0.5 oC

  7. Entanglement contour perspective for "strong area-law violation" in a disordered long-range hopping model

    NASA Astrophysics Data System (ADS)

    Roy, Nilanjan; Sharma, Auditya

    2018-03-01

    We numerically investigate the link between the delocalization-localization transition and entanglement in a disordered long-range hopping model of spinless fermions by studying various static and dynamical quantities. This includes the inverse participation ratio, level statistics, entanglement entropy, and number fluctuations in the subsystem along with quench and wave-packet dynamics. Finite systems show delocalized, quasilocalized, and localized phases. The delocalized phase shows strong area-law violation, whereas the (quasi)localized phase adheres to (for large subsystems) the strict area law. The idea of "entanglement contour" nicely explains the violation of area law and its relationship with "fluctuation contour" reveals a signature at the transition point. The relationship between entanglement entropy and number fluctuations in the subsystem also carries signatures for the transition in the model. Results from the Aubry-Andre-Harper model are compared in this context. The propagation of charge and entanglement are contrasted by studying quench and wave-packet dynamics at the single-particle and many-particle levels.

  8. Reliability and sensitivity of the TonoLab rebound tonometer in awake Brown Norway rats.

    PubMed

    Morrison, John C; Jia, Lijun; Cepurna, William; Guo, Ying; Johnson, Elaine

    2009-06-01

    To compare the sensitivity of the TonoLab rebound tonometer with the Tono-Pen in awake Brown Norway rats and to compare their ability to predict optic nerve damage induced by experimental IOP elevation. TonoLab and Tono-Pen tonometers were calibrated in cannulated rat eyes connected to a pressure transducer. The TonoLab was used in awake animals housed in standard lighting to measure IOP during light and dark phases. Both instruments were used to monitor chronically elevated IOP produced by episcleral vein injection of hypertonic saline. Measured IOPs were correlated with quantified optic nerve damage in injected eyes. Although they were lower than transducer and Tono-Pen measurements at all levels, TonoLab readings showed an excellent linear fit with transducer readings from 20 to 80 mm Hg (R(2) = 0.99) in cannulated eyes. In awake animals housed in standard lighting, the TonoLab documented significantly higher pressures during the dark phase (27.9 +/- 1.7 mm Hg) than during the light phase (16.7 +/- 2.3 mm Hg). With elevated IOP, correlation between TonoLab and Tono-Pen readings (R(2) = 0.86, P < 0.0001) was similar to that in cannulated eyes. Although both instruments provided measurements that correlated well with optic nerve injury grade, only the Tono-Pen documented significant IOP elevation in eyes with the least amount of injury (P < 0.05). The TonoLab is sensitive enough to be used in awake Brown Norway rats, though instrument fluctuation may limit its ability to identify significant pressure elevations in eyes with minimal optic nerve damage.

  9. Changes in intraocular pressure values measured with noncontact tonometer (NCT), ocular response analyzer (ORA) and corvis scheimpflug technology tonometer (CST) in the early phase after small incision lenticule extraction (SMILE).

    PubMed

    Shen, Yang; Su, Xiangjian; Liu, Xiu; Miao, Huamao; Fang, Xuejun; Zhou, Xingtao

    2016-11-18

    Corneal biomechanical properties are always compromised after corneal refractive surgeries thus leading to underestimated intraocular pressure (IOP) that complicates the management of IOP. We investigated the changes in postoperative baseline of IOP values measured with noncontact tonometer (NCT), ocular response analyzer (ORA) and corvis scheimpflug technology (CST) in the early phase after small incision lenticule extraction (SMILE). Twenty-two eyes (-6.76 ± 1.39D) of 22 moderate and high myopes, (28.36 ± 7.14 years, 12 male and 10 female) were involved in this prospective study. IOP values were measured using a non-contact tomometer (NCT-IOP), an ocular response analyzer (corneal-compensated IOP, IOPcc and Goldmann-correlated IOP, IOPg) and a Corvis scheimpflug technology tonometer (CST-IOP) preoperatively, at 20 min and 24 h, postoperatively. Repeated measures analysis of variance (RM-ANOVA), Pearson's correlation analysis and multiple linear regression models (stepwise) were performed. Cut-off P values were 0.05. Except for IOPcc, NCT-IOP, IOPg, and CST-IOP values significantly decreased after SMILE procedure (All P values <0.05). ΔCCT, as well as ΔMRSE and ΔKm, did not significantly correlated with ΔNCT-IOP, ΔIOPcc, ΔIOPg or ΔCST-IOP, (all P values >0.05). Multiple linear regression models (stepwise) showed that the practical post-operative IOP value was the main predictor of the theoretical post-operative NCT-IOP, IOPcc and IOPg values (all P values <0.001). The postoperative applanation time 1 (AT1) value (B = 8.079, t = 4.866, P < 0.001), preoperative central corneal thickness (CCT) value (B = 0.035, t = 2.732, P = 0.014) and postoperative peak distance (PD) value (B = 0.515, t = 2.176, P = 0.043) were the main predictors of the theoretical post-operative CST-IOP value. IOP values are underestimated when assessed after SMILE by using NCT-IOP, IOPg and CST-IOP. The practical postoperative IOPcc value and theoretical post-operative CST-IOP value may be more preferable for IOP assessment in the early phase after SMILE. Current Controlled Trials ChiCTRONRC13003114 . Retrospectively registered 17 March 2013.

  10. The influence of lens power and center thickness on the intraocular pressure measured through soft lenses: a comparison of two noncontact tonometers.

    PubMed

    Ogbuehi, Kelechi C

    2012-06-01

    To quantify the influence of soft contact lens power and thickness on the intraocular pressure (IOP). Thirty-nine young, healthy adult volunteers completed this study. One eye of each subject was randomly assigned either a +6D or a -6D high water content daily disposable lens. The other eye was fitted with the second lens. Triplicate measurements of IOP were taken before, during, and after contact lens wear. Each time, IOP was assessed in a randomized order with two noncontact tonometers. The lenses were swapped between eyes during a second session of measurements, one week later. In the first session with the +6D lenses, the average IOPs (±SDs) before, with the lenses fitted, and after the lenses were removed, were: 14.3 ± 2.9 mmHg, 17.0 ± 3.3 mmHg and 13.9 ± 3.1 mmHg, respectively, for the CT80 and 13.6 ± 3.1 mmHg, 17.1 ± 4.5 mmHg and 13.3 ± 2.9 mmHg, respectively, for the PT100. The corresponding values for the first session with the -6D lenses were: 14.3 ± 3.1 mmHg, 13.1 ± 3.1 mmHg and 14.1 ± 3.3 mmHg, respectively, for the CT80 and 13.6 ± 3.2 mmHg, 13.0 ± 3.0 mmHg and 13.6 ± 3.2 mmHg, respectively, for the PT100. IOP significantly (P<0.05) increased (+ΔIOP=2.7 ± 0.4 mmHg with the CT80 in the first session) with the +6D lenses, but decreased (P<0.05) when the -6D lenses were fitted (-ΔIOP=0.6 ± 0.2 mmHg with the PT100 in the first session). The soft contact lens-induced changes were consistent between sessions but varied between tonometers. The measurement of IOP through soft contact lenses resulted in consistent, statistically significant differences in IOP, which were not uniform across tonometers and which did not appear to be solely related to the central thickness of the soft contact lenses. Copyright © 2012 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  11. Dosimetric impact of contouring and image registration variability on dynamic 125I prostate brachytherapy.

    PubMed

    Westendorp, Hendrik; Surmann, Kathrin; van de Pol, Sandrine M G; Hoekstra, Carel J; Kattevilder, Robert A J; Nuver, Tonnis T; Moerland, Marinus A; Slump, Cornelis H; Minken, André W

    The quality of permanent prostate brachytherapy can be increased by addition of imaging modalities in the intraoperative procedure. This addition involves image registration, which inherently has inter- and intraobserver variabilities. We sought to quantify the inter- and intraobserver variabilities in geometry and dosimetry for contouring and image registration and analyze the results for our dynamic 125 I brachytherapy procedure. Five observers contoured 11 transrectal ultrasound (TRUS) data sets three times and 11 CT data sets one time. The observers registered 11 TRUS and MRI data sets to cone beam CT (CBCT) using fiducial gold markers. Geometrical and dosimetrical inter- and intraobserver variabilities were assessed. For the contouring study, structures were subdivided into three parts along the craniocaudal axis. We analyzed 165 observations. Interobserver geometrical variability for prostate was 1.1 mm, resulting in a dosimetric variability of 1.6% for V 100 and 9.3% for D 90 . The geometric intraobserver variability was 0.6 mm with a V 100 of 0.7% and D 90 of 1.1%. TRUS-CBCT registration showed an interobserver variability in V 100 of 2.0% and D 90 of 3.1%. Intraobserver variabilities were 0.9% and 1.6%, respectively. For MRI-CBCT registration, V 100 and D 90 were 1.3% and 2.1%. Intraobserver variabilities were 0.7% and 1.1% for the same. Prostate dosimetry is affected by interobserver contouring and registration variability. The observed variability is smaller than underdosages that are adapted during our dynamic brachytherapy procedure. Copyright © 2017 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  12. Understanding Physiological and Degenerative Natural Vision Mechanisms to Define Contrast and Contour Operators

    PubMed Central

    Demongeot, Jacques; Fouquet, Yannick; Tayyab, Muhammad; Vuillerme, Nicolas

    2009-01-01

    Background Dynamical systems like neural networks based on lateral inhibition have a large field of applications in image processing, robotics and morphogenesis modeling. In this paper, we will propose some examples of dynamical flows used in image contrasting and contouring. Methodology First we present the physiological basis of the retina function by showing the role of the lateral inhibition in the optical illusions and pathologic processes generation. Then, based on these biological considerations about the real vision mechanisms, we study an enhancement method for contrasting medical images, using either a discrete neural network approach, or its continuous version, i.e. a non-isotropic diffusion reaction partial differential system. Following this, we introduce other continuous operators based on similar biomimetic approaches: a chemotactic contrasting method, a viability contouring algorithm and an attentional focus operator. Then, we introduce the new notion of mixed potential Hamiltonian flows; we compare it with the watershed method and we use it for contouring. Conclusions We conclude by showing the utility of these biomimetic methods with some examples of application in medical imaging and computed assisted surgery. PMID:19547712

  13. Salient contour extraction from complex natural scene in night vision image

    NASA Astrophysics Data System (ADS)

    Han, Jing; Yue, Jiang; Zhang, Yi; Bai, Lian-fa

    2014-03-01

    The theory of center-surround interaction in non-classical receptive field can be applied in night vision information processing. In this work, an optimized compound receptive field modulation method is proposed to extract salient contour from complex natural scene in low-light-level (LLL) and infrared images. The kernel idea is that multi-feature analysis can recognize the inhomogeneity in modulatory coverage more accurately and that center and surround with the grouping structure satisfying Gestalt rule deserves high connection-probability. Computationally, a multi-feature contrast weighted inhibition model is presented to suppress background and lower mutual inhibition among contour elements; a fuzzy connection facilitation model is proposed to achieve the enhancement of contour response, the connection of discontinuous contour and the further elimination of randomly distributed noise and texture; a multi-scale iterative attention method is designed to accomplish dynamic modulation process and extract contours of targets in multi-size. This work provides a series of biologically motivated computational visual models with high-performance for contour detection from cluttered scene in night vision images.

  14. Hybrid active contour model for inhomogeneous image segmentation with background estimation

    NASA Astrophysics Data System (ADS)

    Sun, Kaiqiong; Li, Yaqin; Zeng, Shan; Wang, Jun

    2018-03-01

    This paper proposes a hybrid active contour model for inhomogeneous image segmentation. The data term of the energy function in the active contour consists of a global region fitting term in a difference image and a local region fitting term in the original image. The difference image is obtained by subtracting the background from the original image. The background image is dynamically estimated from a linear filtered result of the original image on the basis of the varying curve locations during the active contour evolution process. As in existing local models, fitting the image to local region information makes the proposed model robust against an inhomogeneous background and maintains the accuracy of the segmentation result. Furthermore, fitting the difference image to the global region information makes the proposed model robust against the initial contour location, unlike existing local models. Experimental results show that the proposed model can obtain improved segmentation results compared with related methods in terms of both segmentation accuracy and initial contour sensitivity.

  15. On the Application of Contour Bumps for Transonic Drag Reduction(Invited)

    NASA Technical Reports Server (NTRS)

    Milholen, William E., II; Owens, Lewis R.

    2005-01-01

    The effect of discrete contour bumps on reducing the transonic drag at off-design conditions on an airfoil have been examined. The research focused on fully-turbulent flow conditions, at a realistic flight chord Reynolds number of 30 million. State-of-the-art computational fluid dynamics methods were used to design a new baseline airfoil, and a family of fixed contour bumps. The new configurations were experimentally evaluated in the 0.3-m Transonic Cryogenic Tunnel at the NASA Langley Research center, which utilizes an adaptive wall test section to minimize wall interference. The computational study showed that transonic drag reduction, on the order of 12% - 15%, was possible using a surface contour bump to spread a normal shock wave. The computational study also indicated that the divergence drag Mach number was increased for the contour bump applications. Preliminary analysis of the experimental data showed a similar contour bump effect, but this data needed to be further analyzed for residual wall interference corrections.

  16. Formation of contour optical traps using a four-channel liquid crystal focusing device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korobtsov, A V; Kotova, S P; Losevsky, N N

    2014-12-31

    The capabilities and specific features of the formation and dynamic control of so-called contour optical traps using a fourchannel liquid crystal modulator are studied theoretically and experimentally. Circular, elliptical and C-shaped traps are formed. Trapping and confinement of absorbing micro-objects by the formed traps are demonstrated. (optical traps)

  17. Segmentation and Tracking of Cytoskeletal Filaments Using Open Active Contours

    PubMed Central

    Smith, Matthew B.; Li, Hongsheng; Shen, Tian; Huang, Xiaolei; Yusuf, Eddy; Vavylonis, Dimitrios

    2010-01-01

    We use open active contours to quantify cytoskeletal structures imaged by fluorescence microscopy in two and three dimensions. We developed an interactive software tool for segmentation, tracking, and visualization of individual fibers. Open active contours are parametric curves that deform to minimize the sum of an external energy derived from the image and an internal bending and stretching energy. The external energy generates (i) forces that attract the contour toward the central bright line of a filament in the image, and (ii) forces that stretch the active contour toward the ends of bright ridges. Images of simulated semiflexible polymers with known bending and torsional rigidity are analyzed to validate the method. We apply our methods to quantify the conformations and dynamics of actin in two examples: actin filaments imaged by TIRF microscopy in vitro, and actin cables in fission yeast imaged by spinning disk confocal microscopy. PMID:20814909

  18. Development of cortical orientation selectivity in the absence of visual experience with contour

    PubMed Central

    Hussain, Shaista; Weliky, Michael

    2011-01-01

    Visual cortical neurons are selective for the orientation of lines, and the full development of this selectivity requires natural visual experience after eye opening. Here we examined whether this selectivity develops without seeing lines and contours. Juvenile ferrets were reared in a dark room and visually trained by being shown a movie of flickering, sparse spots. We found that despite the lack of contour visual experience, the cortical neurons of these ferrets developed strong orientation selectivity and exhibited simple-cell receptive fields. This finding suggests that overt contour visual experience is unnecessary for the maturation of orientation selectivity and is inconsistent with the computational models that crucially require the visual inputs of lines and contours for the development of orientation selectivity. We propose that a correlation-based model supplemented with a constraint on synaptic strength dynamics is able to account for our experimental result. PMID:21753023

  19. Ultra-high speed OCT allows measurement of intraocular pressure, corneal geometry, and corneal stiffness using a single instrument

    NASA Astrophysics Data System (ADS)

    Singh, Manmohan; Han, Zhaolong; Nair, Achuth; Schill, Alexander; Twa, Michael D.; Larin, Kirill V.

    2018-02-01

    Screening for ocular diseases, such as glaucoma and keratoconus, includes measuring the eye-globe intraocular pressure (IOP) and corneal biomechanical properties. However, currently available clinical tools cannot quantify corneal tissue material parameters, which can provide critical information for detecting diseases and evaluating therapeutic outcomes. Here, we demonstrate measurement of eye-globe IOP, corneal elasticity, and corneal geometry of in situ porcine corneas with a technique termed applanation optical coherence elastography (Appl-OCE) with single instrument. We utilize an ultrafast phase-sensitive optical coherence tomography system comprised of a 4X buffered Fourier domain mode-locked swept source laser with an Ascan rate of 1.5 MHz and a 7.3 kHz resonant scanner. The IOP was measured by imaging the response of in situ porcine corneas to a large force air-puff. As with other noncontact tonometers, the time when the cornea was applanated during the inwards and outwards motion was correlated to a measure air-pressure temporal profile. The IOP was also measured with a commercially available rebound tonometer for comparison. The stiffness of the corneas was assessed by directly imaging and analyzing the propagation of a focused micro air-pulse induced elastic wave, and the corneal geometry was obtained from the OCT structural image. Our results show that corneal thickness decreased as IOP increased, and that corneal stiffness increased with IOP. Moreover, the IOP measurements made by Appl-OCE were more closely correlated with the artificially set IOP than the rebound tonometer, demonstrating the capabilities of Appl-OCE to measure corneal stiffness, eye-globe IOP, and corneal geometry with a single instrument.

  20. Intraocular pressure in the smallest primate aging model: the gray mouse lemur.

    PubMed

    Dubicanac, Marko; Joly, Marine; Strüve, Julia; Nolte, Ingo; Mestre-Francés, Nadine; Verdier, Jean-Michel; Zimmermann, Elke

    2018-05-01

    The aim of this study was to assess the practicability of common tonometers used in veterinary medicine for rapid intraocular pressure (IOP) screening, to calibrate IOP values gained by the tonometers, and to define a reference IOP value for the healthy eye in a new primate model for aging research, the gray mouse lemur. TonoVet ® and the TonoPen ™ measurements were calibrated manometrically in healthy enucleated eyes of mouse lemurs euthanized for veterinary reasons. For comparison of the practicability of both tonometers as a rapid IOP assessment tool for living mouse lemurs, the IOP of 24 eyes of 12 animals held in the hand was measured. To define a standard reference value for IOP in mouse lemurs, 258 healthy animals were measured using the TonoVet ® . Intraocular pressure measurements for the TonoVet ® can be corrected using the formula: y = 0.981 + (1.962*TonoVet ® value), and those for the TonoPen ™ using that of y = 5.38 + (1.426*TonoPen ™ value). The calibrated IOP for a healthy mouse lemur eye was 20.3 ± 2.8 mmHg. The TonoVet ® showed advantages in practicability, for example, small corneal contact area, short and painless corneal contact, shortened total time spent on investigation, as well as the more accurate measured values. IOP measurements of healthy mouse lemur eyes were not affected by age, sex, eye side, or colony. Tonometry using TonoVet ® is the more practicable assessment tool for IOP measurement of the tiny eyes of living mouse lemurs. Pathological deviations can be identified based on the described reference value. © 2016 American College of Veterinary Ophthalmologists.

  1. A systematic review and cost-effectiveness analysis of tonometer disinfection methods.

    PubMed

    Omar Akhtar, Ahmad; Singh, Hargurinder; Si, Francie; Hodge, William G

    2014-08-01

    The Goldmann applanation tonometer presents the problem of being one of the most widely used pieces of equipment in the ophthalmic clinic and a known risk factor for the transmission of epidemic keratoconjunctivitis (EKC). The purpose of this review is to assess the effectiveness of 3 methods of disinfection: alcohol swabs, immersion in peroxide, and the use of disposable prisms. An economic evaluation is undertaken to assess the cost-effectiveness of the 3 alternatives. In doing so, we contribute an evidence-based overview of the issue at an opportune time, because several jurisdictions are developing protocols regarding tonometer tip disinfection. Systematic review and cost-effectiveness analysis. A comprehensive literature review was undertaken with a librarian, comprising searches of 6 electronic databases and hand searches of the grey literature. A 3-level screening process was undertaken by 2 reviewers according to prespecified inclusion and exclusion criteria. Values from included papers were used to inform a cost-effectiveness analysis undertaken using a decision tree model implemented in TreeAge. The analysis was undertaken from the hospital perspective and included all equipment and labour costs. Synthesis of in vitro data indicates that all 3 methods are plausible methods of disinfection with a 64% reduction in log growth of EKC when peroxide is used compared with alcohol swabs. The incremental cost-effective ratios from the cost-effectiveness analysis were $12,000/case averted using peroxide and $61,000/case averted with Tonosafe as compared with alcohol. Assuming clinical infection rates match in vitro disinfection data, the cost of bleach is high and the cost of Tonosafe is unacceptably high to reduce 1 potential case of adenoviral keratoconjunctivitis. Copyright © 2014. Published by Elsevier Inc.

  2. INTRAOCULAR PRESSURE AND EXAMINATION FINDINGS IN THREE SPECIES OF CENTRAL AND SOUTH AMERICAN TREE FROGS (CRUZIOHYLA CRASPEDOPUS, CRUZIOHYLA CALCARIFER, AND ANOTHECA SPINOSA).

    PubMed

    Lewin, Andrew C; Hausmann, Jennifer C; Miller, Paul E

    2017-09-01

    The purpose of this prospective study was to describe intraocular pressure (IOP) and examination findings in three tree frog species (Cruziohyla craspedopus [fringe leaf frog], Cruziohyla calcarifer [splendid leaf frog], and Anotheca spinosa [spiny-headed or coronated tree frog]). Thirty-one C. craspedopus, four C. calcarifer, and five A. spinosa were weighed, sexed based on phenotype where possible, and examined using slit-lamp biomicroscopy and indirect ophthalmoscopy. IOP was measured using the TonoVet and TonoLab rebound tonometers while the frogs were held two ways (unrestrained, then restrained). Statistical differences were determined using one-way analysis of variance (ANOVA) and t-tests. Mean ± SD IOP (TonoVet and TonoLab, respectively) was 15.1 ± 2.5 mmHg and 15.6 ± 4.1 mmHg in C. craspedopus; 14.8 ± 1.5 mmHg and 18.8 ± 3.1 mmHg in C. calcarifer; and 9.1 ± 2.1 mmHg and 10.8 ± 1.4 mmHg in A. spinosa. There was no significant difference in IOP in C. craspedopus by eye (Right vs Left), tonometer, or restraint method. IOP in female C. craspedopus was 1-3 mm Hg higher than in males with both devices (P < 0.05). IOP was statistically significantly different between all species for the TonoLab and between Cruziohyla genus frogs and A. spinosa for the TonoVet (P < 0.05). There was no difference in IOP measurements between the TonoVet and TonoLab in C. craspedopus. IOP varied by gender in C. craspedopus and between species, but not by tonometer. Ocular abnormalities were minimal in this group of captive bred frogs.

  3. Automatic media-adventitia IVUS image segmentation based on sparse representation framework and dynamic directional active contour model.

    PubMed

    Zakeri, Fahimeh Sadat; Setarehdan, Seyed Kamaledin; Norouzi, Somayye

    2017-10-01

    Segmentation of the arterial wall boundaries from intravascular ultrasound images is an important image processing task in order to quantify arterial wall characteristics such as shape, area, thickness and eccentricity. Since manual segmentation of these boundaries is a laborious and time consuming procedure, many researchers attempted to develop (semi-) automatic segmentation techniques as a powerful tool for educational and clinical purposes in the past but as yet there is no any clinically approved method in the market. This paper presents a deterministic-statistical strategy for automatic media-adventitia border detection by a fourfold algorithm. First, a smoothed initial contour is extracted based on the classification in the sparse representation framework which is combined with the dynamic directional convolution vector field. Next, an active contour model is utilized for the propagation of the initial contour toward the interested borders. Finally, the extracted contour is refined in the leakage, side branch openings and calcification regions based on the image texture patterns. The performance of the proposed algorithm is evaluated by comparing the results to those manually traced borders by an expert on 312 different IVUS images obtained from four different patients. The statistical analysis of the results demonstrates the efficiency of the proposed method in the media-adventitia border detection with enough consistency in the leakage and calcification regions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Deformable medical image registration of pleural cavity for photodynamic therapy by using finite-element based method

    NASA Astrophysics Data System (ADS)

    Penjweini, Rozhin; Kim, Michele M.; Dimofte, Andrea; Finlay, Jarod C.; Zhu, Timothy C.

    2016-03-01

    When the pleural cavity is opened during the surgery portion of pleural photodynamic therapy (PDT) of malignant mesothelioma, the pleural volume will deform. This impacts the delivered dose when using highly conformal treatment techniques. To track the anatomical changes and contour the lung and chest cavity, an infrared camera-based navigation system (NDI) is used during PDT. In the same patient, a series of computed tomography (CT) scans of the lungs are also acquired before the surgery. The reconstructed three-dimensional contours from both NDI and CTs are imported into COMSOL Multiphysics software, where a finite element-based (FEM) deformable image registration is obtained. The CT contour is registered to the corresponding NDI contour by overlapping the center of masses and aligning their orientations. The NDI contour is considered as the reference contour, and the CT contour is used as the target one, which will be deformed. Deformed Geometry model is applied in COMSOL to obtain a deformed target contour. The distortion of the volume at X, Y and Z is mapped to illustrate the transformation of the target contour. The initial assessment shows that FEM-based image deformable registration can fuse images acquired by different modalities. It provides insights into the deformation of anatomical structures along X, Y and Z-axes. The deformed contour has good matches to the reference contour after the dynamic matching process. The resulting three-dimensional deformation map can be used to obtain the locations of other critical anatomic structures, e.g., heart, during surgery.

  5. [What should we think? Is pneumotonometry still reliable?].

    PubMed

    Bresson-Dumont, H; Lehoux, A; Kponoume, C; Santiago, P-Y

    2007-05-01

    Noncontact tonometer (NCT) is an applanation tonometry, as is Goldmann tonometry. Numerous studies have shown the reliability of this technique but problems still exist. We measured intraocular pressure (IOP) in 340 patients (668 eyes) with NCT and Goldmann tonometer (GAT). To evaluate the influence of central corneal thickness (CCT), we classified the patients according to their CCT (<500 microm; between 520 and 580 microm, and>600 microm). The mean difference between the two IOP measurements was -1.4 mmHg +/- 2.67 (-12 to +7), p<0,0001 for the thinner corneas, +0.13 mmHg +/- 2.67 (-8 to +8), p=0.445 for the regular corneas, and + 3.04 mmHg +/- 3.2 (-7 to +13) p<0.0001 for the thicker corneas. CCT influences NCT and GAT, but the difference between the two techniques is higher for thicker CCTs, higher IOPs, and in younger patients. NCT is good for glaucoma screening but is less reliable than GAT for glaucoma follow-up if CCT and IOP are far from regular values.

  6. Dynamics of contextual modulation of perceived shape in human vision

    PubMed Central

    Gheorghiu, Elena; Kingdom, Frederick A. A.

    2017-01-01

    In biological vision, contextual modulation refers to the influence of a surround pattern on either the perception of, or the neural responses to, a target pattern. One studied form of contextual modulation deals with the effect of a surround texture on the perceived shape of a contour, in the context of the phenomenon known as the shape aftereffect. In the shape aftereffect, prolonged viewing, or adaptation to a particular contour’s shape causes a shift in the perceived shape of a subsequently viewed contour. Shape aftereffects are suppressed when the adaptor contour is surrounded by a texture of similarly-shaped contours, a surprising result given that the surround contours are all potential adaptors. Here we determine the motion and temporal properties of this form of contextual modulation. We varied the relative motion directions, speeds and temporal phases between the central adaptor contour and the surround texture and measured for each manipulation the degree to which the shape aftereffect was suppressed. Results indicate that contextual modulation of shape processing is selective to motion direction, temporal frequency and temporal phase. These selectivities are consistent with one aim of vision being to segregate contours that define objects from those that form textured surfaces. PMID:28230085

  7. Blob-Spring Model for the Dynamics of Ring Polymer in Obstacle Environment

    NASA Astrophysics Data System (ADS)

    Lele, Ashish K.; Iyer, Balaji V. S.; Juvekar, Vinay A.

    2008-07-01

    The dynamical behavior of cyclic macromolecules in a fixed obstacle (FO) environment is very different than the behavior of linear chains in the same topological environment; while the latter relax by a snake-like reptational motion from their chain ends the former can relax only by contour length fluctuations since they are endless. Duke, Obukhov and Rubinstein proposed a scaling model (the DOR model) to interpret the dynamical scaling exponents shown by Monte Carlo simulations of rings in a FO environment. We present a model (blob-spring model) to describe the dynamics of flexible and non-concatenated ring polymer in FO environment based on a theoretical formulation developed for the dynamics of an unentangled fractal polymer. We argue that the perpetual evolution of ring perimeter by the motion of contour segments results in an extra frictional load. Our model predicts self-similar dynamics with scaling exponents for the molecular weight dependence of diffusion coefficient and relaxation times that are in agreement with the scaling model proposed by Obukhov et al.

  8. Interface proliferation and the growth of labyrinths in a reaction-diffusion system

    NASA Astrophysics Data System (ADS)

    Goldstein, Raymond E.; Muraki, David J.; Petrich, Dean M.

    1996-04-01

    In the bistable regime of the FitzHugh-Nagumo model of reaction-diffusion systems, spatially homogeneous patterns may be nonlinearly unstable to the formation of compact "localized states." The formation of space-filling patterns from instabilities of such structures is studied in the context of a nonlocal contour dynamics model for the evolution of boundaries between high and low concentrations of the activator. An earlier heuristic derivation [D. M. Petrich and R. E. Goldstein,

    Phys. Rev. Lett. 72, 1120 (1994)
    ] is made more systematic by an asymptotic analysis appropriate to the limits of fast inhibition, sharp activator interfaces, and small asymmetry in the bistable minima. The resulting contour dynamics is temporally local, with the normal component of the velocity involving a local contribution linear in the interface curvature and a nonlocal component having the form of a screened Biot-Savart interaction. The amplitude of the nonlocal interaction is set by the activator-inhibitor coupling and controls the "lateral inhibition" responsible for the destabilization of localized structures such as spots and stripes, and the repulsion of nearby interfaces in the later stages of those instabilities. The phenomenology of pattern formation exhibited by the contour dynamics is consistent with that seen by Lee, McCormick, Ouyang, and Swinney
    [Science 261, 192 (1993)]
    in experiments on the iodide-ferrocyanide-sulfite reaction in a gel reactor. Extensive numerical studies of the underlying partial differential equations are presented and compared in detail with the contour dynamics. The similarity of these phenomena (and their mathematical description) with those observed in amphiphilic monolayers, type I superconductors in the intermediate state, and magnetic fluids in Hele-Shaw geometry is emphasized.

  9. Modeling pilot interaction with automated digital avionics systems: Guidance and control algorithms for contour and nap-of-the-Earth flight

    NASA Technical Reports Server (NTRS)

    Hess, Ronald A.

    1990-01-01

    A collection of technical papers are presented that cover modeling pilot interaction with automated digital avionics systems and guidance and control algorithms for contour and nap-of-the-earth flight. The titles of the papers presented are as follows: (1) Automation effects in a multiloop manual control system; (2) A qualitative model of human interaction with complex dynamic systems; (3) Generalized predictive control of dynamic systems; (4) An application of generalized predictive control to rotorcraft terrain-following flight; (5) Self-tuning generalized predictive control applied to terrain-following flight; and (6) Precise flight path control using a predictive algorithm.

  10. A new 2D segmentation method based on dynamic programming applied to computer aided detection in mammography.

    PubMed

    Timp, Sheila; Karssemeijer, Nico

    2004-05-01

    Mass segmentation plays a crucial role in computer-aided diagnosis (CAD) systems for classification of suspicious regions as normal, benign, or malignant. In this article we present a robust and automated segmentation technique--based on dynamic programming--to segment mass lesions from surrounding tissue. In addition, we propose an efficient algorithm to guarantee resulting contours to be closed. The segmentation method based on dynamic programming was quantitatively compared with two other automated segmentation methods (region growing and the discrete contour model) on a dataset of 1210 masses. For each mass an overlap criterion was calculated to determine the similarity with manual segmentation. The mean overlap percentage for dynamic programming was 0.69, for the other two methods 0.60 and 0.59, respectively. The difference in overlap percentage was statistically significant. To study the influence of the segmentation method on the performance of a CAD system two additional experiments were carried out. The first experiment studied the detection performance of the CAD system for the different segmentation methods. Free-response receiver operating characteristics analysis showed that the detection performance was nearly identical for the three segmentation methods. In the second experiment the ability of the classifier to discriminate between malignant and benign lesions was studied. For region based evaluation the area Az under the receiver operating characteristics curve was 0.74 for dynamic programming, 0.72 for the discrete contour model, and 0.67 for region growing. The difference in Az values obtained by the dynamic programming method and region growing was statistically significant. The differences between other methods were not significant.

  11. SU-E-J-111: Finite Element-Based Deformable Image Registration of Pleural Cavity for Photodynamic Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Penjweini, R; Zhu, T

    Purpose: The pleural volumes will deform during surgery portion of the pleural photodynamic therapy (PDT) of lung cancer when the pleural cavity is opened. This impact the delivered dose when using highly conformal treatment techniques. In this study, a finite element-based (FEM) deformable image registration is used to quantify the anatomical variation between the contours for the pleural cavities obtained in the operating room and those determined from pre-surgery computed tomography (CT) scans. Methods: An infrared camera-based navigation system (NDI) is used during PDT to track the anatomical changes and contour the lung and chest cavity. A series of CTsmore » of the lungs, in the same patient, are also acquired before the surgery. The structure contour of lung and the CTs are processed and contoured in Matlab and MeshLab. Then, the contours are imported into COMSOL Multiphysics 5.0, where the FEM-based deformable image registration is obtained using the deformed mesh - moving mesh (ALE) model. The NDI acquired lung contour is considered as the reference contour, and the CT contour is used as the target one, which will be deformed. Results: The reconstructed three-dimensional contours from both NDI and CT can be converted to COMSOL so that a three-dimensional ALE model can be developed. The contours can be registered using COMSOL ALE moving mesh model, which takes into account the deformation along x, y and z-axes. The deformed contour has good matches to the reference contour after the dynamic matching process. The resulting 3D deformation map can be used to obtain the locations of other critical anatomic structures, e.g., heart, during surgery. Conclusion: Deformable image registration can fuse images acquired by different modalities. It provides insights into the development of phenomenon and variation in normal anatomical structures over time. The initial assessments of three-dimensional registration show good agreement.« less

  12. Intra-retinal segmentation of optical coherence tomography images using active contours with a dynamic programming initialization and an adaptive weighting strategy

    NASA Astrophysics Data System (ADS)

    Gholami, Peyman; Roy, Priyanka; Kuppuswamy Parthasarathy, Mohana; Ommani, Abbas; Zelek, John; Lakshminarayanan, Vasudevan

    2018-02-01

    Retinal layer shape and thickness are one of the main indicators in the diagnosis of ocular diseases. We present an active contour approach to localize intra-retinal boundaries of eight retinal layers from OCT images. The initial locations of the active contour curves are determined using a Viterbi dynamic programming method. The main energy function is a Chan-Vese active contour model without edges. A boundary term is added to the energy function using an adaptive weighting method to help curves converge to the retinal layer edges more precisely, after evolving of curves towards boundaries, in final iterations. A wavelet-based denoising method is used to remove speckle from OCT images while preserving important details and edges. The performance of the proposed method was tested on a set of healthy and diseased eye SD-OCT images. The experimental results, compared between the proposed method and the manual segmentation, which was determined by an optometrist, indicate that our method has obtained an average of 95.29%, 92.78%, 95.86%, 87.93%, 82.67%, and 90.25% respectively, for accuracy, sensitivity, specificity, precision, Jaccard Index, and Dice Similarity Coefficient over all segmented layers. These results justify the robustness of the proposed method in determining the location of different retinal layers.

  13. The Facial Platysma and Its Underappreciated Role in Lower Face Dynamics and Contour.

    PubMed

    de Almeida, Ada R T; Romiti, Alessandra; Carruthers, Jean D A

    2017-08-01

    The platysma is a superficial muscle involved in important features of the aging neck. Vertical bands, horizontal lines, and loss of lower face contour are effectively treated with botulinum toxin A (BoNT-A). However, its pars facialis, mandibularis, and modiolaris have been underappreciated. To demonstrate the role of BoNT-A treatment of the upper platysma and its impact on lower face dynamics and contour. Retrospective analysis of cases treated by an injection pattern encompassing the facial platysma components, aiming to block the lower face as a whole complex. It consisted of 2 intramuscular injections into the mentalis muscle and 2 horizontal lines of BoNT-A injections superficially performed above and below the mandible (total dose, 16 onabotulinumtoxinA U/side). Photographs were taken at rest and during motion (frontal and oblique views), before and after treatment. A total of 161 patients have been treated in the last 2 years with the following results: frontal and lateral enhancement of lower facial contour, relaxation of high horizontal lines located just below the lateral mandibular border, and lower deep vertical smile lines present lateral to the oral commissures and melomental folds. The upper platysma muscle plays a relevant role in the functional anatomy of the lower face that can be modulated safely with neuromodulators.

  14. Direct force-measuring transducer used in blood pressure research

    NASA Technical Reports Server (NTRS)

    Eige, J. J.; Newgard, P. M.; Pressman, G. L.

    1965-01-01

    Direct force measuring transducer acts as an arterial tonometer, gives a direct readout to instrumentation, and is unaffected by ambient noise. It uses a semiconductor strain gage which is deflected by pressure pulses in the artery. The deflection changes the resistance of the gage and alters the voltage reading on the associated instrumentation.

  15. Nonoptical definition of applanation surface.

    PubMed

    Draeger, J; Rumberger, E; Hechler, B; Wirt, H; Levedag, S; Rudolph, G; Ludwig, B; Klemm, M

    1987-01-01

    Based on the Imbert-Fick law and the theoretical considerations of Goldmann, new applanation tonometers were designed, still using an applanation diameter of 3.06 mm to avoid a new biometric calibration. Three different electronic recording devices were used for the area assessment. An optical, a capacitance and a digital line sensor were tested in first calibration experiments.

  16. Spatiotemporal frequency characteristics of cerebral oscillations during the perception of fundamental frequency contour changes in one-syllable intonation.

    PubMed

    Ueno, Sanae; Okumura, Eiichi; Remijn, Gerard B; Yoshimura, Yuko; Kikuchi, Mitsuru; Shitamichi, Kiyomi; Nagao, Kikuko; Mochiduki, Masayuki; Haruta, Yasuhiro; Hayashi, Norio; Munesue, Toshio; Tsubokawa, Tsunehisa; Oi, Manabu; Nakatani, Hideo; Higashida, Haruhiro; Minabe, Yoshio

    2012-05-02

    Accurate perception of fundamental frequency (F0) contour changes in the human voice is important for understanding a speaker's intonation, and consequently also his/her attitude. In this study, we investigated the neural processes involved in the perception of F0 contour changes in the Japanese one-syllable interjection "ne" in 21 native-Japanese listeners. A passive oddball paradigm was applied in which "ne" with a high falling F0 contour, used when urging a reaction from the listener, was randomly presented as a rare deviant among a frequent "ne" syllable with a flat F0 contour (i.e., meaningless intonation). We applied an adaptive spatial filtering method to the neuromagnetic time course recorded by whole-head magnetoencephalography (MEG) and estimated the spatiotemporal frequency dynamics of event-related cerebral oscillatory changes in the oddball paradigm. Our results demonstrated a significant elevation of beta band event-related desynchronization (ERD) in the right temporal and frontal areas, in time windows from 100 to 300 and from 300 to 500 ms after the onset of deviant stimuli (high falling F0 contour). This is the first study to reveal detailed spatiotemporal frequency characteristics of cerebral oscillations during the perception of intonational (not lexical) F0 contour changes in the human voice. The results further confirmed that the right hemisphere is associated with perception of intonational F0 contour information in the human voice, especially in early time windows. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  17. Comparison between standard Goldmann applanation prism and disposable applanation prism in tonometry.

    PubMed

    Goel, S; Chua, C; Dong, B; Butcher, M; Ahfat, F; Hindi, S K; Kotta, S

    2004-02-01

    Disposable devices are increasingly becoming the preferred choice where possible in contact medical equipment. To evaluate the accuracy of the disposable applanation tonometer head as a potential substitute to the standard Goldmann applanation head. The study was prospective. The intraocular pressure recordings in 80 eyes of 42 patients were compared using the disposable and standard Goldmann applanator heads. The Bland and Altman method of assessing agreement between two methods of clinical measurement was used in the analysis. The difference in the readings between the two types of tonometer heads was highly variable (mean difference=0.78 mm Hg, range=-1 to 11 mm Hg). This was because of the distortions on the applanating surface of the disposable device. When the readings associated with the defective heads were excluded, very strong agreement was obtained (mean=0.07 mm Hg, range=-1 to 2 mm Hg). Good agreement with standard Goldmann applanation is achieved with the disposable heads except where surface distortions induce significant errors. Careful inspection to ensure well-structured disposable units is imperative in disposable applanation tonometry.

  18. The influence of oxybuprocaine (Novesine) on the intraocular pressure.

    PubMed

    Leys, M; van Rij, G; de Heer, L J

    1986-01-15

    Patients with raised intraocular pressure often have lower tension during hospital admissions than on out-patient measurement, even though the therapy is the same. A prospective study on 18 volunteers and 10 glaucoma patients was set up to find out whether oxybuprocaine eyedrops or repeated applanation tonometry could have anything to do with this. The tension was measured at least 3 times a day with the non-contact tonometer (NCT). In the case of the volunteers oxybuprocaine was instilled into the eye 3 times a day for one week. In the case of the patients the tension in one eye was measured with the Goldmann tonometer on several days after the application of oxybuprocaine drops. No reduction in intraocular pressure was found during the observation period, nor was there an obvious difference between the test eyes and the control eyes. In hospital, patients had at 11 o'clock in the morning intraocular pressure which was on the average 2.2 +/- 1.5 mmHg lower than that measured at out-patient checks, in spite of receiving the same therapy.

  19. Subcortical Plasticity Following Perceptual Learning in a Pitch Discrimination Task

    PubMed Central

    Plack, Christopher J.

    2010-01-01

    Practice can lead to dramatic improvements in the discrimination of auditory stimuli. In this study, we investigated changes of the frequency-following response (FFR), a subcortical component of the auditory evoked potentials, after a period of pitch discrimination training. Twenty-seven adult listeners were trained for 10 h on a pitch discrimination task using one of three different complex tone stimuli. One had a static pitch contour, one had a rising pitch contour, and one had a falling pitch contour. Behavioral measures of pitch discrimination and FFRs for all the stimuli were measured before and after the training phase for these participants, as well as for an untrained control group (n = 12). Trained participants showed significant improvements in pitch discrimination compared to the control group for all three trained stimuli. These improvements were partly specific for stimuli with the same pitch modulation (dynamic vs. static) and with the same pitch trajectory (rising vs. falling) as the trained stimulus. Also, the robustness of FFR neural phase locking to the sound envelope increased significantly more in trained participants compared to the control group for the static and rising contour, but not for the falling contour. Changes in FFR strength were partly specific for stimuli with the same pitch modulation (dynamic vs. static) of the trained stimulus. Changes in FFR strength, however, were not specific for stimuli with the same pitch trajectory (rising vs. falling) as the trained stimulus. These findings indicate that even relatively low-level processes in the mature auditory system are subject to experience-related change. PMID:20878201

  20. Subcortical plasticity following perceptual learning in a pitch discrimination task.

    PubMed

    Carcagno, Samuele; Plack, Christopher J

    2011-02-01

    Practice can lead to dramatic improvements in the discrimination of auditory stimuli. In this study, we investigated changes of the frequency-following response (FFR), a subcortical component of the auditory evoked potentials, after a period of pitch discrimination training. Twenty-seven adult listeners were trained for 10 h on a pitch discrimination task using one of three different complex tone stimuli. One had a static pitch contour, one had a rising pitch contour, and one had a falling pitch contour. Behavioral measures of pitch discrimination and FFRs for all the stimuli were measured before and after the training phase for these participants, as well as for an untrained control group (n = 12). Trained participants showed significant improvements in pitch discrimination compared to the control group for all three trained stimuli. These improvements were partly specific for stimuli with the same pitch modulation (dynamic vs. static) and with the same pitch trajectory (rising vs. falling) as the trained stimulus. Also, the robustness of FFR neural phase locking to the sound envelope increased significantly more in trained participants compared to the control group for the static and rising contour, but not for the falling contour. Changes in FFR strength were partly specific for stimuli with the same pitch modulation (dynamic vs. static) of the trained stimulus. Changes in FFR strength, however, were not specific for stimuli with the same pitch trajectory (rising vs. falling) as the trained stimulus. These findings indicate that even relatively low-level processes in the mature auditory system are subject to experience-related change.

  1. Structural Dynamics of Electronic Systems

    NASA Astrophysics Data System (ADS)

    Suhir, E.

    2013-03-01

    The published work on analytical ("mathematical") and computer-aided, primarily finite-element-analysis (FEA) based, predictive modeling of the dynamic response of electronic systems to shocks and vibrations is reviewed. While understanding the physics of and the ability to predict the response of an electronic structure to dynamic loading has been always of significant importance in military, avionic, aeronautic, automotive and maritime electronics, during the last decade this problem has become especially important also in commercial, and, particularly, in portable electronics in connection with accelerated testing of various surface mount technology (SMT) systems on the board level. The emphasis of the review is on the nonlinear shock-excited vibrations of flexible printed circuit boards (PCBs) experiencing shock loading applied to their support contours during drop tests. At the end of the review we provide, as a suitable and useful illustration, the exact solution to a highly nonlinear problem of the dynamic response of a "flexible-and-heavy" PCB to an impact load applied to its support contour during drop testing.

  2. Language-dependent changes in pitch-relevant neural activity in the auditory cortex reflect differential weighting of temporal attributes of pitch contours

    PubMed Central

    Krishnan, Ananthanarayan; Gandour, Jackson T.; Xu, Yi; Suresh, Chandan H.

    2016-01-01

    There remains a gap in our knowledge base about neural representation of pitch attributes that occur between onset and offset of dynamic, curvilinear pitch contours. The aim is to evaluate how language experience shapes processing of pitch contours as reflected in the amplitude of cortical pitch-specific response components. Responses were elicited from three nonspeech, bidirectional (falling-rising) pitch contours representative of Mandarin Tone 2 varying in location of the turning point with fixed onset and offset. At the frontocentral Fz electrode site, Na–Pb and Pb–Nb amplitude of the Chinese group was larger than the English group for pitch contours exhibiting later location of the turning point relative to the one with the earliest location. Chinese listeners’ amplitude was also greater than that of English in response to those same pitch contours with later turning points. At lateral temporal sites (T7/T8), Na–Pb amplitude was larger in Chinese listeners relative to English over the right temporal site. In addition, Pb–Nb amplitude of the Chinese group showed a rightward asymmetry. The pitch contour with its turning point located about halfway of total duration evoked a rightward asymmetry regardless of group. These findings suggest that neural mechanisms processing pitch in the right auditory cortex reflect experience-dependent modulation of sensitivity to weighted integration of changes in acceleration rates of rising and falling sections and the location of the turning point. PMID:28713201

  3. Cortical pitch response components show differential sensitivity to native and nonnative pitch contours

    PubMed Central

    Krishnan, Ananthanarayan; Gandour, Jackson T.; Suresh, Chandan H.

    2015-01-01

    The aim of this study is to evaluate how nonspeech pitch contours of varying shape influence latency and amplitude of cortical pitch-specific response (CPR) components differentially as a function of language experience. Stimuli included time-varying, high rising Mandarin Tone 2 (T2) and linear rising ramp (Linear), and steady-state (Flat). Both the latency and magnitude of CPR components were differentially modulated by (i) the overall trajectory of pitch contours (time-varying vs. steady-state), (ii) their pitch acceleration rates (changing vs. constant), and (iii) their linguistic status (lexical vs. non-lexical). T2 elicited larger amplitude than Linear in both language groups, but size of the effect was larger in Chinese than English. The magnitude of CPR components elicited by T2 were larger for Chinese than English at the right temporal electrode site. Using the CPR, we provide evidence in support of experience-dependent modulation of dynamic pitch contours at an early stage of sensory processing. PMID:25306506

  4. Globally inconsistent figure/ground relations induced by a negative part.

    PubMed

    Kim, Sung-Ho; Feldman, Jacob

    2009-09-10

    Figure/ground interpretation is a dynamic and complex process involving the cooperation and competition of a number of perceptual factors. Most research has assumed that figure/ground assignment is globally consistent along the entire contour of a single figure, meaning that the one side of each boundary is interpreted as figure along the entire length of the boundary, and the other side interpreted as ground. We investigated a situation that challenges this assumption, because local cues to figure/ground conflict with global cues: a "negative part," a contour region that appears locally convex but that the global form requires be concave. To measure figure/ground assignment, we use a new task based on local contour motion attribution that allows us to measure border ownership locally at points along the contour. The results from two experiments showed that the more salient a negative part is, the more border ownership tended to locally reverse within it, creating an inconsistency in figure/ground assignments along the contour. This suggests that border ownership assignment is not an all-or-none process, but rather a locally autonomous process that is not strictly constrained by global cues.

  5. Effects of laser in situ keratomileusis (LASIK) on corneal biomechanical measurements with the Corvis ST tonometer.

    PubMed

    Frings, Andreas; Linke, Stephan J; Bauer, Eva L; Druchkiv, Vasyl; Katz, Toam; Steinberg, Johannes

    2015-01-01

    This study was initiated to evaluate biomechanical changes using the Corvis ST tonometer (CST) on the cornea after laser in situ keratomileusis (LASIK). University Medical Center Hamburg-Eppendorf, Germany, and Care Vision Refractive Centers, Germany. Retrospective cohort study. This retrospective study included 37 eyes of 37 refractive patients. All CST measurements were performed 1 day before surgery and at the 1-month follow-up examination. The LASIK procedure included mechanical flap preparation using a Moria SBK microkeratome and an Allegretto excimer laser platform. Statistically significant differences were observed for mean first applanation length, mean first and second deflection lengths, mean first and second deflection amplitudes, radius of curvature, and peak distance. Significant positive correlations were found between the change (Δ) of radius of curvature and manifest refraction spherical equivalent (MRSE), ablation depth, and Δintraocular pressure as well as between AD and ΔHC-time. Each diopter of myopic correction in MRSE resulted in an increase in Δradius of curvature of 0.2 mm. Several CST parameters were statistically significantly altered by LASIK, thereby indicating that flap creation, ablation, or both, significantly change the ability of the cornea to absorb or dissipate energy.

  6. Evaluating the material parameters of the human cornea in a numerical model.

    PubMed

    Sródka, Wiesław

    2011-01-01

    The values of the biomechanical human eyeball model parameters reported in the literature are still being disputed. The primary motivation behind this work was to predict the material parameters of the cornea through numerical simulations and to assess the applicability of the ubiquitously accepted law of applanation tonometry - the Imbert-Fick equation. Numerical simulations of a few states of eyeball loading were run to determine the stroma material parameters. In the computations, the elasticity moduli of the material were related to the stress sign, instead of the orientation in space. Stroma elasticity secant modulus E was predicted to be close to 0.3 MPa. The numerically simulated applanation tonometer readings for the cornea with the calibration dimensions were found to be lower by 11 mmHg then IOP = 48 mmHg. This discrepancy is the result of a strictly mechanical phenomenon taking place in the tensioned and simultaneously flattened corneal shell and is not related to the tonometer measuring accuracy. The observed deviation has not been amenable to any GAT corrections, contradicting the Imbert-Fick law. This means a new approach to the calculation of corrections for GAT readings is needed.

  7. The measurement of intraocular pressure over positive soft contact lenses by rebound tonometry.

    PubMed

    Zeri, Fabrizio; De Cusatis, Mario; Lupelli, Luigi; Swann, Peter Graham

    2016-01-01

    To investigate if the accuracy of intraocular pressure (IOP) measurements using rebound tonometry over disposable hydrogel (etafilcon A) contact lenses (CL) is affected by the positive power of the CLs. The experimental group comprised 26 subjects, (8 male, 18 female). IOP measurements were undertaken on the subjects' right eyes in random order using a Rebound Tonometer (ICare). The CLs had powers of +2.00D and +6.00D. Measurements were taken over each contact lens and also before and after the CLs had been worn. The IOP measure obtained with both CLs was significantly lower compared to the value without CLs (t test; p<0.001) but no significant difference was found between the two powers of CLs. Rebound tonometry over positive hydrogel CLs leads to a certain degree of IOP underestimation. This result did not change for the two positive lenses used in the experiment, despite their large difference in power and therefore in lens thickness. Optometrists should bear this in mind when measuring IOP with the rebound tonometer over plus power contact lenses. Copyright © 2016 The Authors. Published by Elsevier Espana.. All rights reserved.

  8. Impact of region contouring variability on image-based focal therapy evaluation

    NASA Astrophysics Data System (ADS)

    Gibson, Eli; Donaldson, Ian A.; Shah, Taimur T.; Hu, Yipeng; Ahmed, Hashim U.; Barratt, Dean C.

    2016-03-01

    Motivation: Focal therapy is an emerging low-morbidity treatment option for low-intermediate risk prostate cancer; however, challenges remain in accurately delivering treatment to specified targets and determining treatment success. Registered multi-parametric magnetic resonance imaging (MPMRI) acquired before and after treatment can support focal therapy evaluation and optimization; however, contouring variability, when defining the prostate, the clinical target volume (CTV) and the ablation region in images, reduces the precision of quantitative image-based focal therapy evaluation metrics. To inform the interpretation and clarify the limitations of such metrics, we investigated inter-observer contouring variability and its impact on four metrics. Methods: Pre-therapy and 2-week-post-therapy standard-of-care MPMRI were acquired from 5 focal cryotherapy patients. Two clinicians independently contoured, on each slice, the prostate (pre- and post-treatment) and the dominant index lesion CTV (pre-treatment) in the T2-weighted MRI, and the ablated region (post-treatment) in the dynamic-contrast- enhanced MRI. For each combination of clinician contours, post-treatment images were registered to pre-treatment images using a 3D biomechanical-model-based registration of prostate surfaces, and four metrics were computed: the proportion of the target tissue region that was ablated and the target:ablated region volume ratio for each of two targets (the CTV and an expanded planning target volume). Variance components analysis was used to measure the contribution of each type of contour to the variance in the therapy evaluation metrics. Conclusions: 14-23% of evaluation metric variance was attributable to contouring variability (including 6-12% from ablation region contouring); reducing this variability could improve the precision of focal therapy evaluation metrics.

  9. Joint Denoising/Compression of Image Contours via Shape Prior and Context Tree

    NASA Astrophysics Data System (ADS)

    Zheng, Amin; Cheung, Gene; Florencio, Dinei

    2018-07-01

    With the advent of depth sensing technologies, the extraction of object contours in images---a common and important pre-processing step for later higher-level computer vision tasks like object detection and human action recognition---has become easier. However, acquisition noise in captured depth images means that detected contours suffer from unavoidable errors. In this paper, we propose to jointly denoise and compress detected contours in an image for bandwidth-constrained transmission to a client, who can then carry out aforementioned application-specific tasks using the decoded contours as input. We first prove theoretically that in general a joint denoising / compression approach can outperform a separate two-stage approach that first denoises then encodes contours lossily. Adopting a joint approach, we first propose a burst error model that models typical errors encountered in an observed string y of directional edges. We then formulate a rate-constrained maximum a posteriori (MAP) problem that trades off the posterior probability p(x'|y) of an estimated string x' given y with its code rate R(x'). We design a dynamic programming (DP) algorithm that solves the posed problem optimally, and propose a compact context representation called total suffix tree (TST) that can reduce complexity of the algorithm dramatically. Experimental results show that our joint denoising / compression scheme outperformed a competing separate scheme in rate-distortion performance noticeably.

  10. Neural dynamics of feedforward and feedback processing in figure-ground segregation

    PubMed Central

    Layton, Oliver W.; Mingolla, Ennio; Yazdanbakhsh, Arash

    2014-01-01

    Determining whether a region belongs to the interior or exterior of a shape (figure-ground segregation) is a core competency of the primate brain, yet the underlying mechanisms are not well understood. Many models assume that figure-ground segregation occurs by assembling progressively more complex representations through feedforward connections, with feedback playing only a modulatory role. We present a dynamical model of figure-ground segregation in the primate ventral stream wherein feedback plays a crucial role in disambiguating a figure's interior and exterior. We introduce a processing strategy whereby jitter in RF center locations and variation in RF sizes is exploited to enhance and suppress neural activity inside and outside of figures, respectively. Feedforward projections emanate from units that model cells in V4 known to respond to the curvature of boundary contours (curved contour cells), and feedback projections from units predicted to exist in IT that strategically group neurons with different RF sizes and RF center locations (teardrop cells). Neurons (convex cells) that preferentially respond when centered on a figure dynamically balance feedforward (bottom-up) information and feedback from higher visual areas. The activation is enhanced when an interior portion of a figure is in the RF via feedback from units that detect closure in the boundary contours of a figure. Our model produces maximal activity along the medial axis of well-known figures with and without concavities, and inside algorithmically generated shapes. Our results suggest that the dynamic balancing of feedforward signals with the specific feedback mechanisms proposed by the model is crucial for figure-ground segregation. PMID:25346703

  11. Neural dynamics of feedforward and feedback processing in figure-ground segregation.

    PubMed

    Layton, Oliver W; Mingolla, Ennio; Yazdanbakhsh, Arash

    2014-01-01

    Determining whether a region belongs to the interior or exterior of a shape (figure-ground segregation) is a core competency of the primate brain, yet the underlying mechanisms are not well understood. Many models assume that figure-ground segregation occurs by assembling progressively more complex representations through feedforward connections, with feedback playing only a modulatory role. We present a dynamical model of figure-ground segregation in the primate ventral stream wherein feedback plays a crucial role in disambiguating a figure's interior and exterior. We introduce a processing strategy whereby jitter in RF center locations and variation in RF sizes is exploited to enhance and suppress neural activity inside and outside of figures, respectively. Feedforward projections emanate from units that model cells in V4 known to respond to the curvature of boundary contours (curved contour cells), and feedback projections from units predicted to exist in IT that strategically group neurons with different RF sizes and RF center locations (teardrop cells). Neurons (convex cells) that preferentially respond when centered on a figure dynamically balance feedforward (bottom-up) information and feedback from higher visual areas. The activation is enhanced when an interior portion of a figure is in the RF via feedback from units that detect closure in the boundary contours of a figure. Our model produces maximal activity along the medial axis of well-known figures with and without concavities, and inside algorithmically generated shapes. Our results suggest that the dynamic balancing of feedforward signals with the specific feedback mechanisms proposed by the model is crucial for figure-ground segregation.

  12. Brain Activity Varies with Modulation of Dynamic Pitch Variance in Sentence Melody

    ERIC Educational Resources Information Center

    Meyer, Martin; Steinhauer, Karsten; Alter, Kai; Friederici, Angela D.; von Cramon, D. Yves

    2004-01-01

    Fourteen native speakers of German heard normal sentences, sentences which were either lacking dynamic pitch variation (flattened speech), or comprised of intonation contour exclusively (degraded speech). Participants were to listen carefully to the sentences and to perform a rehearsal task. Passive listening to flattened speech compared to normal…

  13. Enlightening intracellular complexity of living cells with quantitative phase microscopy

    NASA Astrophysics Data System (ADS)

    Martinez Torres, C.; Laperrousaz, B.; Berguiga, L.; Boyer Provera, E.; Elezgaray, J.; Nicolini, F. E.; Maguer-Satta, V.; Arneodo, A.; Argoul, F.

    2016-03-01

    The internal distribution of refractive indices (RIs) of a living cell is much more complex than usually admitted in multi-shell models. The reconstruction of RI maps from single phase images has rarely been achieved for several reasons: (i) we still have very little knowledge of the impact of internal macromolecular complexes on the local RI and (ii) phase changes produced by light propagation through the sample are mixed with diffraction effects by internal cell bodies. We propose the implementation a 2D wavelet-based contour chain detection method to distinguish internal boundaries thanks to their greatest optical path difference gradients. These contour chains correspond to the highest image phase contrast and follow the local RI inhomogeneities linked to the intracellular structural intricacy. Their statistics and spatial distribution are morphological indicators for distinguishing cells of different origins and to follow their transformation in pathologic situations. We use this method to compare non adherent blood cells from primary and laboratory culture origins, in healthy and pathological situations (chronic myelogenous leukaemia). In a second part of this presentation, we concentrate on the temporal dynamics of the phase contour chains and we discuss the spectral decomposition of their dynamics in both health and disease.

  14. Lymph node segmentation by dynamic programming and active contours.

    PubMed

    Tan, Yongqiang; Lu, Lin; Bonde, Apurva; Wang, Deling; Qi, Jing; Schwartz, Lawrence H; Zhao, Binsheng

    2018-03-03

    Enlarged lymph nodes are indicators of cancer staging, and the change in their size is a reflection of treatment response. Automatic lymph node segmentation is challenging, as the boundary can be unclear and the surrounding structures complex. This work communicates a new three-dimensional algorithm for the segmentation of enlarged lymph nodes. The algorithm requires a user to draw a region of interest (ROI) enclosing the lymph node. Rays are cast from the center of the ROI, and the intersections of the rays and the boundary of the lymph node form a triangle mesh. The intersection points are determined by dynamic programming. The triangle mesh initializes an active contour which evolves to low-energy boundary. Three radiologists independently delineated the contours of 54 lesions from 48 patients. Dice coefficient was used to evaluate the algorithm's performance. The mean Dice coefficient between computer and the majority vote results was 83.2%. The mean Dice coefficients between the three radiologists' manual segmentations were 84.6%, 86.2%, and 88.3%. The performance of this segmentation algorithm suggests its potential clinical value for quantifying enlarged lymph nodes. © 2018 American Association of Physicists in Medicine.

  15. Interactive outlining: an improved approach using active contours

    NASA Astrophysics Data System (ADS)

    Daneels, Dirk; van Campenhout, David; Niblack, Carlton W.; Equitz, Will; Barber, Ron; Fierens, Freddy

    1993-04-01

    The purpose of our work is to outline objects on images in an interactive environment. We use an improved method based on energy minimizing active contours or `snakes.' Kass et al., proposed a variational technique; Amini used dynamic programming; and Williams and Shah introduced a fast, greedy algorithm. We combine the advantages of the latter two methods in a two-stage algorithm. The first stage is a greedy procedure that provides fast initial convergence. It is enhanced with a cost term that extends over a large number of points to avoid oscillations. The second stage, when accuracy becomes important, uses dynamic programming. This step is accelerated by the use of alternating search neighborhoods and by dropping stable points from the iterations. We have also added several features for user interaction. First, the user can define points of high confidence. Mathematically, this results in an extra cost term and, in that way, the robustness in difficult areas (e.g., noisy edges, sharp corners) is improved. We also give the user the possibility of incremental contour tracking, thus providing feedback on the refinement process. The algorithm has been tested on numerous photographic clip art images and extensive tests on medical images are in progress.

  16. Intraocular pressure and biomechanical corneal properties measure by ocular response analyser in patients with primary congenital glaucoma.

    PubMed

    Perucho-González, Lucía; Martínez de la Casa, Jose María; Morales-Fernández, Laura; Bañeros-Rojas, Paula; Saenz-Francés, Federico; García-Feijoó, Julían

    2016-08-01

    To measure the differences in corneal hysteresis (CH) and corneal resistance factor (CRF) in primary congenital glaucoma (PCG) and in control subjects using ocular response analyser (ORA) and also to compare intraocular pressure (IOP) measurements given by ORA against IOP given by Perkins tonometer, a handheld version of Goldman applanation tonometer (GAT), to determine correlation. One hundred and eighteen eyes of 78 patients with PCG (group I) and 103 eyes of 53 controls (group II) were evaluated using ORA. In all participants, IOP was measured using the Perkins tonometer. The ORA device uses applanation pressure peaks to generate the corneal-compensated IOP (IOPcc), which is reportedly independent of corneal thickness, and the measurement of Goldman-correlated IOP (IOPg), which is influenced by corneal thickness. The measures in group I were as follows: IOPcc 20.92 ± 5.33; IOPg 18.87 ± 6.67; CH 8.51 ± 2.25; CRF 9.85 ± 3.03; and IOP measured by Goldman 18.32 ± 5.13. The measures in group II were as follows: IOPcc 14.33 ± 2.91; IOPg 14.77 ± 3.00; CH 11.37 ± 1.61; CRF 11.02 ± 1.74; and IOP measured by Goldman 13.74 ± 2.42. The differences of all parameters compared between both groups were statistically significant (p < 0.001 for CH and for all IOP measures and p = 0.001 for CRF). The values of IOPcc, IOPg and IOP measured with Goldman were higher in group I than the values in group II. However, CH and CRF values were lower in group I. A decrease in CH and CRF has been observed in patients with PCG compared to controls. Future research should assess how these parameters are modified in PCG and whether they could provide more information about progression. © 2015 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  17. Acoustics and dynamics of coaxial interacting vortex rings

    NASA Technical Reports Server (NTRS)

    Shariff, Karim; Leonard, Anthony; Zabusky, Norman J.; Ferziger, Joel H.

    1988-01-01

    Using a contour dynamics method for inviscid axisymmetric flow we examine the effects of core deformation on the dynamics and acoustic signatures of coaxial interacting vortex rings. Both 'passage' and 'collision' (head-on) interactions are studied for initially identical vortices. Good correspondence with experiments is obtained. A simple model which retains only the elliptic degree of freedom in the core shape is used to explain some of the calculated features.

  18. Representation of tactile curvature in macaque somatosensory area 2

    PubMed Central

    Connor, Charles E.; Hsiao, Steven S.

    2013-01-01

    Tactile shape information is elaborated in a cortical hierarchy spanning primary (SI) and secondary somatosensory cortex (SII). Indeed, SI neurons in areas 3b and 1 encode simple contour features such as small oriented bars and edges, whereas higher order SII neurons represent large curved contour features such as angles and arcs. However, neural coding of these contour features has not been systematically characterized in area 2, the most caudal SI subdivision in the postcentral gyrus. In the present study, we analyzed area 2 neural responses to embossed oriented bars and curved contour fragments to establish whether curvature representations are generated in the postcentral gyrus. We found that many area 2 neurons (26 of 112) exhibit clear curvature tuning, preferring contours pointing in a particular direction. Fewer area 2 neurons (15 of 112) show preferences for oriented bars. Because area 2 response patterns closely resembled SII patterns, we also compared area 2 and SII response time courses to characterize the temporal dynamics of curvature synthesis in the somatosensory system. We found that curvature representations develop and peak concurrently in area 2 and SII. These results reveal that transitions from orientation tuning to curvature selectivity in the somatosensory cortical hierarchy occur within SI rather than between SI and SII. PMID:23536717

  19. CLAES CH4, N2O and CCL2F2 (F12) global data. [Cryogenic Array Etalon Spectrometer

    NASA Technical Reports Server (NTRS)

    Kumer, J. B.; Mergenthaler, J. L.; Roche, A. E.

    1993-01-01

    Zonal mean comparisons of CH4 (for altitude regions above the 1.35 ppmv contour), of N2O (above the 210 ppbv contour), and of F12 (above the 360 pptv contour) with UARS prelaunch climatology and with recent models shows reasonable agreement, and some interesting differences in the details of equatorial uplift and descent near the winter poles, including apparent north-south differences. Prominent features such as the double peaked uplift structure in the April-May SAMS data are clearly evident in all three CLAES tracers. Contours of SAMS CH4 and N2O occur mostly at higher pressures than in the CLAES data, presumably due in part to increased tropospheric content of these gases, and/or perhaps some dynamic difference associated with the 15 years time difference between the data sets. The CLAES F12 are the first long time base global data sets. These show more tropical uplift than climatology or models. This might suggest a somewhat shorter lifetime of F12 in the stratosphere than is currently accepted.

  20. Smart wing wind tunnel test results

    NASA Astrophysics Data System (ADS)

    Scherer, Lewis B.; Martin, Christopher A.; Appa, Kari; Kudva, Jayanth N.; West, Mark N.

    1997-05-01

    The use of smart materials technologies can provide unique capabilities in improving aircraft aerodynamic performance. Northrop Grumman built and tested a 16% scale semi-span wind tunnel model of the F/A-18 E/F for the on-going DARPA/WL Smart Materials and Structures-Smart Wing Program. Aerodynamic performance gains to be validated included increase in the lift to drag ratio, increased pitching moment (Cm), increased rolling moment (Cl) and improved pressure distribution. These performance gains were obtained using hingeless, contoured trailing edge control surfaces with embedded shape memory alloy (SMA) wires and spanwise wing twist via a SMA torque tube and are compared to a conventional wind tunnel model with hinged control surfaces. This paper presents an overview of the results from the first wind tunnel test performed at the NASA Langley's 16 ft Transonic Dynamic Tunnel. Among the benefits demonstrated are 8 - 12% increase in rolling moment due to wing twist, a 10 - 15% increase in rolling moment due to contoured aileron, and approximately 8% increase in lift due to contoured flap, and improved pressure distribution due to trailing edge control surface contouring.

  1. Semi-automated extraction of longitudinal subglacial bedforms from digital terrain models - Two new methods

    NASA Astrophysics Data System (ADS)

    Jorge, Marco G.; Brennand, Tracy A.

    2017-07-01

    Relict drumlin and mega-scale glacial lineation (positive relief, longitudinal subglacial bedforms - LSBs) morphometry has been used as a proxy for paleo ice-sheet dynamics. LSB morphometric inventories have relied on manual mapping, which is slow and subjective and thus potentially difficult to reproduce. Automated methods are faster and reproducible, but previous methods for LSB semi-automated mapping have not been highly successful. Here, two new object-based methods for the semi-automated extraction of LSBs (footprints) from digital terrain models are compared in a test area in the Puget Lowland, Washington, USA. As segmentation procedures to create LSB-candidate objects, the normalized closed contour method relies on the contouring of a normalized local relief model addressing LSBs on slopes, and the landform elements mask method relies on the classification of landform elements derived from the digital terrain model. For identifying which LSB-candidate objects correspond to LSBs, both methods use the same LSB operational definition: a ruleset encapsulating expert knowledge, published morphometric data, and the morphometric range of LSBs in the study area. The normalized closed contour method was separately applied to four different local relief models, two computed in moving windows and two hydrology-based. Overall, the normalized closed contour method outperformed the landform elements mask method. The normalized closed contour method performed on a hydrological relief model from a multiple direction flow routing algorithm performed best. For an assessment of its transferability, the normalized closed contour method was evaluated on a second area, the Chautauqua drumlin field, Pennsylvania and New York, USA where it performed better than in the Puget Lowland. A broad comparison to previous methods suggests that the normalized relief closed contour method may be the most capable method to date, but more development is required.

  2. Diaphragm motion quantification in megavoltage cone-beam CT projection images.

    PubMed

    Chen, Mingqing; Siochi, R Alfredo

    2010-05-01

    To quantify diaphragm motion in megavoltage (MV) cone-beam computed tomography (CBCT) projections. User identified ipsilateral hemidiaphragm apex (IHDA) positions in two full exhale and inhale frames were used to create bounding rectangles in all other frames of a CBCT scan. The bounding rectangle was enlarged to create a region of interest (ROI). ROI pixels were associated with a cost function: The product of image gradients and a gradient direction matching function for an ideal hemidiaphragm determined from 40 training sets. A dynamic Hough transform (DHT) models a hemidiaphragm as a contour made of two parabola segments with a common vertex (the IHDA). The images within the ROIs are transformed into Hough space where a contour's Hough value is the sum of the cost function over all contour pixels. Dynamic programming finds the optimal trajectory of the common vertex in Hough space subject to motion constraints between frames, and an active contour model further refines the result. Interpolated ray tracing converts the positions to room coordinates. Root-mean-square (RMS) distances between these positions and those resulting from an expert's identification of the IHDA were determined for 21 Siemens MV CBCT scans. Computation time on a 2.66 GHz CPU was 30 s. The average craniocaudal RMS error was 1.38 +/- 0.67 mm. While much larger errors occurred in a few near-sagittal frames on one patient's scans, adjustments to algorithm constraints corrected them. The DHT based algorithm can compute IHDA trajectories immediately prior to radiation therapy on a daily basis using localization MVCBCT projection data. This has potential for calibrating external motion surrogates against diaphragm motion.

  3. Effect of Hemifacial Spasm on Intraocular Pressure Measurement.

    PubMed

    Cicik, Erdogan; Yildirim, Rengin; Arici, Ceyhun; Dikkaya, Funda; Arslan, Osman Sevki

    2018-01-01

    To evaluate the effect of hemifacial spasm (HFS) on intraocular pressure (IOP) measurement. Twenty-four consecutive patients with HFS and 25 age- and gender-matched randomly selected eyes of healthy volunteers underwent corneal pachymetry and IOP measurements using Goldmann applanation tonometer (GAT) and noncontact tonometer (NCT). IOP measurements were performed before (during HFS) and 2 weeks after Botox injections in HFS patients and in healthy volunteers without Botox injections. There was no statistical difference between involved eye side and uninvolved eye side of HFS patients in measured central corneal thickness. Similarly, no difference was found between involved eye side of HFS patients and controls. There were no statistically significant differences comparing IOP values before treatment and levels measured at 2 weeks of Botox injections, either with GAT ( p = 0.33, 0.11) or NCT ( p = 0.80, 0.43) devices in the involved eyes and uninvolved eyes of patients with HFS, respectively. There were also no significant differences in these parameters (GAT ( p = 0.63) and NCT ( p = 0.54)) in controls. Contractions in facial muscles may not lead to significant increase in IOP in HFS patients. This result may help clinical decision making in the treatment of glaucoma patients with HFS. This trial is registered with NCT03390803.

  4. An automated skin segmentation of Breasts in Dynamic Contrast-Enhanced Magnetic Resonance Imaging.

    PubMed

    Lee, Chia-Yen; Chang, Tzu-Fang; Chang, Nai-Yun; Chang, Yeun-Chung

    2018-04-18

    Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is used to diagnose breast disease. Obtaining anatomical information from DCE-MRI requires the skin be manually removed so that blood vessels and tumors can be clearly observed by physicians and radiologists; this requires considerable manpower and time. We develop an automated skin segmentation algorithm where the surface skin is removed rapidly and correctly. The rough skin area is segmented by the active contour model, and analyzed in segments according to the continuity of the skin thickness for accuracy. Blood vessels and mammary glands are retained, which remedies the defect of removing some blood vessels in active contours. After three-dimensional imaging, the DCE-MRIs without the skin can be used to see internal anatomical information for clinical applications. The research showed the Dice's coefficients of the 3D reconstructed images using the proposed algorithm and the active contour model for removing skins are 93.2% and 61.4%, respectively. The time performance of segmenting skins automatically is about 165 times faster than manually. The texture information of the tumors position with/without the skin is compared by the paired t-test yielded all p < 0.05, which suggested the proposed algorithm may enhance observability of tumors at the significance level of 0.05.

  5. The mechanisms of collinear integration.

    PubMed

    Cass, John; Alais, David

    2006-08-11

    Low-contrast visual contour fragments are easier to detect when presented in the context of nearby collinear contour elements (U. Polat & D. Sagi, 1993). The spatial and temporal determinants of this collinear facilitation have been studied extensively (J. R. Cass & B. Spehar, 2005; Y. Tanaka & D. Sagi, 1998; C. B. Williams & R. F. Hess, 1998), although considerable debate surrounds the neural mechanisms underlying it. Our study examines this question using a novel stimulus, whereby the flanking "contour" elements are rotated around their own axis. By measuring contrast detection thresholds to a brief foveal target presented at various phases of flanker rotation, we find peak facilitation after flankers have rotated beyond their collinear phase. This optimal facilitative delay increases monotonically as a function of target-flanker separation, yielding estimates of cortical propagation of 0.1 m/s, a value highly consistent with the dynamics of long-range horizontal interactions observed within primary visual cortex (V1). A curious new finding is also observed: Facilitative peaks also occur when the target flash precedes flanker collinearity by 20-80 ms, a range consistent with contrast-dependent cortical onset latencies. Together, these data suggest that collinear facilitation involves two separate mechanisms, each possessing distinct dynamics: (i) slowly propagating horizontal interactions within V1 and (ii) a faster integrative mechanism, possibly driven by synchronous collinear cortical onset.

  6. Gestalten of today: early processing of visual contours and surfaces.

    PubMed

    Kovács, I

    1996-12-01

    While much is known about the specialized, parallel processing streams of low-level vision that extract primary visual cues, there is only limited knowledge about the dynamic interactions between them. How are the fragments, caught by local analyzers, assembled together to provide us with a unified percept? How are local discontinuities in texture, motion or depth evaluated with respect to object boundaries and surface properties? These questions are presented within the framework of orientation-specific spatial interactions of early vision. Key observations of psychophysics, anatomy and neurophysiology on interactions of various spatial and temporal ranges are reviewed. Aspects of the functional architecture and possible neural substrates of local orientation-specific interactions are discussed, underlining their role in the integration of information across the visual field, and particularly in contour integration. Examples are provided demonstrating that global context, such as contour closure and figure-ground assignment, affects these local interactions. It is illustrated that figure-ground assignment is realized early in visual processing, and that the pattern of early interactions also brings about an effective and sparse coding of visual shape. Finally, it is concluded that the underlying functional architecture is not only dynamic and context dependent, but the pattern of connectivity depends as much on past experience as on actual stimulation.

  7. Cortical dynamics of feature binding and reset: control of visual persistence.

    PubMed

    Francis, G; Grossberg, S; Mingolla, E

    1994-04-01

    An analysis of the reset of visual cortical circuits responsible for the binding or segmentation of visual features into coherent visual forms yields a model that explains properties of visual persistence. The reset mechanisms prevent massive smearing of visual percepts in response to rapidly moving images. The model simulates relationships among psychophysical data showing inverse relations of persistence to flash luminance and duration, greater persistence of illusory contours than real contours, a U-shaped temporal function for persistence of illusory contours, a reduction of persistence due to adaptation with a stimulus of like orientation, an increase of persistence with spatial separation of a masking stimulus. The model suggests that a combination of habituative, opponent, and endstopping mechanisms prevent smearing and limit persistence. Earlier work with the model has analyzed data about boundary formation, texture segregation, shape-from-shading, and figure-ground separation. Thus, several types of data support each model mechanism and new predictions are made.

  8. Extracting contours of oval-shaped objects by Hough transform and minimal path algorithms

    NASA Astrophysics Data System (ADS)

    Tleis, Mohamed; Verbeek, Fons J.

    2014-04-01

    Circular and oval-like objects are very common in cell and micro biology. These objects need to be analyzed, and to that end, digitized images from the microscope are used so as to come to an automated analysis pipeline. It is essential to detect all the objects in an image as well as to extract the exact contour of each individual object. In this manner it becomes possible to perform measurements on these objects, i.e. shape and texture features. Our measurement objective is achieved by probing contour detection through dynamic programming. In this paper we describe a method that uses Hough transform and two minimal path algorithms to detect contours of (ovoid-like) objects. These algorithms are based on an existing grey-weighted distance transform and a new algorithm to extract the circular shortest path in an image. The methods are tested on an artificial dataset of a 1000 images, with an F1-score of 0.972. In a case study with yeast cells, contours from our methods were compared with another solution using Pratt's figure of merit. Results indicate that our methods were more precise based on a comparison with a ground-truth dataset. As far as yeast cells are concerned, the segmentation and measurement results enable, in future work, to retrieve information from different developmental stages of the cell using complex features.

  9. A Dynamic Multi-Projection-Contour Approximating Framework for the 3D Reconstruction of Buildings by Super-Generalized Optical Stereo-Pairs.

    PubMed

    Yan, Yiming; Su, Nan; Zhao, Chunhui; Wang, Liguo

    2017-09-19

    In this paper, a novel framework of the 3D reconstruction of buildings is proposed, focusing on remote sensing super-generalized stereo-pairs (SGSPs). As we all know, 3D reconstruction cannot be well performed using nonstandard stereo pairs, since reliable stereo matching could not be achieved when the image-pairs are collected at a great difference of views, and we always failed to obtain dense 3D points for regions of buildings, and cannot do further 3D shape reconstruction. We defined SGSPs as two or more optical images collected in less constrained views but covering the same buildings. It is even more difficult to reconstruct the 3D shape of a building by SGSPs using traditional frameworks. As a result, a dynamic multi-projection-contour approximating (DMPCA) framework was introduced for SGSP-based 3D reconstruction. The key idea is that we do an optimization to find a group of parameters of a simulated 3D model and use a binary feature-image that minimizes the total differences between projection-contours of the building in the SGSPs and that in the simulated 3D model. Then, the simulated 3D model, defined by the group of parameters, could approximate the actual 3D shape of the building. Certain parameterized 3D basic-unit-models of typical buildings were designed, and a simulated projection system was established to obtain a simulated projection-contour in different views. Moreover, the artificial bee colony algorithm was employed to solve the optimization. With SGSPs collected by the satellite and our unmanned aerial vehicle, the DMPCA framework was verified by a group of experiments, which demonstrated the reliability and advantages of this work.

  10. Conformation and stretching of end-tethered polymers in pressure-driven flow under confinement

    NASA Astrophysics Data System (ADS)

    Roy, Tamal; Hardt, Steffen; InstituteNano-; Microfludics, Technische Universität Darmstadt Team

    2016-11-01

    Understanding of the conformation and dynamics of polymers under confinement is important for both fundamental studies and applications. We experimentally study the conformation and stretching of surface-tethered polymer chains confined between parallel surfaces and exposed to a pressure-driven flow. λ-DNA molecules are tethered to the wall of a microchannel of height smaller than the contour lengths of the molecules. The DNA molecules, stained with a fluorescent dye, are visualized by epifluorescence and laser-scanning confocal microscopy (LSCM). The effects of the channel height, flow rate and contour length on the extension of the molecules are determined from epifluorescence images. From LSCM images the complete conformation and orientation of the DNA molecules is inferred. We find that the fractional extension of the molecules is uniquely determined by the fluid shear stress at the tethering surface and the chain contour length. There is no explicit influence of the channel height in the range of contour lengths we consider. We also derive analytical scaling relationships (in the weak and strong extension limits) that explain the experimentally observed stretching characteristics. This work is supported by Deutsche Forschungsgemeinschaft (Grant No. HA 2696/33-1).

  11. The influence of intraocular pressure and air jet pressure on corneal contactless tonometry tests.

    PubMed

    Simonini, Irene; Pandolfi, Anna

    2016-05-01

    The air puff is a dynamic contactless tonometer test used in ophthalmology clinical practice to assess the biomechanical properties of the human cornea and the intraocular pressure due to the filling fluids of the eye. The test is controversial, since the dynamic response of the cornea is governed by the interaction of several factors which cannot be discerned within a single measurement. In this study we describe a numerical model of the air puff tests, and perform a parametric analysis on the major action parameters (jet pressure and intraocular pressure) to assess their relevance on the mechanical response of a patient-specific cornea. The particular cornea considered here has been treated with laser reprofiling to correct myopia, and the parametric study has been conducted on both the preoperative and postoperative geometries. The material properties of the cornea have been obtained by means of an identification procedure that compares the static biomechanical response of preoperative and postoperative corneas under the physiological IOP. The parametric study on the intraocular pressure suggests that the displacement of the cornea׳s apex can be a reliable indicator for tonometry, and the one on the air jet pressure predicts the outcomes of two or more distinct measurements on the same cornea, which can be used in inverse procedures to estimate the material properties of the tissue. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Development and investigation of single-scan TV radiography for the acquisition of dynamic physiologic data

    NASA Technical Reports Server (NTRS)

    Baily, N. A.

    1974-01-01

    Research data obtained by the low dose electronic radiography system are reported. Data cover: (1) localization and tracking of Ta screws implanted in the inner wall of the right ventrical of the heart, (2) use of cross hairs to outline inner or outer heart wall contours, (3) quantitative measure of anatomical components which are stationary in size or change size dynamically, and (4) study of dynamic quantitative data from roentenologic or fluoroscopic procedures.

  13. The Role of 24-hour Ambulatory Blood Pressure Monitoring in Hypertensive Patients with Normal-tension Glaucoma.

    PubMed

    Marjanović, Ivan; Marjanović, Marija; Stojanov, Vesna; Hentova-Senćanić, Paraskeva; Marković, Vujica; Božić, Marija; Vukčević-Milošević, Gordana

    2015-01-01

    Extreme dippers are patients with a nocturnal fall of blood pressure (BP) of more than 20%, dippers have normal diurnal rhythm and decrease of BP of 10-15%, while patients with a nocturnal BP fall of less than 10% are considered to be non-dippers. The aim of this study was to compare 24-hour ambulatory BP monitoring results of normal-tension glaucoma (NTG) patients with NTG suspects, as well as to determine whether NTG patients are more prone to daytime/nighttime systemic arterial BP and heart rate oscillations in comparison to NTG suspects. This was a prospective, cross-sectional and observational study of 57 hypertensive patients (39 female and 18 male), all examined at the Eye and the Cardiology Clinic, Clinical Center of Serbia in Belgrade, between November 2011 and March 2012. Before 24-hour ambulatory BP monitoring, complete ophthalmological examination was performed (intraocular pressure was measured with both Goldmann applanation and dynamic contour tonometer, as well as with computerized perimetry and Heidelberg retinal tomography). There was no statistically significant difference between NTG patients and NTG suspects both in systolic daytime (131.86-141.81 mmHg, SD=±l 4.92 vs. 129.67-141.83 mmHg, SD=±l3; p=0.53) and nighttime measurements (117.1-129.7 mmHg, SD=±l 8.96 vs. 112.11-127.59 mmHg, SD=±16.53; p=0.53) as well as diastolic daytime (74.55-80.37 mmHg, SD=±8.72 vs. 75.19-82.41 mmHg, SD=±7.72; p=0.58) and nighttime measurements (65.66-71.48 mmHg, SD=±8.73 vs. 67.12-73.78 mmHg, SD=±7.1 1; p=0.34). There was no statistically significant difference between NTG patients and NTG suspects in heart rate during the day (72.73-76.36 beats per minute [bpm], SD=±5.44 vs. 72.15-76.45 bpm, SD=±4.59; p=0.43) nor during the night (64.4-71.9 bpm, SD=±6.74 vs. 68.02-72.48 bpm, SD=±4.76; p=0.11). No statistically significant difference was found between NTG patients and NTG suspects in regard to their systolic and diastolic BP measured both during daytime and nighttime. NTG patients had fall (both systolic and diastolic) than NTG suspects.

  14. Crewmembers in the middeck with the Retinal Photography experiment.

    NASA Image and Video Library

    1992-12-09

    STS053-02-007 (2 - 9 Dec 1992) --- Astronaut Robert D. Cabana, pilot, uses a tonometer to check the intraocular pressure of astronaut Michael R. U. (Rich) Clifford, mission specialist. The two are on the Space Shuttle Discovery's mid-deck. This test is one of the mission's Detailed Supplementary Objectives (DSO) 472. The purpose of this DSO is to establish a data base of changes in intraocular pressures that can be used to evaluate crew health.

  15. Dynamic OCT measurement of corneal deformation by an air puff in normal and cross-linked corneas

    PubMed Central

    Dorronsoro, Carlos; Pascual, Daniel; Pérez-Merino, Pablo; Kling, Sabine; Marcos, Susana

    2012-01-01

    A new technique is presented for the non-invasive imaging of the dynamic response of the cornea to an air puff inducing a deformation. A spectral OCT instrument combined with an air tonometer in a non-collinear configuration was used to image the corneal deformation over full corneal cross-sections, as well as to obtain high speed measurements of the temporal evolution of the corneal apex. The entire deformation process can be dynamically visualized. A quantitative analysis allows direct extraction of several deformation parameters, such as amplitude, diameter and volume of the maximum deformation, as well as duration and speed of the increasing deformation period and the recovery period. The potential of the technique is demonstrated on porcine corneas in vitro under constant IOP for several conditions (untreated, after riboflavin instillation and under cross-linking with ultraviolet light), as well as on human corneas in vivo. The new technique has proved very sensitive to detect differences in the deformation parameters across conditions. We have confirmed non-invasively that Riboflavin and UV-cross-linking induce changes in the corneal biomechanical properties. Those differences appear to be the result of changes in constituent properties of the cornea, and not a consequence of changes in corneal thickness, geometry or IOP. These measurements are a first step for the estimation of the biomechanical properties of corneal tissue, at an individual level and in vivo, to improve diagnosis and prognosis of diseases and treatments involving changes in the biomechanical properties of the cornea. PMID:22435096

  16. A magnetic resonance imaging study on the articulatory and acoustic speech parameters of Malay vowels

    PubMed Central

    2014-01-01

    The phonetic properties of six Malay vowels are investigated using magnetic resonance imaging (MRI) to visualize the vocal tract in order to obtain dynamic articulatory parameters during speech production. To resolve image blurring due to the tongue movement during the scanning process, a method based on active contour extraction is used to track tongue contours. The proposed method efficiently tracks tongue contours despite the partial blurring of MRI images. Consequently, the articulatory parameters that are effectively measured as tongue movement is observed, and the specific shape of the tongue and its position for all six uttered Malay vowels are determined. Speech rehabilitation procedure demands some kind of visual perceivable prototype of speech articulation. To investigate the validity of the measured articulatory parameters based on acoustic theory of speech production, an acoustic analysis based on the uttered vowels by subjects has been performed. As the acoustic speech and articulatory parameters of uttered speech were examined, a correlation between formant frequencies and articulatory parameters was observed. The experiments reported a positive correlation between the constriction location of the tongue body and the first formant frequency, as well as a negative correlation between the constriction location of the tongue tip and the second formant frequency. The results demonstrate that the proposed method is an effective tool for the dynamic study of speech production. PMID:25060583

  17. A magnetic resonance imaging study on the articulatory and acoustic speech parameters of Malay vowels.

    PubMed

    Zourmand, Alireza; Mirhassani, Seyed Mostafa; Ting, Hua-Nong; Bux, Shaik Ismail; Ng, Kwan Hoong; Bilgen, Mehmet; Jalaludin, Mohd Amin

    2014-07-25

    The phonetic properties of six Malay vowels are investigated using magnetic resonance imaging (MRI) to visualize the vocal tract in order to obtain dynamic articulatory parameters during speech production. To resolve image blurring due to the tongue movement during the scanning process, a method based on active contour extraction is used to track tongue contours. The proposed method efficiently tracks tongue contours despite the partial blurring of MRI images. Consequently, the articulatory parameters that are effectively measured as tongue movement is observed, and the specific shape of the tongue and its position for all six uttered Malay vowels are determined.Speech rehabilitation procedure demands some kind of visual perceivable prototype of speech articulation. To investigate the validity of the measured articulatory parameters based on acoustic theory of speech production, an acoustic analysis based on the uttered vowels by subjects has been performed. As the acoustic speech and articulatory parameters of uttered speech were examined, a correlation between formant frequencies and articulatory parameters was observed. The experiments reported a positive correlation between the constriction location of the tongue body and the first formant frequency, as well as a negative correlation between the constriction location of the tongue tip and the second formant frequency. The results demonstrate that the proposed method is an effective tool for the dynamic study of speech production.

  18. Nonequilibrium self-energy functional theory

    NASA Astrophysics Data System (ADS)

    Hofmann, Felix; Eckstein, Martin; Arrigoni, Enrico; Potthoff, Michael

    2013-10-01

    The self-energy functional theory (SFT) is generalized to describe the real-time dynamics of correlated lattice-fermion models far from thermal equilibrium. This is achieved by starting from a reformulation of the original equilibrium theory in terms of double-time Green's functions on the Keldysh-Matsubara contour. With the help of a generalized Luttinger-Ward functional, we construct a functional Ω̂[Σ] which is stationary at the physical (nonequilibrium) self-energy Σ and which yields the grand potential of the initial thermal state Ω at the physical point. Nonperturbative approximations can be defined by specifying a reference system that serves to generate trial self-energies. These self-energies are varied by varying the reference system's one-particle parameters on the Keldysh-Matsubara contour. In the case of thermal equilibrium, this approach reduces to the conventional SFT. Contrary to the equilibrium theory, however, “unphysical” variations, i.e., variations that are different on the upper and the lower branches of the Keldysh contour, must be considered to fix the time dependence of the optimal physical parameters via the variational principle. Functional derivatives in the nonequilibrium SFT Euler equation are carried out analytically to derive conditional equations for the variational parameters that are accessible to a numerical evaluation via a time-propagation scheme. Approximations constructed by means of the nonequilibrium SFT are shown to be inherently causal, internally consistent, and to respect macroscopic conservation laws resulting from gauge symmetries of the Hamiltonian. This comprises the nonequilibrium dynamical mean-field theory but also dynamical-impurity and variational-cluster approximations that are specified by reference systems with a finite number of degrees of freedom. In this way, nonperturbative and consistent approximations can be set up, the numerical evaluation of which is accessible to an exact-diagonalization approach.

  19. Real-time detection and data acquisition system for the left ventricular outline. Ph.D. Thesis - Stanford Univ.

    NASA Technical Reports Server (NTRS)

    Reiber, J. H. C.

    1976-01-01

    To automate the data acquisition procedure, a real-time contour detection and data acquisition system for the left ventricular outline was developed using video techniques. The X-ray image of the contrast-filled left ventricle is stored for subsequent processing on film (cineangiogram), video tape or disc. The cineangiogram is converted into video format using a television camera. The video signal from either the TV camera, video tape or disc is the input signal to the system. The contour detection is based on a dynamic thresholding technique. Since the left ventricular outline is a smooth continuous function, for each contour side a narrow expectation window is defined in which the next borderpoint will be detected. A computer interface was designed and built for the online acquisition of the coordinates using a PDP-12 computer. The advantage of this system over other available systems is its potential for online, real-time acquisition of the left ventricular size and shape during angiocardiography.

  20. Time-Hierarchical Clustering and Visualization of Weather Forecast Ensembles.

    PubMed

    Ferstl, Florian; Kanzler, Mathias; Rautenhaus, Marc; Westermann, Rudiger

    2017-01-01

    We propose a new approach for analyzing the temporal growth of the uncertainty in ensembles of weather forecasts which are started from perturbed but similar initial conditions. As an alternative to traditional approaches in meteorology, which use juxtaposition and animation of spaghetti plots of iso-contours, we make use of contour clustering and provide means to encode forecast dynamics and spread in one single visualization. Based on a given ensemble clustering in a specified time window, we merge clusters in time-reversed order to indicate when and where forecast trajectories start to diverge. We present and compare different visualizations of the resulting time-hierarchical grouping, including space-time surfaces built by connecting cluster representatives over time, and stacked contour variability plots. We demonstrate the effectiveness of our visual encodings with forecast examples of the European Centre for Medium-Range Weather Forecasts, which convey the evolution of specific features in the data as well as the temporally increasing spatial variability.

  1. Investigations of FAK inhibitors: a combination of 3D-QSAR, docking, and molecular dynamics simulations studies.

    PubMed

    Cheng, Peng; Li, Jiaojiao; Wang, Juan; Zhang, Xiaoyun; Zhai, Honglin

    2018-05-01

    Focal adhesion kinase (FAK) is one kind of tyrosine kinases that modulates integrin and growth factor signaling pathways, which is a promising therapeutic target because of involving in cancer cell migration, proliferation, and survival. To investigate the mechanism between FAK and triazinic inhibitors and design high activity inhibitors, a molecular modeling integrated with 3D-QSAR, molecular docking, molecular dynamics simulations, and binding free energy calculations was performed. The optimum CoMFA and CoMSIA models showed good reliability and satisfactory predictability (with Q 2  = 0.663, R 2  = 0.987, [Formula: see text] = 0.921 and Q 2  = 0.670, R 2  = 0.981, [Formula: see text] = 0.953). Its contour maps could provide structural features to improve inhibitory activity. Furthermore, a good consistency between contour maps, docking, and molecular dynamics simulations strongly demonstrates that the molecular modeling is reliable. Based on it, we designed several new compounds and their inhibitory activities were validated by the molecular models. We expect our studies could bring new ideas to promote the development of novel inhibitors with higher inhibitory activity for FAK.

  2. Contour detection improved by context-adaptive surround suppression.

    PubMed

    Sang, Qiang; Cai, Biao; Chen, Hao

    2017-01-01

    Recently, many image processing applications have taken advantage of a psychophysical and neurophysiological mechanism, called "surround suppression" to extract object contour from a natural scene. However, these traditional methods often adopt a single suppression model and a fixed input parameter called "inhibition level", which needs to be manually specified. To overcome these drawbacks, we propose a novel model, called "context-adaptive surround suppression", which can automatically control the effect of surround suppression according to image local contextual features measured by a surface estimator based on a local linear kernel. Moreover, a dynamic suppression method and its stopping mechanism are introduced to avoid manual intervention. The proposed algorithm is demonstrated and validated by a broad range of experimental results.

  3. Network model of top-down influences on local gain and contextual interactions in visual cortex.

    PubMed

    Piëch, Valentin; Li, Wu; Reeke, George N; Gilbert, Charles D

    2013-10-22

    The visual system uses continuity as a cue for grouping oriented line segments that define object boundaries in complex visual scenes. Many studies support the idea that long-range intrinsic horizontal connections in early visual cortex contribute to this grouping. Top-down influences in primary visual cortex (V1) play an important role in the processes of contour integration and perceptual saliency, with contour-related responses being task dependent. This suggests an interaction between recurrent inputs to V1 and intrinsic connections within V1 that enables V1 neurons to respond differently under different conditions. We created a network model that simulates parametrically the control of local gain by hypothetical top-down modification of local recurrence. These local gain changes, as a consequence of network dynamics in our model, enable modulation of contextual interactions in a task-dependent manner. Our model displays contour-related facilitation of neuronal responses and differential foreground vs. background responses over the neuronal ensemble, accounting for the perceptual pop-out of salient contours. It quantitatively reproduces the results of single-unit recording experiments in V1, highlighting salient contours and replicating the time course of contextual influences. We show by means of phase-plane analysis that the model operates stably even in the presence of large inputs. Our model shows how a simple form of top-down modulation of the effective connectivity of intrinsic cortical connections among biophysically realistic neurons can account for some of the response changes seen in perceptual learning and task switching.

  4. Exploring the Roles of Spectral Detail and Intonation Contour in Speech Intelligibility: An fMRI Study

    PubMed Central

    Kyong, Jeong S.; Scott, Sophie K.; Rosen, Stuart; Howe, Timothy B.; Agnew, Zarinah K.; McGettigan, Carolyn

    2014-01-01

    The melodic contour of speech forms an important perceptual aspect of tonal and nontonal languages and an important limiting factor on the intelligibility of speech heard through a cochlear implant. Previous work exploring the neural correlates of speech comprehension identified a left-dominant pathway in the temporal lobes supporting the extraction of an intelligible linguistic message, whereas the right anterior temporal lobe showed an overall preference for signals clearly conveying dynamic pitch information. The current study combined modulations of overall intelligibility (through vocoding and spectral inversion) with a manipulation of pitch contour (normal vs. falling) to investigate the processing of spoken sentences in functional MRI. Our overall findings replicate and extend those of Scott et al., whereas greater sentence intelligibility was predominately associated with increased activity in the left STS, the greatest response to normal sentence melody was found right superior temporal gyrus. These data suggest a spatial distinction between brain areas associated with intelligibility and those involved in the processing of dynamic pitch information in speech. By including a set of complexity-matched unintelligible conditions created by spectral inversion, this is additionally the first study reporting a fully factorial exploration of spectrotemporal complexity and spectral inversion as they relate to the neural processing of speech intelligibility. Perhaps surprisingly, there was no evidence for an interaction between the two factors—we discuss the implications for the processing of sound and speech in the dorsolateral temporal lobes. PMID:24568205

  5. Corneal biomechanical properties from air-puff corneal deformation imaging

    NASA Astrophysics Data System (ADS)

    Marcos, Susana; Kling, Sabine; Bekesi, Nandor; Dorronsoro, Carlos

    2014-02-01

    The combination of air-puff systems with real-time corneal imaging (i.e. Optical Coherence Tomography (OCT), or Scheimpflug) is a promising approach to assess the dynamic biomechanical properties of the corneal tissue in vivo. In this study we present an experimental system which, together with finite element modeling, allows measurements of corneal biomechanical properties from corneal deformation imaging, both ex vivo and in vivo. A spectral OCT instrument combined with an air puff from a non-contact tonometer in a non-collinear configuration was used to image the corneal deformation over full corneal cross-sections, as well as to obtain high speed measurements of the temporal deformation of the corneal apex. Quantitative analysis allows direct extraction of several deformation parameters, such as apex indentation across time, maximal indentation depth, temporal symmetry and peak distance at maximal deformation. The potential of the technique is demonstrated and compared to air-puff imaging with Scheimpflug. Measurements ex vivo were performed on 14 freshly enucleated porcine eyes and five human donor eyes. Measurements in vivo were performed on nine human eyes. Corneal deformation was studied as a function of Intraocular Pressure (IOP, 15-45 mmHg), dehydration, changes in corneal rigidity (produced by UV corneal cross-linking, CXL), and different boundary conditions (sclera, ocular muscles). Geometrical deformation parameters were used as input for inverse finite element simulation to retrieve the corneal dynamic elastic and viscoelastic parameters. Temporal and spatial deformation profiles were very sensitive to the IOP. CXL produced a significant reduction of the cornea indentation (1.41x), and a change in the temporal symmetry of the corneal deformation profile (1.65x), indicating a change in the viscoelastic properties with treatment. Combining air-puff with dynamic imaging and finite element modeling allows characterizing the corneal biomechanics in-vivo.

  6. Toward Prostate Cancer Contouring Guidelines on Magnetic Resonance Imaging: Dominant Lesion Gross and Clinical Target Volume Coverage Via Accurate Histology Fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibson, Eli; Biomedical Engineering, University of Western Ontario, London, Ontario; Centre for Medical Image Computing, University College London, London

    Purpose: Defining prostate cancer (PCa) lesion clinical target volumes (CTVs) for multiparametric magnetic resonance imaging (mpMRI) could support focal boosting or treatment to improve outcomes or lower morbidity, necessitating appropriate CTV margins for mpMRI-defined gross tumor volumes (GTVs). This study aimed to identify CTV margins yielding 95% coverage of PCa tumors for prospective cases with high likelihood. Methods and Materials: Twenty-five men with biopsy-confirmed clinical stage T1 or T2 PCa underwent pre-prostatectomy mpMRI, yielding T2-weighted, dynamic contrast-enhanced, and apparent diffusion coefficient images. Digitized whole-mount histology was contoured and registered to mpMRI scans (error ≤2 mm). Four observers contoured lesion GTVs onmore » each mpMRI scan. CTVs were defined by isotropic and anisotropic expansion from these GTVs and from multiparametric (unioned) GTVs from 2 to 3 scans. Histologic coverage (proportions of tumor area on co-registered histology inside the CTV, measured for Gleason scores [GSs] ≥6 and ≥7) and prostate sparing (proportions of prostate volume outside the CTV) were measured. Nonparametric histologic-coverage prediction intervals defined minimal margins yielding 95% coverage for prospective cases with 78% to 92% likelihood. Results: On analysis of 72 true-positive tumor detections, 95% coverage margins were 9 to 11 mm (GS ≥ 6) and 8 to 10 mm (GS ≥ 7) for single-sequence GTVs and were 8 mm (GS ≥ 6) and 6 mm (GS ≥ 7) for 3-sequence GTVs, yielding CTVs that spared 47% to 81% of prostate tissue for the majority of tumors. Inclusion of T2-weighted contours increased sparing for multiparametric CTVs with 95% coverage margins for GS ≥6, and inclusion of dynamic contrast-enhanced contours increased sparing for GS ≥7. Anisotropic 95% coverage margins increased the sparing proportions to 71% to 86%. Conclusions: Multiparametric magnetic resonance imaging–defined GTVs expanded by appropriate margins may support focal boosting or treatment of PCa; however, these margins, accounting for interobserver and intertumoral variability, may preclude highly conformal CTVs. Multiparametric GTVs and anisotropic margins may reduce the required margins and improve prostate sparing.« less

  7. Computations of unsteady multistage compressor flows in a workstation environment

    NASA Technical Reports Server (NTRS)

    Gundy-Burlet, Karen L.

    1992-01-01

    High-end graphics workstations are becoming a necessary tool in the computational fluid dynamics environment. In addition to their graphic capabilities, workstations of the latest generation have powerful floating-point-operation capabilities. As workstations become common, they could provide valuable computing time for such applications as turbomachinery flow calculations. This report discusses the issues involved in implementing an unsteady, viscous multistage-turbomachinery code (STAGE-2) on workstations. It then describes work in which the workstation version of STAGE-2 was used to study the effects of axial-gap spacing on the time-averaged and unsteady flow within a 2 1/2-stage compressor. The results included time-averaged surface pressures, time-averaged pressure contours, standard deviation of pressure contours, pressure amplitudes, and force polar plots.

  8. Prostate segmentation by feature enhancement using domain knowledge and adaptive region based operations

    NASA Astrophysics Data System (ADS)

    Nanayakkara, Nuwan D.; Samarabandu, Jagath; Fenster, Aaron

    2006-04-01

    Estimation of prostate location and volume is essential in determining a dose plan for ultrasound-guided brachytherapy, a common prostate cancer treatment. However, manual segmentation is difficult, time consuming and prone to variability. In this paper, we present a semi-automatic discrete dynamic contour (DDC) model based image segmentation algorithm, which effectively combines a multi-resolution model refinement procedure together with the domain knowledge of the image class. The segmentation begins on a low-resolution image by defining a closed DDC model by the user. This contour model is then deformed progressively towards higher resolution images. We use a combination of a domain knowledge based fuzzy inference system (FIS) and a set of adaptive region based operators to enhance the edges of interest and to govern the model refinement using a DDC model. The automatic vertex relocation process, embedded into the algorithm, relocates deviated contour points back onto the actual prostate boundary, eliminating the need of user interaction after initialization. The accuracy of the prostate boundary produced by the proposed algorithm was evaluated by comparing it with a manually outlined contour by an expert observer. We used this algorithm to segment the prostate boundary in 114 2D transrectal ultrasound (TRUS) images of six patients scheduled for brachytherapy. The mean distance between the contours produced by the proposed algorithm and the manual outlines was 2.70 ± 0.51 pixels (0.54 ± 0.10 mm). We also showed that the algorithm is insensitive to variations of the initial model and parameter values, thus increasing the accuracy and reproducibility of the resulting boundaries in the presence of noise and artefacts.

  9. Determination of Visual Figure and Ground in Dynamically Deforming Shapes

    ERIC Educational Resources Information Center

    Barenholtz, Elan; Feldman, Jacob

    2006-01-01

    Figure/ground assignment--determining which part of the visual image is foreground and which background--is a critical step in early visual analysis, upon which much later processing depends. Previous research on the assignment of figure and ground to opposing sides of a contour has almost exclusively involved static geometric factors--such as…

  10. Accurate Detection of Dysmorphic Nuclei Using Dynamic Programming and Supervised Classification.

    PubMed

    Verschuuren, Marlies; De Vylder, Jonas; Catrysse, Hannes; Robijns, Joke; Philips, Wilfried; De Vos, Winnok H

    2017-01-01

    A vast array of pathologies is typified by the presence of nuclei with an abnormal morphology. Dysmorphic nuclear phenotypes feature dramatic size changes or foldings, but also entail much subtler deviations such as nuclear protrusions called blebs. Due to their unpredictable size, shape and intensity, dysmorphic nuclei are often not accurately detected in standard image analysis routines. To enable accurate detection of dysmorphic nuclei in confocal and widefield fluorescence microscopy images, we have developed an automated segmentation algorithm, called Blebbed Nuclei Detector (BleND), which relies on two-pass thresholding for initial nuclear contour detection, and an optimal path finding algorithm, based on dynamic programming, for refining these contours. Using a robust error metric, we show that our method matches manual segmentation in terms of precision and outperforms state-of-the-art nuclear segmentation methods. Its high performance allowed for building and integrating a robust classifier that recognizes dysmorphic nuclei with an accuracy above 95%. The combined segmentation-classification routine is bound to facilitate nucleus-based diagnostics and enable real-time recognition of dysmorphic nuclei in intelligent microscopy workflows.

  11. Accurate Detection of Dysmorphic Nuclei Using Dynamic Programming and Supervised Classification

    PubMed Central

    Verschuuren, Marlies; De Vylder, Jonas; Catrysse, Hannes; Robijns, Joke; Philips, Wilfried

    2017-01-01

    A vast array of pathologies is typified by the presence of nuclei with an abnormal morphology. Dysmorphic nuclear phenotypes feature dramatic size changes or foldings, but also entail much subtler deviations such as nuclear protrusions called blebs. Due to their unpredictable size, shape and intensity, dysmorphic nuclei are often not accurately detected in standard image analysis routines. To enable accurate detection of dysmorphic nuclei in confocal and widefield fluorescence microscopy images, we have developed an automated segmentation algorithm, called Blebbed Nuclei Detector (BleND), which relies on two-pass thresholding for initial nuclear contour detection, and an optimal path finding algorithm, based on dynamic programming, for refining these contours. Using a robust error metric, we show that our method matches manual segmentation in terms of precision and outperforms state-of-the-art nuclear segmentation methods. Its high performance allowed for building and integrating a robust classifier that recognizes dysmorphic nuclei with an accuracy above 95%. The combined segmentation-classification routine is bound to facilitate nucleus-based diagnostics and enable real-time recognition of dysmorphic nuclei in intelligent microscopy workflows. PMID:28125723

  12. From strings to coils: Rotational dynamics of DNA-linked colloidal chains

    NASA Astrophysics Data System (ADS)

    Kuei, Steve; Garza, Burke; Biswal, Sibani Lisa

    2017-10-01

    We investigate the dynamical behavior of deformable filaments experimentally using a tunable model system consisting of linked paramagnetic colloidal particles, where the persistence length lp, the contour length lc, and the strength and frequency of the external driving force are controlled. We find that upon forcing by an external magnetic field, a variety of structural and conformational regimes exist. Depending on the competition of forces and torques on the chain, we see classic rigid rotator behavior, as well as dynamically rich wagging, coiling, and folding behavior. Through a combination of experiments, computational models, and theoretical calculations, we are able to observe, classify, and predict these dynamics as a function of the dimensionless Mason and magnetoelastic numbers.

  13. Method for contour extraction for object representation

    DOEpatents

    Skourikhine, Alexei N.; Prasad, Lakshman

    2005-08-30

    Contours are extracted for representing a pixelated object in a background pixel field. An object pixel is located that is the start of a new contour for the object and identifying that pixel as the first pixel of the new contour. A first contour point is then located on the mid-point of a transition edge of the first pixel. A tracing direction from the first contour point is determined for tracing the new contour. Contour points on mid-points of pixel transition edges are sequentially located along the tracing direction until the first contour point is again encountered to complete tracing the new contour. The new contour is then added to a list of extracted contours that represent the object. The contour extraction process associates regions and contours by labeling all the contours belonging to the same object with the same label.

  14. Heuristic reusable dynamic programming: efficient updates of local sequence alignment.

    PubMed

    Hong, Changjin; Tewfik, Ahmed H

    2009-01-01

    Recomputation of the previously evaluated similarity results between biological sequences becomes inevitable when researchers realize errors in their sequenced data or when the researchers have to compare nearly similar sequences, e.g., in a family of proteins. We present an efficient scheme for updating local sequence alignments with an affine gap model. In principle, using the previous matching result between two amino acid sequences, we perform a forward-backward alignment to generate heuristic searching bands which are bounded by a set of suboptimal paths. Given a correctly updated sequence, we initially predict a new score of the alignment path for each contour to select the best candidates among them. Then, we run the Smith-Waterman algorithm in this confined space. Furthermore, our heuristic alignment for an updated sequence shows that it can be further accelerated by using reusable dynamic programming (rDP), our prior work. In this study, we successfully validate "relative node tolerance bound" (RNTB) in the pruned searching space. Furthermore, we improve the computational performance by quantifying the successful RNTB tolerance probability and switch to rDP on perturbation-resilient columns only. In our searching space derived by a threshold value of 90 percent of the optimal alignment score, we find that 98.3 percent of contours contain correctly updated paths. We also find that our method consumes only 25.36 percent of the runtime cost of sparse dynamic programming (sDP) method, and to only 2.55 percent of that of a normal dynamic programming with the Smith-Waterman algorithm.

  15. Blurred Vision?: Public and Private Higher Education in Indonesia

    ERIC Educational Resources Information Center

    Welch, A. R.

    2007-01-01

    If, as some have argued, private higher education is now the most dynamic segment of higher education, it is also the case that its growth, partly in response to the increasing mismatch between spiralling demand and limited state capacity, is often ad hoc. The article examines the contours of this trend in Indonesia, where the balance of public…

  16. It's about Time! Repetition, Fantasy, and the Contours of Learning from Feminist Pedagogy Classroom Breakdown

    ERIC Educational Resources Information Center

    Newbery, Liz

    2009-01-01

    This paper explores feminist pedagogy classroom conflict through looking at how time, in a psychoanalytic sense, can rupture straightforward interpretations of manifest classroom dynamics. I use the concept of transference to consider how classroom conflict is complicated by the reliving and replaying of past conflicts in the pedagogical arena, a…

  17. The Music One-to-One Project: Developing Approaches to Music with Parents and Under-Two-Year-Olds

    ERIC Educational Resources Information Center

    Young, Susan; Street, Alison; Davies, Eleanor

    2007-01-01

    Detailed analyses of adult-infant interaction among some European and North American populations have revealed that it resides on characteristics such as synchronous timing, phrasing, pitch contours and variations of dynamic intensity that are essentially musical in nature. Moreover, this musicality of infancy is the medium which enables and…

  18. From Designing to Organizing New Social Futures: Multiliteracies Pedagogies for Today

    ERIC Educational Resources Information Center

    Penuel, William R.; O'Connor, Kevin

    2018-01-01

    More than 20 years ago, literacy pedagogies informed by the emerging networked world defined by local diversity and global connectedness, new digital media and fast capitalism. Modern people now fully inhabit the world they described, but the contours of that world's racial dynamics and growing inequality call for a refinement of pedagogies that…

  19. Civil Rights and Social Change: The Contributions of Interest Groups, Social Movements, and the Courts.

    ERIC Educational Resources Information Center

    O'Connor, Karen

    1990-01-01

    Discusses a faculty seminar on the role of interest groups in the judicial process, focusing on U.S. Supreme Court decisions. Explores the dynamics of social change and defines interest groups. Examines the role of interest groups in civil rights litigation and delineates the contours of the current constitutional changes. Includes seminar…

  20. Optimization of contoured hypersonic scramjet inlets with a least-squares parabolized Navier-Stokes procedure

    NASA Technical Reports Server (NTRS)

    Korte, J. J.; Auslender, A. H.

    1993-01-01

    A new optimization procedure, in which a parabolized Navier-Stokes solver is coupled with a non-linear least-squares optimization algorithm, is applied to the design of a Mach 14, laminar two-dimensional hypersonic subscale flight inlet with an internal contraction ratio of 15:1 and a length-to-throat half-height ratio of 150:1. An automated numerical search of multiple geometric wall contours, which are defined by polynomical splines, results in an optimal geometry that yields the maximum total-pressure recovery for the compression process. Optimal inlet geometry is obtained for both inviscid and viscous flows, with the assumption that the gas is either calorically or thermally perfect. The analysis with a calorically perfect gas results in an optimized inviscid inlet design that is defined by two cubic splines and yields a mass-weighted total-pressure recovery of 0.787, which is a 23% improvement compared with the optimized shock-canceled two-ramp inlet design. Similarly, the design procedure obtains the optimized contour for a viscous calorically perfect gas to yield a mass-weighted total-pressure recovery value of 0.749. Additionally, an optimized contour for a viscous thermally perfect gas is obtained to yield a mass-weighted total-pressure recovery value of 0.768. The design methodology incorporates both complex fluid dynamic physics and optimal search techniques without an excessive compromise of computational speed; hence, this methodology is a practical technique that is applicable to optimal inlet design procedures.

  1. What is in a contour map? A region-based logical formalization of contour semantics

    USGS Publications Warehouse

    Usery, E. Lynn; Hahmann, Torsten

    2015-01-01

    This paper analyses and formalizes contour semantics in a first-order logic ontology that forms the basis for enabling computational common sense reasoning about contour information. The elicited contour semantics comprises four key concepts – contour regions, contour lines, contour values, and contour sets – and their subclasses and associated relations, which are grounded in an existing qualitative spatial ontology. All concepts and relations are illustrated and motivated by physical-geographic features identifiable on topographic contour maps. The encoding of the semantics of contour concepts in first-order logic and a derived conceptual model as basis for an OWL ontology lay the foundation for fully automated, semantically-aware qualitative and quantitative reasoning about contours.

  2. Contouring variability of human- and deformable-generated contours in radiotherapy for prostate cancer

    NASA Astrophysics Data System (ADS)

    Gardner, Stephen J.; Wen, Ning; Kim, Jinkoo; Liu, Chang; Pradhan, Deepak; Aref, Ibrahim; Cattaneo, Richard, II; Vance, Sean; Movsas, Benjamin; Chetty, Indrin J.; Elshaikh, Mohamed A.

    2015-06-01

    This study was designed to evaluate contouring variability of human-and deformable-generated contours on planning CT (PCT) and CBCT for ten patients with low-or intermediate-risk prostate cancer. For each patient in this study, five radiation oncologists contoured the prostate, bladder, and rectum, on one PCT dataset and five CBCT datasets. Consensus contours were generated using the STAPLE method in the CERR software package. Observer contours were compared to consensus contour, and contour metrics (Dice coefficient, Hausdorff distance, Contour Distance, Center-of-Mass [COM] Deviation) were calculated. In addition, the first day CBCT was registered to subsequent CBCT fractions (CBCTn: CBCT2-CBCT5) via B-spline Deformable Image Registration (DIR). Contours were transferred from CBCT1 to CBCTn via the deformation field, and contour metrics were calculated through comparison with consensus contours generated from human contour set. The average contour metrics for prostate contours on PCT and CBCT were as follows: Dice coefficient—0.892 (PCT), 0.872 (CBCT-Human), 0.824 (CBCT-Deformed); Hausdorff distance—4.75 mm (PCT), 5.22 mm (CBCT-Human), 5.94 mm (CBCT-Deformed); Contour Distance (overall contour)—1.41 mm (PCT), 1.66 mm (CBCT-Human), 2.30 mm (CBCT-Deformed); COM Deviation—2.01 mm (PCT), 2.78 mm (CBCT-Human), 3.45 mm (CBCT-Deformed). For human contours on PCT and CBCT, the difference in average Dice coefficient between PCT and CBCT (approx. 2%) and Hausdorff distance (approx. 0.5 mm) was small compared to the variation between observers for each patient (standard deviation in Dice coefficient of 5% and Hausdorff distance of 2.0 mm). However, additional contouring variation was found for the deformable-generated contours (approximately 5.0% decrease in Dice coefficient and 0.7 mm increase in Hausdorff distance relative to human-generated contours on CBCT). Though deformable contours provide a reasonable starting point for contouring on CBCT, we conclude that contours generated with B-Spline DIR require physician review and editing if they are to be used in the clinic.

  3. Molecular insights of protein contour recognition with ligand pharmacophoric sites through combinatorial library design and MD simulation in validating HTLV-1 PR inhibitors.

    PubMed

    Selvaraj, Chandrabose; Omer, Ankur; Singh, Poonam; Singh, Sanjeev Kumar

    2015-01-01

    Retroviruses HIV-1 and HTLV-1 are chiefly considered to be the most dangerous pathogens in Homo sapiens. These two viruses have structurally unique protease (PR) enzymes, which are having common function of its replication mechanism. Though HIV PR drugs failed to inhibit HTLV-1 infections, they emphatically emphasise the need for designing new lead compounds against HTLV-1 PR. Therefore, we tried to understand the binding level interactions through the charge environment present in both ligand and protein active sites. The domino effect illustrates that libraries of purvalanol-A are attuned to fill allosteric binding site of HTLV-1 PR through molecular recognition and shows proper binding of ligand pharmacophoric features in receptor contours. Our screening evaluates seven compounds from purvalanol-A libraries, and these compounds' pharmacophore searches for an appropriate place in the binding site and it places well according to respective receptor contour surfaces. Thus our result provides a platform for the progress of more effective compounds, which are better in free energy calculation, molecular docking, ADME and molecular dynamics studies. Finally, this research provided novel chemical scaffolds for HTLV-1 drug discovery.

  4. Eyelid contour detection and tracking for startle research related eye-blink measurements from high-speed video records.

    PubMed

    Bernard, Florian; Deuter, Christian Eric; Gemmar, Peter; Schachinger, Hartmut

    2013-10-01

    Using the positions of the eyelids is an effective and contact-free way for the measurement of startle induced eye-blinks, which plays an important role in human psychophysiological research. To the best of our knowledge, no methods for an efficient detection and tracking of the exact eyelid contours in image sequences captured at high-speed exist that are conveniently usable by psychophysiological researchers. In this publication a semi-automatic model-based eyelid contour detection and tracking algorithm for the analysis of high-speed video recordings from an eye tracker is presented. As a large number of images have been acquired prior to method development it was important that our technique is able to deal with images that are recorded without any special parametrisation of the eye tracker. The method entails pupil detection, specular reflection removal and makes use of dynamic model adaption. In a proof-of-concept study we could achieve a correct detection rate of 90.6%. With this approach, we provide a feasible method to accurately assess eye-blinks from high-speed video recordings. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  5. Modeling and statistical analysis of non-Gaussian random fields with heavy-tailed distributions.

    PubMed

    Nezhadhaghighi, Mohsen Ghasemi; Nakhlband, Abbas

    2017-04-01

    In this paper, we investigate and develop an alternative approach to the numerical analysis and characterization of random fluctuations with the heavy-tailed probability distribution function (PDF), such as turbulent heat flow and solar flare fluctuations. We identify the heavy-tailed random fluctuations based on the scaling properties of the tail exponent of the PDF, power-law growth of qth order correlation function, and the self-similar properties of the contour lines in two-dimensional random fields. Moreover, this work leads to a substitution for the fractional Edwards-Wilkinson (EW) equation that works in the presence of μ-stable Lévy noise. Our proposed model explains the configuration dynamics of the systems with heavy-tailed correlated random fluctuations. We also present an alternative solution to the fractional EW equation in the presence of μ-stable Lévy noise in the steady state, which is implemented numerically, using the μ-stable fractional Lévy motion. Based on the analysis of the self-similar properties of contour loops, we numerically show that the scaling properties of contour loop ensembles can qualitatively and quantitatively distinguish non-Gaussian random fields from Gaussian random fluctuations.

  6. Fast Virtual Stenting with Active Contour Models in Intracranical Aneurysm

    PubMed Central

    Zhong, Jingru; Long, Yunling; Yan, Huagang; Meng, Qianqian; Zhao, Jing; Zhang, Ying; Yang, Xinjian; Li, Haiyun

    2016-01-01

    Intracranial stents are becoming increasingly a useful option in the treatment of intracranial aneurysms (IAs). Image simulation of the releasing stent configuration together with computational fluid dynamics (CFD) simulation prior to intervention will help surgeons optimize intervention scheme. This paper proposed a fast virtual stenting of IAs based on active contour model (ACM) which was able to virtually release stents within any patient-specific shaped vessel and aneurysm models built on real medical image data. In this method, an initial stent mesh was generated along the centerline of the parent artery without the need for registration between the stent contour and the vessel. Additionally, the diameter of the initial stent volumetric mesh was set to the maximum inscribed sphere diameter of the parent artery to improve the stenting accuracy and save computational cost. At last, a novel criterion for terminating virtual stent expanding that was based on the collision detection of the axis aligned bounding boxes was applied, making the stent expansion free of edge effect. The experiment results of the virtual stenting and the corresponding CFD simulations exhibited the efficacy and accuracy of the ACM based method, which are valuable to intervention scheme selection and therapy plan confirmation. PMID:26876026

  7. Motion Estimation and Compensation Strategies in Dynamic Computerized Tomography

    NASA Astrophysics Data System (ADS)

    Hahn, Bernadette N.

    2017-12-01

    A main challenge in computerized tomography consists in imaging moving objects. Temporal changes during the measuring process lead to inconsistent data sets, and applying standard reconstruction techniques causes motion artefacts which can severely impose a reliable diagnostics. Therefore, novel reconstruction techniques are required which compensate for the dynamic behavior. This article builds on recent results from a microlocal analysis of the dynamic setting, which enable us to formulate efficient analytic motion compensation algorithms for contour extraction. Since these methods require information about the dynamic behavior, we further introduce a motion estimation approach which determines parameters of affine and certain non-affine deformations directly from measured motion-corrupted Radon-data. Our methods are illustrated with numerical examples for both types of motion.

  8. The Effect of Local Orientation Change on the Detection of Contours Defined by Constant Curvature: Psychophysics and Image Statistics.

    PubMed

    Khuu, Sieu K; Cham, Joey; Hayes, Anthony

    2016-01-01

    In the present study, we investigated the detection of contours defined by constant curvature and the statistics of curved contours in natural scenes. In Experiment 1, we examined the degree to which human sensitivity to contours is affected by changing the curvature angle and disrupting contour curvature continuity by varying the orientation of end elements. We find that (1) changing the angle of contour curvature decreased detection performance, while (2) end elements oriented in the direction (i.e., clockwise) of curvature facilitated contour detection regardless of the curvature angle of the contour. In Experiment 2 we further established that the relative effect of end-element orientation on contour detection was not only dependent on their orientation (collinear or cocircular), but also their spatial separation from the contour, and whether the contour shape was curved or not (i.e., C-shaped or S-shaped). Increasing the spatial separation of end-elements reduced contour detection performance regardless of their orientation or the contour shape. However, at small separations, cocircular end-elements facilitated the detection of C-shaped contours, but not S-shaped contours. The opposite result was observed for collinear end-elements, which improved the detection of S- shaped, but not C-shaped contours. These dissociative results confirmed that the visual system specifically codes contour curvature, but the association of contour elements occurs locally. Finally, we undertook an analysis of natural images that mapped contours with a constant angular change and determined the frequency of occurrence of end elements with different orientations. Analogous to our behavioral data, this image analysis revealed that the mapped end elements of constantly curved contours are likely to be oriented clockwise to the angle of curvature. Our findings indicate that the visual system is selectively sensitive to contours defined by constant curvature and that this might reflect the properties of curved contours in natural images.

  9. Dissociable neural correlates of contour completion and contour representation in illusory contour perception.

    PubMed

    Wu, Xiang; He, Sheng; Bushara, Khalaf; Zeng, Feiyan; Liu, Ying; Zhang, Daren

    2012-10-01

    Object recognition occurs even when environmental information is incomplete. Illusory contours (ICs), in which a contour is perceived though the contour edges are incomplete, have been extensively studied as an example of such a visual completion phenomenon. Despite the neural activity in response to ICs in visual cortical areas from low (V1 and V2) to high (LOC: the lateral occipital cortex) levels, the details of the neural processing underlying IC perception are largely not clarified. For example, how do the visual areas function in IC perception and how do they interact to archive the coherent contour perception? IC perception involves the process of completing the local discrete contour edges (contour completion) and the process of representing the global completed contour information (contour representation). Here, functional magnetic resonance imaging was used to dissociate contour completion and contour representation by varying each in opposite directions. The results show that the neural activity was stronger to stimuli with more contour completion than to stimuli with more contour representation in V1 and V2, which was the reverse of that in the LOC. When inspecting the neural activity change across the visual pathway, the activation remained high for the stimuli with more contour completion and increased for the stimuli with more contour representation. These results suggest distinct neural correlates of contour completion and contour representation, and the possible collaboration between the two processes during IC perception, indicating a neural connection between the discrete retinal input and the coherent visual percept. Copyright © 2011 Wiley Periodicals, Inc.

  10. Entropy reduction via simplified image contourization

    NASA Technical Reports Server (NTRS)

    Turner, Martin J.

    1993-01-01

    The process of contourization is presented which converts a raster image into a set of plateaux or contours. These contours can be grouped into a hierarchical structure, defining total spatial inclusion, called a contour tree. A contour coder has been developed which fully describes these contours in a compact and efficient manner and is the basis for an image compression method. Simplification of the contour tree has been undertaken by merging contour tree nodes thus lowering the contour tree's entropy. This can be exploited by the contour coder to increase the image compression ratio. By applying general and simple rules derived from physiological experiments on the human vision system, lossy image compression can be achieved which minimizes noticeable artifacts in the simplified image.

  11. I-Love-Q relations for neutron stars in dynamical Chern Simons gravity

    NASA Astrophysics Data System (ADS)

    Gupta, Toral; Majumder, Barun; Yagi, Kent; Yunes, Nicolás

    2018-01-01

    Neutron stars are ideal to probe, not only nuclear physics, but also strong-field gravity. Approximate universal relations insensitive to the star’s internal structure exist among certain observables and are useful in testing general relativity, as they project out the uncertainties in the equation of state. One such set of universal relations between the moment of inertia (I), the tidal Love number and the quadrupole moment (Q) has been studied both in general relativity and in modified theories. In this paper, we study the relations in dynamical Chern–Simons gravity, a well-motivated, parity-violating effective field theory, extending previous work in various ways. First, we study how projected constraints on the theory using the I-Love relation depend on the measurement accuracy of I with radio observations and that of the Love number with gravitational-wave observations. Provided these quantities can be measured with future observations, we find that the latter could place bounds on dynamical Chern–Simons gravity that are six orders of magnitude stronger than current bounds. Second, we study the I–Q and Q-Love relations in this theory by constructing slowly-rotating neutron star solutions to quadratic order in spin. We find that the approximate universality continues to hold in dynamical Chern–Simons gravity, and in fact, it becomes stronger than in general relativity, although its existence depends on the normalization of the dimensional coupling constant of the theory. Finally, we study the variation of the eccentricity of isodensity contours inside a star and its relation to the degree of universality. We find that, in most cases, the eccentricity variation is smaller in dynamical Chern–Simons gravity than in general relativity, providing further support to the idea that the approximate self-similarity of isodensity contours is responsible for universality.

  12. Sterilization, high-level disinfection, and environmental cleaning.

    PubMed

    Rutala, William A; Weber, David J

    2011-03-01

    Failure to perform proper disinfection and sterilization of medical devices may lead to introduction of pathogens, resulting in infection. New techniques have been developed for achieving high-level disinfection and adequate environmental cleanliness. This article examines new technologies for sterilization and high-level disinfection of critical and semicritical items, respectively, and because semicritical items carry the greatest risk of infection, the authors discuss reprocessing semicritical items such as endoscopes and automated endoscope reprocessors, endocavitary probes, prostate biopsy probes, tonometers, laryngoscopes, and infrared coagulation devices. In addition, current issues and practices associated with environmental cleaning are reviewed. Copyright © 2011. Published by Elsevier Inc.

  13. Social Media as Space for Peace Education: Conceptual Contours and Evidence from the Muslim World

    ERIC Educational Resources Information Center

    Naseem, M. Ayaz; Arshad-Ayaz, Adeela; Doyle, Sophie

    2017-01-01

    In this research, we present a conceptual framework to examine the potential of social media as an educational space for peace education. In particular, we examine the characteristics and dynamics of social media that set it apart from other traditional media and educational spaces. Specifically, we conceptualize features of social media such as:…

  14. Clinical evaluation of atlas and deep learning based automatic contouring for lung cancer.

    PubMed

    Lustberg, Tim; van Soest, Johan; Gooding, Mark; Peressutti, Devis; Aljabar, Paul; van der Stoep, Judith; van Elmpt, Wouter; Dekker, Andre

    2018-02-01

    Contouring of organs at risk (OARs) is an important but time consuming part of radiotherapy treatment planning. The aim of this study was to investigate whether using institutional created software-generated contouring will save time if used as a starting point for manual OAR contouring for lung cancer patients. Twenty CT scans of stage I-III NSCLC patients were used to compare user adjusted contours after an atlas-based and deep learning contour, against manual delineation. The lungs, esophagus, spinal cord, heart and mediastinum were contoured for this study. The time to perform the manual tasks was recorded. With a median time of 20 min for manual contouring, the total median time saved was 7.8 min when using atlas-based contouring and 10 min for deep learning contouring. Both atlas based and deep learning adjustment times were significantly lower than manual contouring time for all OARs except for the left lung and esophagus of the atlas based contouring. User adjustment of software generated contours is a viable strategy to reduce contouring time of OARs for lung radiotherapy while conforming to local clinical standards. In addition, deep learning contouring shows promising results compared to existing solutions. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Application of 3D Laser Scanning Technology in Inspection and Dynamic Reserves Detection of Open-Pit Mine

    NASA Astrophysics Data System (ADS)

    Hu, Zhumin; Wei, Shiyu; Jiang, Jun

    2017-10-01

    The traditional open-pit mine mining rights verification and dynamic reserve detection means rely on the total station and RTK to collect the results of the turning point coordinates of mining surface contours. It resulted in obtaining the results of low precision and large error in the means that is limited by the traditional measurement equipment accuracy and measurement methods. The three-dimensional scanning technology can obtain the three-dimensional coordinate data of the surface of the measured object in a large area at high resolution. This paper expounds the commonly used application of 3D scanning technology in the inspection and dynamic reserve detection of open mine mining rights.

  16. Mass and tracer transport within oceanic Lagrangian coherent vortices as diagnosed in a global mesoscale eddying climate model

    NASA Astrophysics Data System (ADS)

    Tarshish, Nathaniel; Abernathey, Ryan; Dufour, Carolina; Frenger, Ivy; Griffies, Stephen

    2017-04-01

    Transient ocean mesoscale fluctuations play a central role in the global climate system, transporting climate relevant tracers such as heat and carbon. In satellite observations and numerical simulations, mesoscale vortices feature prominently as collectively rotating regions that remain visibly coherent. Prior studies on transport from ocean vortices typically rely on Eulerian identification methods, in which vortices are identified by selecting closed contours of Eulerian fields (e.g. sea surface height, or the Okubo-Weiss parameter) that satisfy geometric criteria and anomaly thresholds. In contrast, recent studies employ Lagrangian analysis of virtual particle trajectories initialized within the selected Eulerian contours, revealing significant discrepancies between the advection of the contour's material interior and the evolution of the Eulerian field contour. This work investigates the global mass and tracer transport associated with materially coherent surface ocean vortices. Further, it addresses differences between Eulerian and Lagrangian analyses for the detection of vortices. To do so, we use GFDL's CM2.6 coupled climate model with 5-10km horizontal grid spacing. We identify coherent vortices in CM2.6 by implementing the Rotationally Coherent Lagrangian Vortex (RCLV) framework, which recently emerged from dynamical systems theory. This approach involves the numerical advection of millions of Lagrangian particles and guarantees material coherence by construction. We compute the statistics, spatial distribution, and lifetimes of coherent vortices in addition to calculating the associated mass and tracer transports. We offer compelling evidence that Eulerian vortex methods are poorly suited to answer questions of mass and tracer transport.

  17. Sedimentary dynamics and high-frequency sequence stratigraphy of the southwestern slope of Great Bahama Bank

    NASA Astrophysics Data System (ADS)

    Wunsch, Marco; Betzler, Christian; Eberli, Gregor P.; Lindhorst, Sebastian; Lüdmann, Thomas; Reijmer, John J. G.

    2018-01-01

    New geophysical data from the leeward slope of Great Bahama Bank show how contour currents shape the slope and induce re-sedimentation processes. Along slope segments with high current control, drift migration and current winnowing at the toe of slope form a deep moat. Here, the slope progradation is inhibited by large channel incisions and the accumulation of large mass transport complexes, triggered by current winnowing. In areas where the slope is bathed by weaker currents, the accumulation of mass transport complexes and channel incision is rather controlled by the position of the sea level. Large slope failures were triggered during the Mid-Pleistocene transition and Mid-Brunhes event, both periods characterized by changes in the cyclicity or the amplitude of sea-level fluctuations. Within the seismic stratigraphic framework of third order sequences, four sequences of higher order were identified in the succession of the upper Pleistocene. These higher order sequences also show clear differences in function of the slope exposure to contour currents. Two stochastic models emphasize the role of the contour currents and slope morphology in the facies distribution in the upper Pleistocene sequences. In areas of high current influence the interplay of erosional and depositional processes form a complex facies pattern with downslope and along strike facies alterations. In zones with lower current influence, major facies alternations occur predominately in downslope direction, and a layer-cake pattern characterizes the along strike direction. Therefore, this study highlights that contour currents are an underestimated driver for the sediment distribution and architecture of carbonate slopes.

  18. An evaluation of the contouring abilities of medical dosimetry students for the anatomy of a prostate cancer patient

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, Kevin S., E-mail: kscollin@siu.edu

    2012-10-01

    Prostate cancer is one of the most common diseases treated in a radiation oncology department. One of the major predictors of the treatment outcome and patient side effects is the accuracy of the anatomical contours for the treatment plan. Therefore, the purpose of this study was to determine which anatomical structures are most often contoured correctly and incorrectly by medical dosimetry students. The author also wanted to discover whether a review of the contouring rules would increase contouring accuracy. To achieve this, a male computed tomography dataset consisting of 72 transverse slices was sent to students for contouring. The studentsmore » were instructed to import this dataset into their treatment planning system and contour the following structures: skin, bladder, rectum, prostate, penile bulb, seminal vesicles, left femoral head, and right femoral head. Upon completion of the contours, the contour file was evaluated against a 'gold standard' contour set using StructSure software (Standard Imaging, Inc). A review of the initial contour results was conducted and then students were instructed to contour the dataset a second time. The results of this study showed significant differences between contouring sessions. These results and the standardization of contouring rules should benefit all individuals who participate in the treatment planning of cancer patients.« less

  19. Anatomical contouring variability in thoracic organs at risk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCall, Ross, E-mail: rmccall86@gmail.com; MacLennan, Grayden; Taylor, Matthew

    2016-01-01

    The purpose of this study was to determine whether contouring thoracic organs at risk was consistent among medical dosimetrists and to identify how trends in dosimetrist's education and experience affected contouring accuracy. Qualitative and quantitative methods were used to contextualize the raw data that were obtained. A total of 3 different computed tomography (CT) data sets were provided to medical dosimetrists (N = 13) across 5 different institutions. The medical dosimetrists were directed to contour the lungs, heart, spinal cord, and esophagus. The medical dosimetrists were instructed to contour in line with their institutional standards and were allowed to usemore » any contouring tool or technique that they would traditionally use. The contours from each medical dosimetrist were evaluated against “gold standard” contours drawn and validated by 2 radiation oncology physicians. The dosimetrist-derived contours were evaluated against the gold standard using both a Dice coefficient method and a penalty-based metric scoring system. A short survey was also completed by each medical dosimetrist to evaluate their individual contouring experience. There was no significant variation in the contouring consistency of the lungs and spinal cord. Intradosimetrist contouring was consistent for those who contoured the esophagus and heart correctly; however, medical dosimetrists with a poor metric score showed erratic and inconsistent methods of contouring.« less

  20. Ophthalmologists' practice patterns and challenges in achieving optimal management for glaucoma in Nigeria: results from a nationwide survey.

    PubMed

    Kyari, Fatima; Nolan, Winifred; Gilbert, Clare

    2016-10-11

    Glaucoma, a chronic non-communicable disease, and leading cause of irreversible blindness worldwide is a public health problem in Nigeria, with a prevalence of 5.02% in people aged ≥40 years. The purpose of this nationwide survey was to assess Nigerian ophthalmologists' practice patterns and their constraints in managing glaucoma. Ophthalmologists were sent a semistructured questionnaire on how they manage glaucoma, their training in glaucoma care, where they practice, their access to equipment for diagnosis and treatment, whether they use protocols and the challenges they face in managing patients with glaucoma. 153/250 ophthalmologists in 80 centres completed questionnaires. Although 79% felt their training was excellent or good, 46% needed more training in glaucoma diagnosis and surgery. All had ophthalmoscopes, 93% had access to applanation tonometers, 81% to visual field analysers and 29% to laser machines (in 19 centres). 3 ophthalmologists had only ophthalmoscopes and schiøtz tonometers. For 85%, a glaucomatous optic disc was the most important feature that would prompt glaucoma work-up. Only 56% routinely performed gonioscopy and 61% used slit-lamp stereoscopic biomicroscopy for disc assessment. Trabeculectomy (with/without antimetabolites) was the only glaucoma surgery performed with one mention of canaloplasty. Poor compliance with medical treatment (78%) and low acceptance of surgery (71%) were their greatest challenges. This study indicates that a systems-oriented approach is required to enhance ophthalmologist's capability for glaucoma care. Strategies to improve glaucoma management include strengthening poorly equipped centres including provision of lasers and training, and improving patients' awareness and education on glaucoma. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  1. Applanation tonometry: interobserver and prism agreement using the reusable Goldmann applanation prism and the Tonosafe disposable prism.

    PubMed

    Ajtony, Csilla; Elkarmouty, Ahmed; Barton, Keith; Kotecha, Aachal

    2016-06-01

    To evaluate the levels of agreement between the standard reusable prism and a disposable prism, and to examine the agreement between ophthalmologists, nursing and technical staff when measuring intraocular pressure (IOP) using the Goldmann applanation tonometer. Three hundred eyes of 300 patients were recruited. IOP measurements were made in a randomised order by three observer groups consisting of ophthalmologists and ophthalmic technicians/nurses taken from a pool of clinicians working within a busy outpatient clinic. Agreement was calculated by Bland-Altman analysis, showing the mean difference and 95% limits of agreement (LoA) of measurements. The mean difference between the reusable and disposable prism IOP measurements was <0.5 mm Hg. The LoA ranged from ±3.1 to ±4.9 mm Hg, depending on the observer group. The interobserver variability was <1 mm Hg across all observer groups; the LoA was slightly higher for observers using the reusable prism (range between ±4.3 and ±5.6 mm Hg) compared with using the disposable prism (range between ±3.7 and ±5.4 mm Hg) across observer groups. There is an acceptable agreement between IOP measurements made with the reusable Goldmann tonometer prism and the disposable Tonosafe prism. Interobserver variability in IOP measurements within an outpatient setting is larger than that found within a research setting, and may be of a level that impacts on clinical decision-making. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  2. Goldmann tonometry tear film error and partial correction with a shaped applanation surface.

    PubMed

    McCafferty, Sean J; Enikov, Eniko T; Schwiegerling, Jim; Ashley, Sean M

    2018-01-01

    The aim of the study was to quantify the isolated tear film adhesion error in a Goldmann applanation tonometer (GAT) prism and in a correcting applanation tonometry surface (CATS) prism. The separation force of a tonometer prism adhered by a tear film to a simulated cornea was measured to quantify an isolated tear film adhesion force. Acrylic hemispheres (7.8 mm radius) used as corneas were lathed over the apical 3.06 mm diameter to simulate full applanation contact with the prism surface for both GAT and CATS prisms. Tear film separation measurements were completed with both an artificial tear and fluorescein solutions as a fluid bridge. The applanation mire thicknesses were measured and correlated with the tear film separation measurements. Human cadaver eyes were used to validate simulated cornea tear film separation measurement differences between the GAT and CATS prisms. The CATS prism tear film adhesion error (2.74±0.21 mmHg) was significantly less than the GAT prism (4.57±0.18 mmHg, p <0.001). Tear film adhesion error was independent of applanation mire thickness ( R 2 =0.09, p =0.04). Fluorescein produces more tear film error than artificial tears (+0.51±0.04 mmHg; p <0.001). Cadaver eye validation indicated the CATS prism's tear film adhesion error (1.40±0.51 mmHg) was significantly less than that of the GAT prism (3.30±0.38 mmHg; p =0.002). Measured GAT tear film adhesion error is more than previously predicted. A CATS prism significantly reduced tear film adhesion error bŷ41%. Fluorescein solution increases the tear film adhesion compared to artificial tears, while mire thickness has a negligible effect.

  3. Effect of pegaptanib sodium 0.3 mg intravitreal injections (Macugen) in intraocular pressure: posthoc analysis from V.I.S.I.O.N. study.

    PubMed

    Boyer, David S; Goldbaum, Mauro; Leys, Anita M; Starita, Carla

    2014-11-01

    To assess the rate of pegaptanib-associated sustained intraocular pressure (IOP) elevation. A posthoc analysis was conducted on all IOP measurements, except the immediate 30-min postinjection, from all subjects randomised to pegaptanib 0.3 mg or sham injections continuously in the first 2 years of the Vascular endothelial growth factor Inhibition Study in Ocular Neovascularisation (V.I.S.I.O.N.) study. Measurements were taken with Goldmann applanation tonometer or Tonopen, except at baseline and in cases of an IOP reading >30 mm Hg when a Goldmann applanation tonometer was mandatory. Of 221 subjects, IOP measurements ≥22 mm Hg were seen in 28/114 and 23/107 subjects of the pegaptanib and sham subgroups, respectively (p=0.6338) and measurements ≥24 mm Hg were observed in eight and eight subjects in the pegaptanib and sham groups, respectively. More than two measurements ≥22 mm Hg occurred in six and 10 subjects (p=0.3025), and more than two measurements ≥24 mm Hg were observed in one and four subjects in the pegaptanib and sham groups, respectively. One patient with sustained IOP elevation in the pegaptanib study group, and four in the sham group, had IOP lowering medication added during the course of the study. No subject required glaucoma surgery. In V.I.S.I.O.N., after 2 years, there was no evidence of sustained IOP elevation associated with pegaptanib 0.3 mg use. NCT00321997. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  4. Ophthalmologists' practice patterns and challenges in achieving optimal management for glaucoma in Nigeria: results from a nationwide survey

    PubMed Central

    Kyari, Fatima; Nolan, Winifred; Gilbert, Clare

    2016-01-01

    Purpose of the study Glaucoma, a chronic non-communicable disease, and leading cause of irreversible blindness worldwide is a public health problem in Nigeria, with a prevalence of 5.02% in people aged ≥40 years. The purpose of this nationwide survey was to assess Nigerian ophthalmologists’ practice patterns and their constraints in managing glaucoma. Study design Ophthalmologists were sent a semistructured questionnaire on how they manage glaucoma, their training in glaucoma care, where they practice, their access to equipment for diagnosis and treatment, whether they use protocols and the challenges they face in managing patients with glaucoma. Results 153/250 ophthalmologists in 80 centres completed questionnaires. Although 79% felt their training was excellent or good, 46% needed more training in glaucoma diagnosis and surgery. All had ophthalmoscopes, 93% had access to applanation tonometers, 81% to visual field analysers and 29% to laser machines (in 19 centres). 3 ophthalmologists had only ophthalmoscopes and schiøtz tonometers. For 85%, a glaucomatous optic disc was the most important feature that would prompt glaucoma work-up. Only 56% routinely performed gonioscopy and 61% used slit-lamp stereoscopic biomicroscopy for disc assessment. Trabeculectomy (with/without antimetabolites) was the only glaucoma surgery performed with one mention of canaloplasty. Poor compliance with medical treatment (78%) and low acceptance of surgery (71%) were their greatest challenges. Conclusions This study indicates that a systems-oriented approach is required to enhance ophthalmologist's capability for glaucoma care. Strategies to improve glaucoma management include strengthening poorly equipped centres including provision of lasers and training, and improving patients’ awareness and education on glaucoma. PMID:27729348

  5. Supplemental Oxygen and Carbon Dioxide Each Increase Subcutaneous and Intestinal Intramural Oxygenation

    PubMed Central

    Ratnaraj, Jebadurai; Kabon, Barbara; Talcott, Michael R.; Sessler, Daniel I.

    2005-01-01

    Oxidative killing by neutrophils, a primary defense against surgical pathogens, is directly related to tissue oxygenation. We tested the hypothesis that supplemental inspired oxygen or mild hypercapnia (end-tidal PCO2 of 50 mmHg) improves intestinal oxygenation. Pigs (25±2.5 kg) were used in two studies in random order: 1) Oxygen Study — 30% vs. 100% inspired oxygen concentration at an end-tidal PCO2 of 40 mmHg, and 2) Carbon Dioxide Study — end-tidal PCO2 of 30 mmHg vs. 50 mmHg with 30% oxygen. Within each study, treatment order was randomized. Treatments were maintained for 1.5 hours; measurements were averaged over the final hour. A tonometer inserted in the subcutaneous tissue of the left upper foreleg measured subcutaneous oxygen tension. Tonometers inserted into the intestinal wall measured intestinal intramural oxygen tension from the small and large intestines. 100% oxygen administration doubled subcutaneous oxygen partial pressure (PO2) (57±10 to 107±48 mmHg, P=0.006) and large intestine intramural PO2 (53±14 to 118±72 mmHg, P=0.014); intramural PO2increased 40% in the small intestine (37±10 to 52±25 mmHg, P=0.004). An end-tidal PCO2 of 50 mmHg increased large intestinal PO2 approximately 16% (49±10 to 57±12 mmHg, P=0.039), while intramural PO2 increased by 45% in the small intestine (31±12 to 44±16 mmHg, P=0.002). Supplemental oxygen and mild hypercapnia each increased subcutaneous and intramural tissue PO2, with supplemental oxygen being most effective. PMID:15281531

  6. Perceptual representation and effectiveness of local figure–ground cues in natural contours

    PubMed Central

    Sakai, Ko; Matsuoka, Shouhei; Kurematsu, Ken; Hatori, Yasuhiro

    2015-01-01

    A contour shape strongly influences the perceptual segregation of a figure from the ground. We investigated the contribution of local contour shape to figure–ground segregation. Although previous studies have reported local contour features that evoke figure–ground perception, they were often image features and not necessarily perceptual features. First, we examined whether contour features, specifically, convexity, closure, and symmetry, underlie the perceptual representation of natural contour shapes. We performed similarity tests between local contours, and examined the contribution of the contour features to the perceptual similarities between the contours. The local contours were sampled from natural contours so that their distribution was uniform in the space composed of the three contour features. This sampling ensured the equal appearance frequency of the factors and a wide variety of contour shapes including those comprised of contradictory factors that induce figure in the opposite directions. This sampling from natural contours is advantageous in order to randomly pickup a variety of contours that satisfy a wide range of cue combinations. Multidimensional scaling analyses showed that the combinations of convexity, closure, and symmetry contribute to perceptual similarity, thus they are perceptual quantities. Second, we examined whether the three features contribute to local figure–ground perception. We performed psychophysical experiments to judge the direction of the figure along the local contours, and examined the contribution of the features to the figure–ground judgment. Multiple linear regression analyses showed that closure was a significant factor, but that convexity and symmetry were not. These results indicate that closure is dominant in the local figure–ground perception with natural contours when the other cues coexist with equal probability including contradictory cases. PMID:26579057

  7. Perceptual representation and effectiveness of local figure-ground cues in natural contours.

    PubMed

    Sakai, Ko; Matsuoka, Shouhei; Kurematsu, Ken; Hatori, Yasuhiro

    2015-01-01

    A contour shape strongly influences the perceptual segregation of a figure from the ground. We investigated the contribution of local contour shape to figure-ground segregation. Although previous studies have reported local contour features that evoke figure-ground perception, they were often image features and not necessarily perceptual features. First, we examined whether contour features, specifically, convexity, closure, and symmetry, underlie the perceptual representation of natural contour shapes. We performed similarity tests between local contours, and examined the contribution of the contour features to the perceptual similarities between the contours. The local contours were sampled from natural contours so that their distribution was uniform in the space composed of the three contour features. This sampling ensured the equal appearance frequency of the factors and a wide variety of contour shapes including those comprised of contradictory factors that induce figure in the opposite directions. This sampling from natural contours is advantageous in order to randomly pickup a variety of contours that satisfy a wide range of cue combinations. Multidimensional scaling analyses showed that the combinations of convexity, closure, and symmetry contribute to perceptual similarity, thus they are perceptual quantities. Second, we examined whether the three features contribute to local figure-ground perception. We performed psychophysical experiments to judge the direction of the figure along the local contours, and examined the contribution of the features to the figure-ground judgment. Multiple linear regression analyses showed that closure was a significant factor, but that convexity and symmetry were not. These results indicate that closure is dominant in the local figure-ground perception with natural contours when the other cues coexist with equal probability including contradictory cases.

  8. Automated consensus contour building for prostate MRI.

    PubMed

    Khalvati, Farzad

    2014-01-01

    Inter-observer variability is the lack of agreement among clinicians in contouring a given organ or tumour in a medical image. The variability in medical image contouring is a source of uncertainty in radiation treatment planning. Consensus contour of a given case, which was proposed to reduce the variability, is generated by combining the manually generated contours of several clinicians. However, having access to several clinicians (e.g., radiation oncologists) to generate a consensus contour for one patient is costly. This paper presents an algorithm that automatically generates a consensus contour for a given case using the atlases of different clinicians. The algorithm was applied to prostate MR images of 15 patients manually contoured by 5 clinicians. The automatic consensus contours were compared to manual consensus contours where a median Dice similarity coefficient (DSC) of 88% was achieved.

  9. SU-E-J-129: Atlas Development for Cardiac Automatic Contouring Using Multi-Atlas Segmentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, R; Yang, J; Pan, T

    Purpose: To develop a set of atlases for automatic contouring of cardiac structures to determine heart radiation dose and the associated toxicity. Methods: Six thoracic cancer patients with both contrast and non-contrast CT images were acquired for this study. Eight radiation oncologists manually and independently delineated cardiac contours on the non-contrast CT by referring to the fused contrast CT and following the RTOG 1106 atlas contouring guideline. Fifteen regions of interest (ROIs) were delineated, including heart, four chambers, four coronary arteries, pulmonary artery and vein, inferior and superior vena cava, and ascending and descending aorta. Individual expert contours were fusedmore » using the simultaneous truth and performance level estimation (STAPLE) algorithm for each ROI and each patient. The fused contours became atlases for an in-house multi-atlas segmentation. Using leave-one-out test, we generated auto-segmented contours for each ROI and each patient. The auto-segmented contours were compared with the fused contours using the Dice similarity coefficient (DSC) and the mean surface distance (MSD). Results: Inter-observer variability was not obvious for heart, chambers, and aorta but was large for other structures that were not clearly distinguishable on CT image. The average DSC between individual expert contours and the fused contours were less than 50% for coronary arteries and pulmonary vein, and the average MSD were greater than 4.0 mm. The largest MSD of expert contours deviating from the fused contours was 2.5 cm. The mean DSC and MSD of auto-segmented contours were within one standard deviation of expert contouring variability except the right coronary artery. The coronary arteries, vena cava, and pulmonary vein had DSC<70% and MSD>3.0 mm. Conclusion: A set of cardiac atlases was created for cardiac automatic contouring, the accuracy of which was comparable to the variability in expert contouring. However, substantial modification may need for auto-segmented contours of indistinguishable small structures.« less

  10. TH-EF-BRB-02: Feasibility of Optimization for Dynamic Trajectory Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fix, MK; Frei, D; Volken, W

    2016-06-15

    Purpose: Over the last years, volumetric modulated arc therapy (VMAT) has been widely introduced into clinical routine using a coplanar delivery technique. However, VMAT might be improved by including dynamic couch and collimator rotations, leading to dynamic trajectory radiotherapy (DTRT). In this work the feasibility and the potential benefit of DTRT was investigated. Methods: A general framework for the optimization was developed using the Eclipse Scripting Research Application Programming Interface (ESRAPI). Based on contoured target and organs at risk (OARs), the structures are extracted using the ESRAPI. Sampling potential beam directions, regularly distributed on a sphere using a Fibanocci-lattice, themore » fractional volume-overlap of each OAR and the target is determined and used to establish dynamic gantry-couch movements. Then, for each gantry-couch track the most suitable collimator angle is determined for each control point by optimizing the area between the MLC leaves and the target contour. The resulting dynamic trajectories are used as input to perform the optimization using a research version of the VMAT optimization algorithm and the ESRAPI. The feasibility of this procedure was tested for a clinically motivated head and neck case. Resulting dose distributions for the VMAT plan and for the dynamic trajectory treatment plan were compared based on DVH-parameters. Results: While the DVH for the target is virtually preserved, improvements in maximum dose for the DTRT plan were achieved for all OARs except for the inner-ear, where maximum dose remains the same. The major improvements in maximum dose were 6.5% of the prescribed dose (66 Gy) for the parotid and 5.5% for the myelon and the eye. Conclusion: The result of this work suggests that DTRT has a great potential to reduce dose to OARs with similar target coverage when compared to conventional VMAT treatment plans. This work was supported by Varian Medical Systems. This work was supported by Varian Medical Systems.« less

  11. Pressure Distribution and Performance Impacts of Aerospike Nozzles on Rotating Detonation Engines

    DTIC Science & Technology

    2017-06-01

    design methodology at both on- and off-design conditions anticipated throughout the combustion cycle. Steady-state, non -reacting computational fluid...operation. Therefore, the nozzle contour was designed using a traditional, steady-state design methodology at both on- and off-design conditions...anticipated throughout the combustion cycle. Steady-state, non -reacting computational fluid dynamics (CFD) simulations were performed on various nozzle

  12. Joint Data Management for MOVINT Data-to-Decision Making

    DTIC Science & Technology

    2011-07-01

    flux tensor , aligned motion history images, and related approaches have been shown to be versatile approaches [12, 16, 17, 18]. Scaling these...methods include voting , neural networks, fuzzy logic, neuro-dynamic programming, support vector machines, Bayesian and Dempster-Shafer methods. One way...Information Fusion, 2010. [16] F. Bunyak, K. Palaniappan, S. K. Nath, G. Seetharaman, “Flux tensor constrained geodesic active contours with sensor fusion

  13. [Development of a Software for Automatically Generated Contours in Eclipse TPS].

    PubMed

    Xie, Zhao; Hu, Jinyou; Zou, Lian; Zhang, Weisha; Zou, Yuxin; Luo, Kelin; Liu, Xiangxiang; Yu, Luxin

    2015-03-01

    The automatic generation of planning targets and auxiliary contours have achieved in Eclipse TPS 11.0. The scripting language autohotkey was used to develop a software for automatically generated contours in Eclipse TPS. This software is named Contour Auto Margin (CAM), which is composed of operational functions of contours, script generated visualization and script file operations. RESULTS Ten cases in different cancers have separately selected, in Eclipse TPS 11.0 scripts generated by the software could not only automatically generate contours but also do contour post-processing. For different cancers, there was no difference between automatically generated contours and manually created contours. The CAM is a user-friendly and powerful software, and can automatically generated contours fast in Eclipse TPS 11.0. With the help of CAM, it greatly save plan preparation time and improve working efficiency of radiation therapy physicists.

  14. Creation of digital contours that approach the characteristics of cartographic contours

    USGS Publications Warehouse

    Tyler, Dean J.; Greenlee, Susan K.

    2012-01-01

    The capability to easily create digital contours using commercial off-the-shelf (COTS) software has existed for decades. Out-of-the-box raw contours are suitable for many scientific applications without pre- or post-processing; however, cartographic applications typically require additional improvements. For example, raw contours generally require smoothing before placement on a map. Cartographic contours must also conform to certain spatial/logical rules; for example, contours may not cross waterbodies. The objective was to create contours that match as closely as possible the cartographic contours produced by manual methods on the 1:24,000-scale, 7.5-minute Topographic Map series. This report outlines the basic approach, describes a variety of problems that were encountered, and discusses solutions. Many of the challenges described herein were the result of imperfect input raster elevation data and the requirement to have the contours integrated with hydrographic features from the National Hydrography Dataset (NHD).

  15. Unfolding DNA condensates produced by DNA-like charged depletants: A force spectroscopy study

    NASA Astrophysics Data System (ADS)

    Lima, C. H. M.; Rocha, M. S.; Ramos, E. B.

    2017-02-01

    In this work, we have measured, by means of optical tweezers, forces acting on depletion-induced DNA condensates due to the presence of the DNA-like charged protein bovine serum albumin (BSA). The stretching and unfolding measurements performed on the semi-flexible DNA chain reveal (1) the softening of the uncondensed DNA contour length and (2) a mechanical behavior strikingly different from those previously observed: the force-extension curves of BSA-induced DNA condensates lack the "saw-tooth" pattern and applied external forces as high as ≈80 pN are unable to fully unfold the condensed DNA contour length. This last mechanical experimental finding is in agreement with force-induced "unpacking" detailed Langevin dynamics simulations recently performed by Cortini et al. on model rod-like shaped condensates. Furthermore, a simple thermodynamics analysis of the unfolding process has enabled us to estimate the free energy involved in the DNA condensation: the estimated depletion-induced interactions vary linearly with both the condensed DNA contour length and the BSA concentration, in agreement with the analytical and numerical analysis performed on model DNA condensates. We hope that future additional experiments can decide whether the rod-like morphology is the actual one we are dealing with (e.g. pulling experiments coupled with super-resolution fluorescence microscopy).

  16. Inner and outer coronary vessel wall segmentation from CCTA using an active contour model with machine learning-based 3D voxel context-aware image force

    NASA Astrophysics Data System (ADS)

    Sivalingam, Udhayaraj; Wels, Michael; Rempfler, Markus; Grosskopf, Stefan; Suehling, Michael; Menze, Bjoern H.

    2016-03-01

    In this paper, we present a fully automated approach to coronary vessel segmentation, which involves calcification or soft plaque delineation in addition to accurate lumen delineation, from 3D Cardiac Computed Tomography Angiography data. Adequately virtualizing the coronary lumen plays a crucial role for simulating blood ow by means of fluid dynamics while additionally identifying the outer vessel wall in the case of arteriosclerosis is a prerequisite for further plaque compartment analysis. Our method is a hybrid approach complementing Active Contour Model-based segmentation with an external image force that relies on a Random Forest Regression model generated off-line. The regression model provides a strong estimate of the distance to the true vessel surface for every surface candidate point taking into account 3D wavelet-encoded contextual image features, which are aligned with the current surface hypothesis. The associated external image force is integrated in the objective function of the active contour model, such that the overall segmentation approach benefits from the advantages associated with snakes and from the ones associated with machine learning-based regression alike. This yields an integrated approach achieving competitive results on a publicly available benchmark data collection (Rotterdam segmentation challenge).

  17. Pitch contour identification with combined place and temporal cues using cochlear implants

    PubMed Central

    Luo, Xin; Padilla, Monica; Landsberger, David M.

    2012-01-01

    This study investigated the integration of place- and temporal-pitch cues in pitch contour identification (PCI), in which cochlear implant (CI) users were asked to judge the overall pitch-change direction of stimuli. Falling and rising pitch contours were created either by continuously steering current between adjacent electrodes (place pitch), by continuously changing amplitude modulation (AM) frequency (temporal pitch), or both. The percentage of rising responses was recorded as a function of current steering or AM frequency change, with single or combined pitch cues. A significant correlation was found between subjects’ sensitivity to current steering and AM frequency change. The integration of place- and temporal-pitch cues was most effective when the two cues were similarly discriminable in isolation. Adding the other (place or temporal) pitch cues shifted the temporal- or place-pitch psychometric functions horizontally without changing the slopes. PCI was significantly better with consistent place- and temporal-pitch cues than with inconsistent cues. PCI with single cues and integration of pitch cues were similar on different electrodes. The results suggest that CI users effectively integrate place- and temporal-pitch cues in relative pitch perception tasks. Current steering and AM frequency change should be coordinated to better transmit dynamic pitch information to CI users. PMID:22352506

  18. Keywords image retrieval in historical handwritten Arabic documents

    NASA Astrophysics Data System (ADS)

    Saabni, Raid; El-Sana, Jihad

    2013-01-01

    A system is presented for spotting and searching keywords in handwritten Arabic documents. A slightly modified dynamic time warping algorithm is used to measure similarities between words. Two sets of features are generated from the outer contour of the words/word-parts. The first set is based on the angles between nodes on the contour and the second set is based on the shape context features taken from the outer contour. To recognize a given word, the segmentation-free approach is partially adopted, i.e., continuous word parts are used as the basic alphabet, instead of individual characters or complete words. Additional strokes, such as dots and detached short segments, are classified and used in a postprocessing step to determine the final comparison decision. The search for a keyword is performed by the search for its word parts given in the correct order. The performance of the presented system was very encouraging in terms of efficiency and match rates. To evaluate the presented system its performance is compared to three different systems. Unfortunately, there are no publicly available standard datasets with ground truth for testing Arabic key word searching systems. Therefore, a private set of images partially taken from Juma'a Al-Majid Center in Dubai for evaluation is used, while using a slightly modified version of the IFN/ENIT database for training.

  19. The HyperV Full-Scale Contoured-Gap Coaxial Plasma Railgun

    NASA Astrophysics Data System (ADS)

    Brockington, Samuel; Case, Andrew; Messer, Sarah; Bomgardner, Richard; Elton, Raymond; Wu, Linchun; Witherspoon, F. Douglas

    2009-11-01

    HyperV has been developing pulsed plasma injected coaxial railguns with a contoured gap profile designed to mitigate the blowby instability. Previous work using half-scale guns has been successful in launching 150 μg plasmas at 90 km/s [1]. In order to meet the original goal of 200 μg at 200 km/s the full-scale coaxial plasma gun has been constructed, and initial testing is beginning. This new plasma gun consists of two machined aluminum electrodes and a UHMW polyethylene breech insulator. The gun is breech fed by 64 ablative polyethylene capillary discharge units identical to the half-scale gun units. Maximum accelerator energy storage has also been increased 50%. Refractory coatings may be necessary to allow full current (˜800 kA) operation. The outer electrode includes 24 small diagnostic ports for optical and magnetic probe access to the plasma inside the gun to allow direct measurement of the plasma armature dynamics. Initial test data from the full-scale coax gun will be presented along with plans for future testing. Work supported by the U.S. DOE Office of Fusion Energy Sciences.[4pt] [1] F. D. Witherspoon, A. Case, S. Messer, R. Bomgardner, M. Phillips, S. Brockington, R. Elton, ``Contoured Gap Coaxial Plasma Gun with Injected Plasma Armature'' Rev. Sci. Instr. submitted (2009)

  20. An Active Contour Model Based on Adaptive Threshold for Extraction of Cerebral Vascular Structures.

    PubMed

    Wang, Jiaxin; Zhao, Shifeng; Liu, Zifeng; Tian, Yun; Duan, Fuqing; Pan, Yutong

    2016-01-01

    Cerebral vessel segmentation is essential and helpful for the clinical diagnosis and the related research. However, automatic segmentation of brain vessels remains challenging because of the variable vessel shape and high complex of vessel geometry. This study proposes a new active contour model (ACM) implemented by the level-set method for segmenting vessels from TOF-MRA data. The energy function of the new model, combining both region intensity and boundary information, is composed of two region terms, one boundary term and one penalty term. The global threshold representing the lower gray boundary of the target object by maximum intensity projection (MIP) is defined in the first-region term, and it is used to guide the segmentation of the thick vessels. In the second term, a dynamic intensity threshold is employed to extract the tiny vessels. The boundary term is used to drive the contours to evolve towards the boundaries with high gradients. The penalty term is used to avoid reinitialization of the level-set function. Experimental results on 10 clinical brain data sets demonstrate that our method is not only able to achieve better Dice Similarity Coefficient than the global threshold based method and localized hybrid level-set method but also able to extract whole cerebral vessel trees, including the thin vessels.

  1. Active contour based segmentation of resected livers in CT images

    NASA Astrophysics Data System (ADS)

    Oelmann, Simon; Oyarzun Laura, Cristina; Drechsler, Klaus; Wesarg, Stefan

    2015-03-01

    The majority of state of the art segmentation algorithms are able to give proper results in healthy organs but not in pathological ones. However, many clinical applications require an accurate segmentation of pathological organs. The determination of the target boundaries for radiotherapy or liver volumetry calculations are examples of this. Volumetry measurements are of special interest after tumor resection for follow up of liver regrow. The segmentation of resected livers presents additional challenges that were not addressed by state of the art algorithms. This paper presents a snakes based algorithm specially developed for the segmentation of resected livers. The algorithm is enhanced with a novel dynamic smoothing technique that allows the active contour to propagate with different speeds depending on the intensities visible in its neighborhood. The algorithm is evaluated in 6 clinical CT images as well as 18 artificial datasets generated from additional clinical CT images.

  2. Branching, Chain Scission, and Solution Stability of Worm-Like Micelles

    NASA Astrophysics Data System (ADS)

    Beaucage, Greg; Vogtt, Karsten; Jiang, Hanqui

    As salt is added to a simple micelle solution such as SDS or SLES, the zero shear rate specific viscosity rises rapidly followed by a maximum and decay. The rapid rise in viscosity is associated with formation of elliptical and extended chain worm-like micelles, WLMs. Entanglement of these long chain micelles leads to the viscoelastic behavior we associate with shampoo and body wash. The plateau and drop in viscosity at high salt concentrations is caused by a special type of topological branching where the branch points have no energy penalty to motion along the chain according to Cates theory. These have some similarity to catenane crosslinks. Predictive dynamic theories for WLMs rely on structural details; the diameter, persistence length, contour length, branch length, segment length between branch points, and mesh size. Further, since the contour length and other large scale features are in kinetic equilibrium, with frequent chain breakage and formation, the thermodynamics of these long chain structures are of interest both in terms of chain scission as well as in terms of the stability of the colloidal solution as a whole. Recent structural studies of WLMs using static neutron scattering based on new scattering models will be presented demonstrating that these input parameters for dynamic models of complex topological systems are quantitatively and directly available. In this context it is important to consider a comparison between dynamic features, for instance entanglement, and their static analogs, chain overlap.

  3. Changes in ocular biomechanics after femtosecond laser creation of a laser in situ keratomileusis flap.

    PubMed

    Leccisotti, Antonio; Fields, Stefania V; Moore, Johnny; Shah, Sunil; Moore, Tara C B

    2016-01-01

    To evaluate ocular biomechanical parameters with the Corvis ST, a noncontact tonometer combined with an ultra-high-speed Scheimpflug camera, before and after creation of a femtosecond laser-created laser in situ keratomileusis (LASIK) flap. Private practice, Siena, Italy. Prospective consecutive study. Right eyes of patients having LASIK were assessed with the dynamic Scheimpflug camera before and after femtosecond laser (LDV Z4) flap creation but before mechanical flap lifting. Twenty-eight eyes of 28 patients were evaluated. Before flap creation, the mean values on the dynamic Scheimpflug camera were intraocular pressure (IOP), 15.04 mm Hg ± 3.99 (SD); central pachymetry, 550.8 ± 101.0 μm; applanation 1 length, 1.721 ± 0.134 mm; applanation 2 length, 1.674 ± 0.287 mm; applanation 1 velocity, 0.126 ± 0.031 m/s; and deflection amplitude, 1.039 ± 0.141 mm. After flap creation, the mean values were IOP, 16.10 ± 3.11 mm Hg (95% confidence interval [CI], 0.44-1.78; P < .05); central pachymetry, 561.8 ± 35.9 μm (95% CI, -28.9 to 50.9; P = .21); applanation 1 length, 1.789 ± 0.1492 mm (95% CI, 0.003-0.134; P < .05); applanation 2 length, 1.759 ± 0.259 mm (95% CI, -0.005 to 0.173; P = .08); applanation 1 velocity, 0.136 ± 0.022 m/s (95% CI, 0.001-0.017; P < .05); and deflection amplitude, 1.029 ± 0.151 mm (95% CI: -0.043 to 0.025; P = .34). The dynamic Scheimpflug camera showed changes in biomechanical properties after femtosecond creation of a LASIK flap as indicated by an increased applanation 1 length and applanation 1 velocity. No author has a financial or proprietary interest in any material or method mentioned. Copyright © 2016 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  4. Equine Glaucoma.

    PubMed

    Michau, Tammy Miller

    2017-12-01

    Glaucoma is a multifactorial neurodegenerative ocular disease leading to progressive loss of retinal ganglion cells and their axons that form the optic nerve, causing blindness. Knowledge of the pathogenesis and development of equine glaucoma is in its infancy compared with human glaucoma. Glaucoma occurs most commonly secondary to uveitis and may be underdiagnosed or misdiagnosed in horses suffering from uveitis. Recognition and clinical diagnosis of glaucoma in the horse is improved with clinician awareness and the availability of handheld tonometers. Therapy for glaucoma is aimed at decreasing aqueous humor production through medical and surgical means. Even with therapy, long-term prognosis for vision is poor. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. The equivalent internal orientation and position noise for contour integration.

    PubMed

    Baldwin, Alex S; Fu, Minnie; Farivar, Reza; Hess, Robert F

    2017-10-12

    Contour integration is the joining-up of local responses to parts of a contour into a continuous percept. In typical studies observers detect contours formed of discrete wavelets, presented against a background of random wavelets. This measures performance for detecting contours in the limiting external noise that background provides. Our novel task measures contour integration without requiring any background noise. This allowed us to perform noise-masking experiments using orientation and position noise. From these we measure the equivalent internal noise for contour integration. We found an orientation noise of 6° and position noise of 3 arcmin. Orientation noise was 2.6x higher in contour integration compared to an orientation discrimination control task. Comparing against a position discrimination task found position noise in contours to be 2.4x lower. This suggests contour integration involves intermediate processing that enhances the quality of element position representation at the expense of element orientation. Efficiency relative to the ideal observer was lower for the contour tasks (36% in orientation noise, 21% in position noise) compared to the controls (54% and 57%).

  6. Contoured Surface Eddy Current Inspection System

    DOEpatents

    Batzinger, Thomas James; Fulton, James Paul; Rose, Curtis Wayne; Perocchi, Lee Cranford

    2003-04-08

    Eddy current inspection of a contoured surface of a workpiece is performed by forming a backing piece of flexible, resiliently yieldable material with a contoured exterior surface conforming in shape to the workpiece contoured surface. The backing piece is preferably cast in place so as to conform to the workpiece contoured surface. A flexible eddy current array probe is attached to the contoured exterior surface of the backing piece such that the probe faces the contoured surface of the workpiece to be inspected when the backing piece is disposed adjacent to the workpiece. The backing piece is then expanded volumetrically by inserting at least one shim into a slot in the backing piece to provide sufficient contact pressure between the probe and the workpiece contoured surface to enable the inspection of the workpiece contoured surface to be performed.

  7. Topological Cacti: Visualizing Contour-based Statistics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, Gunther H.; Bremer, Peer-Timo; Pascucci, Valerio

    2011-05-26

    Contours, the connected components of level sets, play an important role in understanding the global structure of a scalar field. In particular their nestingbehavior and topology-often represented in form of a contour tree-have been used extensively for visualization and analysis. However, traditional contour trees onlyencode structural properties like number of contours or the nesting of contours, but little quantitative information such as volume or other statistics. Here we use thesegmentation implied by a contour tree to compute a large number of per-contour (interval) based statistics of both the function defining the contour tree as well asother co-located functions. We introducemore » a new visual metaphor for contour trees, called topological cacti, that extends the traditional toporrery display of acontour tree to display additional quantitative information as width of the cactus trunk and length of its spikes. We apply the new technique to scalar fields ofvarying dimension and different measures to demonstrate the effectiveness of the approach.« less

  8. SU-E-J-101: Improved CT to CBCT Deformable Registration Accuracy by Incorporating Multiple CBCTs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Godley, A; Stephans, K; Olsen, L Sheplan

    2015-06-15

    Purpose: Combining prior day CBCT contours with STAPLE was previously shown to improve automated prostate contouring. These accurate STAPLE contours are now used to guide the planning CT to pre-treatment CBCT deformable registration. Methods: Six IGRT prostate patients with daily kilovoltage CBCT had their original planning CT and 9 CBCTs contoured by the same physician. These physician contours for the planning CT and each prior CBCT are deformed to match the current CBCT anatomy, producing multiple contour sets. These sets are then combined using STAPLE into one optimal set (e.g. for day 3 CBCT, combine contours produced using the planmore » plus day 1 and 2 CBCTs). STAPLE computes a probabilistic estimate of the true contour from this collection of contours by maximizing sensitivity and specificity. The deformation field from planning CT to CBCT registration is then refined by matching its deformed contours to the STAPLE contours. ADMIRE (Elekta Inc.) was used for this. The refinement does not force perfect agreement of the contours, typically Dice’s Coefficient (DC) of > 0.9 is obtained, and the image difference metric remains in the optimization of the deformable registration. Results: The average DC between physician delineated CBCT contours and deformed planning CT contours for the bladder, rectum and prostate was 0.80, 0.79 and 0.75, respectively. The accuracy significantly improved to 0.89, 0.84 and 0.84 (P<0.001 for all) when using the refined deformation field. The average time to run STAPLE with five scans and refine the planning CT deformation was 66 seconds on a Telsa K20c GPU. Conclusion: Accurate contours generated from multiple CBCTs provided guidance for CT to CBCT deformable registration, significantly improving registration accuracy as measured by contour DC. A more accurate deformation field is now available for transferring dose or electron density to the CBCT for adaptive planning. Research grant from Elekta.« less

  9. Three-dimensional adult male head and skull contours.

    PubMed

    Lee, Calvin; Loyd, Andre M; Nightingale, Roger; Myers, Barry S; Damon, Andrew; Bass, Cameron R

    2014-01-01

    Traumatic brain injury (TBI) is a major public health issue, affecting millions of people annually. Anthropomorphic test devices (ATDs) and finite element models (FEMs) provide a means of understanding factors leading to TBI, potentially reducing the occurrence. Thus, there is a need to ensure that these tools accurately model humans. For example, the Hybrid III was not based on 3-dimensional human head shape data. The objective of this study is to produce average head and skull contours for an average U.S. male that can be used for ATDs and FEMs. Computed tomography (CT) scans of adult male heads were obtained from a database provided by the University of Virginia Center for Applied Biomechanics. An orthographic viewer was used to extract head and skull contours from the CT scans. Landmarks were measured graphically using HyperMesh (Altair, HyperWorks). To determine the head occipital condyle (OC) centroid, surface meshes of the OCs were made and the centroid of the surfaces was calculated. The Hybrid III contour was obtained using a MicroScribe Digitizer (Solution Technologies, Inc., Oella, MD). Comparisons of the average male and ATD contours were performed using 2 methods: (1) the midsagittal and midcoronal ATD contours relative to the OC centroid were compared to the corresponding 1 SD range of the average male contours; (2) the ATD sagittal contour was translated relative to the average male sagittal contour to minimize the area between the 2 contours. Average male head and skull contours were created. Landmark measurements were made for the dorsum sellae, nasion skin, nasion bone, infraorbital foramen, and external auditory meatus, all relative to the OC centroid. The Hybrid III midsagittal contour was outside the 1 SD range for 15.2 percent of the average male head contour but only by a maximum distance of 1.5 mm, whereas the Hybrid III midcoronal head contour was outside the 1 SD range for 12.2 percent of the average male head contour by a maximum distance of 2 mm. Minimization of the area between the midsagittal contours resulted in only 2.3 mm of translation, corroborating the good correlation between the contours established by initial comparison. Three-dimensional average male head and skull contours were created and measurements of landmark locations were made. It was found that the 50th percentile male Hybrid III corresponds well to the average male head contour and validated its 3D shape. Average adult head and skull contours and landmark data are available for public research use at http://biomechanics.pratt.duke.edu/data .

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paliwal, B; Asprey, W; Yan, Y

    Purpose: In order to take advantage of the high resolution soft tissue imaging available in MR images, we investigated 3D images obtained with the low field 0.35 T MR in ViewRay to serve as an alternative to CT scans for radiotherapy treatment planning. In these images, normal and target structure delineation can be visualized. Assessment is based upon comparison with the CT images and the ability to produce comparable contours. Methods: Routine radiation oncology CT scans were acquired on five patients. Contours of brain, brainstem, esophagus, heart, lungs, spinal cord, and the external body were drawn. The same five patientsmore » were then scanned on the ViewRay TrueFISP-based imaging pulse sequence. The same organs were selected on the MR images and compared to those from the CT scan. Physical volume and the Dice Similarity Coefficient (DSC) were used to assess the contours from the two systems. Image quality stability was quantitatively ensured throughout the study following the recommendations of the ACR MR accreditation procedure. Results: The highest DSC of 0.985, 0.863, and 0.843 were observed for brain, lungs, and heart respectively. On the other hand, the brainstem, spinal cord, and esophagus had the lowest DSC. Volume agreement was most satisfied for the heart (within 5%) and the brain (within 2%). Contour volume for the brainstem and lung (a widely dynamic organ) varied the most (27% and 19%). Conclusion: The DSC and volume measurements suggest that the results obtained from ViewRay images are quantitatively consistent and comparable to those obtained from CT scans for the brain, heart, and lungs. MR images from ViewRay are well-suited for treatment planning and for adaptive MRI-guided radiotherapy. The physical data from 0.35 T MR imaging is consistent with our geometrical understanding of normal structures.« less

  11. Formant-Frequency Variation and Informational Masking of Speech by Extraneous Formants: Evidence Against Dynamic and Speech-Specific Acoustical Constraints

    PubMed Central

    2014-01-01

    How speech is separated perceptually from other speech remains poorly understood. Recent research indicates that the ability of an extraneous formant to impair intelligibility depends on the variation of its frequency contour. This study explored the effects of manipulating the depth and pattern of that variation. Three formants (F1+F2+F3) constituting synthetic analogues of natural sentences were distributed across the 2 ears, together with a competitor for F2 (F2C) that listeners must reject to optimize recognition (left = F1+F2C; right = F2+F3). The frequency contours of F1 − F3 were each scaled to 50% of their natural depth, with little effect on intelligibility. Competitors were created either by inverting the frequency contour of F2 about its geometric mean (a plausibly speech-like pattern) or using a regular and arbitrary frequency contour (triangle wave, not plausibly speech-like) matched to the average rate and depth of variation for the inverted F2C. Adding a competitor typically reduced intelligibility; this reduction depended on the depth of F2C variation, being greatest for 100%-depth, intermediate for 50%-depth, and least for 0%-depth (constant) F2Cs. This suggests that competitor impact depends on overall depth of frequency variation, not depth relative to that for the target formants. The absence of tuning (i.e., no minimum in intelligibility for the 50% case) suggests that the ability to reject an extraneous formant does not depend on similarity in the depth of formant-frequency variation. Furthermore, triangle-wave competitors were as effective as their more speech-like counterparts, suggesting that the selection of formants from the ensemble also does not depend on speech-specific constraints. PMID:24842068

  12. Dynamic Experiments and Constitutive Model Performance for Polycarbonate

    DTIC Science & Technology

    2014-07-01

    phase disabled. Note, positive stress is tensile and negative is compressive ....28 Figure 23. Parameter sensitivity showing numerical contours of axial ... compressive . For the no alpha and no beta cases shown in the axial stress plots of figure 23 at 40 s, an increase in radial compression as compared...traditional Taylor cylinder impact experiment, which achieves large strain and high-strain-rate deformation but under hydrostatic compression

  13. Automation and Preclinical Evaluation of a Dedicated Emission Mammotomography System for Fully 3-D Molecular Breast Imaging

    DTIC Science & Technology

    2009-10-01

    molecular breast imaging, with the ability to dynamically contour any sized breast, will improve detection and potentially in vivo characterization of...Having flexible 3D positioning about the breast yielded minimal RMSD differences, which is important for high resolution molecular emission imaging. This...TITLE: Automation and Preclinical Evaluation of a Dedicated Emission Mammotomography System for Fully 3-D Molecular Breast Imaging PRINCIPAL

  14. Observations and Numerical Modeling of the Jovian Ribbon

    NASA Technical Reports Server (NTRS)

    Cosentino, R. G.; Simon, A.; Morales-Juberias, R.; Sayanagi, K. M.

    2015-01-01

    Multiple wavelength observations made by the Hubble Space Telescope in early 2007 show the presence of a wavy, high-contrast feature in Jupiter's atmosphere near 30 degrees North. The "Jovian Ribbon," best seen at 410 nanometers, irregularly undulates in latitude and is time-variable in appearance. A meridional intensity gradient algorithm was applied to the observations to track the Ribbon's contour. Spectral analysis of the contour revealed that the Ribbon's structure is a combination of several wavenumbers ranging from k equals 8-40. The Ribbon is a dynamic structure that has been observed to have spectral power for dominant wavenumbers which vary over a time period of one month. The presence of the Ribbon correlates with periods when the velocity of the westward jet at the same location is highest. We conducted numerical simulations to investigate the stability of westward jets of varying speed, vertical shear, and background static stability to different perturbations. A Ribbon-like morphology was best reproduced with a 35 per millisecond westward jet that decreases in amplitude for pressures greater than 700 hectopascals and a background static stability of N equals 0.005 per second perturbed by heat pulses constrained to latitudes south of 30 degrees North. Additionally, the simulated feature had wavenumbers that qualitatively matched observations and evolved throughout the simulation reproducing the Jovian Ribbon's dynamic structure.

  15. Comparison of Ocular Pulse Amplitude Lowering Effects of Preservative-Free Tafluprost and Preservative-Free Dorzolamide-Timolol Fixed Combination Eyedrops.

    PubMed

    Seo, Du Ri; Ha, Seung Joo

    2015-01-01

    To compare the ocular pulse amplitude (OPA) lowering effects of preservative-free tafluprost and dorzolamide-timolol fixed combination (DTFC) using dynamic contour tonometry. In total, 66 eyes of 66 patients with normal tension glaucoma (NTG) (n = 34) or primary open angle glaucoma (POAG) (n = 32) were included. Patients were divided into two groups: the preservative-free tafluprost-treated group (n = 33) and the preservative-free DTFC-treated group (n = 33). Intraocular pressure (IOP) was measured using Goldmann applanation tonometry (GAT). OPA was measured using dynamic contour tonometry; corrected OPA (cOPA) was calculated at baseline and at 1 week and 1, 3, and 6 months after treatment. After 6 months of treatment, tafluprost significantly reduced IOP (P < 0.001). The OPA lowering effects differed significantly between the two treatment groups (P = 0.003). The cOPA-lowering effect of tafluprost (1.09 mmHg) was significantly greater than that of DTFC (0.36 mmHg) after 6 months of treatment (P = 0.01). Tafluprost and DTFC glaucoma treatments provided marked OPA and IOP lowering effects. Tafluprost had a greater effect than DTFC; thus, this drug is recommended for patients at risk of glaucoma progression, due to the high OPA caused by large fluctuations in IOP.

  16. Axial-Flow Turbine Rotor Discharge-Flow Overexpansion and Limit-Loading Condition, Part I: Computational Fluid Dynamics (CFD) Investigation

    NASA Technical Reports Server (NTRS)

    Chen, Shu-Cheng S.

    2017-01-01

    A Computational Fluid Dynamic (CFD) investigation is conducted over a two-dimensional axial-flow turbine rotor blade row to study the phenomena of turbine rotor discharge flow overexpansion at subcritical, critical, and supercritical conditions. Quantitative data of the mean-flow Mach numbers, mean-flow angles, the tangential blade pressure forces, the mean-flow mass flux, and the flow-path total pressure loss coefficients, averaged or integrated across the two-dimensional computational domain encompassing two blade-passages, are obtained over a series of 14 inlet-total to exit-static pressure ratios, from 1.5 (un-choked; subcritical condition) to 10.0 (supercritical with excessively high pressure ratio.) Detailed flow features over the full domain-of-computation, such as the streamline patterns, Mach contours, pressure contours, blade surface pressure distributions, etc. are collected and displayed in this paper. A formal, quantitative definition of the limit loading condition based on the channel flow theory is proposed and explained. Contrary to the comments made in the historical works performed on this subject, about the deficiency of the theoretical methods applied in analyzing this phenomena, using modern CFD method for the study of this subject appears to be quite adequate and successful. This paper describes the CFD work and its findings.

  17. People Detection by a Mobile Robot Using Stereo Vision in Dynamic Indoor Environments

    NASA Astrophysics Data System (ADS)

    Méndez-Polanco, José Alberto; Muñoz-Meléndez, Angélica; Morales, Eduardo F.

    People detection and tracking is a key issue for social robot design and effective human robot interaction. This paper addresses the problem of detecting people with a mobile robot using a stereo camera. People detection using mobile robots is a difficult task because in real world scenarios it is common to find: unpredictable motion of people, dynamic environments, and different degrees of human body occlusion. Additionally, we cannot expect people to cooperate with the robot to perform its task. In our people detection method, first, an object segmentation method that uses the distance information provided by a stereo camera is used to separate people from the background. The segmentation method proposed in this work takes into account human body proportions to segment people and provides a first estimation of people location. After segmentation, an adaptive contour people model based on people distance to the robot is used to calculate a probability of detecting people. Finally, people are detected merging the probabilities of the contour people model and by evaluating evidence over time by applying a Bayesian scheme. We present experiments on detection of standing and sitting people, as well as people in frontal and side view with a mobile robot in real world scenarios.

  18. The role of shape complexity in the detection of closed contours.

    PubMed

    Wilder, John; Feldman, Jacob; Singh, Manish

    2016-09-01

    The detection of contours in noise has been extensively studied, but the detection of closed contours, such as the boundaries of whole objects, has received relatively little attention. Closed contours pose substantial challenges not present in the simple (open) case, because they form the outlines of whole shapes and thus take on a range of potentially important configural properties. In this paper we consider the detection of closed contours in noise as a probabilistic decision problem. Previous work on open contours suggests that contour complexity, quantified as the negative log probability (Description Length, DL) of the contour under a suitably chosen statistical model, impairs contour detectability; more complex (statistically surprising) contours are harder to detect. In this study we extended this result to closed contours, developing a suitable probabilistic model of whole shapes that gives rise to several distinct though interrelated measures of shape complexity. We asked subjects to detect either natural shapes (Exp. 1) or experimentally manipulated shapes (Exp. 2) embedded in noise fields. We found systematic effects of global shape complexity on detection performance, demonstrating how aspects of global shape and form influence the basic process of object detection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. An automated workflow for patient-specific quality control of contour propagation

    NASA Astrophysics Data System (ADS)

    Beasley, William J.; McWilliam, Alan; Slevin, Nicholas J.; Mackay, Ranald I.; van Herk, Marcel

    2016-12-01

    Contour propagation is an essential component of adaptive radiotherapy, but current contour propagation algorithms are not yet sufficiently accurate to be used without manual supervision. Manual review of propagated contours is time-consuming, making routine implementation of real-time adaptive radiotherapy unrealistic. Automated methods of monitoring the performance of contour propagation algorithms are therefore required. We have developed an automated workflow for patient-specific quality control of contour propagation and validated it on a cohort of head and neck patients, on which parotids were outlined by two observers. Two types of error were simulated—mislabelling of contours and introducing noise in the scans before propagation. The ability of the workflow to correctly predict the occurrence of errors was tested, taking both sets of observer contours as ground truth, using receiver operator characteristic analysis. The area under the curve was 0.90 and 0.85 for the observers, indicating good ability to predict the occurrence of errors. This tool could potentially be used to identify propagated contours that are likely to be incorrect, acting as a flag for manual review of these contours. This would make contour propagation more efficient, facilitating the routine implementation of adaptive radiotherapy.

  20. Breast masses in mammography classification with local contour features.

    PubMed

    Li, Haixia; Meng, Xianjing; Wang, Tingwen; Tang, Yuchun; Yin, Yilong

    2017-04-14

    Mammography is one of the most popular tools for early detection of breast cancer. Contour of breast mass in mammography is very important information to distinguish benign and malignant mass. Contour of benign mass is smooth and round or oval, while malignant mass has irregular shape and spiculated contour. Several studies have shown that 1D signature translated from 2D contour can describe the contour features well. In this paper, we propose a new method to translate 2D contour of breast mass in mammography into 1D signature. The method can describe not only the contour features but also the regularity of breast mass. Then we segment the whole 1D signature into different subsections. We extract four local features including a new contour descriptor from the subsections. The new contour descriptor is root mean square (RMS) slope. It can describe the roughness of the contour. KNN, SVM and ANN classifier are used to classify benign breast mass and malignant mass. The proposed method is tested on a set with 323 contours including 143 benign masses and 180 malignant ones from digital database of screening mammography (DDSM). The best accuracy of classification is 99.66% using the feature of root mean square slope with SVM classifier. The performance of the proposed method is better than traditional method. In addition, RMS slope is an effective feature comparable to most of the existing features.

  1. Characteristics of a dynamic holographic sensor for shape control of a large reflector

    NASA Technical Reports Server (NTRS)

    Welch, Sharon S.; Cox, David E.

    1991-01-01

    Design of a distributed holographic interferometric sensor for measuring the surface displacement of a large segmented reflector is proposed. The reflector's surface is illuminated by laser light of two wavelengths and volume holographic gratings are formed in photorefractive crystals of the wavefront returned from the surface. The sensor is based on holographic contouring with a multiple frequency source. It is shown that the most stringent requirement of temporal stability affects both the temporal resolution and the dynamic range. Principal factor which limit the sensor performance include the response time of photorefractive crystal, laser power required to write a hologram, and the size of photorefractive crystal.

  2. Technique for identifying, tracing, or tracking objects in image data

    DOEpatents

    Anderson, Robert J [Albuquerque, NM; Rothganger, Fredrick [Albuquerque, NM

    2012-08-28

    A technique for computer vision uses a polygon contour to trace an object. The technique includes rendering a polygon contour superimposed over a first frame of image data. The polygon contour is iteratively refined to more accurately trace the object within the first frame after each iteration. The refinement includes computing image energies along lengths of contour lines of the polygon contour and adjusting positions of the contour lines based at least in part on the image energies.

  3. An improved spatial contour tree constructed method

    NASA Astrophysics Data System (ADS)

    Zheng, Yi; Zhang, Ling; Guilbert, Eric; Long, Yi

    2018-05-01

    Contours are important data to delineate the landform on a map. A contour tree provides an object-oriented description of landforms and can be used to enrich the topological information. The traditional contour tree is used to store topological relationships between contours in a hierarchical structure and allows for the identification of eminences and depressions as sets of nested contours. This research proposes an improved contour tree so-called spatial contour tree that contains not only the topological but also the geometric information. It can be regarded as a terrain skeleton in 3-dimention, and it is established based on the spatial nodes of contours which have the latitude, longitude and elevation information. The spatial contour tree is built by connecting spatial nodes from low to high elevation for a positive landform, and from high to low elevation for a negative landform to form a hierarchical structure. The connection between two spatial nodes can provide the real distance and direction as a Euclidean vector in 3-dimention. In this paper, the construction method is tested in the experiment, and the results are discussed. The proposed hierarchical structure is in 3-demintion and can show the skeleton inside a terrain. The structure, where all nodes have geo-information, can be used to distinguish different landforms and applied for contour generalization with consideration of geographic characteristics.

  4. ACE Design Study and Experiments

    DTIC Science & Technology

    1976-06-01

    orthophoto on off-line printer o Automatically compute contours on UNIVAC 1108 and plot on CALCOMP o Manually trace planimetry and drainage from... orthophoto * o Manually edit and trace plotted contours to obtain completed contour manuscript* - Edit errors - Add missing contour detail - Combine...stereomodels - Contours adjusted to drainage chart and spot elevations - Referring to orthophoto , rectified photos, original photos o Normal

  5. SU-E-J-192: Verification of 4D-MRI Internal Target Volume Using Cine MRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lafata, K; Czito, B; Palta, M

    Purpose: To investigate the accuracy of 4D-MRI in determining the Internal Target Volume (ITV) used in radiation oncology treatment planning of liver cancers. Cine MRI is used as the standard baseline in establishing the feasibility and accuracy of 4D-MRI tumor motion within the liver. Methods: IRB approval was obtained for this retrospective study. Analysis was performed on MR images from four patients receiving external beam radiation therapy for liver cancer at our institution. Eligible patients received both Cine and 4D-MRI scans before treatment. Cine images were acquired sagittally in real time at a slice bisecting the tumor, while 4D imagesmore » were acquired volumetrically. Cine MR DICOM headers were manipulated such that each respiratory frame was assigned a unique slice location. This approach permitted the treatment planning system (Eclipse, Varian Medical Systems) to recognize a complete respiratory cycle as a “volume”, where the gross tumor was contoured temporally. Software was developed to calculate the union of all frame contours in the structure set, resulting in the corresponding plane of the ITV projecting through the middle of the tumor, defined as the Internal Target Area (ITA). This was repeated for 4D-MRI, at the corresponding slice location, allowing a direct comparison of ITAs obtained from each modality. Results: Four patients have been analyzed. ITAs contoured from 4D-MRI correlate with contours from Cine MRI. The mean error of 4D values relative to Cine values is 7.67 +/− 2.55 %. No single ITA contoured from 4D-MRI demonstrated more than 10.5 % error compared to its Cine MRI counterpart. Conclusion: Motion management is a significant aspect of treatment planning within dynamic environments such as the liver, where diaphragmatic and cardiac activity influence plan accuracy. This small pilot study suggests that 4D-MRI based ITA measurements agree with Cine MRI based measurements, an important step towards clinical implementation. NIH 1R21CA165384-01A1.« less

  6. Exploring the roles of spectral detail and intonation contour in speech intelligibility: an FMRI study.

    PubMed

    Kyong, Jeong S; Scott, Sophie K; Rosen, Stuart; Howe, Timothy B; Agnew, Zarinah K; McGettigan, Carolyn

    2014-08-01

    The melodic contour of speech forms an important perceptual aspect of tonal and nontonal languages and an important limiting factor on the intelligibility of speech heard through a cochlear implant. Previous work exploring the neural correlates of speech comprehension identified a left-dominant pathway in the temporal lobes supporting the extraction of an intelligible linguistic message, whereas the right anterior temporal lobe showed an overall preference for signals clearly conveying dynamic pitch information [Johnsrude, I. S., Penhune, V. B., & Zatorre, R. J. Functional specificity in the right human auditory cortex for perceiving pitch direction. Brain, 123, 155-163, 2000; Scott, S. K., Blank, C. C., Rosen, S., & Wise, R. J. Identification of a pathway for intelligible speech in the left temporal lobe. Brain, 123, 2400-2406, 2000]. The current study combined modulations of overall intelligibility (through vocoding and spectral inversion) with a manipulation of pitch contour (normal vs. falling) to investigate the processing of spoken sentences in functional MRI. Our overall findings replicate and extend those of Scott et al. [Scott, S. K., Blank, C. C., Rosen, S., & Wise, R. J. Identification of a pathway for intelligible speech in the left temporal lobe. Brain, 123, 2400-2406, 2000], where greater sentence intelligibility was predominately associated with increased activity in the left STS, and the greatest response to normal sentence melody was found in right superior temporal gyrus. These data suggest a spatial distinction between brain areas associated with intelligibility and those involved in the processing of dynamic pitch information in speech. By including a set of complexity-matched unintelligible conditions created by spectral inversion, this is additionally the first study reporting a fully factorial exploration of spectrotemporal complexity and spectral inversion as they relate to the neural processing of speech intelligibility. Perhaps surprisingly, there was little evidence for an interaction between the two factors-we discuss the implications for the processing of sound and speech in the dorsolateral temporal lobes.

  7. Fourier descriptor analysis and unification of voice range profile contours: method and applications.

    PubMed

    Pabon, Peter; Ternström, Sten; Lamarche, Anick

    2011-06-01

    To describe a method for unified description, statistical modeling, and comparison of voice range profile (VRP) contours, even from diverse sources. A morphologic modeling technique, which is based on Fourier descriptors (FDs), is applied to the VRP contour. The technique, which essentially involves resampling of the curve of the contour, is assessed and also is compared to density-based VRP averaging methods that use the overlap count. VRP contours can be usefully described and compared using FDs. The method also permits the visualization of the local covariation along the contour average. For example, the FD-based analysis shows that the population variance for ensembles of VRP contours is usually smallest at the upper left part of the VRP. To illustrate the method's advantages and possible further application, graphs are given that compare the averaged contours from different authors and recording devices--for normal, trained, and untrained male and female voices as well as for child voices. The proposed technique allows any VRP shape to be brought to the same uniform base. On this uniform base, VRP contours or contour elements coming from a variety of sources may be placed within the same graph for comparison and for statistical analysis.

  8. Dynamical Evaluation of Ocean Models using the Gulf Stream as an Example

    DTIC Science & Technology

    2010-01-01

    transport for the Atlantic meridional overturning circulation (AMOC) as the 3 nonlinear solutions discussed in Section 2. The model boundary is...Hellerman and Rosenstein (1983) wind stress climatology and the northward upper ocean flow (14 Sv) of the Atlantic meridional overturning circulation ... overturning circulation (AMOC) streamfunction with a 5 Sv contour interval from (a) 1/12° Atlantic MICOM, (b) 1/12° Atlantic HYCOM, and (c) 1/12

  9. Emergent dynamics of spiking neurons with fluctuating threshold

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Anindita; Das, M. K.

    2017-05-01

    Role of fluctuating threshold on neuronal dynamics is investigated. The threshold function is assumed to follow a normal probability distribution. Standard deviation of inter-spike interval of the response is computed as an indicator of irregularity in spike emission. It has been observed that, the irregularity in spiking is more if the threshold variation is more. A significant change in modal characteristics of Inter Spike Intervals (ISI) is seen to occur as a function of fluctuation parameter. Investigation is further carried out for coupled system of neurons. Cooperative dynamics of coupled neurons are discussed in view of synchronization. Total and partial synchronization regimes are depicted with the help of contour plots of synchrony measure under various conditions. Results of this investigation may provide a basis for exploring the complexities of neural communication and brain functioning.

  10. The investigation of trapped thickness shear modes in a contoured AT-cut quartz plate using the power series expansion technique

    NASA Astrophysics Data System (ADS)

    Li, Peng; Jin, Feng

    2018-01-01

    The dynamic model about the anti-plane vibration of a contoured quartz plate with thickness changing continuously is established by ignoring the effect of small elastic constant c 56. The governing equation is solved using the power series expansion technique, and the trapped thickness shear modes caused by bulge thickness are revealed. Theoretically, the proposed method is more general, which can be capable of handling various thickness profiles defined mathematically. After the convergence of the series is demonstrated and the correctness is numerically validated with the aid of finite element method results, systematic parametric studies are subsequently carried out to quantify the effects of the geometry parameter upon the trapped modes, including resonant frequency and mode shape. After that, the band structures of thickness shear waves propagation in a periodically contoured quartz plate, as well as the power transmission spectra, are obtained based on the power series expansion technique. It is revealed that broad stop bands below cut-off frequency exist owing to the trapped modes excited by the geometry inhomogeneity, which has little relationship with the structural periodicity, and its physical mechanism is different from the Bragg scattering effect. The outcome is widely applicable, and can be utilized to provide theoretical and practical guidance for the design and manufacturing of quartz resonators and wave filters.

  11. Digital holographic interferometry for characterizing deformable mirrors in aero-optics

    NASA Astrophysics Data System (ADS)

    Trolinger, James D.; Hess, Cecil F.; Razavi, Payam; Furlong, Cosme

    2016-08-01

    Measuring and understanding the transient behavior of a surface with high spatial and temporal resolution are required in many areas of science. This paper describes the development and application of a high-speed, high-dynamic range, digital holographic interferometer for high-speed surface contouring with fractional wavelength precision and high-spatial resolution. The specific application under investigation here is to characterize deformable mirrors (DM) employed in aero-optics. The developed instrument was shown capable of contouring a deformable mirror with extremely high-resolution at frequencies exceeding 40 kHz. We demonstrated two different procedures for characterizing the mechanical response of a surface to a wide variety of input forces, one that employs a high-speed digital camera and a second that employs a low-speed, low-cost digital camera. The latter is achieved by cycling the DM actuators with a step input, producing a transient that typically lasts up to a millisecond before reaching equilibrium. Recordings are made at increasing times after the DM initiation from zero to equilibrium to analyze the transient. Because the wave functions are stored and reconstructable, they can be compared with each other to produce contours including absolute, difference, and velocity. High-speed digital cameras recorded the wave functions during a single transient at rates exceeding 40 kHz. We concluded that either method is fully capable of characterizing a typical DM to the extent required by aero-optical engineers.

  12. Mars synthetic topographic mapping

    USGS Publications Warehouse

    Wu, S.S.C.

    1978-01-01

    Topographic contour maps of Mars are compiled by the synthesis of data acquired from various scientific experiments of the Mariner 9 mission, including S-band radio-occulation, the ultraviolet spectrometer (UVS), the infrared radiometer (IRR), the infrared interferometer spectrometer (IRIS) and television imagery, as well as Earth-based radar information collected at Goldstone, Haystack, and Arecibo Observatories. The entire planet is mapped at scales of 1:25,000,000 and 1:25,000,000 using Mercator, Lambert, and polar stereographic map projections. For the computation of map projections, a biaxial spheroid figure is adopted. The semimajor and semiminor axes are 3393.4 and 3375.7 km, respectively, with a polar flattening of 0.0052. For the computation of elevations, a topographic datum is defined by a gravity field described in terms of spherical harmonics of fourth order and fourth degree combined with a 6.1-mbar occulation pressure surface. This areoid can be approximated by a triaxial ellipsoid with semimajor axes of A = 3394.6 km and B = 3393.3 km and a semiminor axis of C = 3376.3 km. The semimajor axis A intersects the Martian surface at longitude 105??W. The dynamic flattening of Mars is 0.00525. The contour intercal of the maps is 1 km. For some prominent features where overlapping pictures from Mariner 9 are available, local contour maps at relatively larger scales were also compiled by photogrammetric methods on stereo plotters. ?? 1978.

  13. Semantic shape similarity-based contour tracking evaluation

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoqin; Luo, Wenhan; Zhao, Li; Li, Wei; Hu, Weiming

    2011-10-01

    One major problem of contour-based tracking is how to evaluate the accuracy of tracking results due to nonrigid and deformative properties of contours. We propose a shape context-based evaluation measure that considers the semantic shape similarity between the tracked contour and ground-truth contour. In addition, a pyramid match kernel is introduced for shape histogram matching, which can effectively deal with the contours with different scales. Experimental results demonstrate, compared to two start-of-art evaluation measures, our measure effectively captures the local shape information and thus is more consistent with human vision.

  14. Assessing the Importance of Lexical Tone Contour to Sentence Perception in Mandarin-Speaking Children With Normal Hearing.

    PubMed

    Zhu, Shufeng; Wong, Lena L N; Wang, Bin; Chen, Fei

    2017-07-12

    The aim of the present study was to evaluate the influence of lexical tone contour and age on sentence perception in quiet and in noise conditions in Mandarin-speaking children ages 7 to 11 years with normal hearing. Test materials were synthesized Mandarin sentences, each word with a manipulated lexical contour, that is, normal contour, flat contour, or a tone contour randomly selected from the four Mandarin lexical tone contours. A convenience sample of 75 Mandarin-speaking participants with normal hearing, ages 7, 9, and 11 years (25 participants in each age group), was selected. Participants were asked to repeat the synthesized speech in quiet and in speech spectrum-shaped noise at 0 dB signal-to-noise ratio. In quiet, sentence recognition by the 11-year-old children was similar to that of adults, and misrepresented lexical tone contours did not have a detrimental effect. However, the performance of children ages 9 and 7 years was significantly poorer. The performance of all three age groups, especially the younger children, declined significantly in noise. The present research suggests that lexical tone contour plays an important role in Mandarin sentence recognition, and misrepresented tone contours result in greater difficulty in sentence recognition in younger children. These results imply that maturation and/or language use experience play a role in the processing of tone contours for Mandarin speech understanding, particularly in noise.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaffney, David K., E-mail: david.gaffney@hci.utah.edu; King, Bronwyn; Viswanathan, Akila N.

    Purpose: The purpose of this study was to develop a radiation therapy (RT) contouring atlas and recommendations for women with postoperative and locally advanced vulvar carcinoma. Methods and Materials: An international committee of 35 expert gynecologic radiation oncologists completed a survey of the treatment of vulvar carcinoma. An initial set of recommendations for contouring was discussed and generated by consensus. Two cases, 1 locally advanced and 1 postoperative, were contoured by 14 physicians. Contours were compared and analyzed using an expectation-maximization algorithm for simultaneous truth and performance level estimation (STAPLE), and a 95% confidence interval contour was developed. The levelmore » of agreement among contours was assessed using a kappa statistic. STAPLE contours underwent full committee editing to generate the final atlas consensus contours. Results: Analysis of the 14 contours showed substantial agreement, with kappa statistics of 0.69 and 0.64 for cases 1 and 2, respectively. There was high specificity for both cases (≥99%) and only moderate sensitivity of 71.3% and 64.9% for cases 1 and 2, respectively. Expert review and discussion generated consensus recommendations for contouring target volumes and treatment for postoperative and locally advanced vulvar cancer. Conclusions: These consensus recommendations for contouring and treatment of vulvar cancer identified areas of complexity and controversy. Given the lack of clinical research evidence in vulvar cancer radiation therapy, the committee advocates a conservative and consistent approach using standardized recommendations.« less

  16. Estimation of contour motion and deformation for nonrigid object tracking

    NASA Astrophysics Data System (ADS)

    Shao, Jie; Porikli, Fatih; Chellappa, Rama

    2007-08-01

    We present an algorithm for nonrigid contour tracking in heavily cluttered background scenes. Based on the properties of nonrigid contour movements, a sequential framework for estimating contour motion and deformation is proposed. We solve the nonrigid contour tracking problem by decomposing it into three subproblems: motion estimation, deformation estimation, and shape regulation. First, we employ a particle filter to estimate the global motion parameters of the affine transform between successive frames. Then we generate a probabilistic deformation map to deform the contour. To improve robustness, multiple cues are used for deformation probability estimation. Finally, we use a shape prior model to constrain the deformed contour. This enables us to retrieve the occluded parts of the contours and accurately track them while allowing shape changes specific to the given object types. Our experiments show that the proposed algorithm significantly improves the tracker performance.

  17. A Voronoi interior adjacency-based approach for generating a contour tree

    NASA Astrophysics Data System (ADS)

    Chen, Jun; Qiao, Chaofei; Zhao, Renliang

    2004-05-01

    A contour tree is a good graphical tool for representing the spatial relations of contour lines and has found many applications in map generalization, map annotation, terrain analysis, etc. A new approach for generating contour trees by introducing a Voronoi-based interior adjacency set concept is proposed in this paper. The immediate interior adjacency set is employed to identify all of the children contours of each contour without contour elevations. It has advantages over existing methods such as the point-in-polygon method and the region growing-based method. This new approach can be used for spatial data mining and knowledge discovering, such as the automatic extraction of terrain features and construction of multi-resolution digital elevation model.

  18. Aeroelasticity of morphing wings using neural networks

    NASA Astrophysics Data System (ADS)

    Natarajan, Anand

    In this dissertation, neural networks are designed to effectively model static non-linear aeroelastic problems in adaptive structures and linear dynamic aeroelastic systems with time varying stiffness. The use of adaptive materials in aircraft wings allows for the change of the contour or the configuration of a wing (morphing) in flight. The use of smart materials, to accomplish these deformations, can imply that the stiffness of the wing with a morphing contour changes as the contour changes. For a rapidly oscillating body in a fluid field, continuously adapting structural parameters may render the wing to behave as a time variant system. Even the internal spars/ribs of the aircraft wing which define the wing stiffness can be made adaptive, that is, their stiffness can be made to vary with time. The immediate effect on the structural dynamics of the wing, is that, the wing motion is governed by a differential equation with time varying coefficients. The study of this concept of a time varying torsional stiffness, made possible by the use of active materials and adaptive spars, in the dynamic aeroelastic behavior of an adaptable airfoil is performed here. Another type of aeroelastic problem of an adaptive structure that is investigated here, is the shape control of an adaptive bump situated on the leading edge of an airfoil. Such a bump is useful in achieving flow separation control for lateral directional maneuverability of the aircraft. Since actuators are being used to create this bump on the wing surface, the energy required to do so needs to be minimized. The adverse pressure drag as a result of this bump needs to be controlled so that the loss in lift over the wing is made minimal. The design of such a "spoiler bump" on the surface of the airfoil is an optimization problem of maximizing pressure drag due to flow separation while minimizing the loss in lift and energy required to deform the bump. One neural network is trained using the CFD code FLUENT to represent the aerodynamic loading over the bump. A second neural network is trained for calculating the actuator loads, bump displacement and lift, drag forces over the airfoil using the finite element solver, ANSYS and the previously trained neural network. This non-linear aeroelastic model of the deforming bump on an airfoil surface using neural networks can serve as a fore-runner for other non-linear aeroelastic problems.

  19. SINGLE INSTITUTION VARIABILITY IN INTENSITY MODULATED RADIATION TARGET DELINEATION FOR CANINE NASAL NEOPLASIA.

    PubMed

    Christensen, Neil I; Forrest, Lisa J; White, Pamela J; Henzler, Margaret; Turek, Michelle M

    2016-11-01

    Contouring variability is a significant barrier to the accurate delivery and reporting of radiation therapy. The aim of this descriptive study was to determine the variation in contouring radiation targets and organs at risk by participants within our institution. Further, we also aimed to determine if all individuals contoured the same normal tissues. Two canine nasal tumor datasets were selected and contoured by two ACVR-certified radiation oncologists and two radiation oncology residents from the same institution. Eight structures were consistently contoured including the right and left eye, the right and left lens, brain, the gross tumor volume (GTV), clinical target volume (CTV), and planning target volume (PTV). Spinal cord, hard and soft palate, and bulla were contoured on 50% of datasets. Variation in contouring occurred in both targets and normal tissues at risk and was particularly significant for the GTV, CTV, and PTV. The mean metric score and dice similarity coefficient were below the threshold criteria in 37.5-50% and 12.5-50% of structures, respectively, quantitatively indicating contouring variation. This study refutes our hypothesis that minimal variation in target and normal tissue delineation occurs. The variation in contouring may contribute to different tumor response and toxicity for any given patient. Our results also highlight the difficulty associated with replication of published radiation protocols or treatments, as even with replete contouring description the outcome of treatment is still fundamentally influenced by the individual contouring the patient. © 2016 American College of Veterinary Radiology.

  20. Computational Fluid Dynamic Analyses for the High-Lift Common Research Model Using the USM3D and FUN3D Flow Solvers

    NASA Technical Reports Server (NTRS)

    Rivers, Melissa; Hunter, Craig; Vatsa, Veer

    2017-01-01

    Two Navier-Stokes codes were used to compute flow over the High-Lift Common Research Model (HL-CRM) in preparation for a wind tunnel test to be performed at the NASA Langley Research Center 14-by-22-Foot Subsonic Tunnel in fiscal year 2018. Both flight and wind tunnel conditions were simulated by the two codes at set Mach numbers and Reynolds numbers over a full angle-of-attack range for three configurations: cruise, landing and takeoff. Force curves, drag polars and surface pressure contour comparisons are shown for the two codes. The lift and drag curves compare well for the cruise configuration up to 10deg angle of attack but not as well for the other two configurations. The drag polars compare reasonably well for all three configurations. The surface pressure contours compare well for some of the conditions modeled but not as well for others.

  1. Evolution of inviscid Kelvin-Helmholtz instability from a piecewise linear shear layer

    NASA Astrophysics Data System (ADS)

    Guha, Anirban; Rahmani, Mona; Lawrence, Gregory

    2012-11-01

    Here we study the evolution of 2D, inviscid Kelvin-Helmholtz instability (KH) ensuing from a piecewise linear shear layer. Although KH pertaining to smooth shear layers (eg. Hyperbolic tangent profile) has been thorough investigated in the past, very little is known about KH resulting from sharp shear layers. Pozrikidis and Higdon (1985) have shown that piecewise shear layer evolves into elliptical vortex patches. This non-linear state is dramatically different from the well known spiral-billow structure of KH. In fact, there is a little acknowledgement that elliptical vortex patches can represent non-linear KH. In this work, we show how such patches evolve through the interaction of vorticity waves. Our work is based on two types of computational methods (i) Contour Dynamics: a boundary-element method which tracks the evolution of the contour of a vortex patch using Lagrangian marker points, and (ii) Direct Numerical Simulation (DNS): an Eulerian pseudo-spectral method heavily used in studying hydrodynamic instability and turbulence.

  2. Computational analysis of unmanned aerial vehicle (UAV)

    NASA Astrophysics Data System (ADS)

    Abudarag, Sakhr; Yagoub, Rashid; Elfatih, Hassan; Filipovic, Zoran

    2017-01-01

    A computational analysis has been performed to verify the aerodynamics properties of Unmanned Aerial Vehicle (UAV). The UAV-SUST has been designed and fabricated at the Department of Aeronautical Engineering at Sudan University of Science and Technology in order to meet the specifications required for surveillance and reconnaissance mission. It is classified as a medium range and medium endurance UAV. A commercial CFD solver is used to simulate steady and unsteady aerodynamics characteristics of the entire UAV. In addition to Lift Coefficient (CL), Drag Coefficient (CD), Pitching Moment Coefficient (CM) and Yawing Moment Coefficient (CN), the pressure and velocity contours are illustrated. The aerodynamics parameters are represented a very good agreement with the design consideration at angle of attack ranging from zero to 26 degrees. Moreover, the visualization of the velocity field and static pressure contours is indicated a satisfactory agreement with the proposed design. The turbulence is predicted by enhancing K-ω SST turbulence model within the computational fluid dynamics code.

  3. Projection moire for remote contour analysis

    NASA Technical Reports Server (NTRS)

    Doty, J. L.

    1983-01-01

    Remote projection and viewing of moire contours are examined analytically for a system employing separate projection and viewing optics, with specific attention paid to the practical limitations imposed by the optical systems. It is found that planar contours are possible only when the optics are telecentric (exit pupil at infinity) but that the requirement for spatial separability of the contour fringes from extraneous fringes is independent of the specific optics and is a function only of the angle separating the two optic axes. In the nontelecentric case, the contour separation near the object is unchanged from that of the telecentric case, although the contours are distorted into low-eccentricity (near-circular) ellipses. Furthermore, the minimum contour spacing is directly related to the depth of focus through the resolution of the optics.

  4. SU-C-BRA-03: An Automated and Quick Contour Errordetection for Auto Segmentation in Online Adaptive Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, J; Ates, O; Li, X

    Purpose: To develop a tool that can quickly and automatically assess contour quality generated from auto segmentation during online adaptive replanning. Methods: Due to the strict time requirement of online replanning and lack of ‘ground truth’ contours in daily images, our method starts with assessing image registration accuracy focusing on the surface of the organ in question. Several metrics tightly related to registration accuracy including Jacobian maps, contours shell deformation, and voxel-based root mean square (RMS) analysis were computed. To identify correct contours, additional metrics and an adaptive decision tree are introduced. To approve in principle, tests were performed withmore » CT sets, planned and daily CTs acquired using a CT-on-rails during routine CT-guided RT delivery for 20 prostate cancer patients. The contours generated on daily CTs using an auto-segmentation tool (ADMIRE, Elekta, MIM) based on deformable image registration of the planning CT and daily CT were tested. Results: The deformed contours of 20 patients with total of 60 structures were manually checked as baselines. The incorrect rate of total contours is 49%. To evaluate the quality of local deformation, the Jacobian determinant (1.047±0.045) on contours has been analyzed. In an analysis of rectum contour shell deformed, the higher rate (0.41) of error contours detection was obtained compared to 0.32 with manual check. All automated detections took less than 5 seconds. Conclusion: The proposed method can effectively detect contour errors in micro and macro scope by evaluating multiple deformable registration metrics in a parallel computing process. Future work will focus on improving practicability and optimizing calculation algorithms and metric selection.« less

  5. Automatic contour propagation using deformable image registration to determine delivered dose to spinal cord in head-and-neck cancer radiotherapy.

    PubMed

    Yeap, P L; Noble, D J; Harrison, K; Bates, A M; Burnet, N G; Jena, R; Romanchikova, M; Sutcliffe, M P F; Thomas, S J; Barnett, G C; Benson, R J; Jefferies, S J; Parker, M A

    2017-07-12

    To determine delivered dose to the spinal cord, a technique has been developed to propagate manual contours from kilovoltage computed-tomography (kVCT) scans for treatment planning to megavoltage computed-tomography (MVCT) guidance scans. The technique uses the Elastix software to perform intensity-based deformable image registration of each kVCT scan to the associated MVCT scans. The registration transform is then applied to contours of the spinal cord drawn manually on the kVCT scan, to obtain contour positions on the MVCT scans. Different registration strategies have been investigated, with performance evaluated by comparing the resulting auto-contours with manual contours, drawn by oncologists. The comparison metrics include the conformity index (CI), and the distance between centres (DBC). With optimised registration, auto-contours generally agree well with manual contours. Considering all 30 MVCT scans for each of three patients, the median CI is [Formula: see text], and the median DBC is ([Formula: see text]) mm. An intra-observer comparison for the same scans gives a median CI of [Formula: see text] and a DBC of ([Formula: see text]) mm. Good levels of conformity are also obtained when auto-contours are compared with manual contours from one observer for a single MVCT scan for each of 30 patients, and when they are compared with manual contours from six observers for two MVCT scans for each of three patients. Using the auto-contours to estimate organ position at treatment time, a preliminary study of 33 patients who underwent radiotherapy for head-and-neck cancers indicates good agreement between planned and delivered dose to the spinal cord.

  6. Retroperitoneal Sarcoma Target Volume and Organ at Risk Contour Delineation Agreement Among NRG Sarcoma Radiation Oncologists

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baldini, Elizabeth H., E-mail: ebaldini@partners.org; Abrams, Ross A.; Bosch, Walter

    Purpose: The purpose of this study was to evaluate the variability in target volume and organ at risk (OAR) contour delineation for retroperitoneal sarcoma (RPS) among 12 sarcoma radiation oncologists. Methods and Materials: Radiation planning computed tomography (CT) scans for 2 cases of RPS were distributed among 12 sarcoma radiation oncologists with instructions for contouring gross tumor volume (GTV), clinical target volume (CTV), high-risk CTV (HR CTV: area judged to be at high risk of resulting in positive margins after resection), and OARs: bowel bag, small bowel, colon, stomach, and duodenum. Analysis of contour agreement was performed using the simultaneousmore » truth and performance level estimation (STAPLE) algorithm and kappa statistics. Results: Ten radiation oncologists contoured both RPS cases, 1 contoured only RPS1, and 1 contoured only RPS2 such that each case was contoured by 11 radiation oncologists. The first case (RPS 1) was a patient with a de-differentiated (DD) liposarcoma (LPS) with a predominant well-differentiated (WD) component, and the second case (RPS 2) was a patient with DD LPS made up almost entirely of a DD component. Contouring agreement for GTV and CTV contours was high. However, the agreement for HR CTVs was only moderate. For OARs, agreement for stomach, bowel bag, small bowel, and colon was high, but agreement for duodenum (distorted by tumor in one of these cases) was fair to moderate. Conclusions: For preoperative treatment of RPS, sarcoma radiation oncologists contoured GTV, CTV, and most OARs with a high level of agreement. HR CTV contours were more variable. Further clarification of this volume with the help of sarcoma surgical oncologists is necessary to reach consensus. More attention to delineation of the duodenum is also needed.« less

  7. Automatic contour propagation using deformable image registration to determine delivered dose to spinal cord in head-and-neck cancer radiotherapy

    NASA Astrophysics Data System (ADS)

    Yeap, P. L.; Noble, D. J.; Harrison, K.; Bates, A. M.; Burnet, N. G.; Jena, R.; Romanchikova, M.; Sutcliffe, M. P. F.; Thomas, S. J.; Barnett, G. C.; Benson, R. J.; Jefferies, S. J.; Parker, M. A.

    2017-08-01

    To determine delivered dose to the spinal cord, a technique has been developed to propagate manual contours from kilovoltage computed-tomography (kVCT) scans for treatment planning to megavoltage computed-tomography (MVCT) guidance scans. The technique uses the Elastix software to perform intensity-based deformable image registration of each kVCT scan to the associated MVCT scans. The registration transform is then applied to contours of the spinal cord drawn manually on the kVCT scan, to obtain contour positions on the MVCT scans. Different registration strategies have been investigated, with performance evaluated by comparing the resulting auto-contours with manual contours, drawn by oncologists. The comparison metrics include the conformity index (CI), and the distance between centres (DBC). With optimised registration, auto-contours generally agree well with manual contours. Considering all 30 MVCT scans for each of three patients, the median CI is 0.759 +/- 0.003 , and the median DBC is (0.87 +/- 0.01 ) mm. An intra-observer comparison for the same scans gives a median CI of 0.820 +/- 0.002 and a DBC of (0.64 +/- 0.01 ) mm. Good levels of conformity are also obtained when auto-contours are compared with manual contours from one observer for a single MVCT scan for each of 30 patients, and when they are compared with manual contours from six observers for two MVCT scans for each of three patients. Using the auto-contours to estimate organ position at treatment time, a preliminary study of 33 patients who underwent radiotherapy for head-and-neck cancers indicates good agreement between planned and delivered dose to the spinal cord.

  8. Retroperitoneal Sarcoma Target Volume and Organ at Risk Contour Delineation Agreement Among NRG Sarcoma Radiation Oncologists

    PubMed Central

    Baldini, Elizabeth H.; Abrams, Ross A.; Bosch, Walter; Roberge, David; Haas, Rick L.M.; Catton, Charles N.; Indelicato, Daniel J.; Olsen, Jeffrey R.; Deville, Curtiland; Chen, Yen-Lin; Finkelstein, Steven E.; DeLaney, Thomas F.; Wang, Dian

    2015-01-01

    Purpose The purpose of this study was to evaluate the variability in target volume and organ at risk (OAR) contour delineation for retroperitoneal sarcoma (RPS) among 12 sarcoma radiation oncologists. Methods and Materials Radiation planning computed tomography (CT) scans for 2 cases of RPS were distributed among 12 sarcoma radiation oncologists with instructions for contouring gross tumor volume (GTV), clinical target volume (CTV), high-risk CTV (HR CTV: area judged to be at high risk of resulting in positive margins after resection), and OARs: bowel bag, small bowel, colon, stomach, and duodenum. Analysis of contour agreement was performed using the simultaneous truth and performance level estimation (STAPLE) algorithm and kappa statistics. Results Ten radiation oncologists contoured both RPS cases, 1 contoured only RPS1, and 1 contoured only RPS2 such that each case was contoured by 11 radiation oncologists. The first case (RPS 1) was a patient with a de-differentiated (DD) liposarcoma (LPS) with a predominant well-differentiated (WD) component, and the second case (RPS 2) was a patient with DD LPS made up almost entirely of a DD component. Contouring agreement for GTV and CTV contours was high. However, the agreement for HR CTVs was only moderate. For OARs, agreement for stomach, bowel bag, small bowel, and colon was high, but agreement for duodenum (distorted by tumor in one of these cases) was fair to moderate. Conclusions For preoperative treatment of RPS, sarcoma radiation oncologists contoured GTV, CTV, and most OARs with a high level of agreement. HR CTV contours were more variable. Further clarification of this volume with the help of sarcoma surgical oncologists is necessary to reach consensus. More attention to delineation of the duodenum is also needed. PMID:26194680

  9. 50 CFR 660.391 - Latitude/longitude coordinates defining the 10-fm (18-m) through 40-fm (73-m) depth contours.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... the 10-fm (18-m) through 40-fm (73-m) depth contours. 660.391 Section 660.391 Wildlife and Fisheries.../longitude coordinates defining the 10-fm (18-m) through 40-fm (73-m) depth contours. Boundaries for RCAs are... coordinates for the 10-fm (18-m) through 40-fm (73-m) depth contours. (a) The 10-fm (18-m) depth contour...

  10. 50 CFR 660.71 - Latitude/longitude coordinates defining the 10-fm (18-m) through 40-fm (73-m) depth contours.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... the 10-fm (18-m) through 40-fm (73-m) depth contours. 660.71 Section 660.71 Wildlife and Fisheries.../longitude coordinates defining the 10-fm (18-m) through 40-fm (73-m) depth contours. Boundaries for RCAs are... coordinates for the 10-fm (18-m) through 40-fm (73-m) depth contours. (a) The 10-fm (18-m) depth contour...

  11. TU-C-17A-03: An Integrated Contour Evaluation Software Tool Using Supervised Pattern Recognition for Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, H; Tan, J; Kavanaugh, J

    Purpose: Radiotherapy (RT) contours delineated either manually or semiautomatically require verification before clinical usage. Manual evaluation is very time consuming. A new integrated software tool using supervised pattern contour recognition was thus developed to facilitate this process. Methods: The contouring tool was developed using an object-oriented programming language C# and application programming interfaces, e.g. visualization toolkit (VTK). The C# language served as the tool design basis. The Accord.Net scientific computing libraries were utilized for the required statistical data processing and pattern recognition, while the VTK was used to build and render 3-D mesh models from critical RT structures in real-timemore » and 360° visualization. Principal component analysis (PCA) was used for system self-updating geometry variations of normal structures based on physician-approved RT contours as a training dataset. The inhouse design of supervised PCA-based contour recognition method was used for automatically evaluating contour normality/abnormality. The function for reporting the contour evaluation results was implemented by using C# and Windows Form Designer. Results: The software input was RT simulation images and RT structures from commercial clinical treatment planning systems. Several abilities were demonstrated: automatic assessment of RT contours, file loading/saving of various modality medical images and RT contours, and generation/visualization of 3-D images and anatomical models. Moreover, it supported the 360° rendering of the RT structures in a multi-slice view, which allows physicians to visually check and edit abnormally contoured structures. Conclusion: This new software integrates the supervised learning framework with image processing and graphical visualization modules for RT contour verification. This tool has great potential for facilitating treatment planning with the assistance of an automatic contour evaluation module in avoiding unnecessary manual verification for physicians/dosimetrists. In addition, its nature as a compact and stand-alone tool allows for future extensibility to include additional functions for physicians’ clinical needs.« less

  12. A Multiphase Validation of Atlas-Based Automatic and Semiautomatic Segmentation Strategies for Prostate MRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Spencer; Rodrigues, George, E-mail: george.rodrigues@lhsc.on.ca; Department of Epidemiology/Biostatistics, University of Western Ontario, London

    2013-01-01

    Purpose: To perform a rigorous technological assessment and statistical validation of a software technology for anatomic delineations of the prostate on MRI datasets. Methods and Materials: A 3-phase validation strategy was used. Phase I consisted of anatomic atlas building using 100 prostate cancer MRI data sets to provide training data sets for the segmentation algorithms. In phase II, 2 experts contoured 15 new MRI prostate cancer cases using 3 approaches (manual, N points, and region of interest). In phase III, 5 new physicians with variable MRI prostate contouring experience segmented the same 15 phase II datasets using 3 approaches: manual,more » N points with no editing, and full autosegmentation with user editing allowed. Statistical analyses for time and accuracy (using Dice similarity coefficient) endpoints used traditional descriptive statistics, analysis of variance, analysis of covariance, and pooled Student t test. Results: In phase I, average (SD) total and per slice contouring time for the 2 physicians was 228 (75), 17 (3.5), 209 (65), and 15 seconds (3.9), respectively. In phase II, statistically significant differences in physician contouring time were observed based on physician, type of contouring, and case sequence. The N points strategy resulted in superior segmentation accuracy when initial autosegmented contours were compared with final contours. In phase III, statistically significant differences in contouring time were observed based on physician, type of contouring, and case sequence again. The average relative timesaving for N points and autosegmentation were 49% and 27%, respectively, compared with manual contouring. The N points and autosegmentation strategies resulted in average Dice values of 0.89 and 0.88, respectively. Pre- and postedited autosegmented contours demonstrated a higher average Dice similarity coefficient of 0.94. Conclusion: The software provided robust contours with minimal editing required. Observed time savings were seen for all physicians irrespective of experience level and baseline manual contouring speed.« less

  13. Data integrity systems for organ contours in radiation therapy planning.

    PubMed

    Shah, Veeraj P; Lakshminarayanan, Pranav; Moore, Joseph; Tran, Phuoc T; Quon, Harry; Deville, Curtiland; McNutt, Todd R

    2018-06-12

    The purpose of this research is to develop effective data integrity models for contoured anatomy in a radiotherapy workflow for both real-time and retrospective analysis. Within this study, two classes of contour integrity models were developed: data driven models and contiguousness models. The data driven models aim to highlight contours which deviate from a gross set of contours from similar disease sites and encompass the following regions of interest (ROI): bladder, femoral heads, spinal cord, and rectum. The contiguousness models, which individually analyze the geometry of contours to detect possible errors, are applied across many different ROI's and are divided into two metrics: Extent and Region Growing over volume. After analysis, we found that 70% of detected bladder contours were verified as suspicious. The spinal cord and rectum models verified that 73% and 80% of contours were suspicious respectively. The contiguousness models were the most accurate models and the Region Growing model was the most accurate submodel. 100% of the detected noncontiguous contours were verified as suspicious, but in the cases of spinal cord, femoral heads, bladder, and rectum, the Region Growing model detected additional two to five suspicious contours that the Extent model failed to detect. When conducting a blind review to detect false negatives, it was found that all the data driven models failed to detect all suspicious contours. The Region Growing contiguousness model produced zero false negatives in all regions of interest other than prostate. With regards to runtime, the contiguousness via extent model took an average of 0.2 s per contour. On the other hand, the region growing method had a longer runtime which was dependent on the number of voxels in the contour. Both contiguousness models have potential for real-time use in clinical radiotherapy while the data driven models are better suited for retrospective use. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  14. Implicit-Explicit Formulations of a Three-Dimensional Nonhydrostatic Unified Model of the Atmosphere (NUMA)

    DTIC Science & Technology

    2013-01-01

    Gravity Wave. A slice of the potential temperature perturbation (at y=50 km) after 700 s for 30× 30× 5 elements with 4th-order polynomials . The contour...CONSTANTINESCU ‡ Key words. cloud-resolving model; compressible flow; element-based Galerkin methods; Euler; global model; IMEX; Lagrange; Legendre ...methods in terms of accuracy and efficiency for two types of geophysical fluid dynamics problems: buoyant convection and inertia- gravity waves. These

  15. Lack of agreement between tonometric and gastric juice partial carbon dioxide tension

    PubMed Central

    Dubin, Arnaldo; Badie, Julio; Fernandez, Sofía; Estenssoro, Elisa; Canales, Héctor; Bordoli, Guillermo; Pálizas, Fernando

    2000-01-01

    Introduction: In recent years there has been growing interest in tonometric estimation of gastric intramucosal pH (pHi). More recently, attention has focused on the gradient between intraluminal and arterial PCO2. pHi appears to be a useful diagnostic and prognostic tool in critically ill patients, and may also be used as a therapeutic guide. However, intraluminal PCO2 is the parameter measured to calculate pHi, and it is assumed as equivalent to the PCO2 of the upper layers of the gastric mucosa. Direct measurement of PCO2 in gastric juice might offer advantages over tonometry. Tonometer costs could be saved, and equilibration time would no longer be necessary. Additionally, preanalytic factors that account for poor reproducibility, such as inadequate volume of saline in the tonometer, errors in the dwell time of the sample or in the technique used to aspirate saline, mixing of the sample with tonometer dead space and delay in analysis, could be prevented. Nevertheless, to our knowledge few experimental or clinical studies have examined PCO2 in gastric juice. Moreover, no comparison with simultaneous tonometric samples has been performed. Our goal was to compare simultaneous measurement of PCO2 in gastric juice and in saline samples from a tonometer. Data from the present study show that gastric juice PCO2 is systematically higher. Furthermore, differences widen at high PCO2 values, and data dispersion becomes even more striking. Therefore, tonometric PCO2 and gastric juice PCO2 are not interchangeable. Patients and methods: The present study was approved by the local ethics committee, and informed consent was obtained from the next of kin of each patient. We studied 15 consecutive mechanically ventilated patients from a medical/surgical intensive care unit, in whom tonometric monitoring was indicated by attending physicians. All patients were receiving 50 mg intravenous ranitidine every 8 h. Gastric tonometers were filled with saline, which was extracted after 90 min of equilibration time. At the same time, gastric juice was anaerobically extracted from the aspiration port of the tonometer. The initial 20 ml was discarded. PCO2 in both samples was measured using a blood gas analyzer (AVL 945; AVL List GMBH, Gratz, Austria). These measurements were taken at various time points in each patient, and under various haemodynamic and oxygen transport conditions, All measurements were performed with the patient fasted. Correlation between the two measurements was examined using the Bland-Altman technique. We also performed an in vitro study to quantify the precision and bias for the AVL 945. For this purpose, a stable PCO2 in saline solution was achieved by bubbling 5% carbon dioxide calibration gas. Results: We performed 112 pairs of measurements in 15 patients. Table 1 shows clinical data and the first values of arterial, tonometered and gastric juice PCO2 for each patient. Regression analysis demonstrated a significant correlation between both methods of measuring PCO2 (r 2 =0.43; gastric juice PCO2 = -28.79 + [2.55 × tonometric PCO2]; P < 0.0001; Fig. 1). However, the bias calculated as the mean difference of gastric juice and tonometric PCO2 was 51 mmHg. The 95% limits of agreement were 315 mmHg (Fig. 2). For mean PCO2 values lesser than 100 mmHg, the bias and the 95% limits of agreement were 19 and 102 mmHg, respectively. As mean PCO2 increased, the scattering of differences widened (r 2 =0.71; P < 0.0001). In an effort to prevent the bias related to multiple measurements per patient, we performed Bland-Altman analysis with the first measurement of each patient. After this the results remained similar (bias 55 mmHg, 95% limits of agreement 216 mmHg). The AVL 945 blood gas analyzer showed a negative bias of 0.97 mmHg and a precision of 2.13 mmHg. This bias was considered negligible, so no further correction was made to saline tonometric values. Discussion: The results of the present study show that tonometric PCO2 and gastric juice PCO2 are not interchangeable. Gastric juice PCO2 is systematically higher. At high PCO2 values the differences widen, and data dispersion becomes even more marked. There is no clear cause for these observations. A possible explanation might be that tonometric PCO2 is generated over a time interval, whereas gastric juice PCO2 might reflect rapid changes in mucosal metabolism. Different equilibrium time could also account for data dispersion, but not for the positive bias for gastric juice. Rapid changes should occur in both directions. Another potential confounding factor is the ability of blood gas analyzers to measure PCO2 in gastric juice. Measurement of PCO2 in 0.9% saline is an important source of error in the estimation of pHi. Variation in PCO2 values may occur with different PCO2 equilibration solutions. For example, bias is -66.5% when the Nova Stat Profile 7 blood gas analyzer (Nova Biomedical, Waltham, MA, USA) measures concentration of 1.95% of CO2 equilibrated in normal saline. However, bias changes to +45.4% when 1.95% CO2 is equilibrated in human albumin solution 4.5%. It would not be surprising if gastric juice components such as proteins, mucopolisaccharides and others interfere with CO2 solubility and its subsequent measurement by blood gas analyzers. In this way, intersubject and intrasubject variation in gastric juice composition could also account for data dispersion. Fiddian-Green et al [1] measured PCO2 in gastric contents of anaesthetized dogs. They isolated the stomach from the oesophagus and the duodenum with ligatures, and washed it through a catheter with saline. Then, they instilled 250 ml 0.9% saline and took samples to measure PCO2 and to estimate pHi. Simultaneously, mucosa pH was recorded with a microglass probe. They found a statistically significant correlation between both methods. However, data dispersion in the graph was considerable. We were able to exclude analyzer underestimation of PCO2 in saline as the cause for the present results. In vitro performance of the AVL 945 in blood was good. It showed a negative bias less than 1 mmHg and a precision of about 2 mmHg. We cannot infer from the present data the technique that should be the gold standard for measuring PCO2 in gastric mucosa. However, the studies that have established the normal values for pHi, prognostic changes and its uses as a therapeutic index have been performed with tonometry. Hence, more data are needed for the routine measurement of PCO2 in gastric juice. Figure 1 Correlation between gastric juice and tonometric PCO2. We performed 112 pairs of measurements of gastric juice and tonometric PCO2 in 15 critical care patients under different haemodynamic and oxygen transport conditions. The linear regression coefficient is significant. However, the slope value indicates systematic overestimation of gastric juice PCO2 in relation to saline PCO2. Figure 2 Bland-Altman analysis of the differences between gastric juice and tonometric PCO2. The bias calculated as the mean difference of gastric juice and tonometric PCO2 was 51 mmHg. The 95% limits of agreement were 315 mmHg. The bias and the scattering of differences widened as PCO2 increased. Table 1 Clinical characteristics and first value of arterial, tonometer and gastric juice PCO2 PCO2 (mmHg) Age Inotropes Gastric Patient Sex (years) Diagnosis (μg/kg per min) Outcome Arterial Tonometric juice 1 Female 53 Stroke, ARDS Dopamine 32 Survival 30 48 165 2 Female 73 Intestinal obstruction, septic shock Dopamine 40 Death 26 44 92 3 Male 37 Multiple trauma Survival 21 28 41 4 Male 56 Multiple trauma Survival 39 42 49 5 Female 64 Acute pancreatitis, shock, ARDS Dopamine 18 Death 30 34 80 6 Male 17 Multiple trauma Survival 43 60 60 7 Female 18 Fat liver of pregnancy Survival 30 40 44 8 Male 73 Necrotizing celulitis, septic shock, ARDS Epinephrine 1.2 Death 28 33 31 9 Male 64 Multiple trauma, pneumonia, ARDS Death 36 41 57 10 Male 65 Lung cancer postoperatively, ARDS Death 35 51 242 11 Male 65 Lung cancer postoperatively, ARDS Dopamine 20 Death 36 30 125 12 Female 22 Neutropenia, septic shock, ARDS Epinephrine 0.8 Death 50 69 81 13 Male 83 Perioperative shock Dopamine 25 Survival 23 28 34 14 Male 52 Ventilator-associated pneumonia Survival 43 43 126 15 Male 56 Colangitis, septic shock Dopamine 36 Survival 38 44 92 ARDS, acute respiratory distress syndrome. PMID:11056754

  16. Bridging the Gap in Global Advanced Radiation Oncology Training: Impact of a Web-Based Open-Access Interactive Three-Dimensional Contouring Atlas on Radiation Oncologist Practice in Russia.

    PubMed

    McClelland, Shearwood; Chernykh, Marina; Dengina, Natalia; Gillespie, Erin F; Likhacheva, Anna; Usychkin, Sergey; Pankratov, Alexandr; Kharitonova, Ekaterina; Egorova, Yulia; Tsimafeyeu, Ilya; Tjulandin, Sergei; Thomas, Charles R; Mitin, Timur

    2018-06-25

    Radiation oncologists in Russia face a number of unique professional difficulties including lack of standardized training and continuing medical education. To combat this, under the auspices of the Russian Society of Clinical Oncology (RUSSCO), our group has developed a series of ongoing in-person interactive contouring workshops that are held during the major Russian oncology conferences in Moscow, Russia. Since November 2016 during each workshop, we utilized a web-based open-access interactive three-dimensional contouring atlas as part of our didactics. We sought to determine the impact of this resource on radiation oncology practice in Russia. We distributed an IRB-approved web-based survey to 172 practicing radiation oncologists in Russia. We inquired about practice demographics, RUSSCO contouring workshop attendance, and the clinical use of open-access English language interactive contouring atlas (eContour). The survey remained open for 2 months until November 2017. Eighty radiation oncologists completed the survey with a 46.5% response rate. Mean number of years in practice was 13.7. Sixty respondents (75%) attended at least one RUSSCO contouring workshop. Of those who were aware of eContour, 76% were introduced during a RUSSCO contouring workshop, and 81% continue to use it in their daily practice. The greatest obstacles to using the program were language barrier (51%) and internet access (38%). Nearly 90% reported their contouring practices changed since they started using the program, particularly for delineation of clinical target volumes (57%) and/or organs at risk (46%). More than 97% found the clinical pearls/links to cooperative group protocols in the software helpful in their daily practice. The majority used the contouring program several times per month (43%) or several times per week (41%). Face-to-face contouring instruction in combination with open-access web-based interactive contouring resource had a meaningful impact on perceived quality of radiation oncology contours among Russian practitioners and has the potential to have applications worldwide.

  17. SU-E-J-108: Solving the Chinese Postman Problem for Effective Contour Deformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, J; Zhang, L; Balter, P

    2015-06-15

    Purpose: To develop a practical approach for accurate contour deformation when deformable image registration (DIR) is used for atlas-based segmentation or contour propagation in image-guided radiotherapy. Methods: A contour deformation approach was developed on the basis of 3D mesh operations. The 2D contours represented by a series of points in each slice were first converted to a 3D triangular mesh, which was deformed by the deformation vectors resulting from DIR. A set of parallel 2D planes then cut through the deformed 3D mesh, generating unordered points and line segments, which should be reorganized into a set of 2D contour points.more » It was realized that the reorganization problem was equivalent to solving the Chinese Postman Problem (CPP) by traversing a graph built from the unordered points with the least cost. Alternatively, deformation could be applied to a binary mask converted from the original contours. The deformed binary mask was then converted back into contours at the CT slice locations. We performed a qualitative comparison to validate the mesh-based approach against the image-based approach. Results: The DIR could considerably change the 3D mesh, making complicated 2D contour representations after deformation. CPP was able to effectively reorganize the points in 2D planes no matter how complicated the 2D contours were. The mesh-based approach did not require a post-processing of the contour, thus accurately showing the actual deformation in DIR. The mesh-based approach could keep some fine details and resulted in smoother contours than the image-based approach did, especially for the lung structure. Image-based approach appeared to over-process contours and suffered from image resolution limits. The mesh-based approach was integrated into in-house DIR software for use in routine clinic and research. Conclusion: We developed a practical approach for accurate contour deformation. The efficiency of this approach was demonstrated in both clinic and research applications. This work was partially supported by Cancer Prevention & Research Institute of Texas (CPRIT) RP110562.« less

  18. GEOS-3 ocean current investigation using radar altimeter profiling. [Gulf Stream surface topography

    NASA Technical Reports Server (NTRS)

    Leitao, C. D.; Huang, N. E.; Parra, C. G.

    1978-01-01

    Both quasi-stationary and dynamic departures from the marine geoid were successfully detected using altitude measurements from the GEOS-3 radar altimeter. The quasi-stationary departures are observed either as elevation changes in single pass profiles across the Gulf Stream or at the crowding of contour lines at the western and northern areas of topographic maps generated using altimeter data spanning one month or longer. Dynamic features such as current meandering and spawned eddies can be monitored by comparing monthly mean maps. Comparison of altimeter inferred eddies with IR detected thermal rings indicates agreement of the two techniques. Estimates of current velocity are made using derived slope estimates in conjunction with the geostrophic equation.

  19. Segmentation and tracking in echocardiographic sequences: active contours guided by optical flow estimates

    NASA Technical Reports Server (NTRS)

    Mikic, I.; Krucinski, S.; Thomas, J. D.

    1998-01-01

    This paper presents a method for segmentation and tracking of cardiac structures in ultrasound image sequences. The developed algorithm is based on the active contour framework. This approach requires initial placement of the contour close to the desired position in the image, usually an object outline. Best contour shape and position are then calculated, assuming that at this configuration a global energy function, associated with a contour, attains its minimum. Active contours can be used for tracking by selecting a solution from a previous frame as an initial position in a present frame. Such an approach, however, fails for large displacements of the object of interest. This paper presents a technique that incorporates the information on pixel velocities (optical flow) into the estimate of initial contour to enable tracking of fast-moving objects. The algorithm was tested on several ultrasound image sequences, each covering one complete cardiac cycle. The contour successfully tracked boundaries of mitral valve leaflets, aortic root and endocardial borders of the left ventricle. The algorithm-generated outlines were compared against manual tracings by expert physicians. The automated method resulted in contours that were within the boundaries of intraobserver variability.

  20. Dilated contour extraction and component labeling algorithm for object vector representation

    NASA Astrophysics Data System (ADS)

    Skourikhine, Alexei N.

    2005-08-01

    Object boundary extraction from binary images is important for many applications, e.g., image vectorization, automatic interpretation of images containing segmentation results, printed and handwritten documents and drawings, maps, and AutoCAD drawings. Efficient and reliable contour extraction is also important for pattern recognition due to its impact on shape-based object characterization and recognition. The presented contour tracing and component labeling algorithm produces dilated (sub-pixel) contours associated with corresponding regions. The algorithm has the following features: (1) it always produces non-intersecting, non-degenerate contours, including the case of one-pixel wide objects; (2) it associates the outer and inner (i.e., around hole) contours with the corresponding regions during the process of contour tracing in a single pass over the image; (3) it maintains desired connectivity of object regions as specified by 8-neighbor or 4-neighbor connectivity of adjacent pixels; (4) it avoids degenerate regions in both background and foreground; (5) it allows an easy augmentation that will provide information about the containment relations among regions; (6) it has a time complexity that is dominantly linear in the number of contour points. This early component labeling (contour-region association) enables subsequent efficient object-based processing of the image information.

  1. Anisotropies in the perceived spatial displacement of motion-defined contours: opposite biases in the upper-left and lower-right visual quadrants.

    PubMed

    Fan, Zhao; Harris, John

    2010-10-12

    In a recent study (Fan, Z., & Harris, J. (2008). Perceived spatial displacement of motion-defined contours in peripheral vision. Vision Research, 48(28), 2793-2804), we demonstrated that virtual contours defined by two regions of dots moving in opposite directions were displaced perceptually in the direction of motion of the dots in the more eccentric region when the contours were viewed in the right visual field. Here, we show that the magnitude and/or direction of these displacements varies in different quadrants of the visual field. When contours were presented in the lower visual field, the direction of perceived contour displacement was consistent with that when both contours were presented in the right visual field. However, this illusory motion-induced spatial displacement disappeared when both contours were presented in the upper visual field. Also, perceived contour displacement in the direction of the more eccentric dots was larger in the right than in the left visual field, perhaps because of a hemispheric asymmetry in attentional allocation. Quadrant-based analyses suggest that the pattern of results arises from opposite directions of perceived contour displacement in the upper-left and lower-right visual quadrants, which depend on the relative strengths of two effects: a greater sensitivity to centripetal motion, and an asymmetry in the allocation of spatial attention. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Interactive 3D segmentation using connected orthogonal contours.

    PubMed

    de Bruin, P W; Dercksen, V J; Post, F H; Vossepoel, A M; Streekstra, G J; Vos, F M

    2005-05-01

    This paper describes a new method for interactive segmentation that is based on cross-sectional design and 3D modelling. The method represents a 3D model by a set of connected contours that are planar and orthogonal. Planar contours overlayed on image data are easily manipulated and linked contours reduce the amount of user interaction.1 This method solves the contour-to-contour correspondence problem and can capture extrema of objects in a more flexible way than manual segmentation of a stack of 2D images. The resulting 3D model is guaranteed to be free of geometric and topological errors. We show that manual segmentation using connected orthogonal contours has great advantages over conventional manual segmentation. Furthermore, the method provides effective feedback and control for creating an initial model for, and control and steering of, (semi-)automatic segmentation methods.

  3. Quantitative assessment of corneal vibrations during intraocular pressure measurement with the air-puff method in patients with keratoconus.

    PubMed

    Koprowski, Robert; Ambrósio, Renato

    2015-11-01

    One of the current methods for measuring intraocular pressure is the air-puff method. A tonometer which uses this method is the Corvis device. With the ultra-high-speed (UHS) Scheimpflug camera, it is also possible to observe corneal deformation during measurement. The use of modern image analysis and processing methods allows for analysis of higher harmonics of corneal deflection above 100 Hz. 493 eyes of healthy subjects and 279 eyes of patients with keratoconus were used in the measurements. For each eye, 140 corneal deformation images were recorded during intraocular pressure measurement. Each image was recorded every 230 µs and had a resolution of 200 × 576 pixels. A new, original algorithm for image analysis and processing has been proposed. It enables to separate the eyeball reaction as well as low-frequency and high-frequency corneal deformations from the eye response to an air puff. Furthermore, a method for classification of healthy subjects and patients with keratoconus based on decision trees has been proposed. The obtained results confirm the possibility to distinguish between patients with keratoconus and healthy subjects. The features used in this classification are directly related to corneal vibrations. They are only available in the proposed software and provide specificity of 98%, sensitivity-85%, and accuracy-92%. This confirms the usefulness of the proposed method in this type of classification that uses corneal vibrations during intraocular pressure measurement with the Corvis tonometer. With the new proposed algorithm for image analysis and processing allowing for the separation of individual features from a corneal deformation image, it is possible to: automatically measure corneal vibrations in a few characteristic points of the cornea, obtain fully repeatable measurement of vibrations for the same registered sequence of images and measure vibration parameters for large inter-individual variability in patients. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Object segmentation using graph cuts and active contours in a pyramidal framework

    NASA Astrophysics Data System (ADS)

    Subudhi, Priyambada; Mukhopadhyay, Susanta

    2018-03-01

    Graph cuts and active contours are two very popular interactive object segmentation techniques in the field of computer vision and image processing. However, both these approaches have their own well-known limitations. Graph cut methods perform efficiently giving global optimal segmentation result for smaller images. However, for larger images, huge graphs need to be constructed which not only takes an unacceptable amount of memory but also increases the time required for segmentation to a great extent. On the other hand, in case of active contours, initial contour selection plays an important role in the accuracy of the segmentation. So a proper selection of initial contour may improve the complexity as well as the accuracy of the result. In this paper, we have tried to combine these two approaches to overcome their above-mentioned drawbacks and develop a fast technique of object segmentation. Here, we have used a pyramidal framework and applied the mincut/maxflow algorithm on the lowest resolution image with the least number of seed points possible which will be very fast due to the smaller size of the image. Then, the obtained segmentation contour is super-sampled and and worked as the initial contour for the next higher resolution image. As the initial contour is very close to the actual contour, so fewer number of iterations will be required for the convergence of the contour. The process is repeated for all the high-resolution images and experimental results show that our approach is faster as well as memory efficient as compare to both graph cut or active contour segmentation alone.

  5. 47 CFR 73.311 - Field strength contours.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Field strength contours. 73.311 Section 73.311... Broadcast Stations § 73.311 Field strength contours. (a) Applications for FM broadcast authorizations must show the field strength contours required by FCC Form 301 or FCC Form 340, as appropriate. (b) The...

  6. 47 CFR 73.311 - Field strength contours.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Field strength contours. 73.311 Section 73.311... Broadcast Stations § 73.311 Field strength contours. (a) Applications for FM broadcast authorizations must show the field strength contours required by FCC Form 301 or FCC Form 340, as appropriate. (b) The...

  7. Optically-initiated silicon carbide high voltage switch with contoured-profile electrode interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, James S.; Hawkins, Steven A.

    An improved photoconductive switch having a SiC or other wide band gap substrate material with opposing contoured profile cavities which have a contoured profile selected from one of Rogowski, Bruce, Chang, Harrison, and Ernst profiles, and two electrodes with matching contoured-profile convex interface surfaces.

  8. Method of the active contour for segmentation of bone systems on bitmap images

    NASA Astrophysics Data System (ADS)

    Vu, Hai Anh; Safonov, Roman A.; Kolesnikova, Anna S.; Kirillova, Irina V.; Kossovich, Leonid U.

    2018-02-01

    It is developed within a method of the active contours the approach, which is allowing to realize separation of a contour of a object of the image in case of its segmentation. This approach exceeds a parametric method on speed, but also does not concede to it on decision accuracy. The approach is offered within this operation will allow to realize allotment of a contour with high accuracy of the image and quicker than a parametric method of the active contours.

  9. A shape-based inter-layer contours correspondence method for ICT-based reverse engineering

    PubMed Central

    Duan, Liming; Yang, Shangpeng; Zhang, Gui; Feng, Fei; Gu, Minghui

    2017-01-01

    The correspondence of a stack of planar contours in ICT (industrial computed tomography)-based reverse engineering, a key step in surface reconstruction, is difficult when the contours or topology of the object are complex. Given the regularity of industrial parts and similarity of the inter-layer contours, a specialized shape-based inter-layer contours correspondence method for ICT-based reverse engineering was presented to solve the above problem based on the vectorized contours. In this paper, the vectorized contours extracted from the slices consist of three graphical primitives: circles, arcs and segments. First, the correspondence of the inter-layer primitives is conducted based on the characteristics of the primitives. Second, based on the corresponded primitives, the inter-layer contours correspond with each other using the proximity rules and exhaustive search. The proposed method can make full use of the shape information to handle industrial parts with complex structures. The feasibility and superiority of this method have been demonstrated via the related experiments. This method can play an instructive role in practice and provide a reference for the related research. PMID:28489867

  10. A shape-based inter-layer contours correspondence method for ICT-based reverse engineering.

    PubMed

    Duan, Liming; Yang, Shangpeng; Zhang, Gui; Feng, Fei; Gu, Minghui

    2017-01-01

    The correspondence of a stack of planar contours in ICT (industrial computed tomography)-based reverse engineering, a key step in surface reconstruction, is difficult when the contours or topology of the object are complex. Given the regularity of industrial parts and similarity of the inter-layer contours, a specialized shape-based inter-layer contours correspondence method for ICT-based reverse engineering was presented to solve the above problem based on the vectorized contours. In this paper, the vectorized contours extracted from the slices consist of three graphical primitives: circles, arcs and segments. First, the correspondence of the inter-layer primitives is conducted based on the characteristics of the primitives. Second, based on the corresponded primitives, the inter-layer contours correspond with each other using the proximity rules and exhaustive search. The proposed method can make full use of the shape information to handle industrial parts with complex structures. The feasibility and superiority of this method have been demonstrated via the related experiments. This method can play an instructive role in practice and provide a reference for the related research.

  11. Evaluation of atlas-based auto-segmentation software in prostate cancer patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenham, Stuart, E-mail: stuart.greenham@ncahs.health.nsw.gov.au; Dean, Jenna; Fu, Cheuk Kuen Kenneth

    2014-09-15

    The performance and limitations of an atlas-based auto-segmentation software package (ABAS; Elekta Inc.) was evaluated using male pelvic anatomy as the area of interest. Contours from 10 prostate patients were selected to create atlases in ABAS. The contoured regions of interest were created manually to align with published guidelines and included the prostate, bladder, rectum, femoral heads and external patient contour. Twenty-four clinically treated prostate patients were auto-contoured using a randomised selection of two, four, six, eight or ten atlases. The concordance between the manually drawn and computer-generated contours were evaluated statistically using Pearson's product–moment correlation coefficient (r) and clinicallymore » in a validated qualitative evaluation. In the latter evaluation, six radiation therapists classified the degree of agreement for each structure using seven clinically appropriate categories. The ABAS software generated clinically acceptable contours for the bladder, rectum, femoral heads and external patient contour. For these structures, ABAS-generated volumes were highly correlated with ‘as treated’ volumes, manually drawn; for four atlases, for example, bladder r = 0.988 (P < 0.001), rectum r = 0.739 (P < 0.001) and left femoral head r = 0.560 (P < 0.001). Poorest results were seen for the prostate (r = 0.401, P < 0.05) (four atlases); however this was attributed to the comparison prostate volume being contoured on magnetic resonance imaging (MRI) rather than computed tomography (CT) data. For all structures, increasing the number of atlases did not consistently improve accuracy. ABAS-generated contours are clinically useful for a range of structures in the male pelvis. Clinically appropriate volumes were created, but editing of some contours was inevitably required. The ideal number of atlases to improve generated automatic contours is yet to be determined.« less

  12. Spatially-global integration of closed, fragmented contours by finding the shortest-path in a log-polar representation

    PubMed Central

    Kwon, TaeKyu; Agrawal, Kunal; Li, Yunfeng; Pizlo, Zygmunt

    2015-01-01

    Finding the occluding contours of objects in real 2D retinal images of natural 3D scenes is done by determining, which contour fragments are relevant, and the order in which they should be connected. We developed a model that finds the closed contour represented in the image by solving a shortest path problem that uses a log-polar representation of the image; the kind of representation known to exist in area V1 of the primate cortex. The shortest path in a log-polar representation favors the smooth, convex and closed contours in the retinal image that have the smallest number of gaps. This approach is practical because finding a globally-optimal solution to a shortest path problem is computationally easy. Our model was tested in four psychophysical experiments. In the first two experiments, the subject was presented with a fragmented convex or concave polygon target among a large number of unrelated pieces of contour (distracters). The density of these pieces of contour was uniform all over the screen to minimize spatially-local cues. The orientation of each target contour fragment was randomly perturbed by varying the levels of jitter. Subjects drew a closed contour that represented the target’s contour on a screen. The subjects’ performance was nearly perfect when the jitter-level was low. Their performance deteriorated as jitter-levels were increased. The performance of our model was very similar to our subjects’. In two subsequent experiments, the subject was asked to discriminate a briefly-presented egg-shaped object while maintaining fixation at several different positions relative to the closed contour of the shape. The subject’s discrimination performance was affected by the fixation position in much the same way as the model’s. PMID:26241462

  13. Expert Consensus Contouring Guidelines for Intensity Modulated Radiation Therapy in Esophageal and Gastroesophageal Junction Cancer.

    PubMed

    Wu, Abraham J; Bosch, Walter R; Chang, Daniel T; Hong, Theodore S; Jabbour, Salma K; Kleinberg, Lawrence R; Mamon, Harvey J; Thomas, Charles R; Goodman, Karyn A

    2015-07-15

    Current guidelines for esophageal cancer contouring are derived from traditional 2-dimensional fields based on bony landmarks, and they do not provide sufficient anatomic detail to ensure consistent contouring for more conformal radiation therapy techniques such as intensity modulated radiation therapy (IMRT). Therefore, we convened an expert panel with the specific aim to derive contouring guidelines and generate an atlas for the clinical target volume (CTV) in esophageal or gastroesophageal junction (GEJ) cancer. Eight expert academically based gastrointestinal radiation oncologists participated. Three sample cases were chosen: a GEJ cancer, a distal esophageal cancer, and a mid-upper esophageal cancer. Uniform computed tomographic (CT) simulation datasets and accompanying diagnostic positron emission tomographic/CT images were distributed to each expert, and the expert was instructed to generate gross tumor volume (GTV) and CTV contours for each case. All contours were aggregated and subjected to quantitative analysis to assess the degree of concordance between experts and to generate draft consensus contours. The panel then refined these contours to generate the contouring atlas. The κ statistics indicated substantial agreement between panelists for each of the 3 test cases. A consensus CTV atlas was generated for the 3 test cases, each representing common anatomic presentations of esophageal cancer. The panel agreed on guidelines and principles to facilitate the generalizability of the atlas to individual cases. This expert panel successfully reached agreement on contouring guidelines for esophageal and GEJ IMRT and generated a reference CTV atlas. This atlas will serve as a reference for IMRT contours for clinical practice and prospective trial design. Subsequent patterns of failure analyses of clinical datasets using these guidelines may require modification in the future. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Expert consensus contouring guidelines for IMRT in esophageal and gastroesophageal junction cancer

    PubMed Central

    Wu, Abraham J.; Bosch, Walter R.; Chang, Daniel T.; Hong, Theodore S.; Jabbour, Salma K.; Kleinberg, Lawrence R.; Mamon, Harvey J.; Thomas, Charles R.; Goodman, Karyn A.

    2015-01-01

    Purpose/Objective(s) Current guidelines for esophageal cancer contouring are derived from traditional two-dimensional fields based on bony landmarks, and do not provide sufficient anatomical detail to ensure consistent contouring for more conformal radiotherapy techniques such as intensity-modulated radiation therapy (IMRT). Therefore, we convened an expert panel with the specific aim to derive contouring guidelines and generate an atlas for the clinical target volume (CTV) in esophageal or gastroesophageal junction (GEJ) cancer. Methods and Materials Eight expert academically-based gastrointestinal radiation oncologists participated. Three sample cases were chosen: a GEJ cancer, a distal esophageal cancer, and a mid-upper esophageal cancer. Uniform CT simulation datasets and an accompanying diagnostic PET-CT were distributed to each expert, and he/she was instructed to generate gross tumor volume (GTV) and CTV contours for each case. All contours were aggregated and subjected to quantitative analysis to assess the degree of concordance between experts and generate draft consensus contours. The panel then refined these contours to generate the contouring atlas. Results Kappa statistics indicated substantial agreement between panelists for each of the three test cases. A consensus CTV atlas was generated for the three test cases, each representing common anatomic presentations of esophageal cancer. The panel agreed on guidelines and principles to facilitate the generalizability of the atlas to individual cases. Conclusions This expert panel successfully reached agreement on contouring guidelines for esophageal and GEJ IMRT and generated a reference CTV atlas. This atlas will serve as a reference for IMRT contours for clinical practice and prospective trial design. Subsequent patterns of failure analyses of clinical datasets utilizing these guidelines may require modification in the future. PMID:26104943

  15. Expert Consensus Contouring Guidelines for Intensity Modulated Radiation Therapy in Esophageal and Gastroesophageal Junction Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Abraham J., E-mail: wua@mskcc.org; Bosch, Walter R.; Chang, Daniel T.

    Purpose/Objective(s): Current guidelines for esophageal cancer contouring are derived from traditional 2-dimensional fields based on bony landmarks, and they do not provide sufficient anatomic detail to ensure consistent contouring for more conformal radiation therapy techniques such as intensity modulated radiation therapy (IMRT). Therefore, we convened an expert panel with the specific aim to derive contouring guidelines and generate an atlas for the clinical target volume (CTV) in esophageal or gastroesophageal junction (GEJ) cancer. Methods and Materials: Eight expert academically based gastrointestinal radiation oncologists participated. Three sample cases were chosen: a GEJ cancer, a distal esophageal cancer, and a mid-upper esophagealmore » cancer. Uniform computed tomographic (CT) simulation datasets and accompanying diagnostic positron emission tomographic/CT images were distributed to each expert, and the expert was instructed to generate gross tumor volume (GTV) and CTV contours for each case. All contours were aggregated and subjected to quantitative analysis to assess the degree of concordance between experts and to generate draft consensus contours. The panel then refined these contours to generate the contouring atlas. Results: The κ statistics indicated substantial agreement between panelists for each of the 3 test cases. A consensus CTV atlas was generated for the 3 test cases, each representing common anatomic presentations of esophageal cancer. The panel agreed on guidelines and principles to facilitate the generalizability of the atlas to individual cases. Conclusions: This expert panel successfully reached agreement on contouring guidelines for esophageal and GEJ IMRT and generated a reference CTV atlas. This atlas will serve as a reference for IMRT contours for clinical practice and prospective trial design. Subsequent patterns of failure analyses of clinical datasets using these guidelines may require modification in the future.« less

  16. SU-C-BRB-05: Determining the Adequacy of Auto-Contouring Via Probabilistic Assessment of Ensuing Treatment Plan Metrics in Comparison with Manual Contours

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nourzadeh, H; Watkins, W; Siebers, J

    Purpose: To determine if auto-contour and manual-contour—based plans differ when evaluated with respect to probabilistic coverage metrics and biological model endpoints for prostate IMRT. Methods: Manual and auto-contours were created for 149 CT image sets acquired from 16 unique prostate patients. A single physician manually contoured all images. Auto-contouring was completed utilizing Pinnacle’s Smart Probabilistic Image Contouring Engine (SPICE). For each CT, three different 78 Gy/39 fraction 7-beam IMRT plans are created; PD with drawn ROIs, PAS with auto-contoured ROIs, and PM with auto-contoured OARs with the manually drawn target. For each plan, 1000 virtual treatment simulations with different sampledmore » systematic errors for each simulation and a different sampled random error for each fraction were performed using our in-house GPU-accelerated robustness analyzer tool which reports the statistical probability of achieving dose-volume metrics, NTCP, TCP, and the probability of achieving the optimization criteria for both auto-contoured (AS) and manually drawn (D) ROIs. Metrics are reported for all possible cross-evaluation pairs of ROI types (AS,D) and planning scenarios (PD,PAS,PM). Bhattacharyya coefficient (BC) is calculated to measure the PDF similarities for the dose-volume metric, NTCP, TCP, and objectives with respect to the manually drawn contour evaluated on base plan (D-PD). Results: We observe high BC values (BC≥0.94) for all OAR objectives. BC values of max dose objective on CTV also signify high resemblance (BC≥0.93) between the distributions. On the other hand, BC values for CTV’s D95 and Dmin objectives are small for AS-PM, AS-PD. NTCP distributions are similar across all evaluation pairs, while TCP distributions of AS-PM, AS-PD sustain variations up to %6 compared to other evaluated pairs. Conclusion: No significant probabilistic differences are observed in the metrics when auto-contoured OARs are used. The prostate auto-contour needs improvement to achieve clinically equivalent plans.« less

  17. Contour propagation for lung tumor delineation in 4D-CT using tensor-product surface of uniform and non-uniform closed cubic B-splines

    NASA Astrophysics Data System (ADS)

    Jin, Renchao; Liu, Yongchuan; Chen, Mi; Zhang, Sheng; Song, Enmin

    2018-01-01

    A robust contour propagation method is proposed to help physicians delineate lung tumors on all phase images of four-dimensional computed tomography (4D-CT) by only manually delineating the contours on a reference phase. The proposed method models the trajectory surface swept by a contour in a respiratory cycle as a tensor-product surface of two closed cubic B-spline curves: a non-uniform B-spline curve which models the contour and a uniform B-spline curve which models the trajectory of a point on the contour. The surface is treated as a deformable entity, and is optimized from an initial surface by moving its control vertices such that the sum of the intensity similarities between the sampling points on the manually delineated contour and their corresponding ones on different phases is maximized. The initial surface is constructed by fitting the manually delineated contour on the reference phase with a closed B-spline curve. In this way, the proposed method can focus the registration on the contour instead of the entire image to prevent the deformation of the contour from being smoothed by its surrounding tissues, and greatly reduce the time consumption while keeping the accuracy of the contour propagation as well as the temporal consistency of the estimated respiratory motions across all phases in 4D-CT. Eighteen 4D-CT cases with 235 gross tumor volume (GTV) contours on the maximal inhale phase and 209 GTV contours on the maximal exhale phase are manually delineated slice by slice. The maximal inhale phase is used as the reference phase, which provides the initial contours. On the maximal exhale phase, the Jaccard similarity coefficient between the propagated GTV and the manually delineated GTV is 0.881 +/- 0.026, and the Hausdorff distance is 3.07 +/- 1.08 mm. The time for propagating the GTV to all phases is 5.55 +/- 6.21 min. The results are better than those of the fast adaptive stochastic gradient descent B-spline method, the 3D  +  t B-spline method and the diffeomorphic demons method. The proposed method is useful for helping physicians delineate target volumes efficiently and accurately.

  18. Evaluation of hematocrit interference with MyStar extra and seven competitive devices.

    PubMed

    Demircik, Filiz; Ramljak, Sanja; Hermanns, Iris; Pfützner, Anke; Pfützner, Andreas

    2015-03-01

    In previous studies, meters employing dynamic electrochemistry (DE), have been shown to correct for hematocrit (HCT) interference. This laboratory investigation assessed the HCT stability of MyStar Extra (Sanofi) in comparison to 7 competitive devices (Accu-Chek Aviva Nano & Accu-Chek Performa, Roche Diagnostics; Contour XT and Contour Link, Bayer; FreeStyle Freedom Lite, Abbott; MyLife Pura, Ypsomed; OneTouch Verio Pro, LifeScan). Venous heparinized blood was freshly drawn, immediately aliquoted, and manipulated to contain 3 different blood glucose concentrations (50-80 mg/dL, 150-180 mg/dL, and 350-400 mg/dL) and 5 different HCT levels (20-25%, 30-35%, 40-45%, 50-55%, and 60-65%). After careful oxygenation to normal blood oxygen pressure, each of the 15 different samples was measured 8 times with 2 devices and 2 strip lots of each meter (32 measurements/meter/sample). YSI Stat 2300 served as laboratory reference method. Next to determination of the mean absolute relative deviation (MARD), stability to HCT influence was assumed, when less than 10% difference occurred between the highest and lowest mean glucose deviations in relation to HCT over all tested glucose ranges (HIF: hematocrit interference factor). Four of the devices showed stable performance: Contour XT (MARD: 1.3%/HIF: 6.1%), MyStar Extra (4.7%/7.1%), OneTouch Verio Pro (4.5%/7.3%), and Contour Link (6.3%/9.3%). The 4 other meters were influenced by HCT (Accu-Chek Performa: 4.7%/20.9%, Accu-Chek Aviva Nano: 4.5%/22.4%, FreeStyle Freedom Lite: 4.8%/24.5%; MyLife Pura: 6.4%/28.7%). In this study, all meters showed a good accuracy, but only 50% of them, including MyStar Extra, were shown to reliably correct for potential hematocrit influence on the meter results. © 2014 Diabetes Technology Society.

  19. Evaluation of Hematocrit Interference With MyStar Extra and Seven Competitive Devices

    PubMed Central

    Demircik, Filiz; Ramljak, Sanja; Hermanns, Iris; Pfützner, Anke; Pfützner, Andreas

    2014-01-01

    Background: In previous studies, meters employing dynamic electrochemistry (DE), have been shown to correct for hematocrit (HCT) interference. This laboratory investigation assessed the HCT stability of MyStar Extra (Sanofi) in comparison to 7 competitive devices (Accu-Chek Aviva Nano & Accu-Chek Performa, Roche Diagnostics; Contour XT and Contour Link, Bayer; FreeStyle Freedom Lite, Abbott; MyLife Pura, Ypsomed; OneTouch Verio Pro, LifeScan). Method: Venous heparinized blood was freshly drawn, immediately aliquoted, and manipulated to contain 3 different blood glucose concentrations (50-80 mg/dL, 150-180 mg/dL, and 350-400 mg/dL) and 5 different HCT levels (20-25%, 30-35%, 40-45%, 50-55%, and 60-65%). After careful oxygenation to normal blood oxygen pressure, each of the 15 different samples was measured 8 times with 2 devices and 2 strip lots of each meter (32 measurements/meter/sample). YSI Stat 2300 served as laboratory reference method. Next to determination of the mean absolute relative deviation (MARD), stability to HCT influence was assumed, when less than 10% difference occurred between the highest and lowest mean glucose deviations in relation to HCT over all tested glucose ranges (HIF: hematocrit interference factor). Results: Four of the devices showed stable performance: Contour XT (MARD: 1.3%/HIF: 6.1%), MyStar Extra (4.7%/7.1%), OneTouch Verio Pro (4.5%/7.3%), and Contour Link (6.3%/9.3%). The 4 other meters were influenced by HCT (Accu-Chek Performa: 4.7%/20.9%, Accu-Chek Aviva Nano: 4.5%/22.4%, FreeStyle Freedom Lite: 4.8%/24.5%; MyLife Pura: 6.4%/28.7%). Conclusions: In this study, all meters showed a good accuracy, but only 50% of them, including MyStar Extra, were shown to reliably correct for potential hematocrit influence on the meter results. PMID:25549636

  20. Fully automatic region of interest selection in glomerular filtration rate estimation from 99mTc-DTPA renogram.

    PubMed

    Lin, Kun-Ju; Huang, Jia-Yann; Chen, Yung-Sheng

    2011-12-01

    Glomerular filtration rate (GFR) is a common accepted standard estimation of renal function. Gamma camera-based methods for estimating renal uptake of (99m)Tc-diethylenetriaminepentaacetic acid (DTPA) without blood or urine sampling have been widely used. Of these, the method introduced by Gates has been the most common method. Currently, most of gamma cameras are equipped with a commercial program for GFR determination, a semi-quantitative analysis by manually drawing region of interest (ROI) over each kidney. Then, the GFR value can be computed from the scintigraphic determination of (99m)Tc-DTPA uptake within the kidney automatically. Delineating the kidney area is difficult when applying a fixed threshold value. Moreover, hand-drawn ROIs are tedious, time consuming, and dependent highly on operator skill. Thus, we developed a fully automatic renal ROI estimation system based on the temporal changes in intensity counts, intensity-pair distribution image contrast enhancement method, adaptive thresholding, and morphological operations that can locate the kidney area and obtain the GFR value from a (99m)Tc-DTPA renogram. To evaluate the performance of the proposed approach, 30 clinical dynamic renograms were introduced. The fully automatic approach failed in one patient with very poor renal function. Four patients had a unilateral kidney, and the others had bilateral kidneys. The automatic contours from the remaining 54 kidneys were compared with the contours of manual drawing. The 54 kidneys were included for area error and boundary error analyses. There was high correlation between two physicians' manual contours and the contours obtained by our approach. For area error analysis, the mean true positive area overlap is 91%, the mean false negative is 13.4%, and the mean false positive is 9.3%. The boundary error is 1.6 pixels. The GFR calculated using this automatic computer-aided approach is reproducible and may be applied to help nuclear medicine physicians in clinical practice.

  1. Experience-dependent enhancement of pitch-specific responses in the auditory cortex is limited to acceleration rates in normal voice range

    PubMed Central

    Krishnan, Ananthanarayan; Gandour, Jackson T.; Suresh, Chandan H.

    2015-01-01

    The aim of this study is to determine how pitch acceleration rates within and outside the normal pitch range may influence latency and amplitude of cortical pitch-specific responses (CPR) as a function of language experience (Chinese, English). Responses were elicited from a set of four pitch stimuli chosen to represent a range of acceleration rates (two each inside and outside the normal voice range) imposed on the high rising Mandarin Tone 2. Pitch-relevant neural activity, as reflected in the latency and amplitude of scalp-recorded CPR components, varied depending on language-experience and pitch acceleration of dynamic, time-varying pitch contours. Peak latencies of CPR components were shorter in the Chinese than the English group across stimuli. Chinese participants showed greater amplitude than English for CPR components at both frontocentral and temporal electrode sites in response to pitch contours with acceleration rates inside the normal voice pitch range as compared to pitch contours with acceleration rates that exceed the normal range. As indexed by CPR amplitude at the temporal sites, a rightward asymmetry was observed for the Chinese group only. Only over the right temporal site was amplitude greater in the Chinese group relative to the English. These findings may suggest that the neural mechanism(s) underlying processing of pitch in the right auditory cortex reflect experience-dependent modulation of sensitivity to acceleration in just those rising pitch contours that fall within the bounds of one’s native language. More broadly, enhancement of native pitch stimuli and stronger rightward asymmetry of CPR components in the Chinese group is consistent with the notion that long-term experience shapes adaptive, distributed hierarchical pitch processing in the auditory cortex, and reflects an interaction with higher-order, extrasensory processes beyond the sensory memory trace. PMID:26166727

  2. A variational approach to multi-phase motion of gas, liquid and solid based on the level set method

    NASA Astrophysics Data System (ADS)

    Yokoi, Kensuke

    2009-07-01

    We propose a simple and robust numerical algorithm to deal with multi-phase motion of gas, liquid and solid based on the level set method [S. Osher, J.A. Sethian, Front propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulation, J. Comput. Phys. 79 (1988) 12; M. Sussman, P. Smereka, S. Osher, A level set approach for capturing solution to incompressible two-phase flow, J. Comput. Phys. 114 (1994) 146; J.A. Sethian, Level Set Methods and Fast Marching Methods, Cambridge University Press, 1999; S. Osher, R. Fedkiw, Level Set Methods and Dynamics Implicit Surface, Applied Mathematical Sciences, vol. 153, Springer, 2003]. In Eulerian framework, to simulate interaction between a moving solid object and an interfacial flow, we need to define at least two functions (level set functions) to distinguish three materials. In such simulations, in general two functions overlap and/or disagree due to numerical errors such as numerical diffusion. In this paper, we resolved the problem using the idea of the active contour model [M. Kass, A. Witkin, D. Terzopoulos, Snakes: active contour models, International Journal of Computer Vision 1 (1988) 321; V. Caselles, R. Kimmel, G. Sapiro, Geodesic active contours, International Journal of Computer Vision 22 (1997) 61; G. Sapiro, Geometric Partial Differential Equations and Image Analysis, Cambridge University Press, 2001; R. Kimmel, Numerical Geometry of Images: Theory, Algorithms, and Applications, Springer-Verlag, 2003] introduced in the field of image processing.

  3. CMOS image sensor with contour enhancement

    NASA Astrophysics Data System (ADS)

    Meng, Liya; Lai, Xiaofeng; Chen, Kun; Yuan, Xianghui

    2010-10-01

    Imitating the signal acquisition and processing of vertebrate retina, a CMOS image sensor with bionic pre-processing circuit is designed. Integration of signal-process circuit on-chip can reduce the requirement of bandwidth and precision of the subsequent interface circuit, and simplify the design of the computer-vision system. This signal pre-processing circuit consists of adaptive photoreceptor, spatial filtering resistive network and Op-Amp calculation circuit. The adaptive photoreceptor unit with a dynamic range of approximately 100 dB has a good self-adaptability for the transient changes in light intensity instead of intensity level itself. Spatial low-pass filtering resistive network used to mimic the function of horizontal cell, is composed of the horizontal resistor (HRES) circuit and OTA (Operational Transconductance Amplifier) circuit. HRES circuit, imitating dendrite of the neuron cell, comprises of two series MOS transistors operated in weak inversion region. Appending two diode-connected n-channel transistors to a simple transconductance amplifier forms the OTA Op-Amp circuit, which provides stable bias voltage for the gate of MOS transistors in HRES circuit, while serves as an OTA voltage follower to provide input voltage for the network nodes. The Op-Amp calculation circuit with a simple two-stage Op-Amp achieves the image contour enhancing. By adjusting the bias voltage of the resistive network, the smoothing effect can be tuned to change the effect of image's contour enhancement. Simulations of cell circuit and 16×16 2D circuit array are implemented using CSMC 0.5μm DPTM CMOS process.

  4. High resolution extremity CT for biomechanics modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashby, A.E.; Brand, H.; Hollerbach, K.

    1995-09-23

    With the advent of ever more powerful computing and finite element analysis (FEA) capabilities, the bone and joint geometry detail available from either commercial surface definitions or from medical CT scans is inadequate. For dynamic FEA modeling of joints, precise articular contours are necessary to get appropriate contact definition. In this project, a fresh cadaver extremity was suspended in parafin in a lucite cylinder and then scanned with an industrial CT system to generate a high resolution data set for use in biomechanics modeling.

  5. 2008 Program of Study: Perspectives and Challenges in GFD (Geophysical Fluid Dynamics)

    DTIC Science & Technology

    2009-03-01

    half of the complex k- plane , and Φ− is similarly well defined in the lower half of 338 PSfrag replacements Im k Re k−i +i Figure 2: Branch cuts in...domains ⊕ and , which include, respectively, the upper and lower half k- planes . The full Fourier transform of φ (and of h, d, etc.) is then well defined in...contour at infinity in the lower half k- plane ; the solution will only contain waves arising from poles located in the

  6. System and Method for Measuring Skin Movement and Strain and Related Techniques

    NASA Technical Reports Server (NTRS)

    Newman, Dava J. (Inventor); Wessendorf, Ashley M. (Inventor)

    2015-01-01

    Described herein are systems and techniques for a motion capture system and a three-dimensional (3D) tracking system used to record body position and/or movements/motions and using the data to measure skin strain (a strain field) all along the body while a joint is in motion (dynamic) as well as in a fixed position (static). The data and technique can be used to quantify strains, calculate 3D contours, and derive patterns believed to reveal skin's properties during natural motions.

  7. Remote-Sensing Survey of the Bayou Labranche Wetlands Restoration Borrow Area, St. Charles Parish, Louisiana

    DTIC Science & Technology

    1993-03-01

    55 17. Magnetic contour and survey data collected at Target 1 ............................ 56 18... Magnetic contour and survey data collected at Target 3 ............................ 58 19. Magnetic contour and survey data collected at Target 4...59 20. Magnetic contour and survey data collected at Target 5 ............................ 60 ’ iii LIST OF TABLES 1. South

  8. 27 CFR 9.179 - Southern Oregon.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... approximately 0.5 miles to the 1,000-foot contour line; then (2) Proceed northwest along the 1,000-foot contour... approximately 8 miles to its intersection with the 1,000-foot contour line; then in a southeasterly direction in... approximately 0.33 mile, rejoining the 1,000-foot contour line; then in a northerly and eventually a southerly...

  9. 27 CFR 9.179 - Southern Oregon.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... approximately 0.5 miles to the 1,000-foot contour line; then (2) Proceed northwest along the 1,000-foot contour... approximately 8 miles to its intersection with the 1,000-foot contour line; then in a southeasterly direction in... approximately 0.33 mile, rejoining the 1,000-foot contour line; then in a northerly and eventually a southerly...

  10. 27 CFR 9.179 - Southern Oregon.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... approximately 0.5 miles to the 1,000-foot contour line; then (2) Proceed northwest along the 1,000-foot contour... approximately 8 miles to its intersection with the 1,000-foot contour line; then in a southeasterly direction in... approximately 0.33 mile, rejoining the 1,000-foot contour line; then in a northerly and eventually a southerly...

  11. Distributed Contour Trees

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morozov, Dmitriy; Weber, Gunther H.

    2014-03-31

    Topological techniques provide robust tools for data analysis. They are used, for example, for feature extraction, for data de-noising, and for comparison of data sets. This chapter concerns contour trees, a topological descriptor that records the connectivity of the isosurfaces of scalar functions. These trees are fundamental to analysis and visualization of physical phenomena modeled by real-valued measurements. We study the parallel analysis of contour trees. After describing a particular representation of a contour tree, called local{global representation, we illustrate how di erent problems that rely on contour trees can be solved in parallel with minimal communication.

  12. Intraocular pressure measurements after conductive keratoplasty.

    PubMed

    Kymionis, George D; Naoumidi, Tatiana L; Aslanides, Ioannis M; Kumar, Vinod; Astyrakakis, Nikolaos I; Tsilimbaris, Miltiadis; Pallikaris, Ioannis G

    2005-01-01

    To determine the possible impact of conductive keratoplasty (CK) on intraocular pressure (IOP) measurements. A prospective, single-center, noncomparative interventional case series was performed. Baseline and postoperative IOPs were measured by Goldmann applanation tonometry in 32 eyes of 18 patients who underwent CK for hyperopia correction. Mean follow-up was 11.9 months (range: 8 to 18 months). After CK, a statistically significant decrease in the measured IOP was observed (before CK: 14.22+/-1.64 vs after CK: 12.66+/-2.21, P<.001). The change in IOP readings postoperatively was not correlated with age, sex, keratometric readings, or attempted correction. Despite the limitations due to the small number of patients enrolled in this study, the applanation tonometer appears to underestimate the true IOP after CK.

  13. Pelvic Normal Tissue Contouring Guidelines for Radiation Therapy: A Radiation Therapy Oncology Group Consensus Panel Atlas

    PubMed Central

    Gay, Hiram A.; Barthold, H. Joseph; O’Meara, Elizabeth; Bosch, Walter R.; El Naqa, Issam; Al-Lozi, Rawan; Rosenthal, Seth A.; Lawton, Colleen; Lee, W. Robert; Sandler, Howard; Zietman, Anthony; Myerson, Robert; Dawson, Laura A.; Willett, Christopher; Kachnic, Lisa A.; Jhingran, Anuja; Portelance, Lorraine; Ryu, Janice; Small, William; Gaffney, David; Viswanathan, Akila N.; Michalski, Jeff M.

    2012-01-01

    Purpose To define a male and female pelvic normal tissue contouring atlas for Radiation Therapy Oncology Group (RTOG) trials. Methods and Materials One male pelvis computed tomography (CT) data set and one female pelvis CT data set were shared via the Image-Guided Therapy QA Center. A total of 16 radiation oncologists participated. The following organs at risk were contoured in both CT sets: anus, anorectum, rectum (gastrointestinal and genitourinary definitions), bowel NOS (not otherwise specified), small bowel, large bowel, and proximal femurs. The following were contoured in the male set only: bladder, prostate, seminal vesicles, and penile bulb. The following were contoured in the female set only: uterus, cervix, and ovaries. A computer program used the binomial distribution to generate 95% group consensus contours. These contours and definitions were then reviewed by the group and modified. Results The panel achieved consensus definitions for pelvic normal tissue contouring in RTOG trials with these standardized names: Rectum, AnoRectum, SmallBowel, Colon, BowelBag, Bladder, UteroCervix, Adnexa_R, Adnexa_L, Prostate, SeminalVesc, PenileBulb, Femur_R, and Femur_L. Two additional normal structures whose purpose is to serve as targets in anal and rectal cancer were defined: AnoRectumSig and Mesorectum. Detailed target volume contouring guidelines and images are discussed. Conclusions Consensus guidelines for pelvic normal tissue contouring were reached and are available as a CT image atlas on the RTOG Web site. This will allow uniformity in defining normal tissues for clinical trials delivering pelvic radiation and will facilitate future normal tissue complication research. PMID:22483697

  14. Speech intonation and melodic contour recognition in children with cochlear implants and with normal hearing.

    PubMed

    See, Rachel L; Driscoll, Virginia D; Gfeller, Kate; Kliethermes, Stephanie; Oleson, Jacob

    2013-04-01

    Cochlear implant (CI) users have difficulty perceiving some intonation cues in speech and melodic contours because of poor frequency selectivity in the cochlear implant signal. To assess perceptual accuracy of normal hearing (NH) children and pediatric CI users on speech intonation (prosody), melodic contour, and pitch ranking, and to determine potential predictors of outcomes. Does perceptual accuracy for speech intonation or melodic contour differ as a function of auditory status (NH, CI), perceptual category (falling versus rising intonation/contour), pitch perception, or individual differences (e.g., age, hearing history)? NH and CI groups were tested on recognition of falling intonation/contour versus rising intonation/contour presented in both spoken and melodic (sung) conditions. Pitch ranking was also tested. Outcomes were correlated with variables of age, hearing history, HINT, and CNC scores. The CI group was significantly less accurate than the NH group in spoken (CI, M = 63.1%; NH, M = 82.1%) and melodic (CI, M = 61.6%; NH, M = 84.2%) conditions. The CI group was more accurate in recognizing rising contour in the melodic condition compared with rising intonation in the spoken condition. Pitch ranking was a significant predictor of outcome for both groups in falling intonation and rising melodic contour; age at testing and hearing history variables were not predictive of outcomes. Children with CIs were less accurate than NH children in perception of speech intonation, melodic contour, and pitch ranking. However, the larger pitch excursions of the melodic condition may assist in recognition of the rising inflection associated with the interrogative form.

  15. Speech Intonation and Melodic Contour Recognition in Children with Cochlear Implants and with Normal Hearing

    PubMed Central

    See, Rachel L.; Driscoll, Virginia D.; Gfeller, Kate; Kliethermes, Stephanie; Oleson, Jacob

    2013-01-01

    Background Cochlear implant (CI) users have difficulty perceiving some intonation cues in speech and melodic contours because of poor frequency selectivity in the cochlear implant signal. Objectives To assess perceptual accuracy of normal hearing (NH) children and pediatric CI users on speech intonation (prosody), melodic contour, and pitch ranking, and to determine potential predictors of outcomes. Hypothesis Does perceptual accuracy for speech intonation or melodic contour differ as a function of auditory status (NH, CI), perceptual category (falling vs. rising intonation/contour), pitch perception, or individual differences (e.g., age, hearing history)? Method NH and CI groups were tested on recognition of falling intonation/contour vs. rising intonation/contour presented in both spoken and melodic (sung) conditions. Pitch ranking was also tested. Outcomes were correlated with variables of age, hearing history, HINT, and CNC scores. Results The CI group was significantly less accurate than the NH group in spoken (CI, M=63.1 %; NH, M=82.1%) and melodic (CI, M=61.6%; NH, M=84.2%) conditions. The CI group was more accurate in recognizing rising contour in the melodic condition compared with rising intonation in the spoken condition. Pitch ranking was a significant predictor of outcome for both groups in falling intonation and rising melodic contour; age at testing and hearing history variables were not predictive of outcomes. Conclusions Children with CIs were less accurate than NH children in perception of speech intonation, melodic contour, and pitch ranking. However, the larger pitch excursions of the melodic condition may assist in recognition of the rising inflection associated with the interrogative form. PMID:23442568

  16. Differential contribution of early visual areas to the perceptual process of contour processing.

    PubMed

    Schira, Mark M; Fahle, Manfred; Donner, Tobias H; Kraft, Antje; Brandt, Stephan A

    2004-04-01

    We investigated contour processing and figure-ground detection within human retinotopic areas using event-related functional magnetic resonance imaging (fMRI) in 6 healthy and naïve subjects. A figure (6 degrees side length) was created by a 2nd-order texture contour. An independent and demanding foveal letter-discrimination task prevented subjects from noticing this more peripheral contour stimulus. The contour subdivided our stimulus into a figure and a ground. Using localizers and retinotopic mapping stimuli we were able to subdivide each early visual area into 3 eccentricity regions corresponding to 1) the central figure, 2) the area along the contour, and 3) the background. In these subregions we investigated the hemodynamic responses to our stimuli and compared responses with or without the contour defining the figure. No contour-related blood oxygenation level-dependent modulation in early visual areas V1, V3, VP, and MT+ was found. Significant signal modulation in the contour subregions of V2v, V2d, V3a, and LO occurred. This activation pattern was different from comparable studies, which might be attributable to the letter-discrimination task reducing confounding attentional modulation. In V3a, but not in any other retinotopic area, signal modulation corresponding to the central figure could be detected. Such contextual modulation will be discussed in light of the recurrent processing hypothesis and the role of visual awareness.

  17. Details of Side Load Test Data and Analysis for a Truncated Ideal Contour Nozzle and a Parabolic Contour Nozzle

    NASA Technical Reports Server (NTRS)

    Ruf, Joseph H.; McDaniels, David M.; Brown, Andrew M.

    2010-01-01

    Two cold flow subscale nozzles were tested for side load characteristics during simulated nozzle start transients. The two test article contours were a truncated ideal and a parabolic. The current paper is an extension of a 2009 AIAA JPC paper on the test results for the same two nozzle test articles. The side load moments were measured with the strain tube approach in MSFC s Nozzle Test Facility. The processing techniques implemented to convert the strain gage signals into side load moment data are explained. Nozzle wall pressure profiles for separated nozzle flow at many NPRs are presented and discussed in detail. The effect of the test cell diffuser inlet on the parabolic nozzle s wall pressure profiles for separated flow is shown. The maximum measured side load moments for the two contours are compared. The truncated ideal contour s peak side load moment was 45% of that of the parabolic contour. The calculated side load moments, via mean-plus-three-standard-deviations at each nozzle pressure ratio, reproduced the characteristics and absolute values of measured maximums for both contours. The effect of facility vibration on the measured side load moments is quantified and the effect on uncertainty is calculated. The nozzle contour designs are discussed and the impact of a minor fabrication flaw in the nozzle contours is explained.

  18. Ups and Downs in Auditory Development: Preschoolers' Sensitivity to Pitch Contour and Timbre.

    PubMed

    Creel, Sarah C

    2016-03-01

    Much research has explored developing sound representations in language, but less work addresses developing representations of other sound patterns. This study examined preschool children's musical representations using two different tasks: discrimination and sound-picture association. Melodic contour--a musically relevant property--and instrumental timbre, which is (arguably) less musically relevant, were tested. In Experiment 1, children failed to associate cartoon characters to melodies with maximally different pitch contours, with no advantage for melody preexposure. Experiment 2 also used different-contour melodies and found good discrimination, whereas association was at chance. Experiment 3 replicated Experiment 2, but with a large timbre change instead of a contour change. Here, discrimination and association were both excellent. Preschool-aged children may have stronger or more durable representations of timbre than contour, particularly in more difficult tasks. Reasons for weaker association of contour than timbre information are discussed, along with implications for auditory development. Copyright © 2015 Cognitive Science Society, Inc.

  19. Isolating contour information from arbitrary images

    NASA Technical Reports Server (NTRS)

    Jobson, Daniel J.

    1989-01-01

    Aspects of natural vision (physiological and perceptual) serve as a basis for attempting the development of a general processing scheme for contour extraction. Contour information is assumed to be central to visual recognition skills. While the scheme must be regarded as highly preliminary, initial results do compare favorably with the visual perception of structure. The scheme pays special attention to the construction of a smallest scale circular difference-of-Gaussian (DOG) convolution, calibration of multiscale edge detection thresholds with the visual perception of grayscale boundaries, and contour/texture discrimination methods derived from fundamental assumptions of connectivity and the characteristics of printed text. Contour information is required to fall between a minimum connectivity limit and maximum regional spatial density limit at each scale. Results support the idea that contour information, in images possessing good image quality, is (centered at about 10 cyc/deg and 30 cyc/deg). Further, lower spatial frequency channels appear to play a major role only in contour extraction from images with serious global image defects.

  20. Automated contouring error detection based on supervised geometric attribute distribution models for radiation therapy: A general strategy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Hsin-Chen; Tan, Jun; Dolly, Steven

    2015-02-15

    Purpose: One of the most critical steps in radiation therapy treatment is accurate tumor and critical organ-at-risk (OAR) contouring. Both manual and automated contouring processes are prone to errors and to a large degree of inter- and intraobserver variability. These are often due to the limitations of imaging techniques in visualizing human anatomy as well as to inherent anatomical variability among individuals. Physicians/physicists have to reverify all the radiation therapy contours of every patient before using them for treatment planning, which is tedious, laborious, and still not an error-free process. In this study, the authors developed a general strategy basedmore » on novel geometric attribute distribution (GAD) models to automatically detect radiation therapy OAR contouring errors and facilitate the current clinical workflow. Methods: Considering the radiation therapy structures’ geometric attributes (centroid, volume, and shape), the spatial relationship of neighboring structures, as well as anatomical similarity of individual contours among patients, the authors established GAD models to characterize the interstructural centroid and volume variations, and the intrastructural shape variations of each individual structure. The GAD models are scalable and deformable, and constrained by their respective principal attribute variations calculated from training sets with verified OAR contours. A new iterative weighted GAD model-fitting algorithm was developed for contouring error detection. Receiver operating characteristic (ROC) analysis was employed in a unique way to optimize the model parameters to satisfy clinical requirements. A total of forty-four head-and-neck patient cases, each of which includes nine critical OAR contours, were utilized to demonstrate the proposed strategy. Twenty-nine out of these forty-four patient cases were utilized to train the inter- and intrastructural GAD models. These training data and the remaining fifteen testing data sets were separately employed to test the effectiveness of the proposed contouring error detection strategy. Results: An evaluation tool was implemented to illustrate how the proposed strategy automatically detects the radiation therapy contouring errors for a given patient and provides 3D graphical visualization of error detection results as well. The contouring error detection results were achieved with an average sensitivity of 0.954/0.906 and an average specificity of 0.901/0.909 on the centroid/volume related contouring errors of all the tested samples. As for the detection results on structural shape related contouring errors, an average sensitivity of 0.816 and an average specificity of 0.94 on all the tested samples were obtained. The promising results indicated the feasibility of the proposed strategy for the detection of contouring errors with low false detection rate. Conclusions: The proposed strategy can reliably identify contouring errors based upon inter- and intrastructural constraints derived from clinically approved contours. It holds great potential for improving the radiation therapy workflow. ROC and box plot analyses allow for analytically tuning of the system parameters to satisfy clinical requirements. Future work will focus on the improvement of strategy reliability by utilizing more training sets and additional geometric attribute constraints.« less

  1. GPC: General Polygon Clipper library

    NASA Astrophysics Data System (ADS)

    Murta, Alan

    2015-12-01

    The University of Manchester GPC library is a flexible and highly robust polygon set operations library for use with C, C#, Delphi, Java, Perl, Python, Haskell, Lua, VB.Net and other applications. It supports difference, intersection, exclusive-or and union clip operations, and polygons may be comprised of multiple disjoint contours. Contour vertices may be given in any order - clockwise or anticlockwise, and contours may be convex, concave or self-intersecting, and may be nested (i.e. polygons may have holes). Output may take the form of either polygon contours or tristrips, and hole and external contours are differentiated in the result.

  2. Biopolymer dynamics driven by helical flagella

    NASA Astrophysics Data System (ADS)

    Balin, Andrew K.; Zöttl, Andreas; Yeomans, Julia M.; Shendruk, Tyler N.

    2017-11-01

    Microbial flagellates typically inhabit complex suspensions of polymeric material which can impact the swimming speed of motile microbes, filter feeding of sessile cells, and the generation of biofilms. There is currently a need to better understand how the fundamental dynamics of polymers near active cells or flagella impacts these various phenomena, in particular, the hydrodynamic and steric influence of a rotating helical filament on suspended polymers. Our Stokesian dynamics simulations show that as a stationary rotating helix pumps fluid along its long axis, polymers migrate radially inward while being elongated. We observe that the actuation of the helix tends to increase the probability of finding polymeric material within its pervaded volume. This accumulation of polymers within the vicinity of the helix is stronger for longer polymers. We further analyze the stochastic work performed by the helix on the polymers and show that this quantity is positive on average and increases with polymer contour length.

  3. 50 CFR 660.393 - Latitude/longitude coordinates defining the 100 fm (183 m) through 150 fm (274 m) depth contours.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... the 100 fm (183 m) through 150 fm (274 m) depth contours. 660.393 Section 660.393 Wildlife and... Latitude/longitude coordinates defining the 100 fm (183 m) through 150 fm (274 m) depth contours... section provides coordinates for the 100 fm (183 m) through 150 fm (274 m) depth contours. (a) The 100-fm...

  4. 50 CFR 660.394 - Latitude/longitude coordinates defining the 180 fm (329 m) through 250 fm (457 m) depth contours.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... the 180 fm (329 m) through 250 fm (457 m) depth contours. 660.394 Section 660.394 Wildlife and... Latitude/longitude coordinates defining the 180 fm (329 m) through 250 fm (457 m) depth contours... section provides coordinates for the 180 fm (329 m) through 250 fm (457 m) depth contours. (a) The 180-fm...

  5. SU-F-J-161: Prostate Contouring in Patients with Bilateral Hip Prostheses: Impact of Using Artifact-Reduced CT Images and MRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elzibak, A; Loblaw, A; Morton, G

    Purpose: To investigate the usefulness of metal artifact reduction in CT images of patients with bilateral hip prostheses (BHP) for contouring the prostate and determine if the inclusion of MR images provides additional benefits. Methods: Five patients with BHP were CT scanned using our clinical protocol (140kV, 300mAs, 3mm slices, 1.5mm increment, Philips Medical Systems, OH). Images were reconstructed with the orthopaedic metal artifact reduction (O-MAR) algorithm. MRI scanning was then performed (1.5T, GE Healthcare, WI) with a flat table-top (T{sub 2}-weighted, inherent body coil, FRFSE, 3mm slices with 0mm gap). All images were transferred to Pinnacle (Version 9.2, Philipsmore » Medical Systems). For each patient, two data sets were produced: one containing the O-MAR-corrected CT images and another containing fused MRI and O-MAR-corrected CT images. Four genito-urinary radiation oncologists contoured the prostate of each patient on the O-MAR-corrected CT data. Two weeks later, they contoured the prostate on the fused data set, blinded to all other contours. During each contouring session, the oncologists reported their confidence in the contours (1=very confident, 3=not confident) and the contouring difficulty that they experienced (1=really easy, 4=very challenging). Prostate volumes were computed from the contours and the conformity index was used to evaluate inter-observer variability. Results: Larger prostate volumes were found on the O-MAR-corrected CT set than on the fused set (p< 0.05, median=36.9cm{sup 3} vs. 26.63 cm{sup 3}). No significant differences were noted in the inter-observer variability between the two data sets (p=0.3). Contouring difficulty decreased with the addition of MRI (p<0.05) while the radiation oncologists reported more confidence in their contours when MRI was fused with the O-MAR-corrected CT data (p<0.05). Conclusion: This preliminary work demonstrated that, while O-MAR correction to CT images improves visualization of anatomy, the addition of MRI enhanced the oncologists’ confidence in contouring the prostate in patients with BHP.« less

  6. Comparison of [{sup 11}C]choline Positron Emission Tomography With T2- and Diffusion-Weighted Magnetic Resonance Imaging for Delineating Malignant Intraprostatic Lesions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Joe H.; University of Melbourne, Victoria; Lim Joon, Daryl

    2015-06-01

    Purpose: The purpose of this study was to compare the accuracy of [{sup 11}C]choline positron emission tomography (CHOL-PET) with that of the combination of T2-weighted and diffusion-weighted (T2W/DW) magnetic resonance imaging (MRI) for delineating malignant intraprostatic lesions (IPLs) for guiding focal therapies and to investigate factors predicting the accuracy of CHOL-PET. Methods and Materials: This study included 21 patients who underwent CHOL-PET and T2W/DW MRI prior to radical prostatectomy. Two observers manually delineated IPL contours for each scan, and automatic IPL contours were generated on CHOL-PET based on varying proportions of the maximum standardized uptake value (SUV). IPLs identified onmore » prostatectomy specimens defined reference standard contours. The imaging-based contours were compared with the reference standard contours using Dice similarity coefficient (DSC), and sensitivity and specificity values. Factors that could potentially predict the DSC of the best contouring method were analyzed using linear models. Results: The best automatic contouring method, 60% of the maximum SUV (SUV{sub 60}) , had similar correlations (DSC: 0.59) with the manual PET contours (DSC: 0.52, P=.127) and significantly better correlations than the manual MRI contours (DSC: 0.37, P<.001). The sensitivity and specificity values were 72% and 71% for SUV{sub 60}; 53% and 86% for PET manual contouring; and 28% and 92% for MRI manual contouring. The tumor volume and transition zone pattern could independently predict the accuracy of CHOL-PET. Conclusions: CHOL-PET is superior to the combination of T2W/DW MRI for delineating IPLs. The accuracy of CHOL-PET is insufficient for gland-sparing focal therapies but may be accurate enough for focal boost therapies. The transition zone pattern is a new classification that may predict how well CHOL-PET delineates IPLs.« less

  7. Welding deviation detection algorithm based on extremum of molten pool image contour

    NASA Astrophysics Data System (ADS)

    Zou, Yong; Jiang, Lipei; Li, Yunhua; Xue, Long; Huang, Junfen; Huang, Jiqiang

    2016-01-01

    The welding deviation detection is the basis of robotic tracking welding, but the on-line real-time measurement of welding deviation is still not well solved by the existing methods. There is plenty of information in the gas metal arc welding(GMAW) molten pool images that is very important for the control of welding seam tracking. The physical meaning for the curvature extremum of molten pool contour is revealed by researching the molten pool images, that is, the deviation information points of welding wire center and the molten tip center are the maxima and the local maxima of the contour curvature, and the horizontal welding deviation is the position difference of these two extremum points. A new method of weld deviation detection is presented, including the process of preprocessing molten pool images, extracting and segmenting the contours, obtaining the contour extremum points, and calculating the welding deviation, etc. Extracting the contours is the premise, segmenting the contour lines is the foundation, and obtaining the contour extremum points is the key. The contour images can be extracted with the method of discrete dyadic wavelet transform, which is divided into two sub contours including welding wire and molten tip separately. The curvature value of each point of the two sub contour lines is calculated based on the approximate curvature formula of multi-points for plane curve, and the two points of the curvature extremum are the characteristics needed for the welding deviation calculation. The results of the tests and analyses show that the maximum error of the obtained on-line welding deviation is 2 pixels(0.16 mm), and the algorithm is stable enough to meet the requirements of the pipeline in real-time control at a speed of less than 500 mm/min. The method can be applied to the on-line automatic welding deviation detection.

  8. Pelvic Normal Tissue Contouring Guidelines for Radiation Therapy: A Radiation Therapy Oncology Group Consensus Panel Atlas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gay, Hiram A., E-mail: hgay@radonc.wustl.edu; Barthold, H. Joseph; Beth Israel Deaconess Medical Center, Boston, MA

    2012-07-01

    Purpose: To define a male and female pelvic normal tissue contouring atlas for Radiation Therapy Oncology Group (RTOG) trials. Methods and Materials: One male pelvis computed tomography (CT) data set and one female pelvis CT data set were shared via the Image-Guided Therapy QA Center. A total of 16 radiation oncologists participated. The following organs at risk were contoured in both CT sets: anus, anorectum, rectum (gastrointestinal and genitourinary definitions), bowel NOS (not otherwise specified), small bowel, large bowel, and proximal femurs. The following were contoured in the male set only: bladder, prostate, seminal vesicles, and penile bulb. The followingmore » were contoured in the female set only: uterus, cervix, and ovaries. A computer program used the binomial distribution to generate 95% group consensus contours. These contours and definitions were then reviewed by the group and modified. Results: The panel achieved consensus definitions for pelvic normal tissue contouring in RTOG trials with these standardized names: Rectum, AnoRectum, SmallBowel, Colon, BowelBag, Bladder, UteroCervix, Adnexa{sub R}, Adnexa{sub L}, Prostate, SeminalVesc, PenileBulb, Femur{sub R}, and Femur{sub L}. Two additional normal structures whose purpose is to serve as targets in anal and rectal cancer were defined: AnoRectumSig and Mesorectum. Detailed target volume contouring guidelines and images are discussed. Conclusions: Consensus guidelines for pelvic normal tissue contouring were reached and are available as a CT image atlas on the RTOG Web site. This will allow uniformity in defining normal tissues for clinical trials delivering pelvic radiation and will facilitate future normal tissue complication research.« less

  9. A Prostate Fossa Contouring Instructional Module: Implementation and Evaluation.

    PubMed

    Gunther, Jillian R; Liauw, Stanley L; Choi, Seungtaek; Mohamed, Abdallah S R; Thaker, Nikhil G; Fuller, Clifton D; Stepaniak, Christopher J; Das, Prajnan; Golden, Daniel W

    2016-07-01

    Radiation oncology trainees frequently learn to contour through clinical experience and lectures. A hands-on contouring module was developed to teach delineation of the postoperative prostate clinical target volume (CTV) and improve contouring accuracy. Medical students independently contoured a prostate fossa CTV before and after receiving educational materials and live instruction detailing the RTOG approach to contouring this CTV. Metrics for volume overlap and surface distance (Dice similarity coefficient, Hausdorff distance (HD), and mean distance) determined discordance between student and consensus contours. An evaluation assessed perception of session efficacy (1 = "not at all" to 5 = "extremely"; reported as median[interquartile range]). Non-parametric statistical tests were used. Twenty-four students at two institutions completed the module, and 21 completed the evaluation (88% response). The content was rated as "quite" important (4[3.5-5]). The module improved comfort contouring a prostate fossa (pre 1[1-2] vs. post 4[3-4], p<.01), ability to find references (pre 2[1-3] vs. post 4[3.5-4], p<0.01), knowledge of CT prostate/pelvis anatomy (pre 2[1.5-3] vs. post 3[3-4], p<.01), and ability to use contouring software tools (pre 2[2-3.5] vs. post 3[3-4], p=.01). After intervention, mean DSC increased (0.29 to 0.68, p<0.01) and HD and mean distance both decreased, respectively (42.8 to 30.0, p<.01; 11.5 to 1.9, p<.01). A hands-on module to teach CTV delineation to medical students was developed and implemented. Student and expert contours exhibited near "excellent agreement" (as defined in the literature) after intervention. Additional modules to teach target delineation to all educational levels can be developed using this model. Copyright © 2016 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  10. Atlas-Based Segmentation Improves Consistency and Decreases Time Required for Contouring Postoperative Endometrial Cancer Nodal Volumes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, Amy V.; Department of Radiation Oncology, St. Luke's-Roosevelt Hospital, New York, NY; Wortham, Angela

    2011-03-01

    Purpose: Accurate target delineation of the nodal volumes is essential for three-dimensional conformal and intensity-modulated radiotherapy planning for endometrial cancer adjuvant therapy. We hypothesized that atlas-based segmentation ('autocontouring') would lead to time savings and more consistent contours among physicians. Methods and Materials: A reference anatomy atlas was constructed using the data from 15 postoperative endometrial cancer patients by contouring the pelvic nodal clinical target volume on the simulation computed tomography scan according to the Radiation Therapy Oncology Group 0418 trial using commercially available software. On the simulation computed tomography scans from 10 additional endometrial cancer patients, the nodal clinical targetmore » volume autocontours were generated. Three radiation oncologists corrected the autocontours and delineated the manual nodal contours under timed conditions while unaware of the other contours. The time difference was determined, and the overlap of the contours was calculated using Dice's coefficient. Results: For all physicians, manual contouring of the pelvic nodal target volumes and editing the autocontours required a mean {+-} standard deviation of 32 {+-} 9 vs. 23 {+-} 7 minutes, respectively (p = .000001), a 26% time savings. For each physician, the time required to delineate the manual contours vs. correcting the autocontours was 30 {+-} 3 vs. 21 {+-} 5 min (p = .003), 39 {+-} 12 vs. 30 {+-} 5 min (p = .055), and 29 {+-} 5 vs. 20 {+-} 5 min (p = .0002). The mean overlap increased from manual contouring (0.77) to correcting the autocontours (0.79; p = .038). Conclusion: The results of our study have shown that autocontouring leads to increased consistency and time savings when contouring the nodal target volumes for adjuvant treatment of endometrial cancer, although the autocontours still required careful editing to ensure that the lymph nodes at risk of recurrence are properly included in the target volume.« less

  11. Shape regularized active contour based on dynamic programming for anatomical structure segmentation

    NASA Astrophysics Data System (ADS)

    Yu, Tianli; Luo, Jiebo; Singhal, Amit; Ahuja, Narendra

    2005-04-01

    We present a method to incorporate nonlinear shape prior constraints into segmenting different anatomical structures in medical images. Kernel space density estimation (KSDE) is used to derive the nonlinear shape statistics and enable building a single model for a class of objects with nonlinearly varying shapes. The object contour is coerced by image-based energy into the correct shape sub-distribution (e.g., left or right lung), without the need for model selection. In contrast to an earlier algorithm that uses a local gradient-descent search (susceptible to local minima), we propose an algorithm that iterates between dynamic programming (DP) and shape regularization. DP is capable of finding an optimal contour in the search space that maximizes a cost function related to the difference between the interior and exterior of the object. To enforce the nonlinear shape prior, we propose two shape regularization methods, global and local regularization. Global regularization is applied after each DP search to move the entire shape vector in the shape space in a gradient descent fashion to the position of probable shapes learned from training. The regularized shape is used as the starting shape for the next iteration. Local regularization is accomplished through modifying the search space of the DP. The modified search space only allows a certain amount of deformation of the local shape from the starting shape. Both regularization methods ensure the consistency between the resulted shape with the training shapes, while still preserving DP"s ability to search over a large range and avoid local minima. Our algorithm was applied to two different segmentation tasks for radiographic images: lung field and clavicle segmentation. Both applications have shown that our method is effective and versatile in segmenting various anatomical structures under prior shape constraints; and it is robust to noise and local minima caused by clutter (e.g., blood vessels) and other similar structures (e.g., ribs). We believe that the proposed algorithm represents a major step in the paradigm shift to object segmentation under nonlinear shape constraints.

  12. Thrombus segmentation by texture dynamics from microscopic image sequences

    NASA Astrophysics Data System (ADS)

    Brieu, Nicolas; Serbanovic-Canic, Jovana; Cvejic, Ana; Stemple, Derek; Ouwehand, Willem; Navab, Nassir; Groher, Martin

    2010-03-01

    The genetic factors of thrombosis are commonly explored by microscopically imaging the coagulation of blood cells induced by injuring a vessel of mice or of zebrafish mutants. The latter species is particularly interesting since skin transparency permits to non-invasively acquire microscopic images of the scene with a CCD camera and to estimate the parameters characterizing the thrombus development. These parameters are currently determined by manual outlining, which is both error prone and extremely time consuming. Even though a technique for automatic thrombus extraction would be highly valuable for gene analysts, little work can be found, which is mainly due to very low image contrast and spurious structures. In this work, we propose to semi-automatically segment the thrombus over time from microscopic image sequences of wild-type zebrafish larvae. To compensate the lack of valuable spatial information, our main idea consists of exploiting the temporal information by modeling the variations of the pixel intensities over successive temporal windows with a linear Markov-based dynamic texture formalization. We then derive an image from the estimated model parameters, which represents the probability of a pixel to belong to the thrombus. We employ this probability image to accurately estimate the thrombus position via an active contour segmentation incorporating also prior and spatial information of the underlying intensity images. The performance of our approach is tested on three microscopic image sequences. We show that the thrombus is accurately tracked over time in each sequence if the respective parameters controlling prior influence and contour stiffness are correctly chosen.

  13. A drop in the pond: the effect of rapid mass-loss on the dynamics and interaction rate of collisionless particles

    NASA Astrophysics Data System (ADS)

    Penoyre, Zephyr; Haiman, Zoltán

    2018-01-01

    In symmetric gravitating systems experiencing rapid mass-loss, particle orbits change almost instantaneously, which can lead to the development of a sharply contoured density profile, including singular caustics for collisionless systems. This framework can be used to model a variety of dynamical systems, such as accretion discs following a massive black hole merger and dwarf galaxies following violent early star formation feedback. Particle interactions in the high-density peaks seem a promising source of observable signatures of these mass-loss events (i.e. a possible EM counterpart for black hole mergers or strong gamma-ray emission from dark matter annihilation around young galaxies), because the interaction rate depends on the square of the density. We study post-mass-loss density profiles, both analytic and numerical, in idealized cases and present arguments and methods to extend to any general system. An analytic derivation is presented for particles on Keplerian orbits responding to a drop in the central mass. We argue that this case, with initially circular orbits, gives the most sharply contoured profile possible. We find that despite the presence of a set of singular caustics, the total particle interaction rate is reduced compared to the unperturbed system; this is a result of the overall expansion of the system dominating over the steep caustics. Finally, we argue that this result holds more generally, and the loss of central mass decreases the particle interaction rate in any physical system.

  14. Quantification of atherosclerosis with MRI and image processing in spontaneously hyperlipidemic rabbits.

    PubMed

    Hänni, Mari; Edvardsson, H; Wågberg, M; Pettersson, K; Smedby, O

    2004-01-01

    The need for a quantitative method to assess atherosclerosis in vivo is well known. This study tested, in a familiar animal model of atherosclerosis, a combination of magnetic resonance imaging (MRI) and image processing. Six spontaneously hyperlipidemic (Watanabe) rabbits were examined with a knee coil in a 1.5-T clinical MRI scanner. Inflow angio (2DI) and proton density weighted (PDW) images were acquired to examine 10 cm of the aorta immediately cranial to the aortic bifurcation. Examination of the thoracic aorta was added in four animals. To identify the inner and outer boundary of the arterial wall, a dynamic contour algorithm (Gradient Vector Flow snakes) was applied to the 2DI and PDW images, respectively, after which the vessel wall area was calculated. The results were compared with histopathological measurements of intima and intima-media cross-sectional area. The correlation coefficient between wall area measurements with MRI snakes and intima-media area was 0.879 when computed individual-wise for abdominal aortas, 0.958 for thoracic aortas, and 0.834 when computed segment-wise. When the algorithm was applied to the PDW images only, somewhat lower correlations were obtained. The MRI yielded significantly higher values than histopathology, which excludes the adventitia. Magnetic resonance imaging, in combination with dynamic contours, may be a suitable technique for quantitative assessment of atherosclerosis in vivo. Using two sequences for the measurement seems to be superior to using a single sequence.

  15. Revisiting the Rossby Haurwitz wave test case with contour advection

    NASA Astrophysics Data System (ADS)

    Smith, Robert K.; Dritschel, David G.

    2006-09-01

    This paper re-examines a basic test case used for spherical shallow-water numerical models, and underscores the need for accurate, high resolution models of atmospheric and ocean dynamics. The Rossby-Haurwitz test case, first proposed by Williamson et al. [D.L. Williamson, J.B. Drake, J.J. Hack, R. Jakob, P.N. Swarztrauber, A standard test set for numerical approximations to the shallow-water equations on the sphere, J. Comput. Phys. (1992) 221-224], has been examined using a wide variety of shallow-water models in previous papers. Here, two contour-advective semi-Lagrangian (CASL) models are considered, and results are compared with previous test results. We go further by modifying this test case in a simple way to initiate a rapid breakdown of the basic wave state. This breakdown is accompanied by the formation of sharp potential vorticity gradients (fronts), placing far greater demands on the numerics than the original test case does. We also go further by examining other dynamical fields besides the height and potential vorticity, to assess how well the models deal with gravity waves. Such waves are sensitive to the presence or not of sharp potential vorticity gradients, as well as to numerical parameter settings. In particular, large time steps (convenient for semi-Lagrangian schemes) can seriously affect gravity waves but can also have an adverse impact on the primary fields of height and velocity. These problems are exacerbated by a poor resolution of potential vorticity gradients.

  16. Quantification of fibrous cap thickness in intracoronary optical coherence tomography with a contour segmentation method based on dynamic programming.

    PubMed

    Zahnd, Guillaume; Karanasos, Antonios; van Soest, Gijs; Regar, Evelyn; Niessen, Wiro; Gijsen, Frank; van Walsum, Theo

    2015-09-01

    Fibrous cap thickness is the most critical component of plaque stability. Therefore, in vivo quantification of cap thickness could yield valuable information for estimating the risk of plaque rupture. In the context of preoperative planning and perioperative decision making, intracoronary optical coherence tomography imaging can provide a very detailed characterization of the arterial wall structure. However, visual interpretation of the images is laborious, subject to variability, and therefore not always sufficiently reliable for immediate decision of treatment. A novel semiautomatic segmentation method to quantify coronary fibrous cap thickness in optical coherence tomography is introduced. To cope with the most challenging issue when estimating cap thickness (namely the diffuse appearance of the anatomical abluminal interface to be detected), the proposed method is based on a robust dynamic programming framework using a geometrical a priori. To determine the optimal parameter settings, a training phase was conducted on 10 patients. Validated on a dataset of 179 images from 21 patients, the present framework could successfully extract the fibrous cap contours. When assessing minimal cap thickness, segmentation results from the proposed method were in good agreement with the reference tracings performed by a medical expert (mean absolute error and standard deviation of 22 ± 18 μm) and were similar to inter-observer reproducibility (21 ± 19 μm, R = .74), while being significantly faster and fully reproducible. The proposed framework demonstrated promising performances and could potentially be used for online identification of high-risk plaques.

  17. Ingenious Snake: An Adaptive Multi-Class Contours Extraction

    NASA Astrophysics Data System (ADS)

    Li, Baolin; Zhou, Shoujun

    2018-04-01

    Active contour model (ACM) plays an important role in computer vision and medical image application. The traditional ACMs were used to extract single-class of object contours. While, simultaneous extraction of multi-class of interesting contours (i.e., various contours with closed- or open-ended) have not been solved so far. Therefore, a novel ACM model named “Ingenious Snake” is proposed to adaptively extract these interesting contours. In the first place, the ridge-points are extracted based on the local phase measurement of gradient vector flow field; the consequential ridgelines initialization are automated with high speed. Secondly, the contours’ deformation and evolvement are implemented with the ingenious snake. In the experiments, the result from initialization, deformation and evolvement are compared with the existing methods. The quantitative evaluation of the structure extraction is satisfying with respect of effectiveness and accuracy.

  18. Orientation-Cue Invariant Population Responses to Contrast-Modulated and Phase-Reversed Contour Stimuli in Macaque V1 and V2

    PubMed Central

    An, Xu; Gong, Hongliang; Yin, Jiapeng; Wang, Xiaochun; Pan, Yanxia; Zhang, Xian; Lu, Yiliang; Yang, Yupeng; Toth, Zoltan; Schiessl, Ingo; McLoughlin, Niall; Wang, Wei

    2014-01-01

    Visual scenes can be readily decomposed into a variety of oriented components, the processing of which is vital for object segregation and recognition. In primate V1 and V2, most neurons have small spatio-temporal receptive fields responding selectively to oriented luminance contours (first order), while only a subgroup of neurons signal non-luminance defined contours (second order). So how is the orientation of second-order contours represented at the population level in macaque V1 and V2? Here we compared the population responses in macaque V1 and V2 to two types of second-order contour stimuli generated either by modulation of contrast or phase reversal with those to first-order contour stimuli. Using intrinsic signal optical imaging, we found that the orientation of second-order contour stimuli was represented invariantly in the orientation columns of both macaque V1 and V2. A physiologically constrained spatio-temporal energy model of V1 and V2 neuronal populations could reproduce all the recorded population responses. These findings suggest that, at the population level, the primate early visual system processes the orientation of second-order contours initially through a linear spatio-temporal filter mechanism. Our results of population responses to different second-order contour stimuli support the idea that the orientation maps in primate V1 and V2 can be described as a spatial-temporal energy map. PMID:25188576

  19. Accurate computer-aided quantification of left ventricular parameters: experience in 1555 cardiac magnetic resonance studies from the Framingham Heart Study.

    PubMed

    Hautvast, Gilion L T F; Salton, Carol J; Chuang, Michael L; Breeuwer, Marcel; O'Donnell, Christopher J; Manning, Warren J

    2012-05-01

    Quantitative analysis of short-axis functional cardiac magnetic resonance images can be performed using automatic contour detection methods. The resulting myocardial contours must be reviewed and possibly corrected, which can be time-consuming, particularly when performed across all cardiac phases. We quantified the impact of manual contour corrections on both analysis time and quantitative measurements obtained from left ventricular short-axis cine images acquired from 1555 participants of the Framingham Heart Study Offspring cohort using computer-aided contour detection methods. The total analysis time for a single case was 7.6 ± 1.7 min for an average of 221 ± 36 myocardial contours per participant. This included 4.8 ± 1.6 min for manual contour correction of 2% of all automatically detected endocardial contours and 8% of all automatically detected epicardial contours. However, the impact of these corrections on global left ventricular parameters was limited, introducing differences of 0.4 ± 4.1 mL for end-diastolic volume, -0.3 ± 2.9 mL for end-systolic volume, 0.7 ± 3.1 mL for stroke volume, and 0.3 ± 1.8% for ejection fraction. We conclude that left ventricular functional parameters can be obtained under 5 min from short-axis functional cardiac magnetic resonance images using automatic contour detection methods. Manual correction more than doubles analysis time, with minimal impact on left ventricular volumes and ejection fraction. Copyright © 2011 Wiley Periodicals, Inc.

  20. Mandarin-Speaking Children's Speech Recognition: Developmental Changes in the Influences of Semantic Context and F0 Contours.

    PubMed

    Zhou, Hong; Li, Yu; Liang, Meng; Guan, Connie Qun; Zhang, Linjun; Shu, Hua; Zhang, Yang

    2017-01-01

    The goal of this developmental speech perception study was to assess whether and how age group modulated the influences of high-level semantic context and low-level fundamental frequency ( F 0 ) contours on the recognition of Mandarin speech by elementary and middle-school-aged children in quiet and interference backgrounds. The results revealed different patterns for semantic and F 0 information. One the one hand, age group modulated significantly the use of F 0 contours, indicating that elementary school children relied more on natural F 0 contours than middle school children during Mandarin speech recognition. On the other hand, there was no significant modulation effect of age group on semantic context, indicating that children of both age groups used semantic context to assist speech recognition to a similar extent. Furthermore, the significant modulation effect of age group on the interaction between F 0 contours and semantic context revealed that younger children could not make better use of semantic context in recognizing speech with flat F 0 contours compared with natural F 0 contours, while older children could benefit from semantic context even when natural F 0 contours were altered, thus confirming the important role of F 0 contours in Mandarin speech recognition by elementary school children. The developmental changes in the effects of high-level semantic and low-level F 0 information on speech recognition might reflect the differences in auditory and cognitive resources associated with processing of the two types of information in speech perception.

  1. 50 CFR 660.73 - Latitude/longitude coordinates defining the 100 fm (183 m) through 150 fm (274 m) depth contours.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... the 100 fm (183 m) through 150 fm (274 m) depth contours. 660.73 Section 660.73 Wildlife and Fisheries.../longitude coordinates defining the 100 fm (183 m) through 150 fm (274 m) depth contours. Boundaries for RCAs... provides coordinates for the 100 fm (183 m) through 150 fm (274 m) depth contours. (a) The 100-fm (183-m...

  2. 50 CFR 660.74 - Latitude/longitude coordinates defining the 180 fm (329 m) through 250 fm (457 m) depth contours.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... the 180 fm (329 m) through 250 fm (457 m) depth contours. 660.74 Section 660.74 Wildlife and Fisheries.../longitude coordinates defining the 180 fm (329 m) through 250 fm (457 m) depth contours. Boundaries for RCAs... provides coordinates for the 180 fm (329 m) through 250 fm (457 m) depth contours. (a) The 180-fm (329-m...

  3. Contour integration impairment in schizophrenia and first episode psychosis: state or trait?

    PubMed

    Feigenson, Keith A; Keane, Brian P; Roché, Matthew W; Silverstein, Steven M

    2014-11-01

    Contour integration is a fundamental visual process that recovers object structure by representing spatially separated edge elements as a continuous contour or shape boundary. Clinically stable persons with schizophrenia have repeatedly been shown to be impaired at contour integration but it is unclear whether this process varies with clinical state or whether it arises as early as the first episode of psychosis. To consider these issues, we administered a contour integration test to persons with chronic schizophrenia and to those with a first episode of psychosis. The test was administered twice-once at admission to short term psychiatric hospitalization and once again at discharge. A well-matched healthy control group was also tested across the same time points. We found that contour integration performance improved to the same degree in all groups over time, indicating that there were no recovery effects over and above normal practice effects. Moreover, the schizophrenia group demonstrated poorer contour integration than the control group and the first episode group exhibited intermediate performance that could not be distinguished from the other groups. These results suggest that contour integration ability does not vary as a function of short-term changes in clinical state, and that it may become further impaired with an increased number of psychotic episodes. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Top–Down Modulation on the Perception and Categorization of Identical Pitch Contours in Speech and Music

    PubMed Central

    Weidema, Joey L.; Roncaglia-Denissen, M. P.; Honing, Henkjan

    2016-01-01

    Whether pitch in language and music is governed by domain-specific or domain-general cognitive mechanisms is contentiously debated. The aim of the present study was to investigate whether mechanisms governing pitch contour perception operate differently when pitch information is interpreted as either speech or music. By modulating listening mode, this study aspired to demonstrate that pitch contour perception relies on domain-specific cognitive mechanisms, which are regulated by top–down influences from language and music. Three groups of participants (Mandarin speakers, Dutch speaking non-musicians, and Dutch musicians) were exposed to identical pitch contours, and tested on their ability to identify these contours in a language and musical context. Stimuli consisted of disyllabic words spoken in Mandarin, and melodic tonal analogs, embedded in a linguistic and melodic carrier phrase, respectively. Participants classified identical pitch contours as significantly different depending on listening mode. Top–down influences from language appeared to alter the perception of pitch contour in speakers of Mandarin. This was not the case for non-musician speakers of Dutch. Moreover, this effect was lacking in Dutch speaking musicians. The classification patterns of pitch contours in language and music seem to suggest that domain-specific categorization is modulated by top–down influences from language and music. PMID:27313552

  5. GPU based contouring method on grid DEM data

    NASA Astrophysics Data System (ADS)

    Tan, Liheng; Wan, Gang; Li, Feng; Chen, Xiaohui; Du, Wenlong

    2017-08-01

    This paper presents a novel method to generate contour lines from grid DEM data based on the programmable GPU pipeline. The previous contouring approaches often use CPU to construct a finite element mesh from the raw DEM data, and then extract contour segments from the elements. They also need a tracing or sorting strategy to generate the final continuous contours. These approaches can be heavily CPU-costing and time-consuming. Meanwhile the generated contours would be unsmooth if the raw data is sparsely distributed. Unlike the CPU approaches, we employ the GPU's vertex shader to generate a triangular mesh with arbitrary user-defined density, in which the height of each vertex is calculated through a third-order Cardinal spline function. Then in the same frame, segments are extracted from the triangles by the geometry shader, and translated to the CPU-side with an internal order in the GPU's transform feedback stage. Finally we propose a "Grid Sorting" algorithm to achieve the continuous contour lines by travelling the segments only once. Our method makes use of multiple stages of GPU pipeline for computation, which can generate smooth contour lines, and is significantly faster than the previous CPU approaches. The algorithm can be easily implemented with OpenGL 3.3 API or higher on consumer-level PCs.

  6. Technical report on the surface reconstruction of stacked contours by using the commercial software

    NASA Astrophysics Data System (ADS)

    Shin, Dong Sun; Chung, Min Suk; Hwang, Sung Bae; Park, Jin Seo

    2007-03-01

    After drawing and stacking contours of a structure, which is identified in the serially sectioned images, three-dimensional (3D) image can be made by surface reconstruction. Usually, software is composed for the surface reconstruction. In order to compose the software, medical doctors have to acquire the help of computer engineers. So in this research, surface reconstruction of stacked contours was tried by using commercial software. The purpose of this research is to enable medical doctors to perform surface reconstruction to make 3D images by themselves. The materials of this research were 996 anatomic images (1 mm intervals) of left lower limb, which were made by serial sectioning of a cadaver. On the Adobe Photoshop, contours of 114 anatomic structures were drawn, which were exported to Adobe Illustrator files. On the Maya, contours of each anatomic structure were stacked. On the Rhino, superoinferior lines were drawn along all stacked contours to fill quadrangular surfaces between contours. On the Maya, the contours were deleted. 3D images of 114 anatomic structures were assembled with their original locations preserved. With the surface reconstruction technique, developed in this research, medical doctors themselves could make 3D images of the serially sectioned images such as CTs and MRIs.

  7. DARPA/AFRL/NASA Smart Wing Second Wind Tunnel Test Results

    NASA Technical Reports Server (NTRS)

    Scherer, L. B.; Martin, C. A.; West, M.; Florance, J. P.; Wieseman, C. D.; Burner, A. W.; Fleming, G. A.

    2001-01-01

    To quantify the benefits of smart materials and structures adaptive wing technology, Northrop Grumman Corp. (NGC) built and tested two 16% scale wind tunnel models (a conventional and a "smart" model) of a fighter/attack aircraft under the DARPA/AFRL/NASA Smart Materials and Structures Development - Smart Wing Phase 1. Performance gains quantified included increased pitching moment (C(sub M)), increased rolling moment (C(subl)) and improved pressure distribution. The benefits were obtained for hingeless, contoured trailing edge control surfaces with embedded shape memory alloy (SMA) wires and spanwise wing twist effected by SMA torque tube mechanisms, compared to conventional hinged control surfaces. This paper presents an overview of the results from the second wind tunnel test performed at the NASA Langley Research Center s (LaRC) 16ft Transonic Dynamic Tunnel (TDT) in June 1998. Successful results obtained were: 1) 5 degrees of spanwise twist and 8-12% increase in rolling moment utilizing a single SMA torque tube, 2) 12 degrees of deflection, and 10% increase in rolling moment due to hingeless, contoured aileron, and 3) demonstration of optical techniques for measuring spanwise twist and deflected shape.

  8. DARPA/ARFL/NASA Smart Wing second wind tunnel test results

    NASA Astrophysics Data System (ADS)

    Scherer, Lewis B.; Martin, Christopher A.; West, Mark N.; Florance, Jennifer P.; Wieseman, Carol D.; Burner, Alpheus W.; Fleming, Gary A.

    1999-07-01

    To quantify the benefits of smart materials and structures adaptive wing technology. Northrop Grumman Corp. built and tested two 16 percent scale wind tunnel models of a fighter/attach aircraft under the DARPA/AFRL/NASA Smart Materials and Structures Development - Smart Wing Phase 1. Performance gains quantified included increased pitching moment, increased rolling moment and improved pressure distribution. The benefits were obtained for hingeless, contoured trailing edge control surfaces with embedded shape memory alloy wires and spanwise wing twist effected by SMA torque tube mechanism, compared to convention hinged control surfaces. This paper presents an overview of the results from the second wind tunnel test performed at the NASA Langley Research Center's 16 ft Transonic Dynamic Tunnel in June 1998. Successful results obtained were: 1) 5 degrees of spanwise twist and 8-12 percent increase in rolling moment utilizing a single SMA torque tube, 2) 12 degrees of deflection, and 10 percent increase in rolling moment due to hingeless, contoured aileron, and 3) demonstration of optical techniques for measuring spanwise twist and deflected shape.

  9. A GENERAL ALGORITHM FOR THE CONSTRUCTION OF CONTOUR PLOTS

    NASA Technical Reports Server (NTRS)

    Johnson, W.

    1994-01-01

    The graphical presentation of experimentally or theoretically generated data sets frequently involves the construction of contour plots. A general computer algorithm has been developed for the construction of contour plots. The algorithm provides for efficient and accurate contouring with a modular approach which allows flexibility in modifying the algorithm for special applications. The algorithm accepts as input data values at a set of points irregularly distributed over a plane. The algorithm is based on an interpolation scheme in which the points in the plane are connected by straight line segments to form a set of triangles. In general, the data is smoothed using a least-squares-error fit of the data to a bivariate polynomial. To construct the contours, interpolation along the edges of the triangles is performed, using the bivariable polynomial if data smoothing was performed. Once the contour points have been located, the contour may be drawn. This program is written in FORTRAN IV for batch execution and has been implemented on an IBM 360 series computer with a central memory requirement of approximately 100K of 8-bit bytes. This computer algorithm was developed in 1981.

  10. Investigation of conjugate circular arcs in rocket nozzle contour design

    NASA Astrophysics Data System (ADS)

    Schomberg, K.; Olsen, J.; Neely, A.; Doig, G.

    2018-05-01

    The use of conjugate circular arcs in rocket nozzle contour design has been investigated by numerically comparing three existing sub-scale nozzles to a range of equivalent arc-based contour designs. Three performance measures were considered when comparing nozzle designs: thrust coefficient, nozzle exit wall pressure, and a transition between flow separation regimes during the engine start-up phase. In each case, an equivalent arc-based contour produced an increase in the thrust coefficient and exit wall pressure of up to 0.4 and 40% respectively, in addition to suppressing the transition between a free and restricted shock separation regime. A general approach to arc-based nozzle contour design has also been presented to outline a rapid and repeatable process for generating sub-scale arc-based contours with an exit Mach number of 3.8-5.4 and a length between 60 and 100% of a 15° conical nozzle. The findings suggest that conjugate circular arcs may represent a viable approach for producing sub-scale rocket nozzle contours, and that a further investigation is warranted between arc-based and existing full-scale rocket nozzles.

  11. 50 CFR 660.392 - Latitude/longitude coordinates defining the 50 fm (91 m) through 75 fm (137 m) depth contours.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... the 50 fm (91 m) through 75 fm (137 m) depth contours. 660.392 Section 660.392 Wildlife and Fisheries.../longitude coordinates defining the 50 fm (91 m) through 75 fm (137 m) depth contours. Boundaries for RCAs... provides coordinates for the 50 fm (91 m) through 75 fm (137 m) depth contours. (a) The 50-fm (91-m) depth...

  12. 50 CFR 660.72 - Latitude/longitude coordinates defining the 50 fm (91 m) through 75 fm (137 m) depth contours.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... the 50 fm (91 m) through 75 fm (137 m) depth contours. 660.72 Section 660.72 Wildlife and Fisheries.../longitude coordinates defining the 50 fm (91 m) through 75 fm (137 m) depth contours. Boundaries for RCAs... provides coordinates for the 50 fm (91 m) through 75 fm (137 m) depth contours. (a) The 50-fm (91-m) depth...

  13. Robust iterative learning contouring controller with disturbance observer for machine tool feed drives.

    PubMed

    Simba, Kenneth Renny; Bui, Ba Dinh; Msukwa, Mathew Renny; Uchiyama, Naoki

    2018-04-01

    In feed drive systems, particularly machine tools, a contour error is more significant than the individual axial tracking errors from the view point of enhancing precision in manufacturing and production systems. The contour error must be within the permissible tolerance of given products. In machining complex or sharp-corner products, large contour errors occur mainly owing to discontinuous trajectories and the existence of nonlinear uncertainties. Therefore, it is indispensable to design robust controllers that can enhance the tracking ability of feed drive systems. In this study, an iterative learning contouring controller consisting of a classical Proportional-Derivative (PD) controller and disturbance observer is proposed. The proposed controller was evaluated experimentally by using a typical sharp-corner trajectory, and its performance was compared with that of conventional controllers. The results revealed that the maximum contour error can be reduced by about 37% on average. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Computational analysis and preliminary redesign of the nozzle contour of the Langley hypersonic CF4 tunnel

    NASA Technical Reports Server (NTRS)

    Thompson, R. A.; Sutton, Kenneth

    1987-01-01

    A computational analysis, modification, and preliminary redesign study was performed on the nozzle contour of the Langley Hypersonic CF4 Tunnel. This study showed that the existing nozzle was contoured incorrectly for the design operating condition, and this error was shown to produce the measured disturbances in the exit flow field. A modified contour was designed for the current nozzle downstream of the maximum turning point that would provide a uniform exit flow. New nozzle contours were also designed for an exit Mach number and Reynolds number combination which matches that attainable in the Langley 20-Inch Mach 6 Tunnel. Two nozzle contours were designed: one having the same exit radius but a larger mass flow rate than that of the existing CF4 Tunnel, and the other having the same mass flow rate but a smaller exit radius than that of the existing CF4 Tunnel.

  15. Radiographic and anatomic basis for prostate contouring errors and methods to improve prostate contouring accuracy.

    PubMed

    McLaughlin, Patrick W; Evans, Cheryl; Feng, Mary; Narayana, Vrinda

    2010-02-01

    Use of highly conformal radiation for prostate cancer can lead to both overtreatment of surrounding normal tissues and undertreatment of the prostate itself. In this retrospective study we analyzed the radiographic and anatomic basis of common errors in computed tomography (CT) contouring and suggest methods to correct them. Three hundred patients with prostate cancer underwent CT and magnetic resonance imaging (MRI). The prostate was delineated independently on the data sets. CT and MRI contours were compared by use of deformable registration. Errors in target delineation were analyzed and methods to avoid such errors detailed. Contouring errors were identified at the prostatic apex, mid gland, and base on CT. At the apex, the genitourinary diaphragm, rectum, and anterior fascia contribute to overestimation. At the mid prostate, the anterior and lateral fasciae contribute to overestimation. At the base, the bladder and anterior fascia contribute to anterior overestimation. Transition zone hypertrophy and bladder neck variability contribute to errors of overestimation and underestimation at the superior base, whereas variable prostate-to-seminal vesicle relationships with prostate hypertrophy contribute to contouring errors at the posterior base. Most CT contouring errors can be detected by (1) inspection of a lateral view of prostate contours to detect projection from the expected globular form and (2) recognition of anatomic structures (genitourinary diaphragm) on the CT scans that are clearly visible on MRI. This study shows that many CT prostate contouring errors can be improved without direct incorporation of MRI data. Copyright 2010 Elsevier Inc. All rights reserved.

  16. Effects of face feature and contour crowding in facial expression adaptation.

    PubMed

    Liu, Pan; Montaser-Kouhsari, Leila; Xu, Hong

    2014-12-01

    Prolonged exposure to a visual stimulus, such as a happy face, biases the perception of subsequently presented neutral face toward sad perception, the known face adaptation. Face adaptation is affected by visibility or awareness of the adapting face. However, whether it is affected by discriminability of the adapting face is largely unknown. In the current study, we used crowding to manipulate discriminability of the adapting face and test its effect on face adaptation. Instead of presenting flanking faces near the target face, we shortened the distance between facial features (internal feature crowding), and reduced the size of face contour (external contour crowding), to introduce crowding. We are interested in whether internal feature crowding or external contour crowding is more effective in inducing crowding effect in our first experiment. We found that combining internal feature and external contour crowding, but not either of them alone, induced significant crowding effect. In Experiment 2, we went on further to investigate its effect on adaptation. We found that both internal feature crowding and external contour crowding reduced its facial expression aftereffect (FEA) significantly. However, we did not find a significant correlation between discriminability of the adapting face and its FEA. Interestingly, we found a significant correlation between discriminabilities of the adapting and test faces. Experiment 3 found that the reduced adaptation aftereffect in combined crowding by the external face contour and the internal facial features cannot be decomposed into the effects from the face contour and facial features linearly. It thus suggested a nonlinear integration between facial features and face contour in face adaptation.

  17. An Improved Snake Model for Refinement of Lidar-Derived Building Roof Contours Using Aerial Images

    NASA Astrophysics Data System (ADS)

    Chen, Qi; Wang, Shugen; Liu, Xiuguo

    2016-06-01

    Building roof contours are considered as very important geometric data, which have been widely applied in many fields, including but not limited to urban planning, land investigation, change detection and military reconnaissance. Currently, the demand on building contours at a finer scale (especially in urban areas) has been raised in a growing number of studies such as urban environment quality assessment, urban sprawl monitoring and urban air pollution modelling. LiDAR is known as an effective means of acquiring 3D roof points with high elevation accuracy. However, the precision of the building contour obtained from LiDAR data is restricted by its relatively low scanning resolution. With the use of the texture information from high-resolution imagery, the precision can be improved. In this study, an improved snake model is proposed to refine the initial building contours extracted from LiDAR. First, an improved snake model is constructed with the constraints of the deviation angle, image gradient, and area. Then, the nodes of the contour are moved in a certain range to find the best optimized result using greedy algorithm. Considering both precision and efficiency, the candidate shift positions of the contour nodes are constrained, and the searching strategy for the candidate nodes is explicitly designed. The experiments on three datasets indicate that the proposed method for building contour refinement is effective and feasible. The average quality index is improved from 91.66% to 93.34%. The statistics of the evaluation results for every single building demonstrated that 77.0% of the total number of contours is updated with higher quality index.

  18. Cavity contour segmentation in chest radiographs using supervised learning and dynamic programming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maduskar, Pragnya, E-mail: pragnya.maduskar@radboudumc.nl; Hogeweg, Laurens; Sánchez, Clara I.

    Purpose: Efficacy of tuberculosis (TB) treatment is often monitored using chest radiography. Monitoring size of cavities in pulmonary tuberculosis is important as the size predicts severity of the disease and its persistence under therapy predicts relapse. The authors present a method for automatic cavity segmentation in chest radiographs. Methods: A two stage method is proposed to segment the cavity borders, given a user defined seed point close to the center of the cavity. First, a supervised learning approach is employed to train a pixel classifier using texture and radial features to identify the border pixels of the cavity. A likelihoodmore » value of belonging to the cavity border is assigned to each pixel by the classifier. The authors experimented with four different classifiers:k-nearest neighbor (kNN), linear discriminant analysis (LDA), GentleBoost (GB), and random forest (RF). Next, the constructed likelihood map was used as an input cost image in the polar transformed image space for dynamic programming to trace the optimal maximum cost path. This constructed path corresponds to the segmented cavity contour in image space. Results: The method was evaluated on 100 chest radiographs (CXRs) containing 126 cavities. The reference segmentation was manually delineated by an experienced chest radiologist. An independent observer (a chest radiologist) also delineated all cavities to estimate interobserver variability. Jaccard overlap measure Ω was computed between the reference segmentation and the automatic segmentation; and between the reference segmentation and the independent observer's segmentation for all cavities. A median overlap Ω of 0.81 (0.76 ± 0.16), and 0.85 (0.82 ± 0.11) was achieved between the reference segmentation and the automatic segmentation, and between the segmentations by the two radiologists, respectively. The best reported mean contour distance and Hausdorff distance between the reference and the automatic segmentation were, respectively, 2.48 ± 2.19 and 8.32 ± 5.66 mm, whereas these distances were 1.66 ± 1.29 and 5.75 ± 4.88 mm between the segmentations by the reference reader and the independent observer, respectively. The automatic segmentations were also visually assessed by two trained CXR readers as “excellent,” “adequate,” or “insufficient.” The readers had good agreement in assessing the cavity outlines and 84% of the segmentations were rated as “excellent” or “adequate” by both readers. Conclusions: The proposed cavity segmentation technique produced results with a good degree of overlap with manual expert segmentations. The evaluation measures demonstrated that the results approached the results of the experienced chest radiologists, in terms of overlap measure and contour distance measures. Automatic cavity segmentation can be employed in TB clinics for treatment monitoring, especially in resource limited settings where radiologists are not available.« less

  19. Use of intonation contours for speech recognition in noise by cochlear implant recipients.

    PubMed

    Meister, Hartmut; Landwehr, Markus; Pyschny, Verena; Grugel, Linda; Walger, Martin

    2011-05-01

    The corruption of intonation contours has detrimental effects on sentence-based speech recognition in normal-hearing listeners Binns and Culling [(2007). J. Acoust. Soc. Am. 122, 1765-1776]. This paper examines whether this finding also applies to cochlear implant (CI) recipients. The subjects' F0-discrimination and speech perception in the presence of noise were measured, using sentences with regular and inverted F0-contours. The results revealed that speech recognition for regular contours was significantly better than for inverted contours. This difference was related to the subjects' F0-discrimination providing further evidence that the perception of intonation patterns is important for the CI-mediated speech recognition in noise.

  20. Identification of irrigated crop types from ERTS-1 density contour maps and color infrared aerial photography. [Wyoming

    NASA Technical Reports Server (NTRS)

    Marrs, R. W.; Evans, M. A.

    1974-01-01

    The author has identified the following significant results. The crop types of a Great Plains study area were mapped from color infrared aerial photography. Each field was positively identified from field checks in the area. Enlarged (50x) density contour maps were constructed from three ERTS-1 images taken in the summer of 1973. The map interpreted from the aerial photography was compared to the density contour maps and the accuracy of the ERTS-1 density contour map interpretations were determined. Changes in the vegetation during the growing season and harvest periods were detectable on the ERTS-1 imagery. Density contouring aids in the detection of such charges.

  1. Feasibility studies of Bragg probe for noninvasive carotid pulse waveform assessment

    NASA Astrophysics Data System (ADS)

    Leitão, Cátia; Bilro, Lúcia; Alberto, Nélia; Antunes, Paulo; Lima, Hugo; André, Paulo S.; Nogueira, Rogério; Pinto, João L.

    2013-01-01

    The arterial stiffness evaluation is largely reported as an independent predictor of cardiovascular diseases. The central pulse waveform can provide important data about arterial health and has been studied in patients with several pathologies, such as diabetes mellitus, coronary artery disease and hypertension. The implementation and feasibility studies of a fiber Bragg grating probe for noninvasive monitoring of the carotid pulse are described based on fiber Bragg grating technology. Assessment tests were carried out in carotids of different volunteers and it was possible to detect the carotid pulse waveform in all subjects. In one of the subjects, the sensor was also tested in terms of repeatability. Although further tests will be required for clinical investigation, the first studies suggest that the developed sensor can be a valid alternative to electromechanical tonometers.

  2. Tissue expansion in the treatment of pressure ulcers.

    PubMed

    Esposito, G; Di Caprio, G; Ziccardi, P; Scuderi, N

    1991-03-01

    The authors report their experience using skin expanders in 11 patients with severe bed sores. The expanders, with different volumes, from 250 to 1000 cc, were generally overfilled using the cutaneous tonometer. In fact, with the information revealed by this apparatus on the skin in expansion, the authors were able to reduce the filling intervals without risking ulceration. In their experience, the results obtained were satisfactory: All patients treated achieved surgical recovery. The authors see a wide future for skin-expander use in pressure-ulcer treatment. They have a working hypothesis about using expanders to progressively advance sensitive skin in areas subject to ulceration. This hypothesis is based on the possibility of reexpanding the same flap several times, as has been seen in the treatment of other types of pathology.

  3. Theoretical Studies of a Transient Stimulated Raman Amplifier

    DTIC Science & Technology

    1988-04-19

    follows: I. contour plot of pump intensity . 1. sections of pump intensity 2. sections of pump phase 3. sections of pump amplitude (real/ imag ) I...contour plot of pump FFT intensity 4. sections of pump FFT intensity 5. sections of pump FFT phase 6. sections of pump FFT amplitude (real/ imag ) II...contour plot of Stokes intensity 7. sections of Stokes intensity 8. sections of Stokes phase 9. sections of Stokes amplitude (real/ imag ) IV. contour plot

  4. Global regularizing flows with topology preservation for active contours and polygons.

    PubMed

    Sundaramoorthi, Ganesh; Yezzi, Anthony

    2007-03-01

    Active contour and active polygon models have been used widely for image segmentation. In some applications, the topology of the object(s) to be detected from an image is known a priori, despite a complex unknown geometry, and it is important that the active contour or polygon maintain the desired topology. In this work, we construct a novel geometric flow that can be added to image-based evolutions of active contours and polygons in order to preserve the topology of the initial contour or polygon. We emphasize that, unlike other methods for topology preservation, the proposed geometric flow continually adjusts the geometry of the original evolution in a gradual and graceful manner so as to prevent a topology change long before the curve or polygon becomes close to topology change. The flow also serves as a global regularity term for the evolving contour, and has smoothness properties similar to curvature flow. These properties of gradually adjusting the original flow and global regularization prevent geometrical inaccuracies common with simple discrete topology preservation schemes. The proposed topology preserving geometric flow is the gradient flow arising from an energy that is based on electrostatic principles. The evolution of a single point on the contour depends on all other points of the contour, which is different from traditional curve evolutions in the computer vision literature.

  5. Tumour auto-contouring on 2d cine MRI for locally advanced lung cancer: A comparative study.

    PubMed

    Fast, Martin F; Eiben, Björn; Menten, Martin J; Wetscherek, Andreas; Hawkes, David J; McClelland, Jamie R; Oelfke, Uwe

    2017-12-01

    Radiotherapy guidance based on magnetic resonance imaging (MRI) is currently becoming a clinical reality. Fast 2d cine MRI sequences are expected to increase the precision of radiation delivery by facilitating tumour delineation during treatment. This study compares four auto-contouring algorithms for the task of delineating the primary tumour in six locally advanced (LA) lung cancer patients. Twenty-two cine MRI sequences were acquired using either a balanced steady-state free precession or a spoiled gradient echo imaging technique. Contours derived by the auto-contouring algorithms were compared against manual reference contours. A selection of eight image data sets was also used to assess the inter-observer delineation uncertainty. Algorithmically derived contours agreed well with the manual reference contours (median Dice similarity index: ⩾0.91). Multi-template matching and deformable image registration performed significantly better than feature-driven registration and the pulse-coupled neural network (PCNN). Neither MRI sequence nor image orientation was a conclusive predictor for algorithmic performance. Motion significantly degraded the performance of the PCNN. The inter-observer variability was of the same order of magnitude as the algorithmic performance. Auto-contouring of tumours on cine MRI is feasible in LA lung cancer patients. Despite large variations in implementation complexity, the different algorithms all have relatively similar performance. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  6. Material properties from contours: New insights on object perception.

    PubMed

    Pinna, Baingio; Deiana, Katia

    2015-10-01

    In this work we explored phenomenologically the visual complexity of the material attributes on the basis of the contours that define the boundaries of a visual object. The starting point is the rich and pioneering work done by Gestalt psychologists and, more in detail, by Rubin, who first demonstrated that contours contain most of the information related to object perception, like the shape, the color and the depth. In fact, by investigating simple conditions like those used by Gestalt psychologists, mostly consisting of contours only, we demonstrated that the phenomenal complexity of the material attributes emerges through appropriate manipulation of the contours. A phenomenological approach, analogous to the one used by Gestalt psychologists, was used to answer the following questions. What are contours? Which attributes can be phenomenally defined by contours? Are material properties determined only by contours? What is the visual syntactic organization of object attributes? The results of this work support the idea of a visual syntactic organization as a new kind of object formation process useful to understand the language of vision that creates well-formed attribute organizations. The syntax of visual attributes can be considered as a new way to investigate the modular coding and, more generally, the binding among attributes, i.e., the issue of how the brain represents the pairing of shape and material properties. Copyright © 2015. Published by Elsevier Ltd.

  7. A Social Evaluation of Perception on Body Contouring Surgery by Turkish Male Aesthetic Surgery Patients.

    PubMed

    Ozel, Bora; Sezgin, Billur; Guney, Kirdar; Latifoglu, Osman; Celebi, Cemallettin

    2015-02-01

    Although aesthetic procedures are known to have a higher impact on women, men are becoming more inclined toward such procedures since the last decade. To determine the reason behind the increase in demand for male aesthetic procedures and to learn about the expectations and inquietude related to body contouring surgery, a prospective questionnaire study was conducted on 200 Turkish males from January 1, 2011-May 31, 2012. Demographic information, previous aesthetic procedures and thoughts on body contouring procedures with given reasons were questioned. The results of the study showed that 53 % of all participants considered undergoing body contouring surgery with the given reason that they believed their current body structure required it. For those who did not consider contouring operations, 92.5 % said they felt that they did not need such a procedure. The results of the statistical analysis showed that BMI was a significant factor in the decision making process for wanting to undergo body contouring procedures. The results of the study showed that men's consideration for aesthetic operations depends mainly on necessity and that the most considered region was the abdominal zone in regard to contouring. We can conclude that men are becoming more interested in body contouring operations and therefore different surgical procedures should be refined and re-defined according to the expectations of this new patient group.

  8. Validation of a Magnetic Resonance Imaging-based Auto-contouring Software Tool for Gross Tumour Delineation in Head and Neck Cancer Radiotherapy Planning.

    PubMed

    Doshi, T; Wilson, C; Paterson, C; Lamb, C; James, A; MacKenzie, K; Soraghan, J; Petropoulakis, L; Di Caterina, G; Grose, D

    2017-01-01

    To carry out statistical validation of a newly developed magnetic resonance imaging (MRI) auto-contouring software tool for gross tumour volume (GTV) delineation in head and neck tumours to assist in radiotherapy planning. Axial MRI baseline scans were obtained for 10 oropharyngeal and laryngeal cancer patients. GTV was present on 102 axial slices and auto-contoured using the modified fuzzy c-means clustering integrated with the level set method (FCLSM). Peer-reviewed (C-gold) manual contours were used as the reference standard to validate auto-contoured GTVs (C-auto) and mean manual contours (C-manual) from two expert clinicians (C1 and C2). Multiple geometric metrics, including the Dice similarity coefficient (DSC), were used for quantitative validation. A DSC≥0.7 was deemed acceptable. Inter- and intra-variabilities among the manual contours were also validated. The two-dimensional contours were then reconstructed in three dimensions for GTV volume calculation, comparison and three-dimensional visualisation. The mean DSC between C-gold and C-auto was 0.79. The mean DSC between C-gold and C-manual was 0.79 and that between C1 and C2 was 0.80. The average time for GTV auto-contouring per patient was 8 min (range 6-13 min; mean 45 s per axial slice) compared with 15 min (range 6-23 min; mean 88 s per axial slice) for C1. The average volume concordance between C-gold and C-auto volumes was 86.51% compared with 74.16% between C-gold and C-manual. The average volume concordance between C1 and C2 volumes was 86.82%. This newly designed MRI-based auto-contouring software tool shows initial acceptable results in GTV delineation of oropharyngeal and laryngeal tumours using FCLSM. This auto-contouring software tool may help reduce inter- and intra-variability and can assist clinical oncologists with time-consuming, complex radiotherapy planning. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  9. TU-H-CAMPUS-JeP1-02: Fully Automatic Verification of Automatically Contoured Normal Tissues in the Head and Neck

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCarroll, R; UT Health Science Center, Graduate School of Biomedical Sciences, Houston, TX; Beadle, B

    Purpose: To investigate and validate the use of an independent deformable-based contouring algorithm for automatic verification of auto-contoured structures in the head and neck towards fully automated treatment planning. Methods: Two independent automatic contouring algorithms [(1) Eclipse’s Smart Segmentation followed by pixel-wise majority voting, (2) an in-house multi-atlas based method] were used to create contours of 6 normal structures of 10 head-and-neck patients. After rating by a radiation oncologist, the higher performing algorithm was selected as the primary contouring method, the other used for automatic verification of the primary. To determine the ability of the verification algorithm to detect incorrectmore » contours, contours from the primary method were shifted from 0.5 to 2cm. Using a logit model the structure-specific minimum detectable shift was identified. The models were then applied to a set of twenty different patients and the sensitivity and specificity of the models verified. Results: Per physician rating, the multi-atlas method (4.8/5 point scale, with 3 rated as generally acceptable for planning purposes) was selected as primary and the Eclipse-based method (3.5/5) for verification. Mean distance to agreement and true positive rate were selected as covariates in an optimized logit model. These models, when applied to a group of twenty different patients, indicated that shifts could be detected at 0.5cm (brain), 0.75cm (mandible, cord), 1cm (brainstem, cochlea), or 1.25cm (parotid), with sensitivity and specificity greater than 0.95. If sensitivity and specificity constraints are reduced to 0.9, detectable shifts of mandible and brainstem were reduced by 0.25cm. These shifts represent additional safety margins which might be considered if auto-contours are used for automatic treatment planning without physician review. Conclusion: Automatically contoured structures can be automatically verified. This fully automated process could be used to flag auto-contours for special review or used with safety margins in a fully automatic treatment planning system.« less

  10. The Journal of Physical Chemistry A. Time-Dependent Quantum Molecular Dynamics Workshop, Brian Head, Utah, March 13-17, 1999. Volume 103, Number 47

    DTIC Science & Technology

    1999-11-25

    reactions the situation is more complicated since many of the modes are in the process of changing from free rotors to nearly harmonic bending motions ...are dihedral angles between the CH3 planes and the CC axis (see text). Heavy solid contours denote repulsive regions ( energies higher than that of...while vi is the source term describing the rate of formation of ethane in energy state i from the free methyl radicals. The effective bimolecular

  11. Lines that induce phenomenal transparency.

    PubMed

    Grieco, Alba; Roncato, Sergio

    2005-01-01

    Three neighbouring opaque surfaces may appear split into two layers, one transparent and one opaque beneath, if an outline contour is drawn that encompasses two of them. The phenomenon was originally observed by Kanizsa [1955 Rivista di Psicologia 69 3-19; 1979 Organization in Vision: Essays on Gestalt Psychology (New York: Praeger)], for the case where an outline contour is drawn to encompass one of the two parts of a bicoloured figure and a portion of a background of lightest (or darkest) luminance. Preliminary observations revealed that the outline contour yields different effects: in addition to the stratification into layers described by Kanizsa, a second split, opposite in depth order, may occur when the outline contour is close in luminance to one of the three surfaces. An initial experiment was designed to investigate what conditions give rise to the two phenomenal transparencies: this led to the conclusion that an outline contour superimposed on an opaque surface causes this surface to emerge as a transparent layer when the luminances of the contour and the surface differ, in absolute value, by no more than 13.2 cd m(-2). We have named this phenomenon 'transparency of the intercepted surface', to distinguish it from the phenomenal transparency arising when the contour and surface are very different in luminance. When such a difference exists, the contour acts as a factor of surface definition and grouping: the portion of the homogeneous surface it bounds emerges as a fourth surface and groups with a nearby surface if there is one close in luminance. The transparency phenomena ('transparency of the contoured surface') perceived in this context conform to the constraints of Metelli's model, as demonstrated by a second experiment, designed to gather 'opacity' ratings of stimuli. The observer judgments conformed to the values predicted by Metelli's formula for perceived degree of transparency, alpha. The role of the outline contour in conveying figural and intensity information is discussed.

  12. SU-E-E-05: Improving Contouring Precision and Consistency for Physicians-In-Training with Simple Lab Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, L; Larson, D A

    2015-06-15

    Purpose: Target contouring for high-dose treatments such as radiosurgery of brain metastases is highly critical in eliminating marginal failure and reducing complications as shown by recent clinical studies. In order to improve contouring accuracy and practice consistency for the procedure, we introduced a self-assessed physics lab practice for the physicians-in-training. Methods: A set of commercially acquired high-precision PMMA plastic spheres were randomly embedded in a Styrofoam block and then scanned with the CT/MR via the clinical procedural imaging protocol. A group of first-year physicians-in-training (n=6) from either neurosurgery or radiation oncology department were asked to contour the scanned objects (diametermore » ranged from 0.4 cm to 3.8 cm). These user-defined contours were then compared with the ideal contour sets of object shape for self assessments to determine the maximum areas of the observed discrepancies and method of improvements. Results: The largest discrepancies from initial practice were consistently found to be located near the extreme longitudinal portions of the target for all the residents. Discrepancy was especially prominent when contouring small objects < 1.0 cm in diameters. For example, the mean volumes rendered from the initial contour data set differed from the ideal data set by 7.7%±6.6% for the participants (p> 0.23 suggesting agreement cannot be established). However, when incorporating a secondary imaging scan such as reconstructed coronal or sagittal images in a repeat practice, the agreement was dramatically improved yielding p<0.02 in agreement with the reference data set for all the participants. Conclusion: A simple physics lab revealed a common pitfall in contouring small metastatic brain tumors for radiosurgical procedures and provided a systematic tool for physicians-in-training in improving their clinical contouring skills. Dr Ma is current a board member of international stereotactic radiosurgical society.« less

  13. SU-E-J-109: Accurate Contour Transfer Between Different Image Modalities Using a Hybrid Deformable Image Registration and Fuzzy Connected Image Segmentation Method.

    PubMed

    Yang, C; Paulson, E; Li, X

    2012-06-01

    To develop and evaluate a tool that can improve the accuracy of contour transfer between different image modalities under challenging conditions of low image contrast and large image deformation, comparing to a few commonly used methods, for radiation treatment planning. The software tool includes the following steps and functionalities: (1) accepting input of images of different modalities, (2) converting existing contours on reference images (e.g., MRI) into delineated volumes and adjusting the intensity within the volumes to match target images (e.g., CT) intensity distribution for enhanced similarity metric, (3) registering reference and target images using appropriate deformable registration algorithms (e.g., B-spline, demons) and generate deformed contours, (4) mapping the deformed volumes on target images, calculating mean, variance, and center of mass as the initialization parameters for consecutive fuzzy connectedness (FC) image segmentation on target images, (5) generate affinity map from FC segmentation, (6) achieving final contours by modifying the deformed contours using the affinity map with a gradient distance weighting algorithm. The tool was tested with the CT and MR images of four pancreatic cancer patients acquired at the same respiration phase to minimize motion distortion. Dice's Coefficient was calculated against direct delineation on target image. Contours generated by various methods, including rigid transfer, auto-segmentation, deformable only transfer and proposed method, were compared. Fuzzy connected image segmentation needs careful parameter initialization and user involvement. Automatic contour transfer by multi-modality deformable registration leads up to 10% of accuracy improvement over the rigid transfer. Two extra proposed steps of adjusting intensity distribution and modifying the deformed contour with affinity map improve the transfer accuracy further to 14% averagely. Deformable image registration aided by contrast adjustment and fuzzy connectedness segmentation improves the contour transfer accuracy between multi-modality images, particularly with large deformation and low image contrast. © 2012 American Association of Physicists in Medicine.

  14. Coalescence of Nanoclusters Analyzed by Well-Tempered Metadynamics. Comparison with Straightforward Molecular Dynamics.

    PubMed

    Farigliano, Lucas M; Paz, Sergio A; Leiva, Ezequiel P M; Villarreal, Marcos A

    2017-08-08

    The coalescence process of two nanoparticles to yield a core-shell structure is analyzed by a well-tempered metadynamics procedure. This methodology has been shown to be useful in understanding the present phenomenon in terms of two collective variables: the distance between the center of mass of the coalescing particles and the gyration radius of the resulting core element. The free-energy contour plots clearly show that the coalescence process involves the deformation of the core material, which is manifested in the residence of the system in regions with a larger gyration radius. Results from molecular dynamics for the same system were found helpful to reach the definition of this second collective variable. The advantages and limitations of the latter approach are discussed.

  15. Motion-seeded object-based attention for dynamic visual imagery

    NASA Astrophysics Data System (ADS)

    Huber, David J.; Khosla, Deepak; Kim, Kyungnam

    2017-05-01

    This paper† describes a novel system that finds and segments "objects of interest" from dynamic imagery (video) that (1) processes each frame using an advanced motion algorithm that pulls out regions that exhibit anomalous motion, and (2) extracts the boundary of each object of interest using a biologically-inspired segmentation algorithm based on feature contours. The system uses a series of modular, parallel algorithms, which allows many complicated operations to be carried out by the system in a very short time, and can be used as a front-end to a larger system that includes object recognition and scene understanding modules. Using this method, we show 90% accuracy with fewer than 0.1 false positives per frame of video, which represents a significant improvement over detection using a baseline attention algorithm.

  16. Wave Field Synthesis of moving sources with arbitrary trajectory and velocity profile.

    PubMed

    Firtha, Gergely; Fiala, Péter

    2017-08-01

    The sound field synthesis of moving sound sources is of great importance when dynamic virtual sound scenes are to be reconstructed. Previous solutions considered only virtual sources moving uniformly along a straight trajectory, synthesized employing a linear loudspeaker array. This article presents the synthesis of point sources following an arbitrary trajectory. Under high-frequency assumptions 2.5D Wave Field Synthesis driving functions are derived for arbitrary shaped secondary source contours by adapting the stationary phase approximation to the dynamic description of sources in motion. It is explained how a referencing function should be chosen in order to optimize the amplitude of synthesis on an arbitrary receiver curve. Finally, a finite difference implementation scheme is considered, making the presented approach suitable for real-time applications.

  17. The development of contour processing: evidence from physiology and psychophysics

    PubMed Central

    Taylor, Gemma; Hipp, Daniel; Moser, Alecia; Dickerson, Kelly; Gerhardstein, Peter

    2014-01-01

    Object perception and pattern vision depend fundamentally upon the extraction of contours from the visual environment. In adulthood, contour or edge-level processing is supported by the Gestalt heuristics of proximity, collinearity, and closure. Less is known, however, about the developmental trajectory of contour detection and contour integration. Within the physiology of the visual system, long-range horizontal connections in V1 and V2 are the likely candidates for implementing these heuristics. While post-mortem anatomical studies of human infants suggest that horizontal interconnections reach maturity by the second year of life, psychophysical research with infants and children suggests a considerably more protracted development. In the present review, data from infancy to adulthood will be discussed in order to track the development of contour detection and integration. The goal of this review is thus to integrate the development of contour detection and integration with research regarding the development of underlying neural circuitry. We conclude that the ontogeny of this system is best characterized as a developmentally extended period of associative acquisition whereby horizontal connectivity becomes functional over longer and longer distances, thus becoming able to effectively integrate over greater spans of visual space. PMID:25071681

  18. On the Theory of Multivariate Elliptically Contoured Distributions and Their Applications.

    DTIC Science & Technology

    1982-05-01

    elliptically contoured distributions has been studied by several authors: Schoenberg (1938), Kelker (1970), Devlin, Gnanadesikan and Keltenring (1976...theory of ellip- tically contoured distributions, J. Multivariate Analysis, 11, 368-385. Devlin, S. J., Gnanadesikan , R., and Kettenring, J. R. (1976

  19. Contour shape analysis of hollow ion x-ray emission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosmej, F. B.; Angelo, P.; Ecole Polytechnique, Laboratoire pour Utilisation des Lasers Intenses, Physique Atomique dans les Plasmas Denses, 91128 Palaiseau Cedex

    2008-10-22

    Hollow ion x-ray transitions originating from the configurations K{sup 0}L{sup N} have been studied via relativistic atomic structure and Stark broadening calculations. The broadening of the total contour is largely influenced by the oscillator strengths distribution over wavelengths rather than by Stark broadening alone. Interference effects between the upper and lower levels are shown to result in a considerable contour narrowing as well as in a shift of the total contour which could be either red or blue.

  20. Quality of life long-term after body contouring surgery following bariatric surgery: sustained improvement after 7 years.

    PubMed

    van der Beek, Eva S J; Geenen, Rinie; de Heer, Francine A G; van der Molen, Aebele B Mink; van Ramshorst, Bert

    2012-11-01

    Bariatric surgery for morbid obesity results in massive weight loss and improvement of health and quality of life. A downside of the major weight loss is the excess of overstretched skin, which may influence the patient's quality of life by causing functional and aesthetic problems. The purpose of the current study was to evaluate the patient's quality of life long-term after body contouring following bariatric surgery. Quality of life was measured with the Obesity Psychosocial State Questionnaire in 33 post-bariatric surgery patients 7.2 years (range, 3.2 to 13.3 years) after body contouring surgery. Data were compared with previous assessments 4.1 years (range, 0.7 to 9.2 years) after body contouring surgery of the quality of life at that time and before body contouring surgery. Compared with appraisals of quality of life before body contouring surgery, a significant, mostly moderate to large, sustained improvement of quality of life was observed in post-bariatric surgery patients 7.2 years after body contouring surgery in six of the seven psychosocial domains. A small deterioration occurred between 4.1- and 7.2-year follow-up on two of the seven domains except for the domain efficacy toward eating, which showed a significant improvement. At 7-year follow-up, 18 patients (55 percent) were satisfied with the result of body contouring surgery. This study indicates a sustained quality-of-life improvement in post-bariatric surgery patients after body contouring surgery. This suggests the importance of including reconstructive surgery as a component in the multidisciplinary approach in the surgical treatment of morbid obesity. Therapeutic, IV.

  1. Correlations between contouring similarity metrics and simulated treatment outcome for prostate radiotherapy

    NASA Astrophysics Data System (ADS)

    Roach, D.; Jameson, M. G.; Dowling, J. A.; Ebert, M. A.; Greer, P. B.; Kennedy, A. M.; Watt, S.; Holloway, L. C.

    2018-02-01

    Many similarity metrics exist for inter-observer contouring variation studies, however no correlation between metric choice and prostate cancer radiotherapy dosimetry has been explored. These correlations were investigated in this study. Two separate trials were undertaken, the first a thirty-five patient cohort with three observers, the second a five patient dataset with ten observers. Clinical and planning target volumes (CTV and PTV), rectum, and bladder were independently contoured by all observers in each trial. Structures were contoured on T2-weighted MRI and transferred onto CT following rigid registration for treatment planning in the first trial. Structures were contoured directly on CT in the second trial. STAPLE and majority voting volumes were generated as reference gold standard volumes for each structure for the two trials respectively. VMAT treatment plans (78 Gy to PTV) were simulated for observer and gold standard volumes, and dosimetry assessed using multiple radiobiological metrics. Correlations between contouring similarity metrics and dosimetry were calculated using Spearman’s rank correlation coefficient. No correlations were observed between contouring similarity metrics and dosimetry for CTV within either trial. Volume similarity correlated most strongly with radiobiological metrics for PTV in both trials, including TCPPoisson (ρ  =  0.57, 0.65), TCPLogit (ρ  =  0.39, 0.62), and EUD (ρ  =  0.43, 0.61) for each respective trial. Rectum and bladder metric correlations displayed no consistency for the two trials. PTV volume similarity was found to significantly correlate with rectum normal tissue complication probability (ρ  =  0.33, 0.48). Minimal to no correlations with dosimetry were observed for overlap or boundary contouring metrics. Future inter-observer contouring variation studies for prostate cancer should incorporate volume similarity to provide additional insights into dosimetry during analysis.

  2. Dynamical density delay maps: simple, new method for visualising the behaviour of complex systems

    PubMed Central

    2014-01-01

    Background Physiologic signals, such as cardiac interbeat intervals, exhibit complex fluctuations. However, capturing important dynamical properties, including nonstationarities may not be feasible from conventional time series graphical representations. Methods We introduce a simple-to-implement visualisation method, termed dynamical density delay mapping (“D3-Map” technique) that provides an animated representation of a system’s dynamics. The method is based on a generalization of conventional two-dimensional (2D) Poincaré plots, which are scatter plots where each data point, x(n), in a time series is plotted against the adjacent one, x(n + 1). First, we divide the original time series, x(n) (n = 1,…, N), into a sequence of segments (windows). Next, for each segment, a three-dimensional (3D) Poincaré surface plot of x(n), x(n + 1), h[x(n),x(n + 1)] is generated, in which the third dimension, h, represents the relative frequency of occurrence of each (x(n),x(n + 1)) point. This 3D Poincaré surface is then chromatised by mapping the relative frequency h values onto a colour scheme. We also generate a colourised 2D contour plot from each time series segment using the same colourmap scheme as for the 3D Poincaré surface. Finally, the original time series graph, the colourised 3D Poincaré surface plot, and its projection as a colourised 2D contour map for each segment, are animated to create the full “D3-Map.” Results We first exemplify the D3-Map method using the cardiac interbeat interval time series from a healthy subject during sleeping hours. The animations uncover complex dynamical changes, such as transitions between states, and the relative amount of time the system spends in each state. We also illustrate the utility of the method in detecting hidden temporal patterns in the heart rate dynamics of a patient with atrial fibrillation. The videos, as well as the source code, are made publicly available. Conclusions Animations based on density delay maps provide a new way of visualising dynamical properties of complex systems not apparent in time series graphs or standard Poincaré plot representations. Trainees in a variety of fields may find the animations useful as illustrations of fundamental but challenging concepts, such as nonstationarity and multistability. For investigators, the method may facilitate data exploration. PMID:24438439

  3. Age-forming aluminum panels

    NASA Technical Reports Server (NTRS)

    Baxter, G. I.

    1976-01-01

    Contoured-stiffened 63 by 337 inch 2124 aluminum alloy panels are machined in-the-flat to make integral, tapered T-capped stringers, parallel with longitudinal centerline. Aging fixture, which includes net contour formers made from lofted contour templates, has eggcrate-like structure for use in forming and checking panels.

  4. Color and Contour Based Identification of Stem of Coconut Bunch

    NASA Astrophysics Data System (ADS)

    Kannan Megalingam, Rajesh; Manoharan, Sakthiprasad K.; Reddy, Rajesh G.; Sriteja, Gone; Kashyap, Ashwin

    2017-08-01

    Vision is the key component of Artificial Intelligence and Automated Robotics. Sensors or Cameras are the sight organs for a robot. Only through this, they are able to locate themselves or identify the shape of a regular or an irregular object. This paper presents the method of Identification of an object based on color and contour recognition using a camera through digital image processing techniques for robotic applications. In order to identify the contour, shape matching technique is used, which takes the input data from the database provided, and uses it to identify the contour by checking for shape match. The shape match is based on the idea of iterating through each contour of the threshold image. The color is identified on HSV Scale, by approximating the desired range of values from the database. HSV data along with iteration is used for identifying a quadrilateral, which is our required contour. This algorithm could also be used in a non-deterministic plane, which only uses HSV values exclusively.

  5. Perceptual Learning of Intonation Contour Categories in Adults and 9- to 11-Year-Old Children: Adults Are More Narrow-Minded.

    PubMed

    Kapatsinski, Vsevolod; Olejarczuk, Paul; Redford, Melissa A

    2017-03-01

    We report on rapid perceptual learning of intonation contour categories in adults and 9- to 11-year-old children. Intonation contours are temporally extended patterns, whose perception requires temporal integration and therefore poses significant working memory challenges. Both children and adults form relatively abstract representations of intonation contours: Previously encountered and novel exemplars are categorized together equally often, as long as distance from the prototype is controlled. However, age-related differences in categorization performance also exist. Given the same experience, adults form narrower categories than children. In addition, adults pay more attention to the end of the contour, while children appear to pay equal attention to the beginning and the end. The age range we examine appears to capture the tail-end of the developmental trajectory for learning intonation contour categories: There is a continuous effect of age on category breadth within the child group, but the oldest children (older than 10;3) are adult-like. Copyright © 2016 Cognitive Science Society, Inc.

  6. Sonority contours in word recognition

    NASA Astrophysics Data System (ADS)

    McLennan, Sean

    2003-04-01

    Contrary to the Generativist distinction between competence and performance which asserts that speech or perception errors are due to random, nonlinguistic factors, it seems likely that errors are principled and possibly governed by some of the same constraints as language. A preliminary investigation of errors modeled after the child's ``Chain Whisper'' game (a degraded stimulus task) suggests that a significant number of recognition errors can be characterized as an improvement in syllable sonority contour towards the linguistically least-marked, voiceless-stop-plus-vowel syllable. An independent study of sonority contours showed that approximately half of the English lexicon can be uniquely identified by their contour alone. Additionally, ``sororities'' (groups of words that share a single sonority contour), surprisingly, show no correlation to familiarity or frequency in either size or membership. Together these results imply that sonority contours may be an important factor in word recognition and in defining word ``neighborhoods.'' Moreover, they suggest that linguistic markedness constraints may be more prevalent in performance-related phenomena than previously accepted.

  7. Contour Tracking with a Spatio-Temporal Intensity Moment.

    PubMed

    Demi, Marcello

    2016-06-01

    Standard edge detection operators such as the Laplacian of Gaussian and the gradient of Gaussian can be used to track contours in image sequences. When using edge operators, a contour, which is determined on a frame of the sequence, is simply used as a starting contour to locate the nearest contour on the subsequent frame. However, the strategy used to look for the nearest edge points may not work when tracking contours of non isolated gray level discontinuities. In these cases, strategies derived from the optical flow equation, which look for similar gray level distributions, appear to be more appropriate since these can work with a lower frame rate than that needed for strategies based on pure edge detection operators. However, an optical flow strategy tends to propagate the localization errors through the sequence and an additional edge detection procedure is essential to compensate for such a drawback. In this paper a spatio-temporal intensity moment is proposed which integrates the two basic functions of edge detection and tracking.

  8. Some distinguishing characteristics of contour and texture phenomena in images

    NASA Technical Reports Server (NTRS)

    Jobson, Daniel J.

    1992-01-01

    The development of generalized contour/texture discrimination techniques is a central element necessary for machine vision recognition and interpretation of arbitrary images. Here, the visual perception of texture, selected studies of texture analysis in machine vision, and diverse small samples of contour and texture are all used to provide insights into the fundamental characteristics of contour and texture. From these, an experimental discrimination scheme is developed and tested on a battery of natural images. The visual perception of texture defined fine texture as a subclass which is interpreted as shading and is distinct from coarse figural similarity textures. Also, perception defined the smallest scale for contour/texture discrimination as eight to nine visual acuity units. Three contour/texture discrimination parameters were found to be moderately successful for this scale discrimination: (1) lightness change in a blurred version of the image, (2) change in lightness change in the original image, and (3) percent change in edge counts relative to local maximum.

  9. Contour metrology using critical dimension atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Orji, Ndubuisi G.; Dixson, Ronald G.; Vladár, András E.; Ming, Bin; Postek, Michael T.

    2012-03-01

    The critical dimension atomic force microscope (CD-AFM), which is used as a reference instrument in lithography metrology, has been proposed as a complementary instrument for contour measurement and verification. Although data from CD-AFM is inherently three dimensional, the planar two-dimensional data required for contour metrology is not easily extracted from the top-down CD-AFM data. This is largely due to the limitations of the CD-AFM method for controlling the tip position and scanning. We describe scanning techniques and profile extraction methods to obtain contours from CD-AFM data. We also describe how we validated our technique, and explain some of its limitations. Potential sources of error for this approach are described, and a rigorous uncertainty model is presented. Our objective is to show which data acquisition and analysis methods could yield optimum contour information while preserving some of the strengths of CD-AFM metrology. We present comparison of contours extracted using our technique to those obtained from the scanning electron microscope (SEM), and the helium ion microscope (HIM).

  10. Perceptual learning of intonation contour categories in adults and 9 to 11-year-old children: Adults are more narrow-minded

    PubMed Central

    Kapatsinski, Vsevolod; Olejarczuk, Paul; Redford, Melissa A.

    2015-01-01

    We report on rapid perceptual learning of intonation contour categories in adults and 9- to 11-year-old children. Intonation contours are temporally extended patterns whose perception requires temporal integration and therefore poses significant working memory challenges. Both children and adults form relatively abstract representations of intonation contours: previously encountered and novel exemplars are categorized together equally often, as long as distance from the prototype is controlled. However, age-related differences in categorization performance also exist. Given the same experience, adults form narrower categories than children. In addition, adults pay more attention to the end of the contour while children appear to pay equal attention to the beginning and the end. The age range we examine appears to capture the tail-end of the developmental trajectory for learning intonation contour categories: there is a continuous effect of age on category breadth within the child group, but the oldest children (older than 10;3) are adult-like. PMID:26901251

  11. Augmenting atlas-based liver segmentation for radiotherapy treatment planning by incorporating image features proximal to the atlas contours

    NASA Astrophysics Data System (ADS)

    Li, Dengwang; Liu, Li; Chen, Jinhu; Li, Hongsheng; Yin, Yong; Ibragimov, Bulat; Xing, Lei

    2017-01-01

    Atlas-based segmentation utilizes a library of previously delineated contours of similar cases to facilitate automatic segmentation. The problem, however, remains challenging because of limited information carried by the contours in the library. In this studying, we developed a narrow-shell strategy to enhance the information of each contour in the library and to improve the accuracy of the exiting atlas-based approach. This study presented a new concept of atlas based segmentation method. Instead of using the complete volume of the target organs, only information along the organ contours from the atlas images was used for guiding segmentation of the new image. In setting up an atlas-based library, we included not only the coordinates of contour points, but also the image features adjacent to the contour. In this work, 139 CT images with normal appearing livers collected for radiotherapy treatment planning were used to construct the library. The CT images within the library were first registered to each other using affine registration. The nonlinear narrow shell was generated alongside the object contours of registered images. Matching voxels were selected inside common narrow shell image features of a library case and a new case using a speed-up robust features (SURF) strategy. A deformable registration was then performed using a thin plate splines (TPS) technique. The contour associated with the library case was propagated automatically onto the new image by exploiting the deformation field vectors. The liver contour was finally obtained by employing level set based energy optimization within the narrow shell. The performance of the proposed method was evaluated by comparing quantitatively the auto-segmentation results with that delineated by physicians. A novel atlas-based segmentation technique with inclusion of neighborhood image features through the introduction of a narrow-shell surrounding the target objects was established. Application of the technique to 30 liver cases suggested that the technique was capable to reliably segment liver cases from CT, 4D-CT, and CBCT images with little human interaction. The accuracy and speed of the proposed method are quantitatively validated by comparing automatic segmentation results with the manual delineation results. The Jaccard similarity metric between the automatically generated liver contours obtained by the proposed method and the physician delineated results are on an average 90%-96% for planning images. Incorporation of image features into the library contours improves the currently available atlas-based auto-contouring techniques and provides a clinically practical solution for auto-segmentation. The proposed mountainous narrow shell atlas based method can achieve efficient automatic liver propagation for CT, 4D-CT and CBCT images with following treatment planning and should find widespread application in future treatment planning systems.

  12. Augmenting atlas-based liver segmentation for radiotherapy treatment planning by incorporating image features proximal to the atlas contours.

    PubMed

    Li, Dengwang; Liu, Li; Chen, Jinhu; Li, Hongsheng; Yin, Yong; Ibragimov, Bulat; Xing, Lei

    2017-01-07

    Atlas-based segmentation utilizes a library of previously delineated contours of similar cases to facilitate automatic segmentation. The problem, however, remains challenging because of limited information carried by the contours in the library. In this studying, we developed a narrow-shell strategy to enhance the information of each contour in the library and to improve the accuracy of the exiting atlas-based approach. This study presented a new concept of atlas based segmentation method. Instead of using the complete volume of the target organs, only information along the organ contours from the atlas images was used for guiding segmentation of the new image. In setting up an atlas-based library, we included not only the coordinates of contour points, but also the image features adjacent to the contour. In this work, 139 CT images with normal appearing livers collected for radiotherapy treatment planning were used to construct the library. The CT images within the library were first registered to each other using affine registration. The nonlinear narrow shell was generated alongside the object contours of registered images. Matching voxels were selected inside common narrow shell image features of a library case and a new case using a speed-up robust features (SURF) strategy. A deformable registration was then performed using a thin plate splines (TPS) technique. The contour associated with the library case was propagated automatically onto the new image by exploiting the deformation field vectors. The liver contour was finally obtained by employing level set based energy optimization within the narrow shell. The performance of the proposed method was evaluated by comparing quantitatively the auto-segmentation results with that delineated by physicians. A novel atlas-based segmentation technique with inclusion of neighborhood image features through the introduction of a narrow-shell surrounding the target objects was established. Application of the technique to 30 liver cases suggested that the technique was capable to reliably segment liver cases from CT, 4D-CT, and CBCT images with little human interaction. The accuracy and speed of the proposed method are quantitatively validated by comparing automatic segmentation results with the manual delineation results. The Jaccard similarity metric between the automatically generated liver contours obtained by the proposed method and the physician delineated results are on an average 90%-96% for planning images. Incorporation of image features into the library contours improves the currently available atlas-based auto-contouring techniques and provides a clinically practical solution for auto-segmentation. The proposed mountainous narrow shell atlas based method can achieve efficient automatic liver propagation for CT, 4D-CT and CBCT images with following treatment planning and should find widespread application in future treatment planning systems.

  13. Accurate and ergonomic method of registration for image-guided neurosurgery

    NASA Astrophysics Data System (ADS)

    Henderson, Jaimie M.; Bucholz, Richard D.

    1994-05-01

    There has been considerable interest in the development of frameless stereotaxy based upon scalp mounted fiducials. In practice we have experienced difficulty in relating markers to the image data sets in our series of 25 frameless cases, as well as inaccuracy due to scalp movement and the size of the markers. We have developed an alternative system for accurately and conveniently achieving surgical registration for image-guided neurosurgery based on alignment and matching of patient forehead contours. The system consists of a laser contour digitizer which is used in the operating room to acquire forehead contours, editing software for extracting contours from patient image data sets, and a contour-match algorithm for aligning the two contours and performing data set registration. The contour digitizer is tracked by a camera array which relates its position with respect to light emitting diodes placed on the head clamp. Once registered, surgical instrument can be tracked throughout the procedure. Contours can be extracted from either CT or MRI image datasets. The system has proven to be robust in the laboratory setting. Overall error of registration is 1 - 2 millimeters in routine use. Image to patient registration can therefore be achieved quite easily and accurately, without the need for fixation of external markers to the skull, or manually finding markers on the scalp and image datasets. The system is unobtrusive and imposes little additional effort on the neurosurgeon, broadening the appeal of image-guided surgery.

  14. Reoperation following open reduction and plate fixation of displaced mid-shaft clavicle fractures.

    PubMed

    Ashman, Bradley D; Slobogean, Gerard P; Stone, Trevor B; Viskontas, Darius G; Moola, Farhad O; Perey, Bertrand H; Boyer, Dory S; McCormack, Robert G

    2014-10-01

    Operative fixation of displaced, mid-shaft clavicle fractures has become an increasingly common practice. With this emerging trend, data describing patient outcomes with longer follow-up are necessary. We retrospectively reviewed the medical records of subjects treated with plate fixation for displaced mid-shaft clavicle fractures from 2003 to 2009 at a Level I trauma hospital. All subjects were greater than 12 months post-index surgery. Treatment involved ORIF with either a low-contact dynamic compression plate (LCDC) or a contoured plate (pre-contoured or pelvic reconstruction plate). Our primary outcome was reoperation for any indication. 143 subjects were included. The mean age was 36 ± 14 years and the mean time to reoperation or chart review was 33 months. Contoured plates were used in 64% of cases and LCDC plates were used in the remaining subjects. Twenty-nine subjects (20%) underwent reoperation: 23.5% of subjects treated with LCDC plates and 18.5% of subjects treated with contoured plates (p=0.52). Indications for reoperation included implant irritation (n=25), implant failure (n=2), and non-union (n=2). There was near statistically significant association with reoperation and female gender (p=0.05) but no association between reoperation and age (p=0.14), fracture class (p=0.53), plate type (p=0.49), or plate location (p=0.93). The mean QuickDASH score for the population surveyed was 8.8 (5.5-12.1; 95% CI) with near statistically significant and clinically relevant difference between those considering reoperation and those not 22.3 (8.6-36.0; 95% CI) versus 6.7 (3.6-9.8; 95% CI). This study represents a large series of displaced clavicle fractures treated with open reduction and plate fixation. Reoperation following plate fixation is relatively common, but primarily due to implant irritation. No difference in reoperation rates between plate types or location could be detected in our current sample size. Also, excellent functional outcomes continue to be observed several years after clavicle fracture fixation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Circadian rhythm of intraocular pressure in the rat.

    PubMed

    Moore, C G; Johnson, E C; Morrison, J C

    1996-02-01

    To define the characteristics of the diurnal variation of intraocular pressure (IOP) in eyes of awake rats, ten male brown Norway rats were entrained to a 12-hour light:12-hour dark (12L:12D) lighting schedule and were conditioned to IOP measurement with the TonoPen XL tonometer while awake, using only 0.5% proparacaine HCl anesthesia. The IOP measurements were performed in 4 experiments: Preliminary-IOP was measured at 6-hour intervals in both eyes of each animal, to determine correlation between right and left eyes; Light:Dark-lighting remained the same as in the preliminary experiment, but the measurement schedule was altered so that measurements were obtained at 4-hour intervals in alternating eyes, over two 24-hour light cycles; Dark:Dark-animals were placed in constant dark (0L:24D) and, after 72 h, measurements were obtained at 4-hour intervals in alternating eyes. Animals were then re-entrained to the previous 12L:12D schedule for 7 days, after which they were returned to constant dark and the experiment was repeated; and Dark:Light-animals were entrained to a reversed light:dark cycle (12D:12L) for 28 days, after which measurements were obtained in the same fashion as in the Light:Dark experiment. Close agreement was found between right- and left-eye IOPs. Animals on a 12L:12D schedule exhibited lowest IOP while the lights were on (19.3 +/- 1.9 mm Hg), and highest (31.3 +/- 1.3 mm Hg) while the lights were off. Pressure changes anticipated the change from light to dark and dark to light. This pattern persisted in constant dark, and was reversed when the cycle was changed to 12D:12L. Brown Norway rats possess a regular rhythm of IOP that is entrained by the cycle of light and dark, and persistence of this rhythm in constant dark establishes it as a circadian rhythm. Furthermore, our results indicate that reliable and physiologically meaningful IOP measurements can be obtained in awake rats using the TonoPen XL tonometer.

  16. Seasonal and diurnal variations of ocular pressure in ocular hypertensive subjects in Pakistan.

    PubMed

    Qureshi, I A; Xiao, R X; Yang, B H; Zhang, J; Xiang, D W; Hui, J L

    1999-05-01

    Studies have been shown that intraocular pressure (IOP) shows a diurnal variation in ocular hypertensive subjects, but the amount of change differs from study to study. In recent years it has been noted that intraocular pressure is a dynamic function and is subjected to many influences both acutely and over the long term. The variability in the results may be due to negligence of factors that can affect IOP. Moreover, seasonal variations in the ocular hypertensive subjects have never been described. After placing control on those factors that can affect IOP, this study investigated seasonal and diurnal variations in IOP of ocular hypertensive subjects. IOP was measured each month over the course of 12 months with the Goldmann applanation tonometer in 91 ocular hypertensive male subjects. To see the diurnal changes, subjects were asked to stay in the hospital for 24 hours. The average IOP in the winter months was higher than those in spring, summer, and autumn. The IOP difference between winter and summer was (mean +/- sem) 2.9 +/- 0.9 mmHg (p < 0.001). The peak of mean IOP in diurnal variation curve (25.7 +/- 1.2 mmHg) appeared in the morning when the subjects had just awaken. The mean diurnal variation was found to be 4.2 +/- 0.6 mmHg (p < 0.001). This study confirms that seasons influence IOP and it shows diurnal variations. As compared to other nations, diurnal variations in ocular hypertensive subjects seem to be somewhat less in Pakistan. Knowledge of the seasonal and diurnal variations in IOP may help glaucoma screeners.

  17. Spatial integration and cortical dynamics.

    PubMed

    Gilbert, C D; Das, A; Ito, M; Kapadia, M; Westheimer, G

    1996-01-23

    Cells in adult primary visual cortex are capable of integrating information over much larger portions of the visual field than was originally thought. Moreover, their receptive field properties can be altered by the context within which local features are presented and by changes in visual experience. The substrate for both spatial integration and cortical plasticity is likely to be found in a plexus of long-range horizontal connections, formed by cortical pyramidal cells, which link cells within each cortical area over distances of 6-8 mm. The relationship between horizontal connections and cortical functional architecture suggests a role in visual segmentation and spatial integration. The distribution of lateral interactions within striate cortex was visualized with optical recording, and their functional consequences were explored by using comparable stimuli in human psychophysical experiments and in recordings from alert monkeys. They may represent the substrate for perceptual phenomena such as illusory contours, surface fill-in, and contour saliency. The dynamic nature of receptive field properties and cortical architecture has been seen over time scales ranging from seconds to months. One can induce a remapping of the topography of visual cortex by making focal binocular retinal lesions. Shorter-term plasticity of cortical receptive fields was observed following brief periods of visual stimulation. The mechanisms involved entailed, for the short-term changes, altering the effectiveness of existing cortical connections, and for the long-term changes, sprouting of axon collaterals and synaptogenesis. The mutability of cortical function implies a continual process of calibration and normalization of the perception of visual attributes that is dependent on sensory experience throughout adulthood and might further represent the mechanism of perceptual learning.

  18. Breast segmentation in MR images using three-dimensional spiral scanning and dynamic programming

    NASA Astrophysics Data System (ADS)

    Jiang, Luan; Lian, Yanyun; Gu, Yajia; Li, Qiang

    2013-03-01

    Magnetic resonance (MR) imaging has been widely used for risk assessment and diagnosis of breast cancer in clinic. To develop a computer-aided diagnosis (CAD) system, breast segmentation is the first important and challenging task. The accuracy of subsequent quantitative measurement of breast density and abnormalities depends on accurate definition of the breast area in the images. The purpose of this study is to develop and evaluate a fully automated method for accurate segmentation of breast in three-dimensional (3-D) MR images. A fast method was developed to identify bounding box, i.e., the volume of interest (VOI), for breasts. A 3-D spiral scanning method was used to transform the VOI of each breast into a single two-dimensional (2-D) generalized polar-coordinate image. Dynamic programming technique was applied to the transformed 2-D image for delineating the "optimal" contour of the breast. The contour of the breast in the transformed 2-D image was utilized to reconstruct the segmentation results in the 3-D MR images using interpolation and lookup table. The preliminary results on 17 cases show that the proposed method can obtain accurate segmentation of the breast based on subjective observation. By comparing with the manually delineated region of 16 breasts in 8 cases, an overlap index of 87.6% +/- 3.8% (mean +/- SD), and a volume agreement of 93.4% +/- 4.5% (mean +/- SD) were achieved, respectively. It took approximately 3 minutes for our method to segment the breast in an MR scan of 256 slices.

  19. Effect of Laser in Situ Keratomileusis on Schiøtz, Goldmann, and Dynamic Contour Tonometric Measurements.

    PubMed

    Sales-Sanz, Marco; Arranz-Marquez, Esther; Piñero, David P; Arruabarrena, Carolina; Mikropoulos, Dimitrios G; Teus, Miguel A

    2016-04-01

    To assess the effect of laser in situ keratomileusis (LASIK) on ocular rigidity and compare its effect on intraocular pressure (IOP) readings with Goldmann applanation tonometry (GAT), Schiøtz indentation tonometry (ST), and dynamic contour tonometry (DCT). Prospective, observational, single-masked study. Eighty-one patients who underwent myopic LASIK and 108 unoperated myopic control patients were included in the study. The IOP was measured using GAT, DCT, and ST. The coefficient of ocular rigidity (Ko) was obtained from the regression analysis of the 3 readings obtained with each weight of the ST. Linear multiple regression analysis was performed with dummy variables to assess the effects of age, central corneal thickness (CCT), and refractive surgery on measured IOP values. Age, CCT, and previous LASIK explained 39.41% of the IOP readings with GAT, 25.31% with DCT, and 3.28% with ST. LASIK caused a mean decrease of -2.51 mm Hg in IOP readings (P=0.000) with GAT, -1.29 mm Hg (P=0.036) with DCT, and no significant change in IOP readings with ST (P=0.299). Significant differences in the Ko were observed between the LASIK and control groups. The Ko values were unrelated to age and CCT in the LASIK and control groups. ST seems to be less affected by previous LASIK procedures. There is a difference in the ocular rigidity between the unoperated and LASIK eyes that is not correlated with the CCT. Therefore, ST seems to measure changes in the biomechanical behavior of corneas that underwent LASIK surgery.

  20. A study on the gas-solid particle flows in a needle-free drug delivery device

    NASA Astrophysics Data System (ADS)

    Rasel, Md. Alim Iftekhar; Taher, Md. Abu; Kim, H. D.

    2013-08-01

    Different systems have been used over the years to deliver drug particles to the human skin for pharmaceutical effect. Research has been done to improve the performance and flexibility of these systems. In recent years a unique system called the transdermal drug delivery has been developed. Transdermal drug delivery opened a new door in the field of drug delivery as it is more flexible and offers better performance than the conventional systems. The principle of this system is to accelerate drug particles with a high speed gas flow. Among different transdermal drug delivery systems we will concentrate on the contour shock tube system in this paper. A contoured shock tube is consists of a rupture chamber, a shock tube and a supersonic nozzle section. The drug particles are retained between a set of bursting diaphragm. When the diaphragm is ruptured at a certain pressure, a high speed unsteady flow is initiated through the shock tube which accelerates the particles. Computational fluid dynamics is used to simulate and analyze the flow field. The DPM (discrete phase method) is used to model the particle flow. As an unsteady flow is initiated though the shock tube the drag correlation proposed by Igra et al is used other than the standard drag correlation. The particle velocities at different sections including the nozzle exit are investigated under different operating conditions. Static pressure histories in different sections in the shock tube are investigated to analyze the flow field. The important aspects of the gas and particle dynamics in the shock tube are discussed and analyzed in details.

  1. Static Tensile and Transient Dynamic Response of Cracked Aluminum Plate Repaired with Composite Patch - Numerical Study

    NASA Astrophysics Data System (ADS)

    Khalili, S. M. R.; Shariyat, M.; Mokhtari, M.

    2014-06-01

    In this study, the central cracked aluminum plates repaired with two sided composite patches are investigated numerically for their response to static tensile and transient dynamic loadings. Contour integral method is used to define and evaluate the stress intensity factors at the crack tips. The reinforcement for the composite patches is carbon fibers. The effect of adhesive thickness and patch thickness and configuration in tensile loading case and pre-tension, pre-compression and crack length effect on the evolution of the mode I stress intensity factor (SIF) (KI) of the repaired structure under transient dynamic loading case are examined. The results indicated that KI of the central cracked plate is reduced by 1/10 to 1/2 as a result of the bonded composite patch repair in tensile loading case. The crack length and the pre-loads are more effective in repaired structure in transient dynamic loading case in which, the 100 N pre-compression reduces the maximum KI for about 40 %, and the 100 N pre-tension reduces the maximum KI after loading period, by about 196 %.

  2. Physical Model of the Dynamic Instability in an Expanding Cell Culture

    PubMed Central

    Mark, Shirley; Shlomovitz, Roie; Gov, Nir S.; Poujade, Mathieu; Grasland-Mongrain, Erwan; Silberzan, Pascal

    2010-01-01

    Abstract Collective cell migration is of great significance in many biological processes. The goal of this work is to give a physical model for the dynamics of cell migration during the wound healing response. Experiments demonstrate that an initially uniform cell-culture monolayer expands in a nonuniform manner, developing fingerlike shapes. These fingerlike shapes of the cell culture front are composed of columns of cells that move collectively. We propose a physical model to explain this phenomenon, based on the notion of dynamic instability. In this model, we treat the first layers of cells at the front of the moving cell culture as a continuous one-dimensional membrane (contour), with the usual elasticity of a membrane: curvature and surface-tension. This membrane is active, due to the forces of cellular motility of the cells, and we propose that this motility is related to the local curvature of the culture interface; larger convex curvature correlates with a stronger cellular motility force. This shape-force relation gives rise to a dynamic instability, which we then compare to the patterns observed in the wound healing experiments. PMID:20141748

  3. Information Along Contours and Object Boundaries

    ERIC Educational Resources Information Center

    Feldman, Jacob; Singh, Manish

    2005-01-01

    F. Attneave (1954) famously suggested that information along visual contours is concentrated in regions of high magnitude of curvature, rather than being distributed uniformly along the contour. Here the authors give a formal derivation of this claim, yielding an exact expression for information, in C. Shannon's (1948) sense, as a function of…

  4. The Role of Tone Height, Melodic Contour, and Tone Chroma in Melody Recognition.

    ERIC Educational Resources Information Center

    Massaro, Dominic W.; And Others

    1980-01-01

    Relationships among tone height, melodic contour, tone chroma, and recognition of recently learned melodies were investigated. Results replicated previous studies using familiar folk songs, providing evidence that melodic contour, tone chroma, and tone height contribute to recognition of both highly familiar and recently learned melodies.…

  5. Interval and Contour Processing in Autism

    ERIC Educational Resources Information Center

    Heaton, Pamela

    2005-01-01

    High functioning children with autism and age and intelligence matched controls participated in experiments testing perception of pitch intervals and musical contours. The finding from the interval study showed superior detection of pitch direction over small pitch distances in the autism group. On the test of contour discrimination no group…

  6. Contour Planting: A Strategy to Reduce Soil Erosion on Steep Slopes

    USDA-ARS?s Scientific Manuscript database

    Practices that combine GPS-based guidance for terrain contouring and tillage for runoff detention have potential to increase water infiltration and reduce runoff. The objective of this study was to investigate contour planting as a means to reduce soil erosion on steep slopes of the Columbia Platea...

  7. 32 CFR 707.5 - Underway replenishment contour lights.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Underway replenishment contour lights. 707.5... RULES WITH RESPECT TO ADDITIONAL STATION AND SIGNAL LIGHTS § 707.5 Underway replenishment contour lights... underway replenishment operations, either red or blue lights at delivery-ship-deck-edge extremities. [42 FR...

  8. 32 CFR 707.5 - Underway replenishment contour lights.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 5 2014-07-01 2014-07-01 false Underway replenishment contour lights. 707.5... RULES WITH RESPECT TO ADDITIONAL STATION AND SIGNAL LIGHTS § 707.5 Underway replenishment contour lights... underway replenishment operations, either red or blue lights at delivery-ship-deck-edge extremities. [42 FR...

  9. 32 CFR 707.5 - Underway replenishment contour lights.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 5 2011-07-01 2011-07-01 false Underway replenishment contour lights. 707.5... RULES WITH RESPECT TO ADDITIONAL STATION AND SIGNAL LIGHTS § 707.5 Underway replenishment contour lights... underway replenishment operations, either red or blue lights at delivery-ship-deck-edge extremities. [42 FR...

  10. 32 CFR 707.5 - Underway replenishment contour lights.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 5 2013-07-01 2013-07-01 false Underway replenishment contour lights. 707.5... RULES WITH RESPECT TO ADDITIONAL STATION AND SIGNAL LIGHTS § 707.5 Underway replenishment contour lights... underway replenishment operations, either red or blue lights at delivery-ship-deck-edge extremities. [42 FR...

  11. 32 CFR 707.5 - Underway replenishment contour lights.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 5 2012-07-01 2012-07-01 false Underway replenishment contour lights. 707.5... RULES WITH RESPECT TO ADDITIONAL STATION AND SIGNAL LIGHTS § 707.5 Underway replenishment contour lights... underway replenishment operations, either red or blue lights at delivery-ship-deck-edge extremities. [42 FR...

  12. Four years with FALCON - an ESTRO educational project: achievements and perspectives.

    PubMed

    Eriksen, Jesper Grau; Salembier, Carl; Rivera, Sofia; De Bari, Berardino; Berger, Daniel; Mantello, Giovanna; Müller, Arndt-Christian; Martin, Arturo Navarro; Pasini, Danilo; Tanderup, Kari; Palmu, Miika; Verfaillie, Christine; Pötter, Richard; Valentini, Vincenzo

    2014-07-01

    Variability in anatomical contouring is one of the important uncertainties in radiotherapy. FALCON (Fellowship in Anatomic deLineation and CONtouring) is an educational ESTRO (European SocieTy for Radiation and Oncology) project devoted to improve interactive teaching, the homogeneity in contouring and to compare individual contours with endorsed guidelines or expert opinions. This report summarizes the experience from the first 4 years using FALCON for educational activities within ESTRO School and presents the perspectives for the future. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. Polar-direct-drive experiments with contoured-shell targets on OMEGA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, F. J.; Radha, P. B.; Bonino, M. J.

    Polar-driven direct-drive experiments recently performed on the OMEGA Laser System have demonstrated the efficacy of using a target with a contoured shell with varying thickness to improve the symmetry and fusion performance of the implosion. The polar-driven contoured-shell implosions have substantially reduced low mode perturbations compared to polar-driven spherical-shell implosions as diagnosed by x-ray radiographs up to shell stagnation. As a result, fusion yields were increased by more than a factor of ~2 without increasing the energy of the laser by the use of contoured shells.

  14. Polar-direct-drive experiments with contoured-shell targets on OMEGA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, F. J.; Radha, P. B.; Bonino, M. J.

    Polar-driven direct-drive experiments recently performed on the OMEGA Laser System have demonstrated the efficacy of using a target with a contoured shell with varying thickness to improve the symmetry and fusion performance of the implosion. The polar-driven contoured-shell implosions have substantially reduced low mode perturbations compared to polar-driven spherical-shell implosions as diagnosed by x-ray radiographs up to shell stagnation. Fusion yields were increased by more than a factor of ∼2 without increasing the energy of the laser by the use of contoured shells.

  15. Polar-direct-drive experiments with contoured-shell targets on OMEGA

    DOE PAGES

    Marshall, F. J.; Radha, P. B.; Bonino, M. J.; ...

    2016-01-28

    Polar-driven direct-drive experiments recently performed on the OMEGA Laser System have demonstrated the efficacy of using a target with a contoured shell with varying thickness to improve the symmetry and fusion performance of the implosion. The polar-driven contoured-shell implosions have substantially reduced low mode perturbations compared to polar-driven spherical-shell implosions as diagnosed by x-ray radiographs up to shell stagnation. As a result, fusion yields were increased by more than a factor of ~2 without increasing the energy of the laser by the use of contoured shells.

  16. An approach to contouring the dorsal vagal complex for radiotherapy planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Steen, Lillie; Amdur, Robert J., E-mail: amdurr@shands.ufl.edu

    Multiple studies suggest that radiation dose to the area of the brainstem called the “dorsal vagal complex (DVC)” influences the frequency of nausea and vomiting during radiotherapy. The purpose of this didactic article is to describe the step-by-step process that we use to contour the general area of the DVC on axial computed tomography (CT) images as would be done for radiotherapy planning. The contouring procedure that we describe for contouring the area of the DVC is useful to medical dosimetrists and radiation oncologists.

  17. Contoured tank outlets for draining of cylindrical tanks in low-gravity environment. [Lewis Research Center Zero Gravity Facility

    NASA Technical Reports Server (NTRS)

    Symons, E. P.

    1979-01-01

    An analysis is presented for defining the outlet contour of a hemispherical-bottomed cylindrical tank that will prevent vapor ingestion when the tank is drained. The analysis was used to design two small-scale tanks that were fabricated and then tested in a low gravity environment. The draining performance of the tanks was compared with that for a tank with a conventional outlet having a constant circular cross-sectional area, under identical conditions. Even when drained at off-design conditions, the contoured tank had less liquid residuals at vapor ingestion than the conventional outlet tank. Effects of outflow rate, gravitational environment, and fluid properties on the outlet contour are discussed. Two potential applications of outlet contouring are also presented and discussed.

  18. Direct imaging of isofrequency contours in photonic structures

    DOE PAGES

    Regan, E. C.; Igarashi, Y.; Zhen, B.; ...

    2016-11-25

    The isofrequency contours of a photonic crystal are important for predicting and understanding exotic optical phenomena that are not apparent from high-symmetry band structure visualizations. We demonstrate a method to directly visualize the isofrequency contours of high-quality photonic crystal slabs that show quantitatively good agreement with numerical results throughout the visible spectrum. Our technique relies on resonance-enhanced photon scattering from generic fabrication disorder and surface roughness, so it can be applied to general photonic and plasmonic crystals or even quasi-crystals. We also present an analytical model of the scattering process, which explains the observation of isofrequency contours in our technique.more » Furthermore, the isofrequency contours provide information about the characteristics of the disorder and therefore serve as a feedback tool to improve fabrication processes.« less

  19. Building Extraction Based on Openstreetmap Tags and Very High Spatial Resolution Image in Urban Area

    NASA Astrophysics Data System (ADS)

    Kang, L.; Wang, Q.; Yan, H. W.

    2018-04-01

    How to derive contour of buildings from VHR images is the essential problem for automatic building extraction in urban area. To solve this problem, OSM data is introduced to offer vector contour information of buildings which is hard to get from VHR images. First, we import OSM data into database. The line string data of OSM with tags of building, amenity, office etc. are selected and combined into completed contours; Second, the accuracy of contours of buildings is confirmed by comparing with the real buildings in Google Earth; Third, maximum likelihood classification is conducted with the confirmed building contours, and the result demonstrates that the proposed approach is effective and accurate. The approach offers a new way for automatic interpretation of VHR images.

  20. Technique for Chestband Contour Shape-Mapping in Lateral Impact

    PubMed Central

    Hallman, Jason J; Yoganandan, Narayan; Pintar, Frank A

    2011-01-01

    The chestband transducer permits noninvasive measurement of transverse plane biomechanical response during blunt thorax impact. Although experiments may reveal complex two-dimensional (2D) deformation response to boundary conditions, biomechanical studies have heretofore employed only uniaxial chestband contour quantifying measurements. The present study described and evaluated an algorithm by which source subject-specific contour data may be systematically mapped to a target generalized anthropometry for computational studies of biomechanical response or anthropomorphic test dummy development. Algorithm performance was evaluated using chestband contour datasets from two rigid lateral impact boundary conditions: Flat wall and anterior-oblique wall. Comparing source and target anthropometry contours, peak deflections and deformation-time traces deviated by less than 4%. These results suggest that the algorithm is appropriate for 2D deformation response to lateral impact boundary conditions. PMID:21676399

  1. Surface filling-in and contour interpolation contribute independently to Kanizsa figure formation.

    PubMed

    Chen, Siyi; Glasauer, Stefan; Müller, Hermann J; Conci, Markus

    2018-04-30

    To explore mechanisms of object integration, the present experiments examined how completion of illusory contours and surfaces modulates the sensitivity of localizing a target probe. Observers had to judge whether a briefly presented dot probe was located inside or outside the region demarcated by inducer elements that grouped to form variants of an illusory, Kanizsa-type figure. From the resulting psychometric functions, we determined observers' discrimination thresholds as a sensitivity measure. Experiment 1 showed that sensitivity was systematically modulated by the amount of surface and contour completion afforded by a given configuration. Experiments 2 and 3 presented stimulus variants that induced an (occluded) object without clearly defined bounding contours, which gave rise to a relative sensitivity increase for surface variations on their own. Experiments 4 and 5 were performed to rule out that these performance modulations were simply attributable to variable distances between critical local inducers or to costs in processing an interrupted contour. Collectively, the findings provide evidence for a dissociation between surface and contour processing, supporting a model of object integration in which completion is instantiated by feedforward processing that independently renders surface filling-in and contour interpolation and a feedback loop that integrates these outputs into a complete whole. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  2. Comparing subjective contours for Kanizsa squares and linear edge alignments ('New York Titanic' figures).

    PubMed

    Gillam, Barbara; Marlow, Phillip J

    2014-01-01

    One current view is that subjective contours may involve high-level detection of a salient shape with back propagation to early visual areas where small receptive fields allow for scrutiny of relevant details. This idea applies to Kanizsa-type figures. However, Gillam and Chan (2002 Psychological Science, 13, 279-282) using figures based on Gillam's graphic 'New York Titanic' (Gillam, 1997 Thresholds: Limits of perception. New York: Arts Magazine) showed that strong subjective contours can be seen along the linearly aligned edges of a set of shapes if occlusion cues of 'extrinsic edge' and 'entropy contrast' are strong. Here we compared ratings of the strength of subjective contours along linear alignments with those seen in Kanizsa figures. The strongest subjective contour for a single set of linearly aligned shapes was similar in strength to the edges of a Kanizsa square (controlling for support ratio) despite the lack of a salient region. The addition of a second set of linearly aligned inducers consistent with a common surface increased subjective-contour strength, as did having four rather than two 'pacmen' in the Kanizsa figure, indicating a role for surface support. We argue that linear subjective contours allow for the investigation of certain occlusion cues and the interactions between them that are not easily explored with Kanizsa figures.

  3. Topological methods for the comparison of structures using LDR-brachytherapy of the prostate as an example.

    PubMed

    Schiefer, H; von Toggenburg, F; Seelentag, W W; Plasswilm, L; Ries, G; Schmid, H-P; Leippold, T; Krusche, B; Roth, J; Engeler, D

    2009-08-21

    The dose coverage of low dose rate (LDR)-brachytherapy for localized prostate cancer is monitored 4-6 weeks after intervention by contouring the prostate on computed tomography and/or magnetic resonance imaging sets. Dose parameters for the prostate (V100, D90 and D80) provide information on the treatment quality. Those depend strongly on the delineation of the prostate contours. We therefore systematically investigated the contouring process for 21 patients with five examiners. The prostate structures were compared with one another using topological procedures based on Boolean algebra. The coincidence number C(V) measures the agreement between a set of structures. The mutual coincidence C(i, j) measures the agreement between two structures i and j, and the mean coincidence C(i) compares a selected structure i with the remaining structures in a set. All coincidence parameters have a value of 1 for complete coincidence of contouring and 0 for complete absence. The five patients with the lowest C(V) values were discussed, and rules for contouring the prostate have been formulated. The contouring and assessment were repeated after 3 months for the same five patients. All coincidence parameters have been improved after instruction. This shows objectively that training resulted in more consistent contouring across examiners.

  4. GENERALIZED DIGITAL CONTOURING PROGRAM

    NASA Technical Reports Server (NTRS)

    Jones, R. L.

    1994-01-01

    This is a digital computer contouring program developed by combining desirable characteristics from several existing contouring programs. It can easily be adapted to many different research requirements. The overlaid structure of the program permits desired modifications to be made with ease. The contouring program performs both the task of generating a depth matrix from either randomly or regularly spaced surface heights and the task of contouring the data. Each element of the depth matrix is computed as a weighted mean of heights predicted at an element by planes tangent to the surface at neighboring control points. Each contour line is determined by its intercepts with the sides of geometrical figures formed by connecting the various elements of the depth matrix with straight lines. Although contour charts are usually thought of as being two-dimensional pictorial representations of topographic formations of land masses, they can also be useful in portraying data which are obtained during the course of research in various scientific disciplines and which would ordinarily be tabulated. Any set of data which can be referenced to a two-dimensional coordinate system can be graphically represented by this program. This program is written in FORTRAN IV and ASSEMBLER for batch execution and has been implemented on the CDC 6000 Series. This program was developed in 1971.

  5. Hybrid Parallel Contour Trees, Version 1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sewell, Christopher; Fasel, Patricia; Carr, Hamish

    A common operation in scientific visualization is to compute and render a contour of a data set. Given a function of the form f : R^d -> R, a level set is defined as an inverse image f^-1(h) for an isovalue h, and a contour is a single connected component of a level set. The Reeb graph can then be defined to be the result of contracting each contour to a single point, and is well defined for Euclidean spaces or for general manifolds. For simple domains, the graph is guaranteed to be a tree, and is called the contourmore » tree. Analysis can then be performed on the contour tree in order to identify isovalues of particular interest, based on various metrics, and render the corresponding contours, without having to know such isovalues a priori. This code is intended to be the first data-parallel algorithm for computing contour trees. Our implementation will use the portable data-parallel primitives provided by Nvidia’s Thrust library, allowing us to compile our same code for both GPUs and multi-core CPUs. Native OpenMP and purely serial versions of the code will likely also be included. It will also be extended to provide a hybrid data-parallel / distributed algorithm, allowing scaling beyond a single GPU or CPU.« less

  6. Gaining a Better Understanding of Estuarine Circulation and Improving Data Visualization Skills Through a Hands-on Contouring Exercise

    NASA Astrophysics Data System (ADS)

    Mailloux, B. J.; Kenna, T. C.

    2008-12-01

    The creation and accurate interpretation of graphs is becoming a lost art among students. The availability of numerous graphing software programs makes the act of graphing data easy but does not necessarily aide students in interpreting complex visual data. This is especially true for contour maps; which have become a critical skill in the earth sciences and everyday life. In multiple classes, we have incorporated a large-scale, hands-on, contouring exercise of temperature, salinity, and density data collected in the Hudson River Estuary. The exercise allows students to learn first-hand how to plot, analyze, and present three dimensional data. As part of a day-long sampling expedition aboard an 80' research vessel, students deploy a water profiling instrument (Seabird CTD). Data are collected along a transect between the Verrazano and George Washington Bridges. The data are then processed and binned at 0.5 meter intervals. The processed data is then used during a later laboratory period for the contouring exercise. In class, students work in groups of 2 to 4 people and are provided with the data, a set of contouring instructions, a piece of large (3' x 3') graph paper, a ruler, and a set of colored markers. We then let the groups work together to determine the details of the graphs. Important steps along the way are talking to the students about X and Y scales, interpolation, and choices of contour intervals and colors. Frustration and bottlenecks are common at the beginning when students are unsure how to even begin with the raw data. At some point during the exercise, students start to understand the contour concept and each group usually produces a finished contour map in an hour or so. Interestingly, the groups take pride in the coloring portion of the contouring as it indicates successful interpretation of the data. The exercise concludes with each group presenting and discussing their contour plot. In almost every case, the hands-on graphing has improved the "students" visualization skills. Contouring has been incorporated into the River Summer (www.riversumer.org, http://www.riversumer.org/) program and our Environmental Measurements laboratory course. This has resulted in the exercise being utilized with undergraduates, high-school teachers, graduate students, and college faculty. We are in the process of making this curricular module available online to educators.

  7. SU-F-J-171: Robust Atlas Based Segmentation of the Prostate and Peripheral Zone Regions On MRI Utilizing Multiple MRI System Vendors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Padgett, K; Pollack, A; Stoyanova, R

    Purpose: Automatically generated prostate MRI contours can be used to aid in image registration with CT or ultrasound and to reduce the burden of contouring for radiation treatment planning. In addition, prostate and zonal contours can assist to automate quantitative imaging features extraction and the analyses of longitudinal MRI studies. These potential gains are limited if the solutions are not compatible across different MRI vendors. The goal of this study is to characterize an atlas based automatic segmentation procedure of the prostate collected on MRI systems from multiple vendors. Methods: The prostate and peripheral zone (PZ) were manually contoured bymore » an expert radiation oncologist on T2-weighted scans acquired on both GE (n=31) and Siemens (n=33) 3T MRI systems. A leave-one-out approach was utilized where the target subject is removed from the atlas before the segmentation algorithm is initiated. The atlas-segmentation method finds the best nine matched atlas subjects and then performs a normalized intensity-based free-form deformable registration of these subjects to the target subject. These nine contours are then merged into a single contour using Simultaneous Truth and Performance Level Estimation (STAPLE). Contour comparisons were made using Dice similarity coefficients (DSC) and Hausdorff distances. Results: Using the T2 FatSat (FS) GE datasets the atlas generated contours resulted in an average DSC of 0.83±0.06 for prostate, 0.57±0.12 for PZ and 0.75±0.09 for CG. Similar results were found when using the Siemens data with a DSC of 0.79±0.14 for prostate, 0.54±0.16 and 0.70±0.9. Contrast between prostate and surrounding anatomy and between the PZ and CG contours for both vendors demonstrated superior contrast separation; significance was found for all comparisons p-value < 0.0001. Conclusion: Atlas-based segmentation yielded promising results for all contours compared to expertly defined contours in both Siemens and GE 3T systems providing fast and automatic segmentation of the prostate. Funding Support, Disclosures, and Conflict of Interest: AS Nelson is a partial owner of MIM Software, Inc. AS Nelson, and A Swallen are current employees at MIM Software, Inc.« less

  8. Seasonal Variation in the Spatial Distribution of Basking Sharks (Cetorhinus maximus) in the Lower Bay of Fundy, Canada

    PubMed Central

    Siders, Zachary A.; Westgate, Andrew J.; Johnston, David W.; Murison, Laurie D.; Koopman, Heather N.

    2013-01-01

    The local distribution of basking sharks in the Bay of Fundy (BoF) is unknown despite frequent occurrences in the area from May to November. Defining this species’ spatial habitat use is critical for accurately assessing its Special Concern conservation status in Atlantic Canada. We developed maximum entropy distribution models for the lower BoF and the northeast Gulf of Maine (GoM) to describe spatiotemporal variation in habitat use of basking sharks. Under the Maxent framework, we assessed model responses and distribution shifts in relation to known migratory behavior and local prey dynamics. We used 10 years (2002-2011) of basking shark surface sightings from July-October acquired during boat-based surveys in relation to chlorophyll-a concentration, sea surface temperature, bathymetric features, and distance to seafloor contours to assess habitat suitability. Maximum entropy estimations were selected based on AICc criterion and used to predict habitat utilizing three model-fitting routines as well as converted to binary suitable/non-suitable habitat using the maximum sensitivity and specificity threshold. All models predicted habitat better than random (AUC values >0.796). From July-September, a majority of habitat was in the BoF, in waters >100 m deep, and in the Grand Manan Basin. In October, a majority of the habitat shifted southward into the GoM and to areas >200 m deep. Model responses suggest that suitable habitat from July - October is dependent on a mix of distance to the 0, 100, 150, and 200 m contours but in some models on sea surface temperature (July) and chlorophyll-a (August and September). Our results reveal temporally dynamic habitat use of basking sharks within the BoF and GoM. The relative importance of predictor variables suggests that prey dynamics constrained the species distribution in the BoF. Also, suitable habitat shifted minimally from July-September providing opportunities to conserve the species during peak abundance in the region. PMID:24324747

  9. Relaxation dynamics of internal segments of DNA chains in nanochannels

    NASA Astrophysics Data System (ADS)

    Jain, Aashish; Muralidhar, Abhiram; Dorfman, Kevin; Dorfman Group Team

    We will present relaxation dynamics of internal segments of a DNA chain confined in nanochannel. The results have direct application in genome mapping technology, where long DNA molecules containing sequence-specific fluorescent probes are passed through an array of nanochannels to linearize them, and then the distances between these probes (the so-called ``DNA barcode'') are measured. The relaxation dynamics of internal segments set the experimental error due to dynamic fluctuations. We developed a multi-scale simulation algorithm, combining a Pruned-Enriched Rosenbluth Method (PERM) simulation of a discrete wormlike chain model with hard spheres with Brownian dynamics (BD) simulations of a bead-spring chain. Realistic parameters such as the bead friction coefficient and spring force law parameters are obtained from PERM simulations and then mapped onto the bead-spring model. The BD simulations are carried out to obtain the extension autocorrelation functions of various segments, which furnish their relaxation times. Interestingly, we find that (i) corner segments relax faster than the center segments and (ii) relaxation times of corner segments do not depend on the contour length of DNA chain, whereas the relaxation times of center segments increase linearly with DNA chain size.

  10. WE-G-BRD-07: Automated MR Image Standardization and Auto-Contouring Strategy for MRI-Based Adaptive Brachytherapy for Cervix Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saleh, H Al; Erickson, B; Paulson, E

    Purpose: MRI-based adaptive brachytherapy (ABT) is an emerging treatment modality for patients with gynecological tumors. However, MR image intensity non-uniformities (IINU) can vary from fraction to fraction, complicating image interpretation and auto-contouring accuracy. We demonstrate here an automated MR image standardization and auto-contouring strategy for MRI-based ABT of cervix cancer. Methods: MR image standardization consisted of: 1) IINU correction using the MNI N3 algorithm, 2) noise filtering using anisotropic diffusion, and 3) signal intensity normalization using the volumetric median. This post-processing chain was implemented as a series of custom Matlab and Java extensions in MIM (v6.4.5, MIM Software) and wasmore » applied to 3D T2 SPACE images of six patients undergoing MRI-based ABT at 3T. Coefficients of variation (CV=σ/µ) were calculated for both original and standardized images and compared using Mann-Whitney tests. Patient-specific cumulative MR atlases of bladder, rectum, and sigmoid contours were constructed throughout ABT, using original and standardized MR images from all previous ABT fractions. Auto-contouring was performed in MIM two ways: 1) best-match of one atlas image to the daily MR image, 2) multi-match of all previous fraction atlas images to the daily MR image. Dice’s Similarity Coefficients (DSCs) were calculated for auto-generated contours relative to reference contours for both original and standardized MR images and compared using Mann-Whitney tests. Results: Significant improvements in CV were detected following MR image standardization (p=0.0043), demonstrating an improvement in MR image uniformity. DSCs consistently increased for auto-contoured bladder, rectum, and sigmoid following MR image standardization, with the highest DSCs detected when the combination of MR image standardization and multi-match cumulative atlas-based auto-contouring was utilized. Conclusion: MR image standardization significantly improves MR image uniformity. The combination of MR image standardization and multi-match cumulative atlas-based auto-contouring produced the highest DSCs and is a promising strategy for MRI-based ABT for cervix cancer.« less

  11. SU-E-J-124: FDG PET Metrics Analysis in the Context of An Adaptive PET Protocol for Node Positive Gynecologic Cancer Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nawrocki, J; Chino, J; Light, K

    2014-06-01

    Purpose: To compare PET extracted metrics and investigate the role of a gradient-based PET segmentation tool, PET Edge (MIM Software Inc., Cleveland, OH), in the context of an adaptive PET protocol for node positive gynecologic cancer patients. Methods: An IRB approved protocol enrolled women with gynecological, PET visible malignancies. A PET-CT was obtained for treatment planning prescribed to 45–50.4Gy with a 55– 70Gy boost to the PET positive nodes. An intra-treatment PET-CT was obtained between 30–36Gy, and all volumes re-contoured. Standard uptake values (SUVmax, SUVmean, SUVmedian) and GTV volumes were extracted from the clinician contoured GTVs on the pre- andmore » intra-treament PET-CT for primaries and nodes and compared with a two tailed Wilcoxon signed-rank test. The differences between primary and node GTV volumes contoured in the treatment planning system and those volumes generated using PET Edge were also investigated. Bland-Altman plots were used to describe significant differences between the two contouring methods. Results: Thirteen women were enrolled in this study. The median baseline/intra-treatment primary (SUVmax, mean, median) were (30.5, 9.09, 7.83)/( 16.6, 4.35, 3.74), and nodes were (20.1, 4.64, 3.93)/( 6.78, 3.13, 3.26). The p values were all < 0.001. The clinical contours were all larger than the PET Edge generated ones, with mean difference of +20.6 ml for primary, and +23.5 ml for nodes. The Bland-Altman revealed changes between clinician/PET Edge contours to be mostly within the margins of the coefficient of variability. However, there was a proportional trend, i.e. the larger the GTV, the larger the clinical contours as compared to PET Edge contours. Conclusion: Primary and node SUV values taken from the intratreament PET-CT can be used to assess the disease response and to design an adaptive plan. The PET Edge tool can streamline the contouring process and lead to smaller, less user-dependent contours.« less

  12. A new template matching method based on contour information

    NASA Astrophysics Data System (ADS)

    Cai, Huiying; Zhu, Feng; Wu, Qingxiao; Li, Sicong

    2014-11-01

    Template matching is a significant approach in machine vision due to its effectiveness and robustness. However, most of the template matching methods are so time consuming that they can't be used to many real time applications. The closed contour matching method is a popular kind of template matching methods. This paper presents a new closed contour template matching method which is suitable for two dimensional objects. Coarse-to-fine searching strategy is used to improve the matching efficiency and a partial computation elimination scheme is proposed to further speed up the searching process. The method consists of offline model construction and online matching. In the process of model construction, triples and distance image are obtained from the template image. A certain number of triples which are composed by three points are created from the contour information that is extracted from the template image. The rule to select the three points is that the template contour is divided equally into three parts by these points. The distance image is obtained here by distance transform. Each point on the distance image represents the nearest distance between current point and the points on the template contour. During the process of matching, triples of the searching image are created with the same rule as the triples of the model. Through the similarity that is invariant to rotation, translation and scaling between triangles, the triples corresponding to the triples of the model are found. Then we can obtain the initial RST (rotation, translation and scaling) parameters mapping the searching contour to the template contour. In order to speed up the searching process, the points on the searching contour are sampled to reduce the number of the triples. To verify the RST parameters, the searching contour is projected into the distance image, and the mean distance can be computed rapidly by simple operations of addition and multiplication. In the fine searching process, the initial RST parameters are discrete to obtain the final accurate pose of the object. Experimental results show that the proposed method is reasonable and efficient, and can be used in many real time applications.

  13. Dynamics of 3D view invariance in monkey inferotemporal cortex

    PubMed Central

    Ratan Murty, N. Apurva

    2015-01-01

    Rotations in depth are challenging for object vision because features can appear, disappear, be stretched or compressed. Yet we easily recognize objects across views. Are the underlying representations view invariant or dependent? This question has been intensely debated in human vision, but the neuronal representations remain poorly understood. Here, we show that for naturalistic objects, neurons in the monkey inferotemporal (IT) cortex undergo a dynamic transition in time, whereby they are initially sensitive to viewpoint and later encode view-invariant object identity. This transition depended on two aspects of object structure: it was strongest when objects foreshortened strongly across views and were similar to each other. View invariance in IT neurons was present even when objects were reduced to silhouettes, suggesting that it can arise through similarity between external contours of objects across views. Our results elucidate the viewpoint debate by showing that view invariance arises dynamically in IT neurons out of a representation that is initially view dependent. PMID:25609108

  14. Femtosecond electron imaging of defect-modulated phonon dynamics

    PubMed Central

    Cremons, Daniel R.; Plemmons, Dayne A.; Flannigan, David J.

    2016-01-01

    Precise manipulation and control of coherent lattice oscillations via nanostructuring and phonon-wave interference has the potential to significantly impact a broad array of technologies and research areas. Resolving the dynamics of individual phonons in defect-laden materials presents an enormous challenge, however, owing to the interdependent nanoscale and ultrafast spatiotemporal scales. Here we report direct, real-space imaging of the emergence and evolution of acoustic phonons at individual defects in crystalline WSe2 and Ge. Via bright-field imaging with an ultrafast electron microscope, we are able to image the sub-picosecond nucleation and the launch of wavefronts at step edges and resolve dispersion behaviours during propagation and scattering. We discover that the appearance of speed-of-sound (for example, 6 nm ps−1) wavefronts are influenced by spatially varying nanoscale strain fields, taking on the appearance of static bend contours during propagation. These observations provide unprecedented insight into the roles played by individual atomic and nanoscale features on acoustic-phonon dynamics. PMID:27079790

  15. Dynamic loads on human and animal surrogates at different test locations in compressed-gas-driven shock tubes

    NASA Astrophysics Data System (ADS)

    Alay, E.; Skotak, M.; Misistia, A.; Chandra, N.

    2018-01-01

    Dynamic loads on specimens in live-fire conditions as well as at different locations within and outside compressed-gas-driven shock tubes are determined by both static and total blast overpressure-time pressure pulses. The biomechanical loading on the specimen is determined by surface pressures that combine the effects of static, dynamic, and reflected pressures and specimen geometry. Surface pressure is both space and time dependent; it varies as a function of size, shape, and external contour of the specimens. In this work, we used two sets of specimens: (1) anthropometric dummy head and (2) a surrogate rodent headform instrumented with pressure sensors and subjected them to blast waves in the interior and at the exit of the shock tube. We demonstrate in this work that while inside the shock tube the biomechanical loading as determined by various pressure measures closely aligns with live-fire data and shock wave theory, significant deviations are found when tests are performed outside.

  16. Evaluation of an automatic segmentation algorithm for definition of head and neck organs at risk.

    PubMed

    Thomson, David; Boylan, Chris; Liptrot, Tom; Aitkenhead, Adam; Lee, Lip; Yap, Beng; Sykes, Andrew; Rowbottom, Carl; Slevin, Nicholas

    2014-08-03

    The accurate definition of organs at risk (OARs) is required to fully exploit the benefits of intensity-modulated radiotherapy (IMRT) for head and neck cancer. However, manual delineation is time-consuming and there is considerable inter-observer variability. This is pertinent as function-sparing and adaptive IMRT have increased the number and frequency of delineation of OARs. We evaluated accuracy and potential time-saving of Smart Probabilistic Image Contouring Engine (SPICE) automatic segmentation to define OARs for salivary-, swallowing- and cochlea-sparing IMRT. Five clinicians recorded the time to delineate five organs at risk (parotid glands, submandibular glands, larynx, pharyngeal constrictor muscles and cochleae) for each of 10 CT scans. SPICE was then used to define these structures. The acceptability of SPICE contours was initially determined by visual inspection and the total time to modify them recorded per scan. The Simultaneous Truth and Performance Level Estimation (STAPLE) algorithm created a reference standard from all clinician contours. Clinician, SPICE and modified contours were compared against STAPLE by the Dice similarity coefficient (DSC) and mean/maximum distance to agreement (DTA). For all investigated structures, SPICE contours were less accurate than manual contours. However, for parotid/submandibular glands they were acceptable (median DSC: 0.79/0.80; mean, maximum DTA: 1.5 mm, 14.8 mm/0.6 mm, 5.7 mm). Modified SPICE contours were also less accurate than manual contours. The utilisation of SPICE did not result in time-saving/improve efficiency. Improvements in accuracy of automatic segmentation for head and neck OARs would be worthwhile and are required before its routine clinical implementation.

  17. The effort to close the gap: Tracking the development of illusory contour processing from childhood to adulthood with high-density electrical mapping

    PubMed Central

    Altschuler, Ted S.; Molholm, Sophie; Butler, John S.; Mercier, Manuel R.; Brandwein, Alice B.; Foxe, John J.

    2014-01-01

    The adult human visual system can efficiently fill-in missing object boundaries when low-level information from the retina is incomplete, but little is known about how these processes develop across childhood. A decade of visual-evoked potential (VEP) studies has produced a theoretical model identifying distinct phases of contour completion in adults. The first, termed a perceptual phase, occurs from approximately 100-200 ms and is associated with automatic boundary completion. The second is termed a conceptual phase occurring between 230-400 ms. The latter has been associated with the analysis of ambiguous objects which seem to require more effort to complete. The electrophysiological markers of these phases have both been localized to the lateral occipital complex, a cluster of ventral visual stream brain regions associated with object-processing. We presented Kanizsa-type illusory contour stimuli, often used for exploring contour completion processes, to neurotypical persons ages 6-31 (N= 63), while parametrically varying the spatial extent of these induced contours, in order to better understand how filling-in processes develop across childhood and adolescence. Our results suggest that, while adults complete contour boundaries in a single discrete period during the automatic perceptual phase, children display an immature response pattern - engaging in more protracted processing across both timeframes and appearing to recruit more widely distributed regions which resemble those evoked during adult processing of higher-order ambiguous figures. However, children older than 5 years of age were remarkably like adults in that the effects of contour processing were invariant to manipulation of contour extent. PMID:24365674

  18. Interactive contour delineation and refinement in treatment planning of image‐guided radiation therapy

    PubMed Central

    Zhou, Wu

    2014-01-01

    The accurate contour delineation of the target and/or organs at risk (OAR) is essential in treatment planning for image‐guided radiation therapy (IGRT). Although many automatic contour delineation approaches have been proposed, few of them can fulfill the necessities of applications in terms of accuracy and efficiency. Moreover, clinicians would like to analyze the characteristics of regions of interests (ROI) and adjust contours manually during IGRT. Interactive tool for contour delineation is necessary in such cases. In this work, a novel approach of curve fitting for interactive contour delineation is proposed. It allows users to quickly improve contours by a simple mouse click. Initially, a region which contains interesting object is selected in the image, then the program can automatically select important control points from the region boundary, and the method of Hermite cubic curves is used to fit the control points. Hence, the optimized curve can be revised by moving its control points interactively. Meanwhile, several curve fitting methods are presented for the comparison. Finally, in order to improve the accuracy of contour delineation, the process of the curve refinement based on the maximum gradient magnitude is proposed. All the points on the curve are revised automatically towards the positions with maximum gradient magnitude. Experimental results show that Hermite cubic curves and the curve refinement based on the maximum gradient magnitude possess superior performance on the proposed platform in terms of accuracy, robustness, and time calculation. Experimental results of real medical images demonstrate the efficiency, accuracy, and robustness of the proposed process in clinical applications. PACS number: 87.53.Tf PMID:24423846

  19. Online 3D terrain visualisation using Unity 3D game engine: A comparison of different contour intervals terrain data draped with UAV images

    NASA Astrophysics Data System (ADS)

    Hafiz Mahayudin, Mohd; Che Mat, Ruzinoor

    2016-06-01

    The main objective of this paper is to discuss on the effectiveness of visualising terrain draped with Unmanned Aerial Vehicle (UAV) images generated from different contour intervals using Unity 3D game engine in online environment. The study area that was tested in this project was oil palm plantation at Sintok, Kedah. The contour data used for this study are divided into three different intervals which are 1m, 3m and 5m. ArcGIS software were used to clip the contour data and also UAV images data to be similar size for the overlaying process. The Unity 3D game engine was used as the main platform for developing the system due to its capabilities which can be launch in different platform. The clipped contour data and UAV images data were process and exported into the web format using Unity 3D. Then process continue by publishing it into the web server for comparing the effectiveness of different 3D terrain data (contour data) draped with UAV images. The effectiveness is compared based on the data size, loading time (office and out-of-office hours), response time, visualisation quality, and frame per second (fps). The results were suggest which contour interval is better for developing an effective online 3D terrain visualisation draped with UAV images using Unity 3D game engine. It therefore benefits decision maker and planner related to this field decide on which contour is applicable for their task.

  20. Interobserver reliability of computed tomographic contouring of canine tonsils in radiation therapy treatment planning.

    PubMed

    Murakami, Keiko; Rancilio, Nicholas J; Plantenga, Jeannie Poulson; Moore, George E; Heng, Hock Gan; Lim, Chee Kin

    2018-05-01

    In radiation therapy (RT) treatment planning for canine head and neck cancer, the tonsils may be included as part of the treated volume. Delineation of tonsils on computed tomography (CT) scans is difficult. Error or uncertainty in the volume and location of contoured structures may result in treatment failure. The purpose of this prospective, observer agreement study was to assess the interobserver agreement of tonsillar contouring by two groups of trained observers. Thirty dogs undergoing pre- and post-contrast CT studies of the head were included. After the pre- and postcontrast CT scans, the tonsils were identified via direct visualization, barium paste was applied bilaterally to the visible tonsils, and a third CT scan was acquired. Data from each of the three CT scans were registered in an RT treatment planning system. Two groups of observers (one veterinary radiologist and one veterinary radiation oncologist in each group) contoured bilateral tonsils by consensus, obtaining three sets of contours. Tonsil volume and location data were obtained from both groups. The contour volumes and locations were compared between groups using mixed (fixed and random effect) linear models. There was no significant difference between each group's contours in terms of three-dimensional coordinates. However there was a significant difference between each group's contours in terms of the tonsillar volume (P < 0.0001). Pre- and postcontrast CT can be used to identify the location of canine tonsils with reasonable agreement between trained observers. Discrepancy in tonsillar volume between groups of trained observers may affect RT treatment outcome. © 2017 American College of Veterinary Radiology.

  1. An adipose segmentation and quantification scheme for the intra abdominal region on minipigs

    NASA Astrophysics Data System (ADS)

    Engholm, Rasmus; Dubinskiy, Aleksandr; Larsen, Rasmus; Hanson, Lars G.; Christoffersen, Berit Østergaard

    2006-03-01

    This article describes a method for automatic segmentation of the abdomen into three anatomical regions: subcutaneous, retroperitoneal and visceral. For the last two regions the amount of adipose tissue (fat) is quantified. According to recent medical research, the distinction between retroperitoneal and visceral fat is important for studying metabolic syndrome, which is closely related to diabetes. However previous work has neglected to address this point, treating the two types of fat together. We use T1-weighted three-dimensional magnetic resonance data of the abdomen of obese minipigs. The pigs were manually dissected right after the scan, to produce the "ground truth" segmentation. We perform automatic segmentation on a representative slice, which on humans has been shown to correlate with the amount of adipose tissue in the abdomen. The process of automatic fat estimation consists of three steps. First, the subcutaneous fat is removed with a modified active contour approach. The energy formulation of the active contour exploits the homogeneous nature of the subcutaneous fat and the smoothness of the boundary. Subsequently the retroperitoneal fat located around the abdominal cavity is separated from the visceral fat. For this, we formulate a cost function on a contour, based on intensities, edges, distance to center and smoothness, so as to exploit the properties of the retroperitoneal fat. We then globally optimize this function using dynamic programming. Finally, the fat content of the retroperitoneal and visceral regions is quantified based on a fuzzy c-means clustering of the intensities within the segmented regions. The segmentation proved satisfactory by visual inspection, and closely correlated with the manual dissection data. The correlation was 0.89 for the retroperitoneal fat, and 0.74 for the visceral fat.

  2. Lung tumor tracking in fluoroscopic video based on optical flow

    PubMed Central

    Xu, Qianyi; Hamilton, Russell J.; Schowengerdt, Robert A.; Alexander, Brian; Jiang, Steve B.

    2008-01-01

    Respiratory gating and tumor tracking for dynamic multileaf collimator delivery require accurate and real-time localization of the lung tumor position during treatment. Deriving tumor position from external surrogates such as abdominal surface motion may have large uncertainties due to the intra- and interfraction variations of the correlation between the external surrogates and internal tumor motion. Implanted fiducial markers can be used to track tumors fluoroscopically in real time with sufficient accuracy. However, it may not be a practical procedure when implanting fiducials bronchoscopically. In this work, a method is presented to track the lung tumor mass or relevant anatomic features projected in fluoroscopic images without implanted fiducial markers based on an optical flow algorithm. The algorithm generates the centroid position of the tracked target and ignores shape changes of the tumor mass shadow. The tracking starts with a segmented tumor projection in an initial image frame. Then, the optical flow between this and all incoming frames acquired during treatment delivery is computed as initial estimations of tumor centroid displacements. The tumor contour in the initial frame is transferred to the incoming frames based on the average of the motion vectors, and its positions in the incoming frames are determined by fine-tuning the contour positions using a template matching algorithm with a small search range. The tracking results were validated by comparing with clinician determined contours on each frame. The position difference in 95% of the frames was found to be less than 1.4 pixels (∼0.7 mm) in the best case and 2.8 pixels (∼1.4 mm) in the worst case for the five patients studied. PMID:19175094

  3. Lung tumor tracking in fluoroscopic video based on optical flow.

    PubMed

    Xu, Qianyi; Hamilton, Russell J; Schowengerdt, Robert A; Alexander, Brian; Jiang, Steve B

    2008-12-01

    Respiratory gating and tumor tracking for dynamic multileaf collimator delivery require accurate and real-time localization of the lung tumor position during treatment. Deriving tumor position from external surrogates such as abdominal surface motion may have large uncertainties due to the intra- and interfraction variations of the correlation between the external surrogates and internal tumor motion. Implanted fiducial markers can be used to track tumors fluoroscopically in real time with sufficient accuracy. However, it may not be a practical procedure when implanting fiducials bronchoscopically. In this work, a method is presented to track the lung tumor mass or relevant anatomic features projected in fluoroscopic images without implanted fiducial markers based on an optical flow algorithm. The algorithm generates the centroid position of the tracked target and ignores shape changes of the tumor mass shadow. The tracking starts with a segmented tumor projection in an initial image frame. Then, the optical flow between this and all incoming frames acquired during treatment delivery is computed as initial estimations of tumor centroid displacements. The tumor contour in the initial frame is transferred to the incoming frames based on the average of the motion vectors, and its positions in the incoming frames are determined by fine-tuning the contour positions using a template matching algorithm with a small search range. The tracking results were validated by comparing with clinician determined contours on each frame. The position difference in 95% of the frames was found to be less than 1.4 pixels (approximately 0.7 mm) in the best case and 2.8 pixels (approximately 1.4 mm) in the worst case for the five patients studied.

  4. Changes in South Pacific rainfall bands in a warming climate

    NASA Astrophysics Data System (ADS)

    Widlansky, M. J.; Timmermann, A.; Stein, K.; McGregor, S.; Schneider, N.; England, M. H.; Lengaigne, M.; Cai, W.

    2012-12-01

    The South Pacific Convergence Zone (SPCZ) is the largest rainband in the Southern Hemisphere and provides most of the rainfall to Southwest Pacific island nations. In spite of various modeling efforts, it remains uncertain how the SPCZ will respond to greenhouse warming. A multi-model ensemble average of 21st century climate change projections from the current-generation of Coupled General Circulation Models (CGCMs) suggests a slightly wetter Southwest Pacific; however, inter-model uncertainty is greater than projected rainfall changes in the SPCZ region. Using a hierarchy of climate models we show that the uncertainty of SPCZ rainfall projections in the Southwest Pacific can be explained as a result of two competing mechanisms. Higher tropical sea surface temperatures (SST) lead to an overall increase of atmospheric moisture and rainfall while weaker SST gradients dynamically shift the SPCZ northeastward (see illustration) and promote summer drying in areas of the Southwest Pacific, similar to the response to strong El Niño events. Based on a multi-model ensemble of 55 greenhouse warming experiments and for moderate tropical warming of 2-3°C we estimate a 5% decrease of SPCZ rainfall, although uncertainty exceeds ±30% among CGCMs. For stronger tropical warming, a tendency for a wetter SPCZ region is identified.; Illustration of the "warmest gets wetter" response to projected 21st century greenhouse warming. Green shading depicts observed (1982-2009) rainfall during DJF (contour interval: 2 mm/day; starting at 1 mm/day). Blue (red) contours depict warming less (more) than the tropical mean (42.5°N/S) 21st century multi-model trend (contour interval: 0.2°C; starting at ±0.1°C).

  5. Using a conformal water bolus to adjust heating patterns of microwave waveguide applicators

    NASA Astrophysics Data System (ADS)

    Stauffer, Paul R.; Rodrigues, Dario B.; Sinahon, Randolf; Sbarro, Lyndsey; Beckhoff, Valeria; Hurwitz, Mark D.

    2017-02-01

    Background: Hyperthermia, i.e., raising tissue temperature to 40-45°C for 60 min, has been demonstrated to increase the effectiveness of radiation and chemotherapy for cancer. Although multi-element conformal heat applicators are under development to provide more adjustable heating of contoured anatomy, to date the most often used applicator to heat superficial disease is the simple microwave waveguide. With only a single power input, the operator must be resourceful to adjust heat treatment to accommodate variable size and shape tumors spreading across contoured anatomy. Methods: We used multiphysics simulation software that couples electromagnetic, thermal and fluid dynamics physics to simulate heating patterns in superficial tumors from commercially available microwave waveguide applicators. Temperature distributions were calculated inside homogenous muscle and layered skin-fat-muscle-tumor-bone tissue loads for a typical range of applicator coupling configurations and size of waterbolus. Variable thickness waterbolus was simulated as necessary to accommodate contoured anatomy. Physical models of several treatment configurations were constructed for comparison of simulation results with experimental specific absorption rate (SAR) measurements in homogenous muscle phantom. Results: Accuracy of the simulation model was confirmed with experimental SAR measurements of three unique applicator setups. Simulations demonstrated the ability to generate a wide range of power deposition patterns with commercially available waveguide antennas by controllably varying size and thickness of the waterbolus layer. Conclusion: Heating characteristics of 915 MHz waveguide antennas can be varied over a wide range by controlled adjustment of microwave power, coupling configuration, and waterbolus lateral size and thickness. The uniformity of thermal dose delivered to superficial tumors can be improved by cyclic switching of waterbolus thickness during treatment to proactively shift heat peaks and nulls around under the aperture, thereby reducing patient pain while increasing minimum thermal dose by end of treatment.

  6. A new background distribution-based active contour model for three-dimensional lesion segmentation in breast DCE-MRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Hui; Liu, Yiping; Qiu, Tianshuang

    2014-08-15

    Purpose: To develop and evaluate a computerized semiautomatic segmentation method for accurate extraction of three-dimensional lesions from dynamic contrast-enhanced magnetic resonance images (DCE-MRIs) of the breast. Methods: The authors propose a new background distribution-based active contour model using level set (BDACMLS) to segment lesions in breast DCE-MRIs. The method starts with manual selection of a region of interest (ROI) that contains the entire lesion in a single slice where the lesion is enhanced. Then the lesion volume from the volume data of interest, which is captured automatically, is separated. The core idea of BDACMLS is a new signed pressure functionmore » which is based solely on the intensity distribution combined with pathophysiological basis. To compare the algorithm results, two experienced radiologists delineated all lesions jointly to obtain the ground truth. In addition, results generated by other different methods based on level set (LS) are also compared with the authors’ method. Finally, the performance of the proposed method is evaluated by several region-based metrics such as the overlap ratio. Results: Forty-two studies with 46 lesions that contain 29 benign and 17 malignant lesions are evaluated. The dataset includes various typical pathologies of the breast such as invasive ductal carcinoma, ductal carcinomain situ, scar carcinoma, phyllodes tumor, breast cysts, fibroadenoma, etc. The overlap ratio for BDACMLS with respect to manual segmentation is 79.55% ± 12.60% (mean ± s.d.). Conclusions: A new active contour model method has been developed and shown to successfully segment breast DCE-MRI three-dimensional lesions. The results from this model correspond more closely to manual segmentation, solve the weak-edge-passed problem, and improve the robustness in segmenting different lesions.« less

  7. Auditory and Linguistic Processes in the Perception of Intonation Contours.

    ERIC Educational Resources Information Center

    Studdert-Kennedy, Michael; Hadding, Kerstin

    By examining the relations among sections of the fundamental frequency contour used in judging an utterance as a question or statement, the experiment described in this report seeks a more detailed understanding of auditory-linguistic interaction in the perception of intonation contours. The perceptual process may be divided into stages (auditory,…

  8. Musically Tone-Deaf Individuals Have Difficulty Discriminating Intonation Contours Extracted from Speech

    ERIC Educational Resources Information Center

    Patel, Aniruddh D.; Foxton, Jessica M.; Griffiths, Timothy D.

    2005-01-01

    Musically tone-deaf individuals have psychophysical deficits in detecting pitch changes, yet their discrimination of intonation contours in speech appears to be normal. One hypothesis for this dissociation is that intonation contours use coarse pitch contrasts which exceed the pitch-change detection thresholds of tone-deaf individuals (Peretz &…

  9. 27 CFR 9.169 - Red Hills Lake County.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... intersection with the 1,400-foot contour line, section 3, T12N, R7W (Clearlake Highlands Quadrangle); then (2) Proceed east-southeasterly along the meandering 1,400-foot contour line onto the Lower Lake map south of Anderson Flat, then reverse direction with the contour line and continue westerly, leaving the Lower Lake...

  10. 27 CFR 9.169 - Red Hills Lake County.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... intersection with the 1,400-foot contour line, section 3, T12N, R7W (Clearlake Highlands Quadrangle); then (2) Proceed east-southeasterly along the meandering 1,400-foot contour line onto the Lower Lake map south of Anderson Flat, then reverse direction with the contour line and continue westerly, leaving the Lower Lake...

  11. Tonal Language Background and Detecting Pitch Contour in Spoken and Musical Items

    ERIC Educational Resources Information Center

    Stevens, Catherine J.; Keller, Peter E.; Tyler, Michael D.

    2013-01-01

    An experiment investigated the effect of tonal language background on discrimination of pitch contour in short spoken and musical items. It was hypothesized that extensive exposure to a tonal language attunes perception of pitch contour. Accuracy and reaction times of adult participants from tonal (Thai) and non-tonal (Australian English) language…

  12. 47 CFR 73.683 - Field strength contours and presumptive determination of field strength at individual locations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Field strength contours and presumptive determination of field strength at individual locations. 73.683 Section 73.683 Telecommunication FEDERAL... Stations § 73.683 Field strength contours and presumptive determination of field strength at individual...

  13. Analysis of contour images using optics of spiral beams

    NASA Astrophysics Data System (ADS)

    Volostnikov, V. G.; Kishkin, S. A.; Kotova, S. P.

    2018-03-01

    An approach is outlined to the recognition of contour images using computer technology based on coherent optics principles. A mathematical description of the recognition process algorithm and the results of numerical modelling are presented. The developed approach to the recognition of contour images using optics of spiral beams is described and justified.

  14. 47 CFR 73.6010 - Class A TV station protected contour.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Class A TV station protected contour. 73.6010... RADIO BROADCAST SERVICES Class A Television Broadcast Stations § 73.6010 Class A TV station protected contour. (a) A Class A TV station will be protected from interference within the following predicted...

  15. 47 CFR 73.6010 - Class A TV station protected contour.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false Class A TV station protected contour. 73.6010... RADIO BROADCAST SERVICES Class A Television Broadcast Stations § 73.6010 Class A TV station protected contour. (a) A Class A TV station will be protected from interference within the following predicted...

  16. 47 CFR 73.6010 - Class A TV station protected contour.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Class A TV station protected contour. 73.6010... RADIO BROADCAST SERVICES Class A Television Broadcast Stations § 73.6010 Class A TV station protected contour. (a) A Class A TV station will be protected from interference within the following predicted...

  17. 47 CFR 73.6010 - Class A TV station protected contour.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Class A TV station protected contour. 73.6010... RADIO BROADCAST SERVICES Class A Television Broadcast Stations § 73.6010 Class A TV station protected contour. (a) A Class A TV station will be protected from interference within the following predicted...

  18. 47 CFR 73.6010 - Class A TV station protected contour.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Class A TV station protected contour. 73.6010... RADIO BROADCAST SERVICES Class A Television Broadcast Stations § 73.6010 Class A TV station protected contour. (a) A Class A TV station will be protected from interference within the following predicted...

  19. Contour entropy: a new determinant of perceiving ground or a hole.

    PubMed

    Gillam, Barbara J; Grove, Philip M

    2011-06-01

    Figure-ground perception is typically described as seeing one surface occluding another. Figure properties, not ground properties, are considered the significant factors. In scenes, however, a near surface will often occlude multiple contours and surfaces, often at different depths, producing alignments that are improbable except under conditions of occlusion. We thus hypothesized that unrelated (high entropy) lines would tend to appear as ground in a figure-ground paradigm more often than similarly aligned ordered (low entropy) lines. We further hypothesized that for lines spanning a closed area, high line entropy should increase the hole-like appearance of that area. These predictions were confirmed in three experiments. The probability that patterned rectangles were seen as ground when alternated with blank rectangles increased with pattern entropy. A single rectangular shape appeared more hole-like when the entropy of the enclosed contours increased. Furthermore, these same contours, with the outline shape removed, gave rise to bounding illusory contours whose strength increased with contour entropy. We conclude that figure-ground and hole perception can be determined by properties of ground in the absence of any figural shape, or surround, factors.

  20. Development and evaluation of a new contoured cushion system with an optimized normalization algorithm.

    PubMed

    Li, Sujiao; Zhang, Zhengxiang; Wang, Jue

    2014-01-01

    Prevention of pressure sores remains a significant problem confronting spinal cord injury patients and the elderly with limited mobility. One vital aspect of this subject concerns the development of cushions to decrease pressure ulcers for seated patients, particularly those bound by wheelchairs. Here, we present a novel cushion system that employs interface pressure distribution between the cushion and the buttocks to design custom contoured foam cushion. An optimized normalization algorithm was proposed, with which interface pressure distribution was transformed into the carving depth of foam cushions according to the biomechanical characteristics of the foam. The shape and pressure-relief performance of the custom contoured foam cushions was investigated. The outcomes showed that the contoured shape of personalized cushion matched the buttock contour very well. Moreover, the custom contoured cushion could alleviate pressure under buttocks and increase subjective comfort and stability significantly. Furthermore, the fabricating method not only decreased the unit production cost but also simplified the procedure for manufacturing. All in all, this prototype seat cushion would be an effective and economical way to prevent pressure ulcers.

  1. Collinear facilitation and contour integration in autism: evidence for atypical visual integration.

    PubMed

    Jachim, Stephen; Warren, Paul A; McLoughlin, Niall; Gowen, Emma

    2015-01-01

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impaired social interaction, atypical communication and a restricted repertoire of interests and activities. Altered sensory and perceptual experiences are also common, and a notable perceptual difference between individuals with ASD and controls is their superior performance in visual tasks where it may be beneficial to ignore global context. This superiority may be the result of atypical integrative processing. To explore this claim we investigated visual integration in adults with ASD (diagnosed with Asperger's Syndrome) using two psychophysical tasks thought to rely on integrative processing-collinear facilitation and contour integration. We measured collinear facilitation at different flanker orientation offsets and contour integration for both open and closed contours. Our results indicate that compared to matched controls, ASD participants show (i) reduced collinear facilitation, despite equivalent performance without flankers; and (ii) less benefit from closed contours in contour integration. These results indicate weaker visuospatial integration in adults with ASD and suggest that further studies using these types of paradigms would provide knowledge on how contextual processing is altered in ASD.

  2. [Validation of an improved Demons deformable registration algorithm and its application in re-contouring in 4D-CT].

    PubMed

    Zhen, Xin; Zhou, Ling-hong; Lu, Wen-ting; Zhang, Shu-xu; Zhou, Lu

    2010-12-01

    To validate the efficiency and accuracy of an improved Demons deformable registration algorithm and evaluate its application in contour recontouring in 4D-CT. To increase the additional Demons force and reallocate the bilateral forces to accelerate convergent speed, we propose a novel energy function as the similarity measure, and utilize a BFGS method for optimization to avoid specifying the numbers of iteration. Mathematical transformed deformable CT images and home-made deformable phantom were used to validate the accuracy of the improved algorithm, and its effectiveness for contour recontouring was tested. The improved algorithm showed a relatively high registration accuracy and speed when compared with the classic Demons algorithm and optical flow based method. Visual inspection of the positions and shapes of the deformed contours agreed well with the physician-drawn contours. Deformable registration is a key technique in 4D-CT, and this improved Demons algorithm for contour recontouring can significantly reduce the workload of the physicians. The registration accuracy of this method proves to be sufficient for clinical needs.

  3. Evaluation of the pulse-contour method of determining stroke volume in man.

    NASA Technical Reports Server (NTRS)

    Alderman, E. L.; Branzi, A.; Sanders, W.; Brown, B. W.; Harrison, D. C.

    1972-01-01

    The pulse-contour method for determining stroke volume has been employed as a continuous rapid method of monitoring the cardiovascular status of patients. Twenty-one patients with ischemic heart disease and 21 patients with mitral valve disease were subjected to a variety of hemodynamic interventions. The pulse-contour estimations, using three different formulas derived by Warner, Kouchoukos, and Herd, were compared with indicator-dilution outputs. A comparison of the results of the two methods for determining stroke volume yielded correlation coefficients ranging from 0.59 to 0.84. The better performing Warner formula yielded a coefficient of variation of about 20%. The type of hemodynamic interventions employed did not significantly affect the results using the pulse-contour method. Although the correlation of the pulse-contour and indicator-dilution stroke volumes is high, the coefficient of variation is such that small changes in stroke volume cannot be accurately assessed by the pulse-contour method. However, the simplicity and rapidity of this method compared to determination of cardiac output by Fick or indicator-dilution methods makes it a potentially useful adjunct for monitoring critically ill patients.

  4. Surface Curvatures Computation from Equidistance Contours

    NASA Astrophysics Data System (ADS)

    Tanaka, Hiromi T.; Kling, Olivier; Lee, Daniel T. L.

    1990-03-01

    The subject of our research is on the 3D shape representation problem for a special class of range image, one where the natural mode of the acquired range data is in the form of equidistance contours, as exemplified by a moire interferometry range system. In this paper we present a novel surface curvature computation scheme that directly computes the surface curvatures (the principal curvatures, Gaussian curvature and mean curvature) from the equidistance contours without any explicit computations or implicit estimates of partial derivatives. We show how the special nature of the equidistance contours, specifically, the dense information of the surface curves in the 2D contour plane, turns into an advantage for the computation of the surface curvatures. The approach is based on using simple geometric construction to obtain the normal sections and the normal curvatures. This method is general and can be extended to any dense range image data. We show in details how this computation is formulated and give an analysis on the error bounds of the computation steps showing that the method is stable. Computation results on real equidistance range contours are also shown.

  5. Differences in apparent straightness of dot and line stimuli.

    NASA Technical Reports Server (NTRS)

    Parlee, M. B.

    1972-01-01

    An investigation has been made of anisotropic responses to contoured and noncontoured stimuli to obtain an insight into the way these stimuli are processed. For this purpose, eight subjects judged the alignment of minimally contoured (3 dot) and contoured (line) stimuli. Stimuli, presented to each eye separately, vertically subtended either 8 or 32 deg visual angle and were located 10 deg left, center, or 10 deg right in the visual field. Location-dependent deviations from physical straightness were larger for dot stimuli than for lines. The results were the same for the two eyes. In a second experiment, subjects judged the alignment of stimuli composed of different densities of dots. Apparent straightness for these stimuli was the same as for lines. The results are discussed in terms of alternative mechanisms for analysis of contoured and minimally contoured stimuli.

  6. Modeling the basin of attraction as a two-dimensional manifold from experimental data: Applications to balance in humans

    NASA Astrophysics Data System (ADS)

    Zakynthinaki, Maria S.; Stirling, James R.; Cordente Martínez, Carlos A.; Díaz de Durana, Alfonso López; Quintana, Manuel Sillero; Romo, Gabriel Rodríguez; Molinuevo, Javier Sampedro

    2010-03-01

    We present a method of modeling the basin of attraction as a three-dimensional function describing a two-dimensional manifold on which the dynamics of the system evolves from experimental time series data. Our method is based on the density of the data set and uses numerical optimization and data modeling tools. We also show how to obtain analytic curves that describe both the contours and the boundary of the basin. Our method is applied to the problem of regaining balance after perturbation from quiet vertical stance using data of an elite athlete. Our method goes beyond the statistical description of the experimental data, providing a function that describes the shape of the basin of attraction. To test its robustness, our method has also been applied to two different data sets of a second subject and no significant differences were found between the contours of the calculated basin of attraction for the different data sets. The proposed method has many uses in a wide variety of areas, not just human balance for which there are many applications in medicine, rehabilitation, and sport.

  7. Longitudinal and latitudinal variations in dynamic characteristics of the MLT (70-95km): a study involving the CUJO network

    NASA Astrophysics Data System (ADS)

    Manson, A.; Meek, C.; Chshyolkova, T.; Avery, S.; Thorsen, D.; MacDougall, J.; Hocking, W.; Murayama, Y.; Igarashi, K.; Namboothiri, S.; Kishore, P.

    2004-02-01

    . The newly-installed MFR (medium frequency radar) at Platteville (40N, 105W) has provided the opportunity and impetus to create an operational network of middle- latitude MFRs stretching from W-E. CUJO (Canada U.S. Japan Opportunity) comprises systems at London (N, 81W), Platteville (40N, 105W), Saskatoon (52N, 107W), Wakkanai (45N, 142E) and Yamagawa (31N, 131E). It offers a significant 7000km longitudinal sector in the North American-Pacific region, and a useful range of latitudes (12-14) at two longitudes. Annual climatologies involving both height and frequency versus time contour plots for periods from 8h to 30 days, show that the changes with longitude are very significant and distinctive, often exceeding the local latitudinal variations. Comparisons with models and the recent UARS-HRDI global analysis of tides are discussed. The fits of the horizontal wave numbers of the longer period oscillations are provided in unique frequency versus time contour plots and shown to be consistent with the expected dominant modes. Annual climatologies of planetary waves (16 day, 2 day) and gravity waves reveal strong seasonal and longitudinal variations.

  8. Radiographic sclerotic contour loss in the identification of glenoid bone loss.

    PubMed

    Bornes, Troy D; Jaremko, Jacob L; Beaupre, Lauren A; Bouliane, Martin J

    2016-07-01

    Quantification of glenoid bone loss guides surgical management in the setting of anterior shoulder instability. Glenoid defects resulting in ≥20 % articular area loss require bony reconstruction. The objective of this study was to evaluate the utility of sclerotic glenoid contour loss on true anteroposterior radiography in the detection of varying quantities of simulated glenoid bone loss using a cadaveric model. Eight cadaveric scapulae with full radiographic sclerotic contour were osteotomized to produce glenoid surface area reductions of 10-50 %. Radiography was performed initially and following each osteotomy, and assessed by an orthopedic surgeon and radiologist twice. Quantity of glenoid loss was compared using Fisher's exact test. Sensitivity, specificity, and reliability analyses were performed. On the first radiographic review, sclerotic contour loss was detected in 6 out of 8 scapulae with 50 % area loss, but only 1 out of 8 scapulae with 20 % area loss. There was a significantly higher proportion of radiographs containing sclerotic contour loss for defects with 50 % area loss compared to those with 0-25 % loss (p ≤ 0.02). In the detection of ≥20 % area loss, sclerotic contour loss had a sensitivity of 33-43 % and specificity of 88-100 %. Moderate inter-observer reliability (Cohen's kappa value of 0.42-0.53) and intra-observer reliability (kappa value of 0.46-0.58) were found. Radiographic sclerotic contour loss is commonly observed in radiographs of scapulae with 40-50 % glenoid area loss and less often with smaller lesions. However, this finding lacks utility in discerning specific quantifications of glenoid bone loss. In a clinical setting, sclerotic contour loss suggests the presence of a large glenoid defect that may require bony reconstruction. However, an intact sclerotic contour does not rule out significant bone loss.

  9. Consensus Contouring Guidelines for Postoperative Stereotactic Body Radiation Therapy for Metastatic Solid Tumor Malignancies to the Spine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Redmond, Kristin J., E-mail: kjanson3@jhmi.edu; Robertson, Scott; Lo, Simon S.

    Purpose: To develop consensus contouring guidelines for postoperative stereotactic body radiation therapy (SBRT) for spinal metastases. Methods and Materials: Ten spine SBRT specialists representing 10 international centers independently contoured the clinical target volume (CTV), planning target volume (PTV), spinal cord, and spinal cord planning organ at risk volume (PRV) for 10 representative clinical scenarios in postoperative spine SBRT for metastatic solid tumor malignancies. Contours were imported into the Computational Environment for Radiotherapy Research. Agreement between physicians was calculated with an expectation minimization algorithm using simultaneous truth and performance level estimation with κ statistics. Target volume definition guidelines were established by finding optimizedmore » confidence level consensus contours using histogram agreement analyses. Results: Nine expert radiation oncologists and 1 neurosurgeon completed contours for all 10 cases. The mean sensitivity and specificity were 0.79 (range, 0.71-0.89) and 0.94 (range, 0.90-0.99) for the CTV and 0.79 (range, 0.70-0.95) and 0.92 (range, 0.87-0.99) for the PTV), respectively. Mean κ agreement, which demonstrates the probability that contours agree by chance alone, was 0.58 (range, 0.43-0.70) for CTV and 0.58 (range, 0.37-0.76) for PTV (P<.001 for all cases). Optimized consensus contours were established for all patients with 80% confidence interval. Recommendations for CTV include treatment of the entire preoperative extent of bony and epidural disease, plus immediately adjacent bony anatomic compartments at risk of microscopic disease extension. In particular, a “donut-shaped” CTV was consistently applied in cases of preoperative circumferential epidural extension, regardless of extent of residual epidural extension. Otherwise more conformal anatomic-based CTVs were determined and described. Spinal instrumentation was consistently excluded from the CTV. Conclusions: We provide consensus contouring guidelines for common scenarios in postoperative SBRT for spinal metastases. These consensus guidelines are subject to clinical validation.« less

  10. Mandibular marginal contouring in oriental aesthetic surgery: refined surgical concept and operative procedure.

    PubMed

    Satoh, Kaneshige; Mitsukawa, Nobuyuki

    2014-05-01

    In aesthetic mandibular contouring surgery, which is often conducted in Asians, the operative procedure is thought to deliver a more aesthetic mandibular shape by means of contouring conducted as a whole from the ramus to the symphysis. The authors describe the refined concept and operative procedures of mandibular marginal contouring. For the 7-year period from 2004 to 2011, mandibular marginal contouring has been used in 57 consecutive series of Japanese subjects. Patient ages ranged from 18 to 33 years, and the subjects included 15 men and 42 women. The surgery was carried out by cutting off the protruding deformed mandibular margin from the ramus to the symphysis. In 53 of 57 cases, the focus was on angle contouring. Concomitant genioplasty by horizontal osteotomy of the chin was conducted in 42 of 57 cases (recession, advancement, shortening, elongation, and correction of the shift variously). In 22 materials exhibiting bulk around the mandibular, the ramus to the body was excised sagittally and thinned. In all the patients, mandibular marginal contouring from the ramus to the symphysis was completed. Partial masseter muscle resection was conducted in 11 of 57 cases. Mandibular contouring effectively achieved a highly satisfactory result in all cases. The upper portion of the peripheral branch of the trunk of the mental nerve was dissected by an electric scalpel in 1 case but sutured immediately using an 8-0 nylon stitch. Transient palsy of the mental nerve was noticed in a few cases but subsided in 1 to 2 months. No particular complications were encountered. No secondary revision was required in this series. In mandibular angle plasty, mandibular marginal contouring from the ramus to the symphysis should be carried out by cutting off the angle keeping in mind the entire mandibular shape. This concept and the procedure can deliver greater patient satisfaction.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    D’Souza, W; Zhang, B; Feigenberg, S

    Purpose: To evaluate the compliance with evidence-based treatment planning organ-at-risk (OAR) guidelines in a single institution with four practice sites. Methods: Two hundred thirteen head and neck cancer patients treated between September 2009 and September 2013 were retrospectively selected. Consensus treatment planning guidelines, including OAR dose constraints, were established based on institutional experience and published data. Data spanned a time period of 2 years prior to (n=112) and 2 years post-enactment (n=101) of the guidelines. We investigated the differences in the frequency with which (1) OARs were contoured and (2) OAR DVH goals were met. Trends in the proportion withmore » OAR contours over time was tested using linear regression. Trends in the proportion of contoured OARs achieving clinical DVH goals were similarly tested. The proportion of patients contoured and meeting DVH goals before and after guidelines was compared using a test of proportions. Results: When the proportion of cases with OAR contours before and after guidelines were compared, we observed an increase from 75% to 87% (p=0.02) for the brainstem, decrease from 97% to 88% (p=0.01) for the cord and increase from 47% to 77% (p<0.001) for the mandible. For the proportion of cases with OAR contours in which clinical goals were met, a significant decrease from 99% to 90% was observed for the cord V48<0.3% (p=0.001). A significant decrease in the proportion of cases with left parotid contours (from 92% to 73% (p=0.03)) was observed over 2 years after guideline enactment and the proportion meeting the clinical DVH goal of V30<50% increased significantly from 36% to 50% (p=0.007) over the 2 years after guidelines. Conclusion: The enactment of OAR planning guidelines resulted in an increase in OAR contour compliance, overall. In cases with OAR contours, there was little to no change in the proportion that met clinical goals.« less

  12. SU-F-T-455: Is Contouring the Whole Breast Necessary for Two-Field 3D Breast Planning?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desai, A; Ku, Eric; Fang, D

    Purpose: To investigate the effect of contouring the whole breast on reducing the radiation dose to the heart and affected lung in tangential field-in-field 3D breast planning. We hypothesize that contouring the whole breast will simplify the plan normalization process, reduce dose to critical structures, while maintaining treatment plan quality and consistency. Methods: Twenty previously treated breast cancer patients using tangential field-in-field 3D planning technique were randomly selected. The affected breast was contoured following the RTOG breast atlas guideline. Breast PTV was created by shrinking 5 mm from the breast contour. The same plan has been pasted to the newmore » contour and normalized to 95% of the Breast PTV receiving the prescribed isodose line. Lung V20 Gy% and Heart V25 Gy% were the primary study endpoints. Homogeneity Index (HI) and Conformity Index (CI) were calculated based on the following equations. HI= Dmax/ D95 and Nakamura’s Conformity Index= PIV/TVPIV × TV/TVPIV. Results: The average CI for previous plans was 1.68 vs. 1.66 for the new hybrid plan: both plans were conformal to the breast with similar quality. The HI for both the previous and the new hybrid plan was 1.24. Lung V 20% slightly increased from 4.27% to 4.82%. Heart V 25% for LT breast patients slightly decreased from 0.38% to 0.29%. Heart V 25% for RT breast patients was close to zero in both cases. Conclusion: With similar conformal and homogeneity indices for the plan quality, by contouring the whole breast following RTOG breast atlas guideline will simplify the planning process. The study showed that contouring the whole breast for patients with left-sided breast cancer reduced the heart V 25%, although not significantly, while maintaining the CI and HI. There was no measurable gain seen with whole breast contour for right-sided breast cancer patients.« less

  13. Oxygen effects on glucose measurements with a reference analyzer and three handheld meters.

    PubMed

    Tang, Z; Louie, R F; Payes, M; Chang, K C; Kost, G J

    2000-01-01

    Oxygen may affect glucose meter and reference analyzer measurements. We evaluated the effects of changes in blood oxygen tension (Po2) on Accu-Chek Comfort Curve (Roche Diagnostics, Indianapolis, IN), Precision G, (Abbott Laboratories, Bedford, MA) and One Touch II (Lifescan, Milpitas, CA) glucose meter measurements, and on Yellow Springs Instruments (YSI) (Yellow Springs, OH) reference analyzer measurements. Venous blood drawn from healthy volunteers was adjusted to three glucose levels of 80, 200, and 400 mg/dL, each tonometered with six different Po2 levels (40, 80, 160, 240, 320, and 400 torr). To quantitate oxygen effects on reference analyzer measurements, glucose differences between test sample (Po2 changed) and control (Po2 80 torr) were calculated (YSItest-YSIcontrol). The threshold for determination of oxygen effects was +/-2 SD, where 2 SD was fro

  14. Influence of corneal thickness on the intraocular pressure readings for Maklakoff's tonometer of different weight

    NASA Astrophysics Data System (ADS)

    Franus, D. V.

    2018-05-01

    Research is conducted into variation in the stress-strain state of the corneoscleral shell of the human eye under loading by a flat base stamp of varying weight. A three-dimensional finite-element model of the contact problem of loading of the corneoscleral shell in the ANSYS program package is presented. Cornea and sclera are modeled as conjugated transversely isotropic spherical shells. The cornea is modeled as a multilayer shell with variable thickness in which all modeled layers have their own individual elastic properties. The research deals with the numerical calculation of the diameter of the contact zone between the shell and the stamp. Values of correction coefficients for intraocular pressure are obtained depending on the thickness of the corneal shell in its center, allowing the true intraocular pressure to be determined more accurately.

  15. Anesthetic effects from low concentrations of proparacaine and benoxinate.

    PubMed

    Jauregui, M J; Sanders, T J; Polse, K A

    1980-01-01

    Using double masking procedures, the response to McKay-Marg and Goldmann tonometry of 361 randomly selected patients was determined following the installation of a single dose of either 0.125, 0.25 or 0.5% proparacaine or 0.1, 0.2 or 0.4% benoxinate. Examiners graded the adequacy, patient tolerance and conjunctival hyperemia induced by the drop, while the subjects reported on the sting of the drop, awareness of the tonometer and discomfort after the procedure. The results indicate that 0.25% proparacaine is an effective anesthetic dose on all patients and that 0.2% benoxinate and 0.125% proparacaine would be effective on patients over age 40. The implication of these results is that significantly lower doses of anesthetic can be used which will result in less stinging, reduced hyperemia and shorter duration of action.

  16. Measuring the Carotid to Femoral Pulse Wave Velocity (Cf-PWV) to Evaluate Arterial Stiffness.

    PubMed

    Ji, Hongwei; Xiong, Jing; Yu, Shikai; Chi, Chen; Bai, Bin; Teliewubai, Jiadela; Lu, Yuyan; Zhang, Yi; Xu, Yawei

    2018-05-03

    For the elderly, arterial stiffening is a good marker for aging evaluation and it is recommended that the arterial stiffness be determined noninvasively by the measurement of carotid to femoral pulse wave velocity (cf-PWV) (Class I; Level of Evidence A). In literature, numerous community-based or disease-specific studies have reported that higher cf-PWV is associated with increased cardiovascular risk. Here, we discuss strategies to evaluate arterial stiffness with cf-PWV. Following the well-defined steps detailed here, e.g., proper position operator, distance measurement, and tonometer position, we will obtain a standard cf-PWV value to evaluate arterial stiffness. In this paper, a detailed stepwise method to record a good quality PWV and pulse wave analysis (PWA) using a non-invasive tonometry-based device will be discussed.

  17. Differential nuclear shape dynamics of invasive andnon-invasive breast cancer cells are associated with actin cytoskeleton organization and stability.

    PubMed

    Chiotaki, Rena; Polioudaki, Hara; Theodoropoulos, Panayiotis A

    2014-08-01

    Cancer cells often exhibit characteristic aberrations in their nuclear architecture, which are indicative of their malignant potential. In this study, we have examined the nuclear and cytoskeletal composition, attachment configuration dynamics, and osmotic or drug treatment response of invasive (Hs578T and MDA-MB-231) and non-invasive (MCF-10A and MCF-7) breast cancer cell lines. Unlike MCF-10A and MCF-7, Hs578T and MDA-MB-231 cells showed extensive nuclear elasticity and deformability and displayed distinct kinetic profiles during substrate attachment. The nuclear shape of MCF-10A and MCF-7 cells remained almost unaffected upon detachment, hyperosmotic shock, or cytoskeleton depolymerization, while Hs578T and MDA-MB-231 revealed dramatic nuclear contour malformations following actin reorganization.

  18. Spiral Light Beams and Contour Image Processing

    NASA Astrophysics Data System (ADS)

    Kishkin, Sergey A.; Kotova, Svetlana P.; Volostnikov, Vladimir G.

    Spiral beams of light are characterized by their ability to remain structurally unchanged at propagation. They may have the shape of any closed curve. In the present paper a new approach is proposed within the framework of the contour analysis based on a close cooperation of modern coherent optics, theory of functions and numerical methods. An algorithm for comparing contours is presented and theoretically justified, which allows convincing of whether two contours are similar or not to within the scale factor and/or rotation. The advantages and disadvantages of the proposed approach are considered; the results of numerical modeling are presented.

  19. Development and Testing of DAVID: A Close-in EMP Coupling Code for Arbitrarily Shaped Objects

    DTIC Science & Technology

    1975-11-07

    5.OE-9 sec. (Ambient boundary condition, 0 = 0, Y - YAMAX ). 65 13 b. Approximate contours of constant Ex at T -5.8E-9 sec. (Ambient boundary...condition, 0 =0 Y -YMAX). 65 13 c. Appro<imate contours of constant Ex at T = 9.8E-9 sec. (Ambient boundary condition, 0 = 0 °, Y = YAMAX ). 66 13 d...Approximate contours of constant Ex at T 2.9E-8 sec. (Ambient boundary condition, 0% Y = YAMAX ). 66 - 14 a. Approximate contours of constant Ex at T = 9.8E-9

  20. CONTOUR investigation launched

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    On 27 August, NASA Administrator Sean O'Keefe appointed a team to investigate the apparent loss of the Comet Nucleus Tour (CONTOUR) spacecraft, which stopped communicating with the mission control operations on 15 August.On that date, CONTOUR failed to communicate following the firing of its main engine that would take it out of its orbit around the Earth. Shortly afterwards, the mission team received telescope images from several observatories showing two objects traveling along the spacecraft's predicted path. Those objects could be CONTOUR, and part of the spacecraft that may have separated from it when the spacecraft's solid rocket motor fired.

  1. A fast hidden line algorithm with contour option. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Thue, R. E.

    1984-01-01

    The JonesD algorithm was modified to allow the processing of N-sided elements and implemented in conjunction with a 3-D contour generation algorithm. The total hidden line and contour subsystem is implemented in the MOVIE.BYU Display package, and is compared to the subsystems already existing in the MOVIE.BYU package. The comparison reveals that the modified JonesD hidden line and contour subsystem yields substantial processing time savings, when processing moderate sized models comprised of 1000 elements or less. There are, however, some limitations to the modified JonesD subsystem.

  2. Computational Fluid Dynamics Simulation of Dual Bell Nozzle Film Cooling

    NASA Technical Reports Server (NTRS)

    Braman, Kalen; Garcia, Christian; Ruf, Joseph; Bui, Trong

    2015-01-01

    Marshall Space Flight Center (MSFC) and Armstrong Flight Research Center (AFRC) are working together to advance the technology readiness level (TRL) of the dual bell nozzle concept. Dual bell nozzles are a form of altitude compensating nozzle that consists of two connecting bell contours. At low altitude the nozzle flows fully in the first, relatively lower area ratio, nozzle. The nozzle flow separates from the wall at the inflection point which joins the two bell contours. This relatively low expansion results in higher nozzle efficiency during the low altitude portion of the launch. As ambient pressure decreases with increasing altitude, the nozzle flow will expand to fill the relatively large area ratio second nozzle. The larger area ratio of the second bell enables higher Isp during the high altitude and vacuum portions of the launch. Despite a long history of theoretical consideration and promise towards improving rocket performance, dual bell nozzles have yet to be developed for practical use and have seen only limited testing. One barrier to use of dual bell nozzles is the lack of control over the nozzle flow transition from the first bell to the second bell during operation. A method that this team is pursuing to enhance the controllability of the nozzle flow transition is manipulation of the film coolant that is injected near the inflection between the two bell contours. Computational fluid dynamics (CFD) analysis is being run to assess the degree of control over nozzle flow transition generated via manipulation of the film injection. A cold flow dual bell nozzle, without film coolant, was tested over a range of simulated altitudes in 2004 in MSFC's nozzle test facility. Both NASA centers have performed a series of simulations of that dual bell to validate their computational models. Those CFD results are compared to the experimental results within this paper. MSFC then proceeded to add film injection to the CFD grid of the dual bell nozzle. A series of nozzle pressure ratios and film coolant flow rates are investigated to determine the effect of the film injection on the nozzle flow transition behavior. The results of this CFD study of a dual bell with film injection are presented in this paper.

  3. Synthesis, Characterization, and Application of High Surface Area, Mesoporous, Stabilized Anatase TiO2 Catalyst Supports

    NASA Astrophysics Data System (ADS)

    Olsen, Rebecca Elizabeth

    Vortex rings constitute the main structure in the wakes of a wide class of swimming and flying animals, as well as in cardiac flows and in the jets generated by some moss and fungi. However, there is a physical limit, determined by an energy maximization principle called the Kelvin-Benjamin principle, to the size that axisymmetric vortex rings can achieve. The existence of this limit is known to lead to the separation of a growing vortex ring from the shear layer feeding it, a process known as `vortex pinch-off', and characterized by the dimensionless vortex formation number. The goal of this thesis is to improve our understanding of vortex pinch-off as it relates to biological propulsion, and to provide future researchers with tools to assist in identifying and predicting pinch-off in biological flows. To this end, we introduce a method for identifying pinch-off in starting jets using the Lagrangian coherent structures in the flow, and apply this criterion to an experimentally-generated starting jet. Since most naturally-occurring vortex rings are not circular, we extend the definition of the vortex formation number to include non-axisymmetric vortex rings, and find that the formation number for moderately non-axisymmetric vortices is similar to that of circular vortex rings. This suggests that naturally-occurring vortex rings may be modeled as axisymmetric vortex rings. Therefore, we consider the perturbation response of the Norbury family of axisymmetric vortex rings. This family is chosen to model vortex rings of increasing thickness and circulation, and their response to prolate shape perturbations is simulated using contour dynamics. Finally, the response of more realistic models for vortex rings, constructed from experimental data using nested contours, to perturbations which resemble those encountered by forming vortices more closely, is simulated using contour dynamics. In both families of models, a change in response analogous to pinch-off is found as members of the family with progressively thicker cores are considered. We posit that this analogy may be exploited to understand and predict pinch-off in complex biological flows, where current methods are not applicable in practice, and criteria based on the properties of vortex rings alone are necessary.

  4. Measurements of print-through in graphite fiber epoxy composites

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.; Jeunnette, Timothy T.; Anzic, Judith M.

    1989-01-01

    High-reflectance accurate-contour mirrors are needed for solar dynamic space power systems. Graphite fiber epoxy composites are attractive candidates for such applications owing to their high modulus, near-zero coefficient of thermal expansion, and low mass. However, mirrors prepared from graphite fiber epoxy composite substrates often exhibit print-through, a distortion of the surface, which causes a loss in solar specular reflectance. Efforts to develop mirror substrates without print-through distortion require a means of quantifying print-through. Methods have been developed to quantify the degree of print-through in graphite fiber epoxy composite specimens using surface profilometry.

  5. The effects of aircraft design on STOL ride quality

    NASA Technical Reports Server (NTRS)

    Jones, C. R.; Jacobson, I. D.

    1975-01-01

    Effects of aircraft dynamic characteristics on passenger ride quality are investigated to determine ride-quality isocontours similar to aircraft handling-qualities contours. Measurements are made on a moving-base simulator while varying the aircraft short-period and Dutch Roll frequencies and dampings. Both pilot ratings and subjective ride-quality ratings are obtained during flight. Ride and handling qualities were found to be complementary for the Dutch Roll mode, but not for the short-period mode. Regions of optimal ride and handling qualities are defined for the short-period mode, and the effects of turbulence levels studied.

  6. Precise calculation of the local pressure tensor in Cartesian and spherical coordinates in LAMMPS

    NASA Astrophysics Data System (ADS)

    Nakamura, Takenobu; Kawamoto, Shuhei; Shinoda, Wataru

    2015-05-01

    An accurate and efficient algorithm for calculating the 3D pressure field has been developed and implemented in the open-source molecular dynamics package, LAMMPS. Additionally, an algorithm to compute the pressure profile along the radial direction in spherical coordinates has also been implemented. The latter is particularly useful for systems showing a spherical symmetry such as micelles and vesicles. These methods yield precise pressure fields based on the Irving-Kirkwood contour integration and are particularly useful for biomolecular force fields. The present methods are applied to several systems including a buckled membrane and a vesicle.

  7. Quantifying chain reptation in entangled polymer melts: Topological and dynamical mapping of atomistic simulation results onto the tube model

    NASA Astrophysics Data System (ADS)

    Stephanou, Pavlos S.; Baig, Chunggi; Tsolou, Georgia; Mavrantzas, Vlasis G.; Kröger, Martin

    2010-03-01

    The topological state of entangled polymers has been analyzed recently in terms of primitive paths which allowed obtaining reliable predictions of the static (statistical) properties of the underlying entanglement network for a number of polymer melts. Through a systematic methodology that first maps atomistic molecular dynamics (MD) trajectories onto time trajectories of primitive chains and then documents primitive chain motion in terms of a curvilinear diffusion in a tubelike region around the coarse-grained chain contour, we are extending these static approaches here even further by computing the most fundamental function of the reptation theory, namely, the probability ψ(s,t) that a segment s of the primitive chain remains inside the initial tube after time t, accounting directly for contour length fluctuations and constraint release. The effective diameter of the tube is independently evaluated by observing tube constraints either on atomistic displacements or on the displacement of primitive chain segments orthogonal to the initial primitive path. Having computed the tube diameter, the tube itself around each primitive path is constructed by visiting each entanglement strand along the primitive path one after the other and approximating it by the space of a small cylinder having the same axis as the entanglement strand itself and a diameter equal to the estimated effective tube diameter. Reptation of the primitive chain longitudinally inside the effective constraining tube as well as local transverse fluctuations of the chain driven mainly from constraint release and regeneration mechanisms are evident in the simulation results; the latter causes parts of the chains to venture outside their average tube surface for certain periods of time. The computed ψ(s,t) curves account directly for both of these phenomena, as well as for contour length fluctuations, since all of them are automatically captured in the atomistic simulations. Linear viscoelastic properties such as the zero shear rate viscosity and the spectra of storage and loss moduli obtained on the basis of the obtained ψ(s,t) curves for three different polymer melts (polyethylene, cis-1,4-polybutadiene, and trans-1,4-polybutadiene) are consistent with experimental rheological data and in qualitative agreement with the double reptation and dual constraint models. The new methodology is general and can be routinely applied to analyze primitive path dynamics and chain reptation in atomistic trajectories (accumulated through long MD simulations) of other model polymers or polymeric systems (e.g., bidisperse, branched, grafted, etc.); it is thus believed to be particularly useful in the future in evaluating proposed tube models and developing more accurate theories for entangled systems.

  8. Total luminescence contour spectra of six topped crude oils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chisholm, B.R.; Eldering, H.G.; Giering, L.P.

    1976-11-01

    The results of a preliminary study of six topped crude oils by total luminescence are presented. Included are six contour spectra, six principal excitation/emission spectra, an interpretation of the contours by comparison with other data, a discussion of the method and recommendations for further related studies. These data are used in oil spill identification.

  9. An Investigation of Visual Contour Integration Ability in Relation to Writing Performance in Primary School Students

    ERIC Educational Resources Information Center

    Li-Tsang, Cecilia W. P.; Wong, Agnes S. K.; Chan, Jackson Y.; Lee, Amos Y. T.; Lam, Miko C. Y.; Wong, C. W.; Lu, Zhonglin

    2012-01-01

    A previous study found a visual deficit in contour integration in English readers with dyslexia (Simmers & Bex, 2001). Visual contour integration may play an even more significant role in Chinese handwriting particularly due to its logographic presentation (Lam, Au, Leung, & Li-Tsang, 2011). The current study examined the relationship…

  10. An Experimental Study of a Turbulent Wing-Body Junction and Wake Flow

    DTIC Science & Technology

    1991-09-01

    10 ................... 323 Figure 5.37. Comparison of Contours of (a(W)/aY) 5fU ,’I, Plane 11 ......... 324 Figure 5.38. Comparison of Contours of h...the mean velocity in the boundary layer and the vortex position. The vortex depresses the contours of Urc by drawing in high momentum fluid from the

  11. Fourier Descriptor Analysis and Unification of Voice Range Profile Contours: Method and Applications

    ERIC Educational Resources Information Center

    Pabon, Peter; Ternstrom, Sten; Lamarche, Anick

    2011-01-01

    Purpose: To describe a method for unified description, statistical modeling, and comparison of voice range profile (VRP) contours, even from diverse sources. Method: A morphologic modeling technique, which is based on Fourier descriptors (FDs), is applied to the VRP contour. The technique, which essentially involves resampling of the curve of the…

  12. CONTOUR; a modification of G.I. Evenden's general purpose contouring program

    USGS Publications Warehouse

    Godson, R.H.; Webring, M.W.

    1982-01-01

    A contouring program written for the DEC-10 computer (Evenden, 1975) has been modified and enhanced to operate on a Honeywell Multics 68/80 computer. The program uses a device independent plotting system (Wahl, 1977) so that output can be directed to any of several plotting devices by simply specifying one input variable.

  13. Perceptual Learning of Intonation Contour Categories in Adults and 9- to 11-Year-Old Children: Adults Are More Narrow-Minded

    ERIC Educational Resources Information Center

    Kapatsinski, Vsevolod; Olejarczuk, Paul; Redford, Melissa A.

    2017-01-01

    We report on rapid perceptual learning of intonation contour categories in adults and 9- to 11-year-old children. Intonation contours are temporally extended patterns, whose perception requires temporal integration and therefore poses significant working memory challenges. Both children and adults form relatively abstract representations of…

  14. Tongue Motion Averaging from Contour Sequences

    ERIC Educational Resources Information Center

    Li, Min; Kambhamettu, Chandra; Stone, Maureen

    2005-01-01

    In this paper, a method to get the best representation of a speech motion from several repetitions is presented. Each repetition is a representation of the same speech captured at different times by sequence of ultrasound images and is composed of a set of 2D spatio-temporal contours. These 2D contours in different repetitions are time aligned…

  15. Application and histology-driven refinement of active contour models to functional region and nerve delineation: towards a digital brainstem atlas

    NASA Astrophysics Data System (ADS)

    Patel, Nirmal; Sultana, Sharmin; Rashid, Tanweer; Krusienski, Dean; Audette, Michel A.

    2015-03-01

    This paper presents a methodology for the digital formatting of a printed atlas of the brainstem and the delineation of cranial nerves from this digital atlas. It also describes on-going work on the 3D resampling and refinement of the 2D functional regions and nerve contours. In MRI-based anatomical modeling for neurosurgery planning and simulation, the complexity of the functional anatomy entails a digital atlas approach, rather than less descriptive voxel or surface-based approaches. However, there is an insufficiency of descriptive digital atlases, in particular of the brainstem. Our approach proceeds from a series of numbered, contour-based sketches coinciding with slices of the brainstem featuring both closed and open contours. The closed contours coincide with functionally relevant regions, whereby our objective is to fill in each corresponding label, which is analogous to painting numbered regions in a paint-by-numbers kit. Any open contour typically coincides with a cranial nerve. This 2D phase is needed in order to produce densely labeled regions that can be stacked to produce 3D regions, as well as identifying the embedded paths and outer attachment points of cranial nerves. Cranial nerves are modeled using an explicit contour based technique called 1-Simplex. The relevance of cranial nerves modeling of this project is two-fold: i) this atlas will fill a void left by the brain segmentation communities, as no suitable digital atlas of the brainstem exists, and ii) this atlas is necessary to make explicit the attachment points of major nerves (except I and II) having a cranial origin. Keywords: digital atlas, contour models, surface models

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baumann, Brian C.; Bosch, Walter R.; Bahl, Amit

    Purpose: To develop multi-institutional consensus clinical target volumes (CTVs) and organs at risk (OARs) for male and female bladder cancer patients undergoing adjuvant radiation therapy (RT) in clinical trials. Methods and Materials: We convened a multidisciplinary group of bladder cancer specialists from 15 centers and 5 countries. Six radiation oncologists and 7 urologists participated in the development of the initial contours. The group proposed initial language for the CTVs and OARs, and each radiation oncologist contoured them on computed tomography scans of a male and female cystectomy patient with input from ≥1 urologist. On the basis of the initial contouring, themore » group updated its CTV and OAR descriptions. The cystectomy bed, the area of greatest controversy, was contoured by another 6 radiation oncologists, and the cystectomy bed contouring language was again updated. To determine whether the revised language produced consistent contours, CTVs and OARs were redrawn by 6 additional radiation oncologists. We evaluated their contours for level of agreement using the Landis-Koch interpretation of the κ statistic. Results: The group proposed that patients at elevated risk for local-regional failure with negative margins should be treated to the pelvic nodes alone (internal/external iliac, distal common iliac, obturator, and presacral), whereas patients with positive margins should be treated to the pelvic nodes and cystectomy bed. Proposed OARs included the rectum, bowel space, bone marrow, and urinary diversion. Consensus language describing the CTVs and OARs was developed and externally validated. The revised instructions were found to produce consistent contours. Conclusions: Consensus descriptions of CTVs and OARs were successfully developed and can be used in clinical trials of adjuvant radiation therapy for bladder cancer.« less

  17. Selected hydrologic data for the upper Rio Hondo basin, Lincoln County, New Mexico, 1945-2003

    USGS Publications Warehouse

    Donohoe, Lisa C.

    2004-01-01

    Demands for ground and surface water have increased in the upper Rio Hondo Basin due to increases in development and population. Local governments are responsible for land-use and development decisions and, therefore, the governments need information about water resources in their areas. Hydrologic data were compiled for the upper Rio Hondo Basin and water-level data were collected during two synoptic measurements in March and July 2003. Water-level data from March 2003 were contoured and compared with contours constructed in 1963. The 5,600-, 5,700-, and 5,800-foot March 2003 contours indicate that water levels rose. The 5,500-foot contour for March 2003 indicates a decline in water level. The 5,400-foot contour of March 2003 and the 1963 contour mostly coincide, indicating a static water level. The 5,300- and 5,200-foot contours for March 2003 cross the 1963 contours, indicating a decline in water levels near the Rio Ruidoso but a rise in water levels near the Rio Bonito. In eight hydrographs, 2003 water levels are shown to be higher than water levels from the mid- to late 1950's in five of the eight wells. For the same period of record, water levels in the three remaining wells were lower. Rising and declining water levels were highest in the northern part of the study area; the median rise was 4.01 feet and the median decline was 3.51 feet. In the southern part of the study area, the median water-level rise was 2.21 feet and the median decline was 1.56 feet.

  18. A word by any other intonation: fMRI evidence for implicit memory traces for pitch contours of spoken words in adult brains.

    PubMed

    Inspector, Michael; Manor, David; Amir, Noam; Kushnir, Tamar; Karni, Avi

    2013-01-01

    Intonation may serve as a cue for facilitated recognition and processing of spoken words and it has been suggested that the pitch contour of spoken words is implicitly remembered. Thus, using the repetition suppression (RS) effect of BOLD-fMRI signals, we tested whether the same spoken words are differentially processed in language and auditory brain areas depending on whether or not they retain an arbitrary intonation pattern. Words were presented repeatedly in three blocks for passive and active listening tasks. There were three prosodic conditions in each of which a different set of words was used and specific task-irrelevant intonation changes were applied: (i) All words presented in a set flat monotonous pitch contour (ii) Each word had an arbitrary pitch contour that was set throughout the three repetitions. (iii) Each word had a different arbitrary pitch contour in each of its repetition. The repeated presentations of words with a set pitch contour, resulted in robust behavioral priming effects as well as in significant RS of the BOLD signals in primary auditory cortex (BA 41), temporal areas (BA 21 22) bilaterally and in Broca's area. However, changing the intonation of the same words on each successive repetition resulted in reduced behavioral priming and the abolition of RS effects. Intonation patterns are retained in memory even when the intonation is task-irrelevant. Implicit memory traces for the pitch contour of spoken words were reflected in facilitated neuronal processing in auditory and language associated areas. Thus, the results lend support for the notion that prosody and specifically pitch contour is strongly associated with the memory representation of spoken words.

  19. Consistency in seroma contouring for partial breast radiotherapy: Impact of guidelines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, Elaine K.; Truong, Pauline T.; Kader, Hosam A.

    2006-10-01

    Purpose: Inconsistencies in contouring target structures can undermine the precision of conformal radiation therapy (RT) planning and compromise the validity of clinical trial results. This study evaluated the impact of guidelines on consistency in target volume contouring for partial breast RT planning. Methods and Materials: Guidelines for target volume definition for partial breast radiation therapy (PBRT) planning were developed by members of the steering committee for a pilot trial of PBRT using conformal external beam planning. In phase 1, delineation of the breast seroma in 5 early-stage breast cancer patients was independently performed by a 'trained' cohort of four radiationmore » oncologists who were provided with these guidelines and an 'untrained' cohort of four radiation oncologists who contoured without guidelines. Using automated planning software, the seroma target volume (STV) was expanded into a clinical target volume (CTV) and planning target volume (PTV) for each oncologist. Means and standard deviations were calculated, and two-tailed t tests were used to assess differences between the 'trained' and 'untrained' cohorts. In phase 2, all eight radiation oncologists were provided with the same contouring guidelines, and were asked to delineate the seroma in five new cases. Data were again analyzed to evaluate consistency between the two cohorts. Results: The 'untrained' cohort contoured larger seroma volumes and had larger CTVs and PTVs compared with the 'trained' cohort in three of five cases. When seroma contouring was performed after review of contouring guidelines, the differences in the STVs, CTVs, and PTVs were no longer statistically significant. Conclusion: Guidelines can improve consistency among radiation oncologists performing target volume delineation for PBRT planning.« less

  20. Patient-Reported Outcomes in Weight Loss and Body Contouring Surgery: A Cross-Sectional Analysis Using the BODY-Q.

    PubMed

    Poulsen, Lotte; Klassen, Anne; Rose, Michael; Roessler, Kirsten K; Juhl, Claus Bogh; Støving, René Klinkby; Sørensen, Jens Ahm

    2017-09-01

    Health-related quality of life and satisfaction with appearance are important outcomes in bariatric and body contouring surgery. To investigate these outcomes, scientifically sound and clinically meaningful patient-reported outcome instruments are needed. The authors measured health-related quality of life and appearance in a cohort of Danish patients at different phases in the weight loss journey: before bariatric surgery, after bariatric surgery, before body contouring surgery, and after body contouring surgery. From June of 2015 to June of 2016, a cross-sectional sample of 493 bariatric and body contouring patients were recruited from four different hospital departments. Patients were asked to fill out the BODY-Q, a new patient-reported outcomes instrument designed specifically to measure health-related quality of life and appearance over the entire patient journey, from obesity to the post-body contouring surgery period. Data were collected using REDCap, and analyzed using SPSS software. For all appearance and health-related quality-of-life scales, the mean score was significantly lower in the pre-bariatric surgery group compared with the post-body contouring group. Furthermore, the correlation between body mass index and mean scores was significant for all appearance and health-related quality-of-life scales, with higher scores associated with lower body mass index. The mean score for the group reporting no excess skin compared with the group reporting a lot of excess skin was significantly higher for five of seven appearance scales and four of five health-related quality-of-life scales. This study provides evidence to suggest that body contouring plays an important role in the weight loss patient's journey and that patients need access to treatments.

  1. Evaluating the impact of an integrated multidisciplinary head & neck competency-based anatomy & radiology teaching approach in radiation oncology: a prospective cohort study

    PubMed Central

    2014-01-01

    Background Modern radiation oncology demands a thorough understanding of gross and cross-sectional anatomy for diagnostic and therapeutic applications. Complex anatomic sites present challenges for learners and are not well-addressed in traditional postgraduate curricula. A multidisciplinary team (MDT) based head-and-neck gross and radiologic anatomy program for radiation oncology trainees was developed, piloted, and empirically assessed for efficacy and learning outcomes. Methods Four site-specific MDT head-and-neck seminars were implemented, each involving a MDT delivering didactic and case-based instruction, supplemented by cadaveric presentations. There was no dedicated contouring instruction. Pre- and post-testing were performed to assess knowledge, and ability to apply knowledge to the clinical setting as defined by accuracy of contouring. Paired analyses of knowledge pretests and posttests were performed by Wilcoxon matched-pair signed-rank test. Results Fifteen post-graduate trainees participated. A statistically significant (p < 0.001) mean absolute improvement of 4.6 points (17.03%) was observed between knowledge pretest and posttest scores. Contouring accuracy was analyzed quantitatively by comparing spatial overlap of participants’ pretest and posttest contours with a gold standard through the dice similarity coefficient. A statistically significant improvement in contouring accuracy was observed for 3 out of 20 anatomical structures. Qualitative and quantitative feedback revealed that participants were more confident at contouring and were enthusiastic towards the seminars. Conclusions MDT seminars were associated with improved knowledge scores and resident satisfaction; however, increased gross and cross-sectional anatomic knowledge did not translate into improvements in contouring accuracy. Further research should evaluate the impact of hands-on contouring sessions in addition to dedicated instructional sessions to develop competencies. PMID:24969509

  2. The effort to close the gap: tracking the development of illusory contour processing from childhood to adulthood with high-density electrical mapping.

    PubMed

    Altschuler, Ted S; Molholm, Sophie; Butler, John S; Mercier, Manuel R; Brandwein, Alice B; Foxe, John J

    2014-04-15

    The adult human visual system can efficiently fill-in missing object boundaries when low-level information from the retina is incomplete, but little is known about how these processes develop across childhood. A decade of visual-evoked potential (VEP) studies has produced a theoretical model identifying distinct phases of contour completion in adults. The first, termed a perceptual phase, occurs from approximately 100-200 ms and is associated with automatic boundary completion. The second is termed a conceptual phase occurring between 230 and 400 ms. The latter has been associated with the analysis of ambiguous objects which seem to require more effort to complete. The electrophysiological markers of these phases have both been localized to the lateral occipital complex, a cluster of ventral visual stream brain regions associated with object-processing. We presented Kanizsa-type illusory contour stimuli, often used for exploring contour completion processes, to neurotypical persons ages 6-31 (N=63), while parametrically varying the spatial extent of these induced contours, in order to better understand how filling-in processes develop across childhood and adolescence. Our results suggest that, while adults complete contour boundaries in a single discrete period during the automatic perceptual phase, children display an immature response pattern-engaging in more protracted processing across both timeframes and appearing to recruit more widely distributed regions which resemble those evoked during adult processing of higher-order ambiguous figures. However, children older than 5years of age were remarkably like adults in that the effects of contour processing were invariant to manipulation of contour extent. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Small Bowel Dose Parameters Predicting Grade ≥3 Acute Toxicity in Rectal Cancer Patients Treated With Neoadjuvant Chemoradiation: An Independent Validation Study Comparing Peritoneal Space Versus Small Bowel Loop Contouring Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, Robyn, E-mail: robynbanerjee@gmail.com; Chakraborty, Santam; Nygren, Ian

    Purpose: To determine whether volumes based on contours of the peritoneal space can be used instead of individual small bowel loops to predict for grade ≥3 acute small bowel toxicity in patients with rectal cancer treated with neoadjuvant chemoradiation therapy. Methods and Materials: A standardized contouring method was developed for the peritoneal space and retrospectively applied to the radiation treatment plans of 67 patients treated with neoadjuvant chemoradiation therapy for rectal cancer. Dose-volume histogram (DVH) data were extracted and analyzed against patient toxicity. Receiver operating characteristic analysis and logistic regression were carried out for both contouring methods. Results: Grade ≥3more » small bowel toxicity occurred in 16% (11/67) of patients in the study. A highly significant dose-volume relationship between small bowel irradiation and acute small bowel toxicity was supported by the use of both small bowel loop and peritoneal space contouring techniques. Receiver operating characteristic analysis demonstrated that, for both contouring methods, the greatest sensitivity for predicting toxicity was associated with the volume receiving between 15 and 25 Gy. Conclusion: DVH analysis of peritoneal space volumes accurately predicts grade ≥3 small bowel toxicity in patients with rectal cancer receiving neoadjuvant chemoradiation therapy, suggesting that the contours of the peritoneal space provide a reasonable surrogate for the contours of individual small bowel loops. The study finds that a small bowel V15 less than 275 cc and a peritoneal space V15 less than 830 cc are associated with a less than 10% risk of grade ≥3 acute toxicity.« less

  4. Evaluating the impact of an integrated multidisciplinary head & neck competency-based anatomy & radiology teaching approach in radiation oncology: a prospective cohort study.

    PubMed

    D'Souza, Leah; Jaswal, Jasbir; Chan, Francis; Johnson, Marjorie; Tay, Keng Yeow; Fung, Kevin; Palma, David

    2014-06-26

    Modern radiation oncology demands a thorough understanding of gross and cross-sectional anatomy for diagnostic and therapeutic applications. Complex anatomic sites present challenges for learners and are not well-addressed in traditional postgraduate curricula. A multidisciplinary team (MDT) based head-and-neck gross and radiologic anatomy program for radiation oncology trainees was developed, piloted, and empirically assessed for efficacy and learning outcomes. Four site-specific MDT head-and-neck seminars were implemented, each involving a MDT delivering didactic and case-based instruction, supplemented by cadaveric presentations. There was no dedicated contouring instruction. Pre- and post-testing were performed to assess knowledge, and ability to apply knowledge to the clinical setting as defined by accuracy of contouring. Paired analyses of knowledge pretests and posttests were performed by Wilcoxon matched-pair signed-rank test. Fifteen post-graduate trainees participated. A statistically significant (p < 0.001) mean absolute improvement of 4.6 points (17.03%) was observed between knowledge pretest and posttest scores. Contouring accuracy was analyzed quantitatively by comparing spatial overlap of participants' pretest and posttest contours with a gold standard through the dice similarity coefficient. A statistically significant improvement in contouring accuracy was observed for 3 out of 20 anatomical structures. Qualitative and quantitative feedback revealed that participants were more confident at contouring and were enthusiastic towards the seminars. MDT seminars were associated with improved knowledge scores and resident satisfaction; however, increased gross and cross-sectional anatomic knowledge did not translate into improvements in contouring accuracy. Further research should evaluate the impact of hands-on contouring sessions in addition to dedicated instructional sessions to develop competencies.

  5. A Word by Any Other Intonation: FMRI Evidence for Implicit Memory Traces for Pitch Contours of Spoken Words in Adult Brains

    PubMed Central

    Inspector, Michael; Manor, David; Amir, Noam; Kushnir, Tamar; Karni, Avi

    2013-01-01

    Objectives Intonation may serve as a cue for facilitated recognition and processing of spoken words and it has been suggested that the pitch contour of spoken words is implicitly remembered. Thus, using the repetition suppression (RS) effect of BOLD-fMRI signals, we tested whether the same spoken words are differentially processed in language and auditory brain areas depending on whether or not they retain an arbitrary intonation pattern. Experimental design Words were presented repeatedly in three blocks for passive and active listening tasks. There were three prosodic conditions in each of which a different set of words was used and specific task-irrelevant intonation changes were applied: (i) All words presented in a set flat monotonous pitch contour (ii) Each word had an arbitrary pitch contour that was set throughout the three repetitions. (iii) Each word had a different arbitrary pitch contour in each of its repetition. Principal findings The repeated presentations of words with a set pitch contour, resulted in robust behavioral priming effects as well as in significant RS of the BOLD signals in primary auditory cortex (BA 41), temporal areas (BA 21 22) bilaterally and in Broca's area. However, changing the intonation of the same words on each successive repetition resulted in reduced behavioral priming and the abolition of RS effects. Conclusions Intonation patterns are retained in memory even when the intonation is task-irrelevant. Implicit memory traces for the pitch contour of spoken words were reflected in facilitated neuronal processing in auditory and language associated areas. Thus, the results lend support for the notion that prosody and specifically pitch contour is strongly associated with the memory representation of spoken words. PMID:24391713

  6. BOREAS HYD-8 DEM Data Over the NSA-MSA and SSA-MSA in the UTM Projection

    NASA Technical Reports Server (NTRS)

    Wang, Xue-Wen; Hall, Forrest G. (Editor); Knapp, David E. (Editor); Band, L. E.; Smith, David E. (Technical Monitor)

    2000-01-01

    The BOREAS HYD-8 team focused on describing the scaling behavior of water and carbon flux processes at local and regional scales. These DEMs were produced from digitized contours at a cell resolution of 100 meters. Vector contours of the area were used as input to a software package that interpolates between contours to create a DEM representing the terrain surface. The vector contours had a contour interval of 25 feet. The data cover the BOREAS MSAs of the SSA and NSA and are given in a UTM map projection. Most of the elevation data from which the DEM was produced were collected in the 1970s or 1980s. The data are stored in binary, image format files. The data files are available on a CD-ROM (see document number 20010000884) or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  7. Photomask quality evaluation using lithography simulation and precision SEM image contour data

    NASA Astrophysics Data System (ADS)

    Murakawa, Tsutomu; Fukuda, Naoki; Shida, Soichi; Iwai, Toshimichi; Matsumoto, Jun; Nakamura, Takayuki; Hagiwara, Kazuyuki; Matsushita, Shohei; Hara, Daisuke; Adamov, Anthony

    2012-11-01

    To evaluate photomask quality, the current method uses spatial imaging by optical inspection tools. This technique at 1Xnm node has a resolution limit because small defects will be difficult to extract. To simulate the mask error-enhancement factor (MEEF) influence for aggressive OPC in 1Xnm node, wide FOV contour data and tone information are derived from high precision SEM images. For this purpose we have developed a new contour data extraction algorithm with sub-nanometer accuracy resulting in a wide Field of View (FOV) SEM image: (for example, more than 10um x 10um square). We evaluated MEEF influence of high-end photomask pattern using the wide FOV contour data of "E3630 MVM-SEMTM" and lithography simulator "TrueMaskTM DS" of D2S, Inc. As a result, we can detect the "invisible defect" as the MEEF influence using the wide FOV contour data and lithography simulator.

  8. Research on feature extraction techniques of Hainan Li brocade pattern

    NASA Astrophysics Data System (ADS)

    Zhou, Yuping; Chen, Fuqiang; Zhou, Yuhua

    2016-03-01

    Hainan Li brocade skills has been listed as world non-material cultural heritage preservation, therefore, the research on Hainan Li brocade patterns plays an important role in Li brocade culture inheritance. The meaning of Li brocade patterns was analyzed and the shape feature extraction techniques to original Li brocade patterns were advanced in this paper, based on the contour tracking algorithm. First, edge detection was made on the design patterns, and then the morphological closing operation was used to smooth the image, and finally contour tracking was used to extract the outer contours of Li brocade patterns. The extracted contour features were processed by means of morphology, and digital characteristics of contours are obtained by invariant moments. At last, different patterns of Li brocade design are briefly analyzed according to the digital characteristics. The results showed that the pattern extraction method to Li brocade pattern shapes is feasible and effective according to above method.

  9. The Effect of Context Upon Elementary Children's Attention to Contour and Interior Pattern of Shapes in Color Drawings.

    ERIC Educational Resources Information Center

    Marschalek, Douglas G.

    1986-01-01

    This study investigated the ability of first-, third-, and fifth-grade students to perceive similarities and differences in contour and interior pattern of shapes in color drawings. Results showed that with increase of age, attention to contour information was significantly affected by the surrounding contextual information found in the drawings.…

  10. [The automatic iris map overlap technology in computer-aided iridiagnosis].

    PubMed

    He, Jia-feng; Ye, Hu-nian; Ye, Miao-yuan

    2002-11-01

    In the paper, iridology and computer-aided iridiagnosis technologies are briefly introduced and the extraction method of the collarette contour is then investigated. The iris map can be overlapped on the original iris image based on collarette contour extraction. The research on collarette contour extraction and iris map overlap is of great importance to computer-aided iridiagnosis technologies.

  11. On a program manifold's stability of one contour automatic control systems

    NASA Astrophysics Data System (ADS)

    Zumatov, S. S.

    2017-12-01

    Methodology of analysis of stability is expounded to the one contour systems automatic control feedback in the presence of non-linearities. The methodology is based on the use of the simplest mathematical models of the nonlinear controllable systems. Stability of program manifolds of one contour automatic control systems is investigated. The sufficient conditions of program manifold's absolute stability of one contour automatic control systems are obtained. The Hurwitz's angle of absolute stability was determined. The sufficient conditions of program manifold's absolute stability of control systems by the course of plane in the mode of autopilot are obtained by means Lyapunov's second method.

  12. A Method for Producing a Shaped Contour Radiation Pattern Using a Single Shaped Reflector and a Single Feed

    NASA Technical Reports Server (NTRS)

    Cherrette, A. R.; Lee, S. W.; Acosta, R. J.

    1988-01-01

    Eliminating the corporate feed network in shaped contour beam antennas will reduce the expense, weight, and RF loss of the antenna system. One way of producing a shaped contour beam without using a feed network is to use a single shaped reflector with a single feed element. For a prescribed contour beam and feed, an optimization method for designing the reflector shape is given. As a design example, a shaped reflector is designed to produce a continental U.S. coverage (CONUS) beam. The RF performance of the shaped reflector is then verified by physical optics.

  13. Perception of English intonation by English, Spanish, and Chinese listeners.

    PubMed

    Grabe, Esther; Rosner, Burton S; García-Albea, José E; Zhou, Xiaolin

    2003-01-01

    Native language affects the perception of segmental phonetic structure, of stress, and of semantic and pragmatic effects of intonation. Similarly, native language might influence the perception of similarities and differences among intonation contours. To test this hypothesis, a cross-language experiment was conducted. An English utterance was resynthesized with seven falling and four rising intonation contours. English, Iberian Spanish, and Chinese listeners then rated each pair of nonidentical stimuli for degree of difference. Multidimensional scaling of the results supported the hypothesis. The three groups of listeners produced statistically different perceptual configurations for the falling contours. All groups, however, perceptually separated the falling from the rising contours. This result suggested that the perception of intonation begins with the activation of universal auditory mechanisms that process the direction of relatively slow frequency modulations. A second experiment therefore employed frequency-modulated sine waves that duplicated the fundamental frequency contours of the speech stimuli. New groups of English, Spanish, and Chinese subjects yielded no cross-language differences between the perceptual configurations for these nonspeech stimuli. The perception of similarities and differences among intonation contours calls upon universal auditory mechanisms whose output is molded by experience with one's native language.

  14. DEM generation from contours and a low-resolution DEM

    NASA Astrophysics Data System (ADS)

    Li, Xinghua; Shen, Huanfeng; Feng, Ruitao; Li, Jie; Zhang, Liangpei

    2017-12-01

    A digital elevation model (DEM) is a virtual representation of topography, where the terrain is established by the three-dimensional co-ordinates. In the framework of sparse representation, this paper investigates DEM generation from contours. Since contours are usually sparsely distributed and closely related in space, sparse spatial regularization (SSR) is enforced on them. In order to make up for the lack of spatial information, another lower spatial resolution DEM from the same geographical area is introduced. In this way, the sparse representation implements the spatial constraints in the contours and extracts the complementary information from the auxiliary DEM. Furthermore, the proposed method integrates the advantage of the unbiased estimation of kriging. For brevity, the proposed method is called the kriging and sparse spatial regularization (KSSR) method. The performance of the proposed KSSR method is demonstrated by experiments in Shuttle Radar Topography Mission (SRTM) 30 m DEM and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) 30 m global digital elevation model (GDEM) generation from the corresponding contours and a 90 m DEM. The experiments confirm that the proposed KSSR method outperforms the traditional kriging and SSR methods, and it can be successfully used for DEM generation from contours.

  15. Asking or Telling--Real-time Processing of Prosodically Distinguished Questions and Statements.

    PubMed

    Heeren, Willemijn F L; Bibyk, Sarah A; Gunlogson, Christine; Tanenhaus, Michael K

    2015-12-01

    We introduce a targeted language game approach using the visual world, eye-movement paradigm to assess when and how certain intonational contours affect the interpretation of utterances. We created a computer-based card game in which elliptical utterances such as "Got a candy" occurred with a nuclear contour most consistent with a yes-no question (H* H-H%) or a statement (L* L-L%). In Experiment I we explored how such contours are integrated online. In Experiment 2 we studied the expectations listeners have for how intonational contours signal intentions: do these reflect linguistic categories or rapid adaptation to the paradigm? Prosody had an immediate effect on interpretation, as indexed by the pattern and timing of fixations. Moreover, the association between different contours and intentions was quite robust in the absence of clear syntactic cues to sentence type, and was not due to rapid adaptation. Prosody had immediate effects on interpretation even though there was a construction-based bias to interpret "got a" as a question. Taken together, we believe this paradigm will provide further insights into how intonational contours and their phonetic realization interact with other cues to sentence type in online comprehension.

  16. Parallel peak pruning for scalable SMP contour tree computation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carr, Hamish A.; Weber, Gunther H.; Sewell, Christopher M.

    As data sets grow to exascale, automated data analysis and visualisation are increasingly important, to intermediate human understanding and to reduce demands on disk storage via in situ analysis. Trends in architecture of high performance computing systems necessitate analysis algorithms to make effective use of combinations of massively multicore and distributed systems. One of the principal analytic tools is the contour tree, which analyses relationships between contours to identify features of more than local importance. Unfortunately, the predominant algorithms for computing the contour tree are explicitly serial, and founded on serial metaphors, which has limited the scalability of this formmore » of analysis. While there is some work on distributed contour tree computation, and separately on hybrid GPU-CPU computation, there is no efficient algorithm with strong formal guarantees on performance allied with fast practical performance. Here in this paper, we report the first shared SMP algorithm for fully parallel contour tree computation, withfor-mal guarantees of O(lgnlgt) parallel steps and O(n lgn) work, and implementations with up to 10x parallel speed up in OpenMP and up to 50x speed up in NVIDIA Thrust.« less

  17. Prostate contouring in MRI guided biopsy.

    PubMed

    Vikal, Siddharth; Haker, Steven; Tempany, Clare; Fichtinger, Gabor

    2009-03-27

    With MRI possibly becoming a modality of choice for detection and staging of prostate cancer, fast and accurate outlining of the prostate is required in the volume of clinical interest. We present a semi-automatic algorithm that uses a priori knowledge of prostate shape to arrive at the final prostate contour. The contour of one slice is then used as initial estimate in the neighboring slices. Thus we propagate the contour in 3D through steps of refinement in each slice. The algorithm makes only minimum assumptions about the prostate shape. A statistical shape model of prostate contour in polar transform space is employed to narrow search space. Further, shape guidance is implicitly imposed by allowing only plausible edge orientations using template matching. The algorithm does not require region-homogeneity, discriminative edge force, or any particular edge profile. Likewise, it makes no assumption on the imaging coils and pulse sequences used and it is robust to the patient's pose (supine, prone, etc.). The contour method was validated using expert segmentation on clinical MRI data. We recorded a mean absolute distance of 2.0 ± 0.6 mm and dice similarity coefficient of 0.93 ± 0.3 in midsection. The algorithm takes about 1 second per slice.

  18. Prostate contouring in MRI guided biopsy

    PubMed Central

    Vikal, Siddharth; Haker, Steven; Tempany, Clare; Fichtinger, Gabor

    2010-01-01

    With MRI possibly becoming a modality of choice for detection and staging of prostate cancer, fast and accurate outlining of the prostate is required in the volume of clinical interest. We present a semi-automatic algorithm that uses a priori knowledge of prostate shape to arrive at the final prostate contour. The contour of one slice is then used as initial estimate in the neighboring slices. Thus we propagate the contour in 3D through steps of refinement in each slice. The algorithm makes only minimum assumptions about the prostate shape. A statistical shape model of prostate contour in polar transform space is employed to narrow search space. Further, shape guidance is implicitly imposed by allowing only plausible edge orientations using template matching. The algorithm does not require region-homogeneity, discriminative edge force, or any particular edge profile. Likewise, it makes no assumption on the imaging coils and pulse sequences used and it is robust to the patient's pose (supine, prone, etc.). The contour method was validated using expert segmentation on clinical MRI data. We recorded a mean absolute distance of 2.0 ± 0.6 mm and dice similarity coefficient of 0.93 ± 0.3 in midsection. The algorithm takes about 1 second per slice. PMID:21132083

  19. Hemispheric lateralization for early auditory processing of lexical tones: dependence on pitch level and pitch contour.

    PubMed

    Wang, Xiao-Dong; Wang, Ming; Chen, Lin

    2013-09-01

    In Mandarin Chinese, a tonal language, pitch level and pitch contour are two dimensions of lexical tones according to their acoustic features (i.e., pitch patterns). A change in pitch level features a step change whereas that in pitch contour features a continuous variation in voice pitch. Currently, relatively little is known about the hemispheric lateralization for the processing of each dimension. To address this issue, we made whole-head electrical recordings of mismatch negativity in native Chinese speakers in response to the contrast of Chinese lexical tones in each dimension. We found that pre-attentive auditory processing of pitch level was obviously lateralized to the right hemisphere whereas there is a tendency for that of pitch contour to be lateralized to the left. We also found that the brain responded faster to pitch level than to pitch contour at a pre-attentive stage. These results indicate that the hemispheric lateralization for early auditory processing of lexical tones depends on the pitch level and pitch contour, and suggest an underlying inter-hemispheric interactive mechanism for the processing. © 2013 Elsevier Ltd. All rights reserved.

  20. Strain-Induced Anisotropic Fermi Contour of 2D Holes and Composite Fermions

    NASA Astrophysics Data System (ADS)

    Jo, Insun; Rosales, K. A. V.; Mueed, M. A.; Padmanabhan, M.; Pfeiffer, L. N.; West, K. W.; Baldwin, K. W.; Winkler, R.; Shayegan, M.

    We present experimental and theoretical results demonstrating strain-induced Fermi contour anisotropy of two-dimensional (2D) holes and composite fermions (CFs) confined to a (001) GaAs quantum well. We apply a tunable uniaxial strain to a thinned (001) GaAs wafer, glued to a piezoelectric actuator. When the 2D holes are subjected to an in-plane uniaxial strain, their band structure and Fermi contour become anisotropic by about 30% even for a minute amount of strain, on the order of 10-4. Via measurements of commensurability oscillations, we determine the Fermi contour anisotropy for holes near zero magnetic field, and for CFs at high magnetic fields, as a function of uniaxial strain. The measured Fermi contour anisotropy of holes is consistent with the calculation results. The observed CF Fermi contour anisotropy also shows a strong dependence on the applied strain, which we compare quantitatively to that of the low-field holes. Supported by the NSF(Grants DMR-1305691, ECCS-1508925, and MRSEC DMR-1420541), the DOE Basic Energy Sciences (DE-FG02-00-ER45841), the Gordon and Betty Moore Foundation (GBMF4420), and the Keck Foundation. R. W. is supported by the NSF (DMR-1310199).

Top