Science.gov

Sample records for dynamic contrast-enhanced mri

  1. Fundamentals of tracer kinetics for dynamic contrast-enhanced MRI.

    PubMed

    Koh, Tong San; Bisdas, Sotirios; Koh, Dow Mu; Thng, Choon Hua

    2011-12-01

    Tracer kinetic methods employed for quantitative analysis of dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) share common roots with earlier tracer studies involving arterial-venous sampling and other dynamic imaging modalities. This article reviews the essential foundation concepts and principles in tracer kinetics that are relevant to DCE MRI, including the notions of impulse response and convolution, which are central to the analysis of DCE MRI data. We further examine the formulation and solutions of various compartmental models frequently used in the literature. Topics of recent interest in the processing of DCE MRI data, such as the account of water exchange and the use of reference tissue methods to obviate the measurement of an arterial input, are also discussed. Although the primary focus of this review is on the tracer models and methods for T(1) -weighted DCE MRI, some of these concepts and methods are also applicable for analysis of dynamic susceptibility contrast-enhanced MRI data.

  2. Detection of suspicious lesions in dynamic contrast enhanced MRI data.

    PubMed

    Twellmann, T; Saalbach, A; Müller, C; Nattkemper, T W; Wismüller, A

    2004-01-01

    Dynamic contrast-enhanced magnet resonance imaging (DCE-MRI) has become an important source of information to aid breast cancer diagnosis. Nevertheless, next to the temporal sequence of 3D volume data from the DCE-MRI technique, the radiologist commonly adducts information from other modalities for his final diagnosis. Thus, the diagnosis process is time consuming and tools are required to support the human expert. We investigate an automatic approach that detects the location and delineates the extent of suspicious masses in multi-temporal DCE-MRI data sets. It applies the state-of-the-art support vector machine algorithm to the classification of the short-time series associated with each voxel. The ROC analysis shows an increased specificity in contrast to standard evaluations techniques.

  3. Medial tibial pain: a dynamic contrast-enhanced MRI study.

    PubMed

    Mattila, K T; Komu, M E; Dahlström, S; Koskinen, S K; Heikkilä, J

    1999-09-01

    The purpose of this study was to compare the sensitivity of different magnetic resonance imaging (MRI) sequences to depict periosteal edema in patients with medial tibial pain. Additionally, we evaluated the ability of dynamic contrast-enhanced imaging (DCES) to depict possible temporal alterations in muscular perfusion within compartments of the leg. Fifteen patients with medial tibial pain were examined with MRI. T1-, T2-weighted, proton density axial images and dynamic and static phase post-contrast images were compared in ability to depict periosteal edema. STIR was used in seven cases to depict bone marrow edema. Images were analyzed to detect signs of compartment edema. Region-of-interest measurements in compartments were performed during DCES and compared with controls. In detecting periosteal edema, post-contrast T1-weighted images were better than spin echo T2-weighted and proton density images or STIR images, but STIR depicted the bone marrow edema best. DCES best demonstrated the gradually enhancing periostitis. Four subjects with severe periosteal edema had visually detectable pathologic enhancement during DCES in the deep posterior compartment of the leg. Percentage enhancement in the deep posterior compartment of the leg was greater in patients than in controls. The fast enhancement phase in the deep posterior compartment began slightly slower in patients than in controls, but it continued longer. We believe that periosteal edema in bone stress reaction can cause impairment of venous flow in the deep posterior compartment. MRI can depict both these conditions. In patients with medial tibial pain, MR imaging protocol should include axial STIR images (to depict bone pathology) with T1-weighted axial pre and post-contrast images, and dynamic contrast enhanced imaging to show periosteal edema and abnormal contrast enhancement within a compartment.

  4. Dynamic contrast-enhanced MRI evaluation of cerebral cavernous malformations.

    PubMed

    Hart, Blaine L; Taheri, Saeid; Rosenberg, Gary A; Morrison, Leslie A

    2013-10-01

    The aim of this study is to quantitatively evaluate the behavior of CNS cavernous malformations (CCMs) using a dynamic contrast-enhanced MRI (DCEMRI) technique sensitive for slow transfer rates of gadolinium. The prospective study was approved by the institutional review board and was HIPPA compliant. Written informed consent was obtained from 14 subjects with familial CCMs (4 men and 10 women, ages 22-76 years, mean 48.1 years). Following routine anatomic MRI of the brain, DCEMRI was performed for six slices, using T1 mapping with partial inversion recovery (TAPIR) to calculate T1 values, following administration of 0.025 mmol/kg gadolinium DTPA. The transfer rate (Ki) was calculated using the Patlak model, and Ki within CCMs was compared to normal-appearing white matter as well as to 17 normal control subjects previously studied. All subjects had typical MRI appearance of CCMs. Thirty-nine CCMs were studied using DCEMRI. Ki was low or normal in 12 lesions and elevated from 1.4 to 12 times higher than background in the remaining 27 lesions. Ki ranged from 2.1E-6 to 9.63E-4 min(-1), mean 3.55E-4. Normal-appearing white matter in the CCM patients had a mean Ki of 1.57E-4, not statistically different from mean WM Ki of 1.47E-4 in controls. TAPIR-based DCEMRI technique permits quantifiable assessment of CCMs in vivo and reveals considerable differences not seen with conventional MRI. Potential applications include correlation with biologic behavior such as lesion growth or hemorrage, and measurement of drug effects.

  5. Comparison of the Specificity of MREIT and Dynamic Contrast-Enhanced MRI in Breast Cancer

    DTIC Science & Technology

    2007-05-01

    Method; EIS, Electrical Impedance Scanning; OPAMP, Operational Amplifier; SVD, Singular Value Decomposition; NEX, Number of Excitations ; CE- MRI ... simulate a low conductivity region (Fig. 1). The plane of the disk was placed perpendicular to the main static MRI field. Four copper electrodes each...and Dynamic Contrast-Enhanced MRI in Breast Cancer PRINCIPAL INVESTIGATOR: Ozlem Birgul, Ph.D. CONTRACTING ORGANIZATION

  6. Dynamic Contrast-Enhanced MRI of Cervical Cancers: Temporal Percentile Screening of Contrast Enhancement Identifies Parameters for Prediction of Chemoradioresistance

    SciTech Connect

    Andersen, Erlend K.F.; Hole, Knut Hakon; Lund, Kjersti V.; Sundfor, Kolbein; Kristensen, Gunnar B.; Lyng, Heidi; Malinen, Eirik

    2012-03-01

    Purpose: To systematically screen the tumor contrast enhancement of locally advanced cervical cancers to assess the prognostic value of two descriptive parameters derived from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Methods and Materials: This study included a prospectively collected cohort of 81 patients who underwent DCE-MRI with gadopentetate dimeglumine before chemoradiotherapy. The following descriptive DCE-MRI parameters were extracted voxel by voxel and presented as histograms for each time point in the dynamic series: normalized relative signal increase (nRSI) and normalized area under the curve (nAUC). The first to 100th percentiles of the histograms were included in a log-rank survival test, resulting in p value and relative risk maps of all percentile-time intervals for each DCE-MRI parameter. The maps were used to evaluate the robustness of the individual percentile-time pairs and to construct prognostic parameters. Clinical endpoints were locoregional control and progression-free survival. The study was approved by the institutional ethics committee. Results: The p value maps of nRSI and nAUC showed a large continuous region of percentile-time pairs that were significantly associated with locoregional control (p < 0.05). These parameters had prognostic impact independent of tumor stage, volume, and lymph node status on multivariate analysis. Only a small percentile-time interval of nRSI was associated with progression-free survival. Conclusions: The percentile-time screening identified DCE-MRI parameters that predict long-term locoregional control after chemoradiotherapy of cervical cancer.

  7. An improved coverage and spatial resolution--using dual injection dynamic contrast-enhanced (ICE-DICE) MRI: a novel dynamic contrast-enhanced technique for cerebral tumors.

    PubMed

    Li, Ka-Loh; Buonaccorsi, Giovanni; Thompson, Gerard; Cain, John R; Watkins, Amy; Russell, David; Qureshi, Salman; Evans, D Gareth; Lloyd, Simon K; Zhu, Xiaoping; Jackson, Alan

    2012-08-01

    A new dual temporal resolution-based, high spatial resolution, pharmacokinetic parametric mapping method is described--improved coverage and spatial resolution using dual injection dynamic contrast-enhanced (ICE-DICE) MRI. In a dual-bolus dynamic contrast-enhanced-MRI acquisition protocol, a high temporal resolution prebolus is followed by a high spatial resolution main bolus to allow high spatial resolution parametric mapping for cerebral tumors. The measured plasma concentration curves from the dual-bolus data were used to reconstruct a high temporal resolution arterial input function. The new method reduces errors resulting from uncertainty in the temporal alignment of the arterial input function, tissue response function, and sampling grid. The technique provides high spatial resolution 3D pharmacokinetic maps (voxel size 1.0 × 1.0 × 2.0 mm(3)) with whole brain coverage and greater parameter accuracy than that was possible with the conventional single temporal resolution methods. High spatial resolution imaging of brain lesions is highly desirable for small lesions and to support investigation of heterogeneity within pathological tissue and peripheral invasion at the interface between diseased and normal brain. The new method has the potential to be used to improve dynamic contrast-enhanced-MRI techniques in general.

  8. Can Dynamic Contrast-Enhanced MRI (DCE-MRI) and Diffusion-Weighted MRI (DW-MRI) Evaluate Inflammation Disease

    PubMed Central

    Zhu, Jianguo; Zhang, Faming; Luan, Yun; Cao, Peng; Liu, Fei; He, Wenwen; Wang, Dehang

    2016-01-01

    Abstract The aim of the study was to investigate diagnosis efficacy of dynamic contrast-enhanced MRI (DCE-MRI) and diffusion-weighted MRI (DW-MRI) in Crohn's disease (CD). To find out the correlations between functional MRI parameters including Ktrans, Kep, Ve, Vp, and apparent diffusion coefficient (ADC) with a serologic biomarker. The relationships between pharmacokinetic parameters and ADC were also studied. Thirty-two patients with CD (22 men, 10 women; mean age: 30.5 years) and 18 healthy volunteers without any inflammatory disease (10 men, 8 women; mean age, 34.11 years) were enrolled into this approved prospective study. Pearson analysis was used to evaluate the correlation between Ktrans, Kep, Ve, Vp, and C-reactive protein (CRP), ADC, and CRP respectively. The diagnostic efficacy of the functional MRI parameters in terms of sensitivity and specificity were analyzed by receiver operating characteristic (ROC) curve analyses. Optimal cut-off values of each functional MRI parameters for differentiation of inflammatory from normal bowel were determined according to the Youden criterion. Mean value of Ktrans in the CD group was significantly higher than that of normal control group. Similar results were observed for Kep and Ve. On the contrary, the ADC value was lower in the CD group than that in the control group. Ktrans and Ve were shown to be correlated with CRP (r = 0.725, P < 0.001; r = 0.533, P = 0.002), meanwhile ADC showed negative correlation with CRP (r = −0.630, P < 0.001). There were negative correlations between the pharmacokinetic parameters and ADC, such as Ktrans to ADC (r = −0.856, P < 0.001), and Ve to ADC (r = −0.451, P = 0.01). The area under the curve (AUC) was 0.994 for Ktrans (P < 0.001), 0.905 for ADC (P < 0.001), 0.806 for Ve (P < 0.001), and 0.764 for Kep (P = 0.002). The cut-off point of the Ktrans was found to be 0.931 min–1. This value provided the best trade-off between

  9. Comparison of the Specificity of MR-EIT and Dynamic Contrast-Enhanced MRI in Breast Cancer

    DTIC Science & Technology

    2006-05-01

    used in classification. Current conductivity imaging techniques can only provide low-resolution images and fail in extreme cases. Magnetic resonance ...procedures for dynamic contrast enhanced-magnetic resonance imaging (DCE-MRI) that will be used in the comparative studies in the last year of the...tomography (EIT), dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), breast cancer 16. SECURITY CLASSIFICATION OF: 17. LIMITATION

  10. Dynamic fractal signature dissimilarity analysis for therapeutic response assessment using dynamic contrast-enhanced MRI

    PubMed Central

    Wang, Chunhao; Subashi, Ergys; Yin, Fang-Fang; Chang, Zheng

    2016-01-01

    Purpose: To develop a dynamic fractal signature dissimilarity (FSD) method as a novel image texture analysis technique for the quantification of tumor heterogeneity information for better therapeutic response assessment with dynamic contrast-enhanced (DCE)-MRI. Methods: A small animal antiangiogenesis drug treatment experiment was used to demonstrate the proposed method. Sixteen LS-174T implanted mice were randomly assigned into treatment and control groups (n = 8/group). All mice received bevacizumab (treatment) or saline (control) three times in two weeks, and one pretreatment and two post-treatment DCE-MRI scans were performed. In the proposed dynamic FSD method, a dynamic FSD curve was generated to characterize the heterogeneity evolution during the contrast agent uptake, and the area under FSD curve (AUCFSD) and the maximum enhancement (MEFSD) were selected as representative parameters. As for comparison, the pharmacokinetic parameter Ktrans map and area under MR intensity enhancement curve AUCMR map were calculated. Besides the tumor’s mean value and coefficient of variation, the kurtosis, skewness, and classic Rényi dimensions d1 and d2 of Ktrans and AUCMR maps were evaluated for heterogeneity assessment for comparison. For post-treatment scans, the Mann–Whitney U-test was used to assess the differences of the investigated parameters between treatment/control groups. The support vector machine (SVM) was applied to classify treatment/control groups using the investigated parameters at each post-treatment scan day. Results: The tumor mean Ktrans and its heterogeneity measurements d1 and d2 values showed significant differences between treatment/control groups in the second post-treatment scan. In contrast, the relative values (in reference to the pretreatment value) of AUCFSD and MEFSD in both post-treatment scans showed significant differences between treatment/control groups. When using AUCFSD and MEFSD as SVM input for treatment/control classification

  11. Coregistration of dynamic contrast enhanced MRI and broadband diffuse optical spectroscopy for characterizing breast cancer.

    PubMed

    Hsiang, David; Shah, Natasha; Yu, Hon; Su, Min-Ying; Cerussi, Albert; Butler, John; Baick, Choong; Mehta, Rita; Nalcioglu, Orhan; Tromberg, Bruce

    2005-10-01

    A hand-held scanning probe based on broadband Diffuse Optical Spectroscopy (DOS) was used in combination with dynamic contrast enhanced MRI (DCE-MRI) to quantitatively characterize locally-advanced breast cancers in six patients. Measurements were performed sequentially using external fiducial markers for co-registration. Tumor patterns were categorized according to MRI morphological data, and 3D DCE-MRI slices were converted into a volumetric matrix with isotropic voxels to generate views that coincided with the DOS scanning plane. Tumor volume and depth at each DOS measurement site were determined, and a tissue optical index (TOI) that reflects both angiogenic and stromal characteristics was derived from broadband DOS data. In all six cases, optical scans showed significant TOI contrast corresponding to MRI morphological information. Sharp TOI peaks were recovered for well-circumscribed masses. A reduction in TOI was found inside a tumor with a necrotic center. A broadened peak was observed for a diffuse tumor pattern, and an inflammatory septal case provided two TOI peaks that correlated qualitatively with MRI enhancement. These results provide qualitative confirmation of the common signal origin and complementary information content that can be achieved by combining optical and MR imaging for breast cancer detection and clinical management.

  12. Combined Dynamic Contrast Enhanced Liver MRI and MRA Using Interleaved Variable Density Sampling

    PubMed Central

    Rahimi, Mahdi Salmani; Korosec, Frank R.; Wang, Kang; Holmes, James H.; Motosugi, Utaroh; Bannas, Peter; Reeder, Scott B.

    2014-01-01

    Purpose To develop and evaluate a method for volumetric contrast-enhanced MR imaging of the liver, with high spatial and temporal resolutions, for combined dynamic imaging and MR angiography using a single injection of contrast. Methods An interleaved variable density (IVD) undersampling pattern was implemented in combination with a real-time-triggered, time-resolved, dual-echo 3D spoiled gradient echo sequence. Parallel imaging autocalibration lines were acquired only once during the first time-frame. Imaging was performed in ten subjects with focal nodular hyperplasia (FNH) and compared with their clinical MRI. The angiographic phase of the proposed method was compared to a dedicated MR angiogram acquired during a second injection of contrast. Results A total of 21 FNH, 3 cavernous hemangiomas, and 109 arterial segments were visualized in 10 subjects. The temporally-resolved images depicted the characteristic arterial enhancement pattern of the lesions with a 4 s update rate. Images were graded as having significantly higher quality compared to the clinical MRI. Angiograms produced from the IVD method provided non-inferior diagnostic assessment compared to the dedicated MRA. Conclusion Using an undersampled IVD imaging method, we have demonstrated the feasibility of obtaining high spatial and temporal resolution dynamic contrast-enhanced imaging and simultaneous MRA of the liver. PMID:24639130

  13. Uncertainty in the analysis of tracer kinetics using dynamic contrast-enhanced T1-weighted MRI.

    PubMed

    Buckley, David L

    2002-03-01

    In recent years a number of physiological models have gained prominence in the analysis of dynamic contrast-enhanced T1-weighted MRI data. However, there remains little evidence to support their use in estimating the absolute values of tissue physiological parameters such as perfusion, capillary permeability, and blood volume. In an attempt to address this issue, data were simulated using a distributed pathway model of tracer kinetics, and three published models were fitted to the resultant concentration-time curves. Parameter estimates obtained from these fits were compared with the parameters used for the simulations. The results indicate that the use of commonly accepted models leads to systematic overestimation of the transfer constant, Ktrans, and potentially large underestimates of the blood plasma volume fraction, Vp. In summary, proposals for a practical approach to physiological modeling using MRI data are outlined.

  14. Dynamic contrast-enhanced MRI in clinical trials of antivascular therapies.

    PubMed

    O'Connor, James P B; Jackson, Alan; Parker, Geoff J M; Roberts, Caleb; Jayson, Gordon C

    2012-02-14

    About 100 early-phase clinical trials and investigator-led studies of targeted antivascular therapies--both anti-angiogenic and vascular-targeting agents--have reported data derived from T1-weighted dynamic contrast-enhanced (DCE)-MRI. However, the role of DCE-MRI for decision making during the drug-development process remains controversial. Despite well-documented guidelines on image acquisition and analysis, several key questions concerning the role of this technique in early-phase trial design remain unanswered. This Review describes studies of single-agent antivascular therapies, in which DCE-MRI parameters are incorporated as pharmacodynamic biomarkers. We discuss whether these parameters, such as volume transfer constant (K(trans)), are reproducible and reliable biomarkers of both drug efficacy and proof of concept, and whether they assist in dose selection and drug scheduling for subsequent phase II trials. Emerging evidence indicates that multiparametric analysis of DCE-MRI data offers greater insight into the mechanism of drug action than studies measuring a single parameter, such as K(trans). We also provide an overview of current data and appraise the future directions of this technique in oncology trials. Finally, major hurdles in imaging biomarker development, validation and qualification that hinder a wide application of DCE-MRI techniques in clinical trials are addressed.

  15. Dynamic Contrast-Enhanced MRI Perfusion Parameters as Imaging Biomarkers of Angiogenesis

    PubMed Central

    2016-01-01

    Hypoxia in the tumor microenvironment is the leading factor in angiogenesis. Angiogenesis can be identified by dynamic contrast-enhanced breast MRI (DCE MRI). Here we investigate the relationship between perfusion parameters on DCE MRI and angiogenic and prognostic factors in patients with invasive ductal carcinoma (IDC). Perfusion parameters (Ktrans, kep and ve) of 81 IDC were obtained using histogram analysis. Twenty-fifth, 50th and 75th percentile values were calculated and were analyzed for association with microvessel density (MVD), vascular endothelial growth factor (VEGF) and conventional prognostic factors. Correlation between MVD and ve50 was positive (r = 0.33). Ktrans50 was higher in tumors larger than 2 cm than in tumors smaller than 2 cm. In multivariate analysis, Ktrans50 was affected by tumor size and MVD with 12.8% explanation. There was significant association between Ktrans50 and tumor size and MVD. Therefore we conclude that DCE MRI perfusion parameters are potential imaging biomarkers for prediction of tumor angiogenesis and aggressiveness. PMID:28036342

  16. Assessment of blood–brain barrier disruption using dynamic contrast-enhanced MRI. A systematic review

    PubMed Central

    Heye, Anna K.; Culling, Ross D.; Valdés Hernández, Maria del C.; Thrippleton, Michael J.; Wardlaw, Joanna M.

    2014-01-01

    There is increasing recognition of the importance of blood–brain barrier (BBB) disruption in aging, dementia, stroke and multiple sclerosis in addition to more commonly-studied pathologies such as tumors. Dynamic contrast-enhanced MRI (DCE-MRI) is a method for studying BBB disruption in vivo. We review pathologies studied, scanning protocols and data analysis procedures to determine the range of available methods and their suitability to different pathologies. We systematically review the existing literature up to February 2014, seeking studies that assessed BBB integrity using T1-weighted DCE-MRI techniques in animals and humans in normal or abnormal brain tissues. The literature search provided 70 studies that were eligible for inclusion, involving 417 animals and 1564 human subjects in total. The pathologies most studied are intracranial neoplasms and acute ischemic strokes. There are large variations in the type of DCE-MRI sequence, the imaging protocols and the contrast agents used. Moreover, studies use a variety of different methods for data analysis, mainly based on model-free measurements and on the Patlak and Tofts models. Consequently, estimated KTrans values varied widely. In conclusion, DCE-MRI is shown to provide valuable information in a large variety of applications, ranging from common applications, such as grading of primary brain tumors, to more recent applications, such as assessment of subtle BBB dysfunction in Alzheimer's disease. Further research is required in order to establish consensus-based recommendations for data acquisition and analysis and, hence, improve inter-study comparability and promote wider use of DCE-MRI. PMID:25379439

  17. Semi-quantitative assessment of pulmonary perfusion in children using dynamic contrast-enhanced MRI

    NASA Astrophysics Data System (ADS)

    Fetita, Catalin; Thong, William E.; Ou, Phalla

    2013-03-01

    This paper addresses the study of semi-quantitative assessment of pulmonary perfusion acquired from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in a study population mainly composed of children with pulmonary malformations. The automatic analysis approach proposed is based on the indicator-dilution theory introduced in 1954. First, a robust method is developed to segment the pulmonary artery and the lungs from anatomical MRI data, exploiting 2D and 3D mathematical morphology operators. Second, the time-dependent contrast signal of the lung regions is deconvolved by the arterial input function for the assessment of the local hemodynamic system parameters, ie. mean transit time, pulmonary blood volume and pulmonary blood flow. The discrete deconvolution method implements here a truncated singular value decomposition (tSVD) method. Parametric images for the entire lungs are generated as additional elements for diagnosis and quantitative follow-up. The preliminary results attest the feasibility of perfusion quantification in pulmonary DCE-MRI and open an interesting alternative to scintigraphy for this type of evaluation, to be considered at least as a preliminary decision in the diagnostic due to the large availability of the technique and to the non-invasive aspects.

  18. DCE@urLAB: a dynamic contrast-enhanced MRI pharmacokinetic analysis tool for preclinical data

    PubMed Central

    2013-01-01

    Background DCE@urLAB is a software application for analysis of dynamic contrast-enhanced magnetic resonance imaging data (DCE-MRI). The tool incorporates a friendly graphical user interface (GUI) to interactively select and analyze a region of interest (ROI) within the image set, taking into account the tissue concentration of the contrast agent (CA) and its effect on pixel intensity. Results Pixel-wise model-based quantitative parameters are estimated by fitting DCE-MRI data to several pharmacokinetic models using the Levenberg-Marquardt algorithm (LMA). DCE@urLAB also includes the semi-quantitative parametric and heuristic analysis approaches commonly used in practice. This software application has been programmed in the Interactive Data Language (IDL) and tested both with publicly available simulated data and preclinical studies from tumor-bearing mouse brains. Conclusions A user-friendly solution for applying pharmacokinetic and non-quantitative analysis DCE-MRI in preclinical studies has been implemented and tested. The proposed tool has been specially designed for easy selection of multi-pixel ROIs. A public release of DCE@urLAB, together with the open source code and sample datasets, is available at http://www.die.upm.es/im/archives/DCEurLAB/. PMID:24180558

  19. Using Dynamic Contrast Enhanced MRI to Quantitatively Characterize Maternal Vascular Organization in the Primate Placenta

    PubMed Central

    Frias, A.E.; Schabel, M.C.; Roberts, V.H.J.; Tudorica, A.; Grigsby, P.L.; Oh, K.Y.; Kroenke, C. D.

    2015-01-01

    Purpose The maternal microvasculature of the primate placenta is organized into 10-20 perfusion domains that are functionally optimized to facilitate nutrient exchange to support fetal growth. This study describes a dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) method for identifying vascular domains, and quantifying maternal blood flow in them. Methods A rhesus macaque on the 133rd day of pregnancy (G133, term=165 days) underwent Doppler ultrasound (US) procedures, DCE-MRI, and Cesarean-section delivery. Serial T1-weighted images acquired throughout intravenous injection of a contrast reagent (CR) bolus were analyzed to obtain CR arrival time maps of the placenta. Results Watershed segmentation of the arrival time map identified 16 perfusion domains. The number and location of these domains corresponded to anatomical cotyledonary units observed following delivery. Analysis of the CR wave front through each perfusion domain enabled determination of volumetric flow, which ranged from 9.03 to 44.9 mL/sec (25.2 ± 10.3 mL/sec). These estimates are supported by Doppler US results. Conclusions The DCE-MRI analysis described here provides quantitative estimates of the number of maternal perfusion domains in a primate placenta, and estimates flow within each domain. Anticipated extensions of this technique are to the study placental function in nonhuman primate models of obstetric complications. PMID:24753177

  20. Dynamic contrast-enhanced MRI perfusion for differentiating between melanoma and lung cancer brain metastases.

    PubMed

    Hatzoglou, Vaios; Tisnado, Jamie; Mehta, Alpesh; Peck, Kyung K; Daras, Mariza; Omuro, Antonio M; Beal, Kathryn; Holodny, Andrei I

    2017-04-01

    Brain metastases originating from different primary sites overlap in appearance and are difficult to differentiate with conventional MRI. Dynamic contrast-enhanced (DCE)-MRI can assess tumor microvasculature and has demonstrated utility in characterizing primary brain tumors. Our aim was to evaluate the performance of plasma volume (Vp) and volume transfer coefficient (K(trans) ) derived from DCE-MRI in distinguishing between melanoma and nonsmall cell lung cancer (NSCLC) brain metastases. Forty-seven NSCLC and 23 melanoma brain metastases were retrospectively assessed with DCE-MRI. Regions of interest were manually drawn around the metastases to calculate Vpmean and Kmeantrans. The Mann-Whitney U test and receiver operating characteristic analysis (ROC) were performed to compare perfusion parameters between the two groups. The Vpmean of melanoma brain metastases (4.35, standard deviation [SD] = 1.31) was significantly higher (P = 0.03) than Vpmean of NSCLC brain metastases (2.27, SD = 0.96). The Kmeantrans values were higher in melanoma brain metastases, but the difference between the two groups was not significant (P = 0.12). Based on ROC analysis, a cut-off value of 3.02 for Vpmean (area under curve = 0.659 with SD = 0.074) distinguished between melanoma brain metastases and NSCLC brain metastases (P < 0.01) with 72% specificity. Our data show the DCE-MRI parameter Vpmean can differentiate between melanoma and NSCLC brain metastases. The ability to noninvasively predict tumor histology of brain metastases in patients with multiple malignancies can have important clinical implications.

  1. [An evaluation of ischemic stroke using dynamic contrast enhanced perfusion MRI].

    PubMed

    Yamaguchi, H; Igarashi, H; Katayama, Y; Terashi, A

    1998-04-01

    Thrombolytic therapy during the hyperacute stage is important for salvaging dying cerebral tissue. To date, however, accurate non-invasive assessment of an ischemic lesion during the hyperacute stage has not been possible. Perfusion MRI may be the key to the quick diagnosis of ischemic lesions. To assess the feasibility of dynamic contrast enhanced perfusion MRI, echo planar imaging was performed in 10 patients with ischemic stroke. The relative cerebral blood volume (rCBV), mean transit time (MTT), and relative cerebral blood flow(rCBF) were measured based on moment analysis and the gamma variate method. These measurements, however, are not suitable for the detection of cerebral ischemia during the hyperacute stage. Therefore, we additionally studied the changes in a concentration curve (time-delta R* curve) of Gd-DTPA, injected into the median vein of the forearm. From the curve the SUM (delta R*) time to peak and the delta R* peak, which may be calculated quickly, were determined and were compared to rCBV, MTT, and rCBF, respectively. The rCBV and the rCBF in the ischemic regions were less than those in the contralateral healthy regions (p < 0.05), and the MTT in the ischemic regions was longer than that in the contralateral healthy regions (p < 0.05). Additionally, SUM (delta R*) and the delta R* peak in the ischemic regions were less, and the time to peak in the ischemic regions was longer than the value in the contralateral healthy regions (p < 0.05), correlating well to the rCBV, rCBF, and MTT measurements. Also, images of these parameters, depicting the ischemic lesion earlier than conventional T2 weighted images, can be easily made by using an MRI console. These results suggest that the SUM (delta R*), time to peak and the delta R* peak images calculated with dynamic contrast enhanced perfusion MRI may be one of the best techniques for the detection of cerebral ischemic lesions during the hyperacute stage.

  2. Quantifying heterogeneity of lesion uptake in dynamic contrast enhanced MRI for breast cancer diagnosis

    NASA Astrophysics Data System (ADS)

    Karahaliou, A.; Vassiou, K.; Skiadopoulos, S.; Kanavou, T.; Yiakoumelos, A.; Costaridou, L.

    2009-07-01

    The current study investigates whether texture features extracted from lesion kinetics feature maps can be used for breast cancer diagnosis. Fifty five women with 57 breast lesions (27 benign, 30 malignant) were subjected to dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) on 1.5T system. A linear-slope model was fitted pixel-wise to a representative lesion slice time series and fitted parameters were used to create three kinetic maps (wash out, time to peak enhancement and peak enhancement). 28 grey level co-occurrence matrices features were extracted from each lesion kinetic map. The ability of texture features per map in discriminating malignant from benign lesions was investigated using a Probabilistic Neural Network classifier. Additional classification was performed by combining classification outputs of most discriminating feature subsets from the three maps, via majority voting. The combined scheme outperformed classification based on individual maps achieving area under Receiver Operating Characteristics curve 0.960±0.029. Results suggest that heterogeneity of breast lesion kinetics, as quantified by texture analysis, may contribute to computer assisted tissue characterization in DCE-MRI.

  3. Differentiation of solid pancreatic tumors by using dynamic contrast-enhanced MRI

    NASA Astrophysics Data System (ADS)

    Choi, Seung Joon; Kim, Hyung Sik; Park, Hyunjin

    2014-01-01

    Distinguishing among different solid pancreatic tumor types, pancreatic ductal adenocarcinomas, neuroendocrine tumors (NETs), and solid pseudopapillary tumors (SPTs) is important, as the treatment options are vastly different. This study compared characteristics of solid pancreatic tumors by using dynamic contrast enhanced magnetic resonance imaging (MRI). Fifty patients underwent MR imaging of pancreatic masses with a histopathology that was later confirmed as an adenocarcinoma (n = 27), a NET (n = 16), and a SPT (n = 7). For qualitative analysis, two reviewers evaluated the morphologic features of the tumors: locations, margins, shapes, contained products, pancreatic ductal dilatation, and grade of signal intensity (SI). For the quantitative analysis, all phases of the MR images were co-registered using proprietary image registration software; thus, a region of interest (ROI) defined on one phase could be re-applied in other phases. The following four ratios were considered: tumor-to-uninvolved pancreas SI ratio, percent SI change, tumor-touninvolved pancreas enhancement index, and arterial-to-delayed washout rate. The areas under the receiver operating characteristic (ROC) curves were assessed for the four ratios. Adenocarcinomas had ill-defined margins, irregular shapes, and ductal dilatation compared with NETs and SPTs (P < 0.001). The tumor-to-uninvolved pancreas ratio on all dynamic phases was significantly higher for NETs than for both adenocarcinomas and SPTs (P < 0.05). Percentage SI changes of pancreatic tumors on the pancreatic and the portal venous phases were significantly higher for NETs than for both adenocarcinomas and SPTs (P < 0.05). A significant difference between NETs and adenocarcinomas was also found with respect to the tumor-to-uninvolved pancreas enhancement index and arterial-to-delayed washout rate. The percentage SI changes in the pancreatic phase and the arterial-to-delayed washout rate best distinguished between adenocarcinomas and

  4. Calculation of intravascular signal in dynamic contrast enhanced-MRI using adaptive complex independent component analysis.

    PubMed

    Mehrabian, Hatef; Chopra, Rajiv; Martel, Anne L

    2013-04-01

    Assessing tumor response to therapy is a crucial step in personalized treatments. Pharmacokinetic (PK) modeling provides quantitative information about tumor perfusion and vascular permeability that are associated with prognostic factors. A fundamental step in most PK analyses is calculating the signal that is generated in the tumor vasculature. This signal is usually inseparable from the extravascular extracellular signal. It was shown previously using in vivo and phantom experiments that independent component analysis (ICA) is capable of calculating the intravascular time-intensity curve in dynamic contrast enhanced (DCE)-MRI. A novel adaptive complex independent component analysis (AC-ICA) technique is developed in this study to calculate the intravascular time-intensity curve and separate this signal from the DCE-MR images of tumors. The use of the complex-valued DCE-MRI images rather than the commonly used magnitude images satisfied the fundamental assumption of ICA, i.e., linear mixing of the sources. Using an adaptive cost function in ICA through estimating the probability distribution of the tumor vasculature at each iteration resulted in a more robust and accurate separation algorithm. The AC-ICA algorithm provided a better estimate for the intravascular time-intensity curve than the previous ICA-based method. A simulation study was also developed in this study to realistically simulate DCE-MRI data of a leaky tissue mimicking phantom. The passage of the MR contrast agent through the leaky phantom was modeled with finite element analysis using a diffusion model. Once the distribution of the contrast agent in the imaging field of view was calculated, DCE-MRI data was generated by solving the Bloch equation for each voxel at each time point. The intravascular time-intensity curve calculation results were compared to the previously proposed ICA-based intravascular time-intensity curve calculation method that applied ICA to the magnitude of the DCE-MRI data

  5. DCEMRI.jl: a fast, validated, open source toolkit for dynamic contrast enhanced MRI analysis

    PubMed Central

    Li, Xia; Arlinghaus, Lori R.; Yankeelov, Thomas E.; Welch, E. Brian

    2015-01-01

    We present a fast, validated, open-source toolkit for processing dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) data. We validate it against the Quantitative Imaging Biomarkers Alliance (QIBA) Standard and Extended Tofts-Kety phantoms and find near perfect recovery in the absence of noise, with an estimated 10–20× speedup in run time compared to existing tools. To explain the observed trends in the fitting errors, we present an argument about the conditioning of the Jacobian in the limit of small and large parameter values. We also demonstrate its use on an in vivo data set to measure performance on a realistic application. For a 192 × 192 breast image, we achieved run times of <1 s. Finally, we analyze run times scaling with problem size and find that the run time per voxel scales as O(N1.9), where N is the number of time points in the tissue concentration curve. DCEMRI.jl was much faster than any other analysis package tested and produced comparable accuracy, even in the presence of noise. PMID:25922795

  6. Improvements in Diagnostic Accuracy with Quantitative Dynamic Contrast-Enhanced MRI

    DTIC Science & Technology

    2014-03-01

    PERSON USAMRMC a. REPORT U b. ABSTRACT U c. THIS PAGE U UU 15 19b. TELEPHONE NUMBER (include area code )   Table of Contents...Dynamic contrast-enhanced magnetic resonance imaging as an imaging biomarker. J. Clin. Oncol. 2006;24: 3293 –8. doi: 10.1200/JCO.2006.06.8080. 15

  7. On the Dark Rim Artifact in Dynamic Contrast-Enhanced MRI Myocardial Perfusion Studies

    PubMed Central

    Di Bella, E.V.R.; Parker, D.L.; Sinusas, A.J.

    2008-01-01

    A dark band or rim along parts of the subendocardial border of the left ventricle (LV) and the myocardium has been noticed in some dynamic contrast-enhanced MR perfusion studies. The artifact is thought to be due to susceptibility effects from the gadolinium bolus, motion, or resolution, or a combination of these. Here motionless ex vivo hearts in which the cavity was filled with gadolinium are used to show that dark rim artifacts can be consistent with resolution effects alone. PMID:16200553

  8. Quantifying Intracranial Plaque Permeability with Dynamic Contrast-Enhanced MRI: A Pilot Study

    PubMed Central

    Vakil, P.; Elmokadem, A.H.; Syed, F.H.; Cantrell, C.G.; Dehkordi, F.H.; Carroll, T.J.; Ansari, S.A.

    2016-01-01

    BACKGROUND AND PURPOSE Intracranial atherosclerotic disease plaque hyperintensity and/or gadolinium contrast enhancement have been studied as imaging biomarkers of acutely symptomatic ischemic presentations using single static MR imaging measurements. However, the value in modeling the dynamics of intracranial plaque permeability has yet to be evaluated. The purpose of this study was to use dynamic contrast-enhanced MR imaging to quantify the contrast permeability of intracranial atherosclerotic disease plaques in symptomatic patients and to compare these parameters against existing markers of plaque volatility using black-blood MR imaging pulse sequences. MATERIALS AND METHODS We performed a prospective study of contrast uptake dynamics in the major intracranial vessels proximal and immediately distal to the circle of Willis using dynamic contrast-enhanced MR imaging, specifically in patients with symptomatic intracranial atherosclerotic disease. Using the Modified Tofts model, we extracted the volume transfer constant (Ktrans) and fractional plasma volume (Vp) parameters from plaque-enhancement curves. Using regression analyses, we compared these parameters against time from symptom onset as well as intraplaque hyperintensity and postcontrast enhancement derived from T1 SPACE, a black-blood MR vessel wall imaging sequence. RESULTS We completed analysis in 10 patients presenting with symptomatic intracranial atherosclerotic disease. Ktrans and Vp measurements were higher in plaques versus healthy white matter and similar or less than values in the choroid plexus. Only Ktrans correlated significantly with time from symptom onset (P = .02). Dynamic contrast-enhanced MR imaging parameters were not found to correlate significantly with intraplaque enhancement or intraplaque hyperintensity (P = .4 and P = .17, respectively). CONCLUSIONS Elevated Ktrans and Vp values found in intracranial atherosclerotic disease plaques versus healthy white matter suggest that dynamic

  9. Practical Dynamic Contrast Enhanced MRI in Small Animal Models of Cancer: Data Acquisition, Data Analysis, and Interpretation

    PubMed Central

    Barnes, Stephanie L.; Whisenant, Jennifer G.; Loveless, Mary E.; Yankeelov, Thomas E.

    2012-01-01

    Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) consists of the continuous acquisition of images before, during, and after the injection of a contrast agent. DCE-MRI allows for noninvasive evaluation of tumor parameters related to vascular perfusion and permeability and tissue volume fractions, and is frequently employed in both preclinical and clinical investigations. However, the experimental and analytical subtleties of the technique are not frequently discussed in the literature, nor are its relationships to other commonly used quantitative imaging techniques. This review aims to provide practical information on the development, implementation, and validation of a DCE-MRI study in the context of a preclinical study (though we do frequently refer to clinical studies that are related to these topics). PMID:23105959

  10. The Added Diagnostic Value of Dynamic Contrast-Enhanced MRI at 3.0 T in Nonpalpable Breast Lesions

    PubMed Central

    Merckel, Laura G.; Verkooijen, Helena M.; Peters, Nicky H. G. M.; Mann, Ritse M.; Veldhuis, Wouter B.; Storm, Remmert K.; Weits, Teun; Duvivier, Katya M.; van Dalen, Thijs; Mali, Willem P. Th. M.; Peeters, Petra H. M.; van den Bosch, Maurice A. A. J.

    2014-01-01

    Objective To investigate the added diagnostic value of 3.0 Tesla breast MRI over conventional breast imaging in the diagnosis of in situ and invasive breast cancer and to explore the role of routine versus expert reading. Materials and Methods We evaluated MRI scans of patients with nonpalpable BI-RADS 3–5 lesions who underwent dynamic contrast-enhanced 3.0 Tesla breast MRI. Initially, MRI scans were read by radiologists in a routine clinical setting. All histologically confirmed index lesions were re-evaluated by two dedicated breast radiologists. Sensitivity and specificity for the three MRI readings were determined, and the diagnostic value of breast MRI in addition to conventional imaging was assessed. Interobserver reliability between the three readings was evaluated. Results MRI examinations of 207 patients were analyzed. Seventy-eight of 207 (37.7%) patients had a malignant lesion, of which 33 (42.3%) patients had pure DCIS and 45 (57.7%) invasive breast cancer. Sensitivity of breast MRI was 66.7% during routine, and 89.3% and 94.7% during expert reading. Specificity was 77.5% in the routine setting, and 61.0% and 33.3% during expert reading. In the routine setting, MRI provided additional diagnostic information over clinical information and conventional imaging, as the Area Under the ROC Curve increased from 0.76 to 0.81. Expert MRI reading was associated with a stronger improvement of the AUC to 0.87. Interobserver reliability between the three MRI readings was fair and moderate. Conclusions 3.0 T breast MRI of nonpalpable breast lesions is of added diagnostic value for the diagnosis of in situ and invasive breast cancer. PMID:24713637

  11. Comparison of dynamic contrast enhanced MRI and Doppler ultrasound in the pre-operative assessment of the portal venous system.

    PubMed

    Naik, K S; Ward, J; Irving, H C; Robinson, P J

    1997-01-01

    The purpose of this study was to compare dynamic contrast enhanced MRI (DCEMR) with Doppler ultrasound (US) in the assessment of portal venous anatomy and to analyse the causes of discrepancy. Over a 1 year period, 97 patients undergoing assessment prior to hepatic surgery underwent imaging of the liver and portal venous system using US with colour and spectral Doppler and MRI with axial T2 weighted spin echo (SE) and coronal oblique T1 weighted rapid gradient echo (GRE) imaging before and immediately after bolus injection of Gd-DTPA (0.1 mmol kg-1). When the US and MRI findings were discrepant, the images were reviewed by two observers and compared with surgical findings. US and DCEMR were concordant in 90 patients (portal vein patent in 80, occluded in 10). In three patients with cirrhosis and gross ascites the portal vein was reported as occluded on US and patent on MRI; surgery confirmed the MRI findings. In one patient the portal vein was patient on US but not on MRI, but there was a 3 week interval between the examinations. In three patients the portal vein was patent on US, but MRI detected occlusion of intrahepatic portal vein branches in two, and encasement of an intrahepatic branch in the third case. Spontaneous splenorenal shunts were seen in 15 patients only on MRI; varices were seen in 39 patients on MRI and in 22 patients on US. Both US and DCEMR contribute to the pre-operative assessment of the portal venous system. MRI provides additional information over US in assessing intrahepatic portal branches and detecting varices and splenorenal shunts, and is recommended for all surgical candidates and in patients with abnormal portal venous anatomy and equivocal US findings.

  12. Model selection in measures of vascular parameters using dynamic contrast-enhanced MRI: experimental and clinical applications.

    PubMed

    Ewing, James R; Bagher-Ebadian, Hassan

    2013-08-01

    A review of the selection of models in dynamic contrast-enhanced MRI (DCE-MRI) is conducted, with emphasis on the balance between the bias and variance required to produce stable and accurate estimates of vascular parameters. The vascular parameters considered as a first-order model are the forward volume transfer constant K(trans) , the plasma volume fraction vp and the interstitial volume fraction ve . To illustrate the critical issues in model selection, a data-driven selection of models in an animal model of cerebral glioma is followed. Systematic errors and extended models are considered. Studies with nested and non-nested pharmacokinetic models are reviewed; models considering water exchange are considered.

  13. Prostate cancer transrectal HIFU ablation: detection of local recurrences using T2-weighted and dynamic contrast-enhanced MRI.

    PubMed

    Rouvière, Olivier; Girouin, Nicolas; Glas, Ludivine; Ben Cheikh, Alexandre; Gelet, Albert; Mège-Lechevallier, Florence; Rabilloud, Muriel; Chapelon, Jean-Yves; Lyonnet, Denis

    2010-01-01

    The objective was to evaluate T2-weighted (T2w) and dynamic contrast-enhanced (DCE) MRI in detecting local cancer recurrences after prostate high-intensity focused ultrasound (HIFU) ablation. Fifty-nine patients with biochemical recurrence after prostate HIFU ablation underwent T2-weighted and DCE MRI before transrectal biopsy. For each patient, biopsies were performed by two operators: operator 1 (blinded to MR results) performed random and colour Doppler-guided biopsies ("routine biopsies"); operator 2 obtained up to three cores per suspicious lesion on MRI ("targeted biopsies"). Seventy-seven suspicious lesions were detected on DCE images (n = 52), T2w images (n = 2) or both (n = 23). Forty patients and 41 MR lesions were positive at biopsy. Of the 36 remaining MR lesions, 20 contained viable benign glands. Targeted biopsy detected more cancers than routine biopsy (36 versus 27 patients, p = 0.0523). The mean percentages of positive cores per patient and of tumour invasion of the cores were significantly higher for targeted biopsies (p < 0.0001). The odds ratios of the probability of finding viable cancer and viable prostate tissue (benign or malignant) at targeted versus routine biopsy were respectively 3.35 (95% CI 3.05-3.64) and 1.38 (95% CI 1.13-1.63). MRI combining T2-weighted and DCE images is a promising method for guiding post-HIFU biopsy towards areas containing recurrent cancer and viable prostate tissue.

  14. Evaluation of T2-weighted and dynamic contrast-enhanced MRI in localizing prostate cancer before repeat biopsy.

    PubMed

    Cheikh, Alexandre Ben; Girouin, Nicolas; Colombel, Marc; Maréchal, Jean-Marie; Gelet, Albert; Bissery, Alvine; Rabilloud, Muriel; Lyonnet, Denis; Rouvière, Olivier

    2009-03-01

    We assessed the accuracy of T2-weighted (T2w) and dynamic contrast-enhanced (DCE) 1.5-T magnetic resonance imaging (MRI) in localizing prostate cancer before transrectal ultrasound-guided repeat biopsy. Ninety-three patients with abnormal PSA level and negative prostate biopsy underwent T2w and DCE prostate MRI using pelvic coil before repeat biopsy. T2w and DCE images were interpreted using visual criteria only. MR results were correlated with repeat biopsy findings in ten prostate sectors. Repeat biopsy found prostate cancer in 23 patients (24.7%) and 44 sectors (6.6%). At per patient analysis, the sensitivity, specificity, positive and negative predictive values were 47.8%, 44.3%, 20.4% and 79.5% for T2w imaging and 82.6%, 20%, 24.4% and 93.3% for DCE imaging. When all suspicious areas (on T2w or DCE imaging) were taken into account, a sensitivity of 82.6% and a negative predictive value of 100% could be achieved. At per sector analysis, DCE imaging was significantly less specific (83.5% vs. 89.7%, p < 0.002) than T2w imaging; it was more sensitive (52.4% vs. 32.1%), but the difference was hardly significant (p = 0.09). T2w and DCE MRI using pelvic coil and visual diagnostic criteria can guide prostate repeat biopsy, with a good sensitivity and NPV.

  15. Permeability assessment of the focused ultrasound-induced blood-brain barrier opening using dynamic contrast-enhanced MRI

    NASA Astrophysics Data System (ADS)

    Vlachos, F.; Tung, Y.-S.; Konofagou, E. E.

    2010-09-01

    Focused ultrasound (FUS) in conjunction with microbubbles has been shown to successfully open the blood-brain barrier (BBB) in the mouse brain. In this study, we compute the BBB permeability after opening in vivo. The spatial permeability of the BBB-opened region was assessed using dynamic contrast-enhanced MRI (DCE-MRI). The DCE-MR images were post-processed using the general kinetic model (GKM) and the reference region model (RRM). Permeability maps were generated and the Ktrans values were calculated for a predefined volume of interest in the sonicated and the control area for each mouse. The results demonstrated that Ktrans in the BBB-opened region (0.02 ± 0.0123 for GKM and 0.03 ± 0.0167 min-1 for RRM) was at least two orders of magnitude higher when compared to the contra-lateral (control) side (0 and 8.5 × 10-4 ± 12 × 10-4 min-1, respectively). The permeability values obtained with the two models showed statistically significant agreement and excellent correlation (R2 = 0.97). At histological examination, it was concluded that no macroscopic damage was induced. This study thus constitutes the first permeability assessment of FUS-induced BBB opening using DCE-MRI, supporting the fact that the aforementioned technique may constitute a safe, non-invasive and efficacious drug delivery method.

  16. Three-dimensional dynamic contrast-enhanced MRI for the accurate, extensive quantification of microvascular permeability in atherosclerotic plaques.

    PubMed

    Calcagno, Claudia; Lobatto, Mark E; Dyvorne, Hadrien; Robson, Philip M; Millon, Antoine; Senders, Max L; Lairez, Olivier; Ramachandran, Sarayu; Coolen, Bram F; Black, Alexandra; Mulder, Willem J M; Fayad, Zahi A

    2015-10-01

    Atherosclerotic plaques that cause stroke and myocardial infarction are characterized by increased microvascular permeability and inflammation. Dynamic contrast-enhanced MRI (DCE-MRI) has been proposed as a method to quantify vessel wall microvascular permeability in vivo. Until now, most DCE-MRI studies of atherosclerosis have been limited to two-dimensional (2D) multi-slice imaging. Although providing the high spatial resolution required to image the arterial vessel wall, these approaches do not allow the quantification of plaque permeability with extensive anatomical coverage, an essential feature when imaging heterogeneous diseases, such as atherosclerosis. To our knowledge, we present the first systematic evaluation of three-dimensional (3D), high-resolution, DCE-MRI for the extensive quantification of plaque permeability along an entire vascular bed, with validation in atherosclerotic rabbits. We compare two acquisitions: 3D turbo field echo (TFE) with motion-sensitized-driven equilibrium (MSDE) preparation and 3D turbo spin echo (TSE). We find 3D TFE DCE-MRI to be superior to 3D TSE DCE-MRI in terms of temporal stability metrics. Both sequences show good intra- and inter-observer reliability, and significant correlation with ex vivo permeability measurements by Evans Blue near-infrared fluorescence (NIRF). In addition, we explore the feasibility of using compressed sensing to accelerate 3D DCE-MRI of atherosclerosis, to improve its temporal resolution and therefore the accuracy of permeability quantification. Using retrospective under-sampling and reconstructions, we show that compressed sensing alone may allow the acceleration of 3D DCE-MRI by up to four-fold. We anticipate that the development of high-spatial-resolution 3D DCE-MRI with prospective compressed sensing acceleration may allow for the more accurate and extensive quantification of atherosclerotic plaque permeability along an entire vascular bed. We foresee that this approach may allow for

  17. Influence of Temporal Regularization and Radial Undersampling Factor on Compressed Sensing Reconstruction in Dynamic Contrast Enhanced MRI of the Breast

    PubMed Central

    Kim, Sungheon G.; Feng, Li; Grimm, Robert; Freed, Melanie; Block, Kai Tobias; Sodickson, Daniel K.; Moy, Linda; Otazo, Ricardo

    2015-01-01

    Objective To evaluate the influence of temporal sparsity regularization and radial undersampling on compressed sensing reconstruction of dynamic contrast-enhanced (DCE) MRI, using the iterative Golden-angle RAdial Sparse Parallel (iGRASP) MRI technique in the setting of breast cancer evaluation. Method DCE-MRI examinations of the breast (n=7) were conducted using iGRASP at 3T. Images were reconstructed with five different radial undersampling schemes corresponding to temporal resolutions between 2 and 13.4 s/frame and with four different weights for temporal sparsity regularization (λ=0.1, 0.5, 2, and 6 times of noise level). Image similarity to time-averaged reference images was assessed by two breast radiologists and using quantitative metrics. Temporal similarity was measured in terms of wash-in slope and contrast kinetic model parameters. Results iGRASP images reconstructed with λ=2 and 5.1s/frame had significantly (p<0.05) higher similarity to time-averaged reference images than the images with other reconstruction parameters (mutual information (MI) >5%), in agreement with the assessment of two breast radiologists. Higher undersampling (temporal resolution < 5.1 s/frame) required stronger temporal sparsity regularization (λ≥2) to remove streaking aliasing artifacts (MI>23% between λ=2 and 0.5). The difference between the kinetic-model transfer rates of benign and malignant groups decreased as temporal resolution decreased (82% between 2 and 13.4s/frame). Conclusion This study demonstrates objective spatial and temporal similarity measures can be used to assess the influence of sparsity constraint and undersampling in compressed sensing DCE-MRI and also shows that the iGRASP method provides the flexibility of optimizing these reconstruction parameters in the post-processing stage using the same acquired data. PMID:26032976

  18. Semi-parametric analysis of dynamic contrast-enhanced MRI using Bayesian P-splines.

    PubMed

    Schmid, Volker J; Whitcher, Brandon; Yang, Guang-Zhong

    2006-01-01

    Current approaches to quantitative analysis of DCE-MRI with non-linear models involve the convolution of an arterial input function (AIF) with the contrast agent concentration at a voxel or regional level. Full quantification provides meaningful biological parameters but is complicated by the issues related to convergence, (de-)convolution of the AIF, and goodness of fit. To overcome these problems, this paper presents a penalized spline smoothing approach to model the data in a semi-parametric way. With this method, the AIF is convolved with a set of B-splines to produce the design matrix, and modeling of the resulting deconvolved biological parameters is obtained in a way that is similar to the parametric models. Further kinetic parameters are obtained by fitting a non-linear model to the estimated response function and detailed validation of the method, both with simulated and in vivo data is

  19. Characterization of tumor angiogenesis in rat brain using iron-based vessel size index MRI in combination with gadolinium-based dynamic contrast-enhanced MRI.

    PubMed

    Beaumont, Marine; Lemasson, Benjamin; Farion, Régine; Segebarth, Christoph; Rémy, Chantal; Barbier, Emmanuel L

    2009-10-01

    This study aimed at combining an iron-based, steady-state, vessel size index magnetic resonance imaging (VSI MRI) approach, and a gadolinium (Gd)-based, dynamic contrast-enhanced MRI approach (DCE MRI) to characterize tumoral microvasculature. Rats bearing an orthotopic glioma (C6, n=14 and RG2, n=6) underwent DCE MRI and combined VSI and DCE MRI 4 h later, at 2.35 T. Gd-DOTA (200 mumol of Gd per kg) and ultrasmall superparamagnetic iron oxide (USPIO) (200 micromol of iron per kg) were used for DCE and VSI MRI, respectively. C6 and RG2 gliomas were equally permeable to Gd-DOTA but presented different blood volume fractions and VSI, in good agreement with histologic data. The presence of USPIO yielded reduced K(trans) values. The K(trans) values obtained with Gd-DOTA in the absence and in the presence of USPIO were well correlated for the C6 glioma but not for the RG2 glioma. It was also observed that, within the time frame of DCE MRI, USPIO remained intravascular in the C6 glioma whereas it extravasated in the RG2 glioma. In conclusion, VSI and DCE MRI can be combined provided that USPIO does not extravasate with the time frame of the DCE MRI experiment. The mechanisms at the origin of USPIO extravasation remain to be elucidated.

  20. Dynamic contrast enhanced MRI parameters and tumor cellularity in a rat model of cerebral glioma at 7T

    NASA Astrophysics Data System (ADS)

    Aryal, Madhava Prasad

    This dissertation mainly focuses on establishing and evaluating a stable and reproducible procedure for assessing tumor microvasculature by measuring the tissue parameters: plasma volume (vp), forward transfer constant (Ktrans), interstitial volume (ve) and distribution volume (VD), utilizing T1-weighted dynamic contrast enhanced MRI (DCE-MRI) and examining their relationship with a histo measure, cell counting. In the first part of the work, two T1-weighted DCE-MRI studies at 24 hrs time interval, using a dual-echo gradient-echo pulse sequence, were performed in 18 athymic rats implanted with U251 cerebral glioma. Using the "standard," or "consensus" model, and a separate Logan graphical analysis, T1-weighted images before, during and after the injection of a gadolinium contrast agent were used to estimate the tissue parameters mentioned above. After MRI study rats were sacrificed, and sectioned brain tissues were stained with Hematoxylin and Eosin for cell counting. Measurements in a region where a model selection process demonstrates that it can be reliably shown that contrast agent leaks from the capillary into the interstitial space quickly enough, and a concentration sufficient to measure its back flux to the vasculature, especially for Ktrans and ve, showed a remarkable stability. The combined mean parameter values in this region were: vp = (0.79+/-0.36)%, Ktrans = (2.23+/-0.71) x10-2 min -1, ve = (6.99+/-2.14)%, and VD = (7.57+/-2.32)%. In the second part of this work, the Logan graphical approach, after establishing its stability in an untreated control group, was applied to investigate a cohort of animals in which a therapeutic dose of 20 Gy radiation had been administered. In this cohort, tissue normalization appeared to be the most effective at 8 h after irradiation; this implies that the 8 hrs post-treatment time might be an ideal combination time for optimized therapeutic outcome in combined modalities. The relationship between non-invasive DCE-MRI

  1. The use of error-category mapping in pharmacokinetic model analysis of dynamic contrast-enhanced MRI data.

    PubMed

    Gill, Andrew B; Anandappa, Gayathri; Patterson, Andrew J; Priest, Andrew N; Graves, Martin J; Janowitz, Tobias; Jodrell, Duncan I; Eisen, Tim; Lomas, David J

    2015-02-01

    This study introduces the use of 'error-category mapping' in the interpretation of pharmacokinetic (PK) model parameter results derived from dynamic contrast-enhanced (DCE-) MRI data. Eleven patients with metastatic renal cell carcinoma were enrolled in a multiparametric study of the treatment effects of bevacizumab. For the purposes of the present analysis, DCE-MRI data from two identical pre-treatment examinations were analysed by application of the extended Tofts model (eTM), using in turn a model arterial input function (AIF), an individually-measured AIF and a sample-average AIF. PK model parameter maps were calculated. Errors in the signal-to-gadolinium concentration ([Gd]) conversion process and the model-fitting process itself were assigned to category codes on a voxel-by-voxel basis, thereby forming a colour-coded 'error-category map' for each imaged slice. These maps were found to be repeatable between patient visits and showed that the eTM converged adequately in the majority of voxels in all the tumours studied. However, the maps also clearly indicated sub-regions of low Gd uptake and of non-convergence of the model in nearly all tumours. The non-physical condition ve ≥ 1 was the most frequently indicated error category and appeared sensitive to the form of AIF used. This simple method for visualisation of errors in DCE-MRI could be used as a routine quality-control technique and also has the potential to reveal otherwise hidden patterns of failure in PK model applications.

  2. MRI contrast enhancement using Magnetic Carbon Nanoparticles

    NASA Astrophysics Data System (ADS)

    Chaudhary, Rakesh P.; Kangasniemi, Kim; Takahashi, Masaya; Mohanty, Samarendra K.; Koymen, Ali R.; Department of Physics, University of Texas at Arlington Team; University of Texas Southwestern Medical Center Team

    2014-03-01

    In recent years, nanotechnology has become one of the most exciting forefront fields in cancer diagnosis and therapeutics such as drug delivery, thermal therapy and detection of cancer. Here, we report development of core (Fe)-shell (carbon) nanoparticles with enhanced magnetic properties for contrast enhancement in MRI imaging. These new classes of magnetic carbon nanoparticles (MCNPs) are synthesized using a bottom-up approach in various organic solvents, using the electric plasma discharge generated in the cavitation field of an ultrasonic horn. Gradient echo MRI images of well-dispersed MCNP-solutions (in tube) were acquired. For T2 measurements, a multi echo spin echo sequence was performed. From the slope of the 1/T2 versus concentration plot, the R2 value for different CMCNP-samples was measured. Since MCNPs were found to be extremely non-reactive, and highly absorbing in NIR regime, development of carbon-based MRI contrast enhancement will allow its simultaneous use in biomedical applications. We aim to localize the MCNPs in targeted tissue regions by external DC magnetic field, followed by MRI imaging and subsequent photothermal therapy.

  3. Quality assurance in MRI breast screening: comparing signal-to-noise ratio in dynamic contrast-enhanced imaging protocols

    NASA Astrophysics Data System (ADS)

    Kousi, Evanthia; Borri, Marco; Dean, Jamie; Panek, Rafal; Scurr, Erica; Leach, Martin O.; Schmidt, Maria A.

    2016-01-01

    MRI has been extensively used in breast cancer staging, management and high risk screening. Detection sensitivity is paramount in breast screening, but variations of signal-to-noise ratio (SNR) as a function of position are often overlooked. We propose and demonstrate practical methods to assess spatial SNR variations in dynamic contrast-enhanced (DCE) breast examinations and apply those methods to different protocols and systems. Four different protocols in three different MRI systems (1.5 and 3.0 T) with receiver coils of different design were employed on oil-filled test objects with and without uniformity filters. Twenty 3D datasets were acquired with each protocol; each dataset was acquired in under 60 s, thus complying with current breast DCE guidelines. In addition to the standard SNR calculated on a pixel-by-pixel basis, we propose other regional indices considering the mean and standard deviation of the signal over a small sub-region centred on each pixel. These regional indices include effects of the spatial variation of coil sensitivity and other structured artefacts. The proposed regional SNR indices demonstrate spatial variations in SNR as well as the presence of artefacts and sensitivity variations, which are otherwise difficult to quantify and might be overlooked in a clinical setting. Spatial variations in SNR depend on protocol choice and hardware characteristics. The use of uniformity filters was shown to lead to a rise of SNR values, altering the noise distribution. Correlation between noise in adjacent pixels was associated with data truncation along the phase encoding direction. Methods to characterise spatial SNR variations using regional information were demonstrated, with implications for quality assurance in breast screening and multi-centre trials.

  4. Value of Dynamic Contrast-Enhanced MRI to Detect Local Tumor Recurrence in Primary Head and Neck Cancer Patients.

    PubMed

    Choi, Young Jun; Lee, Jeong Hyun; Sung, Yu Sub; Yoon, Ra Gyoung; Park, Ji Eun; Nam, Soon Yuhl; Baek, Jung Hwan

    2016-05-01

    Treatment failures in head and neck cancer patients are mainly related to locoregional tumor recurrence. The objective of the present study was to evaluate the diagnostic accuracy of model-free dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) to detect local recurrence during the surveillance of head and neck cancer patients.Our retrospective study enrolled 24 patients with primary head and neck cancer who had undergone definitive treatment. Patients were grouped into local recurrence (n = 12) or posttreatment change (n = 12) groups according to the results of biopsy or clinicoradiologic follow-up. The types of time-signal intensity (TSI) curves were classified as follows: "progressive increment" as type I, "plateau" as type II, and "washout" as type III. TSI curve types and their parameters (i.e., wash-in, Emax, Tmax, area under the curve [AUC]60, AUC90, and AUC120) were compared between the 2 study groups.The distributions of TSI curve types for local recurrence versus posttreatment change were statistically significant (P < 0.001) (i.e., 0% vs 83.3% for type I, 58.3% vs 16.7% for type II, and 41.7% vs 0% for type III). There were statistically significant differences in Emax, Tmax, and all of the AUC parameters between 2 groups (P < 0.0083 [0.05/6]). Receiver operating characteristic (ROC) curve analyses indicated that the TSI curve type was the best predictor of local recurrence with a sensitivity of 100% (95% CI, 73.5-100.0) and a specificity of 83.3% (95% CI, 51.6-97.9) (cutoff with type II).Model-free DCE-MRI using TSI curves and TSI curve-derived parameters detects local recurrence in head and neck cancer patients with a high diagnostic accuracy.

  5. SU-D-303-03: Impact of Uncertainty in T1 Measurements On Quantification of Dynamic Contrast Enhanced MRI

    SciTech Connect

    Aryal, M; Cao, Y

    2015-06-15

    Purpose: Quantification of dynamic contrast enhanced (DCE) MRI requires native longitudinal relaxation time (T1) measurement. This study aimed to assess uncertainty in T1 measurements using two different methods. Methods and Materials: Brain MRI scans were performed on a 3T scanner in 9 patients who had low grade/benign tumors and partial brain radiotherapy without chemotherapy at pre-RT, week-3 during RT (wk-3), end-RT, and 1, 6 and 18 months after RT. T1-weighted images were acquired using gradient echo sequences with 1) 2 different flip angles (50 and 150), and 2) 5 variable TRs (100–2000ms). After creating quantitative T1 maps, average T1 was calculated in regions of interest (ROI), which were distant from tumors and received a total of accumulated radiation doses < 5 Gy at wk-3. ROIs included left and right normal Putamen and Thalamus (gray matter: GM), and frontal and parietal white matter (WM). Since there were no significant or even a trend of T1 changes from pre-RT to wk-3 in these ROIs, a relative repeatability coefficient (RC) of T1 as a measure of uncertainty was estimated in each ROI using the data pre-RT and at wk-3. The individual T1 changes at later time points were evaluated compared to the estimated RCs. Results: The 2-flip angle method produced small RCs in GM (9.7–11.7%) but large RCs in WM (12.2–13.6%) compared to the saturation-recovery (SR) method (11.0–17.7% for GM and 7.5–11.2% for WM). More than 81% of individual T1 changes were within T1 uncertainty ranges defined by RCs. Conclusion: Our study suggests that the impact of T1 uncertainty on physiological parameters derived from DCE MRI is not negligible. A short scan with 2 flip angles is able to achieve repeatability of T1 estimates similar to a long scan with 5 different TRs, and is desirable to be integrated in the DCE protocol. Present study was supported by National Institute of Health (NIH) under grant numbers; UO1 CA183848 and RO1 NS064973.

  6. The Tofts model in frequency domain: fast and robust determination of pharmacokinetic maps for dynamic contrast enhancement MRI

    NASA Astrophysics Data System (ADS)

    Vajuvalli, Nithin N.; Chikkemenahally, Dharmendra Kumar K.; Nayak, Krupa N.; Bhosale, Manoj G.; Geethanath, Sairam

    2016-12-01

    Dynamic contrast enhancement magnetic resonance imaging (DCE-MRI) is a well-established method for non-invasive detection and therapeutic monitoring of pathologies through administration of intravenous contrast agent. Quantification of pharmacokinetic (PK) maps can be achieved through application of compartmental models relevant to the pathophysiology of the tissue under interrogation. The determination of PK parameters involves fitting of time-concentration data to these models. In this work, the Tofts model in frequency domain (TM-FD) is applied to a weakly vascularized tissue such as the breast. It is derived as a convolution-free model from the conventional Tofts model in the time domain (TM-TD). This reduces the dimensionality of the curve-fitting problem from two to one. The approaches of TM-FD and TM-TD were applied to two kinds of in silico phantoms and six in vivo breast DCE data sets with and without the addition of noise. The results showed that computational time taken to estimate PK maps using TM-FD was 16-25% less than with TM-TD. Normalized root mean square error (NRMSE) calculation and Pearson correlation analyses were performed to validate robustness and accuracy of the TM-FD and TM-TD approaches. These compared with ground truth values in the case of phantom studies for four different temporal resolutions. Results showed that NRMSE values for TM-FD were significantly lower than those of TM-TD as validated by a paired t-test along with reduced computational time. This approach therefore enables online evaluation of PK maps by radiologists in a clinical setting, aiding in the evaluation of 3D and/or increased coverage of the tissue of interest.

  7. Relationship between diffusion parameters derived from intravoxel incoherent motion MRI and perfusion measured by dynamic contrast-enhanced MRI of soft tissue tumors.

    PubMed

    Marzi, Simona; Stefanetti, Linda; Sperati, Francesca; Anelli, Vincenzo

    2016-01-01

    Our aim was to evaluate the link between diffusion parameters measured by intravoxel incoherent motion (IVIM) diffusion-weighted imaging (DWI) and the perfusion metrics obtained with dynamic contrast-enhanced (DCE) MRI in soft tissue tumors (STTs). Twenty-eight patients affected by histopathologically confirmed STT were included in a prospective study. All patients underwent both DCE MRI and IVIM DWI. The perfusion fraction f, diffusion coefficient D and perfusion-related diffusion coefficient D* were estimated using a bi-exponential function to fit the DWI data. DCE MRI was acquired with a temporal resolution of 3-5 s. Maps of the initial area under the gadolinium concentration curve (IAUGC), time to peak (TTP) and maximum slope of increase (MSI) were derived using commercial software. The relationships between the DCE MRI and IVIM DWI measurements were assessed by Spearman's test. To exclude false positive results under multiple testing, the false discovery rate (FDR) procedure was applied. The Mann-Whitney test was used to evaluate the differences between all variables in patients with non-myxoid and myxoid STT. No significant relationship was found between IVIM parameters and any DCE MRI parameters. Higher f and D*f values were found in non-myxoid tumors compared with myxoid tumors (p = 0.004 and p = 0.003, respectively). MSI was significantly higher in non-myxoid tumors than in myxoid tumors (p = 0.029). From the visual assessments of single clinical cases, both f and D*f maps were in satisfactory agreement with DCE maps in the extreme cases of an avascular mass and a highly vascularized mass, whereas, for tumors with slight vascularity or with a highly heterogeneous perfusion pattern, this association was not straightforward. Although IVIM DWI was demonstrated to be feasible in STT, our data did not support evident relationships between perfusion-related IVIM parameters and perfusion measured by DCE MRI.

  8. A pilot study using dynamic contrast enhanced-MRI as a response biomarker of the radioprotective effect of memantine in patients receiving whole brain radiotherapy

    PubMed Central

    Wong, Philip; Leppert, Ilana R.; Roberge, David; Boudam, Karim; Brown, Paul D.; Muanza, Thierry; Pike, G. Bruce; Chankowsky, Jeffrey; Mihalcioiu, Catalin

    2016-01-01

    Purpose This pilot prospective study sought to determine whether dynamic contrast enhanced MRI (DCE-MRI) could be used as a clinical imaging biomarker of tissue toxicity from whole brain radiotherapy (WBRT). Method 14 patients who received WBRT were imaged using dynamic contrast enhanced DCE-MRI prior to and at 8-weeks, 16-weeks and 24-weeks after the initiation of WBRT. Twelve of the patients were also enrolled in the RTOG 0614 trial, which randomized patients to the use of placebo or memantine. After the unblinding of the treatments received by RTOG 0614 patients, DCE-MRI measures of tumor tissue and normal appearing white matter (NAWM) vascular permeability (Initial Area Under the Curve (AUC) Blood Adjusted) was analyzed. Cognitive, quality-of-life (QOL) assessment and blood samples were collected according to the patient's ability to tolerate the exams. Circulating endothelial cells (CEC) were measured using flow cytometry. Results Following WBRT, there was an increasing trend in the vascular permeability of tumors (p=0.09) and NAWM (p=0.06) with time. Memantine significantly (p=0.01) reduced NAWM AUC changes following radiotherapy. Patients on memantine retained (COWA p= 0.03) better cognitive functions than those on placebo. No association was observed between the level of CEC and DCE-MRI changes, time from radiotherapy or memantine use. Conclusions DCE-MRI can detect vascular damage secondary to WBRT. Our data suggests that memantine reduces WBRT-induced brain vasculature damages. PMID:27248467

  9. Predicting response before initiation of neoadjuvant chemotherapy in breast cancer using new methods for the analysis of dynamic contrast enhanced MRI (DCE MRI) data

    NASA Astrophysics Data System (ADS)

    DeGrandchamp, Joseph B.; Whisenant, Jennifer G.; Arlinghaus, Lori R.; Abramson, V. G.; Yankeelov, Thomas E.; Cárdenas-Rodríguez, Julio

    2016-03-01

    The pharmacokinetic parameters derived from dynamic contrast enhanced (DCE) MRI have shown promise as biomarkers for tumor response to therapy. However, standard methods of analyzing DCE MRI data (Tofts model) require high temporal resolution, high signal-to-noise ratio (SNR), and the Arterial Input Function (AIF). Such models produce reliable biomarkers of response only when a therapy has a large effect on the parameters. We recently reported a method that solves the limitations, the Linear Reference Region Model (LRRM). Similar to other reference region models, the LRRM needs no AIF. Additionally, the LRRM is more accurate and precise than standard methods at low SNR and slow temporal resolution, suggesting LRRM-derived biomarkers could be better predictors. Here, the LRRM, Non-linear Reference Region Model (NRRM), Linear Tofts model (LTM), and Non-linear Tofts Model (NLTM) were used to estimate the RKtrans between muscle and tumor (or the Ktrans for Tofts) and the tumor kep,TOI for 39 breast cancer patients who received neoadjuvant chemotherapy (NAC). These parameters and the receptor statuses of each patient were used to construct cross-validated predictive models to classify patients as complete pathological responders (pCR) or non-complete pathological responders (non-pCR) to NAC. Model performance was evaluated using area under the ROC curve (AUC). The AUC for receptor status alone was 0.62, while the best performance using predictors from the LRRM, NRRM, LTM, and NLTM were AUCs of 0.79, 0.55, 0.60, and 0.59 respectively. This suggests that the LRRM can be used to predict response to NAC in breast cancer.

  10. Enhancing fraction measured using dynamic contrast-enhanced MRI predicts disease-free survival in patients with carcinoma of the cervix

    PubMed Central

    Donaldson, S B; Buckley, D L; O'Connor, J P; Davidson, S E; Carrington, B M; Jones, A P; West, C M L

    2009-01-01

    Background: There is a need for simple imaging parameters capable of predicting therapeutic outcome. Methods: This retrospective study analysed 50 patients with locally advanced carcinoma of the cervix who underwent dynamic contrast-enhanced MRI before receiving potentially curative radiotherapy. The proportion of enhancing pixels (EF) in the whole-tumour volume post-contrast agent injection was calculated and assessed in relation to disease-free survival (DFS). Results: Tumours with high EF had a significantly poorer probability of DFS than those with low EF (P=0.011). Interpretation: EF is a simple imaging biomarker that should be studied further in a multi-centre setting. PMID:19920831

  11. A review of technical aspects of T1-weighted dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in human brain tumors.

    PubMed

    Bergamino, M; Bonzano, L; Levrero, F; Mancardi, G L; Roccatagliata, L

    2014-09-01

    In the last few years, several imaging methods, such as magnetic resonance imaging (MRI) and computed tomography, have been used to investigate the degree of blood-brain barrier (BBB) permeability in patients with neurological diseases including multiple sclerosis, ischemic stroke, and brain tumors. One promising MRI method for assessing the BBB permeability of patients with neurological diseases in vivo is T1-weighted dynamic contrast-enhanced (DCE)-MRI. Here we review the technical issues involved in DCE-MRI in the study of human brain tumors. In the first part of this paper, theoretical models for the DCE-MRI analysis will be described, including the Toft-Kety models, the adiabatic approximation to the tissue homogeneity model and the two-compartment exchange model. These models can be used to estimate important kinetic parameters related to BBB permeability. In the second part of this paper, details of the data acquisition, issues related to the arterial input function, and procedures for DCE-MRI image analysis are illustrated.

  12. Optimized time-resolved imaging of contrast kinetics (TRICKS) in dynamic contrast-enhanced MRI after peptide receptor radionuclide therapy in small animal tumor models.

    PubMed

    Haeck, Joost; Bol, Karin; Bison, Sander; van Tiel, Sandra; Koelewijn, Stuart; de Jong, Marion; Veenland, Jifke; Bernsen, Monique

    2015-01-01

    Anti-tumor efficacy of targeted peptide-receptor radionuclide therapy (PRRT) relies on several factors, including functional tumor vasculature. Little is known about the effect of PRRT on tumor vasculature. With dynamic contrast-enhanced (DCE-) MRI, functional vasculature is imaged and quantified using contrast agents. In small animals DCE-MRI is a challenging application. We optimized a clinical sequence for fast hemodynamic acquisitions, time-resolved imaging of contrast kinetics (TRICKS), to obtain DCE-MRI images at both high spatial and high temporal resolution in mice and rats. Using TRICKS, functional vasculature was measured prior to PRRT and longitudinally to investigate the effect of treatment on tumor vascular characteristics. Nude mice bearing H69 tumor xenografts and rats bearing syngeneic CA20948 tumors were used to study perfusion following PRRT administration with (177) lutetium octreotate. Both semi-quantitative and quantitative parameters were calculated. Treatment efficacy was measured by tumor-size reduction. Optimized TRICKS enabled MRI at 0.032 mm(3) voxel size with a temporal resolution of less than 5 s and large volume coverage, a substantial improvement over routine pre-clinical DCE-MRI studies. Tumor response to therapy was reflected in changes in tumor perfusion/permeability parameters. The H69 tumor model showed pronounced changes in DCE-derived parameters following PRRT. The rat CA20948 tumor model showed more heterogeneity in both treatment outcome and perfusion parameters. TRICKS enabled the acquisition of DCE-MRI at both high temporal resolution (Tres ) and spatial resolutions relevant for small animal tumor models. With the high Tres enabled by TRICKS, accurate pharmacokinetic data modeling was feasible. DCE-MRI parameters revealed changes over time and showed a clear relationship between tumor size and Ktrans .

  13. Monitoring Pc 4-mediated photodynamic therapy of U87 tumors with dynamic contrast enhanced-magnetic resonance imaging (DCE-MRI) in the athymic nude rat

    NASA Astrophysics Data System (ADS)

    Varghai, Davood; Covey, Kelly; Sharma, Rahul; Cross, Nathan; Feyes, Denise K.; Oleinick, Nancy L.; Flask, Chris A.; Dean, David

    2008-02-01

    Post-operative verification of the specificity and sensitivity of photodynamic therapy (PDT) is most pressing for deeply placed lesions such as brain tumors. We wish to determine whether Dynamic Contrast Enhanced-Magnetic Resonance Imaging (DCE-MRI) can provide a non-invasive and unambiguous quantitative measure of the specificity and sensitivity of brain tumor PDT. Methods: 2.5 x 10 5 U87 cells were injected into the brains of six athymic nude rats. After 5-6 days, the animals received 0.5 mg/kg b.w. of the phthalocyanine photosensitizer Pc 4 via tail-vein injection. On day 7 peri-tumor DCE-MRI images were acquired on a 7T microMRI scanner before and after tail-vein administration of 100 μL gadolinium and 400 μL saline. After this scan the animals received a 30 J/cm2 dose of 672-nm light from a diode laser (i.e., PDT). The DCE-MRI scan protocol was repeated on day 13. Next, the animals were euthanized and their brains were explanted for Hematoxylin and Eosin (H&E) histology. Results: No tumor was found in one animal. The DCE-MRI images of the other five animals demonstrated significant tumor enhancement increase (p < 0.053 two-sided t-test and p < 0.026 one-sided t-test) following PDT. H&E histology presented moderate to severe tumor necrosis. Discussion: The change in signal detected by DCE-MRI appears to be due to PDT-induced tumor necrosis. This DCE-MRI signal appears to provide a quantitative, non-invasive measure of the outcome of PDT in this animal model and may be useful for determining the safety and effectiveness of PDT in deeply placed tumors (e.g., glioma).

  14. Dynamic Contrast-Enhanced MRI Parameters as Biomarkers in Assessing Head and Neck Lesions After Chemoradiotherapy Using a Wide-Bore 3 Tesla Scanner.

    PubMed

    Lerant, Gergely; Sarkozy, Peter; Takacsi-Nagy, Zoltan; Polony, Gabor; Tamas, Laszlo; Toth, Erika; Boer, Andras; Javor, Laszlo; Godeny, Maria

    2015-09-01

    Pilot studies have shown promising results in characterizing head and neck tumors (HNT) using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), differentiating between malignant and benign lesions and evaluating changes in response to chemoradiotherapy (CRT). Our aim was to find DCE-MRI parameters, biomarkers in evaluating the post-CRT status. Two hundred and five patients with head and neck lesions were examined with DCE-MRI sequences. The time intensity curves (TIC) were extracted and processed to acquire time-to-peak (TTP), relative maximum enhancement (RME), relative wash-out (RWO), and two new parameters attack and decay. These parameters were analyzed using univariate tests in SPSS (Statistical Package for the Social Sciences, version 17, SPSS Inc. Chicago, USA) to identify parameters that could be used to infer tumor malignancy and post-CRT changes. Multiple parameters of curve characteristics were significantly different between malignant tumors after CRT (MACRT) and changes caused by CRT. The best-performing biomarkers were the attack and the decay. We also found multiple significant (p < 0.05) parameters for both the benign and malignant status as well as pre- and post-CRT status. Our large cohort of data supports the increasing role of DCE-MRI in HNT differentiation, particularly for the assessment of post-CRT status along with accurate morphological imaging.

  15. Tracer kinetic analysis of dynamic contrast-enhanced MRI and CT bladder cancer data: A preliminary comparison to assess the magnitude of water exchange effects.

    PubMed

    Bains, Lauren J; McGrath, Deirdre M; Naish, Josephine H; Cheung, Susan; Watson, Yvonne; Taylor, M Ben; Logue, John P; Parker, Geoffrey J M; Waterton, John C; Buckley, David L

    2010-08-01

    The purpose of this study was to determine the impact of water exchange on tracer kinetic parameter estimates derived from T(1)-weighted dynamic contrast-enhanced (DCE)-MRI data using a direct quantitative comparison with DCE-CT. Data were acquired from 12 patients with bladder cancer who underwent DCE-CT followed by DCE-MRI within a week. A two-compartment tracer kinetic model was fitted to the CT data, and two versions of the same model with modifications to account for the fast exchange and no exchange limits of water exchange were fitted to the MR data. The two-compartment tracer kinetic model provided estimates of the fractional plasma volume (v(p)), the extravascular extracellular space fraction (v(e)), plasma perfusion (F(p)), and the microvascular permeability surface area product. Our findings suggest that DCE-CT is an appropriate reference for DCE-MRI in bladder cancers as the only significant difference found between CT and MR parameter estimates were the no exchange limit estimates of v(p) (P = 0.002). These results suggest that although water exchange between the intracellular and extravascular-extracellular space has a negligible effect on DCE-MRI, vascular-extravascular-extracellular space water exchange may be more important.

  16. Differentiation of pancreatic carcinoma and mass-forming focal pancreatitis: qualitative and quantitative assessment by dynamic contrast-enhanced MRI combined with diffusion-weighted imaging

    PubMed Central

    Zhang, Ting-Ting; Wang, Li; Liu, Huan-huan; Zhang, Cai-yuan; Li, Xiao-ming; Lu, Jian-ping; Wang, Deng-bin

    2017-01-01

    Differentiation between pancreatic carcinoma (PC) and mass-forming focal pancreatitis (FP) is invariably difficult. For the differential diagnosis, we qualitatively and quantitatively assessed the value of dynamic contrast-enhanced MRI (DCE-MRI) and diffusion-weighted imaging (DWI) in PC and FP in the present study. This study included 32 PC and 18 FP patients with histological confirmation who underwent DCE-MRI and DWI. The time-signal intensity curve (TIC) of PC and FP were classified into 5 types according to the time of reaching the peak, namely, type I, II, III, IV, and V, respectively, and two subtypes, namely, subtype-a (washout type) and subtype-b (plateau type) according to the part of the TIC profile after the peak. Moreover, the mean and relative apparent diffusion coefficient (ADC) value between PC and FP on DWI were compared. The type V TIC was only recognized in PC group (P < 0.01). Type IV b were more frequently observed in PC (P = 0.036), while type- IIa (P < 0.01), type- Ia (P = 0.037) in FP. We also found a significant difference in the mean and relative ADC value between PC and FP. The combined image set of DCE-MRI and DWI yielded an excellent sensitivity, specificity, and diagnostic accuracy (96.9%, 94.4%, and 96.0%). The TIC of DCE-MRI and ADC value of DWI for pancreatic mass were found to provide reliable information in differentiating PC from FP, and the combination of DCE-MRI and DWI can achieve a higher sensitivity, specificity, and diagnostic accuracy. PMID:27661003

  17. Quantitative Myocardial Perfusion with Dynamic Contrast-Enhanced Imaging in MRI and CT: Theoretical Models and Current Implementation

    PubMed Central

    Handayani, A.; Dijkstra, H.; Prakken, N. H. J.; Slart, R. H. J. A.; Oudkerk, M.; Van Ooijen, P. M. A.; Vliegenthart, R.; Sijens, P. E.

    2016-01-01

    Technological advances in magnetic resonance imaging (MRI) and computed tomography (CT), including higher spatial and temporal resolution, have made the prospect of performing absolute myocardial perfusion quantification possible, previously only achievable with positron emission tomography (PET). This could facilitate integration of myocardial perfusion biomarkers into the current workup for coronary artery disease (CAD), as MRI and CT systems are more widely available than PET scanners. Cardiac PET scanning remains expensive and is restricted by the requirement of a nearby cyclotron. Clinical evidence is needed to demonstrate that MRI and CT have similar accuracy for myocardial perfusion quantification as PET. However, lack of standardization of acquisition protocols and tracer kinetic model selection complicates comparison between different studies and modalities. The aim of this overview is to provide insight into the different tracer kinetic models for quantitative myocardial perfusion analysis and to address typical implementation issues in MRI and CT. We compare different models based on their theoretical derivations and present the respective consequences for MRI and CT acquisition parameters, highlighting the interplay between tracer kinetic modeling and acquisition settings. PMID:27088083

  18. Dynamic Contrast-Enhanced MRI in the Study of Brain Tumors. Comparison Between the Extended Tofts-Kety Model and a Phenomenological Universalities (PUN) Algorithm.

    PubMed

    Bergamino, Maurizio; Barletta, Laura; Castellan, Lucio; Mancardi, Gianluigi; Roccatagliata, Luca

    2015-12-01

    Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a well-established technique for studying blood-brain barrier (BBB) permeability that allows measurements to be made for a wide range of brain pathologies, including multiple sclerosis and brain tumors (BT). This latter application is particularly interesting, because high-grade gliomas are characterized by increased microvascular permeability and a loss of BBB function due to the structural abnormalities of the endothelial layer. In this study, we compared the extended Tofts-Kety (ETK) model and an extended derivate class from phenomenological universalities called EU1 in 30 adult patients with different BT grades. A total of 75 regions of interest were manually drawn on the MRI and subsequently analyzed using the ETK and EU1 algorithms. Significant linear correlations were found among the parameters obtained by these two algorithms. The means of R (2) obtained using ETK and EU1 models for high-grade tumors were 0.81 and 0.91, while those for low-grade tumors were 0.82 and 0.85, respectively; therefore, these two models are equivalent. In conclusion, we can confirm that the application of the EU1 model to the DCE-MRI experimental data might be a useful alternative to pharmacokinetic models in the study of BT, because the analytic results can be generated more quickly and easily than with the ETK model.

  19. Motion-compensated compressed sensing for dynamic contrast-enhanced MRI using regional spatiotemporal sparsity and region tracking: Block LOw-rank Sparsity with Motion-guidance (BLOSM)

    PubMed Central

    Chen, Xiao; Salerno, Michael; Yang, Yang; Epstein, Frederick H.

    2014-01-01

    Purpose Dynamic contrast-enhanced MRI of the heart is well-suited for acceleration with compressed sensing (CS) due to its spatiotemporal sparsity; however, respiratory motion can degrade sparsity and lead to image artifacts. We sought to develop a motion-compensated CS method for this application. Methods A new method, Block LOw-rank Sparsity with Motion-guidance (BLOSM), was developed to accelerate first-pass cardiac MRI, even in the presence of respiratory motion. This method divides the images into regions, tracks the regions through time, and applies matrix low-rank sparsity to the tracked regions. BLOSM was evaluated using computer simulations and first-pass cardiac datasets from human subjects. Using rate-4 acceleration, BLOSM was compared to other CS methods such as k-t SLR that employs matrix low-rank sparsity applied to the whole image dataset, with and without motion tracking, and to k-t FOCUSS with motion estimation and compensation that employs spatial and temporal-frequency sparsity. Results BLOSM was qualitatively shown to reduce respiratory artifact compared to other methods. Quantitatively, using root mean squared error and the structural similarity index, BLOSM was superior to other methods. Conclusion BLOSM, which exploits regional low rank structure and uses region tracking for motion compensation, provides improved image quality for CS-accelerated first-pass cardiac MRI. PMID:24243528

  20. Intra-Tumor Distribution and Test-Retest Comparisons of Physiological Parameters quantified by Dynamic Contrast-Enhanced MRI in Rat U251 Glioma

    PubMed Central

    Aryal, Madhava P.; Nagaraja, Tavarekere N.; Brown, Stephen L.; Lu, Mei; Bagher-Ebadian, Hassan; Ding, Guangliang; Panda, Swayamprava; Keenan, Kelly; Cabral, Glauber; Mikkelsen, Tom; Ewing, James R.

    2014-01-01

    The distribution of dynamic contrast enhanced MRI (DCE-MRI) parametric estimates in a rat U251 glioma model was analyzed. Using Magnevist as contrast agent (CA), 17 nude rats implanted with U251 cerebral glioma were studied by DCE-MRI twice in a 24 h interval. A data-driven analysis selected one of three models to estimate either: 1) CA plasma volume (vp), 2) vp and forward volume transfer constant (Ktrans; or 3) vp, Ktrans, and interstitial volume fraction (ve), constituting Models 1, 2 and 3, respectively. CA interstitial distribution volume (VD) was estimated in Model 3 regions by Logan plots. Regions of interest (ROIs) were selected by model. In the Model 3 ROI, descriptors of parameter distributions – mean, median, variance and skewness – were calculated and compared between the two time points for repeatability. All distributions of parametric estimates in Model 3 ROIs were positively skewed. Test-retest differences between population summaries for any parameter were not significant (p≥0.10; Wilcoxon signed-rank and paired t tests). This and similar measures of parametric distribution and test-retest variance from other tumor models can be used to inform the choice of biomarkers that best summarize tumor status and treatment effects. PMID:25125367

  1. Quantitative assessment of regional cerebral blood flow by dynamic susceptibility contrast-enhanced MRI, without the need for arterial blood signals

    NASA Astrophysics Data System (ADS)

    Enmi, Jun-ichiro; Kudomi, Nobuyuki; Hayashi, Takuya; Yamamoto, Akihide; Iguchi, Satoshi; Moriguchi, Tetsuaki; Hori, Yuki; Koshino, Kazuhiro; Zeniya, Tsutomu; Shah, Nadim Jon; Yamada, Naoaki; Iida, Hidehiro

    2012-12-01

    In dynamic susceptibility contrast-enhanced magnetic resonance imaging (DSC-MRI), an arterial input function (AIF) is usually obtained from a time-concentration curve (TCC) of the cerebral artery. This study was aimed at developing an alternative technique for reconstructing AIF from TCCs of multiple brain regions. AIF was formulated by a multi-exponential function using four parameters, and the parameters were determined so that the AIF curves convolved with a model of tissue response reproduced the measured TCCs for 20 regions. Systematic simulations were performed to evaluate the effects of possible error sources. DSC-MRI and positron emission tomography (PET) studies were performed on 14 patients with major cerebral artery occlusion. Cerebral blood flow (CBF) images were calculated from DSC-MRI data, using our novel method alongside conventional AIF estimations, and compared with those from 15O-PET. Simulations showed that the calculated CBF values were sensitive to variations in the assumptions regarding cerebral blood volume. Nevertheless, AIFs were reasonably reconstructed for all patients. The difference in CBF values between DSC-MRI and PET was -2.2 ± 7.4 ml/100 g/min (r = 0.55, p < 0.01) for our method, versus -0.2 ± 8.2 ml/100 g/min (r = 0.47, p = 0.01) for the conventional method. The difference in the ratio of affected to unaffected hemispheres between DSC-MRI and PET was 0.07 ± 0.09 (r = 0.82, p < 0.01) for our method, versus 0.07 ± 0.09 (r = 0.83, p < 0.01) for the conventional method. The contrasts in CBF images from our method were the same as those from the conventional method. These findings suggest the feasibility of assessing CBF without arterial blood signals.

  2. Diagnostic Accuracy of Gd-EOB-DTPA for Detection Hepatocellular Carcinoma (HCC): A Comparative Study with Dynamic Contrast Enhanced Magnetic Resonance Imaging (MRI) and Dynamic Contrast Enhanced Computed Tomography (CT)

    PubMed Central

    Imbriaco, Massimo; De Luca, Serena; Coppola, Milena; Fusari, Mario; Klain, Michele; Puglia, Marta; Mainenti, Pierpaolo; Liuzzi, Raffaele; Maurea, Simone

    2017-01-01

    Summary Background To compare the diagnostic accuracy of hepato-biliary (HB) phase with gadolinium-ethoxybenzyl-diethylenetriamine-pentaacetic acid (Gd-EOB-DTPA) with dynamic contrast-enhanced MR imaging (DCEMRI) and contrast-enhanced CT (DCECT) for hepatocellular carcinoma (HCC) detection. Material/Methods 73 patients underwent DCECT and Gd-EOB-DTPA-3T-MR. Lesions were classified using a five-point confidence scale. Reference standard was a combination of pathological evidence and tumor growth at follow-up CT/MR at 12 months. Receiver Operating Characteristic (ROC) curves were obtained. Results A total of 125 lesions were confirmed in 73 patients. As many as 74 were HCCs and 51 were benign. Area under the curve (AUC) was 0.984 for DCEMRI+HB phase vs. 0.934 for DCEMRI (p<0.68) and 0.852 for DCECT (p<0.001). For lesions >20 mm (n.40), AUC was 0.984 for DCEMRI+HB phase, 0.999 for DCEMRI, and 0.913 for DCECT, (p=n.s.). For lesions <20 mm (n.85) AUC was 0.982 for DCEMRI+HB phase vs. 0.910 for DCEMRI (p<0.01) and 0.828 for DCECT (p<0.001). Conclusions The addition of HB phase to DCEMRI provides an incremental accuracy of 4.5% compared to DCEMRI and DCECT for HCC detection. The accuracy of Gd-EOB-DTPA-3T-MR significantly improves for lesions <20 mm. No significant improvement is observed for lesions >20 mm and patients with Child-Pugh class B or C. PMID:28217239

  3. An adaptive model for rapid and direct estimation of extravascular extracellular space in dynamic contrast enhanced MRI studies.

    PubMed

    Dehkordi, Azimeh N V; Kamali-Asl, Alireza; Ewing, James R; Wen, Ning; Chetty, Indrin J; Bagher-Ebadian, Hassan

    2017-02-14

    Extravascular extracellular space (ve ) is a key parameter to characterize the tissue of cerebral tumors. This study introduces an artificial neural network (ANN) as a fast, direct, and accurate estimator of ve from a time trace of the longitudinal relaxation rate, ΔR1 (R1  = 1/T1 ), in DCE-MRI studies. Using the extended Tofts equation, a set of ΔR1 profiles was simulated in the presence of eight different signal to noise ratios. A set of gain- and noise-insensitive features was generated from the simulated ΔR1 profiles and used as the ANN training set. A K-fold cross-validation method was employed for training, testing, and optimization of the ANN. The performance of the optimal ANN (12:6:1, 12 features as input vector, six neurons in hidden layer, and one output) in estimating ve at a resolution of 10% (error of ±5%) was 82%. The ANN was applied on DCE-MRI data of 26 glioblastoma patients to estimate ve in tumor regions. Its results were compared with the maximum likelihood estimation (MLE) of ve . The two techniques showed a strong agreement (r = 0.82, p < 0.0001). Results implied that the perfected ANN was less sensitive to noise and outperformed the MLE method in estimation of ve .

  4. Identifying Triple-Negative Breast Cancer Using Background Parenchymal Enhancement Heterogeneity on Dynamic Contrast-Enhanced MRI: A Pilot Radiomics Study

    PubMed Central

    Wang, Jeff; Kato, Fumi; Oyama-Manabe, Noriko; Li, Ruijiang; Cui, Yi; Tha, Khin Khin; Yamashita, Hiroko; Kudo, Kohsuke; Shirato, Hiroki

    2015-01-01

    Objectives To determine the added discriminative value of detailed quantitative characterization of background parenchymal enhancement in addition to the tumor itself on dynamic contrast-enhanced (DCE) MRI at 3.0 Tesla in identifying “triple-negative" breast cancers. Materials and Methods In this Institutional Review Board-approved retrospective study, DCE-MRI of 84 women presenting 88 invasive carcinomas were evaluated by a radiologist and analyzed using quantitative computer-aided techniques. Each tumor and its surrounding parenchyma were segmented semi-automatically in 3-D. A total of 85 imaging features were extracted from the two regions, including morphologic, densitometric, and statistical texture measures of enhancement. A small subset of optimal features was selected using an efficient sequential forward floating search algorithm. To distinguish triple-negative cancers from other subtypes, we built predictive models based on support vector machines. Their classification performance was assessed with the area under receiver operating characteristic curve (AUC) using cross-validation. Results Imaging features based on the tumor region achieved an AUC of 0.782 in differentiating triple-negative cancers from others, in line with the current state of the art. When background parenchymal enhancement features were included, the AUC increased significantly to 0.878 (p<0.01). Similar improvements were seen in nearly all subtype classification tasks undertaken. Notably, amongst the most discriminating features for predicting triple-negative cancers were textures of background parenchymal enhancement. Conclusions Considering the tumor as well as its surrounding parenchyma on DCE-MRI for radiomic image phenotyping provides useful information for identifying triple-negative breast cancers. Heterogeneity of background parenchymal enhancement, characterized by quantitative texture features on DCE-MRI, adds value to such differentiation models as they are strongly

  5. Water-Exchange-Modified Kinetic Parameters from Dynamic Contrast-Enhanced MRI as Prognostic Biomarkers of Survival in Advanced Hepatocellular Carcinoma Treated with Antiangiogenic Monotherapy

    PubMed Central

    Lee, Sang Ho; Hayano, Koichi; Zhu, Andrew X.; Sahani, Dushyant V.; Yoshida, Hiroyuki

    2015-01-01

    Background To find prognostic biomarkers in pretreatment dynamic contrast-enhanced MRI (DCE-MRI) water-exchange-modified (WX) kinetic parameters for advanced hepatocellular carcinoma (HCC) treated with antiangiogenic monotherapy. Methods Twenty patients with advanced HCC underwent DCE-MRI and were subsequently treated with sunitinib. Pretreatment DCE-MRI data on advanced HCC were analyzed using five different WX kinetic models: the Tofts-Kety (WX-TK), extended TK (WX-ETK), two compartment exchange, adiabatic approximation to tissue homogeneity (WX-AATH), and distributed parameter (WX-DP) models. The total hepatic blood flow, arterial flow fraction (γ), arterial blood flow (BFA), portal blood flow, blood volume, mean transit time, permeability-surface area product, fractional interstitial volume (vI), extraction fraction, mean intracellular water molecule lifetime (τC), and fractional intracellular volume (vC) were calculated. After receiver operating characteristic analysis with leave-one-out cross-validation, individual parameters for each model were assessed in terms of 1-year-survival (1YS) discrimination using Kaplan-Meier analysis, and association with overall survival (OS) using univariate Cox regression analysis with permutation testing. Results The WX-TK-model-derived γ (P = 0.022) and vI (P = 0.010), and WX-ETK-model-derived τC (P = 0.023) and vC (P = 0.042) were statistically significant prognostic biomarkers for 1YS. Increase in the WX-DP-model-derived BFA (P = 0.025) and decrease in the WX-TK, WX-ETK, WX-AATH, and WX-DP-model-derived vC (P = 0.034, P = 0.038, P = 0.028, P = 0.041, respectively) were significantly associated with an increase in OS. Conclusions The WX-ETK-model-derived vC was an effective prognostic biomarker for advanced HCC treated with sunitinib. PMID:26366997

  6. Dynamic Contrast Enhanced MRI Assessing the Antiangiogenic Effect of Silencing HIF-1α with Targeted Multifunctional ECO/siRNA Nanoparticles.

    PubMed

    Malamas, Anthony S; Jin, Erlei; Gujrati, Maneesh; Lu, Zheng-Rong

    2016-07-05

    Stabilization of hypoxia inducible factor 1α (HIF-1α), a biomarker of hypoxia, in hypoxic tumors mediates a variety of downstream genes promoting tumor angiogenesis and cancer cell survival as well as invasion, and compromising therapeutic outcome. In this study, dynamic contrast enhanced MRI (DCE-MRI) with a biodegradable macromolecular MRI contrast agent was used to noninvasively assess the antiangiogenic effect of RGD-targeted multifunctional lipid ECO/siHIF-1α nanoparticles in a mouse HT29 colon cancer model. The RGD-targeted ECO/siHIF-1α nanoparticles resulted in over 50% reduction in tumor size after intravenous injection at a dose of 2.0 mg of siRNA/kg every 3 days for 3 weeks compared to a saline control. DCE-MRI revealed significant decline in vascularity and over a 70% reduction in the tumor blood flow, permeability-surface area product, and plasma volume fraction vascular parameters in the tumor treated with the targeted ECO/siHIF-1α nanoparticles. The treatment with targeted ECO/siRNA nanoparticles resulted in significant silencing of HIF-1α expression at the protein level, which also significantly suppressed the expression of VEGF, Glut-1, HKII, PDK-1, LDHA, and CAIX, which are all important players in tumor angiogenesis, glycolytic metabolism, and pH regulation. By possessing the ability to elicit a multifaceted effect on tumor biology, silencing HIF-1α with RGD-targeted ECO/siHIF-1α nanoparticles has great promise as a single therapy or in combination with traditional chemotherapy or radiation strategies to improve cancer treatment.

  7. Measurement of blood-brain barrier permeability with t1-weighted dynamic contrast-enhanced MRI in brain tumors: a comparative study with two different algorithms.

    PubMed

    Bergamino, Maurizio; Saitta, Laura; Barletta, Laura; Bonzano, Laura; Mancardi, Giovanni Luigi; Castellan, Lucio; Ravetti, Jean Louis; Roccatagliata, Luca

    2013-01-01

    The purpose of this study was to assess the feasibility of measuring different permeability parameters with T1-weighted dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) in order to investigate the blood brain-barrier permeability associated with different brain tumors. The Patlak algorithm and the extended Tofts-Kety model were used to this aim. Twenty-five adult patients with tumors of different histological grades were enrolled in this study. MRI examinations were performed at 1.5 T. Multiflip angle, fast low-angle shot, and axial 3D T1-weighted images were acquired to calculate T1 maps, followed by a DCE acquisition. A region of interest was placed within the tumor of each patient to calculate the mean value of different permeability parameters. Differences in permeability measurements were found between different tumor grades, with higher histological grades characterized by higher permeability values. A significant difference in transfer constant (K (trans)) values was found between the two methods on high-grade tumors; however, both techniques revealed a significant correlation between the histological grade of tumors and their K (trans) values. Our results suggest that DCE acquisition is feasible in patients with brain tumors and that K (trans) maps can be easily obtained by these two algorithms, even if the theoretical model adopted could affect the final results.

  8. Dynamic contrast-enhanced MRI as a valuable non-invasive tool to evaluate tissue perfusion of free flaps: Preliminary results.

    PubMed

    Fellner, Claudia; Jung, Ernst M; Prantl, Lukas

    2010-01-01

    Early detection of a compromised circulation of free flaps and an immediate revision may lead to higher rates of flap salvage. The aim of this study was to evaluate the perfusion of the entire flap using dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI). DCE was performed in 11 patients after flap transplantation using an optimized 3D gradient echo sequence to cover the whole flap. The percentage increase of signal intensity over time was evaluated for the free flap as well as for a reference tissue. Furthermore, normalized signal increase was calculated as the ratio of signal increase within the flaps to the signal increase in the reference tissue. Signal increase in free flaps and reference tissue was compared using the Wilcoxon-test (p < 0.05), normalized signal increase in normally perfused (n = 9) and in flaps with compromised perfusion (n = 2) using Mann-Whitney-test (p < 0.05). Signal increase within normally perfused flaps was similar to the reference tissue. In flaps with compromised perfusion the increase was significantly lower than in reference tissue. Normalized signal increase in adequately perfused flaps and flaps with compromised perfusion also showed a significant difference. DCE MRI may be a valuable non-invasive tool to evaluate tissue perfusion of the complete free flap.

  9. Optimization of saturation-recovery dynamic contrast-enhanced MRI acquisition protocol: monte carlo simulation approach demonstrated with gadolinium MR renography

    PubMed Central

    Zhang, Jeff L.; Conlin, Chris C.; Carlston, Kristi; Xie, Luke; Kim, Daniel; Morrell, Glen; Morton, Kathryn; Lee, Vivian S.

    2016-01-01

    Dynamic contrast-enhanced (DCE) MRI is widely used for the measurement of tissue perfusion and to assess organ function. MR renography, which is acquired using a DCE sequence, can measure renal perfusion, filtration and concentrating ability. Optimization of the DCE acquisition protocol is important for the minimization of the error propagation from the acquired signals to the estimated parameters, thus improving the precision of the parameters. Critical to the optimization of contrast-enhanced T1-weighted protocols is the balance of the T1-shortening effect across the range of gadolinium (Gd) contrast concentration in the tissue of interest. In this study, we demonstrate a Monte Carlo simulation approach for the optimization of DCE MRI, in which a saturation-recovery T1-weighted gradient echo sequence is simulated and the impact of injected dose (D) and time delay (TD, for saturation recovery) is tested. The results show that high D and/or high TD cause saturation of the peak arterial signals and lead to an overestimation of renal plasma flow (RPF) and glomerular filtration rate (GFR). However, the use of low TD (e.g. 100 ms) and low D leads to similar errors in RPF and GFR, because of the Rician bias in the pre-contrast arterial signals. Our patient study including 22 human subjects compared TD values of 100 and 300 ms after the injection of 4 mL of Gd contrast for MR renography. At TD = 100 ms, we computed an RPF value of 157.2 ± 51.7 mL/min and a GFR of 33.3 ± 11.6 mL/min. These results were all significantly higher than the parameter estimates at TD = 300 ms: RPF = 143.4 ± 48.8 mL/min (p = 0.0006) and GFR = 30.2 ± 11.5 mL/min (p = 0.0015). In conclusion, appropriate optimization of the DCE MRI protocol using simulation can effectively improve the precision and, potentially, the accuracy of the measured parameters. PMID:27200499

  10. Value of intravoxel incoherent motion and dynamic contrast-enhanced MRI for predicting the early and short-term responses to chemoradiotherapy in nasopharyngeal carcinoma

    PubMed Central

    Hou, Jing; Yu, Xiaoping; Hu, Yin; Li, Feiping; Xiang, Wang; Wang, Lanlan; Wang, Hui; Lu, Qiang; Zhang, Zhongping; Zeng, Wenbin

    2016-01-01

    Abstract The aim of the study was to investigate the value of intravoxel incoherent motion diffusion-weighted magnetic resonance imaging (IVIM-DWI) and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in predicting the early and short-term responses to chemoradiotherapy (CRT) in patients with nasopharyngeal carcinoma (NPC). Forty-three NPC patients underwent IVIM-DWI and DCE-MRI at baseline (pretreatment) and after the first cycle of induction chemotherapy (posttreatment). Based on whether locoregional lesions were identified, patients were divided into the residual and nonresidual groups at the end of CRT and into the good-responder and poor-responder groups 6 months after the end of CRT. The pretreatment and posttreatment IVIM-DWI parameters (ADC, D, D∗, and f) and DCE-MRI parameters (Ktrans, Kep, and Ve) values and their percentage changes (Δ%) were compared between the residual and nonresidual groups and between the good-responder and poor-responder groups. None of perfusion-related parametric values derived from either DCE-MRI or IVIM-DWI showed significant differences either between the residual and nonresidual groups or between the good-responder and poor-responder groups. The nonresidual group exhibited lower pre-ADC, lower pre-D, and higher Δ%D values than did the residual group (all P <0.05). The good-responder group had lower pre-D and pre-ADC values than did the poor-responder group (both P <0.05). Based on receiver operating characteristic (ROC) curve analysis, pre-D had the highest area under the curve in predicting both the early and short-term responses to CRT for NPC patients (0.817 and 0.854, respectively). IVIM-DWI is more valuable than DCE-MRI in predicting the early and short-term response to CRT for NPC, and furthermore diffusion-related IVIM-DWI parameters (pre-ADC, pre-D, and Δ%D) are more powerful than perfusion-related parameters derived from both IVIM-DWI and DCE-MRI. PMID:27583847

  11. The value of resting-state functional MRI in subacute ischemic stroke: comparison with dynamic susceptibility contrast-enhanced perfusion MRI.

    PubMed

    Ni, Ling; Li, Jingwei; Li, Weiping; Zhou, Fei; Wang, Fangfang; Schwarz, Christopher G; Liu, Renyuan; Zhao, Hui; Wu, Wenbo; Zhang, Xin; Li, Ming; Yu, Haiping; Zhu, Bin; Villringer, Arno; Zang, Yufeng; Zhang, Bing; Lv, Yating; Xu, Yun

    2017-01-31

    To evaluate the potential clinical value of the time-shift analysis (TSA) approach for resting-state fMRI (rs-fMRI) blood oxygenation level-dependent (BOLD) data in detecting hypoperfusion of subacute stroke patients through comparison with dynamic susceptibility contrast perfusion weighted imaging (DSC-PWI). Forty patients with subacute stroke (3-14 days after neurological symptom onset) underwent MRI examination. Cohort A: 31 patients had MRA, DSC-PWI and BOLD data. Cohort B: 9 patients had BOLD and MRA data. The time delay between the BOLD time course in each voxel and the mean signal of global and contralateral hemisphere was calculated using TSA. Time to peak (TTP) was employed to detect hypoperfusion. Among cohort A, 14 patients who had intracranial large-vessel occlusion/stenosis with sparse collaterals showed hypoperfusion by both of the two approaches, one with abundant collaterals showed neither TTP nor TSA time delay. The remaining 16 patients without obvious MRA lesions showed neither TTP nor TSA time delay. Among cohort B, eight patients showed time delay areas. The TSA approach was a promising alternative to DSC-PWI for detecting hypoperfusion in subacute stroke patients who had obvious MRA lesions with sparse collaterals, those with abundant collaterals would keep intact local perfusion.

  12. The value of resting-state functional MRI in subacute ischemic stroke: comparison with dynamic susceptibility contrast-enhanced perfusion MRI

    PubMed Central

    Ni, Ling; Li, Jingwei; Li, Weiping; Zhou, Fei; Wang, Fangfang; Schwarz, Christopher G.; Liu, Renyuan; Zhao, Hui; Wu, Wenbo; Zhang, Xin; Li, Ming; Yu, Haiping; Zhu, Bin; Villringer, Arno; Zang, Yufeng; Zhang, Bing; Lv, Yating; Xu, Yun

    2017-01-01

    To evaluate the potential clinical value of the time-shift analysis (TSA) approach for resting-state fMRI (rs-fMRI) blood oxygenation level-dependent (BOLD) data in detecting hypoperfusion of subacute stroke patients through comparison with dynamic susceptibility contrast perfusion weighted imaging (DSC-PWI). Forty patients with subacute stroke (3–14 days after neurological symptom onset) underwent MRI examination. Cohort A: 31 patients had MRA, DSC-PWI and BOLD data. Cohort B: 9 patients had BOLD and MRA data. The time delay between the BOLD time course in each voxel and the mean signal of global and contralateral hemisphere was calculated using TSA. Time to peak (TTP) was employed to detect hypoperfusion. Among cohort A, 14 patients who had intracranial large-vessel occlusion/stenosis with sparse collaterals showed hypoperfusion by both of the two approaches, one with abundant collaterals showed neither TTP nor TSA time delay. The remaining 16 patients without obvious MRA lesions showed neither TTP nor TSA time delay. Among cohort B, eight patients showed time delay areas. The TSA approach was a promising alternative to DSC-PWI for detecting hypoperfusion in subacute stroke patients who had obvious MRA lesions with sparse collaterals, those with abundant collaterals would keep intact local perfusion. PMID:28139701

  13. Dynamic susceptibility contrast and dynamic contrast-enhanced MRI characteristics to distinguish microcystic meningiomas from traditional Grade I meningiomas and high-grade gliomas.

    PubMed

    Hussain, Namath S; Moisi, Marc D; Keogh, Bart; McCullough, Brendan J; Rostad, Steven; Newell, David; Gwinn, Ryder; Foltz, Gregory; Mayberg, Marc; Aguedan, Brian; Good, Valerie; Fouke, Sarah J

    2016-06-10

    OBJECTIVE Microcystic meningioma (MM) is a meningioma variant with a multicystic appearance that may mimic intrinsic primary brain tumors and other nonmeningiomatous tumor types. Dynamic susceptibility contrast (DSC) and dynamic contrast-enhanced (DCE) MRI techniques provide imaging parameters that can differentiate these tumors according to hemodynamic and permeability characteristics with the potential to aid in preoperative identification of tumor type. METHODS The medical data of 18 patients with a histopathological diagnosis of MM were identified through a retrospective review of procedures performed between 2008 and 2012; DSC imaging data were available for 12 patients and DCE imaging data for 6. A subcohort of 12 patients with Grade I meningiomas (i.e., of meningoepithelial subtype) and 54 patients with Grade IV primary gliomas (i.e., astrocytomas) was also included, and all preoperative imaging sequences were analyzed. Clinical variables including patient sex, age, and surgical blood loss were also included in the analysis. Images were acquired at both 1.5 and 3.0 T. The DSC images were acquired at a temporal resolution of either 1500 msec (3.0 T) or 2000 msec (1.5 T). In all cases, parameters including normalized cerebral blood volume (CBV) and transfer coefficient (kTrans) were calculated with region-of-interest analysis of enhancing tumor volume. The normalized CBV and kTrans data from the patient groups were analyzed with 1-way ANOVA, and post hoc statistical comparisons among groups were conducted with the Bonferroni adjustment. RESULTS Preoperative DSC imaging indicated mean (± SD) normalized CBVs of 5.7 ± 2.2 ml for WHO Grade I meningiomas of the meningoepithelial subtype (n = 12), 4.8 ± 1.8 ml for Grade IV astrocytomas (n = 54), and 12.3 ± 3.8 ml for Grade I meningiomas of the MM subtype (n = 12). The normalized CBV measured within the enhancing portion of the tumor was significantly higher in the MM subtype than in typical meningiomas and Grade

  14. Dynamic Contrast-Enhanced MRI of Gd-albumin Delivery to the Rat Hippocampus In Vivo by Convection-Enhanced Delivery

    PubMed Central

    Kim, Jung Hwan; Astary, Garrett W.; Nobrega, Tatiana L.; Kantorovich, Svetlana; Carney, Paul R.; Mareci, Thomas H.; Sarntinoranont, Malisa

    2013-01-01

    Convection enhanced delivery (CED) shows promise in treating neurological diseases due to its ability to circumvent the blood-brain barrier (BBB) and deliver therapeutics directly to the parenchyma of the central nervous system (CNS). Such a drug delivery method may be useful in treating CNS disorders involving the hippocampus such temporal lobe epilepsy and gliomas; however, the influence of anatomical structures on infusate distribution is not fully understood. As a surrogate for therapeutic agents, we used gadolinium-labeled-albumin (Gd-albumin) tagged with Evans blue dye to observe the time dependence of CED infusate distributions into the rat dorsal and ventral hippocampus in vivo with dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). For finer anatomical detail, final distribution volumes (Vd) of the infusate were observed with high-resolution T1-weighted MR imaging and light microscopy of fixed brain sections. Dynamic images demonstrated that Gd-albumin preferentially distributed within the hippocampus along neuroanatomical structures with less fluid resistance and less penetration was observed in dense cell layers. Furthermore, significant leakage into adjacent cerebrospinal fluid (CSF) spaces such as the hippocampal fissure, velum interpositum and midbrain cistern occurred toward the end of infusion. Vd increased linearly with infusion volume (Vi) at a mean Vd/Vi ratio of 5.51 ± 0.55 for the dorsal hippocampus infusion and 5.30 ± 0.83 for the ventral hippocampus infusion. This study demonstrated the significant effects of tissue structure and CSF space boundaries on infusate distribution during CED. PMID:22687936

  15. Assessment of Blood-Brain Barrier Permeability by Dynamic Contrast-Enhanced MRI in Transient Middle Cerebral Artery Occlusion Model after Localized Brain Cooling in Rats

    PubMed Central

    Kim, Eun Soo; Kwon, Mi Jung; Lee, Phil Hye; Ju, Young-Su; Yoon, Dae Young; Kim, Hye Jeong; Lee, Kwan Seop

    2016-01-01

    Objective The purpose of this study was to evaluate the effects of localized brain cooling on blood-brain barrier (BBB) permeability following transient middle cerebral artery occlusion (tMCAO) in rats, by using dynamic contrast-enhanced (DCE)-MRI. Materials and Methods Thirty rats were divided into 3 groups of 10 rats each: control group, localized cold-saline (20℃) infusion group, and localized warm-saline (37℃) infusion group. The left middle cerebral artery (MCA) was occluded for 1 hour in anesthetized rats, followed by 3 hours of reperfusion. In the localized saline infusion group, 6 mL of cold or warm saline was infused through the hollow filament for 10 minutes after MCA occlusion. DCE-MRI investigations were performed after 3 hours and 24 hours of reperfusion. Pharmacokinetic parameters of the extended Tofts-Kety model were calculated for each DCE-MRI. In addition, rotarod testing was performed before tMCAO, and on days 1-9 after tMCAO. Myeloperoxidase (MPO) immunohisto-chemistry was performed to identify infiltrating neutrophils associated with the inflammatory response in the rat brain. Results Permeability parameters showed no statistical significance between cold and warm saline infusion groups after 3-hour reperfusion 0.09 ± 0.01 min-1 vs. 0.07 ± 0.02 min-1, p = 0.661 for Ktrans; 0.30 ± 0.05 min-1 vs. 0.37 ± 0.11 min-1, p = 0.394 for kep, respectively. Behavioral testing revealed no significant difference among the three groups. However, the percentage of MPO-positive cells in the cold-saline group was significantly lower than those in the control and warm-saline groups (p < 0.05). Conclusion Localized brain cooling (20℃) does not confer a benefit to inhibit the increase in BBB permeability that follows transient cerebral ischemia and reperfusion in an animal model, as compared with localized warm-saline (37℃) infusion group. PMID:27587960

  16. A model-constrained Monte Carlo method for blind arterial input function estimation in dynamic contrast-enhanced MRI: I. Simulations.

    PubMed

    Schabel, Matthias C; Fluckiger, Jacob U; DiBella, Edward V R

    2010-08-21

    Widespread adoption of quantitative pharmacokinetic modeling methods in conjunction with dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has led to increased recognition of the importance of obtaining accurate patient-specific arterial input function (AIF) measurements. Ideally, DCE-MRI studies use an AIF directly measured in an artery local to the tissue of interest, along with measured tissue concentration curves, to quantitatively determine pharmacokinetic parameters. However, the numerous technical and practical difficulties associated with AIF measurement have made the use of population-averaged AIF data a popular, if sub-optimal, alternative to AIF measurement. In this work, we present and characterize a new algorithm for determining the AIF solely from the measured tissue concentration curves. This Monte Carlo blind estimation (MCBE) algorithm estimates the AIF from the subsets of D concentration-time curves drawn from a larger pool of M candidate curves via nonlinear optimization, doing so for multiple (Q) subsets and statistically averaging these repeated estimates. The MCBE algorithm can be viewed as a generalization of previously published methods that employ clustering of concentration-time curves and only estimate the AIF once. Extensive computer simulations were performed over physiologically and experimentally realistic ranges of imaging and tissue parameters, and the impact of choosing different values of D and Q was investigated. We found the algorithm to be robust, computationally efficient and capable of accurately estimating the AIF even for relatively high noise levels, long sampling intervals and low diversity of tissue curves. With the incorporation of bootstrapping initialization, we further demonstrated the ability to blindly estimate AIFs that deviate substantially in shape from the population-averaged initial guess. Pharmacokinetic parameter estimates for K(trans), k(ep), v(p) and v(e) all showed relative biases and

  17. A model-constrained Monte Carlo method for blind arterial input function estimation in dynamic contrast-enhanced MRI: II. In vivo results

    NASA Astrophysics Data System (ADS)

    Schabel, Matthias C.; DiBella, Edward V. R.; Jensen, Randy L.; Salzman, Karen L.

    2010-08-01

    Accurate quantification of pharmacokinetic model parameters in tracer kinetic imaging experiments requires correspondingly accurate determination of the arterial input function (AIF). Despite significant effort expended on methods of directly measuring patient-specific AIFs in modalities as diverse as dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), dynamic positron emission tomography (PET), and perfusion computed tomography (CT), fundamental and technical difficulties have made consistent and reliable achievement of that goal elusive. Here, we validate a new algorithm for AIF determination, the Monte Carlo blind estimation (MCBE) method (which is described in detail and characterized by extensive simulations in a companion paper), by comparing AIFs measured in DCE-MRI studies of eight brain tumor patients with results of blind estimation. Blind AIFs calculated with the MCBE method using a pool of concentration-time curves from a region of normal brain tissue were found to be quite similar to the measured AIFs, with statistically significant decreases in fit residuals observed in six of eight patients. Biases between the blind and measured pharmacokinetic parameters were the dominant source of error. Averaged over all eight patients, the mean biases were +7% in K trans, 0% in kep, -11% in vp and +10% in ve. Corresponding uncertainties (median absolute deviation from the best fit line) were 0.0043 min-1 in K trans, 0.0491 min-1 in kep, 0.29% in vp and 0.45% in ve. The use of a published population-averaged AIF resulted in larger mean biases in three of the four parameters (-23% in K trans, -22% in kep, -63% in vp), with the bias in ve unchanged, and led to larger uncertainties in all four parameters (0.0083 min-1 in K trans, 0.1038 min-1 in kep, 0.31% in vp and 0.95% in ve). When blind AIFs were calculated from a region of tumor tissue, statistically significant decreases in fit residuals were observed in all eight patients despite larger

  18. Multimodality Functional Imaging in Radiation Therapy Planning: Relationships between Dynamic Contrast-Enhanced MRI, Diffusion-Weighted MRI, and 18F-FDG PET

    PubMed Central

    Mera Iglesias, Moisés; Aramburu Núñez, David; del Olmo Claudio, José Luis; Salvador Gómez, Francisco; Driscoll, Brandon; Coolens, Catherine; Alba Castro, José L.; Muñoz, Victor

    2015-01-01

    Objectives. Biologically guided radiotherapy needs an understanding of how different functional imaging techniques interact and link together. We analyse three functional imaging techniques that can be useful tools for achieving this objective. Materials and Methods. The three different imaging modalities from one selected patient are ADC maps, DCE-MRI, and 18F-FDG PET/CT, because they are widely used and give a great amount of complementary information. We show the relationship between these three datasets and evaluate them as markers for tumour response or hypoxia marker. Thus, vascularization measured using DCE-MRI parameters can determine tumour hypoxia, and ADC maps can be used for evaluating tumour response. Results. ADC and DCE-MRI include information from 18F-FDG, as glucose metabolism is associated with hypoxia and tumour cell density, although 18F-FDG includes more information about the malignancy of the tumour. The main disadvantage of ADC maps is the distortion, and we used only low distorted regions, and extracellular volume calculated from DCE-MRI can be considered equivalent to ADC in well-vascularized areas. Conclusion. A dataset for achieving the biologically guided radiotherapy must include a tumour density study and a hypoxia marker. This information can be achieved using only MRI data or only PET/CT studies or mixing both datasets. PMID:25788972

  19. Simultaneous segmentation and registration of contrast-enhanced breast MRI.

    PubMed

    Xiaohua, Chen; Brady, Michael; Lo, Jonathan Lok-Chuen; Moore, Niall

    2005-01-01

    Breast Contrast-Enhanced MRI (ce-MRI) requires a series of images to be acquired before, and repeatedly after, intravenous injection of a contrast agent. Breast MRI segmentation based on the differential enhancement of image intensities can assist the clinician detect suspicious regions. Image registration between the temporal data sets is necessary to compensate for patient motion, which is quite often substantial. Although segmentation and registration are usually treated as separate problems in medical image analysis, they can naturally benefit a great deal from each other. In this paper, we propose a scheme for simultaneous segmentation and registration of breast ce-MRI. It is developed within a Bayesian framework, based on a maximum a posteriori estimation method. A pharmacokinetic model and Markov Random Field model have been incorporated into the framework in order to improve the performance of our algorithm. Our method has been applied to the segmentation and registration of clinical ce-MR images. The results show the potential of our methodology to extract useful information for breast cancer detection.

  20. Noninvasive assessment of pulmonary emphysema using dynamic contrast-enhanced magnetic resonance imaging.

    PubMed

    Morino, Shigeyuki; Toba, Toshinari; Araki, Masato; Azuma, Takashi; Tsutsumi, Sadami; Tao, Hiroyuki; Nakamura, Tatsuo; Nagayasu, Takeshi; Tagawa, Tsutomu

    2006-01-01

    Emphysema tends to be complicated by diffuse abnormalities in the pulmonary peripheral microvasculature. The aim of this study was to evaluate whether dynamic contrast-enhanced magnetic resonance imaging (MRI) could provide a valid assessment of pulmonary blood flow as an indicator of the severity of emphysema. To do this, the authors compared MRI data with the pathological findings in lung tissue. Dynamic contrast-enhanced MRI is a noninvasive method and can be used to repeatedly monitor clinicopathological severity. Using MRI clear pulmonary vascular information can be obtained easily, and the relative pulmonary blood flow in the lung parenchyma can be quantified.

  1. TU-F-CAMPUS-J-02: Evaluation of Textural Feature Extraction for Radiotherapy Response Assessment of Early Stage Breast Cancer Patients Using Diffusion Weighted MRI and Dynamic Contrast Enhanced MRI

    SciTech Connect

    Xie, Y; Wang, C; Horton, J; Chang, Z

    2015-06-15

    Purpose: To investigate the feasibility of using classic textural feature extraction in radiotherapy response assessment, we studied a unique cohort of early stage breast cancer patients with paired pre - and post-radiation Diffusion Weighted MRI (DWI-MRI) and Dynamic Contrast Enhanced MRI (DCE-MRI). Methods: 15 female patients from our prospective phase I trial evaluating preoperative radiotherapy were included in this retrospective study. Each patient received a single-fraction radiation treatment, and DWI and DCE scans were conducted before and after the radiotherapy. DWI scans were acquired using a spin-echo EPI sequence with diffusion weighting factors of b = 0 and b = 500 mm{sup 2} /s, and the apparent diffusion coefficient (ADC) maps were calculated. DCE-MRI scans were acquired using a T{sub 1}-weighted 3D SPGR sequence with a temporal resolution of about 1 minute. The contrast agent (CA) was intravenously injected with a 0.1 mmol/kg bodyweight dose at 2 ml/s. Two parameters, volume transfer constant (K{sup trans} ) and k{sub ep} were analyzed using the two-compartment Tofts kinetic model. For DCE parametric maps and ADC maps, 33 textural features were generated from the clinical target volume (CTV) in a 3D fashion using the classic gray level co-occurrence matrix (GLCOM) and gray level run length matrix (GLRLM). Wilcoxon signed-rank test was used to determine the significance of each texture feature’s change after the radiotherapy. The significance was set to 0.05 with Bonferroni correction. Results: For ADC maps calculated from DWI-MRI, 24 out of 33 CTV features changed significantly after the radiotherapy. For DCE-MRI pharmacokinetic parameters, all 33 CTV features of K{sup trans} and 33 features of k{sub ep} changed significantly. Conclusion: Initial results indicate that those significantly changed classic texture features are sensitive to radiation-induced changes and can be used for assessment of radiotherapy response in breast cancer.

  2. Image fusion for dynamic contrast enhanced magnetic resonance imaging

    PubMed Central

    Twellmann, Thorsten; Saalbach, Axel; Gerstung, Olaf; Leach, Martin O; Nattkemper, Tim W

    2004-01-01

    Background Multivariate imaging techniques such as dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) have been shown to provide valuable information for medical diagnosis. Even though these techniques provide new information, integrating and evaluating the much wider range of information is a challenging task for the human observer. This task may be assisted with the use of image fusion algorithms. Methods In this paper, image fusion based on Kernel Principal Component Analysis (KPCA) is proposed for the first time. It is demonstrated that a priori knowledge about the data domain can be easily incorporated into the parametrisation of the KPCA, leading to task-oriented visualisations of the multivariate data. The results of the fusion process are compared with those of the well-known and established standard linear Principal Component Analysis (PCA) by means of temporal sequences of 3D MRI volumes from six patients who took part in a breast cancer screening study. Results The PCA and KPCA algorithms are able to integrate information from a sequence of MRI volumes into informative gray value or colour images. By incorporating a priori knowledge, the fusion process can be automated and optimised in order to visualise suspicious lesions with high contrast to normal tissue. Conclusion Our machine learning based image fusion approach maps the full signal space of a temporal DCE-MRI sequence to a single meaningful visualisation with good tissue/lesion contrast and thus supports the radiologist during manual image evaluation. PMID:15494072

  3. Accuracy of percentage of signal intensity recovery and relative cerebral blood volume derived from dynamic susceptibility-weighted, contrast-enhanced MRI in the preoperative diagnosis of cerebral tumours

    PubMed Central

    Steel, Timothy; Chaganti, Joga

    2015-01-01

    Conventional magnetic resonance imaging (MRI) is the technique of choice for diagnosis of cerebral tumours, and has become an increasingly powerful tool for their evaluation; however, the diagnosis of common contrast-enhancing lesions can be challenging, as it is sometimes impossible to differentiate them using conventional imaging. Histopathological analysis of biopsy specimens is the gold standard for diagnosis; however, there are significant risks associated with the invasive procedure and definitive diagnosis is not always achieved. Early accurate diagnosis is important, as management differs accordingly. Advanced MRI techniques have increasing utility for aiding diagnosis in a variety of clinical scenarios. Dynamic susceptibility-weighted contrast-enhanced (DSC) MRI is a perfusion imaging technique and a potentially important tool for the characterisation of cerebral tumours. The percentage of signal intensity recovery (PSR) and relative cerebral blood volume (rCBV) derived from DSC MRI provide information about tumour capillary permeability and neoangiogenesis, which can be used to characterise tumour type and grade, and distinguish tumour recurrence from treatment-related effects. Therefore, PSR and rCBV potentially represent a non-invasive means of diagnosis; however, the clinical utility of these parameters has yet to be established. We present a review of the literature to date. PMID:26475485

  4. Contrast-enhanced dynamic MRI protocol with improved spatial and time resolution for in vivo microimaging of the mouse with a 1.5-T body scanner and a superconducting surface coil.

    PubMed

    Ginefri, Jean-Christophe; Poirier-Quinot, Marie; Robert, Philippe; Darrasse, Luc

    2005-02-01

    Magnetic resonance imaging (MRI) is well suited for small animal model investigations to study various human pathologies. However, the assessment of microscopic information requires a high-spatial resolution (HSR) leading to a critical problem of signal-to-noise ratio limitations in standard whole-body imager. As contrast mechanisms are field dependent, working at high field do not allow to derive MRI criteria that may apply to clinical settings done in standard whole-body systems. In this work, a contrast-enhanced dynamic MRI protocol with improved spatial and time resolution was used to perform in vivo tumor model imaging on the mouse at 1.5 T. The needed sensitivity is provided by the use of a 12-mm superconducting surface coil operating at 77 K. High quality in vivo images were obtained and revealed well-defined internal structures of the tumor. A 3-D HSR sequence with voxels of 59x59x300 microm3 encoded within 6.9 min and a 2-D sequence with subsecond acquisition time and isotropic in-plane resolution of 234 microm were used to analyze the contrast enhancement kinetics in tumoral structures at long and short time scales. This work is a first step to better characterize and differentiate the dynamic behavior of tumoral heterogeneities.

  5. Dynamic contrast enhanced MRI detects early response to adoptive NK cellular immunotherapy targeting the NG2 proteoglycan in a rat model of glioblastoma.

    PubMed

    Rygh, Cecilie Brekke; Wang, Jian; Thuen, Marte; Gras Navarro, Andrea; Huuse, Else Marie; Thorsen, Frits; Poli, Aurelie; Zimmer, Jacques; Haraldseth, Olav; Lie, Stein Atle; Enger, Per Øyvind; Chekenya, Martha

    2014-01-01

    There are currently no established radiological parameters that predict response to immunotherapy. We hypothesised that multiparametric, longitudinal magnetic resonance imaging (MRI) of physiological parameters and pharmacokinetic models might detect early biological responses to immunotherapy for glioblastoma targeting NG2/CSPG4 with mAb9.2.27 combined with natural killer (NK) cells. Contrast enhanced conventional T1-weighted MRI at 7±1 and 17±2 days post-treatment failed to detect differences in tumour size between the treatment groups, whereas, follow-up scans at 3 months demonstrated diminished signal intensity and tumour volume in the surviving NK+mAb9.2.27 treated animals. Notably, interstitial volume fraction (ve), was significantly increased in the NK+mAb9.2.27 combination therapy group compared mAb9.2.27 and NK cell monotherapy groups (p = 0.002 and p = 0.017 respectively) in cohort 1 animals treated with 1 million NK cells. ve was reproducibly increased in the combination NK+mAb9.2.27 compared to NK cell monotherapy in cohort 2 treated with increased dose of 2 million NK cells (p<0.0001), indicating greater cell death induced by NK+mAb9.2.27 treatment. The interstitial volume fraction in the NK monotherapy group was significantly reduced compared to mAb9.2.27 monotherapy (p<0.0001) and untreated controls (p = 0.014) in the cohort 2 animals. NK cells in monotherapy were unable to kill the U87MG cells that highly expressed class I human leucocyte antigens, and diminished stress ligands for activating receptors. A significant association between apparent diffusion coefficient (ADC) of water and ve in combination NK+mAb9.2.27 and NK monotherapy treated tumours was evident, where increased ADC corresponded to reduced ve in both cases. Collectively, these data support histological measures at end-stage demonstrating diminished tumour cell proliferation and pronounced apoptosis in the NK+mAb9.2.27 treated tumours compared to the other groups. In

  6. Dynamic Contrast Enhanced MRI Detects Early Response to Adoptive NK Cellular Immunotherapy Targeting the NG2 Proteoglycan in a Rat Model of Glioblastoma

    PubMed Central

    Thuen, Marte; Gras Navarro, Andrea; Huuse, Else Marie; Thorsen, Frits; Poli, Aurelie; Zimmer, Jacques; Haraldseth, Olav; Lie, Stein Atle; Enger, Per Øyvind; Chekenya, Martha

    2014-01-01

    There are currently no established radiological parameters that predict response to immunotherapy. We hypothesised that multiparametric, longitudinal magnetic resonance imaging (MRI) of physiological parameters and pharmacokinetic models might detect early biological responses to immunotherapy for glioblastoma targeting NG2/CSPG4 with mAb9.2.27 combined with natural killer (NK) cells. Contrast enhanced conventional T1-weighted MRI at 7±1 and 17±2 days post-treatment failed to detect differences in tumour size between the treatment groups, whereas, follow-up scans at 3 months demonstrated diminished signal intensity and tumour volume in the surviving NK+mAb9.2.27 treated animals. Notably, interstitial volume fraction (ve), was significantly increased in the NK+mAb9.2.27 combination therapy group compared mAb9.2.27 and NK cell monotherapy groups (p = 0.002 and p = 0.017 respectively) in cohort 1 animals treated with 1 million NK cells. ve was reproducibly increased in the combination NK+mAb9.2.27 compared to NK cell monotherapy in cohort 2 treated with increased dose of 2 million NK cells (p<0.0001), indicating greater cell death induced by NK+mAb9.2.27 treatment. The interstitial volume fraction in the NK monotherapy group was significantly reduced compared to mAb9.2.27 monotherapy (p<0.0001) and untreated controls (p = 0.014) in the cohort 2 animals. NK cells in monotherapy were unable to kill the U87MG cells that highly expressed class I human leucocyte antigens, and diminished stress ligands for activating receptors. A significant association between apparent diffusion coefficient (ADC) of water and ve in combination NK+mAb9.2.27 and NK monotherapy treated tumours was evident, where increased ADC corresponded to reduced ve in both cases. Collectively, these data support histological measures at end-stage demonstrating diminished tumour cell proliferation and pronounced apoptosis in the NK+mAb9.2.27 treated tumours compared to the other groups. In

  7. Non-invasive breast biopsy method using GD-DTPA contrast enhanced MRI series and F-18-FDG PET/CT dynamic image series

    NASA Astrophysics Data System (ADS)

    Magri, Alphonso William

    This study was undertaken to develop a nonsurgical breast biopsy from Gd-DTPA Contrast Enhanced Magnetic Resonance (CE-MR) images and F-18-FDG PET/CT dynamic image series. A five-step process was developed to accomplish this. (1) Dynamic PET series were nonrigidly registered to the initial frame using a finite element method (FEM) based registration that requires fiducial skin markers to sample the displacement field between image frames. A commercial FEM package (ANSYS) was used for meshing and FEM calculations. Dynamic PET image series registrations were evaluated using similarity measurements SAVD and NCC. (2) Dynamic CE-MR series were nonrigidly registered to the initial frame using two registration methods: a multi-resolution free-form deformation (FFD) registration driven by normalized mutual information, and a FEM-based registration method. Dynamic CE-MR image series registrations were evaluated using similarity measurements, localization measurements, and qualitative comparison of motion artifacts. FFD registration was found to be superior to FEM-based registration. (3) Nonlinear curve fitting was performed for each voxel of the PET/CT volume of activity versus time, based on a realistic two-compartmental Patlak model. Three parameters for this model were fitted; two of them describe the activity levels in the blood and in the cellular compartment, while the third characterizes the washout rate of F-18-FDG from the cellular compartment. (4) Nonlinear curve fitting was performed for each voxel of the MR volume of signal intensity versus time, based on a realistic two-compartment Brix model. Three parameters for this model were fitted: rate of Gd exiting the compartment, representing the extracellular space of a lesion; rate of Gd exiting a blood compartment; and a parameter that characterizes the strength of signal intensities. Curve fitting used for PET/CT and MR series was accomplished by application of the Levenburg-Marquardt nonlinear regression

  8. Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) Combined with Positron Emission Tomography-Computed Tomography (PET-CT) and Video-Electroencephalography (VEEG) Have Excellent Diagnostic Value in Preoperative Localization of Epileptic Foci in Children with Epilepsy

    PubMed Central

    Wang, Gui-Bin; Long, Wei; Li, Xiao-Dong; Xu, Guang-Yin; Lu, Ji-Xiang

    2017-01-01

    Background To investigate the effect that dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has on surgical decision making relative to video-electroencephalography (VEEG) and positron emission tomography-computed tomography (PET-CT), and if the differences in these variables translates to differences in surgical outcomes. Material/Methods A total of 166 children with epilepsy undergoing preoperative DCE-MRI, VEEG, and PET-CT examinations, surgical resection of epileptic foci, and intraoperative electrocorticography (ECoG) monitoring were enrolled. All children were followed up for 12 months and grouped by Engles prognostic classification for epilepsy. Based on intraoperative ECoG as gold standard, the diagnostic values of DCE-MRI, VEEG, PET-CT, DCE-MRI combined with VEEG, DCE-MRI combined with PET-CT, and combined application of DCE-MRI, VEEG, and PET-CT in preoperative localization for epileptic foci were evaluated. Results The sensitivity of DCE-MRI, VEEG, and PET-CT was 59.64%, 76.51%, and 93.98%, respectively; the accuracy of DCE-MRI, VEEG, PET-CT, DCE-MRI combined with VEEG, and DCE-MRI combined with PET-CT was 57.58%, 67.72%, 91.03%, 91.23%, and 96.49%, respectively. Localization accuracy rate of the combination of DCE-MRI, VEEG, and PET-CT was 98.25% (56/57), which was higher than that of DCE-MRI combined with VEEG and of DCE-MRI combined with PET-CT. No statistical difference was found in the accuracy rate of localization between these three combined techniques. During the 12-month follow-up, children were grouped into Engles grade I (n=106), II (n=31), III (n=21), and IV (n=8) according to postoperative conditions. Conclusions All DCE-MRI combined with VEEG, DCE-MRI combined with PET-CT, and DCE-MRI combined with VEEG and PET-CT examinations have excellent accuracy in preoperative localization of epileptic foci and present excellent postoperative efficiency, suggesting that these combined imaging methods are suitable for serving as the

  9. Imaging Modalities for Assessment of Treatment Response to Nonsurgical Hepatocellular Carcinoma Therapy: Contrast-Enhanced US, CT, and MRI.

    PubMed

    Minami, Yasunori; Kudo, Masatoshi

    2015-03-01

    Tumor response and time to progression have been considered pivotal for surrogate assessment of treatment efficacy for patients with hepatocellular carcinoma (HCC). Recent advancements in imaging modalities such as contrast-enhanced ultrasound (US), computed tomography (CT), and magnetic resonance imaging (MRI) are playing an important role in assessing the therapeutic effects of HCC treatments. According to some HCC clinical guidelines, post-therapeutic evaluation of HCC patients is based exclusively on contrast-enhanced dynamic imaging criteria. The recommended techniques are contrast-enhanced CT or contrast-enhanced MRI. Contrast-enhanced US is employed more in the positive diagnosis of HCC than in post-therapeutic monitoring. Although contrast enhancement is an important finding on imaging, enhancement does not necessarily depict the same phenomenon across modalities. We need to become well acquainted with the characteristics of each modality, including not only contrast-enhanced CT and MRI but also contrast-enhanced US. Many nonsurgical treatment options are now available for unresectable HCC, and accurate assessment of tumor response is essential to achieve favorable outcomes. For the assessment of successful radiofrequency ablation (RFA), the achievement of a sufficient ablation margin as well the absence of tumor vascular enhancement is essential. To evaluate the response to transcatheter arterial chemoembolization (TACE), enhanced tumor shrinkage is relied on as a measure of antitumor activity. Here, we give an overview of the current status of imaging assessment of HCC response to nonsurgical treatments including RFA and TACE.

  10. Dynamic contrast enhanced-magnetic resonance imaging (DCE-MRI) for the assessment of Pc 4-sensitized photodynamic therapy of a U87-derived glioma model in the athymic nude rat

    NASA Astrophysics Data System (ADS)

    Anka, Ali; Thompson, Paul; Mott, Eric; Sharma, Rahul; Zhang, Ruozhen; Cross, Nathan; Sun, Jiayang; Flask, Chris A.; Oleinick, Nancy L.; Dean, David

    2010-02-01

    Introduction: Dynamic Contrast-Enhanced-Magnetic Resonance Imaging (DCE-MRI) may provide a means of tracking the outcome of Pc 4-sensitized photodynamic therapy (PDT) in deeply placed lesions (e.g., brain tumors). We previously determined that 150 μL of gadolinium (Gd-DTPA) produces optimal enhancement of U87-derived intracerebral tumors in an athymic nude rat glioma model. We wish to determine how consistently DCE-MRI enhancement will detect an increase in Gd-enhancement of these tumors following Pc 4-PDT. Methods: We injected 2.5 x 105 U87 cells into the brains of 6 athymic nude rats. After 7-8 days pre-Pc 4 PDT peri-tumor DCE-MRI images were acquired on a 7.0T microMRI scanner before and after administration of 150 μL Gd. DCE-MRI scans were repeated on Days 11, 12, and 13 following Pc 4-PDT (Day 8 or 9). Results: Useful DCE-MRI data were obtained for these animals before and after Pc 4- PDT. In the pre-Pc 4-PDT DCE-MRI scans an average normalized peak Gd enhancement was observed in tumor tissue that was 1.297 times greater than baseline (0.035 Standard Error [SE]). The average normalized peak Gd enhancement in the tumor tissue in the scan following PDT (Day 11) was 1.537 times greater than baseline (0.036 SE), a statistically significant increase in enhancement (p = 0.00584) over the pre-PDT level. Discussion: A 150 μL Gd dose appears to provide an unambiguous increase in signal indicating Pc 4-PDT-induced necrosis of the U87-derived tumor. Our DCEMRI protocol may allow the development of a clinically robust, unambiguous, non-invasive technique for the assessment of PDT outcome.

  11. Classification of small lesions in dynamic breast MRI: Eliminating the need for precise lesion segmentation through spatio-temporal analysis of contrast enhancement over time.

    PubMed

    Nagarajan, Mahesh B; Huber, Markus B; Schlossbauer, Thomas; Leinsinger, Gerda; Krol, Andrzej; Wismüller, Axel

    2013-10-01

    Characterizing the dignity of breast lesions as benign or malignant is specifically difficult for small lesions; they don't exhibit typical characteristics of malignancy and are harder to segment since margins are harder to visualize. Previous attempts at using dynamic or morphologic criteria to classify small lesions (mean lesion diameter of about 1 cm) have not yielded satisfactory results. The goal of this work was to improve the classification performance in such small diagnostically challenging lesions while concurrently eliminating the need for precise lesion segmentation. To this end, we introduce a method for topological characterization of lesion enhancement patterns over time. Three Minkowski Functionals were extracted from all five post-contrast images of sixty annotated lesions on dynamic breast MRI exams. For each Minkowski Functional, topological features extracted from each post-contrast image of the lesions were combined into a high-dimensional texture feature vector. These feature vectors were classified in a machine learning task with support vector regression. For comparison, conventional Haralick texture features derived from gray-level co-occurrence matrices (GLCM) were also used. A new method for extracting thresholded GLCM features was also introduced and investigated here. The best classification performance was observed with Minkowski Functionals area and perimeter, thresholded GLCM features f8 and f9, and conventional GLCM features f4 and f6. However, both Minkowski Functionals and thresholded GLCM achieved such results without lesion segmentation while the performance of GLCM features significantly deteriorated when lesions were not segmented (p < 0.05). This suggests that such advanced spatio-temporal characterization can improve the classification performance achieved in such small lesions, while simultaneously eliminating the need for precise segmentation.

  12. Dynamic contrast enhanced-magnetic resonance imaging (DCE-MRI) of photodynamic therapy (PDT) outcome and associated changes in the blood-brain barrier following Pc 4-PDT of glioma in an athymic nude rat model

    NASA Astrophysics Data System (ADS)

    Belle, Vaijayantee; Anka, Ali; Cross, Nathan; Thompson, Paul; Mott, Eric; Sharma, Rahul; Gray, Kayla; Zhang, Ruozhen; Xu, Yueshuo; Sun, Jiayang; Flask, Chris A.; Oleinick, Nancy L.; Dean, David

    2012-02-01

    Introduction: Dynamic Contrast-Enhanced-Magnetic Resonance Imaging (DCE-MRI) appears to provide an unambiguous means of tracking the outcome of photodynamic therapy (PDT) of brain tumors with the photosensitizer Pc 4. The increase in Gd enhancement observed after Pc 4-PDT may be due to a temporary opening of the blood-brain-barrier which, as noted by others, may offer a therapeutic window. Methods: We injected 2.5 x 105 U87 cells into the brains of 9 athymic nude rats. After 8-9 days peri-tumor DCE-MRI images were acquired on a 7.0 T microMRI scanner before and after the administration of 150 μL Gd. DCE-MRI scans were repeated three times following Pc 4-PDT. Results: The average, normalized peak enhancement in the tumor region, approximately 30-90 seconds after Gd administration, was 1.31 times greater than baseline (0.03 Standard Error [SE]) prior to PDT and was 1.44 (0.02 SE) times baseline in the first Post-PDT scans (Day 11), a statistically significant (p ~ 0.014, N=8) increase over the Pre- PDT scans, and was 1.38 (0.02 SE) times baseline in the second scans (Day 12), also a statistically significant (p ~ 0.008, N=7) increase. Observations were mixed in the third Post-PDT scans (Day 13), averaging 1.29 (0.03 SE) times baseline (p ~ 0.66, N=7). Overall a downward trend in enhancement was observed from the first to the third Post-PDT scans. Discussion: DCE-MRI may provide an unambiguous indication of brain tumor PDT outcome. The initial increase in DCE-MRI signal may correlate with a temporary, PDT-induced opening of the blood-brain-barrier, creating a potential therapeutic window.

  13. A case report of pseudoprogression followed by complete remission after proton-beam irradiation for a low-grade glioma in a teenager: the value of dynamic contrast-enhanced MRI.

    PubMed

    Meyzer, Candice; Dhermain, Frédéric; Ducreux, Denis; Habrand, Jean-Louis; Varlet, Pascale; Sainte-Rose, Christian; Dufour, Christelle; Grill, Jacques

    2010-02-04

    A fourteen years-old boy was treated post-operatively with proton therapy for a recurrent low-grade oligodendroglioma located in the tectal region. Six months after the end of irradiation (RT), a new enhancing lesion appeared within the radiation fields. To differentiate disease progression from radiation-induced changes, dynamic susceptibility contrast-enhanced (DSCE) MRI was used with a T2* sequence to study perfusion and permeability characteristics simultaneously. Typically, the lesion showed hypoperfusion and hyperpermeability compared to the controlateral normal brain. Without additional treatment but a short course of steroids, the image disappeared over a six months period allowing us to conclude for a pseudo-progression. The patient is alive in complete remission more than 2 years post-RT.

  14. Dynamic contrast-enhanced MRI detects acute radiotherapy-induced alterations in mandibular microvasculature: prospective assessment of imaging biomarkers of normal tissue injury

    PubMed Central

    Sandulache, Vlad C.; Hobbs, Brian P.; Mohamed, Abdallah S.R.; Frank, Steven J.; Song, Juhee; Ding, Yao; Ger, Rachel; Court, Laurence E.; Kalpathy-Cramer, Jayashree; Hazle, John D.; Wang, Jihong; Awan, Musaddiq J.; Rosenthal, David I.; Garden, Adam S.; Gunn, G. Brandon; Colen, Rivka R.; Elshafeey, Nabil; Elbanan, Mohamed; Hutcheson, Katherine A.; Lewin, Jan S.; Chambers, Mark S.; Hofstede, Theresa M.; Weber, Randal S.; Lai, Stephen Y.; Fuller, Clifton D.

    2016-01-01

    Normal tissue toxicity is an important consideration in the continued development of more effective external beam radiotherapy (EBRT) regimens for head and neck tumors. The ability to detect EBRT-induced changes in mandibular bone vascularity represents a crucial step in decreasing potential toxicity. To date, no imaging modality has been shown to detect changes in bone vascularity in real time during treatment. Based on our institutional experience with multi-parametric MRI, we hypothesized that DCE-MRI can provide in-treatment information regarding EBRT-induced changes in mandibular vascularity. Thirty-two patients undergoing EBRT treatment for head and neck cancer were prospectively imaged prior to, mid-course, and following treatment. DCE-MRI scans were co-registered to dosimetric maps to correlate EBRT dose and change in mandibular bone vascularity as measured by Ktrans and Ve. DCE-MRI was able to detect dose-dependent changes in both Ktrans and Ve in a subset of patients. One patient who developed ORN during the study period demonstrated decreases in Ktrans and Ve following treatment completion. We demonstrate, in a prospective imaging trial, that DCE-MRI can detect dose-dependent alterations in mandibular bone vascularity during chemoradiotherapy, providing biomarkers that are physiological correlates of acute of acute mandibular vascular injury and recovery temporal kinetics. PMID:27499209

  15. Contrast-enhanced CT- and MRI-based perfusion assessment for pulmonary diseases: basics and clinical applications

    PubMed Central

    Ohno, Yoshiharu; Koyama, Hisanobu; Lee, Ho Yun; Miura, Sachiko; Yoshikawa, Takeshi; Sugimura, Kazuro

    2016-01-01

    Assessment of regional pulmonary perfusion as well as nodule and tumor perfusions in various pulmonary diseases are currently performed by means of nuclear medicine studies requiring radioactive macroaggregates, dual-energy computed tomography (CT), and dynamic first-pass contrast-enhanced perfusion CT techniques and unenhanced and dynamic first-pass contrast enhanced perfusion magnetic resonance imaging (MRI), as well as time-resolved three-dimensional or four-dimensional contrast-enhanced magnetic resonance angiography (MRA). Perfusion scintigraphy, single-photon emission tomography (SPECT) and SPECT fused with CT have been established as clinically available scintigraphic methods; however, they are limited by perfusion information with poor spatial resolution and other shortcomings. Although positron emission tomography with 15O water can measure absolute pulmonary perfusion, it requires a cyclotron for generation of a tracer with an extremely short half-life (2 min), and can only be performed for academic purposes. Therefore, clinicians are concentrating their efforts on the application of CT-based and MRI-based quantitative and qualitative perfusion assessment to various pulmonary diseases. This review article covers 1) the basics of dual-energy CT and dynamic first-pass contrast-enhanced perfusion CT techniques, 2) the basics of time-resolved contrast-enhanced MRA and dynamic first-pass contrast-enhanced perfusion MRI, and 3) clinical applications of contrast-enhanced CT- and MRI-based perfusion assessment for patients with pulmonary nodule, lung cancer, and pulmonary vascular diseases. We believe that these new techniques can be useful in routine clinical practice for not only thoracic oncology patients, but also patients with different pulmonary vascular diseases. PMID:27523813

  16. Dynamic contrast-enhanced endoscopic ultrasound: A quantification method

    PubMed Central

    Dietrich, Christoph F.; Dong, Yi; Froehlich, Eckhart; Hocke, Michael

    2017-01-01

    Dynamic contrast-enhanced ultrasound (DCE-US) has been recently standardized by guidelines and recommendations. The European Federation of Societies for US in Medicine and Biology position paper describes the use for DCE-US. Comparatively, little is known about the use of contrast-enhanced endoscopic US (CE-EUS). This current paper reviews and discusses the clinical use of CE-EUS and DCE-US. The most important clinical use of DCE-US is the prediction of tumor response to new drugs against vascular angioneogenesis. PMID:28218195

  17. Emerging role of contrast-enhanced MRI in diagnosing vascular malformations.

    PubMed

    Turley, Ryan S; Lidsky, Michael E; Markovic, Jovan N; Shortell, Cynthia K

    2014-07-01

    Vascular malformations comprise a diverse and rare group of lesions which generally pose a formidable treatment challenge. Requisite for optimal surgical planning are imaging modalities capable of delineating involved anatomy and malformation flow characteristics. In this regard, we and others have purported the advantages of contrast-enhanced MRI. Here, we review the current body of literature regarding the emerging of role of contrast enhanced MRI for the management of vascular malformations.

  18. Organic Nitrate Maintains Bone Marrow Blood Perfusion in Ovariectomized Female Rats: A Dynamic, Contrast-Enhanced Magnetic Resonance Imaging (MRI) Study

    PubMed Central

    Wang, Yi-Xiang J.; Ko, Chun Hay; Griffith, James F.; Deng, Min; Wong, Hing Lok; Gu, Tao; Huang, Yu

    2012-01-01

    This study investigated the effects of nitrate on bone mineral density (BMD) and bone marrow perfusion in ovariectomized (OVX) female rats, and also the effects of nitrate on in vitro osteoblastic activity and osteoclastic differentiation of murine monocyte/macrophage RAW 264.7 cells. Female Sprague–Dawley rats were divided into OVX + nitrate group (isosorbide-5-mononitrate, ISM, 150 mg/kg/ day b.i.d), OVX + vehicle group, and control group. Lumbar spine CT bone densitometry and perfusion MRI were performed on the rats at baseline and week 8 post-OVX. The OVX rats’ BMD decreased by 22.5% ± 5.7% at week 8 (p < 0.001); while the OVX + ISM rats’ BMD decreased by 13.1% ± 2.7% (p < 0.001). The BMD loss difference between the two groups of rats was significant (p = 0.018). The OVX rats’ lumbar vertebral perfusion MRI maximum enhancement (Emax) decreased by 10.3% ± 5.0% at week 8 (p < 0.005), while in OVX + ISM rats, the Emax increased by 5.5% ± 6.9% (p > 0.05). The proliferation of osteoblast-like UMR-106 cells increased significantly with ISM treatment at 0.78 µM to 50 μM. Treatment of UMR-106 cells with ISM also stimulated the BrdU uptake. After the RAW 264.7 cells were co-treated with osteoclastogenesis inducer RANKL and 6.25 μM ~ 100 μM of ISM for 3 days, a trend of dose-dependent increase of osteoclast number was noted. PMID:24300395

  19. Targeted Multifunctional Nanoparticles cure and image Brain Tumors: Selective MRI Contrast Enhancement and Photodynamic Therapy

    NASA Astrophysics Data System (ADS)

    Kopelman, Raoul

    2008-03-01

    Aimed at targeted therapy and imaging of brain tumors, our approach uses targeted, multi-functional nano-particles (NP). A typical nano-particle contains a biologically inert, non-toxic matrix, biodegradable and bio-eliminable over a long time period. It also contains active components, such as fluorescent chemical indicators, photo-sensitizers, MRI contrast enhancement agents and optical imaging dyes. In addition, its surface contains molecular targeting units, e.g. peptides or antibodies, as well as a cloaking agent, to prevent uptake by the immune system, i.e. enabling control of the plasma residence time. These dynamic nano-platforms (DNP) contain contrast enhancement agents for the imaging (MRI, optical, photo-acoustic) of targeted locations, i.e. tumors. Added to this are targeted therapy agents, such as photosensitizers for photodynamic therapy (PDT). A simple protocol, for rats implanted with human brain cancer, consists of tail injection with DNPs, followed by 5 min red light illumination of the tumor region. It resulted in excellent cure statistics for 9L glioblastoma.

  20. Dynamic contrast-enhanced MRI in mouse tumors at 11.7 T: comparison of three contrast agents with different molecular weights to assess the early effects of combretastatin A4.

    PubMed

    Fruytier, A-C; Magat, J; Neveu, M-A; Karroum, O; Bouzin, C; Feron, O; Jordan, B; Cron, G O; Gallez, B

    2014-11-01

    Dynamic contrast-enhanced (DCE)-MRI is useful to assess the early effects of drugs acting on tumor vasculature, namely anti-angiogenic and vascular disrupting agents. Ultra-high-field MRI allows higher-resolution scanning for DCE-MRI while maintaining an adequate signal-to-noise ratio. However, increases in susceptibility effects, combined with decreases in longitudinal relaxivity of gadolinium-based contrast agents (GdCAs), make DCE-MRI more challenging at high field. The aim of this work was to explore the feasibility of using DCE-MRI at 11.7 T to assess the tumor hemodynamics of mice. Three GdCAs possessing different molecular weights (gadoterate: 560 Da, 0.29 mmol Gd/kg; p846: 3.5 kDa, 0.10 mmol Gd/kg; and p792: 6.47 kDa, 0.15 mmol Gd/kg) were compared to see the influence of the molecular weight in the highlight of the biologic effects induced by combretastatin A4 (CA4). Mice bearing transplantable liver tumor (TLT) hepatocarcinoma were divided into two groups (n = 5-6 per group and per GdCA): a treated group receiving 100 mg/kg CA4, and a control group receiving vehicle. The mice were imaged at 11.7 T with a T1 -weighted FLASH sequence 2 h after the treatment. Individual arterial input functions (AIFs) were computed using phase imaging. These AIFs were used in the Extended Tofts Model to determine K(trans) and vp values. A separate immunohistochemistry study was performed to assess the vascular perfusion and the vascular density. Phase imaging was used successfully to measure the AIF for the three GdCAs. In control groups, an inverse relationship between the molecular weight of the GdCA and K(trans) and vp values was observed. K(trans) was significantly decreased in the treated group compared with the control group for each GdCA. DCE-MRI at 11.7 T is feasible to assess tumor hemodynamics in mice. With K(trans) , the three GdCAs were able to track the early vascular effects induced by CA4 treatment.

  1. Tumor Metabolism and Perfusion in Head and Neck Squamous Cell Carcinoma: Pretreatment Multimodality Imaging With {sup 1}H Magnetic Resonance Spectroscopy, Dynamic Contrast-Enhanced MRI, and [{sup 18}F]FDG-PET

    SciTech Connect

    Jansen, Jacobus F.A.; Schoeder, Heiko; Lee, Nancy Y.; Stambuk, Hilda E.; Wang Ya; Fury, Matthew G.; Patel, Senehal G.; Pfister, David G.; Shah, Jatin P.; Koutcher, Jason A.; Shukla-Dave, Amita

    2012-01-01

    Purpose: To correlate proton magnetic resonance spectroscopy ({sup 1}H-MRS), dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), and {sup 18}F-labeled fluorodeoxyglucose positron emission tomography ([{sup 18}F]FDG PET) of nodal metastases in patients with head and neck squamous cell carcinoma (HNSCC) for assessment of tumor biology. Additionally, pretreatment multimodality imaging was evaluated for its efficacy in predicting short-term response to treatment. Methods and Materials: Metastatic neck nodes were imaged with {sup 1}H-MRS, DCE-MRI, and [{sup 18}F]FDG PET in 16 patients with newly diagnosed HNSCC, before treatment. Short-term patient radiological response was evaluated at 3 to 4 months. Correlations among {sup 1}H-MRS (choline concentration relative to water [Cho/W]), DCE-MRI (volume transfer constant [K{sup trans}]; volume fraction of the extravascular extracellular space [v{sub e}]; and redistribution rate constant [k{sub ep}]), and [{sup 18}F]FDG PET (standard uptake value [SUV] and total lesion glycolysis [TLG]) were calculated using nonparametric Spearman rank correlation. To predict short-term responses, logistic regression analysis was performed. Results: A significant positive correlation was found between Cho/W and TLG ({rho} = 0.599; p = 0.031). Cho/W correlated negatively with heterogeneity measures of standard deviation std(v{sub e}) ({rho} = -0.691; p = 0.004) and std(k{sub ep}) ({rho} = -0.704; p = 0.003). Maximum SUV (SUVmax) values correlated strongly with MRI tumor volume ({rho} = 0.643; p = 0.007). Logistic regression indicated that std(K{sup trans}) and SUVmean were significant predictors of short-term response (p < 0.07). Conclusion: Pretreatment multimodality imaging using {sup 1}H-MRS, DCE-MRI, and [{sup 18}F]FDG PET is feasible in HNSCC patients with nodal metastases. Additionally, combined DCE-MRI and [{sup 18}F]FDG PET parameters were predictive of short-term response to treatment.

  2. Clinical utility of multimodality imaging with dynamic contrast-enhanced MRI, diffusion-weighted MRI, and 18F-FDG PET/CT for the prediction of neck control in oropharyngeal or hypopharyngeal squamous cell carcinoma treated with chemoradiation.

    PubMed

    Ng, Shu-Hang; Lin, Chien-Yu; Chan, Sheng-Chieh; Lin, Yu-Chun; Yen, Tzu-Chen; Liao, Chun-Ta; Chang, Joseph Tung-Chieh; Ko, Sheung-Fat; Wang, Hung-Ming; Chang, Chee-Jen; Wang, Jiun-Jie

    2014-01-01

    The clinical usefulness of pretreatment imaging techniques for predicting neck control in patients with oropharyngeal or hypopharyngeal squamous cell carcinoma (OHSCC) treated with chemoradiation remains unclear. In this prospective study, we investigated the role of pretreatment dynamic contrast-enhanced perfusion MR imaging (DCE-PWI), diffusion-weighted MR imaging (DWI), and [18F]fluorodeoxyglucose-positron emission tomography (18F-FDG PET)/CT derived imaging markers for the prediction of neck control in OHSCC patients treated with chemoradiation. Patients with untreated OHSCC scheduled for chemoradiation between August, 2010 and July, 2012 were eligible for the study. Clinical variables and the following imaging parameters of metastatic neck lymph nodes were examined in relation to neck control: transfer constant, volume of blood plasma, and volume of extracellular extravascular space (Ve) on DCE-PWI; apparent diffusion coefficient (ADC) on DWI; maximum standardized uptake value, metabolic tumor volume, and total lesion glycolysis on 18F-FDG PET/CT. There were 69 patients (37 with oropharynx SCC and 32 with hypopharynx SCC) with successful pretreatment DCE-PWI and DWI available for analysis. After a median follow-up of 31 months, 25 (36.2%) participants had neck failure. Multivariate analysis identified hemoglobin level <14.3 g/dL (P = 0.019), Ve <0.23 (P = 0.040), and ADC >1.14×10-3 mm2/s (P = 0.003) as independent prognostic factors for 3-year neck control. A prognostic scoring system was formulated by summing up the three significant predictors of neck control. Patients with scores of 2-3 had significantly poorer neck control and overall survival rates than patients with scores of 0-1. We conclude that hemoglobin levels, Ve, and ADC are independent pretreatment prognostic factors for neck control in OHSCC treated with chemoradiation. Their combination may identify a subgroup of patients at high risk of developing neck failure.

  3. Nonrigid registration and classification of the kidneys in 3D dynamic contrast enhanced (DCE) MR images

    NASA Astrophysics Data System (ADS)

    Yang, Xiaofeng; Ghafourian, Pegah; Sharma, Puneet; Salman, Khalil; Martin, Diego; Fei, Baowei

    2012-02-01

    We have applied image analysis methods in the assessment of human kidney perfusion based on 3D dynamic contrast-enhanced (DCE) MRI data. This approach consists of 3D non-rigid image registration of the kidneys and fuzzy C-mean classification of kidney tissues. The proposed registration method reduced motion artifacts in the dynamic images and improved the analysis of kidney compartments (cortex, medulla, and cavities). The dynamic intensity curves show the successive transition of the contrast agent through kidney compartments. The proposed method for motion correction and kidney compartment classification may be used to improve the validity and usefulness of further model-based pharmacokinetic analysis of kidney function.

  4. Comparison Between Perfusion Computed Tomography and Dynamic Contrast-Enhanced Magnetic Resonance Imaging in Rectal Cancer

    SciTech Connect

    Kierkels, Roel G.J.; Backes, Walter H.; Janssen, Marco H.M.; Buijsen, Jeroen; Beets-Tan, Regina G.H.; Lambin, Philippe; Lammering, Guido; Oellers, Michel C.; Aerts, Hugo J.W.L.

    2010-06-01

    Purpose: To compare pretreatment scans with perfusion computed tomography (pCT) vs. dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in rectal tumors. Methods and Materials: Nineteen patients diagnosed with rectal cancer were included in this prospective study. All patients underwent both pCT and DCE-MRI. Imaging was performed on a dedicated 40-slice CT-positron emission tomography system and a 3-T MRI system. Dynamic contrast enhancement was measured in tumor tissue and the external iliac artery. Tumor perfusion was quantified in terms of pharmacokinetic parameters: transfer constant K{sup trans}, fractional extravascular-extracellular space v{sub e}, and fractional plasma volume v{sub p}. Pharmacokinetic parameter values and their heterogeneity (by 80% quantile value) were compared between pCT and DCE-MRI. Results: Tumor K{sup trans} values correlated significantly for the voxel-by-voxel-derived median (Kendall's tau correlation, tau = 0.81, p < 0.001) and 80% quantile (tau = 0.54, p = 0.04), as well as for the averaged uptake (tau = 0.58, p = 0.03). However, no significant correlations were found for v{sub e} and v{sub p} derived from the voxel-by-voxel-derived median and 80% quantile and derived from the averaged uptake curves. Conclusions: This study demonstrated for the first time that pCT provides K{sup trans} values comparable to those of DCE-MRI. However, no correlation was found for the v{sub e} and v{sub p} parameters between CT and MRI. Computed tomography can serve as an alternative modality to MRI for the in vivo evaluation of tumor angiogenesis in terms of the transfer constant K{sup trans}.

  5. Dynamic Contrast-Enhanced CT in Patients with Pancreatic Cancer.

    PubMed

    Eriksen, Rie Ø; Strauch, Louise S; Sandgaard, Michael; Kristensen, Thomas S; Nielsen, Michael B; Lauridsen, Carsten A

    2016-09-06

    The aim of this systematic review is to provide an overview of the use of Dynamic Contrast-enhanced Computed Tomography (DCE-CT) in patients with pancreatic cancer. This study was composed according to the PRISMA guidelines 2009. The literature search was conducted in PubMed, Cochrane Library, EMBASE, and Web of Science databases to identify all relevant publications. The QUADAS-2 tool was implemented to assess the risk of bias and applicability concerns of each included study. The initial literature search yielded 483 publications. Thirteen articles were included. Articles were categorized into three groups: nine articles concerning primary diagnosis or staging, one article about tumor response to treatment, and three articles regarding scan techniques. In exocrine pancreatic tumors, measurements of blood flow in eight studies and blood volume in seven studies were significantly lower in tumor tissue, compared with measurements in pancreatic tissue outside of tumor, or normal pancreatic tissue in control groups of healthy volunteers. The studies were heterogeneous in the number of patients enrolled and scan protocols. Perfusion parameters measured and analyzed by DCE-CT might be useful in the investigation of characteristic vascular patterns of exocrine pancreatic tumors. Further clinical studies are desired for investigating the potential of DCE-CT in pancreatic tumors.

  6. Dynamic Contrast-Enhanced CT in Patients with Pancreatic Cancer

    PubMed Central

    Eriksen, Rie Ø.; Strauch, Louise S.; Sandgaard, Michael; Kristensen, Thomas S.; Nielsen, Michael B.; Lauridsen, Carsten A.

    2016-01-01

    The aim of this systematic review is to provide an overview of the use of Dynamic Contrast-enhanced Computed Tomography (DCE-CT) in patients with pancreatic cancer. This study was composed according to the PRISMA guidelines 2009. The literature search was conducted in PubMed, Cochrane Library, EMBASE, and Web of Science databases to identify all relevant publications. The QUADAS-2 tool was implemented to assess the risk of bias and applicability concerns of each included study. The initial literature search yielded 483 publications. Thirteen articles were included. Articles were categorized into three groups: nine articles concerning primary diagnosis or staging, one article about tumor response to treatment, and three articles regarding scan techniques. In exocrine pancreatic tumors, measurements of blood flow in eight studies and blood volume in seven studies were significantly lower in tumor tissue, compared with measurements in pancreatic tissue outside of tumor, or normal pancreatic tissue in control groups of healthy volunteers. The studies were heterogeneous in the number of patients enrolled and scan protocols. Perfusion parameters measured and analyzed by DCE-CT might be useful in the investigation of characteristic vascular patterns of exocrine pancreatic tumors. Further clinical studies are desired for investigating the potential of DCE-CT in pancreatic tumors. PMID:27608045

  7. The correlation of contrast-enhanced ultrasound and MRI perfusion quantitative analysis in rabbit VX2 liver cancer.

    PubMed

    Xiang, Zhiming; Liang, Qianwen; Liang, Changhong; Zhong, Guimian

    2014-12-01

    Our objective is to explore the value of liver cancer contrast-enhanced ultrasound (CEUS) and MRI perfusion quantitative analysis in liver cancer and the correlation between these two analysis methods. Rabbit VX2 liver cancer model was established in this study. CEUS was applied. Sono Vue was applied in rabbits by ear vein to dynamically observe and record the blood perfusion and changes in the process of VX2 liver cancer and surrounding tissue. MRI perfusion quantitative analysis was used to analyze the mean enhancement time and change law of maximal slope increasing, which were further compared with the pathological examination results. Quantitative indicators of liver cancer CEUS and MRI perfusion quantitative analysis were compared, and the correlation between them was analyzed by correlation analysis. Rabbit VX2 liver cancer model was successfully established. CEUS showed that time-intensity curve of rabbit VX2 liver cancer showed "fast in, fast out" model while MRI perfusion quantitative analysis showed that quantitative parameter MTE of tumor tissue increased and MSI decreased: the difference was statistically significant (P < 0.01). The diagnostic results of CEUS and MRI perfusion quantitative analysis were not significantly different (P > 0.05). However, the quantitative parameter of them were significantly positively correlated (P < 0.05). CEUS and MRI perfusion quantitative analysis can both dynamically monitor the liver cancer lesion and surrounding liver parenchyma, and the quantitative parameters of them are correlated. The combined application of both is of importance in early diagnosis of liver cancer.

  8. Immobilized contrast-enhanced MRI: Gadolinium-based long-term MR contrast enhancement of the vein graft vessel wall.

    PubMed

    Mitsouras, Dimitris; Vemula, Praveen Kumar; Yu, Peng; Tao, Ming; Nguyen, Binh T; Campagna, Christina M; Karp, Jeffrey M; Mulkern, Robert V; Ozaki, C Keith; Rybicki, Frank J

    2011-01-01

    An implantable MR contrast agent that can be covalently immobilized on tissue during surgery has been developed. The rationale is that a durable increase in tissue contrast using an implantable contrast agent can enhance postsurgical tissue differentiation using MRI. For small-vessel (e.g., vein graft) MRI, the direct benefit of such permanent "labeling" of the vessel wall by modification of its relaxation properties is to achieve more efficient imaging. This efficiency can be realized as either increased contrast leading to more accurate delineation of vessel wall and lesion tissue boundaries, or, faster imaging without penalizing contrast-to-noise ratio, or a combination thereof. We demonstrate, for the first time, stable long-term MRI enhancement using such an exogenous contrast mechanism based on immobilizing a modified diethylenetriaminepentaacetic acid gadolinium(3+) dihydrogen complex on a human vein using a covalent amide bond. Signal enhancement due to the covalently immobilized contrast agent is demonstrated for excised human vein specimens imaged at 3 T, and its long-term stability is demonstrated during a 4-month incubation period.

  9. A corrole nanobiologic elicits tissue-activated MRI contrast enhancement and tumor-targeted toxicity.

    PubMed

    Sims, Jessica D; Hwang, Jae Youn; Wagner, Shawn; Alonso-Valenteen, Felix; Hanson, Chris; Taguiam, Jan Michael; Polo, Richard; Harutyunyan, Ira; Karapetyan, Gevorg; Sorasaenee, Karn; Ibrahim, Ahmed; Marban, Eduardo; Moats, Rex; Gray, Harry B; Gross, Zeev; Medina-Kauwe, Lali K

    2015-11-10

    Water-soluble corroles with inherent fluorescence can form stable self-assemblies with tumor-targeted cell penetration proteins, and have been explored as agents for optical imaging and photosensitization of tumors in pre-clinical studies. However, the limited tissue-depth of excitation wavelengths limits their clinical applicability. To examine their utility in more clinically-relevant imaging and therapeutic modalities, here we have explored the use of corroles as contrast enhancing agents for magnetic resonance imaging (MRI), and evaluated their potential for tumor-selective delivery when encapsulated by a tumor-targeted polypeptide. We have found that a manganese-metallated corrole exhibits significant T1 relaxation shortening and MRI contrast enhancement that is blocked by particle formation in solution but yields considerable MRI contrast after tissue uptake. Cell entry but not low pH enables this. Additionally, the corrole elicited tumor-toxicity through the loss of mitochondrial membrane potential and cytoskeletal breakdown when delivered by the targeted polypeptide. The protein-corrole particle (which we call HerMn) exhibited improved therapeutic efficacy compared to current targeted therapies used in the clinic. Taken together with its tumor-preferential biodistribution, our findings indicate that HerMn can facilitate tumor-targeted toxicity after systemic delivery and tumor-selective MR imaging activatable by internalization.

  10. Phenomenological universalities: a novel tool for the analysis of dynamic contrast enhancement in magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Gliozzi, A. S.; Mazzetti, S.; Delsanto, P. P.; Regge, D.; Stasi, M.

    2011-02-01

    Dynamic contrast enhancement in magnetic resonance imaging (DCE-MRI) is a promising tool for the clinical diagnosis of tumors, whose implementation may be improved through the use of suitable hemodynamic models. If one prefers to avoid assumptions about the tumor physiology, empirical fitting functions may be adopted. For this purpose, in this paper we discuss the exploitation of a recently proposed phenomenological universalities (PUN) formalism. In fact, we show that a novel PUN class may be used to describe the time-signal intensity curves in both healthy and tumoral tissues, discriminating between the two cases and thus potentially providing a convenient diagnostic tool. The proposed approach is applied to analysis of the DCE-MRI data relative to a study group composed of ten patients with spine tumors.

  11. Evaluation of Neoadjuvant Chemotherapy Response with Dynamic Contrast Enhanced Breast Magnetic Resonance Imaging in Locally Advanced Invasive Breast Cancer

    PubMed Central

    Gezer, Naciye Sinem; Orbay, Özge; Balcı, Pınar; Durak, Merih Guray; Demirkan, Binnaz; Saydam, Serdar

    2014-01-01

    Objective The reliability of traditional methods such as physical examination, ultrasonography (US) and mammography is limited in determining the type of treatment response in patients with neoadjuvant chemotherapy (NAC) application for locally advanced breast cancer (LABC). Dynamic contrast-enhanced magnetic resonance imaging (MRI) is gaining popularity in the evaluation of NAC response. This study aimed to compare NAC response as determined by dynamic contrast-enhanced breast MRI in patients with LABC to histopathology that is the gold standard; and evaluate the compatibility of MRI, mammography and US with response types. Materials and Methods The US, mammography and MRI findings of 38 patients who received NAC with a diagnosis of locally advanced breast cancer and surgical treatment were retrospectively analyzed and compared to histopathology results. Type of response to treatment was determined according to the “Criteria in Solid Tumors Response Evolution 1.1” by mammography, US and MRI criteria. The relationship between response types as defined by all three imaging modalities and histopathology were evaluated, and the correlation of response type as detected by MRI and pathological response and histopathological type of breast cancer was further determined. For statistical analysis, the chi-square, paired t test, correlation and kappa tests were used. Results There is a statistical moderate positive correlation between response type according to pathology and MRI (kappa: 0.63). There was a weak correlation between response type according to mammography or US and according to pathology (kappa: 0.2). When the distribution of treatment response by MRI is stratified according to histopathological types, partial response was higher in all histopathological types similar to the type of pathologic response. When compared with pathology MRI detected treatment response accurately in 84.2% of the patients. Conclusion Dynamic contrast-enhanced breast MRI appears to

  12. Dynamic Contrast-Enhanced Magnetic Resonance Imaging for Localization of Recurrent Prostate Cancer After External Beam Radiotherapy

    SciTech Connect

    Haider, Masoom A. Chung, Peter; Sweet, Joan; Toi, Ants; Jhaveri, Kartik; Menard, Cynthia; Warde, Padraig; Trachtenberg, John; Lockwood, Gina M.Math.; Milosevic, Michael

    2008-02-01

    Purpose: To compare the performance of T2-weighted (T2w) imaging and dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) of the prostate gland in the localization of recurrent prostate cancer in patients with biochemical failure after external beam radiotherapy (EBRT). Methods and Materials: T2-weighted imaging and DCE MRI were performed in 33 patients with suspected relapse after EBRT. Dynamic contrast-enhanced MRI was performed with a temporal resolution of 95 s. Voxels enhancing at 46 s after injection to a greater degree than the mean signal intensity of the prostate at 618 s were considered malignant. Results from MRI were correlated with biopsies from six regions in the peripheral zone (PZ) (base, mid, and apex). The percentage of biopsy core positive for malignancy from each region was correlated with the maximum diameter of the tumor on DCE MRI with a linear regression model. Results: On a sextant basis, DCE MRI had significantly better sensitivity (72% [21of 29] vs. 38% [11 of 29]), positive predictive value (46% [21 of 46] vs. 24% [11 of 45]) and negative predictive value (95% [144 of 152] vs. 88% [135 of 153] than T2w imaging. Specificities were high for both DCE MRI and T2w imaging (85% [144 of 169] vs. 80% [135 of 169]). There was a linear relationship between tumor diameters on DCE MRI and the percentage of cancer tissue in the corresponding biopsy core (r = 0.9, p < 0.001), with a slope of 1.2. Conclusions: Dynamic contrast-enhanced MRI performs better than T2w imaging in the detection and localization of prostate cancer in the peripheral zone after EBRT. This may be helpful in the planning of salvage therapy.

  13. Dynamic contrast-enhanced susceptibility-weighted perfusion MRI (DSC-MRI) in a glioma model of the rat brain using a conventional receive-only surface coil with a inner diameter of 47 mm at a clinical 1.5 T scanner.

    PubMed

    Ulmer, Stephan; Reeh, Matthias; Krause, Joerg; Herdegen, Thomas; Heldt-Feindt, Janka; Jansen, Olav; Rohr, Axel

    2008-07-30

    Magnetic resonance (MR) imaging in animal models is usually performed in expensive dedicated small bore animal scanners of limited availability. In the present study a standard clinical 1.5 T MR scanner was used for morphometric and dynamic contrast-enhanced susceptibility-weighted MR imaging (DSC-MRI) of a glioma model of the rat brain. Ten male Wistar rats were examined with coronal T2-weighted, and T1-weighted images (matrix 128 x 128, FOV 64 mm) after implantation of an intracerebral tumor xenografts (C6) using a conventional surface coil. For DSC-MRI a T2*-weighted sequence (TR/TE=30/14 ms, matrix 64 x 64, FOV 90 mm; slice thickness of 1.5mm) was performed. Regions of interest were defined within the tumor and the non-affected contralateral hemisphere and the mean transit time (MTT) was determined. Tumor dimensions in MR predicted well its real size as proven by histology. The MTT of contrast agent passing through the brain was significantly decelerated in the tumor compared to the unaffected hemisphere (p<0.001, paired t-test), which is most likely due to the leakage of contrast agent through the disrupted blood brain barrier. This setup offers advanced MR imaging of small animals without the need for dedicated animal scanners or dedicated custom-made coils.

  14. Tumor characterization in small animals using magnetic resonance-guided dynamic contrast enhanced diffuse optical tomography

    NASA Astrophysics Data System (ADS)

    Lin, Yuting; Thayer, Dave; Nalcioglu, Orhan; Gulsen, Gultekin

    2011-10-01

    We present a magnetic resonance (MR)-guided near-infrared dynamic contrast enhanced diffuse optical tomography (DCE-DOT) system for characterization of tumors using an optical contrast agent (ICG) and a MR contrast agent [Gd-diethylenetriaminepentaacetic acid (DTPA)] in a rat model. Both ICG and Gd-DTPA are injected and monitored simultaneously using a combined MRI-DOT system, resulting in accurate co-registration between two imaging modalities. Fisher rats bearing R3230 breast tumor are imaged using this hybrid system. For the first time, enhancement kinetics of the exogenous contrast ICG is recovered from the DCE-DOT data using MR anatomical a priori information. As tumors grow, they undergo necrosis and the tissue transforms from viable to necrotic. The results show that the physiological changes between viable and necrotic tissue can be differentiated more accurately based on the ICG enhancement kinetics when MR anatomical information is utilized.

  15. Use of computational fluid dynamics in the design of dynamic contrast enhanced imaging phantoms

    NASA Astrophysics Data System (ADS)

    Hariharan, Prasanna; Freed, Melanie; Myers, Matthew R.

    2013-09-01

    Phantoms for dynamic contrast enhanced (DCE) imaging modalities such as DCE computed tomography (DCE-CT) and DCE magnetic resonance imaging (DCE-MRI) are valuable tools for evaluating and comparing imaging systems. It is important for the contrast-agent distribution within the phantom to possess a time dependence that replicates a curve observed clinically, known as the ‘tumor-enhancement curve’. It is also important for the concentration field within the lesion to be as uniform as possible. This study demonstrates how computational fluid dynamics (CFD) can be applied to achieve these goals within design constraints. The distribution of the contrast agent within the simulated phantoms was investigated in relation to the influence of three factors of the phantom design. First, the interaction between the inlets and the uniformity of the contrast agent within the phantom was modeled. Second, pumps were programmed using a variety of schemes and the resultant dynamic uptake curves were compared to tumor-enhancement curves obtained from clinical data. Third, the effectiveness of pulsing the inlet flow rate to produce faster equilibration of the contrast-agent distribution was quantified. The models employed a spherical lesion and design constraints (lesion diameter, inlet-tube size and orientation, contrast-agent flow rates and fluid properties) taken from a recently published DCE-MRI phantom study. For DCE-MRI in breast cancer detection, where the target tumor-enhancement curve varies on the scale of hundreds of seconds, optimizing the number of inlet tubes and their orientation was found to be adequate for attaining concentration uniformity and reproducing the target tumor-enhancement curve. For DCE-CT in liver tumor detection, where the tumor-enhancement curve varies on a scale of tens of seconds, the use of an iterated inlet condition (programmed into the pump) enabled the phantom to reproduce the target tumor-enhancement curve within a few per cent beyond about

  16. Spectral clustering applied for dynamic contrast-enhanced MR analysis of time-intensity curves.

    PubMed

    Tartare, Guillaume; Hamad, Denis; Azahaf, Mustapha; Puech, Philippe; Betrouni, Nacim

    2014-12-01

    Dynamic contrast-enhanced (DCE)-magnetic resonance imaging (MRI) represents an emerging method for the prediction of biomarker responses in cancer. However, DCE images remain difficult to analyze and interpret. Although pharmacokinetic approaches, which involve multi-step processes, can provide a general framework for the interpretation of these data, they are still too complex for robust and accurate implementation. Therefore, statistical data analysis techniques were recently suggested as another valid interpretation strategy for DCE-MRI. In this context, we propose a spectral clustering approach for the analysis of DCE-MRI time-intensity signals. This graph theory-based method allows for the grouping of signals after spatial transformation. Subsequently, these data clusters can be labeled following comparison to arterial signals. Here, we have performed experiments with simulated (i.e., generated via pharmacokinetic modeling) and clinical (i.e., obtained from patients scanned during prostate cancer diagnosis) data sets in order to demonstrate the feasibility and applicability of this kind of unsupervised and non-parametric approach.

  17. Dynamic Contrast-Enhanced Magnetic Resonance Imaging of the Metastatic Potential of Melanoma Xenografts

    SciTech Connect

    Ovrebo, Kirsti Marie; Ellingsen, Christine; Galappathi, Kanthi; Rofstad, Einar K.

    2012-05-01

    Purpose: Gadolinium diethylene-triamine penta-acetic acid (Gd-DTPA)-based dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has been suggested as a useful noninvasive method for characterizing the physiologic microenvironment of tumors. In the present study, we investigated whether Gd-DTPA-based DCE-MRI has the potential to provide biomarkers for hypoxia-associated metastatic dissemination. Methods and Materials: C-10 and D-12 melanoma xenografts were used as experimental tumor models. Pimonidazole was used as a hypoxia marker. A total of 60 tumors were imaged, and parametric images of K{sup trans} (volume transfer constant of Gd-DTPA) and v{sub e} (fractional distribution volume of Gd-DTPA) were produced by pharmacokinetic analysis of the DCE-MRI series. The host mice were killed immediately after DCE-MRI, and the primary tumor and the lungs were resected and prepared for histologic assessment of the fraction of pimonidazole-positive hypoxic tissue and the presence of lung metastases, respectively. Results: Metastases were found in 11 of 26 mice with C-10 tumors and 14 of 34 mice with D-12 tumors. The primary tumors of the metastatic-positive mice had a greater fraction of hypoxic tissue (p = 0.00031, C-10; p < 0.00001, D-12), a lower median K{sup trans} (p = 0.0011, C-10; p < 0.00001, D-12), and a lower median v{sub e} (p = 0.014, C-10; p = 0.016, D-12) than the primary tumors of the metastatic-negative mice. Conclusions: These findings support the clinical attempts to establish DCE-MRI as a method for providing biomarkers for tumor aggressiveness and suggests that primary tumors characterized by low K{sup trans} and low v{sub e} values could have a high probability of hypoxia-associated metastatic spread.

  18. Dynamic contrast-enhanced magnetic resonance imaging of radiation therapy-induced microcirculation changes in rectal cancer

    SciTech Connect

    Lussanet, Quido G. de . E-mail: qdlu@rdia.azm.nl; Backes, Walter H.; Griffioen, Arjan W.; Padhani, Anwar R.; Baeten, Coen I.; Baardwijk, Angela van; Lambin, Philippe; Beets, Geerard L.; Engelshoven, Jos van; Beets-Tan, Regina G.H.

    2005-12-01

    Purpose: Dynamic contrast-enhanced T1-weighted magnetic resonance imaging (DCE-MRI) allows noninvasive evaluation of tumor microvasculature characteristics. This study evaluated radiation therapy related microvascular changes in locally advanced rectal cancer by DCE-MRI and histology. Methods and Materials: Dynamic contrast-enhanced-MRI was performed in 17 patients with primary rectal cancer. Seven patients underwent 25 fractions of 1.8 Gy radiation therapy (RT) (long RT) before DCE-MRI and 10 did not. Of these 10, 3 patients underwent five fractions of 5 Gy RT (short RT) in the week before surgery. The RT treated and nontreated groups were compared in terms of endothelial transfer coefficient (K{sup PS}, measured by DCE-MRI), microvessel density (MVD) (scored by immunoreactivity to CD31 and CD34), and tumor cell and endothelial cell proliferation (scored by immunoreactivity to Ki67). Results: Tumor K{sup PS} was 77% (p = 0.03) lower in the RT-treated group. Histogram analyses showed that RT reduced both magnitude and intratumor heterogeneity of K{sup PS} (p = 0.01). MVD was significantly lower (37%, p 0.03) in tumors treated with long RT than in nonirradiated tumors, but this was not the case with short RT. Endothelial cell proliferation was reduced with short RT (81%, p = 0.02) just before surgery, but not with long RT (p > 0.8). Tumor cell proliferation was reduced with both long (57%, p < 0.001) and short RT (52%, p = 0.002). Conclusion: Dynamic contrast-enhanced-MRI-derived K{sup PS} values showed significant radiation therapy related reductions in microvessel blood flow in locally advanced rectal cancer. These findings may be useful in evaluating effects of radiation combination therapies (e.g., chemoradiation or RT combined with antiangiogenesis therapy), to account for effects of RT alone.

  19. Assessment of Hypoxia in Human Cervical Carcinoma Xenografts by Dynamic Contrast-Enhanced Magnetic Resonance Imaging

    SciTech Connect

    Ellingsen, Christine; Egeland, Tormod A.M.; Gulliksrud, Kristine M.Sc.; Gaustad, Jon-Vidar; Mathiesen, Berit; Rofstad, Einar K.

    2009-03-01

    Purpose: Patients with advanced cervical cancer and highly hypoxic primary tumors show increased frequency of locoregional treatment failure and poor disease-free and overall survival rates. The potential usefulness of gadolinium-diethylenetriaminepentaacetic acid (Gd-DTPA)-based dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in assessing tumor hypoxia noninvasively was investigated in the present preclinical study. Methods and Materials: CK-160 and TS-415 human cervical carcinoma xenografts transplanted intramuscularly (i.m.) or subcutaneously (s.c.) in BALB/c nu/nu mice were subjected to DCE-MRI and measurement of fraction of radiobiologically hypoxic cells. Tumor images of K{sup trans} (the volume transfer constant of Gd-DTPA) and v{sub e} (the extracellular volume fraction of the imaged tissue) were produced by pharmacokinetic analysis of the DCE-MRI data. Fraction of radiobiologically hypoxic cells was measured by using the paired survival curve method. Results: Fraction of radiobiologically hypoxic cells differed significantly among the four tumor groups. The mean values {+-} SE were determined to be 44% {+-} 7% (i.m. CK-160), 77% {+-} 10% (s.c. CK-160), 23% {+-} 5% (i.m. TS-415), and 52% {+-} 6% (s.c. TS-415). The four tumor groups differed significantly also in K{sup trans}, and there was an unambiguous inverse relationship between K{sup trans} and fraction of radiobiologically hypoxic cells. On the other hand, significant differences among the groups in v{sub e} could not be detected. Conclusions: The study supports the clinical development of DCE-MRI as a method for assessing the extent of hypoxia in carcinoma of the cervix.

  20. Ex vivo assessment of polyol coated-iron oxide nanoparticles for MRI diagnosis applications: toxicological and MRI contrast enhancement effects

    NASA Astrophysics Data System (ADS)

    Bomati-Miguel, Oscar; Miguel-Sancho, Nuria; Abasolo, Ibane; Candiota, Ana Paula; Roca, Alejandro G.; Acosta, Milena; Schwartz, Simó; Arus, Carles; Marquina, Clara; Martinez, Gema; Santamaria, Jesus

    2014-03-01

    Polyol synthesis is a promising method to obtain directly pharmaceutical grade colloidal dispersion of superparamagnetic iron oxide nanoparticles (SPIONs). Here, we study the biocompatibility and performance as T2-MRI contrast agents (CAs) of high quality magnetic colloidal dispersions (average hydrodynamic aggregate diameter of 16-27 nm) consisting of polyol-synthesized SPIONs (5 nm in mean particle size) coated with triethylene glycol (TEG) chains (TEG-SPIONs), which were subsequently functionalized to carboxyl-terminated meso-2-3-dimercaptosuccinic acid (DMSA) coated-iron oxide nanoparticles (DMSA-SPIONs). Standard MTT assays on HeLa, U87MG, and HepG2 cells revealed that colloidal dispersions of TEG-coated iron oxide nanoparticles did not induce any loss of cell viability after 3 days incubation with dose concentrations below 50 μg Fe/ml. However, after these nanoparticles were functionalized with DMSA molecules, an increase on their cytotoxicity was observed, so that particles bearing free terminal carboxyl groups on their surface were not cytotoxic only at low concentrations (<10 μg Fe/ml). Moreover, cell uptake assays on HeLa and U87MG and hemolysis tests have demonstrated that TEG-SPIONs and DMSA-SPIONs were well internalized by the cells and did not induce any adverse effect on the red blood cells at the tested concentrations. Finally, in vitro relaxivity measurements and post mortem MRI studies in mice indicated that both types of coated-iron oxide nanoparticles produced higher negative T2-MRI contrast enhancement than that measured for a similar commercial T2-MRI CAs consisting in dextran-coated ultra-small iron oxide nanoparticles (Ferumoxtran-10). In conclusion, the above attributes make both types of as synthesized coated-iron oxide nanoparticles, but especially DMSA-SPIONs, promising candidates as T2-MRI CAs for nanoparticle-enhanced MRI diagnosis applications.

  1. Quantitative Susceptibility Mapping and Dynamic Contrast Enhanced Quantitative Perfusion in Cerebral Cavernous Angiomas

    PubMed Central

    Mikati, Abdul Ghani; Tan, Huan; Shenkar, Robert; Li, Luying; Zhang, Lingjiao; Guo, Xiaodong; Shi, Changbin; Liu, Tian; Wang, Yi; Shah, Akash; Edelman, Robert; Christoforidis, Gregory; Awad, Issam

    2015-01-01

    Background Hyperpermeability and iron deposition are two central pathophysiological phenomena in human cerebral cavernous malformation (CCM) disease. Here we used two novel magnetic resonance imaging (MRI) techniques to establish a relationship between these phenomena. Methods Subjects with CCM disease (4 sporadic and 18 familial) underwent MRI imaging using the Dynamic Contrast Enhanced Quantitative Perfusion (DCEQP) and Quantitative Susceptibility Mapping (QSM) techniques that measure hemodynamic factors of vessel leak and iron deposition respectively, previously demonstrated in CCM disease. Regions of interest encompassing the CCM lesions were analyzed using these techniques Results Susceptibility measured by QSM was positively correlated with permeability of lesions measured using DCEQP (r=0.49, p=<0.0001). The correlation was not affected by factors including familial predisposition, lesion volume, the contrast agent and the use of statin medication. Susceptibility was correlated with lesional blood volume (r=0.4, p=0.0001), but not with lesional blood flow. Conclusion The correlation between QSM and DCEQP suggests that the phenomena of permeability and iron deposition are related in CCM; hence “more leaky lesions” also manifest a more cumulative iron burden. These techniques might be used as biomarkers to monitor the course of this disease and the effect of therapy. PMID:24302484

  2. Assessment of Tumor Radioresponsiveness and Metastatic Potential by Dynamic Contrast-Enhanced Magnetic Resonance Imaging

    SciTech Connect

    Ovrebo, Kirsti Marie; Gulliksrud, Kristine; Mathiesen, Berit; Rofstad, Einar K.

    2011-09-01

    Purpose: It has been suggested that gadolinium diethylene-triamine penta-acetic acid (Gd-DTPA)-based dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) may provide clinically useful biomarkers for personalized cancer treatment. In this preclinical study, we investigated the potential of DCE-MRI as a noninvasive method for assessing the radioresponsiveness and metastatic potential of tumors. Methods and Materials: R-18 melanoma xenografts growing in BALB/c nu/nu mice were used as experimental tumor models. Fifty tumors were subjected to DCE-MRI, and parametric images of K{sup trans} (the volume transfer constant of Gd-DTPA) and v{sub e} (the fractional distribution volume of Gd-DTPA) were produced by pharmacokinetic analysis of the DCE-MRI series. The tumors were irradiated after the DCE-MRI, either with a single dose of 10 Gy for detection of radiobiological hypoxia (30 tumors) or with five fractions of 4 Gy in 48 h for assessment of radioresponsiveness (20 tumors). The host mice were then euthanized and examined for lymph node metastases, and the primary tumors were resected for measurement of cell survival in vitro. Results: Tumors with hypoxic cells showed significantly lower K{sup trans} values than tumors without significant hypoxia (p < 0.0001, n = 30), and K{sup trans} decreased with increasing cell surviving fraction for tumors given fractionated radiation treatment (p < 0.0001, n = 20). Tumors in metastasis-positive mice had significantly lower K{sup trans} values than tumors in metastasis-negative mice (p < 0.0001, n = 50). Significant correlations between v{sub e} and tumor hypoxia, radioresponsiveness, or metastatic potential could not be detected. Conclusions: R-18 tumors with low K{sup trans} values are likely to be resistant to radiation treatment and have a high probability of developing lymph node metastases. The general validity of these observations should be investigated further by studying preclinical tumor models with biological

  3. In-Vivo Imaging of Cell Migration Using Contrast Enhanced MRI and SVM Based Post-Processing.

    PubMed

    Weis, Christian; Hess, Andreas; Budinsky, Lubos; Fabry, Ben

    2015-01-01

    The migration of cells within a living organism can be observed with magnetic resonance imaging (MRI) in combination with iron oxide nanoparticles as an intracellular contrast agent. This method, however, suffers from low sensitivity and specificty. Here, we developed a quantitative non-invasive in-vivo cell localization method using contrast enhanced multiparametric MRI and support vector machines (SVM) based post-processing. Imaging phantoms consisting of agarose with compartments containing different concentrations of cancer cells labeled with iron oxide nanoparticles were used to train and evaluate the SVM for cell localization. From the magnitude and phase data acquired with a series of T2*-weighted gradient-echo scans at different echo-times, we extracted features that are characteristic for the presence of superparamagnetic nanoparticles, in particular hyper- and hypointensities, relaxation rates, short-range phase perturbations, and perturbation dynamics. High detection quality was achieved by SVM analysis of the multiparametric feature-space. The in-vivo applicability was validated in animal studies. The SVM detected the presence of iron oxide nanoparticles in the imaging phantoms with high specificity and sensitivity with a detection limit of 30 labeled cells per mm3, corresponding to 19 μM of iron oxide. As proof-of-concept, we applied the method to follow the migration of labeled cancer cells injected in rats. The combination of iron oxide labeled cells, multiparametric MRI and a SVM based post processing provides high spatial resolution, specificity, and sensitivity, and is therefore suitable for non-invasive in-vivo cell detection and cell migration studies over prolonged time periods.

  4. QIN: Practical Considerations in T1 Mapping of Prostate for Dynamic Contrast Enhancement Pharmacokinetic Analyses

    PubMed Central

    Fennessy, Fiona M; Fedorov, Andriy; Gupta, Sandeep N; Schmidt, Ehud J; Tempany, Clare M; Mulkern, Robert V

    2012-01-01

    There are many challenges in developing robust imaging biomarkers that can be reliably applied in a clinical trial setting. In the case of Dynamic Contrast Enhanced (DCE) MRI, one such challenge is to obtain accurate pre-contrast T1 maps for subsequent use in two-compartment pharmacokinetic models commonly used to fit the MR enhancement time courses. In the prostate, a convenient and common approach for this task has been to use the same 3D SPGR sequence used to collect the DCE data, but with variable flip angles (VFA’s) to collect data suitable for T1 mapping prior to contrast injection. However, inhomogeneous radiofrequency conditions within the prostate have been found to adversely affect the accuracy of this technique. Herein we demonstrate the sensitivity of DCE pharmacokinetic parameters to pre-contrast T1 values and examine methods to improve the accuracy of T1 mapping with flip angle corrected VFA SPGR methods, comparing T1 maps from such methods with reference T1 maps generated with saturation recovery experiments performed with fast spin echo (FSE) sequences. PMID:22898681

  5. Evolution of pulmonary perfusion defects demonstrated with contrast-enhanced dynamic MR perfusion imaging.

    PubMed

    Howarth, N R; Beziat, C; Berthezène, Y

    1999-01-01

    Pulmonary perfusion defects can be demonstrated with contrast-enhanced dynamic MR perfusion imaging. We present the case of a patient with a pulmonary artery sarcoma who presented with a post-operative pulmonary embolus and was followed in the post-operative period with dynamic contrast-enhanced MR perfusion imaging. This technique allows rapid imaging of the first passage of contrast material through the lung after bolus injection in a peripheral vein. To our knowledge, this case report is the first to describe the use of this MR technique in showing the evolution of peripheral pulmonary perfusion defects associated with pulmonary emboli.

  6. Development of a dynamic flow imaging phantom for dynamic contrast-enhanced CT

    SciTech Connect

    Driscoll, B.; Keller, H.; Coolens, C.

    2011-08-15

    Purpose: Dynamic contrast enhanced CT (DCE-CT) studies with modeling of blood flow and tissue perfusion are becoming more prevalent in the clinic, with advances in wide volume CT scanners allowing the imaging of an entire organ with sub-second image frequency and sub-millimeter accuracy. Wide-spread implementation of perfusion DCE-CT, however, is pending fundamental validation of the quantitative parameters that result from dynamic contrast imaging and perfusion modeling. Therefore, the goal of this work was to design and construct a novel dynamic flow imaging phantom capable of producing typical clinical time-attenuation curves (TACs) with the purpose of developing a framework for the quantification and validation of DCE-CT measurements and kinetic modeling under realistic flow conditions. Methods: The phantom is based on a simple two-compartment model and was printed using a 3D printer. Initial analysis of the phantom involved simple flow measurements and progressed to DCE-CT experiments in order to test the phantoms range and reproducibility. The phantom was then utilized to generate realistic input TACs. A phantom prediction model was developed to compute the input and output TACs based on a given set of five experimental (control) parameters: pump flow rate, injection pump flow rate, injection contrast concentration, and both control valve positions. The prediction model is then inversely applied to determine the control parameters necessary to generate a set of desired input and output TACs. A protocol was developed and performed using the phantom to investigate image noise, partial volume effects and CT number accuracy under realistic flow conditionsResults: This phantom and its surrounding flow system are capable of creating a wide range of physiologically relevant TACs, which are reproducible with minimal error between experiments ({sigma}/{mu} < 5% for all metrics investigated). The dynamic flow phantom was capable of producing input and output TACs using

  7. Correlations of Dynamic Contrast-Enhanced Magnetic Resonance Imaging with Morphologic, Angiogenic, and Molecular Prognostic Factors in Rectal Cancer

    PubMed Central

    Hong, Hye-Suk; Kim, Se Hoon; Park, Hae-Jeong; Park, Mi-Suk; Kim, Won Ho; Kim, Nam Kyu; Lee, Jae Mun; Cho, Hyeon Je

    2013-01-01

    Purpose To investigate the correlations between parameters of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and prognostic factors in rectal cancer. Materials and Methods We studied 29 patients with rectal cancer who underwent gadolinium contrast-enhanced, T1-weighted DCE-MRI with a three Tesla scanner prior to surgery. Signal intensity on DCE-MRI was independently measured by two observers to examine reproducibility. A time-signal intensity curve was generated, from which four semiquantitative parameters were calculated: steepest slope (SLP), time to peak (Tp), relative enhancement during a rapid rise (Erise), and maximal enhancement (Emax). Morphologic prognostic factors including T stage, N stage, and histologic grade were identified. Tumor angiogenesis was evaluated in terms of microvessel count (MVC) and microvessel area (MVA) by morphometric study. As molecular factors, the mutation status of the K-ras oncogene and microsatellite instability were assessed. DCE-MRI parameters were correlated with each prognostic factor using bivariate correlation analysis. A p-value of <0.05 was considered significant. Results Erise was significantly correlated with N stage (r=-0.387 and -0.393, respectively, for two independent data), and Tp was significantly correlated with histologic grade (r=0.466 and 0.489, respectively). MVA was significantly correlated with SLP (r=-0.532 and -0.535, respectively) and Erise (r=-0.511 and -0.446, respectively). MVC was significantly correlated with Emax (r=-0.435 and -0.386, respectively). No significant correlations were found between DCE-MRI parameters and T stage, K-ras mutation, or microsatellite instability. Conclusion DCE-MRI may provide useful prognostic information in terms of histologic differentiation and angiogenesis in rectal cancer. PMID:23225808

  8. Semiquantitative and Quantitative Dynamic Contrast-Enhanced Magnetic Resonance Imaging Measurements Predict Radiation Response in Cervix Cancer

    SciTech Connect

    Zahra, Mark A. Tan, Li Tee; Priest, Andrew N.; Graves, Martin J.; Arends, Mark; Crawford, Robin A.F.; Brenton, James D.; Lomas, David J.; Sala, Evis

    2009-07-01

    Purpose: To evaluate semiquantitative and quantitative dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) measurements in predicting the response to radiotherapy in cervix cancer. Methods and Materials: Patients with cervix cancer treated radically with chemoradiotherapy had DCE-MRI at three time points: before starting treatment, after 2 weeks of radiotherapy, and in the 5th week of radiotherapy. Semiquantitative measurements obtained from the signal intensity vs. time plots included arrival time of contrast, the slope and maximum slope of contrast uptake, time for peak enhancement, and the contrast enhancement ratio (CER). Pharmacokinetic modeling with a modeled vascular input function was used for the quantitative measurements volume transfer constant (K{sup trans}), rate constant (k{sub ep}), fraction plasma volume (fPV), and the initial area under gadolinium-time curve. The correlation of these measurements at each of the three time points with radiologic tumor response was investigated. Results: Thirteen patients had a total of 38 scans. There was no correlation between the DCE-MRI measurements and the corresponding tumor volumes. A statistically significant correlation with percentage tumor regression was shown with the pretreatment DCE-MRI semiquantitative parameters of peak time (p = 0.046), slope (p = 0.025), maximum slope (p = 0.046), and CER (p = 0.025) and the quantitative parameters K{sup trans} (p = 0.043) and k{sub ep} (p = 0.022). Second and third scan measurements did not show any correlation. Conclusions: This is the first study to show that pretreatment DCE-MRI quantitative parameters predict the radiation response in cervix cancer. These measurements may allow a more meaningful comparison of DCE-MRI studies from different centers.

  9. Dynamic Contrast-Enhanced Magnetic Resonance Imaging Reveals Stress-Induced Angiogenesis in MCF7 Human Breast Tumors

    NASA Astrophysics Data System (ADS)

    Furman-Haran, Edna; Margalit, Raanan; Grobgeld, Dov; Degani, Hadassa

    1996-06-01

    The mechanism of contrast enhancement of tumors using magnetic resonance imaging was investigated in MCF7 human breast cancer implanted in nude mice. Dynamic contrast-enhanced images recorded at high spatial resolution were analyzed by an image analysis method based on a physiological model, which included the blood circulation, the tumor, the remaining tissues, and clearance via the kidneys. This analysis enabled us to map in rapidly enhancing regions within the tumor, the capillary permeability factor (capillary permeability times surface area per voxel volume) and the fraction of leakage space. Correlation of these maps with T2-weighted spin echo images, with histopathology, and with immunohistochemical staining of endothelial cells demonstrated the presence of dense permeable microcapillaries in the tumor periphery and in intratumoral regions that surrounded necrotic loci. The high leakage from the intratumoral permeable capillaries indicated an induction of a specific angiogenic process associated with stress conditions that cause necrosis. This induction was augmented in tumors responding to tamoxifen treatment. Determination of the distribution and extent of this stress-induced angiogenic activity by contrast-enhanced MRI might be of diagnostic and of prognostic value.

  10. Simulation of the modulation transfer function dependent on the partial Fourier fraction in dynamic contrast enhancement magnetic resonance imaging.

    PubMed

    Takatsu, Yasuo; Ueyama, Tsuyoshi; Miyati, Tosiaki; Yamamura, Kenichirou

    2016-12-01

    The image characteristics in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) depend on the partial Fourier fraction and contrast medium concentration. These characteristics were assessed and the modulation transfer function (MTF) was calculated by computer simulation. A digital phantom was created from signal intensity data acquired at different contrast medium concentrations on a breast model. The frequency images [created by fast Fourier transform (FFT)] were divided into 512 parts and rearranged to form a new image. The inverse FFT of this image yielded the MTF. From the reference data, three linear models (low, medium, and high) and three exponential models (slow, medium, and rapid) of the signal intensity were created. Smaller partial Fourier fractions, and higher gradients in the linear models, corresponded to faster MTF decline. The MTF more gradually decreased in the exponential models than in the linear models. The MTF, which reflects the image characteristics in DCE-MRI, was more degraded as the partial Fourier fraction decreased.

  11. Optimal gadolinium dose level for magnetic resonance imaging (MRI) contrast enhancement of U87-derived tumors in athymic nude rats for the assessment of photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Cross, Nathan; Varghai, Davood; Flask, Chris A.; Feyes, Denise K.; Oleinick, Nancy L.; Dean, David

    2009-02-01

    This study aims to determine the effect of varying gadopentetate dimeglumine (Gd-DTPA) dose on Dynamic Contrast Enhanced-Magnetic Resonance Imaging (DCE-MRI) tracking of brain tumor photodynamic therapy (PDT) outcome. Methods: We injected 2.5 x 105 U87 cells (derived from human malignant glioma) into the brains of six athymic nude rats. After 9, 12, and 13 days DCE-MRI images were acquired on a 9.4 T micro-MRI scanner before and after administration of 100, 150, or 200 μL of Gd-DTPA. Results: Tumor region normalized DCE-MRI scan enhancement at peak was: 1.217 over baseline (0.018 Standard Error [SE]) at the 100 μL dose, 1.339 (0.013 SE) at the 150 μL dose, and 1.287 (0.014 SE) at the 200 μL dose. DCE-MRI peak tumor enhancement at the 150 μL dose was significantly greater than both the 100 μL dose (p < 3.323E-08) and 200 μL dose (p < 0.0007396). Discussion: In this preliminary study, the 150 μL Gd-DTPA dose provided the greatest T1 weighted contrast enhancement, while minimizing negative T2* effects, in DCE-MRI scans of U87-derived tumors. Maximizing Gd-DTPA enhancement in DCE-MRI scans may assist development of a clinically robust (i.e., unambiguous) technique for PDT outcome assessment.

  12. Dynamic Contrast-enhanced MR Imaging in Renal Cell Carcinoma: Reproducibility of Histogram Analysis on Pharmacokinetic Parameters

    PubMed Central

    Wang, Hai-yi; Su, Zi-hua; Xu, Xiao; Sun, Zhi-peng; Duan, Fei-xue; Song, Yuan-yuan; Li, Lu; Wang, Ying-wei; Ma, Xin; Guo, Ai-tao; Ma, Lin; Ye, Hui-yi

    2016-01-01

    Pharmacokinetic parameters derived from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) have been increasingly used to evaluate the permeability of tumor vessel. Histogram metrics are a recognized promising method of quantitative MR imaging that has been recently introduced in analysis of DCE-MRI pharmacokinetic parameters in oncology due to tumor heterogeneity. In this study, 21 patients with renal cell carcinoma (RCC) underwent paired DCE-MRI studies on a 3.0 T MR system. Extended Tofts model and population-based arterial input function were used to calculate kinetic parameters of RCC tumors. Mean value and histogram metrics (Mode, Skewness and Kurtosis) of each pharmacokinetic parameter were generated automatically using ImageJ software. Intra- and inter-observer reproducibility and scan–rescan reproducibility were evaluated using intra-class correlation coefficients (ICCs) and coefficient of variation (CoV). Our results demonstrated that the histogram method (Mode, Skewness and Kurtosis) was not superior to the conventional Mean value method in reproducibility evaluation on DCE-MRI pharmacokinetic parameters (K trans & Ve) in renal cell carcinoma, especially for Skewness and Kurtosis which showed lower intra-, inter-observer and scan-rescan reproducibility than Mean value. Our findings suggest that additional studies are necessary before wide incorporation of histogram metrics in quantitative analysis of DCE-MRI pharmacokinetic parameters. PMID:27380733

  13. A novel method for viability assessment by cinematographic and late contrast enhanced MRI

    NASA Astrophysics Data System (ADS)

    Gao, Gang; Cockshott, Paul W.; Martin, Thomas N.; Foster, John E.; Elliott, Alex; Dargie, Henry; Groenning, Bjoern A.

    2004-04-01

    Using cardiac magnetic resonance (MR) imaging, a combination of late contrast enhanced MR (ceMR) and cinematographic (CINE) images, a myocardial viability score can be derived. At present this score is produced by visual evaluation of wall motion abnormalities in combination with presence or absence of late hyper enhancement (LE) on ceMR. We set out to develop and validate image processing techniques derived from stereo vision capable of reducing the observer dependence and improving accuracy in the diagnosis of viable myocardium.

  14. Dynamic contrast-enhanced magnetic resonance imaging for prediction of response to neoadjuvant chemotherapy in breast cancer

    NASA Astrophysics Data System (ADS)

    Fu, Juzhong; Fan, Ming; Zheng, Bin; Shao, Guoliang; Zhang, Juan; Li, Lihua

    2016-03-01

    Breast cancer is the second leading cause of women death in the United States. Currently, Neoadjuvant Chemotherapy (NAC) has become standard treatment paradigms for breast cancer patients. Therefore, it is important to find a reliable non-invasive assessment and prediction method which can evaluate and predict the response of NAC on breast cancer. The Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) approach can reflect dynamic distribution of contrast agent in tumor vessels, providing important basis for clinical diagnosis. In this study, the efficacy of DCE-MRI on evaluation and prediction of response to NAC in breast cancer was investigated. To this end, fifty-seven cases of malignant breast cancers with MRI examination both before and after two cycle of NAC were analyzed. After pre-processing approach for segmenting breast lesions and background regions, 126-dimensional imaging features were extracted from DCE-MRI. Statistical analyses were then performed to evaluate the associations between the extracted DCE-MRI features and the response to NAC. Specifically, pairwise t test was used to calculate differences of imaging features between MRI examinations before-and-after NAC. Moreover, the associations of these image features with response to NAC were assessed using logistic regression. Significant association are found between response to NAC and the features of lesion morphology and background parenchymal enhancement, especially the feature of background enhancement in normal side of breast (P=0.011). Our study indicate that DCE-MRI features can provide candidate imaging markers to predict response of NAC in breast cancer.

  15. Improvements in Diagnostic Accuracy with Quantitative Dynamic Contrast Enhanced MRI

    DTIC Science & Technology

    2012-12-01

    order to eliminate variations in parenchymal enhancement during the menstrual cycle , for pre-menopausal patients [5]. When it has not been possible...to scan them within a few days, their second scan was planned for a time when they were in the same phase of the menstrual cycle as in the first scan...allowed us to eliminate voxels which, due to noise or perhaps varying stages of the cardiac cycle when the image was acquired, led to concentration curves

  16. Dynamic Contrast-Enhanced Magnetic Resonance Enterography and Dynamic Contrast-Enhanced Ultrasonography in Crohn’s Disease: An Observational Comparison Study

    PubMed Central

    Wilkens, Rune; Peters, David A.; Nielsen, Agnete H.; Hovgaard, Valeriya P.; Glerup, Henning; Krogh, Klaus

    2017-01-01

    Purpose e Cross-sectional imaging methods are important for objective evaluationof small intestinal inflammationinCrohn’sdisease(CD).The primary aim was to compare relative parameters of intestinal perfusion between contrast-enhanced ultrasonography (CEUS) and dynamic contrast-enhanced magnetic resonance enterography (DCE-MRE) in CD. Furthermore, we aimed at testing the repeatability of regions of interest (ROIs) for CEUS. Methods This prospective study included 25 patients: 12 females (age: 37, range: 19–66) with moderate to severe CD and a bowel wall thickness>3mm evaluated with DCE-MRE and CEUS. CEUS bolus injection was performed twice for repeatability and analyzed in VueBox®. Correlations between modalities were described with Spearman’s rho, limits of agreement(LoA) and intraclass correlation coefficient(ICC). ROIrepeatability for CEUS was assessed. Results s The correlation between modalities was good and very good for bowel wall thickness (ICC=0.71, P<0.001) and length of the inflamed segment (ICC=0.89, P<0.001). Moderate-weak correlations were found for the time-intensity curve parameters: peak intensity (r=0.59, P=0.006), maximum wash-in-rate (r=0.62, P=0.004), and wash-in perfusion index (r=0.47, P=0.036). Best CEUS repeatability for peak enhancement was a mean difference of 0.73 dB (95% CI: 0.17 to 1.28, P=0.01) and 95% LoA from −3.8 to 5.3 dB. Good quality of curve fit improved LoA to −2.3 to 2.8 dB. Conclusion The relative perfusion of small intestinal CD assessed with DCE-MRE and CEUS shows only a moderate correlation. Applying strict criteria for ROIs is important and allows for good CEUS repeatability PMID:28286879

  17. Perfusion of subchondral bone marrow in knee osteoarthritis: A dynamic contrast-enhanced magnetic resonance imaging preliminary study.

    PubMed

    Budzik, Jean-François; Ding, Juliette; Norberciak, Laurène; Pascart, Tristan; Toumi, Hechmi; Verclytte, Sébastien; Coursier, Raphaël

    2017-03-01

    The role of inflammation in the pathogenesis of osteoarthritis is being given major interest, and inflammation is closely linked with vascularization. It was recently demonstrated that dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) could identify the subchondral bone marrow vascularization changes occurring in osteoarthritis in animals. These changes appeared before cartilage lesions were visible and were correlated with osteoarthritis severity. Thus the opportunity to obtain an objective assessment of bone vascularization in non-invasive conditions in humans might help better understanding osteoarthritis pathophysiology and finding new biomarkers. We hypothesized that, as in animals, DCE-MRI has the ability to identify subchondral bone marrow vascularization changes in human osteoarthritis. We performed knee MRI in 19 patients with advanced knee osteoarthritis. We assessed subchondral bone marrow vascularization in medial and lateral femorotibial compartments with DCE-MRI and graded osteoarthritis lesions on MR images. Statistical analysis assessed intra- and inter-observer agreement, compared DCE-MRI values between the different subchondral zones, and sought for an influence of age, sex, body mass index, and osteoarthritis garde on these values. The intra- and inter-observer agreement for DCE-MRI values were excellent. These values were significantly higher in the femorotibial compartment the most affected by osteoarthritis, both in femur and tibia (p<0.0001) and were significantly and positively correlated with cartilage lesions (p=0.02) and bone marrow oedema grade (p<0.0001) after adjustment. We concluded that, as in animals, subchondral bone marrow vascularization changes assessed with DCE-MRI were correlated with osteoarthritis severity in humans.

  18. Classification of dynamic contrast enhanced MR images of cervical cancers using texture analysis and support vector machines.

    PubMed

    Torheim, Turid; Malinen, Eirik; Kvaal, Knut; Lyng, Heidi; Indahl, Ulf G; Andersen, Erlend K F; Futsaether, Cecilia M

    2014-08-01

    Dynamic contrast enhanced MRI (DCE-MRI) provides insight into the vascular properties of tissue. Pharmacokinetic models may be fitted to DCE-MRI uptake patterns, enabling biologically relevant interpretations. The aim of our study was to determine whether treatment outcome for 81 patients with locally advanced cervical cancer could be predicted from parameters of the Brix pharmacokinetic model derived from pre-chemoradiotherapy DCE-MRI. First-order statistical features of the Brix parameters were used. In addition, texture analysis of Brix parameter maps was done by constructing gray level co-occurrence matrices (GLCM) from the maps. Clinical factors and first- and second-order features were used as explanatory variables for support vector machine (SVM) classification, with treatment outcome as response. Classification models were validated using leave-one-out cross-model validation. A random value permutation test was used to evaluate model significance. Features derived from first-order statistics could not discriminate between cured and relapsed patients (specificity 0%-20%, p-values close to unity). However, second-order GLCM features could significantly predict treatment outcome with accuracies (~70%) similar to the clinical factors tumor volume and stage (69%). The results indicate that the spatial relations within the tumor, quantified by texture features, were more suitable for outcome prediction than first-order features.

  19. Increased microcirculation detected by dynamic contrast-enhanced magnetic resonance imaging is of prognostic significance in asymptomatic myeloma.

    PubMed

    Hillengass, Jens; Ritsch, Judith; Merz, Maximilian; Wagner, Barbara; Kunz, Christina; Hielscher, Thomas; Laue, Hendrik; Bäuerle, Tobias; Zechmann, Christian M; Ho, Anthony D; Schlemmer, Heinz-Peter; Goldschmidt, Hartmut; Moehler, Thomas M; Delorme, Stefan

    2016-07-01

    This prospective study aimed to investigate the prognostic significance of dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) as a non-invasive imaging technique delivering the quantitative parameters amplitude A (reflecting blood volume) and exchange rate constant kep (reflecting vascular permeability) in patients with asymptomatic monoclonal plasma cell diseases. We analysed DCE-MRI parameters in 33 healthy controls and 148 patients with monoclonal gammopathy of undetermined significance (MGUS) or smouldering multiple myeloma (SMM) according to the 2003 IMWG guidelines. All individuals underwent standardized DCE-MRI of the lumbar spine. Regions of interest were drawn manually on T1-weighted images encompassing the bone marrow of each of the 5 lumbar vertebrae sparing the vertebral vessel. Prognostic significance for median of amplitude A (univariate: P < 0·001, hazard ratio (HR) 2·42, multivariate P = 0·02, HR 2·7) and exchange rate constant kep (univariate P = 0·03, HR 1·92, multivariate P = 0·46, HR 1·5) for time to progression of 79 patients with SMM was found. Patients with amplitude A above the optimal cut-off point of 0·89 arbitrary units had a 2-year progression rate into symptomatic disease of 80%. In conclusion, DCE-MRI parameters are of prognostic significance for time to progression in patients with SMM but not in individuals with MGUS.

  20. Tumor Vascularity in Renal Masses: Correlation of Arterial Spin-Labeled and Dynamic Contrast Enhanced MR Imaging Assessments

    PubMed Central

    Zhang, Yue; Kapur, Payal; Yuan, Qing; Xi, Yin; Carvo, Ingrid; Signoretti, Sabina; Dimitrov, Ivan; Cadeddu, Jeffrey A.; Margulis, Vitaly; Muradyan, Naira; Brugarolas, James; Madhuranthakam, Ananth J.; Pedrosa, Ivan

    2015-01-01

    Objective To investigate potential correlations between perfusion by arterial spin-labeled (ASL) magnetic resonance imaging (MRI) and dynamic contrast enhanced (DCE) MRI derived quantitative measures of vascularity in renal masses >2 cm and to correlate these with microvessel density (MVD) in clear cell renal cell carcinoma (ccRCC). Methods Informed written consent was obtained from all patients before imaging in this HIPAA-compliant, IRB-approved, prospective study. 36 consecutive patients scheduled for surgery of a known renal mass >2 cm underwent 3T ASL and DCE MRI. ASL measures (PASL) of mean, peak, and low perfusion areas within the mass were correlated to DCE-derived Ktrans, Kep, and Ve in the same locations using a region of interest analysis. MRI data were correlated to MVD measures in the same tumor regions in ccRCC. Spearman correlation was used to evaluate the correlation between PASL and DCE-derived measurements, and MVD. P<0.05 was considered statistically significant. Results Histopathologic diagnosis was obtained in 36 patients (25 men; mean age 58 ±12 years). PASL correlated with Ktrans (ρ=0.48, P=0.0091 for the entire tumor and ρ=0.43, P=0.03 for the high flow area, respectively) and Kep (ρ=0.46, P=0.01 for the entire tumor and ρ=0.52, P=0.008 for the high flow area, respectively). PASL (ρ=0.66, P=0.0002), Ktrans (ρ=0.61, P=0.001), and Kep (ρ=0.64, P=0.0006) also correlated with MVD in high and low perfusion areas in ccRCC. Conclusions PASL correlate with the DCE-derived measures of vascular permeability and flow, Ktrans and Kep, in renal masses >2cm in size. Both measures correlate to MVD in clear cell histology. MICROABSTRACT Arterial spin labeling (ASL) and dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) have been proposed to quantitatively assess vascularity in renal cell carcinoma (RCC). However there are intrinsic differences between these two imaging methods, such as the relative contribution of vascular permeability

  1. One-pot facile synthesis of PEGylated superparamagnetic iron oxide nanoparticles for MRI contrast enhancement.

    PubMed

    Dai, Lingling; Liu, Yongkang; Wang, Zhongqiu; Guo, Fangfang; Shi, Donglu; Zhang, Bingbo

    2014-08-01

    Polyethylene glycol (PEG)-coated superparamagnetic iron oxide nanoparticles (PEG·SPIONs) were prepared by a facile one-pot approach. The synthesized PEG·SPIONs were found to be uniform in size with an average hydrodynamic diameter of 11.7 nm. PEG·SPIONs exhibited excellent dispersibility in water, colloidal stability, and biocompatibility. The magnetic resonance imaging (MRI) properties of PEG·SPIONs were characterized both in vitro and in vivo. The dual contrast both in T1 and T2-weighted imaging was well enhanced with longitudinal and transverse relaxivity (r1, r2) of 35.92 s(-1) per mM of Fe(3+) and 206.91 s(-1) per mM of Fe(3+) respectively. In vivo T2-weighted MRI shows pronounced enhancement in the liver and spleen but not in T1-weighted MRI. Accumulations of nanoparticles were found primarily in the liver, spleen, and intestine, while much lower uptake in the kidney, heart, and lungs. A gradual excretion of PEG·SPIONs was observed via hepatobiliary (HB) processing over a period of 14 days. The toxicity of PEG·SPIONs was also evaluated in vitro and in vivo. PEG·SPIONs were found to be biocompatible by investigating organ tissues after hematoxylin-eosin staining. The conclusion of the study indicates a high potential of PEG·SPIONs in medical MRI.

  2. Contrast-enhanced cardiac MRI before coronary artery bypass surgery: impact of myocardial scar extent on bypass flow.

    PubMed

    Hunold, Peter; Massoudy, Parwis; Boehm, Claudia; Schlosser, Thomas; Nassenstein, Kai; Knipp, Stephan; Eggebrecht, Holger; Thielmann, Matthias; Erbel, Raimund; Jakob, Heinz; Barkhausen, Jörg

    2008-12-01

    The aim of the study was to relate the extent of myocardial late gadolinium enhancement (LGE) in cardiac MRI to intraoperative graft flow in patients undergoing coronary artery bypass graft (CABG) surgery. Thirty-three CAD patients underwent LGE MRI before surgery using an inversion-recovery GRE sequence (turboFLASH). Intraoperative graft flow in Doppler ultrasonography was compared with the scar extent in each coronary vessel territory. One hundred and fourteen grafts were established supplying 86 of the 99 vessel territories. A significant negative correlation was found between scar extent and graft flow (r = -0.4, p < 0.0001). Flow in grafts to territories with no or small subendocardial scar was significantly higher than in grafts to territories with broad nontransmural or transmural scar (75 +/- 39 vs. 38 +/- 26 cc min(-1); p < 0.0001). In summary, the extent of myocardial scar as defined by contrast-enhanced MRI predicts coronary bypass graft flow. Beyond the probability of functional recovery, preoperative MRI might add value to surgery planning by predicting midterm bypass graft patency.

  3. Evaluation of Soft Tissue Sarcoma Response to Preoperative Chemoradiotherapy Using Dynamic Contrast-Enhanced Magnetic Resonance Imaging

    PubMed Central

    Huang, Wei; Beckett, Brooke R.; Tudorica, Alina; Meyer, Janelle M.; Afzal, Aneela; Chen, Yiyi; Mansoor, Atiya; Hayden, James B.; Doung, Yee-Cheen; Hung, Arthur Y.; Holtorf, Megan L.; Aston, Torrie J.; Ryan, Christopher W.

    2016-01-01

    This study aims to assess the utility of quantitative dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) parameters in comparison with imaging tumor size for early prediction and evaluation of soft tissue sarcoma response to preoperative chemoradiotherapy. In total, 20 patients with intermediate- to high-grade soft tissue sarcomas received either a phase I trial regimen of sorafenib + chemoradiotherapy (n = 8) or chemoradiotherapy only (n = 12), and underwent DCE-MRI at baseline, after 2 weeks of treatment with sorafenib or after the first chemotherapy cycle, and after therapy completion. MRI tumor size in the longest diameter (LD) was measured according to the RECIST (Response Evaluation Criteria In Solid Tumors) guidelines. Pharmacokinetic analyses of DCE-MRI data were performed using the Shutter-Speed model. After only 2 weeks of treatment with sorafenib or after 1 chemotherapy cycle, Ktrans (rate constant for plasma/interstitium contrast agent transfer) and its percent change were good early predictors of optimal versus suboptimal pathological response with univariate logistic regression C statistics values of 0.90 and 0.80, respectively, whereas RECIST LD percent change was only a fair predictor (C = 0.72). Post-therapy Ktrans, ve (extravascular and extracellular volume fraction), and kep (intravasation rate constant), not RECIST LD, were excellent (C > 0.90) markers of therapy response. Several DCE-MRI parameters before, during, and after therapy showed significant (P < .05) correlations with percent necrosis of resected tumor specimens. In conclusion, absolute values and percent changes of quantitative DCE-MRI parameters provide better early prediction and evaluation of the pathological response of soft tissue sarcoma to preoperative chemoradiotherapy than the conventional measurement of imaging tumor size change. PMID:28066805

  4. Evaluation of liver parenchyma and perfusion using dynamic contrast-enhanced computed tomography and contrast-enhanced ultrasonography in captive green iguanas (Iguana iguana) under general anesthesia

    PubMed Central

    2014-01-01

    Background Contrast-enhanced diagnostic imaging techniques are considered useful in veterinary and human medicine to evaluate liver perfusion and focal hepatic lesions. Although hepatic diseases are a common occurrence in reptile medicine, there is no reference to the use of contrast-enhanced ultrasound (CEUS) and contrast-enhanced computed tomography (CECT) to evaluate the liver in lizards. Therefore, the aim of this study was to evaluate the pattern of change in echogenicity and attenuation of the liver in green iguanas (Iguana iguana) after administration of specific contrast media. Results An increase in liver echogenicity and density was evident during CEUS and CECT, respectively. In CEUS, the mean ± SD (median; range) peak enhancement was 19.9% ± 7.5 (18.3; 11.7-34.6). Time to peak enhancement was 134.0 ± 125.1 (68.4; 59.6-364.5) seconds. During CECT, first visualization of the contrast medium was at 3.6 ± 0.5 (4; 3-4) seconds in the aorta, 10.7 ± 2.2 (10.5; 7-14) seconds in the hepatic arteries, and 15 ± 4.5 (14.5; 10-24) seconds in the liver parenchyma. Time to peak was 14.1 ± 3.4 (13; 11-21) and 31 ± 9.6 (29; 23-45) seconds in the aorta and the liver parenchyma, respectively. Conclusion CEUS and dynamic CECT are practical means to determine liver hemodynamics in green iguanas. Distribution of contrast medium in iguana differed from mammals. Specific reference ranges of hepatic perfusion for diagnostic evaluation of the liver in iguanas are necessary since the use of mammalian references may lead the clinician to formulate incorrect diagnostic suspicions. PMID:24885935

  5. In vivo Imaging of Optic Nerve Fiber Integrity by Contrast-Enhanced MRI in Mice

    PubMed Central

    Herrmann, Karl-Heinz; Reichenbach, Jürgen R.; Witte, Otto W.; Weih, Falk; Kretz, Alexandra; Haenold, Ronny

    2014-01-01

    The rodent visual system encompasses retinal ganglion cells and their axons that form the optic nerve to enter thalamic and midbrain centers, and postsynaptic projections to the visual cortex. Based on its distinct anatomical structure and convenient accessibility, it has become the favored structure for studies on neuronal survival, axonal regeneration, and synaptic plasticity. Recent advancements in MR imaging have enabled the in vivo visualization of the retino-tectal part of this projection using manganese mediated contrast enhancement (MEMRI). Here, we present a MEMRI protocol for illustration of the visual projection in mice, by which resolutions of (200 µm)3 can be achieved using common 3 Tesla scanners. We demonstrate how intravitreal injection of a single dosage of 15 nmol MnCl2 leads to a saturated enhancement of the intact projection within 24 hr. With exception of the retina, changes in signal intensity are independent of coincided visual stimulation or physiological aging. We further apply this technique to longitudinally monitor axonal degeneration in response to acute optic nerve injury, a paradigm by which Mn2+ transport completely arrests at the lesion site. Conversely, active Mn2+ transport is quantitatively proportionate to the viability, number, and electrical activity of axon fibers. For such an analysis, we exemplify Mn2+ transport kinetics along the visual path in a transgenic mouse model (NF-κB p50KO) displaying spontaneous atrophy of sensory, including visual, projections. In these mice, MEMRI indicates reduced but not delayed Mn2+ transport as compared to wild type mice, thus revealing signs of structural and/or functional impairments by NF-κB mutations. In summary, MEMRI conveniently bridges in vivo assays and post mortem histology for the characterization of nerve fiber integrity and activity. It is highly useful for longitudinal studies on axonal degeneration and regeneration, and investigations of mutant mice for genuine or

  6. Time-delayed contrast-enhanced MRI improves detection of brain metastases: a prospective validation of diagnostic yield.

    PubMed

    Cohen-Inbar, Or; Xu, Zhiyuan; Dodson, Blair; Rizvi, Tanvir; Durst, Christopher R; Mukherjee, Sugoto; Sheehan, Jason P

    2016-12-01

    The radiological detection of brain metastases (BMs) is essential for optimizing a patient's treatment. This statement is even more valid when stereotactic radiosurgery, a noninvasive image guided treatment that can target BM as small as 1-2 mm, is delivered as part of that care. The timing of image acquisition after contrast administration can influence the diagnostic sensitivity of contrast enhanced magnetic resonance imaging (MRI) for BM. Investigate the effect of time delayed acquisition after administration of intravenous Gadavist® (Gadobutrol 1 mmol/ml) on the detection of BM. This is a prospective IRB approved study of 50 patients with BM who underwent post-contrast MRI sequences after injection of 0.1 mmol/kg Gadavist® as part of clinical care (time-t0), followed by axial T1 sequences after a 10 min (time-t1) and 20 min delay (time-t2). MRI studies were blindly compared by three neuroradiologists. Single measure intraclass correlation coefficients were very high (0.914, 0.904 and 0.905 for time-t0, time-t1 and time-t2 respectively), corresponding to a reliable inter-observer correlation. The delayed MRI at time-t2 delayed sequences showed a significant and consistently higher diagnostic sensitivity for BM by every participating neuroradiologist and for the entire cohort (p = 0.016, 0.035 and 0.034 respectively). A disproportionately high representation of BM detected on the delayed studies was located within posterior circulation territories (compared to predictions based on tissue volume and blood-flow volumes). Considering the safe and potentially high yield nature of delayed MRI sequences, it should supplement the standard MRI sequences in all patients in need of precise delineation of their intracranial disease.

  7. Pretreatment Evaluation of Microcirculation by Dynamic Contrast-Enhanced Magnetic Resonance Imaging Predicts Survival in Primary Rectal Cancer Patients

    SciTech Connect

    DeVries, Alexander Friedrich; Piringer, Gudrun; Kremser, Christian; Judmaier, Werner; Saely, Christoph Hubert; Lukas, Peter; Öfner, Dietmar

    2014-12-01

    Purpose: To investigate the prognostic value of the perfusion index (PI), a microcirculatory parameter estimated from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), which integrates information on both flow and permeability, to predict overall survival and disease-free survival in patients with primary rectal cancer. Methods and Materials: A total of 83 patients with stage cT3 rectal cancer requiring neoadjuvant chemoradiation were investigated with DCE-MRI before start of therapy. Contrast-enhanced dynamic T{sub 1} mapping was obtained, and a simple data analysis strategy based on the calculation of the maximum slope of the tissue concentration–time curve divided by the maximum of the arterial input function was used as a measure of tumor microcirculation (PI), which integrates information on both flow and permeability. Results: In 39 patients (47.0%), T downstaging (ypT0-2) was observed. During a mean (±SD) follow-up period of 71 ± 29 months, 58 patients (69.9%) survived, and disease-free survival was achieved in 45 patients (54.2%). The mean PI (PImean) averaged over the group of nonresponders was significantly higher than for responders. Additionally, higher PImean in age- and gender-adjusted analyses was strongly predictive of therapy nonresponse. Most importantly, PImean strongly and significantly predicted disease-free survival (unadjusted hazard ratio [HR], 1.85 [ 95% confidence interval, 1.35-2.54; P<.001)]; HR adjusted for age and sex, 1.81 [1.30-2.51]; P<.001) as well as overall survival (unadjusted HR 1.42 [1.02-1.99], P=.040; HR adjusted for age and sex, 1.43 [1.03-1.98]; P=.034). Conclusions: This analysis identifies PImean as a novel biomarker that is predictive for therapy response, disease-free survival, and overall survival in patients with primary locally advanced rectal cancer.

  8. Dynamic contrast-enhanced diffuse optical tomography (DCE-DOT): experimental validation with a dynamic phantom

    PubMed Central

    Unlu, Mehmet Burcin; Lin, Yuting; Gulsen, Gultekin

    2010-01-01

    Dynamic contrast-enhanced diffuse optical tomography (DCE-DOT) can provide spatially resolved enhancement kinetics of an optical contrast agent. We undertook a systematic phantom study to evaluate the effects of the geometrical parameters such as the depth and size of the inclusion as well as the optical parameters of the background on the recovered enhancement kinetics of the most commonly used optical contrast agent, indocyanine green (ICG). For this purpose a computer-controlled dynamic phantom was constructed. An ICG–intralipid–water mixture was circulated through the inclusions while the DCE-DOT measurements were acquired with a temporal resolution of 16 s. The same dynamic study was repeated using inclusions of different sizes located at different depths. In addition to this, the effect of non-scattering regions was investigated by placing a second inclusion filled with water in the background. The phantom studies confirmed that although the peak enhancement varied substantially for each case, the recovered injection and dilution rates obtained from the percentage enhancement maps agreed within 15% independent of not only the depth and the size of the inclusion but also the presence of a non-scattering region in the background. Although no internal structural information was used in these phantom studies, it may be necessary to use it for small objects buried deep in tissue. However, the different contrast mechanisms of optical and other imaging modalities as well as imperfect co-registration between both modalities may lead to potential errors in the structural a priori. Therefore, the effect of erroneous selection of structural priors was investigated as the final step. Again, the injection and dilution rates obtained from the percentage enhancement maps were also immune to the systematic errors introduced by erroneous selection of the structural priors, e.g. choosing the diameter of the inclusion 20% smaller increased the peak enhancement 60% but

  9. Non-contrast-enhanced perfusion and ventilation assessment of the human lung by means of fourier decomposition in proton MRI.

    PubMed

    Bauman, Grzegorz; Puderbach, Michael; Deimling, Michael; Jellus, Vladimir; Chefd'hotel, Christophe; Dinkel, Julien; Hintze, Christian; Kauczor, Hans-Ulrich; Schad, Lothar R

    2009-09-01

    Assessment of regional lung perfusion and ventilation has significant clinical value for the diagnosis and follow-up of pulmonary diseases. In this work a new method of non-contrast-enhanced functional lung MRI (not dependent on intravenous or inhalative contrast agents) is proposed. A two-dimensional (2D) true fast imaging with steady precession (TrueFISP) pulse sequence (TR/TE = 1.9 ms/0.8 ms, acquisition time [TA] = 112 ms/image) was implemented on a 1.5T whole-body MR scanner. The imaging protocol comprised sets of 198 lung images acquired with an imaging rate of 3.33 images/s in coronal and sagittal view. No electrocardiogram (ECG) or respiratory triggering was used. A nonrigid image registration algorithm was applied to compensate for respiratory motion. Rapid data acquisition allowed observing intensity changes in corresponding lung areas with respect to the cardiac and respiratory frequencies. After a Fourier analysis along the time domain, two spectral lines corresponding to both frequencies were used to calculate the perfusion- and ventilation-weighted images. The described method was applied in preliminary studies on volunteers and patients showing clinical relevance to obtain non-contrast-enhanced perfusion and ventilation data.

  10. Efficient method for calculating kinetic parameters using T1-weighted dynamic contrast-enhanced magnetic resonance imaging.

    PubMed

    Murase, Kenya

    2004-04-01

    It has become increasingly important to quantitatively estimate tissue physiological parameters such as perfusion, capillary permeability, and the volume of extravascular-extracellular space (EES) using T(1)-weighted dynamic contrast-enhanced MRI (DCE-MRI). A linear equation was derived by integrating the differential equation describing the kinetic behavior of contrast agent (CA) in tissue, from which K(1) (rate constant for the transfer of CA from plasma to EES), k(2) (rate constant for the transfer from EES to plasma), and V(p) (plasma volume) can be easily obtained by the linear least-squares (LLSQ) method. The usefulness of this method was investigated by means of computer simulations, in comparison with the nonlinear least-squares (NLSQ) method. The new method calculated the above parameters faster than the NLSQ method by a factor of approximately 6, and estimated them more accurately than the NLSQ method at a signal-to-noise ratio (SNR) of < approximately 10. This method will be useful for generating functional images of K(1), k(2), and V(p) from DCE-MRI data.

  11. Hepatic Phospholipidosis Is Associated with Altered Hepatobiliary Function as Assessed by Gadoxetate Dynamic Contrast-enhanced Magnetic Resonance Imaging.

    PubMed

    Lenhard, Stephen C; Lev, Mally; Webster, Lindsey O; Peterson, Richard A; Goulbourne, Christopher N; Miller, Richard T; Jucker, Beat M

    2016-01-01

    To determine if amiodarone induces hepatic phospholipidosis (PLD) sufficient to detect changes in hepatobiliary transporter function as assessed by gadoxetate dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), rats were orally dosed with vehicle (1% methyl cellulose) or amiodarone (300 mg/kg/day) for 7 consecutive days. Gadoxetate DCE-MRI occurred at baseline, day 7, and following a 2-week washout of amiodarone. At day 7, the gadoxetate washout rate was significantly decreased compared to the vehicle group. Blood chemistry analysis revealed no significant changes in liver enzymes (alanine aminotransferase [ALT]/aspartate aminotransferase [AST]/alkaline phosphatase [ALP]), bilirubin, or bile acids between vehicle or amiodarone groups. Hepatic PLD was confirmed in all rats treated with amiodarone at day 7 by transmission electron microscopy. Following the 2-week washout, there was no ultrastructural evidence of hepatic PLD in rats and the gadoxetate washout rate returned to baseline levels. This is the first study to show the application of gadoxetate DCE-MRI to detect hepatobiliary functional changes associated with PLD and offer a potential new technique with clinical utility in patients suspected of having PLD. These results also suggest PLD itself has functional consequences on hepatobiliary function in the absence of biomarkers of toxicity, given the cause/effect relationship between PLD and function has not been fully established.

  12. Radiogenomic analysis of breast cancer: dynamic contrast enhanced - magnetic resonance imaging based features are associated with molecular subtypes

    NASA Astrophysics Data System (ADS)

    Wang, Shijian; Fan, Ming; Zhang, Juan; Zheng, Bin; Wang, Xiaojia; Li, Lihua

    2016-03-01

    Breast cancer is one of the most common malignant tumor with upgrading incidence in females. The key to decrease the mortality is early diagnosis and reasonable treatment. Molecular classification could provide better insights into patient-directed therapy and prognosis prediction of breast cancer. It is known that different molecular subtypes have different characteristics in magnetic resonance imaging (MRI) examination. Therefore, we assumed that imaging features can reflect molecular information in breast cancer. In this study, we investigated associations between dynamic contrasts enhanced MRI (DCE-MRI) features and molecular subtypes in breast cancer. Sixty patients with breast cancer were enrolled and the MR images were pre-processed for noise reduction, registration and segmentation. Sixty-five dimensional imaging features including statistical characteristics, morphology, texture and dynamic enhancement in breast lesion and background regions were semiautomatically extracted. The associations between imaging features and molecular subtypes were assessed by using statistical analyses, including univariate logistic regression and multivariate logistic regression. The results of multivariate regression showed that imaging features are significantly associated with molecular subtypes of Luminal A (p=0.00473), HER2-enriched (p=0.00277) and Basal like (p=0.0117), respectively. The results indicated that three molecular subtypes are correlated with DCE-MRI features in breast cancer. Specifically, patients with a higher level of compactness or lower level of skewness in breast lesion are more likely to be Luminal A subtype. Besides, the higher value of the dynamic enhancement at T1 time in normal side reflect higher possibility of HER2-enriched subtype in breast cancer.

  13. Automated scoring of regional lung perfusion in children from contrast enhanced 3D MRI

    NASA Astrophysics Data System (ADS)

    Heimann, Tobias; Eichinger, Monika; Bauman, Grzegorz; Bischoff, Arved; Puderbach, Michael; Meinzer, Hans-Peter

    2012-03-01

    MRI perfusion images give information about regional lung function and can be used to detect pulmonary pathologies in cystic fibrosis (CF) children. However, manual assessment of the percentage of pathologic tissue in defined lung subvolumes features large inter- and intra-observer variation, making it difficult to determine disease progression consistently. We present an automated method to calculate a regional score for this purpose. First, lungs are located based on thresholding and morphological operations. Second, statistical shape models of left and right children's lungs are initialized at the determined locations and used to precisely segment morphological images. Segmentation results are transferred to perfusion maps and employed as masks to calculate perfusion statistics. An automated threshold to determine pathologic tissue is calculated and used to determine accurate regional scores. We evaluated the method on 10 MRI images and achieved an average surface distance of less than 1.5 mm compared to manual reference segmentations. Pathologic tissue was detected correctly in 9 cases. The approach seems suitable for detecting early signs of CF and monitoring response to therapy.

  14. Retrieval of Brain Tumors with Region-Specific Bag-of-Visual-Words Representations in Contrast-Enhanced MRI Images

    PubMed Central

    Huang, Meiyan; Yang, Wei; Yu, Mei; Lu, Zhentai; Feng, Qianjin; Chen, Wufan

    2012-01-01

    A content-based image retrieval (CBIR) system is proposed for the retrieval of T1-weighted contrast-enhanced MRI (CE-MRI) images of brain tumors. In this CBIR system, spatial information in the bag-of-visual-words model and domain knowledge on the brain tumor images are considered for the representation of brain tumor images. A similarity metric is learned through a distance metric learning algorithm to reduce the gap between the visual features and the semantic concepts in an image. The learned similarity metric is then used to measure the similarity between two images and then retrieve the most similar images in the dataset when a query image is submitted to the CBIR system. The retrieval performance of the proposed method is evaluated on a brain CE-MRI dataset with three types of brain tumors (i.e., meningioma, glioma, and pituitary tumor). The experimental results demonstrate that the mean average precision values of the proposed method range from 90.4% to 91.5% for different views (transverse, coronal, and sagittal) with an average value of 91.0%. PMID:23243462

  15. Porcine Ex Vivo Liver Phantom for Dynamic Contrast-Enhanced Computed Tomography: Development and Initial Results

    PubMed Central

    Thompson, Scott M.; Giraldo, Juan C. Ramirez; Knudsen, Bruce; Grande, Joseph P.; Christner, Jodie A.; Xu, Man; Woodrum, David A.; McCollough, Cynthia H.; Callstrom, Matthew R.

    2011-01-01

    Objectives To demonstrate the feasibility of developing a fixed, dual-input, biological liver phantom for dynamic contrast-enhanced computed tomography (CT) imaging and to report initial results of use of the phantom for quantitative CT perfusion imaging. Materials and Methods Porcine livers were obtained from completed surgical studies and perfused with saline and fixative. The phantom was placed in a body-shaped, CT-compatible acrylic container and connected to a perfusion circuit fitted with a contrast injection port. Flow-controlled contrast-enhanced imaging experiments were performed using a 128-slice and 64 slice, dual-source multidetector CT scanners. CT angiography protocols were employed to obtain portal venous and hepatic arterial vascular enhancement, reproduced over a period of four to six months. CT perfusion protocols were employed at different input flow rates to correlate input flow with calculated tissue perfusion, to test reproducibility and demonstrate the feasibility of simultaneous dual input liver perfusion. Histologic analysis of the liver phantom was also performed. Results CT angiogram 3D reconstructions demonstrated homogenous tertiary and quaternary branching of the portal venous system out to the periphery of all lobes of the liver as well as enhancement of the hepatic arterial system to all lobes of the liver and gallbladder throughout the study period. For perfusion CT, the correlation between the calculated mean tissue perfusion in a volume of interest and input pump flow rate was excellent (R2 = 0.996) and color blood flow maps demonstrated variations in regional perfusion in a narrow range. Repeat perfusion CT experiments demonstrated reproducible time-attenuation curves and dual-input perfusion CT experiments demonstrated that simultaneous dual input liver perfusion is feasible. Histologic analysis demonstrated that the hepatic microvasculature and architecture appeared intact and well preserved at the completion of four to six

  16. A Novel Mouse Segmentation Method Based on Dynamic Contrast Enhanced Micro-CT Images

    PubMed Central

    Yan, Dongmei; Zhang, Zhihong; Luo, Qingming; Yang, Xiaoquan

    2017-01-01

    With the development of hybrid imaging scanners, micro-CT is widely used in locating abnormalities, studying drug metabolism, and providing structural priors to aid image reconstruction in functional imaging. Due to the low contrast of soft tissues, segmentation of soft tissue organs from mouse micro-CT images is a challenging problem. In this paper, we propose a mouse segmentation scheme based on dynamic contrast enhanced micro-CT images. With a homemade fast scanning micro-CT scanner, dynamic contrast enhanced images were acquired before and after injection of non-ionic iodinated contrast agents (iohexol). Then the feature vector of each voxel was extracted from the signal intensities at different time points. Based on these features, the heart, liver, spleen, lung, and kidney could be classified into different categories and extracted from separate categories by morphological processing. The bone structure was segmented using a thresholding method. Our method was validated on seven BALB/c mice using two different classifiers: a support vector machine classifier with a radial basis function kernel and a random forest classifier. The results were compared to manual segmentation, and the performance was assessed using the Dice similarity coefficient, false positive ratio, and false negative ratio. The results showed high accuracy with the Dice similarity coefficient ranging from 0.709 ± 0.078 for the spleen to 0.929 ± 0.006 for the kidney. PMID:28060917

  17. Dynamic contrast enhanced CT in nodule characterization: How we review and report.

    PubMed

    Qureshi, Nagmi R; Shah, Andrew; Eaton, Rosemary J; Miles, Ken; Gilbert, Fiona J

    2016-07-18

    Incidental indeterminate solitary pulmonary nodules (SPN) that measure less than 3 cm in size are an increasingly common finding on computed tomography (CT) worldwide. Once identified there are a number of imaging strategies that can be performed to help with nodule characterization. These include interval CT, dynamic contrast enhanced computed tomography (DCE-CT), (18)F-fluorodeoxyglucose positron emission tomography-computed tomography ((18)F-FDG-PET-CT). To date the most cost effective and efficient non-invasive test or combination of tests for optimal nodule characterization has yet to be determined.DCE-CT is a functional test that involves the acquisition of a dynamic series of images of a nodule before and following the administration of intravenous iodinated contrast medium. This article provides an overview of the current indications and limitations of DCE- CT in nodule characterization and a systematic approach to how to perform, analyse and interpret a DCE-CT scan.

  18. Analysis of Pharmacokinetics of Gd-DTPA for Dynamic Contrast-enhanced Magnetic Resonance Imaging

    PubMed Central

    Taheri, Saeid; Jon Shah, N.; Rosenberg, Gary A.

    2016-01-01

    The pharmacokinetics (PK) of the contrast agent Gd-DTPA administered intravenously (i.v.) for contrast-enhanced MR imaging (DCE-MRI) is an important factor for quantitative data acquisition. We studied the effect of various initial bolus doses on the PK of Gd-DTPA and analyzed population PK of a lower dose for intra-subject variations in DCE-MRI. First, fifteen subjects (23–85 years, M/F) were randomly divided into four groups for DCE-MRI with different Gd-DTPA dose: group-I, 0.1mmol/kg, n=4; group-II, 0.05 mmol/kg, n=4; group-III, 0.025mmol/kg, n=4; and group-IV, 0.0125 mmol/kg, n=3. Sequential fast T1 mapping sequence, after a bolus i.v. Gd-DTPA administered, and a linear T1-[Gd-DTPA] relationship were used to estimate the PK of Gd-DTPA. Secondly, MR-acquired PK of Gd-DTPA from 58 subjects (28–80 years, M/F) were collected retrospectively, from an ongoing study of the brain using DCE-MRI with Gd-DTPA at 0.025 mmol/kg, to statistically analyze population PK of Gd-DTPA. We found that the PK of Gd-DTPA (i.v. 0.025 mmol/kg) had a half-life of 37.3 ± 6.6 mins, and was a better fit into a linear T1-[Gd-DTPA] relationship than higher doses (up to 0.1 mmol/kg). The area under the curve (AUC) for 0.025 mmol/kg was 3.37± 0.46, which was a quarter of AUC of 0.1 mmol/kg. In population analysis, a dose of 0.025 mmol/kg of Gd-DTPA provided less than 5% subject-dependent variation in the PK of Gd-DTPA. Administration of 0.025 mmol/kg Gd-DTPA enable us to estimate [Gd-DTPA] from T1 by using a linear relationship that has a lower estimation error compared to a non-linear relationship. DCE-MRI with a quarter dose of Gd-DTPA is more sensitive to detect changes in [Gd-DTPA]. PMID:27109487

  19. Relationship between particulate matter exposure and atherogenic profile in "Ground Zero" workers as shown by dynamic contrast enhanced MR imaging.

    PubMed

    Mani, Venkatesh; Wong, Stephanie K; Sawit, Simonette T; Calcagno, Claudia; Maceda, Cynara; Ramachandran, Sarayu; Fayad, Zahi A; Moline, Jacqueline; McLaughlin, Mary Ann

    2013-04-01

    In this pilot study, we hypothesize that dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) has the potential to evaluate differences in atherosclerosis profiles in patients subjected to high (initial dust cloud) and low (after 13 September 2001) particulate matter (PM) exposure. Exposure to PM may be associated with adverse health effects leading to increased morbidity. Law enforcement workers were exposed to high levels of particulate pollution after working at "Ground Zero" and may exhibit accelerated atherosclerosis. 31 subjects (28 male) with high (n = 19) or low (n = 12) exposure to PM underwent DCE-MRI. Demographics (age, gender, family history, hypertension, diabetes, BMI, and smoking status), biomarkers (lipid profiles, hs-CRP, BP) and ankle-brachial index (ABI) measures (left and right) were obtained from all subjects. Differences between the high and low exposures were compared using independent samples t test. Using linear forward stepwise regression with information criteria model, independent predictors of increased area under curve (AUC) from DCE-MRI were determined using all variables as input. Confidence interval of 95 % was used and variables with p > 0.1 were eliminated. p < 0.05 was considered significant. Subjects with high exposure (HE) had significantly higher DCE-MRI AUC uptake (increased neovascularization) compared to subjects with lower exposure (LE). (AUC: 2.65 ± 0.63 HE vs. 1.88 ± 0.69 LE, p = 0.016). Except for right leg ABI, none of the other parameters were significantly different between the two groups. Regression model indicated that only HE to PM, CRP > 3.0 and total cholesterol were independently associated with increased neovascularization (in decreasing order of importance, all p < 0.026). HE to PM may increase plaque neovascularization, and thereby potentially indicate worsening atherogenic profile of "Ground Zero" workers.

  20. In Vivo Evaluation of the Visual Pathway in Streptozotocin-Induced Diabetes by Diffusion Tensor MRI and Contrast Enhanced MRI

    PubMed Central

    Kancherla, Swarupa; Kohler, William J.; van der Merwe, Yolandi

    2016-01-01

    Visual function has been shown to deteriorate prior to the onset of retinopathy in some diabetic patients and experimental animal models. This suggests the involvement of the brain's visual system in the early stages of diabetes. In this study, we tested this hypothesis by examining the integrity of the visual pathway in a diabetic rat model using in vivo multi-modal magnetic resonance imaging (MRI). Ten-week-old Sprague-Dawley rats were divided into an experimental diabetic group by intraperitoneal injection of 65 mg/kg streptozotocin in 0.01 M citric acid, and a sham control group by intraperitoneal injection of citric acid only. One month later, diffusion tensor MRI (DTI) was performed to examine the white matter integrity in the brain, followed by chromium-enhanced MRI of retinal integrity and manganese-enhanced MRI of anterograde manganese transport along the visual pathway. Prior to MRI experiments, the streptozotocin-induced diabetic rats showed significantly smaller weight gain and higher blood glucose level than the control rats. DTI revealed significantly lower fractional anisotropy and higher radial diffusivity in the prechiasmatic optic nerve of the diabetic rats compared to the control rats. No apparent difference was observed in the axial diffusivity of the optic nerve, the chromium enhancement in the retina, or the manganese enhancement in the lateral geniculate nucleus and superior colliculus between groups. Our results suggest that streptozotocin-induced diabetes leads to early injury in the optic nerve when no substantial change in retinal integrity or anterograde transport along the visual pathways was observed in MRI using contrast agent enhancement. DTI may be a useful tool for detecting and monitoring early pathophysiological changes in the visual system of experimental diabetes non-invasively. PMID:27768755

  1. Dynamic contrast-enhanced optical imaging of in vivo organ function

    PubMed Central

    Wang, Tracy; Bouchard, Matthew B.; McCaslin, Addason F. H.; Blaner, William S.; Levenson, Richard M.; Hillman, Elizabeth M. C.

    2012-01-01

    Abstract. Conventional approaches to optical small animal molecular imaging suffer from poor resolution, limited sensitivity, and unreliable quantitation, often reducing their utility in practice. We previously demonstrated that the in vivo dynamics of an injected contrast agent could be exploited to provide high-contrast anatomical registration, owing to the temporal differences in each organ’s response to the circulating fluorophore. This study extends this approach to explore whether dynamic contrast-enhanced optical imaging (DyCE) can allow noninvasive, in vivo assessment of organ function by quantifying the differing cellular uptake or wash-out dynamics of an agent in healthy and damaged organs. Specifically, we used DyCE to visualize and measure the organ-specific uptake dynamics of indocyanine green before and after induction of transient liver damage. DyCE imaging was performed longitudinally over nine days, and blood samples collected at each imaging session were analyzed for alanine aminotransferase (ALT), a liver enzyme assessed clinically as a measure of liver damage. We show that changes in DyCE-derived dynamics of liver and kidney dye uptake caused by liver damage correlate linearly with ALT concentrations, with an r2 value of 0.91. Our results demonstrate that DyCE can provide quantitative, in vivo, longitudinal measures of organ function with inexpensive and simple data acquisition. PMID:23085904

  2. Dynamic contrast-enhanced optical imaging of in vivo organ function

    NASA Astrophysics Data System (ADS)

    Amoozegar, Cyrus B.; Wang, Tracy; Bouchard, Matthew B.; McCaslin, Addason F. H.; Blaner, William S.; Levenson, Richard M.; Hillman, Elizabeth M. C.

    2012-09-01

    Conventional approaches to optical small animal molecular imaging suffer from poor resolution, limited sensitivity, and unreliable quantitation, often reducing their utility in practice. We previously demonstrated that the in vivo dynamics of an injected contrast agent could be exploited to provide high-contrast anatomical registration, owing to the temporal differences in each organ's response to the circulating fluorophore. This study extends this approach to explore whether dynamic contrast-enhanced optical imaging (DyCE) can allow noninvasive, in vivo assessment of organ function by quantifying the differing cellular uptake or wash-out dynamics of an agent in healthy and damaged organs. Specifically, we used DyCE to visualize and measure the organ-specific uptake dynamics of indocyanine green before and after induction of transient liver damage. DyCE imaging was performed longitudinally over nine days, and blood samples collected at each imaging session were analyzed for alanine aminotransferase (ALT), a liver enzyme assessed clinically as a measure of liver damage. We show that changes in DyCE-derived dynamics of liver and kidney dye uptake caused by liver damage correlate linearly with ALT concentrations, with an r2 value of 0.91. Our results demonstrate that DyCE can provide quantitative, in vivo, longitudinal measures of organ function with inexpensive and simple data acquisition.

  3. Focused Ultrasound-Induced Blood-Brain Barrier Opening: Association with Mechanical Index and Cavitation Index Analyzed by Dynamic Contrast-Enhanced Magnetic-Resonance Imaging

    PubMed Central

    Chu, Po-Chun; Chai, Wen-Yen; Tsai, Chih-Hung; Kang, Shih-Tsung; Yeh, Chih-Kuang; Liu, Hao-Li

    2016-01-01

    Focused ultrasound (FUS) with microbubbles can temporally open the blood-brain barrier (BBB), and the cavitation activities of microbubbles play a key role in the BBB-opening process. Previous attempts used contrast-enhanced magnetic resonance imaging (CE-MRI) to correlate the mechanical index (MI) with the scale of BBB-opening, but MI only partially gauged acoustic activities, and CE-MRI did not fully explore correlations of pharmacodynamic/pharmacokinetic behaviors. Recently, the cavitation index (CI) has been derived to serve as an indicator of microbubble-ultrasound stable cavitation, and may also serve as a valid indicator to gauge the level of FUS-induced BBB opening. This study investigates the feasibility of gauging FUS-induced BBB opened level via the two indexes, MI and CI, through dynamic contrast-enhanced (DCE)-MRI analysis as well as passive cavitation detection (PCD) analysis. Pharmacodynamic/pharmacokinetic parameters derived from DCE-MRI were characterized to identify the scale of FUS-induced BBB opening. Our results demonstrated that DCE-MRI can successfully access pharmacodynamic/pharmacokinetic BBB-opened behavior, and was highly correlated both with MI and CI, implying the feasibility in using these two indices to gauge the scale of FUS-induced BBB opening. The proposed finding may facilitate the design toward using focused ultrasound as a safe and reliable noninvasive CNS drug delivery. PMID:27630037

  4. Focused Ultrasound-Induced Blood-Brain Barrier Opening: Association with Mechanical Index and Cavitation Index Analyzed by Dynamic Contrast-Enhanced Magnetic-Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Chu, Po-Chun; Chai, Wen-Yen; Tsai, Chih-Hung; Kang, Shih-Tsung; Yeh, Chih-Kuang; Liu, Hao-Li

    2016-09-01

    Focused ultrasound (FUS) with microbubbles can temporally open the blood-brain barrier (BBB), and the cavitation activities of microbubbles play a key role in the BBB-opening process. Previous attempts used contrast-enhanced magnetic resonance imaging (CE-MRI) to correlate the mechanical index (MI) with the scale of BBB-opening, but MI only partially gauged acoustic activities, and CE-MRI did not fully explore correlations of pharmacodynamic/pharmacokinetic behaviors. Recently, the cavitation index (CI) has been derived to serve as an indicator of microbubble-ultrasound stable cavitation, and may also serve as a valid indicator to gauge the level of FUS-induced BBB opening. This study investigates the feasibility of gauging FUS-induced BBB opened level via the two indexes, MI and CI, through dynamic contrast-enhanced (DCE)-MRI analysis as well as passive cavitation detection (PCD) analysis. Pharmacodynamic/pharmacokinetic parameters derived from DCE-MRI were characterized to identify the scale of FUS-induced BBB opening. Our results demonstrated that DCE-MRI can successfully access pharmacodynamic/pharmacokinetic BBB-opened behavior, and was highly correlated both with MI and CI, implying the feasibility in using these two indices to gauge the scale of FUS-induced BBB opening. The proposed finding may facilitate the design toward using focused ultrasound as a safe and reliable noninvasive CNS drug delivery.

  5. Focused Ultrasound-Induced Blood-Brain Barrier Opening: Association with Mechanical Index and Cavitation Index Analyzed by Dynamic Contrast-Enhanced Magnetic-Resonance Imaging.

    PubMed

    Chu, Po-Chun; Chai, Wen-Yen; Tsai, Chih-Hung; Kang, Shih-Tsung; Yeh, Chih-Kuang; Liu, Hao-Li

    2016-09-15

    Focused ultrasound (FUS) with microbubbles can temporally open the blood-brain barrier (BBB), and the cavitation activities of microbubbles play a key role in the BBB-opening process. Previous attempts used contrast-enhanced magnetic resonance imaging (CE-MRI) to correlate the mechanical index (MI) with the scale of BBB-opening, but MI only partially gauged acoustic activities, and CE-MRI did not fully explore correlations of pharmacodynamic/pharmacokinetic behaviors. Recently, the cavitation index (CI) has been derived to serve as an indicator of microbubble-ultrasound stable cavitation, and may also serve as a valid indicator to gauge the level of FUS-induced BBB opening. This study investigates the feasibility of gauging FUS-induced BBB opened level via the two indexes, MI and CI, through dynamic contrast-enhanced (DCE)-MRI analysis as well as passive cavitation detection (PCD) analysis. Pharmacodynamic/pharmacokinetic parameters derived from DCE-MRI were characterized to identify the scale of FUS-induced BBB opening. Our results demonstrated that DCE-MRI can successfully access pharmacodynamic/pharmacokinetic BBB-opened behavior, and was highly correlated both with MI and CI, implying the feasibility in using these two indices to gauge the scale of FUS-induced BBB opening. The proposed finding may facilitate the design toward using focused ultrasound as a safe and reliable noninvasive CNS drug delivery.

  6. Potential for Differentiation of Pseudoprogression From True Tumor Progression With Dynamic Susceptibility-Weighted Contrast-Enhanced Magnetic Resonance Imaging Using Ferumoxytol vs. Gadoteridol: A Pilot Study

    SciTech Connect

    Gahramanov, Seymur; Raslan, Ahmed M.; Muldoon, Leslie L.; Hamilton, Bronwyn E.; Rooney, William D.; Varallyay, Csanad G.; Njus, Jeffrey M.; Haluska, Marianne; Neuwelt, Edward A.

    2011-02-01

    Purpose: We evaluated dynamic susceptibility-weighted contrast-enhanced magnetic resonance imaging (DSC-MRI) using gadoteridol in comparison to the iron oxide nanoparticle blood pool agent, ferumoxytol, in patients with glioblastoma multiforme (GBM) who received standard radiochemotherapy (RCT). Methods and Materials: Fourteen patients with GBM received standard RCT and underwent 19 MRI sessions that included DSC-MRI acquisitions with gadoteridol on Day 1 and ferumoxytol on Day 2. Relative cerebral blood volume (rCBV) values were calculated from DSC data obtained from each contrast agent. T1-weighted acquisition post-gadoteridol administration was used to identify enhancing regions. Results: In seven MRI sessions of clinically presumptive active tumor, gadoteridol-DSC showed low rCBV in three and high rCBV in four, whereas ferumoxytol-DSC showed high rCBV in all seven sessions (p = 0.002). After RCT, seven MRI sessions showed increased gadoteridol contrast enhancement on T1-weighted scans coupled with low rCBV without significant differences between contrast agents (p = 0.9). Based on post-gadoteridol T1-weighted scans, DSC-MRI, and clinical presentation, four patterns of response to RCT were observed: regression, pseudoprogression, true progression, and mixed response. Conclusion: We conclude that DSC-MRI with a blood pool agent such as ferumoxytol may provide a better monitor of tumor rCBV than DSC-MRI with gadoteridol. Lesions demonstrating increased enhancement on T1-weighted MRI coupled with low ferumoxytol rCBV are likely exhibiting pseudoprogression, whereas high rCBV with ferumoxytol is a better marker than gadoteridol for determining active tumor. These interesting pilot observations suggest that ferumoxytol may differentiate tumor progression from pseudoprogression and warrant further investigation.

  7. Diagnostic value of dynamic contrast-enhanced magnetic resonance imaging in rectal cancer and its correlation with tumor differentiation

    PubMed Central

    SHEN, FU; LU, JIANPING; CHEN, LUGUANG; WANG, ZHEN; CHEN, YUKUN

    2016-01-01

    Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a novel imaging modality that can be used to reflect the microcirculation, although its value in diagnosing rectal cancer is unknown. The present study aimed to explore the clinical application of DCE-MRI in the preoperative diagnosis of rectal cancer, and its correlation with tumor differentiation. To achieve this, 40 pathologically confirmed patients with rectal cancer and 15 controls were scanned using DCE-MRI. The Tofts model was applied to obtain the perfusion parameters, including the plasma to extravascular volume transfer (Ktrans), the extravascular to plasma volume transfer (Kep), the extravascular fluid volume (Ve) and the initial area under the enhancement curve (iAUC). Receiver-operating characteristic (ROC) curves were plotted to determine the diagnostic value. The results demonstrated that the time-signal intensity curve of the rectal cancer lesion exhibited an outflow pattern. The Ktrans, Kep, Ve, and iAUC values were higher in the cancer patients compared with controls (P<0.05). The intraclass correlation coefficients of Ktrans, Kep, Ve and iAUC, as measured by two independent radiologists, were 0.991, 0.988, 0.972 and 0.984, respectively (all P<0.001), indicating a good consistency. The areas under the ROC curves for Ktrans and iAUC were both >0.9, resulting in a sensitivity and specificity of 100% and 93.3% for Ktrans, and of 92.5%, and 93.3% or 100%, for iAUC, respectively. In the 40 rectal cancer cases, there was a moderate correlation between Ktrans and iAUC, and pathological differentiation (0.3

  8. Dynamic contrast enhancement in widefield microscopy using projector-generated illumination patterns

    NASA Astrophysics Data System (ADS)

    Carlo Samson, Edward; Mar Blanca, Carlo

    2007-10-01

    We present a simple and cost-effective optical protocol to realize contrast-enhancement imaging (such as dark-field, optical-staining and oblique illumination microscopy) of transparent samples on a conventional widefield microscope using commercial multimedia projectors. The projector functions as both light source and mask generator implemented by creating slideshows of the filters projected along the illumination planes of the microscope. The projected optical masks spatially modulate the distribution of the incident light to selectively enhance structures within the sample according to spatial frequency thereby increasing the image contrast of translucent biological specimens. Any amplitude filter can be customized and dynamically controlled so that switching from one imaging modality to another involves a simple slide transition and can be executed at a keystroke with no physical filters and no moving optical parts. The method yields an image contrast of 89 96% comparable with standard enhancement techniques. The polarization properties of the projector are then utilized to discriminate birefringent and non-birefringent sites on the sample using single-shot, simultaneous polarization and optical-staining microscopy. In addition to dynamic pattern generation and polarization, the projector also provides high illumination power and spectral excitation selectivity through its red-green-blue (RGB) channels. We exploit this last property to explore the feasibility of using video projectors to selectively excite stained samples and perform fluorescence imaging in tandem with reflectance and polarization reflectance microscopy.

  9. Assessing tumor physiology by dynamic contrast-enhanced near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Verdecchia, Kyle; Elliott, Jonathan; Diop, Mamadou; Hoffman, Lisa; Lee, Ting-Yim; St. Lawrence, Keith

    2013-03-01

    The purpose of this study was to develop a dynamic contrast-enhanced (DCE) near-infrared spectroscopy (NIRS) technique to characterize tumor physiology. Dynamic data were acquired using two contrast agents of different molecular weights, indocyanine green (ICG) and IRDye 800CW carboxylate (IRDcxb). The DCE curves were analyzed using a kinetic model capable of extracting estimates of tumor blood flow (F), capillary transit time (tc) and the amount of dye that leaked into the extravascular space (EVS) - characterized by the extraction fraction (E). Data were acquired from five nude rats with tumor xenografts (>10mm) implanted in the neck. Four DCE-NIR datasets (two from each contrast agent) were acquired for each rat. The dye concentration curve in arterial blood, which is required to quantify the model parameters, was measured non-invasively by dye densitometry. A modification to the kinetic model to characterize tc as a distribution of possible values, rather than finite, improved the fit of acquired tumor concentration curves, resulting in more reliable estimates. This modified kinetic model identified a difference between the extracted fraction of IRDcxb, 15 +/- 6 %, and ICG, 1.6 +/- 0.6 %, in the tumor, which can be explained by the difference in molecular weight: 67 kDa for ICG since it binds to albumin and 1.17 kDa for IRD. This study demonstrates the ability of DCENIRS to quantify tumor physiology. The next step is to adapt this approach with a dual-receptor approach.

  10. Regularized Reconstruction of Dynamic Contrast-Enhanced MR Images for Evaluation of Breast Lesions

    DTIC Science & Technology

    2009-09-01

    in determining the image estimate is computing the gradient of the cost function. We were able to accelerate our computation by exploiting Toeplitz ...but, to our knowledge, we are the first to apply it to dynamic MRI. For this study, the Toeplitz -modified algorithm was 1.7 times faster than the...Decreased computation time by exploiting Toeplitz matrices in our reconstruction. • Investigated choice of algorithms’ regularization parameters based on

  11. Myocardial physiology measurements using contrast enhanced dynamic computed tomography: simulation of beam hardening effect

    NASA Astrophysics Data System (ADS)

    Cao, Minsong; Stantz, Keith M.; Liang, Yun

    2006-03-01

    Initial animal study for quantifying myocardial physiology through contrast-enhanced dynamic x-ray CT suggested that beam hardening is one of the limiting factors for accurate regional physiology measurement. In this study, a series of simulations were performed to investigate its deterioration effects and two correction algorithms were adapted to evaluate for their efficiency in improving the measurements. The simulation tool consists of a module simulating data acquisition of a real polyenergetic scanner system and a heart phantom consisting of simple geometric objects representing ventricles and myocardium. Each phantom component was modeled with time-varying attenuation coefficients determined by ideal iodine contrast dynamic curves obtained from experimental data or simulation. A compartment model was used to generate the ideal myocardium contrast curve using physiological parameters consistent with measured values. Projection data of the phantom were simulated and reconstructed to produce a sequence of simulated CT images. Simulated contrast dynamic curves were fitted to the compartmental model and the resultant physiological parameters were compared with ideal values to estimate the errors induced by beam hardening artifacts. The simulations yielded similar deterioration patterns of contrast dynamic curves as observed in the initial study. Significant underestimation of left ventricle curves and corruption of regional myocardium curves result in systematic errors of regional perfusion up to approximately 24% and overestimates of fractional blood volume (f iv) up to 13%. The correction algorithms lead to significant improvement with errors of perfusion reduced to 7% and errors of f iv within 2% which shows promise for more robust myocardial physiology measurement.

  12. Quantification of traumatic meningeal injury using dynamic contrast enhanced (DCE) fluid-attenuated inversion recovery (FLAIR) imaging

    NASA Astrophysics Data System (ADS)

    Castro, Marcelo A.; Williford, Joshua P.; Cota, Martin R.; MacLaren, Judy M.; Dardzinski, Bernard J.; Latour, Lawrence L.; Pham, Dzung L.; Butman, John A.

    2016-03-01

    Traumatic meningeal injury is a novel imaging marker of traumatic brain injury, which appears as enhancement of the dura on post-contrast T2-weighted FLAIR images, and is likely associated with inflammation of the meninges. Dynamic Contrast Enhanced MRI provides a better discrimination of abnormally perfused regions. A method to properly identify those regions is presented. Images of seventeen patients scanned within 96 hours of head injury with positive traumatic meningeal injury were normalized and aligned. The difference between the pre- and last post-contrast acquisitions was segmented and voxels in the higher class were spatially clustered. Spatial and morphological descriptors were used to identify the regions of enhancement: a) centroid; b) distance to the brain mask from external voxels; c) distance from internal voxels; d) size; e) shape. The method properly identified thirteen regions among all patients. The method failed in one case due to the presence of a large brain lesion that altered the mask boundaries. Most false detections were correctly rejected resulting in a sensitivity and specificity of 92.9% and 93.6%, respectively.

  13. Contrast-Enhanced Ultrasound with VEGFR2-Targeted Microbubbles for Monitoring Regorafenib Therapy Effects in Experimental Colorectal Adenocarcinomas in Rats with DCE-MRI and Immunohistochemical Validation

    PubMed Central

    Clevert, Dirk-Andre; Hirner-Eppeneder, Heidrun; Ingrisch, Michael; Moser, Matthias; Schuster, Jessica; Tadros, Dina; Schneider, Moritz; Kazmierczak, Philipp Maximilian; Reiser, Maximilian; Cyran, Clemens C.

    2017-01-01

    Objectives To investigate contrast-enhanced ultrasound (CEUS) with VEGFR2-targeted microbubbles for monitoring therapy effects of regorafenib on experimental colon carcinomas in rats with correlation to dynamic contrast-enhanced MRI (DCE-MRI) and immunohistochemistry. Materials and Methods Human colorectal adenocarcinoma xenografts (HT-29) were implanted subcutaneously in n = 21 (n = 11 therapy group; n = 10 control group) female athymic nude rats (Hsd: RH-Foxn1rnu). Animals were imaged at baseline and after a one-week daily treatment with regorafenib or a placebo (10 mg/kg bodyweight), using CEUS with VEGFR2-targeted microbubbles and DCE-MRI. In CEUS tumor perfusion was assessed during an early vascular phase (wash-in area under the curve = WiAUC) and VEGFR2-specific binding during a late molecular phase (signal intensity after 8 (SI8min) and 10 minutes (SI10min)), using a conventional 15L8 linear transducer (transmit frequency 7 MHz, dynamic range 80 dB, depth 25 mm). In DCE-MRI functional parameters plasma flow (PF) and plasma volume (PV) were quantified. For validation purposes, CEUS parameters were correlated with DCE-MRI parameters and immunohistochemical VEGFR2, CD31, Ki-67 and TUNEL stainings. Results CEUS perfusion parameter WiAUC decreased significantly (116,989 ± 77,048 a.u. to 30,076 ± 27,095a.u.; p = 0.005) under therapy with no significant changes (133,932 ± 65,960 a.u. to 84,316 ± 74,144 a.u.; p = 0.093) in the control group. In the therapy group, the amount of bound microbubbles in the late phase was significantly lower in the therapy than in the control group on day 7 (SI8min: 283 ± 191 vs. 802 ± 460 a.u.; p = 0.006); SI10min: 226 ± 149 vs. 645 ± 461 a.u.; p = 0.009). PF and PV decreased significantly (PF: 147 ± 58 mL/100 mL/min to 71 ± 15 mL/100 mL/min; p = 0.003; PV: 13 ± 3% to 9 ± 4%; p = 0.040) in the therapy group. Immunohistochemistry revealed significantly fewer VEGFR2 (7.2 ± 1.8 vs. 17.8 ± 4.6; p < 0.001), CD31 (8.1 ± 3.0 vs

  14. Kinetic model optimization for characterizing tumour physiology by dynamic contrast-enhanced near-infrared spectroscopy.

    PubMed

    St Lawrence, K; Verdecchia, K; Elliott, J; Tichauer, K; Diop, M; Hoffman, L; Lee, T-Y

    2013-03-07

    Dynamic contrast-enhanced (DCE) methods are widely used with magnetic resonance imaging and computed tomography to assess the vascular characteristics of tumours since these properties can affect the response to radiotherapy and chemotherapy. In contrast, there have been far fewer studies using optical-based applications despite the advantages of low cost and safety. This study investigated an appropriate kinetic model for optical applications to characterize tumour haemodynamics (blood flow, F, blood volume, V(b), and vascular heterogeneity) and vascular leakage (permeability surface-area product, PS). DCE data were acquired with two dyes, indocyanine green (ICG) and 800 CW carboxylate (IRD(cbx)), from a human colon tumour xenograph model in rats. Due to the smaller molecular weight of IRD(cbx) (1166 Da) compared to albumin-bound ICG (67 kDa), PS of IRD(cbx) was significantly larger; however, no significant differences in F and V(b) were found between the dyes as expected. Error analysis demonstrated that all parameters could be estimated with an uncertainty less than 5% due to the high temporal resolution and signal-to-noise ratio of the optical measurements. The next step is to adapt this approach to optical imaging to generate haemodynamics and permeability maps, which should enhance the clinical interest in optics for treatment monitoring.

  15. Kinetic model optimization for characterizing tumour physiology by dynamic contrast-enhanced near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    St. Lawrence, K.; Verdecchia, K.; Elliott, J.; Tichauer, K.; Diop, M.; Hoffman, L.; Lee, T.-Y.

    2013-03-01

    Dynamic contrast-enhanced (DCE) methods are widely used with magnetic resonance imaging and computed tomography to assess the vascular characteristics of tumours since these properties can affect the response to radiotherapy and chemotherapy. In contrast, there have been far fewer studies using optical-based applications despite the advantages of low cost and safety. This study investigated an appropriate kinetic model for optical applications to characterize tumour haemodynamics (blood flow, F, blood volume, Vb, and vascular heterogeneity) and vascular leakage (permeability surface-area product, PS). DCE data were acquired with two dyes, indocyanine green (ICG) and 800 CW carboxylate (IRDcbx), from a human colon tumour xenograph model in rats. Due to the smaller molecular weight of IRDcbx (1166 Da) compared to albumin-bound ICG (67 kDa), PS of IRDcbx was significantly larger; however, no significant differences in F and Vb were found between the dyes as expected. Error analysis demonstrated that all parameters could be estimated with an uncertainty less than 5% due to the high temporal resolution and signal-to-noise ratio of the optical measurements. The next step is to adapt this approach to optical imaging to generate haemodynamics and permeability maps, which should enhance the clinical interest in optics for treatment monitoring.

  16. Detection of Early Tumor Response to Axitinib in Advanced Hepatocellular Carcinoma by Dynamic Contrast Enhanced Ultrasound.

    PubMed

    Lo, Glen M; Al Zahrani, Hassan; Jang, Hyun Jung; Menezes, Ravi; Hudson, John; Burns, Peter; McNamara, Mairéad G; Kandel, Sonja; Khalili, Korosh; Knox, Jennifer; Rogalla, Patrik; Kim, Tae Kyoung

    2016-06-01

    This study aimed to evaluate the utility of dynamic contrast-enhanced ultrasound (DCE-US) in measuring early tumor response of advanced hepatocellular carcinoma to axitinib. Twenty patients were enrolled (aged 18-78 y; median 65). DCE-US was performed with bolus injection and infusion/disruption replenishment. Median overall survival was 7.1 mo (1.8-27.3) and progression free survival was 3.6 mo (1.8-17.4). Fifteen patients completed infusion scans and 12 completed bolus scans at 2 wk. Among the perfusion parameters, fractional blood volume at infusion (INFBV) decreased at 2 wk in 10/15 (16%-81% of baseline, mean 47%) and increased in 5/15 (116%-535%, mean 220%). This was not significantly associated with progression free survival (p = 0.310) or progression at 16 wk (p = 0.849), but was borderline statistically significant (p = 0.050) with overall survival, limited by a small sample size. DCE-US is potentially useful in measuring early tumor response of advanced hepatocellular carcinoma to axitinib, but a larger trial is needed.

  17. Quantitative Perfusion Analysis of First-Pass Contrast Enhancement Kinetics: Application to MRI of Myocardial Perfusion in Coronary Artery Disease

    PubMed Central

    Shah, Binita; Storey, Pippa; Iqbal, Sohah; Slater, James; Axel, Leon

    2016-01-01

    Purpose Perfusion analysis from first-pass contrast enhancement kinetics requires modeling tissue contrast exchange. This study presents a new approach for numerical implementation of the tissue homogeneity model, incorporating flexible distance steps along the capillary (NTHf). Methods The proposed NTHf model considers contrast exchange in fluid packets flowing along the capillary, incorporating flexible distance steps, thus allowing more efficient and stable calculations of the transit of tracer through the tissue. We prospectively studied 8 patients (62 ± 13 years old) with suspected CAD, who underwent first-pass perfusion CMR imaging at rest and stress prior to angiography. Myocardial blood flow (MBF) and myocardial perfusion reserve index (MPRI) were estimated using both the NTHf and the conventional adiabatic approximation of the TH models. Coronary artery lesions detected at angiography were clinically assigned to one of three categories of stenosis severity (‘insignificant’, ‘mild to moderate’ and ‘severe’) and related to corresponding myocardial territories. Results The mean MBF (ml/g/min) at rest/stress and MPRI were 0.80 ± 0.33/1.25 ± 0.45 and 1.68 ± 0.54 in the insignificant regions, 0.74 ± 0.21/1.09 ± 0.28 and 1.54 ± 0.46 in the mild to moderate regions, and 0.79 ± 0.28/0.63 ± 0.34 and 0.85 ± 0.48 in the severe regions, respectively. The correlation coefficients of MBFs at rest/stress and MPRI between the NTHf and AATH models were r = 0.97/0.93 and r = 0.91, respectively. Conclusions The proposed NTHf model allows efficient quantitative analysis of the transit of tracer through tissue, particularly at higher flow. Results of initial application to MRI of myocardial perfusion in CAD are encouraging. PMID:27583385

  18. The Incremental Value of Contrast-Enhanced MRI in the Detection of Biopsy-Proven Local Recurrence of Prostate Cancer After Radical Prostatectomy: Effect of Reader Experience

    PubMed Central

    Wassberg, Cecilia; Akin, Oguz; Vargas, Hebert Alberto; Shukla-Dave, Amita; Zhang, Jingbo; Hricak, Hedvig

    2012-01-01

    OBJECTIVE The purpose of this study is to retrospectively assess the incremental value of contrast-enhanced MRI (CE-MRI) to T2-weighted MRI in the detection of postsurgical local recurrence of prostate cancer by readers of different experience levels, using biopsy as the reference standard. MATERIALS AND METHODS Fifty-two men with biochemical recurrence after prostatectomy underwent 1.5-T endorectal MRI with multiphase contrast-enhanced imaging and had biopsy within 3 months of MRI. Two radiologists (reader 1 had 1 year and reader 2 had 6 years of experience) independently reviewed each MRI study and classified the likelihood of recurrent cancer on a 5-point scale. Areas under receiver operating characteristic curves (Az) were calculated to assess readers’ diagnostic performance with T2-weighted MRI alone and combined with CE-MRI. Interobserver agreement was assessed using Cohen kappa statistics. RESULTS Thirty-three patients (63%) had biopsy-proven local recurrence of prostate cancer. With the addition of CE-MRI to T2-weighted imaging, the Az for cancer detection increased significantly for reader 1 (0.77 vs 0.85; p = 0.0435) but not for reader 2 (0.86 vs 0.88; p = 0.7294). The use of CE-MRI improved interobserver agreement from fair (κ = 0.39) to moderate (κ = 0.58). CONCLUSION CE-MRI increased interobserver agreement and offered incremental value to T2-weighted MRI in the detection of locally recurrent prostate cancer for the relatively inexperienced reader. PMID:22826397

  19. Magnitude subtraction vs. complex subtraction in dynamic contrast-enhanced 3D-MR angiography: basic experiments and clinical evaluation.

    PubMed

    Naganawa, S; Ito, T; Iwayama, E; Fukatsu, H; Ishiguchi, T; Ishigaki, T; Ichinose, N

    1999-11-01

    Magnitude subtraction and complex subtraction in dynamic contrast-enhanced three-dimensional magnetic resonance (3D-MR) angiography were compared using a phantom and 23 human subjects. In phantom studies, complex subtraction showed far better performance than magnitude subtraction, especially for longer echo times, with thicker slices, and without fat suppression. With complex subtraction, non-fat-suppressed studies showed contrast-to-noise ratios comparable to those in fat-suppressed studies. In human subjects, complex subtraction was superior to magnitude subtraction in 9 subjects, but comparable to magnitude subtraction in 14 subjects. There were no cases in which magnitude subtraction was superior to complex subtraction. Although the differences observed in human studies when complex subtraction was applied with thinner slices, shorter echo times, and the fat-suppression technique were not as pronounced as those seen in phantom studies, complex subtraction should be performed in dynamic contrast-enhanced 3D-MR angiography because there are no drawbacks in complex subtraction. Further research is necessary to assess the feasibility of dynamic contrast-enhanced 3D-MR angiography without fat suppression in human subjects using complex subtraction, as suggested by the results of phantom studies. If it is found to be feasible, dynamic contrast-enhanced 3D-MR angiography without fat suppression using complex subtraction may prove to be a robust technique that eliminates the need for shimming and can reduce the acquisition time. J. Magn. Reson. Imaging 1999;10:813-820.

  20. Quantification of tumor perfusion using dynamic contrast-enhanced ultrasound: impact of mathematical modeling

    NASA Astrophysics Data System (ADS)

    Doury, Maxime; Dizeux, Alexandre; de Cesare, Alain; Lucidarme, Olivier; Pellot-Barakat, Claire; Bridal, S. Lori; Frouin, Frédérique

    2017-02-01

    Dynamic contrast-enhanced ultrasound has been proposed to monitor tumor therapy, as a complement to volume measurements. To assess the variability of perfusion parameters in ideal conditions, four consecutive test-retest studies were acquired in a mouse tumor model, using controlled injections. The impact of mathematical modeling on parameter variability was then investigated. Coefficients of variation (CV) of tissue blood volume (BV) and tissue blood flow (BF) based-parameters were estimated inside 32 sub-regions of the tumors, comparing the log-normal (LN) model with a one-compartment model fed by an arterial input function (AIF) and improved by the introduction of a time delay parameter. Relative perfusion parameters were also estimated by normalization of the LN parameters and normalization of the one-compartment parameters estimated with the AIF, using a reference tissue (RT) region. A direct estimation (rRTd) of relative parameters, based on the one-compartment model without using the AIF, was also obtained by using the kinetics inside the RT region. Results of test-retest studies show that absolute regional parameters have high CV, whatever the approach, with median values of about 30% for BV, and 40% for BF. The positive impact of normalization was established, showing a coherent estimation of relative parameters, with reduced CV (about 20% for BV and 30% for BF using the rRTd approach). These values were significantly lower (p  <  0.05) than the CV of absolute parameters. The rRTd approach provided the smallest CV and should be preferred for estimating relative perfusion parameters.

  1. Breast mass segmentation on dynamic contrast-enhanced magnetic resonance scans using the level set method

    NASA Astrophysics Data System (ADS)

    Shi, Jiazheng; Sahiner, Berkman; Chan, Heang-Ping; Paramagul, Chintana; Hadjiiski, Lubomir M.; Helvie, Mark; Wu, Yi-Ta; Ge, Jun; Zhang, Yiheng; Zhou, Chuan; Wei, Jun

    2008-03-01

    The goal of this study was to develop an automated method to segment breast masses on dynamic contrast-enhanced (DCE) magnetic resonance (MR) scans that were performed to monitor breast cancer response to neoadjuvant chemotherapy. A radiologist experienced in interpreting breast MR scans defined the mass using a cuboid volume of interest (VOI). Our method then used the K-means clustering algorithm followed by morphological operations for initial mass segmentation on the VOI. The initial segmentation was then refined by a three-dimensional level set (LS) method. The velocity field of the LS method was formulated in terms of the mean curvature which guaranteed the smoothness of the surface and the Sobel edge information which attracted the zero LS to the desired mass margin. We also designed a method to reduce segmentation leak by adapting a region growing technique. Our method was evaluated on twenty DCE-MR scans of ten patients who underwent neoadjuvant chemotherapy. Each patient had pre- and post-chemotherapy DCE-MR scans on a 1.5 Tesla magnet. Computer segmentation was applied to coronal T1-weighted images. The in-plane pixel size ranged from 0.546 to 0.703 mm and the slice thickness ranged from 2.5 to 4.0 mm. The flip angle was 15 degrees, repetition time ranged from 5.98 to 6.7 ms, and echo time ranged from 1.2 to 1.3 ms. The computer segmentation results were compared to the radiologist's manual segmentation in terms of the overlap measure defined as the ratio of the intersection of the computer and the radiologist's segmentations to the radiologist's segmentation. Pre- and post-chemotherapy masses had overlap measures of 0.81+/-0.11 (mean+/-s.d.) and 0.70+/-0.21, respectively.

  2. Regularized Reconstruction of Dynamic Contrast-Enhanced MR Images for Evaluation of Breast Lesions

    DTIC Science & Technology

    2010-09-01

    V. Knopp, E. Weiss, H. P. Sinn, J. Mattern, H. Junkermann, J. Radeleff, A. Magener, G. Brix , S. Delorme, I. Zuna, and G. . Kaick, “Pathophysiologic...basis of contrast enhancement in breast tumors,” J. Mag. Res. Im., vol. 10, no. 3, pp. 260–6, Sept. 1999. [11] P. S. Tofts, G. Brix , D. L. Buckley, J. L

  3. Reconstruction of dynamic contrast enhanced magnetic resonance imaging of the breast with temporal constraints

    PubMed Central

    Chen, Liyong; Schabel, Matthias C.; DiBella, Edward V.R.

    2010-01-01

    A number of methods using temporal and spatial constraints have been proposed for reconstruction of undersampled dynamic magnetic resonance imaging (MRI) data. The complex data can be constrained or regularized in a number of different ways, for example, the time derivative of the magnitude and phase image voxels can be constrained separately or jointly. Intuitively, the performance of different regularizations will depend on both the data and the chosen temporal constraints. Here, a complex temporal total variation (TV) constraint was compared to the use of separate real and imaginary constraints, and to a magnitude constraint alone. Projection onto Convex Sets (POCS) with a gradient descent method was used to implement the diverse temporal constraints in reconstructions of DCE MRI data. For breast DCE data, serial POCS with separate real and imaginary TV constraints was found to give relatively poor results while serial/parallel POCS with a complex temporal TV constraint and serial POCS with a magnitude-only temporal TV constraint performed well with an acceleration factor as large as R=6. In the tumor area, the best method was found to be parallel POCS with complex temporal TV constraint. This method resulted in estimates for the pharmacokinetic parameters that were linearly correlated to those estimated from the fully-sampled data, with Ktrans,R=6=0.97 Ktrans,R=1+0.00 with correlation coefficient r=0.98, kep,R=6=0.95 kep,R=1+0.00 (r=0.85). These results suggest that it is possible to acquire highly undersampled breast DCE-MRI data with improved spatial and/or temporal resolution with minimal loss of image quality. PMID:20392585

  4. Application of contrast-enhanced T1-weighted MRI-based 3D reconstruction of the dural tail sign in meningioma resection.

    PubMed

    You, Binsheng; Cheng, Yanhao; Zhang, Jian; Song, Qimin; Dai, Chao; Heng, Xueyuan; Fei, Chang

    2016-07-01

    OBJECT The goal of this study was to investigate the significance of contrast-enhanced T1-weighted (T1W) MRI-based 3D reconstruction of dural tail sign (DTS) in meningioma resection. METHODS Between May 2013 and August 2014, 18 cases of convexity and parasagittal meningiomas showing DTS on contrast-enhanced T1W MRI were selected. Contrast-enhanced T1W MRI-based 3D reconstruction of DTS was conducted before surgical treatment. The vertical and anteroposterior diameters of DTS on the contrast-enhanced T1W MR images and 3D reconstruction images were measured and compared. Surgical incisions were designed by referring to the 3D reconstruction and MR images, and then the efficiency of the 2 methods was evaluated with assistance of neuronavigation. RESULTS Three-dimensional reconstruction of DTS can reveal its overall picture. In most cases, the DTS around the tumor is uneven, whereas the DTS around the dural vessels presents longer extensions. There was no significant difference (p > 0.05) between the vertical and anteroposterior diameters of DTS measured on the contrast-enhanced T1W MR and 3D reconstruction images. The 3D images of DTS were more intuitive, and the overall picture of DTS could be revealed in 1 image, which made it easier to design the incision than by using the MR images. Meanwhile, assessment showed that the incisions designed using 3D images were more accurate than those designed using MR images (ridit analysis by SAS, F = 7.95; p = 0.008). Pathological examination showed that 34 dural specimens (except 2 specimens from 1 tumor) displayed tumor invasion. The distance of tumor cell invasion was 1.0-21.6 mm (5.4 ± 4.41 mm [mean ± SD]). Tumor cell invasion was not observed at the dural resection margin in all 36 specimens. CONCLUSIONS Contrast-enhanced T1W MRI-based 3D reconstruction can intuitively and accurately reveal the size and shape of DTS, and thus provides guidance for designing meningioma incisions.

  5. Radiation protection issues in dynamic contrast-enhanced (perfusion) computed tomography.

    PubMed

    Brix, Gunnar; Lechel, Ursula; Nekolla, Elke; Griebel, Jürgen; Becker, Christoph

    2015-12-01

    Dynamic contrast-enhanced (DCE) CT studies are increasingly used in both medical care and clinical trials to improve diagnosis and therapy management of the most common life-threatening diseases: stroke, coronary artery disease and cancer. It is thus the aim of this review to briefly summarize the current knowledge on deterministic and stochastic radiation effects relevant for patient protection, to present the essential concepts for determining radiation doses and risks associated with DCE-CT studies as well as representative results, and to discuss relevant aspects to be considered in the process of justification and optimization of these studies. For three default DCE-CT protocols implemented at a latest-generation CT system for cerebral, myocardial and cancer perfusion imaging, absorbed doses were measured by thermoluminescent dosimeters at an anthropomorphic body phantom and compared with thresholds for harmful (deterministic) tissue reactions. To characterize stochastic radiation risks of patients from these studies, life-time attributable cancer risks (LAR) were estimated using sex-, age-, and organ-specific risk models based on the hypothesis of a linear non-threshold dose-response relationship. For the brain, heart and pelvic cancer studies considered, local absorbed doses in the imaging field were about 100-190 mGy (total CTDI(vol), 200 mGy), 15-30 mGy (16 mGy) and 80-270 mGy (140 mGy), respectively. According to a recent publication of the International Commission on Radiological Protection (ICRP Publication 118, 2012), harmful tissue reactions of the cerebro- and cardiovascular systems as well as of the lenses of the eye become increasingly important at radiation doses of more than 0.5 Gy. The LARs estimated for the investigated cerebral and myocardial DCE-CT scenarios are less than 0.07% for males and 0.1% for females at an age of exposure of 40 years. For the considered tumor location and protocol, the corresponding LARs are more than 6 times as high

  6. Dynamic Contrast-Enhanced Magnetic Resonance Imaging as a Predictor of Outcome in Head-and-Neck Squamous Cell Carcinoma Patients With Nodal Metastases

    SciTech Connect

    Shukla-Dave, Amita; Lee, Nancy Y.; Jansen, Jacobus F.A.; Thaler, Howard T.; Stambuk, Hilda E.; Fury, Matthew G.; Patel, Snehal G.; Moreira, Andre L.; Sherman, Eric; Karimi, Sasan; Wang, Ya; Kraus, Dennis; Shah, Jatin P.; Pfister, David G.; and others

    2012-04-01

    Purpose: Dynamic contrast-enhanced MRI (DCE-MRI) can provide information regarding tumor perfusion and permeability and has shown prognostic value in certain tumors types. The goal of this study was to assess the prognostic value of pretreatment DCE-MRI in head and neck squamous cell carcinoma (HNSCC) patients with nodal disease undergoing chemoradiation therapy or surgery. Methods and Materials: Seventy-four patients with histologically proven squamous cell carcinoma and neck nodal metastases were eligible for the study. Pretreatment DCE-MRI was performed on a 1.5T MRI. Clinical follow-up was a minimum of 12 months. DCE-MRI data were analyzed using the Tofts model. DCE-MRI parameters were related to treatment outcome (progression-free survival [PFS] and overall survival [OS]). Patients were grouped as no evidence of disease (NED), alive with disease (AWD), dead with disease (DOD), or dead of other causes (DOC). Prognostic significance was assessed using the log-rank test for single variables and Cox proportional hazards regression for combinations of variables. Results: At last clinical follow-up, for Stage III, all 12 patients were NED. For Stage IV, 43 patients were NED, 4 were AWD, 11 were DOD, and 4 were DOC. K{sup trans} is volume transfer constant. In a stepwise Cox regression, skewness of K{sup trans} (volume transfer constant) was the strongest predictor for Stage IV patients (PFS and OS: p <0.001). Conclusion: Our study shows that skewness of K{sup trans} was the strongest predictor of PFS and OS in Stage IV HNSCC patients with nodal disease. This study suggests an important role for pretreatment DCE-MRI parameter K{sup trans} as a predictor of outcome in these patients.

  7. A method for patient dose reduction in dynamic contrast enhanced CT study

    SciTech Connect

    Mo Kim, Sun; Haider, Masoom A.; Milosevic, Michael; Jaffray, David A.; Yeung, Ivan W. T.

    2011-09-15

    Purpose: In dynamic contrast enhanced CT (DCE-CT) study, prolonged CT scanning with high temporal resolution is required to give accurate and precise estimates of kinetic parameters. However, such scanning protocol could lead to substantial radiation dose to the patient. A novel method is proposed to reduce radiation dose to patient, while maintaining high accuracy for kinetic parameter estimates in DCE-CT study. Methods: The method is based on a previous investigation that the arterial impulse response (AIR) in DCE-CT study can be predicted using a population-based scheme. In the proposed method, DCE-CT scanning is performed with relatively low temporal resolution, hence, giving rise to reduction in patient dose. A novel method is proposed to estimate the arterial input function (AIF) based on the coarsely sampled AIF. By using the estimated AIF in the tracer kinetic analysis of the coarsely sampled DCE-CT study, the calculated kinetic parameters are able to achieve a high degree of accuracy. The method was tested on a DCE-CT data set of 48 patients with cervical cancer scanned at high temporal resolution. A random cohort of 34 patients was chosen to construct the orthonormal bases of the AIRs via singular value decomposition method. The determined set of orthonormal bases was used to fit the AIFs in the second cohort (14 patients) at varying levels of down sampling. For each dataset in the second cohort, the estimated AIF was used for kinetic analyses of the modified Tofts and adiabatic tissue homogeneity models for each of the down-sampling schemes between intervals from 2 to 15 s. The results were compared with analyses done with the ''raw'' down-sampled AIF. Results: In the first group of 34 patients, there were 11 orthonormal bases identified to describe the AIRs. The AIFs in the second group were estimated in high accuracy based on the 11 orthonormal bases established in the first group along with down-sampled AIFs. Using the 11 orthonormal bases, the

  8. Noninvasive Monitoring of Microvascular Changes With Partial Irradiation Using Dynamic Contrast-Enhanced and Blood Oxygen Level-Dependent Magnetic Resonance Imaging

    SciTech Connect

    Lin, Yu-Chun; Wang, Jiun-Jie; Hong, Ji-Hong; Lin, Yi-Ping; Lee, Chung-Chi; Wai, Yau-Yau; Ng, Shu-Hang; Wu, Yi-Ming; Wang, Chun-Chieh

    2013-04-01

    Purpose: The microvasculature of a tumor plays an important role in its response to radiation therapy. Dynamic contrast-enhanced magnetic resonance imaging (DCE MRI) and blood oxygen level-dependent (BOLD) MRI are both sensitive to vascular characteristics. The present study proposed a partial irradiation approach to a xenograft tumor to investigate the intratumoral response to radiation therapy using DCE and BOLD MRI. Methods and Materials: TRAMP-C1 tumors were grown in C57BL/6J mice. Partial irradiation was performed on the distal half of the tumor with a single dose of 15 Gy. DCE MRI was performed to derive the endothelium transfer constant, K{sup trans}, using pharmacokinetic analysis. BOLD MRI was performed using quantitative R2* measurements with carbogen breathing. The histology of the tumor was analyzed using hematoxylin and eosin staining and CD31 staining to detect endothelial cells. The differences between the irradiated and nonirradiated regions of the tumor were assessed using K{sup trans} values, ΔR2* values in response to carbogen and microvascular density (MVD) measurements. Results: A significantly increased K{sup trans} and reduced BOLD response to carbogen were found in the irradiated region of the tumor compared with the nonirradiated region (P<.05). Histologic analysis showed a significant aggregation of giant cells and a reduced MVD in the irradiated region of the tumor. The radiation-induced difference in the BOLD response was associated with differences in MVD and K{sup trans}. Conclusions: We demonstrated that DCE MRI and carbogen-challenge BOLD MRI can detect differential responses within a tumor that may potentially serve as noninvasive imaging biomarkers to detect microvascular changes in response to radiation therapy.

  9. Biventricular apical thrombi demonstrated by contrast-enhanced cardiac MRI following anteroapical STEMI and unsuccessful reperfusion therapy

    PubMed Central

    Keeble, William; VonderMuhll, Isabelle; Paterson, Ian

    2008-01-01

    Contrast-enhanced cardiac magnetic resonance imaging can define the territory and extent of myocardial infarction from patterns of late gadolinium enhancement. Following failure to reperfuse with thrombolytic therapy, a case of myocardial infarction is described in which ongoing symptoms and an electrocardiogram change led to a diagnostic dilemma. Cardiac magnetic resonance imaging confirmed an apical infarction, an aneurysm and acute pericarditis. In addition, late gadolinium enhancement unexpectedly revealed the presence of biventricular apical thrombi. The prevalence of cardiac thrombi and pulmonary emboli may be greater than generally appreciated. PMID:18685749

  10. Spectral embedding based active contour (SEAC) for lesion segmentation on breast dynamic contrast enhanced magnetic resonance imaging

    PubMed Central

    Agner, Shannon C.; Xu, Jun; Madabhushi, Anant

    2013-01-01

    Purpose: Segmentation of breast lesions on dynamic contrast enhanced (DCE) magnetic resonance imaging (MRI) is the first step in lesion diagnosis in a computer-aided diagnosis framework. Because manual segmentation of such lesions is both time consuming and highly susceptible to human error and issues of reproducibility, an automated lesion segmentation method is highly desirable. Traditional automated image segmentation methods such as boundary-based active contour (AC) models require a strong gradient at the lesion boundary. Even when region-based terms are introduced to an AC model, grayscale image intensities often do not allow for clear definition of foreground and background region statistics. Thus, there is a need to find alternative image representations that might provide (1) strong gradients at the margin of the object of interest (OOI); and (2) larger separation between intensity distributions and region statistics for the foreground and background, which are necessary to halt evolution of the AC model upon reaching the border of the OOI. Methods: In this paper, the authors introduce a spectral embedding (SE) based AC (SEAC) for lesion segmentation on breast DCE-MRI. SE, a nonlinear dimensionality reduction scheme, is applied to the DCE time series in a voxelwise fashion to reduce several time point images to a single parametric image where every voxel is characterized by the three dominant eigenvectors. This parametric eigenvector image (PrEIm) representation allows for better capture of image region statistics and stronger gradients for use with a hybrid AC model, which is driven by both boundary and region information. They compare SEAC to ACs that employ fuzzy c-means (FCM) and principal component analysis (PCA) as alternative image representations. Segmentation performance was evaluated by boundary and region metrics as well as comparing lesion classification using morphological features from SEAC, PCA+AC, and FCM+AC. Results: On a cohort of 50

  11. A Feasibility Study to Determine whether Clinical Contrast-Enhanced MRI can Detect Increased Bladder Permeability in Patients with Interstitial Cystitis

    PubMed Central

    Towner, Rheal A.; Wisniewski, Amy B.; Wu, Dee H.; Van Gordon, Samuel B.; Smith, Nataliya; North, Justin C.; McElhaney, Rayburt; Aston, Christopher E.; Shobeiri, S. Abbas; Kropp, Bradley P.; Greenwood-Van Meerveld, Beverley; Hurst, Robert E.

    2015-01-01

    Purpose Interstitial cystitis/bladder pain syndrome (IC/BPS) is a bladder pain disorder associated with voiding symptomatology and other systemic chronic pain disorders. Currently diagnosis of IC/BPS is complicated, as patients present with wide ranges of symptoms, physical examination findings, and clinical test responses. One hypothesis is that IC symptoms arise from increased bladder permeability to urine solutes. This study established the feasibility of using contrast-enhanced magnetic resonance imaging (CE-MRI) to quantify bladder permeability in IC patients. Materials and Methods Permeability alterations in bladder urothelium were assessed with intravesical administration of a MRI contrast agent (Gd-DTPA) in a small cohort of patients. MRI signal intensities (SI) in IC patient and control bladders were compared regionally and for entire bladders. Results Quantitative assessment of MRI SI indicated a significant increase in SI within anterior bladder regions (p<0.01) compared to posterior regions in IC patients, and significant increases in SI within anterior bladder regions (p<0.001) and kurtosis (descriptor of shape of probability distribution) and skewness (measure of asymmetry of probability distribution) associated with contrast enhancement in total bladders (p<0.05) for IC patients compared to controls. Regarding symptomatology, IC cases differed significantly from controls for the SF-36, PPUF and ICPI questionnaires with no overlap in range of scores for each group, and were significantly different for ICSI but with a slight overlap in range of scores. Conclusions The data suggests that CE-MRI provides an objective, quantifiable measurement of bladder permeability that could be used to stratify bladder pain patients and monitor therapy. PMID:26307161

  12. Synthesis, structural characterization and in vitro testing of dysprosium containing silica particles as potential MRI contrast enhancing agents

    NASA Astrophysics Data System (ADS)

    Chiriac, L. B.; Trandafir, D. L.; Turcu, R. V. F.; Todea, M.; Simon, S.

    2016-11-01

    The work is focused on synthesis and structural characterization of novel dysprosium-doped silica particles which could be considered as MRI contrast agents. Sol-gel derived silica rich particles obtained via freeze-drying and spray-drying processing methods were structurally characterized by XRD, 29Si MAS-NMR and XPS methods. The occurrence of dysprosium on the outermost layer of dysprosium containing silica particles was investigated by XPS analysis. The MRI contrast agent characteristics have been tested using RARE-T1 and RARE-T2 protocols. The contrast of MRI images delivered by the investigated samples was correlated with their local structure. Dysprosium disposal on microparticles with surface structure characterised by decreased connectivity of the silicate network units favours dark T2-weighted MRI contrast properties.

  13. Modifications in Dynamic Contrast-Enhanced Magnetic Resonance Imaging Parameters After α-Particle-Emitting {sup 227}Th-trastuzumab Therapy of HER2-Expressing Ovarian Cancer Xenografts

    SciTech Connect

    Heyerdahl, Helen; Røe, Kathrine; Brevik, Ellen Mengshoel; Dahle, Jostein

    2013-09-01

    Purpose: The purpose of this study was to investigate the effect of α-particle-emitting {sup 227}Th-trastuzumab radioimmunotherapy on tumor vasculature to increase the knowledge about the mechanisms of action of {sup 227}Th-trastuzumab. Methods and Materials: Human HER2-expressing SKOV-3 ovarian cancer xenografts were grown bilaterally in athymic nude mice. Mice with tumor volumes 253 ± 36 mm{sup 3} (mean ± SEM) were treated with a single injection of either {sup 227}Th-trastuzumab at a dose of 1000 kBq/kg body weight (treated group, n=14 tumors) or 0.9% NaCl (control group, n=10 tumors). Dynamic T1-weighted contrast-enhanced magnetic resonance imaging (DCEMRI) was used to study the effect of {sup 227}Th-trastuzumab on tumor vasculature. DCEMRI was performed before treatment and 1, 2, and 3 weeks after therapy. Tumor contrast-enhancement curves were extracted voxel by voxel and fitted to the Brix pharmacokinetic model. Pharmacokinetic parameters for the tumors that underwent radioimmunotherapy were compared with the corresponding parameters of control tumors. Results: Significant increases of k{sub ep}, the rate constant of diffusion from the extravascular extracellular space to the plasma (P<.05), and k{sub el,} the rate of clearance of contrast agent from the plasma (P<.01), were seen in the radioimmunotherapy group 2 and 3 weeks after injection, compared with the control group. The product of k{sub ep} and the amplitude parameter A, associated with increased vessel permeability and perfusion, was also significantly increased in the radioimmunotherapy group 2 and 3 weeks after injection (P<.01). Conclusions: Pharmacokinetic modeling of MRI contrast-enhancement curves evidenced significant alterations in parameters associated with increased tumor vessel permeability and tumor perfusion after {sup 227}Th-trastuzumab treatment of HER2-expressing ovarian cancer xenografts.

  14. Visualization and quantification of whole rat heart laminar structure using high-spatial resolution contrast-enhanced MRI

    PubMed Central

    Benoist, David; Benson, Alan P.; White, Ed; Tanner, Steven F.; Holden, Arun V.; Dobrzynski, Halina; Bernus, Olivier; Radjenovic, Aleksandra

    2012-01-01

    It has been shown by histology that cardiac myocytes are organized into laminae and this structure is important in function, both influencing the spread of electrical activation and enabling myocardial thickening in systole by laminar sliding. We have carried out high-spatial resolution three-dimensional MRI of the ventricular myolaminae of the entire volume of the isolated rat heart after contrast perfusion [dimeglumine gadopentate (Gd-DTPA)]. Four ex vivo rat hearts were perfused with Gd-DTPA and fixative and high-spatial resolution MRI was performed on a 9.4T MRI system. After MRI, cryosectioning followed by histology was performed. Images from MRI and histology were aligned, described, and quantitatively compared. In the three-dimensional MR images we directly show the presence of laminae and demonstrate that these are highly branching and are absent from much of the subepicardium. We visualized these MRI volumes to demonstrate laminar architecture and quantitatively demonstrated that the structural features observed are similar to those imaged in histology. We showed qualitatively and quantitatively that laminar architecture is similar in the four hearts. MRI can be used to image the laminar architecture of ex vivo hearts in three dimensions, and the images produced are qualitatively and quantitatively comparable with histology. We have demonstrated in the rat that: 1) laminar architecture is consistent between hearts; 2) myolaminae are absent from much of the subepicardium; and 3) although localized orthotropy is present throughout the myocardium, tracked myolaminae are branching structures and do not have a discrete identity. PMID:22021329

  15. The quantification of blood-brain barrier disruption using dynamic contrast-enhanced magnetic resonance imaging in aging rhesus monkeys with spontaneous type 2 diabetes mellitus.

    PubMed

    Xu, Ziqian; Zeng, Wen; Sun, Jiayu; Chen, Wei; Zhang, Ruzhi; Yang, Zunyuan; Yao, Zunwei; Wang, Lei; Song, Li; Chen, Yushu; Zhang, Yu; Wang, Chunhua; Gong, Li; Wu, Bing; Wang, Tinghua; Zheng, Jie; Gao, Fabao

    2016-07-08

    Microvascular lesions of the body are one of the most serious complications that can affect patients with type 2 diabetes mellitus. The blood-brain barrier (BBB) is a highly selective permeable barrier around the microvessels of the brain. This study investigated BBB disruption in diabetic rhesus monkeys using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Multi-slice DCE-MRI was used to quantify BBB permeability. Five diabetic monkeys and six control monkeys underwent magnetic resonance brain imaging in 3 Tesla MRI system. Regions of the frontal cortex, the temporal cortex, the basal ganglia, the thalamus, and the hippocampus in the two groups were selected as regions of interest to calculate the value of the transport coefficient K(trans) using the extended Tofts model. Permeability in the diabetic monkeys was significantly increased as compared with permeability in the normal control monkeys. Histopathologically, zonula occludens protein-1 decreased, immunoglobulin G leaked out of the blood, and nuclear factor E2-related factor translocated from the cytoplasm to the nuclei. It is likely that diabetes contributed to the increased BBB permeability.

  16. High Resolution Ultrasound Superharmonic Perfusion Imaging: In Vivo Feasibility and Quantification of Dynamic Contrast-Enhanced Acoustic Angiography.

    PubMed

    Lindsey, Brooks D; Shelton, Sarah E; Martin, K Heath; Ozgun, Kathryn A; Rojas, Juan D; Foster, F Stuart; Dayton, Paul A

    2017-04-01

    Mapping blood perfusion quantitatively allows localization of abnormal physiology and can improve understanding of disease progression. Dynamic contrast-enhanced ultrasound is a low-cost, real-time technique for imaging perfusion dynamics with microbubble contrast agents. Previously, we have demonstrated another contrast agent-specific ultrasound imaging technique, acoustic angiography, which forms static anatomical images of the superharmonic signal produced by microbubbles. In this work, we seek to determine whether acoustic angiography can be utilized for high resolution perfusion imaging in vivo by examining the effect of acquisition rate on superharmonic imaging at low flow rates and demonstrating the feasibility of dynamic contrast-enhanced superharmonic perfusion imaging for the first time. Results in the chorioallantoic membrane model indicate that frame rate and frame averaging do not affect the measured diameter of individual vessels observed, but that frame rate does influence the detection of vessels near and below the resolution limit. The highest number of resolvable vessels was observed at an intermediate frame rate of 3 Hz using a mechanically-steered prototype transducer. We also demonstrate the feasibility of quantitatively mapping perfusion rate in 2D in a mouse model with spatial resolution of ~100 μm. This type of imaging could provide non-invasive, high resolution quantification of microvascular function at penetration depths of several centimeters.

  17. Quantitative Assessment of Macromolecular Concentration during Direct Infusion into an Agarose Hydrogel Phantom using Contrast-Enhanced MRI

    PubMed Central

    Chen, Xiaoming; Astary, Garrett W.; Sepulveda, Hector; Mareci, Thomas H.; Sarntinoranont, Malisa

    2011-01-01

    Convection-enhanced delivery (CED), i.e., direct tissue infusion, has emerged as a promising local drug delivery method for treating diseases of the nervous system. Determination of the spatial distribution of therapeutic agents after infusion is important in evaluating the efficacy of treatment, optimizing infusion protocols, and improving the understanding of drug pharmacokinetics. In this study, we provide a methodology to determine the concentration distribution of Gd-labeled tracers during infusion using contrast-enhanced MR imaging. To the best of our knowledge, MR studies that quantify concentration profiles for CED have not been previously reported. The methodology utilizes intrinsic material properties (T1 and R1) and reduces the effect of instrumental factors (e.g., inhomogeneity of MR detection field). As a methodology investigation, this study used an agarose hydrogel phantom as a tissue substitute for infusion. An 11.1 T magnet system was used to image infusion of Gd-DTPA labeled albumin (Gd-albumin) into the hydrogel. By using data from preliminary scans, Gd-albumin distribution was determined from the signal intensity of the MR images. As a validation test, MR-derived concentration profiles were found comparable to both results measured directly using quantitative optical imaging and results from a computational transport model in porous media. In future studies, the developed methodology will be used to quantitatively monitor the distribution of Gd-tracer following infusion directly into tissues. PMID:18583082

  18. Endolymphatic Hydrops Reversal following Acetazolamide Therapy: Demonstration with Delayed Intravenous Contrast-Enhanced 3D-FLAIR MRI.

    PubMed

    Sepahdari, A R; Vorasubin, N; Ishiyama, G; Ishiyama, A

    2016-01-01

    Endolymphatic hydrops, the primary pathologic alteration in Menière disease, can be visualized by using delayed intravenous contrast-enhanced 3D-FLAIR MR imaging. It is not known whether MR imaging-demonstrable changes of hydrops fluctuate with disease activity or are fixed. We describe the results of baseline and posttreatment MR imaging studies in a group of subjects with Menière disease with hydrops who were treated with acetazolamide. Seven subjects with untreated Menière disease with MR imaging evidence of hydrops had repeat MR imaging during acetazolamide treatment. Symptoms and imaging findings were assessed at each time point. Five subjects showed symptom improvement, of whom 3 had improvement or resolution of hydrops. One subject had recurrent symptoms with recurrent hydrops after discontinuing therapy. Two had unchanged hydrops despite symptom improvement. Subjects with unchanged symptoms had unchanged hydrops. Hydrops reversal may be seen with acetazolamide treatment in Menière disease. MR imaging may provide an additional biomarker of disease.

  19. Computational fluid dynamics modelling of perfusion measurements in dynamic contrast-enhanced computed tomography: development, validation and clinical applications

    NASA Astrophysics Data System (ADS)

    Peladeau-Pigeon, M.; Coolens, C.

    2013-09-01

    Dynamic contrast-enhanced computed tomography (DCE-CT) is an imaging tool that aids in evaluating functional characteristics of tissue at different stages of disease management: diagnostic, radiation treatment planning, treatment effectiveness, and monitoring. Clinical validation of DCE-derived perfusion parameters remains an outstanding problem to address prior to perfusion imaging becoming a widespread standard as a non-invasive quantitative measurement tool. One approach to this validation process has been the development of quality assurance phantoms in order to facilitate controlled perfusion ex vivo. However, most of these systems fail to establish and accurately replicate physiologically relevant capillary permeability and exchange performance. The current work presents the first step in the development of a prospective suite of physics-based perfusion simulations based on coupled fluid flow and particle transport phenomena with the goal of enhancing the understanding of clinical contrast agent kinetics. Existing knowledge about a controllable, two-compartmental fluid exchange phantom was used to validate the computational fluid dynamics (CFD) simulation model presented herein. The sensitivity of CFD-derived contrast uptake curves to contrast injection parameters, including injection duration and flow rate, were quantified and found to be within 10% accuracy. The CFD model was employed to evaluate two commonly used clinical kinetic algorithms used to derive perfusion parameters: Fick's principle and the modified Tofts model. Neither kinetic model was able to capture the true transport phenomena it aimed to represent but if the overall contrast concentration after injection remained identical, then successive DCE-CT evaluations could be compared and could indeed reflect differences in regional tissue flow. This study sets the groundwork for future explorations in phantom development and pharmaco-kinetic modelling, as well as the development of novel contrast

  20. Predictive values of serum VEGF and CRP levels combined with contrast enhanced MRI in hepatocellular carcinoma patients after TACE

    PubMed Central

    Li, Zhi; Xue, Tong-Qing; Chen, Xiao-Yu

    2016-01-01

    This study explored the predictive value of serum vascular endothelial growth factor (VEGF) and C-reactive protein (CRP) levels combined with enhanced magnetic resonance imaging (MRI) in hepatocellular carcinoma (HCC) patients after transcatheter arterial chemoembolization (TACE). One hundred and seventeen patients who received TACE from June 2010 to December 2012 in our hospital were included in this study. Serum VEGF and CRP levels before and after TACE were determined by ELISA and single immunodiffusion method for analyzing the association of serum levels with pathological features. Enhanced MRI was utilized before and after TACE to measure tumor size and ADC value in enhanced region and non-enhanced region. MRI data were combined with serum VEGF and CRP levels to analyze the predictive value in efficacy and prognosis for HCC patients after TACE. The serum VEGF and CRP levels after TACE were increased, but can return to normal levels in a certain time. VEGF and CRP levels were not statistically associated with tumor location, tumor staining or presence of membrane (all P > 0.05), but closely correlated with combined portal vein tumor thrombus, combined arteriovenous fistula and distant metastasis (all P < 0.05). Low levels of serum VEGF and CRP, small tumor size and low ADC value before treatment indicated a better prognosis. The sensitivity and specificity of serum VEGF and CRP levels, tumor size and ADC value were respectively 92.31% and 88.46%, 93.85% and 90.38%, 81.54% and 78.85% as well as 47.69% and 84.62%. Serum VEGF and CRP levels, tumor size and ADC value could predict the efficacy of TACE for HCC patients. Serum VEGF and CRP levels combined with enhanced MRI may serve as markers for efficacy and prognosis evaluation in HCC patients after TACE. PMID:27822426

  1. An aqueous method for the controlled manganese (Mn(2+)) substitution in superparamagnetic iron oxide nanoparticles for contrast enhancement in MRI.

    PubMed

    Ereath Beeran, Ansar; Nazeer, Shaiju S; Fernandez, Francis Boniface; Muvvala, Krishna Surendra; Wunderlich, Wilfried; Anil, Sukumaran; Vellappally, Sajith; Ramachandra Rao, M S; John, Annie; Jayasree, Ramapurath S; Varma, P R Harikrishna

    2015-02-14

    Despite the success in the use of superparamagnetic iron oxide nanoparticles (SPION) for various scientific applications, its potential in biomedical fields has not been exploited to its full potential. In this context, an in situ substitution of Mn(2+) was performed in SPION and a series of ferrite particles, MnxFe1-xFe2O4 with a varying molar ratio of Mn(2+) : Fe(2+) where 'x' varies from 0-0.75. The ferrite particles obtained were further studied in MRI contrast applications and showed appreciable enhancement in their MRI contrast properties. Manganese substituted ferrite nanocrystals (MnIOs) were synthesized using a novel, one-step aqueous co-precipitation method based on the use of a combination of sodium hydroxide and trisodium citrate (TSC). This approach yielded the formation of highly crystalline, superparamagnetic MnIOs with good control over their size and bivalent Mn ion crystal substitution. The presence of a TSC hydrophilic layer on the surface facilitated easy dispersion of the materials in an aqueous media. Primary characterizations such as structural, chemical and magnetic properties demonstrated the successful formation of manganese substituted ferrite. More significantly, the MRI relaxivity of the MnIOs improved fourfold when compared to SPION crystals imparting high potential for use as an MRI contrast agent. Further, the cytocompatibility and blood compatibility evaluations demonstrated excellent cell morphological integrity even at high concentrations of nanoparticles supporting the non-toxic nature of nanoparticles. These results open new horizons for the design of biocompatible water dispersible ferrite nanoparticles with good relaxivity properties via a versatile and easily scalable co-precipitation route.

  2. MR Susceptibility Weighted Imaging (SWI) Complements Conventional Contrast Enhanced T1 Weighted MRI in Characterizing Brain Abnormalities of Sturge-Weber Syndrome

    PubMed Central

    Hu, Jiani; Yu, Yingjian; Juhasz, Csaba; Kou, Zhifeng; Xuan, Yang; Latif, Zahid; Kudo, Kohsuke; Chugani, Harry T.; Haacke, E. Mark

    2009-01-01

    PURPOSE To evaluate the efficacy of susceptibility weighted imaging (SWI) in comparison to standard T1 weighted post gadolinium contrast (T1-Gd) MRI in patients with Sturge-Weber Syndrome (SWS). MATERIALS AND METHODS Twelve children (mean age 5.6 years) with the diagnosis of SWS and unilateral hemispheric involvement were recruited prospectively and examined with high resolution 3D SWI and conventional T1-Gd. Both SWI and T1-Gd images were evaluated using a four-grade scoring system according to six types of imaging findings (enlargement of transmedullary veins, periventricular veins and choroid plexus, as well as leptomeningeal abnormality, cortical gyriform abnormality, and gray matter/white matter junctional abnormality). The scores of SWI vs. T1-Gd images were then compared for each type of abnormality. RESULTS SWI was superior to T1-Gd in identifying the enlarged transmedullary veins (p=0.0020), abnormal periventricular veins (p=0.0078), cortical gyriform abnormalities (p=0.0020), and grey matter/white matter junction abnormalities (p=0.0078). Conversely, T1-Gd was better than SWI in identifying enlarged choroid plexus (p=0.0050) and leptomeningeal abnormalities (p=0.0050). CONCLUSION SWI can provide useful and unique information complementary to conventional contrast enhanced T1 weighted MRI for characterizing SWS. Therefore, SWI should be integrated into routine clinical MRI protocols for suspected SWS. PMID:18666142

  3. Dynamic contrast-enhanced magnetic resonance imaging of osseous spine metastasis before and 1 hour after high-dose image-guided radiation therapy.

    PubMed

    Lis, Eric; Saha, Atin; Peck, Kyung K; Zatcky, Joan; Zelefsky, Michael J; Yamada, Yoshiya; Holodny, Andrei I; Bilsky, Mark H; Karimi, Sasan

    2017-01-01

    OBJECTIVE High-dose image-guided radiation therapy (HD IGRT) has been instrumental in mitigating some limitations of conventional RT. The recent emergence of dynamic contrast-enhanced (DCE) MRI to investigate tumor physiology can be used to verify the response of human tumors to HD IGRT. The purpose of this study was to evaluate the near-immediate effects of HD IGRT on spine metastases through the use of DCE MRI perfusion studies. METHODS Six patients with spine metastases from prostate, thyroid, and renal cell carcinoma who underwent HD IGRT were studied using DCE MRI prior to and 1 hour after HD IGRT. The DCE perfusion parameters plasma volume (Vp) and vascular permeability (Ktrans) were measured to assess the near-immediate and long-term tumor response. A Mann-Whitney U-test was performed to compare significant changes (at p ≤ 0.05) in perfusion parameters before and after RT. RESULTS The authors observed a precipitous drop in Vp within 1 hour of HD IGRT, with a mean decrease of 65.2%. A significant difference was found between Vp values for before and 1 hour after RT (p ≤ 0.05). No significant change was seen in Vp (p = 0.31) and Ktrans (p = 0.1) from 1 hour after RT to the first follow-up. CONCLUSIONS The data suggest that there is an immediate effect of HD IGRT on the vascularity of spine metastases, as demonstrated by a precipitous decrease in Vp. The DCE MRI studies can detect such changes within 1 hour after RT, and findings are concordant with existing animal models.

  4. Intra-individual comparison of different gadolinium-based contrast agents in the quantitative evaluation of C6 glioma with dynamic contrast-enhanced magnetic resonance imaging.

    PubMed

    Li, Ying; Liu, Gang; Lou, Xin; Chen, Zhiye; Ma, Lin

    2017-01-01

    This experiment aimed to compare the ionic (Gadodiamide, Gd-DTPA-BMA) and non-ionic (Gadopentetate dimeglumine, Gd-DTPA) gadolinium-based contrast agents (GBCA) in the quantitative evaluation of C6 glioma with dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). A C6 glioma model was established in 12 Wistar rats, and magnetic resonance (MR) scans were performed six days after tumor implantation. Imaging was performed using a 3.0-T MR scanner with a 7-inch handmade circular coil. Pre-contrast T1 mapping and dynamic contrast-enhanced T1WI after a bolus injection (0.2 mL s(-1)) of GBCA at 0.4 mmol kg(-1) were performed. Each rat received two DCE-MRI scans, 24 h apart. The first and second scans were performed using Gd-DTPA-BMA and Gd-DTPA, respectively. Image data were processed using the Patlak model. Both K (trans) and V p maps were generated. Tumors were manually segmented on all 3D K (trans) and V p maps. Pixel counts and mean values were recorded for use in a paired t-test. Three radiologists independently performed the tumor segmentation and value calculation. The agreements from different observers were subjective to the intra-class correlation coefficient (ICC). Readers demonstrated that the pixel counts of tumors in K (trans) maps were higher with Gd-DTPA-BMA than with Gd-DTPA (P<0.001, all readers). Although the K (trans) values were higher with Gd-DTPA-BMA than with Gd-DTPA, there was no statistical significance (P>0.05, all readers). The pixel counts of tumors in V p maps, as well as V p values, showed no obvious difference between the two agents (P>0.05, all readers). Excellent interobserver measurement reproducibility and reliability were demonstrated in the ICC tests. The Gd-DTPA-BMA contrast agent had significantly higher pixel counts of glioma in the K (trans) maps, and an increased tendency for average K (trans) values, indicating that DCE-MRI with Gd-DTPA-BMA may be more suitable and sensitive for the evaluation of glioma.

  5. Renal plasma flow (RPF) measured with multiple-inversion-time arterial spin labeling (ASL) and tracer kinetic analysis: Validation against a dynamic contrast-enhancement method

    PubMed Central

    Conlin, Christopher C.; Oesingmann, Niels; Bolster, Bradley; Huang, Yufeng; Lee, Vivian S.; Zhang, Jeff L.

    2016-01-01

    Purpose To propose and validate a method for accurately quantifying renal plasma flow (RPF) with arterial spin labeling (ASL). Materials and methods The proposed method employs a tracer–kinetic approach and derives perfusion from the slope of the ASL difference signal sampled at multiple inversion-times (TIs). To validate the method's accuracy, we performed a HIPAA-compliant and IRB-approved study with 15 subjects (9 male, 6 female; age range 24– 73) to compare RPF estimates obtained from ASL to those from a more established dynamic contrast-enhanced (DCE) MRI method. We also investigated the impact of TI-sampling density on the accuracy of estimated RPF. Results Good agreement was found between ASL- and DCE-measured RPF, with a mean difference of 9 ± 30 ml/min and a correlation coefficient R = 0.92 when ASL signals were acquired at 16 TIs and a mean difference of 9 ± 57 ml/min and R = 0.81 when ASL signals were acquired at 5 TIs. RPF estimated from ASL signals acquired at only 2 TIs (400 and 1200 ms) showed a low correlation with DCE-measured values (R = 0.30). Conclusion The proposed ASL method is capable of measuring RPF with an accuracy that is comparable to DCE MRI. At least 5 TIs are recommended for the ASL acquisition to ensure reliability of RPF measurements. PMID:27864008

  6. The Impact of Arterial Input Function Determination Variations on Prostate Dynamic Contrast-Enhanced Magnetic Resonance Imaging Pharmacokinetic Modeling: A Multicenter Data Analysis Challenge

    PubMed Central

    Huang, Wei; Chen, Yiyi; Fedorov, Andriy; Li, Xia; Jajamovich, Guido H.; Malyarenko, Dariya I.; Aryal, Madhava P.; LaViolette, Peter S.; Oborski, Matthew J.; O'Sullivan, Finbarr; Abramson, Richard G.; Jafari-Khouzani, Kourosh; Afzal, Aneela; Tudorica, Alina; Moloney, Brendan; Gupta, Sandeep N.; Besa, Cecilia; Kalpathy-Cramer, Jayashree; Mountz, James M.; Laymon, Charles M.; Muzi, Mark; Schmainda, Kathleen; Cao, Yue; Chenevert, Thomas L.; Taouli, Bachir; Yankeelov, Thomas E.; Fennessy, Fiona; Li, Xin

    2016-01-01

    Dynamic contrast-enhanced MRI (DCE-MRI) has been widely used in tumor detection and therapy response evaluation. Pharmacokinetic analysis of DCE-MRI time-course data allows estimation of quantitative imaging biomarkers such as Ktrans(rate constant for plasma/interstitium contrast reagent (CR) transfer) and ve (extravascular and extracellular volume fraction). However, the use of quantitative DCE-MRI in clinical prostate imaging islimited, with uncertainty in arterial input function (AIF, i.e., the time rate of change of the concentration of CR in the blood plasma) determination being one of the primary reasons. In this multicenter data analysis challenge to assess the effects of variations in AIF quantification on estimation of DCE-MRI parameters, prostate DCE-MRI data acquired at one center from 11 prostate cancer patients were shared among nine centers. Each center used its site-specific method to determine the individual AIF from each data set and submitted the results to the managing center. Along with a literature population averaged AIF, these AIFs and their reference-tissue-adjusted variants were used by the managing center to perform pharmacokinetic analysis of the DCE-MRI data sets using the Tofts model (TM). All other variables including tumor region of interest (ROI) definition and pre-contrast T1 were kept the same to evaluate parameter variations caused by AIF variations only. Considerable pharmacokinetic parameter variations were observed with the within-subject coefficient of variation (wCV) of Ktrans obtained with unadjusted AIFs as high as 0.74. AIF-caused variations were larger in Ktrans than ve and both were reduced when reference-tissue-adjusted AIFs were used. The parameter variations were largely systematic, resulting in nearly unchanged parametric map patterns. The CR intravasation rate constant, kep (= Ktrans/ve), was less sensitive to AIF variation than Ktrans (wCV for unadjusted AIFs: 0.45 for kep vs. 0.74 for Ktrans), suggesting that it

  7. Revision of the theory of tracer transport and the convolution model of dynamic contrast enhanced magnetic resonance imaging

    PubMed Central

    Bammer, Roland; Stollberger, Rudolf

    2012-01-01

    Counterexamples are used to motivate the revision of the established theory of tracer transport. Then dynamic contrast enhanced magnetic resonance imaging in particular is conceptualized in terms of a fully distributed convection–diffusion model from which a widely used convolution model is derived using, alternatively, compartmental discretizations or semigroup theory. On this basis, applications and limitations of the convolution model are identified. For instance, it is proved that perfusion and tissue exchange states cannot be identified on the basis of a single convolution equation alone. Yet under certain assumptions, particularly that flux is purely convective at the boundary of a tissue region, physiological parameters such as mean transit time, effective volume fraction, and volumetric flow rate per unit tissue volume can be deduced from the kernel. PMID:17429633

  8. Enhancement tuning and control for high dynamic range images in multi-scale locally adaptive contrast enhancement algorithms

    NASA Astrophysics Data System (ADS)

    Cvetkovic, Sascha D.; Schirris, Johan; de With, Peter H. N.

    2009-01-01

    For real-time imaging in surveillance applications, visibility of details is of primary importance to ensure customer confidence. If we display High Dynamic-Range (HDR) scenes whose contrast spans four or more orders of magnitude on a conventional monitor without additional processing, results are unacceptable. Compression of the dynamic range is therefore a compulsory part of any high-end video processing chain because standard monitors are inherently Low- Dynamic Range (LDR) devices with maximally two orders of display dynamic range. In real-time camera processing, many complex scenes are improved with local contrast enhancements, bringing details to the best possible visibility. In this paper, we show how a multi-scale high-frequency enhancement scheme, in which gain is a non-linear function of the detail energy, can be used for the dynamic range compression of HDR real-time video camera signals. We also show the connection of our enhancement scheme to the processing way of the Human Visual System (HVS). Our algorithm simultaneously controls perceived sharpness, ringing ("halo") artifacts (contrast) and noise, resulting in a good balance between visibility of details and non-disturbance of artifacts. The overall quality enhancement, suitable for both HDR and LDR scenes, is based on a careful selection of the filter types for the multi-band decomposition and a detailed analysis of the signal per frequency band.

  9. Validation of Blood Volume Fraction Quantification with 3D Gradient Echo Dynamic Contrast-Enhanced Magnetic Resonance Imaging in Porcine Skeletal Muscle.

    PubMed

    Hindel, Stefan; Söhner, Anika; Maaß, Marc; Sauerwein, Wolfgang; Möllmann, Dorothe; Baba, Hideo Andreas; Kramer, Martin; Lüdemann, Lutz

    2017-01-01

    The purpose of this study was to assess the accuracy of fractional blood volume (vb) estimates in low-perfused and low-vascularized tissue using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). The results of different MRI methods were compared with histology to evaluate the accuracy of these methods under clinical conditions. vb was estimated by DCE-MRI using a 3D gradient echo sequence with k-space undersampling in five muscle groups in the hind leg of 9 female pigs. Two gadolinium-based contrast agents (CA) were used: a rapidly extravasating, extracellular, gadolinium-based, low-molecular-weight contrast agent (LMCA, gadoterate meglumine) and an extracellular, gadolinium-based, albumin-binding, slowly extravasating blood pool contrast agent (BPCA, gadofosveset trisodium). LMCA data were evaluated using the extended Tofts model (ETM) and the two-compartment exchange model (2CXM). The images acquired with administration of the BPCA were used to evaluate the accuracy of vb estimation with a bolus deconvolution technique (BD) and a method we call equilibrium MRI (EqMRI). The latter calculates the ratio of the magnitude of the relaxation rate change in the tissue curve at an approximate equilibrium state to the height of the same area of the arterial input function (AIF). Immunohistochemical staining with isolectin was used to label endothelium. A light microscope was used to estimate the fractional vascular area by relating the vascular region to the total tissue region (immunohistochemical vessel staining, IHVS). In addition, the percentage fraction of vascular volume was determined by multiplying the microvascular density (MVD) with the average estimated capillary lumen, [Formula: see text], where d = 8μm is the assumed capillary diameter (microvascular density estimation, MVDE). Except for ETM values, highly significant correlations were found between most of the MRI methods investigated. In the cranial thigh, for example, the vb medians

  10. Validation of Blood Volume Fraction Quantification with 3D Gradient Echo Dynamic Contrast-Enhanced Magnetic Resonance Imaging in Porcine Skeletal Muscle

    PubMed Central

    Söhner, Anika; Maaß, Marc; Sauerwein, Wolfgang; Möllmann, Dorothe; Baba, Hideo Andreas; Kramer, Martin; Lüdemann, Lutz

    2017-01-01

    The purpose of this study was to assess the accuracy of fractional blood volume (vb) estimates in low-perfused and low-vascularized tissue using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). The results of different MRI methods were compared with histology to evaluate the accuracy of these methods under clinical conditions. vb was estimated by DCE-MRI using a 3D gradient echo sequence with k-space undersampling in five muscle groups in the hind leg of 9 female pigs. Two gadolinium-based contrast agents (CA) were used: a rapidly extravasating, extracellular, gadolinium-based, low-molecular-weight contrast agent (LMCA, gadoterate meglumine) and an extracellular, gadolinium-based, albumin-binding, slowly extravasating blood pool contrast agent (BPCA, gadofosveset trisodium). LMCA data were evaluated using the extended Tofts model (ETM) and the two-compartment exchange model (2CXM). The images acquired with administration of the BPCA were used to evaluate the accuracy of vb estimation with a bolus deconvolution technique (BD) and a method we call equilibrium MRI (EqMRI). The latter calculates the ratio of the magnitude of the relaxation rate change in the tissue curve at an approximate equilibrium state to the height of the same area of the arterial input function (AIF). Immunohistochemical staining with isolectin was used to label endothelium. A light microscope was used to estimate the fractional vascular area by relating the vascular region to the total tissue region (immunohistochemical vessel staining, IHVS). In addition, the percentage fraction of vascular volume was determined by multiplying the microvascular density (MVD) with the average estimated capillary lumen, π(d2)2, where d = 8μm is the assumed capillary diameter (microvascular density estimation, MVDE). Except for ETM values, highly significant correlations were found between most of the MRI methods investigated. In the cranial thigh, for example, the vb medians (interquartile range

  11. Comparison of dynamic contrast-enhanced MR, ultrasound and optical imaging modalities to evaluate the antiangiogenic effect of PF-03084014 and sunitinib

    PubMed Central

    Zhang, Cathy C; Yan, Zhengming; Giddabasappa, Anand; Lappin, Patrick B; Painter, Cory L; Zhang, Qin; Li, Gang; Goodman, James; Simmons, Brett; Pascual, Bernadette; Lee, Joseph; Levkoff, Ted; Nichols, Tim; Xie, Zhiyong

    2014-01-01

    Noninvasive imaging has been widely applied for monitoring antiangiogenesis therapy in cancer drug discovery. In this report, we used different imaging modalities including high-frequency ultrasound (HFUS), dynamic contrast enhanced-MR (DCE-MR), and fluorescence molecular tomography (FMT) imaging systems to monitor the changes in the tumor vascular properties after treatment with γ-secretase inhibitor PF-03084014. Sunitinib was tested in parallel for comparison. In the MDA-MB-231Luc model, we demonstrated that antiangiogenesis was one of the contributing mechanisms for the therapeutic effect of PF-03084014. By immunohistochemistry and FITC-lectin perfusion assays, we showed that the vascular defects upon treatment with PF-03084014 were associated with Notch pathway modulation, evidenced by a decrease in the HES1 protein and by the changes in VEGFR2 and HIF1α levels, which indicates down-stream effects. Using a 3D power Doppler scanning method, ultrasound imaging showed that the% vascularity in the MDA-MB-231Luc tumor decreased significantly at 4 and 7 days after the treatment with PF-03084014. A decrease in the tumor vessel function was also observed through contrast-enhanced ultrasound imaging with microbubble injection. These findings were consistent with the PF-03084014-induced functional vessel changes measured by suppressing the Ktrans values using DCE-MRI. In contrast, the FMT imaging with the AngioSence 680EX failed to detect any treatment-associated tumor vascular changes. Sunitinib demonstrated an outcome similar to PF-03084014 in the tested imaging modalities. In summary, ultrasound and DCE-MR imaging successfully provided longitudinal measurement of the phenotypic and functional changes in tumor vasculature after treatment with PF-03084014 and sunitinib. PMID:24573979

  12. Dynamic contrast-enhanced ultrasound of the bowel wall with quantitative assessment of Crohn’s disease activity in childhood

    PubMed Central

    Vidmar, Dubravka; Urlep, Darja; Dezman, Rok

    2016-01-01

    Abstract Background Contrast-enhanced ultrasound (CEUS) has become an established non-invasive, patient-friendly imaging technique which improves the characterization of lesions. In addition, dynamic contrast-enhanced ultrasound (DCE-US) provides valuable information concerning perfusion of examined organs. This review addresses current applications of CEUS in children, focused on DCE-US of the bowel wall in patients with Crohn disease, which enables realtime assessment of the bowel wall vascularity with semi-quantitative and quantitative assessment of disease activity and response to medical treatment. Conclusions Crohn’s disease is a chronic inflammatory relapsing disease. Frequent imaging re-evaluation is necessary. Therefore, imaging should be as little invasive as possible, children friendly with high diagnostic accuracy. US with wide varieties of techniques, including CEUS/DCE-US, can provide an important contribution for diagnosing and monitoring a disease activity. Even if the use of US contrast agent is off-label in children, it is welcome and widely accepted for intravesical use, and a little less for intravenous use, manly in evaluation of parenchymal lesions. To our knowledge this is the first time that the use of DCE-US in the evaluation of activity of small bowel Crohn disease with quantitative assessment of kinetic parameters is being described in children. Even if the results of the value and accuracy of different quantitative kinetic parameters in published studies in adult population often contradict one another there is a great potential of DCE-US to become a part of the entire sonographic evaluation not only in adults, but also in children. Further control studies should be performed. PMID:27904441

  13. Functional imaging of the angiogenic switch in a transgenic mouse model of human breast cancer by dynamic contrast enhanced magnetic resonance imaging.

    PubMed

    Consolino, Lorena; Longo, Dario Livio; Dastrù, Walter; Cutrin, Juan Carlos; Dettori, Daniela; Lanzardo, Stefania; Oliviero, Salvatore; Cavallo, Federica; Aime, Silvio

    2016-07-15

    Tumour progression depends on several sequential events that include the microenvironment remodelling processes and the switch to the angiogenic phenotype, leading to new blood vessels recruitment. Non-invasive imaging techniques allow the monitoring of functional alterations in tumour vascularity and cellularity. The aim of this work was to detect functional changes in vascularisation and cellularity through Dynamic Contrast Enhanced (DCE) and Diffusion Weighted (DW) Magnetic Resonance Imaging (MRI) modalities during breast cancer initiation and progression of a transgenic mouse model (BALB-neuT mice). Histological examination showed that BALB-neuT mammary glands undergo a slow neoplastic progression from simple hyperplasia to invasive carcinoma, still preserving normal parts of mammary glands. DCE-MRI results highlighted marked functional changes in terms of vessel permeability (K(trans) , volume transfer constant) and vascularisation (vp , vascular volume fraction) in BALB-neuT hyperplastic mammary glands if compared to BALB/c ones. When breast tissue progressed from simple to atypical hyperplasia, a strong increase in DCE-MRI biomarkers was observed in BALB-neuT in comparison to BALB/c mice (K(trans)  = 5.3 ± 0.7E-4 and 3.1 ± 0.5E-4; vp  = 7.4 ± 0.8E-2 and 4.7 ± 0.6E-2 for BALB-neuT and BALB/c, respectively) that remained constant during the successive steps of the neoplastic transformation. Consistent with DCE-MRI observations, microvessel counting revealed a significant increase in tumour vessels. Our study showed that DCE-MRI estimates can accurately detect the angiogenic switch at early step of breast cancer carcinogenesis. These results support the view that this imaging approach is an excellent tool to characterize microvasculature changes, despite only small portions of the mammary glands developed neoplastic lesions in a transgenic mouse model.

  14. Computerized Interpretation of Dynamic Breast MRI

    DTIC Science & Technology

    2005-05-01

    malignant and benign lesions. Keywords: Fuzzy c- means , breast cancer, contrast-enhanced MRI, tumor heterogeneity, computer-aided diag- nosis (CAD) 1...applications. tumor response to therapy[3]. Furthermore, breast MRI can In this paper, we present a fast fuzzy c- means (FCM) based be used for quantitative...use of a fuzzy c- means (FCM) algorithm for the assessment of 3-D tumor extent from contrast-enhanced magnetic resonance images (CE-MRI) of the breast

  15. Evaluating dynamic contrast-enhanced and photoacoustic CT to assess intra-tumor heterogeneity in xenograft mouse models

    NASA Astrophysics Data System (ADS)

    Stantz, Keith M.; Liu, Bo; Cao, Minsong; Reinecke, Dan; Dzemidzic, Mario; Liang, Yun; Kruger, Robert

    2006-03-01

    Purpose: To evaluate photoacoustic CT spectroscopy (PCT-S) and dynamic contrast-enhanced CT (DCE-CT) ability to measure parameters - oxygen saturation and vascular physiology - associated with the intra-tumor oxygenation status. Material and Methods: Breast (VEGF165 enhance MCF-7) and ovarian (SKOV3x) cancer cells were implanted into the fat pads and flanks of immune deficient mice and allowed to grow to a diameter of 8-15 mm. CT was used to determine physiological parameters by acquiring a sequence of scans over a 10 minute period after an i.v. injection of a radio-opaque contrast agent (Isovue). These time-dependent contrast-enhanced curves were fit to a two-compartmental model determining tumor perfusion, fractional plasma volume, permeability-surface area produce, and fractional interstitial volume on a voxel-by-voxel basis. After which, the tumors were imaged using photoacoustic CT (Optosonics, Inc., Indianapolis, IN 46202). The near infrared spectra (700-910 nm) within the vasculature was fit to linear combination of measured oxy- and deoxy-hemoglobin blood samples to obtain oxygen saturation levels (SaO II). Results: The PCT-S scanner was first calibrated using different samples of oxygenated blood, from which a statistical error ranging from 2.5-6.5% was measured and a plot of the hemoglobin dissociation curve was consistent with empirical formula. In vivo determination of tumor vasculature SaO II levels were measurably tracked, and spatially correlated to the periphery of the tumor. Tumor depend variations in SaO II - 0.32 (ovarian) and 0.60 (breast) - and in vascular physiology - perfusion, 1.03 and 0.063 mL/min/mL, and fractional plasma volume, 0.20 and 0.07 - were observed. Conclusion: Combined, PCT-S and CED-CT has the potential to measure intra-tumor levels of tumor oxygen saturation and vascular physiology, key parameters associated with hypoxia.

  16. Multi-planar dynamic contrast-enhanced ultrasound assessment of blood flow in a rabbit model of testicular torsion.

    PubMed

    Paltiel, Harriet J; Estrada, Carlos R; Alomari, Ahmad I; Stamoulis, Catherine; Passerotti, Carlo C; Meral, F Can; Lee, Richard S; Clement, Gregory T

    2014-02-01

    To assess correlation between multi-planar, dynamic contrast-enhanced ultrasound (US) blood flow measurements and radiolabeled microsphere blood flow measurements, five groups of six rabbits underwent unilateral testicular torsion of 0°, 180°, 360°, 540° or 720°. Five US measurements per testis (three transverse/two longitudinal) were obtained pre-operatively and immediately and 4 and 8 h post-operatively using linear transducers (7-4 MHz/center frequency 4.5 MHz/10 rabbits; 9-3 MHz/center frequency 5.5 MHz/20 rabbits). Björck's linear least-squares method fit the rise phase of mean pixel intensity over a 7-s period for each time curve. Slope of fit and intervention/control US pixel intensity ratios were calculated. Means of transverse, longitudinal and combined transverse/longitudinal US ratios as a function of torsion degree were compared with radiolabeled microsphere ratios using Pearson's correlation coefficient, ρ. There was high correlation between the two sets of ratios (ρ ≥ 0.88, p ≤ 0.05), except for the transverse US ratio in the immediate post-operative period (ρ = 0.79, p = 0.11). These results hold promise for future clinical applications.

  17. Multiplanar Dynamic Contrast-enhanced US Assessment of Blood Flow in a Rabbit Model of Testicular Torsion

    PubMed Central

    Paltiel, Harriet J.; Estrada, Carlos R.; Alomari, Ahmad I.; Stamoulis, Catherine; Passerotti, Carlo C.; Meral, F. Can; Lee, Richard S.; Clement, Gregory T.

    2013-01-01

    To assess correlation between multiplanar, dynamic contrast-enhanced US blood flow measurements and radiolabeled microsphere blood flow measurements, five groups of 6 rabbits underwent unilateral testicular torsion of 0, 180, 360, 540, or 720 degrees. Five US measurements per testis (3 transverse/2 longitudinal) were obtained preoperatively, immediately postoperatively, at 4 and 8 hours using linear transducers (7–4-MHz/center frequency 4.5 MHz/10 rabbits; 9–3-MHz/center frequency 5.5 MHz/20 rabbits). Björck’s linear least squares method fit the rise phase of mean pixel intensity over a 7-second period for each time curve. Slope of fit and intervention/control US pixel intensity ratios were calculated. Means of transverse, longitudinal, and combined transverse/longitudinal US ratios as a function of torsion degree were compared to radiolabeled microsphere ratios using Pearson’s correlation coefficient, ρ. There was high correlation between the two sets of ratios (ρ ≥ 0.88, p≤ 0.05) except for the transverse US ratio in the immediate postoperative period (ρ = 0.79, p = 0.11). These results hold promise for future clinical applications. PMID:24188690

  18. Automatic classification of lung tumour heterogeneity according to a visual-based score system in dynamic contrast enhanced CT sequences

    NASA Astrophysics Data System (ADS)

    Bevilacqua, Alessandro; Baiocco, Serena

    2016-03-01

    Computed tomography (CT) technologies have been considered for a long time as one of the most effective medical imaging tools for morphological analysis of body parts. Contrast Enhanced CT (CE-CT) also allows emphasising details of tissue structures whose heterogeneity, inspected through visual analysis, conveys crucial information regarding diagnosis and prognosis in several clinical pathologies. Recently, Dynamic CE-CT (DCE-CT) has emerged as a promising technique to perform also functional hemodynamic studies, with wide applications in the oncologic field. DCE-CT is based on repeated scans over time performed after intravenous administration of contrast agent, in order to study the temporal evolution of the tracer in 3D tumour tissue. DCE-CT pushes towards an intensive use of computers to provide automatically quantitative information to be used directly in clinical practice. This requires that visual analysis, representing the gold-standard for CT image interpretation, gains objectivity. This work presents the first automatic approach to quantify and classify the lung tumour heterogeneities based on DCE-CT image sequences, so as it is performed through visual analysis by experts. The approach developed relies on the spatio-temporal indices we devised, which also allow exploiting temporal data that enrich the knowledge of the tissue heterogeneity by providing information regarding the lesion status.

  19. Quantitative Assessment of Tumor Responses after Radiation Therapy in a DLD-1 Colon Cancer Mouse Model Using Serial Dynamic Contrast-Enhanced Magnetic Resonance Imaging

    PubMed Central

    Ahn, Sung Jun; Koom, Woong Sub; An, Chan Sik; Lim, Joon Seok; Lee, Seung-Koo; Suh, Jin-Suck

    2012-01-01

    Purpose The purpose of this study was to investigate the predictability of pretreatment values including Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) derived parameters (Ktrans, Kep and Ve), early changes in parameters (Ktrans, tumor volume), and heterogeneity (standard deviation of Ktrans) for radiation therapy responses via a human colorectal cancer xenograft model. Materials and Methods A human colorectal cancer xenograft model with DLD-1 cancer cells was produced in the right hind limbs of five mice. Tumors were irradiated with 3 fractions of 3 Gy each for 3 weeks. Baseline and follow up DCE-MRI were performed. Quantitative parameters (Ktrans, Kep and Ve) were calculated based on the Tofts model. Early changes in Ktrans, standard deviation (SD) of Ktrans, and tumor volume were also calculated. Tumor responses were evaluated based on histology. With a cut-off value of 0.4 for necrotic factor, a comparison between good and poor responses was conducted. Results The good response group (mice #1 and 2) exhibited higher pretreatment Ktrans than the poor response group (mice #3, 4, and 5). The good response group tended to show lower pretreatment Kep, higher pretreatment Ve, and larger baseline tumor volume than the poor response group. All the mice in the good response group demonstrated marked reductions in Ktrans and SD value after the first radiation. All tumors showed increased volume after the first radiation therapy. Conclusion The good response after radiation therapy group in the DLD-1 colon cancer xenograft nude mouse model exhibited a higher pretreatment Ktrans and showed an early reduction in Ktrans, demonstrating a more homogenous distribution. PMID:23074115

  20. Contrast-enhanced dynamic MR nephrography using the TurboFLASH navigator-gating technique in children.

    PubMed

    Boss, Andreas; Schaefer, Juergen F; Martirosian, Petros; Hacker, Hans-Walter; Darge, Kassa; Claussen, Claus D; Küper, Klaus; Schick, Fritz; Schlemmer, Heinz-Peter

    2006-07-01

    The purpose of this work was to test the feasibility of an MR examination protocol for the comprehensive assessment of renal morphology, excretion and split renal function using a navigator-gated TurboFLASH sequence. A navigator-gated T1-weighted single-slice TurboFLASH sequence suitable for dynamic MR urography and nephrography was implemented. A protocol was developed allowing for assessment of urinary excretion and split renal function by recording the renal clearance of a gadolinium (Gd) diethylene-triamine-pentacetic-acid (DTPA) bolus. Ten patients aged between 14 months and 14 years (mean age 4.8+/-4.6 years) were evaluated with the following indications: pelvicalyceal dilatation (n=4), follow-up after pyeloplasty (n=1), duplex systems (n=3), large renal cyst (n=1), and renal insufficiency (n=1). Dynamic MR urography and MR split renal function were compared to MAG3 scintigraphy. Evaluation of morphology, excretion and function required 50-60 minutes examination time, plus 10 minutes for post-processing. The TurboFLASH sequence yielded image acquisition at nearly identical diaphragm positions allowing for accurate region-of-interest evaluation within the renal parenchyma and the urinary passage. Static and dynamic MR urography showed the morphology of the urinary tract and excretion with sufficient diagnostic imaging quality, and the results were in diagnostic compliance with scintigraphy. MRI and scintigraphy yielded similar results for split renal function with a correlation coefficient of R=0.968 determined by linear regression. Our conclusions were that the method is robust, easy to perform on a clinical 1.5 T MRI system, rapid to evaluate and post-process and, therefore, easy to incorporate into clinical routine. Compared to scintigraphy, the higher spatial resolution of the MR examination provides additional important information improving the management of the pediatric patients without the application of radioactive tracers.

  1. Improved accuracy of quantitative parameter estimates in dynamic contrast-enhanced CT study with low temporal resolution

    SciTech Connect

    Kim, Sun Mo; Jaffray, David A.

    2016-01-15

    Purpose: A previously proposed method to reduce radiation dose to patient in dynamic contrast-enhanced (DCE) CT is enhanced by principal component analysis (PCA) filtering which improves the signal-to-noise ratio (SNR) of time-concentration curves in the DCE-CT study. The efficacy of the combined method to maintain the accuracy of kinetic parameter estimates at low temporal resolution is investigated with pixel-by-pixel kinetic analysis of DCE-CT data. Methods: The method is based on DCE-CT scanning performed with low temporal resolution to reduce the radiation dose to the patient. The arterial input function (AIF) with high temporal resolution can be generated with a coarsely sampled AIF through a previously published method of AIF estimation. To increase the SNR of time-concentration curves (tissue curves), first, a region-of-interest is segmented into squares composed of 3 × 3 pixels in size. Subsequently, the PCA filtering combined with a fraction of residual information criterion is applied to all the segmented squares for further improvement of their SNRs. The proposed method was applied to each DCE-CT data set of a cohort of 14 patients at varying levels of down-sampling. The kinetic analyses using the modified Tofts’ model and singular value decomposition method, then, were carried out for each of the down-sampling schemes between the intervals from 2 to 15 s. The results were compared with analyses done with the measured data in high temporal resolution (i.e., original scanning frequency) as the reference. Results: The patients’ AIFs were estimated to high accuracy based on the 11 orthonormal bases of arterial impulse responses established in the previous paper. In addition, noise in the images was effectively reduced by using five principal components of the tissue curves for filtering. Kinetic analyses using the proposed method showed superior results compared to those with down-sampling alone; they were able to maintain the accuracy in the

  2. Improvements in Diagnostic Accuracy with Quantitative Dynamic Contrast-Enhanced MRI

    DTIC Science & Technology

    2011-12-01

    Cancer   0.59   DCIS   0.47   Invasive  Ductal  Carcinoma  (IDC)   0.45   Benign  enhancing  focus   0.41   Fibroadenoma ...0.39   Atypical  Ductal  Hyperplasia  (ADH)   biopsy  site  enhancement   0.32   Fibroadenoma   0.30

  3. Dynamic contrast-enhanced x-ray CT measurement of cerebral blood volume in a rabbit tumor model

    NASA Astrophysics Data System (ADS)

    Cenic, Aleksa; Lee, Ting-Yim; Craen, Rosemary A.; Gelb, Adrian W.

    1998-07-01

    Cerebral blood volume (CBV) is a major determinant of intracranial pressure (ICP). Hyperventilation is commonly employed to reduce raised ICP (e.g. in brain tumour patients) presumably through its effect on CBV. With the advent of slip- ring CT scanners, dynamic contrast-enhanced imaging allows for the measurement of CBV with high spatial resolution. Using a two-compartment model to characterize the distribution of X- ray contrast agent in the brain, we have developed a non- equilibrium CT method to measure CBV in normal and pathological regions. We used our method to investigate the effect of hyperventilation on CBV during propofol anaesthesia in rabbits with implanted brain tumours. Eight New Zealand White rabbits with implanted VX2 carcinoma brain tumours were studied. For each rabbit, regional CBV measurements were initially made at normocapnia (PaCO2 40 mmHg) and then at hyperventilation (PaCO2 25 mmHg) during propofol anaesthesia. The head was positioned such that a coronal image through the brain incorporated a significant cross-section of the brain tumour as well as a radial artery in a forelimb. Images at the rate of 1 per second were acquired for 2 minutes as Omnipaque 300 (1.5 ml/kg rabbit weight) was injected via a peripheral vein. In these CT images, regions of interest in the brain tissue (e.g. tumour, contra-lateral normal, and peri-tumoural) and the radial artery were drawn. For each region, the mean CT number in pre-contrast images was subtracted from the mean CT number in post-contrast images to produce either the tissue contrast concentration curve, or the arterial contrast concentration curve. Using our non- equilibrium analysis method based on a two-compartment model, regional CBV values were determined from the measured contrast concentration curves. From our study, the mean CBV values [+/- SD] in the tumour, peri-tumoural, and contra-lateral normal regions during normocapnia were: 5.47 plus or minus 1.97, 3.28 plus or minus 1.01, and 1

  4. Perfusion Estimated With Rapid Dynamic Contrast-Enhanced Magnetic Resonance Imaging Correlates Inversely With Vascular Endothelial Growth Factor Expression and Pimonidazole Staining in Head-and-Neck Cancer: A Pilot Study

    SciTech Connect

    Donaldson, Stephanie B.; Betts, Guy; Bonington, Suzanne C.; Homer, Jarrod J.; Slevin, Nick J.; Kershaw, Lucy E.; Valentine, Helen; West, Catharine M.L.; Buckley, David L.

    2011-11-15

    Purpose: To analyze, in a pilot study, rapidly acquired dynamic contrast-enhanced (DCE)-MRI data with a general two-compartment exchange tracer kinetic model and correlate parameters obtained with measurements of hypoxia and vascular endothelial growth factor (VEGF) expression in patients with squamous cell carcinoma of the head and neck. Methods and Materials: Eight patients were scanned before surgery. The DCE-MRI data were acquired with 1.5-s temporal resolution and analyzed using the two-compartment exchange tracer kinetic model to obtain estimates of parameters including perfusion and permeability surface area. Twelve to 16 h before surgery, patients received an intravenous injection of pimonidazole. Samples taken during surgery were used to determine the level of pimonidazole staining using immunohistochemistry and VEGF expression using quantitative real-time polymerase chain reaction. Correlations between the biological and imaging data were examined. Results: Of the seven tumors fully analyzed, those that were poorly perfused tended to have high levels of pimonidazole staining (r = -0.79, p = 0.03) and VEGF expression (r = -0.82, p = 0.02). Tumors with low permeability surface area also tended to have high levels of hypoxia (r = -0.75, p = 0.05). Hypoxic tumors also expressed higher levels of VEGF (r = 0.82, p = 0.02). Conclusions: Estimates of perfusion obtained with rapid DCE-MRI data in patients with head-and-neck cancer correlate inversely with pimonidazole staining and VEGF expression.

  5. Evaluation of the characteristics of hepatic focal nodular hyperplasia: correlation between dynamic contrast-enhanced multislice computed tomography and pathological findings

    PubMed Central

    Zhang, Hai-Tao; Gao, Xin-Yi; Xu, Qin-Sha; Chen, Yu-Tang; Song, Yu-Piao; Yao, Zhen-Wei

    2016-01-01

    Objective To evaluate the characteristics of enhancement of focal nodular hyperplasia (FNH) of the liver by analyzing the dynamic contrast-enhanced multislice computed tomography (MSCT) features and correlating them with pathological findings. Patients and methods Nine males and 16 females with pathologically confirmed FNH and complete preoperative contrast-enhanced MSCT data were recruited for this study. The imaging features of FNH on the pre- and postcontrast MSCT were analyzed by two experienced radiologists by consensus. Results Pathology showed central scars and abnormal blood vessels in 17 and 21 of 25 lesions, respectively, while MSCT with multiphase enhancement showed central scars in eight of the 17 lesions (47.1%) and abnormal arteries or draining veins in 13 of the 21 lesions (61.9%). Furthermore, abnormal draining veins in five lesions were found to be diagnostic, which is another important finding. Conclusion Multiphase scanning can provide the panorama of FNH lesions and reveal their enhancement patterns and pathological characteristics. Abnormal blood vessels within or around the lesion are demonstrated more often than central scar, and both should be observed for FNH diagnosis. PMID:27578988

  6. Repeat Targeted Prostate Biopsy under Guidance of Multiparametric MRI-Correlated Real-Time Contrast-Enhanced Ultrasound for Patients with Previous Negative Biopsy and Elevated Prostate-Specific Antigen: A Prospective Study

    PubMed Central

    Jang, Dong Ryul; Jung, Dae Chul; Oh, Young Taik; Noh, Songmi; Han, Kyunghwa; Kim, Kiwook; Rha, Koon-Ho; Choi, Young Deuk; Hong, Sung Joon

    2015-01-01

    Objectives To prospectively determine whether multi-parametric MRI (mpMRI) - contrast-enhanced ultrasound (CEUS) correlated, imaging-guided target biopsy (TB) method could improve the detection of prostate cancer in re-biopsy setting of patients with prior negative biopsy. Methods From 2012 to 2014, a total of 42 Korean men with a negative result from previous systematic biopsy (SB) and elevated prostate-specific antigen underwent 3T mpMRI and real-time CEUS guided TB. Target lesions were determined by fusion of mpMRI and CEUS. Subsequently, 12-core SB was performed by a different radiologist. We compared core-based cancer detection rates (CaDR) using the generalized linear mixed model (GLIMMIX) for each biopsy method. Results Core-based CaDR was higher in TB (17.92%, 38 of 212 cores) than in SB (6.15%, 31 of 504 cores) (p < 0.0001; GLIMMIX). In the cancer-positive TB cores, CaDR with suspicious lesions by mpMRI was higher than that by CEUS (86.8% vs. 60.5%, p= 0.02; paired t-test) and concordant rate between mpMRI and CEUS was significantly different with discordant rate (48% vs. 52%, p=0.04; McNemar’s test). Conclusion The mpMRI-CEUS correlated TB technique for the repeat prostate biopsy of patients with prior negative biopsy can improve CaDR based on the number of cores taken. PMID:26083348

  7. Power Doppler ultrasonography of painful Achilles tendons and entheses in patients with and without spondyloarthropathy: a comparison with clinical examination and contrast-enhanced MRI.

    PubMed

    Wiell, Charlotte; Szkudlarek, Marcin; Hasselquist, Maria; Møller, Jakob M; Nørregaard, Jesper; Terslev, Lene; Ostergaard, Mikkel

    2013-03-01

    The objective of this study was to describe ultrasonography (US) and magnetic resonance imaging (MRI) findings at painful Achilles tendons and entheses in patients with and without spondyloarthropathy (SpA and non-SpA) and healthy control persons (CTRLs). Particularly, we aimed to investigate if any changes differentiate SpA from non-SpA. Finally, we investigated the reliability of US compared to clinical examination of Achilles tendinopathy, using MRI as gold standard reference. Twelve SpA patients and 15 non-SpA patients with pain and tenderness at at least one Achilles tendon and/or enthesis due to sports-related causes and 10 CTRLs were examined at the Achilles tendons and entheses with US, MRI and clinical assessment. Intratendinous changes, entheseal changes, bursitis and peritendonitis were assessed. An US interobserver substudy was performed in nine persons. US findings showed high agreement between observers (median 89 %, κ = 0.64) and with MRI (median 89 %, κ = 0.74). All inflammatory intratendinous changes were less frequent in SpA than non-SpA patients (p < 0.05). Entheseal changes and bursitis were found equally frequent in both patient groups except for enthesophytes, which were most common in the SpA group (p < 0.01). No findings were exclusively found in SpA. When MRI was considered gold standard, US showed higher sensitivity for intratendinous and entheseal changes than clinical examination (median sensitivity 0.83 versus 0.66). Especially, entheseal changes had higher sensitivity than clinical examination without loss of specificity. In conclusion, US performed by a trained operator can be a useful adjunct to clinical examination for improved assessment of Achilles tendons and entheses.

  8. Theoretical considerations in measurement of time discrepancies between input and myocardial time-signal intensity curves in estimates of regional myocardial perfusion with first-pass contrast-enhanced MRI.

    PubMed

    Natsume, Takahiro; Ishida, Masaki; Kitagawa, Kakuya; Nagata, Motonori; Sakuma, Hajime; Ichihara, Takashi

    2015-11-01

    The purpose of this study was to develop a method to determine time discrepancies between input and myocardial time-signal intensity (TSI) curves for accurate estimation of myocardial perfusion with first-pass contrast-enhanced MRI. Estimation of myocardial perfusion with contrast-enhanced MRI using kinetic models requires faithful recording of contrast content in the blood and myocardium. Typically, the arterial input function (AIF) is obtained by setting a region of interest in the left ventricular cavity. However, there is a small delay between the AIF and the myocardial curves, and such time discrepancies can lead to errors in flow estimation using Patlak plot analysis. In this study, the time discrepancies between the arterial TSI curve and the myocardial tissue TSI curve were estimated based on the compartment model. In the early phase after the arrival of the contrast agent in the myocardium, the relationship between rate constant K1 and the concentrations of Gd-DTPA contrast agent in the myocardium and arterial blood (LV blood) can be described by the equation K1={dCmyo(tpeak)/dt}/Ca(tpeak), where Cmyo(t) and Ca(t) are the relative concentrations of Gd-DTPA contrast agent in the myocardium and in the LV blood, respectively, and tpeak is the time corresponding to the peak of Ca(t). In the ideal case, the time corresponding to the maximum upslope of Cmyo(t), tmax, is equal to tpeak. In practice, however, there is a small difference in the arrival times of the contrast agent into the LV and into the myocardium. This difference was estimated to correspond to the difference between tpeak and tmax. The magnitudes of such time discrepancies and the effectiveness of the correction for these time discrepancies were measured in 18 subjects who underwent myocardial perfusion MRI under rest and stress conditions. The effects of the time discrepancies could be corrected effectively in the myocardial perfusion estimates.

  9. Motion compensation method using dynamic programming for quantification of neovascularization in carotid atherosclerotic plaques with contrast enhanced ultrasound (CEUS)

    NASA Astrophysics Data System (ADS)

    Akkus, Zeynettin; Hoogi, Assaf; Renaud, Guillaume; ten Kate, Gerrit L.; van den Oord, Stijn C. H.; Schinkel, Arend F. L.; de Jong, Nico; van der Steen, Antonius F. W.; Bosch, Johan G.

    2012-03-01

    Intraplaque neovascularization (IPN) has been linked with progressive atherosclerotic disease and plaque instability in several studies. Quantification of IPN may allow early detection of vulnerable plaques. A dedicated motion compensation method with normalized-cross-correlation (NCC) block matching combined with multidimensional (2D+time) dynamic programming (MDP) was developed for quantification of IPN in small plaques (<30% diameter stenosis). The method was compared to NCC block matching without MDP (forward tracking (FT)) and showed to improve motion tracking. Side-by-side CEUS and B-mode ultrasound images of carotid arteries were acquired by a Philips iU22 system with a L9-3 linear array probe. The motion pattern for the plaque region was obtained from the Bmode images with MDP. MDP results were evaluated in-vitro by a phantom and in-vivo by comparing to manual tracking of three experts for multibeat-image-sequences (MIS) of 11 plaques. In the in-vivo images, the absolute error was 72+/-55μm (mean+/-SD) for X (longitudinal) and 34+/-23μm for Y (radial). The method's success rate was visually assessed on 67 MIS. The tracking was considered failed if it deviated >2 pixels (~200μm) from true motion in any frame. Tracking was scored as fully successful in 63 MIS (94%) for MDP vs. 52(78%) for FT. The range of displacement over these 63 was 1045+/-471μm (X) and 395+/-216μm (Y). The tracking sporadically failed in 4 MIS (6%) due to poor image quality, jugular vein proximity and out-of-plane motion. Motion compensation showed improved lumen-plaque contrast separation. In conclusion, the proposed method is sufficiently accurate and successful for in vivo application.

  10. What Effects Does Necrotic Area of Contrast-Enhanced MRI in Osteoporotic Vertebral Fracture Have on Further Compression and Clinical Outcome?

    PubMed Central

    Lee, Ja Myoung; Lee, Young Seok; Kim, Young Baeg; Park, Seung Won; Kang, Dong Ho; Lee, Shin Heon

    2017-01-01

    Objective The objective of this study was to analyze the correlation between further compression and necrotic area in osteoporotic vertebral fracture (OVF) patients with contrast-enhanced magnetic resonance imaging (CEMRI). In addition, we investigated the radiological and clinical outcome according to the range of the necrotic area. Methods Between 2012 and 2014, the study subjects were 82 OVF patients who did not undergo vertebroplasty or surgical treatment. The fracture areas examined on CEMRI at admission were defined as edematous if enhancement was seen and as necrotic if no enhancement was seen. The correlation between further compression and the necrotic and edematous areas of CEMRI, age, and bone mineral density was examined. Also, necrotic areas were classified into those with less than 25% (non-necrosis group) and those with more than 25% (necrosis group) according to the percentages of the entire vertebral body. For both groups, further compression and the changes in wedge and kyphotic angles were examined at admission and at 1 week, 3 months, and 6 months after admission, while the clinical outcomes were compared using the visual analog scale (VAS) and Eastern Cooperative Oncology Group (ECOG) performance status grade. Results Further compression was 14.78±11.11% at 1 month and 21.75±14.43% at 6 months. There was a very strong correlation between the necrotic lesion of CEMRI and further compression (r=0.690, p<0.001). The compression of the necrosis group was 33.52±12.96%, which was higher than that of the non-necrosis group, 14.96±10.34% (p<0.005). Also, there was a statistically significantly higher number of intervertebral cleft development and surgical treatments being performed in the necrosis group than in the non-necrosis group (p<0.005). Moreover, there was a statistical difference in the decrease in the height of the vertebral body, and an increase was observed in the kyphotic change of wedge angle progression. There was also a difference

  11. Automatic segmentation of blood vessels from dynamic MRI datasets.

    PubMed

    Kubassova, Olga

    2007-01-01

    In this paper we present an approach for blood vessel segmentation from dynamic contrast-enhanced MRI datasets of the hand joints acquired from patients with active rheumatoid arthritis. Exclusion of the blood vessels is needed for accurate visualisation of the activation events and objective evaluation of the degree of inflammation. The segmentation technique is based on statistical modelling motivated by the physiological properties of the individual tissues, such as speed of uptake and concentration of the contrast agent; it incorporates Markov random field probabilistic framework and principal component analysis. The algorithm was tested on 60 temporal slices and has shown promising results.

  12. Correlation of p63 immunohistochemistry with histology and contrast enhanced MRI in characteristic lesions induced by minimally invasive thermal treatments in a dog prostate

    NASA Astrophysics Data System (ADS)

    Pascal, A.; Butts-Pauly, K.; Plata, J.; Sommer, G.; Daniel, B.; Bouley, D. M.

    2017-03-01

    Thermal ablation techniques are important tools to treat low grade tumors in the prostate gland. The use of Magnetic Resonance Imaging (MRI) has been an excellent tool to visualize and assess the thermally ablated areas in real time. In this study slides from dog prostates previously treated with cryoablation or High Intensity Focal Ultrasound (HIFU) were immunohistochemically stained with the biomarker p63, in order to determine if this marker would be helpful for differentiatiating between viable, sub lethally damaged and normal glands. Digitized slides were analyzed using Sedeen Viewer software, and compared with corresponding representative H&E slides and MR images. p63 staining in the cryoablated acute duration prostates was negative in the coagulation necrosis zone (region of interest subjected to the coldest temperatures). In acute duration HIFU treated prostates, the central heat-fixed zone (region of interest subjected to the hottest temperatures) still displayed + p63 staining. Cryoablated or HIFU subacute duration treated prostates were very hemorrhagic, but presented the same stain pattern in the treated areas as the acute duration prostates, and in chronic duration prostates, whether treated with cryo or HIFU, glands displayed robust p63 staining most prevalent in the outer edges of the lesion where there was extensive glandular regeneration. In conclusion, this study demonstrates the value of p63 IHC and its usefulness in detecting viable prostate basal cells in normal dog prostates following either cryoablation of HIFU. Our results suggest that the portions of the lesion with complete loss of p63 staining correspond well to the non-enhancing region in cryoablated prostates, as viewed with MRI. However, p63 staining in the heat-fixed zone in acute harvested HIFU treated prostates remains positive, suggesting either inadequate heat to destroy basal cells, or heat-fixation of the p63 antigen and false positive staining. Therefore p63 staining does not

  13. Informatics in Radiology (infoRAD): Magnetic Resonance Imaging Workbench: analysis and visualization of dynamic contrast-enhanced MR imaging data.

    PubMed

    d'Arcy, James A; Collins, David J; Padhani, Anwar R; Walker-Samuel, Simon; Suckling, John; Leach, Martin O

    2006-01-01

    Magnetic Resonance Imaging Workbench (MRIW) allows analysis of T1- and T2*-weighted dynamic contrast-enhanced magnetic resonance imaging data sets to extract tissue permeability and perfusion characteristics by using standard pharmacokinetic models. Parametric maps are calculated from individual pixel enhancement curves in regions of interest (ROIs) and displayed as color overlays on the anatomic images. User-defined ROIs can be saved to ensure consistency of later reanalysis. Individual parametric maps are visualized together with user-selected parameter time-series plots. The following selections are available: overall ROI enhancement curve and fit, histogram, and individual pixel enhancement curve and fit. Summary data (transfer constant, leakage space, rate constant, integrated area under the gadolinium curve after 60 seconds, relative blood volume, relative blood flow, and mean transit time) may be exported to permanent storage along with per-pixel results for statistical analysis. Numerical values for parameters are displayed below the plot for easy reference. The dynamic range of plots and parametric map overlays is interactively adjustable. Viewing individual enhancement curves and parametric maps allows radiologists to investigate the heterogeneity of contrast agent kinetics for lesion characterization and to scrutinize serial changes in response to therapy. MRIW is written in IDL, enabling it to be used on a variety of computer systems.

  14. Fuzzy-Contextual Contrast Enhancement.

    PubMed

    Parihar, Anil; Verma, Om; Khanna, Chintan

    2017-02-08

    This paper presents contrast enhancement algorithms based on fuzzy contextual information of the images. We introduce fuzzy similarity index and fuzzy contrast factor to capture the neighborhood characteristics of a pixel. A new histogram, using fuzzy contrast factor of each pixel is developed, and termed as the fuzzy dissimilarity histogram (FDH). A cumulative distribution function (CDF) is formed with normalized values of FDH and used as a transfer function to obtain the contrast enhanced image. The algorithm gives good contrast enhancement and preserves the natural characteristic of the image. In order to develop a contextual intensity transfer function, we introduce a fuzzy membership function based on fuzzy similarity index and coefficient of variation of the image. The contextual intensity transfer function is designed using the fuzzy membership function to achieve final contrast enhanced image. The overall algorithm is referred as the fuzzy contextual contrast-enhancement (FCCE) algorithm. The proposed algorithms are compared with conventional and state-of-art contrast enhancement algorithms. The quantitative and visual assessment of the results is performed. The results of quantitative measures are statistically analyzed using t-test. The exhaustive experimentation and analysis show the proposed algorithm efficiently enhances contrast and yields in natural visual quality images.

  15. Feasibility of Single-Input Tracer Kinetic Modeling with Continuous-Time Formalism in Liver 4-Phase Dynamic Contrast-Enhanced CT.

    PubMed

    Lee, Sang Ho; Ryu, Yasuji; Hayano, Koichi; Yoshida, Hiroyuki

    2014-09-01

    The modeling of tracer kinetics with use of low-temporal-resolution data is of central importance for patient dose reduction in dynamic contrast-enhanced CT (DCE-CT) study. Tracer kinetic models of the liver vary according to the physiologic assumptions imposed on the model, and they can substantially differ in the ways how the input for blood supply and tissue compartments are modeled. In this study, single-input flow-limited (FL), Tofts-Kety (TK), extended TK (ETK), Hayton-Brady (HB), two compartment exchange (2CX), and adiabatic approximation to the tissue homogeneity (AATH) models were applied to the analysis of liver 4-phase DCE-CT data with fully continuous-time parameter formulation, including the bolus arrival time. The bolus arrival time for the 2CX and AATH models was described by modifying the vascular transport operator theory. Initial results indicate that single-input tracer kinetic modeling is feasible for distinguishing between hepatocellular carcinoma and normal liver parenchyma.

  16. Accuracy and cost-effectiveness of dynamic contrast-enhanced CT in the characterisation of solitary pulmonary nodules—the SPUtNIk study

    PubMed Central

    Qureshi, N R; Rintoul, R C; Miles, K A; George, S; Harris, S; Madden, J; Cozens, K; Little, L A; Eichhorst, K; Jones, J; Moate, P; McClement, C; Pike, L; Sinclair, D; Wong, W L; Shekhdar, J; Eaton, R; Shah, A; Brindle, L; Peebles, C; Banerjee, A; Dizdarevic, S; Han, S; Poon, F W; Groves, A M; Kurban, L; Frew, A J; Callister, M E; Crosbie, P; Gleeson, F V; Karunasaagarar, K; Kankam, O; Gilbert, F J

    2016-01-01

    Introduction Solitary pulmonary nodules (SPNs) are common on CT. The most cost-effective investigation algorithm is still to be determined. Dynamic contrast-enhanced CT (DCE-CT) is an established diagnostic test not widely available in the UK currently. Methods and analysis The SPUtNIk study will assess the diagnostic accuracy, clinical utility and cost-effectiveness of DCE-CT, alongside the current CT and 18-flurodeoxyglucose-positron emission tomography) (18FDG-PET)-CT nodule characterisation strategies in the National Health Service (NHS). Image acquisition and data analysis for 18FDG-PET-CT and DCE-CT will follow a standardised protocol with central review of 10% to ensure quality assurance. Decision analytic modelling will assess the likely costs and health outcomes resulting from incorporation of DCE-CT into management strategies for patients with SPNs. Ethics and dissemination Approval has been granted by the South West Research Ethics Committee. Ethics reference number 12/SW/0206. The results of the trial will be presented at national and international meetings and published in an Health Technology Assessment (HTA) Monograph and in peer-reviewed journals. Trial registration number ISRCTN30784948; Pre-results. PMID:27843550

  17. Usefulness of dynamic contrast-enhanced magnetic resonance imaging for predicting treatment response to vinorelbine-cisplatin with or without recombinant human endostatin in bone metastasis of non-small cell lung cancer

    PubMed Central

    Zhang, Rui; Wang, Zhi-Yu; Li, Yue-Hua; Lu, Yao-Hong; Wang, Shuai; Yu, Wen-Xi; Zhao, Hui

    2016-01-01

    Metastatic bone disease is a frequent complication of advanced non-small cell lung cancer (NSCLC) and causes skeletal-related events, which result in a poor prognosis. Currently, no standard method has been developed to precisely assess the therapeutic response of bone metastases (BM) and the early efficacy of anti-angiogenic therapy, which does not conform to the concept of precision medicine. This study aimed to investigate the usefulness of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) for precise evaluation of the response to chemotherapy with anti-angiogenic agents in NSCLC patients with BM. Patients were randomly assigned to a treatment group (vinorelbine + cisplatin [NP] + recombinant human endostatin [rh-endostatin]) or a control group (NP + placebo). All patients were evaluated before treatment and after 2 cycles of treatment using DCE-MRI quantitative analysis technology for BM lesions and chest computed tomography (CT). Correlations between changes in the DCE-MRI quantitative parameters and treatment effect were analyzed. We enrolled 33 patients, of whom 28 were evaluable (20 in the treatment group and 8 in the control group). The results suggested a higher objective response rate (30% vs. 0%), better overall survival (21.44 ± 17.28 months vs. 7.71 ± 4.68 months), and a greater decrease in the transport constant (Ktrans) value (60% vs. 4.4%) in the treatment group than in the control group (P < 0.05). The Ktrans values in the “partial remission plus stable disease (PR + SD)” group were significantly lower after treatment (P < 0.05). Patients with a decrease of > 50% in the Ktrans value showed a significantly better overall survival than those with a decrease of ≤ 50% (13.2 vs. 9.8 months, P < 0.05). Ktrans as a DEC-MRI quantitative parameter could be used for the precise evaluation of BM lesions after anti-angiogenic therapy and as a predictor of survival. In addition, we reconfirmed the anti-angiogenic effect of rh-endostatin in

  18. Kinematic modeling and its implication in longitudinal chemotherapy study of tumor physiology: ovarian xenograft mouse model and contrast-enhanced dynamic CT (Honorable Mention Poster Award)

    NASA Astrophysics Data System (ADS)

    Stantz, Keith M.; Liang, Yun; Hutchins, Gary D.

    2004-04-01

    The purpose of this study is to demonstrate that dynamic CT provides the necessary sensitivity to quantify tumor physiology and differences in chemotherapeutic response. A compartmental mouse model utilizing measured contrast-enhanced dynamic CT scans is used to simulate systematic and statistical errors associated with tumor physiology: perfusion, permeability (PS), fractional plasma volume (fp), and fractional interstitial volume. The solute utilized is a small molecular weight radio-opaque contrast agent (isovue). For such an intravascular-interstitial medium, the kinematics simplifies to a two compartmental diffusive dominated set of coupled differential equations. Each combination of physiological parameters is repeatedly simulated fifteen times from which statistical errors calculated. The fractional change relative to the true value (systematic error) and standard deviation (statistical error) are plotted as a function of PS, fp, scanner temporal resolution and noise, and contrast media injection rates. By extrapolating from experimental data found in literature, a relative change in PS and fp of approximately 40% is required. Thus, the longitudinal response of two chemotherapeutic drugs under investigation - proteasome and IMPDH inhibitors - are hypothesized to induce different physiological responses. The first set of simulations varies PS from 0.05 to 0.40 mL/min/mL and fp from 0.01 to 0.07 mL/mL while holding all other physiological parameters constant. Errors in PS remain below 3% while statistical errors for fp increase significantly as the volume decreases toward 1-2%: errors remain less than 6% for fp>0.03 while increasing to above 15% for fp<0.02. The second set of simulations are performed quantifying the relationship between scanner temporal resolution and contrast media injection rate for various tumor permeabilities. For the majority of cases, the errors remain below 5%. As PS approaches perfusion, a total error less than 6% can be maintained

  19. Dynamic contrast-enhanced computed tomography to assess early activity of cetuximab in squamous cell carcinoma of the head and neck

    PubMed Central

    Schmitz, Sandra; Rommel, Denis; Michoux, Nicolas; Lhommel, Renaud; Hanin, François-Xavier; Duprez, Thierry; Machiels, Jean-Pascal

    2015-01-01

    Background Cetuximab, a monoclonal antibody targeting the Epidermal Growth Factor Receptor (EGFR), has demonstrated activity in various tumor types. Using dynamic contrast-enhanced computed tomography (DCE-CT), we investigated the early activity of cetuximab monotherapy in previously untreated patients with squamous cell carcinoma of the head and neck (SCCHN). Methods Treatment-naïve patients with SCCHN received cetuximab for 2 weeks before curative surgery. Treatment activity was evaluated by DCE-CT at baseline and before surgery. Tumor vascular and interstitial characteristics were evaluated using the Brix two-compartment kinetic model. Modifications of the perfusion parameters (blood flow Fp, extravascular space ve, vascular space vp, and transfer constant PS) were assessed between both time points. DCE data were compared to FDG-PET and histopathological examination obtained simultaneously. Plasmatic vascular markers were investigated at different time points. Results Fourteen patients had evaluable DCE-CT parameters at both time points. A significant increase in the extravascular extracellular space ve accessible to the tracer was observed but no significant differences were found for the other kinetic parameters (Fp, vp or PS). Significant correlations were found between DCE parameters and the other two modalities. Plasmatic VEGF, PDGF-BB and IL-8 decreased as early as 2 hours after cetuximab infusion. Conclusions Early activity of cetuximab on tumor interstitial characteristics was detected by DCE-CT. Modifications of plasmatic vascular markers are not sufficient to confirm anti-angiogenic cetuximab activity in vivo. Further investigation is warranted to determine to what extent DCE-CT parameters are modified and to evaluate whether they are able to predict treatment outcome. PMID:25810697

  20. Quantifying cerebral blood flow in an adult pig ischemia model by a depth-resolved dynamic contrast-enhanced optical method.

    PubMed

    Elliott, Jonathan T; Diop, Mamadou; Morrison, Laura B; d'Esterre, Christopher D; Lee, Ting-Yim; St Lawrence, Keith

    2014-07-01

    Dynamic contrast-enhanced (DCE) near-infrared (NIR) methods have been proposed for bedside monitoring of cerebral blood flow (CBF). These methods have primarily focused on qualitative approaches since scalp contamination hinders quantification. In this study, we demonstrate that accurate CBF measurements can be obtained by analyzing multi-distance time-resolved DCE data with a combined kinetic deconvolution optical reconstruction (KDOR) method. Multi-distance time-resolved DCE-NIR measurements were made in adult pigs (n=8) during normocapnia, hypocapnia and ischemia. The KDOR method was used to calculate CBF from the DCE-NIR measurements. For validation, CBF was measured independently by CT under each condition. The mean CBF difference between the techniques was -1.7 mL/100 g/min with 95% confidence intervals of -16.3 and 12.9 mL/100 g/min; group regression analysis revealed a strong agreement between the two techniques (slope=1.06±0.08, y-intercept=-4.37±4.33 mL/100 g/min, p<0.001). The results of an error analysis suggest that little a priori information is needed to recover CBF, due to the robustness of the analytical method and the ability of time-resolved NIR to directly characterize the optical properties of the extracerebral tissue (where model mismatch is deleterious). The findings of this study suggest that the DCE-NIR approach presented is a minimally invasive and portable means of determining absolute hemodynamics in neurocritical care patients.

  1. Dynamic contrast enhanced magnetic resonance perfusion imaging in high-risk smokers and smoking-related COPD: correlations with pulmonary function tests and quantitative computed tomography.

    PubMed

    Xia, Yi; Guan, Yu; Fan, Li; Liu, Shi-Yuan; Yu, Hong; Zhao, Li-Ming; Li, Bing

    2014-09-01

    The study aimed to prospectively evaluate correlations between dynamic contrast-enhanced (DCE) MR perfusion imaging, pulmonary function tests (PFT) and volume quantitative CT in smokers with or without chronic obstructive pulmonary disease (COPD) and to determine the value of DCE-MR perfusion imaging and CT volumetric imaging on the assessment of smokers. According to the ATS/ERS guidelines, 51 male smokers were categorized into five groups: At risk for COPD (n = 8), mild COPD (n = 9), moderate COPD (n = 12), severe COPD (n = 10), and very severe COPD (n = 12). Maximum slope of increase (MSI), positive enhancement integral (PEI), etc. were obtained from MR perfusion data. The signal intensity ratio (RSI) of the PDs and normal lung was calculated (RSI = SIPD/SInormal). Total lung volume (TLV), total emphysema volume (TEV) and emphysema index (EI) were obtained from volumetric CT data. For "at risk for COPD," the positive rate of PDs on MR perfusion images was higher than that of abnormal changes on non-enhanced CT images (p < 0.05). Moderate-to-strong positive correlations were found between all the PFT parameters and SIPD, or RSI (r range 0.445∼0.683, p ≤ 0.001). TEV and EI were negatively correlated better with FEV1/FVC than other PFT parameters (r range -0.48 --0.63, p < 0.001). There were significant differences in RSI and SIPD between "at risk for COPD" and "very severe COPD," and between "mild COPD" and "very severe COPD". Thus, MR perfusion imaging may be a good approach to identify early evidence of COPD and may have potential to assist in classification of COPD.

  2. Automated Voxel-Based Analysis of Volumetric Dynamic Contrast-Enhanced CT Data Improves Measurement of Serial Changes in Tumor Vascular Biomarkers

    SciTech Connect

    Coolens, Catherine; Driscoll, Brandon; Chung, Caroline; Shek, Tina; Gorjizadeh, Alborz; Ménard, Cynthia; Jaffray, David

    2015-01-01

    Objectives: Development of perfusion imaging as a biomarker requires more robust methodologies for quantification of tumor physiology that allow assessment of volumetric tumor heterogeneity over time. This study proposes a parametric method for automatically analyzing perfused tissue from volumetric dynamic contrast-enhanced (DCE) computed tomography (CT) scans and assesses whether this 4-dimensional (4D) DCE approach is more robust and accurate than conventional, region-of-interest (ROI)-based CT methods in quantifying tumor perfusion with preliminary evaluation in metastatic brain cancer. Methods and Materials: Functional parameter reproducibility and analysis of sensitivity to imaging resolution and arterial input function were evaluated in image sets acquired from a 320-slice CT with a controlled flow phantom and patients with brain metastases, whose treatments were planned for stereotactic radiation surgery and who consented to a research ethics board-approved prospective imaging biomarker study. A voxel-based temporal dynamic analysis (TDA) methodology was used at baseline, at day 7, and at day 20 after treatment. The ability to detect changes in kinetic parameter maps in clinical data sets was investigated for both 4D TDA and conventional 2D ROI-based analysis methods. Results: A total of 7 brain metastases in 3 patients were evaluated over the 3 time points. The 4D TDA method showed improved spatial efficacy and accuracy of perfusion parameters compared to ROI-based DCE analysis (P<.005), with a reproducibility error of less than 2% when tested with DCE phantom data. Clinically, changes in transfer constant from the blood plasma into the extracellular extravascular space (K{sub trans}) were seen when using TDA, with substantially smaller errors than the 2D method on both day 7 post radiation surgery (±13%; P<.05) and by day 20 (±12%; P<.04). Standard methods showed a decrease in K{sub trans} but with large uncertainty (111.6 ± 150.5) %. Conclusions

  3. Dynamic Contrast Enhanced MRI in Patients With Advanced Breast or Pancreatic Cancer With Metastases to the Liver or Lung

    ClinicalTrials.gov

    2014-05-28

    Acinar Cell Adenocarcinoma of the Pancreas; Duct Cell Adenocarcinoma of the Pancreas; Liver Metastases; Lung Metastases; Recurrent Breast Cancer; Recurrent Pancreatic Cancer; Stage IV Breast Cancer; Stage IV Pancreatic Cancer

  4. Monitoring the Effects of Anti-angiogenesis on the Radiation Sensitivity of Pancreatic Cancer Xenografts Using Dynamic Contrast-Enhanced Computed Tomography

    SciTech Connect

    Cao, Ning; Cao, Minsong; Chin-Sinex, Helen; Mendonca, Marc; Ko, Song-Chu; Stantz, Keith M.

    2014-02-01

    Purpose: To image the intratumor vascular physiological status of pancreatic tumors xenografts and their response to anti-angiogenic therapy using dynamic contrast-enhanced computed tomography (DCE-CT), and to identify parameters of vascular physiology associated with tumor x-ray sensitivity after anti-angiogenic therapy. Methods and Materials: Nude mice bearing human BxPC-3 pancreatic tumor xenografts were treated with 5 Gy of radiation therapy (RT), either a low dose (40 mg/kg) or a high dose (150 mg/kg) of DC101, the anti-VEGF receptor-2 anti-angiogenesis antibody, or with combination of low or high dose DC101 and 5 Gy RT (DC101-plus-RT). DCE-CT scans were longitudinally acquired over a 3-week period post-DC101 treatment. Parametric maps of tumor perfusion and fractional plasma volume (F{sub p}) were calculated and their averaged values and histogram distributions evaluated and compared to controls, from which a more homogeneous physiological window was observed 1-week post-DC101. Mice receiving a combination of DC101-plus-RT(5 Gy) were imaged baseline before receiving DC101 and 1 week after DC101 (before RT). Changes in perfusion and F{sub p} were compared with alternation in tumor growth delay for RT and DC101-plus-RT (5 Gy)-treated tumors. Results: Pretreatment with low or high doses of DC101 before RT significantly delayed tumor growth by an average 7.9 days compared to RT alone (P ≤ .01). The increase in tumor growth delay for the DC101-plus-RT-treated tumors was strongly associated with changes in tumor perfusion (ΔP>−15%) compared to RT treated tumors alone (P=.01). In addition, further analysis revealed a trend linking the tumor's increased growth delay to its tumor volume-to-DC101 dose ratio. Conclusions: DCE-CT is capable of monitoring changes in intratumor physiological parameter of tumor perfusion in response to anti-angiogenic therapy of a pancreatic human tumor xenograft that was associated with enhanced radiation response.

  5. Resting myocardial blood flow quantification using contrast-enhanced magnetic resonance imaging in the presence of stenosis: A computational fluid dynamics study

    SciTech Connect

    Sommer, Karsten E-mail: Schreiber-L@ukw.de; Bernat, Dominik; Schmidt, Regine; Breit, Hanns-Christian; Schreiber, Laura M. E-mail: Schreiber-L@ukw.de

    2015-07-15

    Purpose: The extent to which atherosclerotic plaques affect contrast agent (CA) transport in the coronary arteries and, hence, quantification of myocardial blood flow (MBF) using magnetic resonance imaging (MRI) is unclear. The purpose of this work was to evaluate the influence of plaque induced stenosis both on CA transport and on the accuracy of MBF quantification. Methods: Computational fluid dynamics simulations in a high-detailed realistic vascular model were employed to investigate CA bolus transport in the coronary arteries. The impact of atherosclerosis was analyzed by inserting various medium- to high-grade stenoses in the vascular model. The influence of stenosis morphology was examined by varying the stenosis shapes but keeping the area reduction constant. Errors due to CA bolus transport were analyzed using the tracer-kinetic model MMID4. Results: Dispersion of the CA bolus was found in all models and for all outlets, but with a varying magnitude. The impact of stenosis was complex: while high-grade stenoses amplified dispersion, mild stenoses reduced the effect. Morphology was found to have a marked influence on dispersion for a small number of outlets in the post-stenotic region. Despite this marked influence on the concentration–time curves, MBF errors were less affected by stenosis. In total, MBF was underestimated by −7.9% to −44.9%. Conclusions: The presented results reveal that local hemodynamics in the coronary vasculature appears to have a direct impact on CA bolus dispersion. Inclusion of atherosclerotic plaques resulted in a complex alteration of this effect, with both degree of area reduction and stenosis morphology affecting the amount of dispersion. This strong influence of vascular transport effects impairs the accuracy of MRI-based MBF quantification techniques and, potentially, other bolus-based perfusion measurement techniques like computed tomography perfusion imaging.

  6. Contrast-Enhanced Digital Mammography and Angiogenesis

    SciTech Connect

    Rosado-Mendez, I.; Palma, B. A.; Villasenor, Y.; Benitez-Bribiesca, L.; Brandan, M. E.

    2007-11-26

    Angiogenesis could be a means for pouring contrast media around tumors. In this work, optimization of radiological parameters for contrast-enhanced subtraction techniques in mammography has been performed. A modification of Lemacks' analytical formalism was implemented to model the X-ray absorption in the breast with contrast medium and detection by a digital image receptor. Preliminary results of signal-to-noise ratio analysis show the advantage of subtracting two images taken at different energies, one prior and one posterior to the injection of contrast medium. Preliminary experimental results using a custom-made phantom have shown good agreement with calculations. A proposal is presented for the clinical application of the optimized technique, which aims at finding correlations between angiogenesis indicators and dynamic variables of contrast medium uptake.

  7. Local adaptive contrast enhancement for color images

    NASA Astrophysics Data System (ADS)

    Dijk, Judith; den Hollander, Richard J. M.; Schavemaker, John G. M.; Schutte, Klamer

    2007-04-01

    A camera or display usually has a smaller dynamic range than the human eye. For this reason, objects that can be detected by the naked eye may not be visible in recorded images. Lighting is here an important factor; improper local lighting impairs visibility of details or even entire objects. When a human is observing a scene with different kinds of lighting, such as shadows, he will need to see details in both the dark and light parts of the scene. For grey value images such as IR imagery, algorithms have been developed in which the local contrast of the image is enhanced using local adaptive techniques. In this paper, we present how such algorithms can be adapted so that details in color images are enhanced while color information is retained. We propose to apply the contrast enhancement on color images by applying a grey value contrast enhancement algorithm to the luminance channel of the color signal. The color coordinates of the signal will remain the same. Care is taken that the saturation change is not too high. Gamut mapping is performed so that the output can be displayed on a monitor. The proposed technique can for instance be used by operators monitoring movements of people in order to detect suspicious behavior. To do this effectively, specific individuals should both be easy to recognize and track. This requires optimal local contrast, and is sometimes much helped by color when tracking a person with colored clothes. In such applications, enhanced local contrast in color images leads to more effective monitoring.

  8. Intra-Animal Comparison between Three-dimensional Molecularly Targeted US and Three-dimensional Dynamic Contrast-enhanced US for Early Antiangiogenic Treatment Assessment in Colon Cancer.

    PubMed

    Wang, Huaijun; Lutz, Amelie M; Hristov, Dimitre; Tian, Lu; Willmann, Jürgen K

    2017-02-01

    Purpose To perform an intra-animal comparison between (a) three-dimensional (3D) molecularly targeted ultrasonography (US) by using clinical-grade vascular endothelial growth factor receptor 2 (VEGFR2)-targeted microbubbles and (b) 3D dynamic contrast material-enhanced (DCE) US by using nontargeted microbubbles for assessment of antiangiogenic treatment effects in a murine model of human colon cancer. Materials and Methods Twenty-three mice with human colon cancer xenografts were randomized to receive either single-dose antiangiogenic treatment (bevacizumab, n = 14) or control treatment (saline, n = 9). At baseline and 24 hours after treatment, animals were imaged with a clinical US system equipped with a clinical matrix array transducer by using the following techniques: (a) molecularly targeted US with VEGFR2-targeted microbubbles, (b) bolus DCE US with nontargeted microbubbles, and (c) destruction-replenishment DCE US with nontargeted microbubbles. VEGFR2-targeted US signal, peak enhancement, area under the time-intensity curve, time to peak, relative blood volume (rBV), relative blood flow, and blood flow velocity were quantified. VEGFR2 expression and percentage area of blood vessels were assessed ex vivo with quantitative immunofluorescence and correlated with corresponding in vivo US parameters. Statistical analysis was performed with Wilcoxon signed rank tests and rank sum tests, as well as Pearson correlation analysis. Results Molecularly targeted US signal with VEGFR2-targeted microbubbles, peak enhancement, and rBV significantly decreased (P ≤ .03) after a single antiangiogenic treatment compared with those in the control group; similarly, ex vivo VEGFR2 expression (P = .03) and percentage area of blood vessels (P = .03) significantly decreased after antiangiogenic treatment. Three-dimensional molecularly targeted US signal correlated well with VEGFR2 expression (r = 0.86, P = .001), and rBV (r = 0.71, P = .01) and relative blood flow (r = 0.78, P

  9. Dynamic Contrast-Enhanced Digital Breast Tomosynthesis

    DTIC Science & Technology

    2013-03-01

    uses a GE Senographe 500 x ray generator (General Electric Health Care, Chalfont-St. Giles, UK) with a selenium flat - panel detector (Direct...front of a flat panel detector. (bottom) The image below is a photograph of the x - ray testing station (filter wheel is not visible). 8 Aim 2...stage with test object are positioned in succession in front of a flat panel detector. (bottom) The image below is a photograph of the x - ray testing

  10. [Contrast-enhanced sonography. Therapy control of radiofrequency ablation and transarterial chemoembolization of hepatocellular carcinoma].

    PubMed

    Jung, E M; Uller, W; Stroszczynski, C; Clevert, D-A

    2011-06-01

    Due to the imaging of dynamic perfusion, hepatocellular carcinoma can be detected with a sensitivity of >90% using contrast-enhanced sonography. The characterization of liver tumors with contrast-enhanced sonography is comparable to the diagnostic accuracy of contrast-enhanced computed tomography. The dynamic detection of microvascularization with contrast-enhanced sonography allows the differentiation between vascularized tumors and non-vascularized necrotic lesions before, during and after transarterial chemoembolization or percutaneous radiofrequency ablation. Image fusion with volume navigation can be useful in the followup control.

  11. Diagnostic Value of 3D Fast Low-Angle Shot Dynamic MRI of Breast Papillomas

    PubMed Central

    Kim, Eun-Kyung; Kim, Jeong-Ah; Kwak, Jin Young; Jeong, Joon

    2009-01-01

    Purpose To evaluate the value of breast MRI in analysis of papillomas of the breast. Materials and Methods From 1996 to 2004, 94 patients underwent surgery due to papillomas of the breast. Among them, 21 patients underwent 3D fast low angle shot (FLASH) dynamic breast MRI. Eight masses were palpable and 11 of 21 patients had nipple discharge. Two radiologists indifferently analyzed the location, size of the lesions and shape, margin of the masses, multiplicity and ductal relation. The MRI findings were categorized according to breast imaging reporting and data system (BI-RADS) lexicon. The amount and pattern of enhancement and associated findings were also evaluated according to BI-RADS. We then compared the MRI findings with galactography, mammography and breast ultrasonography (US) and examined histopathologic correlation. Results On breast MRI, the lesion size was 0.4-1.59 cm, and 18 patients showed subareolar location. On 4.25 cm (mean 1.54) dynamic enhanced images, imaging findings showed mass (n = 10), intracystic mass (n = 3), focus (n = 5), ductal enhancement (n = 2), and segmental enhancement (n = 1). In cases of the masses, the shapes of the masses were round (n = 4), lobulated (n = 3), and irregular (n = 6), and margins were circumscribed (n = 6), microlobulated (n = 5), and indistinct (n = 2). The enhancement patterns were homogeneous enhancement (n = 7), heterogeneous (n = 3) or rim enhancement (n = 3). Conclusion The contrast enhanced dynamic breast MRI was highly sensitive for diagnosis of breast papillomas. MRI could play a key role in the pre-operative work-up for multiple papillomas and papillomatosis. PMID:20046427

  12. Dual-energy contrast-enhanced mammography.

    PubMed

    Travieso Aja, M M; Rodríguez Rodríguez, M; Alayón Hernández, S; Vega Benítez, V; Luzardo, O P

    2014-01-01

    The degree of vascularization in breast lesions is related to their malignancy. For this reason, functional diagnostic imaging techniques have become important in recent years. Dual-energy contrast-enhanced mammography is a new, apparently promising technique in breast cancer that provides information about the degree of vascularization of the lesion in addition to the morphological information provided by conventional mammography. This article describes the state of the art for dual-energy contrast-enhanced mammography. Based on 15 months' clinical experience, we illustrate this review with clinical cases that allow us to discuss the advantages and limitations of this technique.

  13. Pulmonary transit time measurement by contrast-enhanced ultrasound in left ventricular dyssynchrony

    PubMed Central

    Saporito, Salvatore; Mischi, Massimo; van Assen, Hans C; Bouwman, R Arthur; de Lepper, Anouk G W; van den Bosch, Harrie C M; Korsten, Hendrikus H M; Houthuizen, Patrick

    2016-01-01

    Background Pulmonary transit time (PTT) is an indirect measure of preload and left ventricular function, which can be estimated using the indicator dilution theory by contrast-enhanced ultrasound (CEUS). In this study, we first assessed the accuracy of PTT-CEUS by comparing it with dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Secondly, we tested the hypothesis that PTT-CEUS correlates with the severity of heart failure, assessed by MRI and N-terminal pro-B-type natriuretic peptide (NT-proBNP). Methods and results Twenty patients referred to our hospital for cardiac resynchronization therapy (CRT) were enrolled. DCE-MRI, CEUS, and NT-proBNP measurements were performed within an hour. Mean transit time (MTT) was obtained by estimating the time evolution of indicator concentration within regions of interest drawn in the right and left ventricles in video loops of DCE-MRI and CEUS. PTT was estimated as the difference of the left and right ventricular MTT. Normalized PTT (nPTT) was obtained by multiplication of PTT with the heart rate. Mean PTT-CEUS was 10.5±2.4s and PTT-DCE-MRI was 10.4±2.0s (P=0.88). The correlations of PTT and nPTT by CEUS and DCE-MRI were strong; r=0.75 (P=0.0001) and r=0.76 (P=0.0001), respectively. Bland–Altman analysis revealed a bias of 0.1s for PTT. nPTT-CEUS correlated moderately with left ventricle volumes. The correlations for PTT-CEUS and nPTT-CEUS were moderate to strong with NT-proBNP; r=0.54 (P=0.022) and r=0.68 (P=0.002), respectively. Conclusions (n)PTT-CEUS showed strong agreement with that by DCE-MRI. Given the good correlation with NT-proBNP level, (n)PTT-CEUS may provide a novel, clinically feasible measure to quantify the severity of heart failure. Clinical Trial Registry: NCT01735838 PMID:27249553

  14. Adaptive overlapped sub-blocks contrast enhancement

    NASA Astrophysics Data System (ADS)

    Chen, Anqiu; Yuan, Fei; Liu, Jing; Liu, Siqi; Li, An; Zheng, Zhenrong

    2016-09-01

    In this paper, an overlapped sub-block gray-level average method for contrast enhancement is presented. The digital image correction of uneven illumination under microscope transmittance is a problem in image processing, also sometimes the image in the dark place need to correct the uneven problem. A new correction method was proposed based on the mask method and sub-blocks gray-level average method because Traditional mask method and background fitting method are restricted due to application scenarios, and the corrected image brightness is low by using background fitting method, so it has some limitations of the application. In this paper, we introduce a new method called AOSCE for image contrast enhancement. The image is divided into many sub-blocks which are overlapped, calculate the average gray-level of the whole image as M and the calculate the average gray-level of each one as mi, next for each block it can get d = mi - m, each block minus d to get a new image, and then get the minimum gray-level of each block into a matrix DD to get the background, and use bilinearity to get the same scale of the image. over fitting the image in matlab in order to get smoother image, then minus the background to get the contrast enhancement image.

  15. Contrast enhancement via texture region based histogram equalization

    NASA Astrophysics Data System (ADS)

    Singh, Kuldeep; Vishwakarma, Dinesh K.; Singh Walia, Gurjit; Kapoor, Rajiv

    2016-08-01

    This paper presents two novel contrast enhancement approaches using texture regions-based histogram equalization (HE). In HE-based contrast enhancement methods, the enhanced image often contains undesirable artefacts because an excessive number of pixels in the non-textured areas heavily bias the histogram. The novel idea presented in this paper is to suppress the impact of pixels in non-textured areas and to exploit texture features for the computation of histogram in the process of HE. The first algorithm named as Dominant Orientation-based Texture Histogram Equalization (DOTHE), constructs the histogram of the image using only those image patches having dominant orientation. DOTHE categories image patches into smooth, dominant or non-dominant orientation patches by using the image variance and singular value decomposition algorithm and utilizes only dominant orientation patches in the process of HE. The second method termed as Edge-based Texture Histogram Equalization, calculates significant edges in the image and constructs the histogram using the grey levels present in the neighbourhood of edges. The cumulative density function of the histogram formed from texture features is mapped on the entire dynamic range of the input image to produce the contrast-enhanced image. Subjective as well as objective performance assessment of proposed methods is conducted and compared with other existing HE methods. The performance assessment in terms of visual quality, contrast improvement index, entropy and measure of enhancement reveals that the proposed methods outperform the existing HE methods.

  16. Microtesla MRI with dynamic nuclear polarization

    PubMed Central

    Zotev, Vadim S.; Owens, Tuba; Matlashov, Andrei N.; Savukov, Igor M.; Gomez, John J.; Espy, Michelle A.

    2010-01-01

    Magnetic resonance imaging at microtesla fields is a promising imaging method that combines the pre-polarization technique and broadband signal reception by superconducting quantum interference device (SQUID) sensors to enable in vivo MRI at microtesla-range magnetic fields similar in strength to the Earth magnetic field. Despite significant advances in recent years, the potential of microtesla MRI for biomedical imaging is limited by its insufficient signal-to-noise ratio due to a relatively low sample polarization. Dynamic nuclear polarization (DNP) is a widely used approach that allows polarization enhancement by two-four orders of magnitude without an increase in the polarizing field strength. In this work, the first implementation of microtesla MRI with Overhauser DNP and SQUID signal detection is described. The first measurements of carbon-13 NMR spectra at microtesla fields are also reported. The experiments were performed at the measurement field of 96 microtesla, corresponding to Larmor frequency of 4 kHz for protons and 1 kHz for carbon-13. The Overhauser DNP was carried out at 3.5 –5.7 mT field using rf irradiation at 120 MHz. Objects for imaging included water phantoms and a cactus plant. Aqueous solutions of metabolically relevant sodium bicarbonate, pyruvate, alanine, and lactate, labeled with carbon-13, were used for NMR studies. All the samples were doped with TEMPO free radicals. The Overhauser DNP enabled nuclear polarization enhancement by factor as high as −95 for protons and as high as −200 for carbon-13, corresponding to thermal polarizations at 0.33 T and 1.1 T fields, respectively. These results demonstrate that SQUID-based microtesla MRI can be naturally combined with Overhauser DNP in one system, and that its signal-to-noise performance is greatly improved in this case. They also suggest that microtesla MRI can become an efficient tool for in vivo imaging of hyperpolarized carbon-13, produced by the low-temperature dissolution DNP

  17. Contrast enhanced ultrasound of breast cancer

    PubMed Central

    Cassano, E; Rizzo, S; Bozzini, A; Menna, S; Bellomi, M

    2006-01-01

    The importance of ultrasound examination in the diagnosis of breast cancer has been widely demonstrated. During the last few years, the introduction of ultrasound contrast media has been considered a promising tool for studying the vascular pattern of focal lesions within the breast. Our purpose was to assess whether contrast-enhanced (CE) ultrasound examination, performed using specific contrast imaging modes, can be helpful for detection and characterization of breast lesions, and for prediction of the response of breast cancer to therapy. PMID:16478698

  18. Quantitative contrast-enhanced optical coherence tomography

    PubMed Central

    Winetraub, Yonatan; SoRelle, Elliott D.; Liba, Orly; de la Zerda, Adam

    2016-01-01

    We have developed a model to accurately quantify the signals produced by exogenous scattering agents used for contrast-enhanced Optical Coherence Tomography (OCT). This model predicts distinct concentration-dependent signal trends that arise from the underlying physics of OCT detection. Accordingly, we show that real scattering particles can be described as simplified ideal scatterers with modified scattering intensity and concentration. The relation between OCT signal and particle concentration is approximately linear at concentrations lower than 0.8 particle per imaging voxel. However, at higher concentrations, interference effects cause signal to increase with a square root dependence on the number of particles within a voxel. Finally, high particle concentrations cause enough light attenuation to saturate the detected signal. Predictions were validated by comparison with measured OCT signals from gold nanorods (GNRs) prepared in water at concentrations ranging over five orders of magnitude (50 fM to 5 nM). In addition, we validated that our model accurately predicts the signal responses of GNRs in highly heterogeneous scattering environments including whole blood and living animals. By enabling particle quantification, this work provides a valuable tool for current and future contrast-enhanced in vivo OCT studies. More generally, the model described herein may inform the interpretation of detected signals in modalities that rely on coherence-based detection or are susceptible to interference effects. PMID:26869724

  19. Quantitative contrast-enhanced optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Winetraub, Yonatan; SoRelle, Elliott D.; Liba, Orly; de la Zerda, Adam

    2016-01-01

    We have developed a model to accurately quantify the signals produced by exogenous scattering agents used for contrast-enhanced Optical Coherence Tomography (OCT). This model predicts distinct concentration-dependent signal trends that arise from the underlying physics of OCT detection. Accordingly, we show that real scattering particles can be described as simplified ideal scatterers with modified scattering intensity and concentration. The relation between OCT signal and particle concentration is approximately linear at concentrations lower than 0.8 particle per imaging voxel. However, at higher concentrations, interference effects cause signal to increase with a square root dependence on the number of particles within a voxel. Finally, high particle concentrations cause enough light attenuation to saturate the detected signal. Predictions were validated by comparison with measured OCT signals from gold nanorods (GNRs) prepared in water at concentrations ranging over five orders of magnitude (50 fM to 5 nM). In addition, we validated that our model accurately predicts the signal responses of GNRs in highly heterogeneous scattering environments including whole blood and living animals. By enabling particle quantification, this work provides a valuable tool for current and future contrast-enhanced in vivo OCT studies. More generally, the model described herein may inform the interpretation of detected signals in modalities that rely on coherence-based detection or are susceptible to interference effects.

  20. Quantitative contrast-enhanced optical coherence tomography

    SciTech Connect

    Winetraub, Yonatan; SoRelle, Elliott D.; Liba, Orly; Zerda, Adam de la

    2016-01-11

    We have developed a model to accurately quantify the signals produced by exogenous scattering agents used for contrast-enhanced Optical Coherence Tomography (OCT). This model predicts distinct concentration-dependent signal trends that arise from the underlying physics of OCT detection. Accordingly, we show that real scattering particles can be described as simplified ideal scatterers with modified scattering intensity and concentration. The relation between OCT signal and particle concentration is approximately linear at concentrations lower than 0.8 particle per imaging voxel. However, at higher concentrations, interference effects cause signal to increase with a square root dependence on the number of particles within a voxel. Finally, high particle concentrations cause enough light attenuation to saturate the detected signal. Predictions were validated by comparison with measured OCT signals from gold nanorods (GNRs) prepared in water at concentrations ranging over five orders of magnitude (50 fM to 5 nM). In addition, we validated that our model accurately predicts the signal responses of GNRs in highly heterogeneous scattering environments including whole blood and living animals. By enabling particle quantification, this work provides a valuable tool for current and future contrast-enhanced in vivo OCT studies. More generally, the model described herein may inform the interpretation of detected signals in modalities that rely on coherence-based detection or are susceptible to interference effects.

  1. Contrast-enhanced and targeted ultrasound.

    PubMed

    Postema, Michiel; Gilja, Odd Helge

    2011-01-07

    Ultrasonic imaging is becoming the most popular medical imaging modality, owing to the low price per examination and its safety. However, blood is a poor scatterer of ultrasound waves at clinical diagnostic transmit frequencies. For perfusion imaging, markers have been designed to enhance the contrast in B-mode imaging. These so-called ultrasound contrast agents consist of microscopically small gas bubbles encapsulated in biodegradable shells. In this review, the physical principles of ultrasound contrast agent microbubble behavior and their adjustment for drug delivery including sonoporation are described. Furthermore, an outline of clinical imaging applications of contrast-enhanced ultrasound is given. It is a challenging task to quantify and predict which bubble phenomenon occurs under which acoustic condition, and how these phenomena may be utilized in ultrasonic imaging. Aided by high-speed photography, our improved understanding of encapsulated microbubble behavior will lead to more sophisticated detection and delivery techniques. More sophisticated methods use quantitative approaches to measure the amount and the time course of bolus or reperfusion curves, and have shown great promise in revealing effective tumor responses to anti-angiogenic drugs in humans before tumor shrinkage occurs. These are beginning to be accepted into clinical practice. In the long term, targeted microbubbles for molecular imaging and eventually for directed anti-tumor therapy are expected to be tested.

  2. Triple-energy contrast enhanced digital mammography

    NASA Astrophysics Data System (ADS)

    Puong, Sylvie; Milioni de Carvalho, Pablo; Muller, Serge

    2010-04-01

    With the injection of iodine, Contrast Enhanced Digital Mammography (CEDM) provides functional information about breast tumour angiogenesis that can potentially help in cancer diagnosis. In order to generate iodine images in which the gray level is proportional to the iodine thickness, temporal and dual-energy approaches have already been considered. The dual-energy method offers the advantage of less patient motion artifacts and better comfort during the exam. However, this approach requires knowledge of the breast thickness at each pixel. Generally, as compression is applied, the breast thickness at each pixel is taken as the compression thickness. Nevertheless, in the breast border region, this assumption is not correct anymore and this causes inaccuracies in the iodine image. Triple-Energy CEDM could overcome these limitations by providing supplemental information in the form of a third image acquired with a different spectrum than the other two. This precludes the need of a priori knowledge of the breast thickness. Moreover, with Triple-Energy CEDM, breast thickness and glandularity maps could potentially be derived. In this study, we first focused on the method to recombine the three images in order to generate the iodine image, analyzing the performance of either quadratic, cubic or conic recombination functions. Then, we studied the optimal acquisition spectra in order to maximize the iodine SDNR in the recombined image for a given target total glandular dose. The concept of Triple-Energy CEDM was validated on simulated textured images and poly-energetic images acquired with a conventional X-ray mammography tube.

  3. Magnetic Resonance Imaging (MRI): Dynamic Pelvic Floor

    MedlinePlus

    ... noninvasive test that uses a powerful magnetic field, radio waves and a computer to produce detailed pictures of ... scans, MRI does not utilize ionizing radiation. Instead, radio waves redirect alignment of hydrogen atoms that naturally exist ...

  4. Nanoparticles and nanostructured carriers for drug delivery and contrast enhancement

    NASA Astrophysics Data System (ADS)

    Godage, Olga S.; Bucharskaya, Alla B.; Navolokin, Nikita A.; German, Sergey V.; Zuev, Viktor V.; Terentyuk, Georgy S.; Maslyakova, Galina N.; Gorin, Dmitry A.

    2016-04-01

    Currently, nanotechnologies are widely used in science and industry. It is known that the application of drug delivery nanostructured carriers for biomedicine is one of the promising areas of nanotechnology. Nanostructured carriers can be used in the diagnosis process for detecting a neoplastic tumor cells in peripheral blood, for contrast enhancement on magnetic resonance imaging (MRI), as well as for targeted drug delivery to tumor tissues. Agents for the targeted delivery (nanoparticles, liposomes, microcapsules, and etc) can affect the healthy tissues and organs, cause side effects and have a toxic effect. Therefore, it necessary to study the morphological changes that occur not only in the "target", such as a tumor, but also the internal organs, taking place under the influence of both the agents for targeted drug delivery and physical impact induced remote controlled drug release. Thus , the aim of our work is selection of the most promising agents for targeted drug delivery to tumor and contrast agents for in vivo visualization of tumor tissue boundaries , as well as their impact on the organs and tissues as results of nanostructured object biodistribution.

  5. MRI findings in Hirayama disease.

    PubMed

    Raval, Monali; Kumari, Rima; Dung, Aldrin Anthony Dung; Guglani, Bhuvnesh; Gupta, Nitij; Gupta, Rohit

    2010-11-01

    The objective of the study was to study the magnetic resonance imaging (MRI) features of Hirayama disease on a 3 Tesla MRI scanner. Nine patients with clinically suspected Hirayama disease were evaluated with neutral position, flexion, contrast-enhanced MRI and fast imaging employing steady-state acquisition (FIESTA) sequences. The spectrum of MRI features was evaluated and correlated with the clinical and electromyography findings. MRI findings of localized lower cervical cord atrophy (C5-C7), abnormal curvature, asymmetric cord flattening, loss of attachment of the dorsal dural sac and subjacent laminae in the neutral position, anterior displacement of the dorsal dura on flexion and a prominent epidural space were revealed in all patients on conventional MRI as well as with the dynamic 3D-FIESTA sequence. Intramedullary hyperintensity was seen in four patients on conventional MRI and on the 3D-FIESTA sequence. Flow voids were seen in four patients on conventional MRI sequences and in all patients with the 3D-FIESTA sequence. Contrast enhancement of the epidural component was noted in all the five patients with thoracic extensions. The time taken for conventional and contrast-enhanced MRI was about 30-40 min, while that for the 3D-FIESTA sequence was 6 min. Neutral and flexion position MRI and the 3D-FIESTA sequence compliment each other in displaying the spectrum of findings in Hirayama disease. A flexion study should form an essential part of the screening protocol in patients with suspected Hirayama disease. Newer sequences such as the 3D-FIESTA may help in reducing imaging time and obviating the need for contrast.

  6. A Metric for Reducing False Positives in the Computer-Aided Detection of Breast Cancer from Dynamic Contrast-Enhanced Magnetic Resonance Imaging Based Screening Examinations of High-Risk Women.

    PubMed

    Levman, Jacob E D; Gallego-Ortiz, Cristina; Warner, Ellen; Causer, Petrina; Martel, Anne L

    2016-02-01

    Magnetic resonance imaging (MRI)-enabled cancer screening has been shown to be a highly sensitive method for the early detection of breast cancer. Computer-aided detection systems have the potential to improve the screening process by standardizing radiologists to a high level of diagnostic accuracy. This retrospective study was approved by the institutional review board of Sunnybrook Health Sciences Centre. This study compares the performance of a proposed method for computer-aided detection (based on the second-order spatial derivative of the relative signal intensity) with the signal enhancement ratio (SER) on MRI-based breast screening examinations. Comparison is performed using receiver operating characteristic (ROC) curve analysis as well as free-response receiver operating characteristic (FROC) curve analysis. A modified computer-aided detection system combining the proposed approach with the SER method is also presented. The proposed method provides improvements in the rates of false positive markings over the SER method in the detection of breast cancer (as assessed by FROC analysis). The modified computer-aided detection system that incorporates both the proposed method and the SER method yields ROC results equal to that produced by SER while simultaneously providing improvements over the SER method in terms of false positives per noncancerous exam. The proposed method for identifying malignancies outperforms the SER method in terms of false positives on a challenging dataset containing many small lesions and may play a useful role in breast cancer screening by MRI as part of a computer-aided detection system.

  7. Contrast enhanced phototrichogram (CE-PTG): an improved non-invasive technique for measurement of scalp hair dynamics in androgenetic alopecia--validation study with histology after transverse sectioning of scalp biopsies.

    PubMed

    Van Neste, D J

    2001-01-01

    Global changes of scalp hair represent the cumulative end result of discrete changes of individual hair follicle structure and/or function. Monitoring of such changes requires an accurate non-invasive method. The phototrichogram (PTG) appears to be an appropriate choice to do so. However, a known weakness of the method is the lack of detection of less pigmented or thinning hair. Balding scalp of male subjects with androgenetic alopecia (AGA) was analysed with our previously published PTG method and with contrast enhanced (CE-)PTG followed by biopsy and transverse section examination with the light microscope. As compared with PTG, the CE-PTG method significantly improved detection not only of thin but also of thick hair. Equal numbers of thick (diameter > 40 mm) hair were detected with CE-PTG and with histology. CE-PTG was also able to detect the severely miniaturised hair fiber (down to 8 mm diameter) and was comparable to scalp biopsy analysis. The latter could identify hair fibres, which did not reach the scalp surface, a measure that is considered as not clinically significant. All growth stages - anagen, catagen and telogen - as well as the empty follicle stage could clearly be observed with CE-PTG. Staging of the more severely affected hair follicles was not always possible neither with CE-PTG nor histology - even with serial sectioning. The finding of such technological advantages makes the CE-PTG a first choice method for detailed analysis of hair cycling in androgenetic alopecia - a scalp disorder characterised by extreme hair follicle miniaturisation, decreased hair pigmentation and hair thinning.

  8. Physiologically informed dynamic causal modeling of fMRI data.

    PubMed

    Havlicek, Martin; Roebroeck, Alard; Friston, Karl; Gardumi, Anna; Ivanov, Dimo; Uludag, Kamil

    2015-11-15

    The functional MRI (fMRI) signal is an indirect measure of neuronal activity. In order to deconvolve the neuronal activity from the experimental fMRI data, biophysical generative models have been proposed describing the link between neuronal activity and the cerebral blood flow (the neurovascular coupling), and further the hemodynamic response and the BOLD signal equation. These generative models have been employed both for single brain area deconvolution and to infer effective connectivity in networks of multiple brain areas. In the current paper, we introduce a new fMRI model inspired by experimental observations about the physiological underpinnings of the BOLD signal and compare it with the generative models currently used in dynamic causal modeling (DCM), a widely used framework to study effective connectivity in the brain. We consider three fundamental aspects of such generative models for fMRI: (i) an adaptive two-state neuronal model that accounts for a wide repertoire of neuronal responses during and after stimulation; (ii) feedforward neurovascular coupling that links neuronal activity to blood flow; and (iii) a balloon model that can account for vascular uncoupling between the blood flow and the blood volume. Finally, we adjust the parameterization of the BOLD signal equation for different magnetic field strengths. This paper focuses on the form, motivation and phenomenology of DCMs for fMRI and the characteristics of the various models are demonstrated using simulations. These simulations emphasize a more accurate modeling of the transient BOLD responses - such as adaptive decreases to sustained inputs during stimulation and the post-stimulus undershoot. In addition, we demonstrate using experimental data that it is necessary to take into account both neuronal and vascular transients to accurately model the signal dynamics of fMRI data. By refining the models of the transient responses, we provide a more informed perspective on the underlying neuronal

  9. Detection of Leptomeningeal Metastasis by Contrast-Enhanced 3D T1-SPACE: Comparison with 2D FLAIR and Contrast-Enhanced 2D T1-Weighted Images

    PubMed Central

    Gil, Bomi; Hwang, Eo-Jin; Lee, Song; Jang, Jinhee; Jung, So-Lyung; Ahn, Kook-Jin; Kim, Bum-soo

    2016-01-01

    Introduction To compare the diagnostic accuracy of contrast-enhanced 3D(dimensional) T1-weighted sampling perfection with application-optimized contrasts by using different flip angle evolutions (T1-SPACE), 2D fluid attenuated inversion recovery (FLAIR) images and 2D contrast-enhanced T1-weighted image in detection of leptomeningeal metastasis except for invasive procedures such as a CSF tapping. Materials and Methods Three groups of patients were included retrospectively for 9 months (from 2013-04-01 to 2013-12-31). Group 1 patients with positive malignant cells in CSF cytology (n = 22); group 2, stroke patients with steno-occlusion in ICA or MCA (n = 16); and group 3, patients with negative results on MRI, whose symptom were dizziness or headache (n = 25). A total of 63 sets of MR images are separately collected and randomly arranged: (1) CE 3D T1-SPACE; (2) 2D FLAIR; and (3) CE T1-GRE using a 3-Tesla MR system. A faculty neuroradiologist with 8-year-experience and another 2nd grade trainee in radiology reviewed each MR image- blinded by the results of CSF cytology and coded their observations as positives or negatives of leptomeningeal metastasis. The CSF cytology result was considered as a gold standard. Sensitivity and specificity of each MR images were calculated. Diagnostic accuracy was compared using a McNemar’s test. A Cohen's kappa analysis was performed to assess inter-observer agreements. Results Diagnostic accuracy was not different between 3D T1-SPACE and CSF cytology by both raters. However, the accuracy test of 2D FLAIR and 2D contrast-enhanced T1-weighted GRE was inconsistent by the two raters. The Kappa statistic results were 0.657 (3D T1-SPACE), 0.420 (2D FLAIR), and 0.160 (2D contrast-enhanced T1-weighted GRE). The 3D T1-SPACE images showed the highest inter-observer agreements between the raters. Conclusions Compared to 2D FLAIR and 2D contrast-enhanced T1-weighted GRE, contrast-enhanced 3D T1 SPACE showed a better detection rate of

  10. Detection for processing history of seam insertion and contrast enhancement

    NASA Astrophysics Data System (ADS)

    Li, Jianwei; Zhao, Yao; Ni, Rongrong

    2014-11-01

    With the development of manipulations techniques of digital images, digital image forensic technology is becoming more and more necessary. However, the determination of processing history of multi-operation is still a challenge problem. In this paper, we improve the traditional seam insertion algorithm, and propose corresponding detection method. Then an algorithm that focuses on detecting the processing history of seam insertion and contrast enhancement is proposed, which can be widely used in practical image forgery. Based on comprehensive analysis, we have discovered the inherent relationship between seam insertion and contrast enhancement. Different orders of processing make different impacts on images. By using the newly proposed algorithm, both contrast enhancement followed by seam insertion and seam insertion followed by contrast enhancement can be detected correctly. Plenty of experiments have been implemented to prove the accuracy.

  11. Dual-energy contrast-enhanced spectral mammography (CESM).

    PubMed

    Daniaux, Martin; De Zordo, Tobias; Santner, Wolfram; Amort, Birgit; Koppelstätter, Florian; Jaschke, Werner; Dromain, Clarisse; Oberaigner, Willi; Hubalek, Michael; Marth, Christian

    2015-10-01

    Dual-energy contrast-enhanced mammography is one of the latest developments in breast care. Imaging with contrast agents in breast cancer was already known from previous magnetic resonance imaging and computed tomography studies. However, high costs, limited availability-or high radiation dose-led to the development of contrast-enhanced spectral mammography (CESM). We reviewed the current literature, present our experience, discuss the advantages and drawbacks of CESM and look at the future of this innovative technique.

  12. Three-dimensional contrast-enhanced magnetic resonance angiography of the thoracic vasculature.

    PubMed

    Leung, D A; Debatin, J F

    1997-01-01

    Magnetic resonance angiography (MRA) has become a useful non-invasive imaging technique for the assessment of vascular disease. Due to limitations such as respiratory motion artefacts, saturations problems, and long acquisition times, applications of MRA in the thorax have largely been restricted to imaging of the aorta. The recent introduction of breath-hold three-dimensional (3D) contrast-enhanced MRA promises not only to enhance conventional MR protocols for aortic imaging, but to extend the clinical indications of MRI to diseases affecting other vascular structures of the thorax, most notably the pulmonary arteries. This article describes the technical aspects of contrast-enhanced 3D MRA and reviews existing and potential future clinical applications.

  13. Development of contrast-enhanced rodent imaging using functional CT

    NASA Astrophysics Data System (ADS)

    Liang, Yun; Stantz, Keith M.; Krishnamurthi, Ganapathy; Steinmetz, Rosemary; Hutchins, Gary D.

    2003-05-01

    Micro-computed tomography (microCT) is capable of obtaining high-resolution images of skeletal tissues. However its image contrast among soft tissues remains inadequate for tumor detection. High speed functional computed tomography will be needed to image tumors by employing x-ray contrast medium. The functional microCT development will not only facilitate the image contrast enhancement among different tissues but also provide information of tumor physiology. To demonstrate the feasibility of functional CT in mouse imaging, sequential computed tomography is performed in mice after contrast material administration using a high-speed clinical CT scanner. Although the resolution of the clinical scanner is not sufficient to dissolve the anatomic details of rodents, bulky physiological parameters in major organs such as liver, kidney, pancreas, and ovaries (testicular) can be examined. For data analysis, a two-compartmental model is employed and implemented to characterize the tissue physiological parameters (regional blood flow, capillary permeability, and relative compartment volumes.) The measured contrast dynamics in kidneys are fitted with the compartmental model to derive the kidney tissue physiology. The study result suggests that it is feasible to extract mouse tissue physiology using functional CT imaging technology.

  14. Temporal subtraction contrast-enhanced dedicated breast CT

    NASA Astrophysics Data System (ADS)

    Gazi, Peymon M.; Aminololama-Shakeri, Shadi; Yang, Kai; Boone, John M.

    2016-09-01

    The development of a framework of deformable image registration and segmentation for the purpose of temporal subtraction contrast-enhanced breast CT is described. An iterative histogram-based two-means clustering method was used for the segmentation. Dedicated breast CT images were segmented into background (air), adipose, fibroglandular and skin components. Fibroglandular tissue was classified as either normal or contrast-enhanced then divided into tiers for the purpose of categorizing degrees of contrast enhancement. A variant of the Demons deformable registration algorithm, intensity difference adaptive Demons (IDAD), was developed to correct for the large deformation forces that stemmed from contrast enhancement. In this application, the accuracy of the proposed method was evaluated in both mathematically-simulated and physically-acquired phantom images. Clinical usage and accuracy of the temporal subtraction framework was demonstrated using contrast-enhanced breast CT datasets from five patients. Registration performance was quantified using normalized cross correlation (NCC), symmetric uncertainty coefficient, normalized mutual information (NMI), mean square error (MSE) and target registration error (TRE). The proposed method outperformed conventional affine and other Demons variations in contrast enhanced breast CT image registration. In simulation studies, IDAD exhibited improvement in MSE (0-16%), NCC (0-6%), NMI (0-13%) and TRE (0-34%) compared to the conventional Demons approaches, depending on the size and intensity of the enhancing lesion. As lesion size and contrast enhancement levels increased, so did the improvement. The drop in the correlation between the pre- and post-contrast images for the largest enhancement levels in phantom studies is less than 1.2% (150 Hounsfield units). Registration error, measured by TRE, shows only submillimeter mismatches between the concordant anatomical target points in all patient studies. The algorithm was

  15. Leptomeningeal contrast enhancement and blood-CSF barrier dysfunction in aseptic meningitis

    PubMed Central

    Eisele, Philipp; Ebert, Anne D.; Griebe, Martin; Engelhardt, Britta; Szabo, Kristina; Hennerici, Michael G.; Gass, Achim

    2015-01-01

    Objective: To investigate the blood-CSF barrier (BCSFB) dysfunction in aseptic meningitis. Methods: In our case series of 14 patients with acute aseptic meningitis, we compared MRI characteristics with CSF findings. Results: Contrast enhancement in the sulcal space in a leptomeningeal pattern was visualized in 7 patients with BCSFB dysfunction categorized as moderate to severe as evidenced by the CSF/serum albumin ratio (Qalb) but was not present in those with mild or no barrier disturbance (p = 0.001). The Qalb as a marker for the leakiness of the BCSFB and, more indirectly, of the blood-brain barrier (BBB) was positively correlated with the incidence of leptomeningeal contrast enhancement seen on postcontrast fluid-attenuated inversion recovery (FLAIR) MRI (p = 0.003). Patients with a more pronounced brain barrier dysfunction recovered more slowly and stayed longer in the hospital. Conclusions: The severity of meningeal BBB disturbance can be estimated on postcontrast FLAIR MRI, which may be of diagnostic value in patients with aseptic meningitis. PMID:26516629

  16. [MRI of the prostate: optimization of imaging protocols].

    PubMed

    Rouvière, O

    2006-02-01

    This article details the imaging protocols for prostate MRI and the influence on image quality of each particular setting: type of coils to be used (endorectal or external phased-array coils?), patient preparation, type of sequences, spatial resolution parameters. The principle and technical constraints of dynamic contrast-enhanced MRI are also presented, as well as the predictable changes due to the introduction of high-field strength (3T) scanners.

  17. Contrast-enhanced ultrasound in ovarian tumors – diagnostic parameters: method presentation and initial experience

    PubMed Central

    MAXIM, ANITA-ROXANA; BADEA, RADU; TAMAS, ATILLA; TRAILA, ALEXANDRU

    2013-01-01

    The aim of this paper is to discuss and illustrate the use of contrast-enhanced ultrasound in evaluating ovarian tumors compared to conventional ultrasound, Doppler ultrasound and the histopathological analysis and suggest how this technique may best be used to distinguish benign from malignant ovarian masses. We present the method and initial experience of our center by analyzing the parameters used in contrast-enhanced ultrasound in 6 patients with ovarian tumors of uncertain etiology. For examination we used a Siemens ultrasound machine with dedicated contrast software and the contrast agent SonoVue, Bracco. The patients underwent conventional ultrasound, Doppler ultrasound and i.v. administration of the contrast agent. The parameters studied were: inflow of contrast (rise time), time to peak enhancement, mean transit time. The series of patients is part of an extensive prospective PhD study aimed at elaborating a differential diagnosis protocol for benign versus malignant ovarian tumors, by validating specific parameters for contrast-enhanced ultrasound. Although the method is currently used with great success in gastroenterology, urology and senology, its validation in gynecology is still in the early phases. Taking into consideration that the method is minimally invasive and much less costly that CT/MRI imaging, demonstrating its utility in oncologic gynecology would be a big step in preoperative evaluation of these cases. PMID:26527912

  18. Contrast-enhanced digital mammography (CEDM): phantom experiment and first clinical results

    NASA Astrophysics Data System (ADS)

    Marx, Christiane; Facius, Mirijam; Muller, Serge L.; Benali, Karim; Malich, Ansgar; Kaiser, Werner

    2002-05-01

    The introduction of the Full Field Digital Mammography (FFDM) opens the way to a large range of future advanced applications. Among them, Contrast Enhanced Digital Mammography (CEDM) could be a fast and less expensive alternative to Magnetic Resonance Imaging (MRI) for breast lesion characterization. In this work, we have investigated, first on phantom then on patients, the capability of a modified FFDM system to show the contrast enhancement of lesions after intra-venous injection of iodine. The uptake has been estimated from the difference between pre- and post-contrast images. Phantom results showed that 1) detectability thresholds of the contrast media were compatible with clinical conditions; 2) breast radiological thickness has a low impact on uptake detectability; 3) spatial and temporal analysis showed delayed margin contrast uptake of the simulated lesion and slow increase of contrast in the background. Preliminary results on patients have confirmed the phantom results and have shown a contrast uptake in all malignant lesions despite the observed patient motion artifacts, and some moderate signal variability. This study demonstrated the feasibility of the Contrast Enhanced Digital Mammography technique. Further investigations and clinical validations will have to be completed before it can be widely used in a daily routine practice.

  19. Two-Dimensional Modeling Of Contrast-Enhanced Lithography

    NASA Astrophysics Data System (ADS)

    Griffing, B. F.; Lorensen, W. E.

    1984-05-01

    The aerial image produced by projection mask aligners can be readily visualized using high resolution computer graphics. This paper describes a computer model that calculates the aerial image using a mask pattern and the optical system characteristics as input. The program converts the digital result into a grey scale image. This image is an accu-rate representation of the image the photoresist actually "sees." The model is applied to contrast-enhanced lithography (CEL).1120 By combining the aerial image model with the known bleaching behavior of CEL materials it is possible to calculate the image intensity transmitted by the bleachable layer as a function of time. This result is presented in the form a computer-generated movie, which makes apparent the high contrast of the transmitted image. A second application of the aerial image model is to two-dimensional resist pattern modeling. Although not as sophisticated as SAMPLE4 this model is capable of modeling com-plete structures, such as a dynamic RAM cell. The output of the model is a three-dimensional surface which is displayed using a computer-generated, shaded surface. Linewidth variation with exposure is easily explored with this model. It is a best case model in that it assumes ideal optics and resist development conditions. Resist thickness is calculated using an experimentally determined thickness transfer function. These assumptions are necessary in order to minimize the time necessary for performing the calculations. The model calculates a pattern on a 512 X 512 point array from an image in 1-2 min. on a VAX-780. Since ideal conditions are assumed, the utility of the model is primarily in its ability to predict when a structure is beyond the limits of a given optical system. Applications of the model to CEL will be presented.

  20. Could contrast-enhanced CT detect STEMI prior to electrocardiogram?

    PubMed

    Sabbagh, Chadi; Rahi, Mayda; Baz, Maria; Haddad, Fadi; Helwe, Omar; Aoun, Noel; Ibrahim, Tony; Abdo, Lynn

    2015-01-01

    We present here a case in which contrast-enhanced computed tomography (CT) was the first diagnostic tool to detect myocardial hypoperfusion in a patient with atypical symptoms and normal electrocardiogram (ECG) on admission. An ST-segment elevation was detected thereafter on a second ECG realized several minutes after CT with raised troponin levels. Percutaneous coronary intervention was performed after failure of thrombolysis and confirmed occlusion of the left anterior descending artery. Further studies are needed to evaluate the role of high-resolution contrast-enhanced CT with or without coronary angiography in the workup of suspected myocardial infarction in the setting of a normal ECG.

  1. Value of contrast-enhanced ultrasound in rheumatic disease.

    PubMed

    Klauser, Andrea Sabine

    2005-12-01

    Ultrasound (US) is a useful tool in the assessment of rheumatic disease. It permits assessment of early erosive changes and vascularity detection in synovial proliferation, caused by inflammatory activity by using colour/power Doppler US (CDUS/PDUS). In the detection of slow flow and flow in small vessels, the CDUS/PDUS technique is limited. Contrast enhanced US can improve the detection of inflammatory vascularity but is not yet included in routine diagnosis of this condition. However, contrast enhanced US shows promising results in diagnosis, assessment of disease activity and follow up of inflammatory rheumatic diseases.

  2. Intra-Animal Comparison between Three-dimensional Molecularly Targeted US and Three-dimensional Dynamic Contrast-enhanced US for Early Antiangiogenic Treatment Assessment in Colon Cancer1

    PubMed Central

    Wang, Huaijun; Lutz, Amelie M.; Hristov, Dimitre; Tian, Lu; Willmann, Jürgen K.

    2017-01-01

    Purpose To perform an intra-animal comparison between (a) three-dimensional (3D) molecularly targeted ultrasonography (US) by using clinical-grade vascular endothelial growth factor receptor 2 (VEGFR2)–targeted microbubbles and (b) 3D dynamic contrast material–enhanced (DCE) US by using nontargeted microbubbles for assessment of antiangiogenic treatment effects in a murine model of human colon cancer. Materials and Methods Twenty-three mice with human colon cancer xenografts were randomized to receive either single-dose antiangiogenic treatment (bevacizumab, n = 14) or control treatment (saline, n = 9). At baseline and 24 hours after treatment, animals were imaged with a clinical US system equipped with a clinical matrix array transducer by using the following techniques: (a) molecularly targeted US with VEGFR2-targeted microbubbles, (b) bolus DCE US with nontargeted microbubbles, and (c) destruction-replenishment DCE US with nontargeted microbubbles. VEGFR2-targeted US signal, peak enhancement, area under the time-intensity curve, time to peak, relative blood volume (rBV), relative blood flow, and blood flow velocity were quantified. VEGFR2 expression and percentage area of blood vessels were assessed ex vivo with quantitative immunofluorescence and correlated with corresponding in vivo US parameters. Statistical analysis was performed with Wilcoxon signed rank tests and rank sum tests, as well as Pearson correlation analysis. Results Molecularly targeted US signal with VEGFR2-targeted micro-bubbles, peak enhancement, and rBV significantly decreased (P ≤ .03) after a single antiangiogenic treatment compared with those in the control group; similarly, ex vivo VEGFR2 expression (P = .03) and percentage area of blood vessels (P = .03) significantly decreased after antiangiogenic treatment. Three-dimensional molecularly targeted US signal correlated well with VEGFR2 expression (r = 0.86, P = .001), and rBV (r = 0.71, P = .01) and relative blood flow (r = 0.78, P

  3. Contrast-enhanced ultrasonography in Takayasu arteritis: watching and monitoring the arterial inflammation.

    PubMed

    Herlin, Bastien; Baud, Jean-Michel; Chadenat, Marie-Laure; Pico, Fernando

    2015-10-09

    A 43-year-old man was diagnosed with Takayasu arteritis, and treated with methotrexate and corticosteroids. While under treatment and with normal biological inflammatory parameters, he experienced an ischaemic stroke, successfully treated with intravenous thrombolysis (alteplase). The B-mode ultrasound examination revealed circumferential wall thickening of the left common carotid artery. Contrast-enhanced ultrasonography showed a progressive arterial wall enhancement of the left common carotid artery. This pathological enhancement indicates neovascularisation of the arterial wall, which is supposed to correlate with active vascular inflammation. After an increase in immunosuppressive treatment, follow-up contrast-enhanced ultrasonography no longer showed artery wall enhancement. Contrast-enhanced ultrasound examination is an inexpensive, reproducible and minimally invasive method, providing dynamic information on arterial wall neovascularisation and thus inflammation. This case illustrates that contrast-enhanced ultrasonography can be a useful tool for the management and follow-up of Takayasu arteritis, and its use as a marker of disease activity and arterial inflammation in Takayasu arteritis should be evaluated in further studies.

  4. Multiparametric Breast MRI of Breast Cancer

    PubMed Central

    Rahbar, Habib; Partridge, Savannah C.

    2015-01-01

    Synopsis Breast MRI has increased in popularity over the past two decades due to evidence for its high sensitivity for cancer detection. Current clinical MRI approaches rely on the use of a dynamic contrast enhanced (DCE-MRI) acquisition that facilitates morphologic and semi-quantitative kinetic assessments of breast lesions. The use of more functional and quantitative parameters, such as pharmacokinetic features from high temporal resolution DCE-MRI, apparent diffusion coefficient (ADC) and intravoxel incoherent motion (IVIM) on diffusion weighted MRI, and choline concentrations on MR spectroscopy, hold promise to broaden the utility of MRI and improve its specificity. However, due to wide variations in approach among centers for measuring these parameters and the considerable technical challenges, robust multicenter data supporting their routine use is not yet available, limiting current applications of many of these tools to research purposes. PMID:26613883

  5. Evaluation of left ventricular scar identification from contrast enhanced magnetic resonance imaging for guidance of ventricular catheter ablation therapy

    NASA Astrophysics Data System (ADS)

    Rettmann, M. E.; Lehmann, H. I.; Johnson, S. B.; Packer, D. L.

    2016-03-01

    Patients with ventricular arrhythmias typically exhibit myocardial scarring, which is believed to be an important anatomic substrate for reentrant circuits, thereby making these regions a key target in catheter ablation therapy. In ablation therapy, a catheter is guided into the left ventricle and radiofrequency energy is delivered into the tissue to interrupt arrhythmic electrical pathways. Low bipolar voltage regions are typically localized during the procedure through point-by-point construction of an electroanatomic map by sampling the endocardial surface with the ablation catheter and are used as a surrogate for myocardial scar. This process is time consuming, requires significant skill, and has the potential to miss low voltage sites. This has led to efforts to quantify myocardial scar preoperatively using delayed, contrast-enhanced MRI. In this paper, we evaluate the utility of left ventricular scar identification from delayed contrast enhanced magnetic resonance imaging for guidance of catheter ablation of ventricular arrhythmias. Myocardial infarcts were created in three canines followed by a delayed, contrast enhanced MRI scan and electroanatomic mapping. The left ventricle and myocardial scar is segmented from preoperative MRI images and sampled points from the procedural electroanatomical map are registered to the segmented endocardial surface. Sampled points with low bipolar voltage points visually align with the segmented scar regions. This work demonstrates the potential utility of using preoperative delayed, enhanced MRI to identify myocardial scarring for guidance of ventricular catheter ablation therapy.

  6. [Baseline and contrast-enhanced ultrasound of the liver in tumor patients].

    PubMed

    Oldenburg, A; Albrecht, T

    2008-10-01

    In patients with known malignancy, correct detection and characterization of liver lesions has important therapeutic consequences. Conventional sonography is the most commonly used modality for liver imaging in tumor patients. However, it has a lower sensitivity for the detection of liver metastases compared to contrast-enhanced computed tomography (CT) and magnetic resonance imaging (MRI). The majority of liver metastases are hypoechoic and well defined in baseline ultrasound (US), while detection of isoechoic or small liver metastases <1 cm is difficult and the differentiation of liver metastases from benign liver lesions and other malignant liver tumors can be impossible with baseline US. The use of microbubble-based ultrasound contrast agents and contrast-specific imaging techniques advanced the accuracy of ultrasound in liver imaging. Levovist and SonoVue are the US contrast agents approved for liver imaging in Europe. Compared to Levovist, SonoVue allows continuous imaging of the liver in real-time over a period of up to 5 minutes. As a result, SonoVue became the preferred contrast agent for liver imaging in the recent years, while Levovist became less important. Important for the detection of liver metastases are the portal venous and late phases in which metastases show a wash-out and can be detected as hypoechoic lesions in homogeneous enhanced liver parenchyma. The detection of hepatic metastases is substantially improved by CEUS compared to conventional B-mode sonography. Several studies showed sensitivity in detecting liver metastases comparable to that of contrast-enhanced CT and MRI. Furthermore, the typical enhancement patterns of the different benign and malignant liver lesions allow reliable characterization and differentiation from liver metastases in the majority of cases. This paper provides information about the advantages and expedient application of contrast-enhanced ultrasound (CEUS) in tumor patients.

  7. Fusion of Delayed-enhancement MR Imaging and Contrast-enhanced MR Angiography to Visualize Radiofrequency Ablation Scar on the Pulmonary Vein.

    PubMed

    Shigenaga, Yutaka; Kiuchi, Kunihiko; Ikeuchi, Kazushi; Ikeda, Takayuki; Okajima, Katsunori; Yasaka, Yoshinori; Kawai, Hiroya

    2015-01-01

    Delayed-enhancement magnetic resonance imaging (DE-MRI) is reported to detect the radiofrequency (RF) ablation scar of pulmonary vein isolation. However, the precise localization of RF scar is difficult to recognize due to the poor anatomical information of the 3-dimensionally reconstructed DE-MRI. We report 2 cases in which fusion of DE-MRI and contrast-enhanced MR angiography facilitated the identification of RF scar, and we detail our fusion method.

  8. Integration of DCE-MRI and DW-MRI Quantitative Parameters for Breast Lesion Classification

    PubMed Central

    Fusco, Roberta; Sansone, Mario; Filice, Salvatore; Granata, Vincenza; Catalano, Orlando; Amato, Daniela Maria; Di Bonito, Maurizio; D'Aiuto, Massimiliano; Capasso, Immacolata; Rinaldo, Massimo; Petrillo, Antonella

    2015-01-01

    Objective. The purpose of our study was to evaluate the diagnostic value of an imaging protocol combining dynamic contrast-enhanced MRI (DCE-MRI) and diffusion-weighted MRI (DW-MRI) in patients with suspicious breast lesions. Materials and Methods. A total of 31 breast lesions (15 malignant and 16 benign proved by histological examination) in 26 female patients were included in this study. For both DCE-MRI and DW-MRI model free and model based parameters were computed pixel by pixel on manually segmented ROIs. Statistical procedures included conventional linear analysis and more advanced techniques for classification of lesions in benign and malignant. Results. Our findings indicated no strong correlation between DCE-MRI and DW-MRI parameters. Results of classification analysis show that combining of DCE parameters or DW-MRI parameter, in comparison of single feature, does not yield a dramatic improvement of sensitivity and specificity of the two techniques alone. The best performance was obtained considering a full combination of all features. Moreover, the classification results combining all features are dominated by DCE-MRI features alone. Conclusion. The combination of DWI and DCE-MRI does not show a potential to dramatically increase the sensitivity and specificity of breast MRI. DCE-MRI alone gave the same performance as in combination with DW-MRI. PMID:26339597

  9. Quantitative Evaluation of the Reticuloendothelial System Function with Dynamic MRI

    PubMed Central

    Liu, Ting; Choi, Hoon; Zhou, Rong; Chen, I-Wei

    2014-01-01

    Purpose To evaluate the reticuloendothelial system (RES) function by real-time imaging blood clearance as well as hepatic uptake of superparamagnetic iron oxide nanoparticle (SPIO) using dynamic magnetic resonance imaging (MRI) with two-compartment pharmacokinetic modeling. Materials and Methods Kinetics of blood clearance and hepatic accumulation were recorded in young adult male 01b74 athymic nude mice by dynamic T2* weighted MRI after the injection of different doses of SPIO nanoparticles (0.5, 3 or 10 mg Fe/kg). Association parameter, Kin, dissociation parameter, Kout, and elimination constant, Ke, derived from dynamic data with two-compartment model, were used to describe active binding to Kupffer cells and extrahepatic clearance. The clodrosome and liposome were utilized to deplete macrophages and block the RES function to evaluate the capability of the kinetic parameters for investigation of macrophage function and density. Results The two-compartment model provided a good description for all data and showed a low sum squared residual for all mice (0.27±0.03). A lower Kin, a lower Kout and a lower Ke were found after clodrosome treatment, whereas a lower Kin, a higher Kout and a lower Ke were observed after liposome treatment in comparison to saline treatment (P<0.005). Conclusion Dynamic SPIO-enhanced MR imaging with two-compartment modeling can provide information on RES function on both a cell number and receptor function level. PMID:25090653

  10. Contrast-enhanced ultrasound in differentiating malignant from benign portal vein thrombosis in hepatocellular carcinoma

    PubMed Central

    Tarantino, Luciano; Ambrosino, Pasquale; Di Minno, Matteo Nicola Dario

    2015-01-01

    Portal vein thrombosis (PVT) may occur in liver cirrhosis patients. Malignant PVT is a common complication in cirrhotic patients with concomitant hepatocellular carcinoma (HCC) and, in some cases, it may be even the initial sign of an undetected HCC. Detection of malignant PVT in a patient with liver cirrhosis heavily affects the therapeutic strategy. Gray-scale ultrasound (US) is widely unreliable for differentiating benign and malignant thrombi. Although effective for this differential diagnosis, fine-needle biopsy remains an invasive technique. Sensitivity of color-doppler US in detection of malignant thrombi is highly dependent on the size of the thrombus. Contrast-enhanced computed tomography (CT) and contrast-enhanced magnetic resonance (MRI) can be useful to assess the nature of portal thrombus, while limited data are currently available about the role of positron emission tomography (PET) and PET-CT. In contrast with CT, MRI, PET, and PET-CT, contrast-enhanced ultrasound (CEUS) is a fast, effective, well tolerated and cheap technique, that can be performed even in the same session in which the thrombus has been detected. CEUS can be performed bedside and can be available also in transplanted patients. Moreover, CT and MRI only yield a snapshot analysis during contrast diffusion, while CEUS allows for a continuous real-time imaging of the microcirculation that lasts several minutes, so that the whole arterial phase and the late parenchymal phase of the contrast diffusion can be analyzed continuously by real-time US scanning. Continuous real-time monitoring of contrast diffusion entails an easy detection of thrombus maximum enhancement. Moreover, continuous quantitative analyses of enhancement (wash in - wash out studies) by CEUS during contrast diffusion is nowadays available in most CEUS machines, thus giving a more sophisticated and accurate evaluation of the contrast distribution and an increased confidence in diagnosis in difficult cases. In conclusion

  11. Contrast-enhanced photoacoustic tomography of human joints

    NASA Astrophysics Data System (ADS)

    Tian, Chao; Keswani, Rahul K.; Gandikota, Girish; Rosania, Gus R.; Wang, Xueding

    2016-03-01

    Photoacoustic tomography (PAT) provides a unique tool to diagnose inflammatory arthritis. However, the specificity and sensitivity of PAT based on endogenous contrasts is limited. The development of contrast enhanced PAT imaging modalities in combination with small molecule contrast agents could lead to improvements in diagnosis and treatment of joint disease. Accordingly, we adapted and tested a PAT clinical imaging system for imaging the human joints, in combination with a novel PAT contrast agent derived from an FDA-approved small molecule drug. Imaging results based on a photoacoustic and ultrasound (PA/US) dual-modality system revealed that this contrast-enhanced PAT imaging system may offer additional information beyond single-modality PA or US imaging system, for the imaging, diagnosis and assessment of inflammatory arthritis.

  12. Contrast enhanced exposure strategy in multi-beam mask writing

    NASA Astrophysics Data System (ADS)

    Belic, Nikola; Hofmann, Ulrich; Klikovits, Jan; Martens, Stephan

    2013-03-01

    Since multi electron beam exposure has become a serious contender for next generation mask making, proximity- and process effect corrections (PEC) need to be adapted to this technology. With feature sizes in the order of the short-range blurs (resist and tool), contrast enhancements need to be combined with standard linearity corrections. Different PEC strategies are reviewed and compared with respect to their suitability for multi-beam exposure. This analysis recommends a hybrid approach that combines the benefits of shape- and dose PEC and is optimally applicable for multibeam exposure. Exposure results on the proof-of-concept 50keV electron multi-beam mask exposure tool (eMET POC) and a standard 50 kV vector shaped beam tool (VSB) are shown to verify that the combined PEC with overdose contrast enhancement covers the whole pattern range from isolated to opaque.

  13. Diffeomorphic Registration of Images with Variable Contrast Enhancement

    PubMed Central

    Janssens, Guillaume; Jacques, Laurent; Orban de Xivry, Jonathan; Geets, Xavier; Macq, Benoit

    2011-01-01

    Nonrigid image registration is widely used to estimate tissue deformations in highly deformable anatomies. Among the existing methods, nonparametric registration algorithms such as optical flow, or Demons, usually have the advantage of being fast and easy to use. Recently, a diffeomorphic version of the Demons algorithm was proposed. This provides the advantage of producing invertible displacement fields, which is a necessary condition for these to be physical. However, such methods are based on the matching of intensities and are not suitable for registering images with different contrast enhancement. In such cases, a registration method based on the local phase like the Morphons has to be used. In this paper, a diffeomorphic version of the Morphons registration method is proposed and compared to conventional Morphons, Demons, and diffeomorphic Demons. The method is validated in the context of radiotherapy for lung cancer patients on several 4D respiratory-correlated CT scans of the thorax with and without variable contrast enhancement. PMID:21197460

  14. Contrast enhancement of high-energy radiotherapy films.

    PubMed

    Reinstein, L E; Orton, C G

    1979-11-01

    An order-of-magnitude improvment in the contrast of high-energy localization and verification films has been achieved through the application of a simple, inexpensive, contrast enhancement technique. The method involves making reversal contact "prints" of the original film onto ordinary X-ray fi-m with equipment commonly available in any radiotherapy department. This results in "gamma multiplication". The theory as well as several applications of this effect are presented.

  15. Contrast Enhancement Algorithm Based on Gap Adjustment for Histogram Equalization

    PubMed Central

    Chiu, Chung-Cheng; Ting, Chih-Chung

    2016-01-01

    Image enhancement methods have been widely used to improve the visual effects of images. Owing to its simplicity and effectiveness histogram equalization (HE) is one of the methods used for enhancing image contrast. However, HE may result in over-enhancement and feature loss problems that lead to unnatural look and loss of details in the processed images. Researchers have proposed various HE-based methods to solve the over-enhancement problem; however, they have largely ignored the feature loss problem. Therefore, a contrast enhancement algorithm based on gap adjustment for histogram equalization (CegaHE) is proposed. It refers to a visual contrast enhancement algorithm based on histogram equalization (VCEA), which generates visually pleasing enhanced images, and improves the enhancement effects of VCEA. CegaHE adjusts the gaps between two gray values based on the adjustment equation, which takes the properties of human visual perception into consideration, to solve the over-enhancement problem. Besides, it also alleviates the feature loss problem and further enhances the textures in the dark regions of the images to improve the quality of the processed images for human visual perception. Experimental results demonstrate that CegaHE is a reliable method for contrast enhancement and that it significantly outperforms VCEA and other methods. PMID:27338412

  16. Dynamic lumbar spinal stenosis : the usefulness of axial loaded MRI in preoperative evaluation.

    PubMed

    Choi, Kyung-Chul; Kim, Jin-Sung; Jung, Byungjoo; Lee, Sang-Ho

    2009-09-01

    Two cases of dynamic lumbar spinal stenosis were identified by the authors using axial loaded magnetic resonance image (MRI). In both cases, the patients presented with neurogenic claudication but MRI in decumbency showed no definite pathologic condition associated with their symptoms. In contrast, axial loaded MRI demonstrated constrictive spinal stenosis and a significantly decreased dural sac caused by epidural fat buckling and thickening of the ligamentum flavum in both cases. In the second case, a more prominent disc protrusion was also demonstrated compared with decumbent MRI. After decompressive surgery, both patients had satisfactory outcomes. Axial loaded MRI can therefore give decisive information in dynamic spinal disorders by allowing simulation of an upright position.

  17. Contrast-Enhanced Ultrasound Imaging for the Detection of Focused Ultrasound-Induced Blood-Brain Barrier Opening

    PubMed Central

    Fan, Ching-Hsiang; Lin, Wun-Hao; Ting, Chien-Yu; Chai, Wen-Yen; Yen, Tzu-Chen; Liu, Hao-Li; Yeh, Chih-Kuang

    2014-01-01

    The blood-brain barrier (BBB) can be transiently and locally opened by focused ultrasound (FUS) in the presence of microbubbles (MBs). Various imaging modalities and contrast agents have been used to monitor this process. Unfortunately, direct ultrasound imaging of BBB opening with MBs as contrast agent is not feasible, due to the inability of MBs to penetrate brain parenchyma. However, FUS-induced BBB opening is accompanied by changes in blood flow and perfusion, suggesting the possibility of perfusion-based ultrasound imaging. Here we evaluated the use of MB destruction-replenishment, which was originally developed for analysis of ultrasound perfusion kinetics, for verifying and quantifying FUS-induced BBB opening. MBs were intravenously injected and the BBB was disrupted by 2 MHz FUS with burst-tone exposure at 0.5-0.7 MPa. A perfusion kinetic map was estimated by MB destruction-replenishment time-intensity curve analysis. Our results showed that the scale and distribution of FUS-induced BBB opening could be determined at high resolution by ultrasound perfusion kinetic analysis. The accuracy and sensitivity of this approach was validated by dynamic contrast-enhanced MRI. Our successful demonstration of ultrasound imaging to monitor FUS-induced BBB opening provides a new approach to assess FUS-dependent brain drug delivery, with the benefit of high temporal resolution and convenient integration with the FUS device. PMID:25161701

  18. Usefulness of contrast-enhanced magnetic resonance imaging for evaluating solitary pulmonary nodules

    PubMed Central

    2008-01-01

    Abstract Evaluation of solitary pulmonary nodules (SPNs) poses a challenge to radiologists. Chest computed tomography (CT) is considered the standard technique for assessing morphologic findings and intrathoracic spread of an SPN. Although the clinical role of magnetic resonance imaging (MRI) for SPNs remains limited, considerable experience has been gained with MRI of thoracic diseases. Dynamic MRI and dynamic CT are useful for differentiating between malignant and benign SPNs (especially tuberculomas and hamartomas). Furthermore, dynamic MRI is useful for assessing tumor vascularity, interstitium, and vascular endothelial growth factor expression, and for predicting survival outcome among patients with peripheral pulmonary carcinoma. These advantages make dynamic MRI a promising method and a potential biomarker for characterizing tumor response to anti-angiogenic treatment as well as for predicting survival outcomes after treatment. PMID:18331971

  19. Dynamic deformable models for 3D MRI heart segmentation

    NASA Astrophysics Data System (ADS)

    Zhukov, Leonid; Bao, Zhaosheng; Gusikov, Igor; Wood, John; Breen, David E.

    2002-05-01

    Automated or semiautomated segmentation of medical images decreases interstudy variation, observer bias, and postprocessing time as well as providing clincally-relevant quantitative data. In this paper we present a new dynamic deformable modeling approach to 3D segmentation. It utilizes recently developed dynamic remeshing techniques and curvature estimation methods to produce high-quality meshes. The approach has been implemented in an interactive environment that allows a user to specify an initial model and identify key features in the data. These features act as hard constraints that the model must not pass through as it deforms. We have employed the method to perform semi-automatic segmentation of heart structures from cine MRI data.

  20. Uterus segmentation in dynamic MRI using LBP texture descriptors

    NASA Astrophysics Data System (ADS)

    Namias, R.; Bellemare, M.-E.; Rahim, M.; Pirró, N.

    2014-03-01

    Pelvic floor disorders cover pathologies of which physiopathology is not well understood. However cases get prevalent with an ageing population. Within the context of a project aiming at modelization of the dynamics of pelvic organs, we have developed an efficient segmentation process. It aims at alleviating the radiologist with a tedious one by one image analysis. From a first contour delineating the uterus-vagina set, the organ border is tracked along a dynamic mri sequence. The process combines movement prediction, local intensity and texture analysis and active contour geometry control. Movement prediction allows a contour intitialization for next image in the sequence. Intensity analysis provides image-based local contour detection enhanced by local binary pattern (lbp) texture descriptors. Geometry control prohibits self intersections and smoothes the contour. Results show the efficiency of the method with images produced in clinical routine.

  1. GPU accelerated dynamic functional connectivity analysis for functional MRI data.

    PubMed

    Akgün, Devrim; Sakoğlu, Ünal; Esquivel, Johnny; Adinoff, Bryon; Mete, Mutlu

    2015-07-01

    Recent advances in multi-core processors and graphics card based computational technologies have paved the way for an improved and dynamic utilization of parallel computing techniques. Numerous applications have been implemented for the acceleration of computationally-intensive problems in various computational science fields including bioinformatics, in which big data problems are prevalent. In neuroimaging, dynamic functional connectivity (DFC) analysis is a computationally demanding method used to investigate dynamic functional interactions among different brain regions or networks identified with functional magnetic resonance imaging (fMRI) data. In this study, we implemented and analyzed a parallel DFC algorithm based on thread-based and block-based approaches. The thread-based approach was designed to parallelize DFC computations and was implemented in both Open Multi-Processing (OpenMP) and Compute Unified Device Architecture (CUDA) programming platforms. Another approach developed in this study to better utilize CUDA architecture is the block-based approach, where parallelization involves smaller parts of fMRI time-courses obtained by sliding-windows. Experimental results showed that the proposed parallel design solutions enabled by the GPUs significantly reduce the computation time for DFC analysis. Multicore implementation using OpenMP on 8-core processor provides up to 7.7× speed-up. GPU implementation using CUDA yielded substantial accelerations ranging from 18.5× to 157× speed-up once thread-based and block-based approaches were combined in the analysis. Proposed parallel programming solutions showed that multi-core processor and CUDA-supported GPU implementations accelerated the DFC analyses significantly. Developed algorithms make the DFC analyses more practical for multi-subject studies with more dynamic analyses.

  2. Analysis of breast lesions on contrast-enhanced magnetic resonance images using high-dimensional texture features

    NASA Astrophysics Data System (ADS)

    Nagarajan, Mahesh B.; Huber, Markus B.; Schlossbauer, Thomas; Leinsinger, Gerda; Wismueller, Axel

    2010-03-01

    Haralick texture features derived from gray-level co-occurrence matrices (GLCM) were used to classify the character of suspicious breast lesions as benign or malignant on dynamic contrast-enhanced MRI studies. Lesions were identified and annotated by an experienced radiologist on 54 MRI exams of female patients where histopathological reports were available prior to this investigation. GLCMs were then extracted from these 2D regions of interest (ROI) for four principal directions (0°, 45°, 90° & 135°) and used to compute Haralick texture features. A fuzzy k-nearest neighbor (k- NN) classifier was optimized in ten-fold cross-validation for each texture feature and the classification performance was calculated on an independent test set as a function of area under the ROC curve. The lesion ROIs were characterized by texture feature vectors containing the Haralick feature values computed from each directional-GLCM; and the classifier results obtained were compared to a previously used approach where the directional-GLCMs were summed to a nondirectional GLCM which could further yield a set of texture feature values. The impact of varying the inter-pixel distance while generating the GLCMs on the classifier's performance was also investigated. Classifier's AUC was found to significantly increase when the high-dimensional texture feature vector approach was pursued, and when features derived from GLCMs generated using different inter-pixel distances were incorporated into the classification task. These results indicate that lesion character classification accuracy could be improved by retaining the texture features derived from the different directional GLCMs rather than combining these to yield a set of scalar feature values instead.

  3. Vascular assessment of liver disease—towards a new frontier in MRI

    PubMed Central

    Chouhan, Manil D; Lythgoe, Mark F; Mookerjee, Rajeshwar P

    2016-01-01

    Complex haemodynamic phenomena underpin the pathophysiology of chronic liver disease. Non-invasive MRI-based assessment of hepatic vascular parameters therefore has the potential to yield meaningful biomarkers for chronic liver disease. In this review, we provide an overview of vascular sequelae of chronic liver disease amenable to imaging evaluation and describe the current supportive evidence, strengths and the limitations of MRI methodologies, including dynamic contrast-enhanced, dynamic hepatocyte-specific contrast-enhanced, phase-contrast, arterial spin labelling and MR elastography in the assessment of hepatic vascular parameters. We review the broader challenges of quantitative hepatic vascular MRI, including the difficulties of motion artefact, complex post-processing, long acquisition times, validation and limitations of pharmacokinetic models, alongside the potential solutions that will shape the future of MRI and deliver this new frontier to the patient bedside. PMID:27115318

  4. MRI Biomarkers in Oncology Clinical Trials

    PubMed Central

    Abramson, Richard G.; Arlinghaus, Lori; Dula, Adrienne; Quarles, C. Chad; Stokes, Ashley; Weis, Jared; Whisenant, Jennifer; Chekmenev, Eduard Y.; Zhukov, Igor; Williams, Jason; Yankeelov, Thomas

    2015-01-01

    Quantitative magnetic resonance imaging (MRI) techniques have the ability to quantitatively report various pathophysiological processes associated with cancer. These measures have been shown to provide complementary information to that typically obtained from standard morphologically based criteria (e.g., size) and, furthermore, have been shown to outperform sized based measures in certain applications. In this review, we discuss eight areas of quantitative MRI that are either currently employed in clinical trials, or are emerging as promising techniques for both diagnosing cancer as well as assessing—or even predicting—the response of cancer to various therapies. The currently employed methods include the response evaluation criteria in solid tumors (RECIST), dynamic susceptibility MRI (DSC-MRI), dynamic contrast enhanced MRI (DCE-MRI), and diffusion weighted imaging (DWI). The emerging techniques covered are chemical exchange saturation transfer MRI (CEST-MRI), elastography, hyperpolarized MRI, and multi-parameter MRI. After a brief introduction to each technique, we present a small number of illustrative applications before noting the existing limitations of each method and what must be done to move each to more routine clinical application. PMID:26613873

  5. Contrast-enhanced ultrasonographic characteristics of adrenal glands in dogs with pituitary-dependent hyperadrenocorticism.

    PubMed

    Bargellini, Paolo; Orlandi, Riccardo; Paloni, Chiara; Rubini, Giuseppe; Fonti, Paolo; Peterson, Mark E; Boiti, Cristiano

    2013-01-01

    A noninvasive method for quantifying adrenal gland vascular patterns could be helpful for improving detection of adrenal gland disease in dogs. The purpose of this retrospective study was to compare the contrast-enhanced ultrasound (CEUS) characteristics of adrenal glands in 18 dogs with pituitary-dependent hyperadrenocorticism (PDH) vs. four clinically healthy dogs. Each dog received a bolus of the contrast agent (SonoVue®, 0.03 ml/kg of body weight) into the cephalic vein, immediately followed by a 5 ml saline flush. Dynamic contrast enhancement was analyzed using time-intensity curves in two regions of interest drawn manually in the caudal part of the adrenal cortex and medulla, respectively. In healthy dogs, contrast enhancement distribution was homogeneous and exhibited increased intensity from the medulla to the cortex. In the washout phase, there was a gradual and homogeneous decrease of enhancement of the adrenal gland. For all dogs with PDH, there was rapid, chaotic, and simultaneous contrast enhancement in both the medulla and cortex. Three distinct perfusion patterns were observed. Peak perfusion intensity was approximately twice as high (P < 0.05) in dogs with PDH compared with that of healthy dogs (28.90 ± 10.36 vs. 48.47 ± 15.28, respectively). In dogs with PDH, adrenal blood flow and blood volume values were approximately two- to fourfold (P < 0.05) greater than those of controls. Findings from the present study support the use of CEUS as a clinical tool for characterizing canine adrenal gland disease based on changes in vascular patterns.

  6. How to Develop a Contrast-Enhanced Ultrasound Program.

    PubMed

    Barr, Richard G

    2017-02-02

    With the recent Food and Drug Administration approval of Lumason (sulfur hexafluoride lipid-type A microsphere, Bracco Diagnostics Inc, Monroe Township, NJ) for contrast-enhanced ultrasound (CEUS) to characterize focal liver lesions in both adult and pediatric patients, widespread use of CEUS is expected in the United States. This paper provides guidance in setting up a CEUS program, and reviews the practical details that will need to be instituted in a standard ultrasound department to provide both safe and efficient use of CEUS. A review of the indications, contraindications, adverse events, instructions for performing the exam, and image interpretation are discussed.

  7. Assessment of contrast enhanced respiration managed cone-beam CT for image guided radiotherapy of intrahepatic tumors

    SciTech Connect

    Jensen, Nikolaj K. G.; Stewart, Errol; Lock, Michael; Fisher, Barbara; Kozak, Roman; Chen, Jeff; Lee, Ting-Yim; Wong, Eugene

    2014-05-15

    Purpose: Contrast enhancement and respiration management are widely used during image acquisition for radiotherapy treatment planning of liver tumors along with respiration management at the treatment unit. However, neither respiration management nor intravenous contrast is commonly used during cone-beam CT (CBCT) image acquisition for alignment prior to radiotherapy. In this study, the authors investigate the potential gains of injecting an iodinated contrast agent in combination with respiration management during CBCT acquisition for liver tumor radiotherapy. Methods: Five rabbits with implanted liver tumors were subjected to CBCT with and without motion management and contrast injection. The acquired CBCT images were registered to the planning CT to determine alignment accuracy and dosimetric impact. The authors developed a simulation tool for simulating contrast-enhanced CBCT images from dynamic contrast enhanced CT imaging (DCE-CT) to determine optimal contrast injection protocols. The tool was validated against contrast-enhanced CBCT of the rabbit subjects and was used for five human patients diagnosed with hepatocellular carcinoma. Results: In the rabbit experiment, when neither motion management nor contrast was used, tumor centroid misalignment between planning image and CBCT was 9.2 mm. This was reduced to 2.8 mm when both techniques were employed. Tumors were not visualized in clinical CBCT images of human subjects. Simulated contrast-enhanced CBCT was found to improve tumor contrast in all subjects. Different patients were found to require different contrast injections to maximize tumor contrast. Conclusions: Based on the authors’ animal study, respiration managed contrast enhanced CBCT improves IGRT significantly. Contrast enhanced CBCT benefits from patient specific tracer kinetics determined from DCE-CT.

  8. Development of contrast enhancing agents in magnetic resonance imaging.

    PubMed

    Lex, L

    1989-01-01

    Magnetic Resonance Imaging (MRI) is a powerful new diagnostic tool in medicine. In MRI there is a great need to improve the specific identification of different tissues i.e. to enhance the contrast between them. This review tries to cover most of the approaches known for solving this problem.

  9. DCE-MRI, DW-MRI, and MRS in Cancer: Challenges and Advantages of Implementing Qualitative and Quantitative Multi-parametric Imaging in the Clinic

    PubMed Central

    Winfield, Jessica M.; Payne, Geoffrey S.; Weller, Alex; deSouza, Nandita M.

    2016-01-01

    Abstract Multi-parametric magnetic resonance imaging (mpMRI) offers a unique insight into tumor biology by combining functional MRI techniques that inform on cellularity (diffusion-weighted MRI), vascular properties (dynamic contrast-enhanced MRI), and metabolites (magnetic resonance spectroscopy) and has scope to provide valuable information for prognostication and response assessment. Challenges in the application of mpMRI in the clinic include the technical considerations in acquiring good quality functional MRI data, development of robust techniques for analysis, and clinical interpretation of the results. This article summarizes the technical challenges in acquisition and analysis of multi-parametric MRI data before reviewing the key applications of multi-parametric MRI in clinical research and practice. PMID:27748710

  10. Contrast-enhanced magnetic resonance tomoangiography: a new imaging technique for studying thoracic great vessels.

    PubMed

    Revel, D; Loubeyre, P; Delignette, A; Douek, P; Amiel, M

    1993-01-01

    The authors propose a new imaging approach for studying thoracic great vessels, using high-speed MR imaging combined with intravenous rapid bolus injection of a paramagnetic contrast media. The decrease of the T1 relaxation time of flowing blood induced by the contrast agent (Gd-DOTA) caused an increased signal intensity within the vessel lumen for a time period allowing multiplanar imaging of various vascular structures. The intraluminal signal enhancement is mainly related to the blood concentration of the contrast agent as in conventional X-ray angiography. Information on the aorta and pulmonary arteries obtained by the so-called contrast-enhanced magnetic resonance tomoangiography appears complementary to that obtained with other vascular MR imaging procedures such as cine-MRI and magnetic resonance angiography (MRA).

  11. Adaptive sigmoid function bihistogram equalization for image contrast enhancement

    NASA Astrophysics Data System (ADS)

    Arriaga-Garcia, Edgar F.; Sanchez-Yanez, Raul E.; Ruiz-Pinales, Jose; Garcia-Hernandez, Ma. de Guadalupe

    2015-09-01

    Contrast enhancement plays a key role in a wide range of applications including consumer electronic applications, such as video surveillance, digital cameras, and televisions. The main goal of contrast enhancement is to increase the quality of images. However, most state-of-the-art methods induce different types of distortion such as intensity shift, wash-out, noise, intensity burn-out, and intensity saturation. In addition, in consumer electronics, simple and fast methods are required in order to be implemented in real time. A bihistogram equalization method based on adaptive sigmoid functions is proposed. It consists of splitting the image histogram into two parts that are equalized independently by using adaptive sigmoid functions. In order to preserve the mean brightness of the input image, the parameter of the sigmoid functions is chosen to minimize the absolute mean brightness metric. Experiments on the Berkeley database have shown that the proposed method improves the quality of images and preserves their mean brightness. An application to improve the colorfulness of images is also presented.

  12. Fuzzy pulmonary vessel segmentation in contrast enhanced CT data

    NASA Astrophysics Data System (ADS)

    Kaftan, Jens N.; Kiraly, Atilla P.; Bakai, Annemarie; Das, Marco; Novak, Carol L.; Aach, Til

    2008-03-01

    Pulmonary vascular tree segmentation has numerous applications in medical imaging and computer-aided diagnosis (CAD), including detection and visualization of pulmonary emboli (PE), improved lung nodule detection, and quantitative vessel analysis. We present a novel approach to pulmonary vessel segmentation based on a fuzzy segmentation concept, combining the strengths of both threshold and seed point based methods. The lungs of the original image are first segmented and a threshold-based approach identifies core vessel components with a high specificity. These components are then used to automatically identify reliable seed points for a fuzzy seed point based segmentation method, namely fuzzy connectedness. The output of the method consists of the probability of each voxel belonging to the vascular tree. Hence, our method provides the possibility to adjust the sensitivity/specificity of the segmentation result a posteriori according to application-specific requirements, through definition of a minimum vessel-probability required to classify a voxel as belonging to the vascular tree. The method has been evaluated on contrast-enhanced thoracic CT scans from clinical PE cases and demonstrates overall promising results. For quantitative validation we compare the segmentation results to randomly selected, semi-automatically segmented sub-volumes and present the resulting receiver operating characteristic (ROC) curves. Although we focus on contrast enhanced chest CT data, the method can be generalized to other regions of the body as well as to different imaging modalities.

  13. Contrast-enhanced magnetic resonance imaging of hypoperfused myocardium.

    PubMed

    Schaefer, S; Lange, R A; Gutekunst, D P; Parkey, R W; Willerson, J T; Peshock, R M

    1991-06-01

    Contrast-enhanced magnetic resonance (MR) imaging can define myocardial perfusion defects due to acute coronary occlusion. However, since most clinically important diagnostic examinations involve coronary arteries with subtotal stenoses, we investigated the ability of MR imaging with a manganese contrast agent to detect perfusion abnormalities in a canine model of partial coronary artery stenosis. The contrast agent was administered after the creation of a partial coronary artery stenosis with the addition of the coronary vasodilator dipyridamole in six of 12 animals. The hearts were imaged ex situ using gradient reversal and spin-echo sequences, and images were analyzed to determine differences in signal intensity between hypoperfused and normally perfused myocardium. Comparison of MR images with regional blood flow and thallium-201 measurements showed good concordance of hypoperfused segments in those animals given dipyridamole, with 75% of the abnormal segments correctly identified. In those animals not given dipyridamole, 48% of segments were correctly identified. Thus, ex vivo MR imaging with a paramagnetic contrast enhancement can be used to detect acute regional myocardial perfusion abnormalities due to severe partial coronary artery stenoses.

  14. Versatile utilization of real-time intraoperative contrast-enhanced ultrasound in cranial neurosurgery: technical note and retrospective case series

    PubMed Central

    Lekht, Ilya; Brauner, Noah; Bakhsheshian, Joshua; Chang, Ki-Eun; Gulati, Mittul; Shiroishi, Mark S.; Grant, Edward G.; Christian, Eisha; Zada, Gabriel

    2016-01-01

    OBJECTIVE Intraoperative contrast-enhanced ultrasound (iCEUS) offers dynamic imaging and provides functional data in real time. However, no standardized protocols or validated quantitative data exist to guide its routine use in neurosurgery. The authors aimed to provide further clinical data on the versatile application of iCEUS through a technical note and illustrative case series. METHODS Five patients undergoing craniotomies for suspected tumors were included. iCEUS was performed using a contrast agent composed of lipid shell microspheres enclosing perflutren (octafluoropropane) gas. Perfusion data were acquired through a time-intensity curve analysis protocol obtained using iCEUS prior to biopsy and/or resection of all lesions. RESULTS Three primary tumors (gemistocytic astrocytoma, glioblastoma multiforme, and meningioma), 1 metastatic lesion (melanoma), and 1 tumefactive demyelinating lesion (multiple sclerosis) were assessed using real-time iCEUS. No intraoperative complications occurred following multiple administrations of contrast agent in all cases. In all neoplastic cases, iCEUS replicated enhancement patterns observed on preoperative Gd-enhanced MRI, facilitated safe tumor de-bulking by differentiating neoplastic tissue from normal brain parenchyma, and helped identify arterial feeders and draining veins in and around the surgical cavity. Intraoperative CEUS was also useful in guiding a successful intraoperative needle biopsy of a cerebellar tumefactive demyelinating lesion obtained during real-time perfusion analysis. CONCLUSIONS Intraoperative CEUS has potential for safe, real-time, dynamic contrast-based imaging for routine use in neurooncological surgery and image-guided biopsy. Intraoperative CEUS eliminates the effect of anatomical distortions associated with standard neuronavigation and provides quantitative perfusion data in real time, which may hold major implications for intraoperative diagnosis, tissue differentiation, and quantification of

  15. Contrast enhancing solution for use in confocal microscopy

    DOEpatents

    Tannous, Zeina; Torres, Abel; Gonzalez, Salvador

    2006-10-31

    A method of optically detecting a tumor during surgery. The method includes imaging at least one test point defined on the tumor using a first optical imaging system to provide a first tumor image. The method further includes excising a first predetermined layer of the tumor for forming an in-vivo defect area. A predetermined contrast enhancing solution is disposed on the in-vivo defect area, which is adapted to interact with at least one cell anomaly, such as basal cell carcinoma, located on the in-vivo defect area for optically enhancing the cell anomaly. Thereafter the defect area can be optically imaged to provide a clear and bright representation of the cell anomaly to aid a surgeon while surgically removing the cell anomaly.

  16. Denoising in Contrast-Enhanced X-ray Images

    NASA Astrophysics Data System (ADS)

    Jeon, Gwanggil

    2016-12-01

    In this paper, we propose a denoising and contrast-enhancement method for medical images. The main purpose of medical image improvement is to transform lower contrast data into higher contrast, and to reduce high noise levels. To meet this goal, we propose a noise-level estimation method, whereby the noise level is estimated by computing the standard deviation and variance in a local block. The obtained noise level is then used as an input parameter for the block-matching and 3D filtering (BM3D) algorithm, and the denoising process is then performed. Noise-level estimation step is important because the BM3D algorithm does not perform well without correct noise-level information. Simulation results confirm that the proposed method outperforms other benchmarks with respect to both their objective and visual performances.

  17. Role of contrast-enhanced endoscopic ultrasound in lymph nodes

    PubMed Central

    Hocke, Michael; Ignee, Andre; Dietrich, Christoph

    2017-01-01

    Diagnosing unclear lymph node (LN) enlargements in the mediastinum and abdomen is the most important indication of endoscopic ultrasound (EUS)-fine needle aspiration (FNA) after the diagnosis and treatment of pancreatic diseases. Investigating LNs in these areas can happen in different clinical settings. Mostly, it is the first modality in general LN diseases without any peripheral LN enlargements. On the other hand, it can be the question of LN involvement in a known or suspected primary tumor. Due to EUS-FNA cytology, those questions can be answered highly, accurately. However, a primary discrimination of LNs might be helpful to increase the diagnostic value of the FNA cytology, especially in cases with multiple LN enlargements and hard to reach enlarged LNs for example by vessel interposition. Because of the unreliability of B-mode criteria, further diagnostic improvements such as elastography and contrast-enhanced EUS are investigated to increase the accuracy of the initial diagnosis. PMID:28218194

  18. Microvascular contrast enhancement in optical coherence tomography using microbubbles

    NASA Astrophysics Data System (ADS)

    Assadi, Homa; Demidov, Valentin; Karshafian, Raffi; Douplik, Alexandre; Vitkin, I. Alex

    2016-07-01

    Gas microbubbles (MBs) are investigated as intravascular optical coherence tomography (OCT) contrast agents. Agar + intralipid scattering tissue phantoms with two embedded microtubes were fabricated to model vascular blood flow. One was filled with human blood, and the other with a mixture of human blood + MB. Swept-source structural and speckle variance (sv) OCT images, as well as speckle decorrelation times, were evaluated under both no-flow and varying flow conditions. Faster decorrelation times and higher structural and svOCT image contrasts were detected in the presence of MB in all experiments. The effects were largest in the svOCT imaging mode, and uniformly diminished with increasing flow velocity. These findings suggest the feasibility of utilizing MB for tissue hemodynamic investigations and for microvasculature contrast enhancement in OCT angiography.

  19. Contrast-Enhanced Ultrasonography in Crohn's Disease Diagnostics.

    PubMed

    Białecki, Marcin; Białecka, Agnieszka; Laskowska, Katarzyna; Liebert, Ariel; Kłopocka, Maria; Serafin, Zbigniew

    2015-06-01

    The chronic nature of Crohn's disease (CD) implicates necessity of multiple control assessments throughout patient's life. It is accepted that in patients with CD requiring disease monitoring, magnetic resonance enterography (MRE) and computed tomography enterography (CTE) are--apart from endoscopy--imaging studies of first choice. In practice, diagnostic imaging of patients with CD is troublesome, since MRE is an expensive and complicated study, and CTE exposes patients to high doses of ionizing radiation. Therefore, there is a need for new, both non-invasive and effective, methods of imaging in CD. Contrast-Enhanced Ultrasonography (CEUS) is a relatively new method using gas-filled microbubbles serving as contrast agent. It allows for detailed assessment of blood perfusion within intestine wall and peri-intestinal tissues, which enables detection and monitoring of inflammation and its qualitative assessment. The purpose of this paper is to describe CEUS examination technique and its clinical applications in patients with Crohn's disease.

  20. Design of a clinical vein contrast enhancing projector

    NASA Astrophysics Data System (ADS)

    Zeman, Herbert D.; Lovhoiden, Gunnar; Deshmukh, Harshal

    2001-06-01

    A clinical study has been initiated to compare an experimental IR device, the Vein Contrast Enhancer (VCE), with standard techniques for finding veins for venipuncture. The aims of this proposal are (1) to evaluate the performance of the VCE in a clinical setting, specifically by comparing its sensitivity of detection with existing vein-finding techniques used by experienced nurses or phlebotomists, (2) to study its usefulness in subjects who are obese, who have difficult venous access or thrombosed veins, or whose veins are not visible or difficult to palpate, and (3) to show that it performs as well on subjects with darkly pigmented skin as on subjects with lightly pigmented skin. The VCE will first be studied in adult subjects, and then in pediatric subjects.

  1. Image contrast enhancement based on a local standard deviation model

    SciTech Connect

    Chang, Dah-Chung; Wu, Wen-Rong

    1996-12-31

    The adaptive contrast enhancement (ACE) algorithm is a widely used image enhancement method, which needs a contrast gain to adjust high frequency components of an image. In the literature, the gain is usually inversely proportional to the local standard deviation (LSD) or is a constant. But these cause two problems in practical applications, i.e., noise overenhancement and ringing artifact. In this paper a new gain is developed based on Hunt`s Gaussian image model to prevent the two defects. The new gain is a nonlinear function of LSD and has the desired characteristic emphasizing the LSD regions in which details are concentrated. We have applied the new ACE algorithm to chest x-ray images and the simulations show the effectiveness of the proposed algorithm.

  2. Contrast-enhanced imaging of cerebral vasculature with laser speckle

    NASA Astrophysics Data System (ADS)

    Murari, K.; Li, N.; Rege, A.; Jia, X.; All, A.; Thakor, N.

    2007-08-01

    High-resolution cerebral vasculature imaging has applications ranging from intraoperative procedures to basic neuroscience research. Laser speckle, with spatial contrast processing, has recently been used to map cerebral blood flow. We present an application of the technique using temporal contrast processing to image cerebral vascular structures with a field of view a few millimeters across and approximately 20 μm resolution through a thinned skull. We validate the images using fluorescent imaging and demonstrate a factor of 2-4 enhancement in contrast-to-noise ratios over reflectance imaging using white or spectrally filtered green light. The contrast enhancement enables the perception of approximately 10%-30% more vascular structures without the introduction of any contrast agent.

  3. Contrast enhancement in natural scenes using multiband polarization methods

    NASA Astrophysics Data System (ADS)

    Duggin, Michael J.; Kinn, Gerald J.; Bohling, Edward H.

    1997-10-01

    Relatively little work has been performed to investigate the potential of polarization techniques to provide contrast enhancement in natural scenes. Largely, this is because film is less accurate radiometrically than digital CCD FPA sensing devices. Such enhancement is additional to that provided by between-band differences for multiband data. Recently, Kodak has developed several digital imaging cameras which were intended for professional photographers. The variant we used obtained images in the green, red and near infrared, simulating CIR film. However, the application of linear drivers to rad the data from the camera into the computer has resulted in a device which can be used as a multiband imaging polarimeter. Here we examine the potential of digital image acquisition as a potential quantitative method to obtain new information additional to that obtained by multiband or even hyperspectral imaging methods. We present an example of an active on-going research program.

  4. Contrast-enhanced microwave detection and treatment of breast cancer

    NASA Astrophysics Data System (ADS)

    Gao, Fuqiang

    Contrast agents and heating agents have been proposed for microwave breast tumor imaging and treatment, respectively. The dielectric properties of the tumor are altered with contrast agents or heating agents that locally accumulate in the tumor. The resulting change in dielectric properties of the tumor has the potential to enhance the sensitivity of microwave imaging of breast tumors and increase the efficiency and selectivity of microwave thermal therapy of breast tumors. This dissertation addresses several key challenges in contrast-enhanced microwave imaging and treatment of breast tumors. Carbon nanotubes (CNTs) have been shown to enhance both the relative permittivity and effective conductivity of the host medium, and are promising as theranostic (integrated therapeutic and diagnostic) agents. Thus, our properties characterization work focuses on CNT dispersions. We performed in vitro microwave dielectric properties and heating response characterization of dispersions of CNTs treated by different functionalization methods and identified a CNT formulation that is very promising as a microwave theranostic agent. Stable dispersions of CNTs with concentrations up to 20 mg/ml are obtained with this formulation, and the enhanced microwave properties of these dispersions are extraordinary compared to the control. We also conducted in vivo dielectric properties characterization of mouse tumors with intra-tumoral injections of CNT dispersions and confirmed that the presence of CNTs increases the dielectric properties of the tumor. In parallel, we developed a contrast-enhanced microwave breast tumor imaging algorithm using sparse reconstruction methods. We demonstrated that this algorithm accurately localizes small tumors in 3D numerical breast phantoms. We also demonstrated the experimental feasibility of this method using physical breast phantoms. Lastly, we studied the sensitivity of the distorted Born iterative method (DBIM) to initial guesses and developed a

  5. Contrast-enhanced ultrasonography to diagnose complicated acute cholecystitis.

    PubMed

    Sagrini, Elisabetta; Pecorelli, Anna; Pettinari, Irene; Cucchetti, Alessandro; Stefanini, Federico; Bolondi, Luigi; Piscaglia, Fabio

    2016-02-01

    Gangrenous cholecystitis and perforation are severe complications of acute cholecystitis, which have a challenging preoperative diagnosis. Early identification allows better surgical management. Contrast-enhanced computed tomography (ceCT) is the current diagnostic gold standard. Contrast-enhanced ultrasonography (CEUS) is a promising tool for the diagnosis of gallbladder perforation, but data from the literature concerning efficacy are sparse. The aim of the study was to evaluate CEUS findings in pathologically proven complicated cholecystitis (gangrenous, perforated gallbladder, pericholecystic abscess). A total of 8 patients submitted to preoperative CEUS, and with subsequent proven acute complicated cholecystitis at surgical inspection and pathological analysis, were retrospectively identified. The final diagnosis was gangrenous/phlegmonous cholecystitis (n. 2), phlegmonous/ulcerative changes plus pericholecystic abscess (n. 2), perforated plus pericholecystic abscess (n. 3), or perforated plus pericholecystic biliary collection (n. 1). Conventional US findings revealed irregularly thickened gallbladder walls in all 8 patients, with vaguely defined walls in 7 patients, four of whom also had striated wall thickening. CEUS revealed irregular enhancing gallbladder walls in all patients. A distinct wall defect was seen in six patients, confirmed as gangrenous/phlegmonous cholecystitis at pathology in all six, and in four as perforation at macroscopic surgical inspection. CEUS is a non-invasive easily repeatable technique that can be performed at the bedside, and is able to accurately diagnose complicated/perforated cholecystitis. Despite the limited sample size in the present case series, CEUS appears as a promising tool for the management of patients with the clinical possibility of having an acute complicated cholecystitis.

  6. Multilattice sampling strategies for region of interest dynamic MRI.

    PubMed

    Rilling, Gabriel; Tao, Yuehui; Marshall, Ian; Davies, Mike E

    2013-08-01

    A multilattice sampling approach is proposed for dynamic MRI with Cartesian trajectories. It relies on the use of sampling patterns composed of several different lattices and exploits an image model where only some parts of the image are dynamic, whereas the rest is assumed static. Given the parameters of such an image model, the methodology followed for the design of a multilattice sampling pattern adapted to the model is described. The multi-lattice approach is compared to single-lattice sampling, as used by traditional acceleration methods such as UNFOLD (UNaliasing by Fourier-Encoding the Overlaps using the temporal Dimension) or k-t BLAST, and random sampling used by modern compressed sensing-based methods. On the considered image model, it allows more flexibility and higher accelerations than lattice sampling and better performance than random sampling. The method is illustrated on a phase-contrast carotid blood velocity mapping MR experiment. Combining the multilattice approach with the KEYHOLE technique allows up to 12× acceleration factors. Simulation and in vivo undersampling results validate the method. Compared to lattice and random sampling, multilattice sampling provides significant gains at high acceleration factors.

  7. Target delineation for radiosurgery of a small brain arteriovenous malformation using high-resolution contrast-enhanced cone beam CT.

    PubMed

    van der Bom, Imramsjah M J; Gounis, Matthew J; Ding, Linda; Kühn, Anna Luisa; Goff, David; Puri, Ajit S; Wakhloo, Ajay K

    2014-06-01

    Three years following endovascular embolization of a 3 mm ruptured arteriovenous malformation (AVM) of the left superior colliculus in a 42-year-old man, digital subtraction angiography showed continuous regrowth of the lesion. Thin-slice MRI acquired for treatment planning did not show the AVM nidus. The patient was brought back to the angiography suite for high-resolution contrast-enhanced cone beam CT (VasoCT) acquired using an angiographic c-arm system. The lesion and nidus were visualized with VasoCT. MRI, CT and VasoCT data were transferred to radiation planning software and mutually co-registered. The nidus was annotated for radiation on VasoCT data by an experienced neurointerventional radiologist and a dose/treatment plan was completed. Due to image registration, the treatment area could be directly adopted into the MRI and CT data. The AVM was completely obliterated 10 months following completion of the radiosurgery treatment.

  8. Target delineation for radiosurgery of a small brain arteriovenous malformation using high-resolution contrast-enhanced cone beam CT.

    PubMed

    van der Bom, Imramsjah M J; Gounis, Matthew J; Ding, Linda; Kühn, Anna Luisa; Goff, David; Puri, Ajit S; Wakhloo, Ajay K

    2013-08-14

    Three years following endovascular embolization of a 3 mm ruptured arteriovenous malformation (AVM) of the left superior colliculus in a 42-year-old man, digital subtraction angiography showed continuous regrowth of the lesion. Thin-slice MRI acquired for treatment planning did not show the AVM nidus. The patient was brought back to the angiography suite for high-resolution contrast-enhanced cone beam CT (VasoCT) acquired using an angiographic c-arm system. The lesion and nidus were visualized with VasoCT. MRI, CT and VasoCT data were transferred to radiation planning software and mutually co-registered. The nidus was annotated for radiation on VasoCT data by an experienced neurointerventional radiologist and a dose/treatment plan was completed. Due to image registration, the treatment area could be directly adopted into the MRI and CT data. The AVM was completely obliterated 10 months following completion of the radiosurgery treatment.

  9. Regional and voxel-wise comparisons of blood flow measurements between dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) and arterial spin labeling (ASL) in brain tumors.

    PubMed

    White, Carissa M; Pope, Whitney B; Zaw, Taryar; Qiao, Joe; Naeini, Kourosh M; Lai, Albert; Nghiemphu, Phioanh L; Wang, J J; Cloughesy, Timothy F; Ellingson, Benjamin M

    2014-01-01

    The objective of the current study was to evaluate the regional and voxel-wise correlation between dynamic susceptibility contrast (DSC) and arterial spin labeling (ASL) perfusion magnetic resonance imaging (MRI) measurement of cerebral blood flow (CBF) in patients with brain tumors. Thirty patients with histologically verified brain tumors were evaluated in the current study. DSC-MRI was performed by first using a preload dose of gadolinium contrast, then collecting a dynamic image acquisition during a bolus of contrast, followed by posthoc contrast agent leakage correction. Pseudocontinuous ASL was collected using 30 pairs of tag and control acquisition using a 3-dimensional gradient-echo spin-echo (GRASE) acquisition. All images were registered to a high-resolution anatomical atlas. Average CBF measurements within regions of contrast-enhancement and T2 hyperintensity were evaluated between the two modalities. Additionally, voxel-wise correlation between CBF measurements obtained with DSC and ASL were assessed. Results demonstrated a positive linear correlation between DSC and ASL measurements of CBF when regional average values were compared; however, a statistically significant voxel-wise correlation was only observed in around 30-40% of patients. These results suggest DSC and ASL may provide regionally similar, but spatially different measurements of CBF.

  10. Dynamics of rabbit brain edema in focal lesion and perilesion area after traumatic brain injury: a MRI study.

    PubMed

    Wei, Xiao-Er; Zhang, Yu-Zhen; Li, Yue-Hua; Li, Ming-Hua; Li, Wen-Bin

    2012-09-20

    To understand the dynamics of brain edema in different areas after traumatic brain injury (TBI) in rabbit, we used dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and diffusion-weighted imaging (DWI) to monitor blood-brain barrier (BBB) permeability and cytotoxic brain edema after weight drop-induced TBI in rabbit. The dynamics of BBB permeability and brain edema were quantified using K(trans) and apparent diffusion coefficient (ADC) in the focal and perifocal lesion areas, as well as the area contralateral to the lesion. In the focal lesion area, K(trans) began to increase at 3 h post-TBI, peaked at 3 days, and decreased gradually while remaining higher than sham injury animals at 7 and 30 days. ADC was more variable, increased slightly at 3 h, decreased to its lowest value at 7 days, then increased to a peak at 30 days. In the perifocal lesion area, K(trans) began to increase at 1 day, peaked at 3-7 days, and returned to control level by 30 days. ADC showed a trend to increase at 1 day, followed by a continuous increase thereafter. In the contralateral area, no changes in K(trans) and ADC were observed at any time-point. These data demonstrate that different types of brain edema predominate in the focal and perifocal lesion areas. Specifically cytotoxic edema was predominant in the focal lesion area while vasogenic edema predominated in the perifocal area in acute phase. Furthermore, secondary opening of the BBB after TBI may appear if secondary injury is not controlled. BBB damage may be a driving force for cytotoxic brain edema and could be a new target for TBI intervention.

  11. Prospective comparison of use of contrast-enhanced ultrasound and contrast-enhanced computed tomography in the Bosniak classification of complex renal cysts

    PubMed Central

    Ragel, Matthew; Nedumaran, Anbu

    2016-01-01

    Aim To compare contrast-enhanced ultrasound and contrast-enhanced computed tomography in the evaluation of complex renal cysts using the Bosniak classification. Methods Forty-six patients with 51 complex renal cysts were prospectively examined using contrast-enhanced ultrasound and contrast-enhanced computed tomography and images analysed by two observers using the Bosniak classification. Adverse effects and patients’ preference were assessed for both modalities. Results There was complete agreement in Bosniak classification between both modalities and both observers in six cysts (11.8%). There was agreement of Bosniak classification on both modalities in 21 of 51 cysts (41.2%) for observer 1 and in 17 of 51 cysts (33.3%) for observer 2. Contrast-enhanced ultrasound gave a higher Bosniak classification than corresponding contrast-enhanced computed tomography in 31 % of cysts by both observers. Histological correlation was available in three lesions, all of which were malignant and classified as such simultaneously on both modalities by at least one observer, with remaining patients followed up with US or CT for 6–24 months. No adverse or side effects were reported following the use of US contrast, whilst 63.6% of patients suffered minor side effects following the use of CT contrast. 81.8% of the surveyed patients preferred contrast-enhanced ultrasound to contrast-enhanced computed tomography. Conclusion Contrast-enhanced ultrasound is a feasible tool in the evaluation of complex renal cysts in a non-specialist setting. Increased contrast-enhanced ultrasound sensitivity to enhancement compared to contrast-enhanced computed tomography, resulting in upgrading the Bosniak classification on contrast-enhanced ultrasound, has played a role in at best moderate agreement recorded by the observers with limited experience, but this would be overcome as the experience grows. To this end, we propose a standardised proforma for the contrast-enhanced ultrasound report. The

  12. Pieces-of-parts for supervoxel segmentation with global context: Application to DCE-MRI tumour delineation.

    PubMed

    Irving, Benjamin; Franklin, James M; Papież, Bartłomiej W; Anderson, Ewan M; Sharma, Ricky A; Gleeson, Fergus V; Brady, Sir Michael; Schnabel, Julia A

    2016-08-01

    Rectal tumour segmentation in dynamic contrast-enhanced MRI (DCE-MRI) is a challenging task, and an automated and consistent method would be highly desirable to improve the modelling and prediction of patient outcomes from tissue contrast enhancement characteristics - particularly in routine clinical practice. A framework is developed to automate DCE-MRI tumour segmentation, by introducing: perfusion-supervoxels to over-segment and classify DCE-MRI volumes using the dynamic contrast enhancement characteristics; and the pieces-of-parts graphical model, which adds global (anatomic) constraints that further refine the supervoxel components that comprise the tumour. The framework was evaluated on 23 DCE-MRI scans of patients with rectal adenocarcinomas, and achieved a voxelwise area-under the receiver operating characteristic curve (AUC) of 0.97 compared to expert delineations. Creating a binary tumour segmentation, 21 of the 23 cases were segmented correctly with a median Dice similarity coefficient (DSC) of 0.63, which is close to the inter-rater variability of this challenging task. A second study is also included to demonstrate the method's generalisability and achieved a DSC of 0.71. The framework achieves promising results for the underexplored area of rectal tumour segmentation in DCE-MRI, and the methods have potential to be applied to other DCE-MRI and supervoxel segmentation problems.

  13. Hepatic Fibrosis: Evaluation with Semiquantitative Contrast-enhanced CT

    PubMed Central

    Varenika, Vanja; Fu, Yanjun; Maher, Jacquelyn J.; Gao, Dongwei; Kakar, Sanjay; Cabarrus, Miguel C.

    2013-01-01

    Purpose: To evaluate the feasibility of using contrast material–enhanced computed tomographic (CT) measurements of hepatic fractional extracellular space (fECS) and macromolecular contrast material (MMCM) uptake to measure severity of liver fibrosis. Materials and Methods: All procedures were approved by and executed in accordance with University of California, San Francisco, institutional animal care and use committee regulations. Twenty-one rats that received intragastric CCl4 for 0–12 weeks were imaged with respiratory-gated micro-CT by using both a conventional contrast material and a novel iodinated MMCM. Histopathologic hepatic fibrosis was graded qualitatively by using the Ishak fibrosis score and quantitatively by using morphometry of the fibrosis area. Hepatic fECS and MMCM uptake were calculated for each examination and correlated with histopathologic findings by using uni- and multivariate linear regressions. Results: Ishak fibrosis scores ranged from a baseline of 0 in untreated animals to a maximum of 5. Histopathologic liver fibrosis area increased from 0.46% to 3.5% over the same interval. Strong correlations were seen between conventional contrast-enhanced CT measurements of fECS and both the Ishak fibrosis scores (R2 = 0.751, P < .001) and the fibrosis area (R2 = 0.801, P < .001). Strong negative correlations were observed between uptake of MMCM in the liver and Ishak fibrosis scores (R2 = 0.827, P < .001), as well as between uptake of MMCM in the liver and fibrosis area (R2 = 0.643, P = .001). Multivariate linear regression analysis showed a trend toward independence for fECS and MMCM uptake in the prediction of Ishak fibrosis scores, with an R2 value of 0.86 (P = .081 and P = .033, respectively). Conclusion: Contrast-enhanced CT measurements of fECS and MMCM uptake are individually capable of being used to estimate the degree of early hepatic fibrosis in a rat model. © RSNA, 2012 Supplemental material: http

  14. Contrast-enhanced fluorodeoxyglucose positron emission tomography/contrast-enhanced computed tomography in mediastinal T-cell lymphoma with superior vena cava syndrome.

    PubMed

    Santhosh, Sampath; Gorla, Arun Kumar Reddy; Bhattacharya, Anish; Varma, Subhash Chander; Mittal, Bhagwant Rai

    2016-01-01

    Positron emission tomography-computed tomography (PET/CT) is a routine investigation for the staging of lymphomas. Contrast-enhanced computed tomography is mandatory whenever parenchymal lesions, especially in the liver and spleen are suspected. We report a rare case of primary mediastinal T-cell lymphoma evaluated with contrast-enhanced PET/CT that showed features of superior vena cava syndrome.

  15. Mechanisms of contrast enhancement in magnetic resonance imaging.

    PubMed

    Lee, D H

    1991-02-01

    The use of contrast agents has increased the sensitivity and specificity of magnetic resonance imaging (MRI). Contrast in MRI is multifactorial, depending not only on T1 and T2 relaxation rates, but also on flow, proton density and, in gradient-echo sequences, on the angle of the induced field. The use of contrast agents in MRI changes the T1 and T2 relaxation rates, producing increased signal intensity on T1-weighted images or decreased signal intensity on T2-weighted images, or both. All contrast agents produce changes in magnetic susceptibility by enhancing local magnetic fields. These effects are caused by interactions between nuclear and paramagnetic substance magnet moments, which produce accentuated transitions between spin states and cause shortening of T1; the paramagnetic substance causes accentuated local fields, which lead to increased dephasing and thus shortening of T2 or T2* relaxation time. The efficacy of shortening of T1, T2 or T2* relaxation time depends on the distance between the proton nucleus and the electronic field of the paramagnetic compound, the time of their interaction (correlation time) and the paramagnetic concentration. The MRI contrast agents currently in use cause shortening of T1, T2 or T2* relaxation time. Metal chelates (e.g., gadolinium-diethylene triamine penta-acetic acid [Gd-DTPA]) in low concentration cause shortening of T1 relaxation times, and the superparamagnetics (e.g., ferrite) cause shortening of T2 relaxation times.

  16. Contrast-enhanced ultrasound of histologically proven hepatic epithelioid hemangioendothelioma

    PubMed Central

    Dong, Yi; Wang, Wen-Ping; Cantisani, Vito; D’Onofrio, Mirko; Ignee, Andre; Mulazzani, Lorenzo; Saftoiu, Adrian; Sparchez, Zeno; Sporea, Ioan; Dietrich, Christoph F

    2016-01-01

    AIM: To analyze contrast-enhanced ultrasound (CEUS) features of histologically proven hepatic epithelioid hemangioendothelioma (HEHE) in comparison to other multilocular benign focal liver lesions (FLL). METHODS: Twenty-five patients with histologically proven HEHE and 45 patients with histologically proven multilocular benign FLL were retrospectively reviewed. Four radiologists assessed the CEUS enhancement pattern in consensus. RESULTS: HEHE manifested as a single (n = 3) or multinodular (n = 22) FLL. On CEUS, HEHE showed rim-like (18/25, 72%) or heterogeneous hyperenhancement (7/25, 28%) in the arterial phase and hypoenhancement (25/25, 100%) in the portal venous and late phases (PVLP), a sign of malignancy. Eighteen patients showed central unenhanced areas (18/25, 72%); in seven patients (7/25, 28%), more lesions were detected in the PVLP. In contrast, all patients with hemangioma and focal nodular hyperplasia showed hyperenhancement as the most distinctive feature (P < 0.01). CONCLUSION: CEUS allows for characterization of unequivocal FLL. By analyzing the hypoenhancement in the PVLP, CEUS can determine the malignant nature of HEHE. PMID:27217705

  17. Rank-One and Transformed Sparse Decomposition for Dynamic Cardiac MRI

    PubMed Central

    Xiu, Xianchao; Kong, Lingchen

    2015-01-01

    It is challenging and inspiring for us to achieve high spatiotemporal resolutions in dynamic cardiac magnetic resonance imaging (MRI). In this paper, we introduce two novel models and algorithms to reconstruct dynamic cardiac MRI data from under-sampled k − t space data. In contrast to classical low-rank and sparse model, we use rank-one and transformed sparse model to exploit the correlations in the dataset. In addition, we propose projected alternative direction method (PADM) and alternative hard thresholding method (AHTM) to solve our proposed models. Numerical experiments of cardiac perfusion and cardiac cine MRI data demonstrate improvement in performance. PMID:26247010

  18. Different dynamic resting state fMRI patterns are linked to different frequencies of neural activity.

    PubMed

    Thompson, Garth John; Pan, Wen-Ju; Keilholz, Shella Dawn

    2015-07-01

    Resting state functional magnetic resonance imaging (rsfMRI) results have indicated that network mapping can contribute to understanding behavior and disease, but it has been difficult to translate the maps created with rsfMRI to neuroelectrical states in the brain. Recently, dynamic analyses have revealed multiple patterns in the rsfMRI signal that are strongly associated with particular bands of neural activity. To further investigate these findings, simultaneously recorded invasive electrophysiology and rsfMRI from rats were used to examine two types of electrical activity (directly measured low-frequency/infraslow activity and band-limited power of higher frequencies) and two types of dynamic rsfMRI (quasi-periodic patterns or QPP, and sliding window correlation or SWC). The relationship between neural activity and dynamic rsfMRI was tested under three anesthetic states in rats: dexmedetomidine and high and low doses of isoflurane. Under dexmedetomidine, the lightest anesthetic, infraslow electrophysiology correlated with QPP but not SWC, whereas band-limited power in higher frequencies correlated with SWC but not QPP. Results were similar under isoflurane; however, the QPP was also correlated to band-limited power, possibly due to the burst-suppression state induced by the anesthetic agent. The results provide additional support for the hypothesis that the two types of dynamic rsfMRI are linked to different frequencies of neural activity, but isoflurane anesthesia may make this relationship more complicated. Understanding which neural frequency bands appear as particular dynamic patterns in rsfMRI may ultimately help isolate components of the rsfMRI signal that are of interest to disorders such as schizophrenia and attention deficit disorder.

  19. Different dynamic resting state fMRI patterns are linked to different frequencies of neural activity

    PubMed Central

    Thompson, Garth John; Pan, Wen-Ju

    2015-01-01

    Resting state functional magnetic resonance imaging (rsfMRI) results have indicated that network mapping can contribute to understanding behavior and disease, but it has been difficult to translate the maps created with rsfMRI to neuroelectrical states in the brain. Recently, dynamic analyses have revealed multiple patterns in the rsfMRI signal that are strongly associated with particular bands of neural activity. To further investigate these findings, simultaneously recorded invasive electrophysiology and rsfMRI from rats were used to examine two types of electrical activity (directly measured low-frequency/infraslow activity and band-limited power of higher frequencies) and two types of dynamic rsfMRI (quasi-periodic patterns or QPP, and sliding window correlation or SWC). The relationship between neural activity and dynamic rsfMRI was tested under three anesthetic states in rats: dexmedetomidine and high and low doses of isoflurane. Under dexmedetomidine, the lightest anesthetic, infraslow electrophysiology correlated with QPP but not SWC, whereas band-limited power in higher frequencies correlated with SWC but not QPP. Results were similar under isoflurane; however, the QPP was also correlated to band-limited power, possibly due to the burst-suppression state induced by the anesthetic agent. The results provide additional support for the hypothesis that the two types of dynamic rsfMRI are linked to different frequencies of neural activity, but isoflurane anesthesia may make this relationship more complicated. Understanding which neural frequency bands appear as particular dynamic patterns in rsfMRI may ultimately help isolate components of the rsfMRI signal that are of interest to disorders such as schizophrenia and attention deficit disorder. PMID:26041826

  20. Cumulative phase delay imaging - A new contrast enhanced ultrasound modality

    SciTech Connect

    Demi, Libertario Sloun, Ruud J. G. van; Mischi, Massimo; Wijkstra, Hessel

    2015-10-28

    Recently, a new acoustic marker for ultrasound contrast agents (UCAs) has been introduced. A cumulative phase delay (CPD) between the second harmonic and fundamental pressure wave field components is in fact observable for ultrasound propagating through UCAs. This phenomenon is absent in the case of tissue nonlinearity and is dependent on insonating pressure and frequency, UCA concentration, and propagation path length through UCAs. In this paper, ultrasound images based on this marker are presented. The ULA-OP research platform, in combination with a LA332 linear array probe (Esaote, Firenze Italy), were used to image a gelatin phantom containing a PVC plate (used as a reflector) and a cylindrical cavity measuring 7 mm in diameter (placed in between the observation point and the PVC plate). The cavity contained a 240 µL/L SonoVueO{sup ®} UCA concentration. Two insonating frequencies (3 MHz and 2.5 MHz) were used to scan the gelatine phantom. A mechanical index MI = 0.07, measured in water at the cavity location with a HGL-0400 hydrophone (Onda, Sunnyvale, CA), was utilized. Processing the ultrasound signals backscattered from the plate, ultrasound images were generated in a tomographic fashion using the filtered back-projection method. As already observed in previous studies, significantly higher CPD values are measured when imaging at a frequency of 2.5 MHz, as compared to imaging at 3 MHz. In conclusion, these results confirm the applicability of the discussed CPD as a marker for contrast imaging. Comparison with standard contrast-enhanced ultrasound imaging modalities will be the focus of future work.

  1. Contrast-enhanced ultrasound for liver imaging: recent advances.

    PubMed

    Salvatore, Veronica; Borghi, Alberto; Piscaglia, Fabio

    2012-01-01

    Contrast-enhanced ultrasonography (CEUS), providing relevant informations not available with non-enhanced ultrasonography, greatly impacted the practice of liver imaging. The characterization of focal liver lesions (FLLs), is obtained in a rapid, accurate and safe way and is considered the main hepatic indication; however CEUS offers other established or emergent relevant applications. Metastases detection and assessment of response to locoregional tumor treatment are accepted applications with specific indications. Needle guidance in case of poorly or non visible target lesions at conventional ultrasound is also accepted. The early assessment of response to systemic treatment, and in particular to antiangiogenic ones, by quantification software is an emergent application. The manageability of CEUS determined also its use in the operating theatre, improving the accuracy of intraoperatory US with a significant impact on final surgical strategy. In cirrhotic patients, the role of CEUS was proven highly accurate and sensitive in the characterization of portal vein thrombosis, by identification of contrast arterial enhancement inside the thrombus, that occurs only in case of neoplastic origin. In recent years microbubbles taken up by Kupffer cells, thus possessing a "postvascular" phase, were registered as ultrasound contrast agent in Japan (Sonazoid). During the post-vascular phase tumoral tissue tend to appear as a contrast defect image due to the lack of Kupffer cells, strongly contributing to tumor staging beside characterization. Newly developed techniques, such as fusion imaging or real-time three dimensional US, in addition to other applications of CEUS, in terms of post-transplantation or cholecystitis-related complications, have been recently proposed and will be discussed.

  2. Contrast-enhanced photoacoustic imaging of live lobster nerve cord

    NASA Astrophysics Data System (ADS)

    Witte, Russell S.; Huang, S.; Ashkenazi, S.; Kim, K.; O'Donnell, M.

    2007-02-01

    Photoacoustic imaging provides optical contrast with good penetration and high spatial resolution, making it an attractive tool for noninvasive neural applications. We chose a commercial dye (NK2761) commonly used for optical imaging of membrane potential to enhance photoacoustic images of the live lobster nerve cord. The abdominal segment of the nerve cord was excised, stained and positioned in a custom neural recording system, enabling electrical stimulation and recording of compound action potentials. Photoacoustic and pulse echo images were also collected using a commercial ultrasound scanner and a 10-MHz linear probe. A wavelength-tunable pulsed laser source (Surelite TM, 5 ns, ~15 mJ, 30 mJ/cm2) operating at 20 Hz produced photoacoustic waves. Longitudinal photoacoustic scans of a 25-mm segment of the excised nerve cord, including ganglionic and axonal processes, were collected and displayed every 7 seconds. Without the contrast agent, an average of 10 scans produced a peak photoacoustic signal 6 dB over background noise. An additional 29 dB was obtained after the nerve was submerged in the dye for 20 minutes. The gain decreased to 23 dB and 14 dB at 810 nm and 910 nm, respectively - consistent with the dye's optical absorbance measured using a portable spectrometer. The contrast-enhanced photoacoustic signal had a broad spectrum peaking at 4 MHz, and, after high pass filtering, images approached 200-μm spatial resolution. The hybrid imaging system, which provided several hours of electrical stimulation and recording, represents a robust testbed to develop novel photoacoustic contrast for neural applications.

  3. Cumulative phase delay imaging - A new contrast enhanced ultrasound modality

    NASA Astrophysics Data System (ADS)

    Demi, Libertario; van Sloun, Ruud J. G.; Wijkstra, Hessel; Mischi, Massimo

    2015-10-01

    Recently, a new acoustic marker for ultrasound contrast agents (UCAs) has been introduced. A cumulative phase delay (CPD) between the second harmonic and fundamental pressure wave field components is in fact observable for ultrasound propagating through UCAs. This phenomenon is absent in the case of tissue nonlinearity and is dependent on insonating pressure and frequency, UCA concentration, and propagation path length through UCAs. In this paper, ultrasound images based on this marker are presented. The ULA-OP research platform, in combination with a LA332 linear array probe (Esaote, Firenze Italy), were used to image a gelatin phantom containing a PVC plate (used as a reflector) and a cylindrical cavity measuring 7 mm in diameter (placed in between the observation point and the PVC plate). The cavity contained a 240 µL/L SonoVueO® UCA concentration. Two insonating frequencies (3 MHz and 2.5 MHz) were used to scan the gelatine phantom. A mechanical index MI = 0.07, measured in water at the cavity location with a HGL-0400 hydrophone (Onda, Sunnyvale, CA), was utilized. Processing the ultrasound signals backscattered from the plate, ultrasound images were generated in a tomographic fashion using the filtered back-projection method. As already observed in previous studies, significantly higher CPD values are measured when imaging at a frequency of 2.5 MHz, as compared to imaging at 3 MHz. In conclusion, these results confirm the applicability of the discussed CPD as a marker for contrast imaging. Comparison with standard contrast-enhanced ultrasound imaging modalities will be the focus of future work.

  4. Discrete Dynamic Bayesian Network Analysis of fMRI Data

    PubMed Central

    Burge, John; Lane, Terran; Link, Hamilton; Qiu, Shibin; Clark, Vincent P.

    2010-01-01

    We examine the efficacy of using discrete Dynamic Bayesian Networks (dDBNs), a data-driven modeling technique employed in machine learning, to identify functional correlations among neuroanatomical regions of interest. Unlike many neuroimaging analysis techniques, this method is not limited by linear and/or Gaussian noise assumptions. It achieves this by modeling the time series of neuroanatomical regions as discrete, as opposed to continuous, random variables with multinomial distributions. We demonstrated this method using an fMRI dataset collected from healthy and demented elderly subjects and identify correlates based on a diagnosis of dementia. The results are validated in three ways. First, the elicited correlates are shown to be robust over leave-one-out cross-validation and, via a Fourier bootstrapping method, that they were not likely due to random chance. Second, the dDBNs identified correlates that would be expected given the experimental paradigm. Third, the dDBN's ability to predict dementia is competitive with two commonly employed machine-learning classifiers: the support vector machine and the Gaussian naïve Bayesian network. We also verify that the dDBN selects correlates based on non-linear criteria. Finally, we provide a brief analysis of the correlates elicited from Buckner et al.'s data that suggests that demented elderly subjects have reduced involvement of entorhinal and occipital cortex and greater involvement of the parietal lobe and amygdala in brain activity compared with healthy elderly (as measured via functional correlations among BOLD measurements). Limitations and extensions to the dDBN method are discussed. PMID:17990301

  5. Safety and Efficacy of Gadobutrol for Contrast-enhanced Magnetic Resonance Imaging of the Central Nervous System: Results from a Multicenter, Double-blind, Randomized, Comparator Study

    PubMed Central

    Gutierrez, Juan E; Rosenberg, Martin; Seemann, Jörg; Breuer, Josy; Haverstock, Daniel; Agris, Jacob; Balzer, Thomas; Anzalone, Nicoletta

    2015-01-01

    PURPOSE Contrast-enhanced magnetic resonance imaging (MRI) of the central nervous system (CNS) with gadolinium-based contrast agents (GBCAs) is standard of care for CNS imaging and diagnosis because of the visualization of lesions that cause blood–brain barrier breakdown. Gadobutrol is a macrocyclic GBCA with high concentration and high relaxivity. The objective of this study was to compare the safety and efficacy of gadobutrol 1.0 M vs unenhanced imaging and vs the approved macrocyclic agent gadoteridol 0.5 M at a dose of 0.1 mmol/kg bodyweight. MATERIALS AND METHODS Prospective, multicenter, double-blind, crossover trial in patients who underwent unenhanced MRI followed by enhanced imaging with gadobutrol or gadoteridol. Three blinded readers assessed the magnetic resonance images. The primary efficacy variables included number of lesions detected, degree of lesion contrast-enhancement, lesion border delineation, and lesion internal morphology. RESULTS Of the 402 treated patients, 390 patients received study drugs. Lesion contrast-enhancement, lesion border delineation, and lesion internal morphology were superior for combined unenhanced/gadobutrol-enhanced imaging vs unenhanced imaging (P < 0.0001 for all). Compared with gadoteridol, gadobutrol was non-inferior for all primary variables and superior for lesion contrast-enhancement, as well as sensitivity and accuracy for detection of malignant disease. The percentage of patients with at least one drug-related adverse event was similar for gadobutrol (10.0%) and gadoteridol (9.7%). CONCLUSION Gadobutrol is an effective and well-tolerated macrocyclic contrast agent for MRI of the CNS. Gadobutrol demonstrates greater contrast-enhancement and improved sensitivity and accuracy for detection of malignant disease than gadoteridol, likely because of its higher relaxivity. PMID:25922578

  6. Contrast-enhanced fluorodeoxyglucose positron emission tomography/contrast-enhanced computed tomography in mediastinal T-cell lymphoma with superior vena cava syndrome

    PubMed Central

    Santhosh, Sampath; Gorla, Arun Kumar Reddy; Bhattacharya, Anish; Varma, Subhash Chander; Mittal, Bhagwant Rai

    2016-01-01

    Positron emission tomography-computed tomography (PET/CT) is a routine investigation for the staging of lymphomas. Contrast-enhanced computed tomography is mandatory whenever parenchymal lesions, especially in the liver and spleen are suspected. We report a rare case of primary mediastinal T-cell lymphoma evaluated with contrast-enhanced PET/CT that showed features of superior vena cava syndrome. PMID:26917907

  7. Volumetric texture analysis of breast lesions on contrast-enhanced magnetic resonance images.

    PubMed

    Chen, Weijie; Giger, Maryellen L; Li, Hui; Bick, Ulrich; Newstead, Gillian M

    2007-09-01

    Automated image analysis aims to extract relevant information from contrast-enhanced magnetic resonance images (CE-MRI) of the breast and improve the accuracy and consistency of image interpretation. In this work, we extend the traditional 2D gray-level co-occurrence matrix (GLCM) method to investigate a volumetric texture analysis approach and apply it for the characterization of breast MR lesions. Our database of breast MR images was obtained using a T1-weighted 3D spoiled gradient echo sequence and consists of 121 biopsy-proven lesions (77 malignant and 44 benign). A fuzzy c-means clustering (FCM) based method is employed to automatically segment 3D breast lesions on CE-MR images. For each 3D lesion, a nondirectional GLCM is then computed on the first postcontrast frame by summing 13 directional GLCMs. Texture features are extracted from the nondirectional GLCMs and the performance of each texture feature in the task of distinguishing between malignant and benign breast lesions is assessed by receiver operating characteristics (ROC) analysis. Our results show that the classification performance of volumetric texture features is significantly better than that based on 2D analysis. Our investigations of the effects of various of parameters on the diagnostic accuracy provided means for the optimal use of the approach.

  8. Contrast-enhanced endobronchial ultrasound: Potential value of a new method

    PubMed Central

    Dietrich, Christoph F.

    2017-01-01

    Endobronchial ultrasound (EBUS) has gained importance for mediastinal lymph node staging. Contrast-enhanced EBUS is so far not a discussed technique including contrast-enhanced high mechanical index (MI)-EBUS and potentially contrast-enhanced low MI-EBUS. Possible use could include characterization of mediastinal lymph nodes for better selection of biopsies, differential diagnosis of the primary tumor, and evaluation of thrombosis or tumor in vein infiltration. PMID:28218200

  9. Molecular Optical Coherence Tomography Contrast Enhancement and Imaging

    NASA Astrophysics Data System (ADS)

    Oldenburg, Amy L.; Applegate, Brian E.; Tucker-Schwartz, Jason M.; Skala, Melissa C.; Kim, Jongsik; Boppart, Stephen A.

    Histochemistry began as early as the nineteenth century, with the development of synthetic dyes that provided spatially mapped chemical contrast in tissue [1]. Stains such as hematoxylin and eosin, which contrast cellular nuclei and cytoplasm, greatly aid in the interpretation of microscopy images. An analogous development is currently taking place in biomedical imaging, whereby techniques adapted for MRI, CT, and PET now provide in vivo molecular imaging over the entire human body, aiding in both fundamental research discovery and in clinical diagnosis and treatment monitoring. Because OCT offers a unique spatial scale that is intermediate between microscopy and whole-body biomedical imaging, molecular contrast OCT (MCOCT) also has great potential for providing new insight into in vivo molecular processes. The strength of MCOCT lies in its ability to isolate signals from a molecule or contrast agent from the tissue scattering background over large scan areas at depths greater than traditional microscopy techniques while maintaining high resolution.

  10. Combined Contrast-Enhanced MRI and Fluorescence Molecular Tomography for Breast Tumor Imaging

    DTIC Science & Technology

    2007-03-01

    intralipid and water acted as the fluorescent inclusion in this simple test domain. A 690 nm CW laser source was used to excite the fluorophore and the... Intralipid to match the scattering value of the background, and varying concentrations of Lutex (0.3125 µM to 5 µM) were added. This represents a

  11. Combined Contrast-Enhanced MRI and Fluorescence Molecular Tomography for Breast Tumor Imaging

    DTIC Science & Technology

    2009-03-01

    average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data ...Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT A unique fluorescence molecular tomography system which couples fluorescence data ...surface, making the data set fairly sparse compared with the volume of interest. This results in relatively poor resolution, depth dependent

  12. Liver-specific agents for contrast-enhanced MRI: role in oncological imaging

    PubMed Central

    Thian, Yee Liang; Riddell, Angela M.

    2013-01-01

    Abstract Liver-specific magnetic resonance (MR) contrast agents are increasingly used in evaluation of the liver. They are effective in detection and morphological characterization of lesions, and can be useful for evaluation of biliary tree anatomy and liver function. The typical appearances and imaging pitfalls of various tumours at MR imaging performed with these agents can be understood by the interplay of pharmacokinetics of these contrast agents and transporter expression of the tumour. This review focuses on the applications of these agents in oncological imaging. PMID:24434892

  13. Combined Contrast-Enhanced MRI and Fluorescence Molecular Tomography for Breast Tumor Imaging

    DTIC Science & Technology

    2008-03-01

    characteristics were performed from simulations using a commercially available EM program ( FEKO ), which is based on the method of moments (Fig. 4). The...upcoming publication[1] (attached as Appendix), though the highlights are provided here. Repeatability measurements were made for two imaging modes , one...8.6cm diameter homogeneous phantom composed of silicone, titanium dioxide, and India ink was used to measure the repeatability of transmission mode

  14. Competitive advantage of PET/MRI.

    PubMed

    Jadvar, Hossein; Colletti, Patrick M

    2014-01-01

    Multimodality imaging has made great strides in the imaging evaluation of patients with a variety of diseases. Positron emission tomography/computed tomography (PET/CT) is now established as the imaging modality of choice in many clinical conditions, particularly in oncology. While the initial development of combined PET/magnetic resonance imaging (PET/MRI) was in the preclinical arena, hybrid PET/MR scanners are now available for clinical use. PET/MRI combines the unique features of MRI including excellent soft tissue contrast, diffusion-weighted imaging, dynamic contrast-enhanced imaging, fMRI and other specialized sequences as well as MR spectroscopy with the quantitative physiologic information that is provided by PET. Most evidence for the potential clinical utility of PET/MRI is based on studies performed with side-by-side comparison or software-fused MRI and PET images. Data on distinctive utility of hybrid PET/MRI are rapidly emerging. There are potential competitive advantages of PET/MRI over PET/CT. In general, PET/MRI may be preferred over PET/CT where the unique features of MRI provide more robust imaging evaluation in certain clinical settings. The exact role and potential utility of simultaneous data acquisition in specific research and clinical settings will need to be defined. It may be that simultaneous PET/MRI will be best suited for clinical situations that are disease-specific, organ-specific, related to diseases of the children or in those patients undergoing repeated imaging for whom cumulative radiation dose must be kept as low as reasonably achievable. PET/MRI also offers interesting opportunities for use of dual modality probes. Upon clear definition of clinical utility, other important and practical issues related to business operational model, clinical workflow and reimbursement will also be resolved.

  15. Changes of renal blood flow after ESWL: assessment by ASL MR imaging, contrast enhanced MR imaging, and renal resistive index.

    PubMed

    Abd Ellah, Mohamed; Kremser, Christian; Pallwein, Leo; Aigner, Friedrich; Schocke, Michael; Peschel, Reinhard; Pedross, Florian; Pinggera, Germar-Michael; Wolf, Christian; Alsharkawy, Mostafa A M; Jaschke, Werner; Frauscher, Ferdinand

    2010-10-01

    The annual incidence of stone formation is increased in the industrialised world. Extracorporeal shockwave lithotripsy is a non-invasive effective treatment of upper urinary tract stones. This study is aimed to evaluate changes of renal blood flow in patients undergoing extracorporeal shock wave lithotripsy (ESWL) by arterial spin labeling (ASL) MR imaging, contrast enhanced dynamic MR imaging, and renal resistive index (RI). Thirteen patients with nephrolithiasis were examined using MR imaging and Doppler ultrasound 12h before and 12h after ESWL. ASL sequence was done for both kidneys and followed by contrast enhanced MR imaging. In addition RI Doppler ultrasound measurements were performed. A significant increase in RI (p<0.001) was found in both treated and untreated kidneys. ASL MR imaging also showed significant changes in both kidneys (p<0.001). Contrast enhanced dynamic MR imaging did not show significant changes in the kidneys. ESWL causes changes in RI and ASL MR imaging, which seem to reflect changes in renal blood flow.

  16. Improved Linear Contrast-Enhanced Ultrasound Imaging via Analysis of First-Order Speckle Statistics.

    PubMed

    Lowerison, Matthew R; Hague, M Nicole; Chambers, Ann F; Lacefield, James C

    2016-09-01

    The linear subtraction methods commonly used for preclinical contrast-enhanced imaging are susceptible to registration errors and motion artifacts that lead to reduced contrast-to-tissue ratios. To address this limitation, a new approach to linear contrast-enhanced ultrasound (CEUS) is proposed based on the analysis of the temporal dynamics of the speckle statistics during wash-in of a bolus injection of microbubbles. In the proposed method, the speckle signal is approximated as a mixture of temporally varying random processes, representing the microbubble signal, superimposed onto spatially heterogeneous tissue backscatter in multiple subvolumes within the region of interest. A wash-in curve is constructed by plotting the effective degrees of freedom (EDoFs) of the histogram of the speckle signal as a function of time. The proposed method is, therefore, named the EDoF method. The EDoF parameter is proportional to the shape parameter of the Nakagami distribution. Images acquired at 18 MHz from a murine mammary fat pad breast cancer xenograft model were processed using gold-standard nonlinear amplitude modulation, conventional linear subtraction, and the proposed statistical method. The EDoF method shows promise for improving the robustness of linear CEUS based on reduced frame-to-frame variability compared with the conventional linear subtraction time-intensity curves. Wash-in curve parameters estimated using the EDoF method also demonstrate higher correlation to nonlinear CEUS than the conventional linear method. The conceptual basis of the statistical method implies that EDoF wash-in curves may carry information about vascular complexity that could provide valuable new imaging biomarkers for cancer research.

  17. Simulation of spin dynamics: a tool in MRI system development

    NASA Astrophysics Data System (ADS)

    Stöcker, Tony; Vahedipour, Kaveh; Shah, N. Jon

    2011-05-01

    Magnetic Resonance Imaging (MRI) is a routine diagnostic tool in the clinics and the method of choice in soft-tissue contrast medical imaging. It is an important tool in neuroscience to investigate structure and function of the living brain on a systemic level. The latter is one of the driving forces to further develop MRI technology, as neuroscience especially demands higher spatiotemporal resolution which is to be achieved through increasing the static main magnetic field, B0. Although standard MRI is a mature technology, ultra high field (UHF) systems, at B0 >= 7 T, offer space for new technical inventions as the physical conditions dramatically change. This work shows that the development strongly benefits from computer simulations of the measurement process on the basis of a semi-classical, nuclear spin-1/2 treatment given by the Bloch equations. Possible applications of such simulations are outlined, suggesting new solutions to the UHF-specific inhomogeneity problems of the static main field as well as the high-frequency transmit field.

  18. Low-rank and Sparse Matrix Decomposition for Accelerated Dynamic MRI with Separation of Background and Dynamic Components

    PubMed Central

    Otazo, Ricardo; Candès, Emmanuel; Sodickson, Daniel K.

    2014-01-01

    Purpose To apply the low-rank plus sparse (L+S) matrix decomposition model to reconstruct undersampled dynamic MRI as a superposition of background and dynamic components in various problems of clinical interest. Theory and Methods The L+S model is natural to represent dynamic MRI data. Incoherence between k−t space (acquisition) and the singular vectors of L and the sparse domain of S is required to reconstruct undersampled data. Incoherence between L and S is required for robust separation of background and dynamic components. Multicoil L+S reconstruction is formulated using a convex optimization approach, where the nuclear-norm is used to enforce low-rank in L and the l1-norm to enforce sparsity in S. Feasibility of the L+S reconstruction was tested in several dynamic MRI experiments with true acceleration including cardiac perfusion, cardiac cine, time-resolved angiography, abdominal and breast perfusion using Cartesian and radial sampling. Results The L+S model increased compressibility of dynamic MRI data and thus enabled high acceleration factors. The inherent background separation improved background suppression performance compared to conventional data subtraction, which is sensitive to motion. Conclusion The high acceleration and background separation enabled by L+S promises to enhance spatial and temporal resolution and to enable background suppression without the need of subtraction or modeling. PMID:24760724

  19. Integration of Contrast-enhanced US into a Multimodality Approach to Imaging of Nodules in a Cirrhotic Liver: How I Do It.

    PubMed

    Jo, Patricia C; Jang, Hyun-Jung; Burns, Peter N; Burak, Kelly W; Kim, Tae Kyoung; Wilson, Stephanie R

    2017-02-01

    Accurate characterization of cirrhotic nodules and early diagnosis of hepatocellular carcinoma (HCC) are of vital importance. Currently, computed tomography (CT) and magnetic resonance (MR) imaging are standard modalities for the investigation of new nodules found at surveillance ultrasonography (US). This article describes the successful integration of contrast material-enhanced US into a multimodality approach for diagnosis of HCC and its benefits in this population. The application of contrast-enhanced US immediately following surveillance US allows for prompt dynamic contrast-enhanced evaluation, removing the need for further imaging of benign lesions. Contrast-enhanced US also provides dynamic real-time assessment of tumor vascularity so that contrast enhancement can be identified regardless of its timing or duration, allowing for detection of arterial hypervascularity and portal venous washout. The purely intravascular nature of US contrast agents is valuable as the rapid washout of nonhepatocyte malignancies is highly contributory to their differentiation from HCC. The authors believe contrast-enhanced US provides complementary information to CT and MR imaging in the characterization of nodules in high-risk patients. (©) RSNA, 2017 Online supplemental material is available for this article.

  20. Magnetomotive molecular probes for targeted contrast enhancement and therapy

    NASA Astrophysics Data System (ADS)

    Boppart, Stephen A.

    2011-03-01

    The diagnostic, interrogational, and therapeutic potential of molecular probes is rapidly being investigated and exploited across virtually every biomedical imaging modality. While many types of probes enhance contrast or delivery therapy by static localization to targeted sites, significant potential exists for utilizing dynamic molecular probes. Recent examples include molecular beacons, photoactivatable probes, or controlled switchable drug-releasing particles, to name a few. In this review, we describe a novel class of dynamic molecular probes that rely on the application and control of localized external magnetic fields. These magnetomotive molecular probes can provide optical image contrast through a modulated scattering signal, can interrogate the biomechanical properties of their viscoelastic microenvironment by tracking their underdamped oscillatory step-response to applied fields, and can potentially delivery therapy through nanometer-to-micrometer mechanical displacement or local hyperthermia. This class of magnetomotive agents includes not only magnetic iron-oxide nanoparticles, but also new magnetomotive microspheres or nanostructures with embedded iron-oxide agents. In vitro three-dimensional cell assays and in vivo targeting studies in animal tumor models have demonstrated the potential for multimodal detection and imaging, using magnetic resonance imaging for whole-body localization, and magnetomotive optical coherence tomography for high-resolution localization and imaging.

  1. Evolving role of MRI in Crohn's disease.

    PubMed

    Yacoub, Joseph H; Obara, Piotr; Oto, Aytekin

    2013-06-01

    MR enterography is playing an evolving role in the evaluation of small bowel Crohn's disease (CD). Standard MR enterography includes a combination of rapidly acquired T2 sequence, balanced steady-state acquisition, and contrast enhanced T1-weighted gradient echo sequence. The diagnostic performance of these sequences has been shown to be comparable, and in some respects superior, to other small bowel imaging modalities. The findings of CD on MR enterography have been well described in the literature. New and emerging techniques such as diffusion-weighted imaging (DWI), dynamic contrast enhanced MRI (DCE-MRI), cinematography, and magnetization transfer, may lead to improved accuracy in characterizing the disease. These advanced techniques can provide quantitative parameters that may prove to be useful in assessing disease activity, severity, and response to treatment. In the future, MR enterography may play an increasing role in management decisions for patients with small bowel CD; however, larger studies are needed to validate these emerging MRI parameters as imaging biomarkers.

  2. Assessment of MRI Contrast Agent Kinetics via Retro-Orbital Injection in Mice: Comparison with Tail Vein Injection

    PubMed Central

    Wang, Fang; Nojima, Masanori; Inoue, Yusuke; Ohtomo, Kuni; Kiryu, Shigeru

    2015-01-01

    It is not known whether administration of contrast agent via retro-orbital injection or the tail vein route affects the efficiency of dynamic contrast-enhanced magnetic resonance imaging (MRI). Therefore, we compared the effects of retro-orbital and tail vein injection on the kinetics of the contrast agent used for MRI in mice. The same group of nine healthy female mice received contrast agent via either route. An extracellular contrast agent was infused via the tail vein and retro-orbital vein, in random order. Dynamic contrast-enhanced MRI was performed before and after administering the contrast agent. The contrast effects in the liver, kidney, lung, and myocardium were assessed. The average total times of venous puncture and mounting of the injection system were about 10 and 4 min for the tail vein and retro-orbital route, respectively. For all organs assessed, the maximum contrast ratio occurred 30 s after administration and the time course of the contrast ratio was similar with either routes. For each organ, the contrast ratios correlated strongly; the contrast ratios were similar. The retro-orbital and tail vein routes afforded similar results in terms of the kinetics of the contrast agent. The retro-orbital route can be used as a simple efficient alternative to tail vein injection for dynamic contrast-enhanced MRI of mice. PMID:26060990

  3. Hue-preserving local contrast enhancement and illumination compensation for outdoor color images

    NASA Astrophysics Data System (ADS)

    Tektonidis, Marco; Monnin, David; Christnacher, Frank

    2015-10-01

    Real-time applications in the field of security and defense use dynamic color camera systems to gain a better understanding of outdoor scenes. To enhance details and improve the visibility in images it is required to per- form local image processing, and to reduce lightness and color inconsistencies between images acquired under different illumination conditions it is required to compensate illumination effects. We introduce an automatic hue-preserving local contrast enhancement and illumination compensation approach for outdoor color images. Our approach is based on a shadow-weighted intensity-based Retinex model which enhances details and compensates the illumination effect on the lightness of an image. The Retinex model exploits information from a shadow detection approach to reduce lightness halo artifacts on shadow boundaries. We employ a hue-preserving color transformation to obtain a color image based on the original color information. To reduce color inconsistencies between images acquired under different illumination conditions we process the saturation using a scaling function. The approach has been successfully applied to static and dynamic color image sequences of outdoor scenes and an experimental comparison with previous Retinex-based approaches has been carried out.

  4. In Vivo Contrast-Enhanced MR Imaging of Direct Infusion into Rat Peripheral Nerves

    PubMed Central

    Chen, Xiaoming; Astary, Garrett W.; Mareci, Thomas H.; Sarntinoranont, Malisa

    2011-01-01

    Direct infusion, or convection-enhanced delivery (CED), into peripheral nerves may provide a method for delivering substances to the intrathecal space or specific fiber bundles entering the spinal cord. To better understand this potential delivery technique, we have characterized the extracellular transport of macromolecular agents from peripheral nerves to the spinal cord in magnetic resonance (MR) imaging studies. High-resolution dynamic contrast-enhanced MR imaging at 11.1 T was used to monitor and characterize in vivo the extracellular transport dynamics of Gd-DTPA-albumin tracer during CED into rat sciatic nerves. Extracellular tracers followed peripheral nerves towards the spinal cord and at vertebral levels L4 and L5 appeared to enter the cerebrospinal fluid and nerve roots. Uptake directly into spinal cord tissues (white and gray matter) appeared to be limited. Spatial distribution patterns within spinal cord regions depended on CED factors, including cannula placement, and underlying tissue structures including peripheral nerve branching and membrane structures at nerve root entry. The applied MR techniques allowed for visualization and quantification of tracer spread and distribution within the rat spinal cord region. The results show that CED into peripheral nerves provides an alternative route for delivering therapeutics to nerve roots and the intrathecal space surrounding the spinal cord. PMID:21809145

  5. Effortful Pitch Glide: A Potential New Exercise Evaluated by Dynamic MRI

    ERIC Educational Resources Information Center

    Miloro, Keri Vasquez; Pearson, William G., Jr.; Langmore, Susan E.

    2014-01-01

    Purpose: The purpose of this study was to compare the biomechanics of the effortful pitch glide (EPG) with swallowing using dynamic MRI. The EPG is a combination of a pitch glide and a pharyngeal squeeze maneuver for targeting laryngeal and pharyngeal muscles. The authors hypothesized that the EPG would elicit significantly greater structural…

  6. Comparison of dual-echo DSC-MRI- and DCE-MRI-derived contrast agent kinetic parameters.

    PubMed

    Quarles, C Chad; Gore, John C; Xu, Lei; Yankeelov, Thomas E

    2012-09-01

    The application of dynamic susceptibility contrast (DSC) MRI methods to assess brain tumors is often confounded by the extravasation of contrast agent (CA). Disruption of the blood-brain barrier allows CA to leak out of the vasculature leading to additional T(1), T(2) and T(2) relaxation effects in the extravascular space, thereby affecting the signal intensity time course in a complex manner. The goal of this study was to validate a dual-echo DSC-MRI approach that separates and quantifies the T(1) and T(2) contributions to the acquired signal and enables the estimation of the volume transfer constant, K(trans), and the volume fraction of the extravascular extracellular space, v(e). To test the validity of this approach, DSC-MRI- and dynamic contrast enhanced (DCE) MRI-derived K(trans) and v(e) estimates were spatially compared in both 9L and C6 rat brain tumor models. A high degree of correlation (concordance correlation coefficients >0.83, Pearson's r>0.84) and agreement was found between the DSC-MRI- and DCE-MRI-derived measurements. These results indicate that dual-echo DSC-MRI can be used to simultaneously extract reliable DCE-MRI kinetic parameters in brain tumors in addition to conventional blood volume and blood flow metrics.

  7. Fast and Quantitative T1ρ-weighted Dynamic Glucose Enhanced MRI

    PubMed Central

    Schuenke, Patrick; Paech, Daniel; Koehler, Christina; Windschuh, Johannes; Bachert, Peter; Ladd, Mark E.; Schlemmer, Heinz-Peter; Radbruch, Alexander; Zaiss, Moritz

    2017-01-01

    Common medical imaging techniques usually employ contrast agents that are chemically labeled, e.g. with radioisotopes in the case of PET, iodine in the case of CT or paramagnetic metals in the case of MRI to visualize the heterogeneity of the tumor microenvironment. Recently, it was shown that natural unlabeled D-glucose can be used as a nontoxic biodegradable contrast agent in Chemical Exchange sensitive Spin-Lock (CESL) magnetic resonance imaging (MRI) to detect the glucose uptake and potentially the metabolism of tumors. As an important step to fulfill the clinical needs for practicability, reproducibility and imaging speed we present here a robust and quantitative T1ρ-weighted technique for dynamic glucose enhanced MRI (DGE-MRI) with a temporal resolution of less than 7 seconds. Applied to a brain tumor patient, the new technique provided a distinct DGE contrast between tumor and healthy brain tissue and showed the detailed dynamics of the glucose enhancement after intravenous injection. Development of this fast and quantitative DGE-MRI technique allows for a more detailed analysis of DGE correlations in the future and potentially enables non-invasive diagnosis, staging and monitoring of tumor response to therapy. PMID:28169369

  8. Solid focal liver lesions indeterminate by contrast-enhanced CT or MR imaging: the added diagnostic value of contrast-enhanced ultrasound.

    PubMed

    Quaia, Emilio

    2012-08-01

    The main clinically recognized application of contrast-enhanced US (CEUS) with microbubble contrast agents is the characterization of incidental focal liver lesions. CEUS with low transmit power insonation allows the real-time assessment of contrast enhancement in a focal liver lesion after microbubble contrast agent injection, during the arterial (10-25 s), portal venous (from 35 s up to 2 min) and late phase (4-6 min after microbubble injection). During the portal venous and late phase benign lesions appear hyper or iso-enhancing in comparison to the adjacent liver parenchyma, while malignant lesions prevalently present contrast washout with hypo-enhancing appearance. CEUS may provide an added diagnostic value in those incidental focal liver lesions in which contrast-enhanced CT or MR imaging are not conclusive. In particular, CEUS may provide an added diagnostic value in those focal liver lesions appearing indeterminate on single-phase CT scan, or on CT scans performed by an incorrect delay time or also after injection of a low dose of iodinated contrast agent, or also in those focal liver lesions revealing equivocal enhancement patterns on contrast-enhanced CT or MR imaging. CEUS may have an added diagnostic value also in hepatocellular nodules in a cirrhotic liver and can be considered a complementary imaging technique to CT.

  9. Dynamic Three-Dimensional Shoulder Mri during Active Motion for Investigation of Rotator Cuff Diseases

    PubMed Central

    Tempelaere, Christine; Pierrart, Jérome; Lefèvre-Colau, Marie-Martine; Vuillemin, Valérie; Cuénod, Charles-André; Hansen, Ulrich; Mir, Olivier; Skalli, Wafa; Gregory, Thomas

    2016-01-01

    Background MRI is the standard methodology in diagnosis of rotator cuff diseases. However, many patients continue to have pain despite treatment, and MRI of a static unloaded shoulder seems insufficient for best diagnosis and treatment. This study evaluated if Dynamic MRI provides novel kinematic data that can be used to improve the understanding, diagnosis and best treatment of rotator cuff diseases. Methods Dynamic MRI provided real-time 3D image series and was used to measure changes in the width of subacromial space, superior-inferior translation and anterior-posterior translation of the humeral head relative to the glenoid during active abduction. These measures were investigated for consistency with the rotator cuff diseases classifications from standard MRI. Results The study included: 4 shoulders with massive rotator cuff tears, 5 shoulders with an isolated full-thickness supraspinatus tear, 5 shoulders with tendinopathy and 6 normal shoulders. A change in the width of subacromial space greater than 4mm differentiated between rotator cuff diseases with tendon tears (massive cuff tears and supraspinatus tear) and without tears (tendinopathy) (p = 0.012). The range of the superior-inferior translation was higher in the massive cuff tears group (6.4mm) than in normals (3.4mm) (p = 0.02). The range of the anterior-posterior translation was higher in the massive cuff tears (9.2 mm) and supraspinatus tear (9.3 mm) shoulders compared to normals (3.5mm) and tendinopathy (4.8mm) shoulders (p = 0.05). Conclusion The Dynamic MRI enabled a novel measure; ‘Looseness’, i.e. the translation of the humeral head on the glenoid during an abduction cycle. Looseness was better able at differentiating different forms of rotator cuff disease than a simple static measure of relative glenohumeral position. PMID:27434235

  10. Emerging MRI methods in rheumatoid arthritis.

    PubMed

    Borrero, Camilo G; Mountz, James M; Mountz, John D

    2011-02-01

    New MRI techniques have been developed to assess not only the static anatomy of synovial hyperplasia, bone changes and cartilage degradation in patients with rheumatoid arthritis (RA), but also the activity of the physiological events that cause these changes. This enables an estimation of the rate of change in the synovium, bone and cartilage as a result of disease activity or in response to therapy. Typical MRI signs of RA in the pre-erosive phase include synovitis, bone marrow edema and subchondral cyst formation. Synovitis can be assessed by T2-weighted imaging, dynamic contrast-enhanced MRI or diffusion tensor imaging. Bone marrow edema can be detected on fluid-sensitive sequences such as short-tau inversion recovery or T2-weighted fast-spin echo sequences. Detection of small bone erosions in the early erosive phase using T1-weighted MRI has sensitivity comparable to CT. Numerous MRI techniques have been developed for quantitative assessment of potentially pathologic changes in cartilage composition that occur before frank morphologic changes. In this Review, we summarize the advances and new directions in the field of MRI, with an emphasis on their current state of development and application in RA.

  11. Dynamic MRI in the Diagnosis and Post Surgical Evaluation of Wandering Spleen

    PubMed Central

    Clark, James K.; Gorman, John; Lee, Mike H.; Barbick, Brian C.; Marks, Robert M.

    2014-01-01

    Wandering spleen is a rare but potentially clinically significant entity, and may be a cause for a patient presenting with acute abdomen. Because wandering spleen may present with non-specific symptoms and presentation, it can be a difficult diagnosis to make clinically. This paper describes a case report of the use of dynamic Magnetic Resonance Imaging (MRI) in a young woman to confirm the diagnosis of wandering spleen pre-operatively. The patient underwent a splenopexy and a post-operative MRI confirmed the successful surgical fixation of the patient’s spleen. PMID:25426221

  12. Dynamic MRI in the diagnosis and post surgical evaluation of wandering spleen.

    PubMed

    Clark, James K; Gorman, John; Lee, Mike H; Barbick, Brian C; Marks, Robert M

    2014-10-01

    Wandering spleen is a rare but potentially clinically significant entity, and may be a cause for a patient presenting with acute abdomen. Because wandering spleen may present with non-specific symptoms and presentation, it can be a difficult diagnosis to make clinically. This paper describes a case report of the use of dynamic Magnetic Resonance Imaging (MRI) in a young woman to confirm the diagnosis of wandering spleen pre-operatively. The patient underwent a splenopexy and a post-operative MRI confirmed the successful surgical fixation of the patient's spleen.

  13. Interplay between Functional Connectivity and Scale-Free Dynamics in Intrinsic fMRI Networks

    PubMed Central

    Ciuciu, Philippe; Abry, Patrice; He, Biyu J.

    2014-01-01

    Studies employing functional connectivity-type analyses have established that spontaneous fluctuations in functional magnetic resonance imaging (fMRI) signals are organized within large-scale brain networks. Meanwhile, fMRI signals have been shown to exhibit 1/f-type power spectra – a hallmark of scale-free dynamics. We studied the interplay between functional connectivity and scale-free dynamics in fMRI signals, utilizing the fractal connectivity framework – a multivariate extension of the univariate fractional Gaussian noise model, which relies on a wavelet formulation for robust parameter estimation. We applied this framework to fMRI data acquired from healthy young adults at rest and performing a visual detection task. First, we found that scale-invariance existed beyond univariate dynamics, being present also in bivariate cross-temporal dynamics. Second, we observed that frequencies within the scale-free range do not contribute evenly to inter-regional connectivity, with a systematically stronger contribution of the lowest frequencies, both at rest and during task. Third, in addition to a decrease of the Hurst exponent and inter-regional correlations, task performance modified cross-temporal dynamics, inducing a larger contribution of the highest frequencies within the scale-free range to global correlation. Lastly, we found that across individuals, a weaker task modulation of the frequency contribution to inter-regional connectivity was associated with better task performance manifesting as shorter and less variable reaction times. These findings bring together two related fields that have hitherto been studied separately – resting-state networks and scale-free dynamics, and show that scale-free dynamics of human brain activity manifest in cross-regional interactions as well. PMID:24675649

  14. Interplay between functional connectivity and scale-free dynamics in intrinsic fMRI networks.

    PubMed

    Ciuciu, Philippe; Abry, Patrice; He, Biyu J

    2014-07-15

    Studies employing functional connectivity-type analyses have established that spontaneous fluctuations in functional magnetic resonance imaging (fMRI) signals are organized within large-scale brain networks. Meanwhile, fMRI signals have been shown to exhibit 1/f-type power spectra - a hallmark of scale-free dynamics. We studied the interplay between functional connectivity and scale-free dynamics in fMRI signals, utilizing the fractal connectivity framework - a multivariate extension of the univariate fractional Gaussian noise model, which relies on a wavelet formulation for robust parameter estimation. We applied this framework to fMRI data acquired from healthy young adults at rest and while performing a visual detection task. First, we found that scale-invariance existed beyond univariate dynamics, being present also in bivariate cross-temporal dynamics. Second, we observed that frequencies within the scale-free range do not contribute evenly to inter-regional connectivity, with a systematically stronger contribution of the lowest frequencies, both at rest and during task. Third, in addition to a decrease of the Hurst exponent and inter-regional correlations, task performance modified cross-temporal dynamics, inducing a larger contribution of the highest frequencies within the scale-free range to global correlation. Lastly, we found that across individuals, a weaker task modulation of the frequency contribution to inter-regional connectivity was associated with better task performance manifesting as shorter and less variable reaction times. These findings bring together two related fields that have hitherto been studied separately - resting-state networks and scale-free dynamics, and show that scale-free dynamics of human brain activity manifest in cross-regional interactions as well.

  15. Review of treatment assessment using DCE-MRI in breast cancer radiation therapy

    PubMed Central

    Wang, Chun-Hao; Yin, Fang-Fang; Horton, Janet; Chang, Zheng

    2014-01-01

    As a noninvasive functional imaging technique, dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is being used in oncology to measure properties of tumor microvascular structure and permeability. Studies have shown that parameters derived from certain pharmacokinetic models can be used as imaging biomarkers for tumor treatment response. The use of DCE-MRI for quantitative and objective assessment of radiation therapy has been explored in a variety of methods and tumor types. However, due to the complexity in imaging technology and divergent outcomes from different pharmacokinetic approaches, the method of using DCE-MRI in treatment assessment has yet to be standardized, especially for breast cancer. This article reviews the basic principles of breast DCE-MRI and recent studies using DCE-MRI in treatment assessment. Technical and clinical considerations are emphasized with specific attention to assessment of radiation treatment response. PMID:25332905

  16. Contrast-enhanced harmonic ultrasonography of medial iliac lymph nodes in healthy dogs.

    PubMed

    Gaschen, Lorrie; Angelette, Nik; Stout, Rhett

    2010-01-01

    Herein, we describe the normal contrast-enhanced harmonic, color, and power Doppler ultrasonographic characteristics of the medial iliac lymph nodes in healthy dogs. Contrast-enhanced harmonic ultrasonography of the medial iliac lymph nodes was performed on 14 healthy dogs after intravenous administration of the lipoprotein-bound inert gas-filled microbubble contrast media Definity. Time-pixel intensity curves were generated for 1-min postinjection. Quantification of these curves was performed using Philips QLab software. Non-contrast-enhanced power and color Doppler examinations were performed in each node to assess vascular patterns subjectively. Normal lymph nodes exhibited a mean contrast wash-in phase beginning at 6.3 s from the time of injection with mean peak pixel intensity at 12.1s. Angioarchitecture was best visualized with contrast-enhanced harmonic ultrasound compared with power and color Doppler. Normal lymph nodes in dogs have a central artery with a centrifugal and uniform branching pattern. Contrast-enhanced harmonic ultrasonography is a noninvasive examination that demonstrates improved visibility of the intranodal architecture of healthy medial iliac lymph nodes in dogs compared with conventional, non-contrast-enhanced Doppler methods that may have future clinical applications.

  17. 4D radial contrast-enhanced MR angiography with sliding subtraction.

    PubMed

    Cashen, Ty A; Jeong, Hyun; Shah, Maulin K; Bhatt, Hem M; Shin, Wanyong; Carr, James C; Walker, Matthew T; Batjer, H Hunt; Carroll, Timothy J

    2007-11-01

    A method is presented for high spatial and temporal resolution 3D contrast-enhanced magnetic resonance angiography. The overall technique involves a set of interrelated components suited to high-frame-rate angiography, including 3D cylindrical k-space sampling, angular undersampling, asymmetric sampling, sliding window reconstruction, pseudorandom view ordering, and a sliding subtraction mask. Computer simulations and volunteer studies demonstrated the utility of each component of the technique. Angiograms of one hemisphere of the intracranial vasculature were acquired with a pixel size of 1.1 x 1.1 x 2.8 mm and a frame rate of 0.35 sec based on a temporal resolution of 3.5 sec. Such a 3D time-resolved, or "4D," technique has the potential to noninvasively acquire diagnostic quality images of certain anatomic regions with a frame rate fast enough to not only ensure the capture of an uncontaminated arterial phase, but even demonstrate contrast bolus flow dynamics. Clinical applications include noninvasive imaging of arteriovenous shunting, which is demonstrated with a patient study.

  18. Quantitative contrast-enhanced ultrasound imaging: a review of sources of variability

    PubMed Central

    Tang, M.-X.; Mulvana, H.; Gauthier, T.; Lim, A. K. P.; Cosgrove, D. O.; Eckersley, R. J.; Stride, E.

    2011-01-01

    Ultrasound provides a valuable tool for medical diagnosis offering real-time imaging with excellent spatial resolution and low cost. The advent of microbubble contrast agents has provided the additional ability to obtain essential quantitative information relating to tissue vascularity, tissue perfusion and even endothelial wall function. This technique has shown great promise for diagnosis and monitoring in a wide range of clinical conditions such as cardiovascular diseases and cancer, with considerable potential benefits in terms of patient care. A key challenge of this technique, however, is the existence of significant variations in the imaging results, and the lack of understanding regarding their origin. The aim of this paper is to review the potential sources of variability in the quantification of tissue perfusion based on microbubble contrast-enhanced ultrasound images. These are divided into the following three categories: (i) factors relating to the scanner setting, which include transmission power, transmission focal depth, dynamic range, signal gain and transmission frequency, (ii) factors relating to the patient, which include body physical differences, physiological interaction of body with bubbles, propagation and attenuation through tissue, and tissue motion, and (iii) factors relating to the microbubbles, which include the type of bubbles and their stability, preparation and injection and dosage. It has been shown that the factors in all the three categories can significantly affect the imaging results and contribute to the variations observed. How these factors influence quantitative imaging is explained and possible methods for reducing such variations are discussed. PMID:22866229

  19. The dynamics of deductive reasoning: an fMRI investigation.

    PubMed

    Rodriguez-Moreno, Diana; Hirsch, Joy

    2009-03-01

    Although the basis for deductive reasoning has been a traditional focus of philosophical discussion, the neural correlates and mechanisms that underlie deductive reasoning have only recently become the focus of scientific investigation. In syllogistic deductive reasoning information presented in two related sequential premises leads to a subsequent conclusion. While previous imaging studies have identified frontal, parietal, temporal, and occipital complexes that are activated during these reasoning events, there are substantive differences among the findings with respect to the specific regions engaged in reasoning and the contribution of language areas. Further, little is known about the various stages of information processing during reasoning. Using event-related fMRI and an auditory and visual conjunction technique, we identified a long-range supramodal network active during reasoning processes including areas in the left frontal and parietal regions as well as the bilateral caudate nucleus. Time courses of activation for each of these regions suggest that reasoning processes emerge during the presentation of the second premise, and remain active until the validation of the conclusion. Thus, areas within the frontal and parietal regions are differentially engaged at different time points in the reasoning process consistent with coordinated intra-network interactions.

  20. Multiparametric MRI in differentiating pulmonary artery sarcoma and pulmonary thromboembolism: a preliminary experience

    PubMed Central

    Liu, Min; Luo, Chunhai; Wang, Ying; Guo, Xiaojuan; Ma, Zhanhong; Yang, Yuanhua; Zhang, Tianjing

    2017-01-01

    PURPOSE We aimed to define multiparametric magnetic resonance imaging (MRI) findings to differentiate between pulmonary artery sarcoma (PAS) and pulmonary thromboembolism (PTE). METHODS Eleven patients with suspected PTE were prospectively included to undergo pulmonary MRI before surgery or biopsy. MRI protocol included an unenhanced sequence, diffusion-weighted imaging (DWI, b=800 s/mm2) and a dynamic contrast-enhanced sequence. Morphologic characteristics including distribution, filling defect, and intensity were observed on T1-, T2-, and fat-suppressed T2-weighted imaging, DWI, and contrast-enhanced MRI. Apparent diffusion coefficient (ADC) values were calculated. RESULTS Six patients were pathologically diagnosed as PAS and the other five as chronic PTE. There were no significant differences in age, gender, presenting symptoms, D-dimer, and N-terminal pro-brain natriuretic peptide between the two groups (P > 0.05). Among MRI findings that were tested for their ability to diagnose PAS, area under the curve (AUC) was significantly higher than 0.5 for main pulmonary artery involvement (AUC, 0.83±0.13; P = 0.011), hyperintensity on fat-suppressed T2-weighted imaging (AUC, 0.82±0.14; P = 0.025), hyperintensity on DWI (AUC, 0.88±0.12; P = 0.002), contrast enhancement (AUC, 0.92±0.10; P < 0.001) and pleural effusion (AUC, 0.82±0.14; P = 0.025). Moreover, grape-like appearance in distal pulmonary artery and cardiac invasion had 100% specificity for diagnosis of PAS. However, ADC value of PAS was not significantly different than that of chronic PTE (U, 12.00; P = 0.584). CONCLUSION Hyperintense filling defect in main pulmonary artery on fat-suppressed T2-weighted imaging and DWI and contrast enhancement may help to discriminate PAS from PTE. PMID:27919861

  1. A dynamic fMRI study of illusory double-flash effect on human visual cortex.

    PubMed

    Zhang, Nanyin; Chen, Wei

    2006-06-01

    Functional MRI (fMRI) combined with the paired-stimuli paradigms (referred as dynamic fMRI) was used to study the "illusory double-flash" effect on brain activity in the human visual cortex. Three experiments were designed. The first two experiments aimed to examine the cross-modal neural interaction between the visual and auditory sensory systems caused by the illusory double-flash effect using combined auditory (beep sound) and visual (light flash) stimuli. The fMRI signal in the visual cortex was significantly increased in response to the illusory double flashes compared to the physical single flash when the inter-stimuli delay between the auditory and visual stimuli was 25 ms. This increase disappeared when the delay was prolonged to approximately 300 ms. These results reveal that the illusory double-flash effect can significantly affect the brain activity in the visual cortex, and the degree of this effect is dynamically sensitive to the inter-stimuli delay. The third experiment was to address the spatial differentiation of brain activation in the visual cortex in response to the illusory double-flash stimulation. It was found that the illusory double-flash effect in the human visual cortex is much stronger in the periphery than the fovea. This finding suggests that the periphery may be involved in high-level brain processing beyond the retinotopic visual perception. The behavioral measures conducted in this study indicate an excellent correlation between the fMRI results and behavioral performance. Finally, this work demonstrates a unique merit of fMRI for providing both temporal and spatial information regarding cross-modal neural interaction between different sensory systems.

  2. Scale-Free and Multifractal Time Dynamics of fMRI Signals during Rest and Task

    PubMed Central

    Ciuciu, P.; Varoquaux, G.; Abry, P.; Sadaghiani, S.; Kleinschmidt, A.

    2012-01-01

    Scaling temporal dynamics in functional MRI (fMRI) signals have been evidenced for a decade as intrinsic characteristics of ongoing brain activity (Zarahn et al., 1997). Recently, scaling properties were shown to fluctuate across brain networks and to be modulated between rest and task (He, 2011): notably, Hurst exponent, quantifying long memory, decreases under task in activating and deactivating brain regions. In most cases, such results were obtained: First, from univariate (voxelwise or regionwise) analysis, hence focusing on specific cognitive systems such as Resting-State Networks (RSNs) and raising the issue of the specificity of this scale-free dynamics modulation in RSNs. Second, using analysis tools designed to measure a single scaling exponent related to the second order statistics of the data, thus relying on models that either implicitly or explicitly assume Gaussianity and (asymptotic) self-similarity, while fMRI signals may significantly depart from those either of those two assumptions (Ciuciu et al., 2008; Wink et al., 2008). To address these issues, the present contribution elaborates on the analysis of the scaling properties of fMRI temporal dynamics by proposing two significant variations. First, scaling properties are technically investigated using the recently introduced Wavelet Leader-based Multifractal formalism (WLMF; Wendt et al., 2007). This measures a collection of scaling exponents, thus enables a richer and more versatile description of scale invariance (beyond correlation and Gaussianity), referred to as multifractality. Also, it benefits from improved estimation performance compared to tools previously used in the literature. Second, scaling properties are investigated in both RSN and non-RSN structures (e.g., artifacts), at a broader spatial scale than the voxel one, using a multivariate approach, namely the Multi-Subject Dictionary Learning (MSDL) algorithm (Varoquaux et al., 2011) that produces a set of spatial components that

  3. Combination of dynamic (11)C-PIB PET and structural MRI improves diagnosis of Alzheimer's disease.

    PubMed

    Liu, Linwen; Fu, Liping; Zhang, Xi; Zhang, Jinming; Zhang, Xiaojun; Xu, Baixuan; Tian, Jiahe; Fan, Yong

    2015-08-30

    Structural magnetic resonance imaging (sMRI) is an established technique for measuring brain atrophy, and dynamic positron emission tomography with (11)C-Pittsburgh compound B ((11)C-PIB PET) has the potential to provide both perfusion and amyloid deposition information. It remains unclear, however, how to better combine perfusion, amyloid deposition and morphological information extracted from dynamic (11)C-PIB PET and sMRI with the goal of improving the diagnosis of Alzheimer's disease (AD) and mild cognitive impairment (MCI). We adopted a linear sparse support vector machine to build classifiers for distinguishing AD and MCI subjects from cognitively normal (CN) subjects based on different combinations of regional measures extracted from imaging data, including perfusion and amyloid deposition information extracted from early and late frames of (11)C-PIB separately, and gray matter volumetric information extracted from sMRI data. The experimental results demonstrated that the classifier built upon the combination of imaging measures extracted from early and late frames of (11)C-PIB as well as sMRI achieved the highest classification accuracy in both classification studies of AD (100%) and MCI (85%), indicating that multimodality information could aid in the diagnosis of AD and MCI.

  4. Feasibility of Antegrade Contrast-enhanced US Nephrostograms to Evaluate Ureteral Patency.

    PubMed

    Chi, Thomas; Usawachintachit, Manint; Mongan, John; Kohi, Maureen P; Taylor, Andrew; Jha, Priyanka; Chang, Helena C; Stoller, Marshall; Goldstein, Ruth; Weinstein, Stefanie

    2017-04-01

    Purpose To demonstrate the feasibility of contrast material-enhanced ulrasonographic (US) nephrostograms to assess ureteral patency after percutaneous nephrolithotomy (PCNL) in this proof-of-concept study. Materials and Methods For this HIPAA-compliant, institutional review board-approved prospective blinded pilot study, patients undergoing PCNL provided consent to undergo contrast-enhanced US and fluoroscopic nephrostograms on postoperative day 1. For contrast-enhanced US, 1.5 mL of Optison (GE Healthcare, Oslo, Norway) microbubble contrast agent solution (perflutren protein-type A microspheres) was injected via the nephrostomy tube. Unobstructed antegrade ureteral flow was defined by the presence of contrast material in the bladder. Contrast-enhanced US results were compared against those of fluoroscopic nephrostograms for concordance. Results Ten studies were performed in nine patients (four women, five men). Contrast-enhanced US demonstrated ureteral patency in eight studies and obstruction in two. One patient underwent two studies, one showing obstruction and the second showing patency. Concordance between US and fluoroscopic assessments of ureteral patency was evaluated by using a Clopper-Pearson exact binomial test. These results were perfectly concordant with fluoroscopic nephrostogram results, with a 95% confidence interval of 69.2% and 100%. No complications or adverse events related to contrast-enhanced US occurred. Conclusion Contrast-enhanced US nephrostograms are simple to perform and are capable of demonstrating both patency and obstruction of the ureter. The perfect concordance with fluoroscopic results across 10 studies demonstrated here is not sufficient to establish diagnostic accuracy of this technique, but motivates further, larger scale investigation. If subsequent larger studies confirm these preliminary results, contrast-enhanced US may provide a safer, more convenient way to evaluate ureteral patency than fluoroscopy. (©) RSNA, 2016 Online

  5. Introducing dynamic dosimaging: potential applications for MRI-linac

    NASA Astrophysics Data System (ADS)

    Metcalfe, P.; Alnaghy; Newall, M.; Gargett, M.; Duncan, M.; Liney, G.; Begg, J.; Oborn, B.; Petasecca, M.; Lerch, M.; Rosenfeld, A.

    2017-01-01

    The new era of intra-fraction dose tracking in radiation therapy delivery demands new dosimetry methods, whereby a moving frame of reference as a function of time may be required. This introduces a new paradigm into radiation therapy dose verification. The term we propose to describe this is dynamic dosimaging, which by our definition is tracking the location of a dosimeter array in real time during on-line radiation dose acquisition.

  6. Signal enhancement ratio (SER) quantified from breast DCE-MRI and breast cancer risk

    NASA Astrophysics Data System (ADS)

    Wu, Shandong; Kurland, Brenda F.; Berg, Wendie A.; Zuley, Margarita L.; Jankowitz, Rachel C.; Sumkin, Jules; Gur, David

    2015-03-01

    Breast magnetic resonance imaging (MRI) is recommended as an adjunct to mammography for women who are considered at elevated risk of developing breast cancer. As a key component of breast MRI, dynamic contrast-enhanced MRI (DCE-MRI) uses a contrast agent to provide high intensity contrast between breast tissues, making it sensitive to tissue composition and vascularity. Breast DCE-MRI characterizes certain physiologic properties of breast tissue that are potentially related to breast cancer risk. Studies have shown that increased background parenchymal enhancement (BPE), which is the contrast enhancement occurring in normal cancer-unaffected breast tissues in post-contrast sequences, predicts increased breast cancer risk. Signal enhancement ratio (SER) computed from pre-contrast and post-contrast sequences in DCE-MRI measures change in signal intensity due to contrast uptake over time and is a measure of contrast enhancement kinetics. SER quantified in breast tumor has been shown potential as a biomarker for characterizing tumor response to treatments. In this work we investigated the relationship between quantitative measures of SER and breast cancer risk. A pilot retrospective case-control study was performed using a cohort of 102 women, consisting of 51 women who had diagnosed with unilateral breast cancer and 51 matched controls (by age and MRI date) with a unilateral biopsy-proven benign lesion. SER was quantified using fully-automated computerized algorithms and three SER-derived quantitative volume measures were compared between the cancer cases and controls using logistic regression analysis. Our preliminary results showed that SER is associated with breast cancer risk, after adjustment for the Breast Imaging Reporting and Data System (BI-RADS)-based mammographic breast density measures. This pilot study indicated that SER has potential for use as a risk factor for breast cancer risk assessment in women at elevated risk of developing breast cancer.

  7. Focal hepatic lesions: diagnostic value of enhancement pattern approach with contrast-enhanced 3D gradient-echo MR imaging.

    PubMed

    Elsayes, Khaled M; Narra, Vamsidhar R; Yin, Yuming; Mukundan, Govind; Lammle, Markus; Brown, Jeffrey J

    2005-01-01

    Focal hepatic lesions constitute a daily challenge in the clinical setting. However, noninvasive methods can be useful in the detection and characterization of these lesions. The noninvasive diagnosis of liver lesions is usually achieved with contrast material-enhanced computed tomography and magnetic resonance (MR) imaging. Dynamic three-dimensional gradient-recalled-echo MR imaging provides dynamic contrast-enhanced thin-section images with fat saturation and a high signal-to-noise ratio and is excellent for the evaluation of various focal hepatic lesions. A comprehensive MR imaging examination in this setting includes T2-weighted and chemical shift T1-weighted imaging and demonstrates characteristic enhancement patterns that can be helpful in the diagnosis of most of these lesions. These enhancement patterns are seen during particular phases of contrast-enhanced imaging and include arterial phase enhancement, delayed phase enhancement, peripheral washout, ring enhancement, nodule-within-a-nodule enhancement, true central scar, pseudocentral scar, and pseudocapsule. Familiarity with these enhancement patterns can help in the identification of specific focal lesions of the liver.

  8. Determination of contrast media administration to achieve a targeted contrast enhancement in CT

    NASA Astrophysics Data System (ADS)

    Sahbaee, Pooyan; Li, Yuan; Segars, Paul; Marin, Daniele; Nelson, Rendon; Samei, Ehsan

    2015-03-01

    Contrast enhancement is a key component of CT imaging and offer opportunities for optimization. The design and optimization of new techniques however requires orchestration with the scan parameters and further a methodology to relate contrast enhancement and injection function. In this study, we used such a methodology to develop a method, analytical inverse method, to predict the required injection function to achieve a desired contrast enhancement in a given organ by incorporation of a physiologically based compartmental model. The method was evaluated across 32 different target contrast enhancement functions for aorta, kidney, stomach, small intestine, and liver. The results exhibited that the analytical inverse method offers accurate performance with error in the range of 10% deviation between the predicted and desired organ enhancement curves. However, this method is incapable of predicting the injection function based on the liver enhancement. The findings of this study can be useful in optimizing contrast medium injection function as well as the scan timing to provide more consistency in the way that the contrast enhanced CT examinations are performed. To our knowledge, this work is one of the first attempts to predict the contrast material injection function for a desired organ enhancement curve.

  9. Medical image visual appearance improvement using bihistogram Bezier curve contrast enhancement: data from the Osteoarthritis Initiative.

    PubMed

    Gan, Hong-Seng; Swee, Tan Tian; Abdul Karim, Ahmad Helmy; Sayuti, Khairil Amir; Abdul Kadir, Mohammed Rafiq; Tham, Weng-Kit; Wong, Liang-Xuan; Chaudhary, Kashif T; Ali, Jalil; Yupapin, Preecha P

    2014-01-01

    Well-defined image can assist user to identify region of interest during segmentation. However, complex medical image is usually characterized by poor tissue contrast and low background luminance. The contrast improvement can lift image visual quality, but the fundamental contrast enhancement methods often overlook the sudden jump problem. In this work, the proposed bihistogram Bezier curve contrast enhancement introduces the concept of "adequate contrast enhancement" to overcome sudden jump problem in knee magnetic resonance image. Since every image produces its own intensity distribution, the adequate contrast enhancement checks on the image's maximum intensity distortion and uses intensity discrepancy reduction to generate Bezier transform curve. The proposed method improves tissue contrast and preserves pertinent knee features without compromising natural image appearance. Besides, statistical results from Fisher's Least Significant Difference test and the Duncan test have consistently indicated that the proposed method outperforms fundamental contrast enhancement methods to exalt image visual quality. As the study is limited to relatively small image database, future works will include a larger dataset with osteoarthritic images to assess the clinical effectiveness of the proposed method to facilitate the image inspection.

  10. Advanced MRI Techniques in the Evaluation of Complex Cystic Breast Lesions

    PubMed Central

    Popli, Manju Bala; Gupta, Pranav; Arse, Devraj; Kumar, Pawan; Kaur, Prabhjot

    2016-01-01

    OBJECTIVE The purpose of this research work was to evaluate complex cystic breast lesions by advanced MRI techniques and correlating imaging with histologic findings. METHODS AND MATERIALS In a cross-sectional design from September 2013 to August 2015, 50 patients having sonographically detected complex cystic lesions of the breast were included in the study. Morphological characteristics were assessed. Dynamic contrast-enhanced MRI along with diffusion-weighted imaging and MR spectroscopy were used to further classify lesions into benign and malignant categories. All the findings were correlated with histopathology. RESULTS Of the 50 complex cystic lesions, 32 proved to be benign and 18 were malignant on histopathology. MRI features of heterogeneous enhancement on CE-MRI (13/18), Type III kinetic curve (13/18), reduced apparent diffusion coefficient (18/18), and tall choline peak (17/18) were strong predictors of malignancy. Thirteen of the 18 lesions showed a combination of Type III curve, reduced apparent diffusion coefficient value, and tall choline peak. CONCLUSIONS Advanced MRI techniques like dynamic imaging, diffusion-weighted sequences, and MR spectroscopy provide a high level of diagnostic confidence in the characterization of complex cystic breast lesion, thus allowing early diagnosis and significantly reducing patient morbidity and mortality. From our study, lesions showing heterogeneous contrast enhancement, Type III kinetic curve, diffusion restriction, and tall choline peak were significantly associated with malignant complex cystic lesions of the breast. PMID:27330299

  11. Dynamic susceptibility contrast MRI measures of relative cerebral blood volume as a prognostic marker for overall survival in recurrent glioblastoma: results from the ACRIN 6677/RTOG 0625 multicenter trial

    PubMed Central

    Schmainda, Kathleen M.; Zhang, Zheng; Prah, Melissa; Snyder, Bradley S.; Gilbert, Mark R.; Sorensen, A. Gregory; Barboriak, Daniel P.; Boxerman, Jerrold L.

    2015-01-01

    Background The study goal was to determine whether changes in relative cerebral blood volume (rCBV) derived from dynamic susceptibility contrast (DSC) MRI are predictive of overall survival (OS) in patients with recurrent glioblastoma multiforme (GBM) when measured 2, 8, and 16 weeks after treatment initiation. Methods Patients with recurrent GBM (37/123) enrolled in ACRIN 6677/RTOG 0625, a multicenter, randomized, phase II trial of bevacizumab with irinotecan or temozolomide, consented to DSC-MRI plus conventional MRI, 21 with DSC-MRI at baseline and at least 1 postbaseline scan. Contrast-enhancing regions of interest were determined semi-automatically using pre- and postcontrast T1-weighted images. Mean tumor rCBV normalized to white matter (nRCBV) and standardized rCBV (sRCBV) were determined for these regions of interest. The OS rates for patients with positive versus negative changes from baseline in nRCBV and sRCBV were compared using Wilcoxon rank-sum and Kaplan–Meier survival estimates with log-rank tests. Results Patients surviving at least 1 year (OS-1) had significantly larger decreases in nRCBV at week 2 (P = .0451) and sRCBV at week 16 (P = .014). Receiver operating characteristic analysis found the percent changes of nRCBV and sRCBV at week 2 and sRCBV at week 16, but not rCBV data at week 8, to be good prognostic markers for OS-1. Patients with positive change from baseline rCBV had significantly shorter OS than those with negative change at both week 2 and week 16 (P = .0015 and P = .0067 for nRCBV and P = .0251 and P = .0004 for sRCBV, respectively). Conclusions Early decreases in rCBV are predictive of improved survival in patients with recurrent GBM treated with bevacizumab. PMID:25646027

  12. Bayesian Inference for Functional Dynamics Exploring in fMRI Data

    PubMed Central

    Guo, Xuan; Liu, Bing; Chen, Le; Chen, Guantao

    2016-01-01

    This paper aims to review state-of-the-art Bayesian-inference-based methods applied to functional magnetic resonance imaging (fMRI) data. Particularly, we focus on one specific long-standing challenge in the computational modeling of fMRI datasets: how to effectively explore typical functional interactions from fMRI time series and the corresponding boundaries of temporal segments. Bayesian inference is a method of statistical inference which has been shown to be a powerful tool to encode dependence relationships among the variables with uncertainty. Here we provide an introduction to a group of Bayesian-inference-based methods for fMRI data analysis, which were designed to detect magnitude or functional connectivity change points and to infer their functional interaction patterns based on corresponding temporal boundaries. We also provide a comparison of three popular Bayesian models, that is, Bayesian Magnitude Change Point Model (BMCPM), Bayesian Connectivity Change Point Model (BCCPM), and Dynamic Bayesian Variable Partition Model (DBVPM), and give a summary of their applications. We envision that more delicate Bayesian inference models will be emerging and play increasingly important roles in modeling brain functions in the years to come. PMID:27034708

  13. Bayesian Inference for Functional Dynamics Exploring in fMRI Data.

    PubMed

    Guo, Xuan; Liu, Bing; Chen, Le; Chen, Guantao; Pan, Yi; Zhang, Jing

    2016-01-01

    This paper aims to review state-of-the-art Bayesian-inference-based methods applied to functional magnetic resonance imaging (fMRI) data. Particularly, we focus on one specific long-standing challenge in the computational modeling of fMRI datasets: how to effectively explore typical functional interactions from fMRI time series and the corresponding boundaries of temporal segments. Bayesian inference is a method of statistical inference which has been shown to be a powerful tool to encode dependence relationships among the variables with uncertainty. Here we provide an introduction to a group of Bayesian-inference-based methods for fMRI data analysis, which were designed to detect magnitude or functional connectivity change points and to infer their functional interaction patterns based on corresponding temporal boundaries. We also provide a comparison of three popular Bayesian models, that is, Bayesian Magnitude Change Point Model (BMCPM), Bayesian Connectivity Change Point Model (BCCPM), and Dynamic Bayesian Variable Partition Model (DBVPM), and give a summary of their applications. We envision that more delicate Bayesian inference models will be emerging and play increasingly important roles in modeling brain functions in the years to come.

  14. 3D-MR Ductography and Contrast-Enhanced MR Mammography in Patients with Suspicious Nipple Discharge; a Feasibility Study.

    PubMed

    Nicholson, Brandi T; Harvey, Jennifer A; Patrie, James T; Mugler, John P

    2015-01-01

    We evaluated contrast-enhanced magnetic resonance (ce-MR) imaging and an indirect MR galactogram (MRG) sequence against conventional galactography (CG) in women with suspicious nipple discharge who underwent histologic diagnosis. This study was Institutional Review Board approved and HIPAA compliant. Women with suspicious nipple discharge recommended for CG were recruited for our study. Patients underwent both a ce-MR as well as MRG (MRG-1 and MRG-2, variations in isotropic spatial resolution) followed by CG within 60 days. The ce-MR and MRG studies were interpreted together by a single radiologist separately from CG. Pathology was used as our gold standard and was obtained via image-guided core needle biopsy or surgery with papilloma, atypia, and malignancy considered positive. Of the 21 patients recruited for the study, 20 patients had known histology results for 26 lesions; 18 patients (90.0%) had successful CG, 20 (100.0%) ce-MRI, 20 (100.0%) MRG-1, and 19 (95.0%) MRG-2. Histology showed 5 cancers (4 women), 15 papillomas (2 with atypia) (11 women), and 6 additional benign lesions (6 women). Five patients (25.0%) had additional lesions detected by ce-MR that influenced surgical management. Sensitivity, specificity, positive (PPV), and negative predicted values (NPV) for CG, ce-MRI, MRG-1 were 65.0, 33.3, 76.5, and 22.2; 95.0, 66.7, 90.5, and 80.8; 55.0, 66.7, 84.6, and 30.8, respectively. ce-MR had the highest sensitivity, PPV, and NPV compared with CG or MRG. Our MRG protocols show promise, but were not as sensitive as ce-MRI for women with suspicious nipple discharge.

  15. Management of incidental renal masses: Time to consider contrast-enhanced ultrasonography.

    PubMed

    Di Vece, Francesca; Tombesi, Paola; Ermili, Francesca; Sartori, Sergio

    2016-02-01

    Proliferation of imaging studies for different clinical purposes and continuous improvement of imaging technology have led to an increasing number of incidental findings of renal masses. It is estimated that over 50% of patients older than 50 years have at least one renal mass. The majority of incidental renal masses are simple cysts that can be easily diagnosed by conventional ultrasonography. However, some incidental renal masses are not simple cysts, and differentiation between benign and malignant entities requires further imaging modalities. In the past, multiphase contrast-enhanced computed tomography and magnetic resonance imaging were considered the primary imaging modalities used to characterize and stage complex cystic and solid renal lesions. Currently, contrast-enhanced ultrasonography represents a novel alternative to contrast-enhanced computed tomography and magnetic resonance imaging. Contrast-enhanced ultrasonography employs microbubble contrast agents that allow the study of different enhancement phases of the kidney without risk of nephrotoxicity and radiation exposure. The diagnostic accuracy of contrast-enhanced ultrasonography in the characterization of complex renal cysts is comparable to that of computed tomography and magnetic resonance imaging, and several studies have demonstrated its reliability also in identifying solid lesions such as pseudotumors, typical angiomyolipomas, and clear cell renal carcinomas. Considering the high incidence of incidental renal masses and the need for rapid and reliable diagnosis, contrast-enhanced ultrasonography could be proposed as the first step in the diagnostic work-up of renal masses because of its safety and cost effectiveness. In this paper, we propose a diagnostic algorithm for the characterization of cystic and solid renal masses.

  16. Missing data estimation in fMRI dynamic causal modeling.

    PubMed

    Zaghlool, Shaza B; Wyatt, Christopher L

    2014-01-01

    Dynamic Causal Modeling (DCM) can be used to quantify cognitive function in individuals as effective connectivity. However, ambiguity among subjects in the number and location of discernible active regions prevents all candidate models from being compared in all subjects, precluding the use of DCM as an individual cognitive phenotyping tool. This paper proposes a solution to this problem by treating missing regions in the first-level analysis as missing data, and performing estimation of the time course associated with any missing region using one of four candidate methods: zero-filling, average-filling, noise-filling using a fixed stochastic process, or one estimated using expectation-maximization. The effect of this estimation scheme was analyzed by treating it as a preprocessing step to DCM and observing the resulting effects on model evidence. Simulation studies show that estimation using expectation-maximization yields the highest classification accuracy using a simple loss function and highest model evidence, relative to other methods. This result held for various dataset sizes and varying numbers of model choice. In real data, application to Go/No-Go and Simon tasks allowed computation of signals from the missing nodes and the consequent computation of model evidence in all subjects compared to 62 and 48 percent respectively if no preprocessing was performed. These results demonstrate the face validity of the preprocessing scheme and open the possibility of using single-subject DCM as an individual cognitive phenotyping tool.

  17. Linking Ventilation Heterogeneity Quantified via Hyperpolarized 3He MRI to Dynamic Lung Mechanics and Airway Hyperresponsiveness.

    PubMed

    Lui, Justin K; Parameswaran, Harikrishnan; Albert, Mitchell S; Lutchen, Kenneth R

    2015-01-01

    Advancements in hyperpolarized helium-3 MRI (HP 3He-MRI) have introduced the ability to render and quantify ventilation patterns throughout the anatomic regions of the lung. The goal of this study was to establish how ventilation heterogeneity relates to the dynamic changes in mechanical lung function and airway hyperresponsiveness in asthmatic subjects. In four healthy and nine mild-to-moderate asthmatic subjects, we measured dynamic lung resistance and lung elastance from 0.1 to 8 Hz via a broadband ventilation waveform technique. We quantified ventilation heterogeneity using a recently developed coefficient of variation method from HP 3He-MRI imaging. Dynamic lung mechanics and imaging were performed at baseline, post-challenge, and after a series of five deep inspirations. AHR was measured via the concentration of agonist that elicits a 20% decrease in the subject's forced expiratory volume in one second compared to baseline (PC20) dose. The ventilation coefficient of variation was correlated to low-frequency lung resistance (R = 0.647, P < 0.0001), the difference between high and low frequency lung resistance (R = 0.668, P < 0.0001), and low-frequency lung elastance (R = 0.547, P = 0.0003). In asthmatic subjects with PC20 values <25 mg/mL, the coefficient of variation at baseline exhibited a strong negative trend (R = -0.798, P = 0.02) to PC20 dose. Our findings were consistent with the notion of peripheral rather than central involvement of ventilation heterogeneity. Also, the degree of AHR appears to be dependent on the degree to which baseline airway constriction creates baseline ventilation heterogeneity. HP 3He-MRI imaging may be a powerful predictor of the degree of AHR and in tracking the efficacy of therapy.

  18. Edge Sharpening, Contrast Enhancement, And Feature Dependent Amplification In Inorganic Resist - A Simulation Study

    NASA Astrophysics Data System (ADS)

    Leung, Wingyu; Neureuther, Andrew R.; Oldham, William G.

    1983-11-01

    Computer simulation of the photodoping and lateral diffusion of silver during exposure is used to explore the theoretical potential of inorganic resists and to explore the extent to which it is realized in the Ge-Se resist system. The resist exposure is modeled as photodoping, silver into the substrate at the bottom of a bleachable sensitized layer. The silver concentration is assumed to be uniform vertically throughout the layer and allowed to diffuse laterally. The amount of photo-doping is proportional to the product of the intensity of light reaching the bottom of the sensitized layer and the local silver concentration. The layer is assumed to have a bleachable absorption proportional to the silver concentration , a nonbleachable absorption and a bleaching rate coefficient. A FORTRAN algorithm for solving the resulting coupled differential equations has been developed for use with the SAMPLE program. Both dynamic bleaching (hole burning) and lateral diffusion can lead to a sharper edge and/or higher contrast in the photodoped silver concentration than those in the incident exposure aerial image. For the 100A thick Ge-Se system at 0.75 urn features on the GCA DSW4800 stepper, the diffusion length is two times larger than the feature size, so that the contrast is equal to that of the aerial image at any exposure time. For large features with large transition region between the clear and dark fields contrast enhancement can be obtained using thick resists (>100 A sup 0) at the expanse of longer exposure time. For Ge-Se the lateral diffusion combined with photodoping saturation allow a feature dependent amplification of the relative silver concentrations for various feature sizes. This together, with the high contrast development process [1] allow inorganic resist to image well at low contrast exposure.

  19. Preliminary Analysis of Clinical Situations Involved in Quantification of Contrast-Enhanced Ultrasound in Crohn's Disease.

    PubMed

    Cheng, Wenjie; Gao, Xiang; Wang, Weili; Zhi, Min; Tang, Jian; Wen, Yan-Ling; Yu, Junli; Chen, Yao; Liu, Xiaoyin; Yang, Chuan; Hu, Pinjin; Liu, Guangjian

    2016-08-01

    To assess influencing factors for quantitative analysis of contrast-enhanced ultrasound (CEUS) in Crohn's disease (CD), dynamic CEUS examinations from 77 consecutive CD patients were recorded. Peak intensity (PI) values were calculated using the pre-installed quantification software of the ultrasound scanner. The influence of depth, pressure from the ultrasound probe and intraluminal gas was analyzed. The PI value of the anterior wall was lower than that of the posterior wall when the depth was ≤3.4 cm (17.9 dB vs. 21.3 dB; p < 0.05) or evident pressure was exerted (19.1 dB vs. 22.5 dB; p < 0.01). In the presence of intraluminal gas, the PI of the anterior wall was higher than that of the posterior wall (20.7 dB vs. 18.8 dB; p < 0.05). Nevertheless, no significant difference was found between the PI value of anterior and posterior walls when the depth was >3.4 cm (19.8 dB vs. 20.3 dB), moderate pressure was exerted (20.5 dB vs. 21.1 dB) or luminal gas was excluded between the two bowel walls (18.9 dB vs. 21.2 dB; p ≥ 0.05). The factors of depth, pressure from the ultrasound probe and intraluminal gas can affect the quantification results of CEUS. It is preferable to place the region of interest in the posterior wall when luminal gas is absent and in the anterior wall when luminal gas is present. In the latter case, more attention should be paid to reducing pressure by the ultrasound probe.

  20. Coherence based contrast enhancement in x-ray radiography with a photoelectron microscope

    NASA Astrophysics Data System (ADS)

    Hwu, Y.; Lai, B.; Mancini, D. C.; Je, J. H.; Noh, D. Y.; Bertolo, M.; Tromba, G.; Margaritondo, G.

    1999-10-01

    We show that a photoelectron spectromicroscope of the photoelectron emission microscope type can be used as an x-ray imaging detector for radiology. Using high penetration hard-x-ray photons (wavelength <0.1 nm), samples as thick as a few millimeters can be imaged with submicron resolution. The high imaging resolution enables us to substantially decrease the object-detector distance needed to observe coherent based contrast enhancement with respect to the standard film-based detection technique. Our result implies several advantages, the most important being a marked reduction of the required source emittance for contrast enhanced radiology.

  1. Contrast enhanced-magnetic resonance imaging as a surrogate to map verteporfin delivery in photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Samkoe, Kimberley S.; Bryant, Amber; Gunn, Jason R.; Pereira, Stephen P.; Hasan, Tayyaba; Pogue, Brian W.

    2013-12-01

    The use of in vivo contrast-enhanced magnetic resonance (MR) imaging as a surrogate for photosensitizer (verteporfin) dosimetry in photodynamic therapy of pancreas cancer is demonstrated by correlating MR contrast uptake to ex vivo fluorescence images on excised tissue. An orthotopic pancreatic xenograft mouse model was used for the study. A strong correlation (r=0.57) was found for bulk intensity measurements of T1-weighted gadolinium enhancement and verteporfin fluorescence in the tumor region of interest. The use of contrast-enhanced MR imaging shows promise as a method for treatment planning and photosensitizer dosimetry in human photodynamic therapy (PDT) of pancreas cancer.

  2. Regions of low density in the contrast-enhanced pituitary gland: normal and pathologic processes

    SciTech Connect

    Chambers, E.F.; Turski, P.A.; LaMasters, D.; Newton, T.H.

    1982-07-01

    The incidence of low-density regions in the contrast-enhanced pituitary gland and the possible causes of these regions were investigated by a retrospective review of computed tomographic (CT) scans of the head in 50 patients and autopsy specimens of the pituitary in 100 other patients. It was found that focal areas of low density within the contrast enhanced pituitary gland can be caused by various normal and pathologic conditions such as pituitary microadenomas, pars intermedia cysts, foci of metastasis, infarcts, epidermoid cysts, and abscesses. Although most focal low-density regions probably represent pituitary microadenomas, careful clinical correlation is needed to establish a diagnosis.

  3. Application and assessment of a robust elastic motion correction algorithm to dynamic MRI.

    PubMed

    Herrmann, K-H; Wurdinger, S; Fischer, D R; Krumbein, I; Schmitt, M; Hermosillo, G; Chaudhuri, K; Krishnan, A; Salganicoff, M; Kaiser, W A; Reichenbach, J R

    2007-01-01

    The purpose of this study was to assess the performance of a new motion correction algorithm. Twenty-five dynamic MR mammography (MRM) data sets and 25 contrast-enhanced three-dimensional peripheral MR angiographic (MRA) data sets which were affected by patient motion of varying severeness were selected retrospectively from routine examinations. Anonymized data were registered by a new experimental elastic motion correction algorithm. The algorithm works by computing a similarity measure for the two volumes that takes into account expected signal changes due to the presence of a contrast agent while penalizing other signal changes caused by patient motion. A conjugate gradient method is used to find the best possible set of motion parameters that maximizes the similarity measures across the entire volume. Images before and after correction were visually evaluated and scored by experienced radiologists with respect to reduction of motion, improvement of image quality, disappearance of existing lesions or creation of artifactual lesions. It was found that the correction improves image quality (76% for MRM and 96% for MRA) and diagnosability (60% for MRM and 96% for MRA).

  4. Dynamic Causal Modelling of epileptic seizure propagation pathways: a combined EEG-fMRI study.

    PubMed

    Murta, Teresa; Leal, Alberto; Garrido, Marta I; Figueiredo, Patrícia

    2012-09-01

    Simultaneous EEG-fMRI offers the possibility of non-invasively studying the spatiotemporal dynamics of epileptic activity propagation from the focus towards an extended brain network, through the identification of the haemodynamic correlates of ictal electrical discharges. In epilepsy associated with hypothalamic hamartomas (HH), seizures are known to originate in the HH but different propagation pathways have been proposed. Here, Dynamic Causal Modelling (DCM) was employed to estimate the seizure propagation pathway from fMRI data recorded in a HH patient, by testing a set of clinically plausible network connectivity models of discharge propagation. The model consistent with early propagation from the HH to the temporal-occipital lobe followed by the frontal lobe was selected as the most likely model to explain the data. Our results demonstrate the applicability of DCM to investigate patient-specific effective connectivity in epileptic networks identified with EEG-fMRI. In this way, it is possible to study the propagation pathway of seizure activity, which has potentially great impact in the decision of the surgical approach for epilepsy treatment.

  5. Dynamic Causal Modeling applied to fMRI data shows high reliability

    PubMed Central

    Schuyler, Brianna; Ollinger, John M.; Oakes, Terrence R.; Johnstone, Tom; Davidson, Richard J.

    2010-01-01

    Sensitivity, specificity, and reproducibility are vital to interpret neuroscientific results from functional magnetic resonance imaging (fMRI) experiments. Here we examine the scan-rescan reliability of the percent signal change (PSC) and parameters estimated using Dynamic Causal Modeling (DCM) in scans taken in the same scan session, less than five minutes apart. We find fair to good reliability of PSC in regions that are involved with the task, and fair to excellent reliability with DCM. Also, the DCM analysis uncovers group differences that were not present in the analysis of PSC, which implies that DCM may be more sensitive to the nuances of signal changes in fMRI data. PMID:19619665

  6. PET-MRI Findings of Two Patients with Breast Carcinoma before Treatment

    PubMed Central

    Çelebi, Filiz; Köksal, Ülkühan; Pilancı, Kezban Nur; Ordu, Çetin; Sarsenov, Dauren; İlgün, Serkan; Çabuk, Fatmagül Kuşku; Alço, Gül; Özdil, Güzide; Erdoğan, Zeynep; Özmen, Vahit

    2016-01-01

    Integrated positron-emission tomography-magnetic resonance imaging (PET-MRI) is a new hybrid simultaneous imaging modality with higher soft tissue contrast and lower radiation doses compared with PET-CT. Two patients who were referred to our hospital with left breast masses that were pathologically diagnosed as invasive ductal carcinoma. The women were then scanned using the first PET-MRI system in Turkey, which was established in our department. In this case report, we aimed to determine the advantages of PET-MRI in staging, follow-up, neoadjuvant chemotherapy response, and to compare the usefulness of this modality with PET-CT and dynamic contrast-enhanced breast MRI.

  7. A comparison of multiparametric MRI modalities to discriminate prostate cancer tumours

    NASA Astrophysics Data System (ADS)

    Gutiérrez-Carvajal, R. E.; Fargeas, A.; Gnep, K.; Rolland, Y.; Acosta, O.; de Crevoisier, R.

    2015-01-01

    Using multiparametric MRI (mpMRI) protocols to monitor prostate cancer could provide new insights into the biological mechanisms of developing tumours. Automatically discriminating tumour regions active area of research due to the complexity and plurality of cancer behaviour. This work evaluates four different Magnetic Resonance Imaging (MRI) image modalities, namely: Diffusion-Weighted Imaging evaluated at b = {0, 100, 1000}, Apparent Diffusion Coefficient and Dynamic Contrast Enhanced MRI, by extracting texture and functional features and then selecting the optimal ones to discriminate anatomical prostate regions in each modality. The images used were taken prior to radiotherapy from eight patients previously diagnosed with moderate risk of recurrent cancer. Finally, we compared the relevance of each modality to discriminate between healthy tissue and tumour cells.

  8. 4D tumor centroid tracking using orthogonal 2D dynamic MRI: Implications for radiotherapy planning

    SciTech Connect

    Tryggestad, Erik; Flammang, Aaron; Shea, Steven M.; Hales, Russell; Herman, Joseph; Lee, Junghoon; McNutt, Todd; Roland, Teboh; Wong, John

    2013-09-15

    Purpose: Current pretreatment, 4D imaging techniques are suboptimal in that they sample breathing motion over a very limited “snapshot” in time. Heretofore, long-duration, 4D motion characterization for radiotherapy planning, margin optimization, and validation have been impractical for safety reasons, requiring invasive markers imaged under x-ray fluoroscopy. To characterize 3D tumor motion and associated variability over durations more consistent with treatments, the authors have developed a practical dynamic MRI (dMRI) technique employing two orthogonal planes acquired in a continuous, interleaved fashion.Methods: 2D balanced steady-state free precession MRI was acquired continuously over 9–14 min at approximately 4 Hz in three healthy volunteers using a commercial 1.5 T system; alternating orthogonal imaging planes (sagittal, coronal, sagittal, etc.) were employed. The 2D in-plane pixel resolution was 2 × 2 mm{sup 2} with a 5 mm slice profile. Simultaneous with image acquisition, the authors monitored a 1D surrogate respiratory signal using a device available with the MRI system. 2D template matching-based anatomic feature registration, or tracking, was performed independently in each orientation. 4D feature tracking at the raw frame rate was derived using spline interpolation.Results: Tracking vascular features in the lung for two volunteers and pancreatic features in one volunteer, the authors have successfully demonstrated this method. Registration error, defined here as the difference between the sagittal and coronal tracking result in the SI direction, ranged from 0.7 to 1.6 mm (1σ) which was less than the acquired image resolution. Although the healthy volunteers were instructed to relax and breathe normally, significantly variable respiration was observed. To demonstrate potential applications of this technique, the authors subsequently explored the intrafraction stability of hypothetical tumoral internal target volumes and 3D spatial probability

  9. Effective Connectivity Modeling for fMRI: Six Issues and Possible Solutions Using Linear Dynamic Systems

    PubMed Central

    Smith, Jason F.; Pillai, Ajay; Chen, Kewei; Horwitz, Barry

    2012-01-01

    Analysis of directionally specific or causal interactions between regions in functional magnetic resonance imaging (fMRI) data has proliferated. Here we identify six issues with existing effective connectivity methods that need to be addressed. The issues are discussed within the framework of linear dynamic systems for fMRI (LDSf). The first concerns the use of deterministic models to identify inter-regional effective connectivity. We show that deterministic dynamics are incapable of identifying the trial-to-trial variability typically investigated as the marker of connectivity while stochastic models can capture this variability. The second concerns the simplistic (constant) connectivity modeled by most methods. Connectivity parameters of the LDSf model can vary at the same timescale as the input data. Further, extending LDSf to mixtures of multiple models provides more robust connectivity variation. The third concerns the correct identification of the network itself including the number and anatomical origin of the network nodes. Augmentation of the LDSf state space can identify additional nodes of a network. The fourth concerns the locus of the signal used as a “node” in a network. A novel extension LDSf incorporating sparse canonical correlations can select most relevant voxels from an anatomically defined region based on connectivity. The fifth concerns connection interpretation. Individual parameter differences have received most attention. We present alternative network descriptors of connectivity changes which consider the whole network. The sixth concerns the temporal resolution of fMRI data relative to the timescale of the inter-regional interactions in the brain. LDSf includes an “instantaneous” connection term to capture connectivity occurring at timescales faster than the data resolution. The LDS framework can also be extended to statistically combine fMRI and EEG data. The LDSf framework is a promising foundation for effective connectivity

  10. Dynamic modeling of neuronal responses in fMRI using cubature Kalman filtering

    PubMed Central

    Havlicek, Martin; Friston, Karl J.; Jan, Jiri; Brazdil, Milan; Calhoun, Vince D.

    2011-01-01

    This paper presents a new approach to inverting (fitting) models of coupled dynamical systems based on state-of-the-art (cubature) Kalman filtering. Crucially, this inversion furnishes posterior estimates of both the hidden states and parameters of a system, including any unknown exogenous input. Because the underlying generative model is formulated in continuous time (with a discrete observation process) it can be applied to a wide variety of models specified with either ordinary or stochastic differential equations. These are an important class of models that are particularly appropriate for biological time-series, where the underlying system is specified in terms of kinetics or dynamics (i.e., dynamic causal models). We provide comparative evaluations with generalized Bayesian filtering (dynamic expectation maximization) and demonstrate marked improvements in accuracy and computational efficiency. We compare the schemes using a series of difficult (nonlinear) toy examples and conclude with a special focus on hemodynamic models of evoked brain responses in fMRI. Our scheme promises to provide a significant advance in characterizing the functional architectures of distributed neuronal systems, even in the absence of known exogenous (experimental) input; e.g., resting state fMRI studies and spontaneous fluctuations in electrophysiological studies. Importantly, unlike current Bayesian filters (e.g. DEM), our scheme provides estimates of time-varying parameters, which we will exploit in future work on the adaptation and enabling of connections in the brain. PMID:21396454

  11. Accelerating k-t sparse using k-space aliasing for dynamic MRI imaging.

    PubMed

    Pawar, Kamlesh; Egan, Gary F; Zhang, Jingxin

    2013-01-01

    Dynamic imaging is challenging in MRI and acceleration techniques are usually needed to acquire dynamic scene. K-t sparse is an acceleration technique based on compressed sensing, it acquires fewer amounts of data in k-t space by pseudo random ordering of phase encodes and reconstructs dynamic scene by exploiting sparsity of k-t space in transform domain. Another recently introduced technique accelerates dynamic MRI scans by acquiring k-space data in aliased form. K-space aliasing technique uses multiple RF excitation pulses to deliberately acquire aliased k-space data. During reconstruction a simple Fourier transformation along time frames can unaliase the acquired aliased data. This paper presents a novel method to combine k-t sparse and k-space aliasing to achieve higher acceleration than each of the individual technique alone. In this particular combination, a very critical factor of compressed sensing, the ratio of the number of acquired phase encodes to the number of total phase encode (n/N) increases therefore compressed sensing component of reconstruction performs exceptionally well. Comparison of k-t sparse and the proposed technique for acceleration factors of 4, 6 and 8 is demonstrated in simulation on cardiac data.

  12. Dynamic modeling of neuronal responses in fMRI using cubature Kalman filtering.

    PubMed

    Havlicek, Martin; Friston, Karl J; Jan, Jiri; Brazdil, Milan; Calhoun, Vince D

    2011-06-15

    This paper presents a new approach to inverting (fitting) models of coupled dynamical systems based on state-of-the-art (cubature) Kalman filtering. Crucially, this inversion furnishes posterior estimates of both the hidden states and parameters of a system, including any unknown exogenous input. Because the underlying generative model is formulated in continuous time (with a discrete observation process) it can be applied to a wide variety of models specified with either ordinary or stochastic differential equations. These are an important class of models that are particularly appropriate for biological time-series, where the underlying system is specified in terms of kinetics or dynamics (i.e., dynamic causal models). We provide comparative evaluations with generalized Bayesian filtering (dynamic expectation maximization) and demonstrate marked improvements in accuracy and computational efficiency. We compare the schemes using a series of difficult (nonlinear) toy examples and conclude with a special focus on hemodynamic models of evoked brain responses in fMRI. Our scheme promises to provide a significant advance in characterizing the functional architectures of distributed neuronal systems, even in the absence of known exogenous (experimental) input; e.g., resting state fMRI studies and spontaneous fluctuations in electrophysiological studies. Importantly, unlike current Bayesian filters (e.g. DEM), our scheme provides estimates of time-varying parameters, which we will exploit in future work on the adaptation and enabling of connections in the brain.

  13. Successful diagnosis of pulmonary artery sarcoma by contrast-enhanced computed tomography.

    PubMed

    Panfeng, Xu; Zheying, Zhang; Jie, Wang; Jianying, Zhou; Xiaodong, Teng

    2008-07-01

    Pulmonary artery sarcoma is a rare tumor of the cardiovascular system. We reported a case of primary pulmonary artery sarcoma. In this case, the patient was misdiagnosed with tuberculosis for nearly 1 year and diagnosed by contrast-enhanced computed tomography and histopathologic examination at last.

  14. Standardized perfusion value: universal CT contrast enhancement scale that correlates with FDG PET in lung nodules.

    PubMed

    Miles, K A; Griffiths, M R; Fuentes, M A

    2001-08-01

    The standardized enhancement value and standardized perfusion value allow comparison between different methods for quantification of contrast enhancement during computed tomography (CT). Standard perfusion values calculated from CT measurements of perfusion within pulmonary nodules compared favorably with those derived from previously reported enhancement data and correlated with standardized uptake values obtained from positron emission tomographic images (r = 0.8, P <.01).

  15. Two improved forensic methods of detecting contrast enhancement in digital images

    NASA Astrophysics Data System (ADS)

    Lin, Xufeng; Wei, Xingjie; Li, Chang-Tsun

    2014-02-01

    Contrast enhancements, such as histogram equalization or gamma correction, are widely used by malicious attackers to conceal the cut-and-paste trails in doctored images. Therefore, detecting the traces left by contrast enhancements can be an effective way of exposing cut-and-paste image forgery. In this work, two improved forensic methods of detecting contrast enhancement in digital images are put forward. More specifically, the first method uses a quadratic weighting function rather than a simple cut-off frequency to measure the histogram distortion introduced by contrast enhancements, meanwhile the averaged high-frequency energy measure of his- togram is replaced by the ratio taken up by the high-frequency components in the histogram spectrum. While the second improvement is achieved by applying a linear-threshold strategy to get around the sensitivity of threshold selection. Compared with their original counterparts, these two methods both achieve better performance in terms of ROC curves and real-world cut-and-paste image forgeries. The effectiveness and improvement of the two proposed algorithms are experimentally validated on natural color images captured by commercial camera.

  16. Multi-Parametric MRI and Texture Analysis to Visualize Spatial Histologic Heterogeneity and Tumor Extent in Glioblastoma

    PubMed Central

    Hu, Leland S.; Ning, Shuluo; Eschbacher, Jennifer M.; Gaw, Nathan; Dueck, Amylou C.; Smith, Kris A.; Nakaji, Peter; Plasencia, Jonathan; Ranjbar, Sara; Price, Stephen J.; Tran, Nhan; Loftus, Joseph; Jenkins, Robert; O’Neill, Brian P.; Elmquist, William; Baxter, Leslie C.; Gao, Fei; Frakes, David; Karis, John P.; Zwart, Christine; Swanson, Kristin R.; Sarkaria, Jann; Wu, Teresa

    2015-01-01

    Background Genetic profiling represents the future of neuro-oncology but suffers from inadequate biopsies in heterogeneous tumors like Glioblastoma (GBM). Contrast-enhanced MRI (CE-MRI) targets enhancing core (ENH) but yields adequate tumor in only ~60% of cases. Further, CE-MRI poorly localizes infiltrative tumor within surrounding non-enhancing parenchyma, or brain-around-tumor (BAT), despite the importance of characterizing this tumor segment, which universally recurs. In this study, we use multiple texture analysis and machine learning (ML) algorithms to analyze multi-parametric MRI, and produce new images indicating tumor-rich targets in GBM. Methods We recruited primary GBM patients undergoing image-guided biopsies and acquired pre-operative MRI: CE-MRI, Dynamic-Susceptibility-weighted-Contrast-enhanced-MRI, and Diffusion Tensor Imaging. Following image coregistration and region of interest placement at biopsy locations, we compared MRI metrics and regional texture with histologic diagnoses of high- vs low-tumor content (≥80% vs <80% tumor nuclei) for corresponding samples. In a training set, we used three texture analysis algorithms and three ML methods to identify MRI-texture features that optimized model accuracy to distinguish tumor content. We confirmed model accuracy in a separate validation set. Results We collected 82 biopsies from 18 GBMs throughout ENH and BAT. The MRI-based model achieved 85% cross-validated accuracy to diagnose high- vs low-tumor in the training set (60 biopsies, 11 patients). The model achieved 81.8% accuracy in the validation set (22 biopsies, 7 patients). Conclusion Multi-parametric MRI and texture analysis can help characterize and visualize GBM’s spatial histologic heterogeneity to identify regional tumor-rich biopsy targets. PMID:26599106

  17. The Value of Contrast-Enhanced Ultrasonography and Contrast-Enhanced CT in the Diagnosis of Malignant Renal Cystic Lesions: A Meta-Analysis

    PubMed Central

    Lan, Dong; Qu, Hong-Chen; Li, Ning; Zhu, Xing-Wang; Liu, Yi-Li; Liu, Chun-Lai

    2016-01-01

    We compared the efficacy of contrast-enhanced ultrasound (CEUS) and contrast-enhanced computed tomography (CECT) for the diagnosis of renal cystic lesions via a meta-analysis to determine the value of CEUS in the prediction of the malignant potential of complex renal cysts. Eleven studies were evaluated: 4 control studies related to CEUS and CECT, 3 studies related to CEUS and 4 studies related to CECT. According to the random effects model, the pooled sensitivity, specificity, positive likelihood ratio, and negative likelihood ratio for CEUS/CECT were 0.95/0.90, 0.79/0.85, 4.39/5.00, and 0.10/0.15, respectively. The areas under the summary receiver operating characteristic (AUCs-SROC) curves for the two methods were 94.24% and 93.39%, and the estimated Q values were 0.8805 and 0.8698, respectively. Comparing the Q index values of CEUS and CECT revealed no significant difference between the two methods (P>0.05). When compared with conventional CECT, CEUS is also useful for diagnosing renal cystic lesions in the clinic. PMID:27203086

  18. Association between bilateral asymmetry of kinetic features computed from the DCE-MRI images and breast cancer

    NASA Astrophysics Data System (ADS)

    Yang, Qian; Li, Lihua; Zhang, Juan; Zhang, Chengjie; Zheng, Bin

    2013-03-01

    Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) of breast yields high sensitivity but relatively lower specificity. To improve diagnostic accuracy of DCE-MRI, we investigated the association between bilateral asymmetry of kinetic features computed from the left and right breasts and breast cancer detection with the hypothesis that due to the growth of angiogenesis associated with malignant lesions, the average dynamic contrast enhancement computed from the breasts depicting malignant lesions should be higher than negative or benign breasts. To test this hypothesis, we assembled a database involving 130 DCE-MRI examinations including 81 malignant and 49 benign cases. We developed a computerized scheme that automatically segments breast areas depicted on MR images and computes kinetic features related to the bilateral asymmetry of contrast enhancement ratio between two breasts. An artificial neural network (ANN) was then used to classify between malignant and benign cases. To identify the optimal approach to compute the bilateral kinetic feature asymmetry, we tested 4 different thresholds to select the enhanced pixels (voxels) from DCE-MRI images and compute the kinetic features. Using the optimal threshold, the ANN had a classification performance measured by the area under the ROC curve of AUC=0.79+/-0.04. The positive and negative predictive values were 0.75 and 0.67, respectively. The study suggested that the bilateral asymmetry of kinetic features or contrast enhancement of breast background tissue could provide valuable supplementary information to distinguish between the malignant and benign cases, which can be fused into existing computer-aided detection schemes to improve classification performance.

  19. Multimodal Classification of Schizophrenia Patients with MEG and fMRI Data Using Static and Dynamic Connectivity Measures

    PubMed Central

    Cetin, Mustafa S.; Houck, Jon M.; Rashid, Barnaly; Agacoglu, Oktay; Stephen, Julia M.; Sui, Jing; Canive, Jose; Mayer, Andy; Aine, Cheryl; Bustillo, Juan R.; Calhoun, Vince D.

    2016-01-01

    Mental disorders like schizophrenia are currently diagnosed by physicians/psychiatrists through clinical assessment and their evaluation of patient's self-reported experiences as the illness emerges. There is great interest in identifying biological markers of prognosis at the onset of illness, rather than relying on the evolution of symptoms across time. Functional network connectivity, which indicates a subject's overall level of “synchronicity” of activity between brain regions, demonstrates promise in providing individual subject predictive power. Many previous studies reported functional connectivity changes during resting-state using only functional magnetic resonance imaging (fMRI). Nevertheless, exclusive reliance on fMRI to generate such networks may limit the inference of the underlying dysfunctional connectivity, which is hypothesized to be a factor in patient symptoms, as fMRI measures connectivity via hemodynamics. Therefore, combination of connectivity assessments using fMRI and magnetoencephalography (MEG), which more directly measures neuronal activity, may provide improved classification of schizophrenia than either modality alone. Moreover, recent evidence indicates that metrics of dynamic connectivity may also be critical for understanding pathology in schizophrenia. In this work, we propose a new framework for extraction of important disease related features and classification of patients with schizophrenia based on using both fMRI and MEG to investigate functional network components in the resting state. Results of this study show that the integration of fMRI and MEG provides important information that captures fundamental characteristics of functional network connectivity in schizophrenia and is helpful for prediction of schizophrenia patient group membership. Combined fMRI/MEG methods, using static functional network connectivity analyses, improved classification accuracy relative to use of fMRI or MEG methods alone (by 15 and 12

  20. Multimodal Classification of Schizophrenia Patients with MEG and fMRI Data Using Static and Dynamic Connectivity Measures.

    PubMed

    Cetin, Mustafa S; Houck, Jon M; Rashid, Barnaly; Agacoglu, Oktay; Stephen, Julia M; Sui, Jing; Canive, Jose; Mayer, Andy; Aine, Cheryl; Bustillo, Juan R; Calhoun, Vince D

    2016-01-01

    Mental disorders like schizophrenia are currently diagnosed by physicians/psychiatrists through clinical assessment and their evaluation of patient's self-reported experiences as the illness emerges. There is great interest in identifying biological markers of prognosis at the onset of illness, rather than relying on the evolution of symptoms across time. Functional network connectivity, which indicates a subject's overall level of "synchronicity" of activity between brain regions, demonstrates promise in providing individual subject predictive power. Many previous studies reported functional connectivity changes during resting-state using only functional magnetic resonance imaging (fMRI). Nevertheless, exclusive reliance on fMRI to generate such networks may limit the inference of the underlying dysfunctional connectivity, which is hypothesized to be a factor in patient symptoms, as fMRI measures connectivity via hemodynamics. Therefore, combination of connectivity assessments using fMRI and magnetoencephalography (MEG), which more directly measures neuronal activity, may provide improved classification of schizophrenia than either modality alone. Moreover, recent evidence indicates that metrics of dynamic connectivity may also be critical for understanding pathology in schizophrenia. In this work, we propose a new framework for extraction of important disease related features and classification of patients with schizophrenia based on using both fMRI and MEG to investigate functional network components in the resting state. Results of this study show that the integration of fMRI and MEG provides important information that captures fundamental characteristics of functional network connectivity in schizophrenia and is helpful for prediction of schizophrenia patient group membership. Combined fMRI/MEG methods, using static functional network connectivity analyses, improved classification accuracy relative to use of fMRI or MEG methods alone (by 15 and 12

  1. Resting State fMRI Functional Connectivity Analysis Using Dynamic Time Warping

    PubMed Central

    Meszlényi, Regina J.; Hermann, Petra; Buza, Krisztian; Gál, Viktor; Vidnyánszky, Zoltán

    2017-01-01

    Traditional resting-state network concept is based on calculating linear dependence of spontaneous low frequency fluctuations of the BOLD signals of different brain areas, which assumes temporally stable zero-lag synchrony across regions. However, growing amount of experimental findings suggest that functional connectivity exhibits dynamic changes and a complex time-lag structure, which cannot be captured by the static zero-lag correlation analysis. Here we propose a new approach applying Dynamic Time Warping (DTW) distance to evaluate functional connectivity strength that accounts for non-stationarity and phase-lags between the observed signals. Using simulated fMRI data we found that DTW captures dynamic interactions and it is less sensitive to linearly combined global noise in the data as compared to traditional correlation analysis. We tested our method using resting-state fMRI data from repeated measurements of an individual subject and showed that DTW analysis results in more stable connectivity patterns by reducing the within-subject variability and increasing robustness for preprocessing strategies. Classification results on a public dataset revealed a superior sensitivity of the DTW analysis to group differences by showing that DTW based classifiers outperform the zero-lag correlation and maximal lag cross-correlation based classifiers significantly. Our findings suggest that analysing resting-state functional connectivity using DTW provides an efficient new way for characterizing functional networks. PMID:28261052

  2. Identifying Core Affect in Individuals from fMRI Responses to Dynamic Naturalistic Audiovisual Stimuli.

    PubMed

    Kim, Jongwan; Wang, Jing; Wedell, Douglas H; Shinkareva, Svetlana V

    2016-01-01

    Recent research has demonstrated that affective states elicited by viewing pictures varying in valence and arousal are identifiable from whole brain activation patterns observed with functional magnetic resonance imaging (fMRI). Identification of affective states from more naturalistic stimuli has clinical relevance, but the feasibility of identifying these states on an individual trial basis from fMRI data elicited by dynamic multimodal stimuli is unclear. The goal of this study was to determine whether affective states can be similarly identified when participants view dynamic naturalistic audiovisual stimuli. Eleven participants viewed 5s audiovisual clips in a passive viewing task in the scanner. Valence and arousal for individual trials were identified both within and across participants based on distributed patterns of activity in areas selectively responsive to audiovisual naturalistic stimuli while controlling for lower level features of the stimuli. In addition, the brain regions identified by searchlight analyses to represent valence and arousal were consistent with previously identified regions associated with emotion processing. These findings extend previous results on the distributed representation of affect to multimodal dynamic stimuli.

  3. Semi-automatic segmentation for 3D motion analysis of the tongue with dynamic MRI.

    PubMed

    Lee, Junghoon; Woo, Jonghye; Xing, Fangxu; Murano, Emi Z; Stone, Maureen; Prince, Jerry L

    2014-12-01

    Dynamic MRI has been widely used to track the motion of the tongue and measure its internal deformation during speech and swallowing. Accurate segmentation of the tongue is a prerequisite step to define the target boundary and constrain the tracking to tissue points within the tongue. Segmentation of 2D slices or 3D volumes is challenging because of the large number of slices and time frames involved in the segmentation, as well as the incorporation of numerous local deformations that occur throughout the tongue during motion. In this paper, we propose a semi-automatic approach to segment 3D dynamic MRI of the tongue. The algorithm steps include seeding a few slices at one time frame, propagating seeds to the same slices at different time frames using deformable registration, and random walker segmentation based on these seed positions. This method was validated on the tongue of five normal subjects carrying out the same speech task with multi-slice 2D dynamic cine-MR images obtained at three orthogonal orientations and 26 time frames. The resulting semi-automatic segmentations of a total of 130 volumes showed an average dice similarity coefficient (DSC) score of 0.92 with less segmented volume variability between time frames than in manual segmentations.

  4. Identifying Core Affect in Individuals from fMRI Responses to Dynamic Naturalistic Audiovisual Stimuli

    PubMed Central

    Kim, Jongwan; Wang, Jing; Wedell, Douglas H.

    2016-01-01

    Recent research has demonstrated that affective states elicited by viewing pictures varying in valence and arousal are identifiable from whole brain activation patterns observed with functional magnetic resonance imaging (fMRI). Identification of affective states from more naturalistic stimuli has clinical relevance, but the feasibility of identifying these states on an individual trial basis from fMRI data elicited by dynamic multimodal stimuli is unclear. The goal of this study was to determine whether affective states can be similarly identified when participants view dynamic naturalistic audiovisual stimuli. Eleven participants viewed 5s audiovisual clips in a passive viewing task in the scanner. Valence and arousal for individual trials were identified both within and across participants based on distributed patterns of activity in areas selectively responsive to audiovisual naturalistic stimuli while controlling for lower level features of the stimuli. In addition, the brain regions identified by searchlight analyses to represent valence and arousal were consistent with previously identified regions associated with emotion processing. These findings extend previous results on the distributed representation of affect to multimodal dynamic stimuli. PMID:27598534

  5. SU-E-J-168: Automated Pancreas Segmentation Based On Dynamic MRI

    SciTech Connect

    Gou, S; Rapacchi, S; Hu, P; Sheng, K

    2014-06-01

    Purpose: MRI guided radiotherapy is particularly attractive for abdominal targets with low CT contrast. To fully utilize this modality for pancreas tracking, automated segmentation tools are needed. A hybrid gradient, region growth and shape constraint (hGReS) method to segment 2D upper abdominal dynamic MRI is developed for this purpose. Methods: 2D coronal dynamic MR images of 2 healthy volunteers were acquired with a frame rate of 5 f/second. The regions of interest (ROIs) included the liver, pancreas and stomach. The first frame was used as the source where the centers of the ROIs were annotated. These center locations were propagated to the next dynamic MRI frame. 4-neighborhood region transfer growth was performed from these initial seeds for rough segmentation. To improve the results, gradient, edge and shape constraints were applied to the ROIs before final refinement using morphological operations. Results from hGReS and 3 other automated segmentation methods using edge detection, region growth and level set were compared to manual contouring. Results: For the first patient, hGReS resulted in the organ segmentation accuracy as measure by the Dices index (0.77) for the pancreas. The accuracy was slightly superior to the level set method (0.72), and both are significantly more accurate than the edge detection (0.53) and region growth methods (0.42). For the second healthy volunteer, hGReS reliably segmented the pancreatic region, achieving a Dices index of 0.82, 0.92 and 0.93 for the pancreas, stomach and liver, respectively, comparing to manual segmentation. Motion trajectories derived from the hGReS, level set and manual segmentation methods showed high correlation to respiratory motion calculated using a lung blood vessel as the reference while the other two methods showed substantial motion tracking errors. hGReS was 10 times faster than level set. Conclusion: We have shown the feasibility of automated segmentation of the pancreas anatomy based on

  6. Vibrational dynamics of zero-field-splitting hamiltonian in gadolinium-based MRI contrast agents from ab initio molecular dynamics

    SciTech Connect

    Lasoroski, Aurélie; Vuilleumier, Rodolphe; Pollet, Rodolphe

    2014-07-07

    The electronic relaxation of gadolinium complexes used as MRI contrast agents was studied theoretically by following the short time evolution of zero-field-splitting parameters. The statistical analysis of ab initio molecular dynamics trajectories provided a clear separation between static and transient contributions to the zero-field-splitting. For the latter, the correlation time was estimated at approximately 0.1 ps. The influence of the ligand was also probed by replacing one pendant arm of our reference macrocyclic complex by a bulkier phosphonate arm. In contrast to the transient contribution, the static zero-field-splitting was significantly influenced by this substitution.

  7. Repeatability of Cerebral Perfusion Using Dynamic Susceptibility Contrast MRI in Glioblastoma Patients12

    PubMed Central

    Jafari-Khouzani, Kourosh; Emblem, Kyrre E.; Kalpathy-Cramer, Jayashree; Bjørnerud, Atle; Vangel, Mark G.; Gerstner, Elizabeth R.; Schmainda, Kathleen M.; Paynabar, Kamran; Wu, Ona; Wen, Patrick Y.; Batchelor, Tracy; Rosen, Bruce; Stufflebeam, Steven M.

    2015-01-01

    OBJECTIVES This study evaluates the repeatability of brain perfusion using dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) with a variety of post-processing methods. METHODS Thirty-two patients with newly diagnosed glioblastoma were recruited. On a 3-T MRI using a dual-echo, gradient-echo spin-echo DSC-MRI protocol, the patients were scanned twice 1 to 5 days apart. Perfusion maps including cerebral blood volume (CBV) and cerebral blood flow (CBF) were generated using two contrast agent leakage correction methods, along with testing normalization to reference tissue, and application of arterial input function (AIF). Repeatability of CBV and CBF within tumor regions and healthy tissues, identified by structural images, was assessed with intra-class correlation coefficients (ICCs) and repeatability coefficients (RCs). Coefficients of variation (CVs) were reported for selected methods. RESULTS CBV and CBF were highly repeatable within tumor with ICC values up to 0.97. However, both CBV and CBF showed lower ICCs for healthy cortical tissues (up to 0.83), healthy gray matter (up to 0.95), and healthy white matter (WM; up to 0.93). The values of CV ranged from 6% to 10% in tumor and 3% to 11% in healthy tissues. The values of RC relative to the mean value of measurement within healthy WM ranged from 22% to 42% in tumor and 7% to 43% in healthy tissues. These percentages show how much variation in perfusion parameter, relative to that in healthy WM, we expect to observe to consider it statistically significant. We also found that normalization improved repeatability, but AIF deconvolution did not. CONCLUSIONS DSC-MRI is highly repeatable in high-grade glioma patients. PMID:26055170

  8. Comparison of 1.5 and 3.0 T for Contrast-Enhanced Pulmonary Magnetic Resonance Angiography

    PubMed Central

    Londy, Frank Joseph; Lowe, Suzan; Stein, Paul D.; Weg, John G.; Eisner, Robert L.; Leeper, Kenneth V.; Woodard, Pamela K.; Sostman, H. Dirk; Jablonski, Kathleen A.; Fowler, Sarah E.; Hales, Charles A.; Hull, Russell D.; Gottschalk, Alexander; Naidich, David P.; Chenevert, Thomas L.

    2013-01-01

    Objective In a recent multi-center trial of gadolinium contrast-enhanced magnetic resonance angiography (Gd-MRA) for diagnosis of acute pulmonary embolism (PE), two centers utilized a common MRI platform though at different field strengths (1.5T and 3T) and realized a signal-to-noise gain with the 3T platform. This retrospective analysis investigates this gain in signal-to-noise of pulmonary vascular targets. Methods Thirty consecutive pulmonary MRA examinations acquired on a 1.5T system at one institution were compared to 30 consecutive pulmonary MRA examinations acquired on a 3T system at a different institution. Both systems were from the same MRI manufacturer and both used the same Gd-MRA pulse sequence, although there were some protocol adjustments made due to field strength differences. Region-of-interests were manually defined on the main pulmonary artery, 4 pulmonary veins, thoracic aorta, and background lung for objective measurement of signal-to-noise, contrast-to-noise, and bolus timing bias between centers. Results The 3T pulmonary MRA protocol achieved higher spatial resolution yet maintained significantly higher signal-to-noise ratio (≥ 13%, p = 0.03) in the main pulmonary vessels relative to 1.5T. There was no evidence of operator bias in bolus timing or patient hemodynamic differences between groups. Conclusion Relative to 1.5T, higher spatial resolution Gd-MRA can be achieved at 3T with a sustained or greater signal-to-noise ratio of enhanced vasculature. PMID:21993980

  9. A comparative study of contrast enhanced ultrasound and contrast enhanced magnetic resonance imaging for the detection and characterization of hepatic hemangiomas.

    PubMed

    Fang, Liang; Zhu, Zheng; Huang, Beijian; Ding, Hong; Mao, Feng; Li, Chaolun; Zeng, Mengsu; Zhou, Jianjun; Wang, Ling; Wang, Wenping; Chen, Yue

    2015-04-01

    This study aims to compare contrast enhanced ultrasound (CEUS) and contrast enhanced magnetic resonance imaging (CEMRI) for the detection and characterization of hepatic hemangiomas. Included in this retrospective study were 83 histopathologically confirmed lesions of hemangioma in 66 hospitalized patients who underwent both CEUS and CEMRI and received surgery. The enhancement patterns on CEUS and CEMRI in each lesion were compared and analyzed. In addition, data obtained by the two modalities were then compared with the pathological findings to determine their value in differential diagnosis of hepatic hemangiomas. CEUS diagnosed 78 lesions of hemangioma against 80 by CEMRI. There were no statistical significant differences in the diagnostic value between CEUS and CEMRI in terms of sensitivity (88.0% vs. 92.8%), specificity (99.0% vs. 99.4%), accuracy (97.3% vs. 98.4%), positive predictive value (93.6% vs. 96.3%), and negative predictive value (98.0% vs. 98.8%) (p > 0.05, all). In the arterial phase, the main enhancement pattern on both CEUS and CEMRI was peripheral nodular enhancement (73 vs. 76), but lesions with diffuse enhancement on CEUS outnumbered those on CEMRI (3 vs. 1) and lesions with circular enhancement on CEMRI outnumbered those on CEUS (3 vs. 2). In the portal venous phase and delayed phase, the main enhancement pattern was hyperechoic change on CEUS and hyperintense on CEMRI (66 vs. 65), some lesions presented isoechoic change (12 vs. 15). These results suggested CEUS, an equivalent to CEMRI, may have an added diagnostic value in hemangiomas.

  10. The Lumbar Spine as a Dynamic Structure Depicted in Upright MRI

    PubMed Central

    Kubosch, David; Vicari, Marco; Siller, Alexander; Strohm, Peter C.; Kubosch, Eva J.; Knöller, Stefan; Hennig, Jürgen; Südkamp, Norbert P.; Izadpanah, Kaywan

    2015-01-01

    Abstract Spinal canal stenosis is a dynamic phenomenon that becomes apparent during spinal loading. Current diagnostic procedures have considerable short comings in diagnosing the disease to full extend, as they are performed in supine situation. Upright MRI imaging might overcome this diagnostic gap. This study investigated the lumbar neuroforamenal diameter, spinal canal diameter, vertebral body translation, and vertebral body angles in 3 different body positions using upright MRI imaging. Fifteen subjects were enrolled in this study. A dynamic MRI in 3 different body positions (at 0° supine, 80° upright, and 80° upright + hyperlordosis posture) was taken using a 0.25 T open-configuration scanner equipped with a rotatable examination bed allowing a true standing MRI. The mean diameter of the neuroforamen at L5/S1 in 0° position was 8.4 mm on the right and 8.8 mm on the left, in 80° position 7.3 mm on the right and 7.2 mm on the left, and in 80° position with hyperlordosis 6.6 mm (P < 0.05) on the right and 6.1 mm on the left (P < 0.001). The mean area of the neuroforamen at L5/S1 in 0° position was 103.5 mm2 on the right and 105.0 mm2 on the left, in 80° position 92.5 mm2 on the right and 94.8 mm2 on the left, and in 80° position with hyperlordosis 81.9 mm2 on the right and 90.2 mm2 on the left. The mean volume of the spinal canal at the L5/S1 level in 0° position was 9770 mm3, in 80° position 10600 mm3, and in 80° position with hyperlordosis 9414 mm3. The mean intervertebral translation at level L5/S1 was 8.3 mm in 0° position, 9.9 mm in 80° position, and 10.1 mm in the 80° position with hyperlordosis. The lordosis angle at level L5/S1 was 49.4° in 0° position, 55.8° in 80° position, and 64.7 mm in the 80° position with hyperlordosis. Spinal canal stenosis is subject to a dynamic process, that can be displayed in upright MRI imaging. The range of anomalies is clinically relevant and dynamic

  11. The Lumbar Spine as a Dynamic Structure Depicted in Upright MRI.

    PubMed

    Kubosch, David; Vicari, Marco; Siller, Alexander; Strohm, Peter C; Kubosch, Eva J; Knöller, Stefan; Hennig, Jürgen; Südkamp, Norbert P; Izadpanah, Kaywan

    2015-08-01

    Spinal canal stenosis is a dynamic phenomenon that becomes apparent during spinal loading. Current diagnostic procedures have considerable short comings in diagnosing the disease to full extend, as they are performed in supine situation. Upright MRI imaging might overcome this diagnostic gap.This study investigated the lumbar neuroforamenal diameter, spinal canal diameter, vertebral body translation, and vertebral body angles in 3 different body positions using upright MRI imaging.Fifteen subjects were enrolled in this study. A dynamic MRI in 3 different body positions (at 0° supine, 80° upright, and 80° upright + hyperlordosis posture) was taken using a 0.25 T open-configuration scanner equipped with a rotatable examination bed allowing a true standing MRI.The mean diameter of the neuroforamen at L5/S1 in 0° position was 8.4 mm on the right and 8.8 mm on the left, in 80° position 7.3 mm on the right and 7.2 mm on the left, and in 80° position with hyperlordosis 6.6 mm (P < 0.05) on the right and 6.1 mm on the left (P < 0.001).The mean area of the neuroforamen at L5/S1 in 0° position was 103.5 mm on the right and 105.0 mm on the left, in 80° position 92.5 mm on the right and 94.8 mm on the left, and in 80° position with hyperlordosis 81.9 mm on the right and 90.2 mm on the left.The mean volume of the spinal canal at the L5/S1 level in 0° position was 9770 mm, in 80° position 10600 mm, and in 80° position with hyperlordosis 9414 mm.The mean intervertebral translation at level L5/S1 was 8.3 mm in 0° position, 9.9 mm in 80° position, and 10.1 mm in the 80° position with hyperlordosis.The lordosis angle at level L5/S1 was 49.4° in 0° position, 55.8° in 80° position, and 64.7 mm in the 80° position with hyperlordosis.Spinal canal stenosis is subject to a dynamic process, that can be displayed in upright MRI imaging. The range of anomalies is clinically relevant and dynamic positioning of the patient

  12. Alterations of the Blood-Brain Barrier and Regional Perfusion in Tumor Development: MRI Insights from a Rat C6 Glioma Model

    PubMed Central

    Huhndorf, Monika; Moussavi, Amir; Kramann, Nadine; Will, Olga; Hattermann, Kirsten; Stadelmann, Christine; Jansen, Olav

    2016-01-01

    Objectives Angiogenesis and anti-angiogenetic medications play an important role in progression and therapy of glioblastoma. In this context, in vivo characterization of the blood-brain-barrier and tumor vascularization may be important for individual prognosis and therapy optimization. Methods We analyzed perfusion and capillary permeability of C6-gliomas in rats at different stages of tumor-growth by contrast enhanced MRI and dynamic susceptibility contrast (DSC) MRI at 7 Tesla. The analyses included maps of relative cerebral blood volume (CBV) and signal recovery derived from DSC data over a time period of up to 35 days after tumor cell injections. Results In all rats tumor progression was accompanied by temporal and spatial changes in CBV and capillary permeability. A leakage of the blood-brain barrier (slow contrast enhancement) was observed as soon as the tumor became detectable on T2-weighted images. Interestingly, areas of strong capillary permeability (f