Science.gov

Sample records for dynamic contrast-enhanced mri

  1. Fundamentals of tracer kinetics for dynamic contrast-enhanced MRI.

    PubMed

    Koh, Tong San; Bisdas, Sotirios; Koh, Dow Mu; Thng, Choon Hua

    2011-12-01

    Tracer kinetic methods employed for quantitative analysis of dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) share common roots with earlier tracer studies involving arterial-venous sampling and other dynamic imaging modalities. This article reviews the essential foundation concepts and principles in tracer kinetics that are relevant to DCE MRI, including the notions of impulse response and convolution, which are central to the analysis of DCE MRI data. We further examine the formulation and solutions of various compartmental models frequently used in the literature. Topics of recent interest in the processing of DCE MRI data, such as the account of water exchange and the use of reference tissue methods to obviate the measurement of an arterial input, are also discussed. Although the primary focus of this review is on the tracer models and methods for T(1) -weighted DCE MRI, some of these concepts and methods are also applicable for analysis of dynamic susceptibility contrast-enhanced MRI data.

  2. Medial tibial pain: a dynamic contrast-enhanced MRI study.

    PubMed

    Mattila, K T; Komu, M E; Dahlström, S; Koskinen, S K; Heikkilä, J

    1999-09-01

    The purpose of this study was to compare the sensitivity of different magnetic resonance imaging (MRI) sequences to depict periosteal edema in patients with medial tibial pain. Additionally, we evaluated the ability of dynamic contrast-enhanced imaging (DCES) to depict possible temporal alterations in muscular perfusion within compartments of the leg. Fifteen patients with medial tibial pain were examined with MRI. T1-, T2-weighted, proton density axial images and dynamic and static phase post-contrast images were compared in ability to depict periosteal edema. STIR was used in seven cases to depict bone marrow edema. Images were analyzed to detect signs of compartment edema. Region-of-interest measurements in compartments were performed during DCES and compared with controls. In detecting periosteal edema, post-contrast T1-weighted images were better than spin echo T2-weighted and proton density images or STIR images, but STIR depicted the bone marrow edema best. DCES best demonstrated the gradually enhancing periostitis. Four subjects with severe periosteal edema had visually detectable pathologic enhancement during DCES in the deep posterior compartment of the leg. Percentage enhancement in the deep posterior compartment of the leg was greater in patients than in controls. The fast enhancement phase in the deep posterior compartment began slightly slower in patients than in controls, but it continued longer. We believe that periosteal edema in bone stress reaction can cause impairment of venous flow in the deep posterior compartment. MRI can depict both these conditions. In patients with medial tibial pain, MR imaging protocol should include axial STIR images (to depict bone pathology) with T1-weighted axial pre and post-contrast images, and dynamic contrast enhanced imaging to show periosteal edema and abnormal contrast enhancement within a compartment.

  3. Motion correction of dynamic contrast enhanced MRI of the liver

    NASA Astrophysics Data System (ADS)

    Jansen, Mariëlle J. A.; Veldhuis, Wouter B.; van Leeuwen, Maarten S.; Pluim, Josien P. W.

    2017-02-01

    Motion correction of dynamic contrast enhanced magnetic resonance images (DCE-MRI) is a challenging task, due to changes in image appearance. In this study a groupwise registration, using a principle component analysis (PCA) based metric, is evaluated for clinical DCE MRI of the liver. The groupwise registration transforms the images to a common space, rather than to a reference volume as conventional pairwise methods do, and computes the similarity metric on all volumes simultaneously. This groupwise registration method is compared to a pairwise approach using a mutual information metric. Clinical DCE MRI of the abdomen of eight patients were included. Per patient one lesion in the liver was manually segmented in all temporal images (N=16). The registered images were compared for accuracy, spatial and temporal smoothness after transformation, and lesion volume change. Compared to a pairwise method or no registration, groupwise registration provided better alignment. In our recently started clinical study groupwise registered clinical DCE MRI of the abdomen of nine patients were scored by three radiologists. Groupwise registration increased the assessed quality of alignment. The gain in reading time for the radiologist was estimated to vary from no difference to almost a minute. A slight increase in reader confidence was also observed. Registration had no added value for images with little motion. In conclusion, the groupwise registration of DCE MR images results in better alignment than achieved by pairwise registration, which is beneficial for clinical assessment.

  4. Delineation of Tumor Habitats based on Dynamic Contrast Enhanced MRI.

    PubMed

    Chang, Yu-Cherng Channing; Ackerstaff, Ellen; Tschudi, Yohann; Jimenez, Bryan; Foltz, Warren; Fisher, Carl; Lilge, Lothar; Cho, HyungJoon; Carlin, Sean; Gillies, Robert J; Balagurunathan, Yoganand; Yechieli, Raphael L; Subhawong, Ty; Turkbey, Baris; Pollack, Alan; Stoyanova, Radka

    2017-08-29

    Tumor heterogeneity can be elucidated by mapping subregions of the lesion with differential imaging characteristics, called habitats. Dynamic Contrast Enhanced (DCE-)MRI can depict the tumor microenvironments by identifying areas with variable perfusion and vascular permeability, since individual tumor habitats vary in the rate and magnitude of the contrast uptake and washout. Of particular interest is identifying areas of hypoxia, characterized by inadequate perfusion and hyper-permeable vasculature. An automatic procedure for delineation of tumor habitats from DCE-MRI was developed as a two-part process involving: (1) statistical testing in order to determine the number of the underlying habitats; and (2) an unsupervised pattern recognition technique to recover the temporal contrast patterns and locations of the associated habitats. The technique is examined on simulated data and DCE-MRI, obtained from prostate and brain pre-clinical cancer models, as well as clinical data from sarcoma and prostate cancer patients. The procedure successfully identified habitats previously associated with well-perfused, hypoxic and/or necrotic tumor compartments. Given the association of tumor hypoxia with more aggressive tumor phenotypes, the obtained in vivo information could impact management of cancer patients considerably.

  5. Dynamic contrast-enhanced MRI evaluation of cerebral cavernous malformations.

    PubMed

    Hart, Blaine L; Taheri, Saeid; Rosenberg, Gary A; Morrison, Leslie A

    2013-10-01

    The aim of this study is to quantitatively evaluate the behavior of CNS cavernous malformations (CCMs) using a dynamic contrast-enhanced MRI (DCEMRI) technique sensitive for slow transfer rates of gadolinium. The prospective study was approved by the institutional review board and was HIPPA compliant. Written informed consent was obtained from 14 subjects with familial CCMs (4 men and 10 women, ages 22-76 years, mean 48.1 years). Following routine anatomic MRI of the brain, DCEMRI was performed for six slices, using T1 mapping with partial inversion recovery (TAPIR) to calculate T1 values, following administration of 0.025 mmol/kg gadolinium DTPA. The transfer rate (Ki) was calculated using the Patlak model, and Ki within CCMs was compared to normal-appearing white matter as well as to 17 normal control subjects previously studied. All subjects had typical MRI appearance of CCMs. Thirty-nine CCMs were studied using DCEMRI. Ki was low or normal in 12 lesions and elevated from 1.4 to 12 times higher than background in the remaining 27 lesions. Ki ranged from 2.1E-6 to 9.63E-4 min(-1), mean 3.55E-4. Normal-appearing white matter in the CCM patients had a mean Ki of 1.57E-4, not statistically different from mean WM Ki of 1.47E-4 in controls. TAPIR-based DCEMRI technique permits quantifiable assessment of CCMs in vivo and reveals considerable differences not seen with conventional MRI. Potential applications include correlation with biologic behavior such as lesion growth or hemorrage, and measurement of drug effects.

  6. Dynamic Contrast-Enhanced MRI Evaluation of Cerebral Cavernous Malformations

    PubMed Central

    Hart, B. L.; Taheri, S.; Rosenberg, G. A.; Morrison, L. A.

    2013-01-01

    The aim of this study is to quantitatively evaluate the behavior of CNS cavernous malformations (CCMs) using a dynamic contrast-enhanced MRI (DCEMRI) technique sensitive for slow transfer rates of gadolinium. The prospective study was approved by the institutional review board and was HIPPA compliant. Written informed consent was obtained from 14 subjects with familial CCMs (4 men and 10 women, ages 22–76 years, mean 48.1 years). Following routine anatomic MRI of the brain, DCEMRI was performed for six slices, using T1 mapping with partial inversion recovery (TAPIR) to calculate T1 values, following administration of 0.025 mmol/kg gadolinium DTPA. The transfer rate (Ki) was calculated using the Patlak model, and Ki within CCMs was compared to normal-appearing white matter as well as to 17 normal control subjects previously studied. All subjects had typical MRI appearance of CCMs. Thirty-nine CCMs were studied using DCEMRI. Ki was low or normal in 12 lesions and elevated from 1.4 to 12 times higher than background in the remaining 27 lesions. Ki ranged from 2.1E–6 to 9.63E–4 min−1, mean 3.55E–4. Normal-appearing white matter in the CCM patients had a mean Ki of 1.57E–4, not statistically different from mean WM Ki of 1.47E–4 in controls. TAPIR-based DCEMRI technique permits quantifiable assessment of CCMs in vivo and reveals considerable differences not seen with conventional MRI. Potential applications include correlation with biologic behavior such as lesion growth or hemorrage, and measurement of drug effects. PMID:24323376

  7. Comparison of the Specificity of MREIT and Dynamic Contrast-Enhanced MRI in Breast Cancer

    DTIC Science & Technology

    2007-05-01

    Method; EIS, Electrical Impedance Scanning; OPAMP, Operational Amplifier; SVD, Singular Value Decomposition; NEX, Number of Excitations ; CE- MRI ... simulate a low conductivity region (Fig. 1). The plane of the disk was placed perpendicular to the main static MRI field. Four copper electrodes each...and Dynamic Contrast-Enhanced MRI in Breast Cancer PRINCIPAL INVESTIGATOR: Ozlem Birgul, Ph.D. CONTRACTING ORGANIZATION

  8. Dynamic Contrast-Enhanced MRI of Cervical Cancers: Temporal Percentile Screening of Contrast Enhancement Identifies Parameters for Prediction of Chemoradioresistance

    SciTech Connect

    Andersen, Erlend K.F.; Hole, Knut Hakon; Lund, Kjersti V.; Sundfor, Kolbein; Kristensen, Gunnar B.; Lyng, Heidi; Malinen, Eirik

    2012-03-01

    Purpose: To systematically screen the tumor contrast enhancement of locally advanced cervical cancers to assess the prognostic value of two descriptive parameters derived from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Methods and Materials: This study included a prospectively collected cohort of 81 patients who underwent DCE-MRI with gadopentetate dimeglumine before chemoradiotherapy. The following descriptive DCE-MRI parameters were extracted voxel by voxel and presented as histograms for each time point in the dynamic series: normalized relative signal increase (nRSI) and normalized area under the curve (nAUC). The first to 100th percentiles of the histograms were included in a log-rank survival test, resulting in p value and relative risk maps of all percentile-time intervals for each DCE-MRI parameter. The maps were used to evaluate the robustness of the individual percentile-time pairs and to construct prognostic parameters. Clinical endpoints were locoregional control and progression-free survival. The study was approved by the institutional ethics committee. Results: The p value maps of nRSI and nAUC showed a large continuous region of percentile-time pairs that were significantly associated with locoregional control (p < 0.05). These parameters had prognostic impact independent of tumor stage, volume, and lymph node status on multivariate analysis. Only a small percentile-time interval of nRSI was associated with progression-free survival. Conclusions: The percentile-time screening identified DCE-MRI parameters that predict long-term locoregional control after chemoradiotherapy of cervical cancer.

  9. An Interventional MRI Technique for the Molecular Characterization of Heterogeneous Intra-Prostatic Dynamic Contrast Enhancement

    DTIC Science & Technology

    2004-10-01

    angiogenesis. Here we demonstrate the feasibility of precisely co-localizing DCE-MRI data with the genomic and proteomic profiles of underlying biopsy tissue...using a novel MRI-guided biopsy technique in a patient with prostate cancer. Abbreviations: DCE-MRIDynamic Contrast Enhanced Magnetic...to provide more complete information on a tumor’s microvascular biology, in contrast to information obtained from a biopsy , which may be subject to

  10. Improvements in Diagnostic Accuracy with Quantitative Dynamic Contrast Enhanced MRI

    DTIC Science & Technology

    2012-12-01

    0.1, 0.2, 0.3, 0.4, 0.5 mM Omniscan (Gd- DTPA GE Healthcare). We discovered large variations in proton density values found by fitting variable...Transplanted Rodent Prostate Tumors. MRM 2004; 51:487-494 [2] Tofts P, Modeling Tracer Kinetics in Dynamic Gd- DTPA Imaging. JMRI 2005; 7:91-101 [3

  11. Clustered breast microcalcifications: Evaluation by dynamic contrast-enhanced subtraction MRI

    SciTech Connect

    Gilles, R.; Tardivon, A.A.; Vanel, D.; Guinebretiere, J.M.; Arriagada, R.

    1996-01-01

    Our goal was to evaluate dynamic contrast-enhanced subtraction MRI in the diagnosis of isolated clustered calcifications of the breast. One hundred seventy-two patients underwent surgical biopsy for isolated clustered breast calcifications. Their mammograms showed round (n = 88) or linear/irregular (n = 84) microcalcifications. All patients had a preoperative Gd-DOTA-enhanced subtraction dynamic study. Any early contrast enhancement in the breast parenchyma concomitant with early enhancement of normal vessels was considered positive. Fifty-eight in situ carcinomas, 22 invasive carcinomas, and 92 benign lesions were found at histological analysis. Dynamic MR sequences showed early contrast enhancement in 76 of 80 malignant lesions (sensitivity 95%) and in 45 of 92 benign lesions (specificity 51%). Two invasive and two intraductal carcinomas did not show early contrast enhancement. Three independent observers agreed in rating early contrast enhancement in 143 of 172 lesions. Poor specificity limits the diagnostic accuracy of dynamic contrast-enhanced subtraction MRI in distinguishing benign from malignant microcalcifications on mammography. 8 refs., 2 figs., 2 tabs.

  12. Benefits of dynamic susceptibility-weighted contrast-enhanced perfusion MRI for glioma diagnosis and therapy

    PubMed Central

    Barajas, Ramon Francisco; Cha, Soonmee

    2014-01-01

    SUMMARY Glioma are the most common supra-tentorial brain tumor in the USA with an estimated annual incidence of 17,000 new cases per year. Dynamic susceptibility-weighted contrast-enhanced (DSC) perfusion MRI noninvasively characterizes tumor biology allowing for the diagnosis and therapeutic monitoring of glioma. This MRI technique utilizes the rapid changes in signal intensity caused by a rapid intravascular bolus of paramagnetic contrast agent to calculate physiologic perfusion metrics. DSC perfusion MRI has increasingly become an integrated part of glioma imaging. The specific aim of this article is to review the benefits of DSC perfusion MRI in the therapy of glioma. PMID:25438812

  13. Statistical comparison of dynamic contrast-enhanced MRI pharmacokinetic models in human breast cancer.

    PubMed

    Li, Xia; Welch, E Brian; Chakravarthy, A Bapsi; Xu, Lei; Arlinghaus, Lori R; Farley, Jaime; Mayer, Ingrid A; Kelley, Mark C; Meszoely, Ingrid M; Means-Powell, Julie; Abramson, Vandana G; Grau, Ana M; Gore, John C; Yankeelov, Thomas E

    2012-07-01

    By fitting dynamic contrast-enhanced MRI data to an appropriate pharmacokinetic model, quantitative physiological parameters can be estimated. In this study, we compare four different models by applying four statistical measures to assess their ability to describe dynamic contrast-enhanced MRI data obtained in 28 human breast cancer patient sets: the chi-square test (χ(2)), Durbin-Watson statistic, Akaike information criterion, and Bayesian information criterion. The pharmacokinetic models include the fast exchange limit model with (FXL_v(p)) and without (FXL) a plasma component, and the fast and slow exchange regime models (FXR and SXR, respectively). The results show that the FXL_v(p) and FXR models yielded the smallest χ(2) in 45.64 and 47.53% of the voxels, respectively; they also had the smallest number of voxels showing serial correlation with 0.71 and 2.33%, respectively. The Akaike information criterion indicated that the FXL_v(p) and FXR models were preferred in 42.84 and 46.59% of the voxels, respectively. The Bayesian information criterion also indicated the FXL_v(p) and FXR models were preferred in 39.39 and 45.25% of the voxels, respectively. Thus, these four metrics indicate that the FXL_v(p) and the FXR models provide the most complete statistical description of dynamic contrast-enhanced MRI time courses for the patients selected in this study.

  14. An improved coverage and spatial resolution--using dual injection dynamic contrast-enhanced (ICE-DICE) MRI: a novel dynamic contrast-enhanced technique for cerebral tumors.

    PubMed

    Li, Ka-Loh; Buonaccorsi, Giovanni; Thompson, Gerard; Cain, John R; Watkins, Amy; Russell, David; Qureshi, Salman; Evans, D Gareth; Lloyd, Simon K; Zhu, Xiaoping; Jackson, Alan

    2012-08-01

    A new dual temporal resolution-based, high spatial resolution, pharmacokinetic parametric mapping method is described--improved coverage and spatial resolution using dual injection dynamic contrast-enhanced (ICE-DICE) MRI. In a dual-bolus dynamic contrast-enhanced-MRI acquisition protocol, a high temporal resolution prebolus is followed by a high spatial resolution main bolus to allow high spatial resolution parametric mapping for cerebral tumors. The measured plasma concentration curves from the dual-bolus data were used to reconstruct a high temporal resolution arterial input function. The new method reduces errors resulting from uncertainty in the temporal alignment of the arterial input function, tissue response function, and sampling grid. The technique provides high spatial resolution 3D pharmacokinetic maps (voxel size 1.0 × 1.0 × 2.0 mm(3)) with whole brain coverage and greater parameter accuracy than that was possible with the conventional single temporal resolution methods. High spatial resolution imaging of brain lesions is highly desirable for small lesions and to support investigation of heterogeneity within pathological tissue and peripheral invasion at the interface between diseased and normal brain. The new method has the potential to be used to improve dynamic contrast-enhanced-MRI techniques in general.

  15. Model-based reconstruction for undersampled dynamic contrast-enhanced MRI

    NASA Astrophysics Data System (ADS)

    Felsted, Ben K.; Whitaker, Ross T.; Schabel, Matthias; DiBella, Edward V. R.

    2009-02-01

    This paper describes a method for estimating, from dynamic contrast-enhanced MRI raw k-space data of the breast, parameter maps that model tissue properties associated with a compartmental model of contrast exchange. The contrast agent kinetics, as represented by these parameter maps, are important in distinguishing benign and malignant tumors. The proposed model-based reconstruction algorithm estimates tissue parameter maps directly from MRI k-space data, thereby allowing a new and improved set of spatiotemporal resolution and noise tradeoffs. Realistic noise levels and an undersampling factor of R=4 appeared to provide reasonable accuracy for the kinetic parameters of interest.

  16. Differentiation of breast cancer from fibroadenoma with dual-echo dynamic contrast-enhanced MRI.

    PubMed

    Wang, Shiwei; Delproposto, Zachary; Wang, Haoyu; Ding, Xuewei; Ji, Conghua; Wang, Bei; Xu, Maosheng

    2013-01-01

    Dynamic contrast-enhanced magnetic resonance imaging (DCE MRI) of the breast is a routinely used imaging method which is highly sensitive for detecting breast malignancy. Specificity, though, remains suboptimal. Dynamic susceptibility contrast magnetic resonance imaging (DSC MRI), an alternative dynamic contrast imaging technique, evaluates perfusion-related parameters unique from DCE MRI. Previous work has shown that the combination of DSC MRI with DCE MRI can improve diagnostic specificity, though an additional administration of intravenous contrast is required. Dual-echo MRI can measure both T1W DCE MRI and T2*W DSC MRI parameters with a single contrast bolus, but has not been previously implemented in breast imaging. We have developed a dual-echo gradient-echo sequence to perform such simultaneous measurements in the breast, and use it to calculate the semi-quantitative T1W and T2*W related parameters such as peak enhancement ratio, time of maximal enhancement, regional blood flow, and regional blood volume in 20 malignant lesions and 10 benign fibroadenomas in 38 patients. Imaging parameters were compared to surgical or biopsy obtained tissue samples. Receiver operating characteristic (ROC) curves and area under the ROC curves were calculated for each parameter and combination of parameters. The time of maximal enhancement derived from DCE MRI had a 90% sensitivity and 69% specificity for predicting malignancy. When combined with DSC MRI derived regional blood flow and volume parameters, sensitivity remained unchanged at 90% but specificity increased to 80%. In conclusion, we show that dual-echo MRI with a single administration of contrast agent can simultaneously measure both T1W and T2*W related perfusion and kinetic parameters in the breast and the combination of DCE MRI and DSC MRI parameters improves the diagnostic performance of breast MRI to differentiate breast cancer from benign fibroadenomas.

  17. Technical Note: Quantitative dynamic contrast-enhanced MRI of a 3-dimensional artificial capillary network.

    PubMed

    Gaass, Thomas; Schneider, Moritz Jörg; Dietrich, Olaf; Ingrisch, Michael; Dinkel, Julien

    2017-04-01

    Variability across devices, patients, and time still hinders widespread recognition of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) as quantitative biomarker. The purpose of this work was to introduce and characterize a dedicated microchannel phantom as a model for quantitative DCE-MRI measurements. A perfusable, MR-compatible microchannel network was constructed on the basis of sacrificial melt-spun sugar fibers embedded in a block of epoxy resin. Structural analysis was performed on the basis of light microscopy images before DCE-MRI experiments. During dynamic acquisition the capillary network was perfused with a standard contrast agent injection system. Flow-dependency, as well as inter- and intrascanner reproducibility of the computed DCE parameters were evaluated using a 3.0 T whole-body MRI. Semi-quantitative and quantitative flow-related parameters exhibited the expected proportionality to the set flow rate (mean Pearson correlation coefficient: 0.991, P < 2.5e-5). The volume fraction was approximately independent from changes of the applied flow rate through the phantom. Repeatability and reproducibility experiments yielded maximum intrascanner coefficients of variation (CV) of 4.6% for quantitative parameters. All evaluated parameters were well in the range of known in vivo results for the applied flow rates. The constructed phantom enables reproducible, flow-dependent, contrast-enhanced MR measurements with the potential to facilitate standardization and comparability of DCE-MRI examinations. © 2017 American Association of Physicists in Medicine.

  18. Dynamic Contrast-Enhanced MRI for the Detection of Prostate Cancer: Meta-Analysis

    PubMed Central

    Tan, Cher Heng; Hobbs, Brian Paul; Wei, Wei; Kundra, Vikas

    2016-01-01

    Objective The purpose of this study was to systematically review and meta-analyze dynamic contrast-enhanced MRI (DCE-MRI) for the detection of prostate cancer in comparison with standard evaluation with T2-weighted imaging. Materials and Methods A PubMed electronic database search for the terms “dynamic contrast-enhanced,” “prostate,” and “MRI” was completed for articles up to September 17, 2013. All included studies had histopathologic correlation. Two by two contingency data were constructed for each study. A binormal bayesian ROC model was used to estimate and compare sensitivity, specificity, and AUC among eligible modalities. Results Both DCE-MRI (0.82–0.86) and diffusion-weighted MRI (DWI) (0.84–0.88) yielded significantly better AUC than T2-weighted imaging (0.68–0.77). Moreover, partial AUC for the combination of DCE-MRI, DWI, and T2-weighted imaging was improved significantly (0.111; 0.103–0.119) when compared with DCE-MRI alone (0.079; 0.072–0.085) and T2-weighted imaging alone (0.079; 0.074–0.084) but not DWI alone (0.099; 0.091–0.108). Sensitivity and specificity were similar among the four modalities. Conclusion DCE-MRI improves AUC of tumor detection overall compared with T2-weighted imaging alone. Methods for DCE-MRI analysis require standardization, but visual analysis performs similar to semiquantitative methods. A two-parameter approach using DCE-MRI and T2-weighted imaging or DWI and T2-weighted imaging may be sufficient, and the latter may be more favorable for most routine prostate cancer imaging. PMID:25794093

  19. Can Dynamic Contrast-Enhanced MRI (DCE-MRI) and Diffusion-Weighted MRI (DW-MRI) Evaluate Inflammation Disease

    PubMed Central

    Zhu, Jianguo; Zhang, Faming; Luan, Yun; Cao, Peng; Liu, Fei; He, Wenwen; Wang, Dehang

    2016-01-01

    Abstract The aim of the study was to investigate diagnosis efficacy of dynamic contrast-enhanced MRI (DCE-MRI) and diffusion-weighted MRI (DW-MRI) in Crohn's disease (CD). To find out the correlations between functional MRI parameters including Ktrans, Kep, Ve, Vp, and apparent diffusion coefficient (ADC) with a serologic biomarker. The relationships between pharmacokinetic parameters and ADC were also studied. Thirty-two patients with CD (22 men, 10 women; mean age: 30.5 years) and 18 healthy volunteers without any inflammatory disease (10 men, 8 women; mean age, 34.11 years) were enrolled into this approved prospective study. Pearson analysis was used to evaluate the correlation between Ktrans, Kep, Ve, Vp, and C-reactive protein (CRP), ADC, and CRP respectively. The diagnostic efficacy of the functional MRI parameters in terms of sensitivity and specificity were analyzed by receiver operating characteristic (ROC) curve analyses. Optimal cut-off values of each functional MRI parameters for differentiation of inflammatory from normal bowel were determined according to the Youden criterion. Mean value of Ktrans in the CD group was significantly higher than that of normal control group. Similar results were observed for Kep and Ve. On the contrary, the ADC value was lower in the CD group than that in the control group. Ktrans and Ve were shown to be correlated with CRP (r = 0.725, P < 0.001; r = 0.533, P = 0.002), meanwhile ADC showed negative correlation with CRP (r = −0.630, P < 0.001). There were negative correlations between the pharmacokinetic parameters and ADC, such as Ktrans to ADC (r = −0.856, P < 0.001), and Ve to ADC (r = −0.451, P = 0.01). The area under the curve (AUC) was 0.994 for Ktrans (P < 0.001), 0.905 for ADC (P < 0.001), 0.806 for Ve (P < 0.001), and 0.764 for Kep (P = 0.002). The cut-off point of the Ktrans was found to be 0.931 min–1. This value provided the best trade-off between

  20. Dynamic fractal signature dissimilarity analysis for therapeutic response assessment using dynamic contrast-enhanced MRI

    PubMed Central

    Wang, Chunhao; Subashi, Ergys; Yin, Fang-Fang; Chang, Zheng

    2016-01-01

    Purpose: To develop a dynamic fractal signature dissimilarity (FSD) method as a novel image texture analysis technique for the quantification of tumor heterogeneity information for better therapeutic response assessment with dynamic contrast-enhanced (DCE)-MRI. Methods: A small animal antiangiogenesis drug treatment experiment was used to demonstrate the proposed method. Sixteen LS-174T implanted mice were randomly assigned into treatment and control groups (n = 8/group). All mice received bevacizumab (treatment) or saline (control) three times in two weeks, and one pretreatment and two post-treatment DCE-MRI scans were performed. In the proposed dynamic FSD method, a dynamic FSD curve was generated to characterize the heterogeneity evolution during the contrast agent uptake, and the area under FSD curve (AUCFSD) and the maximum enhancement (MEFSD) were selected as representative parameters. As for comparison, the pharmacokinetic parameter Ktrans map and area under MR intensity enhancement curve AUCMR map were calculated. Besides the tumor’s mean value and coefficient of variation, the kurtosis, skewness, and classic Rényi dimensions d1 and d2 of Ktrans and AUCMR maps were evaluated for heterogeneity assessment for comparison. For post-treatment scans, the Mann–Whitney U-test was used to assess the differences of the investigated parameters between treatment/control groups. The support vector machine (SVM) was applied to classify treatment/control groups using the investigated parameters at each post-treatment scan day. Results: The tumor mean Ktrans and its heterogeneity measurements d1 and d2 values showed significant differences between treatment/control groups in the second post-treatment scan. In contrast, the relative values (in reference to the pretreatment value) of AUCFSD and MEFSD in both post-treatment scans showed significant differences between treatment/control groups. When using AUCFSD and MEFSD as SVM input for treatment/control classification

  1. Comparison of the Specificity of MR-EIT and Dynamic Contrast-Enhanced MRI in Breast Cancer

    DTIC Science & Technology

    2006-05-01

    used in classification. Current conductivity imaging techniques can only provide low-resolution images and fail in extreme cases. Magnetic resonance ...procedures for dynamic contrast enhanced-magnetic resonance imaging (DCE-MRI) that will be used in the comparative studies in the last year of the...tomography (EIT), dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), breast cancer 16. SECURITY CLASSIFICATION OF: 17. LIMITATION

  2. Coregistration of dynamic contrast enhanced MRI and broadband diffuse optical spectroscopy for characterizing breast cancer.

    PubMed

    Hsiang, David; Shah, Natasha; Yu, Hon; Su, Min-Ying; Cerussi, Albert; Butler, John; Baick, Choong; Mehta, Rita; Nalcioglu, Orhan; Tromberg, Bruce

    2005-10-01

    A hand-held scanning probe based on broadband Diffuse Optical Spectroscopy (DOS) was used in combination with dynamic contrast enhanced MRI (DCE-MRI) to quantitatively characterize locally-advanced breast cancers in six patients. Measurements were performed sequentially using external fiducial markers for co-registration. Tumor patterns were categorized according to MRI morphological data, and 3D DCE-MRI slices were converted into a volumetric matrix with isotropic voxels to generate views that coincided with the DOS scanning plane. Tumor volume and depth at each DOS measurement site were determined, and a tissue optical index (TOI) that reflects both angiogenic and stromal characteristics was derived from broadband DOS data. In all six cases, optical scans showed significant TOI contrast corresponding to MRI morphological information. Sharp TOI peaks were recovered for well-circumscribed masses. A reduction in TOI was found inside a tumor with a necrotic center. A broadened peak was observed for a diffuse tumor pattern, and an inflammatory septal case provided two TOI peaks that correlated qualitatively with MRI enhancement. These results provide qualitative confirmation of the common signal origin and complementary information content that can be achieved by combining optical and MR imaging for breast cancer detection and clinical management.

  3. Combined Dynamic Contrast Enhanced Liver MRI and MRA Using Interleaved Variable Density Sampling

    PubMed Central

    Rahimi, Mahdi Salmani; Korosec, Frank R.; Wang, Kang; Holmes, James H.; Motosugi, Utaroh; Bannas, Peter; Reeder, Scott B.

    2014-01-01

    Purpose To develop and evaluate a method for volumetric contrast-enhanced MR imaging of the liver, with high spatial and temporal resolutions, for combined dynamic imaging and MR angiography using a single injection of contrast. Methods An interleaved variable density (IVD) undersampling pattern was implemented in combination with a real-time-triggered, time-resolved, dual-echo 3D spoiled gradient echo sequence. Parallel imaging autocalibration lines were acquired only once during the first time-frame. Imaging was performed in ten subjects with focal nodular hyperplasia (FNH) and compared with their clinical MRI. The angiographic phase of the proposed method was compared to a dedicated MR angiogram acquired during a second injection of contrast. Results A total of 21 FNH, 3 cavernous hemangiomas, and 109 arterial segments were visualized in 10 subjects. The temporally-resolved images depicted the characteristic arterial enhancement pattern of the lesions with a 4 s update rate. Images were graded as having significantly higher quality compared to the clinical MRI. Angiograms produced from the IVD method provided non-inferior diagnostic assessment compared to the dedicated MRA. Conclusion Using an undersampled IVD imaging method, we have demonstrated the feasibility of obtaining high spatial and temporal resolution dynamic contrast-enhanced imaging and simultaneous MRA of the liver. PMID:24639130

  4. Uncertainty in the analysis of tracer kinetics using dynamic contrast-enhanced T1-weighted MRI.

    PubMed

    Buckley, David L

    2002-03-01

    In recent years a number of physiological models have gained prominence in the analysis of dynamic contrast-enhanced T1-weighted MRI data. However, there remains little evidence to support their use in estimating the absolute values of tissue physiological parameters such as perfusion, capillary permeability, and blood volume. In an attempt to address this issue, data were simulated using a distributed pathway model of tracer kinetics, and three published models were fitted to the resultant concentration-time curves. Parameter estimates obtained from these fits were compared with the parameters used for the simulations. The results indicate that the use of commonly accepted models leads to systematic overestimation of the transfer constant, Ktrans, and potentially large underestimates of the blood plasma volume fraction, Vp. In summary, proposals for a practical approach to physiological modeling using MRI data are outlined.

  5. Dynamic contrast-enhanced MRI in clinical trials of antivascular therapies.

    PubMed

    O'Connor, James P B; Jackson, Alan; Parker, Geoff J M; Roberts, Caleb; Jayson, Gordon C

    2012-02-14

    About 100 early-phase clinical trials and investigator-led studies of targeted antivascular therapies--both anti-angiogenic and vascular-targeting agents--have reported data derived from T1-weighted dynamic contrast-enhanced (DCE)-MRI. However, the role of DCE-MRI for decision making during the drug-development process remains controversial. Despite well-documented guidelines on image acquisition and analysis, several key questions concerning the role of this technique in early-phase trial design remain unanswered. This Review describes studies of single-agent antivascular therapies, in which DCE-MRI parameters are incorporated as pharmacodynamic biomarkers. We discuss whether these parameters, such as volume transfer constant (K(trans)), are reproducible and reliable biomarkers of both drug efficacy and proof of concept, and whether they assist in dose selection and drug scheduling for subsequent phase II trials. Emerging evidence indicates that multiparametric analysis of DCE-MRI data offers greater insight into the mechanism of drug action than studies measuring a single parameter, such as K(trans). We also provide an overview of current data and appraise the future directions of this technique in oncology trials. Finally, major hurdles in imaging biomarker development, validation and qualification that hinder a wide application of DCE-MRI techniques in clinical trials are addressed.

  6. Temporomandibular joint (TMJ) pain revisited with dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI).

    PubMed

    Tasali, N; Cubuk, R; Aricak, M; Ozarar, M; Saydam, B; Nur, H; Tuncbilek, N

    2012-03-01

    We aimed to assess the contrast enhancement patterns of the retrodiscal tissue with dynamic contrast-enhanced MR imaging (DCE-MRI) with respect to different temporomandibular joint disc pathologies. Additionally, we questioned the relationship between the temporomandibular joint (TMJ) pain and the contrast enhancement pattern of the retrodiscal tissue regardless of the TMJ disc position. 52 joints of 26 patients (4 males and 22 females) who have pain in at least at one of their TMJ were included in this study. For the qualitative analysis, the joints were divided into four groups in terms of their disc positions: normal (1), partially displaced with or without reduction (2), totally dislocated with reduction (3) and totally dislocated without reduction (4). Besides, two different joint groups were constituted, namely the painful group and painless group according to the clinical findings without taking the TMJ disc positions into account. Quantitative analyses were made by means of measuring signal intensity ratios (SI) ratio at the retrodiscal tissue (from internal side and external side of the each joint) using DCE-MRI and these measurements were analyzed with paired samples t test to define the difference between the measurements. At the second stage, the time-dependent arithmetical mean values of the SI ratios were calculated for each joint group and significant differences between the groups were questioned using analysis of variance (ANOVA) test. Besides, painful and painless groups which were classified on the basis of the clinical data were compared according to the mean SI ratios found for each joint and the significant differences between these two groups were assessed by means of Student's T test. The results were assessed in 95% confidence interval where the significance level was p<0.05. A significant difference was observed between the internal and external contrast enhancement of the joints with partial displacement. Another significant difference

  7. Dynamic Contrast-Enhanced MRI Perfusion Parameters as Imaging Biomarkers of Angiogenesis

    PubMed Central

    2016-01-01

    Hypoxia in the tumor microenvironment is the leading factor in angiogenesis. Angiogenesis can be identified by dynamic contrast-enhanced breast MRI (DCE MRI). Here we investigate the relationship between perfusion parameters on DCE MRI and angiogenic and prognostic factors in patients with invasive ductal carcinoma (IDC). Perfusion parameters (Ktrans, kep and ve) of 81 IDC were obtained using histogram analysis. Twenty-fifth, 50th and 75th percentile values were calculated and were analyzed for association with microvessel density (MVD), vascular endothelial growth factor (VEGF) and conventional prognostic factors. Correlation between MVD and ve50 was positive (r = 0.33). Ktrans50 was higher in tumors larger than 2 cm than in tumors smaller than 2 cm. In multivariate analysis, Ktrans50 was affected by tumor size and MVD with 12.8% explanation. There was significant association between Ktrans50 and tumor size and MVD. Therefore we conclude that DCE MRI perfusion parameters are potential imaging biomarkers for prediction of tumor angiogenesis and aggressiveness. PMID:28036342

  8. Mapping Tumor Hypoxia In Vivo Using Pattern Recognition of Dynamic Contrast-enhanced MRI Data12

    PubMed Central

    Stoyanova, Radka; Huang, Kris; Sandler, Kiri; Cho, HyungJoon; Carlin, Sean; Zanzonico, Pat B; Koutcher, Jason A; Ackerstaff, Ellen

    2012-01-01

    In solid tumors, hypoxia contributes significantly to radiation and chemotherapy resistance and to poor outcomes. The “gold standard” pO2 electrode measurements of hypoxia in vivo are unsatisfactory because they are invasive and have limited spatial coverage. Here, we present an approach to identify areas of tumor hypoxia using the signal versus time curves of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) data as a surrogate marker of hypoxia. We apply an unsupervised pattern recognition (PR) technique to determine the differential signal versus time curves associated with different tumor microenvironmental characteristics in DCE-MRI data of a preclinical cancer model. Well-perfused tumor areas are identified by rapid contrast uptake followed by rapid washout; hypoxic areas, which are regions of reduced vascularization, are identified by delayed contrast signal buildup and washout; and necrotic areas exhibit slow or no contrast uptake and no discernible washout over the experimental observation. The strength of the PR concept is that it captures the pixel-enhancing behavior in its entirety—during both contrast agent uptake and washout—and thus, subtleties in the temporal behavior of contrast enhancement related to features of the tumor microenvironment (driven by vascular changes) may be detected. The assignment of the tumor compartments/microenvironment to well vascularized, hypoxic, and necrotic is validated by comparison to data previously obtained using complementary imaging modalities. The proposed novel analysis approach has the advantage that it can be readily translated to the clinic, as DCE-MRI is used routinely for the identification of tumors in patients, is widely available, and easily implemented on any clinical magnet. PMID:23326621

  9. [The actions of diffusion weighted imaging (DWI) and dynamic contrast enhanced MRI in differentiating breast tumors].

    PubMed

    Luo, Yi; Yu, Jianqun; Chen, Dongdong; Xu, Zhongzi; Zeng, Hanjiang

    2013-12-01

    We studied the actions of diffusion weighted imaging (DWI) and dynamic contrast enhanced (DCE) magnetic resonance imaging (MRI) in differentiating breast tumors. From January 2010 to February 2012, we retrospectively analyzed data of 95 cases with breast tumor pathologically confirmed from DWI and DCE-MRI. We compared the ADC value, time-intensity curve (TIC) and DCE-MRI parameters between breast tumors, and calculated the sensitivity and specificity for differentiating breast tumors. The results were as follows: (1) On DWI, mean ADC value of malignant tumor was lower than that of benign tumor (P < 0.05). For differentiating breast malignant tumors from benign neoplasm, a cut-off ADC value of 1.2 x 10(-3) mm2/s achieved a sensitivity of 74.1% and specificity of 70.3%. (2) On DCE-MRI, early enhancement ratio (EER) value of malignant tumor was higher than that of benign tumor whereas value of time to peak (Tpeak) and maximal enhancement ratio (SImax) were lower than that of benign tumor (all P < 0.05). As for TIC, type II and III were more frequently seen in malignant tumor than in benign tumor whereas type I was more common in benign tumor than in malignant tumor (all P < 0.05). For differentiating breast malignant tumors from benign neoplasm, DCE-MRI obtained a sensitivity of 89.7% and specificity of 70.3%. (3) For differentiating breast malignant tumors from benign neoplasm, ADC value together with TIC obtained a sensitivity of 79.3% and specificity of 78.4%. Malignant or benign breast tumors could have their own unique characteristics on DWI and DCE-MRI. These characteristics might be helpful for differentiating these tumors.

  10. Assessment of blood–brain barrier disruption using dynamic contrast-enhanced MRI. A systematic review

    PubMed Central

    Heye, Anna K.; Culling, Ross D.; Valdés Hernández, Maria del C.; Thrippleton, Michael J.; Wardlaw, Joanna M.

    2014-01-01

    There is increasing recognition of the importance of blood–brain barrier (BBB) disruption in aging, dementia, stroke and multiple sclerosis in addition to more commonly-studied pathologies such as tumors. Dynamic contrast-enhanced MRI (DCE-MRI) is a method for studying BBB disruption in vivo. We review pathologies studied, scanning protocols and data analysis procedures to determine the range of available methods and their suitability to different pathologies. We systematically review the existing literature up to February 2014, seeking studies that assessed BBB integrity using T1-weighted DCE-MRI techniques in animals and humans in normal or abnormal brain tissues. The literature search provided 70 studies that were eligible for inclusion, involving 417 animals and 1564 human subjects in total. The pathologies most studied are intracranial neoplasms and acute ischemic strokes. There are large variations in the type of DCE-MRI sequence, the imaging protocols and the contrast agents used. Moreover, studies use a variety of different methods for data analysis, mainly based on model-free measurements and on the Patlak and Tofts models. Consequently, estimated KTrans values varied widely. In conclusion, DCE-MRI is shown to provide valuable information in a large variety of applications, ranging from common applications, such as grading of primary brain tumors, to more recent applications, such as assessment of subtle BBB dysfunction in Alzheimer's disease. Further research is required in order to establish consensus-based recommendations for data acquisition and analysis and, hence, improve inter-study comparability and promote wider use of DCE-MRI. PMID:25379439

  11. Using Dynamic Contrast Enhanced MRI to Quantitatively Characterize Maternal Vascular Organization in the Primate Placenta

    PubMed Central

    Frias, A.E.; Schabel, M.C.; Roberts, V.H.J.; Tudorica, A.; Grigsby, P.L.; Oh, K.Y.; Kroenke, C. D.

    2015-01-01

    Purpose The maternal microvasculature of the primate placenta is organized into 10-20 perfusion domains that are functionally optimized to facilitate nutrient exchange to support fetal growth. This study describes a dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) method for identifying vascular domains, and quantifying maternal blood flow in them. Methods A rhesus macaque on the 133rd day of pregnancy (G133, term=165 days) underwent Doppler ultrasound (US) procedures, DCE-MRI, and Cesarean-section delivery. Serial T1-weighted images acquired throughout intravenous injection of a contrast reagent (CR) bolus were analyzed to obtain CR arrival time maps of the placenta. Results Watershed segmentation of the arrival time map identified 16 perfusion domains. The number and location of these domains corresponded to anatomical cotyledonary units observed following delivery. Analysis of the CR wave front through each perfusion domain enabled determination of volumetric flow, which ranged from 9.03 to 44.9 mL/sec (25.2 ± 10.3 mL/sec). These estimates are supported by Doppler US results. Conclusions The DCE-MRI analysis described here provides quantitative estimates of the number of maternal perfusion domains in a primate placenta, and estimates flow within each domain. Anticipated extensions of this technique are to the study placental function in nonhuman primate models of obstetric complications. PMID:24753177

  12. DCE@urLAB: a dynamic contrast-enhanced MRI pharmacokinetic analysis tool for preclinical data

    PubMed Central

    2013-01-01

    Background DCE@urLAB is a software application for analysis of dynamic contrast-enhanced magnetic resonance imaging data (DCE-MRI). The tool incorporates a friendly graphical user interface (GUI) to interactively select and analyze a region of interest (ROI) within the image set, taking into account the tissue concentration of the contrast agent (CA) and its effect on pixel intensity. Results Pixel-wise model-based quantitative parameters are estimated by fitting DCE-MRI data to several pharmacokinetic models using the Levenberg-Marquardt algorithm (LMA). DCE@urLAB also includes the semi-quantitative parametric and heuristic analysis approaches commonly used in practice. This software application has been programmed in the Interactive Data Language (IDL) and tested both with publicly available simulated data and preclinical studies from tumor-bearing mouse brains. Conclusions A user-friendly solution for applying pharmacokinetic and non-quantitative analysis DCE-MRI in preclinical studies has been implemented and tested. The proposed tool has been specially designed for easy selection of multi-pixel ROIs. A public release of DCE@urLAB, together with the open source code and sample datasets, is available at http://www.die.upm.es/im/archives/DCEurLAB/. PMID:24180558

  13. Functional Colonography of Min Mice Using Dark Lumen Dynamic Contrast-Enhanced MRI

    PubMed Central

    Quarles, C. Chad; Lepage, Martin; Gorden, D. Lee; Fingleton, Barbara; Yankeelov, Thomas E.; Price, Ronald R.; Matrisian, Lynn M.; Gore, John C.; McIntyre, J. Oliver

    2009-01-01

    Dark lumen MRI colonography detects colonic polyps by minimization of the intestinal lumen signal intensity. Here we validate the use of perfluorinated oil as an intestinal-filling agent for dark lumen MRI studies in mice, enabling the physiological characterization of colonic polyps by dynamic contrast-enhanced MRI. In control and Min (multiple intestinal neoplasia) mice with and without pretreatment with oral dextran sodium sulfate (DSS), polyps as small as 0.94 mm diameter were consistently identified using standard 2D gradient echo imaging (voxel size, 0.23 × 0.16 × 0.5 mm). In serial studies, polyp growth rates were heterogeneous with an average ≈5% increase in polyp volume per day. In DSS-treated control mice the colon wall contrast agent extravasation rate constant, Ktrans, and extravascular extracellular space volume fraction, ve, values were measured for the first time and found to be 0.10 ± 0.03 min-1 and 0.23 ± 0.09, respectively. In DSS-treated Min mice, polyp Ktrans values (0.09 ± 0.04 min-1) were similar to those in the colon wall but the ve values were substantially lower (0.16 ± 0.03), suggesting increased cellular density. The functional dark-lumen colonography approach described herein provides new opportunities for the noninvasive assessment of gastrointestinal disease pathology and treatment response in mouse models. PMID:18727087

  14. Semi-quantitative assessment of pulmonary perfusion in children using dynamic contrast-enhanced MRI

    NASA Astrophysics Data System (ADS)

    Fetita, Catalin; Thong, William E.; Ou, Phalla

    2013-03-01

    This paper addresses the study of semi-quantitative assessment of pulmonary perfusion acquired from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in a study population mainly composed of children with pulmonary malformations. The automatic analysis approach proposed is based on the indicator-dilution theory introduced in 1954. First, a robust method is developed to segment the pulmonary artery and the lungs from anatomical MRI data, exploiting 2D and 3D mathematical morphology operators. Second, the time-dependent contrast signal of the lung regions is deconvolved by the arterial input function for the assessment of the local hemodynamic system parameters, ie. mean transit time, pulmonary blood volume and pulmonary blood flow. The discrete deconvolution method implements here a truncated singular value decomposition (tSVD) method. Parametric images for the entire lungs are generated as additional elements for diagnosis and quantitative follow-up. The preliminary results attest the feasibility of perfusion quantification in pulmonary DCE-MRI and open an interesting alternative to scintigraphy for this type of evaluation, to be considered at least as a preliminary decision in the diagnostic due to the large availability of the technique and to the non-invasive aspects.

  15. Dynamic contrast-enhanced MRI perfusion for differentiating between melanoma and lung cancer brain metastases.

    PubMed

    Hatzoglou, Vaios; Tisnado, Jamie; Mehta, Alpesh; Peck, Kyung K; Daras, Mariza; Omuro, Antonio M; Beal, Kathryn; Holodny, Andrei I

    2017-04-01

    Brain metastases originating from different primary sites overlap in appearance and are difficult to differentiate with conventional MRI. Dynamic contrast-enhanced (DCE)-MRI can assess tumor microvasculature and has demonstrated utility in characterizing primary brain tumors. Our aim was to evaluate the performance of plasma volume (Vp) and volume transfer coefficient (K(trans) ) derived from DCE-MRI in distinguishing between melanoma and nonsmall cell lung cancer (NSCLC) brain metastases. Forty-seven NSCLC and 23 melanoma brain metastases were retrospectively assessed with DCE-MRI. Regions of interest were manually drawn around the metastases to calculate Vpmean and Kmeantrans. The Mann-Whitney U test and receiver operating characteristic analysis (ROC) were performed to compare perfusion parameters between the two groups. The Vpmean of melanoma brain metastases (4.35, standard deviation [SD] = 1.31) was significantly higher (P = 0.03) than Vpmean of NSCLC brain metastases (2.27, SD = 0.96). The Kmeantrans values were higher in melanoma brain metastases, but the difference between the two groups was not significant (P = 0.12). Based on ROC analysis, a cut-off value of 3.02 for Vpmean (area under curve = 0.659 with SD = 0.074) distinguished between melanoma brain metastases and NSCLC brain metastases (P < 0.01) with 72% specificity. Our data show the DCE-MRI parameter Vpmean can differentiate between melanoma and NSCLC brain metastases. The ability to noninvasively predict tumor histology of brain metastases in patients with multiple malignancies can have important clinical implications.

  16. The dynamic of FUS-induced BBB Opening in Mouse Brain assessed by contrast enhanced MRI

    NASA Astrophysics Data System (ADS)

    Jenne, Jürgen W.; Krafft, Axel J.; Maier, Florian; Krause, Marie N.; Kleber, Susanne; Huber, Peter E.; Martin-Villalba, Ana; Bock, Michael

    2010-03-01

    Focused ultrasound (FUS) in combination with the administration of gas-filled microbubbles, can induce a localized and reversible opening of the blood brain barrier (BBB). Contrast enhanced magnetic resonance imaging (MRI) has been demonstrated as a precise tool to monitor such a local BBB disruption. However, the opening/closing mechanisms of the BBB with FUS are still largely unknown. In this ongoing project, we study the BBB opening dynamics in mouse brain comparing an interstitial and an intravascular MR contrast agent (CA). FUS in mouse brain was performed with an MRI compatible treatment setup (1.7 MHz fix-focus US transducer, f' = 68 mm, NA = 0.44; focus: 8.1 mm length; O/ = 1.1 mm) in a 1.5 T whole body MRI system. For BBB opening, forty 10 ms-long FUS-pulses were applied at a repetition rate of 1 Hz at 1 MPa. The i.v. administration of the micro bubbles (50 μl SonoVue®) was started simultaneously with FUS exposure. To analyze the BBB opening process, short-term and long-term MRI signal dynamics of the interstitial MR contrast agent Magnevist® and the intravascular CA Vasovist® (Bayer-Schering) were studied. To assess short-term signal dynamics, T1-weighted inversion recovery turbo FLASH images (1s) were repeatedly acquired. Repeated 3D FLASH acquisitions (90 s) were used to assess long-term MRI signal dynamics. The short-term MRI signal enhancements showed comparable time constants for both types of MR contrast agents: 1.1 s (interstitial) vs. 0.8 s (intravascular). This time constant may serve as a time constant of the BBB opening process with the given FUS exposure parameters. For the long-term signal dynamics the intravascular CA (62±10 min) showed a fife times greater time constant as the interstitial contrast agent (12±10 min). This might be explained by the high molecular weight (˜60 kDa) of the intravascular Vasovist due to its reversible binding to blood serum albumin resulting in a prolonged half-life in the blood stream compared to the

  17. [An evaluation of ischemic stroke using dynamic contrast enhanced perfusion MRI].

    PubMed

    Yamaguchi, H; Igarashi, H; Katayama, Y; Terashi, A

    1998-04-01

    Thrombolytic therapy during the hyperacute stage is important for salvaging dying cerebral tissue. To date, however, accurate non-invasive assessment of an ischemic lesion during the hyperacute stage has not been possible. Perfusion MRI may be the key to the quick diagnosis of ischemic lesions. To assess the feasibility of dynamic contrast enhanced perfusion MRI, echo planar imaging was performed in 10 patients with ischemic stroke. The relative cerebral blood volume (rCBV), mean transit time (MTT), and relative cerebral blood flow(rCBF) were measured based on moment analysis and the gamma variate method. These measurements, however, are not suitable for the detection of cerebral ischemia during the hyperacute stage. Therefore, we additionally studied the changes in a concentration curve (time-delta R* curve) of Gd-DTPA, injected into the median vein of the forearm. From the curve the SUM (delta R*) time to peak and the delta R* peak, which may be calculated quickly, were determined and were compared to rCBV, MTT, and rCBF, respectively. The rCBV and the rCBF in the ischemic regions were less than those in the contralateral healthy regions (p < 0.05), and the MTT in the ischemic regions was longer than that in the contralateral healthy regions (p < 0.05). Additionally, SUM (delta R*) and the delta R* peak in the ischemic regions were less, and the time to peak in the ischemic regions was longer than the value in the contralateral healthy regions (p < 0.05), correlating well to the rCBV, rCBF, and MTT measurements. Also, images of these parameters, depicting the ischemic lesion earlier than conventional T2 weighted images, can be easily made by using an MRI console. These results suggest that the SUM (delta R*), time to peak and the delta R* peak images calculated with dynamic contrast enhanced perfusion MRI may be one of the best techniques for the detection of cerebral ischemic lesions during the hyperacute stage.

  18. Direct estimation of tracer-kinetic parameter maps from highly undersampled brain dynamic contrast enhanced MRI.

    PubMed

    Guo, Yi; Lingala, Sajan Goud; Zhu, Yinghua; Lebel, R Marc; Nayak, Krishna S

    2017-10-01

    The purpose of this work was to develop and evaluate a T1 -weighted dynamic contrast enhanced (DCE) MRI methodology where tracer-kinetic (TK) parameter maps are directly estimated from undersampled (k,t)-space data. The proposed reconstruction involves solving a nonlinear least squares optimization problem that includes explicit use of a full forward model to convert parameter maps to (k,t)-space, utilizing the Patlak TK model. The proposed scheme is compared against an indirect method that creates intermediate images by parallel imaging and compressed sensing before to TK modeling. Thirteen fully sampled brain tumor DCE-MRI scans with 5-second temporal resolution are retrospectively undersampled at rates R = 20, 40, 60, 80, and 100 for each dynamic frame. TK maps are quantitatively compared based on root mean-squared-error (rMSE) and Bland-Altman analysis. The approach is also applied to four prospectively R = 30 undersampled whole-brain DCE-MRI data sets. In the retrospective study, the proposed method performed statistically better than indirect method at R ≥ 80 for all 13 cases. This approach provided restoration of TK parameter values with less errors in tumor regions of interest, an improvement compared to a state-of-the-art indirect method. Applied prospectively, the proposed method provided whole-brain, high-resolution TK maps with good image quality. Model-based direct estimation of TK maps from k,t-space DCE-MRI data is feasible and is compatible up to 100-fold undersampling. Magn Reson Med 78:1566-1578, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  19. Evaluation of motion correction for clinical dynamic contrast enhanced MRI of the liver

    NASA Astrophysics Data System (ADS)

    Jansen, M. J. A.; Kuijf, H. J.; Veldhuis, W. B.; Wessels, F. J.; van Leeuwen, M. S.; Pluim, J. P. W.

    2017-10-01

    Motion correction of 4D dynamic contrast enhanced MRI (DCE-MRI) series is required for diagnostic evaluation of liver lesions. The registration, however, is a challenging task, owing to rapid changes in image appearance. In this study, two different registration approaches are compared; a conventional pairwise method applying mutual information as metric and a groupwise method applying a principal component analysis based metric, introduced by Huizinga et al (2016). The pairwise method transforms the individual 3D images one by one to a reference image, whereas the groupwise registration method computes the metric on all the images simultaneously, exploiting the temporal information, and transforms all 3D images to a common space. The performance of the two registration methods was evaluated using 70 clinical 4D DCE-MRI series with the focus on the liver. The evaluation was based on the smoothness of the time intensity curves in lesions, lesion volume change after deformation and the smoothness of spatial deformation. Furthermore, the visual quality of subtraction images (pre-contrast image subtracted from the post contrast images) before and after registration was rated by two observers. Both registration methods improved the alignment of the DCE-MRI images in comparison to the non-corrected series. Furthermore, the groupwise method achieved better temporal alignment with smoother spatial deformations than the pairwise method. The quality of the subtraction images was graded satisfactory in 32% of the cases without registration and in 77% and 80% of the cases after pairwise and groupwise registration, respectively. In conclusion, the groupwise registration method outperforms the pairwise registration method and achieves clinically satisfying results. Registration leads to improved subtraction images.

  20. The effect of motion correction on pharmacokinetic parameter estimation in dynamic-contrast-enhanced MRI.

    PubMed

    Melbourne, A; Hipwell, J; Modat, M; Mertzanidou, T; Huisman, H; Ourselin, S; Hawkes, D J

    2011-12-21

    A dynamic-contrast-enhanced magnetic resonance imaging (DCE-MRI) dataset consists of many imaging frames, often acquired both before and after contrast injection. Due to the length of time spent acquiring images, patient motion is likely and image re-alignment or registration is required before further analysis such as pharmacokinetic model fitting. Non-rigid image registration procedures may be used to correct motion artefacts; however, a careful choice of registration strategy is required to reduce misregistration artefacts associated with enhancing features. This work investigates the effect of registration on the results of model-fitting algorithms for 52 DCE-MR mammography cases for 14 patients. Results are divided into two sections: a comparison of registration strategies in which a DCE-MRI-specific algorithm is preferred in 50% of cases, followed by an investigation of parameter changes with known applied deformations, inspecting the effect of magnitude and timing of motion artefacts. Increased motion magnitude correlates with increased model-fit residual and is seen to have a strong influence on the visibility of strongly enhancing features. Motion artefacts in images close to the contrast agent arrival have a disproportionate effect on discrepancies in parameter estimation. The choice of algorithm, magnitude of motion and timing of the motion are each shown to influence estimated pharmacokinetic parameters even when motion magnitude is small.

  1. The effect of motion correction on pharmacokinetic parameter estimation in dynamic-contrast-enhanced MRI

    NASA Astrophysics Data System (ADS)

    Melbourne, A.; Hipwell, J.; Modat, M.; Mertzanidou, T.; Huisman, H.; Ourselin, S.; Hawkes, D. J.

    2011-12-01

    A dynamic-contrast-enhanced magnetic resonance imaging (DCE-MRI) dataset consists of many imaging frames, often acquired both before and after contrast injection. Due to the length of time spent acquiring images, patient motion is likely and image re-alignment or registration is required before further analysis such as pharmacokinetic model fitting. Non-rigid image registration procedures may be used to correct motion artefacts; however, a careful choice of registration strategy is required to reduce misregistration artefacts associated with enhancing features. This work investigates the effect of registration on the results of model-fitting algorithms for 52 DCE-MR mammography cases for 14 patients. Results are divided into two sections: a comparison of registration strategies in which a DCE-MRI-specific algorithm is preferred in 50% of cases, followed by an investigation of parameter changes with known applied deformations, inspecting the effect of magnitude and timing of motion artefacts. Increased motion magnitude correlates with increased model-fit residual and is seen to have a strong influence on the visibility of strongly enhancing features. Motion artefacts in images close to the contrast agent arrival have a disproportionate effect on discrepancies in parameter estimation. The choice of algorithm, magnitude of motion and timing of the motion are each shown to influence estimated pharmacokinetic parameters even when motion magnitude is small.

  2. Quantifying heterogeneity of lesion uptake in dynamic contrast enhanced MRI for breast cancer diagnosis

    NASA Astrophysics Data System (ADS)

    Karahaliou, A.; Vassiou, K.; Skiadopoulos, S.; Kanavou, T.; Yiakoumelos, A.; Costaridou, L.

    2009-07-01

    The current study investigates whether texture features extracted from lesion kinetics feature maps can be used for breast cancer diagnosis. Fifty five women with 57 breast lesions (27 benign, 30 malignant) were subjected to dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) on 1.5T system. A linear-slope model was fitted pixel-wise to a representative lesion slice time series and fitted parameters were used to create three kinetic maps (wash out, time to peak enhancement and peak enhancement). 28 grey level co-occurrence matrices features were extracted from each lesion kinetic map. The ability of texture features per map in discriminating malignant from benign lesions was investigated using a Probabilistic Neural Network classifier. Additional classification was performed by combining classification outputs of most discriminating feature subsets from the three maps, via majority voting. The combined scheme outperformed classification based on individual maps achieving area under Receiver Operating Characteristics curve 0.960±0.029. Results suggest that heterogeneity of breast lesion kinetics, as quantified by texture analysis, may contribute to computer assisted tissue characterization in DCE-MRI.

  3. Prostate dynamic contrast-enhanced MRI with simple visual diagnostic criteria: is it reasonable?

    PubMed

    Girouin, Nicolas; Mège-Lechevallier, Florence; Tonina Senes, Alejandro; Bissery, Alvine; Rabilloud, Muriel; Maréchal, Jean-Marie; Colombel, Marc; Lyonnet, Denis; Rouvière, Olivier

    2007-06-01

    The purpose of this study was to evaluate the accuracy of prostate cancer localization with simple visual diagnostic criteria using dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI). A total of 46 consecutive patients with biopsy-proven prostate cancer underwent prostate 1.5 T MRI with pelvic phased-array coils before prostatectomy. Besides the usual T2-weighted sequences, a 30-s DCE sequence was acquired three times after gadoterate injection. On DCE images, all early enhancing lesions of the peripheral zone were considered malignant. In the central gland, only early enhancing lesions appearing homogeneous or invading the peripheral zone were considered malignant. Three readers specified the presence of cancer in 20 prostate sectors and the location of distinct tumors. Results were compared with histology; p < 0.05 was considered significant. For localization of cancer in the sectors, DCE imaging had a significantly higher sensitivity [logistic regression, odds ratio (OR): 3.9, p < 0.0001] and a slightly but significantly lower specificity (OR: 0.57, p < 0.0001). Of the tumors >0.3 cc, 50-60% and 78-81% were correctly depicted with T2-weighted and DCE imaging, respectively. For both techniques, the depiction rate of tumors >0.3 cc was significantly influenced by the Gleason score (most Gleason MRI using pelvic phased-array coils and simple visual diagnostic criteria is more sensitive for tumor localization than T2-weighted imaging.

  4. Differentiation of solid pancreatic tumors by using dynamic contrast-enhanced MRI

    NASA Astrophysics Data System (ADS)

    Choi, Seung Joon; Kim, Hyung Sik; Park, Hyunjin

    2014-01-01

    Distinguishing among different solid pancreatic tumor types, pancreatic ductal adenocarcinomas, neuroendocrine tumors (NETs), and solid pseudopapillary tumors (SPTs) is important, as the treatment options are vastly different. This study compared characteristics of solid pancreatic tumors by using dynamic contrast enhanced magnetic resonance imaging (MRI). Fifty patients underwent MR imaging of pancreatic masses with a histopathology that was later confirmed as an adenocarcinoma (n = 27), a NET (n = 16), and a SPT (n = 7). For qualitative analysis, two reviewers evaluated the morphologic features of the tumors: locations, margins, shapes, contained products, pancreatic ductal dilatation, and grade of signal intensity (SI). For the quantitative analysis, all phases of the MR images were co-registered using proprietary image registration software; thus, a region of interest (ROI) defined on one phase could be re-applied in other phases. The following four ratios were considered: tumor-to-uninvolved pancreas SI ratio, percent SI change, tumor-touninvolved pancreas enhancement index, and arterial-to-delayed washout rate. The areas under the receiver operating characteristic (ROC) curves were assessed for the four ratios. Adenocarcinomas had ill-defined margins, irregular shapes, and ductal dilatation compared with NETs and SPTs (P < 0.001). The tumor-to-uninvolved pancreas ratio on all dynamic phases was significantly higher for NETs than for both adenocarcinomas and SPTs (P < 0.05). Percentage SI changes of pancreatic tumors on the pancreatic and the portal venous phases were significantly higher for NETs than for both adenocarcinomas and SPTs (P < 0.05). A significant difference between NETs and adenocarcinomas was also found with respect to the tumor-to-uninvolved pancreas enhancement index and arterial-to-delayed washout rate. The percentage SI changes in the pancreatic phase and the arterial-to-delayed washout rate best distinguished between adenocarcinomas and

  5. Calculation of intravascular signal in dynamic contrast enhanced-MRI using adaptive complex independent component analysis.

    PubMed

    Mehrabian, Hatef; Chopra, Rajiv; Martel, Anne L

    2013-04-01

    Assessing tumor response to therapy is a crucial step in personalized treatments. Pharmacokinetic (PK) modeling provides quantitative information about tumor perfusion and vascular permeability that are associated with prognostic factors. A fundamental step in most PK analyses is calculating the signal that is generated in the tumor vasculature. This signal is usually inseparable from the extravascular extracellular signal. It was shown previously using in vivo and phantom experiments that independent component analysis (ICA) is capable of calculating the intravascular time-intensity curve in dynamic contrast enhanced (DCE)-MRI. A novel adaptive complex independent component analysis (AC-ICA) technique is developed in this study to calculate the intravascular time-intensity curve and separate this signal from the DCE-MR images of tumors. The use of the complex-valued DCE-MRI images rather than the commonly used magnitude images satisfied the fundamental assumption of ICA, i.e., linear mixing of the sources. Using an adaptive cost function in ICA through estimating the probability distribution of the tumor vasculature at each iteration resulted in a more robust and accurate separation algorithm. The AC-ICA algorithm provided a better estimate for the intravascular time-intensity curve than the previous ICA-based method. A simulation study was also developed in this study to realistically simulate DCE-MRI data of a leaky tissue mimicking phantom. The passage of the MR contrast agent through the leaky phantom was modeled with finite element analysis using a diffusion model. Once the distribution of the contrast agent in the imaging field of view was calculated, DCE-MRI data was generated by solving the Bloch equation for each voxel at each time point. The intravascular time-intensity curve calculation results were compared to the previously proposed ICA-based intravascular time-intensity curve calculation method that applied ICA to the magnitude of the DCE-MRI data

  6. DCEMRI.jl: a fast, validated, open source toolkit for dynamic contrast enhanced MRI analysis

    PubMed Central

    Li, Xia; Arlinghaus, Lori R.; Yankeelov, Thomas E.; Welch, E. Brian

    2015-01-01

    We present a fast, validated, open-source toolkit for processing dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) data. We validate it against the Quantitative Imaging Biomarkers Alliance (QIBA) Standard and Extended Tofts-Kety phantoms and find near perfect recovery in the absence of noise, with an estimated 10–20× speedup in run time compared to existing tools. To explain the observed trends in the fitting errors, we present an argument about the conditioning of the Jacobian in the limit of small and large parameter values. We also demonstrate its use on an in vivo data set to measure performance on a realistic application. For a 192 × 192 breast image, we achieved run times of <1 s. Finally, we analyze run times scaling with problem size and find that the run time per voxel scales as O(N1.9), where N is the number of time points in the tissue concentration curve. DCEMRI.jl was much faster than any other analysis package tested and produced comparable accuracy, even in the presence of noise. PMID:25922795

  7. DCEMRI.jl: a fast, validated, open source toolkit for dynamic contrast enhanced MRI analysis.

    PubMed

    Smith, David S; Li, Xia; Arlinghaus, Lori R; Yankeelov, Thomas E; Welch, E Brian

    2015-01-01

    We present a fast, validated, open-source toolkit for processing dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) data. We validate it against the Quantitative Imaging Biomarkers Alliance (QIBA) Standard and Extended Tofts-Kety phantoms and find near perfect recovery in the absence of noise, with an estimated 10-20× speedup in run time compared to existing tools. To explain the observed trends in the fitting errors, we present an argument about the conditioning of the Jacobian in the limit of small and large parameter values. We also demonstrate its use on an in vivo data set to measure performance on a realistic application. For a 192 × 192 breast image, we achieved run times of <1 s. Finally, we analyze run times scaling with problem size and find that the run time per voxel scales as O(N (1.9)), where N is the number of time points in the tissue concentration curve. DCEMRI.jl was much faster than any other analysis package tested and produced comparable accuracy, even in the presence of noise.

  8. Interactive lesion segmentation on dynamic contrast enhanced breast MRI using a Markov model

    NASA Astrophysics Data System (ADS)

    Wu, Qiu; Salganicoff, Marcos; Krishnan, Arun; Fussell, Donald S.; Markey, Mia K.

    2006-03-01

    The purpose of this study is to develop a method for segmenting lesions on Dynamic Contrast-Enhanced (DCE) breast MRI. DCE breast MRI, in which the breast is imaged before, during, and after the administration of a contrast agent, enables a truly 3D examination of breast tissues. This functional angiogenic imaging technique provides noninvasive assessment of microcirculatory characteristics of tissues in addition to traditional anatomical structure information. Since morphological features and kinetic curves from segmented lesions are to be used for diagnosis and treatment decisions, lesion segmentation is a key pre-processing step for classification. In our study, the ROI is defined by a bounding box containing the enhancement region in the subtraction image, which is generated by subtracting the pre-contrast image from 1st post-contrast image. A maximum a posteriori (MAP) estimate of the class membership (lesion vs. non-lesion) for each voxel is obtained using the Iterative Conditional Mode (ICM) method. The prior distribution of the class membership is modeled as a multi-level logistic model, a Markov Random Field model in which the class membership of each voxel is assumed to depend upon its nearest neighbors only. The likelihood distribution is assumed to be Gaussian. The parameters of each Gaussian distribution are estimated from a dozen voxels manually selected as representative of the class. The experimental segmentation results demonstrate anatomically plausible breast tissue segmentation and the predicted class membership of voxels from the interactive segmentation algorithm agrees with the manual classifications made by inspection of the kinetic enhancement curves. The proposed method is advantageous in that it is efficient, flexible, and robust.

  9. Impact of fitting algorithms on errors of parameter estimates in dynamic contrast enhanced MRI.

    PubMed

    Debus, Charlotte; Floca, Ralf; Nörenberg, Dominik; Abdollahi, Amir; Ingrisch, Michael

    2017-08-31

    Parameter estimation in dynamic contrast-enhanced MRI (DCE MRI) is usually performed by non-linear least square (NLLS) fitting of a pharmacokinetic model to a measured concentration-time curve. The two-compartment exchange model (2CXM) describes the compartments "plasma" and "interstitial volume" and their exchange in terms of plasma flow and capillary permeability. The model function can be defined by either a system of two coupled differential equations or a closed-form analytical solution. The aim of this study was to compare these two representations in terms of accuracy, robustness and computation speed, depending on parameter combination and temporal sampling. The impact on parameter estimation errors was investigated by fitting the 2CXM to simulated concentration time curves. Parameter combinations representing five tissue types were used, together with two arterial input functions, a measured and a theoretical population based one, to generate 4D concentration images at three different temporal resolutions. Images were fitted by NLLS techniques, where the sum of squared residuals was calculated by either numeric integration with the Runge-Kutta method or convolution. Furthermore two example cases, a prostate carcinoma and a glioblastoma multiforme patient, were analyzed in order to investigate the validity of our findings in real patient data. The convolution approach yields improved results in precision and robustness of determined parameters. Precision and stability are limited in curves with low blood flow. The model parameter v<sub>e</sub> shows great instability and little reliability in all cases. Decreased temporal resolution results in significant errors for the differential equation approach in several curve types. The convolution excelled in computational speed by three orders of magnitude. Uncertainties in parameter estimation at low temporal resolution cannot be compensated by usage of the differential equations. Fitting with the

  10. Tracer-kinetic modeling of dynamic contrast-enhanced MRI and CT: a primer.

    PubMed

    Ingrisch, Michael; Sourbron, Steven

    2013-06-01

    Dynamic contrast-enhanced computed tomography (DCE-CT) and magnetic resonance imaging (DCE-MRI) are functional imaging techniques. They aim to characterise the microcirculation by applying the principles of tracer-kinetic analysis to concentration-time curves measured in individual image pixels. In this paper, we review the basic principles of DCE-MRI and DCE-CT, with a specific emphasis on the use of tracer-kinetic modeling. The aim is to provide an introduction to the field for a broader audience of pharmacokinetic modelers. In a first part, we first review the key aspects of data acquisition in DCE-CT and DCE-MRI, including a review of basic measurement strategies, a discussion on the relation between signal and concentration, and the problem of measuring reference data in arterial blood. In a second part, we define the four main parameters that can be measured with these techniques and review the most common tracer-kinetic models that are used in this field. We first discuss the models for the capillary bed and then define the most general four-parameter models used today: the two-compartment exchange model, the tissue-homogeneity model, the "adiabatic approximation to the tissue-homogeneity model" and the distributed-parameter model. In simpler tissue types or when the data quality is inadequate to resolve all the features of the more complex models, it is often necessary to resort to simpler models, which are special cases of the general models and hence have less parameters. We discuss the most common of these special cases, i.e. the uptake models, the extended Tofts model, and the one-compartment model. Models for two specific tissue types, liver and kidney, are discussed separately. We conclude with a review of practical aspects of DCE-CT and DCE-MRI data analysis, including the problem of identifying a suitable model for any given data set, and a brief discussion of the application of tracer-kinetic modeling in the context of drug development. Here, an

  11. On the Dark Rim Artifact in Dynamic Contrast-Enhanced MRI Myocardial Perfusion Studies

    PubMed Central

    Di Bella, E.V.R.; Parker, D.L.; Sinusas, A.J.

    2008-01-01

    A dark band or rim along parts of the subendocardial border of the left ventricle (LV) and the myocardium has been noticed in some dynamic contrast-enhanced MR perfusion studies. The artifact is thought to be due to susceptibility effects from the gadolinium bolus, motion, or resolution, or a combination of these. Here motionless ex vivo hearts in which the cavity was filled with gadolinium are used to show that dark rim artifacts can be consistent with resolution effects alone. PMID:16200553

  12. Quantifying Intracranial Plaque Permeability with Dynamic Contrast-Enhanced MRI: A Pilot Study

    PubMed Central

    Vakil, P.; Elmokadem, A.H.; Syed, F.H.; Cantrell, C.G.; Dehkordi, F.H.; Carroll, T.J.; Ansari, S.A.

    2016-01-01

    BACKGROUND AND PURPOSE Intracranial atherosclerotic disease plaque hyperintensity and/or gadolinium contrast enhancement have been studied as imaging biomarkers of acutely symptomatic ischemic presentations using single static MR imaging measurements. However, the value in modeling the dynamics of intracranial plaque permeability has yet to be evaluated. The purpose of this study was to use dynamic contrast-enhanced MR imaging to quantify the contrast permeability of intracranial atherosclerotic disease plaques in symptomatic patients and to compare these parameters against existing markers of plaque volatility using black-blood MR imaging pulse sequences. MATERIALS AND METHODS We performed a prospective study of contrast uptake dynamics in the major intracranial vessels proximal and immediately distal to the circle of Willis using dynamic contrast-enhanced MR imaging, specifically in patients with symptomatic intracranial atherosclerotic disease. Using the Modified Tofts model, we extracted the volume transfer constant (Ktrans) and fractional plasma volume (Vp) parameters from plaque-enhancement curves. Using regression analyses, we compared these parameters against time from symptom onset as well as intraplaque hyperintensity and postcontrast enhancement derived from T1 SPACE, a black-blood MR vessel wall imaging sequence. RESULTS We completed analysis in 10 patients presenting with symptomatic intracranial atherosclerotic disease. Ktrans and Vp measurements were higher in plaques versus healthy white matter and similar or less than values in the choroid plexus. Only Ktrans correlated significantly with time from symptom onset (P = .02). Dynamic contrast-enhanced MR imaging parameters were not found to correlate significantly with intraplaque enhancement or intraplaque hyperintensity (P = .4 and P = .17, respectively). CONCLUSIONS Elevated Ktrans and Vp values found in intracranial atherosclerotic disease plaques versus healthy white matter suggest that dynamic

  13. Contribution of diffusion-weighted imaging to dynamic contrast-enhanced MRI in the characterization of papillary breast lesions.

    PubMed

    Yildiz, Seyma; Toprak, Huseyin; Ersoy, Yeliz Emine; Malya, Fatma Ümit; Bakan, Ayşe Ahsen; Aralaşmak, Ayşe; Gucin, Zuhal

    2017-08-01

    Papillary lesions have a broad spectrum of appearances on magnetic resonance imaging (MRI). The purpose of this study was to evaluate whether apparent diffusion coefficient (ADC) values of papillary lesions can be used to characterize lesion as benign or malignant. This retrospective study included 29 papillary lesions. Diagnostic values of dynamic contrast-enhanced MRI (DCE-MRI), DWI-ADC, and DCE-MRI plus DWI-ADC were separately calculated. The malignant papillary lesions (0.744×10(-3)  mm(2) /s) exhibited significantly lower mean ADC values than the benign lesions (1.339×10(-3)  mm(2) /s). Addition of DWI to standard DCE-MRI provided 100% sensitivity. We hypothesized that this combination may prevent unnecessary excisional biopsies. © 2017 Wiley Periodicals, Inc.

  14. Dynamic contrast-enhanced MRI improves accuracy for detecting focal splenic involvement in children and adolescents with Hodgkin disease.

    PubMed

    Punwani, Shonit; Cheung, King Kenneth; Skipper, Nicholas; Bell, Nichola; Bainbridge, Alan; Taylor, Stuart A; Groves, Ashley M; Hain, Sharon F; Ben-Haim, Simona; Shankar, Ananth; Daw, Stephen; Halligan, Steve; Humphries, Paul D

    2013-08-01

    Accurate assessment of splenic disease is important for staging Hodgkin lymphoma. The purpose of this study was to assess T2-weighted imaging with and without dynamic contrast-enhanced (DCE) MRI for evaluation of splenic Hodgkin disease. Thirty-one children with Hodgkin lymphoma underwent whole-body T2-weighted MRI with supplementary DCE splenic imaging, and whole-body PET-CT before and following chemotherapy. Two experienced nuclear medicine physicians derived a PET-CT reference standard for splenic disease, augmented by follow-up imaging. Unaware of the PET-CT, two experienced radiologists independently evaluated MRI exercising a locked sequential read paradigm (T2-weighted then DCE review) and recorded the presence/absence of splenic disease at each stage. Performance of each radiologist was determined prior to and following review of DCE-MRI. Incorrect MRI findings were ascribed to reader (lesion present on MRI but missed by reader) or technical (lesion not present on MRI) error. Seven children had splenic disease. Sensitivity/specificity of both radiologists for the detection of splenic involvement using T2-weighted images alone was 57%/100% and increased to 100%/100% with DCE-MRI. There were three instances of technical error on T2-weighted imaging; all lesions were visible on DCE-MRI. T2-weighted imaging when complemented by DCE-MRI imaging may improve evaluation of Hodgkin disease splenic involvement.

  15. Practical Dynamic Contrast Enhanced MRI in Small Animal Models of Cancer: Data Acquisition, Data Analysis, and Interpretation

    PubMed Central

    Barnes, Stephanie L.; Whisenant, Jennifer G.; Loveless, Mary E.; Yankeelov, Thomas E.

    2012-01-01

    Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) consists of the continuous acquisition of images before, during, and after the injection of a contrast agent. DCE-MRI allows for noninvasive evaluation of tumor parameters related to vascular perfusion and permeability and tissue volume fractions, and is frequently employed in both preclinical and clinical investigations. However, the experimental and analytical subtleties of the technique are not frequently discussed in the literature, nor are its relationships to other commonly used quantitative imaging techniques. This review aims to provide practical information on the development, implementation, and validation of a DCE-MRI study in the context of a preclinical study (though we do frequently refer to clinical studies that are related to these topics). PMID:23105959

  16. The Added Diagnostic Value of Dynamic Contrast-Enhanced MRI at 3.0 T in Nonpalpable Breast Lesions

    PubMed Central

    Merckel, Laura G.; Verkooijen, Helena M.; Peters, Nicky H. G. M.; Mann, Ritse M.; Veldhuis, Wouter B.; Storm, Remmert K.; Weits, Teun; Duvivier, Katya M.; van Dalen, Thijs; Mali, Willem P. Th. M.; Peeters, Petra H. M.; van den Bosch, Maurice A. A. J.

    2014-01-01

    Objective To investigate the added diagnostic value of 3.0 Tesla breast MRI over conventional breast imaging in the diagnosis of in situ and invasive breast cancer and to explore the role of routine versus expert reading. Materials and Methods We evaluated MRI scans of patients with nonpalpable BI-RADS 3–5 lesions who underwent dynamic contrast-enhanced 3.0 Tesla breast MRI. Initially, MRI scans were read by radiologists in a routine clinical setting. All histologically confirmed index lesions were re-evaluated by two dedicated breast radiologists. Sensitivity and specificity for the three MRI readings were determined, and the diagnostic value of breast MRI in addition to conventional imaging was assessed. Interobserver reliability between the three readings was evaluated. Results MRI examinations of 207 patients were analyzed. Seventy-eight of 207 (37.7%) patients had a malignant lesion, of which 33 (42.3%) patients had pure DCIS and 45 (57.7%) invasive breast cancer. Sensitivity of breast MRI was 66.7% during routine, and 89.3% and 94.7% during expert reading. Specificity was 77.5% in the routine setting, and 61.0% and 33.3% during expert reading. In the routine setting, MRI provided additional diagnostic information over clinical information and conventional imaging, as the Area Under the ROC Curve increased from 0.76 to 0.81. Expert MRI reading was associated with a stronger improvement of the AUC to 0.87. Interobserver reliability between the three MRI readings was fair and moderate. Conclusions 3.0 T breast MRI of nonpalpable breast lesions is of added diagnostic value for the diagnosis of in situ and invasive breast cancer. PMID:24713637

  17. The added diagnostic value of dynamic contrast-enhanced MRI at 3.0 T in nonpalpable breast lesions.

    PubMed

    Merckel, Laura G; Verkooijen, Helena M; Peters, Nicky H G M; Mann, Ritse M; Veldhuis, Wouter B; Storm, Remmert K; Weits, Teun; Duvivier, Katya M; van Dalen, Thijs; Mali, Willem P Th M; Peeters, Petra H M; van den Bosch, Maurice A A J

    2014-01-01

    To investigate the added diagnostic value of 3.0 Tesla breast MRI over conventional breast imaging in the diagnosis of in situ and invasive breast cancer and to explore the role of routine versus expert reading. We evaluated MRI scans of patients with nonpalpable BI-RADS 3-5 lesions who underwent dynamic contrast-enhanced 3.0 Tesla breast MRI. Initially, MRI scans were read by radiologists in a routine clinical setting. All histologically confirmed index lesions were re-evaluated by two dedicated breast radiologists. Sensitivity and specificity for the three MRI readings were determined, and the diagnostic value of breast MRI in addition to conventional imaging was assessed. Interobserver reliability between the three readings was evaluated. MRI examinations of 207 patients were analyzed. Seventy-eight of 207 (37.7%) patients had a malignant lesion, of which 33 (42.3%) patients had pure DCIS and 45 (57.7%) invasive breast cancer. Sensitivity of breast MRI was 66.7% during routine, and 89.3% and 94.7% during expert reading. Specificity was 77.5% in the routine setting, and 61.0% and 33.3% during expert reading. In the routine setting, MRI provided additional diagnostic information over clinical information and conventional imaging, as the Area Under the ROC Curve increased from 0.76 to 0.81. Expert MRI reading was associated with a stronger improvement of the AUC to 0.87. Interobserver reliability between the three MRI readings was fair and moderate. 3.0 T breast MRI of nonpalpable breast lesions is of added diagnostic value for the diagnosis of in situ and invasive breast cancer.

  18. Placental Perfusion In Uterine Ischemia Model as Evaluated by Dynamic Contrast Enhanced MRI

    PubMed Central

    Drobyshevsky, Alexander

    2017-01-01

    Background To validate DCE MRI method of placental perfusion estimation and to demonstrate application of the method in a rabbit model of fetal antenatal hypoxia-ischemia. Methods Placental perfusion was estimated by dynamic contrast imaging with bolus injection of Gd-DTPA in 3 Tesla GE magnet in a rabbit model of placental ischemia–reperfusion in rabbit dams at embryonic day 25 gestation age. Placental perfusion was measured using steepest slope method on DCE MRI before and after intermittent 40 min uterine ischemia. Antioxidants (n = 2 dams, 9 placentas imaged) or vehicle (n = 5 dams, 23 placenta imaged) were given systemically in a separate group of dams during reperfusion–reoxygenation. Placental perfusion was also measured in two dams from the antioxidant group (10 placentas) and two dams from the control group (12 placentas) by fluorescent microspheres method. Results While placental perfusion estimates between fluorescent microspheres and DCE MRI were significantly correlated (R2 = 0.85; P < 0.01), there was approximately 33% systematic underestimation by the latter technique. DCE MRI showed a significant decrease in maternal placental perfusion in reperfusion–reoxygenation phase in the saline, 0.44 ± 0.06 mL/min/g (P = 0.012, t-test), but not in the antioxidant group, 0.62 ± 0.06 mL/min/g, relative to preocclusion values (0.77 ± 0.07 and 0.84 ± 0.12 mL/min/g, correspondingly). Conclusion Underestimation of true perfusion in placenta by steepest slope DCE MRI is significant and the error appears to be systematic. PMID:25854322

  19. Comparison of dynamic contrast enhanced MRI and Doppler ultrasound in the pre-operative assessment of the portal venous system.

    PubMed

    Naik, K S; Ward, J; Irving, H C; Robinson, P J

    1997-01-01

    The purpose of this study was to compare dynamic contrast enhanced MRI (DCEMR) with Doppler ultrasound (US) in the assessment of portal venous anatomy and to analyse the causes of discrepancy. Over a 1 year period, 97 patients undergoing assessment prior to hepatic surgery underwent imaging of the liver and portal venous system using US with colour and spectral Doppler and MRI with axial T2 weighted spin echo (SE) and coronal oblique T1 weighted rapid gradient echo (GRE) imaging before and immediately after bolus injection of Gd-DTPA (0.1 mmol kg-1). When the US and MRI findings were discrepant, the images were reviewed by two observers and compared with surgical findings. US and DCEMR were concordant in 90 patients (portal vein patent in 80, occluded in 10). In three patients with cirrhosis and gross ascites the portal vein was reported as occluded on US and patent on MRI; surgery confirmed the MRI findings. In one patient the portal vein was patient on US but not on MRI, but there was a 3 week interval between the examinations. In three patients the portal vein was patent on US, but MRI detected occlusion of intrahepatic portal vein branches in two, and encasement of an intrahepatic branch in the third case. Spontaneous splenorenal shunts were seen in 15 patients only on MRI; varices were seen in 39 patients on MRI and in 22 patients on US. Both US and DCEMR contribute to the pre-operative assessment of the portal venous system. MRI provides additional information over US in assessing intrahepatic portal branches and detecting varices and splenorenal shunts, and is recommended for all surgical candidates and in patients with abnormal portal venous anatomy and equivocal US findings.

  20. Dynamic Contrast Enhanced MRI Parameters and Tumor Cellularity in a Rat Model of Cerebral Glioma at 7T

    PubMed Central

    Aryal, Madhava P.; Nagaraja, Tavarekere N.; Keenan, Kelly A.; Bagher-Ebadian, Hassan; Panda, Swayamprava; Brown, Stephen L.; Cabral, Glauber; Fenstermacher, Joseph D.; Ewing, James R.

    2013-01-01

    Purpose To test the hypothesis that a non-invasive dynamic contrast enhanced MRI (DCE-MRI) derived interstitial volume fraction (ve) and/or distribution volume (VD) were correlated with tumor cellularity in cerebral tumor. Methods T1-weighted DCE-MRI studies were performed in 18 athymic rats implanted with U251 xenografts. After DCE-MRI, sectioned brain tissues were stained with Hematoxylin and Eosin for cell counting. Using a Standard Model (SM) analysis and Logan graphical plot, DCE-MRI image sets during and after the injection of a gadolinium contrast agent were used to estimate the parameters plasma volume (vp), forward transfer constant (Ktrans), ve, and VD. Results Mean parameter values in regions where the SM was selected as the best model were: (mean ± S.D.): vp = (0.81±0.40)%, Ktrans = (2.09±0.65) ×10−2 min−1, ve = (6.65±1.86)%, and VD = (7.21±1.98)%. The Logan-estimated VD was strongly correlated with the SM’s vp+ve (r = 0.91, p < 0.001). The parameters, ve and/or VD, were significantly correlated with tumor cellularity (r ≥ −0.75, p < 0.001 for both). Conclusion These data suggest that tumor cellularity can be estimated non-invasively by DCE-MRI, thus supporting its utility in assessing tumor pathophysiology. PMID:23878070

  1. Measurement of perfusion and permeability from dynamic contrast-enhanced MRI in normal and pathological vertebral bone marrow.

    PubMed

    Biffar, Andreas; Sourbron, Steven; Schmidt, Gerwin; Ingrisch, Michael; Dietrich, Olaf; Reiser, Maximilian F; Baur-Melnyk, Andrea

    2010-07-01

    Dynamic contrast-enhanced MRI data in vertebral bone marrow (vBM) are currently analyzed with descriptive indices. The purpose of this study was to develop and evaluate a quantitative approach, considering the tissue composition of vBM. Therefore, a measurement of the water fraction, f(wat), and the precontrast relaxation times, T(10 wat), T(10 fat), was added to the routine protocol. Signal analysis was generalized by allowing for an arbitrary fraction of fat. Plasma flow, plasma volume, extraction flow, and interstitial volume were determined from dynamic contrast-enhanced-MRI data. Simulations were used to determine the sensitivity to the precontrast values and to retrospectively verify the choice of the sequence parameters. Measurements were performed in healthy vertebral bodies (n = 30) and lesions of 15 patients with vertebral fractures. Extraction flow (milliliters per 100 mL/min) provided the strongest normal/abnormal separation: mean (standard deviation) was 0.3 (0.8) in healthy vBM and 6(4) in the fractures. Neglecting the fat component and the approximated signal analysis using relative signal enhancement produced significant differences. We conclude that correcting for the fat component in the signal and parametrization by tracer-kinetic analysis is necessary to avoid misinterpretation and/or systematic errors. The quantitative analysis is equally well suited as a descriptive parameter for the differentiation between normal and abnormal vertebral bone marrow. (c) 2010 Wiley-Liss, Inc.

  2. Model selection in measures of vascular parameters using dynamic contrast-enhanced MRI: experimental and clinical applications.

    PubMed

    Ewing, James R; Bagher-Ebadian, Hassan

    2013-08-01

    A review of the selection of models in dynamic contrast-enhanced MRI (DCE-MRI) is conducted, with emphasis on the balance between the bias and variance required to produce stable and accurate estimates of vascular parameters. The vascular parameters considered as a first-order model are the forward volume transfer constant K(trans) , the plasma volume fraction vp and the interstitial volume fraction ve . To illustrate the critical issues in model selection, a data-driven selection of models in an animal model of cerebral glioma is followed. Systematic errors and extended models are considered. Studies with nested and non-nested pharmacokinetic models are reviewed; models considering water exchange are considered.

  3. Prostate cancer transrectal HIFU ablation: detection of local recurrences using T2-weighted and dynamic contrast-enhanced MRI.

    PubMed

    Rouvière, Olivier; Girouin, Nicolas; Glas, Ludivine; Ben Cheikh, Alexandre; Gelet, Albert; Mège-Lechevallier, Florence; Rabilloud, Muriel; Chapelon, Jean-Yves; Lyonnet, Denis

    2010-01-01

    The objective was to evaluate T2-weighted (T2w) and dynamic contrast-enhanced (DCE) MRI in detecting local cancer recurrences after prostate high-intensity focused ultrasound (HIFU) ablation. Fifty-nine patients with biochemical recurrence after prostate HIFU ablation underwent T2-weighted and DCE MRI before transrectal biopsy. For each patient, biopsies were performed by two operators: operator 1 (blinded to MR results) performed random and colour Doppler-guided biopsies ("routine biopsies"); operator 2 obtained up to three cores per suspicious lesion on MRI ("targeted biopsies"). Seventy-seven suspicious lesions were detected on DCE images (n = 52), T2w images (n = 2) or both (n = 23). Forty patients and 41 MR lesions were positive at biopsy. Of the 36 remaining MR lesions, 20 contained viable benign glands. Targeted biopsy detected more cancers than routine biopsy (36 versus 27 patients, p = 0.0523). The mean percentages of positive cores per patient and of tumour invasion of the cores were significantly higher for targeted biopsies (p < 0.0001). The odds ratios of the probability of finding viable cancer and viable prostate tissue (benign or malignant) at targeted versus routine biopsy were respectively 3.35 (95% CI 3.05-3.64) and 1.38 (95% CI 1.13-1.63). MRI combining T2-weighted and DCE images is a promising method for guiding post-HIFU biopsy towards areas containing recurrent cancer and viable prostate tissue.

  4. Clinical evaluation of contrast-enhanced digital mammography and contrast enhanced tomosynthesis--Comparison to contrast-enhanced breast MRI.

    PubMed

    Chou, Chen-Pin; Lewin, John M; Chiang, Chia-Ling; Hung, Bao-Hui; Yang, Tsung-Lung; Huang, Jer-Shyung; Liao, Jia-Bin; Pan, Huay-Ben

    2015-12-01

    To compare the diagnostic accuracy of contrast-enhanced digital mammography (CEDM) and contrast-enhanced tomosynthesis (CET) to dynamic contrast enhanced breast MRI (DCE-MRI) using a multireader-multicase study. Institutional review board approval and informed consents were obtained. Total 185 patients (mean age 51.3) with BI-RADS 4 or 5 lesions were evaluated before biopsy with mammography, tomosynthesis, CEDM, CET and DCE-MRI. Mediolateral-oblique and cranio-caudal views of the target breast CEDM and CET were acquired at 2 and 4 min after contrast agent injection. A mediolateral-oblique view of the non-target breast was taken at 6 min. Each lesion was scored with forced BI-RADS categories by three readers. Each reader interpreted lesions in the following order: mammography, tomosynthesis, CEDM, CET, and DCE-MRI during a single reading session. Histology showed 81 cancers and 144 benign lesions in the study. Of the 81 malignant lesions, 44% (36/81) were invasive and 56% (45/81) were non-invasive. Areas under the ROC curve, averaged for the 3 readers, were as follows: 0.897 for DCE-MRI, 0.892 for CET, 0.878 for CEDM, 0.784 for tomosynthesis and 0.740 for mammography. Significant differences in AUC were found between the group of contrast enhanced modalities (CEDM, CET, DCE-MRI) and the unenhanced modalities (all p<0.05). No significant differences were found in AUC between DCE-MRI, CET and CEDM (all p>0.05). CET and CEDM may be considered as an alternative modality to MRI for following up women with abnormal mammography. All three contrast modalities were superior in accuracy to conventional digital mammography with or without tomosynthesis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. Application of Dynamic Contrast-Enhanced MRI Parameters for Differentiating Squamous Cell Carcinoma and Malignant Lymphoma of the Oropharynx.

    PubMed

    Park, Mina; Kim, Jinna; Choi, Yoon Seong; Lee, Seung-Koo; Koh, Yoon Woo; Kim, Se-Heon; Choi, Eun Chang

    2016-02-01

    The purpose of this study was to investigate the usefulness of histogram analysis of dynamic contrast-enhanced MRI (DCE-MRI) parameters for the differentiation of squamous cell carcinoma (SCC) and malignant lymphoma of the oropharynx. Pretreatment DCE-MRI was performed in 21 patients with pathologically confirmed oropharyngeal SCC and six patients with malignant lymphoma. DCE-MRI parameter maps including the volume transfer constant (K(trans)), flux rate constant (kep), and extravascular extracellular volume fraction (ve) based on the Tofts model were obtained. Enhancing tumors were manually segmented on each slice of the parameter maps, and the data were collected to obtain a histogram for the entire tumor volume. The Wilcoxon rank sum test was used to compare the histogram parameters of each DCE-MRI-derived variable of oropharyngeal SCC and lymphoma. Histogram analysis of K(trans) and ve maps revealed that the median and mode of K(trans) were significantly higher in SCC than in lymphoma (p = 0.039 and 0.032, respectively), and the mode, skewness, and kurtosis of ve were significantly different in SCC than in lymphoma (p = 0.046, 0.039, and 0.032, respectively). On ROC analysis, the kurtosis of ve had the best discriminative value for distinguishing between oropharyngeal SCC and lymphoma (AUC, 0.865; cutoff value, 2.60; sensitivity, 83.3%; specificity, 90.5%). Our preliminary evidence using histogram analysis of DCE-MRI parameters based on the whole tumor volume suggests that it might be useful for differentiating SCC from malignant lymphoma of the oropharynx.

  6. Permeability assessment of the focused ultrasound-induced blood-brain barrier opening using dynamic contrast-enhanced MRI

    NASA Astrophysics Data System (ADS)

    Vlachos, F.; Tung, Y.-S.; Konofagou, E. E.

    2010-09-01

    Focused ultrasound (FUS) in conjunction with microbubbles has been shown to successfully open the blood-brain barrier (BBB) in the mouse brain. In this study, we compute the BBB permeability after opening in vivo. The spatial permeability of the BBB-opened region was assessed using dynamic contrast-enhanced MRI (DCE-MRI). The DCE-MR images were post-processed using the general kinetic model (GKM) and the reference region model (RRM). Permeability maps were generated and the Ktrans values were calculated for a predefined volume of interest in the sonicated and the control area for each mouse. The results demonstrated that Ktrans in the BBB-opened region (0.02 ± 0.0123 for GKM and 0.03 ± 0.0167 min-1 for RRM) was at least two orders of magnitude higher when compared to the contra-lateral (control) side (0 and 8.5 × 10-4 ± 12 × 10-4 min-1, respectively). The permeability values obtained with the two models showed statistically significant agreement and excellent correlation (R2 = 0.97). At histological examination, it was concluded that no macroscopic damage was induced. This study thus constitutes the first permeability assessment of FUS-induced BBB opening using DCE-MRI, supporting the fact that the aforementioned technique may constitute a safe, non-invasive and efficacious drug delivery method.

  7. Uncertainty in MR tracer kinetic parameters and water exchange rates estimated from T1-weighted dynamic contrast enhanced MRI

    PubMed Central

    Zhang, Jin; Kim, Sungheon

    2014-01-01

    Purpose The aim of this study was to assess the uncertainty in estimation of MR tracer kinetic parameters and water exchange rates in T1-weighted dynamic contrast enhanced (DCE)-MRI. Methods Simulated DCE-MRI data were used to assess four kinetic models; general kinetic model with a vascular compartment (GKM2), GKM2 combined with the 3S2X model (SSM2), adiabatic approximation of the tissue homogeneity model (ATH), and ATH combined 3S2X model (ATHX). Results In GKM2 and SSM2, increase in transfer constant (Ktrans) led to underestimation of vascular volume fraction (vb), and increase in vb led to overestimation of Ktrans. Such coupling between Ktrans and vb was not observed in ATH and ATHX. The precision of estimated intracellular water lifetime (τi) was substantially improved in both SSM2 and ATHX when Ktrans > 0.3 min−1. Ktrans and vb from ATHX model had significantly smaller errors than those from ATH model (p<0.05). Conclusion The results of this study demonstrated the feasibility of measuring τi from DCE-MRI data albeit low precision. While the inclusion of the water exchange model improved the accuracy of Ktrans, vb, and the interstitial volume fraction estimation (ve), it lowered the precision of other kinetic model parameters within the conditions investigated in this study. PMID:24006341

  8. Evaluation of T2-weighted and dynamic contrast-enhanced MRI in localizing prostate cancer before repeat biopsy.

    PubMed

    Cheikh, Alexandre Ben; Girouin, Nicolas; Colombel, Marc; Maréchal, Jean-Marie; Gelet, Albert; Bissery, Alvine; Rabilloud, Muriel; Lyonnet, Denis; Rouvière, Olivier

    2009-03-01

    We assessed the accuracy of T2-weighted (T2w) and dynamic contrast-enhanced (DCE) 1.5-T magnetic resonance imaging (MRI) in localizing prostate cancer before transrectal ultrasound-guided repeat biopsy. Ninety-three patients with abnormal PSA level and negative prostate biopsy underwent T2w and DCE prostate MRI using pelvic coil before repeat biopsy. T2w and DCE images were interpreted using visual criteria only. MR results were correlated with repeat biopsy findings in ten prostate sectors. Repeat biopsy found prostate cancer in 23 patients (24.7%) and 44 sectors (6.6%). At per patient analysis, the sensitivity, specificity, positive and negative predictive values were 47.8%, 44.3%, 20.4% and 79.5% for T2w imaging and 82.6%, 20%, 24.4% and 93.3% for DCE imaging. When all suspicious areas (on T2w or DCE imaging) were taken into account, a sensitivity of 82.6% and a negative predictive value of 100% could be achieved. At per sector analysis, DCE imaging was significantly less specific (83.5% vs. 89.7%, p < 0.002) than T2w imaging; it was more sensitive (52.4% vs. 32.1%), but the difference was hardly significant (p = 0.09). T2w and DCE MRI using pelvic coil and visual diagnostic criteria can guide prostate repeat biopsy, with a good sensitivity and NPV.

  9. Noninvasive assessment of tumor microenvironment using dynamic contrast enhanced MRI and 18F- fluoromisonidazole PET imaging in neck nodal metastases

    PubMed Central

    Jansen, Jacobus F. A.; Schöder, Heiko; Lee, Nancy Y.; Wang, Ya; Pfister, David. G.; Fury, Matthew G.; Stambuk, Hilda. E.; Humm, John L.; Koutcher, Jason A.; Shukla-Dave, Amita

    2009-01-01

    Purpose Pretreatment multimodality imaging can provide useful anatomical and functional data about tumors, including perfusion and possibly hypoxia status. The purpose of our study was to assess non-invasively the tumor microenvironment of neck nodal metastases in patients with head and neck (HN) cancer by investigating the relationship between tumor perfusion measured using Dynamic Contrast Enhanced MRI (DCE-MRI) and hypoxia measured by 18F-fluoromisonidazole (18F-FMISO) PET. Methods and Materials Thirteen newly diagnosed HN cancer patients with metastatic neck nodes underwent DCE-MRI and 18F-FMISO PET imaging prior to chemotherapy and radiation therapy. The matched regions of interests from both modalities were analyzed. To examine the correlations between DCE-MRI parameters and standard uptake value (SUV) measurements from 18F-FMISO PET, the non-parametric Spearman correlation coefficient was calculated. Furthermore, DCE-MRI parameters were compared between nodes with 18F-FMISO uptake and nodes with no 18F-FMISO uptake using Mann-Whitney U tests. Results For the 13 patients, a total of 18 nodes were analyzed. The nodal size strongly correlated with the 18F-FMISO SUV (ρ=0.74, p<0.001). There was a strong negative correlation between the median kep (ρ=−0.58, p=0.042) and the 18F-FMISO SUV. Hypoxic nodes (moderate to severe 18F-FMISO uptake) had significantly lower median Ktrans (p=0.049) and median kep (p=0.027) values than did non-hypoxic nodes (no 18F-FMISO uptake). Conclusion This initial evaluation of the preliminary results support the hypothesis that in metastatic neck lymph nodes, hypoxic nodes are poorly perfused (i.e., have significantly lower kep and Ktrans values) compared to non-hypoxic nodes. PMID:19906496

  10. Brain capillary transit time heterogeneity in healthy volunteers measured by dynamic contrast-enhanced T1 -weighted perfusion MRI.

    PubMed

    Larsson, Henrik B W; Vestergaard, Mark B; Lindberg, Ulrich; Iversen, Helle K; Cramer, Stig P

    2017-06-01

    Capillary transit time heterogeneity, measured as CTH, may set the upper limit for extraction of substances in brain tissue, e.g., oxygen. The purpose of this study was to investigate the feasibility of dynamic contrast-enhanced T1 weighted MRI (DCE-MRI) at 3 Tesla (T), in estimating CTH based on a gamma-variate model of the capillary transit time distribution. In addition, we wanted to investigate if a subtle increase of the blood-brain barrier permeability can be incorporated into the model, still allowing estimation of CTH. Twenty-three healthy subjects were scanned at 3.0T MRI system applying DCE-MRI and using a gamma-variate model to estimate CTH as well as cerebral blood flow (CBF), cerebral blood volume (CBV), and permeability of the blood-brain barrier, measured as the influx constant Ki . For proof of principle we also investigated three patients with recent thromboembolic events and a patient with a high grade brain tumor. In the healthy subjects, we found a narrow symmetric delta-like capillary transit time distribution in basal ganglia gray matter with median CTH of 0.93 s and interquartile range of 1.33 s. The corresponding residue impulse response function was compatible with the adiabatic tissue homogeneity model. In two patients with complete occlusion of the internal carotid artery and in the patient with a brain tumor CTH was increased with values up to 6 s in the affected brain tissue, with an exponential like residue impulse response function. Our results open the possibility of characterizing brain perfusion by the capillary transit time distribution using DCE-MRI, theoretically a determinant of efficient blood to brain transport of important substances. 2 J. MAGN. RESON. IMAGING 2017;45:1809-1820. © 2016 International Society for Magnetic Resonance in Medicine.

  11. Three-dimensional dynamic contrast-enhanced MRI for the accurate, extensive quantification of microvascular permeability in atherosclerotic plaques.

    PubMed

    Calcagno, Claudia; Lobatto, Mark E; Dyvorne, Hadrien; Robson, Philip M; Millon, Antoine; Senders, Max L; Lairez, Olivier; Ramachandran, Sarayu; Coolen, Bram F; Black, Alexandra; Mulder, Willem J M; Fayad, Zahi A

    2015-10-01

    Atherosclerotic plaques that cause stroke and myocardial infarction are characterized by increased microvascular permeability and inflammation. Dynamic contrast-enhanced MRI (DCE-MRI) has been proposed as a method to quantify vessel wall microvascular permeability in vivo. Until now, most DCE-MRI studies of atherosclerosis have been limited to two-dimensional (2D) multi-slice imaging. Although providing the high spatial resolution required to image the arterial vessel wall, these approaches do not allow the quantification of plaque permeability with extensive anatomical coverage, an essential feature when imaging heterogeneous diseases, such as atherosclerosis. To our knowledge, we present the first systematic evaluation of three-dimensional (3D), high-resolution, DCE-MRI for the extensive quantification of plaque permeability along an entire vascular bed, with validation in atherosclerotic rabbits. We compare two acquisitions: 3D turbo field echo (TFE) with motion-sensitized-driven equilibrium (MSDE) preparation and 3D turbo spin echo (TSE). We find 3D TFE DCE-MRI to be superior to 3D TSE DCE-MRI in terms of temporal stability metrics. Both sequences show good intra- and inter-observer reliability, and significant correlation with ex vivo permeability measurements by Evans Blue near-infrared fluorescence (NIRF). In addition, we explore the feasibility of using compressed sensing to accelerate 3D DCE-MRI of atherosclerosis, to improve its temporal resolution and therefore the accuracy of permeability quantification. Using retrospective under-sampling and reconstructions, we show that compressed sensing alone may allow the acceleration of 3D DCE-MRI by up to four-fold. We anticipate that the development of high-spatial-resolution 3D DCE-MRI with prospective compressed sensing acceleration may allow for the more accurate and extensive quantification of atherosclerotic plaque permeability along an entire vascular bed. We foresee that this approach may allow for

  12. Improvements in Diagnostic Accuracy with Quantitative Dynamic Contrast-Enhanced MRI

    DTIC Science & Technology

    2013-12-01

    alternative we will look at data from Dr. Olopade’s high risk clinic, where women present for MRIs every 6 months, variability in benign lesions...Imaging of women with high risk breast lesions has also continued, parameters derived will also be tested as discriminators between benign findings and...changes in tumor tissue over time. J. Magn. … 2004;20:122–8. doi: 10.1002/jmri.20061. 2. Bernstein M, King K, Zhou X. Handbook of MRI Pulse Sequences

  13. Influence of Temporal Regularization and Radial Undersampling Factor on Compressed Sensing Reconstruction in Dynamic Contrast Enhanced MRI of the Breast

    PubMed Central

    Kim, Sungheon G.; Feng, Li; Grimm, Robert; Freed, Melanie; Block, Kai Tobias; Sodickson, Daniel K.; Moy, Linda; Otazo, Ricardo

    2015-01-01

    Objective To evaluate the influence of temporal sparsity regularization and radial undersampling on compressed sensing reconstruction of dynamic contrast-enhanced (DCE) MRI, using the iterative Golden-angle RAdial Sparse Parallel (iGRASP) MRI technique in the setting of breast cancer evaluation. Method DCE-MRI examinations of the breast (n=7) were conducted using iGRASP at 3T. Images were reconstructed with five different radial undersampling schemes corresponding to temporal resolutions between 2 and 13.4 s/frame and with four different weights for temporal sparsity regularization (λ=0.1, 0.5, 2, and 6 times of noise level). Image similarity to time-averaged reference images was assessed by two breast radiologists and using quantitative metrics. Temporal similarity was measured in terms of wash-in slope and contrast kinetic model parameters. Results iGRASP images reconstructed with λ=2 and 5.1s/frame had significantly (p<0.05) higher similarity to time-averaged reference images than the images with other reconstruction parameters (mutual information (MI) >5%), in agreement with the assessment of two breast radiologists. Higher undersampling (temporal resolution < 5.1 s/frame) required stronger temporal sparsity regularization (λ≥2) to remove streaking aliasing artifacts (MI>23% between λ=2 and 0.5). The difference between the kinetic-model transfer rates of benign and malignant groups decreased as temporal resolution decreased (82% between 2 and 13.4s/frame). Conclusion This study demonstrates objective spatial and temporal similarity measures can be used to assess the influence of sparsity constraint and undersampling in compressed sensing DCE-MRI and also shows that the iGRASP method provides the flexibility of optimizing these reconstruction parameters in the post-processing stage using the same acquired data. PMID:26032976

  14. Suitability of pharmacokinetic models for dynamic contrast-enhanced MRI of abdominal aortic aneurysm vessel wall: a comparison.

    PubMed

    Nguyen, V Lai; Kooi, M Eline; Backes, Walter H; van Hoof, Raf H M; Saris, Anne E C M; Wishaupt, Mirthe C J; Hellenthal, Femke A M V I; van der Geest, Rob J; Kessels, Alfons G H; Schurink, Geert Willem H; Leiner, Tim

    2013-01-01

    Increased microvascularization of the abdominal aortic aneurysm (AAA) vessel wall has been related to AAA progression and rupture. The aim of this study was to compare the suitability of three pharmacokinetic models to describe AAA vessel wall enhancement using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Patients with AAA underwent DCE-MRI at 1.5 Tesla. The volume transfer constant (K(trans) ), which reflects microvascular flow, permeability and surface area, was calculated by fitting the blood and aneurysm vessel wall gadolinium concentration curves. The relative fit errors, parameter uncertainties and parameter reproducibilities for the Patlak, Tofts and Extended Tofts model were compared to find the most suitable model. Scan-rescan reproducibility was assessed using the interclass correlation coefficient and coefficient of variation (CV). Further, the relationship between K(trans) and AAA size was investigated. DCE-MRI examinations from thirty-nine patients (mean age±SD: 72±6 years; M/F: 35/4) with an mean AAA maximal diameter of 49±6 mm could be included for pharmacokinetic analysis. Relative fit uncertainties for K(trans) based on the Patlak model (17%) were significantly lower compared to the Tofts (37%) and Extended Tofts model (42%) (p<0.001). K(trans) scan-rescan reproducibility for the Patlak model (ICC = 0.61 and CV = 22%) was comparable with the Tofts (ICC = 0.61, CV = 23%) and Extended Tofts model (ICC = 0.76, CV = 22%). K(trans) was positively correlated with maximal AAA diameter (Spearman's ρ = 0.38, p = 0.02) using the Patlak model. Using the presented imaging protocol, the Patlak model is most suited to describe DCE-MRI data of the AAA vessel wall with good K(trans) scan-rescan reproducibility.

  15. Dynamic contrast-enhanced MRI-based biomarkers of therapeutic response in triple-negative breast cancer

    PubMed Central

    Golden, Daniel I; Lipson, Jafi A; Telli, Melinda L; Ford, James M; Rubin, Daniel L

    2013-01-01

    Objective To predict the response of breast cancer patients to neoadjuvant chemotherapy (NAC) using features derived from dynamic contrast-enhanced (DCE) MRI. Materials and methods 60 patients with triple-negative early-stage breast cancer receiving NAC were evaluated. Features assessed included clinical data, patterns of tumor response to treatment determined by DCE–MRI, MRI breast imaging-reporting and data system descriptors, and quantitative lesion kinetic texture derived from the gray-level co-occurrence matrix (GLCM). All features except for patterns of response were derived before chemotherapy; GLCM features were determined before and after chemotherapy. Treatment response was defined by the presence of residual invasive tumor and/or positive lymph nodes after chemotherapy. Statistical modeling was performed using Lasso logistic regression. Results Pre-chemotherapy imaging features predicted all measures of response except for residual tumor. Feature sets varied in effectiveness at predicting different definitions of treatment response, but in general, pre-chemotherapy imaging features were able to predict pathological complete response with area under the curve (AUC)=0.68, residual lymph node metastases with AUC=0.84 and residual tumor with lymph node metastases with AUC=0.83. Imaging features assessed after chemotherapy yielded significantly improved model performance over those assessed before chemotherapy for predicting residual tumor, but no other outcomes. Conclusions DCE–MRI features can be used to predict whether triple-negative breast cancer patients will respond to NAC. Models such as the ones presented could help to identify patients not likely to respond to treatment and to direct them towards alternative therapies. PMID:23785100

  16. Influence of temporal regularization and radial undersampling factor on compressed sensing reconstruction in dynamic contrast enhanced MRI of the breast.

    PubMed

    Kim, Sungheon G; Feng, Li; Grimm, Robert; Freed, Melanie; Block, Kai Tobias; Sodickson, Daniel K; Moy, Linda; Otazo, Ricardo

    2016-01-01

    To evaluate the influence of temporal sparsity regularization and radial undersampling on compressed sensing reconstruction of dynamic contrast-enhanced (DCE) MRI, using the iterative Golden-angle RAdial Sparse Parallel (iGRASP) MRI technique in the setting of breast cancer evaluation. DCE-MRI examinations of the breast (n = 7) were conducted using iGRASP at 3 Tesla. Images were reconstructed with five different radial undersampling schemes corresponding to temporal resolutions between 2 and 13.4 s/frame and with four different weights for temporal sparsity regularization (λ = 0.1, 0.5, 2, and 6 times of noise level). Image similarity to time-averaged reference images was assessed by two breast radiologists and using quantitative metrics. Temporal similarity was measured in terms of wash-in slope and contrast kinetic model parameters. iGRASP images reconstructed with λ = 2 and 5.1 s/frame had significantly (P < 0.05) higher similarity to time-averaged reference images than the images with other reconstruction parameters (mutual information (MI) >5%), in agreement with the assessment of two breast radiologists. Higher undersampling (temporal resolution < 5.1 s/frame) required stronger temporal sparsity regularization (λ ≥ 2) to remove streaking aliasing artifacts (MI > 23% between λ = 2 and 0.5). The difference between the kinetic-model transfer rates of benign and malignant groups decreased as temporal resolution decreased (82% between 2 and 13.4 s/frame). This study demonstrates objective spatial and temporal similarity measures can be used to assess the influence of sparsity constraint and undersampling in compressed sensing DCE-MRI and also shows that the iGRASP method provides the flexibility of optimizing these reconstruction parameters in the postprocessing stage using the same acquired data. © 2015 Wiley Periodicals, Inc.

  17. Semi-parametric analysis of dynamic contrast-enhanced MRI using Bayesian P-splines.

    PubMed

    Schmid, Volker J; Whitcher, Brandon; Yang, Guang-Zhong

    2006-01-01

    Current approaches to quantitative analysis of DCE-MRI with non-linear models involve the convolution of an arterial input function (AIF) with the contrast agent concentration at a voxel or regional level. Full quantification provides meaningful biological parameters but is complicated by the issues related to convergence, (de-)convolution of the AIF, and goodness of fit. To overcome these problems, this paper presents a penalized spline smoothing approach to model the data in a semi-parametric way. With this method, the AIF is convolved with a set of B-splines to produce the design matrix, and modeling of the resulting deconvolved biological parameters is obtained in a way that is similar to the parametric models. Further kinetic parameters are obtained by fitting a non-linear model to the estimated response function and detailed validation of the method, both with simulated and in vivo data is

  18. Characterization of tumor angiogenesis in rat brain using iron-based vessel size index MRI in combination with gadolinium-based dynamic contrast-enhanced MRI.

    PubMed

    Beaumont, Marine; Lemasson, Benjamin; Farion, Régine; Segebarth, Christoph; Rémy, Chantal; Barbier, Emmanuel L

    2009-10-01

    This study aimed at combining an iron-based, steady-state, vessel size index magnetic resonance imaging (VSI MRI) approach, and a gadolinium (Gd)-based, dynamic contrast-enhanced MRI approach (DCE MRI) to characterize tumoral microvasculature. Rats bearing an orthotopic glioma (C6, n=14 and RG2, n=6) underwent DCE MRI and combined VSI and DCE MRI 4 h later, at 2.35 T. Gd-DOTA (200 mumol of Gd per kg) and ultrasmall superparamagnetic iron oxide (USPIO) (200 micromol of iron per kg) were used for DCE and VSI MRI, respectively. C6 and RG2 gliomas were equally permeable to Gd-DOTA but presented different blood volume fractions and VSI, in good agreement with histologic data. The presence of USPIO yielded reduced K(trans) values. The K(trans) values obtained with Gd-DOTA in the absence and in the presence of USPIO were well correlated for the C6 glioma but not for the RG2 glioma. It was also observed that, within the time frame of DCE MRI, USPIO remained intravascular in the C6 glioma whereas it extravasated in the RG2 glioma. In conclusion, VSI and DCE MRI can be combined provided that USPIO does not extravasate with the time frame of the DCE MRI experiment. The mechanisms at the origin of USPIO extravasation remain to be elucidated.

  19. Dynamic contrast enhanced MRI parameters and tumor cellularity in a rat model of cerebral glioma at 7T

    NASA Astrophysics Data System (ADS)

    Aryal, Madhava Prasad

    This dissertation mainly focuses on establishing and evaluating a stable and reproducible procedure for assessing tumor microvasculature by measuring the tissue parameters: plasma volume (vp), forward transfer constant (Ktrans), interstitial volume (ve) and distribution volume (VD), utilizing T1-weighted dynamic contrast enhanced MRI (DCE-MRI) and examining their relationship with a histo measure, cell counting. In the first part of the work, two T1-weighted DCE-MRI studies at 24 hrs time interval, using a dual-echo gradient-echo pulse sequence, were performed in 18 athymic rats implanted with U251 cerebral glioma. Using the "standard," or "consensus" model, and a separate Logan graphical analysis, T1-weighted images before, during and after the injection of a gadolinium contrast agent were used to estimate the tissue parameters mentioned above. After MRI study rats were sacrificed, and sectioned brain tissues were stained with Hematoxylin and Eosin for cell counting. Measurements in a region where a model selection process demonstrates that it can be reliably shown that contrast agent leaks from the capillary into the interstitial space quickly enough, and a concentration sufficient to measure its back flux to the vasculature, especially for Ktrans and ve, showed a remarkable stability. The combined mean parameter values in this region were: vp = (0.79+/-0.36)%, Ktrans = (2.23+/-0.71) x10-2 min -1, ve = (6.99+/-2.14)%, and VD = (7.57+/-2.32)%. In the second part of this work, the Logan graphical approach, after establishing its stability in an untreated control group, was applied to investigate a cohort of animals in which a therapeutic dose of 20 Gy radiation had been administered. In this cohort, tissue normalization appeared to be the most effective at 8 h after irradiation; this implies that the 8 hrs post-treatment time might be an ideal combination time for optimized therapeutic outcome in combined modalities. The relationship between non-invasive DCE-MRI

  20. Cluster analysis of dynamic contrast enhanced MRI reveals tumor subregions related to locoregional relapse for cervical cancer patients.

    PubMed

    Torheim, Turid; Groendahl, Aurora R; Andersen, Erlend K F; Lyng, Heidi; Malinen, Eirik; Kvaal, Knut; Futsaether, Cecilia M

    2016-11-01

    Solid tumors are known to be spatially heterogeneous. Detection of treatment-resistant tumor regions can improve clinical outcome, by enabling implementation of strategies targeting such regions. In this study, K-means clustering was used to group voxels in dynamic contrast enhanced magnetic resonance images (DCE-MRI) of cervical cancers. The aim was to identify clusters reflecting treatment resistance that could be used for targeted radiotherapy with a dose-painting approach. Eighty-one patients with locally advanced cervical cancer underwent DCE-MRI prior to chemoradiotherapy. The resulting image time series were fitted to two pharmacokinetic models, the Tofts model (yielding parameters K(trans) and νe) and the Brix model (ABrix, kep and kel). K-means clustering was used to group similar voxels based on either the pharmacokinetic parameter maps or the relative signal increase (RSI) time series. The associations between voxel clusters and treatment outcome (measured as locoregional control) were evaluated using the volume fraction or the spatial distribution of each cluster. One voxel cluster based on the RSI time series was significantly related to locoregional control (adjusted p-value 0.048). This cluster consisted of low-enhancing voxels. We found that tumors with poor prognosis had this RSI-based cluster gathered into few patches, making this cluster a potential candidate for targeted radiotherapy. None of the voxels clusters based on Tofts or Brix parameter maps were significantly related to treatment outcome. We identified one group of tumor voxels significantly associated with locoregional relapse that could potentially be used for dose painting. This tumor voxel cluster was identified using the raw MRI time series rather than the pharmacokinetic maps.

  1. The use of error-category mapping in pharmacokinetic model analysis of dynamic contrast-enhanced MRI data.

    PubMed

    Gill, Andrew B; Anandappa, Gayathri; Patterson, Andrew J; Priest, Andrew N; Graves, Martin J; Janowitz, Tobias; Jodrell, Duncan I; Eisen, Tim; Lomas, David J

    2015-02-01

    This study introduces the use of 'error-category mapping' in the interpretation of pharmacokinetic (PK) model parameter results derived from dynamic contrast-enhanced (DCE-) MRI data. Eleven patients with metastatic renal cell carcinoma were enrolled in a multiparametric study of the treatment effects of bevacizumab. For the purposes of the present analysis, DCE-MRI data from two identical pre-treatment examinations were analysed by application of the extended Tofts model (eTM), using in turn a model arterial input function (AIF), an individually-measured AIF and a sample-average AIF. PK model parameter maps were calculated. Errors in the signal-to-gadolinium concentration ([Gd]) conversion process and the model-fitting process itself were assigned to category codes on a voxel-by-voxel basis, thereby forming a colour-coded 'error-category map' for each imaged slice. These maps were found to be repeatable between patient visits and showed that the eTM converged adequately in the majority of voxels in all the tumours studied. However, the maps also clearly indicated sub-regions of low Gd uptake and of non-convergence of the model in nearly all tumours. The non-physical condition ve ≥ 1 was the most frequently indicated error category and appeared sensitive to the form of AIF used. This simple method for visualisation of errors in DCE-MRI could be used as a routine quality-control technique and also has the potential to reveal otherwise hidden patterns of failure in PK model applications.

  2. MRI contrast enhancement using Magnetic Carbon Nanoparticles

    NASA Astrophysics Data System (ADS)

    Chaudhary, Rakesh P.; Kangasniemi, Kim; Takahashi, Masaya; Mohanty, Samarendra K.; Koymen, Ali R.; Department of Physics, University of Texas at Arlington Team; University of Texas Southwestern Medical Center Team

    2014-03-01

    In recent years, nanotechnology has become one of the most exciting forefront fields in cancer diagnosis and therapeutics such as drug delivery, thermal therapy and detection of cancer. Here, we report development of core (Fe)-shell (carbon) nanoparticles with enhanced magnetic properties for contrast enhancement in MRI imaging. These new classes of magnetic carbon nanoparticles (MCNPs) are synthesized using a bottom-up approach in various organic solvents, using the electric plasma discharge generated in the cavitation field of an ultrasonic horn. Gradient echo MRI images of well-dispersed MCNP-solutions (in tube) were acquired. For T2 measurements, a multi echo spin echo sequence was performed. From the slope of the 1/T2 versus concentration plot, the R2 value for different CMCNP-samples was measured. Since MCNPs were found to be extremely non-reactive, and highly absorbing in NIR regime, development of carbon-based MRI contrast enhancement will allow its simultaneous use in biomedical applications. We aim to localize the MCNPs in targeted tissue regions by external DC magnetic field, followed by MRI imaging and subsequent photothermal therapy.

  3. Quality assurance in MRI breast screening: comparing signal-to-noise ratio in dynamic contrast-enhanced imaging protocols

    NASA Astrophysics Data System (ADS)

    Kousi, Evanthia; Borri, Marco; Dean, Jamie; Panek, Rafal; Scurr, Erica; Leach, Martin O.; Schmidt, Maria A.

    2016-01-01

    MRI has been extensively used in breast cancer staging, management and high risk screening. Detection sensitivity is paramount in breast screening, but variations of signal-to-noise ratio (SNR) as a function of position are often overlooked. We propose and demonstrate practical methods to assess spatial SNR variations in dynamic contrast-enhanced (DCE) breast examinations and apply those methods to different protocols and systems. Four different protocols in three different MRI systems (1.5 and 3.0 T) with receiver coils of different design were employed on oil-filled test objects with and without uniformity filters. Twenty 3D datasets were acquired with each protocol; each dataset was acquired in under 60 s, thus complying with current breast DCE guidelines. In addition to the standard SNR calculated on a pixel-by-pixel basis, we propose other regional indices considering the mean and standard deviation of the signal over a small sub-region centred on each pixel. These regional indices include effects of the spatial variation of coil sensitivity and other structured artefacts. The proposed regional SNR indices demonstrate spatial variations in SNR as well as the presence of artefacts and sensitivity variations, which are otherwise difficult to quantify and might be overlooked in a clinical setting. Spatial variations in SNR depend on protocol choice and hardware characteristics. The use of uniformity filters was shown to lead to a rise of SNR values, altering the noise distribution. Correlation between noise in adjacent pixels was associated with data truncation along the phase encoding direction. Methods to characterise spatial SNR variations using regional information were demonstrated, with implications for quality assurance in breast screening and multi-centre trials.

  4. Value of Dynamic Contrast-Enhanced MRI to Detect Local Tumor Recurrence in Primary Head and Neck Cancer Patients.

    PubMed

    Choi, Young Jun; Lee, Jeong Hyun; Sung, Yu Sub; Yoon, Ra Gyoung; Park, Ji Eun; Nam, Soon Yuhl; Baek, Jung Hwan

    2016-05-01

    Treatment failures in head and neck cancer patients are mainly related to locoregional tumor recurrence. The objective of the present study was to evaluate the diagnostic accuracy of model-free dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) to detect local recurrence during the surveillance of head and neck cancer patients.Our retrospective study enrolled 24 patients with primary head and neck cancer who had undergone definitive treatment. Patients were grouped into local recurrence (n = 12) or posttreatment change (n = 12) groups according to the results of biopsy or clinicoradiologic follow-up. The types of time-signal intensity (TSI) curves were classified as follows: "progressive increment" as type I, "plateau" as type II, and "washout" as type III. TSI curve types and their parameters (i.e., wash-in, Emax, Tmax, area under the curve [AUC]60, AUC90, and AUC120) were compared between the 2 study groups.The distributions of TSI curve types for local recurrence versus posttreatment change were statistically significant (P < 0.001) (i.e., 0% vs 83.3% for type I, 58.3% vs 16.7% for type II, and 41.7% vs 0% for type III). There were statistically significant differences in Emax, Tmax, and all of the AUC parameters between 2 groups (P < 0.0083 [0.05/6]). Receiver operating characteristic (ROC) curve analyses indicated that the TSI curve type was the best predictor of local recurrence with a sensitivity of 100% (95% CI, 73.5-100.0) and a specificity of 83.3% (95% CI, 51.6-97.9) (cutoff with type II).Model-free DCE-MRI using TSI curves and TSI curve-derived parameters detects local recurrence in head and neck cancer patients with a high diagnostic accuracy.

  5. SU-D-303-03: Impact of Uncertainty in T1 Measurements On Quantification of Dynamic Contrast Enhanced MRI

    SciTech Connect

    Aryal, M; Cao, Y

    2015-06-15

    Purpose: Quantification of dynamic contrast enhanced (DCE) MRI requires native longitudinal relaxation time (T1) measurement. This study aimed to assess uncertainty in T1 measurements using two different methods. Methods and Materials: Brain MRI scans were performed on a 3T scanner in 9 patients who had low grade/benign tumors and partial brain radiotherapy without chemotherapy at pre-RT, week-3 during RT (wk-3), end-RT, and 1, 6 and 18 months after RT. T1-weighted images were acquired using gradient echo sequences with 1) 2 different flip angles (50 and 150), and 2) 5 variable TRs (100–2000ms). After creating quantitative T1 maps, average T1 was calculated in regions of interest (ROI), which were distant from tumors and received a total of accumulated radiation doses < 5 Gy at wk-3. ROIs included left and right normal Putamen and Thalamus (gray matter: GM), and frontal and parietal white matter (WM). Since there were no significant or even a trend of T1 changes from pre-RT to wk-3 in these ROIs, a relative repeatability coefficient (RC) of T1 as a measure of uncertainty was estimated in each ROI using the data pre-RT and at wk-3. The individual T1 changes at later time points were evaluated compared to the estimated RCs. Results: The 2-flip angle method produced small RCs in GM (9.7–11.7%) but large RCs in WM (12.2–13.6%) compared to the saturation-recovery (SR) method (11.0–17.7% for GM and 7.5–11.2% for WM). More than 81% of individual T1 changes were within T1 uncertainty ranges defined by RCs. Conclusion: Our study suggests that the impact of T1 uncertainty on physiological parameters derived from DCE MRI is not negligible. A short scan with 2 flip angles is able to achieve repeatability of T1 estimates similar to a long scan with 5 different TRs, and is desirable to be integrated in the DCE protocol. Present study was supported by National Institute of Health (NIH) under grant numbers; UO1 CA183848 and RO1 NS064973.

  6. The Tofts model in frequency domain: fast and robust determination of pharmacokinetic maps for dynamic contrast enhancement MRI

    NASA Astrophysics Data System (ADS)

    Vajuvalli, Nithin N.; Chikkemenahally, Dharmendra Kumar K.; Nayak, Krupa N.; Bhosale, Manoj G.; Geethanath, Sairam

    2016-12-01

    Dynamic contrast enhancement magnetic resonance imaging (DCE-MRI) is a well-established method for non-invasive detection and therapeutic monitoring of pathologies through administration of intravenous contrast agent. Quantification of pharmacokinetic (PK) maps can be achieved through application of compartmental models relevant to the pathophysiology of the tissue under interrogation. The determination of PK parameters involves fitting of time-concentration data to these models. In this work, the Tofts model in frequency domain (TM-FD) is applied to a weakly vascularized tissue such as the breast. It is derived as a convolution-free model from the conventional Tofts model in the time domain (TM-TD). This reduces the dimensionality of the curve-fitting problem from two to one. The approaches of TM-FD and TM-TD were applied to two kinds of in silico phantoms and six in vivo breast DCE data sets with and without the addition of noise. The results showed that computational time taken to estimate PK maps using TM-FD was 16-25% less than with TM-TD. Normalized root mean square error (NRMSE) calculation and Pearson correlation analyses were performed to validate robustness and accuracy of the TM-FD and TM-TD approaches. These compared with ground truth values in the case of phantom studies for four different temporal resolutions. Results showed that NRMSE values for TM-FD were significantly lower than those of TM-TD as validated by a paired t-test along with reduced computational time. This approach therefore enables online evaluation of PK maps by radiologists in a clinical setting, aiding in the evaluation of 3D and/or increased coverage of the tissue of interest.

  7. Detection of locally radio-recurrent prostate cancer at multiparametric MRI: Can dynamic contrast-enhanced imaging be omitted?

    PubMed

    Alonzo, F; Melodelima, C; Bratan, F; Vitry, T; Crouzet, S; Gelet, A; Rouvière, O

    2016-04-01

    The goal of this study was to assess the added value of dynamic contrast-enhanced (DCE) imaging in detecting locally radio-recurrent prostate cancer using multiparametric magnetic resonance imaging (mpMRI) at 3Tesla (T). We retrospectively analyzed 45 patients with rising prostate-specific antigen level after prostate radiotherapy who underwent mpMRI [T2-weighted (T2w), diffusion-weighted (Dw) and DCE imaging] at 3T before prostate biopsy. Four readers assigned a 5-level Likert score of cancer likelihood in 8 prostate sectors (6 sextants, 2 seminal vesicles) on T2w+Dw and T2w+Dw+DCE images. Biopsy results were used as the standard of reference. T2w+Dw and T2w+Dw+DCE imaging had similar areas under the receiver operating characteristic curves on per-sector (0.87-0.89 vs. 0.87-0.89; P=0.19-0.78) and per-lobe (0.82-0.94 vs. 0.80-0.91; P=0.21-0.84) analysis. Using a Likert score≥2/5 for diagnosis threshold, T2w+Dw+DCE imaging showed non-significantly higher sensitivities on per-sector (0.56-0.72 vs. 0.52-0.73, P=0.34-0.69) and per-lobe (0.80-0.90 vs. 0.73-0.88; P=0.63-0.99) analysis. It also showed non-significantly lower specificities on per-sector (0.74-0.89 vs. 0.82-0.89; P=0.09-0.99) and per-lobe (0.48-0.81 vs. 0.61-0.84; P=0.10-0.99) analysis. Weighted kappa values were respectively 0.57-0.70 and 0.55-0.66 for T2w+Dw and T2w+Dw+DCE imaging at the sector level, and 0.66-0.83 and 0.58-0.85 at the lobe level. The use of DCE MR imaging tends to increase sensitivity and decrease specificity for all readers, but the differences are not significant. Copyright © 2016. Published by Elsevier Masson SAS.

  8. Automatic assessment of dynamic contrast-enhanced MRI in an ischemic rat hindlimb model: an exploratory study of transplanted multipotent progenitor cells.

    PubMed

    Hsu, Li-Yueh; Wragg, Andrew; Anderson, Stasia A; Balaban, Robert S; Boehm, Manfred; Arai, Andrew E

    2008-02-01

    This study presents computerized automatic image analysis for quantitatively evaluating dynamic contrast-enhanced MRI in an ischemic rat hindlimb model. MRI at 7 T was performed on animals in a blinded placebo-controlled experiment comparing multipotent adult progenitor cell-derived progenitor cell (MDPC)-treated, phosphate buffered saline (PBS)-injected, and sham-operated rats. Ischemic and non-ischemic limb regions of interest were automatically segmented from time-series images for detecting changes in perfusion and late enhancement. In correlation analysis of the time-signal intensity histograms, the MDPC-treated limbs correlated well with their corresponding non-ischemic limbs. However, the correlation coefficient of the PBS control group was significantly lower than that of the MDPC-treated and sham-operated groups. In semi-quantitative parametric maps of contrast enhancement, there was no significant difference in hypo-enhanced area between the MDPC and PBS groups at early perfusion-dependent time frames. However, the late-enhancement area was significantly larger in the PBS than the MDPC group. The results of this exploratory study show that MDPC-treated rats could be objectively distinguished from PBS controls. The differences were primarily determined by late contrast enhancement of PBS-treated limbs. These computerized methods appear promising for assessing perfusion and late enhancement in dynamic contrast-enhanced MRI.

  9. Reproducibility of dynamic contrast-enhanced MRI and dynamic susceptibility contrast MRI in the study of brain gliomas: a comparison of data obtained using different commercial software.

    PubMed

    Conte, Gian Marco; Castellano, Antonella; Altabella, Luisa; Iadanza, Antonella; Cadioli, Marcello; Falini, Andrea; Anzalone, Nicoletta

    2017-04-01

    Dynamic susceptibility contrast MRI (DSC) and dynamic contrast-enhanced MRI (DCE) are useful tools in the diagnosis and follow-up of brain gliomas; nevertheless, both techniques leave the open issue of data reproducibility. We evaluated the reproducibility of data obtained using two different commercial software for perfusion maps calculation and analysis, as one of the potential sources of variability can be the software itself. DSC and DCE analyses from 20 patients with gliomas were tested for both the intrasoftware (as intraobserver and interobserver reproducibility) and the intersoftware reproducibility, as well as the impact of different postprocessing choices [vascular input function (VIF) selection and deconvolution algorithms] on the quantification of perfusion biomarkers plasma volume (Vp), volume transfer constant (K (trans)) and rCBV. Data reproducibility was evaluated with the intraclass correlation coefficient (ICC) and Bland-Altman analysis. For all the biomarkers, the intra- and interobserver reproducibility resulted in almost perfect agreement in each software, whereas for the intersoftware reproducibility the value ranged from 0.311 to 0.577, suggesting fair to moderate agreement; Bland-Altman analysis showed high dispersion of data, thus confirming these findings. Comparisons of different VIF estimation methods for DCE biomarkers resulted in ICC of 0.636 for K (trans) and 0.662 for Vp; comparison of two deconvolution algorithms in DSC resulted in an ICC of 0.999. The use of single software ensures very good intraobserver and interobservers reproducibility. Caution should be taken when comparing data obtained using different software or different postprocessing within the same software, as reproducibility is not guaranteed anymore.

  10. Automated Processing of Dynamic Contrast-Enhanced MRI: Correlation of Advanced Pharmacokinetic Metrics with Tumor Grade in Pediatric Brain Tumors.

    PubMed

    Vajapeyam, S; Stamoulis, C; Ricci, K; Kieran, M; Poussaint, T Young

    2017-01-01

    Pharmacokinetic parameters from dynamic contrast-enhanced MR imaging have proved useful for differentiating brain tumor grades in adults. In this study, we retrospectively reviewed dynamic contrast-enhanced perfusion data from children with newly diagnosed brain tumors and analyzed the pharmacokinetic parameters correlating with tumor grade. Dynamic contrast-enhanced MR imaging data from 38 patients were analyzed by using commercially available software. Subjects were categorized into 2 groups based on pathologic analyses consisting of low-grade (World Health Organization I and II) and high-grade (World Health Organization III and IV) tumors. Pharmacokinetic parameters were compared between the 2 groups by using linear regression models. For parameters that were statistically distinct between the 2 groups, sensitivity and specificity were also estimated. Eighteen tumors were classified as low-grade, and 20, as high-grade. Transfer constant from the blood plasma into the extracellular extravascular space (K(trans)), rate constant from extracellular extravascular space back into blood plasma (Kep), and extracellular extravascular volume fraction (Ve) were all significantly correlated with tumor grade; high-grade tumors showed higher K(trans), higher Kep, and lower Ve. Although all 3 parameters had high specificity (range, 82%-100%), Kep had the highest specificity for both grades. Optimal sensitivity was achieved for Ve, with a combined sensitivity of 76% (compared with 71% for K(trans) and Kep). Pharmacokinetic parameters derived from dynamic contrast-enhanced MR imaging can effectively discriminate low- and high-grade pediatric brain tumors. © 2017 by American Journal of Neuroradiology.

  11. Relationship between diffusion parameters derived from intravoxel incoherent motion MRI and perfusion measured by dynamic contrast-enhanced MRI of soft tissue tumors.

    PubMed

    Marzi, Simona; Stefanetti, Linda; Sperati, Francesca; Anelli, Vincenzo

    2016-01-01

    Our aim was to evaluate the link between diffusion parameters measured by intravoxel incoherent motion (IVIM) diffusion-weighted imaging (DWI) and the perfusion metrics obtained with dynamic contrast-enhanced (DCE) MRI in soft tissue tumors (STTs). Twenty-eight patients affected by histopathologically confirmed STT were included in a prospective study. All patients underwent both DCE MRI and IVIM DWI. The perfusion fraction f, diffusion coefficient D and perfusion-related diffusion coefficient D* were estimated using a bi-exponential function to fit the DWI data. DCE MRI was acquired with a temporal resolution of 3-5 s. Maps of the initial area under the gadolinium concentration curve (IAUGC), time to peak (TTP) and maximum slope of increase (MSI) were derived using commercial software. The relationships between the DCE MRI and IVIM DWI measurements were assessed by Spearman's test. To exclude false positive results under multiple testing, the false discovery rate (FDR) procedure was applied. The Mann-Whitney test was used to evaluate the differences between all variables in patients with non-myxoid and myxoid STT. No significant relationship was found between IVIM parameters and any DCE MRI parameters. Higher f and D*f values were found in non-myxoid tumors compared with myxoid tumors (p = 0.004 and p = 0.003, respectively). MSI was significantly higher in non-myxoid tumors than in myxoid tumors (p = 0.029). From the visual assessments of single clinical cases, both f and D*f maps were in satisfactory agreement with DCE maps in the extreme cases of an avascular mass and a highly vascularized mass, whereas, for tumors with slight vascularity or with a highly heterogeneous perfusion pattern, this association was not straightforward. Although IVIM DWI was demonstrated to be feasible in STT, our data did not support evident relationships between perfusion-related IVIM parameters and perfusion measured by DCE MRI.

  12. Lung ventilation- and perfusion-weighted Fourier decomposition magnetic resonance imaging: in vivo validation with hyperpolarized 3He and dynamic contrast-enhanced MRI.

    PubMed

    Bauman, Grzegorz; Scholz, Alexander; Rivoire, Julien; Terekhov, Maxim; Friedrich, Janet; de Oliveira, Andre; Semmler, Wolfhard; Schreiber, Laura Maria; Puderbach, Michael

    2013-01-01

    The purpose of this work was to validate ventilation-weighted (VW) and perfusion-weighted (QW) Fourier decomposition (FD) magnetic resonance imaging (MRI) with hyperpolarized (3)He MRI and dynamic contrast-enhanced perfusion (DCE) MRI in a controlled animal experiment. Three healthy pigs were studied on 1.5-T MR scanner. For FD MRI, the VW and QW images were obtained by postprocessing of time-resolved lung image sets. DCE acquisitions were performed immediately after contrast agent injection. (3)He MRI data were acquired following the administration of hyperpolarized helium and nitrogen mixture. After baseline MR scans, pulmonary embolism was artificially produced. FD MRI and DCE MRI perfusion measurements were repeated. Subsequently, atelectasis and air trapping were induced, which followed with FD MRI and (3)He MRI ventilation measurements. Distributions of signal intensities in healthy and pathologic lung tissue were compared by statistical analysis. Images acquired using FD, (3)He, and DCE MRI in all animals before the interventional procedure showed homogeneous ventilation and perfusion. Functional defects were detected by all MRI techniques at identical anatomical locations. Signal intensity in VW and QW images was significantly lower in pathological than in healthy lung parenchyma. The study has shown usefulness of FD MRI as an alternative, noninvasive, and easily implementable technique for the assessment of acute changes in lung function. Copyright © 2012 Wiley Periodicals, Inc.

  13. A pilot study using dynamic contrast enhanced-MRI as a response biomarker of the radioprotective effect of memantine in patients receiving whole brain radiotherapy

    PubMed Central

    Wong, Philip; Leppert, Ilana R.; Roberge, David; Boudam, Karim; Brown, Paul D.; Muanza, Thierry; Pike, G. Bruce; Chankowsky, Jeffrey; Mihalcioiu, Catalin

    2016-01-01

    Purpose This pilot prospective study sought to determine whether dynamic contrast enhanced MRI (DCE-MRI) could be used as a clinical imaging biomarker of tissue toxicity from whole brain radiotherapy (WBRT). Method 14 patients who received WBRT were imaged using dynamic contrast enhanced DCE-MRI prior to and at 8-weeks, 16-weeks and 24-weeks after the initiation of WBRT. Twelve of the patients were also enrolled in the RTOG 0614 trial, which randomized patients to the use of placebo or memantine. After the unblinding of the treatments received by RTOG 0614 patients, DCE-MRI measures of tumor tissue and normal appearing white matter (NAWM) vascular permeability (Initial Area Under the Curve (AUC) Blood Adjusted) was analyzed. Cognitive, quality-of-life (QOL) assessment and blood samples were collected according to the patient's ability to tolerate the exams. Circulating endothelial cells (CEC) were measured using flow cytometry. Results Following WBRT, there was an increasing trend in the vascular permeability of tumors (p=0.09) and NAWM (p=0.06) with time. Memantine significantly (p=0.01) reduced NAWM AUC changes following radiotherapy. Patients on memantine retained (COWA p= 0.03) better cognitive functions than those on placebo. No association was observed between the level of CEC and DCE-MRI changes, time from radiotherapy or memantine use. Conclusions DCE-MRI can detect vascular damage secondary to WBRT. Our data suggests that memantine reduces WBRT-induced brain vasculature damages. PMID:27248467

  14. [Diagnostic value of quantitative pharmacokinetic parameters and relative quantitative pharmacokinetic parameters in breast lesions with dynamic contrast-enhanced MRI].

    PubMed

    Sun, T T; Liu, W H; Zhang, Y Q; Li, L H; Wang, R; Ye, Y Y

    2017-08-01

    Objective: To explore the differential between the value of dynamic contrast-enhanced MRI quantitative pharmacokinetic parameters and relative pharmacokinetic quantitative parameters in breast lesions. Methods: Retrospective analysis of 255 patients(262 breast lesions) who was obtained by clinical palpation , ultrasound or full-field digital mammography , and then all lessions were pathologically confirmed in Zhongda Hospital, Southeast University from May 2012 to May 2016. A 3.0 T MRI scanner was used to obtain the quantitative MR pharmacokinetic parameters: volume transfer constant (K(trans)), exchange rate constant (k(ep))and extravascular extracellular volume fraction (V(e)). And measured the quantitative pharmacokinetic parameters of normal glands tissues which on the same side of the same level of the lesions; and then calculated the value of relative pharmacokinetic parameters: rK(rans)、rk(ep) and rV(e).To explore the diagnostic value of two pharmacokinetic parameters in differential diagnosis of benign and malignant breast lesions using receiver operating curves and model of logistic regression. Results: (1)There were significant differences between benign lesions and malignant lesions in K(trans) and k(ep) (t=15.489, 15.022, respectively, P<0.05), there were no significant differences between benign lesions and malignant lesions in V(e)(t=-2.346, P>0.05). The areas under the ROC curve(AUC)of K(trans), k(ep) and V(e) between malignant and benign lesions were 0.933, 0.948 and 0.387, the sensitivity of K(trans), k(ep) and V(e) were 77.1%, 85.0%, 51.0% , and the specificity of K(trans), k(ep) and V(e) were 96.3%, 93.6%, 60.8% for the differential diagnosis of breast lesions if taken the maximum Youden's index as cut-off. (2)There were significant differences between benign lesions and malignant lesions in rK(trans), rk(ep) and rV(e) (t=14.177, 11.726, 2.477, respectively, P<0.05). The AUC of rK(trans), rk(ep) and rV(e) between malignant and benign lesions

  15. Dynamic Contrast-Enhanced Digital Breast Tomosynthesis

    DTIC Science & Technology

    2012-03-01

    11-1-0229 TITLE: Dynamic Contrast-Enhanced Digital Breast Tomosynthesis PRINCIPAL INVESTIGATOR: Dr. Andrew Maidment...5 Introduction We propose a new technique for obtaining 4D dynamic contrast-enhanced (DCE) digital breast tomosynthesis (DBT) im...seconds. One com plete tomosynthesis projection series consists of a set of projection im ages acquired at distinct angles. In the proposed m ethod

  16. SU-F-I-16: Short Breast MRI with High-Resolution T2-Weighted and Dynamic Contrast Enhanced T1-Weighted Images

    SciTech Connect

    Ma, J; Son, J; Arun, B; Hazle, J; Hwang, K; Madewell, J; Yang, W; Dogan, B; Wang, K; Bayram, E

    2016-06-15

    Purpose: To develop and demonstrate a short breast (sb) MRI protocol that acquires both T2-weighted and dynamic contrast-enhanced T1-weighted images in approximately ten minutes. Methods: The sb-MRI protocol consists of two novel pulse sequences. The first is a flexible fast spin-echo triple-echo Dixon (FTED) sequence for high-resolution fat-suppressed T2-weighted imaging, and the second is a 3D fast dual-echo spoiled gradient sequence (FLEX) for volumetric fat-suppressed T1-weighted imaging before and post contrast agent injection. The flexible FTED sequence replaces each single readout during every echo-spacing period of FSE with three fast-switching bipolar readouts to produce three raw images in a single acquisition. These three raw images are then post-processed using a Dixon algorithm to generate separate water-only and fat-only images. The FLEX sequence acquires two echoes using dual-echo readout after each RF excitation and the corresponding images are post-processed using a similar Dixon algorithm to yield water-only and fat-only images. The sb-MRI protocol was implemented on a 3T MRI scanner and used for patients who had undergone concurrent clinical MRI for breast cancer screening. Results: With the same scan parameters (eg, spatial coverage, field of view, spatial and temporal resolution) as the clinical protocol, the total scan-time of the sb-MRI protocol (including the localizer, bilateral T2-weighted, and dynamic contrast-enhanced T1-weighted images) was 11 minutes. In comparison, the clinical breast MRI protocol took 43 minutes. Uniform fat suppression and high image quality were consistently achieved by sb-MRI. Conclusion: We demonstrated a sb-MRI protocol comprising both T2-weighted and dynamic contrast-enhanced T1-weighted images can be performed in approximately ten minutes. The spatial and temporal resolution of the images easily satisfies the current breast MRI accreditation guidelines by the American College of Radiology. The protocol has the

  17. The role of dynamic contrast-enhanced MRI in differentiation of local recurrence and residual soft-tissue tumor versus post-treatment changes.

    PubMed

    Lehotska, V; Tothova, L; Valkovic, L

    2013-01-01

    To evaluate the reliability of dynamic contrast-enhanced MRI in the diagnosis of local recurrence of malignant soft-tissue tumors after receiving treatment. From March 2002 till December 2009 we performed dynamic contrast enhanced MRI in 95 patients with soft-tissue tumor after receiving treatment (surgery, radiotherapy, chemotherapy). Patients were classified according to five types of TIC. The recurrent disease was suspected in 47 patients and the biopsy was recommended. In 8 cases (TIC II), the biopsy was performed due to long-term post-treatment changes. Histological results proved STT recurrence in 45 patients; in 10 patients (8 with TIC II), biopsy revealed hypervascular granulation tissue, florid inflammation and reactive changes. The sensitivity for dynamic contrast-enhanced MR examination was 100 %, specificity 80 %, positive predictive value (PPV) 95.7 % and negative predictive value (NPV) 100 %. Our results indicate that TICs III, IV and V raise high suspicion of local tumor recurrence and require percutaneous imaging-guided biopsy. TIC of type II usually represents a pseudomass and the biopsy should be performed only in selected cases with increased risk of recurrent disease based on multidisciplinary approach. On the basis of literature review as well as our experiences we created a reliable algorithm proposed for diagnosing the residual or recurrent soft-tissue tumors (Tab. 2, Fig. 6, Ref. 20).

  18. Detection of Local Tumor Recurrence After Definitive Treatment of Head and Neck Squamous Cell Carcinoma: Histogram Analysis of Dynamic Contrast-Enhanced T1-Weighted Perfusion MRI.

    PubMed

    Choi, Sang Hyun; Lee, Jeong Hyun; Choi, Young Jun; Park, Ji Eun; Sung, Yu Sub; Kim, Namkug; Baek, Jung Hwan

    2017-01-01

    This study aimed to explore the added value of histogram analysis of the ratio of initial to final 90-second time-signal intensity AUC (AUCR) for differentiating local tumor recurrence from contrast-enhancing scar on follow-up dynamic contrast-enhanced T1-weighted perfusion MRI of patients treated for head and neck squamous cell carcinoma (HNSCC). AUCR histogram parameters were assessed among tumor recurrence (n = 19) and contrast-enhancing scar (n = 27) at primary sites and compared using the t test. ROC analysis was used to determine the best differentiating parameters. The added value of AUCR histogram parameters was assessed when they were added to inconclusive conventional MRI results. Histogram analysis showed statistically significant differences in the 50th, 75th, and 90th percentiles of the AUCR values between the two groups (p < 0.05). The 90th percentile of the AUCR values (AUCR90) was the best predictor of local tumor recurrence (AUC, 0.77; 95% CI, 0.64-0.91) with an estimated cutoff of 1.02. AUCR90 increased sensitivity by 11.7% over that of conventional MRI alone when added to inconclusive results. Histogram analysis of AUCR can improve the diagnostic yield for local tumor recurrence during surveillance after treatment for HNSCC.

  19. Quantifying Intracranial Aneurysm Wall Permeability for Risk Assessment Using Dynamic Contrast-Enhanced MRI: A Pilot Study.

    PubMed

    Vakil, P; Ansari, S A; Cantrell, C G; Eddleman, C S; Dehkordi, F H; Vranic, J; Hurley, M C; Batjer, H H; Bendok, B R; Carroll, T J

    2015-05-01

    Pathological changes in the intracranial aneurysm wall may lead to increases in its permeability; however the clinical significance of such changes has not been explored. The purpose of this pilot study was to quantify intracranial aneurysm wall permeability (K(trans), VL) to contrast agent as a measure of aneurysm rupture risk and compare these parameters against other established measures of rupture risk. We hypothesized K(trans) would be associated with intracranial aneurysm rupture risk as defined by various anatomic, imaging, and clinical risk factors. Twenty-seven unruptured intracranial aneurysms in 23 patients were imaged with dynamic contrast-enhanced MR imaging, and wall permeability parameters (K(trans), VL) were measured in regions adjacent to the aneurysm wall and along the paired control MCA by 2 blinded observers. K(trans) and VL were evaluated as markers of rupture risk by comparing them against established clinical (symptomatic lesions) and anatomic (size, location, morphology, multiplicity) risk metrics. Interobserver agreement was strong as shown in regression analysis (R(2) > 0.84) and intraclass correlation (intraclass correlation coefficient >0.92), indicating that the K(trans) can be reliably assessed clinically. All intracranial aneurysms had a pronounced increase in wall permeability compared with the paired healthy MCA (P < .001). Regression analysis demonstrated a significant trend toward an increased K(trans) with increasing aneurysm size (P < .001). Logistic regression showed that K(trans) also predicted risk in anatomic (P = .02) and combined anatomic/clinical (P = .03) groups independent of size. We report the first evidence of dynamic contrast-enhanced MR imaging-modeled contrast permeability in intracranial aneurysms. We found that contrast agent permeability across the aneurysm wall correlated significantly with both aneurysm size and size-independent anatomic risk factors. In addition, K(trans) was a significant and size

  20. Application of direct virtual coil to dynamic contrast-enhanced MRI and MR angiography with data-driven parallel imaging.

    PubMed

    Wang, Kang; Beatty, Philip J; Nagle, Scott K; Reeder, Scott B; Holmes, James H; Rahimi, Mahdi S; Bell, Laura C; Korosec, Frank R; Brittain, Jean H

    2014-02-01

    To demonstrate the feasibility of direct virtual coil (DVC) in the setting of 4D dynamic imaging used in multiple clinical applications. Three dynamic imaging applications were chosen: pulmonary perfusion, liver perfusion, and peripheral MR angiography (MRA), with 18, 11, and 10 subjects, respectively. After view-sharing, the k-space data were reconstructed twice: once with channel-by-channel (CBC) followed by sum-of-squares coil combination and once with DVC. Images reconstructed using CBC and DVC were compared and scored based on overall image quality by two experienced radiologists using a five-point scale. The CBC and DVC showed similar image quality in image domain. Time course measurements also showed good agreement in the temporal domain. CBC and DVC images were scored as equivalent for all pulmonary perfusion cases, all liver perfusion cases, and four of the 10 peripheral MRA cases. For the remaining six peripheral MRA cases, DVC were scored as slightly better (not clinically significant) than the CBC images by Radiologist A and as equivalent by Radiologist B. For dynamic contrast-enhanced MR applications, it is clinically feasible to reduce image reconstruction time while maintaining image quality and time course measurement using the DVC technique. Copyright © 2013 Wiley Periodicals, Inc.

  1. Predicting response before initiation of neoadjuvant chemotherapy in breast cancer using new methods for the analysis of dynamic contrast enhanced MRI (DCE MRI) data

    NASA Astrophysics Data System (ADS)

    DeGrandchamp, Joseph B.; Whisenant, Jennifer G.; Arlinghaus, Lori R.; Abramson, V. G.; Yankeelov, Thomas E.; Cárdenas-Rodríguez, Julio

    2016-03-01

    The pharmacokinetic parameters derived from dynamic contrast enhanced (DCE) MRI have shown promise as biomarkers for tumor response to therapy. However, standard methods of analyzing DCE MRI data (Tofts model) require high temporal resolution, high signal-to-noise ratio (SNR), and the Arterial Input Function (AIF). Such models produce reliable biomarkers of response only when a therapy has a large effect on the parameters. We recently reported a method that solves the limitations, the Linear Reference Region Model (LRRM). Similar to other reference region models, the LRRM needs no AIF. Additionally, the LRRM is more accurate and precise than standard methods at low SNR and slow temporal resolution, suggesting LRRM-derived biomarkers could be better predictors. Here, the LRRM, Non-linear Reference Region Model (NRRM), Linear Tofts model (LTM), and Non-linear Tofts Model (NLTM) were used to estimate the RKtrans between muscle and tumor (or the Ktrans for Tofts) and the tumor kep,TOI for 39 breast cancer patients who received neoadjuvant chemotherapy (NAC). These parameters and the receptor statuses of each patient were used to construct cross-validated predictive models to classify patients as complete pathological responders (pCR) or non-complete pathological responders (non-pCR) to NAC. Model performance was evaluated using area under the ROC curve (AUC). The AUC for receptor status alone was 0.62, while the best performance using predictors from the LRRM, NRRM, LTM, and NLTM were AUCs of 0.79, 0.55, 0.60, and 0.59 respectively. This suggests that the LRRM can be used to predict response to NAC in breast cancer.

  2. Enhancing fraction measured using dynamic contrast-enhanced MRI predicts disease-free survival in patients with carcinoma of the cervix

    PubMed Central

    Donaldson, S B; Buckley, D L; O'Connor, J P; Davidson, S E; Carrington, B M; Jones, A P; West, C M L

    2009-01-01

    Background: There is a need for simple imaging parameters capable of predicting therapeutic outcome. Methods: This retrospective study analysed 50 patients with locally advanced carcinoma of the cervix who underwent dynamic contrast-enhanced MRI before receiving potentially curative radiotherapy. The proportion of enhancing pixels (EF) in the whole-tumour volume post-contrast agent injection was calculated and assessed in relation to disease-free survival (DFS). Results: Tumours with high EF had a significantly poorer probability of DFS than those with low EF (P=0.011). Interpretation: EF is a simple imaging biomarker that should be studied further in a multi-centre setting. PMID:19920831

  3. Diagnostic accuracy of diffusion-weighted MRI for differentiation of cervical cancer and benign cervical lesions at 3.0T: Comparison with routine MRI and dynamic contrast-enhanced MRI.

    PubMed

    Kuang, Fei; Yan, Zhiping; Li, Huili; Feng, Hao

    2015-10-01

    To compare the diagnostic accuracy of routine magnetic resonance imaging (MRI) (T1 WI and T2 WI), diffusion-weighted MRI (DWI), and DCE-MRI (dynamic contrast-enhanced MRI) at 3.0T for differentiation of cervical cancer and benign cervical lesions. A cohort of 75 cervical cancer patients, 26 cervical leiomyoma patients, 22 patients with cervical polyps consecutively underwent pelvic MRI scanning on a 3T MR unit. Two radiologists independently evaluated images at three imaging settings; routine MRI alone, DWI combined with routine MRI (DWI+routine MRI), and DCE-MRI. The apparent diffusion coefficients (ADCs) were calculated from b 0, 600 s/mm(2) and b 0, 1000 s/mm(2). DWI+routine MRI was significantly better than routine MRI and obtained high accuracy (0.95); the diagnostic performance was not significantly different between DWI+routine MRI and DCE-MRI. Reader agreement was excellent for both DWI+routine MRI (κ, 0.90) and DCE-MRI (κ, 0.92). The ADCs of cervical cancer were significantly lower than those of benign cervical lesions at both ADC maps (P = 0.0001). The diagnostic accuracy was not different at both ADC maps (P = 0.375). For differentiation of cervical cancer and benign cervical lesions, unenhanced MRI with combined diffusion-weighted and routine MRI (DWI+routine MRI) at 3T can provide accurate information and may be preferable to DCE. © 2015 Wiley Periodicals, Inc.

  4. Permeability Parameters Measured with Dynamic Contrast-Enhanced MRI: Correlation with the Extravasation of Evans Blue in a Rat Model of Transient Cerebral Ischemia.

    PubMed

    Choi, Hyun Seok; Ahn, Sung Soo; Shin, Na-Young; Kim, Jinna; Kim, Jae Hyung; Lee, Jong Eun; Lee, Hye Yeon; Heo, Ji Hoe; Lee, Seung-Koo

    2015-01-01

    The purpose of this study was to correlate permeability parameters measured with dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) using a clinical 3-tesla scanner with extravasation of Evans blue in a rat model with transient cerebral ischemia. Sprague-Dawley rats (n = 13) with transient middle cerebral artery occlusion were imaged using a 3-tesla MRI with an 8-channel wrist coil. DCE-MRI was performed 12 hours, 18 hours, and 36 hours after reperfusion. Permeability parameters (K(trans), ve, and vp) from DCE-MRI were calculated. Evans blue was injected after DCE-MRI and extravasation of Evans blue was correlated as a reference with the integrity of the blood-brain barrier. Correlation analysis was performed between permeability parameters and the extravasation of Evans blue. All permeability parameters (K(trans), ve, and vp) showed a linear correlation with extravasation of Evans blue. Among them, K(trans) showed highest values of both the correlation coefficient and the coefficient of determination (0.687 and 0.473 respectively, p < 0.001). Permeability parameters obtained by DCE-MRI at 3-T are well-correlated with Evans blue extravasation, and K(trans) shows the strongest correlation among the tested parameters.

  5. A review of technical aspects of T1-weighted dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in human brain tumors.

    PubMed

    Bergamino, M; Bonzano, L; Levrero, F; Mancardi, G L; Roccatagliata, L

    2014-09-01

    In the last few years, several imaging methods, such as magnetic resonance imaging (MRI) and computed tomography, have been used to investigate the degree of blood-brain barrier (BBB) permeability in patients with neurological diseases including multiple sclerosis, ischemic stroke, and brain tumors. One promising MRI method for assessing the BBB permeability of patients with neurological diseases in vivo is T1-weighted dynamic contrast-enhanced (DCE)-MRI. Here we review the technical issues involved in DCE-MRI in the study of human brain tumors. In the first part of this paper, theoretical models for the DCE-MRI analysis will be described, including the Toft-Kety models, the adiabatic approximation to the tissue homogeneity model and the two-compartment exchange model. These models can be used to estimate important kinetic parameters related to BBB permeability. In the second part of this paper, details of the data acquisition, issues related to the arterial input function, and procedures for DCE-MRI image analysis are illustrated. Copyright © 2014 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  6. Comparison of linear and nonlinear implementation of the compartmental tissue uptake model for dynamic contrast-enhanced MRI.

    PubMed

    Kallehauge, Jesper F; Sourbron, Steven; Irving, Benjamin; Tanderup, Kari; Schnabel, Julia A; Chappell, Michael A

    2017-06-01

    Fitting tracer kinetic models using linear methods is much faster than using their nonlinear counterparts, although this comes often at the expense of reduced accuracy and precision. The aim of this study was to derive and compare the performance of the linear compartmental tissue uptake (CTU) model with its nonlinear version with respect to their percentage error and precision. The linear and nonlinear CTU models were initially compared using simulations with varying noise and temporal sampling. Subsequently, the clinical applicability of the linear model was demonstrated on 14 patients with locally advanced cervical cancer examined with dynamic contrast-enhanced magnetic resonance imaging. Simulations revealed equal percentage error and precision when noise was within clinical achievable ranges (contrast-to-noise ratio >10). The linear method was significantly faster than the nonlinear method, with a minimum speedup of around 230 across all tested sampling rates. Clinical analysis revealed that parameters estimated using the linear and nonlinear CTU model were highly correlated (ρ ≥ 0.95). The linear CTU model is computationally more efficient and more stable against temporal downsampling, whereas the nonlinear method is more robust to variations in noise. The two methods may be used interchangeably within clinical achievable ranges of temporal sampling and noise. Magn Reson Med 77:2414-2423, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

  7. The complementary roles of dynamic contrast-enhanced MRI and 18F-fluorodeoxyglucose PET/CT for imaging of carotid atherosclerosis.

    PubMed

    Calcagno, Claudia; Ramachandran, Sarayu; Izquierdo-Garcia, David; Mani, Venkatesh; Millon, Antoine; Rosenbaum, David; Tawakol, Ahmed; Woodward, Mark; Bucerius, Jan; Moshier, Erin; Godbold, James; Kallend, David; Farkouh, Michael E; Fuster, Valentin; Rudd, James H F; Fayad, Zahi A

    2013-12-01

    Inflammation and neovascularization in vulnerable atherosclerotic plaques are key features for severe clinical events. Dynamic contrast-enhanced (DCE) MRI and FDG PET are two noninvasive imaging techniques capable of quantifying plaque neovascularization and inflammatory infiltrate, respectively. However, their mutual role in defining plaque vulnerability and their possible overlap has not been thoroughly investigated. We studied the relationship between DCE-MRI and (18)F-FDG PET data from the carotid arteries of 40 subjects with coronary heart disease (CHD) or CHD risk equivalent, as a substudy of the dal-PLAQUE trial (NCT00655473). The dal-PLAQUE trial was a multicenter study that evaluated dalcetrapib, a cholesteryl ester transfer protein modulator. Subjects underwent anatomical MRI, DCE-MRI and (18)F-FDG PET. Only baseline imaging and biomarker data (before randomization) from dal-PLAQUE were used as part of this substudy. Our primary goal was to evaluate the relationship between DCE-MRI and (18)F-FDG PET data. As secondary endpoints, we evaluated the relationship between (a) PET data and whole-vessel anatomical MRI data, and (b) DCE-MRI and matching anatomical MRI data. All correlations were estimated using a mixed linear model. We found a significant inverse relationship between several perfusion indices by DCE-MRI and (18)F-FDG uptake by PET. Regarding our secondary endpoints, there was a significant relationship between plaque burden measured by anatomical MRI with several perfusion indices by DCE-MRI and (18)F-FDG uptake by PET. No relationship was found between plaque composition by anatomical MRI and DCE-MRI or (18)F-FDG PET metrics. In this study we observed a significant, weak inverse relationship between inflammation measured as (18)F-FDG uptake by PET and plaque perfusion by DCE-MRI. Our findings suggest that there may be a complex relationship between plaque inflammation and microvascularization during the different stages of plaque development. (18

  8. Shape-based motion correction in dynamic contrast-enhanced MRI for quantitative assessment of renal function.

    PubMed

    Liu, Wenyang; Sung, Kyunghyun; Ruan, Dan

    2014-12-01

    To incorporate a newly developed shape-based motion estimation scheme into magnetic resonance urography (MRU) and verify its efficacy in facilitating quantitative functional analysis. The authors propose a motion compensation scheme in MRU that consists of three sequential modules: MRU image acquisition, motion compensation, and quantitative functional analysis. They designed two sets of complementary experiments to evaluate the performance of the proposed method. In the first experiment, dynamic contrast enhanced (DCE) MR images were acquired from three sedated subjects, from which clinically valid estimates were derived and served as the "ground truth." Physiologically sound motion was then simulated to synthesize image sequences influenced by respiratory motion. Quantitative assessment and comparison were performed on functional estimates of Patlak number, glomerular filtration rate, and Patlak differential renal function without and with motion compensation against the ground truth. In the second experiment, the authors acquired a temporal series of noncontrast MR images under free breathing from a healthy adult subject. The performance of the proposed method on compensating real motion was evaluated by comparing the standard deviation of the obtained temporal intensity curves before and after motion compensation. On DCE-MR images with simulated motion, the generated relative enhancement curves exhibited large perturbations and the Patlak numbers of the left and right kidney were significantly underestimated up to 35% and 34%, respectively, compared with the ground truth. After motion compensation, the relative enhancement curves exhibited much less perturbations and Patlak estimation errors reduced within 3% and 4% for the left and right kidneys, respectively. On clinical free-breathing MR images, the temporal intensity curves exhibited significantly reduced variations after motion compensation, with standard deviation decreased from 30.3 and 38.2 to 8.3 and

  9. Shape-based motion correction in dynamic contrast-enhanced MRI for quantitative assessment of renal function

    PubMed Central

    Liu, Wenyang; Sung, Kyunghyun; Ruan, Dan

    2014-01-01

    Purpose: To incorporate a newly developed shape-based motion estimation scheme into magnetic resonance urography (MRU) and verify its efficacy in facilitating quantitative functional analysis. Methods: The authors propose a motion compensation scheme in MRU that consists of three sequential modules: MRU image acquisition, motion compensation, and quantitative functional analysis. They designed two sets of complementary experiments to evaluate the performance of the proposed method. In the first experiment, dynamic contrast enhanced (DCE) MR images were acquired from three sedated subjects, from which clinically valid estimates were derived and served as the “ground truth.” Physiologically sound motion was then simulated to synthesize image sequences influenced by respiratory motion. Quantitative assessment and comparison were performed on functional estimates of Patlak number, glomerular filtration rate, and Patlak differential renal function without and with motion compensation against the ground truth. In the second experiment, the authors acquired a temporal series of noncontrast MR images under free breathing from a healthy adult subject. The performance of the proposed method on compensating real motion was evaluated by comparing the standard deviation of the obtained temporal intensity curves before and after motion compensation. Results: On DCE-MR images with simulated motion, the generated relative enhancement curves exhibited large perturbations and the Patlak numbers of the left and right kidney were significantly underestimated up to 35% and 34%, respectively, compared with the ground truth. After motion compensation, the relative enhancement curves exhibited much less perturbations and Patlak estimation errors reduced within 3% and 4% for the left and right kidneys, respectively. On clinical free-breathing MR images, the temporal intensity curves exhibited significantly reduced variations after motion compensation, with standard deviation decreased

  10. The Complementary Roles of Dynamic Contrast Enhanced MRI and 18F-Fluorodeoxyglucose PET/CT for Imaging of Carotid Atherosclerosis

    PubMed Central

    Calcagno, Claudia; Ramachandran, Sarayu; Izquierdo-Garcia, David; Mani, Venkatesh; Millon, Antoine; Rosenbaum, David; Tawakol, Ahmed; Woodward, Mark; Bucerius, Jan; Moshier, Erin; Godbold, James; Kallend, David; Farkouh, Michael E; Fuster, Valentin; Rudd, James HF; Fayad, Zahi A

    2013-01-01

    Background Inflammation and neovascularization in vulnerable atherosclerotic plaques are key risk factors for severe clinical events. Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) and 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) are two non-invasive imaging techniques capable of quantifying plaque neovascularization and inflammatory infiltrate respectively. However, their mutual role in defining plaque vulnerability and their possible overlap has not been thoroughly investigated. Here, we study the relationship between DCE-MRI and 18F-FDG PET in the carotid arteries of 40 subjects with coronary heart disease (CHD) or CHD equivalent, recruited as a substudy of the dal-PLAQUE trial (NCT00655473). Methods The dal-PLAQUE trial was a multicenter study that evaluated dalcetrapib, a cholesteryl ester transfer protein modulator. Subjects underwent anatomical MRI, DCE-MRI and 18F-FDG PET. Only baseline imaging and biomarkers data (before randomization) from dal-PLAQUE were used as part of this substudy. Our primary goal was to evaluate the relationship between DCE-MRI and 18F-FDG PET data. As secondary endpoints, we evaluated the relationship between a) PET data and whole vessel anatomical MRI data, and b) DCE-MRI and matching anatomical MRI data. All correlations were estimated using a mixed linear model. Results We found a significant inverse relationship between several perfusion indices by DCE-MRI and 18F-FDG uptake by PET. Regarding our secondary endpoints, there was a significant relationship between plaque burden measured by anatomical MRI with several perfusion indices by DCE-MRI and 18F-FDG uptake by PET. No relationship was found between plaque composition by anatomical MRI with DCEMRI or 18F-FDG PET metrics. Conclusions In this study we observed a significant, weak inverse relationship between inflammation measured as 18F-FDG uptake by PET and plaque perfusion by DCE-MRI. Our findings suggest that there may be a complex

  11. Dynamic contrast enhanced magnetic resonance imaging in chronic Achilles tendinosis.

    PubMed

    Gärdin, Anna; Brismar, Torkel B; Movin, Tomas; Shalabi, Adel

    2013-11-22

    Chronic Achilles tendinosis is a common problem. When evaluating and comparing different therapies there is a need for reliable imaging methods. Our aim was to evaluate if chronic Achilles tendinosis affects the dynamic contrast-enhancement in the tendon and its surroundings and if short-term eccentric calf-muscle training normalizes the dynamic contrast-enhancement. 20 patients with chronic Achilles tendinopathy were included. Median duration of symptoms was 31 months (range 6 to 120 months). Both Achilles tendons were examined with dynamic contrast enhanced MRI before and after a 12- week exercise programme of eccentric calf-muscle training. The dynamic MRI was evaluated in tendon, vessel and in fat ventrally of tendon. Area under the curve (AUC), time to peak of signal, signal increase per second (SI/s) and increase in signal between start and peak as a percentage (SI%) was calculated. Pain and performance were evaluated using a questionnaire. In the fat ventrally of the tendon, dynamic contrast enhancement was significantly higher in the symptomatic leg compared to the contralateral non-symptomatic leg before but not after treatment. Despite decreased pain and improved performance there was no significant change of dynamic contrast enhancement in symptomatic tendons after treatment. In Achilles tendinosis there is an increased contrast enhancement in the fat ventrally of the tendon. The lack of correlation with symptoms and the lack of significant changes in tendon contrast enhancement parameters do however indicate that dynamic enhanced MRI is currently not a useful method to evaluate chronic Achilles tendinosis.

  12. Dynamic contrast enhanced magnetic resonance imaging in chronic Achilles tendinosis

    PubMed Central

    2013-01-01

    Background Chronic Achilles tendinosis is a common problem. When evaluating and comparing different therapies there is a need for reliable imaging methods. Our aim was to evaluate if chronic Achilles tendinosis affects the dynamic contrast-enhancement in the tendon and its surroundings and if short-term eccentric calf-muscle training normalizes the dynamic contrast-enhancement. Methods 20 patients with chronic Achilles tendinopathy were included. Median duration of symptoms was 31 months (range 6 to 120 months). Both Achilles tendons were examined with dynamic contrast enhanced MRI before and after a 12- week exercise programme of eccentric calf-muscle training. The dynamic MRI was evaluated in tendon, vessel and in fat ventrally of tendon. Area under the curve (AUC), time to peak of signal, signal increase per second (SI/s) and increase in signal between start and peak as a percentage (SI%) was calculated. Pain and performance were evaluated using a questionnaire. Results In the fat ventrally of the tendon, dynamic contrast enhancement was significantly higher in the symptomatic leg compared to the contralateral non-symptomatic leg before but not after treatment. Despite decreased pain and improved performance there was no significant change of dynamic contrast enhancement in symptomatic tendons after treatment. Conclusion In Achilles tendinosis there is an increased contrast enhancement in the fat ventrally of the tendon. The lack of correlation with symptoms and the lack of significant changes in tendon contrast enhancement parameters do however indicate that dynamic enhanced MRI is currently not a useful method to evaluate chronic Achilles tendinosis. PMID:24261480

  13. Optimized time-resolved imaging of contrast kinetics (TRICKS) in dynamic contrast-enhanced MRI after peptide receptor radionuclide therapy in small animal tumor models.

    PubMed

    Haeck, Joost; Bol, Karin; Bison, Sander; van Tiel, Sandra; Koelewijn, Stuart; de Jong, Marion; Veenland, Jifke; Bernsen, Monique

    2015-01-01

    Anti-tumor efficacy of targeted peptide-receptor radionuclide therapy (PRRT) relies on several factors, including functional tumor vasculature. Little is known about the effect of PRRT on tumor vasculature. With dynamic contrast-enhanced (DCE-) MRI, functional vasculature is imaged and quantified using contrast agents. In small animals DCE-MRI is a challenging application. We optimized a clinical sequence for fast hemodynamic acquisitions, time-resolved imaging of contrast kinetics (TRICKS), to obtain DCE-MRI images at both high spatial and high temporal resolution in mice and rats. Using TRICKS, functional vasculature was measured prior to PRRT and longitudinally to investigate the effect of treatment on tumor vascular characteristics. Nude mice bearing H69 tumor xenografts and rats bearing syngeneic CA20948 tumors were used to study perfusion following PRRT administration with (177) lutetium octreotate. Both semi-quantitative and quantitative parameters were calculated. Treatment efficacy was measured by tumor-size reduction. Optimized TRICKS enabled MRI at 0.032 mm(3) voxel size with a temporal resolution of less than 5 s and large volume coverage, a substantial improvement over routine pre-clinical DCE-MRI studies. Tumor response to therapy was reflected in changes in tumor perfusion/permeability parameters. The H69 tumor model showed pronounced changes in DCE-derived parameters following PRRT. The rat CA20948 tumor model showed more heterogeneity in both treatment outcome and perfusion parameters. TRICKS enabled the acquisition of DCE-MRI at both high temporal resolution (Tres ) and spatial resolutions relevant for small animal tumor models. With the high Tres enabled by TRICKS, accurate pharmacokinetic data modeling was feasible. DCE-MRI parameters revealed changes over time and showed a clear relationship between tumor size and Ktrans .

  14. Monitoring Pc 4-mediated photodynamic therapy of U87 tumors with dynamic contrast enhanced-magnetic resonance imaging (DCE-MRI) in the athymic nude rat

    NASA Astrophysics Data System (ADS)

    Varghai, Davood; Covey, Kelly; Sharma, Rahul; Cross, Nathan; Feyes, Denise K.; Oleinick, Nancy L.; Flask, Chris A.; Dean, David

    2008-02-01

    Post-operative verification of the specificity and sensitivity of photodynamic therapy (PDT) is most pressing for deeply placed lesions such as brain tumors. We wish to determine whether Dynamic Contrast Enhanced-Magnetic Resonance Imaging (DCE-MRI) can provide a non-invasive and unambiguous quantitative measure of the specificity and sensitivity of brain tumor PDT. Methods: 2.5 x 10 5 U87 cells were injected into the brains of six athymic nude rats. After 5-6 days, the animals received 0.5 mg/kg b.w. of the phthalocyanine photosensitizer Pc 4 via tail-vein injection. On day 7 peri-tumor DCE-MRI images were acquired on a 7T microMRI scanner before and after tail-vein administration of 100 μL gadolinium and 400 μL saline. After this scan the animals received a 30 J/cm2 dose of 672-nm light from a diode laser (i.e., PDT). The DCE-MRI scan protocol was repeated on day 13. Next, the animals were euthanized and their brains were explanted for Hematoxylin and Eosin (H&E) histology. Results: No tumor was found in one animal. The DCE-MRI images of the other five animals demonstrated significant tumor enhancement increase (p < 0.053 two-sided t-test and p < 0.026 one-sided t-test) following PDT. H&E histology presented moderate to severe tumor necrosis. Discussion: The change in signal detected by DCE-MRI appears to be due to PDT-induced tumor necrosis. This DCE-MRI signal appears to provide a quantitative, non-invasive measure of the outcome of PDT in this animal model and may be useful for determining the safety and effectiveness of PDT in deeply placed tumors (e.g., glioma).

  15. Tracer kinetic analysis of dynamic contrast-enhanced MRI and CT bladder cancer data: A preliminary comparison to assess the magnitude of water exchange effects.

    PubMed

    Bains, Lauren J; McGrath, Deirdre M; Naish, Josephine H; Cheung, Susan; Watson, Yvonne; Taylor, M Ben; Logue, John P; Parker, Geoffrey J M; Waterton, John C; Buckley, David L

    2010-08-01

    The purpose of this study was to determine the impact of water exchange on tracer kinetic parameter estimates derived from T(1)-weighted dynamic contrast-enhanced (DCE)-MRI data using a direct quantitative comparison with DCE-CT. Data were acquired from 12 patients with bladder cancer who underwent DCE-CT followed by DCE-MRI within a week. A two-compartment tracer kinetic model was fitted to the CT data, and two versions of the same model with modifications to account for the fast exchange and no exchange limits of water exchange were fitted to the MR data. The two-compartment tracer kinetic model provided estimates of the fractional plasma volume (v(p)), the extravascular extracellular space fraction (v(e)), plasma perfusion (F(p)), and the microvascular permeability surface area product. Our findings suggest that DCE-CT is an appropriate reference for DCE-MRI in bladder cancers as the only significant difference found between CT and MR parameter estimates were the no exchange limit estimates of v(p) (P = 0.002). These results suggest that although water exchange between the intracellular and extravascular-extracellular space has a negligible effect on DCE-MRI, vascular-extravascular-extracellular space water exchange may be more important.

  16. Dynamic Contrast-Enhanced MRI Parameters as Biomarkers in Assessing Head and Neck Lesions After Chemoradiotherapy Using a Wide-Bore 3 Tesla Scanner.

    PubMed

    Lerant, Gergely; Sarkozy, Peter; Takacsi-Nagy, Zoltan; Polony, Gabor; Tamas, Laszlo; Toth, Erika; Boer, Andras; Javor, Laszlo; Godeny, Maria

    2015-09-01

    Pilot studies have shown promising results in characterizing head and neck tumors (HNT) using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), differentiating between malignant and benign lesions and evaluating changes in response to chemoradiotherapy (CRT). Our aim was to find DCE-MRI parameters, biomarkers in evaluating the post-CRT status. Two hundred and five patients with head and neck lesions were examined with DCE-MRI sequences. The time intensity curves (TIC) were extracted and processed to acquire time-to-peak (TTP), relative maximum enhancement (RME), relative wash-out (RWO), and two new parameters attack and decay. These parameters were analyzed using univariate tests in SPSS (Statistical Package for the Social Sciences, version 17, SPSS Inc. Chicago, USA) to identify parameters that could be used to infer tumor malignancy and post-CRT changes. Multiple parameters of curve characteristics were significantly different between malignant tumors after CRT (MACRT) and changes caused by CRT. The best-performing biomarkers were the attack and the decay. We also found multiple significant (p < 0.05) parameters for both the benign and malignant status as well as pre- and post-CRT status. Our large cohort of data supports the increasing role of DCE-MRI in HNT differentiation, particularly for the assessment of post-CRT status along with accurate morphological imaging.

  17. Association between penile dynamic contrast-enhanced MRI-derived quantitative parameters and self-reported sexual function in patients with newly diagnosed prostate cancer.

    PubMed

    Vargas, Hebert Alberto; Donati, Olivio F; Wibmer, Andreas; Goldman, Debra A; Mulhall, John P; Sala, Evis; Hricak, Hedvig

    2014-10-01

    The high incidence of prostate cancer, coupled with excellent prostate cancer control rates, has resulted in growing interest in nononcological survivorship issues such as sexual function. Multiparametric magnetic resonance imaging (MRI) is increasingly being performed for local staging of prostate cancer, and due to the close anatomical relationship to the prostate, penile enhancement is often depicted in prostate MRI. To evaluate the associations between quantitative perfusion-related parameters derived from dynamic contrast-enhanced (DCE)-MRI of the penis and self-reported sexual function in patients with newly diagnosed prostate cancer. This retrospective study included 50 patients who underwent DCE-MRI for prostate cancer staging before prostatectomy. The following perfusion-related parameters were calculated: volume transfer constant (K(trans)), rate constant (k(ep)), extracellular-extravascular volume fraction (v(e)), contrast enhancement ratio (CER), area under the gadolinium curve after 180 seconds (AUC180), and slope of the time/signal intensity curve of the corpora cavernosa. Associations between perfusion-related parameters and self-reported sexual function were evaluated using the Wilcoxon Rank-Sum test. Patient responses to the sexual function domain of the Prostate Quality of Life survey. Five of the six DCE-MRI parameters (K(trans), v(e), CER, AUC180, and slope) were significantly associated with the overall score from the sexual domain of the survey (P = 0.0020-0.0252). CER, AUC180, and slope were significantly associated with the answers to all six questions (P = 0.0020-0.0483), ve was significantly associated with the answers to five of six questions (P = 0.0036-0.1029), and K(trans) was significantly associated with the answers to three of six questions (P = 0.0252-0.1023). k(ep) was not significantly associated with the overall survey score (P = 0.7665) or the answers to any individual questions (P = 0

  18. Differentiation of pancreatic carcinoma and mass-forming focal pancreatitis: qualitative and quantitative assessment by dynamic contrast-enhanced MRI combined with diffusion-weighted imaging

    PubMed Central

    Zhang, Ting-Ting; Wang, Li; Liu, Huan-huan; Zhang, Cai-yuan; Li, Xiao-ming; Lu, Jian-ping; Wang, Deng-bin

    2017-01-01

    Differentiation between pancreatic carcinoma (PC) and mass-forming focal pancreatitis (FP) is invariably difficult. For the differential diagnosis, we qualitatively and quantitatively assessed the value of dynamic contrast-enhanced MRI (DCE-MRI) and diffusion-weighted imaging (DWI) in PC and FP in the present study. This study included 32 PC and 18 FP patients with histological confirmation who underwent DCE-MRI and DWI. The time-signal intensity curve (TIC) of PC and FP were classified into 5 types according to the time of reaching the peak, namely, type I, II, III, IV, and V, respectively, and two subtypes, namely, subtype-a (washout type) and subtype-b (plateau type) according to the part of the TIC profile after the peak. Moreover, the mean and relative apparent diffusion coefficient (ADC) value between PC and FP on DWI were compared. The type V TIC was only recognized in PC group (P < 0.01). Type IV b were more frequently observed in PC (P = 0.036), while type- IIa (P < 0.01), type- Ia (P = 0.037) in FP. We also found a significant difference in the mean and relative ADC value between PC and FP. The combined image set of DCE-MRI and DWI yielded an excellent sensitivity, specificity, and diagnostic accuracy (96.9%, 94.4%, and 96.0%). The TIC of DCE-MRI and ADC value of DWI for pancreatic mass were found to provide reliable information in differentiating PC from FP, and the combination of DCE-MRI and DWI can achieve a higher sensitivity, specificity, and diagnostic accuracy. PMID:27661003

  19. Quantitative Myocardial Perfusion with Dynamic Contrast-Enhanced Imaging in MRI and CT: Theoretical Models and Current Implementation

    PubMed Central

    Handayani, A.; Dijkstra, H.; Prakken, N. H. J.; Slart, R. H. J. A.; Oudkerk, M.; Van Ooijen, P. M. A.; Vliegenthart, R.; Sijens, P. E.

    2016-01-01

    Technological advances in magnetic resonance imaging (MRI) and computed tomography (CT), including higher spatial and temporal resolution, have made the prospect of performing absolute myocardial perfusion quantification possible, previously only achievable with positron emission tomography (PET). This could facilitate integration of myocardial perfusion biomarkers into the current workup for coronary artery disease (CAD), as MRI and CT systems are more widely available than PET scanners. Cardiac PET scanning remains expensive and is restricted by the requirement of a nearby cyclotron. Clinical evidence is needed to demonstrate that MRI and CT have similar accuracy for myocardial perfusion quantification as PET. However, lack of standardization of acquisition protocols and tracer kinetic model selection complicates comparison between different studies and modalities. The aim of this overview is to provide insight into the different tracer kinetic models for quantitative myocardial perfusion analysis and to address typical implementation issues in MRI and CT. We compare different models based on their theoretical derivations and present the respective consequences for MRI and CT acquisition parameters, highlighting the interplay between tracer kinetic modeling and acquisition settings. PMID:27088083

  20. Sensitivity of quantitative myocardial dynamic contrast-enhanced MRI to saturation pulse efficiency, noise and t1 measurement error: Comparison of nonlinearity correction methods.

    PubMed

    Broadbent, David A; Biglands, John D; Ripley, David P; Higgins, David M; Greenwood, John P; Plein, Sven; Buckley, David L

    2016-03-01

    To compare methods designed to minimize or correct signal nonlinearity in quantitative myocardial dynamic contrast-enhanced (DCE) MRI. DCE-MRI studies were simulated and data acquired in eight volunteers. Signal nonlinearity was corrected using either a dual-bolus approach or model-based correction using proton-density weighted imaging (conventional or dual-sequence acquisition) or T1 data (native or bookend). Scanning of healthy and infarcted myocardium at 3 T was simulated, including noise, saturation imperfection and T1 measurement error. Data were analyzed using model-based deconvolution with a one-compartment (mono-exponential) model. Substantial variation between methods was demonstrated in volunteers. In simulations the dual-bolus method proved stable for realistic levels of saturation efficiency but demonstrated bias due to residual nonlinearity. Model-based methods performed ideally in the absence of confounding error sources and were generally robust to noise or saturation imperfection, except for native T1 based correction which was highly sensitive to the latter. All methods demonstrated large variation in accuracy above an over-saturation level where baseline signal was nulled. For the dual-sequence approach this caused substantial bias at the saturation efficiencies observed in volunteers. The choice of nonlinearity correction method in myocardial DCE-MRI impacts on accuracy and precision of estimated parameters, particularly in the presence of nonideal saturation. © 2015 Wiley Periodicals, Inc.

  1. Intratumor distribution and test-retest comparisons of physiological parameters quantified by dynamic contrast-enhanced MRI in rat U251 glioma.

    PubMed

    Aryal, Madhava P; Nagaraja, Tavarekere N; Brown, Stephen L; Lu, Mei; Bagher-Ebadian, Hassan; Ding, Guangliang; Panda, Swayamprava; Keenan, Kelly; Cabral, Glauber; Mikkelsen, Tom; Ewing, James R

    2014-10-01

    The distribution of dynamic contrast-enhanced MRI (DCE-MRI) parametric estimates in a rat U251 glioma model was analyzed. Using Magnevist as contrast agent (CA), 17 nude rats implanted with U251 cerebral glioma were studied by DCE-MRI twice in a 24 h interval. A data-driven analysis selected one of three models to estimate either (1) plasma volume (vp), (2) vp and forward volume transfer constant (K(trans)) or (3) vp, K(trans) and interstitial volume fraction (ve), constituting Models 1, 2 and 3, respectively. CA distribution volume (VD) was estimated in Model 3 regions by Logan plots. Regions of interest (ROIs) were selected by model. In the Model 3 ROI, descriptors of parameter distributions--mean, median, variance and skewness--were calculated and compared between the two time points for repeatability. All distributions of parametric estimates in Model 3 ROIs were positively skewed. Test-retest differences between population summaries for any parameter were not significant (p ≥ 0.10; Wilcoxon signed-rank and paired t tests). These and similar measures of parametric distribution and test-retest variance from other tumor models can be used to inform the choice of biomarkers that best summarize tumor status and treatment effects. Copyright © 2014 John Wiley & Sons, Ltd.

  2. Motion-compensated compressed sensing for dynamic contrast-enhanced MRI using regional spatiotemporal sparsity and region tracking: Block LOw-rank Sparsity with Motion-guidance (BLOSM)

    PubMed Central

    Chen, Xiao; Salerno, Michael; Yang, Yang; Epstein, Frederick H.

    2014-01-01

    Purpose Dynamic contrast-enhanced MRI of the heart is well-suited for acceleration with compressed sensing (CS) due to its spatiotemporal sparsity; however, respiratory motion can degrade sparsity and lead to image artifacts. We sought to develop a motion-compensated CS method for this application. Methods A new method, Block LOw-rank Sparsity with Motion-guidance (BLOSM), was developed to accelerate first-pass cardiac MRI, even in the presence of respiratory motion. This method divides the images into regions, tracks the regions through time, and applies matrix low-rank sparsity to the tracked regions. BLOSM was evaluated using computer simulations and first-pass cardiac datasets from human subjects. Using rate-4 acceleration, BLOSM was compared to other CS methods such as k-t SLR that employs matrix low-rank sparsity applied to the whole image dataset, with and without motion tracking, and to k-t FOCUSS with motion estimation and compensation that employs spatial and temporal-frequency sparsity. Results BLOSM was qualitatively shown to reduce respiratory artifact compared to other methods. Quantitatively, using root mean squared error and the structural similarity index, BLOSM was superior to other methods. Conclusion BLOSM, which exploits regional low rank structure and uses region tracking for motion compensation, provides improved image quality for CS-accelerated first-pass cardiac MRI. PMID:24243528

  3. Diffusion-weighted imaging in relation to morphology on dynamic contrast enhancement MRI: the diagnostic value of characterizing non-puerperal mastitis.

    PubMed

    Zhang, Lina; Hu, Jiani; Guys, Nicholas; Meng, Jinli; Chu, Jianguo; Zhang, Weisheng; Liu, Ailian; Wang, Shaowu; Song, Qingwei

    2017-09-27

    To demonstrate the value of diffusion-weighted imaging (DWI) in the characterisation of mastitis lesions. Sixty-one non-puerperal patients with pathologically confirmed single benign mastitis lesions underwent preoperative examinations with conventional MRI and axial DWI. Patients were categorised into three groups: (1) periductal mastitis (PDM), (2) granulomatous lobular mastitis (GLM), and (3) infectious abscess (IAB). Apparent diffusion coefficient (ADC) values of each lesion were recorded. A one-way ANOVA with logistic analysis was performed to compare ADC values and other parameters. Discriminative abilities of DWI modalities were compared using the area under the receiver operating characteristic curve (AUC). P < 0.05 was considered statistically significant. ADC values differed significantly among the three groups (P = 0.003) as well as between PDM and IAB and between PDM and GLM. The distribution of non-mass enhancement on dynamic contrast-enhanced (DCE) MRI differed significantly among the three groups (P = 0.03) but not between any two groups specifically. There were no differences in lesion location, patient age, T2WI or DWI signal intensity, enhancement type, non-mass internal enhancement, or mass enhancement characteristics among the three groups. ADC values and the distribution of non-mass enhancement are valuable in classifying mastitis subtypes. • Mastitis subtypes exhibit different characteristics on DWI and DCE MRI. • ADC values are helpful in isolating PDM from other mastitis lesions. • Distribution of non-mass enhancement also has value in comparing mastitis subtypes.

  4. Dynamic Contrast-Enhanced MRI in the Study of Brain Tumors. Comparison Between the Extended Tofts-Kety Model and a Phenomenological Universalities (PUN) Algorithm.

    PubMed

    Bergamino, Maurizio; Barletta, Laura; Castellan, Lucio; Mancardi, Gianluigi; Roccatagliata, Luca

    2015-12-01

    Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a well-established technique for studying blood-brain barrier (BBB) permeability that allows measurements to be made for a wide range of brain pathologies, including multiple sclerosis and brain tumors (BT). This latter application is particularly interesting, because high-grade gliomas are characterized by increased microvascular permeability and a loss of BBB function due to the structural abnormalities of the endothelial layer. In this study, we compared the extended Tofts-Kety (ETK) model and an extended derivate class from phenomenological universalities called EU1 in 30 adult patients with different BT grades. A total of 75 regions of interest were manually drawn on the MRI and subsequently analyzed using the ETK and EU1 algorithms. Significant linear correlations were found among the parameters obtained by these two algorithms. The means of R (2) obtained using ETK and EU1 models for high-grade tumors were 0.81 and 0.91, while those for low-grade tumors were 0.82 and 0.85, respectively; therefore, these two models are equivalent. In conclusion, we can confirm that the application of the EU1 model to the DCE-MRI experimental data might be a useful alternative to pharmacokinetic models in the study of BT, because the analytic results can be generated more quickly and easily than with the ETK model.

  5. Intra-Tumor Distribution and Test-Retest Comparisons of Physiological Parameters quantified by Dynamic Contrast-Enhanced MRI in Rat U251 Glioma

    PubMed Central

    Aryal, Madhava P.; Nagaraja, Tavarekere N.; Brown, Stephen L.; Lu, Mei; Bagher-Ebadian, Hassan; Ding, Guangliang; Panda, Swayamprava; Keenan, Kelly; Cabral, Glauber; Mikkelsen, Tom; Ewing, James R.

    2014-01-01

    The distribution of dynamic contrast enhanced MRI (DCE-MRI) parametric estimates in a rat U251 glioma model was analyzed. Using Magnevist as contrast agent (CA), 17 nude rats implanted with U251 cerebral glioma were studied by DCE-MRI twice in a 24 h interval. A data-driven analysis selected one of three models to estimate either: 1) CA plasma volume (vp), 2) vp and forward volume transfer constant (Ktrans; or 3) vp, Ktrans, and interstitial volume fraction (ve), constituting Models 1, 2 and 3, respectively. CA interstitial distribution volume (VD) was estimated in Model 3 regions by Logan plots. Regions of interest (ROIs) were selected by model. In the Model 3 ROI, descriptors of parameter distributions – mean, median, variance and skewness – were calculated and compared between the two time points for repeatability. All distributions of parametric estimates in Model 3 ROIs were positively skewed. Test-retest differences between population summaries for any parameter were not significant (p≥0.10; Wilcoxon signed-rank and paired t tests). This and similar measures of parametric distribution and test-retest variance from other tumor models can be used to inform the choice of biomarkers that best summarize tumor status and treatment effects. PMID:25125367

  6. Diagnostic Accuracy of Gd-EOB-DTPA for Detection Hepatocellular Carcinoma (HCC): A Comparative Study with Dynamic Contrast Enhanced Magnetic Resonance Imaging (MRI) and Dynamic Contrast Enhanced Computed Tomography (CT)

    PubMed Central

    Imbriaco, Massimo; De Luca, Serena; Coppola, Milena; Fusari, Mario; Klain, Michele; Puglia, Marta; Mainenti, Pierpaolo; Liuzzi, Raffaele; Maurea, Simone

    2017-01-01

    Summary Background To compare the diagnostic accuracy of hepato-biliary (HB) phase with gadolinium-ethoxybenzyl-diethylenetriamine-pentaacetic acid (Gd-EOB-DTPA) with dynamic contrast-enhanced MR imaging (DCEMRI) and contrast-enhanced CT (DCECT) for hepatocellular carcinoma (HCC) detection. Material/Methods 73 patients underwent DCECT and Gd-EOB-DTPA-3T-MR. Lesions were classified using a five-point confidence scale. Reference standard was a combination of pathological evidence and tumor growth at follow-up CT/MR at 12 months. Receiver Operating Characteristic (ROC) curves were obtained. Results A total of 125 lesions were confirmed in 73 patients. As many as 74 were HCCs and 51 were benign. Area under the curve (AUC) was 0.984 for DCEMRI+HB phase vs. 0.934 for DCEMRI (p<0.68) and 0.852 for DCECT (p<0.001). For lesions >20 mm (n.40), AUC was 0.984 for DCEMRI+HB phase, 0.999 for DCEMRI, and 0.913 for DCECT, (p=n.s.). For lesions <20 mm (n.85) AUC was 0.982 for DCEMRI+HB phase vs. 0.910 for DCEMRI (p<0.01) and 0.828 for DCECT (p<0.001). Conclusions The addition of HB phase to DCEMRI provides an incremental accuracy of 4.5% compared to DCEMRI and DCECT for HCC detection. The accuracy of Gd-EOB-DTPA-3T-MR significantly improves for lesions <20 mm. No significant improvement is observed for lesions >20 mm and patients with Child-Pugh class B or C. PMID:28217239

  7. Evaluation of antiangiogenic effects of a new synthetic candidate drug KR-31831 on xenografted ovarian carcinoma using dynamic contrast enhanced MRI.

    PubMed

    Yang, Jehoon; Kim, Jae-Hun; Im, Geun-Ho; Heo, Hyejung; Yoon, Sera; Lee, Jaewon; Lee, Jung Hee; Jeon, Pyoung

    2011-01-01

    The purpose of this research was to investigate the anti-angiogenic inhibitory effect of KR-31831, a newly developed anti-angiogenic agent, on an in vivo human ovarian carcinoma model using dynamic contrast-enhanced (DCE) MRI. Xenografted ovarian tumors were established by subcutaneous injection of SKOV3 cells into mice. The mice were treated daily with KR-31831 at 50 mg/kg for 21 days. Tumor tissues were excised corresponding to the DCE-MRI sections for evaluation of MVD with CD31 immunohistochemistry. All in vivo MRIs were performed on a 7.0 Tesla micro-MRI System. DCE-MRI was acquired prior to initiating treatment with KR-31831 and again on days 3 and 21 after treatment. The permeability parameters (K(trans), v(e), and v(p)) were estimated using a pharmacokinetic model. Qualitatively, the K(trans) parametric mapping showed different changes before and after treatment with KR-31831 in the treatment group. For quantification of this change, the median of K(trans) values were compared before and after treatments in the control and KR-31831-treated groups. A non-parametric statistical test (Wilcoxon signed-rank test) showed decreasing K(trans) values on day 21 compared to days 0 and 3 in the KR-31831-treated group (p < 0.05), whereas there was no significant difference in the control group (p = 0.84). Our results suggest that DCE-MRI can be a useful tool by which to evaluate the anti-angiogenic effect of KR-31831 on a xenografted human ovarian carcinoma model.

  8. Differentiation of Fibroadenomas and Pure Mucinous Carcinomas on Dynamic Contrast-Enhanced MRI of the Breast Using Volume Segmentation for Kinetic Analysis: A Feasibility Study.

    PubMed

    Ferré, Romuald; Aldis, Ann; AlSharif, Shaza; Omeroglu, Atilla; Mesurolle, Benoît

    2016-02-01

    The objective of this study was to retrospectively evaluate the diagnostic performance of volume-based kinetic analysis in dynamic contrast-enhanced MRI (DCE-MRI) of the breast for the differentiation of fibroadenomas (FAs) with high T2 signal intensity from pure mucinous carcinomas (PMCs). A review of records from 2007 to 2013 that were stored in the pathology department database at our institution identified nine patients with PMCs (defined as tumor cells with a mucinous component ≥ 90%) who underwent preoperative breast MRI. The PMCs were compared with 15 biopsy-proven FAs from 13 patients. Characteristics noted on DCE-MRI were evaluated using computer-assisted diagnosis software. For each mass, the proportion of progressive enhancement in the lesion at the delayed phase was quantified. Both groups of masses were compared using a Wilcoxon signed rank test. A ROC curve was used to define an appropriate cutoff point. The median rate of progressive enhancement was 100% (range, 99-100%) for FAs and 97% (range, 87-99%) for PMCs (p = 0.0326). The AUC of the kinetic curve for progressive enhancement was 0.7519 (95% CI, 0.5258-0.9407). A more appropriate cutoff value to maximize sensitivity and specificity was 98.5%. With this cutoff, sensitivity was 66.7% (95% CI, 11.1-100%) and specificity was 80% (95% CI, 39.6-99.8%) for the diagnosis of PMCs. Volume-based kinetic analysis may aid in differentiating FAs from PMCs on DCE-MRI studies of the breast.

  9. Quantitative assessment of regional cerebral blood flow by dynamic susceptibility contrast-enhanced MRI, without the need for arterial blood signals

    NASA Astrophysics Data System (ADS)

    Enmi, Jun-ichiro; Kudomi, Nobuyuki; Hayashi, Takuya; Yamamoto, Akihide; Iguchi, Satoshi; Moriguchi, Tetsuaki; Hori, Yuki; Koshino, Kazuhiro; Zeniya, Tsutomu; Shah, Nadim Jon; Yamada, Naoaki; Iida, Hidehiro

    2012-12-01

    In dynamic susceptibility contrast-enhanced magnetic resonance imaging (DSC-MRI), an arterial input function (AIF) is usually obtained from a time-concentration curve (TCC) of the cerebral artery. This study was aimed at developing an alternative technique for reconstructing AIF from TCCs of multiple brain regions. AIF was formulated by a multi-exponential function using four parameters, and the parameters were determined so that the AIF curves convolved with a model of tissue response reproduced the measured TCCs for 20 regions. Systematic simulations were performed to evaluate the effects of possible error sources. DSC-MRI and positron emission tomography (PET) studies were performed on 14 patients with major cerebral artery occlusion. Cerebral blood flow (CBF) images were calculated from DSC-MRI data, using our novel method alongside conventional AIF estimations, and compared with those from 15O-PET. Simulations showed that the calculated CBF values were sensitive to variations in the assumptions regarding cerebral blood volume. Nevertheless, AIFs were reasonably reconstructed for all patients. The difference in CBF values between DSC-MRI and PET was -2.2 ± 7.4 ml/100 g/min (r = 0.55, p < 0.01) for our method, versus -0.2 ± 8.2 ml/100 g/min (r = 0.47, p = 0.01) for the conventional method. The difference in the ratio of affected to unaffected hemispheres between DSC-MRI and PET was 0.07 ± 0.09 (r = 0.82, p < 0.01) for our method, versus 0.07 ± 0.09 (r = 0.83, p < 0.01) for the conventional method. The contrasts in CBF images from our method were the same as those from the conventional method. These findings suggest the feasibility of assessing CBF without arterial blood signals.

  10. Significance of Additional Non-Mass Enhancement in Patients with Breast Cancer on Preoperative 3T Dynamic Contrast Enhanced MRI of the Breast

    PubMed Central

    Cho, Yun Hee; Cho, Kyu Ran; Park, Eun Kyung; Seo, Bo Kyoung; Woo, Ok Hee; Cho, Sung Bum; Bae, Jeoung Won

    2016-01-01

    Background In preoperative assessment of breast cancer, MRI has been shown to identify more additional breast lesions than are detectable using conventional imaging techniques. The characterization of additional lesions is more important than detection for optimal surgical treatment. Additional breast lesions can be included in focus, mass, and non-mass enhancement (NME) on MRI. According to the fifth edition of the breast imaging reporting and data system (BI-RADS®), which includes several changes in the NME descriptors, few studies to date have evaluated NME in preoperative assessment of breast cancer. Objectives We investigated the diagnostic accuracy of BI-RADS descriptors in predicting malignancy for additional NME lesions detected on preoperative 3T dynamic contrast enhanced MRI (DCE-MRI) in patients with newly diagnosed breast cancer. Patients and Methods Between January 2008 and December 2012, 88 patients were enrolled in our study, all with NME lesions other than the index cancer on preoperative 3T DCE-MRI and all with accompanying histopathologic examination. The MRI findings were analyzed according to the BI-RADS MRI lexicon. We evaluated the size, distribution, internal enhancement pattern, and location of NME lesions relative to the index cancer (i.e., same quadrant, different quadrant, or contralateral breast). Results On histopathologic analysis of the 88 NME lesions, 73 (83%) were malignant and 15 (17%) were benign. Lesion size did not differ significantly between malignant and benign lesions (P = 0.410). Malignancy was more frequent in linear (P = 0.005) and segmental (P = 0.011) distributions, and benignancy was more frequent in focal (P = 0.004) and regional (P < 0.001) NME lesions. The highest positive predictive value (PPV) for malignancy occurred in segmental (96.8%), linear (95.1%), clustered ring (100%), and clumped (92.0%) enhancement. Asymmetry demonstrated a high positive predictive value of 85.9%. The frequency of malignancy was higher

  11. An efficient calculation method for pharmacokinetic parameters in brain permeability study using dynamic contrast-enhanced MRI.

    PubMed

    Wang, Chunhao; Yin, Fang-Fang; Chang, Zheng

    2016-02-01

    To develop an efficient method for calculating pharmacokinetic (PK) parameters in brain DCE-MRI permeability studies. A linear least-squares fitting algorithm based on a derivative expression of the two-compartment PK model was proposed to analytically solve for the PK parameters. Noise in the expression was minimized through low-pass filtering. Simulation studies were conducted in which the proposed method was compared with two existing methods in terms of accuracy and efficiency. Five in vivo brain studies were demonstrated for potential clinical application. In the simulation studies using chosen parameter values, the calculated percent difference of K(trans) by the proposed method was <5.0% with a temporal resolution (Δt) < 5 s, and the accuracies of all parameter results were better or comparable to existing methods. When analyzed within certain parameter intensity ranges, the proposed method was more accurate than the existing methods and improved the efficiency by a factor of up to 458 for a Δt = 1 s and up to 38 for a Δt = 5 s. In the in vivo study, the calculated parameters using the proposed method were comparable to those using the existing methods with improved efficiencies. An efficient method was developed for the accurate and efficient calculation of parameters in brain DCE-MRI permeability studies. © 2015 Wiley Periodicals, Inc.

  12. Combining phase and magnitude information for contrast agent quantification in dynamic contrast-enhanced MRI using statistical modeling.

    PubMed

    Brynolfsson, Patrik; Yu, Jun; Wirestam, Ronnie; Karlsson, Mikael; Garpebring, Anders

    2015-10-01

    The purpose of this study was to investigate, using simulations, a method for improved contrast agent (CA) quantification in DCE-MRI. We developed a maximum likelihood estimator that combines the phase signal in the DCE-MRI image series with an additional CA estimate, e.g. the estimate obtained from magnitude data. A number of simulations were performed to investigate the ability of the estimator to reduce bias and noise in CA estimates. Noise levels ranging from that of a body coil to that of a dedicated head coil were investigated at both 1.5T and 3T. Using the proposed method, the root mean squared error in the bolus peak was reduced from 2.24 to 0.11 mM in the vessels and 0.16 to 0.08 mM in the tumor rim for a noise level equivalent of a 12-channel head coil at 3T. No improvements were seen for tissues with small CA uptake, such as white matter. Phase information reduces errors in the estimated CA concentrations. A larger phase response from higher field strengths or higher CA concentrations yielded better results. Issues such as background phase drift need to be addressed before this method can be applied in vivo. © 2014 Wiley Periodicals, Inc.

  13. An adaptive model for rapid and direct estimation of extravascular extracellular space in dynamic contrast enhanced MRI studies.

    PubMed

    Dehkordi, Azimeh N V; Kamali-Asl, Alireza; Ewing, James R; Wen, Ning; Chetty, Indrin J; Bagher-Ebadian, Hassan

    2017-02-14

    Extravascular extracellular space (ve ) is a key parameter to characterize the tissue of cerebral tumors. This study introduces an artificial neural network (ANN) as a fast, direct, and accurate estimator of ve from a time trace of the longitudinal relaxation rate, ΔR1 (R1  = 1/T1 ), in DCE-MRI studies. Using the extended Tofts equation, a set of ΔR1 profiles was simulated in the presence of eight different signal to noise ratios. A set of gain- and noise-insensitive features was generated from the simulated ΔR1 profiles and used as the ANN training set. A K-fold cross-validation method was employed for training, testing, and optimization of the ANN. The performance of the optimal ANN (12:6:1, 12 features as input vector, six neurons in hidden layer, and one output) in estimating ve at a resolution of 10% (error of ±5%) was 82%. The ANN was applied on DCE-MRI data of 26 glioblastoma patients to estimate ve in tumor regions. Its results were compared with the maximum likelihood estimation (MLE) of ve . The two techniques showed a strong agreement (r = 0.82, p < 0.0001). Results implied that the perfected ANN was less sensitive to noise and outperformed the MLE method in estimation of ve .

  14. Human Papillomavirus and Epidermal Growth Factor Receptor in Oral Cavity and Oropharyngeal Squamous Cell Carcinoma: Correlation With Dynamic Contrast-Enhanced MRI Parameters.

    PubMed

    Choi, Yoon Seong; Park, Mina; Kwon, Hyeong Ju; Koh, Yoon Woo; Lee, Seung-Koo; Kim, Jinna

    2016-02-01

    The objective of this study was to investigate differences in dynamic contrast-enhanced MRI (DCE-MRI) parameters on the basis of the status of human papillomavirus (HPV) and epidermal growth factor receptor (EGFR) biomarkers in patients with squamous cell carcinoma (SCC) of the oral cavity and oropharynx by use of histogram analysis. A total of 22 consecutive patients with oral cavity and oropharyngeal SCC underwent DCE-MRI before receiving treatment. DCE parameter maps of the volume transfer constant (K(trans)), the flux rate constant (kep), and the extravascular extracellular volume fraction (ve) were obtained. The histogram parameters were calculated using the entire enhancing tumor volume and were compared between the patient subgroups on the basis of HPV and EGFR biomarker statuses. The cumulative histogram parameters of K(trans) and kep showed lower values in the HPV-negative and EFGR-overexpression group than in the HPV-positive EGFR-negative group. These differences were statistically significant for the mean (p = 0.009), 25th, 50th, and 75th percentile values of K(trans) and for the 25th percentile value of kep when correlated with HPV status in addition to the mean K(trans) value (p = 0.047) and kep value (p = 0.004) when correlated with EGFR status. No statistically significant difference in ve was found on the basis of HPV and EGFR status. DCE-MRI is useful for the assessment of the tumor microenvironment associated with HPV and EGFR biomarkers before treatment of patients with oral cavity and oropharyngeal SCC.

  15. Dynamic Contrast Enhanced MRI Assessing the Antiangiogenic Effect of Silencing HIF-1α with Targeted Multifunctional ECO/siRNA Nanoparticles.

    PubMed

    Malamas, Anthony S; Jin, Erlei; Gujrati, Maneesh; Lu, Zheng-Rong

    2016-07-05

    Stabilization of hypoxia inducible factor 1α (HIF-1α), a biomarker of hypoxia, in hypoxic tumors mediates a variety of downstream genes promoting tumor angiogenesis and cancer cell survival as well as invasion, and compromising therapeutic outcome. In this study, dynamic contrast enhanced MRI (DCE-MRI) with a biodegradable macromolecular MRI contrast agent was used to noninvasively assess the antiangiogenic effect of RGD-targeted multifunctional lipid ECO/siHIF-1α nanoparticles in a mouse HT29 colon cancer model. The RGD-targeted ECO/siHIF-1α nanoparticles resulted in over 50% reduction in tumor size after intravenous injection at a dose of 2.0 mg of siRNA/kg every 3 days for 3 weeks compared to a saline control. DCE-MRI revealed significant decline in vascularity and over a 70% reduction in the tumor blood flow, permeability-surface area product, and plasma volume fraction vascular parameters in the tumor treated with the targeted ECO/siHIF-1α nanoparticles. The treatment with targeted ECO/siRNA nanoparticles resulted in significant silencing of HIF-1α expression at the protein level, which also significantly suppressed the expression of VEGF, Glut-1, HKII, PDK-1, LDHA, and CAIX, which are all important players in tumor angiogenesis, glycolytic metabolism, and pH regulation. By possessing the ability to elicit a multifaceted effect on tumor biology, silencing HIF-1α with RGD-targeted ECO/siHIF-1α nanoparticles has great promise as a single therapy or in combination with traditional chemotherapy or radiation strategies to improve cancer treatment.

  16. Quantitative diffusion-weighted imaging and dynamic contrast-enhanced characterization of the index lesion with multiparametric MRI in prostate cancer patients.

    PubMed

    Yuan, Qing; Costa, Daniel N; Sénégas, Julien; Xi, Yin; Wiethoff, Andrea J; Rofsky, Neil M; Roehrborn, Claus; Lenkinski, Robert E; Pedrosa, Ivan

    2017-03-01

    To compare a simplified intravoxel incoherent motion (sIVIM) model to commonly used monoexponential and biexponential models in the characterization of prostate cancer (PCa) and noncancerous prostate tissues, and to investigate combinations of diffusion-weighted imaging (DWI) measures with dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI)-derived parameters in MRI-visible index lesions, to facilitate PCa risk stratification. In this retrospective, Institutional Review Board (IRB)-approved study, 43 consecutive patients with PCa who had 3T MRI exams followed by radical prostatectomy were included. DWI and DCE parameters were measured from one index lesion per patient, and noncancerous central gland and peripheral zone. Logistic regression modeling was performed to select the optimal combination of DWI and DCE measurements for tumor risk assessment. All diffusion models showed the lowest diffusion coefficients in tumors, intermediate values in noncancerous central gland, and highest values in noncancerous peripheral zone (all P < 0.001). K(trans) and kep were higher in tumors compared to central gland (P < 0.005) and peripheral zone (P < 0.001). The initial area under the contrast concentration curve was higher in tumor than the peripheral zone (P < 0.001). The area under the receiver operating characteristic curve of the combined DWI and DCE parameters (0.78) was higher than its individual components (0.73 and 0.63, respectively) for discriminating low- and intermediate-to-high-risk tumors. The sIVIM model provided comparable results with fewer b-values and shorter image acquisition time. The combination of DWI and DCE measurements of MRI-visible index lesions improved the preoperative prostate cancer risk characterization compared to the individual parameters from either technique alone. 3 J. Magn. Reson. Imaging 2017;45:908-916. © 2016 International Society for Magnetic Resonance in Medicine.

  17. Identifying Triple-Negative Breast Cancer Using Background Parenchymal Enhancement Heterogeneity on Dynamic Contrast-Enhanced MRI: A Pilot Radiomics Study

    PubMed Central

    Wang, Jeff; Kato, Fumi; Oyama-Manabe, Noriko; Li, Ruijiang; Cui, Yi; Tha, Khin Khin; Yamashita, Hiroko; Kudo, Kohsuke; Shirato, Hiroki

    2015-01-01

    Objectives To determine the added discriminative value of detailed quantitative characterization of background parenchymal enhancement in addition to the tumor itself on dynamic contrast-enhanced (DCE) MRI at 3.0 Tesla in identifying “triple-negative" breast cancers. Materials and Methods In this Institutional Review Board-approved retrospective study, DCE-MRI of 84 women presenting 88 invasive carcinomas were evaluated by a radiologist and analyzed using quantitative computer-aided techniques. Each tumor and its surrounding parenchyma were segmented semi-automatically in 3-D. A total of 85 imaging features were extracted from the two regions, including morphologic, densitometric, and statistical texture measures of enhancement. A small subset of optimal features was selected using an efficient sequential forward floating search algorithm. To distinguish triple-negative cancers from other subtypes, we built predictive models based on support vector machines. Their classification performance was assessed with the area under receiver operating characteristic curve (AUC) using cross-validation. Results Imaging features based on the tumor region achieved an AUC of 0.782 in differentiating triple-negative cancers from others, in line with the current state of the art. When background parenchymal enhancement features were included, the AUC increased significantly to 0.878 (p<0.01). Similar improvements were seen in nearly all subtype classification tasks undertaken. Notably, amongst the most discriminating features for predicting triple-negative cancers were textures of background parenchymal enhancement. Conclusions Considering the tumor as well as its surrounding parenchyma on DCE-MRI for radiomic image phenotyping provides useful information for identifying triple-negative breast cancers. Heterogeneity of background parenchymal enhancement, characterized by quantitative texture features on DCE-MRI, adds value to such differentiation models as they are strongly

  18. Water-Exchange-Modified Kinetic Parameters from Dynamic Contrast-Enhanced MRI as Prognostic Biomarkers of Survival in Advanced Hepatocellular Carcinoma Treated with Antiangiogenic Monotherapy

    PubMed Central

    Lee, Sang Ho; Hayano, Koichi; Zhu, Andrew X.; Sahani, Dushyant V.; Yoshida, Hiroyuki

    2015-01-01

    Background To find prognostic biomarkers in pretreatment dynamic contrast-enhanced MRI (DCE-MRI) water-exchange-modified (WX) kinetic parameters for advanced hepatocellular carcinoma (HCC) treated with antiangiogenic monotherapy. Methods Twenty patients with advanced HCC underwent DCE-MRI and were subsequently treated with sunitinib. Pretreatment DCE-MRI data on advanced HCC were analyzed using five different WX kinetic models: the Tofts-Kety (WX-TK), extended TK (WX-ETK), two compartment exchange, adiabatic approximation to tissue homogeneity (WX-AATH), and distributed parameter (WX-DP) models. The total hepatic blood flow, arterial flow fraction (γ), arterial blood flow (BFA), portal blood flow, blood volume, mean transit time, permeability-surface area product, fractional interstitial volume (vI), extraction fraction, mean intracellular water molecule lifetime (τC), and fractional intracellular volume (vC) were calculated. After receiver operating characteristic analysis with leave-one-out cross-validation, individual parameters for each model were assessed in terms of 1-year-survival (1YS) discrimination using Kaplan-Meier analysis, and association with overall survival (OS) using univariate Cox regression analysis with permutation testing. Results The WX-TK-model-derived γ (P = 0.022) and vI (P = 0.010), and WX-ETK-model-derived τC (P = 0.023) and vC (P = 0.042) were statistically significant prognostic biomarkers for 1YS. Increase in the WX-DP-model-derived BFA (P = 0.025) and decrease in the WX-TK, WX-ETK, WX-AATH, and WX-DP-model-derived vC (P = 0.034, P = 0.038, P = 0.028, P = 0.041, respectively) were significantly associated with an increase in OS. Conclusions The WX-ETK-model-derived vC was an effective prognostic biomarker for advanced HCC treated with sunitinib. PMID:26366997

  19. Ultrafast dynamic contrast-enhanced mri of the breast using compressed sensing: breast cancer diagnosis based on separate visualization of breast arteries and veins.

    PubMed

    Onishi, Natsuko; Kataoka, Masako; Kanao, Shotaro; Sagawa, Hajime; Iima, Mami; Nickel, Marcel Dominik; Toi, Masakazu; Togashi, Kaori

    2017-05-28

    To evaluate the feasibility of ultrafast dynamic contrast-enhanced (UF-DCE) magnetic resonance imaging (MRI) with compressed sensing (CS) for the separate identification of breast arteries/veins and perform temporal evaluations of breast arteries and veins with a focus on the association with ipsilateral cancers. Our Institutional Review Board approved this study with retrospective design. Twenty-five female patients who underwent UF-DCE MRI at 3T were included. UF-DCE MRI consisting of 20 continuous frames was acquired using a prototype 3D gradient-echo volumetric interpolated breath-hold sequence including a CS reconstruction: temporal resolution, 3.65 sec/frame; spatial resolution, 0.9 × 1.3 × 2.5 mm. Two readers analyzed 19 maximum intensity projection images reconstructed from subtracted images, separately identified breast arteries/veins and the earliest frame in which they were respectively visualized, and calculated the time interval between arterial and venous visualization (A-V interval) for each breast. In total, 49 breasts including 31 lesions (breast cancer, 16; benign lesion, 15) were identified. In 39 of the 49 breasts (breasts with cancers, 16; breasts with benign lesions, 10; breasts with no lesions, 13), both breast arteries and veins were separately identified. The A-V intervals for breasts with cancers were significantly shorter than those for breasts with benign lesions (P = 0.043) and no lesions (P = 0.007). UF-DCE MRI using CS enables the separate identification of breast arteries/veins. Temporal evaluations calculating the time interval between arterial and venous visualization might be helpful in the differentiation of ipsilateral breast cancers from benign lesions. 3 J. Magn. Reson. Imaging 2017. © 2017 International Society for Magnetic Resonance in Medicine.

  20. Anti-angiogenic therapy affects the relationship between tumor vascular structure and function: A correlation study between micro-computed tomography angiography and dynamic contrast enhanced MRI.

    PubMed

    Kim, Eugene; Kim, Jana; Maelandsmo, Gunhild Mari; Johansen, Berit; Moestue, Siver Andreas

    2017-10-01

    To compare the effects of two anti-angiogenic drugs, bevacizumab and a cytosolic phospholipase A2-α inhibitor (AVX235), on the relationship between vascular structure and dynamic contrast enhanced (DCE)-MRI measurements in a patient-derived breast cancer xenograft model. Mice bearing MAS98.12 tumors were randomized into three groups: bevacizumab-treated (n = 9), AVX235-treated (n = 9), and control (n = 8). DCE-MRI was performed pre- and post-treatment. Median initial area under the concentration-time curve (IAUC60 ) and volume transfer constant (K(trans) ) were computed for each tumor. Tumors were excised for ex vivo micro-CT (computed tomography) angiography, from which the vascular surface area (VSA) and fractional blood volume (FBV) were computed. Spearman correlation coefficients (ρ) were computed to evaluate the associations between the DCE-MRI and micro-CT parameters. With the groups pooled, IAUC60 and K(trans) correlated significantly with VSA (ρ = 0.475 and 0.527; P = 0.019 and 0.008). There were no significant correlations within the control group. There were various significant correlations within the treatment groups, but the correlations in the bevacizumab group were of opposite sign, for example, K(trans) versus FBV: AVX235, ρ = 0.800 (P = 0.014); bevacizumab, ρ = -0.786 (P = 0.023). DCE-MRI measurements can highly depend on vascular structure. The relationship between vascular structure and function changed markedly after anti-angiogenic treatment. Magn Reson Med 78:1513-1522, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  1. Measurement of blood-brain barrier permeability with t1-weighted dynamic contrast-enhanced MRI in brain tumors: a comparative study with two different algorithms.

    PubMed

    Bergamino, Maurizio; Saitta, Laura; Barletta, Laura; Bonzano, Laura; Mancardi, Giovanni Luigi; Castellan, Lucio; Ravetti, Jean Louis; Roccatagliata, Luca

    2013-01-01

    The purpose of this study was to assess the feasibility of measuring different permeability parameters with T1-weighted dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) in order to investigate the blood brain-barrier permeability associated with different brain tumors. The Patlak algorithm and the extended Tofts-Kety model were used to this aim. Twenty-five adult patients with tumors of different histological grades were enrolled in this study. MRI examinations were performed at 1.5 T. Multiflip angle, fast low-angle shot, and axial 3D T1-weighted images were acquired to calculate T1 maps, followed by a DCE acquisition. A region of interest was placed within the tumor of each patient to calculate the mean value of different permeability parameters. Differences in permeability measurements were found between different tumor grades, with higher histological grades characterized by higher permeability values. A significant difference in transfer constant (K (trans)) values was found between the two methods on high-grade tumors; however, both techniques revealed a significant correlation between the histological grade of tumors and their K (trans) values. Our results suggest that DCE acquisition is feasible in patients with brain tumors and that K (trans) maps can be easily obtained by these two algorithms, even if the theoretical model adopted could affect the final results.

  2. Dynamic contrast-enhanced MRI as a valuable non-invasive tool to evaluate tissue perfusion of free flaps: Preliminary results.

    PubMed

    Fellner, Claudia; Jung, Ernst M; Prantl, Lukas

    2010-01-01

    Early detection of a compromised circulation of free flaps and an immediate revision may lead to higher rates of flap salvage. The aim of this study was to evaluate the perfusion of the entire flap using dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI). DCE was performed in 11 patients after flap transplantation using an optimized 3D gradient echo sequence to cover the whole flap. The percentage increase of signal intensity over time was evaluated for the free flap as well as for a reference tissue. Furthermore, normalized signal increase was calculated as the ratio of signal increase within the flaps to the signal increase in the reference tissue. Signal increase in free flaps and reference tissue was compared using the Wilcoxon-test (p < 0.05), normalized signal increase in normally perfused (n = 9) and in flaps with compromised perfusion (n = 2) using Mann-Whitney-test (p < 0.05). Signal increase within normally perfused flaps was similar to the reference tissue. In flaps with compromised perfusion the increase was significantly lower than in reference tissue. Normalized signal increase in adequately perfused flaps and flaps with compromised perfusion also showed a significant difference. DCE MRI may be a valuable non-invasive tool to evaluate tissue perfusion of the complete free flap.

  3. A Bayesian hierarchical model for the analysis of a longitudinal dynamic contrast-enhanced MRI oncology study.

    PubMed

    Schmid, Volker J; Whitcher, Brandon; Padhani, Anwar R; Taylor, N Jane; Yang, Guang-Zhong

    2009-01-01

    Imaging in clinical oncology trials provides a wealth of information that contributes to the drug development process, especially in early phase studies. This article focuses on kinetic modeling in DCE-MRI, inspired by mixed-effects models that are frequently used in the analysis of clinical trials. Instead of summarizing each scanning session as a single kinetic parameter--such as median k(trans) across all voxels in the tumor ROI-we propose to analyze all voxel time courses from all scans and across all subjects simultaneously in a single model. The kinetic parameters from the usual nonlinear regression model are decomposed into unique components associated with factors from the longitudinal study; e.g., treatment, patient, and voxel effects. A Bayesian hierarchical model provides the framework to construct a data model, a parameter model, as well as prior distributions. The posterior distribution of the kinetic parameters is estimated using Markov chain Monte Carlo (MCMC) methods. Hypothesis testing at the study level for an overall treatment effect is straightforward and the patient- and voxel-level parameters capture random effects that provide additional information at various levels of resolution to allow a thorough evaluation of the clinical trial. The proposed method is validated with a breast cancer study, where the subjects were imaged before and after two cycles of chemotherapy, demonstrating the clinical potential of this method to longitudinal oncology studies.

  4. Optimization of saturation-recovery dynamic contrast-enhanced MRI acquisition protocol: monte carlo simulation approach demonstrated with gadolinium MR renography.

    PubMed

    Zhang, Jeff L; Conlin, Chris C; Carlston, Kristi; Xie, Luke; Kim, Daniel; Morrell, Glen; Morton, Kathryn; Lee, Vivian S

    2016-07-01

    Dynamic contrast-enhanced (DCE) MRI is widely used for the measurement of tissue perfusion and to assess organ function. MR renography, which is acquired using a DCE sequence, can measure renal perfusion, filtration and concentrating ability. Optimization of the DCE acquisition protocol is important for the minimization of the error propagation from the acquired signals to the estimated parameters, thus improving the precision of the parameters. Critical to the optimization of contrast-enhanced T1 -weighted protocols is the balance of the T1 -shortening effect across the range of gadolinium (Gd) contrast concentration in the tissue of interest. In this study, we demonstrate a Monte Carlo simulation approach for the optimization of DCE MRI, in which a saturation-recovery T1 -weighted gradient echo sequence is simulated and the impact of injected dose (D) and time delay (TD, for saturation recovery) is tested. The results show that high D and/or high TD cause saturation of the peak arterial signals and lead to an overestimation of renal plasma flow (RPF) and glomerular filtration rate (GFR). However, the use of low TD (e.g. 100 ms) and low D leads to similar errors in RPF and GFR, because of the Rician bias in the pre-contrast arterial signals. Our patient study including 22 human subjects compared TD values of 100 and 300 ms after the injection of 4 mL of Gd contrast for MR renography. At TD = 100 ms, we computed an RPF value of 157.2 ± 51.7 mL/min and a GFR of 33.3 ± 11.6 mL/min. These results were all significantly higher than the parameter estimates at TD = 300 ms: RPF = 143.4 ± 48.8 mL/min (p = 0.0006) and GFR = 30.2 ± 11.5 mL/min (p = 0.0015). In conclusion, appropriate optimization of the DCE MRI protocol using simulation can effectively improve the precision and, potentially, the accuracy of the measured parameters. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  5. Optimization of saturation-recovery dynamic contrast-enhanced MRI acquisition protocol: monte carlo simulation approach demonstrated with gadolinium MR renography

    PubMed Central

    Zhang, Jeff L.; Conlin, Chris C.; Carlston, Kristi; Xie, Luke; Kim, Daniel; Morrell, Glen; Morton, Kathryn; Lee, Vivian S.

    2016-01-01

    Dynamic contrast-enhanced (DCE) MRI is widely used for the measurement of tissue perfusion and to assess organ function. MR renography, which is acquired using a DCE sequence, can measure renal perfusion, filtration and concentrating ability. Optimization of the DCE acquisition protocol is important for the minimization of the error propagation from the acquired signals to the estimated parameters, thus improving the precision of the parameters. Critical to the optimization of contrast-enhanced T1-weighted protocols is the balance of the T1-shortening effect across the range of gadolinium (Gd) contrast concentration in the tissue of interest. In this study, we demonstrate a Monte Carlo simulation approach for the optimization of DCE MRI, in which a saturation-recovery T1-weighted gradient echo sequence is simulated and the impact of injected dose (D) and time delay (TD, for saturation recovery) is tested. The results show that high D and/or high TD cause saturation of the peak arterial signals and lead to an overestimation of renal plasma flow (RPF) and glomerular filtration rate (GFR). However, the use of low TD (e.g. 100 ms) and low D leads to similar errors in RPF and GFR, because of the Rician bias in the pre-contrast arterial signals. Our patient study including 22 human subjects compared TD values of 100 and 300 ms after the injection of 4 mL of Gd contrast for MR renography. At TD = 100 ms, we computed an RPF value of 157.2 ± 51.7 mL/min and a GFR of 33.3 ± 11.6 mL/min. These results were all significantly higher than the parameter estimates at TD = 300 ms: RPF = 143.4 ± 48.8 mL/min (p = 0.0006) and GFR = 30.2 ± 11.5 mL/min (p = 0.0015). In conclusion, appropriate optimization of the DCE MRI protocol using simulation can effectively improve the precision and, potentially, the accuracy of the measured parameters. PMID:27200499

  6. Quantitative dynamic contrast enhanced MRI of experimental synovitis in the rabbit knee: comparison of macromolecular blood pool agents vs. Gadolinium-DOTA.

    PubMed

    Watrin-Pinzano, Astrid; Loeuille, Damien; Goebel, Jean-Christophe; Lapicque, Françoise; Walter, Fredéric; Robert, Philippe; Netter, Patrick; Corot, Claire; Gillet, Pierre; Blum, Alain

    2008-01-01

    The purpose of this study was to assess 2 Gd-based macromolecular intravascular contrast agents (P792, rapid clearance blood pool agent (rBPA) and P717, slow clearance blood pool agent (sBPA)) compared to Gd-DOTA (representative extracellular non specific agent) in MR imaging of knee rabbit experimental synovitis. Quantitative dynamic contrast enhanced MRI (qDCE-MRI) after intravascular injection of a low molecular weight contrast agent of 0.56 kDa (Gd-DOTA) and 2 high-molecular-weight contrast agents of 6.47 kDa (P792) and 52 kDa (P717) was performed in rabbits with carrageenan-induced synovitis of the right knee. P792 and P717 provided a progressive and persistent enhancement of arthritic synovial tissue while Gd-DOTA provided an early and rapidly declining enhancement with a concomitant diffusion in synovial fluid, thus limitating delineation of synovial pannus. P792 allowed acquisition of high-quality MR arthrograms, due to both a better diffusion in synovial pannus (vs. P717) and a concomitant restricted diffusion into the synovial fluid (vs. Gd-DOTA). In fact, experimental rabbit synovitis represent a specific entity that favors the T1 effect of high-molecular-weight agents, and especially rBPA P792, entrapped in synovial pannus, without diffusion in the synovial fluid. Due to this lack of arthrographic effect, P792 accumulation could be specifically sequentially analyzed by qDCE-MRI for detecting, characterizing and monitoring synovial vascular permeability changes during mono- or polysynovitis.

  7. Comparison of single- and dual-tracer pharmacokinetic modeling of dynamic contrast-enhanced MRI data using low, medium, and high molecular weight contrast agents.

    PubMed

    Orth, Robert C; Bankson, James; Price, Roger; Jackson, Edward F

    2007-10-01

    Pharmacokinetic parameters corresponding to perfused microvascular volume determined from dynamic contrast-enhanced (DCE) MRI data were compared to immunohistochemical measures of microvascular density (MVD) and perfused microvascular density. DCE MRI data from human mammary tumors (MDA-MB-435) implanted in nude mice using low (Gd-DTPA, MW approximately equal 0.6 kDa), medium (Gadomer-17, MW(eff) approximately equal 35 kDa), and high (PG-Gd-DTPA, MW approximately equal 220 kDa) molecular weight contrast agents were analyzed with single- and dual-tracer pharmacokinetic models. MVD values were determined by two manual counting methods, "hot spot" and summed region of interest (SROI). Pharmacokinetic parameters determined using the single-tracer model (Gd-DTPA [n = 15] and Gadomer-17 [n = 13]) did not correlate with MVD measures using either manual counting method. For dual-tracer studies (Gadomer-17/Gd-DTPA [n = 15] and PG-Gd-DTPA/Gd-DTPA [n = 13]), pharmacokinetic parameters demonstrated a statistically significant correlation with MVD determined by the SROI method, but not the "hot spot" method. Ten mice successfully underwent intravital FITC-labeled lectin perfusion with the hemisphere of highest lectin labeling correlating with pharmacokinetic parameter values in 9 of 10 tumors (single-tracer Gd-DTPA [n = 2], single-tracer Gadomer-17 [n = 3], and dual-tracer Gadomer-17/Gd-DTPA [n = 5]). This study demonstrates that dual-tracer DCE MRI studies yield pharmacokinetic parameters that correlate with immunohistochemical measures of MVD.

  8. Assessment of tumor angiogenesis: dynamic contrast-enhanced MRI with paramagnetic nanoparticles compared with Gd-DTPA in a rabbit Vx-2 tumor model.

    PubMed

    Kassner, Andrea; Thornhill, Rebecca E; Liu, Fang; Winter, Patrick M; Caruthers, Shelton D; Wickline, Samuel A; Lanza, Gregory M

    2010-01-01

    The purpose of this study was to evaluate the suitability of a macromolecular MRI contrast agent (paramagnetic nanoparticles, PNs) for the characterization of tumor angiogenesis. Our aim was to estimate the permeability of PNs in developing tumor vasculature and compare it with that of a low molecular weight contrast agent (Gd-DTPA) using dynamic contrast-enhanced MRI (DCE). Male New Zealand white rabbits (n = 5) underwent DCE MRI 12-14 days after Vx-2 tumor fragments were implanted into the left hind limb. Each contrast agent (PNs followed by Gd-DTPA) was evaluated using a DCE protocol and transendothelial transfer coefficient (K(i)) maps were calculated using a two-compartment model. Two regions of interest (ROIs) were located within the tumor core and hindlimb muscle and five ROIs were placed within the tumor rim. Comparisons were performed using repeated measures analysis of variance (ANOVA). The K(i) values estimated using PNs were significantly lower than those obtained for Gd-DTPA (p = 0.018). When PNs and Gd-DTPA data were analyzed separately, significant differences were identified among tumor rim ROIs for PNs (p < 0.0001), but not for Gd-DTPA data (p = 0.34). The mean K(i) for the tumor rim was significantly greater than that of either the core or the hindlimb muscle for both contrast agents (p < 0.05 for each comparison). In summary, the extravasation of Gd-DTPA was far greater than that of PNs, suggesting that PNs can reveal regional differences in tumor vascular permeability that are not otherwise apparent with clinical contrast agents such as Gd-DTPA. These results suggest that PNs show potential for the noninvasive delineation of tumor angiogenesis.

  9. Vascular biomarkers derived from dynamic contrast-enhanced MRI predict response of vestibular schwannoma to antiangiogenic therapy in type 2 neurofibromatosis

    PubMed Central

    Li, Ka-Loh; Djoukhadar, Ibrahim; Zhu, Xiaoping; Zhao, Sha; Lloyd, Simon; McCabe, Martin; McBain, Catherine; Evans, D. Gareth; Jackson, Alan

    2016-01-01

    Background Antiangiogenic therapy of vestibular schwannoma (VS) in type 2 neurofibromatosis can produce tumor shrinkage with response rates of 40%–60%. This study examines the predictive value of parameter-derived MRI in this setting. Methods Twelve patients with 20 VSs were recruited. Each had at least one rapidly growing tumor. Patients were treated with bevacizumab, 5 mg/kg every 2 weeks. Patients with stable or reduced VS volume were maintained at 2.5–5 mg every 4 weeks after 6 months. Those who failed treatment had their bevacizumab discontinued. Dynamic contrast-enhanced (DCE) MRI performed prior to treatment using a high temporal resolution technique, and data were analyzed to allow measurement of contrast transfer coefficient (Ktrans), vascular fraction (vp), extravascular-extracellular fraction (ve). Relaxation rate (R1N) was measured using a variable flip angle technique. Apparent diffusional coefficient (ADC) was calculated from diffusion-weighted imaging. The predictive power of microvascular parameters and ADC were examined using logistic regression modeling. Results Responding tumors were larger (P < .001), had lower R1N (P < .001), and higher Ktrans (P < .05) and ADC (P < .01). They showed increases in R1N (P < .01) and reduction of Ktrans (P < .01) and ADC (P < .01). Modeling to predict response demonstrated significant independent predictive power for R1N (Β = − 0.327, P < .001), and Ktrans (Β = 0.156, P < .05). Modeling to predict percentage change in tumor volume at 90 days identified baseline tumor volume (Β = 5.503, P < .05), R1N (Β = − 5.844, P < .05), and Ktrans (Β = 5.622, P < .05) as independent significant predictors. Conclusions In patients with type 2 neurofibromatosis, biomarkers from DCE-MRI are predictive of VS volume response to inhibition of vascular endothelial growth factor inhibition. PMID:26311690

  10. Differentiation of infiltrative cholangiocarcinoma from benign common bile duct stricture using three-dimensional dynamic contrast-enhanced MRI with MRCP.

    PubMed

    Yu, X-R; Huang, W-Y; Zhang, B-Y; Li, H-Q; Geng, D-Y

    2014-06-01

    To retrospectively evaluate the criteria for discriminating infiltrative cholangiocarcinoma from benign common bile duct (CBD) stricture using three-dimensional dynamic contrast-enhanced (3D-DCE) magnetic resonance imaging (MRI) combined with magnetic resonance cholangiopancreatography (MRCP) imaging and to determine the predictors for cholangiocarcinoma versus benign CBD stricture. 3D-DCE MRI and MRCP images in 28 patients with infiltrative cholangiocarcinoma and 23 patients with benign causes of CBD stricture were reviewed retrospectively. The final diagnosis was based on surgical or biopsy records. Two radiologists analysed the MRI images for asymmetry, including the wall thickness, length, and enhancement pattern of the narrowed CBD segment, and upstream CBD dilatation. MRI findings that could be used as predictors were identified by univariate analysis and multivariable stepwise logistic regression analysis. Malignant strictures were significantly thicker (4.4 ± 1.2 mm) and longer (16.7 ± 7.7 mm) than the benign strictures (p < 0.05), and upstream CBD dilatation was larger in the infiltrative cholangiocarcinoma cases (20.7 ± 5.7 mm) than in the benign cases (16.5 ± 5.2 mm; p = 0.018). During both the portal venous and equilibrium phases, hyperenhancement was more frequently observed in malignant cases than in benign cases (p < 0.001). The results of the multivariable stepwise logistic regression analysis showed that both hyperenhancement of the involved CBD during the equilibrium phase and the ductal thickness were significant predictors for malignant strictures. When two diagnostic predictive values were used in combination, almost all patients with malignant strictures (n = 26, 92.9%) and benign strictures (n = 21, 91.3%) were correctly identified; the overall accuracy was 92.2% with correct classifications in 47 of the 51 patients. Infiltrative cholangiocarcinoma and benign CBD strictures could be effectively differentiated using DCE-MRI and MRCP based

  11. Dual-temporal resolution dynamic contrast-enhanced MRI protocol for blood-brain barrier permeability measurement in enhancing multiple sclerosis lesions.

    PubMed

    Jelescu, I O; Leppert, I R; Narayanan, S; Araújo, D; Arnold, D L; Pike, G B

    2011-06-01

    To design a more accurate and reproducible technique for the measurement of blood-brain barrier (BBB) permeability in gadolinium-enhancing multiple sclerosis (MS) lesions. Four MS patients were scanned using a new dynamic contrast-enhanced (DCE)-magnetic resonance imaging (MRI) protocol based on an uninterrupted two-part acquisition consisting of an initial part at high temporal and low spatial resolutions and a second part at low temporal and high spatial resolutions. The method preserves both the high spatial resolution needed for the often small size of lesions and the high temporal resolution required during the first minute after injection to sufficiently sample the first-pass bolus. Simulations compared the performance of this new protocol with the conventional one at low temporal and high spatial resolutions throughout. The BBB permeability estimates changed by up to 33% between the two protocols. The new protocol led to simulated error on K(trans) of 7%-10%, versus 7%-30% with the conventional protocol, and was more robust with respect to offsets between acquisition and injection start times, differences in shape of the first-pass peak, and permeability values. The dual-temporal resolution protocol produces improved BBB permeability estimates and provides a more complete view of active inflammatory MS lesion pathology. Copyright © 2011 Wiley-Liss, Inc.

  12. Error estimation for perfusion parameters obtained using the two-compartment exchange model in dynamic contrast-enhanced MRI: a simulation study

    NASA Astrophysics Data System (ADS)

    Luypaert, R.; Sourbron, S.; Makkat, S.; de Mey, J.

    2010-11-01

    In theory, the application of the two-compartment exchange model (2CXM) to data from a dynamic contrast-enhanced (DCE) MRI exam allows the estimation of the plasma flow, plasma volume, extraction flow and extravascular-extracellular volume. The aim of this paper was to explore whether simulations based on the 2CXM could provide useful information on the trustworthiness of the results. The deviations from the input values of the haemodynamic quantities were estimated for a 'reference tissue' with a clear bi-phasic response and four 'limit tissues' with more challenging 2CXM fitting properties. The impact of the instrumental factors sampling step (Ts), acquisition window (Tacq) and contrast-to-noise ratio (CNR) was investigated. Each factor was varied separately, while keeping the other ones at a value above concern. Measurement guidelines to ensure that all deviations fell within a predefined range (±20%) could not be derived, but simulations for fixed Ts and Tacq were found to provide a practical tool for studying the error behaviour to be expected from a given experimental set-up and for comparing measurement protocols. At the level of an individual DCE exam, a bootstrap version of the simulation approach was shown to lead to a useful estimate of the errors on the fitted parameters.

  13. Differential microstructure and physiology of brain and bone metastases in a rat breast cancer model by diffusion and dynamic contrast enhanced MRI.

    PubMed

    Budde, Matthew D; Gold, Eric; Jordan, E Kay; Frank, Joseph A

    2012-01-01

    Pharmacological approaches to treat breast cancer metastases in the brain have been met with limited success. In part, the impermeability of the blood brain barrier (BBB) has hindered delivery of chemotherapeutic agents to metastatic tumors in the brain. BBB-permeable chemotherapeutic drugs are being developed, and noninvasively assessing the efficacy of these agents will be important in both preclinical and clinical settings. In this regard, dynamic contrast enhanced (DCE) and diffusion weighted imaging (DWI) are magnetic resonance imaging (MRI) techniques to monitor tumor vascular permeability and cellularity, respectively. In a rat model of metastatic breast cancer, we demonstrate that brain and bone metastases develop with distinct physiological characteristics as measured with MRI. Specifically, brain metastases have limited permeability of the BBB as assessed with DCE and an increased apparent diffusion coefficient (ADC) measured with DWI compared to the surrounding brain. Microscopically, brain metastases were highly infiltrative, grew through vessel co-option, and caused extensive edema and injury to the surrounding neurons and their dendrites. By comparison, metastases situated in the leptomenengies or in the bone had high vascular permeability and significantly lower ADC values suggestive of hypercellularity. On histological examination, tumors in the bone and leptomenengies were solid masses with distinct tumor margins. The different characteristics of these tissue sites highlight the influence of the microenvironment on metastatic tumor growth. In light of these results, the suitability of DWI and DCE to evaluate the response of chemotherapeutic and anti-angiogenic agents used to treat co-opted brain metastases, respectively, remains a formidable challenge.

  14. Differential Microstructure and Physiology of Brain and Bone Metastases in a Rat Breast Cancer Model by Diffusion and Dynamic Contrast Enhanced MRI

    PubMed Central

    Budde, Matthew D; Gold, Eric; Jordan, E. Kay; Frank, Joseph A

    2011-01-01

    Pharmacological approaches to treat breast cancer metastases in the brain have been met with limited success. In part, the impermeability of the blood brain barrier (BBB) has hindered delivery of chemotherapeutic agents to metastatic tumors in the brain. BBB-permeable chemotherapeutic drugs are being developed, and noninvasively assessing the efficacy of these agents will be important in both preclinical and clinical settings. In this regard, dynamic contrast enhanced (DCE) and diffusion weighted imaging (DWI) are magnetic resonance imaging (MRI) techniques to monitor tumor vascular permeability and cellularity, respectively. In a rat model of metastatic breast cancer, we demonstrate that brain and bone metastases develop with distinct physiological characteristics as measured with MRI. Specifically, brain metastases have limited permeability of the blood brain barrier (BBB) as assessed with DCE and an increased apparent diffusion coefficient (ADC) measured with DWI compared to the surrounding brain. Microscopically, brain metastases were highly infiltrative, grew through vessel co-option, and caused extensive edema and injury to the surrounding neurons and their dendrites. By comparison, metastases situated in the leptomenengies or in the bone had high vascular permeability and significantly lower ADC values suggestive of hypercellularity. On histological examination, tumors in the bone and leptomenengies were solid masses with distinct tumor margins. The different characteristics of these tissue sites highlight the influence of the microenvironment on metastatic tumor growth. In light of these results, the suitability of DWI and DCE to evaluate the response of chemotherapeutic and anti-angiogenic agents used to treat co-opted brain metastases, respectively, remains a formidable challenge. PMID:22042553

  15. In vivo monitoring of sorafenib therapy effects on experimental prostate carcinomas using dynamic contrast-enhanced MRI and macromolecular contrast media

    PubMed Central

    Schwarz, Bettina; Paprottka, Philipp M.; Sourbron, Steven; von Einem, Jobst C.; Dietrich, Olaf; Hinkel, Rabea; Clevert, Dirk A.; Bruns, Christiane J.; Reiser, Maximilian F.; Nikolaou, Konstantin; Wintersperger, Bernd J.

    2013-01-01

    Abstract Purpose: To investigate dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) with macromolecular contrast media (MMCM) to monitor the effects of the multikinase inhibitor sorafenib on subcutaneous prostate carcinomas in rats with immunohistochemical validation. Materials and methods: Copenhagen rats, implanted with prostate carcinoma allografts, were randomized to the treatment group (n = 8) or the control group (n = 8). DCE-MRI with albumin-(Gd-DTPA)35 was performed at baseline and after 1 week using a clinical 3-Tesla system. The treatment group received sorafenib, 10 mg/kg body weight daily. Kinetic analysis yielded quantitative parameters of tumor endothelial permeability–surface area product (PS; ml/100 ml/min) and fractional blood volume (Vb, %). Tumors were harvested on day 7 for immunohistochemical analysis. Results: In sorafenib-treated tumors, PS (0.62 ± 0.20 vs 0.08 ± 0.09 ml/100 ml/min; P < 0.01) and Vb (5.1 ± 1.0 vs 0.56 ± 0.48%; P < 0.01) decreased significantly from day 0 to day 7. PS showed a highly significant inverse correlation with tumor cell apoptosis (TUNEL; r = −0.85, P < 0.001). Good, significant correlations of PS were also observed with tumor cell proliferation (Ki-67; r = 0.67, P < 0.01) and tumor vascularity (RECA-1; r = 0.72, P < 0.01). MRI-assayed fractional blood volume Vb showed a highly significant correlation with tumor vascularity (RECA-1; r = 0.87, P < 0.001) and tumor cell proliferation (Ki-67; r = 0.82, P < 0.01). Conclusion: Results of DCE-MRI with MMCM demonstrated good, significant correlations with the immunohistochemically assessed antiangiogenic, antiproliferative, and proapoptotic effects of a 1-week, daily treatment course of sorafenib on experimental prostate carcinoma allografts. PMID:24380871

  16. Dynamic Contrast-Enhanced MRI in Head-and-Neck Cancer: The Impact of Region of Interest Selection on the Intra- and Interpatient Variability of Pharmacokinetic Parameters

    SciTech Connect

    Craciunescu, Oana I.; Yoo, David S.; Cleland, Esi; Muradyan, Naira; Carroll, Madeline D.; MacFall, James R.; Barboriak, Daniel P.; Brizel, David M.

    2012-03-01

    Purpose: Dynamic contrast-enhanced (DCE) MRI-extracted parameters measure tumor microvascular physiology and are usually calculated from an intratumor region of interest (ROI). Optimal ROI delineation is not established. The valid clinical use of DCE-MRI requires that the variation for any given parameter measured within a tumor be less than that observed between tumors in different patients. This work evaluates the impact of tumor ROI selection on the assessment of intra- and interpatient variability. Method and Materials: Head and neck cancer patients received initial targeted therapy (TT) treatment with erlotinib and/or bevacizumab, followed by radiotherapy and concurrent cisplatin with synchronous TT. DCE-MRI data from Baseline and the end of the TT regimen (Lead-In) were analyzed to generate the vascular transfer function (K{sup trans}), the extracellular volume fraction (v{sub e}), and the initial area under the concentration time curve (iAUC{sub 1min}). Four ROI sampling strategies were used: whole tumor or lymph node (Whole), the slice containing the most enhancing voxels (SliceMax), three slices centered in SliceMax (Partial), and the 5% most enhancing contiguous voxels within SliceMax (95Max). The average coefficient of variation (aCV) was calculated to establish intrapatient variability among ROI sets and interpatient variability for each ROI type. The average ratio between each intrapatient CV and the interpatient CV was calculated (aRCV). Results: Baseline primary/nodes aRCVs for different ROIs not including 95Max were, for all three MR parameters, in the range of 0.14-0.24, with Lead-In values between 0.09 and 0.2, meaning a low intrapatient vs. interpatient variation. For 95Max, intrapatient CVs approximated interpatient CVs, meaning similar data dispersion and higher aRCVs (0.6-1.27 for baseline) and 0.54-0.95 for Lead-In. Conclusion: Distinction between different patient's primary tumors and/or nodes cannot be made using 95Max ROIs. The other three

  17. The value of resting-state functional MRI in subacute ischemic stroke: comparison with dynamic susceptibility contrast-enhanced perfusion MRI.

    PubMed

    Ni, Ling; Li, Jingwei; Li, Weiping; Zhou, Fei; Wang, Fangfang; Schwarz, Christopher G; Liu, Renyuan; Zhao, Hui; Wu, Wenbo; Zhang, Xin; Li, Ming; Yu, Haiping; Zhu, Bin; Villringer, Arno; Zang, Yufeng; Zhang, Bing; Lv, Yating; Xu, Yun

    2017-01-31

    To evaluate the potential clinical value of the time-shift analysis (TSA) approach for resting-state fMRI (rs-fMRI) blood oxygenation level-dependent (BOLD) data in detecting hypoperfusion of subacute stroke patients through comparison with dynamic susceptibility contrast perfusion weighted imaging (DSC-PWI). Forty patients with subacute stroke (3-14 days after neurological symptom onset) underwent MRI examination. Cohort A: 31 patients had MRA, DSC-PWI and BOLD data. Cohort B: 9 patients had BOLD and MRA data. The time delay between the BOLD time course in each voxel and the mean signal of global and contralateral hemisphere was calculated using TSA. Time to peak (TTP) was employed to detect hypoperfusion. Among cohort A, 14 patients who had intracranial large-vessel occlusion/stenosis with sparse collaterals showed hypoperfusion by both of the two approaches, one with abundant collaterals showed neither TTP nor TSA time delay. The remaining 16 patients without obvious MRA lesions showed neither TTP nor TSA time delay. Among cohort B, eight patients showed time delay areas. The TSA approach was a promising alternative to DSC-PWI for detecting hypoperfusion in subacute stroke patients who had obvious MRA lesions with sparse collaterals, those with abundant collaterals would keep intact local perfusion.

  18. The value of resting-state functional MRI in subacute ischemic stroke: comparison with dynamic susceptibility contrast-enhanced perfusion MRI

    PubMed Central

    Ni, Ling; Li, Jingwei; Li, Weiping; Zhou, Fei; Wang, Fangfang; Schwarz, Christopher G.; Liu, Renyuan; Zhao, Hui; Wu, Wenbo; Zhang, Xin; Li, Ming; Yu, Haiping; Zhu, Bin; Villringer, Arno; Zang, Yufeng; Zhang, Bing; Lv, Yating; Xu, Yun

    2017-01-01

    To evaluate the potential clinical value of the time-shift analysis (TSA) approach for resting-state fMRI (rs-fMRI) blood oxygenation level-dependent (BOLD) data in detecting hypoperfusion of subacute stroke patients through comparison with dynamic susceptibility contrast perfusion weighted imaging (DSC-PWI). Forty patients with subacute stroke (3–14 days after neurological symptom onset) underwent MRI examination. Cohort A: 31 patients had MRA, DSC-PWI and BOLD data. Cohort B: 9 patients had BOLD and MRA data. The time delay between the BOLD time course in each voxel and the mean signal of global and contralateral hemisphere was calculated using TSA. Time to peak (TTP) was employed to detect hypoperfusion. Among cohort A, 14 patients who had intracranial large-vessel occlusion/stenosis with sparse collaterals showed hypoperfusion by both of the two approaches, one with abundant collaterals showed neither TTP nor TSA time delay. The remaining 16 patients without obvious MRA lesions showed neither TTP nor TSA time delay. Among cohort B, eight patients showed time delay areas. The TSA approach was a promising alternative to DSC-PWI for detecting hypoperfusion in subacute stroke patients who had obvious MRA lesions with sparse collaterals, those with abundant collaterals would keep intact local perfusion. PMID:28139701

  19. Dynamic susceptibility contrast and dynamic contrast-enhanced MRI characteristics to distinguish microcystic meningiomas from traditional Grade I meningiomas and high-grade gliomas.

    PubMed

    Hussain, Namath S; Moisi, Marc D; Keogh, Bart; McCullough, Brendan J; Rostad, Steven; Newell, David; Gwinn, Ryder; Foltz, Gregory; Mayberg, Marc; Aguedan, Brian; Good, Valerie; Fouke, Sarah J

    2016-06-10

    OBJECTIVE Microcystic meningioma (MM) is a meningioma variant with a multicystic appearance that may mimic intrinsic primary brain tumors and other nonmeningiomatous tumor types. Dynamic susceptibility contrast (DSC) and dynamic contrast-enhanced (DCE) MRI techniques provide imaging parameters that can differentiate these tumors according to hemodynamic and permeability characteristics with the potential to aid in preoperative identification of tumor type. METHODS The medical data of 18 patients with a histopathological diagnosis of MM were identified through a retrospective review of procedures performed between 2008 and 2012; DSC imaging data were available for 12 patients and DCE imaging data for 6. A subcohort of 12 patients with Grade I meningiomas (i.e., of meningoepithelial subtype) and 54 patients with Grade IV primary gliomas (i.e., astrocytomas) was also included, and all preoperative imaging sequences were analyzed. Clinical variables including patient sex, age, and surgical blood loss were also included in the analysis. Images were acquired at both 1.5 and 3.0 T. The DSC images were acquired at a temporal resolution of either 1500 msec (3.0 T) or 2000 msec (1.5 T). In all cases, parameters including normalized cerebral blood volume (CBV) and transfer coefficient (kTrans) were calculated with region-of-interest analysis of enhancing tumor volume. The normalized CBV and kTrans data from the patient groups were analyzed with 1-way ANOVA, and post hoc statistical comparisons among groups were conducted with the Bonferroni adjustment. RESULTS Preoperative DSC imaging indicated mean (± SD) normalized CBVs of 5.7 ± 2.2 ml for WHO Grade I meningiomas of the meningoepithelial subtype (n = 12), 4.8 ± 1.8 ml for Grade IV astrocytomas (n = 54), and 12.3 ± 3.8 ml for Grade I meningiomas of the MM subtype (n = 12). The normalized CBV measured within the enhancing portion of the tumor was significantly higher in the MM subtype than in typical meningiomas and Grade

  20. Dynamic Contrast-Enhanced MRI of Gd-albumin Delivery to the Rat Hippocampus In Vivo by Convection-Enhanced Delivery

    PubMed Central

    Kim, Jung Hwan; Astary, Garrett W.; Nobrega, Tatiana L.; Kantorovich, Svetlana; Carney, Paul R.; Mareci, Thomas H.; Sarntinoranont, Malisa

    2013-01-01

    Convection enhanced delivery (CED) shows promise in treating neurological diseases due to its ability to circumvent the blood-brain barrier (BBB) and deliver therapeutics directly to the parenchyma of the central nervous system (CNS). Such a drug delivery method may be useful in treating CNS disorders involving the hippocampus such temporal lobe epilepsy and gliomas; however, the influence of anatomical structures on infusate distribution is not fully understood. As a surrogate for therapeutic agents, we used gadolinium-labeled-albumin (Gd-albumin) tagged with Evans blue dye to observe the time dependence of CED infusate distributions into the rat dorsal and ventral hippocampus in vivo with dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). For finer anatomical detail, final distribution volumes (Vd) of the infusate were observed with high-resolution T1-weighted MR imaging and light microscopy of fixed brain sections. Dynamic images demonstrated that Gd-albumin preferentially distributed within the hippocampus along neuroanatomical structures with less fluid resistance and less penetration was observed in dense cell layers. Furthermore, significant leakage into adjacent cerebrospinal fluid (CSF) spaces such as the hippocampal fissure, velum interpositum and midbrain cistern occurred toward the end of infusion. Vd increased linearly with infusion volume (Vi) at a mean Vd/Vi ratio of 5.51 ± 0.55 for the dorsal hippocampus infusion and 5.30 ± 0.83 for the ventral hippocampus infusion. This study demonstrated the significant effects of tissue structure and CSF space boundaries on infusate distribution during CED. PMID:22687936

  1. Assessment of Blood-Brain Barrier Permeability by Dynamic Contrast-Enhanced MRI in Transient Middle Cerebral Artery Occlusion Model after Localized Brain Cooling in Rats

    PubMed Central

    Kim, Eun Soo; Kwon, Mi Jung; Lee, Phil Hye; Ju, Young-Su; Yoon, Dae Young; Kim, Hye Jeong; Lee, Kwan Seop

    2016-01-01

    Objective The purpose of this study was to evaluate the effects of localized brain cooling on blood-brain barrier (BBB) permeability following transient middle cerebral artery occlusion (tMCAO) in rats, by using dynamic contrast-enhanced (DCE)-MRI. Materials and Methods Thirty rats were divided into 3 groups of 10 rats each: control group, localized cold-saline (20℃) infusion group, and localized warm-saline (37℃) infusion group. The left middle cerebral artery (MCA) was occluded for 1 hour in anesthetized rats, followed by 3 hours of reperfusion. In the localized saline infusion group, 6 mL of cold or warm saline was infused through the hollow filament for 10 minutes after MCA occlusion. DCE-MRI investigations were performed after 3 hours and 24 hours of reperfusion. Pharmacokinetic parameters of the extended Tofts-Kety model were calculated for each DCE-MRI. In addition, rotarod testing was performed before tMCAO, and on days 1-9 after tMCAO. Myeloperoxidase (MPO) immunohisto-chemistry was performed to identify infiltrating neutrophils associated with the inflammatory response in the rat brain. Results Permeability parameters showed no statistical significance between cold and warm saline infusion groups after 3-hour reperfusion 0.09 ± 0.01 min-1 vs. 0.07 ± 0.02 min-1, p = 0.661 for Ktrans; 0.30 ± 0.05 min-1 vs. 0.37 ± 0.11 min-1, p = 0.394 for kep, respectively. Behavioral testing revealed no significant difference among the three groups. However, the percentage of MPO-positive cells in the cold-saline group was significantly lower than those in the control and warm-saline groups (p < 0.05). Conclusion Localized brain cooling (20℃) does not confer a benefit to inhibit the increase in BBB permeability that follows transient cerebral ischemia and reperfusion in an animal model, as compared with localized warm-saline (37℃) infusion group. PMID:27587960

  2. Dynamic contrast-enhanced and diffusion-weighted MRI of estrogen receptor-positive invasive breast cancers: Associations between quantitative MR parameters and Ki-67 proliferation status.

    PubMed

    Shin, Jong Ki; Kim, Jin You

    2017-01-01

    To explore the association between quantitative parameters derived from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and diffusion-weighted imaging (DWI) and Ki-67 proliferation status in patients with estrogen receptor (ER)-positive invasive breast cancer. We retrospectively reviewed the records of 88 patients with ER-positive invasive breast cancer who underwent preoperative DCE-MRI and DWI on a 3T scanner. Perfusion parameters (K(trans) , Kep , and Ve ) and apparent diffusion coefficients (ADCs) were recorded, and we correlated these data with the Ki-67 status. The Ki-67 proliferation index was categorized as high (≥14%) or low (<14%). In the high-Ki-67 group, the mean K(trans) was significantly higher (P < 0.001) than that of the low-Ki-67 group, and the mean ADC significantly lower (P < 0.001). However, the mean Kep and Ve values did not differ between the two groups (P = 0.248 and P = 0.055, respectively). Univariate analysis showed that a higher K(trans) (>0.274), a lower ADC (≤0.893 × 10(-3) mm(2) /s), a larger tumor size (>2 cm), a higher histological grade (grade 3), the presence of axillary metastasis, and positive P53 status were significantly associated with high-Ki-67 status (all P values < 0.05). Of these variables, a higher K(trans) (>0.274; adjusted odds ratio [OR] = 9.027, 95% confidence interval [CI] = 1.929-42.245; P = 0.005) and a higher histological grade (grade 3; adjusted OR = 7.510, 95% CI = 1.305-43.205; P = 0.024) independently predicted a high Ki-67 status. K(trans) derived from DCE-MRI is associated independently with the Ki-67 proliferation status in patients with ER-positive invasive breast cancer. 4 J. Magn. Reson. Imaging 2017;45:94-102. © 2016 International Society for Magnetic Resonance in Medicine.

  3. A model-constrained Monte Carlo method for blind arterial input function estimation in dynamic contrast-enhanced MRI: I. Simulations.

    PubMed

    Schabel, Matthias C; Fluckiger, Jacob U; DiBella, Edward V R

    2010-08-21

    Widespread adoption of quantitative pharmacokinetic modeling methods in conjunction with dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has led to increased recognition of the importance of obtaining accurate patient-specific arterial input function (AIF) measurements. Ideally, DCE-MRI studies use an AIF directly measured in an artery local to the tissue of interest, along with measured tissue concentration curves, to quantitatively determine pharmacokinetic parameters. However, the numerous technical and practical difficulties associated with AIF measurement have made the use of population-averaged AIF data a popular, if sub-optimal, alternative to AIF measurement. In this work, we present and characterize a new algorithm for determining the AIF solely from the measured tissue concentration curves. This Monte Carlo blind estimation (MCBE) algorithm estimates the AIF from the subsets of D concentration-time curves drawn from a larger pool of M candidate curves via nonlinear optimization, doing so for multiple (Q) subsets and statistically averaging these repeated estimates. The MCBE algorithm can be viewed as a generalization of previously published methods that employ clustering of concentration-time curves and only estimate the AIF once. Extensive computer simulations were performed over physiologically and experimentally realistic ranges of imaging and tissue parameters, and the impact of choosing different values of D and Q was investigated. We found the algorithm to be robust, computationally efficient and capable of accurately estimating the AIF even for relatively high noise levels, long sampling intervals and low diversity of tissue curves. With the incorporation of bootstrapping initialization, we further demonstrated the ability to blindly estimate AIFs that deviate substantially in shape from the population-averaged initial guess. Pharmacokinetic parameter estimates for K(trans), k(ep), v(p) and v(e) all showed relative biases and

  4. Assessment of Blood-Brain Barrier Permeability by Dynamic Contrast-Enhanced MRI in Transient Middle Cerebral Artery Occlusion Model after Localized Brain Cooling in Rats.

    PubMed

    Kim, Eun Soo; Lee, Seung-Koo; Kwon, Mi Jung; Lee, Phil Hye; Ju, Young-Su; Yoon, Dae Young; Kim, Hye Jeong; Lee, Kwan Seop

    2016-01-01

    The purpose of this study was to evaluate the effects of localized brain cooling on blood-brain barrier (BBB) permeability following transient middle cerebral artery occlusion (tMCAO) in rats, by using dynamic contrast-enhanced (DCE)-MRI. Thirty rats were divided into 3 groups of 10 rats each: control group, localized cold-saline (20℃) infusion group, and localized warm-saline (37℃) infusion group. The left middle cerebral artery (MCA) was occluded for 1 hour in anesthetized rats, followed by 3 hours of reperfusion. In the localized saline infusion group, 6 mL of cold or warm saline was infused through the hollow filament for 10 minutes after MCA occlusion. DCE-MRI investigations were performed after 3 hours and 24 hours of reperfusion. Pharmacokinetic parameters of the extended Tofts-Kety model were calculated for each DCE-MRI. In addition, rotarod testing was performed before tMCAO, and on days 1-9 after tMCAO. Myeloperoxidase (MPO) immunohisto-chemistry was performed to identify infiltrating neutrophils associated with the inflammatory response in the rat brain. Permeability parameters showed no statistical significance between cold and warm saline infusion groups after 3-hour reperfusion 0.09 ± 0.01 min(-1) vs. 0.07 ± 0.02 min(-1), p = 0.661 for K(trans); 0.30 ± 0.05 min(-1) vs. 0.37 ± 0.11 min(-1), p = 0.394 for kep, respectively. Behavioral testing revealed no significant difference among the three groups. However, the percentage of MPO-positive cells in the cold-saline group was significantly lower than those in the control and warm-saline groups (p < 0.05). Localized brain cooling (20℃) does not confer a benefit to inhibit the increase in BBB permeability that follows transient cerebral ischemia and reperfusion in an animal model, as compared with localized warm-saline (37℃) infusion group.

  5. Contrast agents in dynamic contrast-enhanced magnetic resonance imaging

    PubMed Central

    Yan, Yuling; Sun, Xilin; Shen, Baozhong

    2017-01-01

    Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a noninvasive method to assess angiogenesis, which is widely used in clinical applications including diagnosis, monitoring therapy response and prognosis estimation in cancer patients. Contrast agents play a crucial role in DCE-MRI and should be carefully selected in order to improve accuracy in DCE-MRI examination. Over the past decades, there was much progress in the development of optimal contrast agents in DCE-MRI. In this review, we describe the recent research advances in this field and discuss properties of contrast agents, as well as their advantages and disadvantages. Finally, we discuss the research perspectives for improving this promising imaging method. PMID:28415647

  6. A model-constrained Monte Carlo method for blind arterial input function estimation in dynamic contrast-enhanced MRI: II. In vivo results

    NASA Astrophysics Data System (ADS)

    Schabel, Matthias C.; DiBella, Edward V. R.; Jensen, Randy L.; Salzman, Karen L.

    2010-08-01

    Accurate quantification of pharmacokinetic model parameters in tracer kinetic imaging experiments requires correspondingly accurate determination of the arterial input function (AIF). Despite significant effort expended on methods of directly measuring patient-specific AIFs in modalities as diverse as dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), dynamic positron emission tomography (PET), and perfusion computed tomography (CT), fundamental and technical difficulties have made consistent and reliable achievement of that goal elusive. Here, we validate a new algorithm for AIF determination, the Monte Carlo blind estimation (MCBE) method (which is described in detail and characterized by extensive simulations in a companion paper), by comparing AIFs measured in DCE-MRI studies of eight brain tumor patients with results of blind estimation. Blind AIFs calculated with the MCBE method using a pool of concentration-time curves from a region of normal brain tissue were found to be quite similar to the measured AIFs, with statistically significant decreases in fit residuals observed in six of eight patients. Biases between the blind and measured pharmacokinetic parameters were the dominant source of error. Averaged over all eight patients, the mean biases were +7% in K trans, 0% in kep, -11% in vp and +10% in ve. Corresponding uncertainties (median absolute deviation from the best fit line) were 0.0043 min-1 in K trans, 0.0491 min-1 in kep, 0.29% in vp and 0.45% in ve. The use of a published population-averaged AIF resulted in larger mean biases in three of the four parameters (-23% in K trans, -22% in kep, -63% in vp), with the bias in ve unchanged, and led to larger uncertainties in all four parameters (0.0083 min-1 in K trans, 0.1038 min-1 in kep, 0.31% in vp and 0.95% in ve). When blind AIFs were calculated from a region of tumor tissue, statistically significant decreases in fit residuals were observed in all eight patients despite larger

  7. Multimodality Functional Imaging in Radiation Therapy Planning: Relationships between Dynamic Contrast-Enhanced MRI, Diffusion-Weighted MRI, and 18F-FDG PET

    PubMed Central

    Mera Iglesias, Moisés; Aramburu Núñez, David; del Olmo Claudio, José Luis; Salvador Gómez, Francisco; Driscoll, Brandon; Coolens, Catherine; Alba Castro, José L.; Muñoz, Victor

    2015-01-01

    Objectives. Biologically guided radiotherapy needs an understanding of how different functional imaging techniques interact and link together. We analyse three functional imaging techniques that can be useful tools for achieving this objective. Materials and Methods. The three different imaging modalities from one selected patient are ADC maps, DCE-MRI, and 18F-FDG PET/CT, because they are widely used and give a great amount of complementary information. We show the relationship between these three datasets and evaluate them as markers for tumour response or hypoxia marker. Thus, vascularization measured using DCE-MRI parameters can determine tumour hypoxia, and ADC maps can be used for evaluating tumour response. Results. ADC and DCE-MRI include information from 18F-FDG, as glucose metabolism is associated with hypoxia and tumour cell density, although 18F-FDG includes more information about the malignancy of the tumour. The main disadvantage of ADC maps is the distortion, and we used only low distorted regions, and extracellular volume calculated from DCE-MRI can be considered equivalent to ADC in well-vascularized areas. Conclusion. A dataset for achieving the biologically guided radiotherapy must include a tumour density study and a hypoxia marker. This information can be achieved using only MRI data or only PET/CT studies or mixing both datasets. PMID:25788972

  8. Contrast-enhanced MRI of murine myocardial infarction - part II.

    PubMed

    Coolen, Bram F; Paulis, Leonie E M; Geelen, Tessa; Nicolay, Klaas; Strijkers, Gustav J

    2012-08-01

    Mouse models are increasingly used to study the pathophysiology of myocardial infarction in vivo. In this area, MRI has become the gold standard imaging modality, because it combines high spatial and temporal resolution functional imaging with a large variety of methods to generate soft tissue contrast. In addition, (target-specific) MRI contrast agents can be employed to visualize different processes in the cascade of events following myocardial infarction. Here, the MRI sequence has a decisive role in the detection sensitivity of a contrast agent. However, a straightforward translation of clinically available protocols for human cardiac imaging to mice is not feasible, because of the small size of the mouse heart and its extremely high heart rate. This has stimulated intense research in the development of cardiac MRI protocols specifically tuned to the mouse with regard to timing parameters, acquisition strategies, and ECG- and respiratory-triggering methods to find an optimal trade-off between sensitivity, scan time, and image quality. In this review, a detailed analysis is given of the pros and cons of different mouse cardiac MR imaging methodologies and their application in contrast-enhanced MRI of myocardial infarction. Copyright © 2012 John Wiley & Sons, Ltd.

  9. Dynamic contrast-enhanced MRI of the prostate: An intraindividual assessment of the effect of temporal resolution on qualitative detection and quantitative analysis of histopathologically proven prostate cancer.

    PubMed

    Ream, Justin M; Doshi, Ankur M; Dunst, Diane; Parikh, Nainesh; Kong, Max X; Babb, James S; Taneja, Samir S; Rosenkrantz, Andrew B

    2017-05-01

    To assess the effects of temporal resolution (RT ) in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) on qualitative tumor detection and quantitative pharmacokinetic parameters in prostate cancer. This retrospective Institutional Review Board (IRB)-approved study included 58 men (64 ± 7 years). They underwent 3T prostate MRI showing dominant peripheral zone (PZ) tumors (24 with Gleason ≥ 4 + 3), prior to prostatectomy. Continuously acquired DCE utilizing GRASP (Golden-angle RAdial Sparse Parallel) was retrospectively reconstructed at RT of 1.4 sec, 3.7 sec, 6.0 sec, 9.7 sec, and 14.9 sec. A reader placed volumes-of-interest on dominant tumors and benign PZ, generating quantitative pharmacokinetic parameters (k(trans) , ve ) at each RT . Two blinded readers assessed each RT for lesion presence, location, conspicuity, and reader confidence on a 5-point scale. Data were assessed by mixed-model analysis of variance (ANOVA), generalized estimating equation (GEE), and receiver operating characteristic (ROC) analysis. RT did not affect sensitivity (R1all : 69.0%-72.4%, all Padj  = 1.000; R1GS≥4 + 3 : 83.3-91.7%, all Padj  = 1.000; R2all : 60.3-69.0%, all Padj  = 1.000; R2GS≥4 + 3 : 58.3%-79.2%, all Padj  = 1.000). R1 reported greater conspicuity of GS ≥ 4 + 3 tumors at RT of 1.4 sec vs. 14.9 sec (4.29 ± 1.23 vs. 3.46 ± 1.44; Padj  = 0.029). No other tumor conspicuity pairwise comparison reached significance (R1all : 2.98-3.43, all Padj ≥ 0.205; R2all : 2.57-3.19, all Padj ≥ 0.059; R1GS≥4 + 3 : 3.46-4.29, all other Padj ≥ 0.156; R2GS≥4 + 3 : 2.92-3.71, all Padj ≥ 0.439). There was no effect of RT on reader confidence (R1all : 3.17-3.34, all Padj  = 1.000; R2all : 2.83-3.19, all Padj ≥ 0.801; R1GS≥4 + 3 : 3.79-4.21, all Padj  = 1.000; R2GS≥4 + 3 : 3.13-3.79, all Padj  = 1.000). k(trans) and ve of tumor and benign tissue did not differ across RT (all

  10. Simultaneous segmentation and registration of contrast-enhanced breast MRI.

    PubMed

    Xiaohua, Chen; Brady, Michael; Lo, Jonathan Lok-Chuen; Moore, Niall

    2005-01-01

    Breast Contrast-Enhanced MRI (ce-MRI) requires a series of images to be acquired before, and repeatedly after, intravenous injection of a contrast agent. Breast MRI segmentation based on the differential enhancement of image intensities can assist the clinician detect suspicious regions. Image registration between the temporal data sets is necessary to compensate for patient motion, which is quite often substantial. Although segmentation and registration are usually treated as separate problems in medical image analysis, they can naturally benefit a great deal from each other. In this paper, we propose a scheme for simultaneous segmentation and registration of breast ce-MRI. It is developed within a Bayesian framework, based on a maximum a posteriori estimation method. A pharmacokinetic model and Markov Random Field model have been incorporated into the framework in order to improve the performance of our algorithm. Our method has been applied to the segmentation and registration of clinical ce-MR images. The results show the potential of our methodology to extract useful information for breast cancer detection.

  11. Noninvasive assessment of pulmonary emphysema using dynamic contrast-enhanced magnetic resonance imaging.

    PubMed

    Morino, Shigeyuki; Toba, Toshinari; Araki, Masato; Azuma, Takashi; Tsutsumi, Sadami; Tao, Hiroyuki; Nakamura, Tatsuo; Nagayasu, Takeshi; Tagawa, Tsutomu

    2006-01-01

    Emphysema tends to be complicated by diffuse abnormalities in the pulmonary peripheral microvasculature. The aim of this study was to evaluate whether dynamic contrast-enhanced magnetic resonance imaging (MRI) could provide a valid assessment of pulmonary blood flow as an indicator of the severity of emphysema. To do this, the authors compared MRI data with the pathological findings in lung tissue. Dynamic contrast-enhanced MRI is a noninvasive method and can be used to repeatedly monitor clinicopathological severity. Using MRI clear pulmonary vascular information can be obtained easily, and the relative pulmonary blood flow in the lung parenchyma can be quantified.

  12. Leakage decrease detected by dynamic susceptibility-weighted contrast-enhanced perfusion MRI predicts survival in recurrent glioblastoma treated with bevacizumab.

    PubMed

    Hilario, A; Sepulveda, J M; Hernandez-Lain, A; Salvador, E; Koren, L; Manneh, R; Ruano, Y; Perez-Nuñez, A; Lagares, A; Ramos, A

    2017-01-01

    In glioblastoma, tumor progression appears to be triggered by expression of VEGF, a regulator of blood vessel permeability. Bevacizumab is a monoclonal antibody that inhibits angiogenesis by clearing circulating VEGF, resulting in a decline in the contrast-enhancing tumor, which does not always correlate with treatment response. Our objectives were: (1) to evaluate whether changes in DSC perfusion MRI-derived leakage could predict survival in recurrent glioblastoma, and (2) to estimate whether leakage at baseline was related to treatment outcome. We retrospectively analyzed DSC perfusion MRI in 24 recurrent glioblastomas treated with bevacizumab as second line chemotherapy. Leakage at baseline and changes in maximum leakage between baseline and the first follow-up after treatment were selected for quantitative analysis. Survival univariate analysis was made constructing survival curves using Kaplan-Meier method and comparing subgroups by log rank probability test. Leakage reduction at 8 weeks after initiation of bevacizumab treatment had a significant influence on overall survival (OS) and progression-free survival (PFS). Median OS and PFS were 2.4 and 2.8 months longer for patients with leakage reduction at the first follow-up. Higher leakage at baseline was associated with leakage reduction after treatment. Odds ratio of treatment response was 9 for patients with maximum leakage at baseline >5. Leakage decrease may predict OS and PFS in recurrent glioblastomas treated with bevacizumab. Leakage reduction postulates as a potential biomarker for treatment response evaluation. Leakage at baseline seems to predict response to treatment, but was not independently associated with survival.

  13. Image fusion for dynamic contrast enhanced magnetic resonance imaging

    PubMed Central

    Twellmann, Thorsten; Saalbach, Axel; Gerstung, Olaf; Leach, Martin O; Nattkemper, Tim W

    2004-01-01

    Background Multivariate imaging techniques such as dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) have been shown to provide valuable information for medical diagnosis. Even though these techniques provide new information, integrating and evaluating the much wider range of information is a challenging task for the human observer. This task may be assisted with the use of image fusion algorithms. Methods In this paper, image fusion based on Kernel Principal Component Analysis (KPCA) is proposed for the first time. It is demonstrated that a priori knowledge about the data domain can be easily incorporated into the parametrisation of the KPCA, leading to task-oriented visualisations of the multivariate data. The results of the fusion process are compared with those of the well-known and established standard linear Principal Component Analysis (PCA) by means of temporal sequences of 3D MRI volumes from six patients who took part in a breast cancer screening study. Results The PCA and KPCA algorithms are able to integrate information from a sequence of MRI volumes into informative gray value or colour images. By incorporating a priori knowledge, the fusion process can be automated and optimised in order to visualise suspicious lesions with high contrast to normal tissue. Conclusion Our machine learning based image fusion approach maps the full signal space of a temporal DCE-MRI sequence to a single meaningful visualisation with good tissue/lesion contrast and thus supports the radiologist during manual image evaluation. PMID:15494072

  14. TU-F-CAMPUS-J-02: Evaluation of Textural Feature Extraction for Radiotherapy Response Assessment of Early Stage Breast Cancer Patients Using Diffusion Weighted MRI and Dynamic Contrast Enhanced MRI

    SciTech Connect

    Xie, Y; Wang, C; Horton, J; Chang, Z

    2015-06-15

    Purpose: To investigate the feasibility of using classic textural feature extraction in radiotherapy response assessment, we studied a unique cohort of early stage breast cancer patients with paired pre - and post-radiation Diffusion Weighted MRI (DWI-MRI) and Dynamic Contrast Enhanced MRI (DCE-MRI). Methods: 15 female patients from our prospective phase I trial evaluating preoperative radiotherapy were included in this retrospective study. Each patient received a single-fraction radiation treatment, and DWI and DCE scans were conducted before and after the radiotherapy. DWI scans were acquired using a spin-echo EPI sequence with diffusion weighting factors of b = 0 and b = 500 mm{sup 2} /s, and the apparent diffusion coefficient (ADC) maps were calculated. DCE-MRI scans were acquired using a T{sub 1}-weighted 3D SPGR sequence with a temporal resolution of about 1 minute. The contrast agent (CA) was intravenously injected with a 0.1 mmol/kg bodyweight dose at 2 ml/s. Two parameters, volume transfer constant (K{sup trans} ) and k{sub ep} were analyzed using the two-compartment Tofts kinetic model. For DCE parametric maps and ADC maps, 33 textural features were generated from the clinical target volume (CTV) in a 3D fashion using the classic gray level co-occurrence matrix (GLCOM) and gray level run length matrix (GLRLM). Wilcoxon signed-rank test was used to determine the significance of each texture feature’s change after the radiotherapy. The significance was set to 0.05 with Bonferroni correction. Results: For ADC maps calculated from DWI-MRI, 24 out of 33 CTV features changed significantly after the radiotherapy. For DCE-MRI pharmacokinetic parameters, all 33 CTV features of K{sup trans} and 33 features of k{sub ep} changed significantly. Conclusion: Initial results indicate that those significantly changed classic texture features are sensitive to radiation-induced changes and can be used for assessment of radiotherapy response in breast cancer.

  15. Preparation of Magnetite Nanoemulsion Stabilized by Tween 81 for MRI Contrast Enhancement

    NASA Astrophysics Data System (ADS)

    Nikolaev, Boris P.; Eliseev, Oleg V.; Marchenko, Yaroslav Yu.; Yakovleva, Liudmila Yu.; Zimina, Tatiana M.; Soloviev, Alexei V.; Luchinin, Victor V.

    2010-12-01

    Magnetite nanoemulsions (NE) were synthesized via procedure of heterophase synthesis in a ternary system: Tween 81/pentadecane/water. Prepared NEs were studied by dynamic light scattering and NMR spectroscopy. Their size was of the order of 10 nm and they revealed superparamagnetic properties. MRI efficiency of the NEs was demonstrated by measuring magnetic spin-spin relaxation rates, which complied with the properties of negative contrast agents. MRI of agar phantom demonstrates high grade of contrast enhancement in vitro. Toxicity of the preparations was studied on murine model. Studies revealed no signs of acute or short-term (within 30 days) toxicity in mice. Synthesized magnetite NEs have potential for in vivo MRI contrast enhancement applications.

  16. Accuracy of percentage of signal intensity recovery and relative cerebral blood volume derived from dynamic susceptibility-weighted, contrast-enhanced MRI in the preoperative diagnosis of cerebral tumours

    PubMed Central

    Steel, Timothy; Chaganti, Joga

    2015-01-01

    Conventional magnetic resonance imaging (MRI) is the technique of choice for diagnosis of cerebral tumours, and has become an increasingly powerful tool for their evaluation; however, the diagnosis of common contrast-enhancing lesions can be challenging, as it is sometimes impossible to differentiate them using conventional imaging. Histopathological analysis of biopsy specimens is the gold standard for diagnosis; however, there are significant risks associated with the invasive procedure and definitive diagnosis is not always achieved. Early accurate diagnosis is important, as management differs accordingly. Advanced MRI techniques have increasing utility for aiding diagnosis in a variety of clinical scenarios. Dynamic susceptibility-weighted contrast-enhanced (DSC) MRI is a perfusion imaging technique and a potentially important tool for the characterisation of cerebral tumours. The percentage of signal intensity recovery (PSR) and relative cerebral blood volume (rCBV) derived from DSC MRI provide information about tumour capillary permeability and neoangiogenesis, which can be used to characterise tumour type and grade, and distinguish tumour recurrence from treatment-related effects. Therefore, PSR and rCBV potentially represent a non-invasive means of diagnosis; however, the clinical utility of these parameters has yet to be established. We present a review of the literature to date. PMID:26475485

  17. Contrast-enhanced dynamic MRI protocol with improved spatial and time resolution for in vivo microimaging of the mouse with a 1.5-T body scanner and a superconducting surface coil.

    PubMed

    Ginefri, Jean-Christophe; Poirier-Quinot, Marie; Robert, Philippe; Darrasse, Luc

    2005-02-01

    Magnetic resonance imaging (MRI) is well suited for small animal model investigations to study various human pathologies. However, the assessment of microscopic information requires a high-spatial resolution (HSR) leading to a critical problem of signal-to-noise ratio limitations in standard whole-body imager. As contrast mechanisms are field dependent, working at high field do not allow to derive MRI criteria that may apply to clinical settings done in standard whole-body systems. In this work, a contrast-enhanced dynamic MRI protocol with improved spatial and time resolution was used to perform in vivo tumor model imaging on the mouse at 1.5 T. The needed sensitivity is provided by the use of a 12-mm superconducting surface coil operating at 77 K. High quality in vivo images were obtained and revealed well-defined internal structures of the tumor. A 3-D HSR sequence with voxels of 59x59x300 microm3 encoded within 6.9 min and a 2-D sequence with subsecond acquisition time and isotropic in-plane resolution of 234 microm were used to analyze the contrast enhancement kinetics in tumoral structures at long and short time scales. This work is a first step to better characterize and differentiate the dynamic behavior of tumoral heterogeneities.

  18. Dynamic contrast enhanced MRI detects early response to adoptive NK cellular immunotherapy targeting the NG2 proteoglycan in a rat model of glioblastoma.

    PubMed

    Rygh, Cecilie Brekke; Wang, Jian; Thuen, Marte; Gras Navarro, Andrea; Huuse, Else Marie; Thorsen, Frits; Poli, Aurelie; Zimmer, Jacques; Haraldseth, Olav; Lie, Stein Atle; Enger, Per Øyvind; Chekenya, Martha

    2014-01-01

    There are currently no established radiological parameters that predict response to immunotherapy. We hypothesised that multiparametric, longitudinal magnetic resonance imaging (MRI) of physiological parameters and pharmacokinetic models might detect early biological responses to immunotherapy for glioblastoma targeting NG2/CSPG4 with mAb9.2.27 combined with natural killer (NK) cells. Contrast enhanced conventional T1-weighted MRI at 7±1 and 17±2 days post-treatment failed to detect differences in tumour size between the treatment groups, whereas, follow-up scans at 3 months demonstrated diminished signal intensity and tumour volume in the surviving NK+mAb9.2.27 treated animals. Notably, interstitial volume fraction (ve), was significantly increased in the NK+mAb9.2.27 combination therapy group compared mAb9.2.27 and NK cell monotherapy groups (p = 0.002 and p = 0.017 respectively) in cohort 1 animals treated with 1 million NK cells. ve was reproducibly increased in the combination NK+mAb9.2.27 compared to NK cell monotherapy in cohort 2 treated with increased dose of 2 million NK cells (p<0.0001), indicating greater cell death induced by NK+mAb9.2.27 treatment. The interstitial volume fraction in the NK monotherapy group was significantly reduced compared to mAb9.2.27 monotherapy (p<0.0001) and untreated controls (p = 0.014) in the cohort 2 animals. NK cells in monotherapy were unable to kill the U87MG cells that highly expressed class I human leucocyte antigens, and diminished stress ligands for activating receptors. A significant association between apparent diffusion coefficient (ADC) of water and ve in combination NK+mAb9.2.27 and NK monotherapy treated tumours was evident, where increased ADC corresponded to reduced ve in both cases. Collectively, these data support histological measures at end-stage demonstrating diminished tumour cell proliferation and pronounced apoptosis in the NK+mAb9.2.27 treated tumours compared to the other groups. In

  19. Dynamic Contrast Enhanced MRI Detects Early Response to Adoptive NK Cellular Immunotherapy Targeting the NG2 Proteoglycan in a Rat Model of Glioblastoma

    PubMed Central

    Thuen, Marte; Gras Navarro, Andrea; Huuse, Else Marie; Thorsen, Frits; Poli, Aurelie; Zimmer, Jacques; Haraldseth, Olav; Lie, Stein Atle; Enger, Per Øyvind; Chekenya, Martha

    2014-01-01

    There are currently no established radiological parameters that predict response to immunotherapy. We hypothesised that multiparametric, longitudinal magnetic resonance imaging (MRI) of physiological parameters and pharmacokinetic models might detect early biological responses to immunotherapy for glioblastoma targeting NG2/CSPG4 with mAb9.2.27 combined with natural killer (NK) cells. Contrast enhanced conventional T1-weighted MRI at 7±1 and 17±2 days post-treatment failed to detect differences in tumour size between the treatment groups, whereas, follow-up scans at 3 months demonstrated diminished signal intensity and tumour volume in the surviving NK+mAb9.2.27 treated animals. Notably, interstitial volume fraction (ve), was significantly increased in the NK+mAb9.2.27 combination therapy group compared mAb9.2.27 and NK cell monotherapy groups (p = 0.002 and p = 0.017 respectively) in cohort 1 animals treated with 1 million NK cells. ve was reproducibly increased in the combination NK+mAb9.2.27 compared to NK cell monotherapy in cohort 2 treated with increased dose of 2 million NK cells (p<0.0001), indicating greater cell death induced by NK+mAb9.2.27 treatment. The interstitial volume fraction in the NK monotherapy group was significantly reduced compared to mAb9.2.27 monotherapy (p<0.0001) and untreated controls (p = 0.014) in the cohort 2 animals. NK cells in monotherapy were unable to kill the U87MG cells that highly expressed class I human leucocyte antigens, and diminished stress ligands for activating receptors. A significant association between apparent diffusion coefficient (ADC) of water and ve in combination NK+mAb9.2.27 and NK monotherapy treated tumours was evident, where increased ADC corresponded to reduced ve in both cases. Collectively, these data support histological measures at end-stage demonstrating diminished tumour cell proliferation and pronounced apoptosis in the NK+mAb9.2.27 treated tumours compared to the other groups. In

  20. MRI of the human eye using magnetization transfer contrast enhancement.

    PubMed

    Lizak, M J; Datiles, M B; Aletras, A H; Kador, P F; Balaban, R S

    2000-11-01

    To determine the feasibility of using magnetization transfer contrast-enhanced magnetic resonance imaging (MRI) to track cataractous lens changes. A fast spin-echo sequence was modified to include a magnetization transfer contrast (MTC) preparation pulse train. This consisted of twenty 8.5-msec sinc pulses, 1200 Hz upfield from the water resonance and 1.2-Hz power. The MTC preparation pulse was followed by acquisition through fast spin-echo imaging. The imaging parameters were number of excitations (NEX) = 1, echo time (TE) = 14 msec, recovery time (TR) = 2 sec, echo train length of eight echos, and a matrix size of 256 x 160. To reduce motion artifacts, the volunteers were asked to fixate on a blinking LED. Normal and MTC-enhanced images were acquired from normal volunteers and volunteers with nuclear or cortical cataracts. The eye was adequately imaged, with few motion artifacts appearing. The lens was well resolved, despite the short T(2). The cornea and ciliary body were also clearly visible. In the lens, resolution of the epithelium and cortex were enhanced with MTC. In addition, contrast-to-noise ratios were measured for each image. Examination of the contrast-to-noise ratio confirmed that MTC increased the contrast between the nucleus and cortex. Unenhanced MRIs showed significant differences between the cortex of normal volunteers and volunteers with cataracts. MTC-enhanced images improved the sensitivity to changes in the nucleus. In this preliminary study, we were able to use MTC-enhanced MRI to obtain high-contrast images of the human lens. Regular and enhanced MRIs detected statistically significant differences between normal and cataractous lenses.

  1. Cerebral Blood Volume Analysis in Glioblastomas Using Dynamic Susceptibility Contrast-Enhanced Perfusion MRI: A Comparison of Manual and Semiautomatic Segmentation Methods

    PubMed Central

    Jung, Seung Chai; Choi, Seung Hong; Yeom, Jeong A.; Kim, Ji-Hoon; Ryoo, Inseon; Kim, Soo Chin; Shin, Hwaseon; Lee, A. Leum; Yun, Tae Jin; Park, Chul-Kee; Sohn, Chul-Ho; Park, Sung-Hye

    2013-01-01

    Purpose To compare the reproducibilities of manual and semiautomatic segmentation method for the measurement of normalized cerebral blood volume (nCBV) using dynamic susceptibility contrast-enhanced (DSC) perfusion MR imaging in glioblastomas. Materials and Methods Twenty-two patients (11 male, 11 female; 27 tumors) with histologically confirmed glioblastoma (WHO grade IV) were examined with conventional MR imaging and DSC imaging at 3T before surgery or biopsy. Then nCBV (means and standard deviations) in each mass was measured using two DSC MR perfusion analysis methods including manual and semiautomatic segmentation method, in which contrast-enhanced (CE)-T1WI and T2WI were used as structural imaging. Intraobserver and interobserver reproducibility were assessed according to each perfusion analysis method or each structural imaging. Interclass correlation coefficient (ICC), Bland-Altman plot, and coefficient of variation (CV) were used to evaluate reproducibility. Results Intraobserver reproducibilities on CE-T1WI and T2WI were ICC of 0.74–0.89 and CV of 20.39–36.83% in manual segmentation method, and ICC of 0.95–0.99 and CV of 8.53–16.19% in semiautomatic segmentation method, repectively. Interobserver reproducibilites on CE-T1WI and T2WI were ICC of 0.86–0.94 and CV of 19.67–35.15% in manual segmentation method, and ICC of 0.74–1.0 and CV of 5.48–49.38% in semiautomatic segmentation method, respectively. Bland-Altman plots showed a good correlation with ICC or CV in each method. The semiautomatic segmentation method showed higher intraobserver and interobserver reproducibilities at CE-T1WI-based study than other methods. Conclusion The best reproducibility was found using the semiautomatic segmentation method based on CE-T1WI for structural imaging in the measurement of the nCBV of glioblastomas. PMID:23950891

  2. Non-invasive breast biopsy method using GD-DTPA contrast enhanced MRI series and F-18-FDG PET/CT dynamic image series

    NASA Astrophysics Data System (ADS)

    Magri, Alphonso William

    This study was undertaken to develop a nonsurgical breast biopsy from Gd-DTPA Contrast Enhanced Magnetic Resonance (CE-MR) images and F-18-FDG PET/CT dynamic image series. A five-step process was developed to accomplish this. (1) Dynamic PET series were nonrigidly registered to the initial frame using a finite element method (FEM) based registration that requires fiducial skin markers to sample the displacement field between image frames. A commercial FEM package (ANSYS) was used for meshing and FEM calculations. Dynamic PET image series registrations were evaluated using similarity measurements SAVD and NCC. (2) Dynamic CE-MR series were nonrigidly registered to the initial frame using two registration methods: a multi-resolution free-form deformation (FFD) registration driven by normalized mutual information, and a FEM-based registration method. Dynamic CE-MR image series registrations were evaluated using similarity measurements, localization measurements, and qualitative comparison of motion artifacts. FFD registration was found to be superior to FEM-based registration. (3) Nonlinear curve fitting was performed for each voxel of the PET/CT volume of activity versus time, based on a realistic two-compartmental Patlak model. Three parameters for this model were fitted; two of them describe the activity levels in the blood and in the cellular compartment, while the third characterizes the washout rate of F-18-FDG from the cellular compartment. (4) Nonlinear curve fitting was performed for each voxel of the MR volume of signal intensity versus time, based on a realistic two-compartment Brix model. Three parameters for this model were fitted: rate of Gd exiting the compartment, representing the extracellular space of a lesion; rate of Gd exiting a blood compartment; and a parameter that characterizes the strength of signal intensities. Curve fitting used for PET/CT and MR series was accomplished by application of the Levenburg-Marquardt nonlinear regression

  3. Eigentumors for prediction of treatment failure in patients with early-stage breast cancer using dynamic contrast-enhanced MRI: a feasibility study

    NASA Astrophysics Data System (ADS)

    Chan, H. M.; van der Velden, B. H. M.; E Loo, C.; Gilhuijs, K. G. A.

    2017-08-01

    We present a radiomics model to discriminate between patients at low risk and those at high risk of treatment failure at long-term follow-up based on eigentumors: principal components computed from volumes encompassing tumors in washin and washout images of pre-treatment dynamic contrast-enhanced (DCE-) MR images. Eigentumors were computed from the images of 563 patients from the MARGINS study. Subsequently, a least absolute shrinkage selection operator (LASSO) selected candidates from the components that contained 90% of the variance of the data. The model for prediction of survival after treatment (median follow-up time 86 months) was based on logistic regression. Receiver operating characteristic (ROC) analysis was applied and area-under-the-curve (AUC) values were computed as measures of training and cross-validated performances. The discriminating potential of the model was confirmed using Kaplan-Meier survival curves and log-rank tests. From the 322 principal components that explained 90% of the variance of the data, the LASSO selected 28 components. The ROC curves of the model yielded AUC values of 0.88, 0.77 and 0.73, for the training, leave-one-out cross-validated and bootstrapped performances, respectively. The bootstrapped Kaplan-Meier survival curves confirmed significant separation for all tumors (P  <  0.0001). Survival analysis on immunohistochemical subgroups shows significant separation for the estrogen-receptor subtype tumors (P  <  0.0001) and the triple-negative subtype tumors (P  =  0.0039), but not for tumors of the HER2 subtype (P  =  0.41). The results of this retrospective study show the potential of early-stage pre-treatment eigentumors for use in prediction of treatment failure of breast cancer.

  4. Computer-assisted analysis of peripheral zone prostate lesions using T2-weighted and dynamic contrast enhanced T1-weighted MRI

    NASA Astrophysics Data System (ADS)

    Vos, Pieter C.; Hambrock, Thomas; Barenstz, Jelle O.; Huisman, Henkjan J.

    2010-03-01

    In this study, computer-assisted analysis of prostate lesions was researched by combining information from two different magnetic resonance (MR) modalities: T2-weighted (T2-w) and dynamic contrast-enhanced (DCE) T1-w images. Two issues arise when incorporating T2-w images in a computer-aided diagnosis (CADx) system: T2-w values are position as well as sequence dependent and images can be misaligned due to patient movement during the acquisition. A method was developed that computes T2 estimates from a T2-w and proton density value and a known sequence model. A mutual information registration strategy was implemented to correct for patient movement. Global motion is modelled by an affine transformation, while local motion is described by a volume preserving non-rigid deformation based on B-splines. The additional value to the discriminating performance of a DCE T1-w-based CADx system was evaluated using bootstrapped ROC analysis. T2 estimates were successfully computed in 29 patients. T2 values were extracted and added to the CADx system from 39 malignant, 19 benign and 29 normal annotated regions. T2 values alone achieved a diagnostic accuracy of 0.85 (0.77-0.92) and showed a significantly improved discriminating performance of 0.89 (0.81-0.95), when combined with DCE T1-w features. In conclusion, the study demonstrated a simple T2 estimation method that has a diagnostic performance such that it complements a DCE T1-w-based CADx system in discriminating malignant lesions from normal and benign regions. Additionally, the T2 estimate is beneficial to visual inspection due to the removed coil profile and fixed window and level settings.

  5. Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) Combined with Positron Emission Tomography-Computed Tomography (PET-CT) and Video-Electroencephalography (VEEG) Have Excellent Diagnostic Value in Preoperative Localization of Epileptic Foci in Children with Epilepsy

    PubMed Central

    Wang, Gui-Bin; Long, Wei; Li, Xiao-Dong; Xu, Guang-Yin; Lu, Ji-Xiang

    2017-01-01

    Background To investigate the effect that dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has on surgical decision making relative to video-electroencephalography (VEEG) and positron emission tomography-computed tomography (PET-CT), and if the differences in these variables translates to differences in surgical outcomes. Material/Methods A total of 166 children with epilepsy undergoing preoperative DCE-MRI, VEEG, and PET-CT examinations, surgical resection of epileptic foci, and intraoperative electrocorticography (ECoG) monitoring were enrolled. All children were followed up for 12 months and grouped by Engles prognostic classification for epilepsy. Based on intraoperative ECoG as gold standard, the diagnostic values of DCE-MRI, VEEG, PET-CT, DCE-MRI combined with VEEG, DCE-MRI combined with PET-CT, and combined application of DCE-MRI, VEEG, and PET-CT in preoperative localization for epileptic foci were evaluated. Results The sensitivity of DCE-MRI, VEEG, and PET-CT was 59.64%, 76.51%, and 93.98%, respectively; the accuracy of DCE-MRI, VEEG, PET-CT, DCE-MRI combined with VEEG, and DCE-MRI combined with PET-CT was 57.58%, 67.72%, 91.03%, 91.23%, and 96.49%, respectively. Localization accuracy rate of the combination of DCE-MRI, VEEG, and PET-CT was 98.25% (56/57), which was higher than that of DCE-MRI combined with VEEG and of DCE-MRI combined with PET-CT. No statistical difference was found in the accuracy rate of localization between these three combined techniques. During the 12-month follow-up, children were grouped into Engles grade I (n=106), II (n=31), III (n=21), and IV (n=8) according to postoperative conditions. Conclusions All DCE-MRI combined with VEEG, DCE-MRI combined with PET-CT, and DCE-MRI combined with VEEG and PET-CT examinations have excellent accuracy in preoperative localization of epileptic foci and present excellent postoperative efficiency, suggesting that these combined imaging methods are suitable for serving as the

  6. Imaging Modalities for Assessment of Treatment Response to Nonsurgical Hepatocellular Carcinoma Therapy: Contrast-Enhanced US, CT, and MRI.

    PubMed

    Minami, Yasunori; Kudo, Masatoshi

    2015-03-01

    Tumor response and time to progression have been considered pivotal for surrogate assessment of treatment efficacy for patients with hepatocellular carcinoma (HCC). Recent advancements in imaging modalities such as contrast-enhanced ultrasound (US), computed tomography (CT), and magnetic resonance imaging (MRI) are playing an important role in assessing the therapeutic effects of HCC treatments. According to some HCC clinical guidelines, post-therapeutic evaluation of HCC patients is based exclusively on contrast-enhanced dynamic imaging criteria. The recommended techniques are contrast-enhanced CT or contrast-enhanced MRI. Contrast-enhanced US is employed more in the positive diagnosis of HCC than in post-therapeutic monitoring. Although contrast enhancement is an important finding on imaging, enhancement does not necessarily depict the same phenomenon across modalities. We need to become well acquainted with the characteristics of each modality, including not only contrast-enhanced CT and MRI but also contrast-enhanced US. Many nonsurgical treatment options are now available for unresectable HCC, and accurate assessment of tumor response is essential to achieve favorable outcomes. For the assessment of successful radiofrequency ablation (RFA), the achievement of a sufficient ablation margin as well the absence of tumor vascular enhancement is essential. To evaluate the response to transcatheter arterial chemoembolization (TACE), enhanced tumor shrinkage is relied on as a measure of antitumor activity. Here, we give an overview of the current status of imaging assessment of HCC response to nonsurgical treatments including RFA and TACE.

  7. Transvascular and interstitial transport in rat hepatocellular carcinomas: dynamic contrast-enhanced MRI assessment with low- and high-molecular weight agents.

    PubMed

    Michoux, Nicolas; Huwart, Laurent; Abarca-Quinones, Jorge; Dorvillius, Mylène; Annet, Laurence; Peeters, Frank; Van Beers, Bernard E

    2008-10-01

    To assess which MRI-derived kinetic parameters reflect decreased transvascular and interstitial transport when low- and high-molecular-weight agents are used in rat hepatocellular carcinomas. Dynamic MRI after injection of a low-molecular-weight contrast agent of 0.56 kDa (Gd-DOTA, gadoterate) and two high-molecular-weight contrast agents of 6.47 kDa (P792, gadomelitol) and 52 kDa (P717, carboxymethyldextran Gd-DOTA) was performed in rats with chemically induced hepatocellular carcinomas. The data were analyzed with the Kety compartmental model, the extended Kety compartmental model in which it is assumed that the tissue voxels contain a vascular component, and the St Lawrence and Lee distributed-parameter model. The extravascular extracellular space accessible to the contrast agent v(e) and the extraction fraction E decreased with increasing molecular weight of the contrast agent. In contrast, the volume transfer constant Ktrans did not differ significantly when low- or high-molecular-weight agents were used. In this animal model the results suggest that the accessible extravascular extracellular space and the extraction fraction are more sensitive indicators of decreased transvascular and interstitial transport with high-molecular-weight agents than the volume transfer constant, which is a lumped representation of blood flow and permeability. (c) 2008 Wiley-Liss, Inc.

  8. Dynamic contrast enhanced-magnetic resonance imaging (DCE-MRI) for the assessment of Pc 4-sensitized photodynamic therapy of a U87-derived glioma model in the athymic nude rat

    NASA Astrophysics Data System (ADS)

    Anka, Ali; Thompson, Paul; Mott, Eric; Sharma, Rahul; Zhang, Ruozhen; Cross, Nathan; Sun, Jiayang; Flask, Chris A.; Oleinick, Nancy L.; Dean, David

    2010-02-01

    Introduction: Dynamic Contrast-Enhanced-Magnetic Resonance Imaging (DCE-MRI) may provide a means of tracking the outcome of Pc 4-sensitized photodynamic therapy (PDT) in deeply placed lesions (e.g., brain tumors). We previously determined that 150 μL of gadolinium (Gd-DTPA) produces optimal enhancement of U87-derived intracerebral tumors in an athymic nude rat glioma model. We wish to determine how consistently DCE-MRI enhancement will detect an increase in Gd-enhancement of these tumors following Pc 4-PDT. Methods: We injected 2.5 x 105 U87 cells into the brains of 6 athymic nude rats. After 7-8 days pre-Pc 4 PDT peri-tumor DCE-MRI images were acquired on a 7.0T microMRI scanner before and after administration of 150 μL Gd. DCE-MRI scans were repeated on Days 11, 12, and 13 following Pc 4-PDT (Day 8 or 9). Results: Useful DCE-MRI data were obtained for these animals before and after Pc 4- PDT. In the pre-Pc 4-PDT DCE-MRI scans an average normalized peak Gd enhancement was observed in tumor tissue that was 1.297 times greater than baseline (0.035 Standard Error [SE]). The average normalized peak Gd enhancement in the tumor tissue in the scan following PDT (Day 11) was 1.537 times greater than baseline (0.036 SE), a statistically significant increase in enhancement (p = 0.00584) over the pre-PDT level. Discussion: A 150 μL Gd dose appears to provide an unambiguous increase in signal indicating Pc 4-PDT-induced necrosis of the U87-derived tumor. Our DCEMRI protocol may allow the development of a clinically robust, unambiguous, non-invasive technique for the assessment of PDT outcome.

  9. Classification of small lesions in dynamic breast MRI: Eliminating the need for precise lesion segmentation through spatio-temporal analysis of contrast enhancement over time.

    PubMed

    Nagarajan, Mahesh B; Huber, Markus B; Schlossbauer, Thomas; Leinsinger, Gerda; Krol, Andrzej; Wismüller, Axel

    2013-10-01

    Characterizing the dignity of breast lesions as benign or malignant is specifically difficult for small lesions; they don't exhibit typical characteristics of malignancy and are harder to segment since margins are harder to visualize. Previous attempts at using dynamic or morphologic criteria to classify small lesions (mean lesion diameter of about 1 cm) have not yielded satisfactory results. The goal of this work was to improve the classification performance in such small diagnostically challenging lesions while concurrently eliminating the need for precise lesion segmentation. To this end, we introduce a method for topological characterization of lesion enhancement patterns over time. Three Minkowski Functionals were extracted from all five post-contrast images of sixty annotated lesions on dynamic breast MRI exams. For each Minkowski Functional, topological features extracted from each post-contrast image of the lesions were combined into a high-dimensional texture feature vector. These feature vectors were classified in a machine learning task with support vector regression. For comparison, conventional Haralick texture features derived from gray-level co-occurrence matrices (GLCM) were also used. A new method for extracting thresholded GLCM features was also introduced and investigated here. The best classification performance was observed with Minkowski Functionals area and perimeter, thresholded GLCM features f8 and f9, and conventional GLCM features f4 and f6. However, both Minkowski Functionals and thresholded GLCM achieved such results without lesion segmentation while the performance of GLCM features significantly deteriorated when lesions were not segmented (p < 0.05). This suggests that such advanced spatio-temporal characterization can improve the classification performance achieved in such small lesions, while simultaneously eliminating the need for precise segmentation.

  10. Combined Contrast-Enhanced MRI and Fluorescence Molecular Tomography for Breast Tumor Imaging

    DTIC Science & Technology

    2007-03-01

    accomplishments follows. Imaging system 4 The fluorescence imaging system is coupled into a Philips 3T MRI and is shown schematically in Fig. 1, which...AD_________________ Award Number: W81XWH-06-1-0367 TITLE: Combined Contrast-Enhanced MRI and...CONTRACT NUMBER Combined Contrast-Enhanced MRI and Fluorescence Molecular Tomography for Breast Tumor Imaging 5b. GRANT NUMBER W81XWH-06-1-0367 5c

  11. A case report of pseudoprogression followed by complete remission after proton-beam irradiation for a low-grade glioma in a teenager: the value of dynamic contrast-enhanced MRI.

    PubMed

    Meyzer, Candice; Dhermain, Frédéric; Ducreux, Denis; Habrand, Jean-Louis; Varlet, Pascale; Sainte-Rose, Christian; Dufour, Christelle; Grill, Jacques

    2010-02-04

    A fourteen years-old boy was treated post-operatively with proton therapy for a recurrent low-grade oligodendroglioma located in the tectal region. Six months after the end of irradiation (RT), a new enhancing lesion appeared within the radiation fields. To differentiate disease progression from radiation-induced changes, dynamic susceptibility contrast-enhanced (DSCE) MRI was used with a T2* sequence to study perfusion and permeability characteristics simultaneously. Typically, the lesion showed hypoperfusion and hyperpermeability compared to the controlateral normal brain. Without additional treatment but a short course of steroids, the image disappeared over a six months period allowing us to conclude for a pseudo-progression. The patient is alive in complete remission more than 2 years post-RT.

  12. Multiparametric MRI for prostate cancer detection: Preliminary results on quantitative analysis of dynamic contrast enhanced imaging, diffusion-weighted imaging and spectroscopy imaging.

    PubMed

    Fusco, Roberta; Sansone, Mario; Petrillo, Mario; Setola, Sergio Venanzio; Granata, Vincenza; Botti, Gerardo; Perdonà, Sisto; Borzillo, Valentina; Muto, Paolo; Petrillo, Antonella

    2016-09-01

    Early promising data suggest that combined use of both morphological and functional MRI (multi-parametric MR, mpMRI) including MRSI, DWI and DCE may be of additional value for prostate cancer localization and its local staging. The objective of this paper is to evaluate the diagnostic performance of mpMRI in the detection of prostate cancer. Thirty-one consecutive male patients were screened to be enrolled in a single center prospective observational study. All eligible patients underwent multi-parametric MRI and TRUS (Trans Rectal Ultra Sound) guided prostate biopsies. A register, approved by the Institutional Ethics Committee, included patients enrolled in this study. All patients who decided to undergo the MRI examination signed an explicit informed consensus. MRI data were aligned on a common spatial grid and several functional parameters (perfusion, diffusion and metabolic parameters) were computed. Statistical analysis was conducted in order to compare mpMRI with biopsy-based analysis. Statistically significant differences between median values in high Gleason score (≥5) and low Gleason score (<5) to Wilcox on rank sum test were obtained for MRSI parameters and for plasma fraction (Tofts model) of DCE-MRI. The area under curve obtained with ROC analysis showed that the best-performing single-parameter was vp (plasma fraction of Tofts model), while the best parameters combination to discriminate the area with high Gleason score were (Cho+Cr)/Cit and Cho+Cr. Linear Discrimination Analysis showed that the best results were obtained considering the linear combination of all MRSI parameters and the linear combination of all features (perfusion, diffusion and metabolic parameters). In conclusion, our findings showed that by combining morphological MRI, DWI, DCE-MRI and MRSI, an increase in sensitivity and specificity correlated to biopsy Gleason grade could be obtained. Furthermore, morphological and functional MRI could have a diagnostic role in patients with

  13. Dynamic contrast enhanced-magnetic resonance imaging (DCE-MRI) of photodynamic therapy (PDT) outcome and associated changes in the blood-brain barrier following Pc 4-PDT of glioma in an athymic nude rat model

    NASA Astrophysics Data System (ADS)

    Belle, Vaijayantee; Anka, Ali; Cross, Nathan; Thompson, Paul; Mott, Eric; Sharma, Rahul; Gray, Kayla; Zhang, Ruozhen; Xu, Yueshuo; Sun, Jiayang; Flask, Chris A.; Oleinick, Nancy L.; Dean, David

    2012-02-01

    Introduction: Dynamic Contrast-Enhanced-Magnetic Resonance Imaging (DCE-MRI) appears to provide an unambiguous means of tracking the outcome of photodynamic therapy (PDT) of brain tumors with the photosensitizer Pc 4. The increase in Gd enhancement observed after Pc 4-PDT may be due to a temporary opening of the blood-brain-barrier which, as noted by others, may offer a therapeutic window. Methods: We injected 2.5 x 105 U87 cells into the brains of 9 athymic nude rats. After 8-9 days peri-tumor DCE-MRI images were acquired on a 7.0 T microMRI scanner before and after the administration of 150 μL Gd. DCE-MRI scans were repeated three times following Pc 4-PDT. Results: The average, normalized peak enhancement in the tumor region, approximately 30-90 seconds after Gd administration, was 1.31 times greater than baseline (0.03 Standard Error [SE]) prior to PDT and was 1.44 (0.02 SE) times baseline in the first Post-PDT scans (Day 11), a statistically significant (p ~ 0.014, N=8) increase over the Pre- PDT scans, and was 1.38 (0.02 SE) times baseline in the second scans (Day 12), also a statistically significant (p ~ 0.008, N=7) increase. Observations were mixed in the third Post-PDT scans (Day 13), averaging 1.29 (0.03 SE) times baseline (p ~ 0.66, N=7). Overall a downward trend in enhancement was observed from the first to the third Post-PDT scans. Discussion: DCE-MRI may provide an unambiguous indication of brain tumor PDT outcome. The initial increase in DCE-MRI signal may correlate with a temporary, PDT-induced opening of the blood-brain-barrier, creating a potential therapeutic window.

  14. Dynamic contrast-enhanced MRI detects acute radiotherapy-induced alterations in mandibular microvasculature: prospective assessment of imaging biomarkers of normal tissue injury

    PubMed Central

    Sandulache, Vlad C.; Hobbs, Brian P.; Mohamed, Abdallah S.R.; Frank, Steven J.; Song, Juhee; Ding, Yao; Ger, Rachel; Court, Laurence E.; Kalpathy-Cramer, Jayashree; Hazle, John D.; Wang, Jihong; Awan, Musaddiq J.; Rosenthal, David I.; Garden, Adam S.; Gunn, G. Brandon; Colen, Rivka R.; Elshafeey, Nabil; Elbanan, Mohamed; Hutcheson, Katherine A.; Lewin, Jan S.; Chambers, Mark S.; Hofstede, Theresa M.; Weber, Randal S.; Lai, Stephen Y.; Fuller, Clifton D.

    2016-01-01

    Normal tissue toxicity is an important consideration in the continued development of more effective external beam radiotherapy (EBRT) regimens for head and neck tumors. The ability to detect EBRT-induced changes in mandibular bone vascularity represents a crucial step in decreasing potential toxicity. To date, no imaging modality has been shown to detect changes in bone vascularity in real time during treatment. Based on our institutional experience with multi-parametric MRI, we hypothesized that DCE-MRI can provide in-treatment information regarding EBRT-induced changes in mandibular vascularity. Thirty-two patients undergoing EBRT treatment for head and neck cancer were prospectively imaged prior to, mid-course, and following treatment. DCE-MRI scans were co-registered to dosimetric maps to correlate EBRT dose and change in mandibular bone vascularity as measured by Ktrans and Ve. DCE-MRI was able to detect dose-dependent changes in both Ktrans and Ve in a subset of patients. One patient who developed ORN during the study period demonstrated decreases in Ktrans and Ve following treatment completion. We demonstrate, in a prospective imaging trial, that DCE-MRI can detect dose-dependent alterations in mandibular bone vascularity during chemoradiotherapy, providing biomarkers that are physiological correlates of acute of acute mandibular vascular injury and recovery temporal kinetics. PMID:27499209

  15. Dynamic contrast-enhanced endoscopic ultrasound: A quantification method

    PubMed Central

    Dietrich, Christoph F.; Dong, Yi; Froehlich, Eckhart; Hocke, Michael

    2017-01-01

    Dynamic contrast-enhanced ultrasound (DCE-US) has been recently standardized by guidelines and recommendations. The European Federation of Societies for US in Medicine and Biology position paper describes the use for DCE-US. Comparatively, little is known about the use of contrast-enhanced endoscopic US (CE-EUS). This current paper reviews and discusses the clinical use of CE-EUS and DCE-US. The most important clinical use of DCE-US is the prediction of tumor response to new drugs against vascular angioneogenesis. PMID:28218195

  16. Contrast-enhanced CT- and MRI-based perfusion assessment for pulmonary diseases: basics and clinical applications

    PubMed Central

    Ohno, Yoshiharu; Koyama, Hisanobu; Lee, Ho Yun; Miura, Sachiko; Yoshikawa, Takeshi; Sugimura, Kazuro

    2016-01-01

    Assessment of regional pulmonary perfusion as well as nodule and tumor perfusions in various pulmonary diseases are currently performed by means of nuclear medicine studies requiring radioactive macroaggregates, dual-energy computed tomography (CT), and dynamic first-pass contrast-enhanced perfusion CT techniques and unenhanced and dynamic first-pass contrast enhanced perfusion magnetic resonance imaging (MRI), as well as time-resolved three-dimensional or four-dimensional contrast-enhanced magnetic resonance angiography (MRA). Perfusion scintigraphy, single-photon emission tomography (SPECT) and SPECT fused with CT have been established as clinically available scintigraphic methods; however, they are limited by perfusion information with poor spatial resolution and other shortcomings. Although positron emission tomography with 15O water can measure absolute pulmonary perfusion, it requires a cyclotron for generation of a tracer with an extremely short half-life (2 min), and can only be performed for academic purposes. Therefore, clinicians are concentrating their efforts on the application of CT-based and MRI-based quantitative and qualitative perfusion assessment to various pulmonary diseases. This review article covers 1) the basics of dual-energy CT and dynamic first-pass contrast-enhanced perfusion CT techniques, 2) the basics of time-resolved contrast-enhanced MRA and dynamic first-pass contrast-enhanced perfusion MRI, and 3) clinical applications of contrast-enhanced CT- and MRI-based perfusion assessment for patients with pulmonary nodule, lung cancer, and pulmonary vascular diseases. We believe that these new techniques can be useful in routine clinical practice for not only thoracic oncology patients, but also patients with different pulmonary vascular diseases. PMID:27523813

  17. Contrast-enhanced CT- and MRI-based perfusion assessment for pulmonary diseases: basics and clinical applications.

    PubMed

    Ohno, Yoshiharu; Koyama, Hisanobu; Lee, Ho Yun; Miura, Sachiko; Yoshikawa, Takeshi; Sugimura, Kazuro

    2016-01-01

    Assessment of regional pulmonary perfusion as well as nodule and tumor perfusions in various pulmonary diseases are currently performed by means of nuclear medicine studies requiring radioactive macroaggregates, dual-energy computed tomography (CT), and dynamic first-pass contrast-enhanced perfusion CT techniques and unenhanced and dynamic first-pass contrast enhanced perfusion magnetic resonance imaging (MRI), as well as time-resolved three-dimensional or four-dimensional contrast-enhanced magnetic resonance angiography (MRA). Perfusion scintigraphy, single-photon emission tomography (SPECT) and SPECT fused with CT have been established as clinically available scintigraphic methods; however, they are limited by perfusion information with poor spatial resolution and other shortcomings. Although positron emission tomography with 15O water can measure absolute pulmonary perfusion, it requires a cyclotron for generation of a tracer with an extremely short half-life (2 min), and can only be performed for academic purposes. Therefore, clinicians are concentrating their efforts on the application of CT-based and MRI-based quantitative and qualitative perfusion assessment to various pulmonary diseases. This review article covers 1) the basics of dual-energy CT and dynamic first-pass contrast-enhanced perfusion CT techniques, 2) the basics of time-resolved contrast-enhanced MRA and dynamic first-pass contrast-enhanced perfusion MRI, and 3) clinical applications of contrast-enhanced CT- and MRI-based perfusion assessment for patients with pulmonary nodule, lung cancer, and pulmonary vascular diseases. We believe that these new techniques can be useful in routine clinical practice for not only thoracic oncology patients, but also patients with different pulmonary vascular diseases.

  18. Intravoxel incoherent motion diffusion-weighted imaging as an adjunct to dynamic contrast-enhanced MRI to improve accuracy of the differential diagnosis of benign and malignant breast lesions.

    PubMed

    Ma, Dejing; Lu, Feng; Zou, Xuexue; Zhang, Hu; Li, Yangyang; Zhang, Lin; Chen, Liang; Qin, Dongjing; Wang, Bin

    2017-02-01

    To investigate the value of use of intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) as an adjunct to dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) to distinguish benign from malignant breast lesions. Retrospective analysis of data pertaining to 117 patients with breast lesions who underwent DCE-MRI and IVIM-DWI examination with 3.0T MRI was conducted. A total of 128 lesions were pathologically confirmed (47 benign and 81 malignant). Between-group differences in DCE-MRI parameters (Morphology, enhancement pattern, maximum slope of increase (MSI) and time-signal curve (TIC) type) and IVIM-DWI parameters (f value, D value and D* value) were assessed. Multivariate logistic regression was performed to identify variables that distinguished benign from malignant breast lesions. The diagnostic performance of DCE-MRI and DCE-MRI plus IVIM-DWI, to distinguish benign from malignant breast lesions, was evaluated using pathology results as the gold standard. Lesion morphology, MSI, and TIC type (P<0.05), but not the enhancement pattern (P>0.05), were significantly different between the benign and malignant groups. The f (8.53±2.14) and D* (7.64±2.07) values in the malignant group were significantly higher than those in the benign group (7.68±1.97 and 6.83±2.13, respectively), while the D value (0.99±0.22) was significantly lower than that (1.34±0.17) in the benign group (P<0.05 for all). On logistic regression analysis, the sensitivity, specificity and accuracy of DCE-MRI were 90.1%, 70.2% and 82.8% respectively; the corresponding figures for the combination of IVIM-DWI and DCE-MRI were 88.8%, 85.1%, and 87.5%respectively. IVIM-DWI method as an adjunct to DCE-MRI can improve the specificity and accuracy in differential diagnosis of benign and malignant lesions of breast. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Emerging role of contrast-enhanced MRI in diagnosing vascular malformations.

    PubMed

    Turley, Ryan S; Lidsky, Michael E; Markovic, Jovan N; Shortell, Cynthia K

    2014-07-01

    Vascular malformations comprise a diverse and rare group of lesions which generally pose a formidable treatment challenge. Requisite for optimal surgical planning are imaging modalities capable of delineating involved anatomy and malformation flow characteristics. In this regard, we and others have purported the advantages of contrast-enhanced MRI. Here, we review the current body of literature regarding the emerging of role of contrast enhanced MRI for the management of vascular malformations.

  20. Semi-quantitative assessment of the presence and Child-Pugh class of hepatitis B related cirrhosis by using liver lobe-based dynamic contrast-enhanced MRI.

    PubMed

    Zhou, L; Wang, L-Y; Zhang, X-M; Zeng, N-L; Chen, T-W; Li, R; Huang, Y-C; Tang, Y-L

    2016-12-01

    To determine whether liver lobe-based DCE-MRI can be used to detect the presence and Child-Pugh class of hepatitis B-related cirrhosis. Fifty-six cirrhotic patients with hepatitis B and 20 healthy participants underwent liver DCE-MRI, and the positive enhancement integral (PEI), time to peak (TTP), maximum slope of increase (MSI) and maximum slope of decrease (MSD) of the left lateral liver lobe (LLL), left medial liver lobe (LML), right liver lobe (RL), and caudate lobe (CL) were measured and analysed statistically to evaluate cirrhosis. TTP values of the LLL, LML, RL and CL were positively correlated with the Child-Pugh class of cirrhosis (r=0.452 to 0.55, all p<0.05). PEI values of the LLL, LML, RL and CL, as well as the MSI of the CL and the MSD of the RL, were inversely correlated with the Child-Pugh class (r=-0.349 to -0.72, all p<0.05). PEI values of the LLL and CL, or TTP values of the RL had the most area under receiver operating characteristic curve (AUC) of 0.99 for identifying the presence of liver cirrhosis. The PEI of the RL had the largest AUC of 0.975 and 0.78 for distinguishing the Child-Pugh class A of cirrhosis from class B-C and class A-B of cirrhosis from class C, respectively. Liver lobe-based DCE-MRI parameters are associated with the presence and Child-Pugh class of hepatitis B-related cirrhosis. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  1. WE-FG-206-06: Dual-Input Tracer Kinetic Modeling and Its Analog Implementation for Dynamic Contrast-Enhanced (DCE-) MRI of Malignant Mesothelioma (MPM)

    SciTech Connect

    Lee, S; Rimner, A; Hayes, S; Hunt, M; Deasy, J; Zauderer, M; Rusch, V; Tyagi, N

    2016-06-15

    Purpose: To use dual-input tracer kinetic modeling of the lung for mapping spatial heterogeneity of various kinetic parameters in malignant MPM Methods: Six MPM patients received DCE-MRI as part of their radiation therapy simulation scan. 5 patients had the epitheloid subtype of MPM, while one was biphasic. A 3D fast-field echo sequence with TR/TE/Flip angle of 3.62ms/1.69ms/15° was used for DCE-MRI acquisition. The scan was collected for 5 minutes with a temporal resolution of 5-9 seconds depending on the spatial extent of the tumor. A principal component analysis-based groupwise deformable registration was used to co-register all the DCE-MRI series for motion compensation. All the images were analyzed using five different dual-input tracer kinetic models implemented in analog continuous-time formalism: the Tofts-Kety (TK), extended TK (ETK), two compartment exchange (2CX), adiabatic approximation to the tissue homogeneity (AATH), and distributed parameter (DP) models. The following parameters were computed for each model: total blood flow (BF), pulmonary flow fraction (γ), pulmonary blood flow (BF-pa), systemic blood flow (BF-a), blood volume (BV), mean transit time (MTT), permeability-surface area product (PS), fractional interstitial volume (vi), extraction fraction (E), volume transfer constant (Ktrans) and efflux rate constant (kep). Results: Although the majority of patients had epitheloid histologies, kinetic parameter values varied across different models. One patient showed a higher total BF value in all models among the epitheloid histologies, although the γ value was varying among these different models. In one tumor with a large area of necrosis, the TK and ETK models showed higher E, Ktrans, and kep values and lower interstitial volume as compared to AATH and DP and 2CX models. Kinetic parameters such as BF-pa, BF-a, PS, Ktrans values were higher in surviving group compared to non-surviving group across most models. Conclusion: Dual-input tracer

  2. Prognostic Value of 68Ga-NOTA-RGD PET/CT for Predicting Disease-Free Survival for Patients With Breast Cancer Undergoing Neoadjuvant Chemotherapy and Surgery: A Comparison Study With Dynamic Contrast Enhanced MRI.

    PubMed

    Kim, Yong-Il; Yoon, Hai-Jeon; Paeng, Jin Chul; Cheon, Gi Jeong; Lee, Dong Soo; Chung, June-Key; Kim, E Edmund; Moon, Woo Kyung; Kang, Keon Wook

    2016-08-01

    We performed pretreatment angiogenesis imaging (Ga-NOTA-arginyl-glycyl-aspartic acid [RGD] PET/CT) to compare its prognostic value to dynamic contrast-enhanced (DCE) MRI in breast cancer patients. Forty-four female patients with stage II or III breast cancer (aged 47.3 ± 8.1 years) were prospectively enrolled and underwent Ga-NOTA-RGD PET/CT and DCE-MRI imaging. All patients received neoadjuvant chemotherapy and underwent surgery. With pretreatment Ga-NOTA-RGD PET/CT, SUVmax of the tumor in the torso (-T) and regional (-R) images were measured. With pretreatment DCE-MRI, the largest diameter of the tumor and maximum enhancement index (EImax; EImax = [highest signal / baseline signal] - 1) of the tumor were assessed. Ten patients (22.7%) were found to have breast cancer recurrence after 17.9 ± 11.2 months. The SUVmax-R (P = 0.017, cutoff >2.79) of Ga-NOTA-RGD PET/CT, the largest diameter of tumor (P = 0.017, cutoff >6.3 cm), and the EImax (P = 0.008, cutoff >5.38) of DCE-MRI showed significant results by univariate analysis. The 3-year disease-free survival of SUVmax-R was 91.7% versus 59.1% by Kaplan-Meier analysis (hazard ratio, 5.379). Multivariable analysis demonstrated that SUVmax-R with tumor diameter or EImax were the significant parameters. In addition, the combined parameters of SUVmax-R and EImax revealed better predictive value for prediction of breast cancer recurrence (75.0%) than each parameter of SUVmax-R (64.2%) and EImax (68.7%). Increased angiogenic activity of regional Ga-NOTA-RGD PET/CT (SUVmax-R) can be an early prognostic marker for the prediction of breast cancer recurrence.

  3. Organic Nitrate Maintains Bone Marrow Blood Perfusion in Ovariectomized Female Rats: A Dynamic, Contrast-Enhanced Magnetic Resonance Imaging (MRI) Study

    PubMed Central

    Wang, Yi-Xiang J.; Ko, Chun Hay; Griffith, James F.; Deng, Min; Wong, Hing Lok; Gu, Tao; Huang, Yu

    2012-01-01

    This study investigated the effects of nitrate on bone mineral density (BMD) and bone marrow perfusion in ovariectomized (OVX) female rats, and also the effects of nitrate on in vitro osteoblastic activity and osteoclastic differentiation of murine monocyte/macrophage RAW 264.7 cells. Female Sprague–Dawley rats were divided into OVX + nitrate group (isosorbide-5-mononitrate, ISM, 150 mg/kg/ day b.i.d), OVX + vehicle group, and control group. Lumbar spine CT bone densitometry and perfusion MRI were performed on the rats at baseline and week 8 post-OVX. The OVX rats’ BMD decreased by 22.5% ± 5.7% at week 8 (p < 0.001); while the OVX + ISM rats’ BMD decreased by 13.1% ± 2.7% (p < 0.001). The BMD loss difference between the two groups of rats was significant (p = 0.018). The OVX rats’ lumbar vertebral perfusion MRI maximum enhancement (Emax) decreased by 10.3% ± 5.0% at week 8 (p < 0.005), while in OVX + ISM rats, the Emax increased by 5.5% ± 6.9% (p > 0.05). The proliferation of osteoblast-like UMR-106 cells increased significantly with ISM treatment at 0.78 µM to 50 μM. Treatment of UMR-106 cells with ISM also stimulated the BrdU uptake. After the RAW 264.7 cells were co-treated with osteoclastogenesis inducer RANKL and 6.25 μM ~ 100 μM of ISM for 3 days, a trend of dose-dependent increase of osteoclast number was noted. PMID:24300395

  4. Targeted Multifunctional Nanoparticles cure and image Brain Tumors: Selective MRI Contrast Enhancement and Photodynamic Therapy

    NASA Astrophysics Data System (ADS)

    Kopelman, Raoul

    2008-03-01

    Aimed at targeted therapy and imaging of brain tumors, our approach uses targeted, multi-functional nano-particles (NP). A typical nano-particle contains a biologically inert, non-toxic matrix, biodegradable and bio-eliminable over a long time period. It also contains active components, such as fluorescent chemical indicators, photo-sensitizers, MRI contrast enhancement agents and optical imaging dyes. In addition, its surface contains molecular targeting units, e.g. peptides or antibodies, as well as a cloaking agent, to prevent uptake by the immune system, i.e. enabling control of the plasma residence time. These dynamic nano-platforms (DNP) contain contrast enhancement agents for the imaging (MRI, optical, photo-acoustic) of targeted locations, i.e. tumors. Added to this are targeted therapy agents, such as photosensitizers for photodynamic therapy (PDT). A simple protocol, for rats implanted with human brain cancer, consists of tail injection with DNPs, followed by 5 min red light illumination of the tumor region. It resulted in excellent cure statistics for 9L glioblastoma.

  5. Clinical performance of contrast enhanced abdominal pediatric MRI with fast combined parallel imaging compressed sensing reconstruction.

    PubMed

    Zhang, Tao; Chowdhury, Shilpy; Lustig, Michael; Barth, Richard A; Alley, Marcus T; Grafendorfer, Thomas; Calderon, Paul D; Robb, Fraser J L; Pauly, John M; Vasanawala, Shreyas S

    2014-07-01

    To deploy clinically, a combined parallel imaging compressed sensing method with coil compression that achieves a rapid image reconstruction, and assess its clinical performance in contrast-enhanced abdominal pediatric MRI. With Institutional Review Board approval and informed patient consent/assent, 29 consecutive pediatric patients were recruited. Dynamic contrast-enhanced MRI was acquired on a 3 Tesla scanner using a dedicated 32-channel pediatric coil and a three-dimensional SPGR sequence, with pseudo-random undersampling at a high acceleration (R = 7.2). Undersampled data were reconstructed with three methods: a traditional parallel imaging method and a combined parallel imaging compressed sensing method with and without coil compression. The three sets of images were evaluated independently and blindly by two radiologists at one siting, for overall image quality and delineation of anatomical structures. Wilcoxon tests were performed to test the hypothesis that there was no significant difference in the evaluations, and interobserver agreement was analyzed. Fast reconstruction with coil compression did not deteriorate image quality. The mean score of structural delineation of the fast reconstruction was 4.1 on a 5-point scale, significantly better (P < 0.05) than traditional parallel imaging (mean score 3.1). Fair to substantial interobserver agreement was reached in structural delineation assessment. A fast combined parallel imaging compressed sensing method is feasible in a pediatric clinical setting. Preliminary results suggest it may improve structural delineation over parallel imaging. © 2013 Wiley Periodicals, Inc.

  6. Clinical Applications of Contrast-Enhanced Perfusion MRI Techniques in Gliomas: Recent Advances and Current Challenges

    PubMed Central

    Liu, Heng; Tong, Haipeng; Wang, Sumei; Yang, Yizeng

    2017-01-01

    Gliomas possess complex and heterogeneous vasculatures with abnormal hemodynamics. Despite considerable advances in diagnostic and therapeutic techniques for improving tumor management and patient care in recent years, the prognosis of malignant gliomas remains dismal. Perfusion-weighted magnetic resonance imaging techniques that could noninvasively provide superior information on vascular functionality have attracted much attention for evaluating brain tumors. However, nonconsensus imaging protocols and postprocessing analysis among different institutions impede their integration into standard-of-care imaging in clinic. And there have been very few studies providing a comprehensive evidence-based and systematic summary. This review first outlines the status of glioma theranostics and tumor-associated vascular pathology and then presents an overview of the principles of dynamic contrast-enhanced MRI (DCE-MRI) and dynamic susceptibility contrast-MRI (DSC-MRI), with emphasis on their recent clinical applications in gliomas including tumor grading, identification of molecular characteristics, differentiation of glioma from other brain tumors, treatment response assessment, and predicting prognosis. Current challenges and future perspectives are also highlighted.

  7. Dynamic contrast-enhanced MRI in mouse tumors at 11.7 T: comparison of three contrast agents with different molecular weights to assess the early effects of combretastatin A4.

    PubMed

    Fruytier, A-C; Magat, J; Neveu, M-A; Karroum, O; Bouzin, C; Feron, O; Jordan, B; Cron, G O; Gallez, B

    2014-11-01

    Dynamic contrast-enhanced (DCE)-MRI is useful to assess the early effects of drugs acting on tumor vasculature, namely anti-angiogenic and vascular disrupting agents. Ultra-high-field MRI allows higher-resolution scanning for DCE-MRI while maintaining an adequate signal-to-noise ratio. However, increases in susceptibility effects, combined with decreases in longitudinal relaxivity of gadolinium-based contrast agents (GdCAs), make DCE-MRI more challenging at high field. The aim of this work was to explore the feasibility of using DCE-MRI at 11.7 T to assess the tumor hemodynamics of mice. Three GdCAs possessing different molecular weights (gadoterate: 560 Da, 0.29 mmol Gd/kg; p846: 3.5 kDa, 0.10 mmol Gd/kg; and p792: 6.47 kDa, 0.15 mmol Gd/kg) were compared to see the influence of the molecular weight in the highlight of the biologic effects induced by combretastatin A4 (CA4). Mice bearing transplantable liver tumor (TLT) hepatocarcinoma were divided into two groups (n = 5-6 per group and per GdCA): a treated group receiving 100 mg/kg CA4, and a control group receiving vehicle. The mice were imaged at 11.7 T with a T1 -weighted FLASH sequence 2 h after the treatment. Individual arterial input functions (AIFs) were computed using phase imaging. These AIFs were used in the Extended Tofts Model to determine K(trans) and vp values. A separate immunohistochemistry study was performed to assess the vascular perfusion and the vascular density. Phase imaging was used successfully to measure the AIF for the three GdCAs. In control groups, an inverse relationship between the molecular weight of the GdCA and K(trans) and vp values was observed. K(trans) was significantly decreased in the treated group compared with the control group for each GdCA. DCE-MRI at 11.7 T is feasible to assess tumor hemodynamics in mice. With K(trans) , the three GdCAs were able to track the early vascular effects induced by CA4 treatment.

  8. Tumor Metabolism and Perfusion in Head and Neck Squamous Cell Carcinoma: Pretreatment Multimodality Imaging With {sup 1}H Magnetic Resonance Spectroscopy, Dynamic Contrast-Enhanced MRI, and [{sup 18}F]FDG-PET

    SciTech Connect

    Jansen, Jacobus F.A.; Schoeder, Heiko; Lee, Nancy Y.; Stambuk, Hilda E.; Wang Ya; Fury, Matthew G.; Patel, Senehal G.; Pfister, David G.; Shah, Jatin P.; Koutcher, Jason A.; Shukla-Dave, Amita

    2012-01-01

    Purpose: To correlate proton magnetic resonance spectroscopy ({sup 1}H-MRS), dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), and {sup 18}F-labeled fluorodeoxyglucose positron emission tomography ([{sup 18}F]FDG PET) of nodal metastases in patients with head and neck squamous cell carcinoma (HNSCC) for assessment of tumor biology. Additionally, pretreatment multimodality imaging was evaluated for its efficacy in predicting short-term response to treatment. Methods and Materials: Metastatic neck nodes were imaged with {sup 1}H-MRS, DCE-MRI, and [{sup 18}F]FDG PET in 16 patients with newly diagnosed HNSCC, before treatment. Short-term patient radiological response was evaluated at 3 to 4 months. Correlations among {sup 1}H-MRS (choline concentration relative to water [Cho/W]), DCE-MRI (volume transfer constant [K{sup trans}]; volume fraction of the extravascular extracellular space [v{sub e}]; and redistribution rate constant [k{sub ep}]), and [{sup 18}F]FDG PET (standard uptake value [SUV] and total lesion glycolysis [TLG]) were calculated using nonparametric Spearman rank correlation. To predict short-term responses, logistic regression analysis was performed. Results: A significant positive correlation was found between Cho/W and TLG ({rho} = 0.599; p = 0.031). Cho/W correlated negatively with heterogeneity measures of standard deviation std(v{sub e}) ({rho} = -0.691; p = 0.004) and std(k{sub ep}) ({rho} = -0.704; p = 0.003). Maximum SUV (SUVmax) values correlated strongly with MRI tumor volume ({rho} = 0.643; p = 0.007). Logistic regression indicated that std(K{sup trans}) and SUVmean were significant predictors of short-term response (p < 0.07). Conclusion: Pretreatment multimodality imaging using {sup 1}H-MRS, DCE-MRI, and [{sup 18}F]FDG PET is feasible in HNSCC patients with nodal metastases. Additionally, combined DCE-MRI and [{sup 18}F]FDG PET parameters were predictive of short-term response to treatment.

  9. High Temporospatial Resolution Dynamic Contrast Enhanced (DCE) Wrist MRI with Variable-Density Pseudo-Random CIRcular Cartesian UnderSampling (CIRCUS) Acquisition: Evaluation of Perfusion in Rheumatoid Arthritis Patients

    PubMed Central

    Liu, Jing; Pedoia, Valentina; Heilmeier, Ursula; Ku, Eric; Su, Favian; Khanna, Sameer; Imboden, John; Graf, Jonathan; Link, Thomas; Li, Xiaojuan

    2016-01-01

    This study is to evaluate highly accelerated 3D dynamic contrast-enhanced (DCE) wrist MRI for assessment of perfusion in rheumatoid arthritis (RA) patients. A pseudo-random variable-density undersampling strategy, CIRcular Cartesian UnderSampling (CIRCUS), was combined with k-t SPARSE-SENSE reconstruction to achieve a highly accelerated 3D DCE wrist MRI. Two healthy volunteers and ten RA patients were studied. Two patients were on methotrexate (MTX) only (Group I) and the other eight were treated with a combination therapy of MTX and Anti-Tumour Necrosis Factor (TNF) therapy (Group II). Patients were scanned at baseline and 3-month follow-up. DCE MR images were used to evaluate perfusion in synovitis and bone marrow edema pattern in the RA wrist joints. A series of perfusion parameters were derived and compared with clinical disease activity scores of 28 joints (DAS28). 3D DCE wrist MR images were obtained with a spatial resolution of 0.3×0.3×1.5mm3 and temporal resolution of 5 s (with an acceleration factor of 20). The derived perfusion parameters, most notably, transition time (dT) of synovitis, showed significant negative correlations with DAS28-ESR (r=-0.80, p<0.05) and DAS28-CRP (r=-0.87, p<0.05) at baseline and also correlated significantly with treatment responses evaluated by clinical score changes between baseline and 3-month follow-up (with DAS28-ESR: r=-0.79, p<0.05, and DAS28-CRP: r=-0.82, p<0.05). Highly accelerated 3D DCE wrist MRI with improved temporospatial resolution has been achieved in RA patients and provides accurate assessment of neovascularization and perfusion in RA joints, showing promise as a potential tool for evaluating treatment responses. PMID:26608949

  10. Breast MRI contrast enhancement kinetics of normal parenchyma correlate with presence of breast cancer.

    PubMed

    Wu, Shandong; Berg, Wendie A; Zuley, Margarita L; Kurland, Brenda F; Jankowitz, Rachel C; Nishikawa, Robert; Gur, David; Sumkin, Jules H

    2016-07-22

    We investigated dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) contrast enhancement kinetic variables quantified from normal breast parenchyma for association with presence of breast cancer, in a case-control study. Under a Health Insurance Portability and Accountability Act compliant and Institutional Review Board-approved protocol, DCE-MRI scans of the contralateral breasts of 51 patients with cancer and 51 controls (matched by age and year of MRI) with biopsy-proven benign lesions were retrospectively analyzed. Applying fully automated computer algorithms on pre-contrast and multiple post-contrast MR sequences, two contrast enhancement kinetic variables, wash-in slope and signal enhancement ratio, were quantified from normal parenchyma of the contralateral breasts of both patients with cancer and controls. Conditional logistic regression was employed to assess association between these two measures and presence of breast cancer, with adjustment for other imaging factors including mammographic breast density and MRI background parenchymal enhancement (BPE). The area under the receiver operating characteristic curve (AUC) was used to assess the ability of the kinetic measures to distinguish patients with cancer from controls. When both kinetic measures were included in conditional logistic regression analysis, the odds ratio for breast cancer was 1.7 (95 % CI 1.1, 2.8; p = 0.017) for wash-in slope variance and 3.5 (95 % CI 1.2, 9.9; p = 0.019) for signal enhancement ratio volume, respectively. These odds ratios were similar on respective univariate analysis, and remained significant after adjustment for menopausal status, family history, and mammographic density. While percent BPE was associated with an odds ratio of 3.1 (95 % CI 1.2, 7.9; p = 0.018), in multivariable analysis of the three measures, percent BPE was non-significant (p = 0.897) and the two kinetics measures remained significant. For the differentiation of patients

  11. Role of High-Resolution Dynamic Contrast-Enhanced MRI with Golden-Angle Radial Sparse Parallel Reconstruction to Identify the Normal Pituitary Gland in Patients with Macroadenomas.

    PubMed

    Sen, R; Sen, C; Pack, J; Block, K T; Golfinos, J G; Prabhu, V; Boada, F; Gonen, O; Kondziolka, D; Fatterpekar, G

    2017-06-01

    Preoperative localization of the pituitary gland with imaging in patients with macroadenomas has been inadequately explored. The pituitary gland enhancing more avidly than a macroadenoma has been described in the literature. Taking advantage of this differential enhancement pattern, our aim was to evaluate the role of high-resolution dynamic MR imaging with golden-angle radial sparse parallel reconstruction in localizing the pituitary gland in patients undergoing trans-sphenoidal resection of a macroadenoma. A retrospective study was performed in 17 patients who underwent trans-sphenoidal surgery for pituitary macroadenoma. Radial volumetric interpolated brain examination sequences with golden-angle radial sparse parallel technique were obtained. Using an ROI-based method to obtain signal-time curves and permeability measures, 3 separate readers identified the normal pituitary gland distinct from the macroadenoma. The readers' localizations were then compared with the intraoperative location of the gland. Statistical analyses were performed to assess the interobserver agreement and correlation with operative findings. The normal pituitary gland was found to have steeper enhancement-time curves as well as higher peak enhancement values compared with the macroadenoma (P < .001). Interobserver agreement was almost perfect in all 3 planes (κ = 0.89). In the 14 cases in which the gland was clearly identified intraoperatively, the correlation between the readers' localization and the true location derived from surgery was also nearly perfect (κ = 0.95). This study confirms our ability to consistently and accurately identify the normal pituitary gland in patients with macroadenomas with the golden-angle radial sparse parallel technique with quantitative permeability measurements and enhancement-time curves. © 2017 by American Journal of Neuroradiology.

  12. Temporal resolution improvement of calibration-free dynamic contrast-enhanced MRI with compressed sensing optimized turbo spin echo: The effects of replacing turbo factor with compressed sensing accelerations.

    PubMed

    Han, SoHyun; Cho, HyungJoon

    2016-07-01

    To enhance the temporal resolution of calibration-free dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) by implementing compressed sensing assisted turbo spin echo (CS-TSE) acquisition. The dynamic sparse sampling variables including acceleration factor, randomized phase encoding distributions, and reconstruction constraints were retrospectively optimized by minimizing the difference from fully sampled dynamic TSE at 7T. The degree of contrast enhancement and the calibration-free quantification of gadolinium (Gd) concentration were evaluated among fast low-angle shot (FLASH), TSE, and CS-TSE acquisitions with multiple phantoms (0.1-6 mM). The kidney-feeding in vivo arterial input function (AIF) was measured at multiple administration doses (0.1-0.3 mmol/kg) to evaluate the benefit of CS-TSE for quantifying rapidly changing high Gd concentrations in C57BL/6 mice (n = 22). In phantom studies, both calibration-free and calibrated conversions estimated equivalent Gd concentrations for CS-TSE (scatterplot slope = 0.9801, r(2)  = 0.9998, P < 0.001). In in vivo studies, 4-fold higher temporal resolution (0.96 sec) of CS-TSE over the corresponding TSE enabled robust measurement of AIF first-pass peak and resulting peak enhancement with CS-TSE were observed, with 1.1439- and 2.1258-fold times higher than those with TSE and FLASH acquisitions, respectively, at the 0.1 mmol/kg dose. Calibration-free estimates of AIF peak concentration with CS-TSE were in good agreement with the calibrated approach at multiple administration doses (scatterplot slope = 0.7800, r(2)  = 0.8014, P < 0.001). Temporal resolution-improved CS-TSE provides practical subsecond (0.96s) calibration-free dynamic MR quantification of high Gd concentration. J. Magn. Reson. Imaging 2016;44:138-147. © 2015 Wiley Periodicals, Inc.

  13. Non-contrast enhanced MRI for evaluation of breast lesions: comparison of non-contrast enhanced high spectral and spatial resolution (HiSS) images vs. contrast enhanced fat-suppressed images

    PubMed Central

    Medved, Milica; Fan, Xiaobing; Abe, Hiroyuki; Newstead, Gillian M.; Wood, Abbie M.; Shimauchi, Akiko; Kulkarni, Kirti; Ivancevic, Marko K.; Pesce, Lorenzo L.; Olopade, Olufunmilayo I.; Karczmar, Gregory S.

    2011-01-01

    RATIONALE AND OBJECTIVES To evaluate high spectral and spatial resolution (HiSS) MRI for diagnosis of breast cancer without injection of contrast media: to compare the performance of pre-contrast HiSS images to conventional contrast-enhanced fat-suppressed T1-weighted images, based on image quality and in the task of classifying benign and malignant breast lesions. MATERIALS AND METHODS Ten benign and 44 malignant lesions were imaged at 1.5T with HiSS (pre-contrast administration) and conventional fat-suppressed imaging (3–10 min post-contrast). This set of 108 images, after randomization, was evaluated by three experienced radiologists blinded to the imaging technique. BIRADS morphologic criteria (lesion shape; lesion margin; internal signal intensity pattern) and final assessment were used to measure reader performance. Image quality was evaluated based on boundary delineation and quality of fat suppression. An overall probability of malignancy was assigned to each lesion for HiSS and conventional images separately. RESULTS On boundary delineation and quality of fat-suppression, pre-contrast HiSS scored similarly to conventional post-contrast MRI. On benign vs. malignant lesion separation, there was no statistically significant difference in ROC performance between HiSS and conventional MRI, and HiSS met a reasonable non-inferiority condition. CONCLUSION Pre-contrast HiSS imaging is a promising approach for showing lesion morphology without blooming and other artifacts caused by contrast agents. HiSS images could be used to guide subsequent dynamic contrast-enhanced MRI scans, to maximize spatial and temporal resolution in suspicious regions. HiSS MRI without contrast agent injection may be particularly important for patients at risk for contrast-induced nephrogenic systemic fibrosis, or allergic reactions. PMID:21962476

  14. Statistical clustering of parametric maps from dynamic contrast enhanced MRI and an associated decision tree model for non-invasive tumour grading of T1b solid clear cell renal cell carcinoma.

    PubMed

    Xi, Yin; Yuan, Qing; Zhang, Yue; Madhuranthakam, Ananth J; Fulkerson, Michael; Margulis, Vitaly; Brugarolas, James; Kapur, Payal; Cadeddu, Jeffrey A; Pedrosa, Ivan

    2017-07-05

    To apply a statistical clustering algorithm to combine information from dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) into a single tumour map to distinguish high-grade from low-grade T1b clear cell renal cell carcinoma (ccRCC). This prospective, Institutional Review Board -approved, Health Insurance Portability and Accountability Act -compliant study included 18 patients with solid T1b ccRCC who underwent pre-surgical DCE MRI. After statistical clustering of the parametric maps of the transfer constant between the intravascular and extravascular space (K (trans) ), rate constant (K ep ) and initial area under the concentration curve (iAUC) with a fuzzy c-means (FCM) algorithm, each tumour was segmented into three regions (low/medium/high active areas). Percentages of each region and tumour size were compared to tumour grade at histopathology. A decision-tree model was constructed to select the best parameter(s) to predict high-grade ccRCC. Seven high-grade and 11 low-grade T1b ccRCCs were included. High-grade histology was associated with higher percent high active areas (p = 0.0154) and this was the only feature selected by the decision tree model, which had a diagnostic performance of 78% accuracy, 86% sensitivity, 73% specificity, 67% positive predictive value and 89% negative predictive value. The FCM integrates multiple DCE-derived parameter maps and identifies tumour regions with unique pharmacokinetic characteristics. Using this approach, a decision tree model using criteria beyond size to predict tumour grade in T1b ccRCCs is proposed. • Tumour size did not correlate with tumour grade in T1b ccRCC. • Tumour heterogeneity can be analysed using statistical clustering via DCE-MRI parameters. • High-grade ccRCC has a larger percentage of high active area than low-grade ccRCCs. • A decision-tree model offers a simple way to differentiate high/low-grade ccRCCs.

  15. Contrast-Enhanced Abdominal MRI for Suspected Appendicitis: How We Do It

    PubMed Central

    Kinner, Sonja; Repplinger, Michael D.; Pickhardt, Perry J.; Reeder, Scott B.

    2017-01-01

    OBJECTIVE The purpose of this article is to describe our approach to contrast-enhanced abdominal MRI in patients with nontraumatic abdominal pain and suspected appendicitis. We aim to share our experience on the advantages, pearls, and pitfalls of MRI in this clinical setting, in comparison with CT and ultrasound. CONCLUSION We present some typical cases of appendicitis and alternative diagnoses in patients presenting with acute nontraumatic abdominal pain. PMID:27065072

  16. Dynamic contrast-enhanced MRI to predict response to vinorelbine-cisplatin alone or with rh-endostatin in patients with non-small cell lung cancer and bone metastases: a randomised, double-blind, placebo-controlled trial.

    PubMed

    Zhang, Rui; Wang, Zhi-Yu; Li, Yue-Hua; Lu, Yao-Hong; Wang, Shuai; Yu, Wen-Xi; Zhao, Hui

    2016-10-01

    Metastatic bone disease is a frequent complication of advanced non-small-cell lung cancer and causes skeletal-related events which result in a poor prognosis. A standard method to assess the therapeutic response of bone metastases does not currently exist. We used dynamic contrast-enhanced MRI to obtain quantitative measures to assess the suitability of this technique to gauge therapeutic response to vinorelbine-cisplatin plus rh-endostatinfor previously untreated non-small cell lung cancer with bone metastases. We did a phase 4, randomised, prospective, double-blind, placebo-controlled clinical trial in Shanghai Sixth People's Hospital, Shanghai, China. Inclusion criteria were non-small-cell lung cancer patients with bone metastases confirmed by pathology or cytology; available imaging data of pelvic metastatic lesions; aged 18 to 75 years old; expected survival at least 3 months; not receiving taxane, bevacizumab, thalidomide, rh-endostatin, or bisphosphonate; not having radiation therapy within 3 months of enrollment into study; normal results of routine blood tests, liver and kidney function, and electrocardiogram; absence of cardiovascular disease, autoimmune disease, vasculitis, severe infection, diabetes, and other concomitant disease; and signed informed consent. Exclusion criteria were receiving granulocyte colony stimulating factor or granulocyte-macrophage colony stimulating factor during chemotherapy, intolerance to adverse reaction, and allergy to contrast agents. Patients were randomly assigned to treatment group and control group at a ratio of 2:1 by random code generation by an independent biostatistician in a double-blind fashion. Participants received either vinorelbine-cisplatin plus rh-endostatin or vinorelbine-cisplatin plus placebo. Vinorelbine (25 mg/m(2)) and cisplatin (75 mg/m(2)) were administered intravenously on the first day of a 21 day cycle. Patients received rh-endostatin (7·5 mg/m(2)) or placebo on days 1-14 of a cycle. The primary

  17. Nonrigid registration and classification of the kidneys in 3D dynamic contrast enhanced (DCE) MR images

    NASA Astrophysics Data System (ADS)

    Yang, Xiaofeng; Ghafourian, Pegah; Sharma, Puneet; Salman, Khalil; Martin, Diego; Fei, Baowei

    2012-02-01

    We have applied image analysis methods in the assessment of human kidney perfusion based on 3D dynamic contrast-enhanced (DCE) MRI data. This approach consists of 3D non-rigid image registration of the kidneys and fuzzy C-mean classification of kidney tissues. The proposed registration method reduced motion artifacts in the dynamic images and improved the analysis of kidney compartments (cortex, medulla, and cavities). The dynamic intensity curves show the successive transition of the contrast agent through kidney compartments. The proposed method for motion correction and kidney compartment classification may be used to improve the validity and usefulness of further model-based pharmacokinetic analysis of kidney function.

  18. Metabolomics of Breast Cancer Using High-Resolution Magic Angle Spinning Magnetic Resonance Spectroscopy: Correlations with 18F-FDG Positron Emission Tomography-Computed Tomography, Dynamic Contrast-Enhanced and Diffusion-Weighted Imaging MRI.

    PubMed

    Yoon, Haesung; Yoon, Dahye; Yun, Mijin; Choi, Ji Soo; Park, Vivian Youngjean; Kim, Eun-Kyung; Jeong, Joon; Koo, Ja Seung; Yoon, Jung Hyun; Moon, Hee Jung; Kim, Suhkmann; Kim, Min Jung

    2016-01-01

    Our goal in this study was to find correlations between breast cancer metabolites and conventional quantitative imaging parameters using high-resolution magic angle spinning (HR-MAS) magnetic resonance spectroscopy (MRS) and to find breast cancer subgroups that show high correlations between metabolites and imaging parameters. Between August 2010 and December 2013, we included 53 female patients (mean age 49.6 years; age range 32-75 years) with a total of 53 breast lesions assessed by the Breast Imaging Reporting and Data System. They were enrolled under the following criteria: breast lesions larger than 1 cm in diameter which 1) were suspicious for malignancy on mammography or ultrasound (US), 2) were pathologically confirmed to be breast cancer with US-guided core-needle biopsy (CNB) 3) underwent 3 Tesla MRI with dynamic contrast-enhanced (DCE) and diffusion-weighted imaging (DWI) and positron emission tomography-computed tomography (PET-CT), and 4) had an attainable immunohistochemistry profile from CNB. We acquired spectral data by HR-MAS MRS with CNB specimens and expressed the data as relative metabolite concentrations. We compared the metabolites with the signal enhancement ratio (SER), maximum standardized FDG uptake value (SUV max), apparent diffusion coefficient (ADC), and histopathologic prognostic factors for correlation. We calculated Spearman correlations and performed a partial least squares-discriminant analysis (PLS-DA) to further classify patient groups into subgroups to find correlation differences between HR-MAS spectroscopic values and conventional imaging parameters. In a multivariate analysis, the PLS-DA models built with HR-MAS MRS metabolic profiles showed visible discrimination between high and low SER, SUV, and ADC. In luminal subtype breast cancer, compared to all cases, high SER, ADV, and SUV were more closely clustered by visual assessment. Multiple metabolites were correlated with SER and SUV in all cases. Multiple metabolites showed

  19. Application of FLASH-3D dynamic contrast-enhanced imaging for diagnosis of endometrial carcinoma.

    PubMed

    Du, Lixin; Li, Xiaohu; Qiu, Xixiong; Liu, Xiaolei; Wang, Yuli; Yu, Yongqiang

    2016-10-01

    To investigate the application and value of fast low-angle shot three-dimensional (FLASH-3D) dynamic contrast-enhanced MRI for the pre-operative staging of endometrial carcinoma. This prospective study enrolled 48 patients with complete clinical data and pathologically confirmed endometrial carcinoma from July 2012 to March 2014. After routine MRI examination, subjects underwent FLASH-3D dynamic contrast-enhanced examination. The dynamically enhanced features of the uterine wall and tumours were analyzed. FLASH-3D pre-operative staging and findings in relation to myometrial invasion were compared with post-operative pathological results in a double-blind manner. There were 48 cases of pathologically proven endometrial carcinoma, including 34 patients with Stage I (Stage Ia 22 cases and Stage Ib 12 cases), 9 with Stage II, 3 with Stage III and 2 with Stage IV. The staging accuracy for endometrial carcinoma was 81% (39/48) using FLASH-3D dynamic contrast-enhanced sequences. The sensitivity, specificity and accuracy for the determination of deep myometrial invasion were 84%, 90% and 88%, respectively. There was no significant difference compared with the results of post-operative pathology (p > 0.05). FLASH-3D dynamic contrast-enhanced imaging may be valuable for the early diagnosis and pre-operative staging of endometrial carcinoma. Its high accuracy for assessing deep myometrial invasion makes FLASH-3D imaging an important tool for selecting the optimal therapeutic protocol and for prognosis estimation. FLASH-3D can significantly improve the accurate assessment of the depth of tumour invasion into the myometrium and may thus help to guide clinical surgical choices and post-operative evaluation. FLASH-3D is thus a promising technique for the routine examination of female pelvic tumours.

  20. Dynamic contrast-enhanced MR imaging features of the normal central zone of the prostate.

    PubMed

    Hansford, Barry G; Karademir, Ibrahim; Peng, Yahui; Jiang, Yulei; Karczmar, Gregory; Thomas, Stephen; Yousuf, Ambereen; Antic, Tatjana; Eggener, Scott; Oto, Aytekin

    2014-05-01

    Evaluate qualitative dynamic contrast-enhanced magnetic resonance imaging (MRI) characteristics of normal central zone based on recently described central zone MRI features. Institutional review board-approved, Health Insurance Portability and Accountability Act compliant study, 59 patients with prostate cancer, histopathology proven to not involve central zone or prostate base, underwent endorectal MRI before prostatectomy. Two readers independently reviewed T2-weighted images and apparent diffusion coefficient (ADC) maps identifying normal central zone based on low signal intensity and location. Next, two readers drew bilateral central zone regions of interest on dynamic contrast-enhanced magnetic resonance images in consensus and independently recorded enhancement curve types as type 1 (progressive), type 2 (plateau), and type 3 (wash-out). Identification rates of normal central zone and enhancement curve type were recorded and compared for each reviewer. The institutional review board waiver was approved and granted 05/2010. Central zone identified in 92%-93% of patients on T2-weighted images and 78%-88% on ADC maps without significant difference between identification rates (P = .63 and P = .15 and inter-reader agreement (κ) is 0.64 and 0.29, for T2-weighted images and ADC maps, respectively). All central zones were rated either curve type 1 or curve type 2 by both radiologists. No statistically significant difference between the two radiologists (P = .19) and inter-reader agreement was κ = 0.37. Normal central zone demonstrates either type 1 (progressive) or type 2 (plateau) enhancement curves on dynamic contrast-enhanced MRI that can be potentially useful to differentiate central zone from prostate cancer that classically demonstrates a type 3 (wash-out) enhancement curve. Copyright © 2014 AUR. Published by Elsevier Inc. All rights reserved.

  1. Clinical Utility of Multimodality Imaging with Dynamic Contrast-Enhanced MRI, Diffusion-Weighted MRI, and 18F-FDG PET/CT for the Prediction of Neck Control in Oropharyngeal or Hypopharyngeal Squamous Cell Carcinoma Treated with Chemoradiation

    PubMed Central

    Chan, Sheng-Chieh; Lin, Yu-Chun; Yen, Tzu-Chen; Liao, Chun-Ta; Chang, Joseph Tung-Chieh; Ko, Sheung-Fat; Wang, Hung- Ming; Chang, Chee-Jen; Wang, Jiun-Jie

    2014-01-01

    The clinical usefulness of pretreatment imaging techniques for predicting neck control in patients with oropharyngeal or hypopharyngeal squamous cell carcinoma (OHSCC) treated with chemoradiation remains unclear. In this prospective study, we investigated the role of pretreatment dynamic contrast-enhanced perfusion MR imaging (DCE-PWI), diffusion-weighted MR imaging (DWI), and [18F]fluorodeoxyglucose-positron emission tomography (18F-FDG PET)/CT derived imaging markers for the prediction of neck control in OHSCC patients treated with chemoradiation. Patients with untreated OHSCC scheduled for chemoradiation between August, 2010 and July, 2012 were eligible for the study. Clinical variables and the following imaging parameters of metastatic neck lymph nodes were examined in relation to neck control: transfer constant, volume of blood plasma, and volume of extracellular extravascular space (Ve) on DCE-PWI; apparent diffusion coefficient (ADC) on DWI; maximum standardized uptake value, metabolic tumor volume, and total lesion glycolysis on 18F-FDG PET/CT. There were 69 patients (37 with oropharynx SCC and 32 with hypopharynx SCC) with successful pretreatment DCE-PWI and DWI available for analysis. After a median follow-up of 31 months, 25 (36.2%) participants had neck failure. Multivariate analysis identified hemoglobin level <14.3 g/dL (P = 0.019), Ve <0.23 (P = 0.040), and ADC >1.14×10−3 mm2/s (P = 0.003) as independent prognostic factors for 3-year neck control. A prognostic scoring system was formulated by summing up the three significant predictors of neck control. Patients with scores of 2–3 had significantly poorer neck control and overall survival rates than patients with scores of 0–1. We conclude that hemoglobin levels, Ve, and ADC are independent pretreatment prognostic factors for neck control in OHSCC treated with chemoradiation. Their combination may identify a subgroup of patients at high risk of developing neck failure. PMID:25531391

  2. Soft-Tissue Tumor Contrast Enhancement Patterns: Diagnostic Value and Comparison Between Ultrasound and MRI.

    PubMed

    Gruber, Leonhard; Loizides, Alexander; Luger, Anna K; Glodny, Bernhard; Moser, Patrizia; Henninger, Benjamin; Gruber, Hannes

    2017-02-01

    The purpose of this study was to assess and compare contrast-enhanced ultrasound and MRI patterns in the diagnosis of soft-tissue masses. Two hundred fifty-five consecutively registered patients with histologically confirmed soft-tissue masses were included in this retrospective study. The diagnostic properties of four predefined contrast enhancement (CE) patterns were assessed, and logistic regression analysis was performed to determine the correlation between diagnosis and CE pattern, lesion size, and patient age and sex. The influence of lesion size on the occurrence of inhomogeneous CE patterns in malignancies was also determined. Homogeneous CE patterns were highly specific for benignity, and inhomogeneous CE was moderately specific for malignancy in both ultrasound and MRI. A combination of homogeneous and inhomogeneous CE patterns led to 88.3% and 88.7% sensitivity, 66.7% and 59.7% specificity, 73.4% and 68.2% correct classification, 54.6% and 47.8% positive predictive value, 92.6% and 92.7% negative predictive value, 2.65 and 2.20 positive likelihood ratio, and 0.18 and 0.19 negative likelihood ratio for contrast-enhanced ultrasound and contrast-enhanced MRI. Cases with homogeneous CE in either ultrasound or MRI also were predominantly benign. The occurrence of inhomogeneous CE in malignant lesions increased with size. CE patterns in ultrasound and MRI offer additional information about the differentiation of an unknown soft-tissue mass. The results of this study showed that homogeneous or absent CE was specific for benign differentiation and that heterogeneous CE was linked to malignancy. The routine analysis of CE patterns should increase diagnostic reliability in unclear soft-tissue masses.

  3. Comparison Between Perfusion Computed Tomography and Dynamic Contrast-Enhanced Magnetic Resonance Imaging in Rectal Cancer

    SciTech Connect

    Kierkels, Roel G.J.; Backes, Walter H.; Janssen, Marco H.M.; Buijsen, Jeroen; Beets-Tan, Regina G.H.; Lambin, Philippe; Lammering, Guido; Oellers, Michel C.; Aerts, Hugo J.W.L.

    2010-06-01

    Purpose: To compare pretreatment scans with perfusion computed tomography (pCT) vs. dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in rectal tumors. Methods and Materials: Nineteen patients diagnosed with rectal cancer were included in this prospective study. All patients underwent both pCT and DCE-MRI. Imaging was performed on a dedicated 40-slice CT-positron emission tomography system and a 3-T MRI system. Dynamic contrast enhancement was measured in tumor tissue and the external iliac artery. Tumor perfusion was quantified in terms of pharmacokinetic parameters: transfer constant K{sup trans}, fractional extravascular-extracellular space v{sub e}, and fractional plasma volume v{sub p}. Pharmacokinetic parameter values and their heterogeneity (by 80% quantile value) were compared between pCT and DCE-MRI. Results: Tumor K{sup trans} values correlated significantly for the voxel-by-voxel-derived median (Kendall's tau correlation, tau = 0.81, p < 0.001) and 80% quantile (tau = 0.54, p = 0.04), as well as for the averaged uptake (tau = 0.58, p = 0.03). However, no significant correlations were found for v{sub e} and v{sub p} derived from the voxel-by-voxel-derived median and 80% quantile and derived from the averaged uptake curves. Conclusions: This study demonstrated for the first time that pCT provides K{sup trans} values comparable to those of DCE-MRI. However, no correlation was found for the v{sub e} and v{sub p} parameters between CT and MRI. Computed tomography can serve as an alternative modality to MRI for the in vivo evaluation of tumor angiogenesis in terms of the transfer constant K{sup trans}.

  4. Dynamic Contrast-Enhanced CT in Patients with Pancreatic Cancer

    PubMed Central

    Eriksen, Rie Ø.; Strauch, Louise S.; Sandgaard, Michael; Kristensen, Thomas S.; Nielsen, Michael B.; Lauridsen, Carsten A.

    2016-01-01

    The aim of this systematic review is to provide an overview of the use of Dynamic Contrast-enhanced Computed Tomography (DCE-CT) in patients with pancreatic cancer. This study was composed according to the PRISMA guidelines 2009. The literature search was conducted in PubMed, Cochrane Library, EMBASE, and Web of Science databases to identify all relevant publications. The QUADAS-2 tool was implemented to assess the risk of bias and applicability concerns of each included study. The initial literature search yielded 483 publications. Thirteen articles were included. Articles were categorized into three groups: nine articles concerning primary diagnosis or staging, one article about tumor response to treatment, and three articles regarding scan techniques. In exocrine pancreatic tumors, measurements of blood flow in eight studies and blood volume in seven studies were significantly lower in tumor tissue, compared with measurements in pancreatic tissue outside of tumor, or normal pancreatic tissue in control groups of healthy volunteers. The studies were heterogeneous in the number of patients enrolled and scan protocols. Perfusion parameters measured and analyzed by DCE-CT might be useful in the investigation of characteristic vascular patterns of exocrine pancreatic tumors. Further clinical studies are desired for investigating the potential of DCE-CT in pancreatic tumors. PMID:27608045

  5. Dynamic Contrast-Enhanced CT in Patients with Pancreatic Cancer.

    PubMed

    Eriksen, Rie Ø; Strauch, Louise S; Sandgaard, Michael; Kristensen, Thomas S; Nielsen, Michael B; Lauridsen, Carsten A

    2016-09-06

    The aim of this systematic review is to provide an overview of the use of Dynamic Contrast-enhanced Computed Tomography (DCE-CT) in patients with pancreatic cancer. This study was composed according to the PRISMA guidelines 2009. The literature search was conducted in PubMed, Cochrane Library, EMBASE, and Web of Science databases to identify all relevant publications. The QUADAS-2 tool was implemented to assess the risk of bias and applicability concerns of each included study. The initial literature search yielded 483 publications. Thirteen articles were included. Articles were categorized into three groups: nine articles concerning primary diagnosis or staging, one article about tumor response to treatment, and three articles regarding scan techniques. In exocrine pancreatic tumors, measurements of blood flow in eight studies and blood volume in seven studies were significantly lower in tumor tissue, compared with measurements in pancreatic tissue outside of tumor, or normal pancreatic tissue in control groups of healthy volunteers. The studies were heterogeneous in the number of patients enrolled and scan protocols. Perfusion parameters measured and analyzed by DCE-CT might be useful in the investigation of characteristic vascular patterns of exocrine pancreatic tumors. Further clinical studies are desired for investigating the potential of DCE-CT in pancreatic tumors.

  6. Gadolinium Contrast Enhancement Improves Confidence in Diagnosing Recurrent Soft Tissue Sarcoma by MRI.

    PubMed

    Chou, Shinn-Huey S; Hippe, Daniel S; Lee, Amie Y; Scherer, Kurt; Porrino, Jack A; Davidson, Darin J; Chew, Felix S; Ha, Alice S

    2017-05-01

    To determine how utilization of postgadolinium magnetic resonance imaging (MRI) influenced reader accuracy and confidence at identifying postoperative soft tissue sarcoma (STS) recurrence among readers with various levels of expertise. This retrospective study was institutional review board approved and Health Insurance Portability and Accountability Act compliant. Postoperative MRI from 26 patients with prior STS resection (13 patients with confirmed recurrence, 13 without recurrence) was reviewed. Four blinded readers of varying expertise (radiology resident, fellow, attending, and orthopedic oncologist) initially evaluated only the precontrast images and rated each MRI for recurrence on a 5-point confidence scale. Assessment was repeated with the addition of contrast-enhanced sequences. Diagnostic accuracy based on confidence ratings was evaluated using the area under the receiver operating characteristic curve (AUC). Changes in confidence ratings were calculated using Wilcoxon signed-rank test. All readers demonstrated good diagnostic accuracy both with and without contrast-enhanced images (AUC >0.98 for each reader). When contrast-enhanced images were made available, the resident recorded improved confidence with both assigning (P = 0.031) and excluding recurrence (P = 0.006); the fellow showed improved confidence only with assigning recurrence (P = 0.015); and the surgeon showed improved confidence in excluding recurrence (P = 0.003). The addition of contrast-enhanced images did not significantly influence the diagnostic confidence of the attending radiologist. Diagnostic accuracy of MRI was excellent in evaluating postoperative STS recurrence, and reader confidence improved depending on expertise when postgadolinium imaging was included in the assessment. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  7. Casein-coated iron oxide nanoparticles for high MRI contrast enhancement and efficient cell targeting.

    PubMed

    Huang, Jing; Wang, Liya; Lin, Run; Wang, Andrew Y; Yang, Lily; Kuang, Min; Qian, Weiping; Mao, Hui

    2013-06-12

    Surface properties, as well as inherent physicochemical properties, of the engineered nanomaterials play important roles in their interactions with the biological systems, which eventually affect their efficiency in diagnostic and therapeutic applications. Here we report a new class of MRI contrast agent based on milk casein protein-coated iron oxide nanoparticles (CNIOs) with a core size of 15 nm and hydrodynamic diameter ~30 nm. These CNIOs exhibited excellent water-solubility, colloidal stability, and biocompatibility. Importantly, CNIOs exhibited prominent T2 enhancing capability with a transverse relaxivity r2 of 273 mM(-1) s(-1) at 3 tesla. The transverse relaxivity is ~2.5-fold higher than that of iron oxide nanoparticles with the same core but an amphiphilic polymer coating. CNIOs showed pH-responsive properties, formed loose and soluble aggregates near the pI (pH ~4.0). The aggregates could be dissociated reversibly when the solution pH was adjusted away from the pI. The transverse relaxation property and MRI contrast enhancing effect of CNIOs remained unchanged in the pH range of 2.0-8.0. Further functionalization of CNIOs can be achieved via surface modification of the protein coating. Bioaffinitive ligands, such as a single chain fragment from the antibody of epidermal growth factor receptor (ScFvEGFR), could be readily conjugated onto the protein coating, enabling specific targeting to MDA-MB-231 breast cancer cells overexpressing EGFR. T2-weighted MRI of mice intravenously administered with CNIOs demonstrated strong contrast enhancement in the liver and spleen. These favorable properties suggest CNIOs as a class of biomarker targeted magnetic nanoparticles for MRI contrast enhancement and related biomedical applications.

  8. Three-dimensional Contrast-enhanced Ultrasound in Response Assessment for Breast Cancer: A Comparison with Dynamic Contrast-enhanced Magnetic Resonance Imaging and Pathology

    PubMed Central

    Jia, Wan-Ru; Tang, Lei; Wang, Deng-Bin; Chai, Wei-Min; Fei, Xiao-Chun; He, Jian-Rong; Chen, Man; Wang, Wen-Ping

    2016-01-01

    To compare the capabilities of three-dimensional contrast enhanced ultrasound (3D-CEUS) and dynamic contrast-enhanced magnetic resonance (DCE-MRI) in predicting the response to neoadjuvant chemotherapy (NAC) among breast cancer patients, 48 patients with unilateral breast cancer were recruited for 3D-CEUS and DCE-MRI examinations both before and after NAC; pathology was used to validate the results. This study was approved by the institutional review board, and written informed consent was obtained from each patient. Imaging feature changes and pathological vascularity response, including microvessel density (MVD) and vascular endothelial growth factor (VEGF), were calculated. Pathological complete response (pCR) and major histological response (MHR) were used as references. The 3D-CEUS score, DCE-MRI score, MVD and VEGF significantly decreased (P < 0.0001) after NAC. The correlations between Δ3D-CEUS and ΔDCE-MRI with pCR (r = 0.649, P < 0.0001; r = 0.639, P < 0.0001) and MHR (r = 0.863, P < 0.0001; r = 0.836, P < 0.0001) were significant. All scores showed significant differences between the pCR and non-pCR groups with folder changes of 0.1, 0.1, 2.4, and 2.3, respectively (P = 0.0001, <0.0001, <0.0001 and <0.0001). In conclusion, 3D-CEUS is effective in assessing the response of breast cancer patients undergoing NAC. PMID:27652518

  9. Contrast-enhanced synthetic MRI for the detection of brain metastases.

    PubMed

    Hagiwara, Akifumi; Hori, Masaaki; Suzuki, Michimasa; Andica, Christina; Nakazawa, Misaki; Tsuruta, Kouhei; Takano, Nao; Sato, Shuji; Hamasaki, Nozomi; Yoshida, Mariko; Kumamaru, Kanako Kunishima; Ohtomo, Kuni; Aoki, Shigeki

    2016-02-01

    Synthetic magnetic resonance imaging (MRI), a technique that enables creation of various contrast-weighted images from a single MRI quantification scan, is a useful clinical tool. However, there are currently no reports examining the use of contrast-enhanced synthetic MRI for detecting brain metastases. To assess whether contrast-enhanced synthetic MRI is suitable for detecting brain metastases. Ten patients with a combined total of 167 brain metastases who underwent quantitative MRI and conventional T1-weighted inversion recovery fast spin-echo (conventional T1IR) MRI before and after administration of a contrast agent were included in the study. Synthetic T1IR and T1-weighted (synthetic T1W) images were produced after parameter quantification. Lesion-to-white matter contrast and contrast-to-noise ratio were calculated for each image. The number of visible lesions in each image was determined by two neuroradiologists. The mean lesion-to-white matter contrast and mean contrast-to-noise ratio of the synthetic T1IR images were significantly higher than those of the synthetic T1W (P < 0.001 and P < 0.001, respectively) and conventional T1IR (P = 0.04 and P = 0.002, respectively) images. Totals of 130 and 124 metastases were detected in the synthetic T1IR images by the first and second radiologists, respectively. The corresponding numbers were 91 and 85 in the synthetic T1W images and 119 and 119 in the conventional T1IR images. Statistical significance was not found among detected numbers of lesions. Synthetic T1IR imaging created better contrast compared with synthetic T1W or conventional T1IR imaging. The ability to detect brain metastases was comparable among these imaging.

  10. Immobilized contrast-enhanced MRI: Gadolinium-based long-term MR contrast enhancement of the vein graft vessel wall.

    PubMed

    Mitsouras, Dimitris; Vemula, Praveen Kumar; Yu, Peng; Tao, Ming; Nguyen, Binh T; Campagna, Christina M; Karp, Jeffrey M; Mulkern, Robert V; Ozaki, C Keith; Rybicki, Frank J

    2011-01-01

    An implantable MR contrast agent that can be covalently immobilized on tissue during surgery has been developed. The rationale is that a durable increase in tissue contrast using an implantable contrast agent can enhance postsurgical tissue differentiation using MRI. For small-vessel (e.g., vein graft) MRI, the direct benefit of such permanent "labeling" of the vessel wall by modification of its relaxation properties is to achieve more efficient imaging. This efficiency can be realized as either increased contrast leading to more accurate delineation of vessel wall and lesion tissue boundaries, or, faster imaging without penalizing contrast-to-noise ratio, or a combination thereof. We demonstrate, for the first time, stable long-term MRI enhancement using such an exogenous contrast mechanism based on immobilizing a modified diethylenetriaminepentaacetic acid gadolinium(3+) dihydrogen complex on a human vein using a covalent amide bond. Signal enhancement due to the covalently immobilized contrast agent is demonstrated for excised human vein specimens imaged at 3 T, and its long-term stability is demonstrated during a 4-month incubation period.

  11. Phenomenological universalities: a novel tool for the analysis of dynamic contrast enhancement in magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Gliozzi, A. S.; Mazzetti, S.; Delsanto, P. P.; Regge, D.; Stasi, M.

    2011-02-01

    Dynamic contrast enhancement in magnetic resonance imaging (DCE-MRI) is a promising tool for the clinical diagnosis of tumors, whose implementation may be improved through the use of suitable hemodynamic models. If one prefers to avoid assumptions about the tumor physiology, empirical fitting functions may be adopted. For this purpose, in this paper we discuss the exploitation of a recently proposed phenomenological universalities (PUN) formalism. In fact, we show that a novel PUN class may be used to describe the time-signal intensity curves in both healthy and tumoral tissues, discriminating between the two cases and thus potentially providing a convenient diagnostic tool. The proposed approach is applied to analysis of the DCE-MRI data relative to a study group composed of ten patients with spine tumors.

  12. The correlation of contrast-enhanced ultrasound and MRI perfusion quantitative analysis in rabbit VX2 liver cancer.

    PubMed

    Xiang, Zhiming; Liang, Qianwen; Liang, Changhong; Zhong, Guimian

    2014-12-01

    Our objective is to explore the value of liver cancer contrast-enhanced ultrasound (CEUS) and MRI perfusion quantitative analysis in liver cancer and the correlation between these two analysis methods. Rabbit VX2 liver cancer model was established in this study. CEUS was applied. Sono Vue was applied in rabbits by ear vein to dynamically observe and record the blood perfusion and changes in the process of VX2 liver cancer and surrounding tissue. MRI perfusion quantitative analysis was used to analyze the mean enhancement time and change law of maximal slope increasing, which were further compared with the pathological examination results. Quantitative indicators of liver cancer CEUS and MRI perfusion quantitative analysis were compared, and the correlation between them was analyzed by correlation analysis. Rabbit VX2 liver cancer model was successfully established. CEUS showed that time-intensity curve of rabbit VX2 liver cancer showed "fast in, fast out" model while MRI perfusion quantitative analysis showed that quantitative parameter MTE of tumor tissue increased and MSI decreased: the difference was statistically significant (P < 0.01). The diagnostic results of CEUS and MRI perfusion quantitative analysis were not significantly different (P > 0.05). However, the quantitative parameter of them were significantly positively correlated (P < 0.05). CEUS and MRI perfusion quantitative analysis can both dynamically monitor the liver cancer lesion and surrounding liver parenchyma, and the quantitative parameters of them are correlated. The combined application of both is of importance in early diagnosis of liver cancer.

  13. A corrole nanobiologic elicits tissue-activated MRI contrast enhancement and tumor-targeted toxicity.

    PubMed

    Sims, Jessica D; Hwang, Jae Youn; Wagner, Shawn; Alonso-Valenteen, Felix; Hanson, Chris; Taguiam, Jan Michael; Polo, Richard; Harutyunyan, Ira; Karapetyan, Gevorg; Sorasaenee, Karn; Ibrahim, Ahmed; Marban, Eduardo; Moats, Rex; Gray, Harry B; Gross, Zeev; Medina-Kauwe, Lali K

    2015-11-10

    Water-soluble corroles with inherent fluorescence can form stable self-assemblies with tumor-targeted cell penetration proteins, and have been explored as agents for optical imaging and photosensitization of tumors in pre-clinical studies. However, the limited tissue-depth of excitation wavelengths limits their clinical applicability. To examine their utility in more clinically-relevant imaging and therapeutic modalities, here we have explored the use of corroles as contrast enhancing agents for magnetic resonance imaging (MRI), and evaluated their potential for tumor-selective delivery when encapsulated by a tumor-targeted polypeptide. We have found that a manganese-metallated corrole exhibits significant T1 relaxation shortening and MRI contrast enhancement that is blocked by particle formation in solution but yields considerable MRI contrast after tissue uptake. Cell entry but not low pH enables this. Additionally, the corrole elicited tumor-toxicity through the loss of mitochondrial membrane potential and cytoskeletal breakdown when delivered by the targeted polypeptide. The protein-corrole particle (which we call HerMn) exhibited improved therapeutic efficacy compared to current targeted therapies used in the clinic. Taken together with its tumor-preferential biodistribution, our findings indicate that HerMn can facilitate tumor-targeted toxicity after systemic delivery and tumor-selective MR imaging activatable by internalization.

  14. Evaluation of Neoadjuvant Chemotherapy Response with Dynamic Contrast Enhanced Breast Magnetic Resonance Imaging in Locally Advanced Invasive Breast Cancer

    PubMed Central

    Gezer, Naciye Sinem; Orbay, Özge; Balcı, Pınar; Durak, Merih Guray; Demirkan, Binnaz; Saydam, Serdar

    2014-01-01

    Objective The reliability of traditional methods such as physical examination, ultrasonography (US) and mammography is limited in determining the type of treatment response in patients with neoadjuvant chemotherapy (NAC) application for locally advanced breast cancer (LABC). Dynamic contrast-enhanced magnetic resonance imaging (MRI) is gaining popularity in the evaluation of NAC response. This study aimed to compare NAC response as determined by dynamic contrast-enhanced breast MRI in patients with LABC to histopathology that is the gold standard; and evaluate the compatibility of MRI, mammography and US with response types. Materials and Methods The US, mammography and MRI findings of 38 patients who received NAC with a diagnosis of locally advanced breast cancer and surgical treatment were retrospectively analyzed and compared to histopathology results. Type of response to treatment was determined according to the “Criteria in Solid Tumors Response Evolution 1.1” by mammography, US and MRI criteria. The relationship between response types as defined by all three imaging modalities and histopathology were evaluated, and the correlation of response type as detected by MRI and pathological response and histopathological type of breast cancer was further determined. For statistical analysis, the chi-square, paired t test, correlation and kappa tests were used. Results There is a statistical moderate positive correlation between response type according to pathology and MRI (kappa: 0.63). There was a weak correlation between response type according to mammography or US and according to pathology (kappa: 0.2). When the distribution of treatment response by MRI is stratified according to histopathological types, partial response was higher in all histopathological types similar to the type of pathologic response. When compared with pathology MRI detected treatment response accurately in 84.2% of the patients. Conclusion Dynamic contrast-enhanced breast MRI appears to

  15. Detection and localization of proteinuria by dynamic contrast-enhanced magnetic resonance imaging using MS325.

    PubMed

    Zhang, Yantian; Choyke, Peter L; Lu, Huiyan; Takahashi, Hideko; Mannon, Roslyn B; Zhang, Xiaojie; Marcos, Hani; Li, King C P; Kopp, Jeffrey B

    2005-06-01

    After renal transplantation, persistent glomerular disease affecting the native kidneys typically causes albuminuria, at least for a period of time, making it difficult to determine in a noninvasive fashion whether proteinuria originates in the native kidneys or the renal allograft. To address this problem, dynamic contrast-enhanced magnetic resonance imaging (MRI) using gadolinium (Gd)-based albumin-bound blood pool contrast agent (MS325) to localize proteinuria was investigated. Glomerular proteinuria was induced in Sprague-Dawley rats by intravenous injection of puromycin aminonucleoside (PAN), whereas control rats received physiologic saline vehicle. Both groups of animals underwent a 40-min dynamic contrast-enhanced MRI using radio frequency spoiled gradient echo imaging sequence after injection of Gd-labeled MS325. Contrast uptake and clearance curves for cortex and medulla were determined from acquired MR images. Compared with controls, proteinuric rats exhibited significantly lower elimination rate constants. The use of gadopentetate dimeglumine (Gd-DTPA) as a contrast agent showed smaller and less specific differences between proteinuric and control groups. In rats with one proteinuric kidney (PAN-treated) and one normal kidney (transplanted from a normal rat), MRI using MS325 was able to differentiate between the two kidneys. The results suggest that MRI with an albumin-bound blood pool contrast agent may be a useful noninvasive way to localize proteinuria. If this technique can be successfully applied in human patients, it may allow for the localization of proteinuria after kidney transplant and thereby provide a noninvasive way to detect disease affecting the renal allograft.

  16. Cardiac Amyloidosis: Typical Imaging Findings and Diffuse Myocardial Damage Demonstrated by Delayed Contrast-Enhanced MRI

    SciTech Connect

    Sueyoshi, Eijun Sakamoto, Ichiro; Okimoto, Tomoaki; Hayashi, Kuniaki; Tanaka, Kyouei; Toda, Genji

    2006-08-15

    Amyloidosis is a rare systemic disease. However, involvement of the heart is a common finding and is the most frequent cause of death in amyloidosis. We report the sonographic, scintigraphic, and MRI features of a pathologically proven case of cardiac amyloidosis. Delayed contrast-enhanced MR images, using an inversion recovery prepped gradient-echo sequence, revealed diffuse enhancement in the wall of both left and right ventricles. This enhancement suggested expansion of the extracellular space of the myocardium caused by diffuse myocardial necrosis secondary to deposition of amyloid.

  17. Fusion imaging of contrast-enhanced ultrasound and contrast-enhanced CT or MRI before radiofrequency ablation for liver cancers.

    PubMed

    Bo, Xiao-Wan; Xu, Hui-Xiong; Wang, Dan; Guo, Le-Hang; Sun, Li-Ping; Li, Xiao-Long; Zhao, Chong-Ke; He, Ya-Ping; Liu, Bo-Ji; Li, Dan-Dan; Zhang, Kun

    2016-11-01

    To investigate the usefulness of fusion imaging of contrast-enhanced ultrasound (CEUS) and CECT/CEMRI before percutaneous ultrasound-guided radiofrequency ablation (RFA) for liver cancers. 45 consecutive patients with 70 liver lesions were included between March 2013 and October 2015, and all the lesions were identified on CEMRI/CECT prior to inclusion in the study. Planning ultrasound for percutaneous RFA was performed using conventional ultrasound, ultrasound-CECT/CEMRI and CEUS and CECT/CEMRI fusion imaging during the same session. The numbers of the conspicuous lesions on ultrasound and fusion imaging were recorded. RFA was performed according to the results of fusion imaging. Complete response (CR) rate was calculated and the complications were recorded. On conventional ultrasound, 25 (35.7%) of the 70 lesions were conspicuous, whereas 45 (64.3%) were inconspicuous. Ultrasound-CECT/CEMRI fusion imaging detected additional 24 lesions thus increased the number of the conspicuous lesions to 49 (70.0%) (70.0% vs 35.7%; p < 0.001 in comparison with conventional ultrasound). With the use of CEUS and CECT/CEMRI fusion imaging, the number of the conspicuous lesions further increased to 67 (95.7%, 67/70) (95.7% vs 70.0%, 95.7% vs 35.7%; both p < 0.001 in comparison with ultrasound and ultrasound-CECT/CEMRI fusion imaging, respectively). With the assistance of CEUS and CECT/CEMRI fusion imaging, the confidence level of the operator for performing RFA improved significantly with regard to visualization of the target lesions (p = 0.001). The CR rate for RFA was 97.0% (64/66) in accordance to the CECT/CEMRI results 1 month later. No procedure-related deaths and major complications occurred during and after RFA. Fusion of CEUS and CECT/CEMRI improves the visualization of those inconspicuous lesions on conventional ultrasound. It also facilitates improvement in the RFA operators' confidence and CR of RFA. Advances in knowledge: CEUS and CECT/CEMRI fusion imaging

  18. 25 Years of Contrast-Enhanced MRI: Developments, Current Challenges and Future Perspectives.

    PubMed

    Lohrke, Jessica; Frenzel, Thomas; Endrikat, Jan; Alves, Filipe Caseiro; Grist, Thomas M; Law, Meng; Lee, Jeong Min; Leiner, Tim; Li, Kun-Cheng; Nikolaou, Konstantin; Prince, Martin R; Schild, Hans H; Weinreb, Jeffrey C; Yoshikawa, Kohki; Pietsch, Hubertus

    2016-01-01

    In 1988, the first contrast agent specifically designed for magnetic resonance imaging (MRI), gadopentetate dimeglumine (Magnevist(®)), became available for clinical use. Since then, a plethora of studies have investigated the potential of MRI contrast agents for diagnostic imaging across the body, including the central nervous system, heart and circulation, breast, lungs, the gastrointestinal, genitourinary, musculoskeletal and lymphatic systems, and even the skin. Today, after 25 years of contrast-enhanced (CE-) MRI in clinical practice, the utility of this diagnostic imaging modality has expanded beyond initial expectations to become an essential tool for disease diagnosis and management worldwide. CE-MRI continues to evolve, with new techniques, advanced technologies, and novel contrast agents bringing exciting opportunities for more sensitive, targeted imaging and improved patient management, along with associated clinical challenges. This review aims to provide an overview on the history of MRI and contrast media development, to highlight certain key advances in the clinical development of CE-MRI, to outline current technical trends and clinical challenges, and to suggest some important future perspectives. Bayer HealthCare.

  19. Within-lesion differences in quantitative MRI parameters predict contrast enhancement in multiple sclerosis.

    PubMed

    Jurcoane, Alina; Wagner, Marlies; Schmidt, Christoph; Mayer, Christoph; Gracien, Rene-Maxime; Hirschmann, Marc; Deichmann, Ralf; Volz, Steffen; Ziemann, Ulf; Hattingen, Elke

    2013-12-01

    To investigate the relationship between quantitative magnetic resonance imaging (qMRI) and contrast enhancement in multiple sclerosis (MS) lesions. We compared maps of T1 relaxation time, proton density (PD), and magnetization transfer ratio (MTR) between lesions with and without contrast enhancement as quantified by the amount of T1 shortening postcontrast agent (CA). In 17 patients with relapsing-remitting MS (RRMS), 15 with progressive MS (PMS), and 17 healthy controls, T1, PD, and MTR were measured at 3T and T1-mapping was repeated after CA administration. Manually drawn MS-lesions (3D-FLAIR) were labeled as enhancing if post-CA T1-shortening exceeded mean T1-shortening in normal-appearing white matter (NAWM) by at least 2 standard deviations. Precontrast T1, PD, and MTR were compared in enhancing lesions, nonenhancing lesions, NAWM, and gray matter. Precontrast T1, PD, and MTR differed significantly between enhancing and nonenhancing lesions in RRMS and PMS patients (all P < 0.01). In PMS patients, PD of NAWM, enhancing, and nonenhancing lesions and MTR and T1 of gray matter differed significantly from RRMS and controls. Only MTR of gray matter differed between RRMS and controls. Contrast enhancement in MS quantified by relative T1 shortening may be predicted by precontrast abnormalities of T1, PD, and MTR and likely represents blood-brain barrier damage. Copyright © 2013 Wiley Periodicals, Inc.

  20. A Multi-Institutional Comparison of Dynamic Contrast-Enhanced Magnetic Resonance Imaging Parameter Calculations.

    PubMed

    Ger, Rachel B; Mohamed, Abdallah S R; Awan, Musaddiq J; Ding, Yao; Li, Kimberly; Fave, Xenia J; Beers, Andrew L; Driscoll, Brandon; Elhalawani, Hesham; Hormuth, David A; Houdt, Petra J van; He, Renjie; Zhou, Shouhao; Mathieu, Kelsey B; Li, Heng; Coolens, Catherine; Chung, Caroline; Bankson, James A; Huang, Wei; Wang, Jihong; Sandulache, Vlad C; Lai, Stephen Y; Howell, Rebecca M; Stafford, R Jason; Yankeelov, Thomas E; Heide, Uulke A van der; Frank, Steven J; Barboriak, Daniel P; Hazle, John D; Court, Laurence E; Kalpathy-Cramer, Jayashree; Fuller, Clifton D

    2017-09-11

    Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) provides quantitative metrics (e.g. K(trans), ve) via pharmacokinetic models. We tested inter-algorithm variability in these quantitative metrics with 11 published DCE-MRI algorithms, all implementing Tofts-Kermode or extended Tofts pharmacokinetic models. Digital reference objects (DROs) with known K(trans) and ve values were used to assess performance at varying noise levels. Additionally, DCE-MRI data from 15 head and neck squamous cell carcinoma patients over 3 time-points during chemoradiotherapy were used to ascertain K(trans) and ve kinetic trends across algorithms. Algorithms performed well (less than 3% average error) when no noise was present in the DRO. With noise, 87% of K(trans) and 84% of ve algorithm-DRO combinations were generally in the correct order. Low Krippendorff's alpha values showed that algorithms could not consistently classify patients as above or below the median for a given algorithm at each time point or for differences in values between time points. A majority of the algorithms produced a significant Spearman correlation in ve of the primary gross tumor volume with time. Algorithmic differences in K(trans) and ve values over time indicate limitations in combining/comparing data from distinct DCE-MRI model implementations. Careful cross-algorithm quality-assurance must be utilized as DCE-MRI results may not be interpretable using differing software.

  1. Dynamic Contrast Enhanced Magnetic Resonance Imaging in Oncology: Theory, Data Acquisition, Analysis, and Examples

    PubMed Central

    Yankeelov, Thomas E.; Gore, John C.

    2009-01-01

    Dynamic contrast enhanced MRI (DCE-MRI) enables the quantitative assessment of tumor status and has found application in both pre-clinical tumor models as well as clinical oncology. DCE-MRI requires the serial acquisition of images before and after the injection of a paramagnetic contrast agent so that the variation of MR signal intensity with time can be recorded for each image voxel. As the agent enters into a tissue, it changes the MR signal intensity from the tissue to a degree that depends on the local concentration. After the agent is transported out of the tissue, the MR signal intensity returns to its’ baseline value. By analyzing the associated signal intensity time course using an appropriate mathematical model, physiological parameters related to blood flow, vessel permeability, and tissue volume fractions can be extracted for each voxel or region of interest. In this review we first discuss the basic physics of this methodology, and then present technical aspects of how DCE-MRI data are acquired and analyzed. We also discuss appropriate models of contrast agent kinetics and how these can be used to elucidate tissue characteristics of importance in cancer biology. We conclude by briefly summarizing some future goals and demands of DCE-MRI. PMID:19829742

  2. Ensemble of expert deep neural networks for spatio-temporal denoising of contrast-enhanced MRI sequences.

    PubMed

    Benou, A; Veksler, R; Friedman, A; Riklin Raviv, T

    2017-08-02

    Dynamic contrast-enhanced MRI (DCE-MRI) is an imaging protocol where MRI scans are acquired repetitively throughout the injection of a contrast agent. The analysis of dynamic scans is widely used for the detection and quantification of blood-brain barrier (BBB) permeability. Extraction of the pharmacokinetic (PK) parameters from the DCE-MRI concentration curves allows quantitative assessment of the integrity of the BBB functionality. However, curve fitting required for the analysis of DCE-MRI data is error-prone as the dynamic scans are subject to non-white, spatially-dependent and anisotropic noise. We present a novel spatio-temporal framework based on Deep Neural Networks (DNNs) to address the DCE-MRI denoising challenges. This is accomplished by an ensemble of expert DNNs constructed as deep autoencoders, where each is trained on a specific subset of the input space to accommodate different noise characteristics and curve prototypes. Spatial dependencies of the PK dynamics are captured by incorporating the curves of neighboring voxels in the entire process. The most likely reconstructed curves are then chosen using a classifier DNN followed by a quadratic programming optimization. As clean signals (ground-truth) for training are not available, a fully automatic model for generating realistic training sets with complex nonlinear dynamics is introduced. The proposed approach has been successfully applied to full and even temporally down-sampled DCE-MRI sequences, from two different databases, of stroke and brain tumor patients, and is shown to favorably compare to state-of-the-art denoising methods. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Differentiation of Hemangioblastoma from Metastatic Brain Tumor using Dynamic Contrast-enhanced MR Imaging.

    PubMed

    Cha, J; Kim, S T; Nam, D-H; Kong, D-S; Kim, H-J; Kim, Y K; Kim, H Y; Park, G M; Jeon, P; Kim, K H; Byun, H S

    2016-03-07

    The aim of this study was to differentiate hemangioblastomas from metastatic brain tumors using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and compare the diagnostic performances with diffusion-weighted imaging (DWI) and dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI). We retrospectively reviewed 7 patients with hemangioblastoma and 15 patients with metastatic adenocarcinoma with magnetic resonance imaging (MRI) including DWI, DSC-MRI, and DCE-MRI. Apparent diffusion coefficient (ADC), relative cerebral blood volume (rCBV), and DCE-MRI parameters (K (trans), k ep, v e, and v p) were compared between the two groups. The diagnostic performance of each parameter was evaluated with receiver operating characteristic (ROC) curve analysis. v p, k ep, and rCBV were significantly different between patients with hemangioblastoma and those with metastatic brain tumor (p < 0.001, p = 0.005, and p = 0.017, respectively). A v p cutoff value of 0.012 and a rCBV cutoff value of 8.0 showed the highest accuracy for differentiating hemangioblastoma from metastasis. The area under the ROC curve for v p and rCBV was 0.99 and 0.89, respectively. A v p > 0.012 showed 100 % sensitivity, 93.3 % specificity, and 95.5 % accuracy and a rCBV > 8.0 showed 85.7 % sensitivity, 93.3 % specificity, and 90.9 % accuracy for differentiating hemangioblastoma from metastatic brain tumor. DCE-MRI was useful for differentiating hemangioblastoma from metastatic brain tumor.

  4. Three-dimensional contrast enhanced ultrasound score and dynamic contrast-enhanced magnetic resonance imaging score in evaluating breast tumor angiogenesis: correlation with biological factors.

    PubMed

    Jia, Wan-Ru; Chai, Wei-Min; Tang, Lei; Wang, Yi; Fei, Xiao-Chun; Han, Bao-San; Chen, Man

    2014-07-01

    To explore the clinical value of three-dimensional contrast enhanced ultrasound (3D-CEUS) and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) score systems in evaluating breast tumor angiogenesis by comparing their diagnostic efficacy and correlation with biological factors. 3D-CEUS was performed in 183 patients with breast tumors by Esaote Mylab90 with SonoVue (Bracco, Italy), DCE-MRI was performed on a dedicated breast magnetic resonance imaging (DBMRI) system (Aurora Dedicated Breast MRI Systems, USA) with a dedicated breast coil. 3D-CEUS and DCE-MRI score systems were created based on tumor perfusion and vascular characteristics. Microvessel density (MVD), vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMP-2, MMP-9) expression were measured by immunohistochemistry. Pathological results showed 35 benign and 148 malignant breast tumors. MVD (P=0.000, r=0.76), VEGF (P=0.000, r=0.55), MMP-2 (P=0.000, r=0.39) and MMP-9 (P=0.000, r=0.41) expression were all significantly different between benignity and malignancy. Regarding 3D-CEUS 4 points as cutoff value, the sensitivity, specificity and accuracy were 85.1%, 94.3% and 86.9%, respectively, and correlated well with MVD (P=0.000, r=0.50), VEGF (P=0.000, r=0.50), MMP-2 (P=0.000, r=0.50) and MMP-9 (P=0.000, r=0.66). Taking DCE-MRI 5 points as cutoff value, the sensitivity, specificity and accuracy were 86.5%, 94.3% and 88.0%, respectively and also correlated well with MVD (P=0.000, r=0.52), VEGF (P=0.000, r=0.44), MMP-2 (P=0.000, r=0.42) and MMP-9 (P=0.000, r=0.35). 3D-CEUS score system displays inspiring diagnostic performance and good agreement with DCE-MRI scoring. Moreover, both score systems correlate well with MVD, VEGF, MMP-2 and MMP-9 expression, and thus have great potentials in tumor angiogenesis evaluation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. 3D ECG- and respiratory-gated non-contrast-enhanced (CE) perfusion MRI for postoperative lung function prediction in non-small-cell lung cancer patients: A comparison with thin-section quantitative computed tomography, dynamic CE-perfusion MRI, and perfusion scan.

    PubMed

    Ohno, Yoshiharu; Seki, Shinichiro; Koyama, Hisanobu; Yoshikawa, Takeshi; Matsumoto, Sumiaki; Takenaka, Daisuke; Kassai, Yoshimori; Yui, Masao; Sugimura, Kazuro

    2015-08-01

    To compare predictive capabilities of non-contrast-enhanced (CE)- and dynamic CE-perfusion MRIs, thin-section multidetector computed tomography (CT) (MDCT), and perfusion scan for postoperative lung function in non-small cell lung cancer (NSCLC) patients. Sixty consecutive pathologically diagnosed NSCLC patients were included and prospectively underwent thin-section MDCT, non-CE-, and dynamic CE-perfusion MRIs and perfusion scan, and had their pre- and postoperative forced expiratory volume in one second (FEV1 ) measured. Postoperative percent FEV1 (po%FEV1 ) was then predicted from the fractional lung volume determined on semiquantitatively assessed non-CE- and dynamic CE-perfusion MRIs, from the functional lung volumes determined on quantitative CT, from the number of segments observed on qualitative CT, and from uptakes detected on perfusion scans within total and resected lungs. Predicted po%FEV1 s were then correlated with actual po%FEV1 s, which were %FEV1 s measured postoperatively. The limits of agreement were also determined. All predicted po%FEV1 s showed significant correlation (0.73 ≤ r ≤ 0.93, P < 0.0001) and limits of agreement with actual po%FEV1 (non-CE-perfusion MRI: 0.3 ± 10.0%, dynamic CE-perfusion MRI: 1.0 ± 10.8%, perfusion scan: 2.2 ± 14.1%, quantitative CT: 1.2 ± 9.0%, qualitative CT: 1.5 ± 10.2%). Non-CE-perfusion MRI may be able to predict postoperative lung function more accurately than qualitatively assessed MDCT and perfusion scan. © 2014 Wiley Periodicals, Inc.

  6. Dynamic Contrast-Enhanced Magnetic Resonance Imaging for Localization of Recurrent Prostate Cancer After External Beam Radiotherapy

    SciTech Connect

    Haider, Masoom A. Chung, Peter; Sweet, Joan; Toi, Ants; Jhaveri, Kartik; Menard, Cynthia; Warde, Padraig; Trachtenberg, John; Lockwood, Gina M.Math.; Milosevic, Michael

    2008-02-01

    Purpose: To compare the performance of T2-weighted (T2w) imaging and dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) of the prostate gland in the localization of recurrent prostate cancer in patients with biochemical failure after external beam radiotherapy (EBRT). Methods and Materials: T2-weighted imaging and DCE MRI were performed in 33 patients with suspected relapse after EBRT. Dynamic contrast-enhanced MRI was performed with a temporal resolution of 95 s. Voxels enhancing at 46 s after injection to a greater degree than the mean signal intensity of the prostate at 618 s were considered malignant. Results from MRI were correlated with biopsies from six regions in the peripheral zone (PZ) (base, mid, and apex). The percentage of biopsy core positive for malignancy from each region was correlated with the maximum diameter of the tumor on DCE MRI with a linear regression model. Results: On a sextant basis, DCE MRI had significantly better sensitivity (72% [21of 29] vs. 38% [11 of 29]), positive predictive value (46% [21 of 46] vs. 24% [11 of 45]) and negative predictive value (95% [144 of 152] vs. 88% [135 of 153] than T2w imaging. Specificities were high for both DCE MRI and T2w imaging (85% [144 of 169] vs. 80% [135 of 169]). There was a linear relationship between tumor diameters on DCE MRI and the percentage of cancer tissue in the corresponding biopsy core (r = 0.9, p < 0.001), with a slope of 1.2. Conclusions: Dynamic contrast-enhanced MRI performs better than T2w imaging in the detection and localization of prostate cancer in the peripheral zone after EBRT. This may be helpful in the planning of salvage therapy.

  7. Differentiation between ductal carcinoma in situ and mastopathy using dynamic contrast-enhanced magnetic resonance imaging and a model of contrast enhancement.

    PubMed

    Nishiura, Motoko; Tamaki, Yasuhiro; Murase, Kenya

    2011-12-01

    The purpose of this study was to retrospectively evaluate the feasibility of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) to differentiate between ductal carcinoma in situ (DCIS) and mastopathy by analyzing their time-intensity curves (TICs) using the two-compartment pharmacokinetic model with an assumption of instantaneous injection of contrast medium (TCPM). After the pre-contrast MRI was performed using a 1.5 T MRI system, DCE-MRI was performed four times after the intravenous administration of contrast medium. We set the volumes of interest (VOIs) on the tumor and normal mammary gland, and obtained the TICs in these VOIs. We calculated the following parameters by fitting these TICs to the equation derived from TCPM; the initial slope of the TIC (Slopeini), the area under the TIC (AUC), the time to peak enhancement (TTP) and the peak enhancement (PeakE). We calculated these parameters in both the lesion and normal mammary gland and the ratios of the parameters in the lesion to those in the normal gland (rSlopeini, rAUC, rTTP and rPeakE). There were significant differences in Slopeini (P=0.009), PeakE (P=0.019), rSlopeini (P=0.010), and rTTP (P=0.005) between DCIS and mastopathy. The areas under the receiver operating characteristic curve for Slopeini, PeakE, rSlopeini, and rTTP were 0.67±0.06 (P=0.009), 0.65±0.06 (P=0.019), 0.67±0.06 (P=0.01), and 0.68±0.06 (P=0.005), respectively. In conclusion, our results suggest that analysis of TICs obtained by DCE-MRI using TCPM appears to be useful for differentiating between DCIS and mastopathy. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  8. Dynamic contrast-enhanced susceptibility-weighted perfusion MRI (DSC-MRI) in a glioma model of the rat brain using a conventional receive-only surface coil with a inner diameter of 47 mm at a clinical 1.5 T scanner.

    PubMed

    Ulmer, Stephan; Reeh, Matthias; Krause, Joerg; Herdegen, Thomas; Heldt-Feindt, Janka; Jansen, Olav; Rohr, Axel

    2008-07-30

    Magnetic resonance (MR) imaging in animal models is usually performed in expensive dedicated small bore animal scanners of limited availability. In the present study a standard clinical 1.5 T MR scanner was used for morphometric and dynamic contrast-enhanced susceptibility-weighted MR imaging (DSC-MRI) of a glioma model of the rat brain. Ten male Wistar rats were examined with coronal T2-weighted, and T1-weighted images (matrix 128 x 128, FOV 64 mm) after implantation of an intracerebral tumor xenografts (C6) using a conventional surface coil. For DSC-MRI a T2*-weighted sequence (TR/TE=30/14 ms, matrix 64 x 64, FOV 90 mm; slice thickness of 1.5mm) was performed. Regions of interest were defined within the tumor and the non-affected contralateral hemisphere and the mean transit time (MTT) was determined. Tumor dimensions in MR predicted well its real size as proven by histology. The MTT of contrast agent passing through the brain was significantly decelerated in the tumor compared to the unaffected hemisphere (p<0.001, paired t-test), which is most likely due to the leakage of contrast agent through the disrupted blood brain barrier. This setup offers advanced MR imaging of small animals without the need for dedicated animal scanners or dedicated custom-made coils.

  9. Tumor characterization in small animals using magnetic resonance-guided dynamic contrast enhanced diffuse optical tomography

    NASA Astrophysics Data System (ADS)

    Lin, Yuting; Thayer, Dave; Nalcioglu, Orhan; Gulsen, Gultekin

    2011-10-01

    We present a magnetic resonance (MR)-guided near-infrared dynamic contrast enhanced diffuse optical tomography (DCE-DOT) system for characterization of tumors using an optical contrast agent (ICG) and a MR contrast agent [Gd-diethylenetriaminepentaacetic acid (DTPA)] in a rat model. Both ICG and Gd-DTPA are injected and monitored simultaneously using a combined MRI-DOT system, resulting in accurate co-registration between two imaging modalities. Fisher rats bearing R3230 breast tumor are imaged using this hybrid system. For the first time, enhancement kinetics of the exogenous contrast ICG is recovered from the DCE-DOT data using MR anatomical a priori information. As tumors grow, they undergo necrosis and the tissue transforms from viable to necrotic. The results show that the physiological changes between viable and necrotic tissue can be differentiated more accurately based on the ICG enhancement kinetics when MR anatomical information is utilized.

  10. Use of computational fluid dynamics in the design of dynamic contrast enhanced imaging phantoms

    NASA Astrophysics Data System (ADS)

    Hariharan, Prasanna; Freed, Melanie; Myers, Matthew R.

    2013-09-01

    Phantoms for dynamic contrast enhanced (DCE) imaging modalities such as DCE computed tomography (DCE-CT) and DCE magnetic resonance imaging (DCE-MRI) are valuable tools for evaluating and comparing imaging systems. It is important for the contrast-agent distribution within the phantom to possess a time dependence that replicates a curve observed clinically, known as the ‘tumor-enhancement curve’. It is also important for the concentration field within the lesion to be as uniform as possible. This study demonstrates how computational fluid dynamics (CFD) can be applied to achieve these goals within design constraints. The distribution of the contrast agent within the simulated phantoms was investigated in relation to the influence of three factors of the phantom design. First, the interaction between the inlets and the uniformity of the contrast agent within the phantom was modeled. Second, pumps were programmed using a variety of schemes and the resultant dynamic uptake curves were compared to tumor-enhancement curves obtained from clinical data. Third, the effectiveness of pulsing the inlet flow rate to produce faster equilibration of the contrast-agent distribution was quantified. The models employed a spherical lesion and design constraints (lesion diameter, inlet-tube size and orientation, contrast-agent flow rates and fluid properties) taken from a recently published DCE-MRI phantom study. For DCE-MRI in breast cancer detection, where the target tumor-enhancement curve varies on the scale of hundreds of seconds, optimizing the number of inlet tubes and their orientation was found to be adequate for attaining concentration uniformity and reproducing the target tumor-enhancement curve. For DCE-CT in liver tumor detection, where the tumor-enhancement curve varies on a scale of tens of seconds, the use of an iterated inlet condition (programmed into the pump) enabled the phantom to reproduce the target tumor-enhancement curve within a few per cent beyond about

  11. Tryptophan PET Predicts Spatial and Temporal Patterns of Post-Treatment Glioblastoma Progression Detected by Contrast-Enhanced MRI

    PubMed Central

    Bosnyák, Edit; Kamson, David O.; Robinette, Natasha L.; Barger, Geoffrey R.; Mittal, Sandeep; Juhász, Csaba

    2016-01-01

    Background Amino acid PET is increasingly utilized for the detection of recurrent gliomas. Increased amino acid uptake is often observed outside the contrast-enhancing brain tumor mass. In this study, we evaluated if non-enhancing PET+ regions could predict spatial and temporal patterns of subsequent MRI progression in previously treated glioblastomas. Methods Twelve patients with a contrast-enhancing area suspicious for glioblastoma recurrence on MRI underwent PET scanning with the amino acid radiotracer alpha-[11C]-methyl-L-tryptophan (AMT). Brain regions showing increased AMT uptake in and outside the contrast-enhancing volume were objectively delineated to include high uptake consistent with glioma (as defined by previous studies). Volume and tracer uptake of such non-enhancing PET+ regions were compared to spatial patterns and timing of subsequent progression of the contrast-enhancing lesion, as defined by serial surveillance MRI. Results Non-enhancing PET+ volumes varied widely across patients and extended up to 24 mm from the edge of MRI contrast enhancement. In 10 patients with clear progression of the contrast-enhancing lesion, the non-enhancing PET+ volumes predicted the location of new enhancement, which extended beyond the PET+ brain tissue in 6. In two patients, with no PET+ area beyond the initial contrast enhancement, MRI remained stable. There was a negative correlation between AMT uptake in non-enhancing brain and time to subsequent progression (r=−0.77, p=0.003). Conclusions Amino acid PET imaging could complement MRI not only for detecting glioma recurrence but also predicting the location and timing of subsequent tumor progression. This could support decisions for surgical intervention or other targeted therapies for recurrent gliomas. PMID:26514361

  12. Dynamic contrast-enhanced MR imaging findings of bone metastasis in patients with prostate cancer

    PubMed Central

    Kayhan, Arda; Yang, Cheng; Soylu, Fatma Nur; Lakadamyalı, Hatice; Sethi, Ila; Karczmar, Gregory; Stadler, Walter; Oto, Aytekin

    2011-01-01

    AIM: To evaluate the dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) findings of bone metastasis in prostate cancer patients. METHODS: Sixteen men with a diagnosis of metastatic prostate cancer to bones were examined with DCE-MRI at 1.5 Tesla. The mean contrast agent concentration vs time curves for bone metastasis and normal bone were calculated and Ktrans and ve values were estimated and compared. RESULTS: An early significant enhancement (wash-out: n = 6, plateau: n = 8 and persistent: n = 2) was detected in all bone metastases (n = 16). Bone metastasis from prostate cancer showed significant enhancement and high Ktrans and ve values compared to normal bone which does not enhance in the elderly population. The mean Ktrans was 0.101/min and 0.0051/min (P < 0.001), the mean ve was 0.141 and 0.0038 (P < 0.001), for bone metastases and normal bone, respectively. CONCLUSION: DCE-MRI and its quantitative perfusion parameters may have a role in improving the detection of skeletal metastasis in prostate cancer patients. PMID:22229077

  13. Unsupervised tissue segmentation from dynamic contrast-enhanced magnetic resonance imaging.

    PubMed

    Chiusano, Gabriele; Staglianò, Alessandra; Basso, Curzio; Verri, Alessandro

    2014-05-01

    Design, implement, and validate an unsupervised method for tissue segmentation from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). For each DCE-MRI acquisition, after a spatial registration phase, the time-varying intensity of each voxel is represented as a sparse linear combination of adaptive basis signals. Both the basis signals and the sparse coefficients are learned by minimizing a functional consisting of a data fidelity term and a sparsity inducing penalty. Tissue segmentation is then obtained by applying a standard clustering algorithm to the computed representation. Quantitative estimates on two real data sets are presented. In the first case, the overlap with expert annotation measured with the DICE metric is nearly 90% and thus 5% more accurate than state-of-the-art techniques. In the second case, assessment of the correlation between quantitative scores, obtained by the proposed method against imagery manually annotated by two experts, achieved a Pearson coefficient of 0.83 and 0.87, and a Spearman coefficient of 0.83 and 0.71, respectively. The sparse representation of DCE MRI signals obtained by means of adaptive dictionary learning techniques appears to be well-suited for unsupervised tissue segmentation and applicable to different clinical contexts with little effort. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Spectral clustering applied for dynamic contrast-enhanced MR analysis of time-intensity curves.

    PubMed

    Tartare, Guillaume; Hamad, Denis; Azahaf, Mustapha; Puech, Philippe; Betrouni, Nacim

    2014-12-01

    Dynamic contrast-enhanced (DCE)-magnetic resonance imaging (MRI) represents an emerging method for the prediction of biomarker responses in cancer. However, DCE images remain difficult to analyze and interpret. Although pharmacokinetic approaches, which involve multi-step processes, can provide a general framework for the interpretation of these data, they are still too complex for robust and accurate implementation. Therefore, statistical data analysis techniques were recently suggested as another valid interpretation strategy for DCE-MRI. In this context, we propose a spectral clustering approach for the analysis of DCE-MRI time-intensity signals. This graph theory-based method allows for the grouping of signals after spatial transformation. Subsequently, these data clusters can be labeled following comparison to arterial signals. Here, we have performed experiments with simulated (i.e., generated via pharmacokinetic modeling) and clinical (i.e., obtained from patients scanned during prostate cancer diagnosis) data sets in order to demonstrate the feasibility and applicability of this kind of unsupervised and non-parametric approach.

  15. Small-bowel MRI in children and young adults with Crohn disease: retrospective head-to-head comparison of contrast-enhanced and diffusion-weighted MRI.

    PubMed

    Neubauer, Henning; Pabst, Thomas; Dick, Anke; Machann, Wolfram; Evangelista, Laura; Wirth, Clemens; Köstler, Herbert; Hahn, Dietbert; Beer, Meinrad

    2013-01-01

    Small-bowel MRI based on contrast-enhanced T1-weighted sequences has been challenged by diffusion-weighted imaging (DWI) for detection of inflammatory bowel lesions and complications in patients with Crohn disease. To evaluate free-breathing DWI, as compared to contrast-enhanced MRI, in children, adolescents and young adults with Crohn disease. This retrospective study included 33 children and young adults with Crohn disease ages 17 ± 3 years (mean ± standard deviation) and 27 matched controls who underwent small-bowel MRI with contrast-enhanced T1-weighted sequences and DWI at 1.5 T. The detectability of Crohn manifestations was determined. Concurrent colonoscopy as reference was available in two-thirds of the children with Crohn disease. DWI and contrast-enhanced MRI correctly identified 32 and 31 patients, respectively. All 22 small-bowel lesions and all Crohn complications were detected. False-positive findings (two on DWI, one on contrast-enhanced MRI), compared to colonoscopy, were a result of large-bowel lumen collapse. Inflammatory wall thickening was comparable on DWI and contrast-enhanced MRI. DWI was superior to contrast-enhanced MRI for detection of lesions in 27% of the assessed bowel segments and equal to contrast-enhanced MRI in 71% of segments. DWI facilitates fast, accurate and comprehensive workup in Crohn disease without the need for intravenous administration of contrast medium. Contrast-enhanced MRI is superior in terms of spatial resolution and multiplanar acquisition.

  16. Dynamic Contrast-Enhanced Magnetic Resonance Imaging of the Metastatic Potential of Melanoma Xenografts

    SciTech Connect

    Ovrebo, Kirsti Marie; Ellingsen, Christine; Galappathi, Kanthi; Rofstad, Einar K.

    2012-05-01

    Purpose: Gadolinium diethylene-triamine penta-acetic acid (Gd-DTPA)-based dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has been suggested as a useful noninvasive method for characterizing the physiologic microenvironment of tumors. In the present study, we investigated whether Gd-DTPA-based DCE-MRI has the potential to provide biomarkers for hypoxia-associated metastatic dissemination. Methods and Materials: C-10 and D-12 melanoma xenografts were used as experimental tumor models. Pimonidazole was used as a hypoxia marker. A total of 60 tumors were imaged, and parametric images of K{sup trans} (volume transfer constant of Gd-DTPA) and v{sub e} (fractional distribution volume of Gd-DTPA) were produced by pharmacokinetic analysis of the DCE-MRI series. The host mice were killed immediately after DCE-MRI, and the primary tumor and the lungs were resected and prepared for histologic assessment of the fraction of pimonidazole-positive hypoxic tissue and the presence of lung metastases, respectively. Results: Metastases were found in 11 of 26 mice with C-10 tumors and 14 of 34 mice with D-12 tumors. The primary tumors of the metastatic-positive mice had a greater fraction of hypoxic tissue (p = 0.00031, C-10; p < 0.00001, D-12), a lower median K{sup trans} (p = 0.0011, C-10; p < 0.00001, D-12), and a lower median v{sub e} (p = 0.014, C-10; p = 0.016, D-12) than the primary tumors of the metastatic-negative mice. Conclusions: These findings support the clinical attempts to establish DCE-MRI as a method for providing biomarkers for tumor aggressiveness and suggests that primary tumors characterized by low K{sup trans} and low v{sub e} values could have a high probability of hypoxia-associated metastatic spread.

  17. Quantitative dynamic contrast-enhanced MR imaging analysis of complex adnexal masses: a preliminary study.

    PubMed

    Thomassin-Naggara, Isabelle; Balvay, Daniel; Aubert, Emilie; Daraï, Emile; Rouzier, Roman; Cuenod, Charles A; Bazot, Marc

    2012-04-01

    To evaluate the ability of quantitative dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) to differentiate malignant from benign adnexal tumours. Fifty-six women with 38 malignant and 18 benign tumours underwent MR imaging before surgery for complex adnexal masses. Microvascular parameters were extracted from high temporal resolution DCE-MRI series, using a pharmacokinetic model in the solid tissue of adnexal tumours. These parameters were tissue blood flow (F(T)), blood volume fraction (Vb), permeability-surface area product (PS), interstitial volume fraction (Ve), lag time (Dt) and area under the enhancing curve (rAUC). Area under the receiver operating curve (AUROC) was calculated as a descriptive tool to assess the overall discrimination of parameters. Malignant tumours displayed higher F(T), Vb, rAUC and lower Ve than benign tumours (P < 0.0001, P = 0.0006, P = 0.04 and P = 0.0002, respectively). F(T) was the most relevant factor for discriminating malignant from benign tumours (AUROC = 0.86). Primary ovarian invasive tumours displayed higher F(T) and shorter Dt than borderline tumours. Malignant adnexal tumours with associated peritoneal carcinomatosis at surgery displayed a shorter Dt than those without peritoneal carcinomatosis at surgery (P = 0.01). Quantitative DCE-MRI is a feasible and accurate technique to differentiate malignant from benign adnexal tumours and could potentially help oncologists with management decisions. Quantitative DCE MR imaging allows accurate differentiation between malignant and benign tumours. Quantitative DCE MRI may help predict peritoneal carcinomatosis associated with ovarian tumors. Quantitative DCE MRI helps distinguish between invasive and borderline primary ovarian tumours.

  18. Dynamic contrast-enhanced magnetic resonance imaging of radiation therapy-induced microcirculation changes in rectal cancer

    SciTech Connect

    Lussanet, Quido G. de . E-mail: qdlu@rdia.azm.nl; Backes, Walter H.; Griffioen, Arjan W.; Padhani, Anwar R.; Baeten, Coen I.; Baardwijk, Angela van; Lambin, Philippe; Beets, Geerard L.; Engelshoven, Jos van; Beets-Tan, Regina G.H.

    2005-12-01

    Purpose: Dynamic contrast-enhanced T1-weighted magnetic resonance imaging (DCE-MRI) allows noninvasive evaluation of tumor microvasculature characteristics. This study evaluated radiation therapy related microvascular changes in locally advanced rectal cancer by DCE-MRI and histology. Methods and Materials: Dynamic contrast-enhanced-MRI was performed in 17 patients with primary rectal cancer. Seven patients underwent 25 fractions of 1.8 Gy radiation therapy (RT) (long RT) before DCE-MRI and 10 did not. Of these 10, 3 patients underwent five fractions of 5 Gy RT (short RT) in the week before surgery. The RT treated and nontreated groups were compared in terms of endothelial transfer coefficient (K{sup PS}, measured by DCE-MRI), microvessel density (MVD) (scored by immunoreactivity to CD31 and CD34), and tumor cell and endothelial cell proliferation (scored by immunoreactivity to Ki67). Results: Tumor K{sup PS} was 77% (p = 0.03) lower in the RT-treated group. Histogram analyses showed that RT reduced both magnitude and intratumor heterogeneity of K{sup PS} (p = 0.01). MVD was significantly lower (37%, p 0.03) in tumors treated with long RT than in nonirradiated tumors, but this was not the case with short RT. Endothelial cell proliferation was reduced with short RT (81%, p = 0.02) just before surgery, but not with long RT (p > 0.8). Tumor cell proliferation was reduced with both long (57%, p < 0.001) and short RT (52%, p = 0.002). Conclusion: Dynamic contrast-enhanced-MRI-derived K{sup PS} values showed significant radiation therapy related reductions in microvessel blood flow in locally advanced rectal cancer. These findings may be useful in evaluating effects of radiation combination therapies (e.g., chemoradiation or RT combined with antiangiogenesis therapy), to account for effects of RT alone.

  19. Assessment of Hypoxia in Human Cervical Carcinoma Xenografts by Dynamic Contrast-Enhanced Magnetic Resonance Imaging

    SciTech Connect

    Ellingsen, Christine; Egeland, Tormod A.M.; Gulliksrud, Kristine M.Sc.; Gaustad, Jon-Vidar; Mathiesen, Berit; Rofstad, Einar K.

    2009-03-01

    Purpose: Patients with advanced cervical cancer and highly hypoxic primary tumors show increased frequency of locoregional treatment failure and poor disease-free and overall survival rates. The potential usefulness of gadolinium-diethylenetriaminepentaacetic acid (Gd-DTPA)-based dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in assessing tumor hypoxia noninvasively was investigated in the present preclinical study. Methods and Materials: CK-160 and TS-415 human cervical carcinoma xenografts transplanted intramuscularly (i.m.) or subcutaneously (s.c.) in BALB/c nu/nu mice were subjected to DCE-MRI and measurement of fraction of radiobiologically hypoxic cells. Tumor images of K{sup trans} (the volume transfer constant of Gd-DTPA) and v{sub e} (the extracellular volume fraction of the imaged tissue) were produced by pharmacokinetic analysis of the DCE-MRI data. Fraction of radiobiologically hypoxic cells was measured by using the paired survival curve method. Results: Fraction of radiobiologically hypoxic cells differed significantly among the four tumor groups. The mean values {+-} SE were determined to be 44% {+-} 7% (i.m. CK-160), 77% {+-} 10% (s.c. CK-160), 23% {+-} 5% (i.m. TS-415), and 52% {+-} 6% (s.c. TS-415). The four tumor groups differed significantly also in K{sup trans}, and there was an unambiguous inverse relationship between K{sup trans} and fraction of radiobiologically hypoxic cells. On the other hand, significant differences among the groups in v{sub e} could not be detected. Conclusions: The study supports the clinical development of DCE-MRI as a method for assessing the extent of hypoxia in carcinoma of the cervix.

  20. Early prediction of functional outcome using dynamic contrast enhanced magnetic resonance imaging in experimental stroke.

    PubMed

    Huang, Wei-Yuan; Wu, Gang; Li, Jian-Jun; Geng, Dao-Ying; Tan, Wen-Li; Yu, Xiang-Rong

    2016-09-01

    Early prediction of functional outcome in cerebral ischemia stroke using MRI remains a challenge. The aim of this study was to evaluate the predictive value of dynamic contrast-enhanced (DCE) MRI in terms of functional outcome of ischemia stroke. Right middle cerebral artery occlusion (MCAO) was performed in male SD rats (n=50), followed by withdrawal of the occluding filament after 3 (n = 10), 4 (n = 10), 5 (n = 10), 6 (n = 10) or 7 (n = 10) h to establish ischemia and reperfusion stroke. DCE and conventional MRI were performed in each animal 60 ± 15 min before and after reperfusion. The outcome was assessed by the modified Neurological Severity Scores (mNSS) (before reperfusion and at 72 h after reperfusion) and the infarct volume. Comparisons of functional prognosis and DCE parameters (K(trans), Ve and Kep) were performed using binary logistic regression and operating characteristic (ROC) analysis. DCE parameters results indicated that blood brain barrier (BBB) permeability increased with prolonged reperfusion timing. Using binary logistic regression analysis on stroke characteristics (reperfusion timing, infarct volume) and BBB permeability parameters (drK(trans)subcortex, drK(trans)cortex, drVesubcortex, drVecortex, drKepsubcortex and drKepcortex) as covariates , the results demonstrated that reperfusion timing, infarct volume, drK(trans)subcortex and drKepsubcortex were independent factors that were associated with prognosis (OR=0.01, OR=0.23, OR=245.23, OR=1.29). ROC analysis indicated that a drK(trans)subcortex threshold of 0.88 with a sensitivity of 95.7% and a specificity of 85.2% and a drKepsubcortex threshold of -0.25 with a sensitivity of 69.6% and a specificity of 70.4% for differentiation between favourable and unfavourable prognosis. Quantitative DCE-MRI can be used to predict the functional outcomes of cerebral ischemia injury. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Quantitative Susceptibility Mapping and Dynamic Contrast Enhanced Quantitative Perfusion in Cerebral Cavernous Angiomas

    PubMed Central

    Mikati, Abdul Ghani; Tan, Huan; Shenkar, Robert; Li, Luying; Zhang, Lingjiao; Guo, Xiaodong; Shi, Changbin; Liu, Tian; Wang, Yi; Shah, Akash; Edelman, Robert; Christoforidis, Gregory; Awad, Issam

    2015-01-01

    Background Hyperpermeability and iron deposition are two central pathophysiological phenomena in human cerebral cavernous malformation (CCM) disease. Here we used two novel magnetic resonance imaging (MRI) techniques to establish a relationship between these phenomena. Methods Subjects with CCM disease (4 sporadic and 18 familial) underwent MRI imaging using the Dynamic Contrast Enhanced Quantitative Perfusion (DCEQP) and Quantitative Susceptibility Mapping (QSM) techniques that measure hemodynamic factors of vessel leak and iron deposition respectively, previously demonstrated in CCM disease. Regions of interest encompassing the CCM lesions were analyzed using these techniques Results Susceptibility measured by QSM was positively correlated with permeability of lesions measured using DCEQP (r=0.49, p=<0.0001). The correlation was not affected by factors including familial predisposition, lesion volume, the contrast agent and the use of statin medication. Susceptibility was correlated with lesional blood volume (r=0.4, p=0.0001), but not with lesional blood flow. Conclusion The correlation between QSM and DCEQP suggests that the phenomena of permeability and iron deposition are related in CCM; hence “more leaky lesions” also manifest a more cumulative iron burden. These techniques might be used as biomarkers to monitor the course of this disease and the effect of therapy. PMID:24302484

  2. Non-contrast-enhanced pulmonary vein MRI with a spatially selective slab inversion preparation sequence.

    PubMed

    Hu, Peng; Chuang, Michael L; Kissinger, Kraig V; Goddu, Beth; Goepfert, Lois A; Rofsky, Neil M; Manning, Warren J; Nezafat, Reza

    2010-02-01

    We propose a non-contrast-enhanced, three-dimensional, free-breathing, electrocardiogram-gated, gradient recalled echo sequence with a slab-selective inversion for pulmonary vein (PV) MRI. A sagittal inversion slab was applied prior to data acquisition to suppress structures adjacent to the left atrium (LA) and PVs, thereby improving the conspicuity of the PV and LA. Compared with other MR angiography methods using an inversion pulse, the proposed method does not require signal subtraction and the inversion slab is not parallel to the imaging slab. The feasibility of the proposed method was demonstrated in healthy subjects. The inversion slab thickness and inversion time were optimized to be 60 mm and 500 ms, respectively. Compared to conventional gradient recalled echo imaging without inversion, the proposed technique significantly increased the contrast-to-noise ratios between the LA and the right atrium by 20-fold (P < 0.01), increased the contrast-to-noise ratios between the PVs and right atrium by 10-fold (P < 0.03), and increased the contrast-to-noise ratios between the PVs, LA and pulmonary artery by 4-fold (P < 0.01 for both). The signal-to-noise ratios of the PVs and the LA were similar with and without the inversion slab (P > 0.3). The proposed technique greatly enhances the conspicuity of the PVs and LA without significant loss of signal-to-noise ratio.

  3. Ex vivo assessment of polyol coated-iron oxide nanoparticles for MRI diagnosis applications: toxicological and MRI contrast enhancement effects

    NASA Astrophysics Data System (ADS)

    Bomati-Miguel, Oscar; Miguel-Sancho, Nuria; Abasolo, Ibane; Candiota, Ana Paula; Roca, Alejandro G.; Acosta, Milena; Schwartz, Simó; Arus, Carles; Marquina, Clara; Martinez, Gema; Santamaria, Jesus

    2014-03-01

    Polyol synthesis is a promising method to obtain directly pharmaceutical grade colloidal dispersion of superparamagnetic iron oxide nanoparticles (SPIONs). Here, we study the biocompatibility and performance as T2-MRI contrast agents (CAs) of high quality magnetic colloidal dispersions (average hydrodynamic aggregate diameter of 16-27 nm) consisting of polyol-synthesized SPIONs (5 nm in mean particle size) coated with triethylene glycol (TEG) chains (TEG-SPIONs), which were subsequently functionalized to carboxyl-terminated meso-2-3-dimercaptosuccinic acid (DMSA) coated-iron oxide nanoparticles (DMSA-SPIONs). Standard MTT assays on HeLa, U87MG, and HepG2 cells revealed that colloidal dispersions of TEG-coated iron oxide nanoparticles did not induce any loss of cell viability after 3 days incubation with dose concentrations below 50 μg Fe/ml. However, after these nanoparticles were functionalized with DMSA molecules, an increase on their cytotoxicity was observed, so that particles bearing free terminal carboxyl groups on their surface were not cytotoxic only at low concentrations (<10 μg Fe/ml). Moreover, cell uptake assays on HeLa and U87MG and hemolysis tests have demonstrated that TEG-SPIONs and DMSA-SPIONs were well internalized by the cells and did not induce any adverse effect on the red blood cells at the tested concentrations. Finally, in vitro relaxivity measurements and post mortem MRI studies in mice indicated that both types of coated-iron oxide nanoparticles produced higher negative T2-MRI contrast enhancement than that measured for a similar commercial T2-MRI CAs consisting in dextran-coated ultra-small iron oxide nanoparticles (Ferumoxtran-10). In conclusion, the above attributes make both types of as synthesized coated-iron oxide nanoparticles, but especially DMSA-SPIONs, promising candidates as T2-MRI CAs for nanoparticle-enhanced MRI diagnosis applications.

  4. Accelerated contrast-enhanced whole-heart coronary MRI using low-dimensional-structure self-learning and thresholding.

    PubMed

    Akçakaya, Mehmet; Basha, Tamer A; Chan, Raymond H; Rayatzadeh, Hussein; Kissinger, Kraig V; Goddu, Beth; Goepfert, Lois A; Manning, Warren J; Nezafat, Reza

    2012-05-01

    We sought to evaluate the efficacy of prospective random undersampling and low-dimensional-structure self-learning and thresholding reconstruction for highly accelerated contrast-enhanced whole-heart coronary MRI. A prospective random undersampling scheme was implemented using phase ordering to minimize artifacts due to gradient switching and was compared to a randomly undersampled acquisition with no profile ordering. This profile-ordering technique was then used to acquire contrast-enhanced whole-heart coronary MRI in 10 healthy subjects with 4-fold acceleration. Reconstructed images and the acquired zero-filled images were compared for depicted vessel length, vessel sharpness, and subjective image quality on a scale of 1 (poor) to 4 (excellent). In a pilot study, contrast-enhanced whole-heart coronary MRI was also acquired in four patients with suspected coronary artery disease with 3-fold acceleration. The undersampled images were reconstructed using low-dimensional-structure self-learning and thresholding, which showed significant improvement over the zero-filled images in both objective and subjective measures, with an overall score of 3.6 ± 0.5. Reconstructed images in patients were all diagnostic. Low-dimensional-structure self-learning and thresholding reconstruction allows contrast-enhanced whole-heart coronary MRI with acceleration as high as 4-fold using clinically available five-channel phased-array coil. Copyright © 2012 Wiley Periodicals, Inc.

  5. Dynamic Contrast-Enhanced Magnetic Resonance Imaging of Ocular Melanoma as a Tool to Predict Metastatic Potential.

    PubMed

    Wei, Wenbo; Jia, Guang; von Tengg-Kobligk, Hendrik; Heverhagen, Johannes T; Abdel-Rahman, Mohamed; Wei, Lai; Christoforidis, John B; Davidorf, Frederick; Knopp, Michael V

    This study explores the capability of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) to differentiate tumor characteristics of metastatic and nonmetastatic choroidal melanoma as a potential tool for patient management. A total of 13 patients (69 ± 9 years) with choroidal melanoma were imaged using DCE-MRI on a 3-T MRI system with a 16-channel head coil. The Tofts 2-compartment model was chosen for quantification, and parameters K (the transfer constant from the blood plasma to the extracellular space) and Kep (the transfer constant from the extracellular space to the blood plasma) were calculated and compared. Metastasis was excluded by subsequent clinical work-up or confirmed by histology after targeted biopsy. Six patients were diagnosed with metastatic melanoma and 7 without. All orbital tumors were at least larger than 2 mm. A significant difference was identified in K between patients with (0.73 ± 0.18/min) and without (1.00 ± 0.21/min) metastatic melanoma (P = 0.03), whereas the difference was not significantly shown in Kep (2.58 ± 1.54/min of metastatic patients vs 2.98 ± 1.83/min of nonmetastatic patients, P = 0.67). Dynamic contrast-enhanced magnetic resonance imaging has the potential to differentiate orbital melanomas with metastatic and nonmetastatic spread. Thus, DCE-MRI has the potential to be an in vivo imaging technique to predict early which patients are prone to metastatic disease.

  6. Comparison of contrast-enhanced MRI with iodine-123 BMIPP for detection of myocardial damage in hypertrophic cardiomyopathy.

    PubMed

    Amano, Yasuo; Kumita, Shinichiro; Takayama, Morimasa; Kumazaki, Tatuso

    2005-08-01

    The purpose of this study was to compare contrast-enhanced MRI with dual-radionuclide SPECT for the detection of myocardial damage associated with hypertrophic cardiomyopathy. Twenty-three patients with hypertrophic cardiomyopathy were examined. Delayed hyperenhancement of the damaged myocardium was observed using contrast-enhanced MRI, and regional wall thickness and left ventricular ejection fraction were measured using cine balanced steady-state free precession MRI. Dual-radionuclide SPECT using technetium-99m sestamibi and iodine-123 15-(p-iodophenyl)-3-(R,S)-methylpentadecanoic acid (BMIPP) was performed at rest. In the abnormal myocardial segments, agreement between the contrast-enhanced MRI and 123I BMIPP SPECT was assessed. The relationships between the regional and global cardiac abnormalities and the delayed hyperenhancement on MRI and decreased uptake of 123I BMIPP were also evaluated. In 368 left ventricular segments, 57 segments showed delayed hyperenhancement on MRI, 43 segments showed decreased uptake of 123I BMIPP, and seven showed decreased uptake of (99m)Tc sestamibi. The delayed hyperenhancement and decreased uptake of 123I BMIPP were frequently observed in the interventricular septal wall (p < 0.0001); however, the agreement between the methods in detecting myocardial abnormalities was fair (kappa = 0.38). The abnormal septal walls were significantly thicker than those without apparent abnormalities (p = 0.031). There was an inverse correlation between the number of enhancing segments and the ejection fraction (r = -0.53). In hypertrophic cardiomyopathy, contrast-enhanced MRI was valuable for the detection of extensive myocardial damage.

  7. Assessment of Tumor Radioresponsiveness and Metastatic Potential by Dynamic Contrast-Enhanced Magnetic Resonance Imaging

    SciTech Connect

    Ovrebo, Kirsti Marie; Gulliksrud, Kristine; Mathiesen, Berit; Rofstad, Einar K.

    2011-09-01

    Purpose: It has been suggested that gadolinium diethylene-triamine penta-acetic acid (Gd-DTPA)-based dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) may provide clinically useful biomarkers for personalized cancer treatment. In this preclinical study, we investigated the potential of DCE-MRI as a noninvasive method for assessing the radioresponsiveness and metastatic potential of tumors. Methods and Materials: R-18 melanoma xenografts growing in BALB/c nu/nu mice were used as experimental tumor models. Fifty tumors were subjected to DCE-MRI, and parametric images of K{sup trans} (the volume transfer constant of Gd-DTPA) and v{sub e} (the fractional distribution volume of Gd-DTPA) were produced by pharmacokinetic analysis of the DCE-MRI series. The tumors were irradiated after the DCE-MRI, either with a single dose of 10 Gy for detection of radiobiological hypoxia (30 tumors) or with five fractions of 4 Gy in 48 h for assessment of radioresponsiveness (20 tumors). The host mice were then euthanized and examined for lymph node metastases, and the primary tumors were resected for measurement of cell survival in vitro. Results: Tumors with hypoxic cells showed significantly lower K{sup trans} values than tumors without significant hypoxia (p < 0.0001, n = 30), and K{sup trans} decreased with increasing cell surviving fraction for tumors given fractionated radiation treatment (p < 0.0001, n = 20). Tumors in metastasis-positive mice had significantly lower K{sup trans} values than tumors in metastasis-negative mice (p < 0.0001, n = 50). Significant correlations between v{sub e} and tumor hypoxia, radioresponsiveness, or metastatic potential could not be detected. Conclusions: R-18 tumors with low K{sup trans} values are likely to be resistant to radiation treatment and have a high probability of developing lymph node metastases. The general validity of these observations should be investigated further by studying preclinical tumor models with biological

  8. Serial changes of (18)F-FDG PET/CT findings in ischiopubic synchondrosis: comparison with contrast-enhanced MRI.

    PubMed

    Tsuji, Kazunobu; Tsuchida, Tatsuro; Kosaka, Nobuyuki; Tanizawa, Akihiko; Kimura, Hirohiko

    2015-01-01

    A 3 years old female patient underwent resection and chemotherapy for a yolk sac tumor of the retroperitoneum. Two years later, fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography ((18)F-FDG PET/CT) showed high uptake in the right ischiopubic synchondrosis (IPS), which had a radiolucent structure on CT. The structure showed contrast enhancement on magnetic resonance imaging (MRI), which was a non-specific finding. Six weeks later, a follow-up (18)F-FDG PET/CT scan was performed which showed no abnormal uptake in the IPS. The disappearance of (18)F-FDG uptake preceded that of contrast enhancement on MRI, which was seen 7 months after the initial (18)F-FDG PET/CT scan. This is the first report showing serial changes of (18)F-FDG uptake in IPS, in comparison to MRI findings.

  9. Characteristic MRI findings in hyperglycaemia-induced seizures: diagnostic value of contrast-enhanced fluid-attenuated inversion recovery imaging.

    PubMed

    Lee, E J; Kim, K K; Lee, E K; Lee, J E

    2016-12-01

    To describe characteristic magnetic resonance imaging (MRI) abnormalities in hyperglycaemia-induced seizures, and evaluate the diagnostic value of contrast-enhanced fluid-attenuated inversion recovery (FLAIR) imaging. Possible underlying mechanisms of this condition are also discussed. Eleven patients with hyperglycaemia-induced seizures and MRI abnormalities were retrospectively studied. Clinical manifestations, laboratory findings, MRI findings, and clinical outcomes were analysed. All patients, except one, presented with focal seizures, simple or complex partial seizures, or negative motor seizures. All patients had long-standing uncontrolled diabetes mellitus. The MRI abnormalities observed acutely were focal subcortical hypointensities on T2-weighted imaging and FLAIR imaging in all patients with overlying cortical gyral T2 hyperintensities in five. Focal overlying cortical or leptomeningeal enhancement on contrast-enhanced T1-weighted imaging or contrast-enhanced FLAIR imaging was observed in all patients. Contrast-enhanced FLAIR imaging was superior to contrast-enhanced T1-weighted imaging for detecting characteristic cortical or leptomeningeal enhancement. Diffusion-weighted imaging showed mildly restricted diffusion in four of five patients with cortical gyral T2 hyperintensity. In nine patients, the lesions were localised in the parietal or parieto-occipital lobes. The other two patients showed localised precentral gyral lesions. After treatment, the neurological symptoms, including the seizures, improved in all patients. On clinical recovery, the subcortical T2 hypointensity, gyral or leptomeningeal enhancement, and overlying cortical T2 hyperintensities resolved. Recognition of these radiological abnormalities in patients with hyperglycaemia-induced seizures is important in restricting unwarranted investigations and initiating early therapy. These patients generally have a good prognosis. Copyright © 2016 The Royal College of Radiologists. Published by

  10. Evolution of pulmonary perfusion defects demonstrated with contrast-enhanced dynamic MR perfusion imaging.

    PubMed

    Howarth, N R; Beziat, C; Berthezène, Y

    1999-01-01

    Pulmonary perfusion defects can be demonstrated with contrast-enhanced dynamic MR perfusion imaging. We present the case of a patient with a pulmonary artery sarcoma who presented with a post-operative pulmonary embolus and was followed in the post-operative period with dynamic contrast-enhanced MR perfusion imaging. This technique allows rapid imaging of the first passage of contrast material through the lung after bolus injection in a peripheral vein. To our knowledge, this case report is the first to describe the use of this MR technique in showing the evolution of peripheral pulmonary perfusion defects associated with pulmonary emboli.

  11. QIN: Practical Considerations in T1 Mapping of Prostate for Dynamic Contrast Enhancement Pharmacokinetic Analyses

    PubMed Central

    Fennessy, Fiona M; Fedorov, Andriy; Gupta, Sandeep N; Schmidt, Ehud J; Tempany, Clare M; Mulkern, Robert V

    2012-01-01

    There are many challenges in developing robust imaging biomarkers that can be reliably applied in a clinical trial setting. In the case of Dynamic Contrast Enhanced (DCE) MRI, one such challenge is to obtain accurate pre-contrast T1 maps for subsequent use in two-compartment pharmacokinetic models commonly used to fit the MR enhancement time courses. In the prostate, a convenient and common approach for this task has been to use the same 3D SPGR sequence used to collect the DCE data, but with variable flip angles (VFA’s) to collect data suitable for T1 mapping prior to contrast injection. However, inhomogeneous radiofrequency conditions within the prostate have been found to adversely affect the accuracy of this technique. Herein we demonstrate the sensitivity of DCE pharmacokinetic parameters to pre-contrast T1 values and examine methods to improve the accuracy of T1 mapping with flip angle corrected VFA SPGR methods, comparing T1 maps from such methods with reference T1 maps generated with saturation recovery experiments performed with fast spin echo (FSE) sequences. PMID:22898681

  12. Development of a dynamic flow imaging phantom for dynamic contrast-enhanced CT

    SciTech Connect

    Driscoll, B.; Keller, H.; Coolens, C.

    2011-08-15

    Purpose: Dynamic contrast enhanced CT (DCE-CT) studies with modeling of blood flow and tissue perfusion are becoming more prevalent in the clinic, with advances in wide volume CT scanners allowing the imaging of an entire organ with sub-second image frequency and sub-millimeter accuracy. Wide-spread implementation of perfusion DCE-CT, however, is pending fundamental validation of the quantitative parameters that result from dynamic contrast imaging and perfusion modeling. Therefore, the goal of this work was to design and construct a novel dynamic flow imaging phantom capable of producing typical clinical time-attenuation curves (TACs) with the purpose of developing a framework for the quantification and validation of DCE-CT measurements and kinetic modeling under realistic flow conditions. Methods: The phantom is based on a simple two-compartment model and was printed using a 3D printer. Initial analysis of the phantom involved simple flow measurements and progressed to DCE-CT experiments in order to test the phantoms range and reproducibility. The phantom was then utilized to generate realistic input TACs. A phantom prediction model was developed to compute the input and output TACs based on a given set of five experimental (control) parameters: pump flow rate, injection pump flow rate, injection contrast concentration, and both control valve positions. The prediction model is then inversely applied to determine the control parameters necessary to generate a set of desired input and output TACs. A protocol was developed and performed using the phantom to investigate image noise, partial volume effects and CT number accuracy under realistic flow conditionsResults: This phantom and its surrounding flow system are capable of creating a wide range of physiologically relevant TACs, which are reproducible with minimal error between experiments ({sigma}/{mu} < 5% for all metrics investigated). The dynamic flow phantom was capable of producing input and output TACs using

  13. In-Vivo Imaging of Cell Migration Using Contrast Enhanced MRI and SVM Based Post-Processing.

    PubMed

    Weis, Christian; Hess, Andreas; Budinsky, Lubos; Fabry, Ben

    2015-01-01

    The migration of cells within a living organism can be observed with magnetic resonance imaging (MRI) in combination with iron oxide nanoparticles as an intracellular contrast agent. This method, however, suffers from low sensitivity and specificty. Here, we developed a quantitative non-invasive in-vivo cell localization method using contrast enhanced multiparametric MRI and support vector machines (SVM) based post-processing. Imaging phantoms consisting of agarose with compartments containing different concentrations of cancer cells labeled with iron oxide nanoparticles were used to train and evaluate the SVM for cell localization. From the magnitude and phase data acquired with a series of T2*-weighted gradient-echo scans at different echo-times, we extracted features that are characteristic for the presence of superparamagnetic nanoparticles, in particular hyper- and hypointensities, relaxation rates, short-range phase perturbations, and perturbation dynamics. High detection quality was achieved by SVM analysis of the multiparametric feature-space. The in-vivo applicability was validated in animal studies. The SVM detected the presence of iron oxide nanoparticles in the imaging phantoms with high specificity and sensitivity with a detection limit of 30 labeled cells per mm3, corresponding to 19 μM of iron oxide. As proof-of-concept, we applied the method to follow the migration of labeled cancer cells injected in rats. The combination of iron oxide labeled cells, multiparametric MRI and a SVM based post processing provides high spatial resolution, specificity, and sensitivity, and is therefore suitable for non-invasive in-vivo cell detection and cell migration studies over prolonged time periods.

  14. Multiparametric breast MRI with 3T: Effectivity of combination of contrast enhanced MRI, DWI and 1H single voxel spectroscopy in differentiation of Breast tumors.

    PubMed

    Aribal, Erkin; Asadov, Ruslan; Ramazan, Abdullah; Ugurlu, Mustafa Ümit; Kaya, Handan

    2016-05-01

    To evaluate the diagnostic accuracy of dynamic contrast enhanced breast MRI (DCE-MRI) combined with diffusion weighted imaging (DWI) and 1H single-voxel magnetic resonance spectroscopy (1HMRS) in differentiating malignant from benign breast lesions. One hundred twenty-nine patients with 138 lesions were included in the study. Multiparametric MRI of the breast was performed with a 3T unit. A DWI is followed by DCE-MRI and 1HMRS. All lesions were biopsied within one week after MRI. Histopathologic findings were accepted as the standard of reference. Probability of malignancy was assessed according to BI-RADS for DCE-MRI. ADC values were measured for DWI and choline peaks were assessed using a semi-quantitative method in 1HMRS. Two blinded radiologists evaluated findings in consensus. Diagnostic performance of DCE-MRI, DWI and 1HMRS alone or in combination for multiparametric imaging were statistically evaluated. Histopathology revealed malignancy in 54.4% of lesions (75/138). DCE-MRI showed the highest AUC (0.978), sensitivity (97.33%) and specificity (88.89%) compared to DWI and 1HMRS. Sensitivity was 100% when a positive result from any one of three techniques was accepted as malignancy, albeit with a trade-off for 65.1% specificity. Highest specificity (98.4%) was attained when all three techniques were required to be positive, though with a lower sensitivity (82.7%) as trade-off. Logistic regression analysis confirmed significant association with DCE-MRI (p<0.001) and 1H MRS (p=0.009) but not with DWI (p=0.127). There was one case of fat necrosis which was false positive in all three techniques. Multiparametric imaging with combination of DCE-MRI, DWI and 1HMRS does not improve, and may even reduce the diagnostic accuracy of breast MRI. Although, the specificity may be improved with a trade-off for lower sensitivity, we have not set a convenient algorithm for the combined use of these techniques. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Comparison of Myocardial Perfusion Estimates From Dynamic Contrast-Enhanced Magnetic Resonance Imaging With Four Quantitative Analysis Methods

    PubMed Central

    Pack, Nathan A.; DiBella, Edward V. R.

    2012-01-01

    Dynamic contrast-enhanced MRI has been used to quantify myocardial perfusion in recent years. Published results have varied widely, possibly depending on the method used to analyze the dynamic perfusion data. Here, four quantitative analysis methods (two-compartment modeling, Fermi function modeling, model-independent analysis, and Patlak plot analysis) were implemented and compared for quantifying myocardial perfusion. Dynamic contrast-enhanced MRI data were acquired in 20 human subjects at rest with low-dose (0.019 ± 0.005 mmol/kg) bolus injections of gadolinium. Fourteen of these subjects were also imaged at adenosine stress (0.021 ± 0.005 mmol/kg). Aggregate rest perfusion estimates were not significantly different between all four analysis methods. At stress, perfusion estimates were not significantly different between two-compartment modeling, model-independent analysis, and Patlak plot analysis. Stress estimates from the Fermi model were significantly higher (~20%) than the other three methods. Myocardial perfusion reserve values were not significantly different between all four methods. Model-independent analysis resulted in the lowest model curve-fit errors. When more than just the first pass of data was analyzed, perfusion estimates from two-compartment modeling and model-independent analysis did not change significantly, unlike results from Fermi function modeling. PMID:20577976

  16. Correlations of Dynamic Contrast-Enhanced Magnetic Resonance Imaging with Morphologic, Angiogenic, and Molecular Prognostic Factors in Rectal Cancer

    PubMed Central

    Hong, Hye-Suk; Kim, Se Hoon; Park, Hae-Jeong; Park, Mi-Suk; Kim, Won Ho; Kim, Nam Kyu; Lee, Jae Mun; Cho, Hyeon Je

    2013-01-01

    Purpose To investigate the correlations between parameters of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and prognostic factors in rectal cancer. Materials and Methods We studied 29 patients with rectal cancer who underwent gadolinium contrast-enhanced, T1-weighted DCE-MRI with a three Tesla scanner prior to surgery. Signal intensity on DCE-MRI was independently measured by two observers to examine reproducibility. A time-signal intensity curve was generated, from which four semiquantitative parameters were calculated: steepest slope (SLP), time to peak (Tp), relative enhancement during a rapid rise (Erise), and maximal enhancement (Emax). Morphologic prognostic factors including T stage, N stage, and histologic grade were identified. Tumor angiogenesis was evaluated in terms of microvessel count (MVC) and microvessel area (MVA) by morphometric study. As molecular factors, the mutation status of the K-ras oncogene and microsatellite instability were assessed. DCE-MRI parameters were correlated with each prognostic factor using bivariate correlation analysis. A p-value of <0.05 was considered significant. Results Erise was significantly correlated with N stage (r=-0.387 and -0.393, respectively, for two independent data), and Tp was significantly correlated with histologic grade (r=0.466 and 0.489, respectively). MVA was significantly correlated with SLP (r=-0.532 and -0.535, respectively) and Erise (r=-0.511 and -0.446, respectively). MVC was significantly correlated with Emax (r=-0.435 and -0.386, respectively). No significant correlations were found between DCE-MRI parameters and T stage, K-ras mutation, or microsatellite instability. Conclusion DCE-MRI may provide useful prognostic information in terms of histologic differentiation and angiogenesis in rectal cancer. PMID:23225808

  17. Semiquantitative and Quantitative Dynamic Contrast-Enhanced Magnetic Resonance Imaging Measurements Predict Radiation Response in Cervix Cancer

    SciTech Connect

    Zahra, Mark A. Tan, Li Tee; Priest, Andrew N.; Graves, Martin J.; Arends, Mark; Crawford, Robin A.F.; Brenton, James D.; Lomas, David J.; Sala, Evis

    2009-07-01

    Purpose: To evaluate semiquantitative and quantitative dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) measurements in predicting the response to radiotherapy in cervix cancer. Methods and Materials: Patients with cervix cancer treated radically with chemoradiotherapy had DCE-MRI at three time points: before starting treatment, after 2 weeks of radiotherapy, and in the 5th week of radiotherapy. Semiquantitative measurements obtained from the signal intensity vs. time plots included arrival time of contrast, the slope and maximum slope of contrast uptake, time for peak enhancement, and the contrast enhancement ratio (CER). Pharmacokinetic modeling with a modeled vascular input function was used for the quantitative measurements volume transfer constant (K{sup trans}), rate constant (k{sub ep}), fraction plasma volume (fPV), and the initial area under gadolinium-time curve. The correlation of these measurements at each of the three time points with radiologic tumor response was investigated. Results: Thirteen patients had a total of 38 scans. There was no correlation between the DCE-MRI measurements and the corresponding tumor volumes. A statistically significant correlation with percentage tumor regression was shown with the pretreatment DCE-MRI semiquantitative parameters of peak time (p = 0.046), slope (p = 0.025), maximum slope (p = 0.046), and CER (p = 0.025) and the quantitative parameters K{sup trans} (p = 0.043) and k{sub ep} (p = 0.022). Second and third scan measurements did not show any correlation. Conclusions: This is the first study to show that pretreatment DCE-MRI quantitative parameters predict the radiation response in cervix cancer. These measurements may allow a more meaningful comparison of DCE-MRI studies from different centers.

  18. Circulatory dynamics of the cauda equina in lumbar canal stenosis using dynamic contrast-enhanced magnetic resonance imaging.

    PubMed

    Kobayashi, Shigeru; Suzuki, Yoshihiko; Meir, Adam; Al-Khudairi, Naji; Nakane, Takashi; Hayakawa, Katsuhiko

    2015-10-01

    There has been no study regarding the cauda equina circulation of patients with neurogenic intermittent claudication (NIC) in lumbar spinal canal stenosis (LSCS) using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). The mechanism responsible for the onset of NIC was investigated using DCE-MRI to examine changes in cauda equina blood flow in patients with LSCS. This was a retrospective longitudinal registry and magnetic resonance imaging study. The subjects consisted of 23 patients who had LSCS associated with NIC (stenosis group). Ten asymptomatic volunteers who did not have NIC served as controls (control group). In the LSCS group, the cross-sectional area of the dural sac was <75 mm2 at the site of most severe stenosis. These patients were further divided into single and double stenosis subgroups. The main measures we used were the signal intensity (S-I) ratio and the shape and size of the time intensity (T-I) curves. We compared these between the stenosis and control groups. At first, plain T1-weighted MR images were obtained and the lumbar dural sac cross-sectional area was measured using a digitizer. For DCE-MRI, sagittal T1-weighted images of the same slice were acquired continuously for 10 minutes after administration of gadolinium as an intravenous bolus to observe the distribution of contrast medium (gadolinium) in the cauda equina. To objectively evaluate changes in contrast enhancement of the cauda equina at the site of canal stenosis, regions of interest were established. The signal intensity (SI) ratio was calculated to compare the signal intensities before and after contrast enhancement, and time-intensity curves were prepared to investigate changes over time. The static imaging findings and the changes of gadolinium uptake showed striking differences between the study and control patients. In the stenosis group, abnormal intrathecal enhancement showed around the site of stenosis on enhanced MR imaging. The SI ratio at the site of

  19. Dynamic Contrast-Enhanced Magnetic Resonance Imaging Reveals Stress-Induced Angiogenesis in MCF7 Human Breast Tumors

    NASA Astrophysics Data System (ADS)

    Furman-Haran, Edna; Margalit, Raanan; Grobgeld, Dov; Degani, Hadassa

    1996-06-01

    The mechanism of contrast enhancement of tumors using magnetic resonance imaging was investigated in MCF7 human breast cancer implanted in nude mice. Dynamic contrast-enhanced images recorded at high spatial resolution were analyzed by an image analysis method based on a physiological model, which included the blood circulation, the tumor, the remaining tissues, and clearance via the kidneys. This analysis enabled us to map in rapidly enhancing regions within the tumor, the capillary permeability factor (capillary permeability times surface area per voxel volume) and the fraction of leakage space. Correlation of these maps with T2-weighted spin echo images, with histopathology, and with immunohistochemical staining of endothelial cells demonstrated the presence of dense permeable microcapillaries in the tumor periphery and in intratumoral regions that surrounded necrotic loci. The high leakage from the intratumoral permeable capillaries indicated an induction of a specific angiogenic process associated with stress conditions that cause necrosis. This induction was augmented in tumors responding to tamoxifen treatment. Determination of the distribution and extent of this stress-induced angiogenic activity by contrast-enhanced MRI might be of diagnostic and of prognostic value.

  20. Perineural spread of adenoid cystic carcinoma in the oral and maxillofacial regions: evaluation with contrast-enhanced CT and MRI

    PubMed Central

    Shimamoto, H; Chindasombatjaroen, J; Kakimoto, N; Kishino, M; Murakami, S; Furukawa, S

    2012-01-01

    Objectives The objective of this study was to compare the accuracy of contrast-enhanced CT (CECT) and contrast-enhanced MRI (CEMRI) in the detection of perineural spread (PNS) of adenoid cystic carcinoma (ACC) in the oral and maxillofacial regions. Methods This study consisted of 13 ACCs from 13 patients, all of which were histopathologically diagnosed. Both CECT and CEMRI were performed in all patients before the treatment. The images of each patient were retrospectively evaluated for the detection of PNS. The definitions of PNS included abnormal density/signal intensity, contrast enhancement or widening of the pterygopalatine fossa, palatine foramen, incisive canal, mandibular foramen and mandibular canal, and enlargement or excessive contrast enhancement of a nerve. Results 11 out of 13 cases were proven to exhibit PNS histopathologically. 8 of the 11 cases for which PNS was histopathologically proven exhibited PNS on MR images. Six of the eight cases for which PNS was exhibited on MR images also exhibited PNS on CT images. The sensitivity, specificity and accuracy for the detection of PNS were 55%, 100% and 62% on CT images and 73%, 100% and 77% on MR images, respectively. Although the accuracy of PNS on MR images was slightly superior to that on CT images, there were no statistically significant differences between the detection of PNS on CT images and on MR images. Conclusions CT and MR images are equally useful for the detection of PNS of ACC in the oral and maxillofacial regions. PMID:22301639

  1. Perineural spread of adenoid cystic carcinoma in the oral and maxillofacial regions: evaluation with contrast-enhanced CT and MRI.

    PubMed

    Shimamoto, H; Chindasombatjaroen, J; Kakimoto, N; Kishino, M; Murakami, S; Furukawa, S

    2012-02-01

    The objective of this study was to compare the accuracy of contrast-enhanced CT (CECT) and contrast-enhanced MRI (CEMRI) in the detection of perineural spread (PNS) of adenoid cystic carcinoma (ACC) in the oral and maxillofacial regions. This study consisted of 13 ACCs from 13 patients, all of which were histopathologically diagnosed. Both CECT and CEMRI were performed in all patients before the treatment. The images of each patient were retrospectively evaluated for the detection of PNS. The definitions of PNS included abnormal density/signal intensity, contrast enhancement or widening of the pterygopalatine fossa, palatine foramen, incisive canal, mandibular foramen and mandibular canal, and enlargement or excessive contrast enhancement of a nerve. 11 out of 13 cases were proven to exhibit PNS histopathologically. 8 of the 11 cases for which PNS was histopathologically proven exhibited PNS on MR images. Six of the eight cases for which PNS was exhibited on MR images also exhibited PNS on CT images. The sensitivity, specificity and accuracy for the detection of PNS were 55%, 100% and 62% on CT images and 73%, 100% and 77% on MR images, respectively. Although the accuracy of PNS on MR images was slightly superior to that on CT images, there were no statistically significant differences between the detection of PNS on CT images and on MR images. CT and MR images are equally useful for the detection of PNS of ACC in the oral and maxillofacial regions.

  2. Simulation of the modulation transfer function dependent on the partial Fourier fraction in dynamic contrast enhancement magnetic resonance imaging.

    PubMed

    Takatsu, Yasuo; Ueyama, Tsuyoshi; Miyati, Tosiaki; Yamamura, Kenichirou

    2016-12-01

    The image characteristics in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) depend on the partial Fourier fraction and contrast medium concentration. These characteristics were assessed and the modulation transfer function (MTF) was calculated by computer simulation. A digital phantom was created from signal intensity data acquired at different contrast medium concentrations on a breast model. The frequency images [created by fast Fourier transform (FFT)] were divided into 512 parts and rearranged to form a new image. The inverse FFT of this image yielded the MTF. From the reference data, three linear models (low, medium, and high) and three exponential models (slow, medium, and rapid) of the signal intensity were created. Smaller partial Fourier fractions, and higher gradients in the linear models, corresponded to faster MTF decline. The MTF more gradually decreased in the exponential models than in the linear models. The MTF, which reflects the image characteristics in DCE-MRI, was more degraded as the partial Fourier fraction decreased.

  3. Dynamic contrast-enhanced magnetic resonance imaging: fundamentals and application to the evaluation of the peripheral perfusion

    PubMed Central

    Gordon, Yaron; Partovi, Sasan; Müller-Eschner, Matthias; Amarteifio, Erick; Bäuerle, Tobias; Weber, Marc-André; Kauczor, Hans-Ulrich

    2014-01-01

    Introduction The ability to ascertain information pertaining to peripheral perfusion through the analysis of tissues’ temporal reaction to the inflow of contrast agent (CA) was first recognized in the early 1990’s. Similar to other functional magnetic resonance imaging (MRI) techniques such as arterial spin labeling (ASL) and blood oxygen level-dependent (BOLD) MRI, dynamic contrast-enhanced MRI (DCE-MRI) was at first restricted to studies of the brain. Over the last two decades the spectrum of ailments, which have been studied with DCE-MRI, has been extensively broadened and has come to include pathologies of the heart notably infarction, stroke and further cerebral afflictions, a wide range of neoplasms with an emphasis on antiangiogenic treatment and early detection, as well as investigations of the peripheral vascular and musculoskeletal systems. Applications to peripheral perfusion DCE-MRI possesses an unparalleled capacity to quantitatively measure not only perfusion but also other diverse microvascular parameters such as vessel permeability and fluid volume fractions. More over the method is capable of not only assessing blood flowing through an organ, but in contrast to other noninvasive methods, the actual tissue perfusion. These unique features have recently found growing application in the study of the peripheral vascular system and most notably in the diagnosis and treatment of peripheral arterial occlusive disease (PAOD). Review outline The first part of this review will elucidate the fundamentals of data acquisition and interpretation of DCE-MRI, two areas that often remain baffling to the clinical and investigating physician because of their complexity. The second part will discuss developments and exciting perspectives of DCE-MRI regarding the assessment of perfusion in the extremities. Emerging clinical applications of DCE-MRI will be reviewed with a special focus on investigation of physiology and pathophysiology of the microvascular and

  4. Combined Contrast-Enhanced MRI and Fluorescence Molecular Tomography for Breast Tumor Imaging

    DTIC Science & Technology

    2009-03-01

    into a small-diameter radio frequency rf pickup coil for imaging small animals a 3T MRI . II. SYSTEM DESIGN The parallel spectrometer-based tomographic...attached to a commercial 3T MRI breast coil MRI Devices, Waukesha, WI, depicted in Fig. 6. The current design requires manual fiber position- ing using...accomplishments of this project was the design and development of a parallel spectrometer- based tomographic imaging system which couples into a Philips 3T MRI

  5. Magnetic resonance-guided focused ultrasound for the treatment of painful bone metastases: role of apparent diffusion coefficient (ADC) and dynamic contrast enhanced (DCE) MRI in the assessment of clinical outcome.

    PubMed

    Anzidei, Michele; Napoli, Alessandro; Sacconi, Beatrice; Boni, Fabrizio; Noce, Vincenzo; Di Martino, Michele; Saba, Luca; Catalano, Carlo

    2016-12-01

    To assess the correlation between functional MRI, including ADC values obtained from DWI and DCE, and clinical outcome in patients with bone metastases treated with MRgFUS. Twenty-three patients with symptomatic bone metastases underwent MRgFUS treatment (ExAblate 2100 system InSightec) for pain palliation. All patients underwent clinical and imaging follow-up examinations at 1, 3 and 6 months after treatment. Visual Analog Scale (VAS) score was used to evaluate treatment efficacy in terms of pain palliation while ADC maps obtained by DWI sequences, and DCE data were used for quantitative assessment of treatment response at imaging. Spearman Correlation Coefficient Test was calculated to assess the correlation between VAS, ADC and DCE data. All treatments were performed successfully without adverse events. On the basis of VAS score, 16 (69.6 %) patients were classified as complete clinical responders, 6 (26.1 %) as partial responders and only one (4.3 %) was classified as a non-responder. The mean VAS score decreased from 7.09 ± 1.8 at baseline to 2.65 ± 1.36 at 1 month, 1.04 ± 1.91 at 3 months and 1.09 ± 1.99 at 6 months (p < 0.001). Baseline mean ADC value of treated lesions was 1.05 ± 0.15 mm(2)/s, increasing along follow-up period (1.57 ± 0.27 mm(2)/s 1st month; 1.49 ± 0.3 mm(2)/s 3rd month; 1.45 ± 0.32 mm(2)/s 6th month, p < 0.001). Non perfused volume (NPV) was 46.4 at 1 month, 45.2 at 3 months and 43.8 at 6 months. Spearman Coefficient demonstrated a statistically significant negative correlation between VAS and ADC values (ρ = -0.684; p = 0.03), but no significant correlation between VAS and NPV (ρ = 0.02216, p = 0.9305). Among other DCE data, Ktrans significantly changed in complete responders (3 months Ktrans = 2.14/min; -ΔKt = 52.65 % p < 0.01) and was not significantly different in partial responders (3 months Ktrans 0.042/min; ΔKt = 11.39 % p > 0.01). In patients with painful bone

  6. Collateral circulation formation determines the characteristic profiles of contrast-enhanced MRI in the infarcted myocardium of pigs

    PubMed Central

    Wang, Jian; Xiang, Bo; Lin, Hung-yu; Liu, Hong-yu; Freed, Darren; Arora, Rakesh C; Tian, Gang-hong

    2015-01-01

    Aim: To investigate the relationship between the collateral circulation and contrast-enhanced MR signal change for myocardial infarction (MI) in pigs. Methods: Pigs underwent permanent ligation of two diagonal branches of the left anterior descending artery. First-pass perfusion (FPP) MRI (for detecting myocardial perfusion abnormalities) and delayed enhancement (DE) MRI (for estimating myocardial infarction) using Gd-DTPA were performed at 2 h, 7 d and 4 weeks after the coronary occlusion. Myocardial blood flow (MBF) was evaluated using nonradioactive red-colored microspheres. Histological examination was performed to characterize the infarcts. Results: Acute MI performed at 2 h afterwards was characterized by hypoenhancement in both FPP- and DE-MRI, with small and almost unchanged FPP-signal intensity (SI) and DE-SI due to negligible MBF. Subacute MI detected 7 d afterwards showed small but significantly increaseing FPP-SI, and was visible as a sluggish hyperenhancement in DE-MRI with considerably higher DE-SI compared to the normal myocardium; the MBF approached the half-normal value. Chronic MI detected at 4 weeks afterwards showed increasing FPP-SI comparable to the normal myocardium, and a rapid hyperenhancement in DE-MRI with even higher DE-SI; the MBF was close to the normal value. The MBF was correlated with FPP-SI (r=+0.94, P<0.01) and with the peak DE-SI (r=+0.92, P<0.01) at the three MI stages. Remodeled vessels were observed at intra-infarction and peri-infarction zones during the subacute and chronic periods. Conclusion: Progressive collateral recovery determines the characteristic profiles of contrast-enhanced MRI in acute, subacute and chronic myocardial infarction in pigs. The FPP- and DE-MRI signal profiles not only depend on the loss of tissue viability and enlarged interstitial space, but also on establishing a collateral circulation. PMID:25832427

  7. Collateral circulation formation determines the characteristic profiles of contrast-enhanced MRI in the infarcted myocardium of pigs.

    PubMed

    Wang, Jian; Xiang, Bo; Lin, Hung-yu; Liu, Hong-yu; Freed, Darren; Arora, Rakesh C; Tian, Gang-hong

    2015-04-01

    To investigate the relationship between the collateral circulation and contrast-enhanced MR signal change for myocardial infarction (MI) in pigs. Pigs underwent permanent ligation of two diagonal branches of the left anterior descending artery. First-pass perfusion (FPP) MRI (for detecting myocardial perfusion abnormalities) and delayed enhancement (DE) MRI (for estimating myocardial infarction) using Gd-DTPA were performed at 2 h, 7 d and 4 weeks after the coronary occlusion. Myocardial blood flow (MBF) was evaluated using nonradioactive red-colored microspheres. Histological examination was performed to characterize the infarcts. Acute MI performed at 2 h afterwards was characterized by hypoenhancement in both FPP- and DE-MRI, with small and almost unchanged FPP-signal intensity (SI) and DE-SI due to negligible MBF. Subacute MI detected 7 d afterwards showed small but significantly increaseing FPP-SI, and was visible as a sluggish hyperenhancement in DE-MRI with considerably higher DE-SI compared to the normal myocardium; the MBF approached the half-normal value. Chronic MI detected at 4 weeks afterwards showed increasing FPP-SI comparable to the normal myocardium, and a rapid hyperenhancement in DE-MRI with even higher DE-SI; the MBF was close to the normal value. The MBF was correlated with FPP-SI (r=+0.94, P<0.01) and with the peak DE-SI (r=+0.92, P<0.01) at the three MI stages. Remodeled vessels were observed at intra-infarction and peri-infarction zones during the subacute and chronic periods. Progressive collateral recovery determines the characteristic profiles of contrast-enhanced MRI in acute, subacute and chronic myocardial infarction in pigs. The FPP- and DE-MRI signal profiles not only depend on the loss of tissue viability and enlarged interstitial space, but also on establishing a collateral circulation.

  8. Adrenal glands in hypovolemic shock: preservation of contrast enhancement at dynamic computed tomography.

    PubMed

    Ito, Katsuyoshi; Higashi, Hiroki; Kanki, Akihiko; Tamada, Tsutomu; Yamashita, Takenori; Yamamoto, Akira; Watanabe, Shigeru

    2010-07-01

    To evaluate contrast enhancement effects of the adrenal glands at dynamic computed tomography (CT) in adult severe trauma patients with hypovolemic shock in comparison with patients without hypovolemic shock. This study population included a total of 74 patients with (n = 24) and without (n = 50) blunt trauma and hypovolemic shock. Measurement of CT attenuation values of the adrenal gland and calculation of the enhancement washout percentages were performed. The mean +/- SD CT attenuation values of the adrenal glands in the arterial phase of dynamic CT in patients with hypovolemic shock (137.3 +/- 41.7 Hounsfield unit [HU]) were not significantly different (P = 0.16) from those in control subjects (127.3 +/- 19.6 HU). The mean CT attenuation values of the adrenal glands in the delayed phase of dynamic CT in patients with hypovolemic shock (82.0 +/- 14.7 HU) were also not significantly different (P = 0.89) from those in control subjects (82.4 +/- 10.0 HU). The mean percentage (35%) of enhancement washout of the adrenal glands in patients with hypovolemic shock was not significantly different (P = 0.81) from that (34%) in control subjects. Contrast enhancement effects of the adrenal glands at contrast-enhanced dynamic CT in patients with hypovolemic shock were similar to those in control subjects, indicating the preserved enhancement and perfusion of the adrenal gland rather than intense and persistent enhancement in patients with hypovolemic shock.

  9. Dynamic Contrast-enhanced MR Imaging in Renal Cell Carcinoma: Reproducibility of Histogram Analysis on Pharmacokinetic Parameters

    PubMed Central

    Wang, Hai-yi; Su, Zi-hua; Xu, Xiao; Sun, Zhi-peng; Duan, Fei-xue; Song, Yuan-yuan; Li, Lu; Wang, Ying-wei; Ma, Xin; Guo, Ai-tao; Ma, Lin; Ye, Hui-yi

    2016-01-01

    Pharmacokinetic parameters derived from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) have been increasingly used to evaluate the permeability of tumor vessel. Histogram metrics are a recognized promising method of quantitative MR imaging that has been recently introduced in analysis of DCE-MRI pharmacokinetic parameters in oncology due to tumor heterogeneity. In this study, 21 patients with renal cell carcinoma (RCC) underwent paired DCE-MRI studies on a 3.0 T MR system. Extended Tofts model and population-based arterial input function were used to calculate kinetic parameters of RCC tumors. Mean value and histogram metrics (Mode, Skewness and Kurtosis) of each pharmacokinetic parameter were generated automatically using ImageJ software. Intra- and inter-observer reproducibility and scan–rescan reproducibility were evaluated using intra-class correlation coefficients (ICCs) and coefficient of variation (CoV). Our results demonstrated that the histogram method (Mode, Skewness and Kurtosis) was not superior to the conventional Mean value method in reproducibility evaluation on DCE-MRI pharmacokinetic parameters (K trans & Ve) in renal cell carcinoma, especially for Skewness and Kurtosis which showed lower intra-, inter-observer and scan-rescan reproducibility than Mean value. Our findings suggest that additional studies are necessary before wide incorporation of histogram metrics in quantitative analysis of DCE-MRI pharmacokinetic parameters. PMID:27380733

  10. Optimal gadolinium dose level for magnetic resonance imaging (MRI) contrast enhancement of U87-derived tumors in athymic nude rats for the assessment of photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Cross, Nathan; Varghai, Davood; Flask, Chris A.; Feyes, Denise K.; Oleinick, Nancy L.; Dean, David

    2009-02-01

    This study aims to determine the effect of varying gadopentetate dimeglumine (Gd-DTPA) dose on Dynamic Contrast Enhanced-Magnetic Resonance Imaging (DCE-MRI) tracking of brain tumor photodynamic therapy (PDT) outcome. Methods: We injected 2.5 x 105 U87 cells (derived from human malignant glioma) into the brains of six athymic nude rats. After 9, 12, and 13 days DCE-MRI images were acquired on a 9.4 T micro-MRI scanner before and after administration of 100, 150, or 200 μL of Gd-DTPA. Results: Tumor region normalized DCE-MRI scan enhancement at peak was: 1.217 over baseline (0.018 Standard Error [SE]) at the 100 μL dose, 1.339 (0.013 SE) at the 150 μL dose, and 1.287 (0.014 SE) at the 200 μL dose. DCE-MRI peak tumor enhancement at the 150 μL dose was significantly greater than both the 100 μL dose (p < 3.323E-08) and 200 μL dose (p < 0.0007396). Discussion: In this preliminary study, the 150 μL Gd-DTPA dose provided the greatest T1 weighted contrast enhancement, while minimizing negative T2* effects, in DCE-MRI scans of U87-derived tumors. Maximizing Gd-DTPA enhancement in DCE-MRI scans may assist development of a clinically robust (i.e., unambiguous) technique for PDT outcome assessment.

  11. [Texture analysis based on contrast-enhanced MRI can predict treatment response to neoadjuvant chemotherapy of breast cancer].

    PubMed

    Sun, S H; Zhou, C W; Zhao, L Y; Zhang, R Z; Ouyang, H

    2017-05-23

    , Inertia, Correlation) and Δparameters (ΔEnergy, ΔEntropy, ΔInertia, ΔInverse Difference Moment) between both groups (P<0.05 for all). The area under curve (AUC) of post-treatment ΔEntropy was 0.81, which was the largest one among parameters. Sensitivity of ΔEntropy for predicting pCR was 75.0% and specificity was 85.7%, respectively. Conclusion: Texture analysis based on dynamic contrast-enhanced MRI can predict early treatment response in primary breast cancer.

  12. Contrast-enhanced MRI compared with the physical examination in the evaluation of disease activity in juvenile idiopathic arthritis.

    PubMed

    Hemke, Robert; Maas, Mario; van Veenendaal, Mira; Dolman, Koert M; van Rossum, Marion A J; van den Berg, J Merlijn; Kuijpers, Taco W

    2014-02-01

    To assess the value of magnetic resonance imaging (MRI) in discriminating between active and inactive juvenile idiopathic arthritis (JIA) patients and to compare physical examination outcomes with MRI outcomes in the assessment of disease status in JIA patients. Consecutive JIA patients with knee involvement were prospectively studied using an open-bore MRI. Imaging findings from 146 JIA patients were analysed (59.6% female; mean age, 12.9 years). Patients were classified as clinically active or inactive. MRI features were evaluated using the JAMRIS system, comprising validated scores for synovial hypertrophy, bone marrow oedema, cartilage lesions and bone erosions. Inter-reader reliability was good for all MRI features (intra-class correlation coefficient [ICC] = 0.87-0.94). No differences were found between the two groups regarding MRI scores of bone marrow oedema, cartilage lesions or bone erosions. Synovial hypertrophy scores differed significantly between groups (P = 0.016). Nonetheless, synovial hypertrophy was also present in 14 JIA patients (35.9%) with clinically inactive disease. Of JIA patients considered clinically active, 48.6% showed no signs of MRI-based synovitis. MRI can discriminate between clinically active and inactive JIA patients. However, physical examination is neither very sensitive nor specific in evaluating JIA disease activity compared with MRI. Subclinical synovitis was present in >35% of presumed clinically inactive patients. • MRI is sensitive for evaluating juvenile idiopathic arthritis (JIA) disease activity. • Contrast-enhanced MRI can distinguish clinically active and inactive JIA patients. • Subclinical synovitis is present in 35.9 % of presumed clinically inactive patients. • Physical examination is neither sensitive nor specific in evaluating JIA disease activity.

  13. Dynamic contrast-enhanced magnetic resonance imaging for prediction of response to neoadjuvant chemotherapy in breast cancer

    NASA Astrophysics Data System (ADS)

    Fu, Juzhong; Fan, Ming; Zheng, Bin; Shao, Guoliang; Zhang, Juan; Li, Lihua

    2016-03-01

    Breast cancer is the second leading cause of women death in the United States. Currently, Neoadjuvant Chemotherapy (NAC) has become standard treatment paradigms for breast cancer patients. Therefore, it is important to find a reliable non-invasive assessment and prediction method which can evaluate and predict the response of NAC on breast cancer. The Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) approach can reflect dynamic distribution of contrast agent in tumor vessels, providing important basis for clinical diagnosis. In this study, the efficacy of DCE-MRI on evaluation and prediction of response to NAC in breast cancer was investigated. To this end, fifty-seven cases of malignant breast cancers with MRI examination both before and after two cycle of NAC were analyzed. After pre-processing approach for segmenting breast lesions and background regions, 126-dimensional imaging features were extracted from DCE-MRI. Statistical analyses were then performed to evaluate the associations between the extracted DCE-MRI features and the response to NAC. Specifically, pairwise t test was used to calculate differences of imaging features between MRI examinations before-and-after NAC. Moreover, the associations of these image features with response to NAC were assessed using logistic regression. Significant association are found between response to NAC and the features of lesion morphology and background parenchymal enhancement, especially the feature of background enhancement in normal side of breast (P=0.011). Our study indicate that DCE-MRI features can provide candidate imaging markers to predict response of NAC in breast cancer.

  14. Contrast-enhanced whole-heart coronary MRI with bolus infusion of gadobenate dimeglumine at 1.5 T.

    PubMed

    Hu, Peng; Chan, Jonathan; Ngo, Long H; Smink, Jouke; Goddu, Beth; Kissinger, Kraig V; Goepfert, Lois; Hauser, Thomas H; Rofsky, Neil M; Manning, Warren J; Nezafat, Reza

    2011-02-01

    We sought to investigate the T(1) kinetics of blood and myocardium after three infusion schemes of gadobenate dimeglumine (Gd-BOPTA) and subsequently compared contrast-enhanced whole-heart coronary MRI after a bolus Gd-BOPTA infusion with nonenhanced coronary MRI at 1.5 T. Blood and myocardium T(1) was measured in seven healthy adults, after each underwent three Gd-BOPTA infusion schemes (bolus: 0.2 mmol/kg at 2 mL/sec, hybrid: 0.1 mmol/kg at 2 mL/sec followed by 0.1 mmol/kg at 0.1 mL/sec, and slow: 0.2 mmol/kg at 0.3 mL/sec). Fourteen additional subjects underwent contrast-enhanced coronary MRI with an inversion-recovery steady-state free precession sequence after bolus Gd-BOPTA infusion. Images were compared with nonenhanced T(2) -prepared steady-state free precision whole-heart coronary MRI in signal-to-noise ratio, contrast-to-noise ratio, depicted vessel length, vessel sharpness, and subjective image quality. Bolus and slow infusion schemes resulted in similar T(1) during coronary MRI, whereas the hybrid infusion method yielded higher T(1) values. A bolus infusion of Gd-BOPTA significantly improved signal-to-noise ratio, contrast-to-noise ratio, depicted coronary artery length, and subjective image quality, when all segments were collectively compared but not when compared segment by segment. In conclusion, whole-heart steady-state free precision coronary MRI at 1.5 T can benefit from a bolus infusion of 0.2 mmol/kg Gd-BOPTA. Copyright © 2010 Wiley-Liss, Inc.

  15. Dynamic Contrast-Enhanced Magnetic Resonance Enterography and Dynamic Contrast-Enhanced Ultrasonography in Crohn’s Disease: An Observational Comparison Study

    PubMed Central

    Wilkens, Rune; Peters, David A.; Nielsen, Agnete H.; Hovgaard, Valeriya P.; Glerup, Henning; Krogh, Klaus

    2017-01-01

    Purpose e Cross-sectional imaging methods are important for objective evaluationof small intestinal inflammationinCrohn’sdisease(CD).The primary aim was to compare relative parameters of intestinal perfusion between contrast-enhanced ultrasonography (CEUS) and dynamic contrast-enhanced magnetic resonance enterography (DCE-MRE) in CD. Furthermore, we aimed at testing the repeatability of regions of interest (ROIs) for CEUS. Methods This prospective study included 25 patients: 12 females (age: 37, range: 19–66) with moderate to severe CD and a bowel wall thickness>3mm evaluated with DCE-MRE and CEUS. CEUS bolus injection was performed twice for repeatability and analyzed in VueBox®. Correlations between modalities were described with Spearman’s rho, limits of agreement(LoA) and intraclass correlation coefficient(ICC). ROIrepeatability for CEUS was assessed. Results s The correlation between modalities was good and very good for bowel wall thickness (ICC=0.71, P<0.001) and length of the inflamed segment (ICC=0.89, P<0.001). Moderate-weak correlations were found for the time-intensity curve parameters: peak intensity (r=0.59, P=0.006), maximum wash-in-rate (r=0.62, P=0.004), and wash-in perfusion index (r=0.47, P=0.036). Best CEUS repeatability for peak enhancement was a mean difference of 0.73 dB (95% CI: 0.17 to 1.28, P=0.01) and 95% LoA from −3.8 to 5.3 dB. Good quality of curve fit improved LoA to −2.3 to 2.8 dB. Conclusion The relative perfusion of small intestinal CD assessed with DCE-MRE and CEUS shows only a moderate correlation. Applying strict criteria for ROIs is important and allows for good CEUS repeatability PMID:28286879

  16. Dynamic Contrast-Enhanced MR Microscopy: Functional Imaging in Preclinical Models of Cancer

    NASA Astrophysics Data System (ADS)

    Subashi, Ergys

    Dynamic contrast-enhanced (DCE) MRI has been widely used as a quantitative imaging method for monitoring tumor response to therapy. The pharmacokinetic parameters derived from this technique have been used in more than 100 phase I trials and investigator led studies. The simultaneous challenges of increasing the temporal and spatial resolution, in a setting where the signal from the much smaller voxel is weaker, have made this MR technique difficult to implement in small-animal imaging.Existing preclinical DCE-MRI protocols acquire a limited number of slices resulting in potentially lost information in the third dimension. Furthermore, drug efficacy studies measuring the effect of an anti-angiogenic treatment, often compare the derived biomarkers on manually selected tumor regions or over the entire volume. These measurements include domains where the interpretation of the biomarkers may be unclear (such as in necrotic areas). This dissertation describes and compares a family of four-dimensional (3D spatial + time), projection acquisition, keyhole-sampling strategies that support high spatial and temporal resolution. An interleaved 3D radial trajectory with a quasi-uniform distribution of points in k-space was used for sampling temporally resolved datasets. These volumes were reconstructed with three different k-space filters encompassing a range of possible keyhole strategies. The effect of k-space filtering on spatial and temporal resolution was studied in phantoms and in vivo. The statistical variation of the DCE-MRI measurement is analyzed by considering the fundamental sources of error in the MR signal intensity acquired with the spoiled gradient-echo (SPGR) pulse sequence. Finally, the technique was applied for measuring the extent of the opening of the blood-brain barrier in a mouse model of pediatric glioma and for identifying regions of therapeutic effect in a model of colorectal adenocarcinoma. It is shown that 4D radial keyhole imaging does not degrade

  17. A novel method for viability assessment by cinematographic and late contrast enhanced MRI

    NASA Astrophysics Data System (ADS)

    Gao, Gang; Cockshott, Paul W.; Martin, Thomas N.; Foster, John E.; Elliott, Alex; Dargie, Henry; Groenning, Bjoern A.

    2004-04-01

    Using cardiac magnetic resonance (MR) imaging, a combination of late contrast enhanced MR (ceMR) and cinematographic (CINE) images, a myocardial viability score can be derived. At present this score is produced by visual evaluation of wall motion abnormalities in combination with presence or absence of late hyper enhancement (LE) on ceMR. We set out to develop and validate image processing techniques derived from stereo vision capable of reducing the observer dependence and improving accuracy in the diagnosis of viable myocardium.

  18. Technical innovation in dynamic contrast-enhanced magnetic resonance imaging of musculoskeletal tumors: an MR angiographic sequence using a sparse k-space sampling strategy.

    PubMed

    Fayad, Laura M; Mugera, Charles; Soldatos, Theodoros; Flammang, Aaron; del Grande, Filippo

    2013-07-01

    We demonstrate the clinical use of an MR angiography sequence performed with sparse k-space sampling (MRA), as a method for dynamic contrast-enhanced (DCE)-MRI, and apply it to the assessment of sarcomas for treatment response. Three subjects with sarcomas (2 with osteosarcoma, 1 with high-grade soft tissue sarcomas) underwent MRI after neoadjuvant therapy/prior to surgery, with conventional MRI (T1-weighted, fluid-sensitive, static post-contrast T1-weighted sequences) and DCE-MRI (MRA, time resolution = 7-10 s, TR/TE 2.4/0.9 ms, FOV 40 cm(2)). Images were reviewed by two observers in consensus who recorded image quality (1 = diagnostic, no significant artifacts, 2 = diagnostic, <25 % artifacts, 3 = nondiagnostic) and contrast enhancement characteristics by static MRI (presence/absence of contrast enhancement, percentage of enhancement) and DCE-MRI (presence/absence of arterial enhancement with time-intensity curves). Results were compared with histological response (defined as <5 % viable tumor [soft tissue sarcoma] or <10 % [bone sarcoma] following resection). Diagnostic quality for all conventional and DCE-MRI sequences was rated as 1. In 2 of the 3 sarcomas, there was good histological response (≤5 % viable tumor); in 1 there was poor response (50 % viable tumor). By static post-contrast T1-weighted sequences, there was enhancement in all sarcomas, regardless of response (up to >75 % with good response, >75 % with poor response). DCE-MRI findings were concordant with histological response (arterial enhancement with poor response, no arterial enhancement with good response). Unlike conventional DCE-MRI sequences, an MRA sequence with sparse k-space sampling is easily integrated into a routine musculoskeletal tumor MRI protocol, with high diagnostic quality. In this preliminary work, tumor enhancement characteristics by DCE-MRI were used to assess treatment response.

  19. Perfusion of subchondral bone marrow in knee osteoarthritis: A dynamic contrast-enhanced magnetic resonance imaging preliminary study.

    PubMed

    Budzik, Jean-François; Ding, Juliette; Norberciak, Laurène; Pascart, Tristan; Toumi, Hechmi; Verclytte, Sébastien; Coursier, Raphaël

    2017-03-01

    The role of inflammation in the pathogenesis of osteoarthritis is being given major interest, and inflammation is closely linked with vascularization. It was recently demonstrated that dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) could identify the subchondral bone marrow vascularization changes occurring in osteoarthritis in animals. These changes appeared before cartilage lesions were visible and were correlated with osteoarthritis severity. Thus the opportunity to obtain an objective assessment of bone vascularization in non-invasive conditions in humans might help better understanding osteoarthritis pathophysiology and finding new biomarkers. We hypothesized that, as in animals, DCE-MRI has the ability to identify subchondral bone marrow vascularization changes in human osteoarthritis. We performed knee MRI in 19 patients with advanced knee osteoarthritis. We assessed subchondral bone marrow vascularization in medial and lateral femorotibial compartments with DCE-MRI and graded osteoarthritis lesions on MR images. Statistical analysis assessed intra- and inter-observer agreement, compared DCE-MRI values between the different subchondral zones, and sought for an influence of age, sex, body mass index, and osteoarthritis garde on these values. The intra- and inter-observer agreement for DCE-MRI values were excellent. These values were significantly higher in the femorotibial compartment the most affected by osteoarthritis, both in femur and tibia (p<0.0001) and were significantly and positively correlated with cartilage lesions (p=0.02) and bone marrow oedema grade (p<0.0001) after adjustment. We concluded that, as in animals, subchondral bone marrow vascularization changes assessed with DCE-MRI were correlated with osteoarthritis severity in humans.

  20. Classification of dynamic contrast enhanced MR images of cervical cancers using texture analysis and support vector machines.

    PubMed

    Torheim, Turid; Malinen, Eirik; Kvaal, Knut; Lyng, Heidi; Indahl, Ulf G; Andersen, Erlend K F; Futsaether, Cecilia M

    2014-08-01

    Dynamic contrast enhanced MRI (DCE-MRI) provides insight into the vascular properties of tissue. Pharmacokinetic models may be fitted to DCE-MRI uptake patterns, enabling biologically relevant interpretations. The aim of our study was to determine whether treatment outcome for 81 patients with locally advanced cervical cancer could be predicted from parameters of the Brix pharmacokinetic model derived from pre-chemoradiotherapy DCE-MRI. First-order statistical features of the Brix parameters were used. In addition, texture analysis of Brix parameter maps was done by constructing gray level co-occurrence matrices (GLCM) from the maps. Clinical factors and first- and second-order features were used as explanatory variables for support vector machine (SVM) classification, with treatment outcome as response. Classification models were validated using leave-one-out cross-model validation. A random value permutation test was used to evaluate model significance. Features derived from first-order statistics could not discriminate between cured and relapsed patients (specificity 0%-20%, p-values close to unity). However, second-order GLCM features could significantly predict treatment outcome with accuracies (~70%) similar to the clinical factors tumor volume and stage (69%). The results indicate that the spatial relations within the tumor, quantified by texture features, were more suitable for outcome prediction than first-order features.

  1. Increased microcirculation detected by dynamic contrast-enhanced magnetic resonance imaging is of prognostic significance in asymptomatic myeloma.

    PubMed

    Hillengass, Jens; Ritsch, Judith; Merz, Maximilian; Wagner, Barbara; Kunz, Christina; Hielscher, Thomas; Laue, Hendrik; Bäuerle, Tobias; Zechmann, Christian M; Ho, Anthony D; Schlemmer, Heinz-Peter; Goldschmidt, Hartmut; Moehler, Thomas M; Delorme, Stefan

    2016-07-01

    This prospective study aimed to investigate the prognostic significance of dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) as a non-invasive imaging technique delivering the quantitative parameters amplitude A (reflecting blood volume) and exchange rate constant kep (reflecting vascular permeability) in patients with asymptomatic monoclonal plasma cell diseases. We analysed DCE-MRI parameters in 33 healthy controls and 148 patients with monoclonal gammopathy of undetermined significance (MGUS) or smouldering multiple myeloma (SMM) according to the 2003 IMWG guidelines. All individuals underwent standardized DCE-MRI of the lumbar spine. Regions of interest were drawn manually on T1-weighted images encompassing the bone marrow of each of the 5 lumbar vertebrae sparing the vertebral vessel. Prognostic significance for median of amplitude A (univariate: P < 0·001, hazard ratio (HR) 2·42, multivariate P = 0·02, HR 2·7) and exchange rate constant kep (univariate P = 0·03, HR 1·92, multivariate P = 0·46, HR 1·5) for time to progression of 79 patients with SMM was found. Patients with amplitude A above the optimal cut-off point of 0·89 arbitrary units had a 2-year progression rate into symptomatic disease of 80%. In conclusion, DCE-MRI parameters are of prognostic significance for time to progression in patients with SMM but not in individuals with MGUS.

  2. Tumor Vascularity in Renal Masses: Correlation of Arterial Spin-Labeled and Dynamic Contrast Enhanced MR Imaging Assessments

    PubMed Central

    Zhang, Yue; Kapur, Payal; Yuan, Qing; Xi, Yin; Carvo, Ingrid; Signoretti, Sabina; Dimitrov, Ivan; Cadeddu, Jeffrey A.; Margulis, Vitaly; Muradyan, Naira; Brugarolas, James; Madhuranthakam, Ananth J.; Pedrosa, Ivan

    2015-01-01

    Objective To investigate potential correlations between perfusion by arterial spin-labeled (ASL) magnetic resonance imaging (MRI) and dynamic contrast enhanced (DCE) MRI derived quantitative measures of vascularity in renal masses >2 cm and to correlate these with microvessel density (MVD) in clear cell renal cell carcinoma (ccRCC). Methods Informed written consent was obtained from all patients before imaging in this HIPAA-compliant, IRB-approved, prospective study. 36 consecutive patients scheduled for surgery of a known renal mass >2 cm underwent 3T ASL and DCE MRI. ASL measures (PASL) of mean, peak, and low perfusion areas within the mass were correlated to DCE-derived Ktrans, Kep, and Ve in the same locations using a region of interest analysis. MRI data were correlated to MVD measures in the same tumor regions in ccRCC. Spearman correlation was used to evaluate the correlation between PASL and DCE-derived measurements, and MVD. P<0.05 was considered statistically significant. Results Histopathologic diagnosis was obtained in 36 patients (25 men; mean age 58 ±12 years). PASL correlated with Ktrans (ρ=0.48, P=0.0091 for the entire tumor and ρ=0.43, P=0.03 for the high flow area, respectively) and Kep (ρ=0.46, P=0.01 for the entire tumor and ρ=0.52, P=0.008 for the high flow area, respectively). PASL (ρ=0.66, P=0.0002), Ktrans (ρ=0.61, P=0.001), and Kep (ρ=0.64, P=0.0006) also correlated with MVD in high and low perfusion areas in ccRCC. Conclusions PASL correlate with the DCE-derived measures of vascular permeability and flow, Ktrans and Kep, in renal masses >2cm in size. Both measures correlate to MVD in clear cell histology. MICROABSTRACT Arterial spin labeling (ASL) and dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) have been proposed to quantitatively assess vascularity in renal cell carcinoma (RCC). However there are intrinsic differences between these two imaging methods, such as the relative contribution of vascular permeability

  3. Tumor Vascularity in Renal Masses: Correlation of Arterial Spin-Labeled and Dynamic Contrast-Enhanced Magnetic Resonance Imaging Assessments.

    PubMed

    Zhang, Yue; Kapur, Payal; Yuan, Qing; Xi, Yin; Carvo, Ingrid; Signoretti, Sabina; Dimitrov, Ivan; Cadeddu, Jeffrey A; Margulis, Vitaly; Muradyan, Naira; Brugarolas, James; Madhuranthakam, Ananth J; Pedrosa, Ivan

    2016-02-01

    Arterial spin-labeled (ASL) and dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) have been proposed to quantitatively assess vascularity in renal cell carcinoma (RCC). However, there are intrinsic differences between these 2 imaging methods, such as the relative contribution of vascular permeability and blood flow to signal intensity for DCE MRI. We found a correlation between ASL perfusion and the DCE-derived volume transfer constant and rate constant parameters in renal masses > 2 cm in size and these measures correlated with microvessel density in clear cell RCC. The objective of this study was to investigate potential correlations between perfusion using arterial spin-labeled (ASL) magnetic resonance imaging (MRI) and dynamic contrast-enhanced (DCE) MRI-derived quantitative measures of vascularity in renal masses > 2 cm and to correlate these with microvessel density (MVD) in clear cell renal cell carcinoma (ccRCC). Informed written consent was obtained from all patients before imaging in this Health Insurance Portability and Accountability Act-compliant, institutional review board-approved, prospective study. Thirty-six consecutive patients scheduled for surgery of a known renal mass > 2 cm underwent 3T ASL and DCE MRI. ASL perfusion measures (PASL) of mean, peak, and low perfusion areas within the mass were correlated to DCE-derived volume transfer constant (K(trans)), rate constant (Kep), and fractional volume of the extravascular extracellular space (Ve) in the same locations using a region of interest analysis. MRI data were correlated to MVD measures in the same tumor regions in ccRCC. Spearman correlation was used to evaluate the correlation between PASL and DCE-derived measurements, and MVD. P < .05 was considered statistically significant. Histopathologic diagnosis was obtained in 36 patients (25 men; mean age 58 ± 12 years). PASL correlated with K(trans) (ρ = 0.48 and P = .0091 for the entire tumor and ρ = 0.43 and P = .03 for the

  4. Evaluation of liver parenchyma and perfusion using dynamic contrast-enhanced computed tomography and contrast-enhanced ultrasonography in captive green iguanas (Iguana iguana) under general anesthesia

    PubMed Central

    2014-01-01

    Background Contrast-enhanced diagnostic imaging techniques are considered useful in veterinary and human medicine to evaluate liver perfusion and focal hepatic lesions. Although hepatic diseases are a common occurrence in reptile medicine, there is no reference to the use of contrast-enhanced ultrasound (CEUS) and contrast-enhanced computed tomography (CECT) to evaluate the liver in lizards. Therefore, the aim of this study was to evaluate the pattern of change in echogenicity and attenuation of the liver in green iguanas (Iguana iguana) after administration of specific contrast media. Results An increase in liver echogenicity and density was evident during CEUS and CECT, respectively. In CEUS, the mean ± SD (median; range) peak enhancement was 19.9% ± 7.5 (18.3; 11.7-34.6). Time to peak enhancement was 134.0 ± 125.1 (68.4; 59.6-364.5) seconds. During CECT, first visualization of the contrast medium was at 3.6 ± 0.5 (4; 3-4) seconds in the aorta, 10.7 ± 2.2 (10.5; 7-14) seconds in the hepatic arteries, and 15 ± 4.5 (14.5; 10-24) seconds in the liver parenchyma. Time to peak was 14.1 ± 3.4 (13; 11-21) and 31 ± 9.6 (29; 23-45) seconds in the aorta and the liver parenchyma, respectively. Conclusion CEUS and dynamic CECT are practical means to determine liver hemodynamics in green iguanas. Distribution of contrast medium in iguana differed from mammals. Specific reference ranges of hepatic perfusion for diagnostic evaluation of the liver in iguanas are necessary since the use of mammalian references may lead the clinician to formulate incorrect diagnostic suspicions. PMID:24885935

  5. Dynamic contrast-enhanced diffuse optical tomography (DCE-DOT): experimental validation with a dynamic phantom

    PubMed Central

    Unlu, Mehmet Burcin; Lin, Yuting; Gulsen, Gultekin

    2010-01-01

    Dynamic contrast-enhanced diffuse optical tomography (DCE-DOT) can provide spatially resolved enhancement kinetics of an optical contrast agent. We undertook a systematic phantom study to evaluate the effects of the geometrical parameters such as the depth and size of the inclusion as well as the optical parameters of the background on the recovered enhancement kinetics of the most commonly used optical contrast agent, indocyanine green (ICG). For this purpose a computer-controlled dynamic phantom was constructed. An ICG–intralipid–water mixture was circulated through the inclusions while the DCE-DOT measurements were acquired with a temporal resolution of 16 s. The same dynamic study was repeated using inclusions of different sizes located at different depths. In addition to this, the effect of non-scattering regions was investigated by placing a second inclusion filled with water in the background. The phantom studies confirmed that although the peak enhancement varied substantially for each case, the recovered injection and dilution rates obtained from the percentage enhancement maps agreed within 15% independent of not only the depth and the size of the inclusion but also the presence of a non-scattering region in the background. Although no internal structural information was used in these phantom studies, it may be necessary to use it for small objects buried deep in tissue. However, the different contrast mechanisms of optical and other imaging modalities as well as imperfect co-registration between both modalities may lead to potential errors in the structural a priori. Therefore, the effect of erroneous selection of structural priors was investigated as the final step. Again, the injection and dilution rates obtained from the percentage enhancement maps were also immune to the systematic errors introduced by erroneous selection of the structural priors, e.g. choosing the diameter of the inclusion 20% smaller increased the peak enhancement 60% but

  6. Comparison between perfusion computed tomography and dynamic contrast-enhanced magnetic resonance imaging in assessing glioblastoma microvasculature.

    PubMed

    Jia, Zhong Zheng; Shi, Wei; Shi, Jin Long; Shen, Dan Dan; Gu, Hong Mei; Zhou, Xue Jun

    2017-02-01

    Perfusion computed tomography (PCT) and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) provide independent measurements of biomarkers related to tumor perfusion. The aim of this study was to compare the two techniques in assessing glioblastoma microvasculature. Twenty-five patients diagnosed with glioblastoma (14 males and 11 females; 51±11years old, ranging from 33 to 70 years) were includede in this prospective study. All patients underwent both PCT and DCE-MRI. Imaging was performed on a 256-slice CT scanner and a 3-T MRI system. PCT yielded permeability surface-area product (PS) using deconvolution physiological models; meanwhile, DCE-MRI determined volume transfer constant (K(trans)) using the Tofts-Kermode compartment model. All cases were submitted to surgical intervention, and CD105-microvascular density (CD105-MVD) was measured in each glioblastoma specimen. Then, Spearman's correlation coefficients and Bland-Altman plots were obtained for PS, K(trans) and CD105-MVD. P<0.05 was considered statistically significant. Tumor PS and K(trans) values were correlated with CD105-MVD (r=0.644, P<0.001; r=0.683, P<0.001). In addition, PS was correlated with K(trans) in glioblastoma (r=0.931, P<0.001). Finally, Bland-Altman plots showed no significant differences between PS and K(trans) (P=0.063). PCT and DCE-MRI measurements of glioblastoma perfusion biomarkers have similar results, suggesting that both techniques may have comparable utility. Therefore, PCT may serve as an alternative modality to DCE-MRI for the in vivo evaluation of glioblastoma microvasculature. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Evaluation of Soft Tissue Sarcoma Response to Preoperative Chemoradiotherapy Using Dynamic Contrast-Enhanced Magnetic Resonance Imaging

    PubMed Central

    Huang, Wei; Beckett, Brooke R.; Tudorica, Alina; Meyer, Janelle M.; Afzal, Aneela; Chen, Yiyi; Mansoor, Atiya; Hayden, James B.; Doung, Yee-Cheen; Hung, Arthur Y.; Holtorf, Megan L.; Aston, Torrie J.; Ryan, Christopher W.

    2016-01-01

    This study aims to assess the utility of quantitative dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) parameters in comparison with imaging tumor size for early prediction and evaluation of soft tissue sarcoma response to preoperative chemoradiotherapy. In total, 20 patients with intermediate- to high-grade soft tissue sarcomas received either a phase I trial regimen of sorafenib + chemoradiotherapy (n = 8) or chemoradiotherapy only (n = 12), and underwent DCE-MRI at baseline, after 2 weeks of treatment with sorafenib or after the first chemotherapy cycle, and after therapy completion. MRI tumor size in the longest diameter (LD) was measured according to the RECIST (Response Evaluation Criteria In Solid Tumors) guidelines. Pharmacokinetic analyses of DCE-MRI data were performed using the Shutter-Speed model. After only 2 weeks of treatment with sorafenib or after 1 chemotherapy cycle, Ktrans (rate constant for plasma/interstitium contrast agent transfer) and its percent change were good early predictors of optimal versus suboptimal pathological response with univariate logistic regression C statistics values of 0.90 and 0.80, respectively, whereas RECIST LD percent change was only a fair predictor (C = 0.72). Post-therapy Ktrans, ve (extravascular and extracellular volume fraction), and kep (intravasation rate constant), not RECIST LD, were excellent (C > 0.90) markers of therapy response. Several DCE-MRI parameters before, during, and after therapy showed significant (P < .05) correlations with percent necrosis of resected tumor specimens. In conclusion, absolute values and percent changes of quantitative DCE-MRI parameters provide better early prediction and evaluation of the pathological response of soft tissue sarcoma to preoperative chemoradiotherapy than the conventional measurement of imaging tumor size change. PMID:28066805

  8. One-pot facile synthesis of PEGylated superparamagnetic iron oxide nanoparticles for MRI contrast enhancement.

    PubMed

    Dai, Lingling; Liu, Yongkang; Wang, Zhongqiu; Guo, Fangfang; Shi, Donglu; Zhang, Bingbo

    2014-08-01

    Polyethylene glycol (PEG)-coated superparamagnetic iron oxide nanoparticles (PEG·SPIONs) were prepared by a facile one-pot approach. The synthesized PEG·SPIONs were found to be uniform in size with an average hydrodynamic diameter of 11.7 nm. PEG·SPIONs exhibited excellent dispersibility in water, colloidal stability, and biocompatibility. The magnetic resonance imaging (MRI) properties of PEG·SPIONs were characterized both in vitro and in vivo. The dual contrast both in T1 and T2-weighted imaging was well enhanced with longitudinal and transverse relaxivity (r1, r2) of 35.92 s(-1) per mM of Fe(3+) and 206.91 s(-1) per mM of Fe(3+) respectively. In vivo T2-weighted MRI shows pronounced enhancement in the liver and spleen but not in T1-weighted MRI. Accumulations of nanoparticles were found primarily in the liver, spleen, and intestine, while much lower uptake in the kidney, heart, and lungs. A gradual excretion of PEG·SPIONs was observed via hepatobiliary (HB) processing over a period of 14 days. The toxicity of PEG·SPIONs was also evaluated in vitro and in vivo. PEG·SPIONs were found to be biocompatible by investigating organ tissues after hematoxylin-eosin staining. The conclusion of the study indicates a high potential of PEG·SPIONs in medical MRI.

  9. Pretreatment Evaluation of Microcirculation by Dynamic Contrast-Enhanced Magnetic Resonance Imaging Predicts Survival in Primary Rectal Cancer Patients

    SciTech Connect

    DeVries, Alexander Friedrich; Piringer, Gudrun; Kremser, Christian; Judmaier, Werner; Saely, Christoph Hubert; Lukas, Peter; Öfner, Dietmar

    2014-12-01

    Purpose: To investigate the prognostic value of the perfusion index (PI), a microcirculatory parameter estimated from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), which integrates information on both flow and permeability, to predict overall survival and disease-free survival in patients with primary rectal cancer. Methods and Materials: A total of 83 patients with stage cT3 rectal cancer requiring neoadjuvant chemoradiation were investigated with DCE-MRI before start of therapy. Contrast-enhanced dynamic T{sub 1} mapping was obtained, and a simple data analysis strategy based on the calculation of the maximum slope of the tissue concentration–time curve divided by the maximum of the arterial input function was used as a measure of tumor microcirculation (PI), which integrates information on both flow and permeability. Results: In 39 patients (47.0%), T downstaging (ypT0-2) was observed. During a mean (±SD) follow-up period of 71 ± 29 months, 58 patients (69.9%) survived, and disease-free survival was achieved in 45 patients (54.2%). The mean PI (PImean) averaged over the group of nonresponders was significantly higher than for responders. Additionally, higher PImean in age- and gender-adjusted analyses was strongly predictive of therapy nonresponse. Most importantly, PImean strongly and significantly predicted disease-free survival (unadjusted hazard ratio [HR], 1.85 [ 95% confidence interval, 1.35-2.54; P<.001)]; HR adjusted for age and sex, 1.81 [1.30-2.51]; P<.001) as well as overall survival (unadjusted HR 1.42 [1.02-1.99], P=.040; HR adjusted for age and sex, 1.43 [1.03-1.98]; P=.034). Conclusions: This analysis identifies PImean as a novel biomarker that is predictive for therapy response, disease-free survival, and overall survival in patients with primary locally advanced rectal cancer.

  10. Contrast-enhanced cardiac MRI before coronary artery bypass surgery: impact of myocardial scar extent on bypass flow.

    PubMed

    Hunold, Peter; Massoudy, Parwis; Boehm, Claudia; Schlosser, Thomas; Nassenstein, Kai; Knipp, Stephan; Eggebrecht, Holger; Thielmann, Matthias; Erbel, Raimund; Jakob, Heinz; Barkhausen, Jörg

    2008-12-01

    The aim of the study was to relate the extent of myocardial late gadolinium enhancement (LGE) in cardiac MRI to intraoperative graft flow in patients undergoing coronary artery bypass graft (CABG) surgery. Thirty-three CAD patients underwent LGE MRI before surgery using an inversion-recovery GRE sequence (turboFLASH). Intraoperative graft flow in Doppler ultrasonography was compared with the scar extent in each coronary vessel territory. One hundred and fourteen grafts were established supplying 86 of the 99 vessel territories. A significant negative correlation was found between scar extent and graft flow (r = -0.4, p < 0.0001). Flow in grafts to territories with no or small subendocardial scar was significantly higher than in grafts to territories with broad nontransmural or transmural scar (75 +/- 39 vs. 38 +/- 26 cc min(-1); p < 0.0001). In summary, the extent of myocardial scar as defined by contrast-enhanced MRI predicts coronary bypass graft flow. Beyond the probability of functional recovery, preoperative MRI might add value to surgery planning by predicting midterm bypass graft patency.

  11. Radiogenomic analysis of breast cancer: dynamic contrast enhanced - magnetic resonance imaging based features are associated with molecular subtypes

    NASA Astrophysics Data System (ADS)

    Wang, Shijian; Fan, Ming; Zhang, Juan; Zheng, Bin; Wang, Xiaojia; Li, Lihua

    2016-03-01

    Breast cancer is one of the most common malignant tumor with upgrading incidence in females. The key to decrease the mortality is early diagnosis and reasonable treatment. Molecular classification could provide better insights into patient-directed therapy and prognosis prediction of breast cancer. It is known that different molecular subtypes have different characteristics in magnetic resonance imaging (MRI) examination. Therefore, we assumed that imaging features can reflect molecular information in breast cancer. In this study, we investigated associations between dynamic contrasts enhanced MRI (DCE-MRI) features and molecular subtypes in breast cancer. Sixty patients with breast cancer were enrolled and the MR images were pre-processed for noise reduction, registration and segmentation. Sixty-five dimensional imaging features including statistical characteristics, morphology, texture and dynamic enhancement in breast lesion and background regions were semiautomatically extracted. The associations between imaging features and molecular subtypes were assessed by using statistical analyses, including univariate logistic regression and multivariate logistic regression. The results of multivariate regression showed that imaging features are significantly associated with molecular subtypes of Luminal A (p=0.00473), HER2-enriched (p=0.00277) and Basal like (p=0.0117), respectively. The results indicated that three molecular subtypes are correlated with DCE-MRI features in breast cancer. Specifically, patients with a higher level of compactness or lower level of skewness in breast lesion are more likely to be Luminal A subtype. Besides, the higher value of the dynamic enhancement at T1 time in normal side reflect higher possibility of HER2-enriched subtype in breast cancer.

  12. Apparent Diffusion Coefficient and Dynamic Contrast-Enhanced Magnetic Resonance Imaging in Pancreatic Cancer: Characteristics and Correlation With Histopathologic Parameters.

    PubMed

    Ma, Wanling; Li, Na; Zhao, Weiwei; Ren, Jing; Wei, Mengqi; Yang, Yong; Wang, Yingmei; Fu, Xin; Zhang, Zhuoli; Larson, Andrew C; Huan, Yi

    2016-01-01

    To clarify diffusion and perfusion abnormalities and evaluate correlation between apparent diffusion coefficient (ADC), MR perfusion and histopathologic parameters of pancreatic cancer (PC). Eighteen patients with PC underwent diffusion-weighted imaging and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Parameters of DCE-MRI and ADC of cancer and non-cancerous tissue were compared. Correlation between the rate constant that represents transfer of contrast agent from the arterial blood into the extravascular extracellular space (K, volume of the extravascular extracellular space per unit volume of tissue (Ve), and ADC of PC and histopathologic parameters were analyzed. The rate constant that represents transfer of contrast agent from the extravascular extracellular space into blood plasma, K, tissue volume fraction occupied by vascular space, and ADC of PC were significantly lower than nontumoral pancreases. Ve of PC was significantly higher than that of nontumoral pancreas. Apparent diffusion coefficient and K values of PC were negatively correlated to fibrosis content and fibroblast activation protein staining score. Fibrosis content was positively correlated to Ve. Apparent diffusion coefficient values and parameters of DCE-MRI can differentiate PC from nontumoral pancreases. There are correlations between ADC, K, Ve, and fibrosis content of PC. Fibroblast activation protein staining score of PC is negatively correlated to ADC and K. Apparent diffusion coefficient, K, and Ve may be feasible to predict prognosis of PC.

  13. Efficient method for calculating kinetic parameters using T1-weighted dynamic contrast-enhanced magnetic resonance imaging.

    PubMed

    Murase, Kenya

    2004-04-01

    It has become increasingly important to quantitatively estimate tissue physiological parameters such as perfusion, capillary permeability, and the volume of extravascular-extracellular space (EES) using T(1)-weighted dynamic contrast-enhanced MRI (DCE-MRI). A linear equation was derived by integrating the differential equation describing the kinetic behavior of contrast agent (CA) in tissue, from which K(1) (rate constant for the transfer of CA from plasma to EES), k(2) (rate constant for the transfer from EES to plasma), and V(p) (plasma volume) can be easily obtained by the linear least-squares (LLSQ) method. The usefulness of this method was investigated by means of computer simulations, in comparison with the nonlinear least-squares (NLSQ) method. The new method calculated the above parameters faster than the NLSQ method by a factor of approximately 6, and estimated them more accurately than the NLSQ method at a signal-to-noise ratio (SNR) of < approximately 10. This method will be useful for generating functional images of K(1), k(2), and V(p) from DCE-MRI data.

  14. Hepatic Phospholipidosis Is Associated with Altered Hepatobiliary Function as Assessed by Gadoxetate Dynamic Contrast-enhanced Magnetic Resonance Imaging.

    PubMed

    Lenhard, Stephen C; Lev, Mally; Webster, Lindsey O; Peterson, Richard A; Goulbourne, Christopher N; Miller, Richard T; Jucker, Beat M

    2016-01-01

    To determine if amiodarone induces hepatic phospholipidosis (PLD) sufficient to detect changes in hepatobiliary transporter function as assessed by gadoxetate dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), rats were orally dosed with vehicle (1% methyl cellulose) or amiodarone (300 mg/kg/day) for 7 consecutive days. Gadoxetate DCE-MRI occurred at baseline, day 7, and following a 2-week washout of amiodarone. At day 7, the gadoxetate washout rate was significantly decreased compared to the vehicle group. Blood chemistry analysis revealed no significant changes in liver enzymes (alanine aminotransferase [ALT]/aspartate aminotransferase [AST]/alkaline phosphatase [ALP]), bilirubin, or bile acids between vehicle or amiodarone groups. Hepatic PLD was confirmed in all rats treated with amiodarone at day 7 by transmission electron microscopy. Following the 2-week washout, there was no ultrastructural evidence of hepatic PLD in rats and the gadoxetate washout rate returned to baseline levels. This is the first study to show the application of gadoxetate DCE-MRI to detect hepatobiliary functional changes associated with PLD and offer a potential new technique with clinical utility in patients suspected of having PLD. These results also suggest PLD itself has functional consequences on hepatobiliary function in the absence of biomarkers of toxicity, given the cause/effect relationship between PLD and function has not been fully established.

  15. Clinical value of dynamic 3-dimensional contrast-enhanced ultrasound imaging for the assessment of hepatocellular carcinoma ablation.

    PubMed

    Wang, Yandong; Jing, Xiang; Ding, Jianmin

    2016-01-01

    The aim of the study was to investigate the performance of dynamic 3-dimensional contrast-enhanced ultrasound (3D-CEUS) on assessment of efficacy of local ablation therapy of hepatocellular carcinoma (HCC) with contrast-enhanced computed tomography (CT) as reference standard. Eighty-nine HCC lesions from 75 patients undergoing ultrasound-guided percutaneous thermal ablation or chemical ablation were studied by both dynamic 3D-CEUS and contrast-enhanced CT 1month after ablation. Imaging results from two imaging modalities were evaluated independently by experienced readers to determine whether the treated lesions were ablated incompletely (residual unablated tumor) or completely. Sensitivity, specificity, positive and negative predictive values, and accuracy to identify incomplete ablation were calculated for dynamic 3D-CEUS imaging with contrast-enhanced CT as reference standard. Contrast-enhanced CT reported that 80.9% (72/89) of all the treated lesions were completely ablated and 19.1% (17/89) were incompletely ablated. The dynamic 3D-CEUS identified 82.0% (73/89) and 18.0% (16/89) of lesions as completely and incompletely ablated, respectively. With contrast-enhanced CT as the reference standard, the sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of dynamic 3D-CEUS for identifying residual unablated tumor were 88.2% (15/17), 98.6% (71/72), 93.8% (15/16), 97.3% (71/73), and 96.6% (86/89), respectively. The Kappa value for identifying residual unablated tumor between contrast-enhanced CT and dynamic 3D-CEUS was 0.89. Dynamic 3D-CEUS is highly consistent with contrast-enhanced CT in assessment of efficacy of HCC ablation and has potential to serve as an alternative to contrast-enhanced CT in the follow-up assessment after HCC ablation. Published by Elsevier Inc.

  16. Why a standard contrast-enhanced MRI might be useful in intracranial internal carotid artery stenosis

    PubMed Central

    Oeinck, Maximilian; Rozeik, Christoph; Wattchow, Jens; Meckel, Stephan; Schlageter, Manuel; Beeskow, Christel

    2016-01-01

    In patients with ischemic stroke of unknown cause cerebral vasculitis is a rare but relevant differential diagnosis, especially when signs of intracranial artery stenosis are found and laboratory findings show systemic inflammation. In such cases, high-resolution T1w vessel wall magnetic resonance imaging (MRI; ‘black blood’ technique) at 3 T is preferentially performed, but may not be available in every hospital. We report a case of an 84-year-old man with right hemispheric transient ischemic attack and signs of distal occlusion in the right internal carotid artery (ICA) in duplex sonography. Standard MRI with contrast agent pointed the way to the correct diagnosis since it showed an intramural contrast uptake in the right ICA and both vertebral arteries. Temporal artery biopsy confirmed the suspected diagnosis of a giant cell arteritis and dedicated vessel wall MRI performed later supported the suspected intracranial large artery inflammation. Our case also shows that early diagnosis and immunosuppressive therapy may not always prevent disease progression, as our patient suffered several infarcts in the left middle cerebral artery (MCA) territory with consecutive high-grade hemiparesis of the right side within the following four months. PMID:26988083

  17. In vivo Imaging of Optic Nerve Fiber Integrity by Contrast-Enhanced MRI in Mice

    PubMed Central

    Herrmann, Karl-Heinz; Reichenbach, Jürgen R.; Witte, Otto W.; Weih, Falk; Kretz, Alexandra; Haenold, Ronny

    2014-01-01

    The rodent visual system encompasses retinal ganglion cells and their axons that form the optic nerve to enter thalamic and midbrain centers, and postsynaptic projections to the visual cortex. Based on its distinct anatomical structure and convenient accessibility, it has become the favored structure for studies on neuronal survival, axonal regeneration, and synaptic plasticity. Recent advancements in MR imaging have enabled the in vivo visualization of the retino-tectal part of this projection using manganese mediated contrast enhancement (MEMRI). Here, we present a MEMRI protocol for illustration of the visual projection in mice, by which resolutions of (200 µm)3 can be achieved using common 3 Tesla scanners. We demonstrate how intravitreal injection of a single dosage of 15 nmol MnCl2 leads to a saturated enhancement of the intact projection within 24 hr. With exception of the retina, changes in signal intensity are independent of coincided visual stimulation or physiological aging. We further apply this technique to longitudinally monitor axonal degeneration in response to acute optic nerve injury, a paradigm by which Mn2+ transport completely arrests at the lesion site. Conversely, active Mn2+ transport is quantitatively proportionate to the viability, number, and electrical activity of axon fibers. For such an analysis, we exemplify Mn2+ transport kinetics along the visual path in a transgenic mouse model (NF-κB p50KO) displaying spontaneous atrophy of sensory, including visual, projections. In these mice, MEMRI indicates reduced but not delayed Mn2+ transport as compared to wild type mice, thus revealing signs of structural and/or functional impairments by NF-κB mutations. In summary, MEMRI conveniently bridges in vivo assays and post mortem histology for the characterization of nerve fiber integrity and activity. It is highly useful for longitudinal studies on axonal degeneration and regeneration, and investigations of mutant mice for genuine or

  18. Time-delayed contrast-enhanced MRI improves detection of brain metastases: a prospective validation of diagnostic yield.

    PubMed

    Cohen-Inbar, Or; Xu, Zhiyuan; Dodson, Blair; Rizvi, Tanvir; Durst, Christopher R; Mukherjee, Sugoto; Sheehan, Jason P

    2016-12-01

    The radiological detection of brain metastases (BMs) is essential for optimizing a patient's treatment. This statement is even more valid when stereotactic radiosurgery, a noninvasive image guided treatment that can target BM as small as 1-2 mm, is delivered as part of that care. The timing of image acquisition after contrast administration can influence the diagnostic sensitivity of contrast enhanced magnetic resonance imaging (MRI) for BM. Investigate the effect of time delayed acquisition after administration of intravenous Gadavist® (Gadobutrol 1 mmol/ml) on the detection of BM. This is a prospective IRB approved study of 50 patients with BM who underwent post-contrast MRI sequences after injection of 0.1 mmol/kg Gadavist® as part of clinical care (time-t0), followed by axial T1 sequences after a 10 min (time-t1) and 20 min delay (time-t2). MRI studies were blindly compared by three neuroradiologists. Single measure intraclass correlation coefficients were very high (0.914, 0.904 and 0.905 for time-t0, time-t1 and time-t2 respectively), corresponding to a reliable inter-observer correlation. The delayed MRI at time-t2 delayed sequences showed a significant and consistently higher diagnostic sensitivity for BM by every participating neuroradiologist and for the entire cohort (p = 0.016, 0.035 and 0.034 respectively). A disproportionately high representation of BM detected on the delayed studies was located within posterior circulation territories (compared to predictions based on tissue volume and blood-flow volumes). Considering the safe and potentially high yield nature of delayed MRI sequences, it should supplement the standard MRI sequences in all patients in need of precise delineation of their intracranial disease.

  19. Porcine Ex Vivo Liver Phantom for Dynamic Contrast-Enhanced Computed Tomography: Development and Initial Results

    PubMed Central

    Thompson, Scott M.; Giraldo, Juan C. Ramirez; Knudsen, Bruce; Grande, Joseph P.; Christner, Jodie A.; Xu, Man; Woodrum, David A.; McCollough, Cynthia H.; Callstrom, Matthew R.

    2011-01-01

    Objectives To demonstrate the feasibility of developing a fixed, dual-input, biological liver phantom for dynamic contrast-enhanced computed tomography (CT) imaging and to report initial results of use of the phantom for quantitative CT perfusion imaging. Materials and Methods Porcine livers were obtained from completed surgical studies and perfused with saline and fixative. The phantom was placed in a body-shaped, CT-compatible acrylic container and connected to a perfusion circuit fitted with a contrast injection port. Flow-controlled contrast-enhanced imaging experiments were performed using a 128-slice and 64 slice, dual-source multidetector CT scanners. CT angiography protocols were employed to obtain portal venous and hepatic arterial vascular enhancement, reproduced over a period of four to six months. CT perfusion protocols were employed at different input flow rates to correlate input flow with calculated tissue perfusion, to test reproducibility and demonstrate the feasibility of simultaneous dual input liver perfusion. Histologic analysis of the liver phantom was also performed. Results CT angiogram 3D reconstructions demonstrated homogenous tertiary and quaternary branching of the portal venous system out to the periphery of all lobes of the liver as well as enhancement of the hepatic arterial system to all lobes of the liver and gallbladder throughout the study period. For perfusion CT, the correlation between the calculated mean tissue perfusion in a volume of interest and input pump flow rate was excellent (R2 = 0.996) and color blood flow maps demonstrated variations in regional perfusion in a narrow range. Repeat perfusion CT experiments demonstrated reproducible time-attenuation curves and dual-input perfusion CT experiments demonstrated that simultaneous dual input liver perfusion is feasible. Histologic analysis demonstrated that the hepatic microvasculature and architecture appeared intact and well preserved at the completion of four to six

  20. A Novel Mouse Segmentation Method Based on Dynamic Contrast Enhanced Micro-CT Images

    PubMed Central

    Yan, Dongmei; Zhang, Zhihong; Luo, Qingming; Yang, Xiaoquan

    2017-01-01

    With the development of hybrid imaging scanners, micro-CT is widely used in locating abnormalities, studying drug metabolism, and providing structural priors to aid image reconstruction in functional imaging. Due to the low contrast of soft tissues, segmentation of soft tissue organs from mouse micro-CT images is a challenging problem. In this paper, we propose a mouse segmentation scheme based on dynamic contrast enhanced micro-CT images. With a homemade fast scanning micro-CT scanner, dynamic contrast enhanced images were acquired before and after injection of non-ionic iodinated contrast agents (iohexol). Then the feature vector of each voxel was extracted from the signal intensities at different time points. Based on these features, the heart, liver, spleen, lung, and kidney could be classified into different categories and extracted from separate categories by morphological processing. The bone structure was segmented using a thresholding method. Our method was validated on seven BALB/c mice using two different classifiers: a support vector machine classifier with a radial basis function kernel and a random forest classifier. The results were compared to manual segmentation, and the performance was assessed using the Dice similarity coefficient, false positive ratio, and false negative ratio. The results showed high accuracy with the Dice similarity coefficient ranging from 0.709 ± 0.078 for the spleen to 0.929 ± 0.006 for the kidney. PMID:28060917

  1. Non-contrast-enhanced perfusion and ventilation assessment of the human lung by means of fourier decomposition in proton MRI.

    PubMed

    Bauman, Grzegorz; Puderbach, Michael; Deimling, Michael; Jellus, Vladimir; Chefd'hotel, Christophe; Dinkel, Julien; Hintze, Christian; Kauczor, Hans-Ulrich; Schad, Lothar R

    2009-09-01

    Assessment of regional lung perfusion and ventilation has significant clinical value for the diagnosis and follow-up of pulmonary diseases. In this work a new method of non-contrast-enhanced functional lung MRI (not dependent on intravenous or inhalative contrast agents) is proposed. A two-dimensional (2D) true fast imaging with steady precession (TrueFISP) pulse sequence (TR/TE = 1.9 ms/0.8 ms, acquisition time [TA] = 112 ms/image) was implemented on a 1.5T whole-body MR scanner. The imaging protocol comprised sets of 198 lung images acquired with an imaging rate of 3.33 images/s in coronal and sagittal view. No electrocardiogram (ECG) or respiratory triggering was used. A nonrigid image registration algorithm was applied to compensate for respiratory motion. Rapid data acquisition allowed observing intensity changes in corresponding lung areas with respect to the cardiac and respiratory frequencies. After a Fourier analysis along the time domain, two spectral lines corresponding to both frequencies were used to calculate the perfusion- and ventilation-weighted images. The described method was applied in preliminary studies on volunteers and patients showing clinical relevance to obtain non-contrast-enhanced perfusion and ventilation data.

  2. Automated scoring of regional lung perfusion in children from contrast enhanced 3D MRI

    NASA Astrophysics Data System (ADS)

    Heimann, Tobias; Eichinger, Monika; Bauman, Grzegorz; Bischoff, Arved; Puderbach, Michael; Meinzer, Hans-Peter

    2012-03-01

    MRI perfusion images give information about regional lung function and can be used to detect pulmonary pathologies in cystic fibrosis (CF) children. However, manual assessment of the percentage of pathologic tissue in defined lung subvolumes features large inter- and intra-observer variation, making it difficult to determine disease progression consistently. We present an automated method to calculate a regional score for this purpose. First, lungs are located based on thresholding and morphological operations. Second, statistical shape models of left and right children's lungs are initialized at the determined locations and used to precisely segment morphological images. Segmentation results are transferred to perfusion maps and employed as masks to calculate perfusion statistics. An automated threshold to determine pathologic tissue is calculated and used to determine accurate regional scores. We evaluated the method on 10 MRI images and achieved an average surface distance of less than 1.5 mm compared to manual reference segmentations. Pathologic tissue was detected correctly in 9 cases. The approach seems suitable for detecting early signs of CF and monitoring response to therapy.

  3. Retrieval of Brain Tumors with Region-Specific Bag-of-Visual-Words Representations in Contrast-Enhanced MRI Images

    PubMed Central

    Huang, Meiyan; Yang, Wei; Yu, Mei; Lu, Zhentai; Feng, Qianjin; Chen, Wufan

    2012-01-01

    A content-based image retrieval (CBIR) system is proposed for the retrieval of T1-weighted contrast-enhanced MRI (CE-MRI) images of brain tumors. In this CBIR system, spatial information in the bag-of-visual-words model and domain knowledge on the brain tumor images are considered for the representation of brain tumor images. A similarity metric is learned through a distance metric learning algorithm to reduce the gap between the visual features and the semantic concepts in an image. The learned similarity metric is then used to measure the similarity between two images and then retrieve the most similar images in the dataset when a query image is submitted to the CBIR system. The retrieval performance of the proposed method is evaluated on a brain CE-MRI dataset with three types of brain tumors (i.e., meningioma, glioma, and pituitary tumor). The experimental results demonstrate that the mean average precision values of the proposed method range from 90.4% to 91.5% for different views (transverse, coronal, and sagittal) with an average value of 91.0%. PMID:23243462

  4. Comparison of magnetic resonance imaging (MRI) and contrast-enhanced ultrasound (CEUS) in the evaluation of unclear solid renal lesions.

    PubMed

    Rübenthaler, J; Paprottka, K; Marcon, J; Hameister, E; Hoffmann, K; Joiko, N; Reiser, M; Clevert, D A

    2016-01-01

    To compare the sensitivity and specificity of contrast-enhanced ultrasound (CEUS) and magnetic resonance imaging (MRI) in the evaluation of unclear renal lesions to the histopathological outcome. A total of 36 patients with a single unclear solid renal lesion with initial imaging studies between 2005 and 2015 were included. CEUS and MRI were used for determining malignancy or benignancy and initial findings were correlated with the histopathological outcome. Out of the 36 renal masses a total of 28 lesions were malignant (77.8%) and 8 were found to be benign (22.2%). Diagnostic accuracy was testes by using the histopathological diagnosis as the gold standard. CEUS showed a sensitivity of 96.4%, a specificity of 100.0%, a positive predictive value (PPV) of 100.0% and a negative predictive value (NPV) of 88,9%. MRI showed a sensitivity of 96.4%, a specificity of 75.0%, a PPV of 93.1% and a NPV of 85.7%. Out of the 28 malignant lesions a total of 18 clear cell renal carcinomas, 6 papillary renal cell carcinomas and 4 other malignant lesions, e.g. metastases, were diagnosed. Out of the 8 benign lesions a total 3 angiomyolipomas, 2 oncocytomas, 1 benign renal cyst and 2 other benign lesions, e.g. renal adenomas were diagnosed. Using CEUS, 1 lesion was falsely identified as benign. Using MRI, 2 lesions were falsely identified as benign and 1 lesion was falsely identified as malignant. CEUS is an useful method which can be additionally used to clinically differentiate between malignant and benign renal lesions. CEUS shows a comparable sensitivity, specificity, PPV and NPV to MRI. In daily clinical routine, patients with contraindications for other imaging modalities can particularly benefit using this method.

  5. Assessment of metastatic liver disease in patients with primary extrahepatic tumors by contrast-enhanced sonography versus CT and MRI

    PubMed Central

    Dietrich, Christoph F; Kratzer, Wolfgang; Strobel, Deike; Danse, Etienne; Fessl, Robert; Bunk, Alfred; Vossas, Udo; Hauenstein, Karlheinz; Koch, Wilhelm; Blank, Wolfgang; Oudkerk, Matthijs; Hahn, Dietbert; Greis, Christian

    2006-01-01

    AIM: To evaluate contrast-enhanced ultrasonography (CEUS) using SonoVue® in the detection of liver metastases in patients with known extrahepatic primary tumors versus the combined gold standard comprising CT, MRI and clinical/histological data. METHODS: It is an international multicenter study, and there were 12 centres and 125 patients (64 males, 61 females, aged 59 ± 11 years) involved, with 102 patients per protocol. Primary tumors were colorectal in 35 %, breast in 27 %, pancreatic in 17 % and others in 21 %. CEUS using SonoVue® was employed with a low-mechanical-index technique and contrast-specific software using Siemens Elegra, Philips HDI 5000 and Acuson Sequoia; continuous scanning for at least five minutes. RESULTS: CEUS with SonoVue® increased significantly the number of focal liver lesions detected versus unenhanced sonography. In 31.4 % of the patients, more lesions were found after contrast enhancement. The total numbers of lesions detected were comparable with CEUS (55), triple-phase spiral CT (61) and MRI with a liver-specific contrast agent (53). Accuracy of detection of metastatic disease (i.e. at least one metastatic lesion) was significantly higher for CEUS (91.2 %) than for unenhanced sonography (81.4 %) and was similar to that of triple-phase spiral CT (89.2 %). In 53 patients whose CEUS examination was negative, a follow-up examination 3-6 mo later confirmed the absence of metastatic lesions in 50 patients (94.4 %). CONCLUSION: CEUS is proved to be reliable in the detection of liver metastases in patients with known extrahepatic primary tumors and suspected liver lesions. PMID:16586537

  6. Assessment of metastatic liver disease in patients with primary extrahepatic tumors by contrast-enhanced sonography versus CT and MRI.

    PubMed

    Dietrich, Christoph F; Kratzer, Wolfgang; Strobe, Deike; Danse, Etienne; Fessl, Robert; Bunk, Alfred; Vossas, Udo; Hauenstein, Karlheinz; Koch, Wilhelm; Blank, Wolfgang; Oudkerk, Matthijs; Hahn, Dietbert; Greis, Christian

    2006-03-21

    To evaluate contrast-enhanced ultrasonography (CEUS) using SonoVue in the detection of liver metastases in patients with known extrahepatic primary tumors versus the combined gold standard comprising CT, MRI and clinical/histological data. It is an international multicenter study, and there were 12 centres and 125 patients (64 males, 61 females, aged 59+/-11 years) involved, with 102 patients per protocol. Primary tumors were colorectal in 35%, breast in 27%, pancreatic in 17% and others in 21%. CEUS using SonoVue was employed with a low-mechanical-index technique and contrast-specific software using Siemens Elegra, Philips HDI 5000 and Acuson Sequoia; continuous scanning for at least five minutes. CEUS with SonoVue increased significantly the number of focal liver lesions detected versus unenhanced sonography. In 31.4% of the patients, more lesions were found after contrast enhancement. The total numbers of lesions detected were comparable with CEUS (55), triple-phase spiral CT (61) and MRI with a liver-specific contrast agent (53). Accuracy of detection of metastatic disease (i.e. at least one metastatic lesion) was significantly higher for CEUS (91.2%) than for unenhanced sonography (81.4%) and was similar to that of triple-phase spiral CT (89.2%). In 53 patients whose CEUS examination was negative, a follow-up examination 3-6 mo later confirmed the absence of metastatic lesions in 50 patients (94.4%). CEUS is proved to be reliable in the detection of liver metastases in patients with known extrahepatic primary tumors and suspected liver lesions.

  7. Contrast-enhanced MRI-derived scar patterns and associated ventricular tachycardias in nonischemic cardiomyopathy: implications for the ablation strategy.

    PubMed

    Piers, Sebastiaan R D; Tao, Qian; van Huls van Taxis, Carine F B; Schalij, Martin J; van der Geest, Rob J; Zeppenfeld, Katja

    2013-10-01

    There are limited data on typical arrhythmogenic substrates and associated ventricular tachycardias (VT) in patients with nonischemic cardiomyopathy. The substrate location may have implications for the ablation strategy. Nineteen consecutive patients with nonischemic cardiomyopathy (age 58±14 years, 79% men, left ventricular ejection fraction 41±11%) who underwent contrast-enhanced MRI and VT ablation were included. On the basis of 3-dimensional contrast-enhanced MRI-derived scar reconstructions, 8 patients (42%) had predominant basal anteroseptal scar, 9 patients (47%) had predominant inferolateral scar, and 2 patients (11%) had other scar types. Three distinct VT morphologies (≥1 of 3 inducible in 16/19 patients) were associated with underlying scar type. In 9 patients with anteroseptal scar-related VT (8/9 predominant scar, 1/9 nonpredominant), ablation target sites (defined as sites with ≥11/12 pacemap, concealed entrainment or VT termination during ablation) were located in the aortic root and/or anteroseptal left ventricular endocardium in 8 patients (89%) and in the anterior cardiac vein in 1 patient (11%), with additional target sites at the right ventricular septum in 2 patients (22%) and at the epicardium in 1 patient (11%). In contrast, in 8 patients with predominant inferolateral scar-related VT, target sites were located at the epicardium in 5 patients (63%) and in the endocardial inferolateral left ventricle in 3 patients (37%). Two typical scar patterns (anteroseptal and inferolateral) account for 89% of arrhythmogenic substrates in patients with nonischemic cardiomyopathy. Three distinct VT morphologies are highly suggestive of the presence of these scars. Anteroseptal scars were, in general, most effectively approached from the aortic root or anteroseptal left ventricular endocardium, whereas inferolateral scars frequently required an epicardial approach.

  8. Dynamic contrast enhanced CT in nodule characterization: How we review and report.

    PubMed

    Qureshi, Nagmi R; Shah, Andrew; Eaton, Rosemary J; Miles, Ken; Gilbert, Fiona J

    2016-07-18

    Incidental indeterminate solitary pulmonary nodules (SPN) that measure less than 3 cm in size are an increasingly common finding on computed tomography (CT) worldwide. Once identified there are a number of imaging strategies that can be performed to help with nodule characterization. These include interval CT, dynamic contrast enhanced computed tomography (DCE-CT), (18)F-fluorodeoxyglucose positron emission tomography-computed tomography ((18)F-FDG-PET-CT). To date the most cost effective and efficient non-invasive test or combination of tests for optimal nodule characterization has yet to be determined.DCE-CT is a functional test that involves the acquisition of a dynamic series of images of a nodule before and following the administration of intravenous iodinated contrast medium. This article provides an overview of the current indications and limitations of DCE- CT in nodule characterization and a systematic approach to how to perform, analyse and interpret a DCE-CT scan.

  9. Estimating myocardial perfusion from dynamic contrast-enhanced CMR with a model-independent deconvolution method

    PubMed Central

    Pack, Nathan A; DiBella, Edward VR; Rust, Thomas C; Kadrmas, Dan J; McGann, Christopher J; Butterfield, Regan; Christian, Paul E; Hoffman, John M

    2008-01-01

    Background Model-independent analysis with B-spline regularization has been used to quantify myocardial blood flow (perfusion) in dynamic contrast-enhanced cardiovascular magnetic resonance (CMR) studies. However, the model-independent approach has not been extensively evaluated to determine how the contrast-to-noise ratio between blood and tissue enhancement affects estimates of myocardial perfusion and the degree to which the regularization is dependent on the noise in the measured enhancement data. We investigated these questions with a model-independent analysis method that uses iterative minimization and a temporal smoothness regularizer. Perfusion estimates using this method were compared to results from dynamic 13N-ammonia PET. Results An iterative model-independent analysis method was developed and tested to estimate regional and pixelwise myocardial perfusion in five normal subjects imaged with a saturation recovery turboFLASH sequence at 3 T CMR. Estimates of myocardial perfusion using model-independent analysis are dependent on the choice of the regularization weight parameter, which increases nonlinearly to handle large decreases in the contrast-to-noise ratio of the measured tissue enhancement data. Quantitative perfusion estimates in five subjects imaged with 3 T CMR were 1.1 ± 0.8 ml/min/g at rest and 3.1 ± 1.7 ml/min/g at adenosine stress. The perfusion estimates correlated with dynamic 13N-ammonia PET (y = 0.90x + 0.24, r = 0.85) and were similar to results from other validated CMR studies. Conclusion This work shows that a model-independent analysis method that uses iterative minimization and temporal regularization can be used to quantify myocardial perfusion with dynamic contrast-enhanced perfusion CMR. Results from this method are robust to choices in the regularization weight parameter over relatively large ranges in the contrast-to-noise ratio of the tissue enhancement data. PMID:19014509

  10. Pattern analysis of dynamic susceptibility contrast-enhanced MR imaging demonstrates peritumoral tissue heterogeneity.

    PubMed

    Akbari, Hamed; Macyszyn, Luke; Da, Xiao; Wolf, Ronald L; Bilello, Michel; Verma, Ragini; O'Rourke, Donald M; Davatzikos, Christos

    2014-11-01

    To augment the analysis of dynamic susceptibility contrast material-enhanced magnetic resonance (MR) images to uncover unique tissue characteristics that could potentially facilitate treatment planning through a better understanding of the peritumoral region in patients with glioblastoma. Institutional review board approval was obtained for this study, with waiver of informed consent for retrospective review of medical records. Dynamic susceptibility contrast-enhanced MR imaging data were obtained for 79 patients, and principal component analysis was applied to the perfusion signal intensity. The first six principal components were sufficient to characterize more than 99% of variance in the temporal dynamics of blood perfusion in all regions of interest. The principal components were subsequently used in conjunction with a support vector machine classifier to create a map of heterogeneity within the peritumoral region, and the variance of this map served as the heterogeneity score. The calculated principal components allowed near-perfect separability of tissue that was likely highly infiltrated with tumor and tissue that was unlikely infiltrated with tumor. The heterogeneity map created by using the principal components showed a clear relationship between voxels judged by the support vector machine to be highly infiltrated and subsequent recurrence. The results demonstrated a significant correlation (r = 0.46, P < .0001) between the heterogeneity score and patient survival. The hazard ratio was 2.23 (95% confidence interval: 1.4, 3.6; P < .01) between patients with high and low heterogeneity scores on the basis of the median heterogeneity score. Analysis of dynamic susceptibility contrast-enhanced MR imaging data by using principal component analysis can help identify imaging variables that can be subsequently used to evaluate the peritumoral region in glioblastoma. These variables are potentially indicative of tumor infiltration and may become useful tools in

  11. Medullary hemangioblastoma in a child with von Hippel-Lindau disease: vascular tumor perfusion depicted by arterial spin labeling and dynamic contrast-enhanced imaging.

    PubMed

    Goo, Hyun Woo; Ra, Young-Shin

    2015-07-01

    Medullary hemangioblastoma is very rare in children. Based on small nodular enhancement with peritumoral edema and without dilated feeding arteries on conventional MRI, hemangioblastoma, pilocytic astrocytoma, oligodendroglioma, and ganglioglioma were included in the differential diagnosis of the medullary tumor. In this case report, the authors emphasize the diagnostic value of arterial spin labeling and dynamic contrast-enhanced MRI in demonstrating vascular tumor perfusion of hemangioblastoma in a 12-year-old boy who was later found to have von Hippel-Lindau disease.

  12. Analysis of Pharmacokinetics of Gd-DTPA for Dynamic Contrast-enhanced Magnetic Resonance Imaging

    PubMed Central

    Taheri, Saeid; Jon Shah, N.; Rosenberg, Gary A.

    2016-01-01

    The pharmacokinetics (PK) of the contrast agent Gd-DTPA administered intravenously (i.v.) for contrast-enhanced MR imaging (DCE-MRI) is an important factor for quantitative data acquisition. We studied the effect of various initial bolus doses on the PK of Gd-DTPA and analyzed population PK of a lower dose for intra-subject variations in DCE-MRI. First, fifteen subjects (23–85 years, M/F) were randomly divided into four groups for DCE-MRI with different Gd-DTPA dose: group-I, 0.1mmol/kg, n=4; group-II, 0.05 mmol/kg, n=4; group-III, 0.025mmol/kg, n=4; and group-IV, 0.0125 mmol/kg, n=3. Sequential fast T1 mapping sequence, after a bolus i.v. Gd-DTPA administered, and a linear T1-[Gd-DTPA] relationship were used to estimate the PK of Gd-DTPA. Secondly, MR-acquired PK of Gd-DTPA from 58 subjects (28–80 years, M/F) were collected retrospectively, from an ongoing study of the brain using DCE-MRI with Gd-DTPA at 0.025 mmol/kg, to statistically analyze population PK of Gd-DTPA. We found that the PK of Gd-DTPA (i.v. 0.025 mmol/kg) had a half-life of 37.3 ± 6.6 mins, and was a better fit into a linear T1-[Gd-DTPA] relationship than higher doses (up to 0.1 mmol/kg). The area under the curve (AUC) for 0.025 mmol/kg was 3.37± 0.46, which was a quarter of AUC of 0.1 mmol/kg. In population analysis, a dose of 0.025 mmol/kg of Gd-DTPA provided less than 5% subject-dependent variation in the PK of Gd-DTPA. Administration of 0.025 mmol/kg Gd-DTPA enable us to estimate [Gd-DTPA] from T1 by using a linear relationship that has a lower estimation error compared to a non-linear relationship. DCE-MRI with a quarter dose of Gd-DTPA is more sensitive to detect changes in [Gd-DTPA]. PMID:27109487

  13. Arterial input functions in dynamic contrast-enhanced magnetic resonance imaging: which model performs best when assessing breast cancer response?

    PubMed

    Woolf, David K; Taylor, N Jane; Makris, Andreas; Tunariu, Nina; Collins, David J; Li, Sonia P; Ah-See, Mei-Lin; Beresford, Mark; Padhani, Anwar R

    2016-07-01

    To evaluate the performance of six models of population arterial input function (AIF) in the setting of primary breast cancer and neoadjuvant chemotherapy (NAC). The ability to fit patient dynamic contrast-enhanced MRI (DCE-MRI) data, provide physiological plausible data and detect pathological response was assessed. Quantitative DCE-MRI parameters were calculated for 27 patients at baseline and after 2 cycles of NAC for 6 AIFs. Pathological complete response detection was compared with change in these parameters from a reproduction cohort of 12 patients using the Bland-Altman approach and receiver-operating characteristic analysis. There were fewer fit failures pre-NAC for all models, with the modified Fritz-Hansen having the fewest pre-NAC (3.6%) and post-NAC (18.8%), contrasting with the femoral artery AIF (19.4% and 43.3%, respectively). Median transfer constant values were greatest for the Weinmann function and also showed greatest reductions with treatment (-68%). Reproducibility (r) was the lowest for the Weinmann function (r = -49.7%), with other AIFs ranging from r = -27.8 to -39.2%. Using the best performing AIF is essential to maximize the utility of quantitative DCE-MRI parameters in predicting response to NAC treatment. Applying our criteria, the modified Fritz-Hansen and cosine bolus approximated Parker AIF models performed best. The Fritz-Hansen and biexponential approximated Parker AIFs performed less well, and the Weinmann and femoral artery AIFs are not recommended. We demonstrate that using the most appropriate AIF can aid successful prediction of response to NAC in breast cancer.

  14. Relationship between particulate matter exposure and atherogenic profile in "Ground Zero" workers as shown by dynamic contrast enhanced MR imaging.

    PubMed

    Mani, Venkatesh; Wong, Stephanie K; Sawit, Simonette T; Calcagno, Claudia; Maceda, Cynara; Ramachandran, Sarayu; Fayad, Zahi A; Moline, Jacqueline; McLaughlin, Mary Ann

    2013-04-01

    In this pilot study, we hypothesize that dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) has the potential to evaluate differences in atherosclerosis profiles in patients subjected to high (initial dust cloud) and low (after 13 September 2001) particulate matter (PM) exposure. Exposure to PM may be associated with adverse health effects leading to increased morbidity. Law enforcement workers were exposed to high levels of particulate pollution after working at "Ground Zero" and may exhibit accelerated atherosclerosis. 31 subjects (28 male) with high (n = 19) or low (n = 12) exposure to PM underwent DCE-MRI. Demographics (age, gender, family history, hypertension, diabetes, BMI, and smoking status), biomarkers (lipid profiles, hs-CRP, BP) and ankle-brachial index (ABI) measures (left and right) were obtained from all subjects. Differences between the high and low exposures were compared using independent samples t test. Using linear forward stepwise regression with information criteria model, independent predictors of increased area under curve (AUC) from DCE-MRI were determined using all variables as input. Confidence interval of 95 % was used and variables with p > 0.1 were eliminated. p < 0.05 was considered significant. Subjects with high exposure (HE) had significantly higher DCE-MRI AUC uptake (increased neovascularization) compared to subjects with lower exposure (LE). (AUC: 2.65 ± 0.63 HE vs. 1.88 ± 0.69 LE, p = 0.016). Except for right leg ABI, none of the other parameters were significantly different between the two groups. Regression model indicated that only HE to PM, CRP > 3.0 and total cholesterol were independently associated with increased neovascularization (in decreasing order of importance, all p < 0.026). HE to PM may increase plaque neovascularization, and thereby potentially indicate worsening atherogenic profile of "Ground Zero" workers.

  15. Dynamic contrast-enhanced breast magnetic resonance imaging for the prediction of early and late recurrences in breast cancer.

    PubMed

    Choi, Eun Jung; Choi, HyeMi; Choi, Sin Ae; Youk, Ji Hyun

    2016-11-01

    The aim of the study was to evaluate dynamic contrast-enhanced breast magnetic resonance imaging (DCE-MRI) features for the prediction of early and late recurrences in patients with breast cancer.Of 1030 breast cancer patients who underwent surgery at our hospital from January 2007 to July 2011, 83 recurrent breast cancer patients were enrolled in this study. We compared MRI features (background parenchymal enhancement [BPE], internal enhancement, adjacent vessel sign, whole-breast vascularity, initial enhancement pattern, kinetic curve types, and quantitative kinetic parameters) and clinico-pathologic variables (age, stage, histologic grade, nuclear grade, existence of lymphovascular invasion and extensive intraductal carcinoma component, and immunohistochemical profiles) between patients with early (≤2.5 years after surgery) and late recurrence (>2.5 years after surgery). Cox proportional hazard regression analysis was performed to evaluate independent risk factors for early and late recurrence.On breast MRI, prominent ipsilateral whole-breast vascularity was independently associated with early recurrence (hazard ratio [HR], 2.86; 95% confidence intervals [CI], 1.39-5.88) and moderate or marked BPE (HR, 2.08; 95% CI, 1.04-4.18) and rim enhancement (HR, 2.14; 95% CI, 1.00-4.59) were independently associated with late recurrence. Clinico-pathologic variables independently associated with early recurrence included negative estrogen receptor (HR, 0.53; 95% CI, 0.29-0.96), whereas T2 stage (HR, 2.08; 95% CI, 1.04-4.16) and nuclear grade III (HR, 2.54; 95% CI, 1.29-4.98) were associated with late recurrence.In DCE-MRI, prominent ipsilateral whole-breast vascularity, moderate or marked BPE, and rim enhancement could be useful for predicting recurrence timing in patients with breast cancer.

  16. Delayed Contrast-Enhanced MRI of the Coronary Artery Wall in Takayasu Arteritis

    PubMed Central

    Schneeweis, Christopher; Schnackenburg, Bernhard; Stuber, Matthias; Berger, Alexander; Schneider, Udo; Yu, Jing; Gebker, Rolf; Weiss, Robert G.; Fleck, Eckart; Kelle, Sebastian

    2012-01-01

    Background Takayasu arteritis (TA) is a rare form of chronic inflammatory granulomatous arteritis of the aorta and its major branches. Late gadolinium enhancement (LGE) with magnetic resonance imaging (MRI) has demonstrated its value for the detection of vessel wall alterations in TA. The aim of this study was to assess LGE of the coronary artery wall in patients with TA compared to patients with stable CAD. Methods We enrolled 9 patients (8 female, average age 46±13 years) with proven TA. In the CAD group 9 patients participated (8 male, average age 65±10 years). Studies were performed on a commercial 3T whole-body MR imaging system (Achieva; Philips, Best, The Netherlands) using a 3D inversion prepared navigator gated spoiled gradient-echo sequence, which was repeated 34–45 minutes after low-dose gadolinium administration. Results No coronary vessel wall enhancement was observed prior to contrast in either group. Post contrast, coronary LGE on IR scans was detected in 28 of 50 segments (56%) seen on T2-Prep scans in TA and in 25 of 57 segments (44%) in CAD patients. LGE quantitative assessment of coronary artery vessel wall CNR post contrast revealed no significant differences between the two groups (CNR in TA: 6.0±2.4 and 7.3±2.5 in CAD; p = 0.474). Conclusion Our findings suggest that LGE of the coronary artery wall seems to be common in patients with TA and similarly pronounced as in CAD patients. The observed coronary LGE seems to be rather unspecific, and differentiation between coronary vessel wall fibrosis and inflammation still remains unclear. PMID:23236382

  17. Improved Detection of Transosseous Meningiomas Using (68)Ga-DOTATATE PET/CT Compared with Contrast-Enhanced MRI.

    PubMed

    Kunz, Wolfgang G; Jungblut, Lisa M; Kazmierczak, Philipp M; Vettermann, Franziska J; Bollenbacher, Andreas; Tonn, Jörg C; Schichor, Christian; Rominger, Axel; Albert, Nathalie L; Bartenstein, Peter; Reiser, Maximilian F; Cyran, Clemens C

    2017-10-01

    (68)Ga-DOTATATE PET/CT enables detection of meningioma tissue based on somatostatin receptor 2 expression. Transosseous extension of intracranial meningiomas is known to be an important risk factor for tumor recurrence and patient mortality. We analyzed the diagnostic performance of (68)Ga-DOTATATE PET/CT and contrast-enhanced MRI (CE-MRI) for the detection of osseous infiltration using qualitative and quantitative imaging parameters. Methods: In this institutional review board-approved retrospective study, subjects were selected from 327 consecutive (68)Ga-DOTATATE PET/CT examinations for evaluation of confirmed or suspected meningioma. Inclusion criteria were CE-MRI within 30 d and pathology-confirmed meningioma diagnosis with inclusion or exclusion of transosseous extension as the standard of reference. Imaging was analyzed by two readers. Tracer uptake values and meningioma volumes were determined. χ(2), Mann-Whitney U, Wilcoxon signed rank, and McNemar tests, as well as receiver-operating-characteristic analyses, were performed to compare variables and diagnostic performance. Results: Eighty-two patients fulfilled the inclusion criteria. Patients with transosseous extension of meningioma (n = 67) showed significantly larger lesions (median, 12.8 vs. 3.3 mL; P < 0.001) and significantly higher tracer uptake values (median SUVmax, 14.2 vs. 7.6; P = 0.011) than patients with extraosseous meningiomas (n = 15). (68)Ga-DOTATATE PET/CT in comparison to CE-MRI performed at a higher sensitivity (98.5% vs. 53.7%) while maintaining high specificity (86.7% vs. 93.3%) in the detection of osseous involvement (P < 0.001). In receiver-operating-characteristic analysis, PET/CT assessment performed better than CE-MRI (area under the curve, 0.932 vs. 0.773). PET/CT- and CE-MRI-based volume estimation yielded comparable results for extraosseous meningiomas (P = 0.132) and the extraosseous part of transosseous meningiomas (P = 0.636), whereas the volume of the intraosseous part

  18. Fat-based registration of breast dynamic contrast enhanced water images.

    PubMed

    Srinivasan, Subashini; Hargreaves, Brian A; Daniel, Bruce L

    2017-07-26

    In this study, a 3D fat-based deformable registration algorithm was developed for registering dynamic contrast-enhanced breast images. The mutual information similarity measure with free-form deformation motion correction in rapidly enhancing lesions can introduce motion. However, in Dixon-based fat-water separated acquisitions, the nonenhancing fat signal can directly be used to estimate deformable motion, which can be later used to deform the water images. Qualitative comparison of the fat-based registration method to a water-based registration method, and to the unregistered images, was performed by two experienced readers. Quantitative analysis of the registration was evaluated by estimating the mean-squared signal difference on the fat images. Using a scale of 0 (no motion) to 2 ( > 4 voxels of motion), the average image quality score of the fat-based registered images was 0.5 ± 0.6, water-based registration was 0.8 ± 0.8, and the unregistered dataset was 1.6 ± 0.6. The mean-squared-signal-difference metric on the fat images was significantly lower for fat-based registered images compared with both water-based registered and unregistered images. Fat-based registration of breast dynamic contrast-enhanced images is a promising technique for performing deformable motion correction of breast without introducing new motion. Magn Reson Med, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  19. Dynamic contrast-enhanced optical imaging of in vivo organ function

    PubMed Central

    Wang, Tracy; Bouchard, Matthew B.; McCaslin, Addason F. H.; Blaner, William S.; Levenson, Richard M.; Hillman, Elizabeth M. C.

    2012-01-01

    Abstract. Conventional approaches to optical small animal molecular imaging suffer from poor resolution, limited sensitivity, and unreliable quantitation, often reducing their utility in practice. We previously demonstrated that the in vivo dynamics of an injected contrast agent could be exploited to provide high-contrast anatomical registration, owing to the temporal differences in each organ’s response to the circulating fluorophore. This study extends this approach to explore whether dynamic contrast-enhanced optical imaging (DyCE) can allow noninvasive, in vivo assessment of organ function by quantifying the differing cellular uptake or wash-out dynamics of an agent in healthy and damaged organs. Specifically, we used DyCE to visualize and measure the organ-specific uptake dynamics of indocyanine green before and after induction of transient liver damage. DyCE imaging was performed longitudinally over nine days, and blood samples collected at each imaging session were analyzed for alanine aminotransferase (ALT), a liver enzyme assessed clinically as a measure of liver damage. We show that changes in DyCE-derived dynamics of liver and kidney dye uptake caused by liver damage correlate linearly with ALT concentrations, with an r2 value of 0.91. Our results demonstrate that DyCE can provide quantitative, in vivo, longitudinal measures of organ function with inexpensive and simple data acquisition. PMID:23085904

  20. Dynamic contrast-enhanced optical imaging of in vivo organ function

    NASA Astrophysics Data System (ADS)

    Amoozegar, Cyrus B.; Wang, Tracy; Bouchard, Matthew B.; McCaslin, Addason F. H.; Blaner, William S.; Levenson, Richard M.; Hillman, Elizabeth M. C.

    2012-09-01

    Conventional approaches to optical small animal molecular imaging suffer from poor resolution, limited sensitivity, and unreliable quantitation, often reducing their utility in practice. We previously demonstrated that the in vivo dynamics of an injected contrast agent could be exploited to provide high-contrast anatomical registration, owing to the temporal differences in each organ's response to the circulating fluorophore. This study extends this approach to explore whether dynamic contrast-enhanced optical imaging (DyCE) can allow noninvasive, in vivo assessment of organ function by quantifying the differing cellular uptake or wash-out dynamics of an agent in healthy and damaged organs. Specifically, we used DyCE to visualize and measure the organ-specific uptake dynamics of indocyanine green before and after induction of transient liver damage. DyCE imaging was performed longitudinally over nine days, and blood samples collected at each imaging session were analyzed for alanine aminotransferase (ALT), a liver enzyme assessed clinically as a measure of liver damage. We show that changes in DyCE-derived dynamics of liver and kidney dye uptake caused by liver damage correlate linearly with ALT concentrations, with an r2 value of 0.91. Our results demonstrate that DyCE can provide quantitative, in vivo, longitudinal measures of organ function with inexpensive and simple data acquisition.

  1. Cardiac MRI and 3D contrast-enhanced MR angiography in pediatric and young adult patients with Turner syndrome.

    PubMed

    Yiğit, Hasan; Önder, Aşan; Özgür, Senem; Aycan, Zehra; Karademir, Selmin; Doğan, Vehbi

    2017-02-27

    This study aimed to describe the spectrum and frequency of cardiovascular abnormalities in pediatric and young adult patients with Turner syndrome (TS) using cardiac MRI and MR angiography. This prospective study consisted of 47 female patients of pediatric age and young adults with a karyotypically confirmed diagnosis of TS. All patients underwent cardiac MRI and contrast-enhanced MR angiography. A second examination after 9-26 months was performed for 28 of these patients. Elongation of the transverse aortic arch (ETA) was the most frequent abnormality with a rate of 37%. The rate of partial anomalous pulmonary venous connection (PAPVC) was 21.7%, bicuspid aortic valve (BAV) was 19.6%, coarctation was 6.5%, ascending aorta dilatation was 28.3%, and descending aorta dilatation was 15.2%. The diameters of the aorta and the rate of aortic dilatation per unit of time was greater in the patients with BAV (P < 0.05). ETA was less observed in the patients who were receiving growth hormone therapy (P < 0.05). The most common cardiovascular abnormalities in TS patients are aortic arch anomalies such as ETA and coarctation, aortic dilatation, PAPVCs, and BAV. The presence of BAV is an important risk factor for the aortic dilatation.

  2. Focused Ultrasound-Induced Blood-Brain Barrier Opening: Association with Mechanical Index and Cavitation Index Analyzed by Dynamic Contrast-Enhanced Magnetic-Resonance Imaging

    PubMed Central

    Chu, Po-Chun; Chai, Wen-Yen; Tsai, Chih-Hung; Kang, Shih-Tsung; Yeh, Chih-Kuang; Liu, Hao-Li

    2016-01-01

    Focused ultrasound (FUS) with microbubbles can temporally open the blood-brain barrier (BBB), and the cavitation activities of microbubbles play a key role in the BBB-opening process. Previous attempts used contrast-enhanced magnetic resonance imaging (CE-MRI) to correlate the mechanical index (MI) with the scale of BBB-opening, but MI only partially gauged acoustic activities, and CE-MRI did not fully explore correlations of pharmacodynamic/pharmacokinetic behaviors. Recently, the cavitation index (CI) has been derived to serve as an indicator of microbubble-ultrasound stable cavitation, and may also serve as a valid indicator to gauge the level of FUS-induced BBB opening. This study investigates the feasibility of gauging FUS-induced BBB opened level via the two indexes, MI and CI, through dynamic contrast-enhanced (DCE)-MRI analysis as well as passive cavitation detection (PCD) analysis. Pharmacodynamic/pharmacokinetic parameters derived from DCE-MRI were characterized to identify the scale of FUS-induced BBB opening. Our results demonstrated that DCE-MRI can successfully access pharmacodynamic/pharmacokinetic BBB-opened behavior, and was highly correlated both with MI and CI, implying the feasibility in using these two indices to gauge the scale of FUS-induced BBB opening. The proposed finding may facilitate the design toward using focused ultrasound as a safe and reliable noninvasive CNS drug delivery. PMID:27630037

  3. Focused Ultrasound-Induced Blood-Brain Barrier Opening: Association with Mechanical Index and Cavitation Index Analyzed by Dynamic Contrast-Enhanced Magnetic-Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Chu, Po-Chun; Chai, Wen-Yen; Tsai, Chih-Hung; Kang, Shih-Tsung; Yeh, Chih-Kuang; Liu, Hao-Li

    2016-09-01

    Focused ultrasound (FUS) with microbubbles can temporally open the blood-brain barrier (BBB), and the cavitation activities of microbubbles play a key role in the BBB-opening process. Previous attempts used contrast-enhanced magnetic resonance imaging (CE-MRI) to correlate the mechanical index (MI) with the scale of BBB-opening, but MI only partially gauged acoustic activities, and CE-MRI did not fully explore correlations of pharmacodynamic/pharmacokinetic behaviors. Recently, the cavitation index (CI) has been derived to serve as an indicator of microbubble-ultrasound stable cavitation, and may also serve as a valid indicator to gauge the level of FUS-induced BBB opening. This study investigates the feasibility of gauging FUS-induced BBB opened level via the two indexes, MI and CI, through dynamic contrast-enhanced (DCE)-MRI analysis as well as passive cavitation detection (PCD) analysis. Pharmacodynamic/pharmacokinetic parameters derived from DCE-MRI were characterized to identify the scale of FUS-induced BBB opening. Our results demonstrated that DCE-MRI can successfully access pharmacodynamic/pharmacokinetic BBB-opened behavior, and was highly correlated both with MI and CI, implying the feasibility in using these two indices to gauge the scale of FUS-induced BBB opening. The proposed finding may facilitate the design toward using focused ultrasound as a safe and reliable noninvasive CNS drug delivery.

  4. Focused Ultrasound-Induced Blood-Brain Barrier Opening: Association with Mechanical Index and Cavitation Index Analyzed by Dynamic Contrast-Enhanced Magnetic-Resonance Imaging.

    PubMed

    Chu, Po-Chun; Chai, Wen-Yen; Tsai, Chih-Hung; Kang, Shih-Tsung; Yeh, Chih-Kuang; Liu, Hao-Li

    2016-09-15

    Focused ultrasound (FUS) with microbubbles can temporally open the blood-brain barrier (BBB), and the cavitation activities of microbubbles play a key role in the BBB-opening process. Previous attempts used contrast-enhanced magnetic resonance imaging (CE-MRI) to correlate the mechanical index (MI) with the scale of BBB-opening, but MI only partially gauged acoustic activities, and CE-MRI did not fully explore correlations of pharmacodynamic/pharmacokinetic behaviors. Recently, the cavitation index (CI) has been derived to serve as an indicator of microbubble-ultrasound stable cavitation, and may also serve as a valid indicator to gauge the level of FUS-induced BBB opening. This study investigates the feasibility of gauging FUS-induced BBB opened level via the two indexes, MI and CI, through dynamic contrast-enhanced (DCE)-MRI analysis as well as passive cavitation detection (PCD) analysis. Pharmacodynamic/pharmacokinetic parameters derived from DCE-MRI were characterized to identify the scale of FUS-induced BBB opening. Our results demonstrated that DCE-MRI can successfully access pharmacodynamic/pharmacokinetic BBB-opened behavior, and was highly correlated both with MI and CI, implying the feasibility in using these two indices to gauge the scale of FUS-induced BBB opening. The proposed finding may facilitate the design toward using focused ultrasound as a safe and reliable noninvasive CNS drug delivery.

  5. In Vivo Evaluation of the Visual Pathway in Streptozotocin-Induced Diabetes by Diffusion Tensor MRI and Contrast Enhanced MRI

    PubMed Central

    Kancherla, Swarupa; Kohler, William J.; van der Merwe, Yolandi

    2016-01-01

    Visual function has been shown to deteriorate prior to the onset of retinopathy in some diabetic patients and experimental animal models. This suggests the involvement of the brain's visual system in the early stages of diabetes. In this study, we tested this hypothesis by examining the integrity of the visual pathway in a diabetic rat model using in vivo multi-modal magnetic resonance imaging (MRI). Ten-week-old Sprague-Dawley rats were divided into an experimental diabetic group by intraperitoneal injection of 65 mg/kg streptozotocin in 0.01 M citric acid, and a sham control group by intraperitoneal injection of citric acid only. One month later, diffusion tensor MRI (DTI) was performed to examine the white matter integrity in the brain, followed by chromium-enhanced MRI of retinal integrity and manganese-enhanced MRI of anterograde manganese transport along the visual pathway. Prior to MRI experiments, the streptozotocin-induced diabetic rats showed significantly smaller weight gain and higher blood glucose level than the control rats. DTI revealed significantly lower fractional anisotropy and higher radial diffusivity in the prechiasmatic optic nerve of the diabetic rats compared to the control rats. No apparent difference was observed in the axial diffusivity of the optic nerve, the chromium enhancement in the retina, or the manganese enhancement in the lateral geniculate nucleus and superior colliculus between groups. Our results suggest that streptozotocin-induced diabetes leads to early injury in the optic nerve when no substantial change in retinal integrity or anterograde transport along the visual pathways was observed in MRI using contrast agent enhancement. DTI may be a useful tool for detecting and monitoring early pathophysiological changes in the visual system of experimental diabetes non-invasively. PMID:27768755

  6. Potential for Differentiation of Pseudoprogression From True Tumor Progression With Dynamic Susceptibility-Weighted Contrast-Enhanced Magnetic Resonance Imaging Using Ferumoxytol vs. Gadoteridol: A Pilot Study

    SciTech Connect

    Gahramanov, Seymur; Raslan, Ahmed M.; Muldoon, Leslie L.; Hamilton, Bronwyn E.; Rooney, William D.; Varallyay, Csanad G.; Njus, Jeffrey M.; Haluska, Marianne; Neuwelt, Edward A.

    2011-02-01

    Purpose: We evaluated dynamic susceptibility-weighted contrast-enhanced magnetic resonance imaging (DSC-MRI) using gadoteridol in comparison to the iron oxide nanoparticle blood pool agent, ferumoxytol, in patients with glioblastoma multiforme (GBM) who received standard radiochemotherapy (RCT). Methods and Materials: Fourteen patients with GBM received standard RCT and underwent 19 MRI sessions that included DSC-MRI acquisitions with gadoteridol on Day 1 and ferumoxytol on Day 2. Relative cerebral blood volume (rCBV) values were calculated from DSC data obtained from each contrast agent. T1-weighted acquisition post-gadoteridol administration was used to identify enhancing regions. Results: In seven MRI sessions of clinically presumptive active tumor, gadoteridol-DSC showed low rCBV in three and high rCBV in four, whereas ferumoxytol-DSC showed high rCBV in all seven sessions (p = 0.002). After RCT, seven MRI sessions showed increased gadoteridol contrast enhancement on T1-weighted scans coupled with low rCBV without significant differences between contrast agents (p = 0.9). Based on post-gadoteridol T1-weighted scans, DSC-MRI, and clinical presentation, four patterns of response to RCT were observed: regression, pseudoprogression, true progression, and mixed response. Conclusion: We conclude that DSC-MRI with a blood pool agent such as ferumoxytol may provide a better monitor of tumor rCBV than DSC-MRI with gadoteridol. Lesions demonstrating increased enhancement on T1-weighted MRI coupled with low ferumoxytol rCBV are likely exhibiting pseudoprogression, whereas high rCBV with ferumoxytol is a better marker than gadoteridol for determining active tumor. These interesting pilot observations suggest that ferumoxytol may differentiate tumor progression from pseudoprogression and warrant further investigation.

  7. Planning TTFields treatment using the NovoTAL system-clinical case series beyond the use of MRI contrast enhancement.

    PubMed

    Connelly, Jennifer; Hormigo, Adília; Mohilie, Nimish; Hu, Jethro; Chaudhry, Aafia; Blondin, Nicholas

    2016-11-04

    Gliomas are the most common primary brain tumors in adults and invariably carry a poor prognosis. Recent clinical studies have demonstrated the safety and compelling survival benefit when tumor treating fields (TTFields) are added to temozolomide for patients with newly diagnosed glioblastoma. TTFields are low-intensity, intermediate frequency (200 kHz) alternating electric fields, delivered directly to a patient's brain through the local application of non-invasive transducer arrays. Experimental simulations have demonstrated that TTFields distribute in a non-uniform manner within the brain. To ensure patients receive the maximal therapeutic level of TTFields at the site of their tumor, tumor burden is mapped and an optimal array layout is personalized using the NovoTAL software. The NovoTAL software utilizes magnetic resonance imaging (MRI) measurements for head size and tumor location obtained from axial and coronal T1 postcontrast sequences to determine the optimal paired transducer array configuration that will deliver the maximal field intensity at the site of the tumor. In clinical practice, physicians planning treatment with TTFields may determine that disease activity is more accurately represented in noncontrast-enhancing sequences. Here we present and discuss a series of 8 cases where a treating physician has utilized non-contrast enhancement and advanced imaging to inform TTFields treatment planning based on a clinical evaluation of where a patient is believed to have active tumor. This case series is, to our knowledge, the first report of this kind in the literature. All patients presented with gliomas (grades 2-4) and ranged in age from 49 to 65 years; 5 were male and 3, female. Each patient had previously received standard therapy including surgery, radiation therapy and/or chemotherapy prior to initiation of TTFields. The majority had progressed on prior therapy. A standard pre- and postcontrast MRI scan was acquired and used for TTFields

  8. Prediction of methylguanine methyltransferase promoter methylation in glioblastoma using dynamic contrast-enhanced magnetic resonance and diffusion tensor imaging.

    PubMed

    Ahn, Sung Soo; Shin, Na-Young; Chang, Jong Hee; Kim, Se Hoon; Kim, Eui Hyun; Kim, Dong Wook; Lee, Seung-Koo

    2014-08-01

    The methylation status of the methylguanine methyltransferase (MGMT) promoter has been associated with treatment response in glioblastoma. The authors aimed to assess whether MGMT methylation status can be predicted by dynamic contrast-enhanced (DCE) MRI and diffusion tensor imaging (DTI). This retrospective study included 43 patients with pathologically diagnosed glioblastoma who had undergone preoperative DCE-MRI and DTI and whose MGMT methylation status was available. The imaging features were qualitatively assessed using conventional MR images. Regions of interest analyses for DCE-MRI permeability parameters (transfer constant [Ktrans], rate transfer coefficient [Kep], and volume fraction of extravascular extracellular space [Ve]) and DTI parameters (apparent diffusion coefficient [ADC] and fractional anisotropy [FA]) were performed on the enhancing solid portion of the glioblastoma. Chi-square or Mann-Whitney tests were used to evaluate relationships between MGMT methylation and imaging parameters. The authors performed receiver operating characteristic curve analysis to find the optimal cutoff value for the presence of MGMT methylation. MGMT methylation was not significantly associated with any imaging features on conventional MR images. Ktrans values were significantly higher in the MGMT methylated group (median 0.091 vs 0.053 min(-1), p = 0.018). However, Kep, Ve, ADC, and FA were not significantly different between the 2 groups. The optimal cutoff value for the presence of MGMT methylation was Ktrans > 0.086 min(-1) with an area under the curve of 0.756, a sensitivity of 56.3%, and a specificity of 85.2%. Ktrans may serve as a potential imaging biomarker to predict MGMT methylation status preoperatively in glioblastoma; however, further investigation with a larger cohort is necessary.

  9. Diagnostic value of dynamic contrast-enhanced magnetic resonance imaging in rectal cancer and its correlation with tumor differentiation

    PubMed Central

    SHEN, FU; LU, JIANPING; CHEN, LUGUANG; WANG, ZHEN; CHEN, YUKUN

    2016-01-01

    Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a novel imaging modality that can be used to reflect the microcirculation, although its value in diagnosing rectal cancer is unknown. The present study aimed to explore the clinical application of DCE-MRI in the preoperative diagnosis of rectal cancer, and its correlation with tumor differentiation. To achieve this, 40 pathologically confirmed patients with rectal cancer and 15 controls were scanned using DCE-MRI. The Tofts model was applied to obtain the perfusion parameters, including the plasma to extravascular volume transfer (Ktrans), the extravascular to plasma volume transfer (Kep), the extravascular fluid volume (Ve) and the initial area under the enhancement curve (iAUC). Receiver-operating characteristic (ROC) curves were plotted to determine the diagnostic value. The results demonstrated that the time-signal intensity curve of the rectal cancer lesion exhibited an outflow pattern. The Ktrans, Kep, Ve, and iAUC values were higher in the cancer patients compared with controls (P<0.05). The intraclass correlation coefficients of Ktrans, Kep, Ve and iAUC, as measured by two independent radiologists, were 0.991, 0.988, 0.972 and 0.984, respectively (all P<0.001), indicating a good consistency. The areas under the ROC curves for Ktrans and iAUC were both >0.9, resulting in a sensitivity and specificity of 100% and 93.3% for Ktrans, and of 92.5%, and 93.3% or 100%, for iAUC, respectively. In the 40 rectal cancer cases, there was a moderate correlation between Ktrans and iAUC, and pathological differentiation (0.3

  10. Dynamic contrast-enhanced photoacoustic imaging using photothermal stimuli-responsive composite nanomodulators

    NASA Astrophysics Data System (ADS)

    Chen, Yun-Sheng; Yoon, Soon Joon; Frey, Wolfgang; Dockery, Mary; Emelianov, Stanislav

    2017-06-01

    Molecular photoacoustic imaging has shown great potential in medical applications; its sensitivity is normally in pico-to-micro-molar range, dependent on exogenous imaging agents. However, tissue can produce strong background signals, which mask the signals from the imaging agents, resulting in orders of magnitude sensitivity reduction. As such, an elaborate spectral scan is often required to spectrally un-mix the unwanted background signals. Here we show a new single-wavelength photoacoustic dynamic contrast-enhanced imaging technique by employing a stimuli-responsive contrast agent. Our technique can eliminate intrinsic background noises without significant hardware or computational resources. We show that this new contrast agent can generate up to 30 times stronger photoacoustic signals than the concentration-matched inorganic nanoparticle counterparts. By dynamically modulating signals from the contrast agents with an external near-infrared optical stimulus, we can further suppress the background signals leading to an additional increase of more than five-fold in imaging contrast in vivo.

  11. Dynamic contrast enhancement in widefield microscopy using projector-generated illumination patterns

    NASA Astrophysics Data System (ADS)

    Carlo Samson, Edward; Mar Blanca, Carlo

    2007-10-01

    We present a simple and cost-effective optical protocol to realize contrast-enhancement imaging (such as dark-field, optical-staining and oblique illumination microscopy) of transparent samples on a conventional widefield microscope using commercial multimedia projectors. The projector functions as both light source and mask generator implemented by creating slideshows of the filters projected along the illumination planes of the microscope. The projected optical masks spatially modulate the distribution of the incident light to selectively enhance structures within the sample according to spatial frequency thereby increasing the image contrast of translucent biological specimens. Any amplitude filter can be customized and dynamically controlled so that switching from one imaging modality to another involves a simple slide transition and can be executed at a keystroke with no physical filters and no moving optical parts. The method yields an image contrast of 89 96% comparable with standard enhancement techniques. The polarization properties of the projector are then utilized to discriminate birefringent and non-birefringent sites on the sample using single-shot, simultaneous polarization and optical-staining microscopy. In addition to dynamic pattern generation and polarization, the projector also provides high illumination power and spectral excitation selectivity through its red-green-blue (RGB) channels. We exploit this last property to explore the feasibility of using video projectors to selectively excite stained samples and perform fluorescence imaging in tandem with reflectance and polarization reflectance microscopy.

  12. Assessing tumor physiology by dynamic contrast-enhanced near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Verdecchia, Kyle; Elliott, Jonathan; Diop, Mamadou; Hoffman, Lisa; Lee, Ting-Yim; St. Lawrence, Keith

    2013-03-01

    The purpose of this study was to develop a dynamic contrast-enhanced (DCE) near-infrared spectroscopy (NIRS) technique to characterize tumor physiology. Dynamic data were acquired using two contrast agents of different molecular weights, indocyanine green (ICG) and IRDye 800CW carboxylate (IRDcxb). The DCE curves were analyzed using a kinetic model capable of extracting estimates of tumor blood flow (F), capillary transit time (tc) and the amount of dye that leaked into the extravascular space (EVS) - characterized by the extraction fraction (E). Data were acquired from five nude rats with tumor xenografts (>10mm) implanted in the neck. Four DCE-NIR datasets (two from each contrast agent) were acquired for each rat. The dye concentration curve in arterial blood, which is required to quantify the model parameters, was measured non-invasively by dye densitometry. A modification to the kinetic model to characterize tc as a distribution of possible values, rather than finite, improved the fit of acquired tumor concentration curves, resulting in more reliable estimates. This modified kinetic model identified a difference between the extracted fraction of IRDcxb, 15 +/- 6 %, and ICG, 1.6 +/- 0.6 %, in the tumor, which can be explained by the difference in molecular weight: 67 kDa for ICG since it binds to albumin and 1.17 kDa for IRD. This study demonstrates the ability of DCENIRS to quantify tumor physiology. The next step is to adapt this approach with a dual-receptor approach.

  13. Regularized Reconstruction of Dynamic Contrast-Enhanced MR Images for Evaluation of Breast Lesions

    DTIC Science & Technology

    2009-09-01

    in determining the image estimate is computing the gradient of the cost function. We were able to accelerate our computation by exploiting Toeplitz ...but, to our knowledge, we are the first to apply it to dynamic MRI. For this study, the Toeplitz -modified algorithm was 1.7 times faster than the...Decreased computation time by exploiting Toeplitz matrices in our reconstruction. • Investigated choice of algorithms’ regularization parameters based on

  14. Potential of fluid-attenuated inversion recovery MRI as an alternative to contrast-enhanced MRI for oral and maxillofacial vascular malformations: experimental and clinical studies.

    PubMed

    Sasaki, Yoshinori; Sakamoto, Junichiro; Otonari-Yamamoto, Mika; Nishikawa, Keiichi; Sano, Tsukasa

    2013-10-01

    To determine the potential of fluid-attenuated inversion recovery (FLAIR) imaging of oral and maxillofacial vascular malformations as an alternative to contrast-enhanced magnetic resonance imaging (MRI), we investigated the influence of differences in T1 and T2 values on image contrast in FLAIR images and evaluated the diagnostic utility of such images. FLAIR imaging and heavily T2-weighted (hT2-weighted) imaging were performed using a phantom. FLAIR and hT2-weighted images of 32 lesions (11 mucous cysts, 12 vascular malformations, and 9 tumors) were also studied retrospectively. The contrast-to-noise ratios (CNRs) and CNR change ratios were compared. All aqueous solutions except those with a short T2 value were discriminated by CNR change ratio (P < .05). All 3 types of lesions were discriminated by CNR change ratio (P < .05). FLAIR imaging has potential as an alternative to contrast-enhanced MRI in differentiating vascular malformations from other types of lesions in the oral and maxillofacial region. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Myocardial physiology measurements using contrast enhanced dynamic computed tomography: simulation of beam hardening effect

    NASA Astrophysics Data System (ADS)

    Cao, Minsong; Stantz, Keith M.; Liang, Yun

    2006-03-01

    Initial animal study for quantifying myocardial physiology through contrast-enhanced dynamic x-ray CT suggested that beam hardening is one of the limiting factors for accurate regional physiology measurement. In this study, a series of simulations were performed to investigate its deterioration effects and two correction algorithms were adapted to evaluate for their efficiency in improving the measurements. The simulation tool consists of a module simulating data acquisition of a real polyenergetic scanner system and a heart phantom consisting of simple geometric objects representing ventricles and myocardium. Each phantom component was modeled with time-varying attenuation coefficients determined by ideal iodine contrast dynamic curves obtained from experimental data or simulation. A compartment model was used to generate the ideal myocardium contrast curve using physiological parameters consistent with measured values. Projection data of the phantom were simulated and reconstructed to produce a sequence of simulated CT images. Simulated contrast dynamic curves were fitted to the compartmental model and the resultant physiological parameters were compared with ideal values to estimate the errors induced by beam hardening artifacts. The simulations yielded similar deterioration patterns of contrast dynamic curves as observed in the initial study. Significant underestimation of left ventricle curves and corruption of regional myocardium curves result in systematic errors of regional perfusion up to approximately 24% and overestimates of fractional blood volume (f iv) up to 13%. The correction algorithms lead to significant improvement with errors of perfusion reduced to 7% and errors of f iv within 2% which shows promise for more robust myocardial physiology measurement.

  16. Magnetic resonance imaging dynamic contrast enhancement (DCE) characteristics of healed myocardial infarction differ from viable myocardium.

    PubMed

    Goldfarb, James W; Zhao, Wenguo

    2014-12-01

    To determine whether healed myocardial infarction alters dynamic contrast-enhancement (DCE) curve shapes as well as late gadolinium-enhancement (LGE). Twenty patients with chronic myocardial infarction underwent MR imaging at 1.5 T with blood and myocardial T1 measurements before and after contrast administration for forty minutes. Viable and infarcted myocardial partition coefficients were calculated using multipoint slope methods for ten different DCE sampling intervals and windows. Partition coefficients and coefficients of determination were compared with paired statistical tests to assess the linearity of DCE curve shapes over the 40 min time period. Calculated partition coefficients did not vary significantly between methods (p=0.325) for viable myocardium but did differ for infarcted myocardium (p<0.001), indicating a difference in infarcted DCE. There was a significant difference between viable and infarcted myocardial partition coefficients estimates for all methods with the exception of methods that included measurements during the first 10 min after contrast agent administration. Myocardial partition coefficients calculated from a slope calculation vary in healed myocardial infarction based on the selection of samples due to non-linear DCE curve shapes. Partition coefficient calculations are insensitive to data sampling effects in viable myocardium due to linear DCE curve shapes. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Dynamic Contrast-Enhanced MR Angiography Exploiting Subspace Projection for Robust Angiogram Separation.

    PubMed

    Park, Suhyung; Kim, Eung Yeop; Sohn, Chul-Ho; Park, Jaeseok

    2017-02-01

    Dynamic contrast-enhanced magnetic resonance angiography (DCE MRA) has been widely used as a clinical routine for diagnostic assessment of vascular morphology and hemodynamics. It requires high spatial and temporal resolution to capture rapid variation of DCE signals within a limited imaging time. Subtraction-based approaches are typically employed to selectively delineate arteries while eliminating unwanted background signals. Nevertheless, in the presence of subject motion with time, conventional subtraction approaches suffer from incomplete background suppression that impairs the detectability of arteries. In this work, we propose a novel, DCE MRA method that exploits subspace projection (SP) based angiogram separation for robust background suppression. A new, SP-based DCE signal model is introduced, in which images are decomposed into stationary background tissues, motion-induced artifacts, and DCE angiograms of interest. Constrained image reconstruction with sparsity priors is performed to project motion-induced artifacts onto the predefined subspace while extracting DCE angiograms of interest. Simulations and experimental studies validate that the proposed method outperforms existing techniques with increasing reduction factors in suppressing artifacts and noise.

  18. Spatially regularized estimation for the analysis of dynamic contrast-enhanced magnetic resonance imaging data.

    PubMed

    Sommer, Julia C; Gertheiss, Jan; Schmid, Volker J

    2014-03-15

    Competing compartment models of different complexities have been used for the quantitative analysis of dynamic contrast-enhanced magnetic resonance imaging data. We present a spatial elastic net approach that allows to estimate the number of compartments for each voxel such that the model complexity is not fixed a priori. A multi-compartment approach is considered, which is translated into a restricted least square model selection problem. This is done by using a set of basis functions for a given set of candidate rate constants. The form of the basis functions is derived from a kinetic model and thus describes the contribution of a specific compartment. Using a spatial elastic net estimator, we chose a sparse set of basis functions per voxel, and hence, rate constants of compartments. The spatial penalty takes into account the voxel structure of an image and performs better than a penalty treating voxels independently. The proposed estimation method is evaluated for simulated images and applied to an in vivo dataset. Copyright © 2013 John Wiley & Sons, Ltd.

  19. Kinetic model optimization for characterizing tumour physiology by dynamic contrast-enhanced near-infrared spectroscopy.

    PubMed

    St Lawrence, K; Verdecchia, K; Elliott, J; Tichauer, K; Diop, M; Hoffman, L; Lee, T-Y

    2013-03-07

    Dynamic contrast-enhanced (DCE) methods are widely used with magnetic resonance imaging and computed tomography to assess the vascular characteristics of tumours since these properties can affect the response to radiotherapy and chemotherapy. In contrast, there have been far fewer studies using optical-based applications despite the advantages of low cost and safety. This study investigated an appropriate kinetic model for optical applications to characterize tumour haemodynamics (blood flow, F, blood volume, V(b), and vascular heterogeneity) and vascular leakage (permeability surface-area product, PS). DCE data were acquired with two dyes, indocyanine green (ICG) and 800 CW carboxylate (IRD(cbx)), from a human colon tumour xenograph model in rats. Due to the smaller molecular weight of IRD(cbx) (1166 Da) compared to albumin-bound ICG (67 kDa), PS of IRD(cbx) was significantly larger; however, no significant differences in F and V(b) were found between the dyes as expected. Error analysis demonstrated that all parameters could be estimated with an uncertainty less than 5% due to the high temporal resolution and signal-to-noise ratio of the optical measurements. The next step is to adapt this approach to optical imaging to generate haemodynamics and permeability maps, which should enhance the clinical interest in optics for treatment monitoring.

  20. Kinetic model optimization for characterizing tumour physiology by dynamic contrast-enhanced near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    St. Lawrence, K.; Verdecchia, K.; Elliott, J.; Tichauer, K.; Diop, M.; Hoffman, L.; Lee, T.-Y.

    2013-03-01

    Dynamic contrast-enhanced (DCE) methods are widely used with magnetic resonance imaging and computed tomography to assess the vascular characteristics of tumours since these properties can affect the response to radiotherapy and chemotherapy. In contrast, there have been far fewer studies using optical-based applications despite the advantages of low cost and safety. This study investigated an appropriate kinetic model for optical applications to characterize tumour haemodynamics (blood flow, F, blood volume, Vb, and vascular heterogeneity) and vascular leakage (permeability surface-area product, PS). DCE data were acquired with two dyes, indocyanine green (ICG) and 800 CW carboxylate (IRDcbx), from a human colon tumour xenograph model in rats. Due to the smaller molecular weight of IRDcbx (1166 Da) compared to albumin-bound ICG (67 kDa), PS of IRDcbx was significantly larger; however, no significant differences in F and Vb were found between the dyes as expected. Error analysis demonstrated that all parameters could be estimated with an uncertainty less than 5% due to the high temporal resolution and signal-to-noise ratio of the optical measurements. The next step is to adapt this approach to optical imaging to generate haemodynamics and permeability maps, which should enhance the clinical interest in optics for treatment monitoring.

  1. Dynamic contrast-enhanced ultrasonography (DCE-US) and anti-angiogenic treatments.

    PubMed

    Lassau, Nathalie; Chami, Linda; Chebil, Mohamed; Benatsou, Baya; Bidault, Sophie; Girard, Elizabeth; Abboud, Ghassen; Roche, Alain

    2011-01-01

    Dynamic contrast-enhanced ultrasonography (DCE-US) is a current functional imaging technique enabling a quantitative assessment of tumor perfusion using raw linear data. DCE-US allows calculating several parameters as slope of wash-in or area under the curve representing, respectively, blood flow or blood volume. Decrease of vascularization can easily be detected in responders after 1 or 2 weeks of anti-angiogenic treatment for gastrointestinal stromal tumors (GIST), renal cell carcinoma (RCC), and hepatocellular carcinoma (HCC) and is correlated with progression-free survival and overall survival in RCC or HCC. DCE-US is supported by the French National Cancer Institute (INCa), which is currently studying the technique in metastatic breast cancer, melanoma, colon cancer, gastrointestinal stromal tumors and renal cell carcinoma, as well as in primary hepatocellular carcinoma, to establish the optimal perfusion parameters and timing for quantitative anticancer efficacy assessments. Currently 479 patients are included in 19 centers and the preliminary results on 400 patients with 1096 DCE-US demonstrated that the area under the curve (AUC) quantified at 1 month could be a robust parameter to predict response at 6 months.

  2. Quantification of traumatic meningeal injury using dynamic contrast enhanced (DCE) fluid-attenuated inversion recovery (FLAIR) imaging

    NASA Astrophysics Data System (ADS)

    Castro, Marcelo A.; Williford, Joshua P.; Cota, Martin R.; MacLaren, Judy M.; Dardzinski, Bernard J.; Latour, Lawrence L.; Pham, Dzung L.; Butman, John A.

    2016-03-01

    Traumatic meningeal injury is a novel imaging marker of traumatic brain injury, which appears as enhancement of the dura on post-contrast T2-weighted FLAIR images, and is likely associated with inflammation of the meninges. Dynamic Contrast Enhanced MRI provides a better discrimination of abnormally perfused regions. A method to properly identify those regions is presented. Images of seventeen patients scanned within 96 hours of head injury with positive traumatic meningeal injury were normalized and aligned. The difference between the pre- and last post-contrast acquisitions was segmented and voxels in the higher class were spatially clustered. Spatial and morphological descriptors were used to identify the regions of enhancement: a) centroid; b) distance to the brain mask from external voxels; c) distance from internal voxels; d) size; e) shape. The method properly identified thirteen regions among all patients. The method failed in one case due to the presence of a large brain lesion that altered the mask boundaries. Most false detections were correctly rejected resulting in a sensitivity and specificity of 92.9% and 93.6%, respectively.

  3. Diffusion-weighted and multiphase contrast-enhanced MRI as surrogate markers of response to neoadjuvant sunitinib in metastatic renal cell carcinoma

    PubMed Central

    Bharwani, N; Miquel, M E; Powles, T; Dilks, P; Shawyer, A; Sahdev, A; Wilson, P D; Chowdhury, S; Berney, D M; Rockall, A G

    2014-01-01

    Background: Current imaging criteria for categorising disease response in metastatic renal cell carcinoma (mRCC) correlate poorly with overall survival (OS) in patients on anti-angiogenic therapies. We prospectively assess diffusion-weighted and multiphase contrast-enhanced (MCE) MR imaging (MRI) as markers of outcome. Methods: Treatment-naive mRCC patients on a phase II trial using sunitinib completed an MRI substudy. Whole-tumour apparent diffusion coefficient (ADC) maps and histograms were generated, and mean ADC and AUClow (proportion of the tumour with ADC values lying below the 25th percentile of the ADC histogram) recorded. On MCE-MRI, regions of interest were drawn around the most avidly enhancing components to analyse enhancement parameters. Baseline (n=26) and treatment-related changes in surviving patients (n=20) were correlated with OS. Imaged metastases were also analysed. Results: Forty-seven per cent of the patients showed significant changes in whole-tumour mean ADC following therapy, but there was no correlation with outcome. Patients with a high baseline AUClow and greater-than-median AUClow increase had reduced OS (HR=3.67 (95% confidence interval (CI)=1.23–10.9), P=0.012 and HR=3.72 (95% CI=0.98–14.21), P=0.038, respectively). There was no correlation between MCE-MRI parameters and OS. Twenty-eight metastases were analysed and showed positive correlation with primary tumour mean ADC for individual patients (r=0.607; P<0.001). Conclusion: Primary RCC ADC histogram analysis shows dynamic changes with sunitinib. Patients in whom the tumour ADC histogram demonstrated high baseline AUClow or a greater-than-median increase in AUClow with treatment had reduced OS. PMID:24366299

  4. [A study on the predictive and evaluational value of molecular subtypes and dynamic contrast-enhanced magnetic resonance imaging of neoadjuvant chemotherapy for breast cancer].

    PubMed

    Liu, Wen-qing; Ye, Jing-ming; Xu, Ling; Liu, Qian; Zhao, Jian-xin; Duan, Xue-ning; Liu, Yin-hua

    2013-08-01

    To investigate the predictive value of molecular subtypes and the evaluational value of dynamic contrast-enhanced MRI of neoadjuvant chemotherapy for breast cancer. From January 2010 to December 2011, the 79 patients diagnosed as primary invasive breast cancer, having received 6 cycles of neoadjuvant chemotherapy and finished the mastectomy or the breast conserving surgery entered this study. A total of 79 patients participated in this prospective study. There were 6 (7.6%) luminal A cases, 42 (53.2%) luminal B cases, 14 HER-2 (17.7%) positive cases and 17 (21.5%) triple negative cases. The associations between molecular subtypes and clinical response as well as the pathological response were analyzed. The predictive value of molecular subtypes for the neoadjuvant chemotherapy was studied. Clinical effective rate was 85.3% (66/79). There was no statistical correlation between molecular subtypes and clinical effective rate. Pathologic effective rate was 79.7% (63/79). There was no statistical correlation between molecular subtypes and pathologic effective rate. Twenty-seven case achieved pathologic complete remission (pCR) in all the patients. No case achieved pCR in the patients classified as Luminal A. Twelve cases (28.6%, 12/42) achieved pCR in the luminal B patients.Five cases (5/14) achieved pCR in the HER-2 overexpression patients. Ten cases (10/17) achieved pCR in the triple-negative patients. There was a statistical correlation between the molecular subtypes and the pCR rate (P = 0.039), and between clinical evaluation by dynamic contrast-enhanced MRI and evaluation of pathological response (r = 0.432, P = 0.000). Molecular subtypes and dynamic contrast-enhanced MRI have a good value of predicting and evaluating the response of neoadjuvant chemotherapy on breast cancer.

  5. Assessment of subconjunctival and intrascleral drug delivery to the posterior segment using dynamic contrast-enhanced magnetic resonance imaging.

    PubMed

    Kim, Stephanie H; Galbán, Craig J; Lutz, Robert J; Dedrick, Robert L; Csaky, Karl G; Lizak, Martin J; Wang, Nam Sun; Tansey, Ginger; Robinson, Michael R

    2007-02-01

    Sustained-release intravitreal drug implants for posterior segment diseases are associated with significant complications. As an alternative, subconjunctival infusions of drug to the episclera of the back of the eye have been performed, but results in clinical trials for macular diseases showed mixed To improve understanding of transscleral drug delivery to the posterior segment, the distribution and clearance of gadolinium-diethylene-triamino-penta-acetic acid (Gd-DTPA) infused in the subconjunctival or intrascleral space was investigated by means of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). In anesthetized rabbits, catheters were placed anteriorly in the subconjunctival or intrascleral space and infused with Gd-DTPA at 1 and 10 muL/min. Distribution and clearance of Gd-DTPA were measured using DCE-MRI. Histologic examination was performed to assess ocular toxicity of the delivery system. results. Subconjunctival infusions failed to produce detectable levels of Gd-DTPA in the back of the eye. In contrast, intrascleral infusions expanded the suprachoroidal layer and delivered Gd-DTPA to the posterior segment. Suprachoroidal clearance of Gd-DTPA followed first-order kinetics with an average half-life of 5.4 and 11.8 minutes after intrascleral infusions at 1 and 10 muL/min, respectively. Histologic examination demonstrated expansion of the tissues in the suprachoroidal space that normalized after infusion termination. An intrascleral infusion was successful in transporting Gd-DTPA to the posterior segment from an anterior infusion site with limited anterior segment exposure. The suprachoroidal space appears to be an expandible conduit for drug transport to the posterior segment. Further studies are indicated to explore the feasibility of clinical applications.

  6. [Three-dimensional reconstruction and image fusion between liver focal lesions and dynamic contrast-enhanced magnetic resonance angiography].

    PubMed

    Li, Yong; Liang, Bi-Ling; Zhang, Rong; Xu, Xiao-Mao; Ren, Jun-Jie; Ye, Rui-Xin; Zhong, Jing-Lian

    2006-07-01

    Identifying the correlation of focal lesions to the liver vessel system is a key factor in selecting treatment patterns for focal hepatic diseases. This study was to evaluate the feasibility of 3-dimensional reconstruction and the fusion image between the 3-dimensional dynamic contrast-enhanced magnetic resonance angiography (3D DCE MRA) and the focal hepatic lesions, and further, explore the clinical application of this method. 3D DCE-MRA and conventional magnetic resonance imaging (MRI) were performed. The angiography and focal hepatic lesions were reconstructed with maximum intensity projection (MIP) and surface shaded display (SSD), and then fused together. Of the 25 cases with evaluable images, 2 were hemangioma, 3 were focal nodular hyperplasia, 1 was hepatocellular adenoma, 2 were macroregenerative nodule, 2 were hepatobiliary cystadenocarcinoma, and 17 were hepatocellular carcinoma; 21 were confirmed by operation resection, and 4 received digital subtraction angiography (DSA). The anatomic relationship between the lesions and the vessels were well shown. Of the 27 cases, 5 showed normal vessel branching, 6 showed feeding arteries from the hepatic artery, 11 showed compressed and shifted trunks of the vessels, 6 showed tumor invaded vessels, and 11 showed the tumor embolism in the portal vein or the inferior vena cave; 9 also showed MRI signs of portal hypertension. MIP was prior to SSD in demonstrating small branches of the hepatic vessels. The 3-dimensional reconstruction and fusion images between 3D DCE-MRA and the focal hepatic lesions by using MIP and SSD can easily display the anatomic relationship between the focal hepatic lesions and the hepatic vessels, and thus can help the surgeons to localize lesions, minimize operating time and decide the extent of surgical resection.

  7. Contrast-Enhanced Ultrasound with VEGFR2-Targeted Microbubbles for Monitoring Regorafenib Therapy Effects in Experimental Colorectal Adenocarcinomas in Rats with DCE-MRI and Immunohistochemical Validation

    PubMed Central

    Clevert, Dirk-Andre; Hirner-Eppeneder, Heidrun; Ingrisch, Michael; Moser, Matthias; Schuster, Jessica; Tadros, Dina; Schneider, Moritz; Kazmierczak, Philipp Maximilian; Reiser, Maximilian; Cyran, Clemens C.

    2017-01-01

    Objectives To investigate contrast-enhanced ultrasound (CEUS) with VEGFR2-targeted microbubbles for monitoring therapy effects of regorafenib on experimental colon carcinomas in rats with correlation to dynamic contrast-enhanced MRI (DCE-MRI) and immunohistochemistry. Materials and Methods Human colorectal adenocarcinoma xenografts (HT-29) were implanted subcutaneously in n = 21 (n = 11 therapy group; n = 10 control group) female athymic nude rats (Hsd: RH-Foxn1rnu). Animals were imaged at baseline and after a one-week daily treatment with regorafenib or a placebo (10 mg/kg bodyweight), using CEUS with VEGFR2-targeted microbubbles and DCE-MRI. In CEUS tumor perfusion was assessed during an early vascular phase (wash-in area under the curve = WiAUC) and VEGFR2-specific binding during a late molecular phase (signal intensity after 8 (SI8min) and 10 minutes (SI10min)), using a conventional 15L8 linear transducer (transmit frequency 7 MHz, dynamic range 80 dB, depth 25 mm). In DCE-MRI functional parameters plasma flow (PF) and plasma volume (PV) were quantified. For validation purposes, CEUS parameters were correlated with DCE-MRI parameters and immunohistochemical VEGFR2, CD31, Ki-67 and TUNEL stainings. Results CEUS perfusion parameter WiAUC decreased significantly (116,989 ± 77,048 a.u. to 30,076 ± 27,095a.u.; p = 0.005) under therapy with no significant changes (133,932 ± 65,960 a.u. to 84,316 ± 74,144 a.u.; p = 0.093) in the control group. In the therapy group, the amount of bound microbubbles in the late phase was significantly lower in the therapy than in the control group on day 7 (SI8min: 283 ± 191 vs. 802 ± 460 a.u.; p = 0.006); SI10min: 226 ± 149 vs. 645 ± 461 a.u.; p = 0.009). PF and PV decreased significantly (PF: 147 ± 58 mL/100 mL/min to 71 ± 15 mL/100 mL/min; p = 0.003; PV: 13 ± 3% to 9 ± 4%; p = 0.040) in the therapy group. Immunohistochemistry revealed significantly fewer VEGFR2 (7.2 ± 1.8 vs. 17.8 ± 4.6; p < 0.001), CD31 (8.1 ± 3.0 vs

  8. Quantitative Perfusion Analysis of First-Pass Contrast Enhancement Kinetics: Application to MRI of Myocardial Perfusion in Coronary Artery Disease

    PubMed Central

    Shah, Binita; Storey, Pippa; Iqbal, Sohah; Slater, James; Axel, Leon

    2016-01-01

    Purpose Perfusion analysis from first-pass contrast enhancement kinetics requires modeling tissue contrast exchange. This study presents a new approach for numerical implementation of the tissue homogeneity model, incorporating flexible distance steps along the capillary (NTHf). Methods The proposed NTHf model considers contrast exchange in fluid packets flowing along the capillary, incorporating flexible distance steps, thus allowing more efficient and stable calculations of the transit of tracer through the tissue. We prospectively studied 8 patients (62 ± 13 years old) with suspected CAD, who underwent first-pass perfusion CMR imaging at rest and stress prior to angiography. Myocardial blood flow (MBF) and myocardial perfusion reserve index (MPRI) were estimated using both the NTHf and the conventional adiabatic approximation of the TH models. Coronary artery lesions detected at angiography were clinically assigned to one of three categories of stenosis severity (‘insignificant’, ‘mild to moderate’ and ‘severe’) and related to corresponding myocardial territories. Results The mean MBF (ml/g/min) at rest/stress and MPRI were 0.80 ± 0.33/1.25 ± 0.45 and 1.68 ± 0.54 in the insignificant regions, 0.74 ± 0.21/1.09 ± 0.28 and 1.54 ± 0.46 in the mild to moderate regions, and 0.79 ± 0.28/0.63 ± 0.34 and 0.85 ± 0.48 in the severe regions, respectively. The correlation coefficients of MBFs at rest/stress and MPRI between the NTHf and AATH models were r = 0.97/0.93 and r = 0.91, respectively. Conclusions The proposed NTHf model allows efficient quantitative analysis of the transit of tracer through tissue, particularly at higher flow. Results of initial application to MRI of myocardial perfusion in CAD are encouraging. PMID:27583385

  9. Enhancing patterns of breast cancer on preoperative dynamic contrast-enhanced magnetic resonance imaging and resection margin in breast conserving therapy.

    PubMed

    Kim, Ok Hwa; Kim, Suk Jung; Lee, Jung Sun

    2016-02-17

    The association between enhancing patterns of preoperative dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and resection margins after BCS has not been studied in detail before. We investigated the association between surgical outcomes and enhancing patterns observed on DCE-MRI. 269 enhancing patterns on DCE-MRI scans were selected, and subdivided into the following groups: (1) a single mass-like enhancement, (2) a single non-mass-like enhancement (NME), (3) mass-like enhancing breast cancer with other mass-like enhancing lesions, and (4) mass-like enhancing breast cancer with additional NMEs. Associations between enhancing patterns on DCE-MRI and re-excision rate, size of specimen, and ratio of tumor/specimen were evaluated retrospectively. The conversion rate from breast conserving therapy (BCT) to mastectomy as a result of MRI findings was 13.4%, re-excision rate during BCT was 8.2% and excision rate of another suspicious lesion was 7.4%. The single NME group had the highest re-excision rate after BCT (22.2%) (p = 0.02). The ratio of tumor/specimen (p = 0.61) and mean specimen size (p = 0.38) were not influenced by enhancement patterns. The false positive rate and positive predictive values of using DCE-MRI for defining the extension of breast cancer was 22.2% and 71.4%, respectively. Enhancement patterns on DCE- MRI, especially NME, could increase re-excision rates.

  10. Dynamic contrast-enhanced ultrasound parametric maps to evaluate intratumoral vascularization.

    PubMed

    Pitre-Champagnat, Stephanie; Leguerney, Ingrid; Bosq, Jacques; Peronneau, Pierre; Kiessling, Fabian; Calmels, Lucie; Coulot, Jeremy; Lassau, Nathalie

    2015-04-01

    The purposes of this study were to assess the reliability of parametric maps from dynamic contrast-enhanced ultrasound (DCE-US) to reflect the heterogeneous distribution of intratumoral vascularization and to predict the tissue features linked to vasculature. This study was designed to compare DCE-US parametric maps with histologic vascularity measurements. Dynamic contrast-enhanced ultrasound was performed on 17 melanoma-bearing nude mice after a 0.1-mL bolus injection of SonoVue (Bracco SPA, Milan, Italy). The parametric maps were developed from raw linear data to extract pixelwise 2 semiquantitative parameters related to perfusion and blood volume, namely, area under the curve (AUC) and peak intensity (PI). The mathematical method to fit the time-intensity curve for each pixel was a polynomial model used in clinical routine and patented by the team. Regions of interest (ROIs) were drawn on DCE-US parametric maps for whole tumors and for several local areas of 15 mm within each tumor (iROI), the latter reflecting the heterogeneity of intratumoral blood volume. As the criterion standard correlation, microvessel densities (MVDs) were determined for both ROI categories. In detail, for all iROI of 15 mm, MVD and maturity were divided separately for vessels of 0 to 10 μm, 10 to 40 μm, and greater than 40 μm in diameter, and the results were correlated with the ultrasound findings. Among the 17 studied mice, a total of 64 iROIs were analyzed. For the whole-tumor ROI set, AUC and PI values significantly correlated with MVD (rAUC = 0.52 [P = 0.0408] and rPI = 0.70 [P = 0.0026]). In the case of multiple iROI, a strong linear correlation was observed between the DCE-US parameters and the density of vessels ranging in their diameter from 0 to 10 μm (rAUC = 0.68 [P < 0.0001]; rPI = 0.63 [P < 0.0001]), 10 to 40 μm (rAUC = 0.98 [P = 0.0003]; rPI = 0.98 [P = 0.0004]), and greater than 40 μm (rAUC = 0.86 [P = 0.0120]; rPI = 0.92 [P = 0.0034]), respectively. However, the

  11. Magnitude subtraction vs. complex subtraction in dynamic contrast-enhanced 3D-MR angiography: basic experiments and clinical evaluation.

    PubMed

    Naganawa, S; Ito, T; Iwayama, E; Fukatsu, H; Ishiguchi, T; Ishigaki, T; Ichinose, N

    1999-11-01

    Magnitude subtraction and complex subtraction in dynamic contrast-enhanced three-dimensional magnetic resonance (3D-MR) angiography were compared using a phantom and 23 human subjects. In phantom studies, complex subtraction showed far better performance than magnitude subtraction, especially for longer echo times, with thicker slices, and without fat suppression. With complex subtraction, non-fat-suppressed studies showed contrast-to-noise ratios comparable to those in fat-suppressed studies. In human subjects, complex subtraction was superior to magnitude subtraction in 9 subjects, but comparable to magnitude subtraction in 14 subjects. There were no cases in which magnitude subtraction was superior to complex subtraction. Although the differences observed in human studies when complex subtraction was applied with thinner slices, shorter echo times, and the fat-suppression technique were not as pronounced as those seen in phantom studies, complex subtraction should be performed in dynamic contrast-enhanced 3D-MR angiography because there are no drawbacks in complex subtraction. Further research is necessary to assess the feasibility of dynamic contrast-enhanced 3D-MR angiography without fat suppression in human subjects using complex subtraction, as suggested by the results of phantom studies. If it is found to be feasible, dynamic contrast-enhanced 3D-MR angiography without fat suppression using complex subtraction may prove to be a robust technique that eliminates the need for shimming and can reduce the acquisition time. J. Magn. Reson. Imaging 1999;10:813-820.

  12. Automatic motion estimation using flow parameters for dynamic contrast-enhanced ultrasound.

    PubMed

    Barrois, Guillaume; Coron, Alain; Lucidarme, Olivier; Bridal, S Lori

    2015-03-21

    Dynamic contrast-enhanced ultrasound (DCE-US) sequences are subject to motion which can disturb functional flow quantification. This can make estimated parameters more variable or unreliable. Methods that compensate for motion are therefore desirable. The most commonly used motion correction techniques in DCE-US register the images in the sequence with respect to a user-selected reference image. However, this image may not include all features that are representative of the whole sequence. Moreover, image-based registration neglects pertinent, functional-flow information contained in the DCE-US sequence. An operator-free method is proposed that combines the motion estimation and flow-parameter quantification (M/Q method) in a single mathematical framework. This method is based on a realistic multiplicative model of the DCE-US noise. By computing likelihood in this model, motion and flow parameters are both estimated iteratively. First, the maximization is accomplished by estimating functional and motion parameters. Then, a final registration based on a non-parametric temporal smoothing of the sequence is performed. This method is compared to a conventional (mutual information) registration method where all the images of the sequence are registered with respect to a reference image chosen by an expert. The two methods are evaluated on simulated sequences and DCE-US sequences acquired in patients (N = 15). The M/Q method demonstrates significantly (p < 0.05) lower Dice coefficients and Hausdorff distance than the conventional method on the simulated data sets. On the in vivo sequences analysed, the M/Q methods outperformed the conventional method in terms of mean Dice and Hausdorff distance on 80% of the sequences, and in terms of standard deviation of Dice and Hausdorff distance on 87% of the sequences.

  13. Quantification of tumor perfusion using dynamic contrast-enhanced ultrasound: impact of mathematical modeling

    NASA Astrophysics Data System (ADS)

    Doury, Maxime; Dizeux, Alexandre; de Cesare, Alain; Lucidarme, Olivier; Pellot-Barakat, Claire; Bridal, S. Lori; Frouin, Frédérique

    2017-02-01

    Dynamic contrast-enhanced ultrasound has been proposed to monitor tumor therapy, as a complement to volume measurements. To assess the variability of perfusion parameters in ideal conditions, four consecutive test-retest studies were acquired in a mouse tumor model, using controlled injections. The impact of mathematical modeling on parameter variability was then investigated. Coefficients of variation (CV) of tissue blood volume (BV) and tissue blood flow (BF) based-parameters were estimated inside 32 sub-regions of the tumors, comparing the log-normal (LN) model with a one-compartment model fed by an arterial input function (AIF) and improved by the introduction of a time delay parameter. Relative perfusion parameters were also estimated by normalization of the LN parameters and normalization of the one-compartment parameters estimated with the AIF, using a reference tissue (RT) region. A direct estimation (rRTd) of relative parameters, based on the one-compartment model without using the AIF, was also obtained by using the kinetics inside the RT region. Results of test-retest studies show that absolute regional parameters have high CV, whatever the approach, with median values of about 30% for BV, and 40% for BF. The positive impact of normalization was established, showing a coherent estimation of relative parameters, with reduced CV (about 20% for BV and 30% for BF using the rRTd approach). These values were significantly lower (p  <  0.05) than the CV of absolute parameters. The rRTd approach provided the smallest CV and should be preferred for estimating relative perfusion parameters.

  14. Breast mass segmentation on dynamic contrast-enhanced magnetic resonance scans using the level set method

    NASA Astrophysics Data System (ADS)

    Shi, Jiazheng; Sahiner, Berkman; Chan, Heang-Ping; Paramagul, Chintana; Hadjiiski, Lubomir M.; Helvie, Mark; Wu, Yi-Ta; Ge, Jun; Zhang, Yiheng; Zhou, Chuan; Wei, Jun

    2008-03-01

    The goal of this study was to develop an automated method to segment breast masses on dynamic contrast-enhanced (DCE) magnetic resonance (MR) scans that were performed to monitor breast cancer response to neoadjuvant chemotherapy. A radiologist experienced in interpreting breast MR scans defined the mass using a cuboid volume of interest (VOI). Our method then used the K-means clustering algorithm followed by morphological operations for initial mass segmentation on the VOI. The initial segmentation was then refined by a three-dimensional level set (LS) method. The velocity field of the LS method was formulated in terms of the mean curvature which guaranteed the smoothness of the surface and the Sobel edge information which attracted the zero LS to the desired mass margin. We also designed a method to reduce segmentation leak by adapting a region growing technique. Our method was evaluated on twenty DCE-MR scans of ten patients who underwent neoadjuvant chemotherapy. Each patient had pre- and post-chemotherapy DCE-MR scans on a 1.5 Tesla magnet. Computer segmentation was applied to coronal T1-weighted images. The in-plane pixel size ranged from 0.546 to 0.703 mm and the slice thickness ranged from 2.5 to 4.0 mm. The flip angle was 15 degrees, repetition time ranged from 5.98 to 6.7 ms, and echo time ranged from 1.2 to 1.3 ms. The computer segmentation results were compared to the radiologist's manual segmentation in terms of the overlap measure defined as the ratio of the intersection of the computer and the radiologist's segmentations to the radiologist's segmentation. Pre- and post-chemotherapy masses had overlap measures of 0.81+/-0.11 (mean+/-s.d.) and 0.70+/-0.21, respectively.

  15. The Incremental Value of Contrast-Enhanced MRI in the Detection of Biopsy-Proven Local Recurrence of Prostate Cancer After Radical Prostatectomy: Effect of Reader Experience

    PubMed Central

    Wassberg, Cecilia; Akin, Oguz; Vargas, Hebert Alberto; Shukla-Dave, Amita; Zhang, Jingbo; Hricak, Hedvig

    2012-01-01

    OBJECTIVE The purpose of this study is to retrospectively assess the incremental value of contrast-enhanced MRI (CE-MRI) to T2-weighted MRI in the detection of postsurgical local recurrence of prostate cancer by readers of different experience levels, using biopsy as the reference standard. MATERIALS AND METHODS Fifty-two men with biochemical recurrence after prostatectomy underwent 1.5-T endorectal MRI with multiphase contrast-enhanced imaging and had biopsy within 3 months of MRI. Two radiologists (reader 1 had 1 year and reader 2 had 6 years of experience) independently reviewed each MRI study and classified the likelihood of recurrent cancer on a 5-point scale. Areas under receiver operating characteristic curves (Az) were calculated to assess readers’ diagnostic performance with T2-weighted MRI alone and combined with CE-MRI. Interobserver agreement was assessed using Cohen kappa statistics. RESULTS Thirty-three patients (63%) had biopsy-proven local recurrence of prostate cancer. With the addition of CE-MRI to T2-weighted imaging, the Az for cancer detection increased significantly for reader 1 (0.77 vs 0.85; p = 0.0435) but not for reader 2 (0.86 vs 0.88; p = 0.7294). The use of CE-MRI improved interobserver agreement from fair (κ = 0.39) to moderate (κ = 0.58). CONCLUSION CE-MRI increased interobserver agreement and offered incremental value to T2-weighted MRI in the detection of locally recurrent prostate cancer for the relatively inexperienced reader. PMID:22826397

  16. Regularized Reconstruction of Dynamic Contrast-Enhanced MR Images for Evaluation of Breast Lesions

    DTIC Science & Technology

    2010-09-01

    V. Knopp, E. Weiss, H. P. Sinn, J. Mattern, H. Junkermann, J. Radeleff, A. Magener, G. Brix , S. Delorme, I. Zuna, and G. . Kaick, “Pathophysiologic...basis of contrast enhancement in breast tumors,” J. Mag. Res. Im., vol. 10, no. 3, pp. 260–6, Sept. 1999. [11] P. S. Tofts, G. Brix , D. L. Buckley, J. L

  17. Reconstruction of dynamic contrast enhanced magnetic resonance imaging of the breast with temporal constraints

    PubMed Central

    Chen, Liyong; Schabel, Matthias C.; DiBella, Edward V.R.

    2010-01-01

    A number of methods using temporal and spatial constraints have been proposed for reconstruction of undersampled dynamic magnetic resonance imaging (MRI) data. The complex data can be constrained or regularized in a number of different ways, for example, the time derivative of the magnitude and phase image voxels can be constrained separately or jointly. Intuitively, the performance of different regularizations will depend on both the data and the chosen temporal constraints. Here, a complex temporal total variation (TV) constraint was compared to the use of separate real and imaginary constraints, and to a magnitude constraint alone. Projection onto Convex Sets (POCS) with a gradient descent method was used to implement the diverse temporal constraints in reconstructions of DCE MRI data. For breast DCE data, serial POCS with separate real and imaginary TV constraints was found to give relatively poor results while serial/parallel POCS with a complex temporal TV constraint and serial POCS with a magnitude-only temporal TV constraint performed well with an acceleration factor as large as R=6. In the tumor area, the best method was found to be parallel POCS with complex temporal TV constraint. This method resulted in estimates for the pharmacokinetic parameters that were linearly correlated to those estimated from the fully-sampled data, with Ktrans,R=6=0.97 Ktrans,R=1+0.00 with correlation coefficient r=0.98, kep,R=6=0.95 kep,R=1+0.00 (r=0.85). These results suggest that it is possible to acquire highly undersampled breast DCE-MRI data with improved spatial and/or temporal resolution with minimal loss of image quality. PMID:20392585

  18. Self-Gated CINE MRI for Combined Contrast-Enhanced Imaging and Wall-Stiffness Measurements of Murine Aortic Atherosclerotic Lesions

    PubMed Central

    den Adel, Brigit; van der Graaf, Linda M.; Strijkers, Gustav J.; Lamb, Hildo J.; Poelmann, Robert E.; van der Weerd, Louise

    2013-01-01

    Background High-resolution contrast-enhanced imaging of the murine atherosclerotic vessel wall is difficult due to unpredictable flow artifacts, motion of the thin artery wall and problems with flow suppression in the presence of a circulating contrast agent. Methods and Results We applied a 2D-FLASH retrospective-gated CINE MRI method at 9.4T to characterize atherosclerotic plaques and vessel wall distensibility in the aortic arch of aged ApoE−/− mice after injection of a contrast agent. The method enabled detection of contrast enhancement in atherosclerotic plaques in the aortic arch after I.V. injection of micelles and iron oxides resulting in reproducible plaque enhancement. Both contrast agents were taken up in the plaque, which was confirmed by histology. Additionally, the retrospective-gated CINE method provided images of the aortic wall throughout the cardiac cycle, from which the vessel wall distensibility could be calculated. Reduction in plaque size by statin treatment resulted in lower contrast enhancement and reduced wall stiffness. Conclusions The retrospective-gated CINE MRI provides a robust and simple way to detect and quantify contrast enhancement in atherosclerotic plaques in the aortic wall of ApoE−/− mice. From the same scan, plaque-related changes in stiffness of the aortic wall can be determined. In this mouse model, a correlation between vessel wall stiffness and atherosclerotic lesions was found. PMID:23472079

  19. Dynamic contrast-enhanced MR imaging pharmacokinetic parameters as predictors of treatment response of brain metastases in patients with lung cancer.

    PubMed

    Kuchcinski, Grégory; Le Rhun, Emilie; Cortot, Alexis B; Drumez, Elodie; Duhal, Romain; Lalisse, Maxime; Dumont, Julien; Lopes, Renaud; Pruvo, Jean-Pierre; Leclerc, Xavier; Delmaire, Christine

    2017-09-01

    To determine the diagnostic accuracy of pharmacokinetic parameters measured by dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) in predicting the response of brain metastases to antineoplastic therapy in patients with lung cancer. Forty-four consecutive patients with lung cancer, harbouring 123 newly diagnosed brain metastases prospectively underwent conventional 3-T MRI at baseline (within 1 month before treatment), during the early (7-10 weeks) and midterm (5-7 months) post-treatment period. An additional DCE MRI sequence was performed during baseline and early post-treatment MRI to evaluate baseline pharmacokinetic parameters (K (trans), k ep, v e, v p) and their early variation (∆K (trans), ∆k ep, ∆v e, ∆v p). The objective response was judged by the volume variation of each metastasis from baseline to midterm MRI. ROC curve analysis determined the best DCE MRI parameter to predict the objective response. Baseline DCE MRI parameters were not associated with the objective response. Early ∆K (trans), ∆v e and ∆v p were significantly associated with the objective response (p = 0.02, p = 0.001 and p = 0.02, respectively). The best predictor of objective response was ∆v e with an area under the curve of 0.93 [95% CI = 0.87, 0.99]. DCE MRI and early ∆v e may be a useful tool to predict the objective response of brain metastases in patients with lung cancer. • DCE MRI could predict the response of brain metastases from lung cancer • ∆v e was the best predictor of response • DCE MRI could be used to individualize patients' follow-up.

  20. Impact of nonrigid motion correction technique on pixel-wise pharmacokinetic analysis of free-breathing pulmonary dynamic contrast-enhanced MR imaging.

    PubMed

    Tokuda, Junichi; Mamata, Hatsuho; Gill, Ritu R; Hata, Nobuhiko; Kikinis, Ron; Padera, Robert F; Lenkinski, Robert E; Sugarbaker, David J; Hatabu, Hiroto

    2011-04-01

    To investigates the impact of nonrigid motion correction on pixel-wise pharmacokinetic analysis of free-breathing DCE-MRI in patients with solitary pulmonary nodules (SPNs). Misalignment of focal lesions due to respiratory motion in free-breathing dynamic contrast-enhanced MRI (DCE-MRI) precludes obtaining reliable time-intensity curves, which are crucial for pharmacokinetic analysis for tissue characterization. Single-slice 2D DCE-MRI was obtained in 15 patients. Misalignments of SPNs were corrected using nonrigid B-spline image registration. Pixel-wise pharmacokinetic parameters K(trans) , v(e) , and k(ep) were estimated from both original and motion-corrected DCE-MRI by fitting the two-compartment pharmacokinetic model to the time-intensity curve obtained in each pixel. The "goodness-of-fit" was tested with χ(2) -test in pixel-by-pixel basis to evaluate the reliability of the parameters. The percentages of reliable pixels within the SPNs were compared between the original and motion-corrected DCE-MRI. In addition, the parameters obtained from benign and malignant SPNs were compared. The percentage of reliable pixels in the motion-corrected DCE-MRI was significantly larger than the original DCE-MRI (P = 4 × 10(-7) ). Both K(trans) and k(ep) derived from the motion-corrected DCE-MRI showed significant differences between benign and malignant SPNs (P = 0.024, 0.015). The study demonstrated the impact of nonrigid motion correction technique on pixel-wise pharmacokinetic analysis of free-breathing DCE-MRI in SPNs. Copyright © 2011 Wiley-Liss, Inc.

  1. Radiation protection issues in dynamic contrast-enhanced (perfusion) computed tomography.

    PubMed

    Brix, Gunnar; Lechel, Ursula; Nekolla, Elke; Griebel, Jürgen; Becker, Christoph

    2015-12-01

    Dynamic contrast-enhanced (DCE) CT studies are increasingly used in both medical care and clinical trials to improve diagnosis and therapy management of the most common life-threatening diseases: stroke, coronary artery disease and cancer. It is thus the aim of this review to briefly summarize the current knowledge on deterministic and stochastic radiation effects relevant for patient protection, to present the essential concepts for determining radiation doses and risks associated with DCE-CT studies as well as representative results, and to discuss relevant aspects to be considered in the process of justification and optimization of these studies. For three default DCE-CT protocols implemented at a latest-generation CT system for cerebral, myocardial and cancer perfusion imaging, absorbed doses were measured by thermoluminescent dosimeters at an anthropomorphic body phantom and compared with thresholds for harmful (deterministic) tissue reactions. To characterize stochastic radiation risks of patients from these studies, life-time attributable cancer risks (LAR) were estimated using sex-, age-, and organ-specific risk models based on the hypothesis of a linear non-threshold dose-response relationship. For the brain, heart and pelvic cancer studies considered, local absorbed doses in the imaging field were about 100-190 mGy (total CTDI(vol), 200 mGy), 15-30 mGy (16 mGy) and 80-270 mGy (140 mGy), respectively. According to a recent publication of the International Commission on Radiological Protection (ICRP Publication 118, 2012), harmful tissue reactions of the cerebro- and cardiovascular systems as well as of the lenses of the eye become increasingly important at radiation doses of more than 0.5 Gy. The LARs estimated for the investigated cerebral and myocardial DCE-CT scenarios are less than 0.07% for males and 0.1% for females at an age of exposure of 40 years. For the considered tumor location and protocol, the corresponding LARs are more than 6 times as high

  2. Chronic urinary obstruction: evaluation of dynamic contrast-enhanced MR urography for measurement of split renal function.

    PubMed

    Claudon, Michel; Durand, Emmanuel; Grenier, Nicolas; Prigent, Alain; Balvay, Daniel; Chaumet-Riffaud, Philippe; Chaumoitre, Kathia; Cuenod, Charles-André; Filipovic, Marina; Galloy, Marie-Agnès; Lemaitre, Laurent; Mandry, Damien; Micard, Emilien; Pasquier, Cédric; Sebag, Guy H; Soudant, Marc; Vuissoz, Pierre-André; Guillemin, Francis

    2014-12-01

    To evaluate if measurement of split renal function ( SRF split renal function ) with dynamic contrast material-enhanced ( DCE dynamic contrast enhanced ) magnetic resonance (MR) urography is equivalent to that with renal scintigraphy ( RS renal scintigraphy ) in patients suspected of having chronic urinary obstruction. The study protocol was approved by the institutional ethics committee of the coordinating center on behalf of all participating centers. Informed consent was obtained from all adult patients or both parents of children. This prospective, comparative study included 369 pediatric and adult patients from 14 university hospitals who were suspected of having chronic or intermittent urinary obstruction, and data from 295 patients with complete data were used for analysis. SRF split renal function was measured by using the area under the curve and the Patlak-Rutland methods, including successive review by a senior and an expert reviewer and measurement of intra- and interobserver agreement for each technique. An equivalence test for mean SRF split renal function was conducted with an α of 5%. Reproducibility was substantial to almost perfect for both methods. Equivalence of DCE dynamic contrast enhanced MR urography and RS renal scintigraphy for measurement of SRF split renal function was shown in patients with moderately dilated kidneys (P < .001 with the Patlak-Rutland method). However, in severely dilated kidneys, the mean SRF split renal function measurement was underestimated by 4% when DCE dynamic contrast enhanced MR urography was used compared with that when RS renal scintigraphy was used. Age and type of MR imaging device had no significant effect. For moderately dilated kidneys, equivalence of DCE dynamic contrast enhanced MR urography to RS renal scintigraphy was shown, with a standard deviation of approximately 12% between the techniques, making substitution of DCE dynamic contrast enhanced MR urography for RS renal scintigraphy acceptable. For

  3. Dynamic contrast enhancement of experimental glioma an intra-individual comparative study to assess the optimal time delay.

    PubMed

    Engelhorn, Tobias; Schwarz, Marc A; Eyupoglu, Ilker Y; Kloska, Stephan P; Struffert, Tobias; Doerfler, Arnd

    2010-02-01

    The aim of this study was to compare tumor signal and contrast media uptake characteristics on contrast-enhanced T1-weighted sequences at 3 Tesla over 30 minutes after double-dose administration of different contrast agents in an animal model of brain glioma. Nine rats underwent magnetic resonance imaging (MRI) after stereotactic F98 glioma cell implantation before and repetitively for 30 minutes after injection of gadobutrol, gadopentetate, and gadobenate, respectively. Signal-to-noise ratio (SNR) and tumor contrast-to-noise ratio (CNR) were evaluated and MRI-derived tumor volumes were compared to histology. Postcontrast tumor SNR and CNR peaked at 4 minutes after contrast application. While contrast-enhancement within the tumor was fading, tumor volume increased by continuous contrast-uptake of peripheral parts between 4 minutes (137 + or - 29 mm(3), 126 + or - 16 mm(3), 141 + or - 24 mm(3)) and 20 minutes (182 + or - 35 mm(3), 164 + or - 32 mm(3), 191 + or - 25 mm(3)), respectively. At 8 and 12 minutes, 84% and 91% of the tumor volume were definable, respectively. Optimal correlation between MRI-derived tumor volume and histology is achieved by imaging up to 20 minutes after contrast application. At 4 minutes (this delay is mostly used in clinical routine), only 75% of the enhancing tumor volume is assessable. A delay of 8 minutes already reveals 84% of the tumor and seems to be a practical clinical compromise. Copyright 2010 AUR. Published by Elsevier Inc. All rights reserved.

  4. Dynamic contrast-enhanced MR imaging predicts local control in oropharyngeal or hypopharyngeal squamous cell carcinoma treated with chemoradiotherapy.

    PubMed

    Ng, Shu-Hang; Lin, Chien-Yu; Chan, Sheng-Chieh; Yen, Tzu-Chen; Liao, Chun-Ta; Chang, Joseph Tung-Chieh; Ko, Sheung-Fat; Wang, Hung-Ming; Huang, Shiang-Fu; Lin, Yu-Chun; Wang, Jiun-Jie

    2013-01-01

    The role of pretreatment dynamic contrast-enhanced perfusion MR imaging (DCE-PWI) and diffusion-weighted MR imaging (DWI) in predicting the treatment response of oropharyngeal or hypopharyngeal squamous cell carcinoma (OHSCC) to chemoradiation remains unclear. We prospectively investigated the ability of pharmacokinetic parameters derived from pretreatment DCE-PWI and DWI to predict the local control of OHSCC patients treated with chemoradiation. Between August, 2010 and March, 2012, patients with untreated OHSCC scheduled for chemoradiation were eligible for this prospective study. DCE-PWI and DWI were performed in addition to conventional MRI. The relationship of local control with the following clinical and imaging variables was analyzed: the hemoglobin level, T-stage, tumor location, gross tumor volume, maximum standardized uptake value, metabolic tumor volume and total lesion glycolysis on FDG PET/CT, transfer constant (K (trans) ), volume of blood plasma and volume of extracellular extravascular space on DCE-PWI, and apparent diffusion coefficient on DWI of the primary tumor. The patients were also divided into a local control group and a local failure group, and their clinical and imaging parameters were compared. There were 58 patients (29 with oropharynx squamous cell carcinoma [SCC] and 29 with hypopharynx SCC) with successful pretreatment DCE-PWI and DWI available for analysis. After a median follow-up of 18.2 months, 17 (29.3%) participants had local failure, whereas the remaining 41 patients achieved local control. Univariate analysis revealed that only the K (trans) value was significantly associated with local control (P = 0.03). When the local control and local failure groups were compared, significant differences were observed in K (trans) and the tumor location (P = 0.01 and P = 0.04, respectively). In the multivariable analysis, only K (trans) was statistically significant (P = 0.04). Our results suggest that pretreatment K (trans) may help

  5. Optimal MRI sequence for identifying occlusion location in acute stroke: which value of time-resolved contrast-enhanced MRA?

    PubMed

    Le Bras, A; Raoult, H; Ferré, J-C; Ronzière, T; Gauvrit, J-Y

    2015-06-01

    Identifying occlusion location is crucial for determining the optimal therapeutic strategy during the acute phase of ischemic stroke. The purpose of this study was to assess the diagnostic efficacy of MR imaging, including conventional sequences plus time-resolved contrast-enhanced MRA in comparison with DSA for identifying arterial occlusion location. Thirty-two patients with 34 occlusion levels referred for thrombectomy during acute cerebral stroke events were consecutively included from August 2010 to December 2012. Before thrombectomy, we performed 3T MR imaging, including conventional 3D-TOF and gradient-echo T2 sequences, along with time-resolved contrast-enhanced MRA of the extra- and intracranial arteries. The 3D-TOF, gradient-echo T2, and time-resolved contrast-enhanced MRA results were consensually assessed by 2 neuroradiologists and compared with prethrombectomy DSA results in terms of occlusion location. The Wilcoxon test was used for statistical analysis to compare MR imaging sequences with DSA, and the κ coefficient was used to determine intermodality agreement. The occlusion level on the 3D-TOF and gradient-echo T2 images differed significantly from that of DSA (P < .001 and P = .002, respectively), while no significant difference was observed between DSA and time-resolved contrast-enhanced MRA (P = .125). κ coefficients for intermodality agreement with DSA (95% CI, percentage agreement) were 0.43 (0.3%-0.6; 62%), 0.32 (0.2%-0.5; 56%), and 0.81 (0.6%-1.0; 88%) for 3D-TOF, gradient-echo T2, and time-resolved contrast-enhanced MRA, respectively. The time-resolved contrast-enhanced MRA sequence proved reliable for identifying occlusion location in acute stroke with performance superior to that of 3D-TOF and gradient-echo T2 sequences. © 2015 by American Journal of Neuroradiology.

  6. Accuracy of combined dynamic contrast-enhanced magnetic resonance imaging and diffusion-weighted imaging for breast cancer detection: a meta-analysis.

    PubMed

    Zhang, Li; Tang, Min; Min, Zhiqian; Lu, Jun; Lei, Xiaoyan; Zhang, Xiaoling

    2016-06-01

    Magnetic resonance imaging (MRI) is increasingly being used to examine patients with suspected breast cancer. To determine the diagnostic performance of combined dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and diffusion-weighted imaging (DWI) for breast cancer detection. A comprehensive search of the PUBMED, EMBASE, Web of Science, and Cochrane Library databases was performed up to September 2014. Statistical analysis included pooling of sensitivity and specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR), and diagnostic accuracy using the summary receiver operating characteristic (SROC). All analyses were conducted using STATA (version 12.0), RevMan (version 5.2), and Meta-Disc 1.4 software programs. Fourteen studies were analyzed, which included a total of 1140 patients with 1276 breast lesions. The pooled sensitivity and specificity of combined DCE-MRI and DWI were 91.6% and 85.5%, respectively. The pooled sensitivity and specificity of DWI-MRI were 86.0% and 75.6%, respectively. The pooled sensitivity and specificity of DCE-MRI were 93.2% and 71.1%. The area under the SROC curve (AUC-SROC) of combined DCE-MRI and DWI was 0.94, the DCE-MRI of 0.85. Deeks testing confirmed no significant publication bias in all studies. Combined DCE-MRI and DWI had superior diagnostic accuracy than either DCE-MRI or DWI alone for the diagnosis of breast cancer. © The Foundation Acta Radiologica 2015.

  7. Application of contrast-enhanced T1-weighted MRI-based 3D reconstruction of the dural tail sign in meningioma resection.

    PubMed

    You, Binsheng; Cheng, Yanhao; Zhang, Jian; Song, Qimin; Dai, Chao; Heng, Xueyuan; Fei, Chang

    2016-07-01

    OBJECT The goal of this study was to investigate the significance of contrast-enhanced T1-weighted (T1W) MRI-based 3D reconstruction of dural tail sign (DTS) in meningioma resection. METHODS Between May 2013 and August 2014, 18 cases of convexity and parasagittal meningiomas showing DTS on contrast-enhanced T1W MRI were selected. Contrast-enhanced T1W MRI-based 3D reconstruction of DTS was conducted before surgical treatment. The vertical and anteroposterior diameters of DTS on the contrast-enhanced T1W MR images and 3D reconstruction images were measured and compared. Surgical incisions were designed by referring to the 3D reconstruction and MR images, and then the efficiency of the 2 methods was evaluated with assistance of neuronavigation. RESULTS Three-dimensional reconstruction of DTS can reveal its overall picture. In most cases, the DTS around the tumor is uneven, whereas the DTS around the dural vessels presents longer extensions. There was no significant difference (p > 0.05) between the vertical and anteroposterior diameters of DTS measured on the contrast-enhanced T1W MR and 3D reconstruction images. The 3D images of DTS were more intuitive, and the overall picture of DTS could be revealed in 1 image, which made it easier to design the incision than by using the MR images. Meanwhile, assessment showed that the incisions designed using 3D images were more accurate than those designed using MR images (ridit analysis by SAS, F = 7.95; p = 0.008). Pathological examination showed that 34 dural specimens (except 2 specimens from 1 tumor) displayed tumor invasion. The distance of tumor cell invasion was 1.0-21.6 mm (5.4 ± 4.41 mm [mean ± SD]). Tumor cell invasion was not observed at the dural resection margin in all 36 specimens. CONCLUSIONS Contrast-enhanced T1W MRI-based 3D reconstruction can intuitively and accurately reveal the size and shape of DTS, and thus provides guidance for designing meningioma incisions.

  8. Dynamic Contrast-Enhanced Magnetic Resonance Imaging Using Pharmacokinetic Modeling: Initial Experience in Patients With Early Arthritis.

    PubMed

    Maijer, Karen I; van der Leij, Christiaan; de Hair, Maria J H; Tas, Sander W; Maas, Mario; Gerlag, Daniëlle M; Tak, Paul P; Lavini, Cristina

    2016-03-01

    Analysis of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) using pharmacokinetic modeling (PKM) provides quantitative measures that mirror microvessel integrity and can be used as an objective marker of the level of synovial inflammation. The aim of this study was to investigate the PKM parameters K(trans) , kep , and ve in a prospective cohort of disease-modifying antirheumatic drug (DMARD)-naive patients with early arthritis, and to validate the results by assessing their correlation with the number of synovial endothelial cells (ECs). Forty-seven patients with early arthritis (arthritis duration <1 year, DMARD naive; comprising 14 patients with rheumatoid arthritis, 22 with unclassified arthritis, 6 with spondyloarthritis [SpA], and 5 with other arthritides) were included. At baseline, DCE-MRI was performed on an inflamed knee joint of each patient. These images were used to calculate the K(trans) (volume transfer constant between the plasma and extracellular extravascular space [EES]), the kep (transfer constant between the EES and plasma), and the ve (fractional volume of the EES). Second, markers of disease activity were collected. Finally, vascularity was evaluated by immunohistochemical analysis of synovial tissue samples obtained from the inflamed knee joints, using antibodies to detect von Willebrand factor (vWF), a marker of ECs. The 3 PKM parameters differed significantly between diagnostic groups at baseline, with the highest K(trans) value being observed in patients with SpA (median 0.050/minute, interquartile range [IQR] 0.041- 0.069). Furthermore, the K(trans) , kep , and ve values correlated significantly with markers of disease activity. Finally, the PKM parameters K(trans) and kep , but not ve , correlated significantly with synovial expression of vWF (r = 0.647, P = 0.004 for K(trans) ; r = 0.614, P = 0.007 for kep ; r = 0.398, P = 0.102 for ve ). These results suggest that the K(trans) , kep , and ve can

  9. Abbreviated breast dynamic contrast-enhanced MR imaging for lesion detection and characterization: the experience of an Italian oncologic center.

    PubMed

    Petrillo, Antonella; Fusco, Roberta; Sansone, Mario; Cerbone, Marilena; Filice, Salvatore; Porto, Annamaria; Rubulotta, Maria Rosaria; D'Aiuto, Massimiliano; Avino, Franca; Di Bonito, Maurizio; Botti, Gerardo

    2017-07-01

    To evaluate the performance of an abbreviated dynamic contrast-enhanced MR imaging (MRI) protocol for breast cancer detection; a comparison with the complete diagnostic protocol has been conducted. A retrospective analysis on 508 patients was performed. Abbreviated protocol (AP) included one pre-contrast and the first post-contrast T1-weighted series. Complete protocol (CP) consisted of four post-contrast and one pre-contrast T1-weighted series. Diagnostic performance was assessed for AP and CP. Performance comparison was made using McNemar's test for sensitivity and specificity and Moskowitz and Pepe's method as regards negative predictive value (NPV) and positive predictive value (PPV). AP has been realized in two different ways (AP1 and AP2) and they were compared by means of Cohen's κ. Both CP and AP revealed 206 of 207 cancers. There were no statistically significant differences between AP and CP diagnostic performance (P > 0.05). NPVs of CP and both versions of AP (99.57 vs. 99.56%, P = 0.39), as well as the specificity (77.08 vs. 75.42%, P = 0.18), were substantially equivalent. Relative predictive value method did not reveal the presence of a statistically significant difference between the PPV of CP and both versions of AP (74.91 vs. 73.57%, P = 0.099). Analysis for single lesion confirmed that both CP and AP had equivalent results: CP and AP revealed 280 of 281 malignancies. NPVs of CP and both AP versions, as well as the specificity (P > 0.05), were substantially equivalent. Relative predictive value method did not reveal the presence of a significant difference between the PPV of CP and both AP versions (70.89 vs. 70.18%, P = 0.25; 70.89 vs. 70.00%, P = 0.13). Abbreviated approach to breast MRI examination reduces the image acquisition and the reading time associated with MR substantially without influencing the diagnostic accuracy (high sensitivity and NPV >99.5%). AP could translate into cost-savings and could enable a higher number of

  10. Dual-energy computed tomography for the assessment of early treatment effects of regorafenib in a preclinical tumor model: comparison with dynamic contrast-enhanced CT and conventional contrast-enhanced single-energy CT.

    PubMed

    Knobloch, Gesine; Jost, Gregor; Huppertz, Alexander; Hamm, Bernd; Pietsch, Hubertus

    2014-08-01

    The potential diagnostic value of dual-energy computed tomography (DE-CT) compared to dynamic contrast-enhanced CT (DCE-CT) and conventional contrast-enhanced CT (CE-CT) in the assessment of early regorafenib treatment effects was evaluated in a preclinical setting. A rat GS9L glioma model was examined with contrast-enhanced dynamic DE-CT measurements (80 kV/140 kV) for 4 min before and on days 1 and 4 after the start of daily regorafenib or placebo treatment. Tumour time-density curves (0-240 s, 80 kV), DE-CT (60 s) derived iodine maps and the DCE-CT (0-30 s, 80 kV) based parameters blood flow (BF), blood volume (BV) and permeability (PMB) were calculated and compared to conventional CE-CT (60 s, 80 kV). The regorafenib group showed a marked decrease in the tumour time-density curve, a significantly lower iodine concentration and a significantly lower PMB on day 1 and 4 compared to baseline, which was not observed for the placebo group. CE-CT showed a significant decrease in tumour density on day 4 but not on day 1. The DE-CT-derived iodine concentrations correlated with PMB and BV but not with BF. DE-CT allows early treatment monitoring, which correlates with DCE-CT. Superior performance was observed compared to single-energy CE-CT. • Regorafenib treatment response was evaluated by CT in a rat tumour model. • Dual-energy contrast-enhanced CT allows early treatment monitoring of targeted anti-tumour therapies. • Dual-energy CT showed higher diagnostic potential than conventional contrast enhanced single-energy CT. • Dual-energy CT showed diagnostic potential comparable to dynamic contrast-enhanced CT. • Dual-energy CT is a promising method for efficient clinical treatment response evaluation.

  11. Quantification of pulmonary microcirculation by dynamic contrast-enhanced magnetic resonance imaging: comparison of four regularization methods.

    PubMed

    Salehi Ravesh, M; Brix, G; Laun, F B; Kuder, T A; Puderbach, M; Ley-Zaporozhan, J; Ley, S; Fieselmann, A; Herrmann, M F; Schranz, W; Semmler, W; Risse, F

    2013-01-01

    Tissue microcirculation can be quantified by a deconvolution analysis of concentration-time curves measured by dynamic contrast-enhanced magnetic resonance imaging. However, deconvolution is an ill-posed problem, which requires regularization of the solutions. In this work, four algebraic deconvolution/regularization methods were evaluated: truncated singular value decomposition and generalized Tikhonov regularization (GTR) in combination with the L-curve criterion, a modified LCC (GTR-MLCC), and a response function model that takes a-priori knowledge into account. To this end, dynamic contrast-enhanced magnetic resonance imaging data sets were simulated by an established physiologically reference model for different signal-to-noise ratios and measured on a 1.5-T system in the lung of 10 healthy volunteers and 20 patients. Analysis of both the simulated and measured dynamic contrast-enhanced magnetic resonance imaging datasets revealed that GTR in combination with the L-curve criterion does not yield reliable and clinically useful results. The three other deconvolution/regularization algorithms resulted in almost identical microcirculatory parameter estimates for signal-to-noise ratios > 10. At low signal-to-noise ratios levels (<10) typically occurring in pathological lung regions, GTR in combination with a modified L-curve criterion approximates the true response function much more accurately than truncated singular value decomposition and GTR in combination with response function model with a difference in accuracy of up to 76%. In conclusion, GTR in combination with a modified L-curve criterion is recommended for the deconvolution of dynamic contrast-enhanced magnetic resonance imaging curves measured in the lung parenchyma of patients with highly heterogeneous signal-to-noise ratios. Copyright © 2012 Wiley Periodicals, Inc.

  12. A method for patient dose reduction in dynamic contrast enhanced CT study

    SciTech Connect

    Mo Kim, Sun; Haider, Masoom A.; Milosevic, Michael; Jaffray, David A.; Yeung, Ivan W. T.

    2011-09-15

    Purpose: In dynamic contrast enhanced CT (DCE-CT) study, prolonged CT scanning with high temporal resolution is required to give accurate and precise estimates of kinetic parameters. However, such scanning protocol could lead to substantial radiation dose to the patient. A novel method is proposed to reduce radiation dose to patient, while maintaining high accuracy for kinetic parameter estimates in DCE-CT study. Methods: The method is based on a previous investigation that the arterial impulse response (AIR) in DCE-CT study can be predicted using a population-based scheme. In the proposed method, DCE-CT scanning is performed with relatively low temporal resolution, hence, giving rise to reduction in patient dose. A novel method is proposed to estimate the arterial input function (AIF) based on the coarsely sampled AIF. By using the estimated AIF in the tracer kinetic analysis of the coarsely sampled DCE-CT study, the calculated kinetic parameters are able to achieve a high degree of accuracy. The method was tested on a DCE-CT data set of 48 patients with cervical cancer scanned at high temporal resolution. A random cohort of 34 patients was chosen to construct the orthonormal bases of the AIRs via singular value decomposition method. The determined set of orthonormal bases was used to fit the AIFs in the second cohort (14 patients) at varying levels of down sampling. For each dataset in the second cohort, the estimated AIF was used for kinetic analyses of the modified Tofts and adiabatic tissue homogeneity models for each of the down-sampling schemes between intervals from 2 to 15 s. The results were compared with analyses done with the ''raw'' down-sampled AIF. Results: In the first group of 34 patients, there were 11 orthonormal bases identified to describe the AIRs. The AIFs in the second group were estimated in high accuracy based on the 11 orthonormal bases established in the first group along with down-sampled AIFs. Using the 11 orthonormal bases, the

  13. Noninvasive visualization of pharmacokinetics, biodistribution and tumor targeting of poly[N-(2-hydroxypropyl)methacrylamide] in mice using contrast enhanced MRI.

    PubMed

    Wang, Yanli; Ye, Furong; Jeong, Eun-Kee; Sun, Yongen; Parker, Dennis L; Lu, Zheng-Rong

    2007-06-01

    To study a non-invasive method of using contrast enhanced magnetic resonance imaging (MRI) to visualize the real-time pharmacokinetics, biodistribution and tumor accumulation of paramagnetically labeled poly[N-(2-hydroxypropyl)methacrylamide] (PHPMA) copolymer conjugates with different molecular weights and spacers in tumor-bearing mice. Paramagnetically labeled HPMA copolymer conjugates were synthesized by free radical copolymerization of HPMA with monomers containing a chelating ligand, followed by complexation with Gd(OAc)(3). A stable paramagnetic chelate, Gd-DO3A, was conjugated to the copolymers via a degradable spacer GlyPheLeuGly and a non-degradable spacer GlyGly, respectively. The conjugates with molecular weights of 28, 60 and 121 kDa and narrow molecular weight distributions were prepared by fractionation with size exclusion chromatography. The conjugates were injected into athymic nude mice bearing MDA-MB-231 human breast carcinoma xenografts via a tail vein. MR images were acquired before and at various time points after the injection with a 3D FLASH sequence and a 2D spin-echo sequence at 3T. Pharmacokinetics, biodistribution and tumor accumulation of the conjugates were visualized based on the contrast enhancement in the blood, major organs and tumor tissue at various time points. The size effect of the conjugates was analyzed among the conjugates. Contrast enhanced MRI resulted in a real-time, three-dimensional visualization of blood circulation, pharmacokinetics, biodistribution and tumor accumulation of the conjugates, and the size effect on these pharmaceutical properties. HPMA copolymer conjugates with high molecular weight had a prolonged blood circulation time and high passive tumor targeting efficiency. Non-biodegradable HPMA copolymers with molecular weights higher than the threshold of renal filtration demonstrated higher efficiency for tumor drug delivery than biodegradable poly(L-glutamic acid). Contrast enhanced MRI is an effective

  14. Dynamic Contrast-Enhanced Magnetic Resonance Imaging as a Predictor of Outcome in Head-and-Neck Squamous Cell Carcinoma Patients With Nodal Metastases

    SciTech Connect

    Shukla-Dave, Amita; Lee, Nancy Y.; Jansen, Jacobus F.A.; Thaler, Howard T.; Stambuk, Hilda E.; Fury, Matthew G.; Patel, Snehal G.; Moreira, Andre L.; Sherman, Eric; Karimi, Sasan; Wang, Ya; Kraus, Dennis; Shah, Jatin P.; Pfister, David G.; and others

    2012-04-01

    Purpose: Dynamic contrast-enhanced MRI (DCE-MRI) can provide information regarding tumor perfusion and permeability and has shown prognostic value in certain tumors types. The goal of this study was to assess the prognostic value of pretreatment DCE-MRI in head and neck squamous cell carcinoma (HNSCC) patients with nodal disease undergoing chemoradiation therapy or surgery. Methods and Materials: Seventy-four patients with histologically proven squamous cell carcinoma and neck nodal metastases were eligible for the study. Pretreatment DCE-MRI was performed on a 1.5T MRI. Clinical follow-up was a minimum of 12 months. DCE-MRI data were analyzed using the Tofts model. DCE-MRI parameters were related to treatment outcome (progression-free survival [PFS] and overall survival [OS]). Patients were grouped as no evidence of disease (NED), alive with disease (AWD), dead with disease (DOD), or dead of other causes (DOC). Prognostic significance was assessed using the log-rank test for single variables and Cox proportional hazards regression for combinations of variables. Results: At last clinical follow-up, for Stage III, all 12 patients were NED. For Stage IV, 43 patients were NED, 4 were AWD, 11 were DOD, and 4 were DOC. K{sup trans} is volume transfer constant. In a stepwise Cox regression, skewness of K{sup trans} (volume transfer constant) was the strongest predictor for Stage IV patients (PFS and OS: p <0.001). Conclusion: Our study shows that skewness of K{sup trans} was the strongest predictor of PFS and OS in Stage IV HNSCC patients with nodal disease. This study suggests an important role for pretreatment DCE-MRI parameter K{sup trans} as a predictor of outcome in these patients.

  15. Validation of Interstitial Fractional Volume Quantification by Using Dynamic Contrast-Enhanced Magnetic Resonance Imaging in Porcine Skeletal Muscles.