Dynamic delamination crack propagation in a graphite/epoxy laminate
NASA Technical Reports Server (NTRS)
Grady, J. E.; Sun, C. T.
1991-01-01
Dynamic delamination crack propagation in a (90/0) 5s Graphite/Epoxy laminate with an embedded interfacial crack was investigated experimentally using high speed photography. The dynamic motion was produced by impacting the beamlike laminate specimen with a silicon rubber ball. The threshold impact velocities required to initiate dynamic crack propagation in laminates with varying initial crack positions were determined. The crack propagation speeds were estimated from the photographs. Results show that the through the thickness position of the embedded crack can significantly affect the dominant mechanism and the threshold impact velocity for the onset of crack movement. If the initial delamination is placed near the top of bottom surface of the laminate, local buckling of the delaminated plies may cause instability of the crack. If the initial delamination lies on the midplane, local buckling does not occur and the initiation of crack propagation appears to be dominated by Mode II fracture. The crack propagation and arrest observed was seen to be affected by wave motion within the delamination region.
NASA Astrophysics Data System (ADS)
Washabaugh, Peter; Hill, Larry
2007-06-01
A dynamic crack propagating in a brittle material releases enough thermal energy to produce visible light. The dynamic fracture of even macroscopically amorphous materials becomes unsteady as the crack propagation velocity approaches the material wave-speeds. The heat generated at a crack-tip, especially as it jumps, may be a mechanism to initiate a self-sustaining reaction in an energetic material. Experiments were conducted in specimens to simulate an infinite plate for 20 μs. The initial specimens were 152 mm square by 6 mm thick acrylic sheets, and were fabricated to study non-steady near-wave-speed crack propagation. A variant of this specimen embedded a 25 mm x 3 mm PBX 9205 pellet to explore the influence of dynamic Mode-I cracks in these materials. The crack was initiated by up to 0.2 g of Detasheet placed along a precursor 50 mm long notch, with a shield to contain the reaction products and prevent propagation along the fractured surfaces. The crack was studied by means of a streak camera and a Fourier-filter of the light reflecting off the newly minted surfaces. The sub-microsecond behavior of holes initiating, preceding and coalescing with the main crack were observed in the PMMA samples. The embedding and mechanical loading of explosives by this technique did not initiate a self-sustaining reaction in preliminary testing.
Ductile Crack Initiation Criterion with Mismatched Weld Joints Under Dynamic Loading Conditions.
An, Gyubaek; Jeong, Se-Min; Park, Jeongung
2018-03-01
Brittle failure of high toughness steel structures tends to occur after ductile crack initiation/propagation. Damages to steel structures were reported in the Hanshin Great Earthquake. Several brittle failures were observed in beam-to-column connection zones with geometrical discontinuity. It is widely known that triaxial stresses accelerate the ductile fracture of steels. The study examined the effects of geometrical heterogeneity and strength mismatches (both of which elevate plastic constraints due to heterogeneous plastic straining) and loading rate on critical conditions initiating ductile fracture. This involved applying the two-parameter criterion (involving equivalent plastic strain and stress triaxiality) to estimate ductile cracking for strength mismatched specimens under static and dynamic tensile loading conditions. Ductile crack initiation testing was conducted under static and dynamic loading conditions using circumferentially notched specimens (Charpy type) with/without strength mismatches. The results indicated that the condition for ductile crack initiation using the two parameter criterion was a transferable criterion to evaluate ductile crack initiation independent of the existence of strength mismatches and loading rates.
NASA Astrophysics Data System (ADS)
Washabaugh, P. D.; Hill, L. G.
2007-12-01
A dynamic crack propagating in a brittle material releases enough thermal energy to produce visible light. The dynamic fracture of even macroscopically amorphous materials becomes unsteady as the crack propagation velocity approaches the material wave-speeds. The heat generated at a crack-tip, especially as it jumps, may be a mechanism to initiate a self-sustaining reaction in an energetic material. Experiments were conducted in specimens to simulate an infinite plate for ˜10 μs. The initial specimens were 152 mm square by 6 mm thick acrylic sheets, and were fabricated to study non-steady near-wave-speed crack propagation. A variant of this specimen embedded a 25 mm×3 mm PBX 9205 pellet to explore the influence of dynamic Mode-I cracks in these materials. The crack was initiated by up to 0.24 g of Detasheet placed along a precursor 50 mm long notch, with a shield to contain the reaction products and prevent propagation along the fractured surfaces. The crack was studied by means of a streak camera and a Fourier-filter of the light reflecting off the newly minted surfaces. The sub-microsecond behavior of holes initiating, preceding and coalescing with the main crack were observed in the PMMA samples. The embedding and mechanical loading of explosives by this technique did not initiate a self-sustaining reaction in preliminary testing.
Intermittent crack growth in fatigue
NASA Astrophysics Data System (ADS)
Kokkoniemi, R.; Miksic, A.; Ovaska, M.; Laurson, L.; Alava, M. J.
2017-07-01
Fatigue occurs under cyclic loading at stresses below a material’s static strength limit. We consider fatigue crack growth as a stochastic process and perform crack growth experiments in a metal (copper). We follow optically cracks propagating from initial edge notches. The main interest is in the dynamics of the crack growth—the Paris’ law and the initiation phase prior to that—and especially the intermittency this is discovered to display. How the sampling of the crack advancement, performed at regular intervals, influences such measurement results is analysed by the analogy of planar crack dynamics in slow, driven growth.
Fracture mechanisms of glass particles under dynamic compression
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parab, Niranjan D.; Guo, Zherui; Hudspeth, Matthew C.
2017-08-01
In this study, dynamic fracture mechanisms of single and contacting spherical glass particles were observed using high speed synchrotron X-ray phase contrast imaging. A modified Kolsky bar setup was used to apply controlled dynamic compressive loading on the soda-lime glass particles. Four different configurations of particle arrangements with one, two, three, and five particles were studied. In single particle experiments, cracking initiated near the contact area between the particle and the platen, subsequently fragmenting the particle in many small sub-particles. In multi-particle experiments, a crack was observed to initiate from the point just outside the contact area between two particles.more » The initiated crack propagated at an angle to the horizontal loading direction, resulting in separation of a fragment. However, this fragment separation did not affect the ability of the particle to withstand further contact loading. On further compression, large number of cracks initiated in the particle with the highest number of particle-particle contacts near one of the particle-particle contacts. The initiated cracks roughly followed the lines joining the contact points. Subsequently, the initiated cracks along with the newly developed sub-cracks bifurcated rapidly as they propagated through the particle and fractured the particle explosively into many small fragments, leaving the other particles nearly intact.« less
NASA Technical Reports Server (NTRS)
Calomino, Anthony Martin
1994-01-01
The subcritical growth of cracks from pre-existing flaws in ceramics can severely affect the structural reliability of a material. The ability to directly observe subcritical crack growth and rigorously analyze its influence on fracture behavior is important for an accurate assessment of material performance. A Mode I fracture specimen and loading method has been developed which permits the observation of stable, subcritical crack extension in monolithic and toughened ceramics. The test specimen and procedure has demonstrated its ability to generate and stably propagate sharp, through-thickness cracks in brittle high modulus materials. Crack growth for an aluminum oxide ceramic was observed to be continuously stable throughout testing. Conversely, the fracture behavior of a silicon nitride ceramic exhibited crack growth as a series of subcritical extensions which are interrupted by dynamic propagation. Dynamic initiation and arrest fracture resistance measurements for the silicon nitride averaged 67 and 48 J/sq m, respectively. The dynamic initiation event was observed to be sudden and explosive. Increments of subcritical crack growth contributed to a 40 percent increase in fracture resistance before dynamic initiation. Subcritical crack growth visibly marked the fracture surface with an increase in surface roughness. Increments of subcritical crack growth loosen ceramic material near the fracture surface and the fracture debris is easily removed by a replication technique. Fracture debris is viewed as evidence that both crack bridging and subsurface microcracking may be some of the mechanisms contributing to the increase in fracture resistance. A Statistical Fracture Mechanics model specifically developed to address subcritical crack growth and fracture reliability is used together with a damaged zone of material at the crack tip to model experimental results. A Monte Carlo simulation of the actual experiments was used to establish a set of modeling input parameters. It was demonstrated that a single critical parameter does not characterize the conditions required for dynamic initiation. Experimental measurements for critical crack lengths, and the energy release rates exhibit significant scatter. The resulting output of the model produces good agreement with both the average values and scatter of experimental measurements.
NASA Astrophysics Data System (ADS)
Xu, Tengfei; Castel, Arnaud
2016-04-01
In this paper, a model, initially developed to calculate the stiffness of cracked reinforced concrete beams under static loading, is used to assess the dynamic stiffness. The model allows calculating the average inertia of cracked beams by taking into account the effect of bending cracks (primary cracks) and steel-concrete bond damage (i.e. interfacial microcracks). Free and forced vibration experiments are used to assess the performance of the model. The respective influence of bending cracks and steel-concrete bond damage on both static and dynamic responses is analyzed. The comparison between experimental and simulated deflections confirms that the effects of both bending cracks and steel-concrete bond loss should be taken into account to assess reinforced concrete stiffness under service static loading. On the contrary, comparison of experimental and calculated dynamic responses reveals that localized steel-concrete bond damages do not influence significantly the dynamic stiffness and the fundamental frequency.
Dynamic fracture and hot-spot modeling in energetic composites
NASA Astrophysics Data System (ADS)
Grilli, Nicolò; Duarte, Camilo A.; Koslowski, Marisol
2018-02-01
Defects such as cracks, pores, and particle-matrix interface debonding affect the sensitivity of energetic materials by reducing the time-to-ignition and the threshold pressure to initiate an explosion. Frictional sliding of preexisting cracks is considered to be one of the most important causes of localized heating. Therefore, understanding the dynamic fracture of crystalline energetic materials is of extreme importance to assess the reliability and safety of polymer-bonded explosives. Phase field damage model simulations, based on the regularization of the crack surface as a diffuse delta function, are used to describe crack propagation in cyclotetramethylene-tetranitramine crystals embedded in a Sylgard matrix. A thermal transport model that includes heat generation by friction at crack interfaces is coupled to the solution of crack propagation. 2D and 3D dynamic compression simulations are performed with different boundary velocities and initial distributions of cracks and interface defects to understand their effect on crack propagation and heat generation. It is found that, at an impact velocity of 400 m/s, localized damage at the particle-binder interface is of key importance and that the sample reaches temperatures high enough to create a hot-spot that will lead to ignition. At an impact velocity of 10 m/s, preexisting cracks advanced inside the particle, but the increase of temperature will not cause ignition.
A parametric study of the dynamic failure of energetic composites
NASA Astrophysics Data System (ADS)
Tanasoiu, Bogdan; Koslowski, Marisol
2017-09-01
Heating by frictional sliding of cracks is often considered to be one of the most important causes of localized melting and ignition in solid explosives. Furthermore, recent high speed X-ray phase contrast experiments on energetic composites under dynamic compression [Parab et al., Appl. Phys. Lett. 109(13) (2016)] show that most fracture events appear inside the particles. Initial cracks develop in regions where particles are close, and widespread fragmentation is observed in the interior of the particles as the stress waves propagate through the sample. However, most simulations have focused on interface debonding of energetic composites and, in general, do not include fracture of the particles explicitly. A phase field damage approach is used to model the dynamic response of a system of cyclotetramethylene-tetranitramine particles embedded in a Sylgard matrix. The simulations show several damage mechanisms observed in the experiments. The effects of the energy release rate and the initial crack distribution on the energy dissipation due to fracture are studied. The numerical results confirm that initial cracks play an important role in the evolution of damage, energy dissipation and consequently, the formation of hot-spots.
Initiation and propagation toughness of delamination crack under an impact load
NASA Astrophysics Data System (ADS)
Kumar, Prashant; Kishore, N. N.
1998-10-01
A combined experimental and finite element method is developed to determine the interlaminar dynamic fracture toughness. An interlaminar crack is propagated at very high speed in a double cantilever beam (DCB) specimen made of two steel strips with a precrack. A special fixture is designed to apply impact load to one cantilever and determine the deflection of the cantilever-end, initiation time and crack propagation history. The experimental results are used as input data in a FE code to calculate J-integral by the gradual release of nodal forces to model the propagation of the interlaminar crack. The initiation fracture toughness and propagation fracture toughness are evaluated for interlaminar crack propagating between 850 and 1785 ms. The initiation and propagation toughness were found to vary between 90-200 Jm 2 and 2-13 Jm 2 respectively. The technique is extended to study initiation and propagation toughness of interlaminar crack in unidirectional FRP laminates. 1998 Elsevier Science Ltd.
Atomistic Simulation of Single Asperity Contact
NASA Astrophysics Data System (ADS)
Philip; Kromer; Marder, Michael
2003-03-01
In the standard (Bowden and Tabor) model of friction, the macroscopic behavior of sliding results from the deformation of microscopic asperities in contact. A recent idea instead extracts macroscopic friction from the aggregate behavior of traveling, self-healing interfacial cracks: certain families of cracks are found to be mathematically forbidden, and the envelope of allowed cracks dictates the familiar Coulomb law of friction. To explore the connection between the new and traditional pictures of friction, we conducted molecular dynamics (MD) simulations of single-asperity contact subjected to an oscillatory sliding force -- a geometry important for the problem of fretting (damage due to small-scale vibratory contact). Our simulations reveal the importance of traveling interface cracks to the dynamics of slip at the interface, and illuminate the dynamics of crack initiation and suppression.
Crack propagation and arrest in pressurized containers
NASA Technical Reports Server (NTRS)
Erdogan, F.; Delale, F.; Owczarek, J. A.
1976-01-01
The problem of crack propagation and arrest in a finite volume cylindrical container filled with pressurized gas is considered. It is assumed that the cylinder contains a symmetrically located longitudinal part-through crack with a relatively small net ligament. The net ligament suddenly ruptures initiating the process of fracture propagation and depressurization in the cylinder. Thus the problem is a coupled gas dynamics and solid mechanics problem the exact formulation of which does not seem to be possible. The problem is reduced to a proper initial value problem by introducing a dynamic fracture criterion which relates the crack acceleration to the difference between a load factor and the corresponding strength parameter. The results indicate that generally in gas filled cylinders fracture arrest is not possible unless the material behaves in a ductile manner and the container is relatively long.
1984-08-10
most current efforts in EPFM are focused on the application of the J-resistance curve to predict crack initiation and fracture instability. However...element code FRACDYN, which has since been used to solve a variety of problems related to the Navy, NRC, and several industrial applications . Of...that this parameter remains constant during elastic-plastic stable crack growth--see Reference (9). This fact, together with its ease of application
NASA Technical Reports Server (NTRS)
Wheitner, Jeffrey A.; Houser, Donald R.
1994-01-01
The fatigue life of a gear tooth can be thought of as the sum of the number of cycles required to initiate a crack, N(sub i), plus the number of cycles required to propagate the crack to such a length that fracture occurs, N(sub p). The factors that govern crack initiation are thought to be related to localized stress or strain at a point, while propagation of a fatigue crack is a function of the crack tip parameters such as crack shape, stress state, and stress intensity factor. During a test there is no clear transition between initiation and propagation. The mechanisms of initiation and propagation are quite different and modeling them separately produces a higher degree of accuracy, but then the question that continually arises is 'what is a crack?' The total life prediction in a fracture mechanics model presently hinges on the assumption of an initial crack length, and this length can significantly affect the total life prediction. The size of the initial crack is generally taken to be in the range of 0.01 in. to 0.2 in. Several researchers have used various techniques to determine the beginning of the crack propagation stage. Barhorst showed the relationship between dynamic stiffness changes and crack propagation. Acoustic emissions, which are stress waves produced by the sudden movement of stressed materials, have also been successfully used to monitor the growth of cracks in tensile and fatigue specimens. The purpose of this research is to determine whether acoustic emissions can be used to define the beginning of crack propagation in a gear using a single-tooth bending fatigue test.
NASA Astrophysics Data System (ADS)
Simonov, M. Yu.; Simonov, Yu. N.; Shaimanov, G. S.
2018-01-01
The structure, dynamic cracking resistance, and micromechanisms of crack growth in initially highly tempered pipe billets made of structural carbon steel are studied after thermomechanical treatment, including cold plastic deformation by radial forging followed by annealing, under various conditions. The strength is found to be maximum after cold radial forging followed by annealing at 300°C. Cold radial forging and annealing at 600°C are shown to cause the formation of an ultrafine-grained structure with an average grain/subgrain size of 900 nm. The structural features formed in both the axial and the transverse direction after cold radial forging have been revealed. The mechanism of crack growth after heat treatment and thermomechanical treatment has been studied. The fracture surface elements formed during dynamic-crackingresistance tests have been qualitatively analyzed.
Multimillion to billion atom simulations of nanosystems under extreme conditions
NASA Astrophysics Data System (ADS)
Vashishta, P.
2008-12-01
Advanced materials and devices with nanometer grain/feature sizes are being developed to achieve higher strength and toughness in ceramic materials and greater speeds in electronic devices. Below 100 nm, however, continuum description of materials and devices must be supplemented by atomistic descriptions. Current state of the art atomistic simulations involve 10 million - 1 billion atoms. We investigate initiation, growth and healing of wing cracks in confined silica glass by multimillion atom molecular dynamics (MD) simulations. Under dynamic compression, frictional sliding of pre-crack surfaces nucleates nanovoids, which evolve into nanocrack columns at the pre-crack tip. Nanocrack columns merge to form a wing crack, which grows via coalescence with nanovoids in the direction of maximum compression. Lateral confinement arrests the growth and partially heals the wing crack. Growth and arrest of the wing crack occur repeatedly, as observed in dynamic compression experiments on brittle solids under lateral confinement. MD simulation of hypervelocity projectile impact in aluminum nitride and alumina has also been studied. The simulations reveal strong interplay between shock- induced structural phase transformation, plastic deformation and brittle cracks. The shock wave splits into an elastic precursor and a wurtzite-to-rocksalt structural transformation wave. When the elastic wave reflected from the boundary of the sample interacts with the transformation wave front, nanocavities are generated along the penetration path of the projectile and dislocations in adjacent regions. The nanocavities coalesce to form mode I brittle cracks while dislocations generate kink bands that give rise to mode II cracks. These simulations provide a microscopic view of defects associated with simultaneous tensile and shear cracking at the structural phase transformation boundary due to shock impact in high-strength ceramics. Initiation of chemical reactions at shock fronts prior to detonation and dynamic transition in the shock structure of an energetic material (RDX) and reaction of aluminium nanoparticles in oxygen atmosphere followed by explosive burning is also discussed.
Axial crack propagation and arrest in pressurized fuselage
NASA Technical Reports Server (NTRS)
Kosai, M.; Shimamoto, A.; Yu, C.-T.; Walker, S. I.; Kobayashi, A. S.; Tan, P.
1994-01-01
The crack arrest capability of a tear strap in a pressurized precracked fuselage was studied through instrumented axial rupture tests of small scale models of an idealized fuselage. Upon pressurization, rapid crack propagation initiated at an axial through crack along the stringer and immediately kinked due to the mixed modes 1 and 2 state caused by the one-sided opening of the crack flap. The diagonally running crack further turned at the tear straps. Dynamic finite element analysis of the rupturing cylinder showed that the crack kinked and also ran straight in the presence of a mixed mode state according to a modified two-parameter crack kinking criterion.
NASA Astrophysics Data System (ADS)
Stepanova, Larisa; Bronnikov, Sergej
2018-03-01
The crack growth directional angles in the isotropic linear elastic plane with the central crack under mixed-mode loading conditions for the full range of the mixity parameter are found. Two fracture criteria of traditional linear fracture mechanics (maximum tangential stress and minimum strain energy density criteria) are used. Atomistic simulations of the central crack growth process in an infinite plane medium under mixed-mode loading using Large-scale Molecular Massively Parallel Simulator (LAMMPS), a classical molecular dynamics code, are performed. The inter-atomic potential used in this investigation is Embedded Atom Method (EAM) potential. The plane specimens with initial central crack were subjected to Mixed-Mode loadings. The simulation cell contains 400000 atoms. The crack propagation direction angles under different values of the mixity parameter in a wide range of values from pure tensile loading to pure shear loading in a wide diapason of temperatures (from 0.1 К to 800 К) are obtained and analyzed. It is shown that the crack propagation direction angles obtained by molecular dynamics method coincide with the crack propagation direction angles given by the multi-parameter fracture criteria based on the strain energy density and the multi-parameter description of the crack-tip fields.
NASA Astrophysics Data System (ADS)
Stepanova, L. V.
2017-12-01
Atomistic simulations of the central crack growth process in an infinite plane medium under mixed-mode loading using Large-Scale Atomic/Molecular Massively Parallel Simulator (LAMMPS), a classical molecular dynamics code, are performed. The inter-atomic potential used in this investigation is the Embedded Atom Method (EAM) potential. Plane specimens with an initial central crack are subjected to mixed-mode loadings. The simulation cell contains 400,000 atoms. The crack propagation direction angles under different values of the mixity parameter in a wide range of values from pure tensile loading to pure shear loading in a wide range of temperatures (from 0.1 K to 800 K) are obtained and analyzed. It is shown that the crack propagation direction angles obtained by molecular dynamics coincide with the crack propagation direction angles given by the multi-parameter fracture criteria based on the strain energy density and the multi-parameter description of the crack-tip fields. The multi-parameter fracture criteria are based on the multi-parameter stress field description taking into account the higher order terms of the Williams series expansion of the crack tip fields.
Impact initiation of explosives and propellants via statistical crack mechanics
NASA Astrophysics Data System (ADS)
Dienes, J. K.; Zuo, Q. H.; Kershner, J. D.
2006-06-01
A statistical approach has been developed for modeling the dynamic response of brittle materials by superimposing the effects of a myriad of microcracks, including opening, shear, growth and coalescence, taking as a starting point the well-established theory of penny-shaped cracks. This paper discusses the general approach, but in particular an application to the sensitivity of explosives and propellants, which often contain brittle constituents. We examine the hypothesis that the intense heating by frictional sliding between the faces of a closed crack during unstable growth can form a hot spot, causing localized melting, ignition, and fast burn of the reactive material adjacent to the crack. Opening and growth of a closed crack due to the pressure of burned gases inside the crack and interactions of adjacent cracks can lead to violent reaction, with detonation as a possible consequence. This approach was used to model a multiple-shock experiment by Mulford et al. [1993. Initiation of preshocked high explosives PBX-9404, PBX-9502, PBX-9501, monitored with in-material magnetic gauging. In: Proceedings of the 10th International Detonation Symposium, pp. 459-467] involving initiation and subsequent quenching of chemical reactions in a slab of PBX 9501 impacted by a two-material flyer plate. We examine the effects of crack orientation and temperature dependence of viscosity of the melt on the response. Numerical results confirm our theoretical finding [Zuo, Q.H., Dienes, J.K., 2005. On the stability of penny-shaped cracks with friction: the five types of brittle behavior. Int. J. Solids Struct. 42, 1309-1326] that crack orientation has a significant effect on brittle behavior, especially under compressive loading where interfacial friction plays an important role. With a reasonable choice of crack orientation and a temperature-dependent viscosity obtained from molecular dynamics calculations, the calculated particle velocities compare well with those measured using embedded velocity gauges.
NASA Astrophysics Data System (ADS)
Husseini, Naji Sami
Single-crystal nickel-base superalloys are ubiquitous in demanding turbine-blade applications, and they owe their remarkable resilience to their dendritic, hierarchical microstructure and complex composition. During normal operations, they endure rapid low-stress vibrations that may initiate fatigue cracks. This failure mode in the very high-cycle regime is poorly understood, in part due to inadequate testing and diagnostic equipment. Phase-contrast imaging with coherent synchrotron x rays, however, is an emergent technique ideally suited for dynamic processes such as crack initiation and propagation. A specially designed portable ultrasonic-fatigue apparatus, coupled with x-ray radiography, allows real-time,
Dynamic fracture of inorganic glasses by hard spherical and conical projectiles.
Chaudhri, M Munawar
2015-03-28
In this article, high-speed photographic investigations of the dynamic crack initiation and propagation in several inorganic glasses by the impact of small spherical and conical projectiles are described. These were carried out at speeds of up to approximately 2×10(6) frames s(-1). The glasses were fused silica, 'Pyrex' (a borosilicate glass), soda lime and B(2)O(3). The projectiles were 0.8-2 mm diameter spheres of steel, glass, sapphire and tungsten carbide, and their velocities were up to 340 m s(-1). In fused silica and Pyrex, spherical projectiles' impact produced Hertzian cone cracks travelling at terminal crack velocities, whereas in soda-lime glass fast splinter cracks were generated. No crack bifurcation was observed, which has been explained by the nature of the stress intensity factor of the particle-impact-generated cracks, which leads to a stable crack growth. Crack bifurcation was, however, observed in thermally tempered glass; this bifurcation has been explained by the tensile residual stress and the associated unstable crack growth. A new explanation has been proposed for the decrease of the included angle of the Hertzian cone cracks with increasing impact velocity. B(2)O(3) glass showed dynamic compaction and plasticity owing to impact with steel spheres. Other observations, such as total contact time, crack lengths and response to oblique impacts, have also been explained. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Numerical Modeling of S-Wave Generation by Fracture Damage in Underground Nuclear Explosions
2009-09-30
Element Package, ABAQUS. A user -defined subroutine , VUMAT, was written that incorporates the micro-mechanics based damage constitutive law described...dynamic damage evolution on the elastic and anelastic response. 2) whereas the Ashby/Sammis model was only applicable to the case where the initial cracks ...are all parallel and the same size, we can now include a specified distribution of initial crack sizes with random azimuthal orientation about the
RSRM TP-H1148 Main Grain Propellant Crack Initiation Evaluation
NASA Technical Reports Server (NTRS)
Earnest, Todd E.
2005-01-01
Pressurized TP-HI 148 propellant fracture toughness testing was performed to assess the potential for initiation of visually undetectable cracks in the RSRM forward segment transition region during motor ignition. Two separate test specimens were used in this evaluation. Testing was performed in cold-gas and hot-fire environments, and under both static and dynamic pressurization conditions. Analysis of test results demonstrates safety factors against initiation of visually undetectable cracks in excess of 8.0. The Reusable Solid Rocket Motor (RSRM) forward segment is cast with PBAN propellant (TP-HI 148) to form T an 1 1-point star configuration that transitions to a tapered center perforated bore (see Figure 1). The geometry of the transition region between the fin valleys and the bore causes a localized area of high strain during horizontal storage. Updated analyses using worst-case mechanical properties at 40 F and improved modeling techniques indicated a slight reduction in safety margins over previous predictions. Although there is no history of strain induced cracks or flaws in the transition region propellant, a proactive test effort was initiated to better understand the implications of the new analysis, primarily the resistance of TP-H1148 propellant to crack initiation' during RSRM ignition.
Effect of micromorphology of cortical bone tissue on crack propagation under dynamic loading
NASA Astrophysics Data System (ADS)
Wang, Mayao; Gao, Xing; Abdel-Wahab, Adel; Li, Simin; Zimmermann, Elizabeth A.; Riedel, Christoph; Busse, Björn; Silberschmidt, Vadim V.
2015-09-01
Structural integrity of bone tissue plays an important role in daily activities of humans. However, traumatic incidents such as sports injuries, collisions and falls can cause bone fracture, servere pain and mobility loss. In addition, ageing and degenerative bone diseases such as osteoporosis can increase the risk of fracture [1]. As a composite-like material, a cortical bone tissue is capable of tolerating moderate fracture/cracks without complete failure. The key to this is its heterogeneously distributed microstructural constituents providing both intrinsic and extrinsic toughening mechanisms. At micro-scale level, cortical bone can be considered as a four-phase composite material consisting of osteons, Haversian canals, cement lines and interstitial matrix. These microstructural constituents can directly affect local distributions of stresses and strains, and, hence, crack initiation and propagation. Therefore, understanding the effect of micromorphology of cortical bone on crack initiation and propagation, especially under dynamic loading regimes is of great importance for fracture risk evaluation. In this study, random microstructures of a cortical bone tissue were modelled with finite elements for four groups: healthy (control), young age, osteoporosis and bisphosphonate-treated, based on osteonal morphometric parameters measured from microscopic images for these groups. The developed models were loaded under the same dynamic loading conditions, representing a direct impact incident, resulting in progressive crack propagation. An extended finite-element method (X-FEM) was implemented to realize solution-dependent crack propagation within the microstructured cortical bone tissues. The obtained simulation results demonstrate significant differences due to micromorphology of cortical bone, in terms of crack propagation characteristics for different groups, with the young group showing highest fracture resistance and the senior group the lowest.
Chouet, Bernard A.; Dawson, Phillip B.; Nakano, Masaru
2006-01-01
We present a model of gas exsolution and bubble expansion in a melt supersaturated in response to a sudden pressure drop. In our model, the melt contains a suspension of gas bubbles of identical sizes and is encased in a penny-shaped crack embedded in an elastic solid. The suspension is modeled as a three-dimensional lattice of spherical cells with slight overlap, where each elementary cell consists of a gas bubble surrounded by a shell of volatile-rich melt. The melt is then subjected to a step drop in pressure, which induces gas exsolution and bubble expansion, resulting in the compression of the melt and volumetric expansion of the crack. The dynamics of diffusion-driven bubble growth and volumetric crack expansion span 9 decades in time. The model demonstrates that the speed of the crack response depends strongly on volatile diffusivity in the melt and bubble number density and is markedly sensitive to the ratio of crack thickness to crack radius and initial bubble radius but is relatively insensitive to melt viscosity. The net drop in gas concentration in the melt after pressure recovery represents only a small fraction of the initial concentration prior to the drop, suggesting the melt may undergo numerous pressure transients before becoming significantly depleted of gases. The magnitude of pressure and volume recovery in the crack depends sensitively on the size of the input-pressure transient, becoming relatively larger for smaller-size transients in a melt containing bubbles with initial radii less than 10-5 m. Amplification of the input transient may be large enough to disrupt the crack wall and induce brittle failure in the rock matrix surrounding the crack. Our results provide additional basis for the interpretation of volume changes in the magma conduit under Popocatépetl Volcano during Vulcanian degassing bursts in its eruptive activity in April–May 2000.
NASA Astrophysics Data System (ADS)
Jaffer, Shahzma Jafferali
Most studies that have examined chloride-induced corrosion of steel in concrete have focused on sound concrete. However, reinforced concrete is seldom uncracked and very few studies have investigated the influence of cracked concrete on rebar corrosion. Furthermore, the studies that have examined the relationship between cracks and corrosion have focused on unloaded or statically loaded cracks. However, in practice, reinforced concrete structures (e.g. bridges) are often dynamically loaded. Hence, the cracks in such structures open and close which could influence the corrosion of the reinforcing steel. Consequently, the objectives of this project were (i) to examine the effect of different types of loading on the corrosion of reinforcing steel, (ii) the influence of concrete mixture design on the corrosion behaviour and (iii) to provide data that can be used in service-life modelling of cracked reinforced concretes. In this project, cracked reinforced concrete beams made with ordinary Portland cement concrete (OPCC) and high performance concrete (HPC) were subjected to no load, static loading and dynamic loading. They were immersed in salt solution to just above the crack level at their mid-point for two weeks out of every four (wet cycle) and, for the remaining two weeks, were left in ambient laboratory conditions to dry (dry cycle). The wet cycle led to three conditions of exposure for each beam: (i) the non-submerged region, (ii) the sound, submerged region and (iii) the cracked mid-section, which was also immersed in the solution. Linear polarization resistance and galvanostatic pulse techniques were used to monitor the corrosion in the three regions. Potentiodynamic polarization, electrochemical current noise and concrete electrical resistance measurements were also performed. These measurements illustrated that (i) rebar corroded faster at cracks than in sound concrete, (ii) HPC was more protective towards the rebar than OPCC even at cracks and (iii) there was a minor effect of the type of loading on rebar corrosion within the period of the project. These measurements also highlighted the problems associated with corrosion measurements, for example, identifying the actual corroding area and the influence of the length of rebar. The numbers of cracks and crack-widths in each beam were measured after the beam's initial exposure to salt solution and, again, after the final corrosion measurements. HPC beams had more cracks than the OPCC. Also, final measurements illustrated increased crack-widths in dynamically loaded beams, regardless of the concrete type. The cracks in both statically and dynamically loaded OPCC and HPC beams bifurcated at the rebar level and propagated parallel to the rebar. This project also examined the extent of corrosion on the rebars and the distribution of corrosion products in the concrete and on the concrete walls of the cracks. Corrosion occurred only at cracks in the concrete and was spread over a larger area on the rebars in HPC than those in OPCC. The damage due to corrosion was superficial in HPC and crater-like in OPCC. Regardless of the concrete type, there was a larger distribution of corrosion products on the crack walls of the dynamically loaded beams. Corrosion products diffused into the cement paste and the paste-aggregate interface in OPCC but remained in the crack in HPC. The most voluminous corrosion product identified was ferric hydroxide. Elemental analysis of mill-scale on rebar which was not embedded in concrete or exposed to chlorides was compared to that of the bars that had been embedded in uncontaminated concrete and in cracked concrete exposed to chlorides. In uncontaminated concrete, mill-scale absorbed calcium and silicon. At a crack, a layer, composed of a mixture of cement paste and corrosion products, developed between the mill-scale and the substrate steel. Based on the results, it was concluded that (i) corrosion occurred on the rebar only at cracks in the concrete, (ii) corrosion was initiated at the cracks immediately upon exposure to salt solution, (ii) the type of loading had a minor influence on the corrosion rates of reinforcing steel and (iv) the use of polarized area led to a significant underestimation of the current density at the crack. It is recommended that the effect of cover-depth on (i) the time to initiation of corrosion and (ii) the corrosion current density in cracked concrete be investigated.
Salinity effects on the dynamics and patterns of desiccation cracks
NASA Astrophysics Data System (ADS)
Shokri, N.; Zhou, P.
2012-12-01
Cracking arising from desiccation is a ubiquitous phenomenon encountered in various industrial and geo-environmental applications including drying of clayey soil, cement, ceramics, gels, and many more colloidal suspensions. Presence of cracks in muddy sediments modifies the characteristics of the medium such as pore structure, porosity, and permeability which in turn influence various flow and transport processes. Thus it remains a topic of great interest in many disciplines to describe the dynamics of desiccation cracking under various boundary conditions. To this end, we conducted a comprehensive study to investigate effects of NaCl concentrations on cracking dynamics and patterns during desiccation of Bentonite. Mixtures of Bentonite and NaCl solutions were prepared with NaCl concentration varying from 2 to 10 percent in 0.5 percent increment (totally 17 configurations). The slurry was placed in a Petri dish mounted on a digital balance to record the evaporation dynamics. The atmospheric conditions were kept constant using an environmental chamber. An automatic camera was used to record the dynamics of macro-cracks (mm scale) at the surface of desiccating clay each minute. The obtained results illustrate the significant effects of salt concentration on the initiation, propagation, morphology and general dynamics of macro-cracks. We found that higher salt concentrations results in larger macro cracks' lengths attributed to the effects of NaCl on compressing the electric double layer of particles at increasing electrolyte concentrations which reduce considerably the repulsive forces among the particles and causing instability of the slurry and flocculation of the colloidal particles. Rheological measurements by means of a stress controlled rheometer revealed that the yield stress of the slurry decreases as NaCl concentration increases which may indicate aggregation of larger units in the slurry as a result of flocculation causing larger cracks' lengths due to drying. At the end of each round of the experiment, a detailed visualization was conducted using Scanning Electron Microscopy to investigate the patterns and morphology of cracks at micro-scale as influenced by the salt concentration. Our results provide new insights and finding about the effects of salt concentrations on desiccation cracks at different scales ranging from a few mm to few microns.
Tokita, Daisuke; Ebihara, Arata; Miyara, Kana; Okiji, Takashi
2017-08-01
This study examined the dynamic fracture behavior of nickel-titanium rotary instruments in torsional or cyclic loading at continuous or reciprocating rotation by means of high-speed digital video imaging. The ProFile instruments (size 30, 0.06 taper; Dentsply Maillefer, Ballaigues, Switzerland) were categorized into 4 groups (n = 7 in each group) as follows: torsional/continuous (TC), torsional/reciprocating (TR), cyclic/continuous (CC), and cyclic/reciprocating (CR). Torsional loading was performed by rotating the instruments by holding the tip with a vise. For cyclic loading, a custom-made device with a 38° curvature was used. Dynamic fracture behavior was observed with a high-speed camera. The time to fracture was recorded, and the fractured surface was examined with scanning electron microscopy. The TC group initially exhibited necking of the file followed by the development of an initial crack line. The TR group demonstrated opening and closing of a crack according to its rotation in the cutting and noncutting directions, respectively. The CC group separated without any detectable signs of deformation. In the CR group, initial crack formation was recognized in 5 of 7 samples. The reciprocating rotation exhibited a longer time to fracture in both torsional and cyclic fatigue testing (P < .05). The scanning electron microscopic images showed a severely deformed surface in the TR group. The dynamic fracture behavior of NiTi rotary instruments, as visualized with high-speed digital video imaging, varied between the different modes of rotation and different fatigue testing. Reciprocating rotation induced a slower crack propagation and conferred higher fatigue resistance than continuous rotation in both torsional and cyclic loads. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Analysis of damaging process and crack propagation
NASA Astrophysics Data System (ADS)
Semenski, D.; Wolf, H.; Božić, Ž.
2010-06-01
Supervising and health monitoring of structures can assess the actual state of existing structures after initial loading or in the state of operation. Structural life management requires the integration of design and analysis, materials behavior and structural testing, as given for several examples. Procedure of survey of structural elements and criteria for their selection must be strongly defined as it is for the offshore gas platforms. Numerical analysis of dynamic loading is shown for the Aeolian vibrations of overhead transmission line conductors. Since the damper’s efficiency strongly depends on its position, the procedure of determining the optimum position of the damper is described. The optical method of caustics is established in isotropic materials for determination of the stress intensity factors (SIFs) of the cracks in deformed structures and is advantageously improved for the application to fiberreinforced composites. A procedure for simulation of crack propagation for multiple cracks was introduced and SIFs have been calculated by using finite element method. Crack growth of a single crack or a periodical array of cracks initiated at the stiffeners in a stiffened panel has been investigated.
Mohammadi, H; Klassen, R J; Wan, W-K
2008-10-01
Pyrolytic carbon mechanical heart valves (MHVs) are widely used to replace dysfunctional and failed heart valves. As the human heart beats around 40 million times per year, fatigue is the prime mechanism of mechanical failure. In this study, a finite element approach is implemented to develop a model for fatigue analysis of MHVs due to the impact force between the leaflet and the stent and cavitation in the aortic position. A two-step method to predict crack propagation in the leaflets of MHVs has been developed. Stress intensity factors (SIFs) are computed at a small initiated crack located on the leaflet edge (the worst case) using the boundary element method (BEM). Static analysis of the crack is performed to analyse the stress distribution around the front crack zone when the crack is opened; this is followed by a dynamic crack analysis to consider crack propagation using the finite element approach. Two factors are taken into account in the calculation of the SIFs: first, the effect of microjet formation due to cavitation in the vicinity of leaflets, resulting in water hammer pressure; second, the effect of the impact force between the leaflet and the stent of the MHVs, both in the closing phase. The critical initial crack length, the SIFs, the water hammer pressure, and the maximum jet velocity due to cavitation have been calculated. With an initial crack length of 35 microm, the fatigue life of the heart valve is greater than 60 years (i.e. about 2.2 x 10(9) cycles) and, with an initial crack length of 170 microm, the fatigue life of the heart valve would be around 2.5 years (i.e. about 9.1 x 10(7) cycles). For an initial crack length greater than 170 microm, there is catastrophic failure and fatigue cracking no longer occurs. A finite element model of fatigue analysis using Patran command language (PCL custom code) in MSC software can be used to evaluate the useful lifespan of MHVs. Similar methodologies can be extended to other medical devices under cyclic loads.
Dynamic strain aging in the high-temperature low-cycle fatigue of SA508 Cl. 3 forging steel
NASA Astrophysics Data System (ADS)
Lee, Byung Ho; Kim, In Sup
1995-10-01
The effect of dynamic strain aging on cyclic stress response and fatigue resistance of ASME SA508 Cl.3 forging steel for nuclear reactor pressure vessels has been evaluated in the temperature range of room temperature to 500°C. Total strain ranges and strain rates were varied from 0.7 to 2.0% and from 4 × 10 -4 to 1 × 10 -2 s -1, respectively. The cyclic stress response depended on the testing temperature, strain rate, and range. Generally, the initial cyclic hardening was immediately followed by cyclic softening at all strain rates. However, at 300°C, the operating temperature of nuclear reactor pressure vessels, the variation of cyclic stress amplitude showed the primary and secondary hardening stages dependent on the strain rate and strain range. Dynamic strain aging was manifested by enhanced cyclic hardening, distinguished secondary hardening, and negative strain rate sensitivity. A modified cell shutting model was described for the onset of the secondary hardening due to the dynamic strain aging and it was in good agreement with the experimental results. Fatigue life increased in strain rate at all testing temperatures. Specifically the fatigue life was longer at the dynamic strain aging temperature. Further, the dynamic strain aging was easy to initiate the crack, while crack propagation was retarded by crack branching and suppression of plastic zone, hence the dynamic strain aging caused the improvement of fatigue resistance.
Fracture Behavior of Ceramics Under Displacement Controlled Loading
NASA Technical Reports Server (NTRS)
Calomino, Anthony; Brewer, David; Ghosn, Louis
1994-01-01
A Mode I fracture specimen and loading method has been developed which permits the observation of stable crack extension in monolithic and in situ toughened ceramics. The developed technique was used to conduct room temperature tests on commercial grade alumina (Coors' AD-995) and silicon nitride (Norton NC-132). The results of these tests are reported. Crack growth for the alumina remained subcritical throughout testing revealing possible effects of environmental stress corrosion. The crack growth resistance curve for the alumina is presented. The silicon nitride tests displayed a series of stable (slow) crack growth segments interrupted by dynamic (rapid) crack extension. Crack initiation and arrest stress intensity factors, K(sub Ic) and K(sub Ia), for silicon nitride are reported. The evolution of the specimen design through testing is briefly discussed.
Off-axis impact of unidirectional composites with cracks: Dynamic stress intensification
NASA Technical Reports Server (NTRS)
Sih, G. C.; Chen, E. P.
1979-01-01
The dynamic response of unidirectional composites under off axis (angle loading) impact is analyzed by assuming that the composite contains an initial flaw in the matrix material. The analytical method utilizes Fourier transform for the space variable and Laplace transform for the time variable. The off axis impact is separated into two parts, one being symmetric and the other skew-symmetric with reference to the crack plane. Transient boundary conditions of normal and shear tractions are applied to a crack embedded in the matrix of the unidirectional composite. The two boundary conditions are solved independently and the results superimposed. Mathematically, these conditions reduce the problem to a system of dual integral equations which are solved in the Laplace transform plane for the transformation of the dynamic stress intensity factor. The time inversion is carried out numerically for various combinations of the material properties of the composite and the results are displayed graphically.
NASA Astrophysics Data System (ADS)
Luo, Y.; Wu, S. C.; Hu, Y. N.; Fu, Y. N.
2018-03-01
Damage accumulation and failure behaviors are crucial concerns during the design and service of a critical component, leading researchers and engineers to thoroughly identifying the crack evolution. Third-generation synchrotron radiation X-ray computed microtomography can be used to detect the inner damage evolution of a large-density material or component. This paper provides a brief review of studying the crack initiation and propagation inside lightweight materials with advanced synchrotron three-dimensional (3D) X-ray imaging, such as aluminum materials. Various damage modes under both static and dynamic loading are elucidated for pure aluminum, aluminum alloy matrix, aluminum alloy metal matrix composite, and aluminum alloy welded joint. For aluminum alloy matrix, metallurgical defects (porosity, void, inclusion, precipitate, etc.) or artificial defects (notch, scratch, pit, etc.) strongly affect the crack initiation and propagation. For aluminum alloy metal matrix composites, the fracture occurs either from the particle debonding or voids at the particle/matrix interface, and the void evolution is closely related with fatigued cycles. For the hybrid laser welded aluminum alloy, fatigue cracks usually initiate from gas pores located at the surface or sub-surface and gradually propagate to a quarter ellipse or a typical semi-ellipse profile.
Numerical investigation on the prefabricated crack propagation of FV520B stainless steel
NASA Astrophysics Data System (ADS)
Pan, Juyi; Qin, Ming; Chen, Songying
FV520B is a common stainless steel for manufacturing centrifugal compressor impeller and shaft. The internal metal flaw destroys the continuity of the material matrix, resulting in the crack propagation fracture of the component, which seriously reduces the service life of the equipment. In this paper, Abaqus software was used to simulate the prefabricated crack propagation of FV520B specimen with unilateral gap. The results of static crack propagation simulation results show that the maximum value of stress-strain located at the tip of the crack and symmetrical distributed like a butterfly along the prefabricated crack direction, the maximum stress is 1990 MPa and the maximum strain is 9.489 × 10-3. The Mises stress and stress intensity factor KI increases with the increase of the expansion step, the critical value of crack initiation is reached at the 6th extension step. The dynamic crack propagation simulation shows that the crack propagation path is perpendicular to the load loading direction. Similarly, the maximum Mises stress located at the crack tip and is symmetrically distributed along the crack propagation direction. The critical stress range of the crack propagation is 23.3-43.4 MPa. The maximum value of stress-strain curve located at the 8th extension step, that is, the crack initiation point, the maximum stress is 55.22 MPa, and the maximum strain is 2.26 × 10-4. On the crack tip, the stress changed as 32.24-40.16 MPa, the strain is at 1.292 × 10-4-1.897 × 10-4.
NASA Astrophysics Data System (ADS)
Shibkov, A. A.; Zheltov, M. A.; Gasanov, M. F.; Zolotov, A. E.
2018-02-01
Spatio-temporal localization of deformation and the rupture of the aluminum-magnesium AlMg6 alloy, initiated by a geometrical stress concentrator, are studied in situ by video recording at a speed of 500 to 20000 frames/s. It is established that a stress concentrator in the form of a small notch with a depth about 1% of the width of a flat specimen is an attractor of bands of macrolocalized plastic deformation, starting from a Lüders band and ending with the start of the main crack. The key role of intersecting deformation macrobands in the development of the main crack is revealed. Possible micromechanisms of viscous destruction associated with the dynamics of the intersection of deformation bands are discussed.
Dynamic Rupture and Energy Partition in Models of Earthquake Faults
NASA Astrophysics Data System (ADS)
Shi, Z.; Needleman, A.; Ben-Zion, Y.
2006-12-01
We study properties of dynamic rupture and the partition of energy between radiation and dissipative mechanisms using 2D finite element calculations. The goal is to improve the understanding of these processes on faults at different evolutionary stages associated with different levels of geometrical complexity and possible presence of contrasting elastic properties across the fault. The initial calculations employ homogeneous media and a planar internal interface governed by a general rate- and state-dependent friction law that accounts for the gradual response of shear stress to abrupt changes of normal stress. Ruptures are initiated by gradually increasing the shear traction in a limited nucleation zone near the origin. By changing the rate dependency of the friction law and the size of the nucleation zone, we obtain four rupture modes: (i) supershear crack-like rupture; (ii) subshear crack-like rupture; (iii) subshear single pulse; and (iv) supershear train of pulses. Increasing the initial shear stress produces a transition from a subshear crack to a supershear crack, while increasing the rate dependency of the friction produces self-healing and the transition from a crack-like to a pulse mode of rupture. Properties of the nucleation process can strongly affect the rupture mode. In the cases examined, the total release of strain energy (over the same propagation distance) decreases following the order: supershear crack, subshear crack, train of pulses and single pulse. The ratio of the radiated kinetic energy to the energy dissipated in friction is about 5% for the supershear crack case and about 2% for the other three cases. Future work will involve similar calculations accounting for the generation of plastic strain in the bulk, the material contrast across the fault, and the addition of cohesive surfaces in the bulk to allow for the generation of new surfaces. The study may provide fundamental information on rupture processes in geologically-relevant circumstances and improve the understanding of physical limits on extreme ground motion. The results may be used to check assumptions made in observational works and may help to guide new observational research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ulaganathan, Jaganathan, E-mail: jagan.ulaganathan@mail.utoronto.ca; Newman, Roger C., E-mail: roger.newman@utoronto.ca
2014-06-01
The dynamic strain rate ahead of a crack tip formed during stress corrosion cracking (SCC) under a static load is assumed to arise from the crack propagation. The strain surrounding the crack tip would be redistributed as the crack grows, thereby having the effect of dynamic strain. Recently, several studies have shown cold work to cause accelerated crack growth rates during SCC, and the slip-dissolution mechanism has been widely applied to account for this via a supposedly increased crack-tip strain rate in cold worked material. While these interpretations consider cold work as a homogeneous effect, dislocations are generated inhomogeneously withinmore » the microstructure during cold work. The presence of grain boundaries results in dislocation pile-ups that cause local strain concentrations. The local strains generated from cold working α-brass by tensile elongation were characterized using electron backscatter diffraction (EBSD). The role of these local strains in SCC was studied by measuring the strain distributions from the same regions of the sample before cold work, after cold work, and after SCC. Though, the cracks did not always initiate or propagate along boundaries with pre-existing local strains from the applied cold work, the local strains surrounding the cracked boundaries had contributions from both the crack propagation and the prior cold work. - Highlights: • Plastic strain localization has a complex relationship with SCC susceptibility. • Surface relief created by cold work creates its own granular strain localization. • Cold work promotes crack growth but several other factors are involved.« less
Damage in gamma titanium aluminides due to small particle impacts
NASA Astrophysics Data System (ADS)
Stief, P. S.; Rubal, M. P.; Gray, G. T., III; Pereiras, J. M.
1998-10-01
Initiation of cracking due to small particle impacts on low ductility intermetallics is investigated experimentally and theoretically. The gamma titanium aluminide alloys of interest which are being considered for elevated temperature structural applications in aircraft engines exhibit tensile ductilities on the order of 1-2%. Cracking due to any source, including small particle impacts, is of concern given the rapid growth of cracks in fatigue. This investigation focuses on a model geometry which reproduces the rear face cracking that is induced by a small particle impinging on an air foil leading edge. Small steel spheres are projected onto thin plates at velocities ranging from 76 to 305 ms ; cracking is thereby induced on the rear surface of the plates. Through finite element analyses of the dynamic impact event and some analytical estimates, we examine the hypothesis that crack initiation due to small particle impacts can be correlated with material ductility and with the severity and spatial extent of the straining during the impact event. In addition, with the use of static indentation tests in which similar strain distributions are present, some insight is gained into the difference in ductility between high and low strain rates. 1998 Elsevier Science Ltd.
Modelling explicit fracture of nuclear fuel pellets using peridynamics
NASA Astrophysics Data System (ADS)
Mella, R.; Wenman, M. R.
2015-12-01
Three dimensional models of explicit cracking of nuclear fuel pellets for a variety of power ratings have been explored with peridynamics, a non-local, mesh free, fracture mechanics method. These models were implemented in the explicitly integrated molecular dynamics code LAMMPS, which was modified to include thermal strains in solid bodies. The models of fuel fracture, during initial power transients, are shown to correlate with the mean number of cracks observed on the inner and outer edges of the pellet, by experimental post irradiation examination of fuel, for power ratings of 10 and 15 W g-1 UO2. The models of the pellet show the ability to predict expected features such as the mid-height pellet crack, the correct number of radial cracks and initiation and coalescence of radial cracks. This work presents a modelling alternative to empirical fracture data found in many fuel performance codes and requires just one parameter of fracture strain. Weibull distributions of crack numbers were fitted to both numerical and experimental data using maximum likelihood estimation so that statistical comparison could be made. The findings show P-values of less than 0.5% suggesting an excellent agreement between model and experimental distributions.
Athermal brittle-to-ductile transition in amorphous solids.
Dauchot, Olivier; Karmakar, Smarajit; Procaccia, Itamar; Zylberg, Jacques
2011-10-01
Brittle materials exhibit sharp dynamical fractures when meeting Griffith's criterion, whereas ductile materials blunt a sharp crack by plastic responses. Upon continuous pulling, ductile materials exhibit a necking instability that is dominated by a plastic flow. Usually one discusses the brittle to ductile transition as a function of increasing temperature. We introduce an athermal brittle to ductile transition as a function of the cutoff length of the interparticle potential. On the basis of extensive numerical simulations of the response to pulling the material boundaries at a constant speed we offer an explanation of the onset of ductility via the increase in the density of plastic modes as a function of the potential cutoff length. Finally we can resolve an old riddle: In experiments brittle materials can be strained under grip boundary conditions and exhibit a dynamic crack when cut with a sufficiently long initial slot. Mysteriously, in molecular dynamics simulations it appeared that cracks refused to propagate dynamically under grip boundary conditions, and continuous pulling was necessary to achieve fracture. We argue that this mystery is removed when one understands the distinction between brittle and ductile athermal amorphous materials.
Double torsion fracture mechanics testing of shales under chemically reactive conditions
NASA Astrophysics Data System (ADS)
Chen, X.; Callahan, O. A.; Holder, J. T.; Olson, J. E.; Eichhubl, P.
2015-12-01
Fracture properties of shales is vital for applications such as shale and tight gas development, and seal performance of carbon storage reservoirs. We analyze the fracture behavior from samples of Marcellus, Woodford, and Mancos shales using double-torsion (DT) load relaxation fracture tests. The DT test allows the determination of mode-I fracture toughness (KIC), subcritical crack growth index (SCI), and the stress-intensity factor vs crack velocity (K-V) curves. Samples are tested at ambient air and aqueous conditions with variable ionic concentrations of NaCl and CaCl2, and temperatures up to 70 to determine the effects of chemical/environmental conditions on fracture. Under ambient air condition, KIC determined from DT tests is 1.51±0.32, 0.85±0.25, 1.08±0.17 MPam1/2 for Marcellus, Woodford, and Mancos shales, respectively. Tests under water showed considerable change of KIC compared to ambient condition, with 10.6% increase for Marcellus, 36.5% decrease for Woodford, and 6.7% decrease for Mancos shales. SCI under ambient air condition is between 56 and 80 for the shales tested. The presence of water results in a significant reduction of the SCI from 70% to 85% compared to air condition. Tests under chemically reactive solutions are currently being performed with temperature control. K-V curves under ambient air conditions are linear with stable SCI throughout the load-relaxation period. However, tests conducted under water result in an initial cracking period with SCI values comparable to ambient air tests, which then gradually transition into stable but significantly lower SCI values of 10-20. The non-linear K-V curves reveal that crack propagation in shales is initially limited by the transport of chemical agents due to their low permeability. Only after the initial cracking do interactions at the crack tip lead to cracking controlled by faster stress corrosion reactions. The decrease of SCI in water indicates higher crack propagation velocity due to faster stress corrosion rate in water than in ambient air. The experimental results are applicable for the prediction of fracture initiation based on KIC, modeling fracture pattern based on SCI, and the estimation of dynamic fracture propagation such as crack growth velocity and crack re-initiation.
An Evaluation of the Applicability of Damage Tolerance to Dynamic Systems
NASA Technical Reports Server (NTRS)
Forth, Scott C.; Le, Dy; Turnberg, Jay
2005-01-01
The Federal Aviation Administration, the National Aeronautics and Space Administration and the aircraft industry have teamed together to develop methods and guidance for the safe life-cycle management of dynamic systems. Based on the success of the United States Air Force damage tolerance initiative for airframe structure, a crack growth based damage tolerance approach is being examined for implementation into the design and management of dynamic systems. However, dynamic systems accumulate millions of vibratory cycles per flight hour, more than 12,000 times faster than an airframe system. If a detectable crack develops in a dynamic system, the time to failure is extremely short, less than 100 flight hours in most cases, leaving little room for error in the material characterization, life cycle analysis, nondestructive inspection and maintenance processes. In this paper, the authors review the damage tolerant design process focusing on uncertainties that affect dynamic systems and evaluate the applicability of damage tolerance on dynamic systems.
NASA Technical Reports Server (NTRS)
Chio, S. R.; Gyekenyesi, J. P.
1999-01-01
A two-dimensional, numerical analysis of slow crack growth (SCG) was performed for brittle materials with finite thickness subjected to constant stress-rate ("dynamic fatigue") loading in flexure. The numerical solution showed that the conventional, simple, one-dimensional analytical solution can be used with a maximum error of about 5% in determining the SCG parameters of a brittle material with the conditions of a normalized thickness (a ratio of specimen thickness to initial crack size) T > 3.3 and of a SCG parameter n > 10. The change in crack shape from semicircular to elliptical configurations was significant particularly at both low stress rate and low T, attributed to predominant difference in stress intensity factor along the crack front. The numerical solution of SCG parameters was supported within the experimental range by the data obtained from constant stress-rate flexural testing for soda-lime glass microslides at ambient temperature.
Stress corrosion cracking of titanium alloys
NASA Technical Reports Server (NTRS)
May, R. C.; Beck, F. H.; Fontana, M. G.
1971-01-01
Experiments were conducted to study (1) the basic electrochemical behavior of titanium in acid chloride solutions and (2) the response of the metal to dynamic straining in the same evironment. The aim of this group of experiments was to simulate, as nearly as possible, the actual conditions which exist at the tip of a crack. One of the foremost theories proposed to explain the propagation of stress corrosion cracks is a hydrogen embrittlement theory involving the precipitation of embrittling titanium hydrides inside the metal near the crack tip. An initial survey of the basic electrochemical literature indicated that surface hydrides play a critical role in the electrochemistry of titanium in acid solutions. A comprehensive analysis of the effect of surface films, particularly hydrides, on the electrochemical behavior of titanium in these solution is presented.
NASA Astrophysics Data System (ADS)
Stewart, R. D.; Abou Najm, M. R.; Rupp, D. E.; Selker, J. S.
2010-12-01
Shrinking/swelling soils are characterized by transient crack networks which function as dominant controls on the partitioning of surface and subsurface flow, the rate and depth of percolation, and evaporation rates. For such soils, understanding the dynamics of cracks is critical to accurately quantify their influence on groundwater recharge, stream-flow generation, and solute transport, among other component of a site’s hydrology. We propose a low-cost method for measuring transient crack-volume using a sealed plastic bag connected by a hose to a PVC standpipe. The empty bag is placed into the crack, and then water is added via the standpipe, until the bag has expanded to the boundaries of the crack and some water remains in the standpipe. As the crack shrinks or swells, its volume changes, causing water displacement within the bag, which is measured as a corresponding change in water level in the standpipe. An automated level logger within the standpipe is used to record changes in water level, which are converted to volumetric changes from the known internal cross-sectional area of the standpipe. The volume of water filling the bag is accurately measured at the start and completion of the experiment (to check for leakage). Adding the startup volume to the cumulative temporal volumetric change in the standpipe provides a simple and accurate method for monitoring transient crack volume. Currently, the design is undergoing preliminary testing in a field site in Ninhue, Chile, and field and laboratory testing in Corvallis, Oregon. Initial results from the Chilean field site suggest that the crack-o-meters are responding to the closing of cracks, but further effort is needed to calibrate and validate the results. We hope that these low-cost “crack-o-meters” will become useful and simple tools for researchers to quantify temporal changes in crack volume with the objective of incorporating these results into hydrological modeling efforts.
Sirimamilla, P. Abhiram; Furmanski, Jevan; Rimnac, Clare M.
2012-01-01
The mechanism of crack initiation from a clinically relevant notch is not well-understood for crosslinked ultra high molecular weight polyethylene (UHMWPE) used in total joint replacement components. Static mode driving forces, rather than the cyclic mode conditions typically associated with fatigue processes, have been shown to drive crack propagation in this material. Thus, in this study, crack initiation in a notched specimen under a static load was investigated. A video microscope was used to monitor the notch surface of the specimen and crack initiation time was measured from the video by identifying the onset of crack initiation at the notch. Crack initiation was considered using a viscoelastic fracture theory. It was found that the mechanism of crack initiation involved both single layer and a distributed multi-layer phenomenon and that multi-layer crack initiation delayed the crack initiation time for all loading conditions examined. The findings of this study support that the viscoelastic fracture theory governs fracture mechanics in crosslinked UHMWPE. The findings also support that crack initiation from a notch in UHMWPE is a more complex phenomenon than treated by traditional fracture theories for polymers. PMID:23127638
Gear fatigue crack prognosis using embedded model, gear dynamic model and fracture mechanics
NASA Astrophysics Data System (ADS)
Li, C. James; Lee, Hyungdae
2005-07-01
This paper presents a model-based method that predicts remaining useful life of a gear with a fatigue crack. The method consists of an embedded model to identify gear meshing stiffness from measured gear torsional vibration, an inverse method to estimate crack size from the estimated meshing stiffness; a gear dynamic model to simulate gear meshing dynamics and determine the dynamic load on the cracked tooth; and a fast crack propagation model to forecast the remaining useful life based on the estimated crack size and dynamic load. The fast crack propagation model was established to avoid repeated calculations of FEM and facilitate field deployment of the proposed method. Experimental studies were conducted to validate and demonstrate the feasibility of the proposed method for prognosis of a cracked gear.
The Role of Structural Dynamics and Testing in the Shuttle Flowliner Crack Investigation
NASA Technical Reports Server (NTRS)
Frady, Gregory P.
2005-01-01
During a normal inspection of the main propulsion system at Kennedy Space Center, small cracks were noticed near a slotted region of a gimbal joint flowliner located just upstream from one of the Space Shuttle Main Engines (SSME). These small cracks sparked an investigation of the entire Space Shuttle fleet main propulsion feedlines. The investigation was initiated to determine the cause of the small cracks and a repair method that would be needed to return the Shuttle fleet back to operation safely. The cracks were found to be initiated by structural resonance caused by flow fluctuations from the SSME low pressure fuel turbopump interacting with the flowliner. The pump induced backward traveling wakes that excited the liner and duct acoustics which also caused the liner to vibrate in complex mode shapes. The investigation involved an extensive effort by a team of engineers from the NASA civil servant and contractor workforce with the goal to characterize the root cause of the cracking behavior of the fuel side gimbal joint flowliners. In addition to working to identify the root cause, a parallel path was taken to characterize the material properties and fatigue capabilities of the liner material such that the life of the liners could be ascertained. As the characterization of the material and the most probable cause matured, the combination of the two with pump speed restrictions provided a means to return the Shuttle to flight in a safe manner. This paper traces the flowliner investigation results with respect to the structural dynamics analysis, component level testing and hot-fire flow testing on a static testbed. The paper will address the unique aspects of a very complex problem involving backflow from a high performance pump that has never been characterized nor understood to such detail. In addition, the paper will briefly address the flow phenomena that excited the liners, the unique structural dynamic modal characteristics and the variability of SSME operation which has ultimately ensured the safe and reliable operation of the shuttle main engines for each flight.
A preliminary study of crack initiation and growth at stress concentration sites
NASA Technical Reports Server (NTRS)
Dawicke, D. S.; Gallagher, J. P.; Hartman, G. A.; Rajendran, A. M.
1982-01-01
Crack initiation and propagation models for notches are examined. The Dowling crack initiation model and the E1 Haddad et al. crack propagation model were chosen for additional study. Existing data was used to make a preliminary evaluation of the crack propagation model. The results indicate that for the crack sizes in the test, the elastic parameter K gave good correlation for the crack growth rate data. Additional testing, directed specifically toward the problem of small cracks initiating and propagating from notches is necessary to make a full evaluation of these initiation and propagation models.
NASA Astrophysics Data System (ADS)
Ma, Xiao; Li, Xinguo; Zheng, Xianxu; Li, Kewu; Hu, Qiushi; Li, Jianling
2017-11-01
In recent decades, the hot-spot theory of condensed-phase explosives has been a compelling focus of scientific investigation attracting many researchers. The defect in the polymeric binder of the polymer-bonded explosive is called the intergranular defect. In this study, the real polymeric binder was substituted by poly(methyl methacrylate) (PMMA) as it is transparent and has similar thermodynamic properties to some binders. A set of modified split Hopkinson pressure bars equipped with a time-resolved shadowgraph was used to study the process of crack initiation and potential hot-spot formation around a cylindrical defect in PMMA. The new and significant phenomenon that the opening-mode crack emerged earlier than the shearing-mode crack from the cylindrical defect has been published for the first time in this paper. Furthermore, a two-dimensional numerical simulation was performed to show the evolution of both the stress field and the temperature field. The simulation results were in good agreement with the experiment. Finally, the law of potential hot-spot formation is discussed in detail.
NASA Astrophysics Data System (ADS)
Li, Xiaozhao; Qi, Chengzhi; Shao, Zhushan; Ma, Chao
2018-02-01
Natural brittle rock contains numerous randomly distributed microcracks. Crack initiation, growth, and coalescence play a predominant role in evaluation for the strength and failure of brittle rocks. A new analytical method is proposed to predict the strength and failure of brittle rocks containing initial microcracks. The formulation of this method is based on an improved wing crack model and a suggested micro-macro relation. In this improved wing crack model, the parameter of crack angle is especially introduced as a variable, and the analytical stress-crack relation considering crack angle effect is obtained. Coupling the proposed stress-crack relation and the suggested micro-macro relation describing the relation between crack growth and axial strain, the stress-strain constitutive relation is obtained to predict the rock strength and failure. Considering different initial microcrack sizes, friction coefficients and confining pressures, effects of crack angle on tensile wedge force acting on initial crack interface are studied, and effects of crack angle on stress-strain constitutive relation of rocks are also analyzed. The strength and crack initiation stress under different crack angles are discussed, and the value of most disadvantaged angle triggering crack initiation and rock failure is founded. The analytical results are similar to the published study results. Rationality of this proposed analytical method is verified.
Statistical distribution of time to crack initiation and initial crack size using service data
NASA Technical Reports Server (NTRS)
Heller, R. A.; Yang, J. N.
1977-01-01
Crack growth inspection data gathered during the service life of the C-130 Hercules airplane were used in conjunction with a crack propagation rule to estimate the distribution of crack initiation times and of initial crack sizes. A Bayesian statistical approach was used to calculate the fraction of undetected initiation times as a function of the inspection time and the reliability of the inspection procedure used.
Stable Tearing and Buckling Responses of Unstiffened Aluminum Shells with Long Cracks
NASA Technical Reports Server (NTRS)
Starnes, James H., Jr.; Rose, Cheryl A.
1999-01-01
The results of an analytical and experimental study of the nonlinear response of thin, unstiffened, aluminum cylindrical shells with a long longitudinal crack are presented. The shells are analyzed with a nonlinear shell analysis code that accurately accounts for global and local structural response phenomena. Results are presented for internal pressure and for axial compression loads. The effect of initial crack length on the initiation of stable crack growth and unstable crack growth in typical shells subjected to internal pressure loads is predicted using geometrically nonlinear elastic-plastic finite element analyses and the crack-tip-opening angle (CTOA) fracture criterion. The results of these analyses and of the experiments indicate that the pressure required to initiate stable crack growth and unstable crack growth in a shell subjected to internal pressure loads decreases as the initial crack length increases. The effects of crack length on the prebuckling, buckling and postbuckling responses of typical shells subjected to axial compression loads are also described. For this loading condition, the crack length was not allowed to increase as the load was increased. The results of the analyses and of the experiments indicate that the initial buckling load and collapse load for a shell subjected to axial compression loads decrease as the initial crack length increases. Initial buckling causes general instability or collapse of a shell for shorter initial crack lengths. Initial buckling is a stable local response mode for longer initial crack lengths. This stable local buckling response is followed by a stable postbuckling response, which is followed by general or overall instability of the shell.
Stable Tearing and Buckling Responses of Unstiffened Aluminum Shells with Long Cracks
NASA Technical Reports Server (NTRS)
Starnes, James H., Jr.; Rose, Cheryl A.
1998-01-01
The results of an analytical and experimental study of the nonlinear response of thin, unstiffened, aluminum cylindrical shells with a long longitudinal crack are presented. The shells are analyzed with a nonlinear shell analysis code that accurately accounts for global and local structural response phenomena. Results are presented for internal pressure and for axial compression loads. The effect of initial crack length on the initiation of stable crack growth and unstable crack growth in typical shells subjected to internal pressure loads is predicted using geometrically nonlinear elastic-plastic finite element analyses and the crack-tip-opening angle (CTOA) fracture criterion. The results of these analyses and of the experiments indicate that the pressure required to initiate stable crack growth and unstable crack growth in a shell subjected to internal pressure loads decreases as the initial crack length increases. The effects of crack length on the prebuckling, buckling and postbuckling responses of typical shells subjected to axial compression loads are also described. For this loading condition, the crack length was not allowed to increase as the load was increased. The results of the analyses and of the experiments indicate that the initial buckling load and collapse load for a shell subjected to axial compression loads decrease as the initial crack length increases. Initial buckling causes general instability or collapse of a shell for shorter initial crack lengths. Initial buckling is a stable local response mode for longer initial crack lengths. This stable local buckling response is followed by a stable postbuckling response, which is followed by general or overall instability of the shell.
Mode I and mixed I/III crack initiation and propagation behavior of V-4Cr-4Ti alloy at 25{degrees}C
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, H.X.; Kurtz, R.J.; Jones, R.H.
1997-04-01
The mode I and mixed-mode I/III fracture behavior of the production-scale heat (No. 832665) of V-4Cr-4Ti has been investigated at 25{degrees}C using compact tension (CT) specimens for a mode I crack and modified CT specimens for a mixed-mode I/III crack. The mode III to mode I load ratio was 0.47. Test specimens were vacuum annealed at 1000{degrees}C for 1 h after final machining. Both mode I and mixed-mode I/III specimens were fatigue cracked prior to J-integral testing. It was noticed that the mixed-mode I/III crack angle decreased from an initial 25 degrees to approximately 23 degrees due to crack planemore » rotation during fatigue cracking. No crack plane rotation occurred in the mode I specimen. The crack initiation and propagation behavior was evaluated by generating J-R curves. Due to the high ductility of this alloy and the limited specimen thickness (6.35 mm), plane strain requirements were not met so valid critical J-integral values were not obtained. However, it was found that the crack initiation and propagation behavior was significantly different between the mode I and the mixed-mode I/III specimens. In the mode I specimen crack initiation did not occur, only extensive crack tip blunting due to plastic deformation. During J-integral testing the mixed-mode crack rotated to an increased crack angle (in contrast to fatigue precracking) by crack blunting. When the crack initiated, the crack angle was about 30 degrees. After crack initiation the crack plane remained at 30 degrees until the test was completed. Mixed-mode crack initiation was difficult, but propagation was easy. The fracture surface of the mixed-mode specimen was characterized by microvoid coalescence.« less
Rupture Dynamics along Thrust Dipping Fault: Inertia Effects due to Free Surface Wave Interactions
NASA Astrophysics Data System (ADS)
Vilotte, J. P.; Scala, A.; Festa, G.
2017-12-01
We numerically investigate the dynamic interaction between free surface and up-dip, in-plane rupture propagation along thrust faults, under linear slip-weakening friction. With reference to shallow along-dip rupture propagation during large subduction earthquakes, we consider here low dip-angle fault configurations with fixed strength excess and depth-increasing initial stress. In this configuration, the rupture undergoes a break of symmetry with slip-induced normal stress perturbations triggered by the interaction with reflected waves from the free surface. We found that both body-waves - behind the crack front - and surface waves - at the crack front - can trigger inertial effects. When waves interact with the rupture before this latter reaches its asymptotic speed, the rupture can accelerate toward the asymptotic speed faster than in the unbounded symmetric case, as a result of these inertial effects. Moreover, wave interaction at the crack front also affects the slip rate generating large ground motion on the hanging wall. Imposing the same initial normal stress, frictional strength and stress drop while varying the static friction coefficient we found that the break of symmetry makes the rupture dynamics dependent on the absolute value of friction. The higher the friction the stronger the inertial effect both in terms of rupture acceleration and slip amount. When the contact condition allows the fault interface to open close to the free surface, the length of the opening zone is shown to depend on the propagation length, the initial normal stress and the static friction coefficient. These new results are shown to agree with analytical results of rupture propagation in bounded media, and open new perspectives for understanding the shallow rupture of large subduction earthquakes and tsunami sources.
On crack initiation in notched, cross-plied polymer matrix composites
NASA Astrophysics Data System (ADS)
Yang, Q. D.; Schesser, D.; Niess, M.; Wright, P.; Mavrogordato, M. N.; Sinclair, I.; Spearing, S. M.; Cox, B. N.
2015-05-01
The physics of crack initiation in a polymer matrix composite are investigated by varying the modeling choices made in simulations and comparing the resulting predictions with high-resolution in situ images of cracks. Experimental data were acquired using synchrotron-radiation computed tomography (SRCT) at a resolution on the order of 1 μm, which provides detailed measurement of the location, shape, and size of small cracks, as well as the crack opening and shear displacements. These data prove sufficient to discriminate among competing physical descriptions of crack initiation. Simulations are executed with a high-fidelity formulation, the augmented finite element method (A-FEM), which permits consideration of coupled damage mechanisms, including both discrete cracks and fine-scale continuum damage. The discrete cracks are assumed to be nonlinear fracture events, governed by reasonably general mixed-mode cohesive laws. Crack initiation is described in terms of strength parameters within the cohesive laws, so that the cohesive law provides a unified model for crack initiation and growth. Whereas the cracks investigated are typically 1 mm or less in length, the fine-scale continuum damage refers to irreversible matrix deformation occurring over gauge lengths extending down to the fiber diameter (0.007 mm). We find that the location and far-field stress for crack initiation are predicted accurately only if the variations of local stress within plies and in the presence of stress concentrators (notches, etc.) are explicitly computed and used in initiation criteria; stress redistribution due to matrix nonlinearity that occurs prior to crack initiation is accounted for; and a mixed-mode criterion is used for crack initiation. If these factors are not all considered, which is the case for commonly used failure criteria, predictions of the location and far-field stress for initiation are not accurate.
Dynamic fracture behavior of single and contacting Poly(methyl methacrylate) particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parab, Niranjan D.; Guo, Zherui; Hudspeth, Matthew C.
Fracture behaviors of single, two, and multiple contacting spherical Poly (methyl methacrylate) (PMMA) particles were recorded using high speed synchrotron X-ray phase contrast imaging. A miniaturized Kolsky bar setup was used to apply dynamic compressive loading on the PMMA particles. In both single and two particle experiments, cracking initiated near the center of the particles and propagated towards the contacts. The crack bifurcated near the contact points for single particle experiments, thus forming conical fragments. The crack bifurcation and subsequent conical fragment formation was observed only at the particle-particle contact for two particle experiments. The particles were observed to fracturemore » in hemispherical fragments normal to the contact plane in the multiparticle experiments. The observed failure mechanisms strongly suggest that the maximum tensile stress near the center of the particle is the critical parameter governing fracture of the particles. Moreover, the compressive stress under the contact areas led to the bifurcation and subsequent conical fragment formation.« less
Dynamic fracture behavior of single and contacting Poly(methyl methacrylate) particles
Parab, Niranjan D.; Guo, Zherui; Hudspeth, Matthew C.; ...
2017-09-19
Fracture behaviors of single, two, and multiple contacting spherical Poly (methyl methacrylate) (PMMA) particles were recorded using high speed synchrotron X-ray phase contrast imaging. A miniaturized Kolsky bar setup was used to apply dynamic compressive loading on the PMMA particles. In both single and two particle experiments, cracking initiated near the center of the particles and propagated towards the contacts. The crack bifurcated near the contact points for single particle experiments, thus forming conical fragments. The crack bifurcation and subsequent conical fragment formation was observed only at the particle-particle contact for two particle experiments. The particles were observed to fracturemore » in hemispherical fragments normal to the contact plane in the multiparticle experiments. The observed failure mechanisms strongly suggest that the maximum tensile stress near the center of the particle is the critical parameter governing fracture of the particles. Moreover, the compressive stress under the contact areas led to the bifurcation and subsequent conical fragment formation.« less
Dynamic ductile fracture of a central crack
NASA Technical Reports Server (NTRS)
Tsai, Y. M.
1976-01-01
A central crack, symmetrically growing at a constant speed in a two dimensional ductile material subject to uniform tension at infinity, is investigated using the integral transform methods. The crack is assumed to be the Dugdale crack, and the finite stress condition at the crack tip is satisfied during the propagation of the crack. Exact expressions of solution are obtained for the finite stress condition at the crack tip, the crack shape, the crack opening displacement, and the energy release rate. All those expressions are written as the product of explicit dimensional quantities and a nondimensional dynamic correction function. The expressions reduce to the associated static results when the crack speed tends to zero, and the nondimensional dynamic correction functions were calculated for various values of the parameter involved.
Effect of Understress on Fretting Fatigue Crack Initiation of Press-Fitted Axle
NASA Astrophysics Data System (ADS)
Kubota, Masanobu; Niho, Sotaro; Sakae, Chu; Kondo, Yoshiyuki
Axles are one of the most important components in railway vehicles with regard to safety, since a fail-safe design is not available. The problems of fretting fatigue crack initiation in a press-fitted axle have not been completely solved even though up-to-date fatigue design methods are employed. The objective of the present study is to clarify the effect of understress on fretting fatigue crack initiation behavior in the press-fitted axle. Most of the stress amplitude given to the axle in service is smaller than the fretting fatigue limit based on the stress to initiate cracks under a constant load σwf1. Rotating bending fatigue tests were performed using a 40mm-diameter press-fitted axle assembly. Two-step variable stresses consisting of σwf1 and half or one-third of σwf1 were used in the experiment. Crack initiation life was defined as the number of cycles when a fretting fatigue crack, which is longer than 30µm, was found using a metallurgical microscope. Fretting fatigue cracks were initiated even when the variable stress did not contain the stress above the fretting fatigue crack initiation limit. The crack initiation life varied from 4.0×107 to 1.2×108 depending on the stress frequency ratio nL/nH. The sum of the number of cycles of higher stress at crack initiation NH was much smaller than the number of cycles to initiate cracks estimated from the modified Miner's rule. The value of the modified Miner's damage ranged from 0.013 to 0.185. To clarify the effect of variable amplitude on the fretting fatigue crack initiation, a comprehensive investigation related to relative slip, tangential force and fretting wear is necessary.
Mesoscale simulation of concrete spall failure
NASA Astrophysics Data System (ADS)
Knell, S.; Sauer, M.; Millon, O.; Riedel, W.
2012-05-01
Although intensively studied, it is still being debated which physical mechanisms are responsible for the increase of dynamic strength and fracture energy of concrete observed at high loading rates, and to what extent structural inertia forces on different scales contribute to the observation. We present a new approach for the three dimensional mesoscale modelling of dynamic damage and cracking in concrete. Concrete is approximated as a composite of spherical elastic aggregates of mm to cm size embedded in an elastic cement stone matrix. Cracking within the matrix and at aggregate interfaces in the μm range are modelled with adaptively inserted—initially rigid—cohesive interface elements. The model is applied to analyse the dynamic tensile failure observed in Hopkinson-Bar spallation experiments with strain rates up to 100/s. The influence of the key mesoscale failure parameters of strength, fracture energy and relative weakening of the ITZ on macromechanic strength, momentum and energy conservation is numerically investigated.
Investigation of Cracks Found in Helicopter Longerons
NASA Technical Reports Server (NTRS)
Newman, John A.; Baughman, James M.; Wallace, Terryl A.
2009-01-01
Four cracked longerons, containing a total of eight cracks, were provided for study. Cracked regions were cut from the longerons. Load was applied to open the cracks, enabling crack surface examination. Examination revealed that crack propagation was driven by fatigue loading in all eight cases. Fatigue crack initiation appears to have occurred on the top edge of the longerons near geometric changes that affect component bending stiffness. Additionally, metallurigical analysis has revealed a local depletion in alloying elements in the crack initiation regions that may be a contributing factor. Fatigue crack propagation appeared to be initially driven by opening-mode loading, but at a crack length of approximately 0.5 inches (12.7 mm), there is evidence of mixed-mode crack loading. For the longest cracks studied, shear-mode displacements destroyed crack-surface features of interest over significant portions of the crack surfaces.
Investigation of Helicopter Longeron Cracks
NASA Technical Reports Server (NTRS)
Newman, John A.; Baughman, James; Wallace, Terryl A.
2009-01-01
Four cracked longerons, containing a total of eight cracks, were provided for study. Cracked regions were cut from the longerons. Load was applied to open the cracks, enabling crack surface examination. Examination revealed that crack propagation was driven by fatigue loading in all eight cases. Fatigue crack initiation appears to have occurred on the top edge of the longerons near geometric changes that affect component bending stiffness. Additionally, metallurgical analysis has revealed a local depletion in alloying elements in the crack initiation regions that may be a contributing factor. Fatigue crack propagation appeared to be initially driven by opening-mode loading, but at a crack length of approximately 0.5 inches (12.7 mm), there is evidence of mixed-mode crack loading. For the longest cracks studied, shear-mode displacements destroyed crack-surface features of interest over significant portions of the crack surfaces.
Valdez, Avelardo; Cepeda, Alice; Negi, Nalini Junko; Kaplan, Charles
2010-10-01
The devastating effects of Hurricane Katrina have contributed to a dynamic demographic shift in the Latino composition of New Orleans. This article focuses on a particularly deleterious pattern of crack cocaine smoking associated with numerous social and health consequences. Utilizing a rapid assessment methodology, in-depth qualitative interviews were conducted with 52 Latino immigrant day laborers in New Orleans. Findings reveal that the presence of a flourishing drug market has facilitated and maintained patterns of crack use including initiation and periods of daily use. Moreover, feelings of isolation and constant exposure to victimization due to day laborers' marginal status are described as contributing to this use. This qualitative analysis reveals how social processes and contextual factors contribute to crack use among Latino day laborers in a post-disaster context. This study has important public health implications in the spread of HIV and other blood borne pathogens.
NASA Astrophysics Data System (ADS)
Hai-Yang, Song; Yu-Long, Li
2016-02-01
The effects of amorphous lamella on the crack propagation behavior in crystalline/amorphous (C/A) Mg/Mg-Al nanocomposites under tensile loading are investigated using the molecular dynamics simulation method. The sample with an initial crack of orientation [0001] is considered here. For the nano-monocrystal Mg, the crack growth exhibits brittle cleavage. However, for the C/A Mg/Mg-Al nanocomposites, the ‘double hump’ behavior can be observed in all the stress-strain curves regardless of the amorphous lamella thickness. The results indicate that the amorphous lamella plays a critical role in the crack deformation, and it can effectively resist the crack propagation. The above mentioned crack deformation behaviors are also disclosed and analyzed in the present work. The results here provide a strategy for designing the high-performance hexagonal-close-packed metal and alloy materials. Project supported by the National Natural Science Foundation of China (Grant Nos. 11372256 and 11572259), the 111 Project (Grant No. B07050), the Program for New Century Excellent Talents in University of Ministry of Education of China (Grant No. NCET-12-1046), and the Program for New Scientific and Technological Star of Shaanxi Province, China (Grant No. 2012KJXX-39).
Cracking process of Fe-26Cr-1Mo during low cycle corrosion fatigue
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, J.Q.; Li, J.; Wang, Z.F.
1994-12-01
The corrosion fatigue (CF) life has been divided classically into the initiation'' and propagation'' periods. Usually, the crack initiation process dominates the component lifetime under the low cycle CF condition because the crack propagates rapidly one initiated. Despite much work done on the research of the CF crack initiation mechanisms, however, a full understanding of crack initiation is still lacking. There are some limitations in explaining the CF crack initiation in an aqueous solution using the above four mechanisms individually. And, it is difficult to conduct experiments in which one mechanism along can be examined. Although CF is complicated, itmore » is possible to reproduce a specific experiment condition which will have the dominant factor affecting the CF crack initiation. Once the cracks initiate on the smooth metal surface, their coalescence, micropropagation and macropropagation will take place successively. The initiated cracks propagate first in the range of several grains, and the behavior of the microcrack propagation is different from that of macrocrack propagation. For Fe-26Cr-1Mo ferritic stainless steel, the fundamental research work of straining electrode has been done by many investigators, but the observation of the material surface at different deformation processes has not been reported. In the present study, the detailed observation of the cracking process of the material has been carried out in low cycle CF.« less
Durability and life prediction modeling in polyimide composites
NASA Technical Reports Server (NTRS)
Binienda, Wieslaw K.
1995-01-01
Sudden appearance of cracks on a macroscopically smooth surface of brittle materials due to cooling or drying shrinkage is a phenomenon related to many engineering problems. Although conventional strength theories can be used to predict the necessary condition for crack appearance, they are unable to predict crack spacing and depth. On the other hand, fracture mechanics theory can only study the behavior of existing cracks. The theory of crack initiation can be summarized into three conditions, which is a combination of a strength criterion and laws of energy conservation, the average crack spacing and depth can thus be determined. The problem of crack initiation from the surface of an elastic half plane is solved and compares quite well with available experimental evidence. The theory of crack initiation is also applied to concrete pavements. The influence of cracking is modeled by the additional compliance according to Okamura's method. The theoretical prediction by this structural mechanics type of model correlates very well with the field observation. The model may serve as a theoretical foundation for future pavement joint design. The initiation of interactive cracks of quasi-brittle material is studied based on a theory of cohesive crack model. These cracks may grow simultaneously, or some of them may close during certain stages. The concept of crack unloading of cohesive crack model is proposed. The critical behavior (crack bifurcation, maximum loads) of the cohesive crack model are characterized by rate equations. The post-critical behavior of crack initiation is also studied.
The crack effect on instability in a machine tool spindle with gas bearings
NASA Astrophysics Data System (ADS)
Huang, Bo-Wun
2005-09-01
Gas-bearing spindles are required for increased spindle speed in precise machining. Due to manufacturing flaws or cyclic loading, cracks frequently appear in a rotating spindle systems. Cracks markedly affect the dynamic characteristics of rotating machinery. Hence, in this study, high-speed spindles with gas bearings and the crack effect on the instability dynamics are considered. Most investigations on dynamic characteristics of the spindle system were confined to ball-bearing-type spindles. This work examines the dynamic instability in a cracked rotating spindle system with gas bearings. A round Euler-Bernoulli beam is used to approximate the spindle. The Hamilton principle is applied to derive the equation of motion for the spindle system. The effects of crack depth, rotation speed and provided air pressure on the dynamic instability of a rotating spindle system are studied
Non-local damage rheology and size effect
NASA Astrophysics Data System (ADS)
Lyakhovsky, V.
2011-12-01
We study scaling relations controlling the onset of transiently-accelerating fracturing and transition to dynamic rupture propagation in a non-local damage rheology model. The size effect is caused principally by growth of a fracture process zone, involving stress redistribution and energy release associated with a large fracture. This implies that rupture nucleation and transition to dynamic propagation are inherently scale-dependent processes. Linear elastic fracture mechanics (LEFM) and local damage mechanics are formulated in terms of dimensionless strain components and thus do not allow introducing any space scaling, except linear relations between fracture length and displacements. Generalization of Weibull theory provides scaling relations between stress and crack length at the onset of failure. A powerful extension of the LEFM formulation is the displacement-weakening model which postulates that yielding is complete when the crack wall displacement exceeds some critical value or slip-weakening distance Dc at which a transition to kinetic friction is complete. Scaling relations controlling the transition to dynamic rupture propagation in slip-weakening formulation are widely accepted in earthquake physics. Strong micro-crack interaction in a process zone may be accounted for by adopting either integral or gradient type non-local damage models. We formulate a gradient-type model with free energy depending on the scalar damage parameter and its spatial derivative. The damage-gradient term leads to structural stresses in the constitutive stress-strain relations and a damage diffusion term in the kinetic equation for damage evolution. The damage diffusion eliminates the singular localization predicted by local models. The finite width of the localization zone provides a fundamental length scale that allows numerical simulations with the model to achieve the continuum limit. A diffusive term in the damage evolution gives rise to additional damage diffusive time scale associated with the structural length scale. The ratio between two time scales associated with damage accumulation and diffusion, the damage diffusivity ratio, reflects the role of the diffusion-controlled delocalization. We demonstrate that localized fracturing occurs at the damage diffusivity ratio below certain critical value leading to a linear scaling between stress and crack length compatible with size effect for failures at crack initiation. A subseuqent quasi-static fracture growth is self-similar with increasing size of the process zone proportional to the fracture length. At a certain stage, controlled by dynamic weakening, the self-similarity breaks down and crack velocity significantly deviates from that predicted by the quasi-static regime, the size of the process zone decreases, and the rate of crack growth ceases to be controlled by the rate of damage increase. Furthermore, the crack speed approaches that predicted by the elasto-dynamic equation. The non-local damage rheology model predicts that the nucleation size of the dynamic fracture scales with fault zone thickness distance of the stress interraction.
A risk assessment method for multi-site damage
NASA Astrophysics Data System (ADS)
Millwater, Harry Russell, Jr.
This research focused on developing probabilistic methods suitable for computing small probabilities of failure, e.g., 10sp{-6}, of structures subject to multi-site damage (MSD). MSD is defined as the simultaneous development of fatigue cracks at multiple sites in the same structural element such that the fatigue cracks may coalesce to form one large crack. MSD is modeled as an array of collinear cracks with random initial crack lengths with the centers of the initial cracks spaced uniformly apart. The data used was chosen to be representative of aluminum structures. The structure is considered failed whenever any two adjacent cracks link up. A fatigue computer model is developed that can accurately and efficiently grow a collinear array of arbitrary length cracks from initial size until failure. An algorithm is developed to compute the stress intensity factors of all cracks considering all interaction effects. The probability of failure of two to 100 cracks is studied. Lower bounds on the probability of failure are developed based upon the probability of the largest crack exceeding a critical crack size. The critical crack size is based on the initial crack size that will grow across the ligament when the neighboring crack has zero length. The probability is evaluated using extreme value theory. An upper bound is based on the probability of the maximum sum of initial cracks being greater than a critical crack size. A weakest link sampling approach is developed that can accurately and efficiently compute small probabilities of failure. This methodology is based on predicting the weakest link, i.e., the two cracks to link up first, for a realization of initial crack sizes, and computing the cycles-to-failure using these two cracks. Criteria to determine the weakest link are discussed. Probability results using the weakest link sampling method are compared to Monte Carlo-based benchmark results. The results indicate that very small probabilities can be computed accurately in a few minutes using a Hewlett-Packard workstation.
Krishnan, Unni; Moule, Alex; Michael, Shaji; Swain, Michael
2018-02-01
Spontaneously catastrophic fracture of intact unrestored molar teeth is not common. Nevertheless, cracks do occur that progress apically, resulting in the complete splitting of the tooth and root. This report describes a catastrophic fracture that occurred in an unrestored mandibular second molar resulting in a previously unreported combination of a longitudinal and horizontal root fracture, appearing radiographically as a single horizontal root fracture. Tooth fragments were examined clinically, stereoscopically, and by scanning electron microscopy. Fractographic analysis was used to investigate the dynamics involved in fracture initiation, structural resistances encountered during progression of the fracture, and reasons for direction changes culminating in the unusual radiographic appearance. The uniqueness of this report is that it describes fractographic evidence of factors contributing to the initiation and progression of an in vivo crack. It shows fracture markings that are evidence of the energy dissipation mechanisms. The topographic location of these markings confirmed that cracks occur in vivo in stages with different rates of progression. This analysis helps to explain why split teeth are uncommon and highlights some of the multitude of factors that have to coincide for a tooth to catastrophically fracture. The report describes the mechanism of fracture and should stimulate clinicians and researchers to investigate cracking of teeth by undertaking fractographic analysis of extracted cracked teeth. Copyright © 2017 American Association of Endodontists. All rights reserved.
Prediction of corrosion fatigue crack initiation behavior of A7N01P-T4 aluminum alloy welded joints
NASA Astrophysics Data System (ADS)
An, J.; Chen, J.; Gou, G.; Chen, H.; Wang, W.
2017-07-01
Through investigating the corrosion fatigue crack initiation behavior of A7N01P-T4 aluminum alloy welded joints in 3.5 wt.% NaCl solution, corrosion fatigue crack initiation life is formulated as Ni = 6.97 × 1012[Δσeqv1.739 - 491.739]-2 and the mechanism of corrosion fatigue crack initiation is proposed. SEM and TEM tests revealed that several corrosion fatigue cracks formed asynchronously and the first crack does not necessarily develop into the leading crack. The uneven reticular dislocations produced by fatigue loading are prone to piling up and tangling near the grain boundaries or the second phases and form the “high dislocation-density region” (HDDR), which acts as an anode in microbatteries and dissolved to form small crack. Thus the etching pits, HDDR near the grain boundaries and second phases are confirmed as the main causes inducing the initiation of fatigue crack.
NASA Technical Reports Server (NTRS)
Williams, K. K.; Zuber, M. T.
1995-01-01
Models of surface fractures due to volcanic loading an elastic plate are commonly used to constrain thickness of planetary lithospheres, but discrepancies exist in predictions of the style of initial failure and in the nature of subsequent fracture evolution. In this study, we perform an experiment to determine the mode of initial failure due to the incremental addition of a conical load to the surface of an elastic plate and compare the location of initial failure with that predicted by elastic theory. In all experiments, the mode of initial failure was tension cracking at the surface of the plate, with cracks oriented circumferential to the load. The cracks nucleated at a distance from load center that corresponds the maximum radial stress predicted by analytical solutions, so a tensile failure criterion is appropriate for predictions of initial failure. With continued loading of the plate, migration of tensional cracks was observed. In the same azimuthal direction as the initial crack, subsequent cracks formed at a smaller radial distance than the initial crack. When forming in a different azimuthal direction, the subsequent cracks formed at a distance greater than the radial distance of the initial crack. The observed fracture pattern may explain the distribution of extensional structures in annular bands around many large scale, circular volcanic features.
Dynamics of a fluid-driven crack in three dimensions by the finite difference method
NASA Astrophysics Data System (ADS)
Chouet, Bernard
1986-12-01
The finite difference method is applied to the study of the dynamics of a three-dimensional fluid-filled crack excited into resonance by the sudden failure of a small barrier of area ΔS on the crack surface. The impulse response of the crack is examined for various ratios of crack width to crack length and for several values of the crack stiffness C = (b/μ)(L/d), where b is the bulk modulus of the fluid, μ is the rigidity of the solid, and L and d are the crack length and crack thickness, respectively. The motion of the crack is characterized by distinct time scales representing the duration of brittle failure and the periods of acoustic resonance in the lateral and longitudinal dimensions of the source. The rupture has a duration proportional to the area of crack expansion and is the trigger responsible for the excitation of the crack into resonance; the resonant periods are proportional to the crack stiffness and to the width and length of the crack. The crack wave sustaining the resonance is analogous to the tube wave propagating in a fluid-filled borehole. It is dispersive, showing a phase velocity that decreases with increasing wavelength. Its wave speed is always lower than the acoustic velocity of the fluid and shows a strong dependence on the crack stiffness, decreasing as the stiffness increases. The initial motion of the crack surface is an opening, and the radiated far-field compressional wave starts with a strong but brief compression which has a duration proportional to the crack stiffness and size of the rupture area; the amplitude of this pulse increases with the area of rupture but decreases with increasing stiffness. Flow into the newly created cavity triggers a pressure drop in the fluid, which produces a partial collapse of the wall propagated over the crack surface at the speed of the crack wave. The collapse of the crack surface generates a weak long-period component of dilatation following the compressional first motion in the far-field P wave train; the dilatational component is clearer in the signal from stiffer cracks when seen in the direction of the rupture. The energy loss by radiation is stronger for high frequencies, resulting in a progressive enrichment of the crack response in lower frequencies over the duration of resonance. These source characteristics translate into a far-field signature that is marked by a high-frequency content near its onset and dominated by a longer-period component in its coda. The source duration shows a strong dependence on the fluid viscosity and associated viscous damping at the crack wall.
Effects of {10-12} Twins on Dynamic Torsional Properties of Extruded AZ31 Magnesium Alloy
NASA Astrophysics Data System (ADS)
Lee, Jong Un; Song, Seok Weon; Kim, Yongjin; Kim, Sang-Hoon; Kim, Ye Jin; Park, Sung Hyuk
2018-03-01
Effects of initial twins on dynamic torsional properties of extruded AZ31 alloy were investigated by introducing {10-12} twins into it through precompression to 3 and 6% strains along the extrusion direction and performing torsional testing at a strain rate of 1.4 × 103 s-1 using a torsional Kolsky bar system. The as-extruded sample without twins showed higher dynamic torsional properties than the precompressed samples with many initial twins; the maximum shear strength and fracture shear strain decreased with increasing amount of initial twins. In the as-extruded sample, twinning occurred vigorously throughout the gage section of the tubular specimen during high-strain-rate torsional tests, resulting in heavily deformed morphology, many macrocracks, and rough fractured surfaces. The increased amount of initial twins suppressed the twinning behavior and localized the applied torsional deformation; this resulted in an almost unchanged sample shape, no secondary cracks, and a flat fracture plane, thereby deteriorating the dynamic torsional properties of the extruded alloy.
Estimate of Probability of Crack Detection from Service Difficulty Report Data.
DOT National Transportation Integrated Search
1995-09-01
The initiation and growth of cracks in a fuselage lap joint were simulated. Stochastic distribution of crack initiation and rivet interference were included. The simulation also contained a simplified crack growth. Nominal crack growth behavior of la...
Estimate of probability of crack detection from service difficulty report data
DOT National Transportation Integrated Search
1994-09-01
The initiation and growth of cracks in a fuselage lap joint were simulated. Stochastic distribution of crack initiation and rivet interference were included. The simulation also contained a simplified crack growth. Nominal crack growth behavior of la...
Zhang, Tingting; Li, Xiaoxia; Guo, Li
2017-10-24
The initial conversion pathways of linkages and their linked monomer units in lignin pyrolysis were investigated comprehensively by ReaxFF MD simulations facilitated by the unique VARxMD for reaction analysis. The simulated molecular model contains 15 920 atoms and was constructed on the basis of Adler's softwood lignin model. The simulations uncover the initial conversion ratio of various linkages and their linked aryl monomers. For linkages and their linked monomer aryl rings of α-O-4, β-O-4 and α-O-4 & β-5, the C α /C β ether bond cracking dominates the initial pathway accounting for at least up to 80% of their consumption. For the linkage of β-β & γ-O-α, both the C α -O ether bond cracking and its linked monomer aryl ring opening are equally important. Ring-opening reactions dominate the initial consumption of other 4-O-5, 5-5, β-1, β-2, and β-5 linkages and their linked monomers. The ether bond cracking of C α -O and C β -O occurs at low temperature, and the aryl ring-opening reactions take place at relatively high temperature. The important intermediates leading to the stable aryl ring opening are the phenoxy radicals, the bridged five-membered and three-membered rings and the bridged six-membered and three-membered rings. In addition, the reactivity of a linkage and its monomer aryl ring may be affected by other linkages. The ether bond cracking of α-O-4 and β-O-4 linkages can activate its neighboring linkage or monomer ring through the formed phenoxy radicals as intermediates. The important intermediates revealed in this article should be of help in deepening the understanding of the controlling mechanism for producing aromatic chemicals from lignin pyrolysis.
Acquisition of Inertia by a Moving Crack
NASA Astrophysics Data System (ADS)
Goldman, Tamar; Livne, Ariel; Fineberg, Jay
2010-03-01
We experimentally investigate the dynamics of “simple” tensile cracks. Within an effectively infinite medium, a crack’s dynamics perfectly correspond to inertialess behavior predicted by linear elastic fracture mechanics. Once a crack interacts with waves that it generated at earlier times, this description breaks down. Cracks then acquire inertia and sluggishly accelerate. Crack inertia increases with crack speed v and diverges as v approaches its limiting value. We show that these dynamics are in excellent accord with an equation of motion derived in the limit of an infinite strip [M. Marder, Phys. Rev. Lett. 66, 2484 (1991)PRLTAO0031-900710.1103/PhysRevLett.66.2484].
NASA Technical Reports Server (NTRS)
Sih, G. C.; Chen, E. P.
1980-01-01
A method is developed for the dynamic stress analysis of a layered composite containing an embedded penny-shaped crack and subjected to normal and radial impact. Quantitatively, the time-dependent stresses near the crack border can be described by the dynamic stress intensity factors. Their magnitude depends on time, on the material properties of the composite and on the relative size of the crack compared to the composite local geometry. Results obtained show that, for the same material properties and geometry of the composite, the dynamic stress intensity factors for an embedded (penny-shaped) crack reach their peak values within a shorter period of time and with a lower magnitude than the corresponding dynamic stress factors for a through-crack.
NASA Astrophysics Data System (ADS)
Moss, Tyler; Was, Gary S.
2017-04-01
The objective of this study is to determine whether stress corrosion crack initiation of Alloys 600 and 690 occurs by the same mechanism in subcritical and supercritical water. Tensile bars of Alloys 690 and 600 were strained in constant extension rate tensile experiments in hydrogenated subcritical and supercritical water from 593 K to 723 K (320 °C to 450 °C), and the crack initiation behavior was characterized by high-resolution electron microscopy. Intergranular cracking was observed across the entire temperature range, and the morphology, structure, composition, and temperature dependence of initiated cracks in Alloy 690 were consistent between hydrogenated subcritical and supercritical water. Crack initiation of Alloy 600 followed an Arrhenius relationship and did not exhibit a discontinuity or change in slope after crossing the critical temperature. The measured activation energy was 121 ± 13 kJ/mol. Stress corrosion crack initiation in Alloy 690 was fit with a single activation energy of 92 ± 12 kJ/mol across the entire temperature range. Cracks were observed to propagate along grain boundaries adjacent to chromium-depleted metal, with Cr2O3 observed ahead of crack tips. All measures of the SCC behavior indicate that the mechanism for stress corrosion crack initiation of Alloy 600 and Alloy 690 is consistent between hydrogenated subcritical and supercritical water.
Dynamics of Nanoscale Grain-Boundary Decohesion in Aluminum by Molecular-Dynamics Simulation
NASA Technical Reports Server (NTRS)
Yamakov, V.; Saether, E.; Phillips, D. R.; Glaessegen, E. H.
2007-01-01
The dynamics and energetics of intergranular crack growth along a flat grain boundary in aluminum is studied by a molecular-dynamics simulation model for crack propagation under steady-state conditions. Using the ability of the molecular-dynamics simulation to identify atoms involved in different atomistic mechanisms, it was possible to identify the energy contribution of different processes taking place during crack growth. The energy contributions were divided as: elastic energy, defined as the potential energy of the atoms in fcc crystallographic state; and plastically stored energy, the energy of stacking faults and twin boundaries; grain-boundary and surface energy. In addition, monitoring the amount of heat exchange with the molecular-dynamics thermostat gives the energy dissipated as heat in the system. The energetic analysis indicates that the majority of energy in a fast growing crack is dissipated as heat. This dissipation increases linearly at low speed, and faster than linear at speeds approaching 1/3 the Rayleigh wave speed when the crack tip becomes dynamically unstable producing periodic dislocation bursts until the crack is blunted.
Fatigue crack initiation of magnesium alloys under elastic stress amplitudes: A review
NASA Astrophysics Data System (ADS)
Wang, B. J.; Xu, D. K.; Wang, S. D.; Han, E. H.
2017-12-01
The most advantageous property of magnesium (Mg) alloys is their density, which is lower compared with traditional metallic materials. Mg alloys, considered the lightest metallic structural material among others, have great potential for applications as secondary load components in the transportation and aerospace industries. The fatigue evaluation of Mg alloys under elastic stress amplitudes is very important in ensuring their service safety and reliability. Given their hexagonal close packed structure, the fatigue crack initiation of Mg and its alloys is closely related to the deformation mechanisms of twinning and basal slips. However, for Mg alloys with shrinkage porosities and inclusions, fatigue cracks will preferentially initiate at these defects, remarkably reducing the fatigue lifetime. In this paper, some fundamental aspects about the fatigue crack initiation mechanisms of Mg alloys are reviewed, including the 3 followings: 1) Fatigue crack initiation of as-cast Mg alloys, 2) influence of microstructure on fatigue crack initiation of wrought Mg alloys, and 3) the effect of heat treatment on fatigue initiation mechanisms. Moreover, some unresolved issues and future target on the fatigue crack initiation mechanism of Mg alloys are also described.
NASA Technical Reports Server (NTRS)
Dawicke, D. S.; Sutton, M. A.
1993-01-01
The stable tearing behavior of thin sheets 2024-T3 aluminum alloy was studied for middle crack tension specimens having initial cracks that were: flat cracks (low fatigue stress) and 45 degrees through-thickness slant cracks (high fatigue stress). The critical crack-tip-opening angle (CTOA) values during stable tearing were measured by two independent methods, optical microscopy and digital image correlation. Results from the two methods agreed well. The CTOA measurements and observations of the fracture surfaces showed that the initial stable tearing behavior of low and high fatigue stress tests is significantly different. The cracks in the low fatigue stress tests underwent a transition from flat-to-slant crack growth, during which the CTOA values were high and significant crack tunneling occurred. After crack growth equal to about the thickness, CTOA reached a constant value of 6 deg and after crack growth equal to about twice the thickness, crack tunneling stabilized. The initial high CTOA values, in the low fatigue crack tests, coincided with large three-dimensional crack front shape changes due to a variation in the through-thickness crack tip constraint. The cracks in the high fatigue stress tests reach the same constant CTOA value after crack growth equal to about the thickness, but produced only a slightly higher CTOA value during initial crack growth. For crack growth on the 45 degree slant, the crack front and local field variables are still highly three-dimensional. However, the constant CTOA values and stable crack front shape may allow the process to be approximated with two-dimensional models.
Microstructural characterization of hydrogen induced cracking in TRIP-assisted steel by EBSD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laureys, A., E-mail: Aurelie.Laureys@UGent.be; Depover, T.; Petrov, R.
2016-02-15
The present work evaluates hydrogen induced cracking by performing an elaborate EBSD (Electron BackScatter Diffraction) study in a steel with transformation induced plasticity (TRIP-assisted steel). This type of steel exhibits a multiphase microstructure which undergoes a deformation induced phase transformation. Additionally, each microstructural constituent displays a different behavior in the presence of hydrogen. The aim of this study is to obtain a better understanding on the mechanisms governing hydrogen induced crack initiation and propagation in the hydrogen saturated multiphase structure. Tensile tests on notched samples combined with in-situ electrochemical hydrogen charging were conducted. The tests were interrupted at stresses justmore » after reaching the tensile strength, i.e. before macroscopic failure of the material. This allowed to study hydrogen induced crack initiation and propagation by SEM (Scanning Electron Microscopy) and EBSD. A correlation was found between the presence of martensite, which is known to be very susceptible to hydrogen embrittlement, and the initiation of hydrogen induced cracks. Initiation seems to occur mostly by martensite decohesion. High strain regions surrounding the hydrogen induced crack tips indicate that further crack propagation may have occurred by the HELP (hydrogen-enhanced localized plasticity) mechanism. Small hydrogen induced cracks located nearby the notch are typically S-shaped and crack propagation was dominantly transgranularly. The second stage of crack propagation consists of stepwise cracking by coalescence of small hydrogen induced cracks. - Highlights: • Hydrogen induced cracking in TRIP-assisted steel is evaluated by EBSD. • Tensile tests were conducted on notched hydrogen saturated samples. • Crack initiation occurs by a H-Enhanced Interface DEcohesion (HEIDE) mechanism. • Crack propagation involves growth and coalescence of small cracks. • Propagation is governed by the characteristics of phases on the crack path.« less
Stress corrosion crack initiation of alloy 600 in PWR primary water
Zhai, Ziqing; Toloczko, Mychailo B.; Olszta, Matthew J.; ...
2017-04-27
Stress corrosion crack (SCC) initiation of three mill-annealed alloy 600 heats in simulated pressurized water reactor primary water has been investigated using constant load tests equipped with in-situ direct current potential drop (DCPD) measurement capabilities. SCC initiation times were greatly reduced by a small amount of cold work. Shallow intergranular attack and/or cracks were found on most high-energy grain boundaries intersecting the surface with only a small fraction evolving into larger cracks and intergranular SCC growth. Crack depth profiles were measured and related to DCPD-detected initiation response. Lastly, we discuss processes controlling the SCC initiation in mill-annealed alloy 600.
Stress corrosion crack initiation of alloy 600 in PWR primary water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhai, Ziqing; Toloczko, Mychailo B.; Olszta, Matthew J.
Stress corrosion crack (SCC) initiation of three mill-annealed alloy 600 heats in simulated pressurized water reactor primary water has been investigated using constant load tests equipped with in-situ direct current potential drop (DCPD) measurement capabilities. SCC initiation times were greatly reduced by a small amount of cold work. Shallow intergranular attack and/or cracks were found on most high-energy grain boundaries intersecting the surface with only a small fraction evolving into larger cracks and intergranular SCC growth. Crack depth profiles were measured and related to DCPD-detected initiation response. Lastly, we discuss processes controlling the SCC initiation in mill-annealed alloy 600.
NASA Astrophysics Data System (ADS)
Moradian, Zabihallah; Einstein, Herbert H.; Ballivy, Gerard
2016-03-01
Determination of the cracking levels during the crack propagation is one of the key challenges in the field of fracture mechanics of rocks. Acoustic emission (AE) is a technique that has been used to detect cracks as they occur across the specimen. Parametric analysis of AE signals and correlating these parameters (e.g., hits and energy) to stress-strain plots of rocks let us detect cracking levels properly. The number of AE hits is related to the number of cracks, and the AE energy is related to magnitude of the cracking event. For a full understanding of the fracture process in brittle rocks, prismatic specimens of granite containing pre-existing flaws have been tested in uniaxial compression tests, and their cracking process was monitored with both AE and high-speed video imaging. In this paper, the characteristics of the AE parameters and the evolution of cracking sequences are analyzed for every cracking level. Based on micro- and macro-crack damage, a classification of cracking levels is introduced. This classification contains eight stages (1) crack closure, (2) linear elastic deformation, (3) micro-crack initiation (white patch initiation), (4) micro-crack growth (stable crack growth), (5) micro-crack coalescence (macro-crack initiation), (6) macro-crack growth (unstable crack growth), (7) macro-crack coalescence and (8) failure.
NASA Astrophysics Data System (ADS)
Zhou, Xiao-Ping; Zhang, Jian-Zhi; Wong, Louis Ngai Yuen
2018-05-01
The crack initiation, growth, wrapping and coalescence of two 3D pre-existing cross-embedded flaws in PMMA specimens under uniaxial compression are investigated. The stress-strain curves of PMMA specimens with 3D cross-embedded flaws are obtained. The tested PMMA specimens exhibit dominant elastic deformation and eventual brittle failure. The experimental results show that four modes of crack initiation and five modes of crack coalescence are observed. The initiations of oblique secondary crack and anti-wing crack in 3D cracking behaviors are first reported as well as the coalescence of anti-wing cracks. Moreover, two types of crack wrapping are found. Substantial wrapping of petal cracks, which includes open and closed modes of wrapping, appears to be the major difference between 2D and 3D cracking behaviors of pre-existing flaws, which are also first reported. Petal crack wraps symmetrically from either the propagated wing cracks or the coalesced wing cracks. Besides, only limited growth of petal cracks is observed, and ultimate failure of specimens is induced by the further growth of the propagated wing crack. The fracture mechanism of the tested PMMA specimens is finally revealed. In addition, the initiation stress and the peak stress versus the geometry of two 3D pre-existing cross-embedded flaws are also investigated in detail.
Normal and radial impact of composites with embedded penny-shaped cracks
NASA Technical Reports Server (NTRS)
Sih, G. C.
1979-01-01
A method is developed for the dynamic stress analysis of a layered composite containing an embedded penny-shaped crack and subjected to normal and radial impact. The material properties of the layers are chosen such that the crack lies in a layer of matrix material while the surrounding material possesses the average elastic properties of a two-phase medium consisting of a large number of fibers embedded in the matrix. Quantitatively, the time-dependent stresses near the crack border can be described by the dynamic stress intensity factors. Their magnitude depends on time, on the material properties of the composite and on the relative size of the crack compared to the composite local geometry. Results obtained show that, for the same material properties and geometry of the composite, the dynamic stress intensity factors for an embedded (penny-shaped) crack reach their peak values within a shorter period of time and with a lower magnitude than the corresponding dynamic stress intensity factors for a through-crack.
Effect of Chamber Pressurization Rate on Combustion and Propagation of Solid Propellant Cracks
NASA Astrophysics Data System (ADS)
Yuan, Wei-Lan; Wei, Shen; Yuan, Shu-Shen
2002-01-01
area of the propellant grain satisfies the designed value. But cracks in propellant grain can be generated during manufacture, storage, handing and so on. The cracks can provide additional surface area for combustion. The additional combustion may significantly deviate the performance of the rocket motor from the designed conditions, even lead to explosive catastrophe. Therefore a thorough study on the combustion, propagation and fracture of solid propellant cracks must be conducted. This paper takes an isolated propellant crack as the object and studies the effect of chamber pressurization rate on the combustion, propagation and fracture of the crack by experiment and theoretical calculation. deformable, the burning inside a solid propellant crack is a coupling of solid mechanics and combustion dynamics. In this paper, a theoretical model describing the combustion, propagation and fracture of the crack was formulated and solved numerically. The interaction of structural deformation and combustion process was included in the theoretical model. The conservation equations for compressible fluid flow, the equation of state for perfect gas, the heat conducting equation for the solid-phase, constitutive equation for propellant, J-integral fracture criterion and so on are used in the model. The convective burning inside the crack and the propagation and fracture of the crack were numerically studied by solving the set of nonlinear, inhomogeneous gas-phase governing equations and solid-phase equations. On the other hand, the combustion experiments for propellant specimens with a precut crack were conducted by RTR system. Predicted results are in good agreement with experimental data, which validates the reasonableness of the theoretical model. Both theoretical and experimental results indicate that the chamber pressurization rate has strong effects on the convective burning in the crack, crack fracture initiation and fracture pattern.
2016-08-31
crack initiation and SCG mechanisms (initiation and growth versus resistance). 2. Final summary Here, we present a hierarchical form of multiscale...prismatic faults in -Ti: A combined quantum mechanics /molecular mechanics study 2. Nano-indentation and slip transfer (critical in understanding crack...initiation) 3. An extended-finite element framework (XFEM) to study SCG mechanisms 4. Atomistic methods to develop a grain and twin boundaries database
Opening-mode cracking in asphalt pavements : crack initiation and saturation.
DOT National Transportation Integrated Search
2009-12-01
This paper investigates the crack initiation and saturation for opening-mode cracking. Using elastic governing equations : and a weak form stress boundary condition, we derive an explicit solution of elastic fields in the surface course and : obtain ...
Çapar, İsmail Davut; Uysal, Banu; Ok, Evren; Arslan, Hakan
2015-02-01
The purpose of this study was to investigate the incidence of apical crack initiation and propagation in root dentin after several endodontic procedures. Sixty intact mandibular premolars were sectioned perpendicular to the long axis at 1 mm from the apex, and the apical surface was polished. Thirty teeth were left unprepared and served as a control, and the remaining 30 teeth were instrumented with ProTaper Universal instruments (Dentsply Maillefer, Ballaigues, Switzerland) up to size F5. The root canals were filled with the single-cone technique. Gutta-percha was removed with drills of the Rebilda post system (VOCO, Cuxhaven, Germany). Glass fiber-reinforced composite fiber posts were cemented using a dual-cure resin cement. The fiber posts were removed with a drill of the post system. Retreatment was completed after the removal of the gutta-percha. Crack initiation and propagation in the apical surfaces of the samples were examined with a stereomicroscope after each procedure. The absence/presence of cracks was recorded. Logistic regression was performed to analyze statistically the incidence of crack initiation and propagation with each procedure. The initiation of the first crack and crack propagation was associated with F2 and F4 instruments, respectively. The logistic regression analysis revealed that instrumentation and F2 instrument significantly affected apical crack initiation (P < .001). Post space preparation had a significant effect on crack propagation (P = .0004). The other procedures had no significant effects on crack initiation and propagation (P > .05). Rotary nickel-titanium instrumentation had a significant effect on apical crack initiation, and post space preparation with drills had a significant impact on crack propagation. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Zju, Dongming; Ghosn, Louis J.; Miller, Robert A.
2008-01-01
Ceramic thermal and environmental barrier coatings (TEBCs) will play an increasingly important role in gas turbine engines because of their ability to further raise engine temperatures. However, the issue of coating durability is of major concern under high-heat-flux conditions. In particular, the accelerated coating delamination crack growth under the engine high heat-flux conditions is not well understood. In this paper, a laser heat flux technique is used to investigate the coating delamination crack propagation under realistic temperature-stress gradients and thermal cyclic conditions. The coating delamination mechanisms are investigated under various thermal loading conditions, and are correlated with coating dynamic fatigue, sintering and interfacial adhesion test results. A coating life prediction framework may be realized by examining the crack initiation and propagation driving forces for coating failure under high-heat-flux test conditions.
Dynamic energy release rate in couple-stress elasticity
NASA Astrophysics Data System (ADS)
Morini, L.; Piccolroaz, A.; Mishuris, G.
2013-07-01
This paper is concerned with energy release rate for dynamic steady state crack problems in elastic materials with microstructures. A Mode III semi-infinite crack subject to loading applied on the crack surfaces is considered. The micropolar behaviour of the material is described by the theory of couple-stress elasticity developed by Koiter. A general expression for the dynamic J-integral including both traslational and micro-rotational inertial contributions is derived, and the conservation of this integral on a path surrounding the crack tip is demonstrated.
Dynamic fracture mechanics analysis for an edge delamination crack
NASA Technical Reports Server (NTRS)
Rizzi, Stephen A.; Doyle, James F.
1994-01-01
A global/local analysis is applied to the problem of a panel with an edge delamination crack subject to an impulse loading to ascertain the dynamic J integral. The approach uses the spectral element method to obtain the global dynamic response and local resultants to obtain the J integral. The variation of J integral along the crack front is shown. The crack behavior is mixed mode (Mode 2 and Mode 3), but is dominated by the Mode 2 behavior.
Crack - seal veins - what we learnt since the seminal work of John Ramsay
NASA Astrophysics Data System (ADS)
Urai, Janos L.; Bons, Paul D.
2017-04-01
In the nineteen-eighties, John Ramsay and co-workers have laid the basis for much of our current understanding of tectonic veins, by proposing that tectonic veins accrete in many small increments of cracking and sealing, making the link to cyclic stress and fluid pressure cycles and the earthquake cycle, and by proposing that fibrous veins track the opening trajectory, which has created a toolbox to analyse progressive deformation in rocks. They recognised syntaxial and antitaxial veins, which grow depending on the composition of the wall rock and the vein. Following on these seminal contributions, advances in analysing the microstructure and chemical signature in crack-seal veins made a lot of progress, facilitated by the rapid increase in micro analytical tools like cathodeluminescence and EBSD. Initial modelling of crystal growth in crack- seal veins provided an explanation of how crystals become fibrous without being deformed and explained how fibres sometimes do and sometimes don't follow the opening trajectory. This was followed by numerical models of crystal growth to study the development of crystal facets after larger crack increments, and experimental study of the sealing dynamics of syntaxial veins. These models were initially kinematic, using the ELLE microdynamic simulation package, and more recently incorporating the physics of the growing interface using the Phase Field method, which now allows 3D simulation of both syntaxial and antitaxial veins and can simultaneously compute the evolving permeability of the crack using Lattice Boltzmann techniques. Parallel to these developments we developed an understanding of the strength of the vein cement, and, using Discrete Element Techniques, explored the effects of differences of the strength of the vein and its adhesion to the wall rock on fracture patterns in crack-seal systems in changing stress fields. This presentation will review these developments, showing how the ideas of John Ramsay inspired follow up work leading to a much better understanding of the complex feedback systems between fracture growth, crystal growth and fluid flow in crack-seal systems.
Multiscale crack initiator promoted super-low ice adhesion surfaces.
He, Zhiwei; Xiao, Senbo; Gao, Huajian; He, Jianying; Zhang, Zhiliang
2017-09-27
Preventing icing on exposed surfaces is important for life and technology. While suppressing ice nucleation by surface structuring and local confinement is highly desirable and yet to be achieved, a realistic roadmap of icephobicity is to live with ice, but with lowest possible ice adhesion. According to fracture mechanics, the key to lower ice adhesion is to maximize crack driving forces at the ice-substrate interface. Herein, we present a novel integrated macro-crack initiator mechanism combining nano-crack and micro-crack initiators, and demonstrate a new approach to designing super-low ice adhesion surfaces by introducing sub-structures into smooth polydimethylsiloxane coatings. Our design promotes the initiation of macro-cracks and enables the reduction of ice adhesion by at least ∼50% regardless of the curing temperature, weight ratio and size of internal holes, reaching a lowest ice adhesion of 5.7 kPa. The multiscale crack initiator mechanisms provide an unprecedented and versatile strategy towards designing super-low ice adhesion surfaces.
Damage instability and Earthquake nucleation
NASA Astrophysics Data System (ADS)
Ionescu, I. R.; Gomez, Q.; Campillo, M.; Jia, X.
2017-12-01
Earthquake nucleation (initiation) is usually associated to the loss of the stability of the geological structure under a slip-weakening friction acting on the fault. The key parameters involved in the stability of the fault are the stress drop, the critical slip distance but also the elastic stiffness of the surrounding materials (rocks). We want to explore here how the nucleation phenomena are correlated to the material softening during damage accumulation by dynamic and/or quasi-static processes. Since damage models are describing micro-cracks growth, which is generally an unstable phenomenon, it is natural to expect some loss of stability on the associated micro-mechanics based models. If the model accurately captures the material behavior, then this can be due to the unstable nature of the brittle material itself. We obtained stability criteria at the microscopic scale, which are related to a large class of damage models. We show that for a given continuous strain history the quasi-static or dynamic problems are instable or ill-posed (multiplicity of material responses) and whatever the selection rule is adopted, shocks (time discontinuities) will occur. We show that the quasi-static equilibria chosen by the "perfect delay convention" is always stable. These stability criteria are used to analyze how NIC (Non Interacting Crack) effective elasticity associated to "self similar growth" model work in some special configurations (one family of micro-cracks in mode I, II and III and in plane strain or plain stress). In each case we determine a critical crack density parameter and critical micro-crack radius (length) which distinguish between stable and unstable behaviors. This critical crack density depends only on the chosen configuration and on the Poisson ratio.
Variation of the distribution of crack lengths during corrosion fatigue
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishihara, S.; Miyao, K.; Shiozawa, K.
1984-07-01
The detailed initiation and growth behaviour of distributed cracks on a specimen surface was investigated during corrosion fatigue. It can be clarified that the changes of the distribution of crack lengths with stress cycling reflect the behaviour of initiation and growth of distributed cracks. The distribution of crack lengths for certain stress cycles could be explained by a statistical calculation which takes into account both the variation of number of cracks during stress cycling and the scatter of crack growth rate.
Fault feature analysis of cracked gear based on LOD and analytical-FE method
NASA Astrophysics Data System (ADS)
Wu, Jiateng; Yang, Yu; Yang, Xingkai; Cheng, Junsheng
2018-01-01
At present, there are two main ideas for gear fault diagnosis. One is the model-based gear dynamic analysis; the other is signal-based gear vibration diagnosis. In this paper, a method for fault feature analysis of gear crack is presented, which combines the advantages of dynamic modeling and signal processing. Firstly, a new time-frequency analysis method called local oscillatory-characteristic decomposition (LOD) is proposed, which has the attractive feature of extracting fault characteristic efficiently and accurately. Secondly, an analytical-finite element (analytical-FE) method which is called assist-stress intensity factor (assist-SIF) gear contact model, is put forward to calculate the time-varying mesh stiffness (TVMS) under different crack states. Based on the dynamic model of the gear system with 6 degrees of freedom, the dynamic simulation response was obtained for different tooth crack depths. For the dynamic model, the corresponding relation between the characteristic parameters and the degree of the tooth crack is established under a specific condition. On the basis of the methods mentioned above, a novel gear tooth root crack diagnosis method which combines the LOD with the analytical-FE is proposed. Furthermore, empirical mode decomposition (EMD) and ensemble empirical mode decomposition (EEMD) are contrasted with the LOD by gear crack fault vibration signals. The analysis results indicate that the proposed method performs effectively and feasibility for the tooth crack stiffness calculation and the gear tooth crack fault diagnosis.
Resistance to Fracture, Fatigue and Stress-Corrosion of Al-Cu-Li-Zr Alloys
1985-02-19
alloys , in both smooth and notch fatigue conditions, are compared in Figure 15 giving a summary of Mg- effect on S-N fatigue behavior. Several ...crack initiation of conventional aluminum alloys and reported that fatigue cracks were associated with cracked constituent particles in 2024 -T3... fatigue cracks. Kung & Fine (14) investigated surface crack initiation in a 2024 -T4 alloy . They observed that at high stresses most cracks formed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hai Huang; Ben Spencer; Jason Hales
2014-10-01
A discrete element Model (DEM) representation of coupled solid mechanics/fracturing and heat conduction processes has been developed and applied to explicitly simulate the random initiations and subsequent propagations of interacting thermal cracks in a ceramic nuclear fuel pellet during initial rise to power and during power cycles. The DEM model clearly predicts realistic early-life crack patterns including both radial cracks and circumferential cracks. Simulation results clearly demonstrate the formation of radial cracks during the initial power rise, and formation of circumferential cracks as the power is ramped down. In these simulations, additional early-life power cycles do not lead to themore » formation of new thermal cracks. They do, however clearly indicate changes in the apertures of thermal cracks during later power cycles due to thermal expansion and shrinkage. The number of radial cracks increases with increasing power, which is consistent with the experimental observations.« less
Stress corrosion crack initiation of alloy 600 in PWR primary water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhai, Ziqing; Toloczko, Mychailo B.; Olszta, Matthew J.
Stress corrosion crack (SCC) initiation of three mill-annealed (MA) alloy 600 heats in simulated pressurized water reactor primary water has been investigated using constant load tests equipped with in-situ direct current potential drop (DCPD) measurement capabilities. SCC initiation times were greatly reduced by a small amount of cold work. Shallow intergranular (IG) attack and/or cracks were found on most high-energy grain boundaries intersecting the surface with only a small fraction evolving into larger cracks and IGSCC growth. Crack depth profiles were measured and related to DCPD-detected initiation response. Processes controlling the SCC initiation in MA alloy 600 are discussed. INmore » PRESS, CORRECTED PROOF, 05/02/2017 - mfl« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Homel, Michael A.; Herbold, Eric B.
Contact and fracture in the material point method require grid-scale enrichment or partitioning of material into distinct velocity fields to allow for displacement or velocity discontinuities at a material interface. We present a new method which a kernel-based damage field is constructed from the particle data. The gradient of this field is used to dynamically repartition the material into contact pairs at each node. Our approach avoids the need to construct and evolve explicit cracks or contact surfaces and is therefore well suited to problems involving complex 3-D fracture with crack branching and coalescence. A straightforward extension of this approachmore » permits frictional ‘self-contact’ between surfaces that are initially part of a single velocity field, enabling more accurate simulation of granular flow, porous compaction, fragmentation, and comminution of brittle materials. Finally, numerical simulations of self contact and dynamic crack propagation are presented to demonstrate the accuracy of the approach.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yongfeng Zhang; Paul C Millett; Michael R Tonks
The intergranular fracture behavior of UO2 was studied using molecular dynamics simulations with a bicrystal model. The anisotropic fracture behavior due to the different grain boundary characters was investigated with the View the MathML source symmetrical tilt S5 and the View the MathML source symmetrical tilt S3 ({1 1 1} twin) grain boundaries. Nine interatomic potentials, seven rigid-ion plus two core–shell ones, were utilized to elucidate possible potential dependence. Initiating from a notch, crack propagation along grain boundaries was observed for most potentials. The S3 boundary was found to be more prone to fracture than the S5 one, indicated bymore » a lower energy release rate associated with the former. However, some potential dependence was identified on the existence of transient plastic deformation at crack tips, and the results were discussed regarding the relevant material properties including the excess energies of metastable phases and the critical energy release rate for intergranular fracture. In general, local plasticity at crack tips was observed in fracture simulations with potentials that predict low excess energies for metastable phases and high critical energy release rates for intergranular fracture.« less
Homel, Michael A.; Herbold, Eric B.
2016-08-15
Contact and fracture in the material point method require grid-scale enrichment or partitioning of material into distinct velocity fields to allow for displacement or velocity discontinuities at a material interface. We present a new method which a kernel-based damage field is constructed from the particle data. The gradient of this field is used to dynamically repartition the material into contact pairs at each node. Our approach avoids the need to construct and evolve explicit cracks or contact surfaces and is therefore well suited to problems involving complex 3-D fracture with crack branching and coalescence. A straightforward extension of this approachmore » permits frictional ‘self-contact’ between surfaces that are initially part of a single velocity field, enabling more accurate simulation of granular flow, porous compaction, fragmentation, and comminution of brittle materials. Finally, numerical simulations of self contact and dynamic crack propagation are presented to demonstrate the accuracy of the approach.« less
Krewerth, D; Weidner, A; Biermann, H
2013-12-01
The present paper illustrates the application of infrared thermal measurements for the investigation of crack initiation point and crack propagation in the high-cycle and the very high-cycle fatigue range of cast AlSi7Mg alloy (A356). The influence of casting defects, their location, size and amount was studied both by fractography and thermography. Besides internal and surface fatigue crack initiation as a further crack initiation type multiple fatigue crack initiation was observed via in situ thermography which can be well correlated with the results from fractography obtained by SEM investigations. In addition, crack propagation was studied by the development of the temperature measured via thermography. Moreover, the frequency influence on high-cycle fatigue behaviour was investigated. The presented results demonstrate well that the combination of fractography and thermography can give a significant contribution to the knowledge of crack initiation and propagation in the VHCF regime. Copyright © 2013 Elsevier B.V. All rights reserved.
Dynamic fields near a crack tip growing in an elastic-perfectly-plastic solid
NASA Technical Reports Server (NTRS)
Nemat-Nasser, S.; Gao, Y. C.
1983-01-01
A full asymptotic solution is presented for the fields in the neighborhood of the tip of a steadily advancing crack in an incompressible elastic-perfectly-plastic solid. There are four findings for mode I crack growth in the plane strain condition. The first is that the entire crack tip in steady crack growth is surrounded by a plastic region and that no elastic unloading is predicted by the complete dynamic asymptotic solution. The second is that, in contrast to the quasi-static solution, the dynamic solution yields strain fields with a logarithmic singularity everywhere near the crack tip. The third is that whereas the stress field varies throughout the entire crack tip neighborhood, it does not exhibit behavior that can be approximated by a constant field followed by an essentially centered-fan field and then by another constant field, especially for small crack growth speeds. The fourth finding is that there are two shock fronts emanating from the crack tip across which certain stress and strain components undergo jump discontinuities. After reviewing the mode III steady-state crack growth, it is concluded that ductile fracture criteria for nonstationary cracks must be based on solutions that include the inertia effects and that for this purpose quasi-static solutions may be inadequate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ritchie, R.O.; Lankford, J.
Topics discussed in this volume include crack initiation and stage I growth, microstructure effects, crack closure, environment effects, the role of notches, analytical modeling, fracture mechanics characterization, experimental techniques, and engineering applications. Papers are presented on fatigue crack initiation along slip bands, the effect of microplastic surface deformation on the growth of small cracks, short fatigue crack behavior in relation to three-dimensional aspects and the crack closure effect, the influence of crack depth on crack electrochemistry and fatigue crack growth, and nondamaging notches in fatigue. Consideration is also given to models of small fatigue cracks, short crack theory, assessment ofmore » the growth of small flaws from residual strength data, the relevance of short crack behavior to the integrity of major rotating aero engine components, and the relevance of short fatigue crack growth data to the durability and damage tolerance analyses of aircraft.« less
Dynamic analysis of a geared rotor system considering a slant crack on the shaft
NASA Astrophysics Data System (ADS)
Han, Qinkai; Zhao, Jingshan; Chu, Fulei
2012-12-01
The vibration problems associated with geared systems have been the focus of research in recent years. As the torque is mainly transmitted by the geared system, a slant crack is more likely to appear on the gear shaft. Due to the slant crack and its breathing mechanism, the dynamic behavior of cracked geared system would differ distinctly with that of uncracked system. Relatively less work is reported on slant crack in the geared rotor system during the past research. Thus, the dynamic analysis of a geared rotor-bearing system with a breathing slant crack is performed in the paper. The finite element model of a geared rotor with slant crack is presented. Based on fracture mechanics, the flexibility matrix for the slant crack is derived that accounts for the additional stress intensity factors. Three methods for whirling analysis, parametric instability analysis and steady-state response analysis are introduced. Then, by taking a widely used one-stage geared rotor-bearing system as an example, the whirling frequencies of the equivalent time-invariant system, two types of instability regions and steady-state response under the excitations of unbalance forces and tooth transmission errors, are computed numerically. The effects of crack depth, position and type (transverse or slant) on the system dynamic behaviors are considered in the discussion. The comparative study with slant cracked geared rotor is carried out to explore distinctive features in their modal, parametric instability and frequency response behaviors.
NASA Astrophysics Data System (ADS)
Grilli, Nicolo; Dandekar, Akshay; Koslowski, Marisol
2017-06-01
The development of high explosive materials requires constitutive models that are able to predict the influence of microstructure and loading conditions on shock sensitivity. In this work a model at the continuum-scale for the polymer-bonded explosive constituted of β-HMX particles embedded in a Sylgard matrix is developed. It includes a Murnaghan equation of state, a crystal plasticity model, based on power-law slip rate and hardening, and a phase field damage model based on crack regularization. The temperature increase due to chemical reactions is introduced by a heat source term, which is validated using results from reactive molecular dynamics simulations. An initial damage field representing pre-existing voids and cracks is used in the simulations to understand the effect of these inhomogeneities on the damage propagation and shock sensitivity. We show the predictions of the crystal plasticity model and the effect of the HMX crystal orientation on the shock initiation and on the dissipated plastic work and damage propagation. The simulation results are validated with ultra-fast dynamic transmission electron microscopy experiments and x-ray experiments carried out at Purdue University. Membership Pending.
NASA Astrophysics Data System (ADS)
Kwon, Kibum
A dynamic analysis of the interaction between a crack and an auxetic (negative Poisson ratio)/non-auxetic inclusion is presented. The two most important fracture parameters, namely the stress intensity factors and the T-stress are analyzed by using the symmetric Galerkin boundary element method in the Laplace domain for three different models of crack-inclusion interaction. To investigate the effects of auxetic inclusions on the fracture behavior of composites reinforced by this new type of material, comparisons of the dynamic stress intensity factors and the dynamic T-stress are made between the use of auxetic inclusions as opposed to the use of traditional inclusions. Furthermore, the technique presented in this research can be employed to analyze for the interaction between a crack and a cluster of auxetic/non-auxetic inclusions. Results from the latter models can be employed in crack growth analysis in auxetic-fiber-reinforced composites.
A probabilistic fatigue analysis of multiple site damage
NASA Technical Reports Server (NTRS)
Rohrbaugh, S. M.; Ruff, D.; Hillberry, B. M.; Mccabe, G.; Grandt, A. F., Jr.
1994-01-01
The variability in initial crack size and fatigue crack growth is incorporated in a probabilistic model that is used to predict the fatigue lives for unstiffened aluminum alloy panels containing multiple site damage (MSD). The uncertainty of the damage in the MSD panel is represented by a distribution of fatigue crack lengths that are analytically derived from equivalent initial flaw sizes. The variability in fatigue crack growth rate is characterized by stochastic descriptions of crack growth parameters for a modified Paris crack growth law. A Monte-Carlo simulation explicitly describes the MSD panel by randomly selecting values from the stochastic variables and then grows the MSD cracks with a deterministic fatigue model until the panel fails. Different simulations investigate the influences of the fatigue variability on the distributions of remaining fatigue lives. Six cases that consider fixed and variable conditions of initial crack size and fatigue crack growth rate are examined. The crack size distribution exhibited a dominant effect on the remaining fatigue life distribution, and the variable crack growth rate exhibited a lesser effect on the distribution. In addition, the probabilistic model predicted that only a small percentage of the life remains after a lead crack develops in the MSD panel.
NASA Astrophysics Data System (ADS)
Elbanna, A. E.
2013-12-01
Numerous field and experimental observations suggest that faults surfaces are rough at multiple scales and tend to produce a wide range of branch sizes ranging from micro-branching to large scale secondary faults. The development and evolution of fault roughness and branching is believed to play an important role in rupture dynamics and energy partitioning. Previous work by several groups has succeeded in determining conditions under which a main rupture may branch into a secondary fault. Recently, there great progress has been made in investigating rupture propagation on rough faults with and without off-fault plasticity. Nonetheless, in most of these models the heterogeneity, whether the roughness profile or the secondary faults orientation, was built into the system from the beginning and consequently the final outcome depends strongly on the initial conditions. Here we introduce an adaptive mesh technique for modeling mode-II crack propagation on slip weakening frictional interfaces. We use a Finite Element Framework with random mesh topology that adapts to crack dynamics through element splitting and sequential insertion of frictional interfaces dictated by the failure criterion. This allows the crack path to explore non-planar paths and develop the roughness profile that is most compatible with the dynamical constraints. It also enables crack branching at different scales. We quantify energy dissipation due to the roughening process and small scale branching. We compare the results of our model to a reference case for propagation on a planar fault. We show that the small scale processes of roughening and branching influence many characteristics of the rupture propagation including the energy partitioning, rupture speed and peak slip rates. We also estimate the fracture energy required for propagating a crack on a planar fault that will be required to produce comparable results. We anticipate that this modeling approach provides an attractive methodology that complements the current efforts in modeling off-fault plasticity and damage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhai, Ziqing; Toloczko, Mychailo; Kruska, Karen
Stress corrosion crack initiation of two thermally-treated, cold-worked (CW) alloy 690 (UNS N06690) materials was investigated in 360oC simulated PWR primary water using constant load tensile (CLT) tests and blunt notch compact tension (BNCT) tests equipped with direct current potential drop (DCPD) for in-situ detection of cracking. SCC initiation was not detected by DCPD for either the 21% or 31%CW CLT specimens loaded at their yield stress after ~9,220 hours, however intergranular (IG) precursor damage and isolated surface cracks were observed on the specimens. The two 31%CW BNCT specimens loaded at moderate stress intensity after several cyclic loading ramps showedmore » DCPD-indicated crack initiation after 10,400 hours of exposure at constant stress intensity, which was resulted from significant growth of IG cracks. The 21%CW BNCT specimens only exhibited isolated small IG surface cracks and showed no apparent DCPD change throughout the test. Post-test cross-section examinations revealed many grain boundary (GB) nano-cavities in the bulk of all the CLT and BNCT specimens particularly for the 31%CW materials. Cavities were also found along GBs extending to the surface suggesting an important role in crack nucleation. This paper provides an overview of the evolution of GB cavities and discusses their effects on crack initiation in CW alloy 690.« less
Understanding fast macroscale fracture from microcrack post mortem patterns
Guerra, Claudia; Scheibert, Julien; Bonamy, Daniel; Dalmas, Davy
2012-01-01
Dynamic crack propagation drives catastrophic solid failures. In many amorphous brittle materials, sufficiently fast crack growth involves small-scale, high-frequency microcracking damage localized near the crack tip. The ultrafast dynamics of microcrack nucleation, growth, and coalescence is inaccessible experimentally and fast crack propagation was therefore studied only as a macroscale average. Here, we overcome this limitation in polymethylmethacrylate, the archetype of brittle amorphous materials: We reconstruct the complete spatiotemporal microcracking dynamics, with micrometer/nanosecond resolution, through post mortem analysis of the fracture surfaces. We find that all individual microcracks propagate at the same low, load-independent velocity. Collectively, the main effect of microcracks is not to slow down fracture by increasing the energy required for crack propagation, as commonly believed, but on the contrary to boost the macroscale velocity through an acceleration factor selected on geometric grounds. Our results emphasize the key role of damage-related internal variables in the selection of macroscale fracture dynamics. PMID:22203962
Sudden bending of cracked laminates
NASA Technical Reports Server (NTRS)
Sih, G. C.; Chen, E. P.
1980-01-01
A dynamic approximate laminated plate theory is developed with emphasis placed on obtaining effective solution for the crack configuration where the 1/square root of r stress singularity and the condition of plane strain are preserved. The radial distance r is measured from the crack edge. The results obtained show that the crack moment intensity tends to decrease as the crack length to laminate plate thickness is increased. Hence, a laminated plate has the desirable feature of stabilizing a through crack as it increases its length at constant load. Also, the level of the average load intensity transmitted to a through crack can be reduced by making the inner layers to be stiffer than the outer layers. The present theory, although approximate, is useful for analyzing laminate failure to crack propagation under dynamic load conditions.
Creep fatigue life prediction for engine hot section materials (isotropic)
NASA Technical Reports Server (NTRS)
Moreno, V.
1983-01-01
The Hot Section Technology (HOST) program, creep fatigue life prediction for engine hot section materials (isotropic), is reviewed. The program is aimed at improving the high temperature crack initiation life prediction technology for gas turbine hot section components. Significant results include: (1) cast B1900 and wrought IN 718 selected as the base and alternative materials respectively; (2) fatigue test specimens indicated that measurable surface cracks appear early in the specimen lives, i.e., 15% of total life at 871 C and 50% of life at 538 c; (3) observed crack initiation sites are all surface initiated and are associated with either grain boundary carbides or local porosity, transgrannular cracking is observed at the initiation site for all conditions tested; and (4) an initial evaluation of two life prediction models, representative of macroscopic (Coffin-Mason) and more microscopic (damage rate) approaches, was conducted using limited data generated at 871 C and 538 C. It is found that the microscopic approach provides a more accurate regression of the data used to determine crack initiation model constants, but overpredicts the effect of strain rate on crack initiation life for the conditions tested.
Fracture Mechanics Analysis of LH2 Feed Line Flow Liners
NASA Technical Reports Server (NTRS)
James, Mark A.; Dawicke, David S.; Brzowski, Matthew B.; Raju, Ivatury S.; Elliott, Kenny B.; Harris, Charles E.
2006-01-01
Inspections of the Space Shuttle Main Engine revealed fatigue cracks growing from slots in the flow liner of the liquid hydrogen (LH2) feed lines. During flight, the flow liners experience complex loading induced by flow of LH2 and the resonance characteristics of the structure. The flow liners are made of Inconel 718 and had previously not been considered a fracture critical component. However, fatigue failure of a flow liner could have catastrophic effect on the Shuttle engines. A fracture mechanics study was performed to determine if a damage tolerance approach to life management was possible and to determine the sensitivity to the load spectra, material properties, and crack size. The load spectra were derived separately from ground tests and material properties were obtained from coupon tests. The stress-intensity factors for the fatigue cracks were determined from a shell-dynamics approach that simulated the dominant resonant frequencies. Life predictions were obtained using the NASGRO life prediction code. The results indicated that adequate life could not be demonstrated for initial crack lengths of the size that could be detected by traditional NDE techniques.
NASA Technical Reports Server (NTRS)
Everett, R. A., Jr.; Elber, W.
2000-01-01
In this paper the significance of the "small" crack effect as defined in fracture mechanics will be discussed as it relates to life managing rotorcraft dynamic components using the conventional safe-life, the flaw tolerant safe-life, and the damage tolerance design philosophies. These topics will be introduced starting with an explanation of the small-crack theory, then showing how small-crack theory has been used to predict the total fatigue life of fatigue laboratory test coupons with and without flaws, and concluding with how small cracks can affect the crack-growth damage tolerance design philosophy. As stated in this paper the "small" crack effect is defined in fracture mechanics where it has been observed that cracks on the order of 300 microns or less in length will propagate at higher growth rates than long cracks and also will grow at AK values below the long crack AK threshold. The small-crack effect is illustrated herein as resulting from a lack of crack closure and is explained based on continuum mechanics principles using crack-closure concepts in fracture mechanics.
Nanoindentation cannot accurately predict the tensile strength of graphene or other 2D materials
NASA Astrophysics Data System (ADS)
Han, Jihoon; Pugno, Nicola M.; Ryu, Seunghwa
2015-09-01
Due to the difficulty of performing uniaxial tensile testing, the strengths of graphene and its grain boundaries have been measured in experiments by nanoindentation testing. From a series of molecular dynamics simulations, we find that the strength measured in uniaxial simulation and the strength estimated from the nanoindentation fracture force can differ significantly. Fracture in tensile loading occurs simultaneously with the onset of crack nucleation near 5-7 defects, while the graphene sheets often sustain the indentation loads after the crack initiation because the sharply concentrated stress near the tip does not give rise to enough driving force for further crack propagation. Due to the concentrated stress, strength estimation is sensitive to the indenter tip position along the grain boundaries. Also, it approaches the strength of pristine graphene if the tip is located slightly away from the grain boundary line. Our findings reveal the limitations of nanoindentation testing in quantifying the strength of graphene, and show that the loading-mode-specific failure mechanism must be taken into account in designing reliable devices from graphene and other technologically important 2D materials.Due to the difficulty of performing uniaxial tensile testing, the strengths of graphene and its grain boundaries have been measured in experiments by nanoindentation testing. From a series of molecular dynamics simulations, we find that the strength measured in uniaxial simulation and the strength estimated from the nanoindentation fracture force can differ significantly. Fracture in tensile loading occurs simultaneously with the onset of crack nucleation near 5-7 defects, while the graphene sheets often sustain the indentation loads after the crack initiation because the sharply concentrated stress near the tip does not give rise to enough driving force for further crack propagation. Due to the concentrated stress, strength estimation is sensitive to the indenter tip position along the grain boundaries. Also, it approaches the strength of pristine graphene if the tip is located slightly away from the grain boundary line. Our findings reveal the limitations of nanoindentation testing in quantifying the strength of graphene, and show that the loading-mode-specific failure mechanism must be taken into account in designing reliable devices from graphene and other technologically important 2D materials. Electronic ESI (ESI) available: Modelling of polycrystalline graphene, verification of loading speed, biaxial tensile simulations, comparison of stress distribution, size effects of indenter radius, force-deflection curves, and stability analysis of crack propagation. See DOI: 10.1039/c5nr04134a
NASA Astrophysics Data System (ADS)
Khalili, S. M. R.; Shariyat, M.; Mokhtari, M.
2014-06-01
In this study, the central cracked aluminum plates repaired with two sided composite patches are investigated numerically for their response to static tensile and transient dynamic loadings. Contour integral method is used to define and evaluate the stress intensity factors at the crack tips. The reinforcement for the composite patches is carbon fibers. The effect of adhesive thickness and patch thickness and configuration in tensile loading case and pre-tension, pre-compression and crack length effect on the evolution of the mode I stress intensity factor (SIF) (KI) of the repaired structure under transient dynamic loading case are examined. The results indicated that KI of the central cracked plate is reduced by 1/10 to 1/2 as a result of the bonded composite patch repair in tensile loading case. The crack length and the pre-loads are more effective in repaired structure in transient dynamic loading case in which, the 100 N pre-compression reduces the maximum KI for about 40 %, and the 100 N pre-tension reduces the maximum KI after loading period, by about 196 %.
Analysis of crack propagation as an energy absorption mechanism in metal matrix composites
NASA Technical Reports Server (NTRS)
Adams, D. F.; Murphy, D. P.
1981-01-01
The crack initiation and crack propagation capability was extended to the previously developed generalized plane strain, finite element micromechanics analysis. Also, an axisymmetric analysis was developed, which contains all of the general features of the plane analysis, including elastoplastic material behavior, temperature-dependent material properties, and crack propagation. These analyses were used to generate various example problems demonstrating the inelastic response of, and crack initiation and propagation in, a boron/aluminum composite.
Three-dimensional CTOA and constraint effects during stable tearing in a thin-sheet material
NASA Technical Reports Server (NTRS)
Dawicke, D. S.; Newman, J. C., Jr.; Bigelow, C. A.
1995-01-01
A small strain theory, three-dimensional elastic-plastic finite element analysis was used to simulate fracture in thin sheet 2024-T3 aluminum alloy in the T-L orientation. Both straight and tunneled cracks were modeled. The tunneled crack front shapes as a function of applied stress were obtained from the fracture surface of tested specimens. The stable crack growth behavior was measured at the specimen surface as a function of applied stress. The fracture simulation modeled the crack tunneling and extension as a function of applied stress. The results indicated that the global constraint factor, alpha(sub g), initially dropped during stable crack growth. After peak applied stress was achieved, alpha(sub g) began to increase slightly. The effect of crack front shape on alpha(sub g) was small, but the crack front shape did greatly influence the local constraint and through-thickness crack-tip opening angle (CTOA) behavior. The surface values of CTOA for the tunneled crack front model agreed well with experimental measurements, showing the same initial decrease from high values during the initial 3mm of crack growth at the specimen's surface. At the same time, the interior CTOA values increased from low angles. After the initial stable tearing region, the CTOA was constant through the thickness. The three-dimensional analysis appears to confirm the potential of CTOA as a two-dimensional fracture criterion.
Effects of Grain Size and Twin Layer Thickness on Crack Initiation at Twin Boundaries.
Zhou, Piao; Zhou, Jianqiu; Zhu, Yongwei; Jiang, E; Wang, Zikun
2018-04-01
A theoretical model to explore the effect on crack initiation of nanotwinned materials was proposed based on the accumulation of dislocations at twin boundaries. First, a critical cracking initiation condition was established considering the number of dislocations pill-up at TBs, grain size and twin layer thickness, and a semi-quantitative relationship between the crystallographic orientation and the stacking fault energy was built. In addition, the number of dislocations pill-up was described by introducing the theory of strain gradient. Based on this model, the effects of grain size and twin lamellae thickness on dislocation density and crack initiation at twin boundaries were also discussed. The simulation results demonstrated that the crack initiation resistance can be improved by decreasing the grain size and increasing the twin lamellae, which keeps in agreement with recent experimental findings reported in the literature.
Crack identification and evolution law in the vibration failure process of loaded coal
NASA Astrophysics Data System (ADS)
Li, Chengwu; Ai, Dihao; Sun, Xiaoyuan; Xie, Beijing
2017-08-01
To study the characteristics of coal cracks produced in the vibration failure process, we set up a static load and static and dynamic combination load failure test simulation system, prepared with different particle size, formation pressure, and firmness coefficient coal samples. Through static load damage testing of coal samples and then dynamic load (vibration exciter) and static (jack) combination destructive testing, the crack images of coal samples under the load condition were obtained. Combined with digital image processing technology, an algorithm of crack identification with high precision and in real-time is proposed. With the crack features of the coal samples under different load conditions as the research object, we analyzed the distribution of cracks on the surface of the coal samples and the factors influencing crack evolution using the proposed algorithm and a high-resolution industrial camera. Experimental results showed that the major portion of the crack after excitation is located in the rear of the coal sample where the vibration exciter cannot act. Under the same disturbance conditions, crack size and particle size exhibit a positive correlation, while crack size and formation pressure exhibit a negative correlation. Soft coal is more likely to lead to crack evolution than hard coal, and more easily causes instability failure. The experimental results and crack identification algorithm provide a solid basis for the prevention and control of instability and failure of coal and rock mass, and they are helpful in improving the monitoring method of coal and rock dynamic disasters.
Microstructural examination of fatigue crack tip in high strength steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fukuoka, C.; Yoshizawa, H.; Nakagawa, Y.G.
1993-10-01
Fatigue tests were performed to examine how microstructural conditioning influences crack initiation and propagation in SA508 class 3 low-carbon steel. A 3-mm-long crack was introduced in compact tension (CT) fatigue test specimens under four different loads in order to obtain crack tip plastic zones at different stress intensity factor ranges, [Delta]K = 18, 36, 54, and 72 MPa[radical]m. The microstructure of the plastic zones around the crack tip were examined by transmission electron microscopy (TEM) and selected area electron diffraction (SAD). Micro-orientation of the dislocation cells in the plastic zones of all of the CT samples increased to 4 degmore » from the level of an as-received sample. Four-point bending fatigue tests were performed for plate shape samples with a large cyclic strain range. The SAD value of the bending samples was also 4 deg in the damaged area where cracks already initiated at an early stage of the fatigue process. These test results indicate that the microstructural conditioning is a prerequisite for the fatigue crack initiation and propagation in SA508. These observations may lead to better understanding of how fatigue initiation processes transit to cracks.« less
Cyclic plasticity models and application in fatigue analysis
NASA Technical Reports Server (NTRS)
Kalev, I.
1981-01-01
An analytical procedure for prediction of the cyclic plasticity effects on both the structural fatigue life to crack initiation and the rate of crack growth is presented. The crack initiation criterion is based on the Coffin-Manson formulae extended for multiaxial stress state and for inclusion of the mean stress effect. This criterion is also applied for the accumulated damage ahead of the existing crack tip which is assumed to be related to the crack growth rate. Three cyclic plasticity models, based on the concept of combination of several yield surfaces, are employed for computing the crack growth rate of a crack plane stress panel under several cyclic loading conditions.
Self-Healing Nanotextured Vascular-like Materials: Mode I Crack Propagation.
Lee, Min Wook; Sett, Soumyadip; An, Seongpil; Yoon, Sam S; Yarin, Alexander L
2017-08-16
Here, we investigate crack propagation initiated from an initial notch in a self-healing material. The crack propagation in the core-shell nanofiber mats formed by coelectrospinning and the composites reinforced by them is in focus. All samples are observed from the crack initiation until complete failure. Due to the short-time experiments done on purpose, the resin and cure released from the cores of the core-shell nanofibers could not achieve a complete curing and stop crack growth, especially given the fact that no heating was used. The aim is to elucidate their effect on the rate of crack propagation. The crack propagation speed in polyacrylonitrile (PAN)-resin-cure nanofiber mats (with PAN being the polymer in the shell) was remarkably lower than that in the corresponding monolithic PAN nanofiber mat, down to 10%. The nanofiber mats were also encased in polydimethylsiloxane (PDMS) matrix to form composites. The crack shape and propagation in the composite samples were studied experimentally and analyzed theoretically, and the theoretical results revealed agreement with the experimental data.
Healing of Fatigue Crack in 1045 Steel by Using Eddy Current Treatment
Yang, Chuan; Xu, Wenchen; Guo, Bin; Shan, Debin; Zhang, Jian
2016-01-01
In order to investigate the methods to heal fatigue cracks in metals, tubular specimens of 1045 steel with axial and radial fatigue cracks were treated under the eddy current. The optical microscope was employed to examine the change of fatigue cracks of specimens before and after the eddy current treatment. The results show that the fatigue cracks along the axial direction of the specimen could be healed effectively in the fatigue crack initiation zone and the crack tip zone under the eddy current treatment, and the healing could occur within a very short time. The voltage breakdown and the transient thermal compressive stress caused by the detouring of eddy current around the fatigue crack were the main factors contributing to the healing in the fatigue crack initiation zone and the crack tip zone, respectively. Eddy current treatment may be a novel and effective method for crack healing. PMID:28773761
Healing of Fatigue Crack in 1045 Steel by Using Eddy Current Treatment.
Yang, Chuan; Xu, Wenchen; Guo, Bin; Shan, Debin; Zhang, Jian
2016-07-29
In order to investigate the methods to heal fatigue cracks in metals, tubular specimens of 1045 steel with axial and radial fatigue cracks were treated under the eddy current. The optical microscope was employed to examine the change of fatigue cracks of specimens before and after the eddy current treatment. The results show that the fatigue cracks along the axial direction of the specimen could be healed effectively in the fatigue crack initiation zone and the crack tip zone under the eddy current treatment, and the healing could occur within a very short time. The voltage breakdown and the transient thermal compressive stress caused by the detouring of eddy current around the fatigue crack were the main factors contributing to the healing in the fatigue crack initiation zone and the crack tip zone, respectively. Eddy current treatment may be a novel and effective method for crack healing.
Topological Toughening of graphene and other 2D materials
NASA Astrophysics Data System (ADS)
Gao, Huajian
It has been claimed that graphene, with the elastic modulus of 1TPa and theoretical strength as high as 130 GPa, is the strongest material. However, from an engineering point of view, it is the fracture toughness that determines the actual strength of materials, as crack-like flaws (i.e., cracks, holes, notches, corners, etc.) are inevitable in the design, fabrication, and operation of practical devices and systems. Recently, it has been demonstrated that graphene has very low fracture toughness, in fact close to that of ideally brittle solids. These findings have raised sharp questions and are calling for efforts to explore effective methods to toughen graphene. Recently, we have been exploring the potential use of topological effects to enhance the fracture toughness of graphene. For example, it has been shown that a sinusoidal graphene containing periodically distributed disclination quadrupoles can achieve a mode I fracture toughness nearly twice that of pristine graphene. Here we report working progresses on further studies of topological toughening of graphene and other 2D materials. A phase field crystal method is adopted to generate the atomic coordinates of material with specific topological patterns. We then perform molecular dynamics simulations of fracture in the designed samples, and observe a variety of toughening mechanisms, including crack tip blunting, crack trapping, ligament bridging, crack deflection and daughter crack initiation and coalescence.
The epidemiology of physical attack and rape among crack-using women.
Falck, R S; Wang, J; Carlson, R G; Siegal, H A
2001-02-01
This prospective study examines the epidemiology of physical attack and rape among a sample of 171 not-in-treatment, crack-cocaine using women. Since initiating crack use, 62% of the women reported suffering a physical attack. The annual rate of victimization by physical attack was 45%. Overall, more than half of the victims sought medical care subsequent to an attack. The prevalence of rape since crack use was initiated was 32%, and the annual rate was 11%. Among those women having been raped since they initiated crack use, 83% reported they were high on crack when the crime occurred as were an estimated 57% of the perpetrators. Logistic regression analyses showed that duration of crack use, arrest for prostitution, and some college education were predictors of having experienced a physical attack. Duration of crack use and a history of prostitution were predictors of suffering a rape. Drug abuse treatment programs must be sensitive to high levels of violence victimization experienced by crack-cocaine using women. Screening women for victimization, and treating the problems that emanate from it, may help make drug abuse treatment more effective.
Effect of Speed (Centrifugal Load) on Gear Crack Propagation Direction
NASA Technical Reports Server (NTRS)
Lewicki, David G.
2001-01-01
The effect of rotational speed (centrifugal force) on gear crack propagation direction was explored. Gears were analyzed using finite element analysis and linear elastic fracture mechanics. The analysis was validated with crack propagation experiments performed in a spur gear fatigue rig. The effects of speed, rim thickness, and initial crack location on gear crack propagation direction were investigated. Crack paths from the finite element method correlated well with those deduced from gear experiments. For the test gear with a backup ratio (rim thickness divided by tooth height) of nib = 0.5, cracks initiating in the tooth fillet propagated to rim fractures when run at a speed of 10,000 rpm and became tooth fractures for speeds slower than 10,000 rpm for both the experiments and anal sis. From additional analysis, speed had little effect on crack propagation direction except when initial crack locations were near the tooth/rim fracture transition point for a given backup ratio. When at that point, higher speeds tended to promote rim fracture while lower speeds (or neglecting centrifugal force) produced tooth fractures.
Microstructural examination of
NASA Astrophysics Data System (ADS)
Fukuoka, C.; Yoshizawa, H.; Nakagawa, Y. G.; Lapides, M. E.
1993-10-01
Fatigue tests were performed to examine how microstructural conditioning influences crack initiation and propagation in SA508 class 3 low-carbon steel. A 3-mm-long crack was introduced in compact tension (CT) fatigue test specimens under four different loads in order to obtain crack tip plastic zones at different stress intensity factor ranges, ΔK = 18, 36, 54, and 72 MPa√m. The microstructure of the plastic zones around the crack tip were examined by trans- mission electron microscopy (TEM) and selected area electron diffraction (SAD). Micro- orientation of the dislocation cells in the plastic zones of all of the CT samples increased to 4 deg from the level of an as-received sample. Four-point bending fatigue tests were performed for plate shape samples with a large cyclic strain range. The SAD value of the bending samples was also 4 deg in the damaged area where cracks already initiated at an early stage of the fatigue process. These test results indicate that the microstructural conditioning is a prerequisite for the fatigue crack initiation and propagation in SA508. These observations may lead to better under- standing of how fatigue initiation processes transit to cracks.
Investigation of Low-Cycle Bending Fatigue of AISI 9310 Steel Spur Gears
NASA Technical Reports Server (NTRS)
Handschuh, Robert F.; Krantz, Timothy L.; Lerch, Bradley A.; Burke, Christopher S.
2007-01-01
An investigation of the low-cycle bending fatigue of spur gears made from AISI 9310 gear steel was completed. Tests were conducted using the single-tooth bending method to achieve crack initiation and propagation. Tests were conducted on spur gears in a fatigue test machine using a dedicated gear test fixture. Test loads were applied at the highest point of single tooth contact. Gear bending stresses for a given testing load were calculated using a linear-elastic finite element model. Test data were accumulated from 1/4 cycle to several thousand cycles depending on the test stress level. The relationship of stress and cycles for crack initiation was found to be semi-logarithmic. The relationship of stress and cycles for crack propagation was found to be linear. For the range of loads investigated, the crack propagation phase is related to the level of load being applied. Very high loads have comparable crack initiation and propagation times whereas lower loads can have a much smaller number of cycles for crack propagation cycles as compared to crack initiation.
Investigation of Low-Cycle Bending Fatigue of AISI 9310 Steel Spur Gears
NASA Technical Reports Server (NTRS)
Handschuh, Robert F.; Krantz, Timothy L.; Lerch, Bradley A.; Burke, Christopher S.
2007-01-01
An investigation of the low-cycle bending fatigue of spur gears made from AISI 9310 gear steel was completed. Tests were conducted using the single-tooth bending method to achieve crack initiation and propagation. Tests were conducted on spur gears in a fatigue test machine using a dedicated gear test fixture. Test loads were applied at the highest point of single tooth contact. Gear bending stresses for a given testing load were calculated using a linear-elastic finite element model. Test data were accumulated from 1/4 cycle to several thousand cycles depending on the test stress level. The relationship of stress and cycles for crack initiation was found to be semilogarithmic. The relationship of stress and cycles for crack propagation was found to be linear. For the range of loads investigated, the crack propagation phase is related to the level of load being applied. Very high loads have comparable crack initiation and propagation times whereas lower loads can have a much smaller number of cycles for crack propagation cycles as compared to crack initiation.
Phase Contrast Imaging of Damage Initiation During Ballistic Impact of Boron Carbide
NASA Astrophysics Data System (ADS)
Schuster, Brian; Tonge, Andrew; Ramos, Kyle; Rigg, Paulo; Iverson, Adam; Schuman, Adam; Lorenzo, Nicholas
2017-06-01
For several decades, flash X-ray imaging has been used to perform time-resolved investigations of the response of ceramics under ballistic impact. Traditional absorption based contrast offers little insight into the early initiation of inelastic deformation mechanisms and instead typically only shows the gross deformation and fracture behavior. In the present work, we employed phase contrast imaging (PCI) at the Dynamic Compression Sector (DCS) at the Advanced Photon Source, Argonne National Laboratory, to investigate crack initiation and propagation following the impact of copper penetrators into boron carbide targets. These experiments employed a single-stage propellant gun to launch small-scale (0.6 mm diameter by 3 mm long) pure copper impactors at velocities ranging from 0.9 to 1.9 km/s into commercially available boron carbide targets that were 8 mm on a side. At the lowest striking velocities the penetrator undergoes dwell or interface defeat and the target response is consistent with the cone crack formation at the impact site. At higher striking velocities there is a distinct transition to massive fragmentation leading to the onset of penetration.
Evidence that abnormal grain growth precedes fatigue crack initiation in nanocrystalline Ni-Fe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Furnish, Timothy A.; Bufford, Daniel C.; Ren, Fang
Prior studies on the high-cycle fatigue behavior of nanocrystalline metals have shown that fatigue fracture is associated with abnormal grain growth (AGG). However, those previous studies have been unable to determine if AGG precedes fatigue crack initiation, or vice-versa. The present study shows that AGG indeed occurs prior to crack formation in nanocrystalline Ni-Fe by using a recently developed synchrotron X-ray diffraction modality that has been adapted for in-situ analysis. The technique allows fatigue tests to be interrupted at the initial signs of the AGG process, and subsequent microscopy reveals the precursor damage state preceding crack initiation.
Evidence that abnormal grain growth precedes fatigue crack initiation in nanocrystalline Ni-Fe
Furnish, Timothy A.; Bufford, Daniel C.; Ren, Fang; ...
2018-09-06
Prior studies on the high-cycle fatigue behavior of nanocrystalline metals have shown that fatigue fracture is associated with abnormal grain growth (AGG). However, those previous studies have been unable to determine if AGG precedes fatigue crack initiation, or vice-versa. The present study shows that AGG indeed occurs prior to crack formation in nanocrystalline Ni-Fe by using a recently developed synchrotron X-ray diffraction modality that has been adapted for in-situ analysis. The technique allows fatigue tests to be interrupted at the initial signs of the AGG process, and subsequent microscopy reveals the precursor damage state preceding crack initiation.
NASA Astrophysics Data System (ADS)
Abrokwah, Emmanuel Otchere
Directionally solidified Rene 80 (DS R80) and polycrystalline Inconel 738(IN 738) Superalloys were tested in thermo-mechanical fatigue (TMF) over the temperature range of 500-900°C and plastic strain range from 0.1 to 0.8% using a DSI Gleeble thermal simulator. Thermo-mechanical testing was carried out on the parent material (baseline) in the conventional solution treated and aged condition (STA), as well as gas tungsten arc welded (GTAW) with an IN-738 filler, followed by solution treatment and ageing. Comparison of the baseline alloy microstructure with that of the welded and heat treated alloy showed that varying crack initiation mechanisms, notably oxidation by stress assisted grain boundary oxidation, grain boundary MC carbides fatigue crack initiation, fatigue crack initiation from sample surfaces, crack initiation from weld defects and creep deformation were operating, leading to different “weakest link” and failure initiation points. The observations from this study show that the repaired samples had extra crack initiation sites not present in the baseline, which accounted for their occasional poor fatigue life. These defects include lack of fusion between the weld and the base metal, fusion zone cracking, and heat affected zone microfissures.
DOT National Transportation Integrated Search
2014-07-01
This report presents a vibration : - : based damage : - : detection methodology that is capable of effectively capturing crack growth : near connections and crack re : - : initiation of retrofitted connections. The proposed damage detection algorithm...
On the influence of microscale inertia on dynamic ductile crack extension
NASA Astrophysics Data System (ADS)
Jacques, N.; Mercier, S.; Molinari, A.
2012-08-01
The present paper is devoted to the modelling of damage by micro-voiding in ductile solids under dynamic loading conditions. Using a dynamic homogenization procedure, a constitutive damage model accounting for inertial effects due to void growth (microscale inertia or micro-inertia) has been developed. The role played by microscale inertia in dynamic ductile crack growth is investigated with the use of the proposed micromechanical modelling. It is found that micro-inertia has a significant influence on the fracture behaviour. Micro-inertia limits the velocity at which cracks propagate. It also contributes to increase the apparent dynamic toughness of the material.
Yu, Xiang; Yang, Yi; Yang, Zeng-Qiang
2018-01-01
Underground coal mining activities are prone to cause movement and breakage in geological strata and also lead to mining subsidence and even ground fissures. Along the direction working panel advancing, ground fissures may occur in roof in front and/or behind working panel. However, the investigations of previous similarity tests in lab only emphasize on the region behind working panel. By improving strata material property in construction and mounting artificial pressure devices, two physical simulation tests were conducted and successfully investigated the simulated results. Then, the mechanical model of “cantilever beam and elastic foundation beam” was proposed to calculate the stress distribution and the crack initiation angle in overlying strata and it well explains the mechanisms of ground fissures generation and propagation. Results show that, the maximum internal force in roof always occurred in front of working panel. However, because the void space in gob due to excavation is large enough to cause the bend and rotation of roof strata, compare to the triaxially compressed region in front of working panel, the roof always broke off at some positions above gob since the stress concentration resulting from such bend and rotation of strata could easily reach the limit strength of strata rocks. Also, the length of cantilever beam changed dynamically as respect to the panel advancing and the breakage intervals. Thus, the breakage position where the internal force first reached the limit tensile strength is not fixed and there will be two different kinds of relative positions between the crack initiation point and the working panel. The crack initiation direction is always perpendicular to the internal force, and the crack propagation direction is affected by the initiation angle, overburden-separation degree and the position of the hydraulic shields. If there is no overburden-separation or less, the roofs will break off as a composite beam and the propagation direction will be roughly along the central line between the initial broken point and the support position. Otherwise, the roof strata will bend with the support shields moving forward, then the fracture angle will be close to the initiation angle and the fault surface will be stepped. PMID:29513703
Yang, Jing-Hu; Yu, Xiang; Yang, Yi; Yang, Zeng-Qiang
2018-01-01
Underground coal mining activities are prone to cause movement and breakage in geological strata and also lead to mining subsidence and even ground fissures. Along the direction working panel advancing, ground fissures may occur in roof in front and/or behind working panel. However, the investigations of previous similarity tests in lab only emphasize on the region behind working panel. By improving strata material property in construction and mounting artificial pressure devices, two physical simulation tests were conducted and successfully investigated the simulated results. Then, the mechanical model of "cantilever beam and elastic foundation beam" was proposed to calculate the stress distribution and the crack initiation angle in overlying strata and it well explains the mechanisms of ground fissures generation and propagation. Results show that, the maximum internal force in roof always occurred in front of working panel. However, because the void space in gob due to excavation is large enough to cause the bend and rotation of roof strata, compare to the triaxially compressed region in front of working panel, the roof always broke off at some positions above gob since the stress concentration resulting from such bend and rotation of strata could easily reach the limit strength of strata rocks. Also, the length of cantilever beam changed dynamically as respect to the panel advancing and the breakage intervals. Thus, the breakage position where the internal force first reached the limit tensile strength is not fixed and there will be two different kinds of relative positions between the crack initiation point and the working panel. The crack initiation direction is always perpendicular to the internal force, and the crack propagation direction is affected by the initiation angle, overburden-separation degree and the position of the hydraulic shields. If there is no overburden-separation or less, the roofs will break off as a composite beam and the propagation direction will be roughly along the central line between the initial broken point and the support position. Otherwise, the roof strata will bend with the support shields moving forward, then the fracture angle will be close to the initiation angle and the fault surface will be stepped.
NASA Astrophysics Data System (ADS)
Tamada, Kazuhiro; Kakiuchi, Toshifumi; Uematsu, Yoshihiko
2017-07-01
Plane bending fatigue tests are conducted to investigate fatigue crack initiation mechanisms in coarse-grained magnesium alloy, AZ31, under the stress ratios R = -1 and 0.1. The initial crystallographic structures are analyzed by an electron backscatter diffraction method. The slip or twin operation during fatigue tests is identified from the line angle analyses based on Euler angles of the grains. Under the stress ratio R = -1, relatively thick tension twin bands are formed in coarse grains. Subsequently, compression twin or secondary pyramidal slip operates within the tension twin band, resulting in the fatigue crack initiation. On the other hand, under R = 0.1 with tension-tension loading cycles, twin bands are formed on the specimen surface, but the angles of those bands do not correspond to tension twins. Misorientation analyses of c-axes in the matrix grain and twin band reveal that double twins are activated. Under R = 0.1, fatigue crack initiates along the double twin boundaries. The different manners of fatigue crack initiation at R = -1 and 0.1 are related to the asymmetricity of twining under tension and compression loadings. The fatigue strengths under different stress ratios cannot be estimated by the modified Goodman diagram due to the effect of stress ratio on crack initiation mechanisms.
2011-10-01
crack growth, microstructure, EBSD, fractography 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT: SAR NUMBER OF PAGES 6 19a...differences in thermomechanical processing routes have been correlated with variations in fatigue life through the use of quantitative fractography ...Keywords: fatigue, crack initiation, crack growth, microstructure, EBSD, fractography 1. Introduction Two-phase titanium alloys have the unique
Finite-element analysis of dynamic fracture
NASA Technical Reports Server (NTRS)
Aberson, J. A.; Anderson, J. M.; King, W. W.
1976-01-01
Applications of the finite element method to the two dimensional elastodynamics of cracked structures are presented. Stress intensity factors are computed for two problems involving stationary cracks. The first serves as a vehicle for discussing lumped-mass and consistent-mass characterizations of inertia. In the second problem, the behavior of a photoelastic dynamic tear test specimen is determined for the time prior to crack propagation. Some results of a finite element simulation of rapid crack propagation in an infinite body are discussed.
Determination of dynamic fracture toughness using a new experimental technique
NASA Astrophysics Data System (ADS)
Cady, Carl M.; Liu, Cheng; Lovato, Manuel L.
2015-09-01
In other studies dynamic fracture toughness has been measured using Charpy impact and modified Hopkinson Bar techniques. In this paper results will be shown for the measurement of fracture toughness using a new test geometry. The crack propagation velocities range from ˜0.15 mm/s to 2.5 m/s. Digital image correlation (DIC) will be the technique used to measure both the strain and the crack growth rates. The boundary of the crack is determined using the correlation coefficient generated during image analysis and with interframe timing the crack growth rate and crack opening can be determined. A comparison of static and dynamic loading experiments will be made for brittle polymeric materials. The analysis technique presented by Sammis et al. [1] is a semi-empirical solution, however, additional Linear Elastic Fracture Mechanics analysis of the strain fields generated as part of the DIC analysis allow for the more commonly used method resembling the crack tip opening displacement (CTOD) experiment. It should be noted that this technique was developed because limited amounts of material were available and crack growth rates were to fast for a standard CTOD method.
NASA Astrophysics Data System (ADS)
Butt, Ali
Crack propagation in a solid rocket motor environment is difficult to measure directly. This experimental and analytical study evaluated the viability of real-time radiography for detecting bore regression and propellant crack propagation speed. The scope included the quantitative interpretation of crack tip velocity from simulated radiographic images of a burning, center-perforated grain and actual real-time radiographs taken on a rapid-prototyped model that dynamically produced the surface movements modeled in the simulation. The simplified motor simulation portrayed a bore crack that propagated radially at a speed that was 10 times the burning rate of the bore. Comparing the experimental image interpretation with the calibrated surface inputs, measurement accuracies were quantified. The average measurements of the bore radius were within 3% of the calibrated values with a maximum error of 7%. The crack tip speed could be characterized with image processing algorithms, but not with the dynamic calibration data. The laboratory data revealed that noise in the transmitted X-Ray intensity makes sensing the crack tip propagation using changes in the centerline transmitted intensity level impractical using the algorithms employed.
Dynamic toughness in elastic nonlinear viscous solids
NASA Astrophysics Data System (ADS)
Tang, S.; Guo, T. F.; Cheng, L.
2009-02-01
This work addresses the interrelationship among dissipative mechanisms—material separation in the fracture process zone (FPZ), nonelastic deformation in the surrounding background material and kinetic energy—and how they affect the macroscopic dynamic fracture toughness as well as the limiting crack speed in strain rate sensitive materials. To this end, a micromechanics-based model for void growth in a nonlinear viscous solid is incorporated into a microporous strip of cell elements that forms the FPZ. The latter is surrounded by background material described by conventional constitutive relations. In the first part of the paper, the background material is assumed to be purely elastic. Here, the computed dynamic fracture toughness is a convex function of crack velocity. In the second part, the background material as well as the FPZ are described by similar rate-sensitivity parameters. Voids grow in the strain rate strengthened FPZ as the crack velocity increases. Consequently, the work of separation increases. By contrast, the inelastic dissipation in the background material appears to be a concave function of crack velocity. At the lower crack velocity regime, where dissipation in the background material is dominant, toughness decreases as crack velocity increases. At high crack velocities, inelastic deformation enhanced by the inertial force can cause a sharp increase in toughness. Here, the computed toughness increases rapidly with crack velocity. There exist regimes where the toughness is a non-monotonic function of the crack velocity. Two length scales—the width of the FPZ and the ratio of the shear wave speed to the reference strain rate—can be shown to strongly affect the dynamic fracture toughness. Our computational simulations can predict experimental data for fracture toughness vs. crack velocity reported in several studies for amorphous polymeric materials.
Estimation and Simulation of Slow Crack Growth Parameters from Constant Stress Rate Data
NASA Technical Reports Server (NTRS)
Salem, Jonathan A.; Weaver, Aaron S.
2003-01-01
Closed form, approximate functions for estimating the variances and degrees-of-freedom associated with the slow crack growth parameters n, D, B, and A(sup *) as measured using constant stress rate ('dynamic fatigue') testing were derived by using propagation of errors. Estimates made with the resulting functions and slow crack growth data for a sapphire window were compared to the results of Monte Carlo simulations. The functions for estimation of the variances of the parameters were derived both with and without logarithmic transformation of the initial slow crack growth equations. The transformation was performed to make the functions both more linear and more normal. Comparison of the Monte Carlo results and the closed form expressions derived with propagation of errors indicated that linearization is not required for good estimates of the variances of parameters n and D by the propagation of errors method. However, good estimates variances of the parameters B and A(sup *) could only be made when the starting slow crack growth equation was transformed and the coefficients of variation of the input parameters were not too large. This was partially a result of the skewered distributions of B and A(sup *). Parametric variation of the input parameters was used to determine an acceptable range for using closed form approximate equations derived from propagation of errors.
NASA Technical Reports Server (NTRS)
Shazly, Mostafa; Prakash, Vikas; Draper, Susan; Shukla, Arun (Editor)
2006-01-01
Recently, a new generation of titanium aluminide alloy, named Gamma-Met PX, has been developed with better rolling and post-rolling characteristics. I'revious work on this alloy has shown the material to have higher strengths at room and elevated temperatures when compared with other gamma titanium aluminides. In particular, this new alloy has shown increased ductility at elevated temperatures under both quasi-static and high strain rate uniaxial compressive loading. However, its high strain rate tensile ductility at room and elevated temperatures is limited to approx. 1%. In the present chapter, results of a study to investigate the effects of loading rate and test temperature on the dynamic fracture initiation toughness in Gamma-Met PX are presented. Modified split Hopkinson pressure bar was used along with high-speed photography to determine the crack initiation time. Three-point bend dynamic fracture experiments were conducted at impact speeds of approx. 1 m/s and tests temperatures of up-to 1200 C. The results show that thc dynamic fracture initiation toughness decreases with increasing test temperatures beyond 600 C. Furthermore, thc effect of long time high temperature air exposure on the fracture toughness was investigated. The dynamic fracture initiation toughness was found to decrease with increasing exposure time. The reasons behind this drop are analyzed and discussed.
An adaptively refined XFEM with virtual node polygonal elements for dynamic crack problems
NASA Astrophysics Data System (ADS)
Teng, Z. H.; Sun, F.; Wu, S. C.; Zhang, Z. B.; Chen, T.; Liao, D. M.
2018-02-01
By introducing the shape functions of virtual node polygonal (VP) elements into the standard extended finite element method (XFEM), a conforming elemental mesh can be created for the cracking process. Moreover, an adaptively refined meshing with the quadtree structure only at a growing crack tip is proposed without inserting hanging nodes into the transition region. A novel dynamic crack growth method termed as VP-XFEM is thus formulated in the framework of fracture mechanics. To verify the newly proposed VP-XFEM, both quasi-static and dynamic cracked problems are investigated in terms of computational accuracy, convergence, and efficiency. The research results show that the present VP-XFEM can achieve good agreement in stress intensity factor and crack growth path with the exact solutions or experiments. Furthermore, better accuracy, convergence, and efficiency of different models can be acquired, in contrast to standard XFEM and mesh-free methods. Therefore, VP-XFEM provides a suitable alternative to XFEM for engineering applications.
Effects of microscale inertia on dynamic ductile crack growth
NASA Astrophysics Data System (ADS)
Jacques, N.; Mercier, S.; Molinari, A.
2012-04-01
The aim of this paper is to investigate the role of microscale inertia in dynamic ductile crack growth. A constitutive model for porous solids that accounts for dynamic effects due to void growth is proposed. The model has been implemented in a finite element code and simulations of crack growth in a notched bar and in an edge cracked specimen have been performed. Results are compared to predictions obtained via the Gurson-Tvergaard-Needleman (GTN) model where micro-inertia effects are not accounted for. It is found that microscale inertia has a significant influence on the crack growth. In particular, it is shown that micro-inertia plays an important role during the strain localisation process by impeding void growth. Therefore, the resulting damage accumulation occurs in a more progressive manner. For this reason, simulations based on the proposed modelling exhibit much less mesh sensitivity than those based on the viscoplastic GTN model. Microscale inertia is also found to lead to lower crack speeds. Effects of micro-inertia on fracture toughness are evaluated.
Barrows, Wesley; Dingreville, Rémi; Spearot, Douglas
2015-10-19
A statistical approach combined with molecular dynamics simulations is used to study the influence of hydrogen on intergranular decohesion. This methodology is applied to a Ni Σ3(112)[11¯0] symmetric tilt grain boundary. Hydrogenated grain boundaries with different H concentrations are constructed using an energy minimization technique with initial H atom positions guided by Monte Carlo simulation results. Decohesion behavior is assessed through extraction of a traction–separation relationship during steady-state crack propagation in a statistically meaningful approach, building upon prior work employing atomistic cohesive zone volume elements (CZVEs). A sensitivity analysis is performed on the numerical approach used to extract the traction–separationmore » relationships, clarifying the role of CZVE size, threshold parameters necessary to differentiate elastic and decohesion responses, and the numerical averaging technique. Results show that increasing H coverage at the Ni Σ3(112)[11¯0] grain boundary asymmetrically influences the crack tip velocity during propagation, leads to a general decrease in the work of separation required for crack propagation, and provides a reduction in the peak stress in the extracted traction–separation relationship. Furthermore the present framework offers a meaningful vehicle to pass atomistically derived interfacial behavior to higher length scale formulations for intergranular fracture.« less
Dynamics of cracks in disordered materials
NASA Astrophysics Data System (ADS)
Bonamy, Daniel
2017-05-01
Predicting when rupture occurs or cracks progress is a major challenge in numerous fields of industrial, societal, and geophysical importance. It remains largely unsolved: stress enhancement at cracks and defects, indeed, makes the macroscale dynamics extremely sensitive to the microscale material disorder. This results in giant statistical fluctuations and non-trivial behaviors upon upscaling, difficult to assess via the continuum approaches of engineering.
Fracture toughness and crack growth of Zerodur
NASA Technical Reports Server (NTRS)
Viens, Michael J.
1990-01-01
The fracture toughness and crack growth parameters of Zerodur, a low expansion glass ceramic material, were determined. The fracture toughness was determined using indentation techniques and was found to be 0.9 MPa x m(sup 1/2). The crack growth parameters were determined using indented biaxial specimens subjected to static and dynamic loading in an aqueous environment. The crack growth parameters n and 1n(B) were found to be 30.7 and -6.837, respectively. The crack growth parameters were also determined using indented biaxial specimens subjected to dynamic loading in an ambient 50 percent relative humidity environment. The crack growth parameters n and 1n(B) at 50 percent relative humidity were found to be 59.3 and -17.51, respectively.
NASA Astrophysics Data System (ADS)
Kyrylova, O. I.; Popov, V. G.
2018-04-01
An effective analytical-numerical method for determining the dynamic stresses in a hollow cylindrical body of arbitrary cross-section with a tunnel crack under antiplane strain conditions is proposed. The method allows separately solving the integral equations on the crack faces and satisfying the boundary conditions on the body boundaries. It provides a convenient numerical scheme. Approximate formulas for calculating the dynamic stress intensity factors in a neighborhood of the crack are obtained and the influence of the crack geometry and wave number on these quantities is investigated, especially from the point of view of the resonance existence.
Slow crack growth in sintered silicon nitride
NASA Technical Reports Server (NTRS)
Khandelwal, P. K.; Chang, J.; Heitman, P. W.
1986-01-01
The strength and crack growth characteristics of a sintered silicon nitride were studied at 1000 C. Fractographic analysis of material failing in dynamic fatigue revealed the presence of slow crack growth (SCG) at stressing rates below 6 ksi/min. This material can sustain a 40-ksi flexural stress at 1000 C for 400 h or more but is susceptible to both SCG and creep deformation at higher stress levels. The crack velocity exponent (N) determined both from dynamic and static fatigue experiments lies in a range from 13 to 22. The subcritical crack growth and creep behavior at 1000 C is primarily controlled by the deformation of an intergranular glassy phase.
Sweep excitation with order tracking: A new tactic for beam crack analysis
NASA Astrophysics Data System (ADS)
Wei, Dongdong; Wang, KeSheng; Zhang, Mian; Zuo, Ming J.
2018-04-01
Crack detection in beams and beam-like structures is an important issue in industry and has attracted numerous investigations. A local crack leads to global system dynamics changes and produce non-linear vibration responses. Many researchers have studied these non-linearities for beam crack diagnosis. However, most reported methods are based on impact excitation and constant frequency excitation. Few studies have focused on crack detection through external sweep excitation which unleashes abundant dynamic characteristics of the system. Together with a signal resampling technique inspired by Computed Order Tracking, this paper utilize vibration responses under sweep excitations to diagnose crack status of beams. A data driven method for crack depth evaluation is proposed and window based harmonics extracting approaches are studied. The effectiveness of sweep excitation and the proposed method is experimentally validated.
Ohara, Yoshikazu; Horinouchi, Satoshi; Hashimoto, Makoto; Shintaku, Yohei; Yamanaka, Kazushi
2011-08-01
To improve the selectivity of closed cracks for objects other than cracks in ultrasonic imaging, we propose an extension of a novel imaging method, namely, subharmonic phased array for crack evaluation (SPACE) as well as another approach using the subtraction of responses at different external loads. By applying external static or dynamic loads to closed cracks, the contact state in the cracks varies, resulting in an intensity change of responses at cracks. In contrast, objects other than cracks are independent of external load. Therefore, only cracks can be extracted by subtracting responses at different loads. In this study, we performed fundamental experiments on a closed fatigue crack formed in an aluminum alloy compact tension (CT) specimen using the proposed method. We examined the static load dependence of SPACE images and the dynamic load dependence of linear phased array (PA) images by simulating the external loads with a servohydraulic fatigue testing machine. By subtracting the images at different external loads, we show that this method is useful in extracting only the intensity change of responses related to closed cracks, while canceling the responses of objects other than cracks. Copyright © 2010 Elsevier B.V. All rights reserved.
Dynamic fracture instability of tough bulk metallic glass
NASA Astrophysics Data System (ADS)
Meng, J. X.; Ling, Z.; Jiang, M. Q.; Zhang, H. S.; Dai, L. H.
2008-04-01
We report the observations of a clear fractographic evolution from vein pattern, dimple structure, and then to periodic corrugation structure, followed by microbranching pattern, along the crack propagation direction in the dynamic fracture of a tough Zr41.2Ti13.8Cu12.5Ni10Be22.5 (Vit.1) bulk metallic glass (BMGs) under high-velocity plate impact. A model based on fracture surface energy dissipation and void growth is proposed to characterize this fracture pattern transition. We find that once the dynamic crack propagation velocity reaches a critical fraction of Rayleigh wave speed, the crack instability occurs; hence, crack microbranching goes ahead. Furthermore, the correlation between the critical velocity of amorphous materials and their intrinsic strength such as Young's modulus is uncovered. The results may shed new insight into dynamic fracture instability for BMGs.
Hughes, Cris E; White, Crystal A
2009-03-01
This study presents a new method for understanding postmortem heat-induced crack propagation patterns in teeth. The results demonstrate that patterns of postmortem heat-induced crack propagation differ from perimortem and antemortem trauma-induced crack propagation patterns. Dental material of the postmortem tooth undergoes dehydration leading to a shrinking and more brittle dentin material and a weaker dentin-enamel junction. Dentin intertubule tensile stresses are amplified by the presence of the pulp cavity, and initiates crack propagation from the internal dentin, through the dentin-enamel junction and lastly the enamel. In contrast, in vivo perimortem and antemortem trauma-induced crack propagation initiates cracking from the external surface of the enamel toward the dentin-enamel junction where the majority of the energy of the crack is dissipated, eliminating the crack's progress into the dentin. These unique patterns of crack propagation can be used to differentiate postmortem taphonomy-induced damage from antemortem and perimortem trauma in teeth.
The Effects of Hot Corrosion Pits on the Fatigue Resistance of a Disk Superalloy
NASA Technical Reports Server (NTRS)
Gabb, Timothy P.; Telesman, Jack; Hazel, Brian; Mourer, David P.
2009-01-01
The effects of hot corrosion pits on low cycle fatigue life and failure modes of the disk superalloy ME3 were investigated. Low cycle fatigue specimens were subjected to hot corrosion exposures producing pits, then tested at low and high temperatures. Fatigue lives and failure initiation points were compared to those of specimens without corrosion pits. Several tests were interrupted to estimate the fraction of fatigue life that fatigue cracks initiated at pits. Corrosion pits significantly reduced fatigue life by 60 to 98 percent. Fatigue cracks initiated at a very small fraction of life for high temperature tests, but initiated at higher fractions in tests at low temperature. Critical pit sizes required to promote fatigue cracking were estimated, based on measurements of pits initiating cracks on fracture surfaces.
Crack Initiation and Growth in Rigid Polymeric Closed-Cell Foam Cryogenic Applications
NASA Technical Reports Server (NTRS)
Sayyah, Tarek; Steeve, Brian; Wells, Doug
2006-01-01
Cryogenic vessels, such as the Space Shuttle External Tank, are often insulated with closed-cell foam because of its low thermal conductivity. The coefficient of thermal expansion mismatch between the foam and metallic substrate places the foam under a biaxial tension gradient through the foam thickness. The total foam thickness affects the slope of the stress gradient and is considered a significant contributor to the initiation of subsurface cracks. Rigid polymeric foams are brittle in nature and any subsurface cracks tend to propagate a finite distance toward the surface. This presentation investigates the relationship between foam thickness and crack initiation and subsequent crack growth, using linear elastic fracture mechanics, in a rigid polymeric closed-cell foam through analysis and comparison with experimental results.
Fan-head shear rupture mechanism as a source of off-fault tensile cracking
NASA Astrophysics Data System (ADS)
Tarasov, Boris
2016-04-01
This presentation discusses the role of a recently identified fan-head shear rupture mechanism [1] in the creation of off-fault tensile cracks observed in earthquake laboratory experiments conducted on brittle photoelastic specimens [2,3]. According to the fan-mechanism the shear rupture propagation is associated with consecutive creation of small slabs in the fracture tip which, due to rotation caused by shear displacement of the fracture interfaces, form a fan-structure representing the fracture head. The fan-head combines such unique features as: extremely low shear resistance (below the frictional strength) and self-sustaining tensile stress intensification along one side of the interface. The variation of tensile stress within the fan-head zone is like this: it increases with distance from the fracture tip up to a maximum value and then decreases. For the initial formation of the fan-head high local stresses corresponding to the fracture strength should be applied in a small area, however after completions of the fan-head it can propagate dynamically through the material at low shear stresses (even below the frictional strength). The fan-mechanism allows explaining all unique features associated with the off-fault cracking process observed in photoelastic experiments [2,3]. In these experiments spontaneous shear ruptures were nucleated in a bonded, precut, inclined and pre-stressed interface by producing a local pressure pulse in a small area. Isochromatic fringe patterns around a shear rupture propagating along bonded interface indicate the following features of the off-fault tensile crack development: tensile cracks nucleate and grow periodically along one side of the interface at a roughly constant angle (about 80 degrees) relative to the shear rupture interface; the tensile crack nucleation takes place some distance behind the rupture tip; with distance from the point of nucleation tensile cracks grow up to a certain length within the rupture head zone; behind this zone static microcracks are left in the wake of the propagating rupture. Unfortunately, the modern technology used in these experiments is not able to identify the shear rupture mechanism itself operated within the narrow rupture interface. However, a special analysis of side effects accompanying the shear rupture propagation (including the off-fault tensile cracking) allows supposing that the failure process was governed by the fan-mechanism. 1. Tarasov, B.G. 2014. Hitherto unknown shear rupture mechanism as a source of instability in intact hard rocks at highly confined compression. Tectonophysics, 621, 69-84. 2. Griffith, W.A., Rosakis, A., Pollard, D.D. and Ko, C.W., 2009. Dynamic rupture experiments elucidate tensile crack development during propagating earthquake ruptures, Geology, pp 795-798. 3. Ngo, D., Huang, Y., Rosakis, A., Griffith, W.A., Pollard D. 2012. Off-fault tensile cracks: A link between geological fault observations, lab experiments, and dynamic rupture models. Journal of Geophysical Research, vol. 117, B01307, doi: 10.1029/2011JB008577 (2012).
NASA Astrophysics Data System (ADS)
Sun, Wei; Guan, Zhidong; Li, Zengshan
2017-12-01
In this paper, the Inter-Fiber Fracture (IFF) criterion of Puck failure theory based on the eXtended Finite Element Method (XFEM) was implemented in ABAQUS code to predict the intra-laminar crack initiation of unidirectional (UD) composite laminate. The transverse crack path in the matrix can be simulated accurately by the presented method. After the crack initiation, the propagation of the crack is simulated by Cohesive Zoom Model (CZM), in which the displacement discontinuities and stress concentration caused by matrix crack is introduced into the finite element (FE) model. Combined with the usage of the enriched element interface, which can be used to simulate the inter-laminar delamination crack, the Low Velocity Impact (LVI) induced damage of UD composite laminate beam with a typical stacking of composite laminates [05/903]S is studied. A complete crack initiation and propagation process was simulated and the numerical results obtained by the XFEM are consistent with the experimental results.
Cross-validated detection of crack initiation in aerospace materials
NASA Astrophysics Data System (ADS)
Vanniamparambil, Prashanth A.; Cuadra, Jefferson; Guclu, Utku; Bartoli, Ivan; Kontsos, Antonios
2014-03-01
A cross-validated nondestructive evaluation approach was employed to in situ detect the onset of damage in an Aluminum alloy compact tension specimen. The approach consisted of the coordinated use primarily the acoustic emission, combined with the infrared thermography and digital image correlation methods. Both tensile loads were applied and the specimen was continuously monitored using the nondestructive approach. Crack initiation was witnessed visually and was confirmed by the characteristic load drop accompanying the ductile fracture process. The full field deformation map provided by the nondestructive approach validated the formation of a pronounced plasticity zone near the crack tip. At the time of crack initiation, a burst in the temperature field ahead of the crack tip as well as a sudden increase of the acoustic recordings were observed. Although such experiments have been attempted and reported before in the literature, the presented approach provides for the first time a cross-validated nondestructive dataset that can be used for quantitative analyses of the crack initiation information content. It further allows future development of automated procedures for real-time identification of damage precursors including the rarely explored crack incubation stage in fatigue conditions.
Dynamic Crack Branching - A Photoelastic Evaluation,
1982-05-01
0.41 mPai and a 0.18 MPa, and predicted a theoretical kinking angle of 84°whichagreed well with experimentally measured angle. After crack kinking...Consistent crack branching’at KIb = 2.04 MPaI -i- and r = 1.3 mm verified this crack branching criterion. The crack branching angle predicted by--.’ DD
Distribution of Inclusion-Initiated Fatigue Cracking in Powder Metallurgy Udimet 720 Characterized
NASA Technical Reports Server (NTRS)
Bonacuse, Peter J.; Kantzos, Pete T.; Barrie, Robert; Telesman, Jack; Ghosn, Louis J.; Gabb, Timothy P.
2004-01-01
In the absence of extrinsic surface damage, the fatigue life of metals is often dictated by the distribution of intrinsic defects. In powder metallurgy (PM) alloys, relatively large defects occur rarely enough that a typical characterization with a limited number of small volume fatigue test specimens will not adequately sample inclusion-initiated damage. Counterintuitively, inclusion-initiated failure has a greater impact on the distribution in PM alloy fatigue lives because they tend to have fewer defects than their cast and wrought counterparts. Although the relative paucity of defects in PM alloys leads to higher mean fatigue lives, the distribution in observed lives tends to be broader. In order to study this important failure initiation mechanism without expending an inordinate number of specimens, a study was undertaken at the NASA Glenn Research Center where known populations of artificial inclusions (seeds) were introduced to production powder. Fatigue specimens were machined from forgings produced from the seeded powder. Considerable effort has been expended in characterizing the crack growth rate from inclusion-initiated cracks in seeded PM alloys. A rotating and translating positioning system, with associated software, was devised to map the surface inclusions in low-cycle fatigue (LCF) test bars and to monitor the crack growth from these inclusions. The preceding graph illustrates the measured extension in fatigue cracks from inclusions on a seeded LCF test bar subjected to cyclic loading at a strain range of 0.8 percent and a strain ratio (max/min) of zero. Notice that the observed inclusions fall into three categories: some do not propagate at all (arrest), some propagate with a decreasing crack growth rate, and a few propagate at increasing rates that can be modeled by fracture mechanics. The following graph shows the measured inclusion-initiated crack growth rates from 10 interrupted LCF tests plotted against stress intensities calculated for semi-elliptical cracks with the observed surface lengths. The expected scatter in the crack growth rates for stress intensity ranges near threshold is observed. These data will be used to help determine the distribution in growth rates of cracks emanating from inclusions as well as the proportion of cracks that arrest under various loading conditions.
Failure of disordered materials as a depinning transition
NASA Astrophysics Data System (ADS)
Ponson, Laurent
2010-03-01
Crack propagation is the fundamental process leading to material failure. However, its dynamics is far from being fully understood. In this work, we investigate both experimentally and theoretically the far-from-equilibrium propagation of a crack within a disordered brittle material. At first, we focus on the average dynamics of a crack, and study the variations of its growth velocity v with respect to the external driving force G [1]. Carefully measured on a brittle rock, these variations are shown to display two regimes: above a given threshold Gc, the velocity evolves as a power law v ˜(G- Gc)^0.8, while at low driving force, its variations are well described by a sub-critical creep law, characteristic of a thermally activated crack propagation. Extending the continuum theory of Fracture Mechanics to inhomogeneous media, we show that this behavior is reminiscent of a dynamical critical transition: critical failure occurs when the driving force is sufficiently large to depin the crack front from the material heterogeneities. Another way to reveal such a transition is to investigate the fluctuations of crack velocity [2]. Considering a crack at the heterogeneous interface between two elastic solids, we predict that its propagation occurs through sudden jumps, with power law distributed sizes and durations. These predictions compare quantitatively well with recent direct observations of interfacial crack propagation [3]. Such an interpretation of material failure opens new perspectives in the field of Engineering and Applied Science that will be finally discussed. [4pt] [1] L. Ponson, Depinning transition in failure of inhomogeneous brittle materials, Phys. Rev. Lett. 103, 055501 (2009). [0pt] [2] D. Bonamy, S. Santucci and L. Ponson, Crackling dynamics in material failure as a signature of a self-organized dynamic phase transition, Phys. Rev. Lett. 101, 045501 (2008). [0pt] [3] K.J. Måløy, S. Santucci, J. Schmittbuhl and R. Toussaint, Local waiting time fluctuations along a randomly pinned crack front, Phys. Rev. Lett. 96, 045501 (2006).
Dynamic response of fluid inside a penny shaped crack
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayashi, Kazuo; Seki, Hitoshi
1997-12-31
In order to discuss the method for estimating the geometric characteristics of geothermal reservoir cracks, a theoretical study is performed on the dynamic response of the fluid inside a reservoir crack in a rock mass subjected to a dynamic excitation due to propagation of an elastic wave. As representative models of reservoir cracks, a penny shaped crack and a two-dimensional crack which are connected to a borehole are considered. It is found that the resonance frequency of the fluid motion is dependent on the crack size, the fluid`s viscosity and the permeability of the formation. The intensity of the resonancemore » is dependent on the fluid`s viscosity when the size, the aperture and the permeability are fixed. It is also found that, at a value of the fluid`s viscosity, the resonance of fluid pressure becomes strongest. The optimum value of the fluid`s viscosity is found to be almost perfectly determined by the permeability of the formation. Furthermore, it is revealed that, if the fluid`s viscosity is fixed to be the optimum value, the resonance frequency is almost independent of the permeability and aperture, but is dependent on the size of crack. Inversely speaking, this implies that the size of the reservoir crack can be estimated from the resonance frequency, if the fluid with the above mentioned optimum value of viscosity is employed for hydraulic fracturing.« less
NASA Technical Reports Server (NTRS)
Kalluri, Sreeramesh; Telesman, Jack
1988-01-01
Electrical potential methods have been used in the past primarily to monitor crack length in long crack specimens subjected to fatigue loading. An attempt was made to develop test procedures for monitoring the fatigue crack initiation and the growth of short fatigue cracks in a turbine disk alloy with the electrical potential drop technique (EPDT). In addition, the EPDT was also applied to monitor the fatigue crack growth in long crack specimens of the same alloy. The resolution of the EPDT for different specimen geometries was determined. Factors influencing the EPDT are identified and the applicability of EPDT in implementing damage tolerant design concepts for turbine disk materials is discussed. The experimental procedure adopted and the results obtained is discussed. No substantial differences were observed between the fatigue crack growth data of short and long crack specimens.
High speed imaging for assessment of impact damage in natural fibre biocomposites
NASA Astrophysics Data System (ADS)
Ramakrishnan, Karthik Ram; Corn, Stephane; Le Moigne, Nicolas; Ienny, Patrick; Leger, Romain; Slangen, Pierre R.
2017-06-01
The use of Digital Image Correlation has been generally limited to the estimation of mechanical properties and fracture behaviour at low to moderate strain rates. High speed cameras dedicated to ballistic testing are often used to measure the initial and residual velocities of the projectile but rarely for damage assessment. The evaluation of impact damage is frequently achieved post-impact using visual inspection, ultrasonic C-scan or other NDI methods. Ultra-high speed cameras and developments in image processing have made possible the measurement of surface deformations and stresses in real time during dynamic cracking. In this paper, a method is presented to correlate the force- displacement data from the sensors to the slow motion tracking of the transient failure cracks using real-time high speed imaging. Natural fibre reinforced composites made of flax fibres and polypropylene matrix was chosen for the study. The creation of macro-cracks during the impact results in the loss of stiffness and a corresponding drop in the force history. However, optical instrumentation shows that the initiation of damage is not always evident and so the assessment of damage requires the use of a local approach. Digital Image Correlation is used to study the strain history of the composite and to identify the initiation and progression of damage. The effect of fly-speckled texture on strain measurement by image correlation is also studied. The developed method can be used for the evaluation of impact damage for different composite materials.
Nonlinear damage identification of breathing cracks in Truss system
NASA Astrophysics Data System (ADS)
Zhao, Jie; DeSmidt, Hans
2014-03-01
The breathing cracks in truss system are detected by Frequency Response Function (FRF) based damage identification method. This method utilizes damage-induced changes of frequency response functions to estimate the severity and location of structural damage. This approach enables the possibility of arbitrary interrogation frequency and multiple inputs/outputs which greatly enrich the dataset for damage identification. The dynamical model of truss system is built using the finite element method and the crack model is based on fracture mechanics. Since the crack is driven by tensional and compressive forces of truss member, only one damage parameter is needed to represent the stiffness reduction of each truss member. Assuming that the crack constantly breathes with the exciting frequency, the linear damage detection algorithm is developed in frequency/time domain using Least Square and Newton Raphson methods. Then, the dynamic response of the truss system with breathing cracks is simulated in the time domain and meanwhile the crack breathing status for each member is determined by the feedback from real-time displacements of member's nodes. Harmonic Fourier Coefficients (HFCs) of dynamical response are computed by processing the data through convolution and moving average filters. Finally, the results show the effectiveness of linear damage detection algorithm in identifying the nonlinear breathing cracks using different combinations of HFCs and sensors.
NASA Technical Reports Server (NTRS)
Yamakov, Vesselin I.; Saether, Erik; Phillips, Dawn R.; Glaessgen, Edward H.
2006-01-01
A traction-displacement relationship that may be embedded into a cohesive zone model for microscale problems of intergranular fracture is extracted from atomistic molecular-dynamics simulations. A molecular-dynamics model for crack propagation under steady-state conditions is developed to analyze intergranular fracture along a flat 99 [1 1 0] symmetric tilt grain boundary in aluminum. Under hydrostatic tensile load, the simulation reveals asymmetric crack propagation in the two opposite directions along the grain boundary. In one direction, the crack propagates in a brittle manner by cleavage with very little or no dislocation emission, and in the other direction, the propagation is ductile through the mechanism of deformation twinning. This behavior is consistent with the Rice criterion for cleavage vs. dislocation blunting transition at the crack tip. The preference for twinning to dislocation slip is in agreement with the predictions of the Tadmor and Hai criterion. A comparison with finite element calculations shows that while the stress field around the brittle crack tip follows the expected elastic solution for the given boundary conditions of the model, the stress field around the twinning crack tip has a strong plastic contribution. Through the definition of a Cohesive-Zone-Volume-Element an atomistic analog to a continuum cohesive zone model element - the results from the molecular-dynamics simulation are recast to obtain an average continuum traction-displacement relationship to represent cohesive zone interaction along a characteristic length of the grain boundary interface for the cases of ductile and brittle decohesion. Keywords: Crack-tip plasticity; Cohesive zone model; Grain boundary decohesion; Intergranular fracture; Molecular-dynamics simulation
Stability analysis and backward whirl investigation of cracked rotors with time-varying stiffness
NASA Astrophysics Data System (ADS)
AL-Shudeifat, Mohammad A.
2015-07-01
The dynamic stability of dynamical systems with time-periodic stiffness is addressed here. Cracked rotor systems with time-periodic stiffness are well-known examples of such systems. Time-varying area moments of inertia at the cracked element cross-section of a cracked rotor have been used to formulate the time-periodic finite element stiffness matrix. The semi-infinite coefficient matrix obtained by applying the harmonic balance (HB) solution to the finite element (FE) equations of motion is employed here to study the dynamic stability of the system. Consequently, the sign of the determinant of a scaled version of a sub-matrix of this semi-infinite coefficient matrix at a finite number of harmonics in the HB solution is found to be sufficient for identifying the major unstable zones of the system in the parameter plane. Specifically, it is found that the negative determinant always corresponds to unstable zones in all of the systems considered. This approach is applied to a parametrically excited Mathieu's equation, a two degree-of-freedom linear time-periodic dynamical system, a cracked Jeffcott rotor and a finite element model of the cracked rotor system. Compared to the corresponding results obtained by Floquet's theory, the sign of the determinant of the scaled sub-matrix is found to be an efficient tool for identifying the major unstable zones of the linear time-periodic parametrically excited systems, especially large-scale FE systems. Moreover, it is found that the unstable zones for a FE cracked rotor with an open transverse crack model only appear at the backward whirl. The theoretical and experimental results have been found to agree well for verifying that the open crack model excites the backward whirl amplitudes at the critical backward whirling rotational speeds.
NASA Astrophysics Data System (ADS)
Kim, S.; Adams, D. E.; Sohn, H.
2013-01-01
As the wind power industry has grown rapidly in the recent decade, maintenance costs have become a significant concern. Due to the high repair costs for wind turbine blades, it is especially important to detect initial blade defects before they become structural failures leading to other potential failures in the tower or nacelle. This research presents a method of detecting cracks on wind turbine blades using the Vibo-Acoustic Modulation technique. Using Vibro-Acoustic Modulation, a crack detection test is conducted on a WHISPER 100 wind turbine in its operating environment. Wind turbines provide the ideal conditions in which to utilize Vibro-Acoustic Modulation because wind turbines experience large structural vibrations. The structural vibration of the wind turbine balde was used as a pumping signal and a PZT was used to generate the probing signal. Because the non-linear portion of the dynamic response is more sensitive to the presence of a crack than the environmental conditions or operating loads, the Vibro-Acoustic Modulation technique can provide a robust structural health monitoring approach for wind turbines. Structural health monitoring can significantly reduce maintenance costs when paired with predictive modeling to minimize unscheduled maintenance.
Fluid-driven cracks in an elastic matrix in the toughness-dominated limit
Lai, Ching-Yao; Zheng, Zhong; Dressaire, Emilie
2016-01-01
The dynamics of fluid-driven cracks in an elastic matrix is studied experimentally. We report the crack radius R(t) as a function of time, as well as the crack shapes w(r,t) as a function of space and time. A dimensionless parameter, the pressure ratio Δpf/Δpv, is identified to gauge the relative importance between the toughness (Δpf) and viscous (Δpv) effects. In our previous paper (Lai et al. 2015 Proc. R. Soc. A 471, 20150255. (doi:10.1098/rspa.2015.0255)), we investigated the viscous limit experimentally when the toughness-related stresses are negligible for the crack propagation. In this paper, the experimental parameters, i.e. Young’s modulus E of the gelatin, viscosity μ of the fracturing liquid and the injection flow rate Q, were chosen so that the viscous effects in the flow are negligible compared with the toughness effects, i.e. Δpf/Δpv≫1. In this limit, the crack dynamics can be described by the toughness-dominated scaling laws, which give the crack radius R(t)∝t2/5 and the half maximum crack thickness W(t)∝t1/5. The experimental results are in good agreement with the predictions of the toughness scaling laws: the experimental data for crack radius R(t) for a wide range of parameters (E,μ,Q) collapse after being rescaled by the toughness scaling laws, and the rescaled crack shapes w(r,t) also collapse to a dimensionless shape, which demonstrates the self-similarity of the crack shape. The appropriate choice of the viscous or toughness scaling laws is important to accurately describe the crack dynamics. This article is part of the themed issue ‘Energy and the subsurface’. PMID:27597782
On the response of dynamic cracks to increasing overload
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gumbsch, P.
1996-12-01
One of the most interesting questions in the dynamics of brittle fracture is how a running brittle crack responds to an overload, i.e., to a mechanical energy release rate larger than that due to the increase in surface energy of the two cleavage surfaces. To address this question, dynamically running cracks in different crystal lattices are modelled atomistically under the condition of constant energy release rate. Stable crack propagation as well as the onset of crack tip instabilities are studied. It will be shown that small overloads lead to stable crack propagation with steady state velocities which quickly reach themore » terminal velocity of about 0.4 of the Rayleigh wave speed upon increasing the overload. Further increasing the overload does not change the steady state velocity but significantly changes the energy dissipation process towards shock wave emission at the breaking of every single atomic bond. Eventually the perfectly brittle crack becomes unstable, which then leads to dislocation generation and to the production of cleavage steps. The onset of the instability as well as the terminal velocity are related to the non-linearity of the interatomic interaction.« less
Stable tearing behavior of a thin-sheet material with multiple cracks
NASA Technical Reports Server (NTRS)
Dawicke, D. S.; Newman, J. C., Jr.; Sutton, M. A.; Amstutz, B. E.
1994-01-01
Fracture tests were conducted on 2.3mm thick, 305mm wide sheets of 2024-T3 aluminum alloy with 1-5 collinear cracks. The cracks were introduced (crack history) into the specimens by three methods: (1) saw cutting; (2) fatigue precracking at a low stress range; and (3) fatigue precracking at a high stress range. For the single crack tests, the initial crack history influenced the stress required for the onset of stable crack growth and the first 10mm of crack growth. The effect on failure stress was about 4 percent or less. For the multiple crack tests, the initial crack history was shown to cause differences of more than 20 percent in the link-up stress and 13 percent in failure stress. An elastic-plastic finite element analysis employing the Crack Tip Opening Angle (CTOA) fracture criterion was used to predict the fracture behavior of the single and multiple crack tests. The numerical predictions were within 7 percent of the observed link-up and failure stress in all the tests.
NASA Technical Reports Server (NTRS)
Dawicke, D. S.; Newman, J. C., Jr.; Sutton, M. A.; Amstutz, B. E.
1994-01-01
Fracture tests were conducted on 2.3mm thick, 305mm wide sheets of 2024-T3 aluminum alloy with from one to five collinear cracks. The cracks were introduced (crack history) into the specimens by three methods: saw cutting, fatigue precracking at a low stress range, and fatigue precracking at a high stress range. For the single crack tests, the initial crack history influenced the stress required for the onset of stable crack growth and the first 10mm of crack growth. The effect on failure stress was about 4 percent or less. For the multiple crack tests, the initial crack history was shown to cause differences of more than 20 percent in the link-up stress and 13 percent in failure stress. An elastic-plastic finite element analysis employing the CTOA fracture criterion was used to predict the fracture behavior of the single and multiple crack tests. The numerical predictions were within 7 percent of the observed link-up and failure stress in all the tests.
In-situ observations of crack initiation and growth at notches in cast Ti-48Al-2Cr-2Nb
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pollock, T.M.; Muraleedharan, K.; Mumm, D.R.
1996-12-01
Gamma titanium aluminide alloys have recently received a great deal of attention due to their demonstrated potential for application in aircraft engines. Although a number of studies have been conducted on the fracture behavior of these alloys under conditions where relatively long pre-existing cracks are present, there is little information on the early stages of crack initiation and growth. The objective of the study reported here was to observe the initial development of cracks at the scale of the microstructure. To confine the process of interest to well-defined regions, notched specimens were utilized. Observations regarding the initiation, growth and themore » influence of environment on failure are discussed.« less
Detection and monitoring of shear crack growth using S-P conversion of seismic waves
NASA Astrophysics Data System (ADS)
Modiriasari, A.; Bobet, A.; Pyrak-Nolte, L. J.
2017-12-01
A diagnostic method for monitoring shear crack initiation, propagation, and coalescence in rock is key for the detection of major rupture events, such as slip along a fault. Active ultrasonic monitoring was used in this study to determine the precursory signatures to shear crack initiation in pre-cracked rock. Prismatic specimens of Indiana limestone (203x2101x638x1 mm) with two pre-existing parallel flaws were subjected to uniaxial compression. The flaws were cut through the thickness of the specimen using a scroll saw. The length of the flaws was 19.05 mm and had an inclination angle with respect to the loading direction of 30o. Shear wave transducers were placed on each side of the specimen, with polarization parallel to the loading direction. The shear waves, given the geometry of the flaws, were normally incident to the shear crack forming between the two flaws during loading. Shear crack initiation and propagation was detected on the specimen surface using digital image correlation (DIC), while initiation inside the rock was monitored by measuring full waveforms of the transmitted and reflected shear (S) waves across the specimen. Prior to the detection of a shear crack on the specimen surface using DIC, transmitted S waves were converted to compressional (P) waves. The emergence of converted S-P wave occurs because of the presence of oriented microcracks inside the rock. The microcracks coalesce and form the shear crack observed on the specimen surface. Up to crack coalescence, the amplitude of the converted waves increased with shear crack propagation. However, the amplitude of the transmitted shear waves between the two flaws did not change with shear crack initiation and propagation. This is in agreement with the conversion of elastic waves (P- to S-wave or S- to P-wave) observed by Nakagawa et al., (2000) for normal incident waves. Elastic wave conversions are attributed to the formation of an array of oriented microcracks that dilate under shear stress, which causes energy partitioning into P, S, and P-to-S or S-to-P waves. This finding provides a diagnostic method for detecting shear crack initiation and growth using seismic wave conversions. Acknowledgments: This material is based upon work supported by the National Science Foundation, Geomechanics and Geotechnical Systems Program (award No. CMMI-1162082).
Vibrations Caused By Cracked Turbopump Bearing Race
NASA Technical Reports Server (NTRS)
Goggin, David G.; Dweck, Robert A.
1990-01-01
Expansion gives rise to eccentricity. Report presents analysis of dynamic effects caused by cracking of inner race of ball bearing in turbopump. Crack manifested itself via increase in vibrations synchronous with rotation and smaller increase at twice frequency of rotation. Analysis conducted to verify these increases were caused solely by crack and to understand implications for future such cracks.
Experimental simulation of frost wedging-induced crack propagation in alpine rockwall
NASA Astrophysics Data System (ADS)
Jia, Hailiang; Leith, Kerry; Krautblatter, Michael
2016-04-01
Frost wedging is widely presumed to be the principal mechanism responsible for shattering jointed low-porosity rocks in high alpine rockwalls. The interaction of ice and rock physics regulates the efficacy of frost wedging. In order to better understand temporal aspects of this interaction, we present results of a series of laboratory experiments monitoring crack widening as a result of ice formation in an artificial crack (4mm wide, 80mm deep) cut 20 mm from the end of a rectangular granite block. Our results indicate that i) freezing direction plays a key role in determining the magnitude of crack widening; in short-term (1 day) experiments, maximum crack widening during top-down freezing (associated with 'autumn' conditions) was around 0.11mm, while inside-out freezing (resulting from 'spring' conditions) produced only 0.02 mm of deformation; ii) neither ice, nor water pressure (direct tension and hydraulic fracturing respectively) caused measurable irreversible crack widening during short-term tests, as the calculated maximum stress intensity at the crack tip was less than the fracture toughness of our granite sample; iii) development of ice pressure is closely related to the mechanical properties of the fracture in which it forms, and as such, the interaction of ice and rock is intrinsically dynamic; iv) irreversible crack widening (about 0.03mm) was only observed following a long-term (53 day) experiment representing a simplified transition from autumn to winter conditions. We suggest this is the result of stress corrosion aided by strong opening during freezing, and to a lesser degree by ice segregation up to one week after the initial freezing period, and downward migration of liquid water during the remainder of the test. Our results suggest the fundamental assumption of frost wedging, that rapid freezing from open ends of cracks can seal water inside the crack and thus cause damage through excessive stresses induced by volumetric expansion seems questionable.
Characterization of cracking behavior using posttest fractographic analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kobayashi, T.; Shockey, D.A.
A determination of time to initiation of stress corrosion cracking in structures and test specimens is important for performing structural failure analysis and for setting inspection intervals. Yet it is seldom possible to establish how much of a component's lifetime represents the time to initiation of fracture and how much represents postinitiation crack growth. This exploratory research project was undertaken to examine the feasibility of determining crack initiation times and crack growth rates from posttest examination of fracture surfaces of constant-extension-rate-test (CERT) specimens by using the fracture reconstruction applying surface topography analysis (FRASTA) technique. The specimens used in this studymore » were Type 304 stainless steel fractured in several boiling water reactor (BWR) aqueous environments. 2 refs., 25 figs., 2 tabs.« less
Diffraction-based study of fatigue crack initiation and propagation in aerospace aluminum alloys
NASA Astrophysics Data System (ADS)
Gupta, Vipul K.
The crack initiation sites and microstructure-sensitive growth of small fatigue cracks are experimentally characterized in two precipitation-hardened aluminum alloys, 7075-T651 and 7050-T7451, stressed in ambient temperature moist-air (warm-humid) and -50°C dry N2 (cold-dry) environmental conditions. Backscattered electron imaging (BSE) and energy dispersive spectroscopy (EDS) of the fracture surfaces showed that Fe-Cu rich constituent particle clusters are the most common initiation sites within both alloys stressed in either environment. The crack growth within each alloy, on average, was observed to be slowed in the cold-dry environment than in the warm-humid environment, but only at longer crack lengths. Although no overwhelming effects of grain boundaries and grain orientations on small-crack growth were observed, crack growth data showed local fluctuations within individual grains. These observations are understood as crack propagation through the underlying substructure at the crack surface and frequent interaction with low/high-angle grain and subgrain boundaries, during cyclic loading, and, are further attributed to periodic changes in crack propagation path and multiple occurrences of crack-branching observed in the current study. SEM-based stereology in combination with electron backscattered diffraction (EBSD) established fatigue crack surface crystallography within the region from ˜1 to 50 mum of crack initiating particle clusters. Fatigue crack facets were parallel to a wide variety of crystallographic planes, with pole orientations distributed broadly across the irreducible stereographic triangle between the {001} and {101}-poles within both warm-humid and cold-dry environments. The results indicate environmentally affected fatigue cracking in both cases, given the similarity between the observed morphology and crystallography with that of a variety of aerospace aluminum alloys cracked in the presence of moist-air. There was no evidence of crystallographic {111} slip-plane cracking typical of the Stage I crack growth mode observed in single crystals and high purity polycrystals of face centered cubic metals, and which has presently been assumed for the present materials within fatigue crack initiation models. Rather, the facets tend to have near-Mode I spatial orientation, which is another indicator of the importance of environmentally affected fatigue damage. The results provide a physical basis to develop microstructurally-based next generation multi-stage fatigue (MSF) models that should include a new crack decohesion criteria based upon environmental fatigue cracking mechanisms. EBSD study of small-cracks in alloy 7050-T7451, stressed in warm-humid environment, showed that crack-path orientation changes and crack-branching occurred at both low/high-angle grain and subgrain boundaries. Single surface trace analysis suggests that the crack-path differs substantially from crystallographic slip-planes. EBSD-based observations of small-crack propagation through subgrain structure, either formed by cyclic plastic strain accumulation or pre-existing (typical of unrecrystallized grain structure in the present materials), suggest that subgrain structure plays a crucial role in small fatigue crack propagation. As mentioned earlier, local fluctuations in small-crack growth rates appear to be caused by frequent interaction with subgrain boundaries, and multiple occurrences of crack-branching and crack-path orientation changes at low/high-angle grain and subgrain boundaries. The aforementioned deviation from low-index {001}/{101}-planes and the occurrence of high-index cracking planes observed by EBSD/Stereology, in this study and others, are interpreted as trans-subgranular decohesion or inter-subgranular cracking, due to trapped hydrogen. In summary, the results provide a firmer experimental foundation for, and clearer understanding of, the mechanisms of environmental fatigue cracking of aluminum alloys, especially the role of inter-subgranular cracking, which had previously been advanced based upon fracture surface observations alone.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoynov, Y.; Dineva, P.
The stress, magnetic and electric field analysis of multifunctional composites, weakened by impermeable cracks, is of fundamental importance for their structural integrity and reliable service performance. The aim is to study dynamic behavior of a plane of functionally graded magnetoelectroelastic composite with more than one crack. The coupled material properties vary exponentially in an arbitrary direction. The plane is subjected to anti-plane mechanical and in-plane electric and magnetic load. The boundary value problem described by the partial differential equations with variable coefficients is reduced to a non-hypersingular traction boundary integral equation based on the appropriate functional transform and frequency-dependent fundamentalmore » solution derived in a closed form by Radon transform. Software code based on the boundary integral equation method (BIEM) is developed, validated and inserted in numerical simulations. The obtained results show the sensitivity of the dynamic stress, magnetic and electric field concentration in the cracked plane to the type and characteristics of the dynamic load, to the location and cracks disposition, to the wave-crack-crack interactions and to the magnitude and direction of the material gradient.« less
NASA Technical Reports Server (NTRS)
Wu, X. R.; Newman, J. C.; Zhao, W.; Swain, M. H.; Ding, C. F.; Phillips, E. P.
1998-01-01
The small crack effect was investigated in two high-strength aluminium alloys: 7075-T6 bare and LC9cs clad alloy. Both experimental and analytical investigations were conducted to study crack initiation and growth of small cracks. In the experimental program, fatigue tests, small crack and large crack tests A,ere conducted under constant amplitude and Mini-TWIST spectrum loading conditions. A pronounced small crack effect was observed in both materials, especially for the negative stress ratios. For all loading conditions, most of the fatigue life of the SENT specimens was shown to be crack propagation from initial material defects or from the cladding layer. In the analysis program, three-dimensional finite element and A weight function methods were used to determine stress intensity factors and to develop SIF equations for surface and corner cracks at the notch in the SENT specimens. A plastisity-induced crack-closure model was used to correlate small and large crack data, and to make fatigue life predictions, Predicted crack-growth rates and fatigue lives agreed well with experiments. A total fatigue life prediction method for the aluminum alloys was developed and demonstrated using the crack-closure model.
Atomistic-Dislocation Dynamics Modelling of Fatigue Microstructure and Crack Initiation
2013-01-01
experimental) Brown (Upper Limit’) DD Results Mughrabi & Pschenitzka (Lower Limit) y = 50 nm d, = 1.2 |lm M I 4 Simulations of... Mughrabi . Introduction to the viewpoint set on: Surface effects in cyclic deformation and fatigue. Scr. Metall. Mater., 26(10): 1499-1504, 1992. [3] E...associated with dislocation cores. Acta Materialia, 53:13131321, 2005. [13] H. Mughrabi . The long-range internal stress field in the dislocation wall
Topçuoğlu, Hüseyin Sinan; Düzgün, Salih; Kesim, Bertan; Tuncay, Oznur
2014-07-01
The aim of this study was to determine the incidence of crack initiation and propagation in apical root dentin after retreatment procedures performed by using 2 rotary retreatment systems and hand files with additional instrumentation. Eighty extracted mandibular premolars with single canals were selected. One millimeter from the apex of each tooth was ground perpendicular to the long axis of the tooth, and the apical surface was polished. Twenty teeth served as the control group, and no preparation was performed. The remaining 60 teeth were prepared to size 35 with rotary files and filled with gutta-percha and AH Plus sealer. Specimens were then divided into 3 groups (n = 20), and retreatment procedures were performed with the following devices and techniques: ProTaper Universal retreatment files, Mtwo retreatment files, and hand files. After retreatment, the additional instrumentation was performed by using size 40 ProTaper, Mtwo, and hand files. Digital images of the apical root surface were recorded before preparation, after instrumentation, after filling, after retreatment, and after additional instrumentation. The images were then inspected for the presence of any new apical cracks and propagation. Data were analyzed with the logistic regression and Fisher exact tests. All experimental groups caused crack initiation and propagation after use of retreatment instruments. The ProTaper and Mtwo retreatment groups caused greater crack initiation and propagation than the hand instrument group (P < .05) after retreatment. Additional instrumentation with ProTaper and Mtwo instruments after the use of retreatment instruments caused crack initiation and propagation, whereas hand files caused neither crack initiation nor propagation (P < .05). This study showed that retreatment procedures and additional instrumentation after the use of retreatment files may cause crack initiation and propagation in apical dentin. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Fatigue Life Prediction Based on Crack Closure and Equivalent Initial Flaw Size
Wang, Qiang; Zhang, Wei; Jiang, Shan
2015-01-01
Failure analysis and fatigue life prediction are necessary and critical for engineering structural materials. In this paper, a general methodology is proposed to predict fatigue life of smooth and circular-hole specimens, in which the crack closure model and equivalent initial flaw size (EIFS) concept are employed. Different effects of crack closure on small crack growth region and long crack growth region are considered in the proposed method. The EIFS is determined by the fatigue limit and fatigue threshold stress intensity factor △Kth. Fatigue limit is directly obtained from experimental data, and △Kth is calculated by using a back-extrapolation method. Experimental data for smooth and circular-hole specimens in three different alloys (Al2024-T3, Al7075-T6 and Ti-6Al-4V) under multiple stress ratios are used to validate the method. In the validation section, Semi-circular surface crack and quarter-circular corner crack are assumed to be the initial crack shapes for the smooth and circular-hole specimens, respectively. A good agreement is observed between model predictions and experimental data. The detailed analysis and discussion are performed on the proposed model. Some conclusions and future work are given. PMID:28793625
Wang, Songquan; Zhang, Dekun; Hu, Ningning; Zhang, Jialu
2016-01-01
In this work, the effects of loading condition and corrosion solution on the corrosion fatigue behavior of smooth steel wire were discussed. The results of polarization curves and weight loss curves showed that the corrosion of steel wire in acid solution was more severe than that in neutral and alkaline solutions. With the extension of immersion time in acid solution, the cathodic reaction of steel wire gradually changed from the reduction of hydrogen ion to the reduction of oxygen, but was always the reduction of hydrogen ion in neutral and alkaline solutions. The corrosion kinetic parameters and equivalent circuits of steel wires were also obtained by simulating the Nyquist diagrams. In corrosion fatigue test, the effect of stress ratio and loading frequency on the crack initiation mechanism was emphasized. The strong corrosivity of acid solution could accelerate the nucleation of crack tip. The initiation mechanism of crack under different conditions was summarized according to the side and fracture surface morphologies. For the crack initiation mechanism of anodic dissolution, the stronger the corrosivity of solution was, the more easily the fatigue crack source formed, while, for the crack initiation mechanism of deformation activation, the lower stress ratio and higher frequency would accelerate the generation of corrosion fatigue crack source. PMID:28773869
NASA Technical Reports Server (NTRS)
Fadragas, M. I.; Fine, M. E.; Moran, B.
1994-01-01
In panel specimens with rivet holes cracks initiate in the blunted knife edge of the chamfered rivet hole and propagate inward as well as along the hole. The fatigue lifetime to dominant crack information was defined as the number of cycles, N500 micrometer, to formation of a 500 micrometer long crack. Statistical data on N500 micrometer and on crack propagation after N500 micrometer were obtained for a large number of uncorroded specimens and specimens corroded in an ASTM B 117 salt spray. Considerable variation in N500 micrometer and crack propagation behavior was observed from specimen to specimen of the same nominal geometry with chamfered rivet holes increased the probability for both early formation and later formation of a propagating 500 micrometer fatigue crack. The growth of fatigue cracks after 500 micrometer size was little affected by prior salt spray.
NASA Technical Reports Server (NTRS)
Czabaj, Michael W.; Ratcliffe, James
2012-01-01
The intralaminar and interlaminar mode-I fracture-toughness of a unidirectional IM7/8552 graphite/epoxy composite were measured using compact tension (CT) and double cantilever beam (DCB) test specimens, respectively. Two starter crack geometries were considered for both the CT and DCB specimen configurations. In the first case, starter cracks were produced by 12.5 micron thick, Teflon film inserts. In the second case, considerably sharper starter cracks were produced by fatigue precracking. For each specimen configuration, use of the Teflon film starter cracks resulted in initially unstable crack growth and artificially high initiation fracture-toughness values. Conversely, specimens with fatigue precracks exhibited stable growth onset and lower initiation fracture toughness. For CT and DCB specimens with fatigue precracks, the intralaminar and interlaminar initiation fracture toughnesses were approximately equal. However, during propagation, the CT specimens exhibited more extensive fiber bridging, and rapidly increasing R-curve behavior as compared to the DCB specimens. Observations of initiation and propagation of intralaminar and interlaminar fracture, and the measurements of fracture toughness, were supported by fractographic analysis using scanning electron microscopy.
Reinforcing effect of graphene on the mechanical properties of Al2O3/TiC ceramics
NASA Astrophysics Data System (ADS)
Li, Zuo-li; Zhao, Jun; Sun, Jia-lin; Gong, Feng; Ni, Xiu-ying
2017-12-01
Multilayer graphene (MLG)-reinforced Al2O3/TiC ceramics were fabricated through hot pressing sintering, and the reinforcing effect of MLG on the microstructure and mechanical properties of the composites was investigated by experiment and simulation. The simulation of dynamic crack initiation and propagation was investigated based on the cohesive zone method. The results show that the composite added with 0.2wt% MLG has excellent flexural strength and high fracture toughness. The major reinforcing mechanisms are the synergistic effect by strong and weak bonding interfaces, MLG pull-out, and grain refinement resulting from the addition of MLG. In addition, the aggravating of crack deflection, branching, blunting, and bridging have indispensable contribution to the improvement of the as-designed materials.
NASA Technical Reports Server (NTRS)
Frady, Greg; Smaolloey, Kurt; LaVerde, Bruce; Bishop, Jim
2004-01-01
The paper will discuss practical and analytical findings of a test program conducted to assist engineers in determining which analytical strain fields are most appropriate to describe the crack initiating and crack propagating stresses in thin walled cylindrical hardware that serves as part of the Space Shuttle Main Engine's fuel system. In service the hardware is excited by fluctuating dynamic pressures in a cryogenic fuel that arise from turbulent flow/pump cavitation. A bench test using a simplified system was conducted using acoustic energy in air to excite the test articles. Strain measurements were used to reveal response characteristics of two Flowliner test articles that are assembled as a pair when installed in the engine feed system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhuang, Chunqiang, E-mail: chunqiang.zhuang@bjut.edu.cn; Li, Zhipeng; Lin, Songsheng
2015-10-15
The basic issue related to radial crack in ceramic thin films has received considerable attention due to the fact that the radial crack plays an important role in evaluating the toughness properties of ceramic materials. In this work, an atomic-scale new experimental evidence is clearly presented to reveal the counter-intuitive initiation, the nucleation and the propagation mechanism of the radial crack in Al-Cr-N ceramic thin films.
Fatigue and fracture: Overview
NASA Technical Reports Server (NTRS)
Halford, G. R.
1984-01-01
A brief overview of the status of the fatigue and fracture programs is given. The programs involve the development of appropriate analytic material behavior models for cyclic stress-strain-temperature-time/cyclic crack initiation, and cyclic crack propagation. The underlying thrust of these programs is the development and verification of workable engineering methods for the calculation, in advance of service, of the local cyclic stress-strain response at the critical life governing location in hot section compounds, and the resultant crack initiation and crack growth lifetimes.
Advanced Flaw Manufacturing and Crack Growth Control
NASA Astrophysics Data System (ADS)
Kemppainen, M.; Pitkänen, J.; Virkkunen, I.; Hänninen, H.
2004-02-01
Advanced artificial flaw manufacturing method has become available. The method produces true fatigue cracks, which are representative of most service-induced cracks. These cracks can be used to simulate behaviour of realistic cracks under service conditions. This paper introduces studies of the effects of different thermal loading cycles to crack opening and residual stress state as seen at the surface of the sample and in the ultrasonic signal. In-situ measurements were performed under dynamic thermal fatigue loading of a 20 mm long artificial crack.
NASA Astrophysics Data System (ADS)
Verveiko, N. D.; Shashkin, A. I.; Krupenko, S. E.
2018-03-01
The destruction of solid physical objects is a complex process in which mechanical, chemical, thermobaric and other matter transformations take place. Under mechanical destruction is understood the violation of the integrity of the object due to the occurrence of cracks. High-speed impact of a solid body on deformable materials is accompanied by the spread of cracks and is of a wave nature. This article presents an analysis of the dynamic stress-strain state in an elastoviscoplastic (EVP) material near the leading edge of a moving crack, approximated by a zone of continuous deformation. An analysis of the distribution of the intensity of tangential stresses and plastic deformations that occur behind the front of the longitudinal and shear head waves of a spherical shape generated by the impact of the vertex of the solid cone is carried out on the model EVP of the medium by the ray method. It is shown that the presence of a maximum of the jump of the tangential velocity component on the shear wave leads to a development with time of a jump in the displacements of the tangents to the front of the shear wave. This can be interpreted as the moment of initiation of the head part of a crack running along with the front of the elastic wave with the velocity of shear waves.
In situ fatigue loading stage inside scanning electron microscope
NASA Technical Reports Server (NTRS)
Telesman, Jack; Kantzos, Peter; Brewer, David
1988-01-01
A fatigue loading stage inside a scanning electron microscopy (SEM) was developed. The stage allows dynamic and static high-magnification and high-resolution viewing of the fatigue crack initiation and crack propagation processes. The loading stage is controlled by a closed-loop servohydraulic system. Maximum load is 1000 lb (4450 N) with test frequencies ranging up to 30 Hz. The stage accommodates specimens up to 2 inches (50 mm) in length and tolerates substantial specimen translation to view the propagating crack. At room temperature, acceptable working resolution is obtainable for magnifications ranging up to 10,000X. The system is equipped with a high-temperature setup designed for temperatures up to 2000 F (1100 C). The signal can be videotaped for further analysis of the pertinent fatigue damage mechanisms. The design allows for quick and easy interchange and conversion of the SEM from a loading stage configuration to its normal operational configuration and vice versa. Tests are performed entirely in the in-situ mode. In contrast to other designs, the NASA design has greatly extended the life of the loading stage by not exposing the bellows to cyclic loading. The loading stage was used to investigate the fatigue crack growth mechanisms in the (100)-oriented PWA 1480 single-crystal, nickel-based supperalloy. The high-magnification observations revealed the details of the crack growth processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parab, Niranjan D.; Guo, Zherui; Hudspeth, Matthew
The mechanical properties and fracture mechanisms of geomaterials and construction materials such as concrete are reported to be dependent on the loading rates. However, the in situ cracking inside such specimens cannot be visualized using traditional optical imaging methods since the materials are opaque. In this study, the in situ sub-surface failure/damage mechanisms in Cor-Tuf (a reactive powder concrete), a high-strength concrete (HSC) and Indiana limestone under dynamic loading were investigated using high-speed synchrotron X-ray phase-contrast imaging. Dynamic compressive loading was applied using a modified Kolsky bar and fracture images were recorded using a synchronized high-speed synchrotron X-ray imaging set-up.more » Three-dimensional synchrotron X-ray tomography was also performed to record the microstructure of the specimens before dynamic loading. In the Cor-Tuf and HSC specimens, two different modes of cracking were observed: straight cracking or angular cracking with respect to the direction of loading. In limestone, cracks followed the grain boundaries and voids, ultimately fracturing the specimen. Cracks in HSC were more tortuous than the cracks in Cor-Tuf specimens. The effects of the microstructure on the observed cracking behaviour are discussed. This article is part of the themed issue ‘Experimental testing and modelling of brittle materials at high strain rates’.« less
The fatigue response of the aluminium-lithium alloy, 8090
NASA Technical Reports Server (NTRS)
Birt, M. J.; Beevers, C. J.
1989-01-01
The fatigue response of an Al-Li-Cu-Mg-Zr (8090) alloy has been studied at room temperature. The initiation and growth of small and long cracks has been examined at R = 0.1 and at a frequency of 100 Hz. Initiation was observed to occur dominantly at sub-grain boundaries. The growth of the small cracks was crystallographic in character and exhibited little evidence of retardation or arrest at the grain boundaries. The long crack data showed the alloy to have a high resistance to fatigue crack growth with underaging providing the optimum heat treatment for fatigue crack growth resistance. In general, this can be attributed to high levels of crack closure which resulted from the presence of extensive microstructurally related asperities.
Dynamic crack propagation in a 2D elastic body: The out-of-plane case
NASA Astrophysics Data System (ADS)
Nicaise, Serge; Sandig, Anna-Margarete
2007-05-01
Already in 1920 Griffith has formulated an energy balance criterion for quasistatic crack propagation in brittle elastic materials. Nowadays, a generalized energy balance law is used in mechanics [F. Erdogan, Crack propagation theories, in: H. Liebowitz (Ed.), Fracture, vol. 2, Academic Press, New York, 1968, pp. 498-586; L.B. Freund, Dynamic Fracture Mechanics, Cambridge Univ. Press, Cambridge, 1990; D. Gross, Bruchmechanik, Springer-Verlag, Berlin, 1996] in order to predict how a running crack will grow. We discuss this situation in a rigorous mathematical way for the out-of-plane state. This model is described by two coupled equations in the reference configuration: a two-dimensional scalar wave equation for the displacement fields in a cracked bounded domain and an ordinary differential equation for the crack position derived from the energy balance law. We handle both equations separately, assuming at first that the crack position is known. Then the weak and strong solvability of the wave equation will be studied and the crack tip singularities will be derived under the assumption that the crack is straight and moves tangentially. Using the energy balance law and the crack tip behavior of the displacement fields we finally arrive at an ordinary differential equation for the motion of the crack tip.
Natural Fatigue Crack Initiation and Detection in High Quality Spur Gears
2012-06-01
Natural Fatigue Crack Initiation and Detection in High Quality Spur Gears by David “Blake” Stringer, Ph.D., Kelsen E. LaBerge, Ph.D., Cory...0383 June 2012 Natural Fatigue Crack Initiation and Detection in High Quality Spur Gears David “Blake” Stringer and Ph.D., Kelsen E. LaBerge...Quality Spur Gears 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) David “Blake” Stringer, Ph.D., Kelsen E
Online Bridge Crack Monitoring with Smart Film
Wang, Shuliang; Li, Xingxing; Zhou, Zhixiang; Zhang, Xu; Yang, Guang; Qiu, Minfeng
2013-01-01
Smart film crack monitoring method, which can be used for detecting initiation, length, width, shape, location, and propagation of cracks on real bridges, is proposed. Firstly, the fabrication of the smart film is developed. Then the feasibility of the method is analyzed and verified by the mechanical sensing character of the smart film under the two conditions of normal strain and crack initiation. Meanwhile, the coupling interference between parallel enameled wires of the smart film is discussed, and then low-frequency detecting signal and the custom communication protocol are used to decrease interference. On this basis, crack monitoring system with smart film is designed, where the collected crack data is sent to the remote monitoring center and the cracks are simulated and recurred. Finally, the monitoring system is applied to six bridges, and the effects are discussed. PMID:24489496
NASA Technical Reports Server (NTRS)
Panontin, Tina L.; Sheppard, Sheri D.
1994-01-01
The use of small laboratory specimens to predict the integrity of large, complex structures relies on the validity of single parameter fracture mechanics. Unfortunately, the constraint loss associated with large scale yielding, whether in a laboratory specimen because of its small size or in a structure because it contains shallow flaws loaded in tension, can cause the breakdown of classical fracture mechanics and the loss of transferability of critical, global fracture parameters. Although the issue of constraint loss can be eliminated by testing actual structural configurations, such an approach can be prohibitively costly. Hence, a methodology that can correct global fracture parameters for constraint effects is desirable. This research uses micromechanical analyses to define the relationship between global, ductile fracture initiation parameters and constraint in two specimen geometries (SECT and SECB with varying a/w ratios) and one structural geometry (circumferentially cracked pipe). Two local fracture criteria corresponding to ductile fracture micromechanisms are evaluated: a constraint-modified, critical strain criterion for void coalescence proposed by Hancock and Cowling and a critical void ratio criterion for void growth based on the Rice and Tracey model. Crack initiation is assumed to occur when the critical value in each case is reached over some critical length. The primary material of interest is A516-70, a high-hardening pressure vessel steel sensitive to constraint; however, a low-hardening structural steel that is less sensitive to constraint is also being studied. Critical values of local fracture parameters are obtained by numerical analysis and experimental testing of circumferentially notched tensile specimens of varying constraint (e.g., notch radius). These parameters are then used in conjunction with large strain, large deformation, two- and three-dimensional finite element analyses of the geometries listed above to predict crack initiation loads and to calculate the associated (critical) global fracture parameters. The loads are verified experimentally, and microscopy is used to measure pre-crack length, crack tip opening displacement (CTOD), and the amount of stable crack growth. Results for A516-70 steel indicate that the constraint-modified, critical strain criterion with a critical length approximately equal to the grain size (0.0025 inch) provides accurate predictions of crack initiation. The critical void growth criterion is shown to considerably underpredict crack initiation loads with the same critical length. The relationship between the critical value of the J-integral for ductile crack initiation and crack depth for SECT and SECB specimens has been determined using the constraint-modified, critical strain criterion, demonstrating that this micromechanical model can be used to correct in-plane constraint effects due to crack depth and bending vs. tension loading. Finally, the relationship developed for the SECT specimens is used to predict the behavior of circumferentially cracked pipe specimens.
NASA Astrophysics Data System (ADS)
Becker, T. H.; Marrow, T. J.; Tait, R. B.
2011-07-01
The crack initiation and propagation characteristics of two medium grained polygranular graphites, nuclear block graphite (NBG10) and Gilsocarbon (GCMB grade) graphite, have been studied using the Double Torsion (DT) technique. The DT technique allows stable crack propagation and easy crack tip observation of such brittle materials. The linear elastic fracture mechanics (LEFM) methodology of the DT technique was adapted for elastic-plastic fracture mechanics (EPFM) in conjunction with a methodology for directly calculating the J-integral from in-plane displacement fields (JMAN) to account for the non-linearity of graphite deformation. The full field surface displacement measurement techniques of electronic speckle pattern interferometry (ESPI) and digital image correlation (DIC) were used to observe and measure crack initiation and propagation. Significant micro-cracking in the fracture process zone (FPZ) was observed as well as crack bridging in the wake of the crack tip. The R-curve behaviour was measured to determine the critical J-integral for crack propagation in both materials. Micro-cracks tended to nucleate at pores, causing deflection of the crack path. Rising R-curve behaviour was observed, which is attributed to the formation of the FPZ, while crack bridging and distributed micro-cracks are responsible for the increase in fracture resistance. Each contributes around 50% of the irreversible energy dissipation in both graphites.
NASA Astrophysics Data System (ADS)
Maity, Srimanta; Das, Amita; Kumar, Sandeep; Tiwari, Sanat Kumar
2018-04-01
The collective response of the plasma medium is well known and has been explored extensively in the context of dusty plasma medium. On the other hand, the individual particle response associated with the collisional character giving rise to the dissipative phenomena has not been explored adequately. In this paper, two-dimensional molecular dynamics simulation of dust particles interacting via Yukawa potential has been considered. It has been shown that disturbances induced in a dust crystal elicit both collective and single particle responses. Generation of a few particles moving at speeds considerably higher than acoustic and/or shock speed (excited by the external disturbance) is observed. This is an indication of a single particle response. Furthermore, as these individual energetic particles propagate, the dust crystal is observed to crack along their path. Initially when the energy is high, these particles generate secondary energetic particles by the collisional scattering process. However, ultimately as these particles slow down they excite a collective response in the dust medium at secondary locations in a region which is undisturbed by the primary external disturbance. The condition when the cracking of the crystal stops and collective excitations get initiated has been identified quantitatively. The trailing collective primary disturbances would thus often encounter a disturbed medium with secondary and tertiary collective perturbations, thereby suffering significant modification in its propagation. It is thus clear that there is an interesting interplay (other than mere dissipation) between the single particle and collective response which governs the dynamics of any disturbance introduced in the medium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhai, Ziqing; Kruska, Karen; Toloczko, Mychailo B.
Stress corrosion crack initiation of two thermally-treated, cold-worked (CW) alloy 690 materials was investigated in 360oC simulated PWR primary water using constant load tensile (CLT) tests and blunt notch compact tension (BNCT) tests equipped with direct current potential drop (DCPD) for in-situ detection of cracking. SCC initiation was not detected by DCPD for the 21% and 31%CW CLT specimens loaded at their yield stress after ~9,220 h, however intergranular (IG) precursor damage and isolated surface cracks were observed on the specimens. The two 31%CW BNCT specimens loaded at moderate stress intensity after several cyclic loading ramps showed DCPD-indicated crack initiationmore » after 10,400h exposure at constant stress intensity, which resulted from significant growth of IG cracks. The 21%CW BNCT specimens only exhibited isolated small IG surface cracks and showed no apparent DCPD change throughout the test. Interestingly, post-test cross-section examinations revealed many grain boundary (GB) nano-cavities in the bulk of all the CLT and BNCT specimens particularly for the 31%CW materials. Cavities were also found along GBs extending to the surface suggesting an important role in crack nucleation. This paper provides an overview of the evolution of GB cavities and will discuss their effects on crack initiation in CW alloy 690.« less
Hydrogen-Induced Delayed Cracking in TRIP-Aided Lean-Alloyed Ferritic-Austenitic Stainless Steels.
Papula, Suvi; Sarikka, Teemu; Anttila, Severi; Talonen, Juho; Virkkunen, Iikka; Hänninen, Hannu
2017-06-03
Susceptibility of three lean-alloyed ferritic-austenitic stainless steels to hydrogen-induced delayed cracking was examined, concentrating on internal hydrogen contained in the materials after production operations. The aim was to study the role of strain-induced austenite to martensite transformation in the delayed cracking susceptibility. According to the conducted deep drawing tests and constant load tensile testing, the studied materials seem not to be particularly susceptible to delayed cracking. Delayed cracks were only occasionally initiated in two of the materials at high local stress levels. However, if a delayed crack initiated in a highly stressed location, strain-induced martensite transformation decreased the crack arrest tendency of the austenite phase in a duplex microstructure. According to electron microscopy examination and electron backscattering diffraction analysis, the fracture mode was predominantly cleavage, and cracks propagated along the body-centered cubic (BCC) phases ferrite and α'-martensite. The BCC crystal structure enables fast diffusion of hydrogen to the crack tip area. No delayed cracking was observed in the stainless steel that had high austenite stability. Thus, it can be concluded that the presence of α'-martensite increases the hydrogen-induced cracking susceptibility.
Hydrogen-Induced Delayed Cracking in TRIP-Aided Lean-Alloyed Ferritic-Austenitic Stainless Steels
Papula, Suvi; Sarikka, Teemu; Anttila, Severi; Talonen, Juho; Virkkunen, Iikka; Hänninen, Hannu
2017-01-01
Susceptibility of three lean-alloyed ferritic-austenitic stainless steels to hydrogen-induced delayed cracking was examined, concentrating on internal hydrogen contained in the materials after production operations. The aim was to study the role of strain-induced austenite to martensite transformation in the delayed cracking susceptibility. According to the conducted deep drawing tests and constant load tensile testing, the studied materials seem not to be particularly susceptible to delayed cracking. Delayed cracks were only occasionally initiated in two of the materials at high local stress levels. However, if a delayed crack initiated in a highly stressed location, strain-induced martensite transformation decreased the crack arrest tendency of the austenite phase in a duplex microstructure. According to electron microscopy examination and electron backscattering diffraction analysis, the fracture mode was predominantly cleavage, and cracks propagated along the body-centered cubic (BCC) phases ferrite and α’-martensite. The BCC crystal structure enables fast diffusion of hydrogen to the crack tip area. No delayed cracking was observed in the stainless steel that had high austenite stability. Thus, it can be concluded that the presence of α’-martensite increases the hydrogen-induced cracking susceptibility. PMID:28772975
Ultrasonic inspection of studs (bolts) using dynamic predictive deconvolution and wave shaping.
Suh, D M; Kim, W W; Chung, J G
1999-01-01
Bolt degradation has become a major issue in the nuclear industry since the 1980's. If small cracks in stud bolts are not detected early enough, they grow rapidly and cause catastrophic disasters. Their detection, despite its importance, is known to be a very difficult problem due to the complicated structures of the stud bolts. This paper presents a method of detecting and sizing a small crack in the root between two adjacent crests in threads. The key idea is from the fact that the mode-converted Rayleigh wave travels slowly down the face of the crack and turns from the intersection of the crack and the root of thread to the transducer. Thus, when a crack exists, a small delayed pulse due to the Rayleigh wave is detected between large regularly spaced pulses from the thread. The delay time is the same as the propagation delay time of the slow Rayleigh wave and is proportional to the site of the crack. To efficiently detect the slow Rayleigh wave, three methods based on digital signal processing are proposed: wave shaping, dynamic predictive deconvolution, and dynamic predictive deconvolution combined with wave shaping.
Thermal fatigue behaviour for a 316 L type steel
NASA Astrophysics Data System (ADS)
Fissolo, A.; Marini, B.; Nais, G.; Wident, P.
1996-10-01
This paper deals with initiation and growth of cracks produced by thermal fatigue loadings on 316 L steel, which is a reference material for the first wall of the next fusion reactor ITER. Two types of facilities have been built. As for true components, thermal cycles have been repeatedly applied on the surface of the specimen. The first is mainly concerned with initiation, which is detected with a light microscope. The second allows one to determine the propagation of a single crack. Crack initiation is analyzed using the French RCC-MR code procedure, and the strain-controlled isothermal fatigue curves. To predict crack growth, a model previously proposed by Haigh and Skelton is applied. This is based on determination of effective stress intensity factors, which takes into account both plastic strain and crack closure phenomena. It is shown that estimations obtained with such methodologies are in good agreement with experimental data.
Dynamic strain-aging effect on fracture toughness of vessel steels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, S.S.; Kim, I.S.
1992-03-01
In this paper the effect of dynamic strain aging (DSA) on fracture is investigated on the quenched and tempered specimens of American Society of Mechanical Engineers (ASME) standard SA508 class 3 nuclear pressure vessel steel. Serrated flow by DSA is observed between 180 and 340{degrees}C at a tensile strain rate of 2.08 {times} 10{sup {minus}4}/s and 1.25 {times} 10{sup {minus}3}/s. The DSA causes a sharp rise in the ultimate tensile strength and a marked decrease in ductility. The DSA range shifts to higher temperatures with increased strain rates. The temperature and strain rate dependence of the onset of serrations yieldsmore » an activation energy of 16.2 kcal/mol, which suggests that the process is controlled by interstitial diffusion of carbon and nitrogen in ferrite. The J{sub i} value obtained from the direct current potential drop (DCPD) method, for true crack initiation, is lowered by DSA. The drop in J{sub i} at elevated temperatures may be because of the interaction of the interstitial impurities with dislocations at the crack front.« less
Koivisto, J; Dalbe, M-J; Alava, M J; Santucci, S
2016-08-31
Crack propagation is tracked here with Digital Image Correlation analysis in the test case of two cracks propagating in opposite directions in polycarbonate, a material with high ductility and a large Fracture Process Zone (FPZ). Depending on the initial distances between the two crack tips, one may observe different complex crack paths with in particular a regime where the two cracks repel each other prior to being attracted. We show by strain field analysis how this can be understood according to the principle of local symmetry: the propagation is to the direction where the local shear - mode KII in fracture mechanics language - is zero. Thus the interactions exhibited by the cracks arise from symmetry, from the initial geometry, and from the material properties which induce the FPZ. This complexity makes any long-range prediction of the path(s) impossible.
Yang, Xiaoxia; Chen, Shili; Jin, Shijiu; Chang, Wenshuang
2013-09-13
Stress corrosion cracks (SCC) in low-pressure steam turbine discs are serious hidden dangers to production safety in the power plants, and knowing the orientation and depth of the initial cracks is essential for the evaluation of the crack growth rate, propagation direction and working life of the turbine disc. In this paper, a method based on phased array ultrasonic transducer and artificial neural network (ANN), is proposed to estimate both the depth and orientation of initial cracks in the turbine discs. Echo signals from cracks with different depths and orientations were collected by a phased array ultrasonic transducer, and the feature vectors were extracted by wavelet packet, fractal technology and peak amplitude methods. The radial basis function (RBF) neural network was investigated and used in this application. The final results demonstrated that the method presented was efficient in crack estimation tasks.
Yang, Xiaoxia; Chen, Shili; Jin, Shijiu; Chang, Wenshuang
2013-01-01
Stress corrosion cracks (SCC) in low-pressure steam turbine discs are serious hidden dangers to production safety in the power plants, and knowing the orientation and depth of the initial cracks is essential for the evaluation of the crack growth rate, propagation direction and working life of the turbine disc. In this paper, a method based on phased array ultrasonic transducer and artificial neural network (ANN), is proposed to estimate both the depth and orientation of initial cracks in the turbine discs. Echo signals from cracks with different depths and orientations were collected by a phased array ultrasonic transducer, and the feature vectors were extracted by wavelet packet, fractal technology and peak amplitude methods. The radial basis function (RBF) neural network was investigated and used in this application. The final results demonstrated that the method presented was efficient in crack estimation tasks. PMID:24064602
NASA Astrophysics Data System (ADS)
Hiwarkar, V. R.; Babitsky, V. I.; Silberschmidt, V. V.
2013-07-01
Numerous techniques are available for monitoring structural health. Most of these techniques are expensive and time-consuming. In this paper, vibration-based techniques are explored together with their use as diagnostic tools for structural health monitoring. Finite-element simulations are used to study the effect of material nonlinearity on dynamics of a cracked bar. Additionally, several experiments are performed to study the effect of vibro-impact behavior of crack on its dynamics. It was observed that a change in the natural frequency of the cracked bar due to crack-tip plasticity and vibro-impact behavior linked to interaction of crack faces, obtained from experiments, led to generation of higher harmonics; this can be used as a diagnostic tool for structural health monitoring.
Frequency domain analysis of the random loading of cracked panels
NASA Technical Reports Server (NTRS)
Doyle, James F.
1994-01-01
The primary effort concerned the development of analytical methods for the accurate prediction of the effect of random loading on a panel with a crack. Of particular concern was the influence of frequency on the stress intensity factor behavior. Many modern structures, such as those found in advanced aircraft, are lightweight and susceptible to critical vibrations, and consequently dynamic response plays a very important role in their analysis. The presence of flaws and cracks can have catastrophic consequences. The stress intensity factor, K, emerges as a very significant parameter that characterizes the crack behavior. In analyzing the dynamic response of panels that contain cracks, the finite element method is used, but because this type of problem is inherently computationally intensive, a number of ways of calculating K more efficiently are explored.
NASA Technical Reports Server (NTRS)
Choi, Sung R.; Gyekenyesi, John P.
2002-01-01
The life prediction analysis based on an exponential crack velocity formulation was examined using a variety of experimental data on glass and advanced structural ceramics in constant stress-rate ("dynamic fatigue") and preload testing at ambient and elevated temperatures. The data fit to the strength versus In (stress rate) relation was found to be very reasonable for most of the materials. It was also found that preloading technique was equally applicable for the case of slow crack growth (SCG) parameter n > 30. The major limitation in the exponential crack velocity formulation, however, was that an inert strength of a material must be known priori to evaluate the important SCG parameter n, a significant drawback as compared to the conventional power-law crack velocity formulation.
Probability of brittle failure
NASA Technical Reports Server (NTRS)
Kim, A.; Bosnyak, C. P.; Chudnovsky, A.
1991-01-01
A methodology was developed for collecting statistically representative data for crack initiation and arrest from small number of test specimens. An epoxy (based on bisphenol A diglycidyl ether and polyglycol extended diglycyl ether and cured with diethylene triamine) is selected as a model material. A compact tension specimen with displacement controlled loading is used to observe multiple crack initiation and arrests. The energy release rate at crack initiation is significantly higher than that at a crack arrest, as has been observed elsewhere. The difference between these energy release rates is found to depend on specimen size (scale effect), and is quantitatively related to the fracture surface morphology. The scale effect, similar to that in statistical strength theory, is usually attributed to the statistics of defects which control the fracture process. Triangular shaped ripples (deltoids) are formed on the fracture surface during the slow subcritical crack growth, prior to the smooth mirror-like surface characteristic of fast cracks. The deltoids are complementary on the two crack faces which excludes any inelastic deformation from consideration. Presence of defects is also suggested by the observed scale effect. However, there are no defects at the deltoid apexes detectable down to the 0.1 micron level.
Sudden bending of a cracked laminate
NASA Technical Reports Server (NTRS)
Sih, G. C.; Chen, E. P.
1981-01-01
The intensification of stresses near a through crack in the laminate that suddenly undergoes bending is investigated. A dynamic plate theory is developed which includes the effects of material inhomogeneity in the thickness direction and realistic crack edge stress singularity and distribution. Numerical examples indicate that (1) the crack moment intensity tends to decrease as the crack length to laminate thickness is increased, and (2) the average load intensity transmitted to a through crack can be reduced by making the inner layers to be stiffer than the outer layers.
Indentation Damage and Crack Repair in Human Enamel*
Rivera, C.; Arola, D.; Ossa, A.
2013-01-01
Tooth enamel is the hardest and most highly mineralized tissue in the human body. While there have been a number of studies aimed at understanding the hardness and crack growth resistance behavior of this tissue, no study has evaluated if cracks in this tissue undergo repair. In this investigation the crack repair characteristics of young human enamel were evaluated as a function of patient gender and as a function of the distance from the Dentin Enamel Junction (DEJ). Cracks were introduced via microindentation along the prism direction and evaluated as a function of time after the indentation. Microscopic observations indicated that the repair of cracks began immediately after crack initiation and reaches saturation after approximately 48 hours. During this process he crack length decreased up to 10% of the initial length, and the largest degree of reduction occurred in the deep enamel, nearest the DEJ. In addition, it was found that the degree of repair was significantly greater in the enamel of female patients. PMID:23541701
Indentation damage and crack repair in human enamel.
Rivera, C; Arola, D; Ossa, A
2013-05-01
Tooth enamel is the hardest and most highly mineralized tissue in the human body. While there have been a number of studies aimed at understanding the hardness and crack growth resistance behavior of this tissue, no study has evaluated if cracks in this tissue undergo repair. In this investigation the crack repair characteristics of young human enamel were evaluated as a function of patient gender and as a function of the distance from the Dentin Enamel Junction (DEJ). Cracks were introduced via microindentation along the prism direction and evaluated as a function of time after the indentation. Microscopic observations indicated that the repair of cracks began immediately after crack initiation and reaches saturation after approximately 48 h. During this process he crack length decreased up to 10% of the initial length, and the largest degree of reduction occurred in the deep enamel, nearest the DEJ. In addition, it was found that the degree of repair was significantly greater in the enamel of female patients. Copyright © 2013 Elsevier Ltd. All rights reserved.
The onset and evolution of fatigue-induced abnormal grain growth in nanocrystalline Ni–Fe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Furnish, T. A.; Mehta, A.; Van Campen, D.
Conventional structural metals suffer from fatigue-crack initiation through dislocation activity which forms persistent slip bands leading to notch-like extrusions and intrusions. Ultrafine-grained and nanocrystalline metals can potentially exhibit superior fatigue-crack initiation resistance by suppressing these cumulative dislocation activities. Prior studies on these metals have confirmed improved high-cycle fatigue performance. In the case of nano-grained metals, analyses of subsurface crack initiation sites have indicated that the crack nucleation is associated with abnormally large grains. But, these post-mortem analyses have led to only speculation about when abnormal grain growth occurs (e.g., during fatigue, after crack initiation, or during crack growth). In thismore » study, a recently developed synchrotron X-ray diffraction technique was used to detect the onset and progression of abnormal grain growth during stress-controlled fatigue loading. Our study provides the first direct evidence that the grain coarsening is cyclically induced and occurs well before final fatigue failure—our results indicate that the first half of the fatigue life was spent prior to the detectable onset of abnormal grain growth, while the second half was spent coarsening the nanocrystalline structure and cyclically deforming the abnormally large grains until crack initiation. Post-mortem fractography, coupled with cycle-dependent diffraction data, provides the first details regarding the kinetics of this abnormal grain growth process during high-cycle fatigue testing. Finally, precession electron diffraction images collected in a transmission electron microscope after the in situ fatigue experiment also confirm the X-ray evidence that the abnormally large grains contain substantial misorientation gradients and sub-grain boundaries.« less
The onset and evolution of fatigue-induced abnormal grain growth in nanocrystalline Ni–Fe
Furnish, T. A.; Mehta, A.; Van Campen, D.; ...
2016-10-11
Conventional structural metals suffer from fatigue-crack initiation through dislocation activity which forms persistent slip bands leading to notch-like extrusions and intrusions. Ultrafine-grained and nanocrystalline metals can potentially exhibit superior fatigue-crack initiation resistance by suppressing these cumulative dislocation activities. Prior studies on these metals have confirmed improved high-cycle fatigue performance. In the case of nano-grained metals, analyses of subsurface crack initiation sites have indicated that the crack nucleation is associated with abnormally large grains. But, these post-mortem analyses have led to only speculation about when abnormal grain growth occurs (e.g., during fatigue, after crack initiation, or during crack growth). In thismore » study, a recently developed synchrotron X-ray diffraction technique was used to detect the onset and progression of abnormal grain growth during stress-controlled fatigue loading. Our study provides the first direct evidence that the grain coarsening is cyclically induced and occurs well before final fatigue failure—our results indicate that the first half of the fatigue life was spent prior to the detectable onset of abnormal grain growth, while the second half was spent coarsening the nanocrystalline structure and cyclically deforming the abnormally large grains until crack initiation. Post-mortem fractography, coupled with cycle-dependent diffraction data, provides the first details regarding the kinetics of this abnormal grain growth process during high-cycle fatigue testing. Finally, precession electron diffraction images collected in a transmission electron microscope after the in situ fatigue experiment also confirm the X-ray evidence that the abnormally large grains contain substantial misorientation gradients and sub-grain boundaries.« less
Short-crack growth behaviour in an aluminum alloy: An AGARD cooperative test program
NASA Technical Reports Server (NTRS)
Newman, J. C., Jr.; Edwards, P. R.
1988-01-01
An AGARD Cooperative Test Program on the growth of short fatigue cracks was conducted to define the significance of the short-crack effect, to compare test results from various laboratories, and to evaluate an existing analytical crack-growth prediction model. The initiation and growth of short fatigue cracks (5 micrometer to 2 mm) from the surface of a semi-circular notch in 2024-T3 aluminum alloy sheet material were monitored under various load histories. The cracks initiated from inclusion particle clusters or voids on the notch surface and generally grew as surface cracks. Tests were conducted under several constant-amplitude (stress ratios of -2, -1, 0, and 0.5) and spectrum (FALSTAFF and Gaussian) loading conditions at 3 stress levels each. Short crack growth was recorded using a plastic-replica technique. Over 250 edge-notched specimens were fatigue tested and nearly 950 cracks monitored by 12 participants from 9 countries. Long crack-growth rate data for cracks greater than 2 mm in length were obtained over a wide range in rates (10 to the -8 to 10 to the -1 mm/cycle) for all constant-amplitude loading conditions. Long crack-growth rate data for the FALSTAFF and Gaussian load sequences were also obtained.
Dynamic Response and Microstructure Evolution of AA2219-T4 and AA2219-T6 Aluminum Alloys
NASA Astrophysics Data System (ADS)
Olasumboye, A.; Owolabi, G.; Odeshi, A.; Zeytinci, A.; Yilmaz, N.
2018-02-01
In this study, the dynamic deformation behavior of AA2219 aluminum alloy was investigated in two different temper conditions: T4 and T6, with a view to determining the effect of heat treatment on the microstructure and flow behavior of the material under high strain rates. Split Hopkinson pressure bar experiment was used in determining the dynamic response of the alloy while a digital image correlation system was employed in visualizing and tracking the surface deformation of the specimens. Optical microscopy and scanning electron microscopy were used to assess the microstructure of the material after following standard metallographic specimen preparation techniques. The results obtained showed heterogeneous deformation of the alloy in the two temper conditions. It was observed that the dynamic mechanical behavior of each sample preparation was dependent on its strength properties due to aging type, which in turn controls the metamorphosis of the strengthening precipitates and the initial microstructure. At the maximum strain rate of 3500 s-1, transformed bands leading to crack nucleation was observed in the AA2219-T4 aluminum alloy while AA2219-T6 had fractured at the same strain rate. The modes of crack formation and growth in the two alloys were found to be similar: nucleation, growth and coalescence of voids. However, shear band bifurcation phenomenon was observed only in the AA2219-T6 alloy.
Dynamic Response and Microstructure Evolution of AA2219-T4 and AA2219-T6 Aluminum Alloys
NASA Astrophysics Data System (ADS)
Olasumboye, A.; Owolabi, G.; Odeshi, A.; Zeytinci, A.; Yilmaz, N.
2018-06-01
In this study, the dynamic deformation behavior of AA2219 aluminum alloy was investigated in two different temper conditions: T4 and T6, with a view to determining the effect of heat treatment on the microstructure and flow behavior of the material under high strain rates. Split Hopkinson pressure bar experiment was used in determining the dynamic response of the alloy while a digital image correlation system was employed in visualizing and tracking the surface deformation of the specimens. Optical microscopy and scanning electron microscopy were used to assess the microstructure of the material after following standard metallographic specimen preparation techniques. The results obtained showed heterogeneous deformation of the alloy in the two temper conditions. It was observed that the dynamic mechanical behavior of each sample preparation was dependent on its strength properties due to aging type, which in turn controls the metamorphosis of the strengthening precipitates and the initial microstructure. At the maximum strain rate of 3500 s-1, transformed bands leading to crack nucleation was observed in the AA2219-T4 aluminum alloy while AA2219-T6 had fractured at the same strain rate. The modes of crack formation and growth in the two alloys were found to be similar: nucleation, growth and coalescence of voids. However, shear band bifurcation phenomenon was observed only in the AA2219-T6 alloy.
NASA Astrophysics Data System (ADS)
Mohammed, Raffi; Srinivasa Rao, K.; Madhusudhan Reddy, G.
2018-03-01
Present work is aimed to improve stress corrosion cracking resistance of high nitrogen steel and its welds. An attempt to weld high nitrogen steel of 5 mm thick plate using gas tungsten arc welding (GTAW) with three high strength age hardenable fillers i.e., 11-10 PH filler, PH 13- 8Mo and maraging grade of MDN 250 filler is made. Welds were characterized by optical microscopy and scanning electron microscopy. Vickers hardness testing of the welds was carried out to study the mechanical behaviour of welds. Potentio-dynamic polarization studies were done to determine pitting corrosion resistance in aerated 3.5% NaCl solution. Stress corrosion cracking (SCC) testing was carried out using constant load type machine with applied stress of 50% yield strength and in 45% MgCl2 solution boiling at 155°C. The results of the present investigation established that improvement in resistance to stress corrosion cracking was observed for PH 13- 8Mo GTA welds when compared to 11-10 PH and MDN 250 GTA welds. However, All GTA welds failed in the weld interface region. This may be attributed to relatively lower pitting potential in weld interface which acts as active site and the initiation source of pitting.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yongfeng; Millett, P.C.; Tonks, M.R.
2013-07-01
In this study, the intergranular fracture behavior of UO{sub 2} was studied by molecular dynamics simulations using the Basak potential. In addition, the constitutive traction-separation law was derived from atomistic data using the cohesive-zone model. In the simulations a bicrystal model with the (100) symmetric tilt Σ5 grain boundaries was utilized. Uniaxial tension along the grain boundary normal was applied to simulate Mode-I fracture. The fracture was observed to propagate along the grain boundary by micro-pore nucleation and coalescence, giving an overall intergranular fracture behavior. Phase transformations from the Fluorite to the Rutile and Scrutinyite phases were identified at themore » propagating crack tips. These new phases are metastable and they transformed back to the Fluorite phase at the wake of crack tips as the local stress concentration was relieved by complete cracking. Such transient behavior observed at atomistic scale was found to substantially increase the energy release rate for fracture. Insertion of Xe gas into the initial notch showed minor effect on the overall fracture behavior. (authors)« less
Intergranular fracture in UO2: derivation of traction-separation law from atomistic simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yongfeng Zhang; Paul C Millett; Michael R Tonks
2013-10-01
In this study, the intergranular fracture behavior of UO2 was studied by molecular dynamics simulations using the Basak potential. In addition, the constitutive traction-separation law was derived from atomistic data using the cohesive-zone model. In the simulations a bicrystal model with the (100) symmetric tilt E5 grain boundaries was utilized. Uniaxial tension along the grain boundary normal was applied to simulate Mode-I fracture. The fracture was observed to propagate along the grain boundary by micro-pore nucleation and coalescence, giving an overall intergranular fracture behavior. Phase transformations from the Fluorite to the Rutile and Scrutinyite phases were identified at the propagatingmore » crack tips. These new phases are metastable and they transformed back to the Fluorite phase at the wake of crack tips as the local stress concentration was relieved by complete cracking. Such transient behavior observed at atomistic scale was found to substantially increase the energy release rate for fracture. Insertion of Xe gas into the initial notch showed minor effect on the overall fracture behavior.« less
NASA Astrophysics Data System (ADS)
Ahmed, Abubaker Ali
As part of the structural integrity research of the National Aging Aircraft Research Program, a comprehensive study on multiple-site damage (MSD) initiation and growth in a pristine lap-joint fuselage panel has been conducted. The curved stiffened fuselage panel was tested at the Full-Scale Aircraft Structural Test Evaluation and Research (FASTER) facility located at the Federal Aviation Administration William J. Hughes Technical Center. A strain survey test was conducted to verify proper load application. The panel was then subjected to a fatigue test with constant-amplitude cyclic loading. The applied loading spectrum included underload marker cycles so that crack growth history could be reconstructed from post-test fractographic examinations. Crack formation and growth were monitored via nondestructive and high-magnification visual inspections. Strain gage measurements recorded during the strain survey tests indicated that the inner surface of the skin along the upper rivet row of the lap joint experienced high tensile stresses due to local bending. During the fatigue loading, cracks were detected by eddy-current inspections at multiple rivet holes along the upper rivet row. Through-thickness cracks were detected visually after about 80% of the fatigue life. Once MSD cracks from two adjacent rivet holes linked up, there was a quick deterioration in the structural integrity of the lap joint. The linkup resulted in a 2.87" (72.9-mm) lead fatigue crack that rapidly propagated across 12 rivet holes and crossed over into the next skin bay, at which stage the fatigue test was terminated. A post-fatigue residual strength test was then conducted by loading the panel quasi-statically up to final failure. The panel failed catastrophically when the crack extended instantaneously across three additional bays. Post-test fractographic examinations of the fracture surfaces in the lap joint of the fuselage panel were conducted to characterize subsurface crack initiation and growth. Results showed evidence of fretting damage and crack initiation at multiple locations near the rivet holes along the faying surface of the skin. The subsurface cracks grew significantly along the faying surface before reaching the outer surface of the skin, forming elliptical crack fronts. A finite element model (FE) of the panel was constructed and geometrically-nonlinear analyses conducted to determine strain distribution under the applied loads. The FE model was validated by comparing the analysis results with the strain gage measurements recorded during the strain survey test. The validated FE model was then used to determine stress-intensity factors at the crack tips. Stress-intensity factor results indicated that crack growth in the lap joint was under mixed-mode; however, the opening-mode stress intensity factor was dominant. The stress-intensity factors computed from the FE analysis were used to conduct cycle-by-cycle integration of fatigue crack growth. In the cycle-by-cycle integration, the NASGRO crack growth model was used with its parameters selected to account for the effects of plasticity-induced crack closure and the test environment on crack growth rate. Fatigue crack growth predictions from cycle-by-cycle computation were in good agreement with the experimental measured crack growth data. The results of the study provide key insights into the natural development and growth of MSD cracks in the pristine lap joint. The data provided by the study represent a valuable source for the evaluation and validation of analytical methodologies used for predicting MSD crack initiation and growth.
The reduction in fatigue crack growth resistance of dentin with depth.
Ivancik, J; Neerchal, N K; Romberg, E; Arola, D
2011-08-01
The fatigue crack growth resistance of dentin was characterized as a function of depth from the dentino-enamel junction. Compact tension (CT) specimens were prepared from the crowns of third molars in the deep, middle, and peripheral dentin. The microstructure was quantified in terms of the average tubule dimensions and density. Fatigue cracks were grown in-plane with the tubules and characterized in terms of the initiation and growth responses. Deep dentin exhibited the lowest resistance to the initiation of fatigue crack growth, as indicated by the stress intensity threshold (ΔK(th) ≈ 0.8 MPa•m(0.5)) and the highest incremental fatigue crack growth rate (over 1000 times that in peripheral dentin). Cracks in deep dentin underwent incremental extension under cyclic stresses that were 40% lower than those required in peripheral dentin. The average fatigue crack growth rates increased significantly with tubule density, indicating the importance of microstructure on the potential for tooth fracture. Molars with deep restorations are more likely to suffer from the cracked-tooth syndrome, because of the lower fatigue crack growth resistance of deep dentin.
Fatigue-Life Prediction Methodology Using Small-Crack Theory
NASA Technical Reports Server (NTRS)
Newmann, James C., Jr.; Phillips, Edward P.; Swain, M. H.
1997-01-01
This paper reviews the capabilities of a plasticity-induced crack-closure model to predict fatigue lives of metallic materials using 'small-crack theory' for various materials and loading conditions. Crack-tip constraint factors, to account for three-dimensional state-of-stress effects, were selected to correlate large-crack growth rate data as a function of the effective-stress-intensity factor range (delta K(eff)) under constant-amplitude loading. Some modifications to the delta k(eff)-rate relations were needed in the near-threshold regime to fit measured small-crack growth rate behavior and fatigue endurance limits. The model was then used to calculate small- and large-crack growth rates, and to predict total fatigue lives, for notched and un-notched specimens made of two aluminum alloys and a steel under constant-amplitude and spectrum loading. Fatigue lives were calculated using the crack-growth relations and microstructural features like those that initiated cracks for the aluminum alloys and steel for edge-notched specimens. An equivalent-initial-flaw-size concept was used to calculate fatigue lives in other cases. Results from the tests and analyses agreed well.
NASA Astrophysics Data System (ADS)
Asadizadeh, Mostafa; Moosavi, Mahdi; Hossaini, Mohammad Farouq; Masoumi, Hossein
2018-02-01
In this paper, a number of artificial rock specimens with two parallel (stepped and coplanar) non-persistent joints were subjected to direct shearing. The effects of bridge length ( L), bridge angle ( γ), joint roughness coefficient (JRC) and normal stress ( σ n) on shear strength and cracking process of non-persistent jointed rock were studied extensively. The experimental program was designed based on Taguchi method, and the validity of the resulting data was assessed using analysis of variance. The results revealed that σ n and γ have the maximum and minimum effects on shear strength, respectively. Also, increase in L from 10 to 60 mm led to decrease in shear strength where high level of JRC profile and σ n led to the initiation of tensile cracks due to asperity interlocking. Such tensile cracks are known as "interlocking cracks" which normally initiate from the asperity and then propagate toward the specimen boundaries. Finally, the cracking process of specimens was classified into three categories, namely tensile cracking, shear cracking and combination of tension and shear or mixed mode tensile-shear cracking.
NASA Technical Reports Server (NTRS)
Covey, Steven J.
1993-01-01
Notched unidirectional SCS-6/Ti-15-3 composite of three different fiber volume fractions (vf = 0.15, 0.37, and 0.41) was investigated for various room temperature microstructural and material properties including: fatigue crack initiation, fatigue crack growth, and fracture toughness. While the matrix hardness is similar for all fiber volume fractions, the fiber/matrix interfacial shear strength and matrix residual stress increases with fiber volume fraction. The composite fatigue crack initiation stress is shown to be matrix controlled and occurs when the net maximum matrix stress approaches the endurance limit stress of the matrix. A model is presented which includes residual stresses and presents the composite initiation stress as a function of fiber volume fraction. This model predicts a maximum composite initiation stress at vf approximately 0.15 which agrees with the experimental data. The applied composite stress levels were increased as necessary for continued crack growth. The applied Delta(K) values at crack arrest increase with fiber volume fraction by an amount better approximated using an energy based formulation rather than when scaled linear with modulus. After crack arrest, the crack growth rate exponents for vf37 and vf41 were much lower and toughness much higher, when compared to the unreinforced matrix, because of the bridged region which parades with the propagating fatigue crack. However, the vf15 material exhibited a higher crack growth rate exponent and lower toughness than the unreinforced matrix because once the bridged fibers nearest the crack mouth broke, the stress redistribution broke all bridged fibers, leaving an unbridged crack. Degraded, unbridged behavior is modeled using the residual stress state in the matrix ahead of the crack tip. Plastic zone sizes were directly measured using a metallographic technique and allow prediction of an effective matrix stress intensity which agrees with the fiber pressure model if residual stresses are considered. The sophisticated macro/micro finite element models of the 0.15 and 0.37 fiber volume fractions presented show good agreement with experimental data and the fiber pressure model when an estimated effective fiber/matrix debond length is used.
NASA Astrophysics Data System (ADS)
Kraft, R. H.; Molinari, J. F.; Ramesh, K. T.; Warner, D. H.
A two-dimensional finite element model is used to investigate compressive loading of a brittle ceramic. Intergranular cracking in the microstructure is captured explicitly by using a distribution of cohesive interfaces. The addition of confining stress increases the maximum strength and if high enough, can allow the effective material response to reach large strains before failure. Increasing the friction at the grain boundaries also increases the maximum strength until saturation of the strength is approached. Above a transitional strain rate, increasing the rate-of-deformation also increases the strength and as the strain rate increases, fragment sizes of the damaged specimen decrease. The effects of flaws within the specimen were investigated using a random distribution at various initial flaw densities. The model is able to capture an effective modulus change and degradation of strength as the initial flaw density increases. Effects of confinement, friction, and spatial distribution of flaws seem to depend on the crack coalescence and dilatation of the specimen, while strain-rate effects are result of inertial resistance to motion.
NASA Technical Reports Server (NTRS)
Hochhalter, J. D.; Glaessgen, E. H.; Ingraffea, A. R.; Aquino, W. A.
2009-01-01
Fracture processes within a material begin at the nanometer length scale at which the formation, propagation, and interaction of fundamental damage mechanisms occur. Physics-based modeling of these atomic processes quickly becomes computationally intractable as the system size increases. Thus, a multiscale modeling method, based on the aggregation of fundamental damage processes occurring at the nanoscale within a cohesive zone model, is under development and will enable computationally feasible and physically meaningful microscale fracture simulation in polycrystalline metals. This method employs atomistic simulation to provide an optimization loop with an initial prediction of a cohesive zone model (CZM). This initial CZM is then applied at the crack front region within a finite element model. The optimization procedure iterates upon the CZM until the finite element model acceptably reproduces the near-crack-front displacement fields obtained from experimental observation. With this approach, a comparison can be made between the original CZM predicted by atomistic simulation and the converged CZM that is based on experimental observation. Comparison of the two CZMs gives insight into how atomistic simulation scales.
Fatigue Crack Initiation Properties of Rail Steels
DOT National Transportation Integrated Search
1982-01-01
Fatigue crack initiation properties of rail-steels were determined experimentally. One new and four used rail steels were investigated. The effects of the following parameters were studied: stress ratio (ratio of minimum to maximum stress in a cycle)...
Fatigue crack initiation and microcrack propagation in X7091 type aluminum P/M alloys
NASA Astrophysics Data System (ADS)
Hirose, S.; Fine, M. E.
1983-06-01
Fatigu crack initiation in extruded X7091 RSP-P/M aluminum type alloys o°Curs at grain boundaries at both low and high stresses. By a process of elimination this grain boundary embrittlement was attributed to Al2O3 particles formed mainly during atomization and segregated to some grain boundaries. It is not due to the small grain size, to Co2Al9, to η precipitates at grain boundaries, nor to a precipitate free zone. Thermomechanical processing after extrusion of X7091 with 0.8 pct Co was done by Alcoa to produce large recrystallized grains. This resulted in initiation of fatigue cracks at slip bands, and the resistance to initiation of fatigue cracks at low stresses was much greater. Microcrack growth is, however, much faster in the thermomechanically treated samples, as well as in ingot alloys, than in extruded and aged X7091.
NASA Astrophysics Data System (ADS)
Ning, Jianguo; Wang, Jun; Jiang, Jinquan; Hu, Shanchao; Jiang, Lishuai; Liu, Xuesheng
2018-01-01
A new energy-dissipation method to identify crack initiation and propagation thresholds is introduced. Conventional and cyclic loading-unloading triaxial compression tests and acoustic emission experiments were performed for coal specimens from a 980-m deep mine with different confining pressures of 10, 15, 20, 25, 30, and 35 MPa. Stress-strain relations, acoustic emission patterns, and energy evolution characteristics obtained during the triaxial compression tests were analyzed. The majority of the input energy stored in the coal specimens took the form of elastic strain energy. After the elastic-deformation stage, part of the input energy was consumed by stable crack propagation. However, with an increase in stress levels, unstable crack propagation commenced, and the energy dissipation and coal damage were accelerated. The variation in the pre-peak energy-dissipation ratio was consistent with the coal damage. This new method demonstrates that the crack initiation threshold was proportional to the peak stress ( σ p) for ratios that ranged from 0.4351 to 0.4753 σ p, and the crack damage threshold ranged from 0.8087 to 0.8677 σ p.
Initiation and growth kinetics of solidification cracking during welding of steel
Aucott, L.; Huang, D.; Dong, H. B.; Wen, S. W.; Marsden, J. A.; Rack, A.; Cocks, A. C. F.
2017-01-01
Solidification cracking is a key phenomenon associated with defect formation during welding. To elucidate the failure mechanisms, solidification cracking during arc welding of steel are investigated in situ with high-speed, high-energy synchrotron X-ray radiography. Damage initiates at relatively low true strain of about 3.1% in the form of micro-cavities at the weld subsurface where peak volumetric strain and triaxiality are localised. The initial micro-cavities, with sizes from 10 × 10−6 m to 27 × 10−6 m, are mostly formed in isolation as revealed by synchrotron X-ray micro-tomography. The growth of micro-cavities is driven by increasing strain induced to the solidifying steel. Cavities grow through coalescence of micro-cavities to form micro-cracks first and then through the propagation of micro-cracks. Cracks propagate from the core of the weld towards the free surface along the solidifying grain boundaries at a speed of 2–3 × 10−3 m s−1. PMID:28074852
NASA Astrophysics Data System (ADS)
Prikryl, Richard; Lokajíček, Tomáš
2017-04-01
According to previous studies, evaluation of stress-strain behaviour (in uniaxial compression) of various rocks appears to be effective tool allowing for prediction of resistance of natural stone to some physical weathering processes. Precise determination of critical thresholds, specifically of 'crack initiation' and 'crack damage' is fundamental issue in this approach. In contrast to 'crack damage stress/strain threshold', which can be easily read from deflection point on volumetric curve, detection of 'crack initiation' is much more difficult. Besides previously proposed mathematical processing of axial stress-strain curve, recording of acoustic emission (AE) data and their processing provide direct measure of various stress/strain thresholds, specifically of 'crack initiation'. This specific parameter is required during successive computation of energetic parameters (mechanical work), that can be stored by a material without formation of new defects (microcracks) due to acting stress. Based on our experimental data, this mechanical work seems to be proportional to the resistance of a material to formation of mode I (tensile) cracks that are responsible for destruction of subsurface below exposed faces of natural stone.
2011-05-01
wafer pair through further processing. Initial cracking issues were identified due to liquid penetration between the wafers during wet processing...free-standing MCD films we needed to address crack formation in the diamond and the Si substrate, which we observed during our initial growths due to...NCD film grown using the heated stage, and finally the thick MCD film grown on the cooled stage. We also found that the control of cracking in the
Hot-Spot Fatigue and Impact Damage Detection on a Helicopter Tailboom
2011-09-01
other 14 PZT disks were used as sensors. Among the 28 PZT disks, 16 PZT disks were placed in the two fatigue hot-spot areas to detect cracks initiated...more efficient and effective airframe maintenance, fatigue cracking and impact damage detection technologies were developed and demonstrated on a...SHM system in successfully monitoring fatigue cracks initiated from cyclical loading conditions; detecting, locating and quantifying ballistic
Fatigue analysis of multiple site damage at a row of holes in a wide panel
NASA Technical Reports Server (NTRS)
Buhler, Kimberley; Grandt, Alten F., Jr.; Moukawsher, E. J.
1994-01-01
This paper is concerned with predicting the fatigue life of unstiffened panels which contain multiple site damage (MSD). The initial damage consists of through-the-thickness cracks emanating from a row of holes in the center of a finite width panel. A fracture mechanics analysis has been developed to predict the growth, interaction, and coalescence of the various cracks which propagate in the panel. A strain-life analysis incorporating Neuber's rule for notches, and Miner's rule for cumulative damage, is also employed to predict crack initiation for holes without initial cracking. This analysis is compared with the results of a series of fatigue tests on 2024-T3 aluminum panels, and is shown to do an excellent job of predicting the influence of MSD on the fatigue life of nine inch wide specimens. Having established confidence in the ability to analyze the influence of MSD on fatigue life, a parametric study is conducted to examine the influence of various MSD scenarios in an unstiffened panel. The numerical study considered 135 cases in all, with the parametric variables being the applied cyclic stress level, the lead crack geometry, and the number and location of MSD cracks. The numerical analysis provides details for the manner in which lead cracks and MSD cracks grow and coalesce leading to final failure. The results indicate that MSD located adjacent to lead cracks is the most damaging configuration, while for cases without lead cracks, MSD clusters which are not separated by uncracked holes are most damaging.
Distributed deformation ahead of the Cocos-Nazca Rift at the Galapagos triple junction
NASA Astrophysics Data System (ADS)
Smith, Deborah K.; Schouten, Hans; Zhu, Wen-lu; Montési, Laurent G. J.; Cann, Johnson R.
2011-11-01
The Galapagos triple junction is not a simple ridge-ridge-ridge (RRR) triple junction. The Cocos-Nazca Rift (C-N Rift) tip does not meet the East Pacific Rise (EPR). Instead, two secondary rifts form the link: Incipient Rift at 2°40‧N and Dietz Deep volcanic ridge, the southern boundary of the Galapagos microplate (GMP), at 1°10‧N. Recently collected bathymetry data are used to investigate the regional tectonics prior to the establishment of the GMP (∼1.5 Ma). South of C-N Rift a band of northeast-trending cracks cuts EPR-generated abyssal hills. It is a mirror image of a band of cracks previously identified north of C-N Rift on the same age crust. In both areas, the western ends of the cracks terminate against intact abyssal hills suggesting that each crack initiated at the EPR spreading center and cut eastward into pre-existing topography. Each crack formed a short-lived triple junction until it was abandoned and a new crack and triple junction initiated nearby. Between 2.5 and 1.5 Ma, the pattern of cracking is remarkably symmetric about C-N Rift providing support for a crack interaction model in which crack initiation at the EPR axis is controlled by stresses associated with the tip of the westward-propagating C-N Rift. The model also shows that offsets of the EPR axis may explain times when cracking is not symmetric. South of C-N Rift, cracks are observed on seafloor as old as 10.5 Ma suggesting that this triple junction has not been a simple RRR triple junction during that time.
Decrepitation and crack healing of fluid inclusions in San Carlos olivine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wanamaker, B.J.; Wong, Tengfong; Evans, B.
1990-09-10
Fluid inclusions break, or decrepitate, when the fluid pressure exceeds the least principal lithostatic stress by a critical amount. After decrepitation, excess fluid pressure is relaxed, resulting in crack arrest; subsequently, crack healing may occur. The authors developed a linear elastic fracture mechanics model to analyze new data on decrepitation and crack arrest in San Carlos Olivine, compared the model with previous fluid inclusion investigations, and used it to interpret some natural decrepitation microstructures. The common experimental observation that smaller inclusions may sustain higher internal fluid pressures without decrepitating may be rationalized by assuming that flaws associated with the inclusionmore » scale with the inclusion size. According to the model, the length of the crack formed by decrepitation depends on the lithostatic pressure at the initiation of cracking, the initial sizes of the flaw and the inclusion, and the critical stress intensity factor. Further experiments show that microcracks in San Carlos olivine heal within several days at 1,280 to 1,400{degree}C; healing rates depend on the crack geometry, temperature, and chemistry of the buffering gas. The regression distance of the crack tip during healing can be related to time through a power law with exponent n = 0.6. Chemical changes which become apparent after extremely long heat-treatments significantly affect the healing rates. Many of the inclusions in the San Carlos xenoliths stretched, decrepitated, and finally healed during uplift. The crack arrest model indicates that completely healed cracks had an initial fluid pressure of the order of 1 GPa. Using the crack arrest model and the healing kinetics, they estimate the ascent rate of these xenoliths to be between 0.001 and 0.1 m/s.« less
Influence of High Cycle Thermal Loads on Thermal Fatigue Behavior of Thick Thermal Barrier Coatings
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Miller, Robert A.
1997-01-01
Thick thermal barrier coating systems in a diesel engine experience severe thermal Low Cycle Fatigue (LCF) and High Cycle Fatigue (HCF) during engine operation. In the present study, the mechanisms of fatigue crack initiation and propagation, as well as of coating failure, under thermal loads which simulate engine conditions, are investigated using a high power CO2 laser. In general, surface vertical cracks initiate early and grow continuously under LCF and HCF cyclic stresses. It is found that in the absence of interfacial oxidation, the failure associated with LCF is closely related to coating sintering and creep at high temperatures, which induce tensile stresses in the coating after cooling. Experiments show that the HCF cycles are very damaging to the coating systems. The combined LCF and HCF tests produced more severe coating surface cracking, microspallation and accelerated crack growth, as compared to the pure LCF test. It is suggested that the HCF component cannot only accelerate the surface crack initiation, but also interact with the LCF by contributing to the crack growth at high temperatures. The increased LCF stress intensity at the crack tip due to the HCF component enhances the subsequent LCF crack growth. Conversely, since a faster HCF crack growth rate will be expected with lower effective compressive stresses in the coating, the LCF cycles also facilitate the HCF crack growth at high temperatures by stress relaxation process. A surface wedging model has been proposed to account for the HCF crack growth in the coating system. This mechanism predicts that HCF damage effect increases with increasing temperature swing, the thermal expansion coefficient and the elastic modulus of the ceramic coating, as well as the HCF interacting depth. A good agreement has been found between the analysis and experimental evidence.
Static and Dynamic Behavior of High Modulus Hybrid Boron/Glass/Aluminum Fiber Metal Laminates
NASA Astrophysics Data System (ADS)
Yeh, Po-Ching
2011-12-01
This dissertation presents the investigation of a newly developed hybrid fiber metal laminates (FMLs) which contains commingled boron fibers, glass fibers, and 2024-T3 aluminum sheets. Two types of hybrid boron/glass/aluminum FMLs are developed. The first, type I hybrid FMLs, contained a layer of boron fiber prepreg in between two layers of S2-glass fiber prepreg, sandwiched by two aluminum alloy 2024-T3 sheets. The second, type II hybrid FMLs, contained three layer of commingled hybrid boron/glass fiber prepreg layers, sandwiched by two aluminum alloy 2024-T3 sheets. The mechanical behavior and deformation characteristics including blunt notch strength, bearing strength and fatigue behavior of these two types of hybrid boron/glass/aluminum FMLs were investigated. Compared to traditional S2-glass fiber reinforced aluminum laminates (GLARE), the newly developed hybrid boron/glass/aluminum fiber metal laminates possess high modulus, high yielding stress, and good blunt notch properties. From the bearing test result, the hybrid boron/glass/aluminum fiber metal laminates showed outstanding bearing strength. The high fiber volume fraction of boron fibers in type II laminates lead to a higher bearing strength compared to both type I laminates and traditional GLARE. Both types of hybrid FMLs have improved fatigue crack initiation lives and excellent fatigue crack propagation resistance compared to traditional GLARE. The incorporation of the boron fibers improved the Young's modulus of the composite layer in FMLs, which in turn, improved the fatigue crack initiation life and crack propagation rates of the aluminum sheets. Moreover, a finite element model was established to predict and verify the properties of hybrid boron/glass/aluminum FMLs. The simulated results showed good agreement with the experimental results.
Dynamic characteristics of single crystal SSME blades
NASA Technical Reports Server (NTRS)
Moss, L. A.; Smith, T. E.
1987-01-01
The Space Shuttle Main Engine (SSME) High Pressure Fuel Turbopump (HPFTP) blades are currently manufactured using a directionally solidified (DS) material, MAR-M-246+Hf. However, a necessity to reduce the occurrence of fatigue cracking within the DS blades has lead to an interest in the use of a single crystal (SC) material, PWA-1480. A study was initiated to determine the dynamic characteristics of the HPFTP blades made of SC material and find possible critical engine order excitations. This study examined both the first and second stage drive turbine blades of the HPFTP. The dynamic characterization was done analytically as well as experimentally. The analytical study examined the SC first stage HPFTP blade dynamic characteristics under typical operating conditions. The blades were analyzed using MSC/NASTRAN and a finite element model. Two operating conditions, 27500 RPM and 35000 RPM, were investigated.
Dynamic fracture responses of alumina and two ceramic composites
NASA Technical Reports Server (NTRS)
Yang, Kwan-Ho; Kobayashi, Albert S.
1990-01-01
A hybrid experimental-numerical procedure was used to characterize the dynamic fracture response of Al2O3 and TiB2-particulate/SiC-matrix and SiC-whisker/Al2O3-matrix composites. Unlike metals and polymers, dynamic arrest stress intensity factors (SIFs) did not exist in the monolithic ceramics and the two ceramic composites considered. Thus a running crack in these materials cannot be arrested by lowering the driving force, i.e., the dynamic SIF. Fractography study of the alumina specimens showed that the area of transgranular failure varied from about 3 percent to about 16 percent for rapid crack extensions in statically and impact loaded specimens, respectively. The influence of kinematic constraints which enforces transgranular flat crack extension, despite the higher fracture energy of transgranular fracture, is discussed.
Effect of crack on natural frequency for beam type of structures
NASA Astrophysics Data System (ADS)
Sawant, Saurabh U.; Chauhan, Santosh J.; Deshmukh, Nilaj N.
2017-07-01
Detection of damage in early stages reduces chances of sudden failure of that structure which is important from safety and economic point of view. Crack or damage affects dynamic behavior of structure. In last few decades many researchers have been developing different approaches to detect the damage based on its dynamic behavior. This paper focuses on effect on natural frequency of cantilever beam due to the presence of crack at different locations and with different depths. Cantilever beam is selected for analysis because these beams are most common structures used in many industrial applications. In the present study, modeling of healthy and damaged cantilever beam is done using ANSYSsoftware. Crack at 38 different locations with 1 mm, 2 mm and 3 mm crack depth were created for each of these locations. The effect of these cracks on natural frequency were analyzed over the healthy beam for the first four mode shapes. It is found that the presence of crack decreases the natural frequency of the beam and at some particular locations, the natural frequency of the cracked beam is found to be almost the same as that of the healthy beam.
Effect of Strain Rate on Hot Ductility Behavior of a High Nitrogen Cr-Mn Austenitic Steel
NASA Astrophysics Data System (ADS)
Wang, Zhenhua; Meng, Qing; Qu, Minggui; Zhou, Zean; Wang, Bo; Fu, Wantang
2016-03-01
18Mn18Cr0.6N steel specimens were tensile tested between 1173 K and 1473 K (900 °C and 1200 °C) at 9 strain rates ranging from 0.001 to 10 s-1. The tensile strained microstructures were analyzed through electron backscatter diffraction analysis. The strain rate was found to affect hot ductility by influencing the strain distribution, the extent of dynamic recrystallization and the resulting grain size, and dynamic recovery. The crack nucleation sites were primarily located at grain boundaries and were not influenced by the strain rate. At 1473 K (1200 °C), a higher strain rate was beneficial for grain refinement and preventing hot cracking; however, dynamic recovery appreciably occurred at 0.001 s-1 and induced transgranular crack propagation. At 1373 K (1100 °C), a high extent of dynamic recrystallization and fine new grains at medium strain rates led to good hot ductility. The strain gradient from the interior of the grain to the grain boundary increased with decreasing strain rate at 1173 K and 1273 K (900 °C and 1000 °C), which promoted hot cracking. Grain boundary sliding accompanied grain rotation and did not contribute to hot cracking.
Phase-field study of grain boundary tracking behavior in crack-seal microstructures
NASA Astrophysics Data System (ADS)
Ankit, Kumar; Nestler, Britta; Selzer, Michael; Reichardt, Mathias
2013-12-01
In order to address the growth of crystals in veins, a multiphase-field model is used to capture the dynamics of crystals precipitating from a super-saturated solution. To gain a detailed understanding of the polycrystal growth phenomena in veins, we investigate the influence of various boundary conditions on crystal growth. In particular, we analyze the formation of vein microstructures resulting from the free growth of crystals as well as crack-sealing processes. We define the crystal symmetry by considering the anisotropy in surface energy to simulate crystals with flat facets and sharp corners. The resulting growth competition of crystals with different orientations is studied to deduce a consistent orientation selection rule in the free-growth regime. Using crack-sealing simulations, we correlate the grain boundary tracking behavior depending on the relative rate of crack opening, opening trajectory, initial grain size, and wall roughness. Further, we illustrate how these parameters induce the microstructural transition between blocky (crystals growing anisotropically) to fibrous morphology (isotropic) and formation of grain boundaries. The phase-field simulations of crystals in the free-growth regime (in 2D and 3D) indicate that the growth or consumption of a crystal is dependent on the orientation difference with neighboring crystals. The crack-sealing simulation results (in 2D and 3D) reveal that crystals grow isotropically and grain boundaries track the opening trajectory if the wall roughness is high, opening increments are small, and crystals touch the wall before the next crack increment starts. Further, we find that within the complete crack-seal regime, anisotropy in surface energy results in the formation of curved/oscillating grain boundaries (instead of straight) when the crack-opening velocity is increased and wall roughness is not sufficiently high. Additionally, the overall capability of phase-field method to simulate large-scale polycrystal growth in veins (in 3D) is demonstrated enumerating the main advantages of adopting the novel approach.
A three-dimensional `Kaiser damage-memory' effect through true-triaxial loading
NASA Astrophysics Data System (ADS)
Meredith, P. G.; Browning, J.; Harland, S. R.; Healy, D.; Stuart, C.; Mitchell, T. M.
2017-12-01
Microcrack damage leading to failure in rocks evolves in response to differential loading. The vast majority of experimental studies investigate damage evolution, the `Kaiser damage-memory' effect, and rock failure using conventional triaxial stress states (σ1 > σ2 = σ3). Such stress states develop a crack population that displays cylindrical transverse isotropy. However, in nature the stress state is in general truly triaxial (σ1 > σ2 > σ3) and experiments that utilise such loading conditions can generate crack populations that display planar transverse isotropy which in turn influences properties such as permeability and strength. We investigate the evolution of crack damage under both conventional and true triaxial stress conditions using results from measurements made on cubic samples of sandstone deformed in three orthogonal directions with independently controlled stress paths. We have measured, simultaneously with stress and strain, the changes in ultrasonic compressional and shear wave velocities in the three principal directions, together with the bulk acoustic emission (AE) output. Changes in acoustic wave velocities are associated with both elastic closure and opening of pre-existing cracks, and the inelastic formation of new cracks. By contrast, AE is only associated with the inelastic growth of new crack damage and as such, we use the onset of AE to determine the initiation of new crack damage. By mapping these damage onsets under both conventional triaxial and true triaxial sequential cyclic loading, we have shown that `damage envelopes' evolve dynamically and can be pushed closer to the failure envelope. Whether a stress state has been `visited' before is key to determining and understanding damage states. Crack damage populations can be generated with multiple orientations depending on the arrangement of loading directions and hence principal stress directions. The sequential cyclic loading tests show that further damage in any one population commences only when the previous maximum differential stress `seen' by that population is exceeded. Understanding anisotropic damage is important for applying the results of true-triaxial tests and hence better replicating natural fractured systems.
Self-healing slip pulses in dynamic rupture models due to velocity-dependent strength
Beeler, N.M.; Tullis, T.E.
1996-01-01
Seismological observations of short slip duration on faults (short rise time on seismograms) during earthquakes are not consistent with conventional crack models of dynamic rupture and fault slip. In these models, the leading edge of rupture stops only when a strong region is encountered, and slip at an interior point ceases only when waves from the stopped edge of slip propagate back to that point. In contrast, some seismological evidence suggests that the duration of slip is too short for waves to propagate from the nearest edge of the ruptured surface, perhaps even if the distance used is an asperity size instead of the entire rupture dimension. What controls slip duration, if not dimensions of the fault or of asperities? In this study, dynamic earthquake rupture and slip are represented by a propagating shear crack. For all propagating shear cracks, slip velocity is highest near the rupture front, and at a small distance behind the rupture front, the slip velocity decreases. As pointed out by Heaton (1990), if the crack obeys a negative slip-rate-dependent strength relation, the lower slip velocity behind the rupture front will lead to strengthening that further reduces the velocity, and under certain circumstances, healing of slip can occur. The boundary element method of Hamano (1974) is used in a program adapted from Andrews (1985) for numerical simulations of mode II rupture with two different velocity-dependent strength functions. For the first function, after a slip-weakening displacement, the crack follows an exponential velocity-weakening relation. The characteristic velocity V0 of the exponential determines the magnitude of the velocity-dependence at dynamic velocities. The velocity-dependence at high velocity is essentially zero when V0 is small and the resulting slip velocity distribution is similar to slip weakening. If V0 is larger, rupture propagation initially resembles slip-weakening, but spontaneous healing occurs behind the rupture front. The rise time and rupture propagation velocity depend on the choice of constitutive parameters. The second strength function is a natural log velocity-dependent form similar to constitutive laws that fit experimental rock friction data at lower velocities. Slip pulses also arise with this function. For a reasonable choice of constitutive parameters, slip pulses with this function do not propagate at speeds greater than the Raleighwave velocity. The calculated slip pulses are similar in many aspects to seismic observations of short rise time. In all cases of self-healing slip pulses, the residual stress increases with distance behind the trailing edge of the pulse so that the final stress drop is much less than the dynamic stress drop, in agreement with the model of Brune (1976) and some recent seismological observations of rupture.
Small-crack effects in high-strength aluminum alloys
NASA Technical Reports Server (NTRS)
Newman, J. C., Jr.; Wu, X. R.; Venneri, S. L.; Li, C. G.
1994-01-01
The National Aeronautics and Space Administration and the Chinese Aeronautical Establishment participated in a Fatigue and Fracture Mechanics Cooperative Program. The program objectives were to identify and characterize crack initiation and growth of small cracks (10 microns to 2 mm long) in commonly used US and PRC aluminum alloys, to improve fracture mechanics analyses of surface- and corner-crack configurations, and to develop improved life-prediction methods. Fatigue and small-crack tests were performed on single-edgenotch tension (SENT) specimens and large-crack tests were conducted on center-crack tension specimens for constant-amplitude (stress ratios of -1, 0, and 0.5) and Mini-TWIST spectrum loading. The plastic replica method was used to monitor the initiation and growth of small fatigue cracks at the semicircular notch. Crack growth results from each laboratory on 7075-T6 bare and LC9cs clad aluminum alloys agreed well and showed that fatigue life was mostly crack propagation from a material defect (inclusion particles or void) or from the cladding layer. Finite-element and weight-function methods were used to determine stress intensity factors for surface and corner cracks in the SENT specimens. Equations were then developed and used in a crack growth and crack-closure model to correlate small- and large-crack data and to make life predictions for various load histories. The cooperative program produced useful experimental data and efficient analysis methods for improving life predictions. The results should ultimately improve aircraft structural reliability and safety.
Detection of internal cracks in rubber composite structures using an impact acoustic modality
NASA Astrophysics Data System (ADS)
Shen, Q.; Kurfess, T. R.; Omar, M.; Gramling, F.
2014-01-01
The objective of this study is to investigate the use of impact acoustic signals to non-intrusively inspect rubber composite structures for the presence of internal cracks, such as those found in an automobile tyre. Theoretical contact dynamic models for both integral and defective rubber structures are developed based on Hertz's impact model, further modified for rubber composite materials. The model generates the prediction of major impact dynamic quantities, namely the maximum impact force, impact duration and contact deformation; such parameters are also theoretically proven to be correlated with the presence of internal cracks. The tyre structures are simplified into cubic rubber blocks, to mitigate complexity for analytical modelling. Both impact force and impact sound signals are measured experimentally, and extraction of useful features from both signals for defect identification is achieved. The impact force produces two direct measurements of theoretical impact dynamic quantities. A good correlation between these experimental discriminators and the theoretical dynamic quantities provide validation for the contact dynamics models. Defect discriminators extracted from the impact sound are dependent on both time- and frequency-domain analyses. All the discriminators are closely connected with the theoretical dynamic quantities and experimentally verified as good indicators of internal cracks in rubber composite structures.
Correlating Scatter in Fatigue Life with Fracture Mechanisms in Forged Ti-6242Si Alloy
NASA Astrophysics Data System (ADS)
Sinha, V.; Pilchak, A. L.; Jha, S. K.; Porter, W. J.; John, R.; Larsen, J. M.
2018-04-01
Unlike the quasi-static mechanical properties, such as strength and ductility, fatigue life can vary significantly (by an order of magnitude or more) for nominally identical material and test conditions in many materials, including Ti-alloys. This makes life prediction and management more challenging for components that are subjected to cyclic loading in service. The differences in fracture mechanisms can cause the scatter in fatigue life. In this study, the fatigue fracture mechanisms were investigated in a forged near- α titanium alloy, Ti-6Al-2Sn-4Zr-2Mo-0.1Si, which had been tested under a condition that resulted in life variations by more than an order of magnitude. The crack-initiation and small crack growth processes, including their contributions to fatigue life variability, were elucidated via quantitative characterization of fatigue fracture surfaces. Combining the results from quantitative tilt fractography and electron backscatter diffraction, crystallography of crack-initiating and neighboring facets on the fracture surface was determined. Cracks initiated on the surface for both the shortest and the longest life specimens. The facet plane in the crack-initiating grain was aligned with the basal plane of a primary α grain for both the specimens. The facet planes in grains neighboring the crack-initiating grain were also closely aligned with the basal plane for the shortest life specimen, whereas the facet planes in the neighboring grains were significantly misoriented from the basal plane for the longest life specimen. The difference in the extent of cracking along the basal plane can explain the difference in fatigue life of specimens at the opposite ends of scatter band.
Investigation of Dynamic Crack Coalescence Using a Gypsum-Like 3D Printing Material
NASA Astrophysics Data System (ADS)
Jiang, Chao; Zhao, Gao-Feng; Zhu, Jianbo; Zhao, Yi-Xin; Shen, Luming
2016-10-01
Dynamic crack coalescence attracts great attention in rock mechanics. However, specimen preparation in experimental study is a time-consuming and difficult procedure. In this work, a gypsum-like material by powder bed and inkjet 3D printing technique was applied to produce specimens with preset cracks for split Hopkinson pressure bar (SHPB) test. From micro X-ray CT test, it was found that the 3D printing technique could successfully prepare specimens that contain preset cracks with width of 0.2 mm. Basic mechanical properties of the 3D printing material, i.e., the elastic modulus, the Poisson's ratio, the density, the compressive strength, the indirect tensile strength, and the fracture toughness, were obtained and reported. Unlike 3D printed specimens using polylactic acid, these gypsum-like specimens can produce failure patterns much closer to those observed in classical rock mechanical tests. Finally, the dynamic crack coalescence of the 3D printed specimens with preset cracks were captured using a high-speed camera during SHPB tests. Failure patterns of these 3D printed specimens are similar to the specimens made by Portland cement concrete. Our results indicate that sample preparation by 3D printing is highly competitive due to its quickness in prototyping, precision and flexibility on the geometry, and high material homogeneity.
A total life prediction model for stress concentration sites
NASA Technical Reports Server (NTRS)
Hartman, G. A.; Dawicke, D. S.
1983-01-01
Fatigue crack growth tests were performed on center crack panels and radial crack hole samples. The data were reduced and correlated with the elastic parameter K taking into account finite width and corner crack corrections. The anomalous behavior normally associated with short cracks was not observed. Total life estimates for notches were made by coupling an initiation life estimate with a propagation life estimate.
A total life prediction model for stress concentration sites
NASA Technical Reports Server (NTRS)
Hartman, G. A.; Dawicke, D. S.
1983-01-01
Fatigue crack growth tests were performed on center crack panels and radial crack hole samples. The data were reduced and correlated with the elastic parameter-K taking into account finite width and corner crack corrections. The anomalous behavior normally associated with short cracks was not observed. Total life estimates for notches were made by coupling an initiation life estimate with a propagation life estimate.
Kubo, Atsushi; Umeno, Yoshitaka
2017-01-01
Experiments of crack propagation in rubbers have shown that a discontinuous jump of crack propagation velocity can occur as energy release rate increases, which is known as the “mode transition” phenomenon. Although it is believed that the mode transition is strongly related to the mechanical properties, the nature of the mode transition had not been revealed. In this study, dynamic crack propagation on an elastomer was investigated using the finite element method (FEM) with a hyperviscoelastic material model. A series of pure shear test was carried out numerically with FEM simulations and crack velocities were measured under various values of tensile strain. As a result, our FEM simulations successfully reproduced the mode transition. The success of realising the mode transition phenomenon by a simple FEM model, which was achieved for the first time ever, helped to explain that the phenomenon occurs owing to a characteristic non-monotonic temporal development of principal stress near the crack tip. PMID:28186205
NASA Astrophysics Data System (ADS)
Kubo, Atsushi; Umeno, Yoshitaka
2017-02-01
Experiments of crack propagation in rubbers have shown that a discontinuous jump of crack propagation velocity can occur as energy release rate increases, which is known as the “mode transition” phenomenon. Although it is believed that the mode transition is strongly related to the mechanical properties, the nature of the mode transition had not been revealed. In this study, dynamic crack propagation on an elastomer was investigated using the finite element method (FEM) with a hyperviscoelastic material model. A series of pure shear test was carried out numerically with FEM simulations and crack velocities were measured under various values of tensile strain. As a result, our FEM simulations successfully reproduced the mode transition. The success of realising the mode transition phenomenon by a simple FEM model, which was achieved for the first time ever, helped to explain that the phenomenon occurs owing to a characteristic non-monotonic temporal development of principal stress near the crack tip.
Kubo, Atsushi; Umeno, Yoshitaka
2017-02-10
Experiments of crack propagation in rubbers have shown that a discontinuous jump of crack propagation velocity can occur as energy release rate increases, which is known as the "mode transition" phenomenon. Although it is believed that the mode transition is strongly related to the mechanical properties, the nature of the mode transition had not been revealed. In this study, dynamic crack propagation on an elastomer was investigated using the finite element method (FEM) with a hyperviscoelastic material model. A series of pure shear test was carried out numerically with FEM simulations and crack velocities were measured under various values of tensile strain. As a result, our FEM simulations successfully reproduced the mode transition. The success of realising the mode transition phenomenon by a simple FEM model, which was achieved for the first time ever, helped to explain that the phenomenon occurs owing to a characteristic non-monotonic temporal development of principal stress near the crack tip.
NASA Technical Reports Server (NTRS)
Bathias, C.; Brinet, B.; Sertour, G.
1978-01-01
Acoustic emission was used for the detection of fatigue cracking in a number of high-strength light alloys used in aeronautical structures. Among the features studied were: the influence of emission frequency, the effect of surface oxidation, and the influence of grains. It was concluded that acoustic emission is an effective nondestructive technique for evaluating the initiation of fatigue cracking in such materials.
Momose, Wataru; Yoshino, Hiroyuki; Katakawa, Yoshifumi; Yamashita, Kazunari; Imai, Keiji; Sako, Kazuhiro; Kato, Eiji; Irisawa, Akiyoshi; Yonemochi, Etsuo; Terada, Katsuhide
2012-01-01
Here, we describe a nondestructive approach using terahertz wave to detect crack initiation in a film-coated layer on a drug tablet. During scale-up and scale-down of the film coating process, differences in film density and gaps between the film-coated layer and the uncoated tablet were generated due to differences in film coating process parameters, such as the tablet-filling rate in the coating machine, spray pressure, and gas–liquid ratio etc. Tablets using the PEO/PEG formulation were employed as uncoated tablets. We found that heat and humidity caused tablets to swell, thereby breaking the film-coated layer. Using our novel approach with terahertz wave nondestructively detect film surface density (FSD) and interface density differences (IDDs) between the film-coated layer and an uncoated tablet. We also found that a reduced FSD and IDD between the film-coated layer and uncoated tablet increased the risk of crack initiation in the film-coated layer, thereby enabling us to nondestructively predict initiation of cracks in the film-coated layer. Using this method, crack initiation can be nondestructively assessed in swelling tablets after the film coating process without conducting accelerated stability tests, and film coating process parameters during scale-up and scale-down studies can be appropriately established. PMID:25755992
Effect of solution treatment on the fatigue behavior of an as-forged Mg-Zn-Y-Zr alloy
NASA Astrophysics Data System (ADS)
Wang, S. D.; Xu, D. K.; Wang, B. J.; Han, E. H.; Dong, C.
2016-04-01
Through investigating and comparing the fatigue behavior of an as-forged Mg-6.7Zn-1.3Y-0.6Zr (wt.%) alloy before and after solid solution treatment (T4) in laboratory air, the effect of T4 treatment on fatigue crack initiation was disclosed. S-N curves illustrated that the fatigue strength of as-forged samples was 110 MPa, whereas the fatigue strength of T4 samples was only 80 MPa. Observations to fracture surfaces demonstrated that for as-forged samples, fatigue crack initiation sites were covered with a layer of oxide film. However, due to the coarse grain structure and the dissolution of MgZn2 precipitates, the activation and accumulation of {10-12} twins in T4 samples were much easier, resulting in the preferential fatigue crack initiation at cracked twin boundaries (TBs). Surface characterization demonstrated that TB cracking was mainly ascribed to the incompatible plastic deformation in the twinned area and nearby α-Mg matrix.
NASA Astrophysics Data System (ADS)
Qiu, Ren-Zheng; Li, Chi-Chen; Fang, Te-Hua
2017-08-01
This study investigated the mechanical properties and crack propagation behavior of polycrystalline copper using a molecular dynamics simulation. The effects of temperature, grain size, and crack length were evaluated in terms of atomic trajectories, slip vectors, common neighbor analysis, the material’s stress-strain diagram and Young’s modulus. The simulation results show that the grain boundary of the material is more easily damaged at high temperatures and that grain boundaries will combine at the crack tip. From the stress-strain diagram, it was observed that the maximum stress increased as the temperature decreased. In contrast, the maximum stress was reduced by increasing the temperature. With regard to the effect of the grain size, when the grain size was too small, the structure of the sample deformed due to the effect of atomic interactions, which caused the grain boundary structure to be disordered in general. However, when the grain size was larger, dislocations appeared and began to move from the tip of the crack, which led to a new dislocation phenomenon. With regards to the effect of the crack length, the tip of the crack did not affect the sample’s material when the crack length was less than 5 nm. However, when the crack length was above 7.5 nm, the grain boundary was damaged, and twinning structures and dislocations appeared on both sides of the crack tip. This is because the tip of the crack was blunt at first before sharpening due to the dislocation effect.
The characterization of widespread fatigue damage in fuselage structure
NASA Technical Reports Server (NTRS)
Piascik, Robert S.; Willard, Scott A.; Miller, Matthew
1994-01-01
The characteristics of widespread fatigue damage (WSFD) in fuselage riveted structure were established by detailed nondestructive and destructive examinations of fatigue damage contained in a full size fuselage test article. The objectives of this were to establish an experimental data base for validating emerging WSFD analytical prediction methodology and to identify first order effects that contribute to fatigue crack initiation and growth. Detailed examinations were performed on a test panel containing four bays of a riveted lap splice joint. The panel was removed from a full scale fuselage test article after receiving 60,000 full pressurization cycles. The results of in situ examinations document the progression of fuselage skin fatigue crack growth through crack linkup. Detailed tear down examinations and fractography of the lap splice joint region revealed fatigue crack initiation sites, crack morphology, and crack linkup geometry. From this large data base, distributions of crack size and locations are presented and discussions of operative damage mechanisms are offered.
The characterization of widespread fatigue damage in fuselage structure
NASA Technical Reports Server (NTRS)
Piascik, Robert S.; Willard, Scott A.; Miller, Matthew
1994-01-01
The characteristics of widespread fatigue damage (WSFD) in fuselage riveted structure were established by detailed nondestructive and destructive examinations of fatigue damage contained in a full size fuselage test article. The objectives of this work were to establish an experimental data base for validating emerging WSFD analytical prediction methodology and to identify first order effects that contribute to fatigue crack initiation and growth. Detailed examinations were performed on a test panel containing four bays of a riveted lap splice joint. The panel was removed from a full scale fuselage test article after receiving 60,000 full pressurization cycles. The results of in situ examinations document the progression of fuselage skin fatigue crack growth through crack linkup. Detailed tear down examinations and fractography of the lap splice joint region revealed fatigue crack initiation sites, crack morphology and crack linkup geometry. From this large data base, distributions of crack size and locations are presented and discussions of operative damage mechanisms are offered.
On fractography of shallow and deep HY-100 cracked bend specimens
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan, D.W.; Zarzour, J.F.; Kleinosky, M.J.
1994-12-01
The influence of shallow cracks on the fracture behavior of structural components has been studied extensively in recent years. Finite element analyses have indicated dramatic differences in the crack-tip stress states between shallow and deep cracked bend specimens. In this study, an experimental program was carried out to investigate the fracture behavior of HY-100 steel containing various initial flaw depths. Four a/w ratios ranging from 0.05 to 0.5 were chosen for the notched three-point bend tests. Test results showed that higher fracture toughness values are associated with specimens having shorter surface cracks. Also, fractographic studies indicated that two sets ofmore » dimples are present for a/w = 0.5 specimen, one set of equiaxed dimple for a/w = 0.05 specimen near the crack initiation zone. As the crack grows, increase in the volume fraction of the small dimple were observed. Finally, it showed that the characteristic features of the fracture surfaces can be correlated with the previous numerical predictions.« less
Stress corrosion cracking of duplex stainless steels in caustic solutions
NASA Astrophysics Data System (ADS)
Bhattacharya, Ananya
Duplex stainless steels (DSS) with roughly equal amount of austenite and ferrite phases are being used in industries such as petrochemical, nuclear, pulp and paper mills, de-salination plants, marine environments, and others. However, many DSS grades have been reported to undergo corrosion and stress corrosion cracking in some aggressive environments such as chlorides and sulfide-containing caustic solutions. Although stress corrosion cracking of duplex stainless steels in chloride solution has been investigated and well documented in the literature but the SCC mechanisms for DSS in caustic solutions were not known. Microstructural changes during fabrication processes affect the overall SCC susceptibility of these steels in caustic solutions. Other environmental factors, like pH of the solution, temperature, and resulting electrochemical potential also influence the SCC susceptibility of duplex stainless steels. In this study, the role of material and environmental parameters on corrosion and stress corrosion cracking of duplex stainless steels in caustic solutions were investigated. Changes in the DSS microstructure by different annealing and aging treatments were characterized in terms of changes in the ratio of austenite and ferrite phases, phase morphology and intermetallic precipitation using optical micrography, SEM, EDS, XRD, nano-indentation and microhardness methods. These samples were then tested for general and localized corrosion susceptibility and SCC to understand the underlying mechanisms of crack initiation and propagation in DSS in the above-mentioned environments. Results showed that the austenite phase in the DSS is more susceptible to crack initiation and propagation in caustic solutions, which is different from that in the low pH chloride environment where the ferrite phase is the more susceptible phase. This study also showed that microstructural changes in duplex stainless steels due to different heat treatments could affect their SCC susceptibility. Annealed and water quenched specimens were found to be immune to SCC in caustic environment. Aging treatment at 800°C gave rise to sigma and chi precipitates in the DSS. However, these sigma and chi precipitates, known to initiate cracking in DSS in chloride environment did not cause any cracking of DSS in caustic solutions. Aging of DSS at 475°C had resulted in '475°C embrittlement' and caused cracks to initiate in the ferrite phase. This was in contrast to the cracks initiating in the austenite phase in the as-received DSS. Alloy composition and microstructure of DSS as well as solution composition (dissolved ionic species) was also found to affect the electrochemical behavior and passivation of DSS which in turn plays a major role in stress corrosion crack initiation and propagation. Corrosion rates and SCC susceptibility of DSS was found to increase with addition of sulfide to caustic solutions. Corrosion films on DSS, characterized using XRD and X-ray photoelectron spectroscopy, indicated that the metal sulfide compounds were formed along with oxides at the metal surface in the presence of sulfide containing caustic environments. These metal sulfide containing passive films are unstable and hence breaks down under mechanical straining, leading to SCC initiations. The overall results from this study helped in understanding the mechanism of SCC in caustic solutions. Favorable slip systems in the austenite phase of DSS favors slip-induced local film damage thereby initiating a stress corrosion crack. Repeated film repassivation and breaking, followed by crack tip dissolution results in crack propagation in the austenite phase of DSS alloys. Result from this study will have a significant impact in terms of identifying the alloy compositions, fabrication processes, microstructures, and environmental conditions that may be avoided to mitigate corrosion and stress corrosion cracking of DSS in caustic solutions.
NASA Astrophysics Data System (ADS)
Paliwal, Bhasker
The constitutive behaviors and failure processes of brittle materials under far-field compressive loading are studied in this work. Several approaches are used: experiments to study the compressive failure behavior of ceramics, design of experimental techniques by means of finite element simulations, and the development of micro-mechanical damage models to analyze and predict mechanical response of brittle materials under far-field compression. Experiments have been conducted on various ceramics, (primarily on a transparent polycrystalline ceramic, aluminum oxynitride or AlON) under loading rates ranging from quasi-static (˜ 5X10-6) to dynamic (˜ 200 MPa/mus), using a servo-controlled hydraulic test machine and a modified compression Kolsky bar (MKB) technique respectively. High-speed photography has also been used with exposure times as low as 20 ns to observe the dynamic activation, growth and coalescence of cracks and resulting damage zones in the specimen. The photographs were correlated in time with measurements of the stresses in the specimen. Further, by means of 3D finite element simulations, an experimental technique has been developed to impose a controlled, homogeneous, planar confinement in the specimen. The technique can be used in conjunction with a high-speed camera to study the in situ dynamic failure behavior of materials under confinement. AlON specimens are used for the study. The statically pre-compressed specimen is subjected to axial dynamic compressive loading using the MKB. Results suggest that confinement not only increases the load carrying capacity, it also results in a non-linear stress evolution in the material. High-speed photographs also suggest an inelastic deformation mechanism in AlON under confinement which evolves more slowly than the typical brittle-cracking type of damage in the unconfined case. Next, an interacting micro-crack damage model is developed that explicitly accounts for the interaction among the micro-cracks in brittle materials. The model incorporates pre-existing defect distributions and a crack growth law. The damage is defined as a scalar parameter which is a function of the micro-crack density, the evolution of which is a function of the existing defect distribution and the crack growth dynamics. A specific case of a uniaxial compressive loading under constant strain-rate has been studied to predict the effects of the strain-rate, defect distribution and the crack growth dynamics on the constitutive response and failure behavior of brittle materials. Finally, the effects of crack growth dynamics on the strain-rate sensitivity of brittle materials are studied with the help of the micro-mechanical damage model. The results are compared with the experimentally observed damage evolution and the rate-sensitive behavior of the compressive strength of several engineering ceramics. The dynamic failure of armor-grade hot-pressed boron carbide (B 4C) under loading rates of ˜ 5X10-6 to 200 MPa/mus is also discussed.
NASA Astrophysics Data System (ADS)
Liu, J.; Zhu, W. D.; Charalambides, P. G.; Shao, Y. M.; Xu, Y. F.; Fang, X. M.
2016-11-01
As one of major failure modes of mechanical structures subjected to periodic loads, embedded cracks due to fatigue can cause catastrophic failure of machineries. Understanding the dynamic characteristics of a structure with an embedded crack is helpful for early crack detection and diagnosis. In this work, a new three-segment beam model with local flexibilities at crack tips is developed to investigate the vibration of a cantilever beam with a closed, fully embedded horizontal crack, which is assumed to be not located at its clamped or free end or distributed near its top or bottom side. The three-segment beam model is assumed to be a linear elastic system, and it does not account for the nonlinear crack closure effect; the top and bottom segments always stay in contact at their interface during the beam vibration. It can model the effects of local deformations in the vicinity of the crack tips, which cannot be captured by previous methods in the literature. The middle segment of the beam containing the crack is modeled by a mechanically consistent, reduced bending moment. Each beam segment is assumed to be an Euler-Bernoulli beam, and the compliances at the crack tips are analytically determined using a J-integral approach and verified using commercial finite element software. Using compatibility conditions at the crack tips and the transfer matrix method, the nature frequencies and mode shapes of the cracked cantilever beam are obtained. The three-segment beam model is used to investigate the effects of local flexibilities at crack tips on the first three natural frequencies and mode shapes of the cracked cantilever beam. A stationary wavelet transform (SWT) method is used to process the mode shapes of the cracked cantilever beam; jumps in single-level SWT decomposition detail coefficients can be used to identify the length and location of an embedded horizontal crack.
Dynamic response of a cracked atomic force microscope cantilever used for nanomachining
2012-01-01
The vibration behavior of an atomic force microscope [AFM] cantilever with a crack during the nanomachining process is studied. The cantilever is divided into two segments by the crack, and a rotational spring is used to simulate the crack. The two individual governing equations of transverse vibration for the cracked cantilever can be expressed. However, the corresponding boundary conditions are coupled because of the crack interaction. Analytical expressions for the vibration displacement and natural frequency of the cracked cantilever are obtained. In addition, the effects of crack flexibility, crack location, and tip length on the vibration displacement of the cantilever are analyzed. Results show that the crack occurs in the AFM cantilever that can significantly affect its vibration response. PACS: 07.79.Lh; 62.20.mt; 62.25.Jk PMID:22335820
Research Based on the Acoustic Emission of Wind Power Tower Drum Dynamic Monitoring Technology
NASA Astrophysics Data System (ADS)
Zhang, Penglin; Sang, Yuan; Xu, Yaxing; Zhao, Zhiqiang
Wind power tower drum is one of the key components of the wind power equipment. Whether the wind tower drum performs safety directly affects the efficiency, life, and performance of wind power equipment. Wind power tower drum in the process of manufacture, installation, and operation may lead to injury, and the wind load and gravity load and long-term factors such as poor working environment under the action of crack initiation or distortion, which eventually result in the instability or crack of the wind power tower drum and cause huge economic losses. Thus detecting the wind power tower drum crack damage and instability is especially important. In this chapter, acoustic emission is used to monitor the whole process of wind power tower drum material Q345E steel tensile test at first, and processing and analysis tensile failure signal of the material. And then based on the acoustic emission testing technology to the dynamic monitoring of wind power tower drum, the overall detection and evaluation of the existence of active defects in the whole structure, and the acoustic emission signals collected for processing and analysis, we could preliminarily master the wind tower drum mechanism of acoustic emission source. The acoustic emission is a kind of online, efficient, and economic method, which has very broad prospects for work. The editorial committee of nondestructive testing qualification and certification of personnel teaching material of science and technology industry of national defense, "Acoustic emission testing" (China Machine Press, 2005.1).
Residual stress and crack initiation in laser clad composite layer with Co-based alloy and WC + NiCr
NASA Astrophysics Data System (ADS)
Lee, Changmin; Park, Hyungkwon; Yoo, Jaehong; Lee, Changhee; Woo, WanChuck; Park, Sunhong
2015-08-01
Although laser cladding process has been widely used to improve the wear and corrosion resistance, there are unwanted cracking issues during and/or after laser cladding. This study investigates the tendency of Co-based WC + NiCr composite layers to cracking during the laser cladding process. Residual stress distributions of the specimen are measured using neutron diffraction and elucidate the correlation between the residual stress and the cracking in three types of cylindrical specimens; (i) no cladding substrate only, (ii) cladding with 100% stellite#6, and (iii) cladding with 55% stellite#6 and 45% technolase40s. The microstructure of the clad layer was composed of Co-based dendrite and brittle eutectic phases at the dendritic boundaries. And WC particles were distributed on the matrix forming intermediate composition region by partial melting of the surface of particles. The overlaid specimen exhibited tensile residual stress, which was accumulated through the beads due to contraction of the coating layer generated by rapid solidification, while the non-clad specimen showed compressive. Also, the specimen overlaid with 55 wt% stellite#6 and 45 wt% technolase40s showed a tensile stress higher than the specimen overlaid with 100% stellite#6 possibly, due to the difference between thermal expansion coefficients of the matrix and WC particles. Such tensile stresses can be potential driving force to provide an easy crack path ways for large brittle fractures combined with the crack initiation sites such as the fractured WC particles, pores and solidification cracks. WC particles directly caused clad cracks by particle fracture under the tensile stress. The pores and solidification cracks also affected as initiation sites and provided an easy crack path ways for large brittle fractures.
Capillary-induced crack healing between surfaces of nanoscale roughness.
Soylemez, Emrecan; de Boer, Maarten P
2014-10-07
Capillary forces are important in nature (granular materials, insect locomotion) and in technology (disk drives, adhesion). Although well studied in equilibrium state, the dynamics of capillary formation merit further investigation. Here, we show that microcantilever crack healing experiments are a viable experimental technique for investigating the influence of capillary nucleation on crack healing between rough surfaces. The average crack healing velocity, v̅, between clean hydrophilic polycrystalline silicon surfaces of nanoscale roughness is measured. A plot of v̅ versus energy release rate, G, reveals log-linear behavior, while the slope |d[log(v̅)]/dG| decreases with increasing relative humidity. A simplified interface model that accounts for the nucleation time of water bridges by an activated process is developed to gain insight into the crack healing trends. This methodology enables us to gain insight into capillary bridge dynamics, with a goal of attaining a predictive capability for this important microelectromechanical systems (MEMS) reliability failure mechanism.
Among long-term crack smokers, who avoids and who succumbs to cocaine addiction?
Falck, Russel S; Wang, Jichuan; Carlson, Robert G
2008-11-01
Crack cocaine is a highly addictive drug. To learn more about crack addiction, long-term crack smokers who had never met the DSM-IV criteria for lifetime cocaine dependence were compared with those who had. The study sample consisted of crack users (n=172) from the Dayton, Ohio, area who were interviewed periodically over 8 years. Data were collected on a range of variables including age of crack initiation, frequency of recent use, and lifetime cocaine dependence. Cocaine dependence was common with 62.8% of the sample having experienced it. There were no statistically significant differences between dependent and non-dependent users for age of crack initiation or frequency of crack use. In terms of sociodemographics, only race/ethnicity was significant, with proportionally fewer African-Americans than whites meeting the criteria for cocaine dependence. Controlling for sociodemographics, partial correlation analysis showed positive, statistically significant relationships between lifetime cocaine dependence and anti-social personality disorder, attention deficit/hyperactivity disorder, and lifetime dependence on alcohol, cannabis, amphetamine, sedative-hypnotics, and opioids. These results highlight the importance addressing race/ethnicity and comorbid disorders when developing, implementing, and evaluating interventions targeting people who use crack cocaine. Additional research is needed to better understand the role of race/ethnicity in the development of cocaine dependence resulting from crack use.
Inelastic and Dynamic Fracture and Stress Analyses
NASA Technical Reports Server (NTRS)
Atluri, S. N.
1984-01-01
Large deformation inelastic stress analysis and inelastic and dynamic crack propagation research work is summarized. The salient topics of interest in engine structure analysis that are discussed herein include: (1) a path-independent integral (T) in inelastic fracture mechanics, (2) analysis of dynamic crack propagation, (3) generalization of constitutive relations of inelasticity for finite deformations , (4) complementary energy approaches in inelastic analyses, and (5) objectivity of time integration schemes in inelastic stress analysis.
Fatigue-Crack-Growth Structural Analysis
NASA Technical Reports Server (NTRS)
Newman, J. C., Jr.
1986-01-01
Elastic and plastic deformations calculated under variety of loading conditions. Prediction of fatigue-crack-growth lives made with FatigueCrack-Growth Structural Analysis (FASTRAN) computer program. As cyclic loads are applied to initial crack configuration, FASTRAN predicts crack length and other parameters until complete break occurs. Loads are tensile or compressive and of variable or constant amplitude. FASTRAN incorporates linear-elastic fracture mechanics with modifications of load-interaction effects caused by crack closure. FASTRAN considered research tool, because of lengthy calculation times. FASTRAN written in FORTRAN IV for batch execution.
Investigations of subcritical crack propagation of the Empress 2 all-ceramic system.
Mitov, Gergo; Lohbauer, Ulrich; Rabbo, Mohammad Abed; Petschelt, Anselm; Pospiech, Peter
2008-02-01
The mechanical properties and slow crack propapagation of the all-porcelain system Empress 2 (Ivoclar Vivadent, Schaan, Liechtenstein) with its framework compound Empress 2 and the veneering compounds "Empress 2 and Eris were examined. For all materials, the fracture strength, Weibull parameter and elastic moduli were experimentally determined in a four-point-bending test. For the components of the Empress 2 system, the fracture toughness K(IC) was determined, and the crack propagation parameters n and A were determined in a dynamic fatigue method. Using these data, life data analysis was performed and lifetime diagrams were produced. The development of strength under static fatigue conditions was calculated for a period of 5 years. The newly developed veneering ceramic Eris showed a higher fracture strength (sigma(0)=66.1 MPa) at a failure probability of P(F)=63.2%, and crack growth parameters (n=12.9) compared to the veneering ceramic Empress 2 (sigma(0)=60.3 MPa). For Empress 2 veneer the crack propagation parameter n could only be estimated (n=9.5). This is reflected in the prognosis of long-term resistance presented in the SPT diagrams. For all materials investigated, the Weibull parameter m values (Empress 2 framework m=4.6; Empress 2 veneer m=7.9; Eris m=6.9) were much lower than the minimum demanded by the literature (m=15). The initial fracture strength value alone is not sufficient to characterize the mechanical resistance of ceramic materials, since their stressability is time-dependent. Knowledge about the crack propagation parameters n and A are of great importance when preclinically predicting the clinical suitability of dental ceramic materials. The use of SPT diagrams for lifetime calculation of ceramic materials is a valuable method for comparing different ceramics.
2011-09-01
and bond integrity. Lastly, the PZT transducers are also utilized to track the lower frequency mechanical strains created during fatigue loading...face of the coupon and on either side of the gage section. Each coupon undergoes cyclic tensile loading to initiate and grow fatigue cracks. At...various intervals, the fatigue cycling is paused and the coupon is visually inspected for crack initiation and growth. While the cycling is paused
Numerical Simulation on the Dynamic Splitting Tensile Test of reinforced concrete
NASA Astrophysics Data System (ADS)
Zhao, Zhuan; Jia, Haokai; Jing, Lin
2018-03-01
The research for crack resistance was of RC was based on the split Hopkinson bar and numerical simulate software LS-DYNA3D. In the research, the difference of dynamic splitting failure modes between plane concrete and reinforced concrete were completed, and the change rule of tensile stress distribution with reinforcement ratio was studied; also the effect rule with the strain rate and the crack resistance was also discussed by the radial tensile stress time history curve of RC specimen under different loading speeds. The results shows that the reinforcement in the concrete can impede the crack extension, defer the failure time of concrete, increase the tension intensity of concrete; with strain rate of concrete increased, the crack resistance of RC increased.
Bechtle, Sabine; Fett, Theo; Rizzi, Gabriele; Habelitz, Stefan; Schneider, Gerold A
2010-05-01
Fracture toughness resistance curves describe a material's resistance against crack propagation. These curves are often used to characterize biomaterials like bone, nacre or dentin as these materials commonly exhibit a pronounced increase in fracture toughness with crack extension due to co-acting mechanisms such as crack bridging, crack deflection and microcracking. The knowledge of appropriate stress intensity factors which depend on the sample and crack geometry is essential for determining these curves. For the dental biomaterials enamel and dentin it was observed that, under bending and tensile loading, crack propagation occurs under certain constant angles to the initial notch direction during testing procedures used for fracture resistance curve determination. For this special crack geometry (a kink crack of finite length in a finite body) appropriate geometric function solutions are missing. Hence, we present in this study new mixed-mode stress intensity factors for kink cracks with finite kink length within samples of finite dimensions for two loading cases (tension and bending) which were derived from a combination of mixed-mode stress intensity factors of kink cracks with infinitely small kinks and of slant cracks. These results were further applied to determine the fracture resistance curves of enamel and dentin by testing single edge notched bending (SENB) specimens. It was found that kink cracks with finite kink length exhibit identical stress fields to slant cracks as soon as the kink length exceeds 0.15 times the initial straight crack or notch length. The use of stress intensity factor solutions for infinitely small kink cracks for the determination of dentin fracture resistance curves (as was done by other researchers) leads to an overestimation of dentin's fracture resistance of up to 30%. Copyright 2010 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Gilbreath, W. P.; Adamson, M. J.
1974-01-01
The crack growth behavior of D6AC steel as a function of stress intensity, stress and corrosion history and test technique, under sustained load in natural seawater, 3.3 percent NaCl solution, distilled water, and high humidity air was investigated. Reported investigations of D6AC were considered with emphasis on thermal treatment, specimen configuration, fracture toughness, crack-growth rates, initiation period, threshold, and the extension of corrosion fatigue data to sustained load conditions. Stress history effects were found to be most important in that they controlled incubation period, initial crack growth rates, and apparent threshold.
Fatigue crack identification method based on strain amplitude changing
NASA Astrophysics Data System (ADS)
Guo, Tiancai; Gao, Jun; Wang, Yonghong; Xu, Youliang
2017-09-01
Aiming at the difficulties in identifying the location and time of crack initiation in the castings of helicopter transmission system during fatigue tests, by introducing the classification diagnostic criteria of similar failure mode to find out the similarity of fatigue crack initiation among castings, an engineering method and quantitative criterion for detecting fatigue cracks based on strain amplitude changing is proposed. This method is applied on the fatigue test of a gearbox housing, whose results indicates: during the fatigue test, the system alarms when SC strain meter reaches the quantitative criterion. The afterwards check shows that a fatigue crack less than 5mm is found at the corresponding location of SC strain meter. The test result proves that the method can provide accurate test data for strength life analysis.
NASA Astrophysics Data System (ADS)
Kim, Young Suk; Kim, Sung Soo
2016-09-01
We show that enhanced stress corrosion cracking (SCC) initiation in cold-rolled Alloy 690 with decreasing strain rate is related to the rate of short-range ordering (SRO) but not to the time-dependent corrosion process. Evidence for SRO is provided by aging tests on cold-rolled Alloy 690 at 623 K and 693 K (350 °C and 420 °C), respectively, which demonstrate its enhanced lattice contraction and hardness increase with aging temperature and time, respectively. Secondary intergranular cracks formed only in thermally treated and cold-rolled Alloy 690 during SCC tests, which are not SCC cracks, are caused by its lattice contraction by SRO before SCC tests but not by the orientation effect.
Influence of Initial Inclined Surface Crack on Estimated Residual Fatigue Lifetime of Railway Axle
NASA Astrophysics Data System (ADS)
Náhlík, Luboš; Pokorný, Pavel; Ševčík, Martin; Hutař, Pavel
2016-11-01
Railway axles are subjected to cyclic loading which can lead to fatigue failure. For safe operation of railway axles a damage tolerance approach taking into account a possible defect on railway axle surface is often required. The contribution deals with an estimation of residual fatigue lifetime of railway axle with initial inclined surface crack. 3D numerical model of inclined semi-elliptical surface crack in railway axle was developed and its curved propagation through the axle was simulated by finite element method. Presence of press-fitted wheel in the vicinity of initial crack was taken into account. A typical loading spectrum of railway axle was considered and residual fatigue lifetime was estimated by NASGRO approach. Material properties of typical axle steel EA4T were considered in numerical calculations and lifetime estimation.
Discontinuous decompaction of a falling sandpile
NASA Astrophysics Data System (ADS)
Duran, J.; Mazozi, T.; Luding, S.; Clément, E.; Rajchenbach, J.
1996-02-01
We investigate experimentally and via computer simulations the fall of a two dimensional granular material in a rectangular container with friction only at lateral walls. We study the decompaction modes of the granular assembly, which is a basic question relevant to the general dynamics of a noncohesive powder. We observe during the fall the possible occurrence of successive cracks splitting the initial pile into smaller blocks as time passes. These cracks preferentially occur in the lower part of the array, resulting in an ascending decompaction wave in the bulk. We show experimentally how this effect is related to the surface roughness of the boundaries. A heuristic continuum theory is proposed that rationalizes the experimental results. Furthermore, event driven simulations, including particle rotations and friction, parallel nicely the experimental observations. In the simulations, we find strong pressure fluctuations at the boundaries correlated to the occurrence of arches.
Laser-driven mechanical fracture in fused silica
NASA Astrophysics Data System (ADS)
Dahmani, Faiz
1999-10-01
Fused silica, widely used as optical-window material in high-fluence requirements on glass and KrF lasers, experiences optical damage. Under fatigue conditions, the damage is initiated by slow crack growth and culminates, if not arrested, with catastrophic crack growth and implosive failure when the stress intensity approaches the critical value. Since laser-induced cracks cannot be eliminated entirely, the behavior of cracked structures under service conditions must be quantified to be predicted. Systematic scientific rules must be devised to characterize laser-induced cracks and their effects, and to predict if and when it may become necessary to replace the damaged components. This thesis makes a contribution toward this end. Measurements of fatigue failure strength of laser-cracked fused silica in air at room temperature for different number of laser pulses and laser fluences are presented. The failure-strength variability is found to be due mainly to the spectrum of crack depths. Agreement with theory suggests the incorporation of a residual term into the failure-strength equation. Experiments on residual stresses induced in fused silica by the presence of a laser-induced crack are carried out using two different techniques. Theoretical modelings show that this residual stress field is of shear nature and mouth-opening. A correlation between the reduction in fracture strength of fused silica and the increase of the residual-stress field is established, providing laser systems designers and operators with guidance on the rate of crack growth as well as on the stress-related ramifications such as laser-driven cracks entail. Specifically, a hoop-stress in the immediate vicinity of a crack growing along the beam propagation direction is identified as strongly coupling to both the laser fluence and the crack growth. This coupling prompted the question of whether or not breaking the hoop stress symmetry by some external perturbation will accelerate or stymie crack growth. Experimental results on stress-inhibited laser-driven crack growth and stress-delayed-laser-damage initiation thresholds in fused silica and borosilicate glass (BK7) are presented. The results obtained show that, for very low compressive stresses (<10 psi), the damage initiation threshold is raised by as much as 78%, while the crack growth is arrested by 70%. Different loading- geometries are tested, giving different crack growth rates and raising the distinction between uniaxial and biaxial states of stresses.
Challenges and limitations in studying the shrink-swell and crack dynamics of vertisol soils
USDA-ARS?s Scientific Manuscript database
The need to study the shrink-swell and crack properties of vertic soils has long been recognized given their dynamics in time and space, which modifies the physical properties that impact water and air movement in the soil, flow of water into the subsoil and ground water, and generally alter the hyd...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stevens, D.L.; Simonen, F.A.; Strosnider, J. Jr.
The VISA (Vessel Integrity Simulation Analysis) code was developed as part of the NRC staff evaluation of pressurized thermal shock. VISA uses Monte Carlo simulation to evaluate the failure probability of a pressurized water reactor (PWR) pressure vessel subjected to a pressure and thermal transient specified by the user. Linear elastic fracture mechanics are used to model crack initiation and propagation. parameters for initial crack size, copper content, initial RT/sub NDT/, fluence, crack-initiation fracture toughness, and arrest fracture toughness are treated as random variables. This report documents the version of VISA used in the NRC staff report (Policy Issue frommore » J.W. Dircks to NRC Commissioners, Enclosure A: NRC Staff Evaluation of Pressurized Thermal Shock, November 1982, SECY-82-465) and includes a user's guide for the code.« less
NASA Astrophysics Data System (ADS)
Itabashi, Masaaki; Nakajima, Shigeru; Fukuda, Hiroshi
After unexpected failure of metallic structure, microscopic investigation will be performed. Generally, such an investigation is limited to search striation pattern with a SEM (scanning electron microscope). But, when the cause of the failure was not severe repeated stress, this investigation is ineffective. In this paper, new microscopic observation technique is proposed to detect low cycle fatigue-impact tensile loading history. Al alloys, 6061-T6 and 2219-T87, were fractured in dynamic tension, after severe pre-fatigue. The side surface of the fractured specimens was observed with a SEM. Neighboring fractured surface, many opened cracks on the side surface have been generated. For each specimen, the number of the cracks was counted together with information of individual sizes and geometric features. For 6061-T6 alloy specimen with the pre-fatigue, the number of the cracks is greater than that for the specimen without the pre-fatigue. For 2219-T87 alloy, the same tendency can be found after a certain screening of the crack counting. Therefore, the crack counting technique may be useful to detect the existence of the pre-fatigue from the dynamically fractured specimen surface.
Seeding Cracks Using a Fatigue Tester for Accelerated Gear Tooth Breaking
NASA Technical Reports Server (NTRS)
Nenadic, Nenad G.; Wodenscheck, Joseph A.; Thurston, Michael G.; Lewicki, David G.
2011-01-01
This report describes fatigue-induced seeded cracks in spur gears and compares them to cracks created using a more traditional seeding method, notching. Finite element analysis (FEA) compares the effective compliance of a cracked tooth to the effective compliance of a notched tooth where the crack and the notch are of the same depth. In this analysis, cracks are propagated to the desired depth using FRANC2D and effective compliances are computed in ANSYS. A compliance-based feature for detecting cracks on the fatigue tester is described. The initiated cracks are examined using both nondestructive and destructive methods. The destructive examination reveals variability in the shape of crack surfaces.
Investigation of fretting behaviour in pressure armour layers of flexible pipes
NASA Astrophysics Data System (ADS)
Don Rasika Perera, Solangarachchige
The incidence of fretting damage in the pressure armour wires of flexible pipes used in offshore oil explorations has been investigated. A novel experimental facility which is capable of simulating nub and valley contact conditions of interlocking wire winding with dynamic slip, representative of actual pipe loading, has been developed. The test set-up is equipped with a state of the art data acquisition system and a controller with transducers to measure and control the normal load, slip amplitude and friction force at the contact, in addition to the hoop stress in the wire. Tests were performed with selected loading and the fretted regions were examined using optical microscopy techniques. Results show that the magnitude of contact loading and the slip amplitude have a distinct influence on surface damage. Surface cracks originated from a fretting scar were observed at high contact loads in mixed slip sliding while surface damage predominantly due to wear was observed under gross slip. The position of surface cracks and the wear profile have been related to the contact pressure distribution. The evolution of friction force and surface damage under different slip and normal pressure conditions has been analysed. A fracture mechanics based numerical procedure has been developed to analyse the fretting damage behaviour. A severity parameter is proposed in order to ascertain whether the crack growth is in mode I or mode II cracking. The analysis show the influence of mode II cracking in the early stages of crack growth following which the crack deviates in the mode I direction making mode I the dominant crack propagation mechanism. The crack path determined by the numerical procedure correlates well with the experimental results. A numerical analysis was carried out for the fretting fatigue condition where a cyclic bulk stress superimposes with the friction force. The analysis correlates well with short crack growth behaviour. The analysis confirms that fretting is a significant factor that should be taken into account in design and operation of the pressure armour wires of flexible pipes at high contact pressure if the bulk cyclic load superimposes with the friction force. As predicted by the numerical procedure and further by experimental investigations, the surface cracks initiating on the wire in this condition are self arresting after propagating into a certain depth.
Fatigue Crack Closure Analysis Using Digital Image Correlation
NASA Technical Reports Server (NTRS)
Leser, William P.; Newman, John A.; Johnston, William M.
2010-01-01
Fatigue crack closure during crack growth testing is analyzed in order to evaluate the critieria of ASTM Standard E647 for measurement of fatigue crack growth rates. Of specific concern is remote closure, which occurs away from the crack tip and is a product of the load history during crack-driving-force-reduction fatigue crack growth testing. Crack closure behavior is characterized using relative displacements determined from a series of high-magnification digital images acquired as the crack is loaded. Changes in the relative displacements of features on opposite sides of the crack are used to generate crack closure data as a function of crack wake position. For the results presented in this paper, remote closure did not affect fatigue crack growth rate measurements when ASTM Standard E647 was strictly followed and only became a problem when testing parameters (e.g., load shed rate, initial crack driving force, etc.) greatly exceeded the guidelines of the accepted standard.
Dynamic and static fatigue behavior of sintered silicon nitrides
NASA Technical Reports Server (NTRS)
Chang, J.; Khandelwal, P.; Heitman, P. W.
1987-01-01
The dynamic and static fatigue behavior of Kyocera SN220M sintered silicon nitride at 1000 C was studied. Fractographic analysis of the material failing in dynamic fatigue revealed the presence of slow crack growth (SCG) at stressing rates below 41 MPa/min. Under conditions of static fatigue this material also displayed SCG at stresses below 345 MPa. SCG appears to be controlled by microcracking of the grain boundaries. The crack velocity exponent (n) determined from both dynamic and static fatigue tests ranged from 11 to 16.
Instability in dynamic fracture
NASA Astrophysics Data System (ADS)
Fineberg, J.; Marder, M.
1999-05-01
The fracture of brittle amorphous materials is an especially challenging problem, because the way a large object shatters is intimately tied to details of cohesion at microscopic scales. This subject has been plagued by conceptual puzzles, and to make matters worse, experiments seemed to contradict the most firmly established theories. In this review, we will show that the theory and experiments fit within a coherent picture where dynamic instabilities of a crack tip play a crucial role. To accomplish this task, we first summarize the central results of linear elastic dynamic fracture mechanics, an elegant and powerful description of crack motion from the continuum perspective. We point out that this theory is unable to make predictions without additional input, information that must come either from experiment, or from other types of theories. We then proceed to discuss some of the most important experimental observations, and the methods that were used to obtain the them. Once the flux of energy to a crack tip passes a critical value, the crack becomes unstable, and it propagates in increasingly complicated ways. As a result, the crack cannot travel as quickly as theory had supposed, fracture surfaces become rough, it begins to branch and radiate sound, and the energy cost for crack motion increases considerably. All these phenomena are perfectly consistent with the continuum theory, but are not described by it. Therefore, we close the review with an account of theoretical and numerical work that attempts to explain the instabilities. Currently, the experimental understanding of crack tip instabilities in brittle amorphous materials is fairly detailed. We also have a detailed theoretical understanding of crack tip instabilities in crystals, reproducing qualitatively many features of the experiments, while numerical work is beginning to make the missing connections between experiment and theory.
Crack healing in cross-ply composites observed by dynamic mechanical analysis
NASA Astrophysics Data System (ADS)
Nielsen, Christian; Nemat-Nasser, Sia
2015-03-01
Cross-ply composites with healable polymer matrices are characterized using dynamic mechanical analysis (DMA). The [90,0]s samples are prepared by embedding layers of unidirectional glass or carbon fibers in 2MEP4FS, a polymer with thermally reversible covalent cross-links, which has been shown to be capable of healing internal cracks and fully recovering fracture toughness when the crack surfaces are kept in contact. After fabrication, cracks in the composites' transverse plies are observed due to residual thermal stresses introduced during processing. Single cantilever bending DMA measurements show the samples exhibit periods of increasing storage moduli with increasing temperature. These results are accurately modeled as a one-dimensional composite, which captures the underlying physics of the phenomenon. The effect of cracks on the stiffness is accounted for by a shear-lag model. The predicted crack density of the glass fiber composite is shown to fall within a range observed from microscopy images. Crack healing occurs as a function of temperature, with chemistry and mechanics-based rationales given for the onset and conclusion of healing. The model captures the essential physics of the phenomenon and yields results in accord with experimental observations.
NASA Technical Reports Server (NTRS)
Prosser, W. H.; Jackson, K. E.; Kellas, S.; Smith, B. T.; McKeon, J.; Friedman, A.
1995-01-01
Transverse matrix cracking in cross-ply gr/ep laminates was studied with advanced acoustic emission (AE) techniques. The primary goal of this research was to measure the load required to initiate the first transverse matrix crack in cross-ply laminates of different thicknesses. Other methods had been previously used for these measurements including penetrant enhanced radiography, optical microscopy, and audible acoustic microphone measurements. The former methods required that the mechanical test be paused for measurements at load intervals. This slowed the test procedure and did not provide the required resolution in load. With acoustic microphones, acoustic signals from cracks could not be clearly differentiated from other noise sources such as grip damage, specimen slippage, or test machine noise. A second goal for this work was to use the high resolution source location accuracy of the advanced acoustic emission techniques to determine whether the crack initiation site was at the specimen edge or in the interior of the specimen.In this research, advanced AE techniques using broad band sensors, high capture rate digital waveform acquisition, and plate wave propagation based analysis were applied to cross-ply composite coupons with different numbers of 0 and 90 degree plies. Noise signals, believed to be caused by grip damage or specimen slipping, were eliminated based on their plate wave characteristics. Such signals were always located outside the sensor gage length in the gripped region of the specimen. Cracks were confirmed post-test by microscopic analysis of a polished specimen edge, backscatter ultrasonic scans, and in limited cases, by penetrant enhanced radiography. For specimens with three or more 90 degree plies together, there was an exact 1-1 correlation between AE crack signals and observed cracks. The ultrasonic scans and some destructive sectioning analysis showed that the cracks extended across the full width of the specimen. Furthermore, the locations of the cracks from the AE data were in excellent agreement with the locations measured with the microscope. The high resolution source location capability of this technique, combined with an array of sensors, was able to determine that the cracks initiated at the specimen edges, rather than in the interior. For specimens with only one or two 90 degree plies, the crack-like signals were significantly smaller in amplitude and there was not a 1-1 correlation to observed cracks. This was similar to previous results. In this case, however, ultrasonic and destructive sectioning analysis revealed that the cracks did not extend across the specimen. They initiated at the edge, but did not propagate any appreciable distance into the specimen. This explains the much smaller AE signal amplitudes and the difficulty in correlating these signals to actual cracks in this, as well as in the previous study.
The Effect of Boron on the Low Cycle Fatigue Behavior of Disk Alloy KM4
NASA Technical Reports Server (NTRS)
Gabb, Timothy; Gayda, John; Sweeney, Joseph
2000-01-01
The durability of powder metallurgy nickel base superalloys employed as compressor and turbine disks is often limited by low cycle fatigue (LCF) crack initiation and crack growth from highly stressed surface locations (corners, holes, etc.). Crack growth induced by dwells at high stresses during aerospace engine operation can be particularly severe. Supersolvus solution heat treatments can be used to produce coarse grain sizes approaching ASTM 6 for improved resistance to dwell fatigue crack growth. However, the coarse grain sizes reduce yield strength, which can lower LCF initiation life. These high temperature heat treatments also can encourage pores to form. In the advanced General Electric disk superalloy KM4, such pores can initiate fatigue cracks that limit LCF initiation life. Hot isostatic pressing (HIP) during the supersolvus solution heat treatment has been shown to improve LCF initiation life in KM4, as the HIP pressure minimizes formation of the pores. Reduction of boron levels in KM4 has also been shown to increase LCF initiation life after a conventional supersolvus heat treatment, again possibly due to effects on the formation tendencies of these pores. However, the effects of reduced boron levels on microstructure, pore characteristics, and LCF failure modes in KM4 still need to be fully quantified. The objective of this study was to determine the effect of boron level on the microstructure, porosity, LCF behavior, and failure modes of supersolvus heat treated KM4.
On the role of weak interface in crack blunting process in nanoscale layered composites
NASA Astrophysics Data System (ADS)
Li, Yi; Zhou, Qing; Zhang, Shuang; Huang, Ping; Xu, Kewei; Wang, Fei; Lu, Tianjian
2018-03-01
Heterointerface in a nanoscale metallic layered composite could improve its crack resistance. However, the influence of metallic interface structures on crack propagation has not been well understood at atomic scale. By using the method of molecular dynamics (MD) simulation, the crack propagation behavior in Cu-Nb bilayer is compared with that in Cu-Ni bilayer. We find that the weak Cu-Nb interface plays an important role in hindering crack propagation in two ways: (i) dislocation nucleation at the interface releases stress concentration for the crack to propagate; (ii) the easily sheared weak incoherent interface blunts the crack tip. The results are helpful for understanding the interface structure dependent crack resistance of nanoscale bicrystal interfaces.
Peng, He; Chen, Daolun; Jiang, Xianquan
2017-01-01
The aim of this study is to evaluate the microstructures, tensile lap shear strength, and fatigue resistance of 6022-T43 aluminum alloy joints welded via a solid-state welding technique–ultrasonic spot welding (USW)–at different energy levels. An ultra-fine necklace-like equiaxed grain structure is observed along the weld line due to the occurrence of dynamic crystallization, with smaller grain sizes at lower levels of welding energy. The tensile lap shear strength, failure energy, and critical stress intensity of the welded joints first increase, reach their maximum values, and then decrease with increasing welding energy. The tensile lap shear failure mode changes from interfacial fracture at lower energy levels, to nugget pull-out at intermediate optimal energy levels, and to transverse through-thickness (TTT) crack growth at higher energy levels. The fatigue life is longer for the joints welded at an energy of 1400 J than 2000 J at higher cyclic loading levels. The fatigue failure mode changes from nugget pull-out to TTT crack growth with decreasing cyclic loading for the joints welded at 1400 J, while TTT crack growth mode remains at all cyclic loading levels for the joints welded at 2000 J. Fatigue crack basically initiates from the nugget edge, and propagates with “river-flow” patterns and characteristic fatigue striations. PMID:28772809
Peng, He; Chen, Daolun; Jiang, Xianquan
2017-04-25
The aim of this study is to evaluate the microstructures, tensile lap shear strength, and fatigue resistance of 6022-T43 aluminum alloy joints welded via a solid-state welding technique-ultrasonic spot welding (USW)-at different energy levels. An ultra-fine necklace-like equiaxed grain structure is observed along the weld line due to the occurrence of dynamic crystallization, with smaller grain sizes at lower levels of welding energy. The tensile lap shear strength, failure energy, and critical stress intensity of the welded joints first increase, reach their maximum values, and then decrease with increasing welding energy. The tensile lap shear failure mode changes from interfacial fracture at lower energy levels, to nugget pull-out at intermediate optimal energy levels, and to transverse through-thickness (TTT) crack growth at higher energy levels. The fatigue life is longer for the joints welded at an energy of 1400 J than 2000 J at higher cyclic loading levels. The fatigue failure mode changes from nugget pull-out to TTT crack growth with decreasing cyclic loading for the joints welded at 1400 J, while TTT crack growth mode remains at all cyclic loading levels for the joints welded at 2000 J. Fatigue crack basically initiates from the nugget edge, and propagates with "river-flow" patterns and characteristic fatigue striations.
Interaction of Cracks Between Two Adjacent Indents in Glass
NASA Technical Reports Server (NTRS)
Choi, S. R.; Salem, J. A.
1993-01-01
Experimental observations of the interaction behavior of cracks between two adjacent indents were made using an indentation technique in soda-lime glass. It was specifically demonstrated how one indent crack initiates and propagates in the vicinity of another indent crack. Several types of crack interactions were examined by changing the orientation and distance of one indent relative to the other. It was found that the residual stress field produced by elastic/plastic indentation has a significant influence on controlling the mode of crack interaction. The interaction of an indent crack with a free surface was also investigated for glass and ceramic specimens.
NASA Astrophysics Data System (ADS)
Ferguson, J. B.; Lopez, Hugo F.
2006-08-01
In this work, thermodynamic arguments for the stability of Ni and Cr compounds developed under pressurized water reactor environments ( P_{H_2 O} and P_{H_2 } ) were experimentally tested. A mechanism is proposed to explain crack initiation and propagation alloy 600 along the grain boundaries, where Cr2O3 has formed from the leaching of Cr from the matrix, leaving behind a porous Ni-rich region. The mechanism is based on the thermodynamic potential for the transformation of a protective NiO surface layer into an amorphous nonprotective Ni(OH)2 gel. This gel would also form along the grain boundaries and when hydrogenated steam reaches the porous Ni-rich regions. Crack initiation is then favored by tensile stressing of the grain boundary regions, which can easily rupture the gelatinous film. The leaching of matrix Cr to form nonprotective CrOOH gel at the crack tip followed by the exposure of fresh porous Ni to the environment could explain crack propagation in INCONEL alloy 600. The proposed crack initiation mechanism is not expected to occur in alloy 690 where a protective Cr2O3 film covers the entire metal surface. However, crack propagation along the grain boundaries in alloy 600 and precracked alloy 690 is expected to be active as hydroxide-forming reactions weaken the boundaries.
NASA Astrophysics Data System (ADS)
Ferguson, J. Bryce
Inconel Alloys 600 and 690 are used extensively in components of Nuclear Pressurized Water Reactors (PWR) in the primary water loop which consists of H2 supersaturated steam. Alloy 600 has been found to crack intergranularly when exposed to primary water conditions. Alloy 690 was designed as a replacement and is generally regarded as immune to cracking. There is no consensus as to the mechanism which is responsible for cracking or the lack thereof in these alloys. In this work thermodynamic arguments for the stability of Ni and Cr compounds developed under pressurized water reactor environments ( PH2O and PH2 ) were experimentally tested. A mechanism is proposed to explain crack initiation and propagation alloy 600 along the grain boundaries where Cr2O3 has formed from the leaching of Cr from the matrix leaving behind a porous Ni-rich region. The mechanism is based on the thermodynamic potential for the transformation of a protective NiO surface layer into an amorphous non-protective Ni(OH)2 gel. This gel would also form along the grain boundaries and when hydrogenated steam reaches the porous Ni-rich regions. Crack initiation is then favored by tensile stressing of the grain boundary regions which can easily rupture the gelatinous film. The leaching of matrix Cr to form non-protective CrOOH gel at the crack tip followed by the exposure of fresh porous Ni to the environment also explains crack propagation in inconel alloy 600. The proposed crack initiation mechanism is not expected to occur in alloy 690 where a protective Cr2O 3 film covers the entire metal surface. However, crack propagation along the grain boundaries in alloy 600 and pre-cracked alloy 690 is expected to be active as hydroxide-forming reactions weaken the material at the grain boundaries.
NASA Technical Reports Server (NTRS)
Namkung, M.; Nath, S.; Wincheski, B.; Fulton, J. P.
1994-01-01
A major part of fracture mechanics is concerned with studying the initiation and propagation of fatigue cracks. This typically requires constant monitoring of crack growth during fatigue cycles and the knowledge of the precise location of the crack tip at any given time. One technique currently available for measuring fatigue crack length is the Potential Drop method. The method, however, may be inaccurate if the direction of crack growth deviates considerably from what was assumed initially or the curvature of the crack becomes significant. Another popular approach is to optically view the crack using a high magnification microscope, but this entails a person constantly monitoring it. The present proposed technique uses an automated scheme, in order to eliminate the need for a person to constantly monitor the experiment. Another technique under development elsewhere is to digitize an optical image of the test specimen surface and then apply a pattern recognition algorithm to locate the crack tip. A previous publication showed that the self nulling eddy current probe successfully tracked a simulated crack in an aluminum sample. This was the impetus to develop an online real time crack monitoring system. An automated system has been developed which includes a two axis scanner mounted on the tensile testing machine, the probe and its instrumentation and a personal computer (PC) to communicate and control all the parameters. The system software controls the testing parameters as well as monitoring the fatigue crack as it propagates. This paper will discuss the experimental setup in detail and demonstrate its capabilities. A three dimensional finite element model is utilized to model the magnetic field distribution due to the probe and how the probe voltage changes as it scans the crack. Experimental data of the probe for different samples under zero load, static load and high cycle fatigue load will be discussed. The final section summarizes the major accomplishments of the present work, the elements of the future R&D needs and the advantages and disadvantages of using this system in the laboratory and field.
NASA Technical Reports Server (NTRS)
Namkung, M.; Fulton, J. P.; Wincheski, B.; Clendenin, C. G.
1993-01-01
A major part of fracture mechanics is concerned with studying the initiation and propagation of fatigue cracks. This typically requires constant monitoring of crack growth during fatigue cycles which necessitates automation of the whole process. If the rate of crack growth can be determined the experimenter can vary externally controlled parameters such as load level, load cycle frequency and so on. Hence, knowledge of the precise location of the crack tip at any given time is very valuable. One technique currently available for measuring fatigue crack length is the DC potential drop method. The method, however, may be inaccurate if the direction of crack growth deviates considerably from what was assumed initially or the curvature of the crack becomes significant. Another approach is to digitize an optical image of the test specimen surface and then apply a pattern recognition technique to locate the crack tip, but this method is still under development. The present work is an initial study on applying eddy current-type probes to monitoring fatigue crack growth. The performance of two types of electromagnetic probes, a conventional eddy current probe and a newly developed self-nulling probe, was evaluated for the detection characteristics at and near the tips of fatigue cracks. The scan results show that the latter probe provides a very well defined local maximum in its output in the crack tip region suggesting the definite possibility of precisely locating the tip, while the former provides a somewhat ambiguous distribution of the sensor output in the same region. The paper is organized as follows: We start by reviewing the design and performance characteristics of the self-nulling probe and then describe the scan results which demonstrate the basic properties of the self-nulling probe. Next, we provide a brief description of the software developed for tracing a simulated crack and give a brief discussion of the main results of the test. The final section summarizes the major accomplishments of the present work and the elements of the future R&D needs.
Edge cracks in nickel and aluminium single crystals: A molecular dynamics study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chandra, Sagar, E-mail: sagarc@barc.gov.in; Chavan, V. M.; Patel, R. J.
A molecular dynamics study of edge cracks in Ni and Al single crystals under mode-I loading conditions is presented. Simulations are performed using embedded-atom method potentials for Ni and Al at a temperature of 0.5 K. The results reveal that Ni and Al show different fracture mechanisms. Overall failure behavior of Ni is brittle, while fracture in Al proceeds through void nucleation and coalescence with a zig-zag pattern of crack growth. The qualitative nature of results is discussed in the context of vacancy-formation energies and surface energies of the two FCC metals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castelluccio, Gustavo M.; McDowell, David L.
Fatigue crack initiation in the high cycle fatigue regime is strongly influenced by microstructural features. Research efforts have usually focused on predicting fatigue resistance against crack incubation without considering the early fatigue crack growth after encountering the first grain boundary. However, a significant fraction of the variability of the total fatigue life can be attributed to growth of small cracks as they encounter the first few grain boundaries, rather than crack formation within the first grain. Our paper builds on the framework previously developed by the authors to assess microstructure-sensitive small fatigue crack formation and early growth under complex loadingmore » conditions. Moreover, the scheme employs finite element simulations that explicitly render grains and crystallographic directions along with simulation of microstructurally small fatigue crack growth from grain to grain. The methodology employs a crystal plasticity algorithm in ABAQUS that was previously calibrated to study fatigue crack initiation in RR1000 Ni-base superalloy. Our work present simulations with non-zero applied mean strains and geometric discontinuities that were not previously considered for calibration. Results exhibit trends similar to those found in experiments for multiple metallic materials, conveying a consistent physical description of fatigue damage phenomena.« less
Castelluccio, Gustavo M.; McDowell, David L.
2015-09-16
Fatigue crack initiation in the high cycle fatigue regime is strongly influenced by microstructural features. Research efforts have usually focused on predicting fatigue resistance against crack incubation without considering the early fatigue crack growth after encountering the first grain boundary. However, a significant fraction of the variability of the total fatigue life can be attributed to growth of small cracks as they encounter the first few grain boundaries, rather than crack formation within the first grain. Our paper builds on the framework previously developed by the authors to assess microstructure-sensitive small fatigue crack formation and early growth under complex loadingmore » conditions. Moreover, the scheme employs finite element simulations that explicitly render grains and crystallographic directions along with simulation of microstructurally small fatigue crack growth from grain to grain. The methodology employs a crystal plasticity algorithm in ABAQUS that was previously calibrated to study fatigue crack initiation in RR1000 Ni-base superalloy. Our work present simulations with non-zero applied mean strains and geometric discontinuities that were not previously considered for calibration. Results exhibit trends similar to those found in experiments for multiple metallic materials, conveying a consistent physical description of fatigue damage phenomena.« less
NASA Astrophysics Data System (ADS)
Raga, Rahul; Khader, Iyas; Zdeněk, Chlup; Kailer, Andreas
2017-05-01
The focus of the work was to investigate crack initiation and propagation mechanisms in silicon nitride undergoing non-conforming hybrid contact under various tribological conditions. In order to understand the prevailing modes of damage in silicon nitride, two distinct model experiments were proposed, namely, rolling contact and cyclic contact experiments. The rolling contact experiment was designed in order to mimic the contact conditions appearing in hybrid bearings at contact pressures ranging from 3 to 6 GPa. On the other hand, cyclic contact experiments with stresses ranging from 4 to 15 GPa under different media were carried out to study damage under localised stresses. In addition, the experimentally observed cracks were implemented in a finite element model to study the stress redistribution and correlate the generated stresses with the corresponding mechanisms. Crack propagation under rolling contact was attributed to two different mechanisms, namely, fatigue induced fracture and lubricant driven crack propagation. The numerical simulations shed light on the tensile stress driven surface and subsurface crack propagation mechanisms. On the other hand, the cyclic contact experiments showed delayed crack formation for lubricated cyclic contact. Ceramographic cross-sectional analysis showed crack patterns similar to Hertzian crack propagation under cyclic contact load.
Study on Corrosion-induced Crack Initiation and Propagation of Sustaining Loaded RCbeams
NASA Astrophysics Data System (ADS)
Zhong, X. P.; Li, Y.; Yuan, C. B.; Yang, Z.; Chen, Y.
2018-05-01
For 13 pieces of reinforced concrete beams with HRB500 steel bars under long-term sustained loads, at time of corrosion-induced initial crack of concrete, and corrosion-induced crack widths of 0.3mm and 1mm, corrosion of steel bars and time-varying behavior of corrosion-induced crack width were studied by the ECWD (Electro-osmosis - constant Current – Wet and Dry cycles) accelerated corrosion method. The results show that when cover thickness was between 30 and 50mm,corrosion rates of steel bars were between 0.8% and 1.7% at time of corrosion-induced crack, and decreased with increasing concrete cover thickness; when corrosion-induced crack width was 0.3mm, the corrosion rate decreased with increasing steel bar diameter, and increased with increasing cover thickness; its corrosion rate varied between 0.98% and 4.54%; when corrosion-induced crack width reached 1mm, corrosion rate of steel bars was between 4% and 4.5%; when corrosion rate of steel bars was within 5%, the maximum and average corrosion-induced crack and corrosion rate of steel bars had a good linear relationship. The calculation model predicting the maximum and average width of corrosion-induced crack is given in this paper.
A Crack Growth Evaluation Method for Interacting Multiple Cracks
NASA Astrophysics Data System (ADS)
Kamaya, Masayuki
When stress corrosion cracking or corrosion fatigue occurs, multiple cracks are frequently initiated in the same area. According to section XI of the ASME Boiler and Pressure Vessel Code, multiple cracks are considered as a single combined crack in crack growth analysis, if the specified conditions are satisfied. In crack growth processes, however, no prescription for the interference between multiple cracks is given in this code. The JSME Post-Construction Code, issued in May 2000, prescribes the conditions of crack coalescence in the crack growth process. This study aimed to extend this prescription to more general cases. A simulation model was applied, to simulate the crack growth process, taking into account the interference between two cracks. This model made it possible to analyze multiple crack growth behaviors for many cases (e. g. different relative position and length) that could not be studied by experiment only. Based on these analyses, a new crack growth analysis method was suggested for taking into account the interference between multiple cracks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Pengfei; Zheng, Jianming; Gu, Meng
LiNi 1/3Mn 1/3Co 1/3O 2 (NMC333) layered cathode is often fabricated as secondary particles of consisting of densely packed primary particles, which offers advantage of high energy density and alleviation of cathode side reactions/corrosions, but introduces other drawbacks, such as intergranular cracking. Here, we report unexpected observations on the nucleation and growth of intragranular cracks in the commercial NMC333 layered cathode by using advanced S/TEM. We found that the formation of the intragranular cracks is directly associated with high voltage cycling, which is an electrochemically driven and diffusion controlled process. The intragranular cracks were noticed to be characteristically initiated frommore » grain interior, a consequence of dislocation based crack incubation mechanism. This observation is in sharp contrast with the general theoretical models, predicting the initiation of intragranular cracks from grain boundaries or particle surface. As a result, our study indicates that maintain a structural stability is the key step toward high voltage operation of layered cathode materials.« less
Detection, discrimination, and real-time tracking of cracks in rotating disks
NASA Astrophysics Data System (ADS)
Haase, Wayne C.; Drumm, Michael J.
2002-06-01
The purpose of this effort was to develop a system* to detect, discriminate and track fatigue cracks in rotating disks. Aimed primarily at jet engines in flight applications, the system also has value for detecting cracks in a spin pit during low cycle fatigue testing, and for monitoring the health of steam turbines and land-based gas turbine engines for maintenance purposes. The results of this effort produced: a physics-based model that describes the change in the center of mass of a rotating disk using damping ratio, initial unbalance and crack size as parameters; the development of a data acquisition and analysis system that can detect and discriminate a crack using a single cycle of data; and initial validation of the model through testing in a spin pit. The development of the physics-based model also pointed to the most likely regimes for crack detection; identified specific powers of (omega) search for in specific regimes; dictated a particular type of data acquisition for crack discrimination; and demonstrated a need for a higher signal-to-noise ratio in the measurement of the basic vibration signal.
Yan, Pengfei; Zheng, Jianming; Gu, Meng; ...
2017-01-16
LiNi 1/3Mn 1/3Co 1/3O 2 (NMC333) layered cathode is often fabricated as secondary particles of consisting of densely packed primary particles, which offers advantage of high energy density and alleviation of cathode side reactions/corrosions, but introduces other drawbacks, such as intergranular cracking. Here, we report unexpected observations on the nucleation and growth of intragranular cracks in the commercial NMC333 layered cathode by using advanced S/TEM. We found that the formation of the intragranular cracks is directly associated with high voltage cycling, which is an electrochemically driven and diffusion controlled process. The intragranular cracks were noticed to be characteristically initiated frommore » grain interior, a consequence of dislocation based crack incubation mechanism. This observation is in sharp contrast with the general theoretical models, predicting the initiation of intragranular cracks from grain boundaries or particle surface. As a result, our study indicates that maintain a structural stability is the key step toward high voltage operation of layered cathode materials.« less
NASA Astrophysics Data System (ADS)
Okubo, K.; Bhat, H. S.; Rougier, E.; Lei, Z.; Knight, E. E.; Klinger, Y.
2017-12-01
Numerous studies have suggested that spontaneous earthquake ruptures can dynamically induce failure in secondary fracture network, regarded as damage zone around faults. The feedbacks of such fracture network play a crucial role in earthquake rupture, its radiated wave field and the total energy budget. A novel numerical modeling tool based on the combined finite-discrete element method (FDEM), which accounts for the main rupture propagation and nucleation/propagation of secondary cracks, was used to quantify the evolution of the fracture network and evaluate its effects on the main rupture and its associated radiation. The simulations were performed with the FDEM-based software tool, Hybrid Optimization Software Suite (HOSSedu) developed by Los Alamos National Laboratory. We first modeled an earthquake rupture on a planar strike-slip fault surrounded by a brittle medium where secondary cracks can be nucleated/activated by the earthquake rupture. We show that the secondary cracks are dynamically generated dominantly on the extensional side of the fault, mainly behind the rupture front, and it forms an intricate network of fractures in the damage zone. The rupture velocity thereby significantly decreases, by 10 to 20 percent, while the supershear transition length increases in comparison to the one with purely elastic medium. It is also observed that the high-frequency component (10 to 100 Hz) of the near-field ground acceleration is enhanced by the dynamically activated fracture network, consistent with field observations. We then conducted the case study in depth with various sets of initial stress state, and friction properties, to investigate the evolution of damage zone. We show that the width of damage zone decreases in depth, forming "flower-like" structure as the characteristic slip distance in linear slip-weakening law, or the fracture energy on the fault, is kept constant with depth. Finally, we compared the fracture energy on the fault to the energy absorbed by the secondary fracture network to better understand the earthquake energy budget. We conclude that the secondary fracture network plays an important role on the dynamic earthquake rupture, its radiated wave field and the overall energy budget.
NASA Astrophysics Data System (ADS)
Khanikar, Prasenjit
Different aluminum alloys can be combined, as composites, for tailored dynamic applications. Most investigations pertaining to metallic alloy layered composites, however, have been based on quasi-static approaches. The dynamic failure of layered metallic composites, therefore, needs to be characterized in terms of strength, toughness, and fracture response. A dislocation-density based crystalline plasticity formulation, finite-element techniques, rational crystallographic orientation relations and a new fracture methodology were used to predict the failure modes associated with the high strain rate behavior of aluminum layered composites. Two alloy layers, a high strength alloy, aluminum 2195, and an aluminum alloy 2139, with high toughness, were modeled with representative microstructures that included precipitates, dispersed particles, and different grain boundary (GB) distributions. The new fracture methodology, based on an overlap method and phantom nodes, is used with a fracture criteria specialized for fracture on different cleavage planes. One of the objectives of this investigation, therefore, was to determine the optimal arrangements of the 2139 and 2195 aluminum alloys for a metallic layered composite that would combine strength, toughness and fracture resistance for high strain-rate applications. Different layer arrangements were investigated for high strain-rate applications, and the optimal arrangement was with the high toughness 2139 layer on the bottom, which provided extensive shear strain localization, and the high strength 2195 layer on the top for high strength resistance. The layer thickness of the bottom high toughness layer also affected the bending behavior of the roll-boned interface and the potential delamination of the layers. Shear strain localization, dynamic cracking and delamination were the mutually competing failure mechanisms for the layered metallic composite, and control of these failure modes can be optimized for high strain-rate applications. The second major objective of this investigation was the use of recently developed dynamic fracture formulations to model and analyze the crack nucleation and propagation of aluminum layered composites subjected to high strain rate loading conditions and how microstructural effects, such as precipitates, dispersed particles, and GB orientations affect failure evolution. This dynamic fracture approach is used to investigate crack nucleation and crack growth as a function of the different microstructural characteristics of each alloy in layered composites with and without pre-existing cracks. The zigzag nature of the crack paths were mainly due to the microstructural features, such as precipitates and dispersed particles distributions and orientations ahead of the crack front, and it underscored the capabilities of the fracture methodology. The evolution of dislocation density and the formation of localized shear slip contributed to the blunting of the propagating crack. Extensive geometrical and thermal softening due to the localized plastic slip also affected crack path orientations and directions. These softening mechanisms resulted in the switching of cleavage planes, which affected crack path orientations. Interface delamination can also have an important role in the failure and toughening of the layered composites. Different scenarios of delamination were investigated, such as planar crack growth and crack penetration into the layers. The presence of brittle surface oxide platelets in the interface region also significantly influenced the interface delamination process. Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM) and Optical Microscopy (OM) characterization provided further physical insights and validation of the predictive capabilities. The inherent microstructural features of each alloy play a significant role in the dynamic fracture, shear strain localization, and interface delamination of the layered metallic composite. These microstructural features, such as precipitates, dispersed particles, and GB orientations and distributions can be optimized for desired behavior of metallic composites.
Back-Face Strain for Monitoring Stable Crack Extension in Precracked Flexure Specimens
NASA Technical Reports Server (NTRS)
Salem, Jonathan A.; Ghosn, Louis J.
2010-01-01
Calibrations relating back-face strain to crack length in precracked flexure specimens were developed for different strain gage sizes. The functions were verified via experimental compliance measurements of notched and precracked ceramic beams. Good agreement between the functions and experiments occurred, and fracture toughness was calculated via several operational methods: maximum test load and optically measured precrack length; load at 2 percent crack extension and optical precrack length; maximum load and back-face strain crack length. All the methods gave vary comparable results. The initiation toughness, K(sub Ii) , was also estimated from the initial compliance and load.The results demonstrate that stability of precracked ceramics specimens tested in four-point flexure is a common occurrence, and that methods such as remotely-monitored load-point displacement are only adequate for detecting stable extension of relatively deep cracks.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Initial Compliance With Organic HAP Emission Limits for Catalytic Cracking Units 12 Table 12 to Subpart UUU of Part 63 Protection of... Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 12 Table 12 to Subpart UUU of Part 63—Initial Compliance...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Initial Compliance With Organic HAP Emission Limits for Catalytic Cracking Units 12 Table 12 to Subpart UUU of Part 63 Protection of... Units Pt. 63, Subpt. UUU, Table 12 Table 12 to Subpart UUU of Part 63—Initial Compliance With Organic...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Initial Compliance With Organic HAP Emission Limits for Catalytic Cracking Units 12 Table 12 to Subpart UUU of Part 63 Protection of... Units Pt. 63, Subpt. UUU, Table 12 Table 12 to Subpart UUU of Part 63—Initial Compliance With Organic...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Initial Compliance With Organic HAP Emission Limits for Catalytic Cracking Units 12 Table 12 to Subpart UUU of Part 63 Protection of... Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 12 Table 12 to Subpart UUU of Part 63—Initial Compliance...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Initial Compliance With Organic HAP Emission Limits for Catalytic Cracking Units 12 Table 12 to Subpart UUU of Part 63 Protection of... Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 12 Table 12 to Subpart UUU of Part 63—Initial Compliance...
NASA Technical Reports Server (NTRS)
Shih, C. I.
1982-01-01
Damage mechanisms were studied in Rene' 95 and NARloy Z, using optical, scanning and transmission in microscopy. In necklace Rene' 95, crack initiation was mainly associated with cracking of surface MC carbides, except for hold time tests at higher strain ranges where initiation was associated more with a grain boundary mechanism. A mixed mode of propagation with a faceted fracture morphology was typical for all cycle characters. The dependence of life on maximum tensile stress can be demonstrated by the data falling onto three lines corresponding to the three tensile hold times, in the life against maximum tensile stress plot. In NARloy Z, crack initiation was always at the grain boundaries. The mode of crack propagation depended on the cycle character. The life decreased with decreasing strain rate and with tensile holds. In terms of damage mode, different life prediction laws may be applicable to different cycle characters.
Effect of main inclusions on crack initiation in bearing steel in the very high cycle fatigue regime
NASA Astrophysics Data System (ADS)
Gu, Chao; Bao, Yan-ping; Gan, Peng; Wang, Min; He, Jin-shan
2018-06-01
This work aims to investigate the effect of main inclusions on crack initiation in bearing steel in the very high cycle fatigue (VHCF) regime. The size and type of inclusions in the steel were quantitatively analyzed, and VHCF tests were performed. Some fatigue cracks were found to be initiated in the gaps between inclusions (Al2O3, MgO-Al2O3) and the matrix, while other cracks originated from the interior of inclusions (TiN, MnS). To explain the related mechanism, the tessellated stresses between inclusions and the matrix were calculated and compared with the yield stress of the matrix. Results revealed that the inclusions could be classified into two types under VHCF; of these two, only one type could be regarded as holes. Findings in this research provide a better understanding of how inclusions affect the high cycle fatigue properties of bearing steel.
NASA Technical Reports Server (NTRS)
Telesman, J.
1984-01-01
Literature survey was conducted to determine the effects of different microstructural features and different load histories on fatigue crack initiation and propagation of aluminum alloys. Comparison of microstructure and monotonic and cyclic properties between powder metallurgy (P/M) and ingot metallurgy (I/M) alloys is presented. The two alloys that are representative of each process on which the comparison is focused are X7091 and 7050. Included is a detailed description of the microstructure produced through the P/M and I/M proesses. The effect of each pertinent microstructural feature on monotonic and cyclic properties, such as yield strength, toughness, crack initiation and propagation is discussed. Also discussed are the proposed mechanisms for crack initiation and propagation, as well as the effects of aggressive environments on these cyclic properties. The effects of variable amplitude loadin on fatigue crack propagation and the various models proposed to predict load interaction effects are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gould, Benjamin; Greco, Aaron; Stadler, Kenred
2017-03-01
Crack surrounded by local areas of microstructural alteration deemed "White etching cracks" (WECs) lead to unpredictable and premature failures within a multitude of applications including wind turbine gearbox bearings. While the exact cause of these failures remains unknown, a large number of hypotheses exist as to how and why these cracks form. The aim of the current work is to elucidate some of these hypotheses by mapping WEC networks within failed wind turbine bearings using high energy X-ray tomography, in an attempt to determine the location of WEC initiation, and the role of defects within the steel, such as inclusionsmore » or carbide clusters. Four completely subsurface WECs were found throughout the presented analysis, thereby confirming subsurface initiation as method of WEC formation. Additionally, a multitude of small butterfly like cracks were found around inclusions in the steel, however further analysis is needed to verify if these inclusions are initiation sites for WECs. (C) 2017 Elsevier Ltd. All rights reserved.« less
NASA Technical Reports Server (NTRS)
Gutierrez-Lemini, Danton; McCool, Alex (Technical Monitor)
2001-01-01
A method is developed to establish the J-resistance function for an isotropic linear viscoelastic solid of constant Poisson's ratio using the single-specimen technique with constant-rate test data. The method is based on the fact that, for a test specimen of fixed crack size under constant rate, the initiation J-integral may be established from the crack size itself, the actual external load and load-point displacement at growth initiation, and the relaxation modulus of the viscoelastic solid, without knowledge of the complete test record. Since crack size alone, of the required data, would be unknown at each point of the load-vs-load-point displacement curve of a single-specimen test, an expression is derived to estimate it. With it, the physical J-integral at each point of the test record may be established. Because of its basis on single-specimen testing, not only does the method not require the use of multiple specimens with differing initial crack sizes, but avoids the need for tracking crack growth as well.
Reliability analysis of structures under periodic proof tests in service
NASA Technical Reports Server (NTRS)
Yang, J.-N.
1976-01-01
A reliability analysis of structures subjected to random service loads and periodic proof tests treats gust loads and maneuver loads as random processes. Crack initiation, crack propagation, and strength degradation are treated as the fatigue process. The time to fatigue crack initiation and ultimate strength are random variables. Residual strength decreases during crack propagation, so that failure rate increases with time. When a structure fails under periodic proof testing, a new structure is built and proof-tested. The probability of structural failure in service is derived from treatment of all the random variables, strength degradations, service loads, proof tests, and the renewal of failed structures. Some numerical examples are worked out.
Crack Closure and Fatigue Crack Growth in 2219-T851 Aluminum Alloy
1976-08-01
assumes the length of the crack perimeter to remain es - ’I sentially constant. At the maximum load, the crack is ap- proximately parabolic (or ellipical...for center cracked j specimens) in shape. With unloading, the parabola (or el- lipse) is collapsed. The resulting change in shape produces an apparent...reloading process, the electrical potential remained es - j sentially constant initially and was less than that at the corresponding load during unloading
How Do Cracks Initiate and Grow in a Thin Glass Plate? A Peridynamic Analysis
2014-06-17
evolution of these cracks, and confirm these results with fractography experiments of post-mortem samples. The results provide evidence of the predictive...face Questions to be answered Can we understand how and why each type of crack system forms? Crack surface fractography can give indication of...Symmetrical cracks form on the lower-right quarter of the plate. Jared Wright (ARL) fractography results Conclusions • The simplest peridynamic model
A Comparison of Single-Cycle Versus Multiple-Cycle Proof Testing Strategies
NASA Technical Reports Server (NTRS)
McClung, R. C.; Chell, G. G.; Millwater, H. R.; Russell, D. A.; Millwater, H. R.
1999-01-01
Single-cycle and multiple-cycle proof testing (SCPT and MCPT) strategies for reusable aerospace propulsion system components are critically evaluated and compared from a rigorous elastic-plastic fracture mechanics perspective. Earlier MCPT studies are briefly reviewed. New J-integral estimation methods for semielliptical surface cracks and cracks at notches are derived and validated. Engineering methods are developed to characterize crack growth rates during elastic-plastic fatigue crack growth (FCG) and the tear-fatigue interaction near instability. Surface crack growth experiments are conducted with Inconel 718 to characterize tearing resistance, FCG under small-scale yielding and elastic-plastic conditions, and crack growth during simulated MCPT. Fractography and acoustic emission studies provide additional insight. The relative merits of SCPT and MCPT are directly compared using a probabilistic analysis linked with an elastic-plastic crack growth computer code. The conditional probability of failure in service is computed for a population of components that have survived a previous proof test, based on an assumed distribution of initial crack depths. Parameter studies investigate the influence of proof factor, tearing resistance, crack shape, initial crack depth distribution, and notches on the MCPT versus SCPT comparison. The parameter studies provide a rational basis to formulate conclusions about the relative advantages and disadvantages of SCPT and MCPT. Practical engineering guidelines are proposed to help select the optimum proof test protocol in a given application.
A Comparison of Single-Cycle Versus Multiple-Cycle Proof Testing Strategies
NASA Technical Reports Server (NTRS)
McClung, R. C.; Chell, G. G.; Millwater, H. R.; Russell, D. A.; Orient, G. E.
1996-01-01
Single-cycle and multiple-cycle proof testing (SCPT and MCPT) strategies for reusable aerospace propulsion system components are critically evaluated and compared from a rigorous elastic-plastic fracture mechanics perspective. Earlier MCPT studies are briefly reviewed. New J-integral estimation methods for semi-elliptical surface cracks and cracks at notches are derived and validated. Engineering methods are developed to characterize crack growth rates during elastic-plastic fatigue crack growth (FCG) and the tear-fatigue interaction near instability. Surface crack growth experiments are conducted with Inconel 718 to characterize tearing resistance, FCG under small-scale yielding and elastic-plastic conditions, and crack growth during simulated MCPT. Fractography and acoustic emission studies provide additional insight. The relative merits of SCPT and MCPT are directly compared using a probabilistic analysis linked with an elastic-plastic crack growth computer code. The conditional probability of failure in service is computed for a population of components that have survived a previous proof test, based on an assumed distribution of initial crack depths. Parameter studies investigate the influence of proof factor, tearing resistance, crack shape, initial crack depth distribution, and notches on the MCPT vs. SCPT comparison. The parameter studies provide a rational basis to formulate conclusions about the relative advantages and disadvantages of SCPT and MCPT. Practical engineering guidelines are proposed to help select the optimum proof test protocol in a given application.
Fatigue crack sizing in rail steel using crack closure-induced acoustic emission waves
NASA Astrophysics Data System (ADS)
Li, Dan; Kuang, Kevin Sze Chiang; Ghee Koh, Chan
2017-06-01
The acoustic emission (AE) technique is a promising approach for detecting and locating fatigue cracks in metallic structures such as rail tracks. However, it is still a challenge to quantify the crack size accurately using this technique. AE waves can be generated by either crack propagation (CP) or crack closure (CC) processes and classification of these two types of AE waves is necessary to obtain more reliable crack sizing results. As the pre-processing step, an index based on wavelet power (WP) of AE signal is initially established in this paper in order to distinguish between the CC-induced AE waves and their CP-induced counterparts. Here, information embedded within the AE signal was used to perform the AE wave classification, which is preferred to the use of real-time load information, typically adopted in other studies. With the proposed approach, it renders the AE technique more amenable to practical implementation. Following the AE wave classification, a novel method to quantify the fatigue crack length was developed by taking advantage of the CC-induced AE waves, the count rate of which was observed to be positively correlated with the crack length. The crack length was subsequently determined using an empirical model derived from the AE data acquired during the fatigue tests of the rail steel specimens. The performance of the proposed method was validated by experimental data and compared with that of the traditional crack sizing method, which is based on CP-induced AE waves. As a significant advantage over other AE crack sizing methods, the proposed novel method is able to estimate the crack length without prior knowledge of the initial crack length, integration of AE data or real-time load amplitude. It is thus applicable to the health monitoring of both new and existing structures.
Healing of damaged metal by a pulsed high-energy electromagnetic field
NASA Astrophysics Data System (ADS)
Kukudzhanov, K. V.; Levitin, A. L.
2018-04-01
The processes of defect (intergranular micro-cracks) transformation are investigated for metal samples in a high-energy short-pulsed electromagnetic field. This investigation is based on a numerical coupled model of the impact of high-energy electromagnetic field on the pre-damaged thermal elastic-plastic material with defects. The model takes into account the melting and evaporation of the metal and the dependence of its physical and mechanical properties on the temperature. The system of equations is solved numerically by finite element method with an adaptive mesh using the arbitrary Euler–Lagrange method. The calculations show that the welding of the crack and the healing of micro-defects under treatment by short pulses of the current takes place. For the macroscopic description of the healing process, the healing and damage parameters of the material are introduced. The healing of micro-cracks improves the material healing parameter and reduces its damage. The micro-crack shapes practically do not affect the time-dependence of the healing and damage under the treatment by the current pulses. These changes are affected only by the value of the initial damage of the material and the initial length of the micro-crack. The time-dependence of the healing and the damage is practically the same for all different shapes of micro-defects, provided that the initial lengths of micro-cracks and the initial damages are the same for these different shapes of defects.
NASA Technical Reports Server (NTRS)
Reuter, Walter G. (Editor); Underwood, John H. (Editor); Newman, James C., Jr. (Editor)
1990-01-01
The present volume on surface-crack growth modeling, experimental methods, and structures, discusses elastoplastic behavior, the fracture analysis of three-dimensional bodies with surface cracks, optical measurements of free-surface effects on natural surfaces and through cracks, an optical and finite-element investigation of a plastically deformed surface flaw under tension, fracture behavior prediction for rapidly loaded surface-cracked specimens, and surface cracks in thick laminated fiber composite plates. Also discussed are a novel study procedure for crack initiation and growth in thermal fatigue testing, the growth of surface cracks under fatigue and monotonically increasing load, the subcritical growth of a surface flaw, surface crack propagation in notched and unnotched rods, and theoretical and experimental analyses of surface cracks in weldments.
Fousová, Michaela; Vojtěch, Dalibor; Doubrava, Karel; Daniel, Matěj; Lin, Chiu-Feng
2018-01-01
Additive manufacture (AM) appears to be the most suitable technology to produce sophisticated, high quality, lightweight parts from Ti6Al4V alloy. However, the fatigue life of AM parts is of concern. In our study, we focused on a comparison of two techniques of additive manufacture—selective laser melting (SLM) and electron beam melting (EBM)—in terms of the mechanical properties during both static and dynamic loading. All of the samples were untreated to focus on the influence of surface condition inherent to SLM and EBM. The EBM samples were studied in the as-built state, while SLM was followed by heat treatment. The resulting similarity of microstructures led to comparable mechanical properties in tension, but, due to differences in surface roughness and specific internal defects, the fatigue strength of the EBM samples reached only half the value of the SLM samples. Higher surface roughness that is inherent to EBM contributed to multiple initiations of fatigue cracks, while only one crack initiated on the SLM surface. Also, facets that were formed by an intergranular cleavage fracture were observed in the EBM samples. PMID:29614712
Fousová, Michaela; Vojtěch, Dalibor; Doubrava, Karel; Daniel, Matěj; Lin, Chiu-Feng
2018-03-31
Additive manufacture (AM) appears to be the most suitable technology to produce sophisticated, high quality, lightweight parts from Ti6Al4V alloy. However, the fatigue life of AM parts is of concern. In our study, we focused on a comparison of two techniques of additive manufacture-selective laser melting (SLM) and electron beam melting (EBM)-in terms of the mechanical properties during both static and dynamic loading. All of the samples were untreated to focus on the influence of surface condition inherent to SLM and EBM. The EBM samples were studied in the as-built state, while SLM was followed by heat treatment. The resulting similarity of microstructures led to comparable mechanical properties in tension, but, due to differences in surface roughness and specific internal defects, the fatigue strength of the EBM samples reached only half the value of the SLM samples. Higher surface roughness that is inherent to EBM contributed to multiple initiations of fatigue cracks, while only one crack initiated on the SLM surface. Also, facets that were formed by an intergranular cleavage fracture were observed in the EBM samples.
Dynamic Fracture Toughness Evaluation by Measurement of CTOD (Crack Tip Opening Displacement).
1988-03-15
fracture toughness of structural steels were reported by Shoemaker and Rolfe [1]; these and similar results are also presented in the text by Rolfe and...8217 MPaV/-m/s. Following the dynamic tests of Shoemaker and Rolfe , extensions of the familiar ASTM E-399 static fracture toughness tests were examined. This...s.V.: **.4* .4 5, -~ 5 5 - .4.4 References [1] Shoemaker, A.K. and Rolfe , S.T., "The Static and Dynamic Low-Temperature Crack-Toughness
Growth rate of a penny-shaped crack in hydraulic fracturing of rocks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abe, H.; Mura, T.; Keer, L.M.
1976-10-10
The stable growth of a crack created by the hydraulic pressurizing of a penny-shaped crack in a dry rock mass is investigated. The rock mass is infinitely extended, homogeneous, and isotropic. It is verified on the basis of the equations of fluid dynamics that the fracturing fluid cannot penetrate the entire domain of a crack when the crack is moving. The effects of various terms in the basic equations also are studied. The solution of some typical examples is given, and the significant effect of the stress intensity factor of the rock on the crack propagation is shown. When themore » crack is expanding under a constant flow rate, the classical solution by Sack is found to be approx. valid for very large cracks, and nevertheless the crack is stable. (11 refs.)« less
Growth rate of a penny-shaped crack in hydraulic fracturing of rocks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abe, H.; Mura, T.; Keer, L.M.
1976-10-10
The stable growth of a crack created by the hydraulic pressurizing of a penny-shaped crack in a dry rock mass is investigated. The rock mass is infinitely extended, homogeneous, and isotropic. It is verified on the basis of the equations of fluid dynamics that the fracturing fluid cannot penetrate the entire domain of a crack when the crack is moving. The effects of various terms in the basic equations are also studied. The solution of some typical examples is given, and the significant effect of the stress intensity factor of the rock on the crack propagation is shown. When themore » crack is expanding under a constant flow rate, the classical solution by Sack is found to be approximately valid for very large cracks, and nevertheless the crack is stable.« less
Deng, Hailong; Li, Wei; Sakai, Tatsuo; Sun, Zhenduo
2015-12-02
The unexpected failures of structural materials in very high cycle fatigue (VHCF) regime have been a critical issue in modern engineering design. In this study, the VHCF property of a Cr-Ni-W gear steel was experimentally investigated under axial loading with the stress ratio of R = -1, and a life prediction model associated with crack initiation and growth behaviors was proposed. Results show that the Cr-Ni-W gear steel exhibits the constantly decreasing S-N property without traditional fatigue limit, and the fatigue strength corresponding to 10⁸ cycles is around 485 MPa. The inclusion-fine granular area (FGA)-fisheye induced failure becomes the main failure mechanism in the VHCF regime, and the local stress around the inclusion play a key role. By using the finite element analysis of representative volume element, the local stress tends to increase with the increase of elastic modulus difference between inclusion and matrix. The predicted crack initiation life occupies the majority of total fatigue life, while the predicted crack growth life is only accounts for a tiny fraction. In view of the good agreement between the predicted and experimental results, the proposed VHCF life prediction model involving crack initiation and growth can be acceptable for inclusion-FGA-fisheye induced failure.
Probabalistic Risk Assessment of a Turbine Disk
NASA Astrophysics Data System (ADS)
Carter, Jace A.; Thomas, Michael; Goswami, Tarun; Fecke, Ted
Current Federal Aviation Administration (FAA) rotor design certification practices risk assessment using a probabilistic framework focused on only the life-limiting defect location of a component. This method generates conservative approximations of the operational risk. The first section of this article covers a discretization method, which allows for a transition from this relative risk to an absolute risk where the component is discretized into regions called zones. General guidelines were established for the zone-refinement process based on the stress gradient topology in order to reach risk convergence. The second section covers a risk assessment method for predicting the total fatigue life due to fatigue induced damage. The total fatigue life incorporates a dual mechanism approach including the crack initiation life and propagation life while simultaneously determining the associated initial flaw sizes. A microstructure-based model was employed to address uncertainties in material response and relate crack initiation life with crack size, while propagation life was characterized large crack growth laws. The two proposed methods were applied to a representative Inconel 718 turbine disk. The zone-based method reduces the conservative approaches, while showing effects of feature-based inspection on the risk assessment. In the fatigue damage assessment, the predicted initial crack distribution was found to be the most sensitive probabilistic parameter and can be used to establish an enhanced inspection planning.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okabe, T.; Takeda, N.; Komotori, J.
1999-11-26
A new model is proposed for multiple matrix cracking in order to take into account the role of matrix-rich regions in the cross section in initiating crack growth. The model is used to predict the matrix cracking stress and the total number of matrix cracks. The model converts the matrix-rich regions into equivalent penny shape crack sizes and predicts the matrix cracking stress with a fracture mechanics crack-bridging model. The estimated distribution of matrix cracking stresses is used as statistical input to predict the number of matrix cracks. The results show good agreement with the experimental results by replica observations.more » Therefore, it is found that the matrix cracking behavior mainly depends on the distribution of matrix-rich regions in the composite.« less
NASA Astrophysics Data System (ADS)
Alfat, Sayahdin; Kimura, Masato; Firihu, Muhammad Zamrun; Rahmat
2018-05-01
In engineering area, investigation of shape effect in elastic materials was very important. It can lead changing elasticity and surface energy, and also increase of crack propagation in the material. A two-dimensional mathematical model was developed to investigation of elasticity and surface energy in elastic material by Adaptive Finite Element Method. Besides that, behavior of crack propagation has observed for every those materials. The government equations were based on a phase field approach in crack propagation model that developed by Takaishi-Kimura. This research has varied four shape domains where physical properties of materials were same (Young's modulus E = 70 GPa and Poisson's ratio ν = 0.334). Investigation assumptions were; (1) homogeneous and isotropic material, (2) there was not initial cracking at t = 0, (3) initial displacement was zero [u1, u2] = 0) at initial condition (t = 0), and (4) length of time simulation t = 5 with interval Δt = 0.005. Mode I/II or mixed mode crack propagation has been used for the numerical investigation. Results of this studies were very good and accurate to show changing energy and behavior of crack propagation. In the future time, this research can be developed to complex phenomena and domain. Furthermore, shape optimization can be investigation by the model.
Engineering Evaluation of International Low Impact Docking System Latch Hooks
NASA Technical Reports Server (NTRS)
Martinez, J.; Patin, R.; Figert, J.
2013-01-01
The international Low Impact Docking System (iLIDS) provides a structural arrangement that allows for visiting vehicles to dock with the International Space Station (ISS) (Fig 1). The iLIDS docking units are mechanically joined together by a series of active and passive latch hooks. In order to preserve docking capability at the existing Russian docking interfaces, the iLIDS latch hooks are required to conform to the existing Russian design. The latch hooks are classified as being fail-safe. Since the latch hooks are fail-safe, the hooks are not fracture critical and a fatigue based service life assessment will satisfy the structural integrity requirements. Constant amplitude fatigue testing to failure on four sets of active/passive iLIDS latch hooks was performed at load magnitudes of 10, 11, and 12 kips. Failure analysis of the hook fatigue failures identified multi-site fatigue initiation that was effectively centered about the hook mid-plane (consistent with the 3D model results). The fatigue crack initiation distribution implies that the fatigue damage accumulation effectively results in a very low aspect ratio surface crack (which can be simulated as thru-thickness crack). Fatigue damage progression resulted in numerous close proximity fatigue crack initiation sites. It was not possible to determine if fatigue crack coalescence occurs during cyclic loading or as result of the fast fracture response. The presence of multiple fatigue crack initiation sites on different planes will result in the formation of ratchet marks as the cracks coalesce. Once the stable fatigue crack becomes unstable and the fast fracture advances across the remaining ligament and the plane stress condition at a free-surface will result in failure along a 45 deg. shear plane (slant fracture) and the resulting inclined edge is called a shear lip. The hook thickness on the plane of fatigue crack initiation is 0.787". The distance between the shear lips on this plane was on the order of 0.48" and it was effectively centered about the mid-plane of the section. The numerous ratchet marks between the shear lips on the fracture initiation plane are indicative of multiple fatigue initiation sites within this region. The distribution of the fatigue damage about the centerline of the hook is consistent with the analytical results that demonstrate peak stress/strain response at the mid-plane that decreases in the direction of the hook outer surfaces. Scanning electron microscope images of the failed sections detected fatigue crack striations in close proximity to the free surface of the hook radius. These findings were documented at three locations on the fracture surface : 1) adjacent to the left shear lip, 2) adjacent to the right shear lip, and 3) near the centerline of the section. The features of the titanium fracture surface did not allow for a determination of a critical crack size via identification of the region where the fatigue crack propagation became unstable. The fracture based service life projections where benchmarked with strain-life analyses. The strainrange response in the hook radius was defined via the correlated finite element models and the modified method of universal slopes was incorporated to define the strain-life equation for the titanium alloy. The strain-life assessment confirmed that the fracture based projections were reasonable for the loading range of interest. Based upon the analysis and component level fatigue test data a preliminary service life capability for the iLIDS active and passive hooks of 2 lifetimes is projected (includes a scatter factor of 4).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brickstad, B.; Bergman, M.
A computerized procedure has been developed that predicts the growth of an initial circumferential surface crack through a pipe and further on to failure. The crack growth mechanism can either be fatigue or stress corrosion. Consideration is taken to complex crack shapes and for the through-wall cracks, crack opening areas and leak rates are also calculated. The procedure is based on a large number of three-dimensional finite element calculations of cracked pipes. The results from these calculations are stored in a database from which the PC-program, denoted LBBPIPE, reads all necessary information. In this paper, a sensitivity analysis is presentedmore » for cracked pipes subjected to both stress corrosion and vibration fatigue.« less
Evaluation of a Small-Crack Monitoring System
NASA Technical Reports Server (NTRS)
Newman, John A.; Johnston, William M.
2010-01-01
A new system has been developed to obtain fatigue crack growth rate data from a series of images acquired during fatigue testing of specimens containing small surface cracks that initiate at highly-polished notches. The primary benefit associated with replica-based crack growth rate data methods is preserving a record of the crack configuration during the life of the specimen. Additionally, this system has the benefits of both reducing time and labor, and not requiring introduction of surface replica media into the crack. Fatigue crack growth rate data obtained using this new system are found to be in good agreement with similar results obtained from surface replicas.
Matrix fatigue crack development in a notched continuous fiber SCS-6/Ti-15-3 composite
NASA Technical Reports Server (NTRS)
Hillberry, B. M.; Johnson, W. S.
1990-01-01
In this study the extensive matrix fatigue cracking that has been observed in notched SCS-6/Ti-15-3 composites is investigated. Away from the notch uniform spacing of the fatigue cracks develops. Closer to the notch, fiber-matrix debonding which occurs increases the crack spacing. Crack spacing and debond length determined from shear-lag cylinder models compare favorably with experimental observations. Scanning electron microscope (SEM) fractography showed that the principal fatigue crack initiation occurred around the zero degree fibers. Interface failure in the 90 degree plies does not lead to the development of the primary fatigue cracking.
Matrix fatigue crack development in a notched continuous fiber SCS-6/Ti-15-3 composite
NASA Technical Reports Server (NTRS)
Hillberry, B. M.; Johnson, W. S.
1990-01-01
In this study the extensive matrix fatigue cracking that has been observed in notched SCS-6/Ti-15-3 composites is investigated. Away from the notch a uniform spacing of the fatigue cracks develops. Closer to the notch, fiber-matrix debonding which occurs increases the crack spacing. Crack spacing and debond length determined from shear-lag cylinder models compare favorably with experimental observations. Scanning electron microscope (SEM) fractography showed that the principal fatigue crack initiation occurred around the zero degree fibers. Interface failure in the 90 degree plies does not lead to the development of the primary fatigue cracking.
Lifetime prediction for the subsurface crack propagation using three-dimensional dynamic FEA model
NASA Astrophysics Data System (ADS)
Yin, Yuan; Chen, Yun-Xia; Liu, Le
2017-03-01
The subsurface crack propagation is one of the major interests for gear system research. The subsurface crack propagation lifetime is the number of cycles remaining for a spall to appear, which can be obtained through either stress intensity factor or accumulated plastic strain analysis. In this paper, the heavy loads are applied to the gear system. When choosing stress intensity factor, the high compressive stress suppresses Mode I stress intensities and severely reduces Mode II stress intensities in the heavily loaded lubricated contacts. Such that, the accumulated plastic strain is selected to calculate the subsurface crack propagation lifetime from the three-dimensional FEA model through ANSYS Workbench transient analysis. The three-dimensional gear FEA dynamic model with the subsurface crack is built through dividing the gears into several small elements. The calculation of the total cycles of the elements is proposed based on the time-varying accumulated plastic strain, which then will be used to calculate the subsurface crack propagation lifetime. During this process, the demonstration from a subsurface crack to a spall can be uncovered. In addition, different sizes of the elements around the subsurface crack are compared in this paper. The influences of the frictional coefficient and external torque on the crack propagation lifetime are also discussed. The results show that the lifetime of crack propagation decreases significantly when the external load T increasing from 100 N m to 150 N m. Given from the distributions of the accumulated plastic strain, the lifetime shares no significant difference when the frictional coefficient f ranging in 0.04-0.06.
Capillary fracture of soft gels.
Bostwick, Joshua B; Daniels, Karen E
2013-10-01
A liquid droplet resting on a soft gel substrate can deform that substrate to the point of material failure, whereby fractures develop on the gel surface that propagate outwards from the contact line in a starburst pattern. In this paper, we characterize (i) the initiation process, in which the number of arms in the starburst is controlled by the ratio of the surface tension contrast to the gel's elastic modulus, and (ii) the propagation dynamics showing that once fractures are initiated they propagate with a universal power law L[proportional]t(3/4). We develop a model for crack initiation by treating the gel as a linear elastic solid and computing the deformations within the substrate from the liquid-solid wetting forces. The elastic solution shows that both the location and the magnitude of the wetting forces are critical in providing a quantitative prediction for the number of fractures and, hence, an interpretation of the initiation of capillary fractures. This solution also reveals that the depth of the gel is an important factor in the fracture process, as it can help mitigate large surface tractions; this finding is confirmed with experiments. We then develop a model for crack propagation by considering the transport of an inviscid fluid into the fracture tip of an incompressible material and find that a simple energy-conservation argument can explain the observed material-independent power law. We compare predictions for both linear elastic and neo-Hookean solids, finding that the latter better explains the observed exponent.
NASA Astrophysics Data System (ADS)
Ferreira, L. E. T.; Vareda, L. V.; Hanai, J. B.; Sousa, J. L. A. O.; Silva, A. I.
2017-05-01
A modal dynamic analysis is used as the tool to evaluate the fracture toughness of concrete from the results of notched-through beam tests. The dimensionless functions describing the relation between the frequencies and specimen geometry used for identifying the variation in the natural frequency as a function of crack depth is first determined for a 150 × 150 × 500-mm notched-through specimen. The frequency decrease resulting from the propagating crack is modeled through a modal/fracture mechanics approach, leading to determination of an effective crack length. This length, obtained numerically, is used to evaluate the fracture toughness of concrete, the critical crack mouth opening displacements, and the brittleness index proposed. The methodology is applied to tests performed on high-strength concrete specimens. The frequency response for each specimen is evaluated before and after each crack propagation step. The methodology is then validated by comparison with results from the application of other methodologies described in the literature and suggested by RILEM.
Normal compression wave scattering by a permeable crack in a fluid-saturated poroelastic solid
NASA Astrophysics Data System (ADS)
Song, Yongjia; Hu, Hengshan; Rudnicki, John W.
2017-04-01
A mathematical formulation is presented for the dynamic stress intensity factor (mode I) of a finite permeable crack subjected to a time-harmonic propagating longitudinal wave in an infinite poroelastic solid. In particular, the effect of the wave-induced fluid flow due to the presence of a liquid-saturated crack on the dynamic stress intensity factor is analyzed. Fourier sine and cosine integral transforms in conjunction with Helmholtz potential theory are used to formulate the mixed boundary-value problem as dual integral equations in the frequency domain. The dual integral equations are reduced to a Fredholm integral equation of the second kind. It is found that the stress intensity factor monotonically decreases with increasing frequency, decreasing the fastest when the crack width and the slow wave wavelength are of the same order. The characteristic frequency at which the stress intensity factor decays the fastest shifts to higher frequency values when the crack width decreases.
New specimen design for studying the growth of small fatigue cracks with surface acoustic waves
NASA Astrophysics Data System (ADS)
London, Blair
1985-08-01
The study of small surface fatigue cracks in AISI 4140 quenched and tempered steel by a nondestructive surface acoustic wave technique is summarized. A novel cantilevered bending, plate-type fatigue specimen is described that is compatible with the acoustic method. Small cracks are initiated from a 25-μm deep surface pit produced by an electrospark machine. The importance of studying these cracks which closely approximate naturally occurring fatigue cracks is briefly discussed.
Commercialization of Measurement Technologies
DOT National Transportation Integrated Search
2012-10-20
Miniaturized, wireless instrumentation is now a reality and this thesis describes : development of such a system to monitor crack response. Comparison of environmental : (long-term) and blast-induced (dynamic) crack width changes in residential struc...
2011-07-01
in evaluation and design of materials for fracture critical applications. The material of interest in the present study was Ti-6Al-4V (Ti- 6 - 4 ...distribution unlimited. pertinent to fatigue crack-initiation in + titanium alloys and titanium alloys in general. The + titanium alloys, in particular Ti- 6 ...et al. [16] observed that subsurface crack initiation inTi- 6 -2- 4 - 6 occurred within a microtextured region in which the phase was suitably oriented
Crack injection in silver gold alloys
NASA Astrophysics Data System (ADS)
Chen, Xiying
Stress corrosion cracking (SCC) is a materials degradation phenomena resulting from a combination of stress and a corrosive environment. Among the alphabet soup of proposed mechanism of SCC the most important are film-rupture, film-induced cleavage and hydrogen embrittlement. This work examines various aspects of film-induced cleavage in gold alloys for which the operation of hydrogen embrittlement processes can be strictly ruled out on thermodynamic grounds. This is so because in such alloys SCC occurs under electrochemical conditions within which water is stable to hydrogen gas evolution. The alloy system examined in this work is AgAu since the corrosion processes in this system occur by a dealloying mechanism that results in the formation of nanoporous gold. The physics behind the dealloying process as well as the resulting formation of nanoporous gold is today well understood. Two important aspects of the film-induced cleavage mechanism are examined in this work: dynamic fracture in monolithic nanoporous gold and crack injection. In crack injection there is a finite thickness dealloyed layer formed on a AgAu alloy sample and the question of whether or not a crack that nucleates within this layer can travel for some finite distance into the un-corroded parent phase alloy is addressed. Dynamic fracture tests were performed on single edge-notched monolithic nanoporous gold samples as well as "infinite strip" sample configurations for which the stress intensity remains constant over a significant portion of the crack length. High-speed photography was used to measure the crack velocity. In the dynamic fracture experiments cracks were observed to travel at speeds as large as 270 m/s corresponding to about 68% of the Raleigh wave velocity. Crack injection experiments were performed on single crystal Ag77Au23, polycrystalline Ag72Au28 and pure gold, all of which had thin nanoporous gold layers on the surface of samples. Through-thickness fracture was seen in both the single crystal and polycrystalline samples and there was an indication of ~ 1 mum injected cracks into pure gold. These results have important implications for the operation of the film-induced cleavage mechanism and represent a first step in the development of a fundamental model of SCC.
Life prediction and constitutive behavior
NASA Technical Reports Server (NTRS)
Halford, G. R.
1983-01-01
One of the primary drivers that prompted the initiation of the hot section technology (HOST) program was the recognized need for improved cyclic durability of costly hot section components. All too frequently, fatigue in one form or another was directly responsible for the less than desired durability, and prospects for the future weren't going to improve unless a significant effort was mounted to increase our knowledge and understanding of the elements governing cyclic crack initiation and propagation lifetime. Certainly one of the important factors is the ability to perform accurate structural stress-strain analyses on a routine basis to determine the magnitudes of the localized stresses and strains since it is these localized conditions that govern the initiation and crack growth processes. Developing the ability to more accurately predict crack initiation lifetimes and cyclic crack growth rates for the complex loading conditions found in turbine engine hot sections is of course the ultimate goal of the life prediction research efforts. It has been found convenient to divide the research efforts into those dealing with nominally isotropic and anisotropic alloys; the latter for application to directionally solidified and single crystal turbine blades.
The use of COD and plastic instability in crack propagation and arrest in shells
NASA Technical Reports Server (NTRS)
Erdogan, F.; Ratwani, M.
1974-01-01
The initiation, growth, and possible arrest of fracture in cylindrical shells containing initial defects are dealt with. For those defects which may be approximated by a part-through semi-elliptic surface crack which is sufficiently shallow so that part of the net ligament in the plane of the crack is still elastic, the existing flat plate solution is modified to take into account the shell curvature effect as well as the effect of the thickness and the small scale plastic deformations. The problem of large defects is then considered under the assumptions that the defect may be approximated by a relatively deep meridional part-through surface crack and the net ligament through the shell wall is fully yielded. The results given are based on an 8th order bending theory of shallow shells using a conventional plastic strip model to account for the plastic deformations around the crack border.
Influence of microstructure on the fretting resistance of Al-Cu-Li alloys
NASA Astrophysics Data System (ADS)
Delacroix, Jessica; Cazottes, Sophie; Daniélou, Armelle; Fouvry, Siegfried; Buffiere, Jean-Yves
The resistance of two Al-Cu-Li alloys (2050 and 2196) to fretting has been investigated. For each material two heat treatments have been studied (T8 and low temperature ageing). Fretting tests with a cylinder-plane configuration have been performed in the partial slip regime. The results obtained show that the low temperature temper gives a better resistance to fretting crack initiation and propagation than the T8 temper for both alloys. The 3D shape of the fretting cracks has been observed by high resolution synchrotron X-ray tomography. Multiple initiation sites were observed below the contact. In their early stages of development, the fretting cracks grow approximately radially within the material leading to thumb nail cracks which eventually merge laterally. The difference in fretting resistance is analysed with respect to the 3D fracture surface of the fretting cracks in relation with the alloys precipitation state.
Fine characterization rock thermal damage by acoustic emission technique
NASA Astrophysics Data System (ADS)
Kong, Biao; Li, Zenghua; Wang, Enyuan
2018-02-01
This paper examines the differences in the thermal mechanical properties and acoustic emission (AE) characteristics during the deformation and fracture of rock under the action of continuous heating and after high-temperature treatment. Using AE 3D positioning technology, the development and evolution of the internal thermal cracks and the time domain of AE signals in rock were analyzed. High-temperature treatment causes thermal damage to rock. Under the action of continuous heating, the phase characteristics of AE time series correspond to the five stages of rock thermal deformation and fracture, respectively: the micro-defect development stage, the threshold interval of rock micro-cracks, the crack initiation stage, the crack propagation stage, and the crack multistage propagation evolution. When the initial crack propagates, the crack initiation of the rock causes the AE signal to produce a sudden mutation change. Mechanical fraction characteristics during rock uniaxial compression after temperature treatment indicated that the decrease rate of the rock compressive strength, wave velocity, and elastic modulus are relatively large during uniaxial compression tests after high-temperature treatment. During the deformation and fracture of rock under loading, there is faster growth of AE counts and AE events, indicating an increase in the speed of rock deformation and fracture under loading. AE counts show obvious changes during the latter loading stages, whereas AE events show obvious changes during the loading process. The results obtained are valuable for rock thermal stability detection and evaluation in actual underground engineering.
NASA Astrophysics Data System (ADS)
Niu, Xiqun
Polybutylene (PB) is a semicrystalline thermoplastics. It has been widely used in potable water distribution piping system. However, field practice shows that failure occurs much earlier than the expected service lifetime. What are the causes and how to appropriately evaluate its lifetime motivate this study. In this thesis, three parts of work have been done. First is the understanding of PB, which includes material thermo and mechanical characterization, aging phenomena and notch sensitivity. The second part analyzes the applicability of the existing lifetime testing method for PB. It is shown that PB is an anomaly in terms of the temperature-lifetime relation because of the fracture mechanism transition across the testing temperature range. The third part is the development of the methodology of lifetime prediction for PB pipe. The fracture process of PB pipe consists of three stages, i.e., crack initiation, slow crack growth (SCG) and crack instability. The practical lifetime of PB pipe is primarily determined by the duration of the first two stages. The mechanism of crack initiation and the quantitative estimation of the time to crack initiation are studied by employing environment stress cracking technique. A fatigue slow crack growth testing method has been developed and applied in the study of SCG. By using Paris-Erdogan equation, a model is constructed to evaluate the time for SCG. As a result, the total lifetime is determined. Through this work, the failure mechanisms of PB pipe has been analyzed and the lifetime prediction methodology has been developed.
NASA Astrophysics Data System (ADS)
Jeon, Changwoo; Kim, Choongnyun Paul; Kim, Hyoung Seop; Lee, Sunghak
2015-04-01
Fracture properties of Ti-based amorphous alloys containing ductile β dendrites were explained by directly observing microfracture processes. Three Ti-based amorphous alloys were fabricated by adding Ti, Zr, V, Ni, Al, and Be into a Ti-6Al-4V alloy by a vacuum arc melting method. The effective sizes of dendrites varied from 63 to 104 μm, while their volume fractions were almost constant within the range from 74 to 76 pct. The observation of the microfracture of the alloy containing coarse dendrites revealed that a microcrack initiated at the amorphous matrix of the notch tip and propagated along the amorphous matrix. In the alloy containing fine dendrites, the crack propagation was frequently blocked by dendrites, and many deformation bands were formed near or in front of the propagating crack, thereby resulting in a zig-zag fracture path. Crack initiation toughness was almost the same at 35 to 36 MPa√m within error ranges in the three alloys because it was heavily affected by the stress applied to the specimen at the time of crack initiation at the crack tip as well as strength levels of the alloys. According to the R-curve behavior, however, the best overall fracture properties in the alloy containing fine dendrites were explained by mechanisms of blocking of the crack growth and crack blunting and deformation band formation at dendrites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott, P.; Olson, R.; Wilkowski, O.G.
1997-06-01
This report presents the results from Subtask 1.3 of the International Piping Integrity Research Group (IPIRG) program. The objective of Subtask 1.3 is to develop data to assess analysis methodologies for characterizing the fracture behavior of circumferentially cracked pipe in a representative piping system under combined inertial and displacement-controlled stresses. A unique experimental facility was designed and constructed. The piping system evaluated is an expansion loop with over 30 meters of 16-inch diameter Schedule 100 pipe. The experimental facility is equipped with special hardware to ensure system boundary conditions could be appropriately modeled. The test matrix involved one uncracked andmore » five cracked dynamic pipe-system experiments. The uncracked experiment was conducted to evaluate piping system damping and natural frequency characteristics. The cracked-pipe experiments evaluated the fracture behavior, pipe system response, and stability characteristics of five different materials. All cracked-pipe experiments were conducted at PWR conditions. Material characterization efforts provided tensile and fracture toughness properties of the different pipe materials at various strain rates and temperatures. Results from all pipe-system experiments and material characterization efforts are presented. Results of fracture mechanics analyses, dynamic finite element stress analyses, and stability analyses are presented and compared with experimental results.« less
Investigation of deformation mechanisms of staggered nanocomposites using molecular dynamics
NASA Astrophysics Data System (ADS)
Mathiazhagan, S.; Anup, S.
2016-08-01
Biological materials with nanostructure of regularly or stair-wise staggered arrangements of hard platelets reinforced in a soft protein matrix have superior mechanical properties. Applications of these nanostructures to ceramic matrix composites could enhance their toughness. Using molecular dynamics simulations, mechanical behaviour of the bio-inspired nanocomposites is studied. Regularly staggered model shows better flow behaviour compared to stair-wise staggered model due to the symmetrical crack propagation along the interface. Though higher stiffness and strength are obtained for stair-wise staggered models, rapid crack propagation reduces the toughness. Arresting this crack propagation could lead to superior mechanical properties in stair-wise staggered models.
40 CFR 60.103 - Standard for carbon monoxide.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Refineries § 60.103 Standard for carbon monoxide. Each owner or operator of any fluid catalytic cracking unit... the fluid catalytic cracking unit catalyst regenerator will be operated, or 180 days after initial... discharge or cause the discharge into the atmosphere from any fluid catalytic cracking unit catalyst...
40 CFR 60.103 - Standard for carbon monoxide.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Refineries § 60.103 Standard for carbon monoxide. Each owner or operator of any fluid catalytic cracking unit... the fluid catalytic cracking unit catalyst regenerator will be operated, or 180 days after initial... discharge or cause the discharge into the atmosphere from any fluid catalytic cracking unit catalyst...
Modes of supraglacial lake drainage and dynamic ice sheet response
NASA Astrophysics Data System (ADS)
Das, S. B.; Behn, M. D.; Joughin, I. R.
2011-12-01
We investigate modes of supraglacial lake drainage using geophysical, ground, and remote sensing observations over the western margin of the Greenland ice sheet. Lakes exhibit a characteristic life cycle defined by a pre-drainage, drainage, and post-drainage phase. In the pre-drainage phase winter snow fills pre-existing cracks and stream channels, efficiently blocking past drainage conduits. As temperatures increase in the spring, surface melting commences, initially saturating the snow pack and subsequently forming a surface network of streams that fills the lake basins. Basins continue to fill until lake drainage commences, which for individual lakes occurs at different times depending on the previous winter snow accumulation and summer temperatures. Three styles of drainage behavior have been observed: (1) no drainage, (2) slow drainage over the side into an adjacent pre-existing crack, and (3) rapid drainage through a new crack formed beneath the lake basin. Moreover, from year-to-year individual lakes exhibit different drainage behaviors. Lakes that drain slowly often utilize the same outflow channel for multiple years, creating dramatic canyons in the ice. Ultimately, these surface channels are advected out of the lake basin and a new channel forms. In the post-drainage phase, melt water continues to access the bed typically through a small conduit (e.g. moulin) formed near a local topographic minimum along the main drainage crack, draining the lake catchment throughout the remainder of the melt season. This melt water input to the bed leads to continued basal lubrication and enhanced ice flow compared to background velocities. Lakes that do not completely drain freeze over to form a surface ice layer that persists into the following year. Our results show that supraglacial lakes show a spectrum of drainage behaviors and that these styles of drainage lead to varying rates and timing of surface meltwater delivery to the bed resulting in different dynamic ice responses.
NASA Astrophysics Data System (ADS)
Smith, E. F.; Duquette, D. J.
1986-02-01
Fatigue experiments were conducted on polycrystalline and monocrystalline samples of a high purity Al, 5.5 wt pct Zn, 2.5 wt pct Mg, 1.5 wt pct Cu alloy in the peak-hardened heat treatment condition. These experiments were conducted in dry laboratory air and in 0.5 N NaCl solutions at the corrosion potential and at applied potentials cathodic to the corrosion potential. It has been shown that saline solutions severely reduce the fatigue resistance of the alloy, resulting in considerable amounts of intergranular crack initiation and propagation under freely corroding conditions for polycrystalline samples. Applied cathodic potentials resulted in still larger decreases in fatigue resistance and, for poly crystals, increases in the degree of transgranular crack initiation and propagation. Increasing amounts of intergranular cracking were observed when applied cyclic stresses were reduced (longer test times). The characteristics of cracking, combined with results obtained on tensile tests of deformed and hydrogen charged samples, suggest that environmental cracking of these alloys is associated with a form of hydrogen embrittlement of the process zones of growing cracks. Further, it is suggested that stress corrosion cracking and corrosion fatigue of these alloys occurs by essentially the same mechanism, but that the often observed transgranular cracking under cyclic loading conditions occurs due to enhanced hydrogen transport and/or concentrations associated with mobile dislocations at growing crack tips.
Characterization of Environmentally Assisted Cracking for Design: State of the Art.
1982-01-01
Barsom, J.M., Effect of cyclic stress form on corrosion fatigue crack propagation below Kiscc in a high yield strength steel , in Corrosion Fatigue... Effect of Prestressing on the Stress Corrosion Resistance of Two High Strength Steels , Boeing Document D6-25275, Boeing Company, Seattle, Washington...sT’e Residual stress Crack growth High strength steel Seawater Crack initiation Hydrogen embrittlement Stress corrosion Design Linear elastic fracture
Polygonal crack patterns by drying thin films under quasi-two-dimensional confinement
NASA Astrophysics Data System (ADS)
Ma, Xiaolei; Lowensohn, Janna; Burton, Justin
Cracks patterns such as T/Y junction cracks in dried mud are ubiquitous in nature. Although the conditions for cracking in solids is well-known, cracks in colloidal and granular systems are more complex. Here we report the formations of polygonal cracks by drying thin films of corn starch ( 10 μm in diameter) under quasi-2D confinement. We find there are two drying stages before the films are completely dried. Initially, a compaction front invades throughout the film. Then, a second drying stage ''percolates'' throughout the film with a characteristic branching pattern, leading to a dense packing of particles connected by liquid capillary bridges. Finally, polygonal cracks appear as the remaining liquid dries. The same drying kinetics occur for films with different thickness, h, except that fractal-like fracture patterns form in thin films, where the thickness is comparable to the particle size, while polygons form in thick films with many layers of particles. We also find that the average area of the polygons, A, in fully dried films scales with the thickness, A hβ , where β 1 . 5 , and the prefactor depends on the initial packing fraction of the suspension. This form is consistent with a simple energy balance criterion for crack formation.
NASA Technical Reports Server (NTRS)
Gabb, Timothy P.; Telesman, Jack; Banik, Anthony; McDevitt, Erin
2014-01-01
Intergranular fatigue crack initiation and growth due to environmental degradation, especially at notched features, can often limit the fatigue life of disk superalloys at high temperatures. For clear comparisons, the effects of alloy composition on cracking in air needs to be understood and compared separately from variables associated with notches and cracks such as effective stress concentration, plastic flow, stress relaxation, and stress redistribution. The objective of this study was to attempt using simple tensile tests of specimens with uniform gage sections to compare the effects of varied alloy composition on environment-assisted cracking of several powder metal and cast and wrought superalloys including ME3, LSHR, Udimet 720(TradeMark) ATI 718Plus(Registered TradeMark) alloy, Haynes 282(Trademark), and Inconel 740(TradeMark) Slow and fast strain-rate tensile tests were found to be a useful tool to compare propensities for intergranular surface crack initiation and growth. The effects of composition and heat treatment on tensile fracture strain and associated failure modes were compared. Environment interactions were determined to often limit ductility, by promoting intergranular surface cracking. The response of various superalloys and heat treatments to slow strain rate tensile testing varied substantially, showing that composition and microstructure can significantly influence environmental resistance to cracking.
NASA Astrophysics Data System (ADS)
Yang, Zhuofei; Kang, Jidong; Wilkinson, David S.
2015-08-01
AM60 high pressure die castings have been used in automobile applications to reduce the weight of vehicles. However, the pore defects that are inherent in die casting may negatively affect mechanical properties, especially the fatigue properties. Here we have studied damage ( e.g., pore defects, fatigue cracks) during strained-controlled fatigue using 3-dimensional X-ray computed tomography (XCT). The fatigue test was interrupted every 2000 cycles and the specimen was removed to be scanned using a desktop micro-CT system. XCT reveals pore defects, cracks, and fracture surfaces. The results show that pores can be accurately measured and modeled in 3D. Defect bands are found to be made of pores under 50 µm (based on volume-equivalent sphere diameter). Larger pores are randomly distributed in the region between the defect bands. Observation of fatigue cracks by XCT is performed in three ways such that the 3D model gives the best illustration of crack-porosity interaction while the other two methods, with the cracks being viewed on transverse or longitudinal cross sections, have better detectability on crack initiation and crack tip observation. XCT is also of value in failure analysis on fracture surfaces. By assessing XCT data during fatigue testing and observing fracture surfaces on a 3D model, a better understanding on the crack initiation, crack-porosity interaction, and the morphology of fracture surface is achieved.
2014-05-07
impacts: (a) crack closure, (b) transport of water vapor molecules within the fatigue crack (47], and (c) tensile stress-plastic strain range...sealed stainless steel UHV chamber. Pure water vapor was introduced from a sealed glass flask containing triply distilled water, via a precision leak...lamellar for H1 flow in a fatigue crack in steel ; specifically, flow is dominated by the low dynamic viscosity of a gas (particularly at low pressures) and
NASA Technical Reports Server (NTRS)
Everett, R. A., Jr.; Matthews, W. T.; Prabhakaran, R.; Newman, J. C., Jr.; Dubberly, M. J.
2001-01-01
Fatigue and crack growth tests have been conducted on 4340 steel and 2024-T3 aluminum alloy, respectively, to assess the effects of shot peening on fatigue life and the effects of shot and laser peening on crack growth. Two current programs involving fixed and rotary-wing aircraft will not be using shot peened structures. Since the shot peening compressive residual stress depth is usually less than the 0.05-inch initial damage tolerance crack size, it is believed by some that shot peening should have no beneficial effects toward retarding crack growth. In this study cracks were initiated from an electronic-discharged machining flaw which was cycled to produce a fatigue crack of approximately 0.05-inches in length and then the specimens were peened. Test results showed that after peening the crack growth rates were noticeably slower when the cracks were fairly short for both the shot and laser peened specimens resulting in a crack growth life that was a factor of 2 to 4 times greater than the results of the average unpeened test. Once the cracks reached a length of approximately 0.1-inches the growth rates were about the same for the peened and unpeened specimens. Fatigue tests on 4340 steel showed that the endurance limit of a test specimen with a 0.002-inch-deep machining-like scratch was reduced by approximately 40 percent. However, if the "scratched" specimen was shot peened after inserting the scratch, the fatigue life returned to almost 100 percent of the unflawed specimens original fatigue life.
NASA Technical Reports Server (NTRS)
Armstrong, E. S.
1986-01-01
An experimental program has been planned at the NASA Lewis Research Center to build confidence in the feasibility of liquid oxygen cooling for hydrocarbon fueled rocket engines. Although liquid oxygen cooling has previously been incorporated in test hardware, more runtime is necessary to gain confidence in this concept. In the previous tests, small oxygen leaks developed at the throat of the thrust chamber and film cooled the hot-gas side of the chamber wall without resulting in catastrophic failure. However, more testing is necessary to demonstrate that a catastrophic failure would not occur if cracks developed further upstream between the injector and the throat, where the boundary layer has not been established. Since under normal conditions cracks are expected to form in the throat region of the thrust chamber, cracks must be initiated artificially in order to control their location. Several methods of crack initiation are discussed in this report. Four thrust chambers, three with cracks and one without, should be tested. The axial location of the cracks should be varied parametrically. Each chamber should be instrumented to determine the effects of the cracks, as well as the overall performance and durability of the chambers.
Analysis of delamination in cross ply laminates initiating from impact induced matrix cracking
NASA Technical Reports Server (NTRS)
Salpekar, S. A.
1991-01-01
Several two dimensional finite element analyses of (0 sub 2/90 sub 8/0 sub 2) glass/epoxy and graphite-epoxy composite laminates were performed to study some of the characteristics of damage development due to an impact load. A cross section through the thickness of the laminate with fixed ends, and carrying a transverse load in the center was analyzed. Inclined matrix cracks such as those produced by low velocity impact were modeled in the 90 deg ply group. The introduction of the matrix cracks caused large interlaminar tension and shear stresses in the vicinity of both crack tips in the 0/90 and 90/0 interfaces. The large interlaminar stresses at the ends of the matrix cracks indicate that matrix cracking may give rise to delamination. The ratio of mode I to total strain energy release rate at the beginning of delamination calculated at the two matrix crack tips was 60 and 28 pct., respectively, in the glass/epoxy laminate. The corresponding ratio was 97 and 77 pct. in the graphite-epoxy laminate. Thus, a significant mode I component of strain energy release rate may be present at the delamination initiation due to an impact load.
NASA Technical Reports Server (NTRS)
Bigelow, C. A.
1986-01-01
Stress-intensity factors are determined for a cracked infinite sheet adhesively bonded to a stringer, and debonding of the adhesive layer is predicted. The stringer is modeled as a semi-infinite sheet. Adhesive nonlinearity is also included. Both the sheet and stringer are treated as homogeneous, orthotropic materials. A set of integral equations is formulated and solved to obtain the adhesive shear stresses and crack-tip stress-intensity factors. Adhesive debonding is predicted using a rupture criterion based on the combined adhesive stresses. When the crack is not under the stringer, the debond extends along the edge of the stringer. When the crack tip is beneath the stringer, the debond grows to the end of the crack, then along the edge of the stringer. Stress levels required for debond initiation decrease as the crack tip is moved beneath the stringer. With a nonlinear adhesive, the debond initiates at higher applied stress levels than in linear adhesive cases. Compared with the linear adhesive solution, modeling a nonlinear adhesive causes the stress-intensity factor to increase when the bond is assumed to remain intact but causes the stress-intensity factor to decrease when debonding is included.
NASA Technical Reports Server (NTRS)
Schonberg, William P.; Mohamed, Essam
1997-01-01
This report presents the results of a study whose objective was to develop first-principles-based models of hole size and maximum tip-to-tip crack length for a spacecraft module pressure wall that has been perforated in an orbital debris particle impact. The hole size and crack length models are developed by sequentially characterizing the phenomena comprising the orbital debris impact event, including the initial impact, the creation and motion of a debris cloud within the dual-wall system, the impact of the debris cloud on the pressure wall, the deformation of the pressure wall due to debris cloud impact loading prior to crack formation, pressure wall crack initiation, propagation, and arrest, and finally pressure wall deformation following crack initiation and growth. The model development has been accomplished through the application of elementary shock physics and thermodynamic theory, as well as the principles of mass, momentum, and energy conservation. The predictions of the model developed herein are compared against the predictions of empirically-based equations for hole diameters and maximum tip-to-tip crack length for three International Space Station wall configurations. The ISS wall systems considered are the baseline U.S. Lab Cylinder, the enhanced U.S. Lab Cylinder, and the U.S. Lab Endcone. The empirical predictor equations were derived from experimentally obtained hole diameters and crack length data. The original model predictions did not compare favorably with the experimental data, especially for cases in which pressure wall petalling did not occur. Several modifications were made to the original model to bring its predictions closer in line with the experimental results. Following the adjustment of several empirical constants, the predictions of the modified analytical model were in much closer agreement with the experimental results.
McCormack, Jordan; Stover, Susan M.; Gibeling, Jeffery C.; Fyhrie, David P.
2012-01-01
We recently developed a method to measure cortical bone fracture initiation toughness using a double-notched beam in four-point bending. This method was used to test the hypothesis that mineralization around the two notch roots is correlated with fracture toughness and crack extension (physical damage). Total energy absorbed to failure negatively correlated with average mineralization of the beam (r2=0.62), but not with notch root mineralization. Fracture initiation toughness was positively correlated to mineralization at the broken notch root (r2=0.34). Crack length extension at the unbroken notch was strongly negatively correlated with the average mineralization of the notch roots (r2=0.81) whereas crack length extension at the broken notch did not correlate with any of the mineralization measurements. Mineralization at the notch roots and the average mineralization contributed independently to the mechanical and damage properties. The data are consistent with an hypothesis that a) high notch root mineralization results in less stable crack length extension but high force to initiate unstable crack propagation while b) higher average mineralization leads to low post-yield (and total) energy absorption to failure. PMID:22394589
The Rehbinder effect in iron during giga-cycle fatigue loading
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bannikov, M. V., E-mail: mbannikov@icmm.ru; Naimark, O. B.
The influence of the adsorptive strength reduction effect (the Rehbinder effect) on the fatigue life of pure iron under the giga-cycle loading regime was investigated. Specimens were loaded by an ultrasonic testing machine with a frequency of 20 kHz in air and in contact with eutectic alloy of gallium with tin and indium. A significant (by several orders of magnitude) worsening of the life-time of iron in contact with a molten metal as compared with tests in air was established. The liquid metal penetrates into the material to a depth of 200 μm to the center of a fatigue crack. Themore » mechanism of the fatigue crack initiation in the giga-cycle regime of loading in contact with a surfactant is differing: the crack is formed on the surface of the specimen rather than within it as is the case for air. Based on the electron and optical microscopy data for the fracture surface, it can be concluded that exactly the change in the crack initiation mechanism reduces the fatigue life of iron in contact with a liquid metal because the initiated crack propagates regardless of the surfactant.« less
NASA Astrophysics Data System (ADS)
Texier, Damien; Gómez, Ana Casanova; Pierret, Stéphane; Franchet, Jean-Michel; Pollock, Tresa M.; Villechaise, Patrick; Cormier, Jonathan
2016-03-01
The low-cycle fatigue behavior of two direct-aged versions of the nickel-based superalloy Inconel 718 (IN718DA) was examined in the low-strain amplitude regime at intermediate temperature. High variability in fatigue life was observed, and abnormally short lifetimes were systematically observed to be due to crack initiation at (sub)-surface non-metallic inclusions. However, crack initiation within (sub)-surface non-metallic inclusions did not necessarily lead to short fatigue life. The macro- to micro-mechanical mechanisms of deformation and damage have been examined by means of detailed microstructural characterization, tensile and fatigue mechanical tests, and in situ tensile testing. The initial stages of crack micro-propagation from cracked non-metallic particles into the surrounding metallic matrix occupies a large fraction of the fatigue life and requires extensive local plastic straining in the matrix adjacent to the cracked inclusions. Differences in microstructure that influence local plastic straining, i.e., the δ-phase content and the grain size, coupled with the presence of non-metallic inclusions at the high end of the size distribution contribute strongly to the fatigue life variability.
The Rehbinder effect in iron during giga-cycle fatigue loading
NASA Astrophysics Data System (ADS)
Bannikov, M. V.; Naimark, O. B.
2015-10-01
The influence of the adsorptive strength reduction effect (the Rehbinder effect) on the fatigue life of pure iron under the giga-cycle loading regime was investigated. Specimens were loaded by an ultrasonic testing machine with a frequency of 20 kHz in air and in contact with eutectic alloy of gallium with tin and indium. A significant (by several orders of magnitude) worsening of the life-time of iron in contact with a molten metal as compared with tests in air was established. The liquid metal penetrates into the material to a depth of 200 μm to the center of a fatigue crack. The mechanism of the fatigue crack initiation in the giga-cycle regime of loading in contact with a surfactant is differing: the crack is formed on the surface of the specimen rather than within it as is the case for air. Based on the electron and optical microscopy data for the fracture surface, it can be concluded that exactly the change in the crack initiation mechanism reduces the fatigue life of iron in contact with a liquid metal because the initiated crack propagates regardless of the surfactant.
The transition of dynamic rupture styles in elastic media under velocity-weakening friction
NASA Astrophysics Data System (ADS)
Gabriel, A.-A.; Ampuero, J.-P.; Dalguer, L. A.; Mai, P. M.
2012-09-01
Although kinematic earthquake source inversions show dominantly pulse-like subshear rupture behavior, seismological observations, laboratory experiments and theoretical models indicate that earthquakes can operate with different rupture styles: either as pulses or cracks, that propagate at subshear or supershear speeds. The determination of rupture style and speed has important implications for ground motions and may inform about the state of stress and strength of active fault zones. We conduct 2D in-plane dynamic rupture simulations with a spectral element method to investigate the diversity of rupture styles on faults governed by velocity-and-state-dependent friction with dramatic velocity-weakening at high slip rate. Our rupture models are governed by uniform initial stresses, and are artificially initiated. We identify the conditions that lead to different rupture styles by investigating the transitions between decaying, steady state and growing pulses, cracks, sub-shear and super-shear ruptures as a function of background stress, nucleation size and characteristic velocity at the onset of severe weakening. Our models show that small changes of background stress or nucleation size may lead to dramatic changes of rupture style. We characterize the asymptotic properties of steady state and self-similar pulses as a function of background stress. We show that an earthquake may not be restricted to a single rupture style, but that complex rupture patterns may emerge that consist of multiple rupture fronts, possibly involving different styles and back-propagating fronts. We also demonstrate the possibility of a super-shear transition for pulse-like ruptures. Finally, we draw connections between our findings and recent seismological observations.
Double Linear Damage Rule for Fatigue Analysis
NASA Technical Reports Server (NTRS)
Halford, G.; Manson, S.
1985-01-01
Double Linear Damage Rule (DLDR) method for use by structural designers to determine fatigue-crack-initiation life when structure subjected to unsteady, variable-amplitude cyclic loadings. Method calculates in advance of service how many loading cycles imposed on structural component before macroscopic crack initiates. Approach eventually used in design of high performance systems and incorporated into design handbooks and codes.
Corrosion pitting and environmentally assisted small crack growth
Turnbull, Alan
2014-01-01
In many applications, corrosion pits act as precursors to cracking, but qualitative and quantitative prediction of damage evolution has been hampered by lack of insights into the process by which a crack develops from a pit. An overview is given of recent breakthroughs in characterization and understanding of the pit-to-crack transition using advanced three-dimensional imaging techniques such as X-ray computed tomography and focused ion beam machining with scanning electron microscopy. These techniques provided novel insights with respect to the location of crack development from a pit, supported by finite-element analysis. This inspired a new concept for the role of pitting in stress corrosion cracking based on the growing pit inducing local dynamic plastic strain, a critical factor in the development of stress corrosion cracks. Challenges in quantifying the subsequent growth rate of the emerging small cracks are then outlined with the potential drop technique being the most viable. A comparison is made with the growth rate for short cracks (through-thickness crack in fracture mechanics specimen) and long cracks and an electrochemical crack size effect invoked to rationalize the data. PMID:25197249
Modeling capillary bridge dynamics and crack healing between surfaces of nanoscale roughness
NASA Astrophysics Data System (ADS)
Soylemez, Emrecan; de Boer, Maarten P.
2017-12-01
Capillary bridge formation between adjacent surfaces in humid environments is a ubiquitous phenomenon. It strongly influences tribological performance with respect to adhesion, friction and wear. Only a few studies, however, assess effects due to capillary dynamics. Here we focus on how capillary bridge evolution influences crack healing rates. Experimental results indicated a logarithmic decrease in average crack healing velocity as the energy release rate increases. Our objective is to model that trend. We assume that capillary dynamics involve two mechanisms: capillary bridge growth and subsequently nucleation followed by growth. We show that by incorporating interface roughness details and the presence of an adsorbed water layer, the behavior of capillary force dynamics can be understood quantitatively. We identify three important regimes that control the healing process, namely bridge growth, combined bridge growth and nucleation, and finally bridge nucleation. To fully capture the results, however, the theoretical model for nucleation time required an empirical modification. Our model enables significant insight into capillary bridge dynamics, with a goal of attaining a predictive capability for this important microelectromechanical systems (MEMS) reliability failure mechanism.
Slow Growth of a Crack with Contacting Faces in a Viscoelastic Body
NASA Astrophysics Data System (ADS)
Selivanov, M. F.
2017-11-01
An algorithm for solving the problem of slow growth of a mode I crack with a zone of partial contact of the faces is proposed. The algorithm is based on a crack model with a cohesive zone, an iterative method of finding a solution for the elastic opening displacement, and elasto-viscoelastic analogy, which makes it possible to describe the time-dependent opening displacement in Boltzmann-Volterra form. A deformation criterion with a constant critical opening displacement and cohesive strength during quasistatic crack growth is used. The algorithm was numerically illustrated for tensile loading at infinity and two concentrated forces symmetric about the crack line that cause the crack faces to contact. When the crack propagates, the contact zone disappears and its dynamic growth begins.
Modeling and monitoring of tooth fillet crack growth in dynamic simulation of spur gear set
NASA Astrophysics Data System (ADS)
Guilbault, Raynald; Lalonde, Sébastien; Thomas, Marc
2015-05-01
This study integrates a linear elastic fracture mechanics analysis of the tooth fillet crack propagation into a nonlinear dynamic model of spur gear sets. An original formulation establishes the rigidity of sound and damaged teeth. The formula incorporates the contribution of the flexible gear body and real crack trajectories in the fillet zone. The work also develops a KI prediction formula. A validation of the equation estimates shows that the predicted KI are in close agreement with published numerical and experimental values. The representation also relies on the Paris-Erdogan equation completed with crack closure effects. The analysis considers that during dN fatigue cycles, a harmonic mean of ΔK assures optimal evaluations. The paper evaluates the influence of the mesh frequency distance from the resonances of the system. The obtained results indicate that while the dependence may demonstrate obvious nonlinearities, the crack progression rate increases with a mesh frequency augmentation. The study develops a tooth fillet crack propagation detection procedure based on residual signals (RS) prepared in the frequency domain. The proposed approach accepts any gear conditions as reference signature. The standard deviation and mean values of the RS are evaluated as gear condition descriptors. A trend tracking of their responses obtained from a moving linear regression completes the analysis. Globally, the results show that, regardless of the reference signal, both descriptors are sensitive to the tooth fillet crack and sharply react to tooth breakage. On average, the mean value detected the crack propagation after a size increase of 3.69 percent as compared to the reference condition, whereas the standard deviation required crack progressions of 12.24 percent. Moreover, the mean descriptor shows evolutions closer to the crack size progression.
Crack growth monitoring at CFRP bond lines
NASA Astrophysics Data System (ADS)
Rahammer, M.; Adebahr, W.; Sachse, R.; Gröninger, S.; Kreutzbruck, M.
2016-02-01
With the growing need for lightweight technologies in aerospace and automotive industries, fibre-reinforced plastics, especially carbon-fibre (CFRP), are used with a continuously increasing annual growth rate. A promising joining technique for composites is adhesive bonding. While rivet holes destroy the fibres and cause stress concentration, adhesive bond lines distribute the load evenly. Today bonding is only used in secondary structures due to a lack of knowledge with regard to long-term predictability. In all industries, numerical simulation plays a critical part in the development process of new materials and structures, while it plays a vital role when it comes to CFRP adhesive bondings conducing the predictability of life time and damage tolerance. The critical issue with adhesive bondings is crack growth. In a dynamic tensile stress testing machine we dynamically load bonded CFRP coupon specimen and measure the growth rate of an artificially started crack in order to feed the models with the results. We also investigate the effect of mechanical crack stopping features. For observation of the bond line, we apply two non-contact NDT techniques: Air-coupled ultrasound in slanted transmission mode and active lockin-thermography evaluated at load frequencies. Both methods give promising results for detecting the current crack front location. While the ultrasonic technique provides a slightly higher accuracy, thermography has the advantage of true online monitoring, because the measurements are made while the cyclic load is being applied. The NDT methods are compared to visual inspection of the crack front at the specimen flanks and show high congruence. Furthermore, the effect of crack stopping features within the specimen on the crack growth is investigated. The results show, that not all crack fronts are perfectly horizontal, but all of them eventually come to a halt in the crack stopping feature vicinity.
Dynamic Response of AA2519 Aluminum Alloy under High Strain Rates
NASA Astrophysics Data System (ADS)
Olasumboye, Adewale Taiwo
Like others in the AA2000 series, AA2519 is a heat-treatable Al-Cu alloy. Its excellent ballistic properties and stress corrosion cracking resistance, combined with other properties, qualify it as a prime candidate for armored vehicle and aircraft applications. However, available data on its high strain-rate response remains limited. In this study, AA2519 aluminum alloy was investigated in three different temper conditions: T4, T6, and T8, to determine the effects of heat treatment on the microstructure and dynamic deformation behavior of the material at high strain rates ranging within 1000 ≤ epsilon ≤ 4000 s-1. Split Hopkinson pressure bar integrated with digital image correlation system was used for mechanical response characterization. Optical microscopy and scanning electron microscopy were used to assess the microstructure of the material after following standard metallographic specimen preparation techniques. Results showed heterogeneous deformation in the three temper conditions. It was observed that dynamic behavior in each condition was dependent on strength properties due to the aging type controlling the strengthening precipitates produced and initial microstructure. At 1500 s -1, AA2519-T6 exhibited peak dynamic yield strength and flow stress of 509 and 667 MPa respectively, which are comparable with what were observed in T8 condition at higher rate of 3500 s-1 but AA2519-T4 showed the least strength and flow stress properties. Early stress collapse, dynamic strain aging, and higher susceptibility to shear band formation and fracture were observed in the T6 condition within the selected range of high strain rates. The alloy's general mode of damage evolution was by dispersoid particle nucleation, shearing and cracking.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anikovsky, V.V.; Karzov, G.P.; Timofeev, B.T.
The paper demonstrates an insufficiency of some requirements native Norms (when comparing them with the foreign requirements for the consideration of calculating situations): (1) leak before break (LBB); (2) short cracks; (3) preliminary loading (warm prestressing). In particular, the paper presents (1) Comparison of native and foreign normative requirements (PNAE G-7-002-86, Code ASME, BS 1515, KTA) on permissible stress levels and specifically on the estimation of crack initiation and propagation; (2) comparison of RF and USA Norms of pressure vessel material acceptance and also data of pressure vessel hydrotests; (3) comparison of Norms on the presence of defects (RF andmore » USA) in NPP vessels, developments of defect schematization rules; foundation of a calculated defect (semi-axis correlation a/b) for pressure vessel and piping components: (4) sequence of defect estimation (growth of initial defects and critical crack sizes) proceeding from the concept LBB; (5) analysis of crack initiation and propagation conditions according to the acting Norms (including crack jumps); (6) necessity to correct estimation methods of ultimate states of brittle an ductile fracture and elastic-plastic region as applied to calculating situation: (a) LBB and (b) short cracks; (7) necessity to correct estimation methods of ultimate states with the consideration of static and cyclic loading (warm prestressing effect) of pressure vessel; estimation of the effect stability; (8) proposals on PNAE G-7-002-86 Norm corrections.« less
Monitoring small-crack growth by the replication method
NASA Technical Reports Server (NTRS)
Swain, Mary H.
1992-01-01
The suitability of the acetate replication method for monitoring the growth of small cracks is discussed. Applications of this technique are shown for cracks growing at the notch root in semicircular-edge-notch specimens of a variety of aluminum alloys and one steel. The calculated crack growth rate versus Delta K relationship for small cracks was compared to that for large cracks obtained from middle-crack-tension specimens. The primary advantage of this techinque is that it provides an opportunity, at the completion of the test, to go backward in time towards the crack initiation event and 'zoom in' on areas of interest on the specimen surface with a resolution of about 0.1 micron. The primary disadvantage is the inability to automate the process. Also, for some materials, the replication process may alter the crack-tip chemistry or plastic zone, thereby affecting crack growth rates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhai, Ziqing; Toloczko, Mychailo B.; Kruska, Karen
Long-term grain boundary (GB) damage evolution and stress corrosion crack initiation in alloy 690 are being investigated by constant load tensile testing in high-temperature, simulated PWR primary water. Six commercial alloy 690 heats are being tested in various cold work conditions loaded at their yield stress. This paper reviews the basic test approach and detailed characterizations performed on selected specimens after an exposure time of ~1 year. Intergranular crack nucleation was observed under constant stress in certain highly cold-worked (CW) alloy 690 heats and was found to be associated with the formation of GB cavities. Somewhat surprisingly, the heats mostmore » susceptible to cavity formation and crack nucleation were thermally treated materials with most uniform coverage of small GB carbides. Microstructure, % cold work and applied stress comparisons are made among the alloy 690 heats to better understand the factors influencing GB cavity formation and crack initiation.« less
NASA Astrophysics Data System (ADS)
Chen, Xingyang; Zhou, Chengshuang; Cai, Xiao; Zheng, Jinyang; Zhang, Lin
2017-10-01
The effects of external hydrogen on hydrogen transportation and distribution around the fatigue crack tip in type 304 stainless steel were investigated by using hydrogen microprint technique (HMT) and thermal desorption spectrometry. HMT results show that some silver particles induced by hydrogen release are located near the fatigue crack and more silver particles are concentrated around the crack tip, which indicates that hydrogen accumulates in the vicinity of the crack tip during the crack growth in hydrogen gas environment. Along with the crack propagation, strain-induced α' martensite forms around the crack tip and promotes hydrogen invasion into the matrix, which will cause the crack initiation and propagation at the austenite/ α' martensite interface. In addition, the hydrogen content in the vicinity of the crack tip is higher than that at the crack edge far away from the crack tip, which is related to the stress state and strain-induced α' martensite.
78 FR 4053 - Airworthiness Directives; PILATUS Aircraft Ltd. Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-18
... fittings caused by stress corrosion. We are issuing this AD to require actions to address the unsafe... prompted due to the discovery of cracks in the engine mount fittings. The cracks are caused by stress corrosion. It is possible for stress corrosion cracks to occur on engine mount fittings initially made of...
Failure Mechanisms of Brittle Rocks under Uniaxial Compression
NASA Astrophysics Data System (ADS)
Liu, Taoying; Cao, Ping
2017-09-01
The behaviour of a rock mass is determined not only by the properties of the rock matrix, but mostly by the presence and properties of discontinuities or fractures within the mass. The compression test on rock-like specimens with two prefabricated transfixion fissures, made by pulling out the embedded metal inserts in the pre-cured period was carried out on the servo control uniaxial loading tester. The influence of the geometry of pre-existing cracks on the cracking processes was analysed with reference to the experimental observation of crack initiation and propagation from pre-existing flaws. Based on the rock fracture mechanics and the stress-strain curves, the evolution failure mechanism of the fissure body was also analyzed on the basis of exploring the law of the compression-shear crack initiation, wing crack growth and rock bridge connection. Meanwhile, damage fracture mechanical models of a compression-shear rock mass are established when the rock bridge axial transfixion failure, tension-shear combined failure, or wing crack shear connection failure occurs on the specimen under axial compression. This research was of significance in studying the failure mechanism of fractured rock mass.
NASA Astrophysics Data System (ADS)
Bykov, A. A.; Matveenko, B. P.; Serovaev, G. S.; Shardakov, I. N.; Shestakov, A. P.
2015-03-01
The contemporary construction industry is based on the use of reinforced concrete structures, but emergency situations resulting in fracture can arise in their exploitation. In a majority of cases, reinforced concrete fracture is realized as the process of crack formation and development. As a rule, the appearance of the first cracks does not lead to the complete loss of the carrying capacity but is a fracture precursor. One method for ensuring the safe operation of building structures is based on crack initiation monitoring. A vibration method for the monitoring of reinforced concrete structures is justified in this paper. An example of a reinforced concrete beam is used to consider all stages related to the analysis of the behavior of natural frequencies in the development of a crack-shaped defect and the use of the obtained numerical results for the vibration test method. The efficiency of the method is illustrated by the results of modeling of the physical part of the method related to the analysis of the natural frequency evolution as a response to the impact action in the crack development process.
Failure Analysis of a Helicopter External Fuel-Tank Pylon
NASA Technical Reports Server (NTRS)
Newman, John A.; Piascik, Robert S.; Lindenberg, Richard A.
2002-01-01
An eight-inch-long (0.2 m) crack was found in an external fuel-tank pylon of a U.S. Coast Guard HH-60 helicopter. The damaged pylon was removed from service and destructively examined at NASA Langley Research Center (LaRC) to determine the cause of the crack. Results of the analysis revealed that crack initiation occurred at corrosion pits in a fastener hole and crack propagation was a result of cyclic loading.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-28
... main gearbox (MGB) planet gear carrier for a crack and replacing any MGB that has a cracked planet gear... another crack in a MGB planet gear carrier and additional analysis that indicates that the initial... crack in the web of the planet gear carrier, which could lead to a MGB seizure and subsequent loss of...
Damage assessment in PRC and RC beams by dynamic tests
NASA Astrophysics Data System (ADS)
Capozucca, R.
2011-07-01
The present paper reports on damaged prestressed reinforced concrete (PRC) beams and reinforced concrete (RC) beams experimentally investigated through dynamic testing in order to verify damage degree due to reinforcement corrosion or cracking correlated to loading. The experimental program foresaw that PRC beams were subjected to artificial reinforcement corrosion and static loading while RC beams were damaged by increasing applied loads to produce bending cracking. Dynamic investigation was developed both on undamaged and damaged PRC and RC beams measuring natural frequencies and evaluating vibration mode shapes. Dynamic testing allowed the recording of frequency response variations at different vibration modes. The experimental results are compared with theoretical results and discussed.
Reliability-based optimization of maintenance scheduling of mechanical components under fatigue
Beaurepaire, P.; Valdebenito, M.A.; Schuëller, G.I.; Jensen, H.A.
2012-01-01
This study presents the optimization of the maintenance scheduling of mechanical components under fatigue loading. The cracks of damaged structures may be detected during non-destructive inspection and subsequently repaired. Fatigue crack initiation and growth show inherent variability, and as well the outcome of inspection activities. The problem is addressed under the framework of reliability based optimization. The initiation and propagation of fatigue cracks are efficiently modeled using cohesive zone elements. The applicability of the method is demonstrated by a numerical example, which involves a plate with two holes subject to alternating stress. PMID:23564979
The growth of small corrosion fatigue cracks in alloy 2024
NASA Technical Reports Server (NTRS)
Piascik, Robert S.; Willard, Scott A.
1993-01-01
The corrosion fatigue crack growth characteristics of small surface and corner cracks in aluminum alloy 2024 is established. The damaging effect of salt water on the early stages of small crack growth is characterized by crack initiation at constituent particle pits, intergranular microcracking for a less than 100 micrometers, and transgranular small crack growth for a micrometer. In aqueous 1 percent NaCl and at a constant anodic potential of -700 mV(sub SCE), small cracks exhibit a factor of three increase in fatigue crack growth rates compared to laboratory air. Small cracks exhibit accelerated corrosion fatigue crack growth rates at low levels of delta-K (less than 1 MPa square root of m) below long crack delta-K (sub th). When exposed to Paris regime levels of crack tip stress intensity, small corrosion fatigue cracks exhibit growth rates similar to that observed for long cracks. Results suggest that crack closure effects influence the corrosion fatigue crack growth rates of small cracks (a less than or equal to 100 micrometers). This is evidenced by similar small and long crack growth behavior at various levels of R. Contrary to the corrosion fatigue characteristics of small cracks in high strength steels, no pronounced chemical crack length effect is observed for Al by 2024 exposed to salt water.
Location, location & size: defects close to surfaces dominate fatigue crack initiation
NASA Astrophysics Data System (ADS)
Serrano-Munoz, Itziar; Buffiere, Jean-Yves; Mokso, Rajmund; Verdu, Catherine; Nadot, Yves
2017-03-01
Metallic cast components inevitably contain defects such as shrinkage cavities which are inherent to the solidification process. Those defects are known to significantly alter the fatigue life of components. Yet very little is known, quantitatively, on the dangerosity of internal casting defects compared to surface ones. In this study, fatigue specimens containing controlled internal defects (shrinkage pores) are used to foster internal cracking. In situ fatigue tests monitored by X ray synchrotron tomography revealed that the internal nucleation and propagation of cracks was systematically overran by surface cracking initiated at castings defects up to ten times smaller than the internal ones. These findings indicate that the presence of internal defects in cast components can be tolerated to a larger extent than is allowed by nowadays standards
Location, location &size: defects close to surfaces dominate fatigue crack initiation.
Serrano-Munoz, Itziar; Buffiere, Jean-Yves; Mokso, Rajmund; Verdu, Catherine; Nadot, Yves
2017-03-27
Metallic cast components inevitably contain defects such as shrinkage cavities which are inherent to the solidification process. Those defects are known to significantly alter the fatigue life of components. Yet very little is known, quantitatively, on the dangerosity of internal casting defects compared to surface ones. In this study, fatigue specimens containing controlled internal defects (shrinkage pores) are used to foster internal cracking. In situ fatigue tests monitored by X ray synchrotron tomography revealed that the internal nucleation and propagation of cracks was systematically overran by surface cracking initiated at castings defects up to ten times smaller than the internal ones. These findings indicate that the presence of internal defects in cast components can be tolerated to a larger extent than is allowed by nowadays standards.
Location, location & size: defects close to surfaces dominate fatigue crack initiation
Serrano-Munoz, Itziar; Buffiere, Jean-Yves; Mokso, Rajmund; Verdu, Catherine; Nadot, Yves
2017-01-01
Metallic cast components inevitably contain defects such as shrinkage cavities which are inherent to the solidification process. Those defects are known to significantly alter the fatigue life of components. Yet very little is known, quantitatively, on the dangerosity of internal casting defects compared to surface ones. In this study, fatigue specimens containing controlled internal defects (shrinkage pores) are used to foster internal cracking. In situ fatigue tests monitored by X ray synchrotron tomography revealed that the internal nucleation and propagation of cracks was systematically overran by surface cracking initiated at castings defects up to ten times smaller than the internal ones. These findings indicate that the presence of internal defects in cast components can be tolerated to a larger extent than is allowed by nowadays standards PMID:28345599
Subsize specimen testing of nuclear reactor pressure vessel material
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, A.S.; Rosinski, S.T.; Cannon, N.S.
1991-01-01
A new methodology is proposed to correlate the upper shelf energy (USE) of full size and subsize Charpy specimens of a nuclear reactor pressure vessel plate material, A533B. The methodology appears to be more satisfactory than the methodologies proposed earlier. USE of a notched-only specimen is partitioned into macro-crack initiation and crack propagation energies. USE of a notched and precracked specimen provides the crack propagation energy. [Delta]USE, the difference between the USE's of notched-only and precracked specimens, is an estimate of the crack initiation energy. [Delta]USE was normalized by a factor involving the dimensions of the Charpy specimen and themore » stress concentration factor at the notch root. The normalized values of the [Delta]USE were found to be invariant with specimen size.« less
High-Speed Rolling of AZ31 Magnesium Alloy Having Different Initial Textures
NASA Astrophysics Data System (ADS)
Onuki, Yusuke; Hara, Kenichiro; Utsunomiya, Hiroshi; Szpunar, Jerzy A.
2015-02-01
It is known that magnesium alloys can be rolled up to a large thickness reduction and develop a unique texture when the rolling speed is high (>1000 m/min). In order to understand the texture formation mechanism during high-strain-rate deformation, high-speed rolling of AZ31 magnesium alloy samples having different initial textures was conducted. The main components of the textures after the rolling were the RD-split basal, which consisted of 10°-20° inclining basal poles from the normal direction toward the rolling direction of the sheet, regardless of the different initial textures. With preheating at 473 K, all the samples were rolled without cracking while all were cracked when preheating was not applied. The optical micrographs and EBSD measurements showed a significant amount of twins and the cracks that developed along the shear bands consisted with laminated twins. Based on the texture simulation using the visco-plastic self-consistent model, it is concluded that the rapid development of the RD-split basal component from the initial basal alignment along the transverse direction was attributable to the tension twinning, The effect of the initial texture on the crack formation can be explained by the activation of the twinning system.
Fracture mechanics analyses of ceramic/veneer interface under mixed-mode loading.
Wang, Gaoqi; Zhang, Song; Bian, Cuirong; Kong, Hui
2014-11-01
Few studies have focused on the interface fracture performance of zirconia/veneer bilayered structure, which plays an important role in dental all-ceramic restorations. The purpose of this study was to evaluate the fracture mechanics performance of zirconia/veneer interface in a wide range of mode-mixities (at phase angles ranging from 0° to 90°), and to examine the effect of mechanical properties of the materials and the interface on the fracture initiation and crack path of an interfacial crack. A modified sandwich test configuration with an oblique interfacial crack was proposed and calibrated to choose the appropriate geometry dimensions by means of finite element analysis. The specimens with different interface inclination angles were tested to failure under three-point bending configuration. Interface fracture parameters were obtained with finite element analyses. Based on the interfacial fracture mechanics, three fracture criteria for crack kinking were used to predict crack initiation and propagation. In addition, the effects of residual stresses due to coefficient of thermal expansion mismatch between zirconia and veneer on the crack behavior were evaluated. The crack initiation and propagation were well predicted by the three fracture criteria. For specimens at phase angle of 0, the cracks propagated in the interface; whereas for all the other specimens the cracks kinked into the veneer. Compressive residual stresses in the veneer can improve the toughness of the interface structure. The results suggest that, in zirconia/veneer bilayered structure the veneer is weaker than the interface, which can be used to explain the clinical phenomenon that veneer chipping rate is larger than interface delamination rate. Consequently, a veneer material with larger fracture toughness is needed to decrease the failure rate of all-ceramic restorations. And the coefficient of thermal expansion mismatch of the substrates can be larger to produce larger compressive stresses in the veneer. Copyright © 2014 Elsevier Ltd. All rights reserved.
Elasticity-Driven Backflow of Fluid-Driven Cracks
NASA Astrophysics Data System (ADS)
Lai, Ching-Yao; Dressaire, Emilie; Ramon, Guy; Huppert, Herbert; Stone, Howard A.
2016-11-01
Fluid-driven cracks are generated by the injection of pressurized fluid into an elastic medium. Once the injection pressure is released, the crack closes up due to elasticity and the fluid in the crack drains out of the crack through an outlet, which we refer to as backflow. We experimentally study the effects of crack size, elasticity of the matrix, and fluid viscosity on the backflow dynamics. During backflow, the volume of liquid remaining in the crack as a function of time exhibits a transition from a fast decay at early times to a power law behavior at late times. Our results at late times can be explained by scaling arguments balancing elastic and viscous stresses in the crack. This work may relate to the environmental issue of flowback in hydraulic fracturing. This work is supported by National Science Foundation via Grant CBET-1509347 and partially supported by Andlinger Center for Energy and the Environment at Princeton University.
Crack initiation modeling of a directionally-solidified nickel-base superalloy
NASA Astrophysics Data System (ADS)
Gordon, Ali Page
Combustion gas turbine components designed for application in electric power generation equipment are subject to periodic replacement as a result of cracking, damage, and mechanical property degeneration that render them unsafe for continued operation. In view of the significant costs associated with inspecting, servicing, and replacing damaged components, there has been much interest in developing models that not only predict service life, but also estimate the evolved microstructural state of the material. This thesis explains manifestations of microstructural damage mechanisms that facilitate fatigue crack nucleation in a newly-developed directionally-solidified (DS) Ni-base superalloy components exposed to elevated temperatures and high stresses. In this study, models were developed and validated for damage and life prediction using DS GTD-111 as the subject material. This material, proprietary to General Electric Energy, has a chemical composition and grain structure designed to withstand creep damage occurring in the first and second stage blades of gas-powered turbines. The service conditions in these components, which generally exceed 600°C, facilitate the onset of one or more damage mechanisms related to fatigue, creep, or environment. The study was divided into an empirical phase, which consisted of experimentally simulating service conditions in fatigue specimens, and a modeling phase, which entailed numerically simulating the stress-strain response of the material. Experiments have been carried out to simulate a variety of thermal, mechanical, and environmental operating conditions endured by longitudinally (L) and transversely (T) oriented DS GTD-111. Both in-phase and out-of-phase thermo-mechanical fatigue tests were conducted. In some cases, tests in extreme environments/temperatures were needed to isolate one or at most two of the mechanisms causing damage. Microstructural examinations were carried out via SEM and optical microscopy. A continuum crystal plasticity model was used to simulate the material behavior in the L and T orientations. The constitutive model was implemented in ABAQUS and a parameter estimation scheme was developed to obtain the material constants. A physically-based model was developed for correlating crack initiation life based on the experimental life data and predictions are made using the crack initiation model. Assuming a unique relationship between the damage fraction and cycle fraction with respect to cycles to crack initiation for each damage mode, the total crack initiation life has been represented in terms of the individual damage components (fatigue, creep-fatigue, creep, and oxidation-fatigue) observed at the end state of crack initiation.
NASA Astrophysics Data System (ADS)
Meric de Bellefon, G.; van Duysen, J. C.
2018-05-01
A recent finite-element method (FEM)-based study from the present authors quantified the effect of elastic anisotropy of grains on stress intensification at potential intergranular stress corrosion cracking (IGSCC) initiation sites in austenitic stainless steels. In particular, it showed that the auxetic behavior of grains (negative Poisson's ratio) in some directions plays a very important role in IGSCC initiation, since it can induce local stress intensification factors of about 1.6. A similar effect is expected for other fcc alloys such as Ni-based alloys. The present article confirms those results and paves the way to the definition of an IGSCC susceptibility index by identifying grain configurations that are the most favorable for crack initiation. The index will rely on the probability to get those configurations on surface of specimens.
Analysis of cracked RC beams under vibration
NASA Astrophysics Data System (ADS)
Capozucca, R.; Magagnini, E.
2017-05-01
Among the methods of monitoring of integrity, vibration analysis is more convenient as non-destructive testing (NDT) method. Many aspects regarding the vibration monitoring of the structural integrity of damaged RC elements have not been completely analysed in literature. The correlation between the development of the crack pattern on concrete surface under bending loadings, as well as the width and depth of cracks, and the variation of dynamic parameters on a structural element is an important aspects that has to be more investigated. This paper deals with cracked RC beams controlled by NDT based on natural vibration, which may be correlated to damage degree due to cracking of concrete under severe state of loading. An experimental investigation on the assessment of RC beams in different scale under loading has been done through dynamic tests in different constraint conditions of edges measuring frequency values and frequency variation. Envelope of Frequency Response Functions (FRFs) are shown and the changes of natural frequency values are related to the damage degree of RC beams subjected to static tests. Finally, a comparison between data obtained by finite element analysis and experimental results is shown.
NASA Astrophysics Data System (ADS)
Kurokawa, Ami; Doshida, Tomoki; Hagihara, Yukito; Suzuki, Hiroshi; Takai, Kenichi
2018-05-01
Though intergranular (IG) and quasi-cleavage (QC) fractures have been widely recognized as typical fracture modes of the hydrogen-induced cracking in high-strength steels, the main factor has been unclarified yet. In the present study, the hydrogen content dependence on the main factor causing hydrogen-induced cracking has been examined through the fracture mode transition from QC to IG at the crack initiation site in the tempered martensitic steels. Two kinds of tempered martensitic steels were prepared to change the cohesive force due to the different precipitation states of Fe3C on the prior γ grain boundaries. A high amount of Si (H-Si) steel has a small amount of Fe3C on the prior austenite grain boundaries. Whereas, a low amount of Si (L-Si) steel has a large amount of Fe3C sheets on the grain boundaries. The fracture modes and initiations were observed using FE-SEM (Field Emission-Scanning Electron Microscope). The crack initiation sites of the H-Si steel were QC fracture at the notch tip under various hydrogen contents. While the crack initiation of the L-Si steel change from QC fracture at the notch tip to QC and IG fractures from approximately 10 µm ahead of the notch tip as increasing in hydrogen content. For L-Si steels, two possibilities are considered that the QC or IG fracture occurred firstly, or the QC and IG fractures occurred simultaneously. Furthermore, the principal stress and equivalent plastic strain distributions near the notch tip were calculated with FEM (Finite Element Method) analysis. The plastic strain was the maximum at the notch tip and the principle stress was the maximum at approximately 10 µm from the notch tip. The position of the initiation of QC and IG fracture observed using FE-SEM corresponds to the position of maximum strain and stress obtained with FEM, respectively. These findings indicate that the main factors causing hydrogen-induced cracking are different between QC and IG fractures.
SSME HPFTP/AT Turbine Blade Platform Featherseal Damper Design
NASA Technical Reports Server (NTRS)
Montgomery, S. K.
1999-01-01
During the Space Shuttle Main Engines (SSM) HPFtP/AT development program, engine hot fire testing resulted in turbine blade fatigue cracks. The cracks were noted after only a few tests and a several hundred seconds versus the design goal of 60 tests and >30,000 seconds. Subsequent investigation attributed the distress to excessive steady and dynamic loads. To address these excessive turbine blade loads, Pratt & Whitney Liquid Space Propulsion engineers designed and developed retrofitable turbine blade to blade platform featherseal dampers. Since incorporation of these dampers, along with other turbine blade system improvements, there has been no observed SSME HPFTP/AT turbine blade fatigue cracking. The high time HPFTP/AT blade now has accumulated 32 starts and 19,200 seconds hot fire test time. Figure #1 illustrates the HPFTP/AT turbine blade platform featherseal dampers. The approached selected was to improve the turbine blade structural capability while simultaneously reducing loads. To achieve this goal, the featherseal dampers were designed to seal the blade to blade platform gap and damp the dynamic motions. Sealing improves the steady stress margins by increasing turbine efficiency and improving turbine blade attachment thermal conditioning. Load reduction was achieved through damping. Thin Haynes 188 sheet metal was selected based on its material properties (hydrogen resistance, elongation, tensile strengths, etc.). The 36,000 rpm wheel speed of the rotor result in a normal load of 120#/blade. The featherseals then act as micro-slip dampers during actual SSME operation. After initial design and analysis (prior to full engine testing), the featherseal dampers were tested in P&W's spin rig facility in West Palm Beach, Florida. Both dynamic strain gages and turbine blade tip displacement measurements were utilized to quantify the featherseal damper effectiveness. Full speed (36,000 rpm), room temperature rig testing verified the elimination of fundamental mode (i.e, modes 1 & 2) resonant response. The reduction in turbine blade dynamic response is shown for a typical turbine blade. This paper discusses the design and verification of these dampers. The numerous benefits associated with this design concept warrants consideration in existing and future turbomachinery applications.
Experimental Dynamic Analysis of a Breathing Cracked Rotor
NASA Astrophysics Data System (ADS)
Guo, Chao-Zhong; Yan, Ji-Hong; Bergman, Lawrence A.
2017-09-01
Crack fault diagnostics plays a critical role for rotating machinery in the traditional and Industry 4.0 factory. In this paper, an experiment is set up to study the dynamic response of a rotor with a breathing crack as it passes through its 1/2, 1/3, 1/4 and 1/5 subcritical speeds. A cracked shaft is made by applying fatigue loads through a three-point bending apparatus and then placed in a rotor testbed. The vibration signals of the testbed during the coasting-up process are collected. Whirl orbit evolution at these subcritical speed zones is analyzed. The Fourier spectra obtained by FFT are used to investigate the internal frequencies corresponding to the typical orbit characteristics. The results show that the appearance of the inner loops and orientation change of whirl orbits in the experiment are agreed well with the theoretical results obtained previously. The presence of higher frequencies 2X, 3X, 4X and 5X in Fourier spectra reveals the causes of subharmonic resonances at these subcritical speed zones. The experimental investigation is more systematic and thorough than previously reported in the literature. The unique dynamic behavior of the orbits and frequency spectra are feasible features for practical crack diagnosis. This paper provides a critical technology support for the self-aware health management of rotating machinery in the Industry 4.0 factory.
Fracture and strain rate behavior of airplane fuselage materials under blast loading
NASA Astrophysics Data System (ADS)
Mediavilla Varas, J.; Soetens, F.; Kroon, E.; van Aanhold, J. E.; van der Meulen, O. R.; Sagimon, M.
2010-06-01
The dynamic behavior of three commonly used airplane fuselage materials is investigated, namely of Al2024-T3, Glare-3 and CFRP. Dynamic tensile tests using a servo-hydraulic and a light weight shock testing machine (LSM) have been performed. The results showed no strain rate effect on Al2024-T3 and an increase in the failure strain and failure strength of Glare-3, but no stiffening. The LSM results on CFRP were inconclusive. Two types of fracture tests were carried out to determine the dynamic crack propagation behavior of these materials, using prestressed plates and pressurized barrels, both with the help of explosives. The prestressed plates proved to be not suitable, whereas the barrel tests were quite reliable, allowing to measure the crack speeds. The tougher, more ductile materials, Al2024-T3 and Glare-3, showed lower crack speeds than CFRP, which failed in a brittle manner.
Theoretical predicting of permeability evolution in damaged rock under compressive stress
NASA Astrophysics Data System (ADS)
Vu, M. N.; Nguyen, S. T.; To, Q. D.; Dao, N. H.
2017-05-01
This paper outlines an analytical model of crack growth induced permeability changes. A theoretical solution of effective permeability of cracked porous media is derived. The fluid flow obeys Poisseuille's law along the crack and Darcy's law in the porous matrix. This solution exhibits a percolation threshold for any type of crack distribution apart from a parallel crack distribution. The physical behaviour of fluid flow through a cracked porous material is well reproduced by the proposed model. The presence of this effective permeability coupling to analytical expression of crack growth under compression enables the modelling of the permeability variation due to stress-induced cracking in a porous rock. This incorporation allows the prediction of the permeability change of a porous rock embedding an anisotropic crack distribution from any initial crack density, that is, lower, around or upper to percolation threshold. The interaction between cracks is not explicitly taken into account. The model is well applicable both to micro- and macrocracks.
Modeling Transverse Cracking in Laminates With a Single Layer of Elements Per Ply
NASA Technical Reports Server (NTRS)
Van Der Meer, Frans P.; Davila, Carlos G.
2012-01-01
The objective of the present paper is to investigate the ability of mesolevel X-FEM models with a single layer of elements per ply to capture accurately all aspects of matrix cracking. In particular, we examine whether the model can predict the insitu ply thickness effect on crack initiation and propagation, the crack density as a function of strain, the strain for crack saturation, and the interaction between delamination and transverse cracks. Results reveal that the simplified model does not capture correctly the shear-lag relaxation of the stress field on either side of a crack, which leads to an overprediction of the crack density. It is also shown, however, that after onset of delamination many of the inserted matrix cracks close again, and that the density of open cracks becomes similar to the density predicted by the detailed model. The degree to which the spurious cracks affect the global response is quantified and the reliability of the mesolevel approach with a single layer of elements per ply is discussed.
Very High Cycle Fatigue Behavior of a Directionally Solidified Ni-Base Superalloy DZ4
Nie, Baohua; Zhao, Zihua; Liu, Shu; Chen, Dongchu; Ouyang, Yongzhong; Hu, Zhudong; Fan, Touwen; Sun, Haibo
2018-01-01
The effect of casting pores on the very high cycle fatigue (VHCF) behavior of a directionally solidified (DS) Ni-base superalloy DZ4 is investigated. Casting and hot isostatic pressing (HIP) specimens were subjected to very high cycle fatigue loading in an ambient atmosphere. The results demonstrated that the continuously descending S-N curves were exhibited for both the casting and HIP specimens. Due to the elimination of the casting pores, the HIP samples had better fatigue properties than the casting samples. The subsurface crack initiated from the casting pore in the casting specimens at low stress amplitudes, whereas fatigue crack initiated from crystallographic facet decohesion for the HIP specimens. When considering the casting pores as initial cracks, there exists a critical stress intensity threshold ranged from 1.1 to 1.3 MPam, below which fatigue cracks may not initiate from the casting pores. Furthermore, the effect of the casting pores on the fatigue limit is estimated based on a modified El Haddad model, which is in good agreement with the experimental results. Fatigue life for both the casting and HIP specimens is well predicted using the Fatigue Indicator Parameter (FIP) model. PMID:29320429
Study on Dynamic Strain Aging and Low-Cycle Fatigue of Stainless Steel in Ultra-Supercritical Unit
NASA Astrophysics Data System (ADS)
Hongwei, Zhou; Yizhu, He; Jizu, Lv; Sixian, Rao
Dynamic strain aging (DSA) and low-cycle fatigue (LCF) behavior of TP347H stainless steel in ultra-supercritical unit were investigated at 550-650 °C. All the LCF tests were carried out under a fully-reversed, total axial strain control mode at the total strain amplitude from ±0.2% to ±1.0%. The effects of DSA in cyclic stress response, microstructure evolution and fatigue fracture surfaces and fatigue life were investigated in detail. The results show that DSA occurs during tensile, which is manifested as serrated flow in tensile stress-strain curves. The apparent activation energy for appearing of serrations in tensile stress-strain curves was 270 kJ/mol. Pipe diffusion of substitutional solutes such as Cr and Nb along the dislocation core, and strong interactions between segregated solutes and dislocations are considered as the mechanism of DSA. DSA partly restricts dislocation cross-slip, and dislocation cross-slip and planar-slip happen simultaneously during LCF. A lot of planar structures form, which is due to dislocation gliding on the special plane. This localized deformation structures result in many crack initiation sites. Meanwhile, DSA hardening increases cyclic stress response, accelerating crack propagation, which reduces high temperature strain fatigue life of steel.
Moisture Risk in Unvented Attics Due to Air Leakage Paths
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prahl, D.; Shaffer, M.
2014-11-01
IBACOS completed an initial analysis of moisture damage potential in an unvented attic insulated with closed-cell spray polyurethane foam. To complete this analysis, the research team collected field data, used computational fluid dynamics to quantify the airflow rates through individual airflow (crack) paths, simulated hourly flow rates through the leakage paths with CONTAM software, correlated the CONTAM flow rates with indoor humidity ratios from Building Energy Optimization software, and used Wärme und Feuchte instationär Pro two-dimensional modeling to determine the moisture content of the building materials surrounding the cracks. Given the number of simplifying assumptions and numerical models associated withmore » this analysis, the results indicate that localized damage due to high moisture content of the roof sheathing is possible under very low airflow rates. Reducing the number of assumptions and approximations through field studies and laboratory experiments would be valuable to understand the real-world moisture damage potential in unvented attics.« less
Moisture Risk in Unvented Attics Due to Air Leakage Paths
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prahl, D.; Shaffer, M.
2014-11-01
IBACOS completed an initial analysis of moisture damage potential in an unvented attic insulated with closed-cell spray polyurethane foam. To complete this analysis, the research team collected field data, used computational fluid dynamics to quantify the airflow rates through individual airflow (crack) paths, simulated hourly flow rates through the leakage paths with CONTAM software, correlated the CONTAM flow rates with indoor humidity ratios from Building Energy Optimization software, and used Warme und Feuchte instationar Pro two-dimensional modeling to determine the moisture content of the building materials surrounding the cracks. Given the number of simplifying assumptions and numerical models associated withmore » this analysis, the results indicate that localized damage due to high moisture content of the roof sheathing is possible under very low airflow rates. Reducing the number of assumptions and approximations through field studies and laboratory experiments would be valuable to understand the real-world moisture damage potential in unvented attics.« less
Damage Tolerant Repair Techniques for Pressurized Aircraft Fuselages
1994-01-01
2 if20 20 offset 50, fatigue GST, GLARE 2 if20 20 static, no fatigue *Unidirectional SP500 carbon/epoxy tape . "* Fatigue load did not initiate a crack...Et value, so this is a reasonable assumption. It further implies zero crack opening under the patch. The Erdogan solution [51 for two collinear...Cr Figure 6. 11. Idealization of patched crack as unfailed ligament between two collinear cracks (after [5, 6)). The Erdogan solution leads to the AK
Damage Tolerant Repair Techniques for Pressurized Aircraft Fuselages
1994-06-06
crack patching effectiveness, long cracks ( Erdogan ) 186 Vii Acknowledgments My three years of Ph.D. work would have been impossible without the...fatigue GST, GLARE 2 " " 20 20 static, no fatigue *Unidirectional SP500 carbon/epoxy tape . *Fatigue load did not initiate a crack. The saw cut was...assurnption It further implies zero crack opening under the pat(:r The Erdogan solutior (51 for two Coiinear Ctacks can be expressed as: %A F -. " (621 F
1991-05-01
next generation of hk,- s-performance jet engines will require markedly stiffer materials, operating at higher stress levels anw. :apable of...the crack tip, and fatigue-crack propagation is observed at stress -intensity levels as low as 6 MPa&m, far below those required to initiate cracking...The next generation of high-performance jet engines will require markedly stiffer materials, operating at higher stress levels and capable of
Analysis of delamination in cross-ply laminates initiating from impact induced matrix cracking
NASA Technical Reports Server (NTRS)
Salpekar, S. A.
1993-01-01
Two-dimensional finite element analyses of (02/90(8)/02) glass/epoxy and graphite/epoxy composite laminates were performed to investigate some of the characteristics of damage development due to an impact load. A cross section through the thickness of the laminate with fixed ends, and carrying a transverse load in the center, was analyzed. Inclined matrix cracks, such as those produced by a low-velocity impact, were modeled in the 90 deg ply group. The introduction of the matrix cracks caused large interlaminar tensile and shear stresses in the vicinity of both crack tips in the 0/90 and 90/0 interfaces, indicating that matrix cracking may give rise to delamination. The ratio of Mode I to total strain energy release rate, G(I)/G(total), at the beginning of delamination, calculated at the two (top and bottom) matrix crack tips was 60 and 28 percent, respectively, in the glass/epoxy laminate. The corresponding ratio was 97 and 77 percent in the graphite/epoxy laminate. Thus, a significant Mode I component of strain energy release rate may be present at the delamination initiation due to an impact load. The value of strain energy release rate at either crack tip increased due to an increase in the delamination length at the other crack tip and may give rise to an unstable delamination growth under constant load.
A methodology for the investigation of toughness and crack propagation in mouse bone.
Carriero, Alessandra; Zimmermann, Elizabeth A; Shefelbine, Sandra J; Ritchie, Robert O
2014-11-01
Bone fracture is a health concern for those with aged bone and brittle bone diseases. Mouse bone is widely used as a model of human bone, especially to investigate preclinical treatment strategies. However, little is known about the mechanisms of mouse bone fracture and its similarities and differences from fracture in human bone. In this work we present a methodology to investigate the fracture toughness during crack initiation and crack propagation for mouse bone. Mouse femora were dissected, polished on their periosteal surface, notched on the posterior surface at their mid-diaphysis, and tested in three-point bending under displacement control at a rate of 0.1mm/min using an in situ loading stage within an environmental scanning electron microscope. We obtained high-resolution real-time imaging of the crack initiation and propagation in mouse bone. From the images we can measure the crack extension at each step of the crack growth and calculate the toughness of the bone (in terms of stress intensity factor (K) and work to fracture (Wf)) as a function of stable crack length (Δa), thus generating a resistance curve for the mouse bone. The technique presented here provides insight into the evolution of microdamage and the toughening mechanisms that resist crack propagation, which are essential for preclinical development of treatments to enhance bone quality and combat fracture risk. Copyright © 2014 Elsevier Ltd. All rights reserved.
Northwest Manufacturing Initiative
2012-03-27
crack growth and threshold stress corrosion cracking evaluation. Threshold stress corrosion cracking was done using the rising step load method with...Group Technology methods to establish manufacturing cells for production efficiency, to develop internal Lean Champions, and to implement rapid... different levels, advisory, core, etc. VI. Core steering committee composed of members that have a significant vested interest. Action Item: Draft
Crack Initiation and Growth Behavior at Corrosion Pit in 7075-T6 High Strength Aluminum Alloy
2013-06-01
Corrosion Fatigue Corrosion fatigue is defined as the failure of metal due to a cyclical load in combination with exposure to a caustic environment...lifetime is spent creating the crack while the actual crack growth makes up a smaller portion of the total lifetime. With corrosion fatigue however
Crack Initiation and Growth Behavior at Corrosion Pit in 2024-T3 Aluminum Alloy
2014-09-01
63 Figure B.1: The crack length vs. number of cycles during fatigue testing for the 2AI-01 specimen...number of cycles during fatigue testing for the the 2AI- 02 specimen...64 Figure B.3: The crack length vs. number of cycles during fatigue testing for the 2Sl-01 specimen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naragani, Diwakar; Sangid, Michael D.; Shade, Paul A.
Crack initiation at inclusions is a dominant, unavoidable and life-limiting failure mechanism of important structural materials. Fatigue progresses in a complex manner to find the ‘weakest link’ in the microstructure, leading to crack nucleation. In this study, fully 3-D characterization methods using high-energy synchrotron x-rays are combined with in-situ mechanical testing to study the crack initiation mechanism in a Ni-based superalloy specimen. The specimen was produced via powder metallurgy and seeded with a non-metallic inclusion. Two x-ray techniques were employed: absorption contrast computed micro-tomography (μ-CT) to determine the morphology of the inclusion and its location in the gauge section ofmore » the specimen; and far-field high-energy diffraction microscopy (FF-HEDM) to resolve the centroids, average orientations, and lattice strains of the individual grains comprising the microstructure surrounding the inclusion. Sequential μ-CT and FF-HEDM scans were carried out at both peak and zero applied stress following schedules of cyclic deformation. The µ-CT data showed the onset and location of crack initiation, and the FF-HEDM data provided temporal and spatial evolution of the intergranular strains. Strain partitioning and the associated stress heterogeneities that develop are shown to stabilize within a few loading cycles. Elasto-viscoplastic fast Fourier transform simulations were utilized to supplement interpretation of the experimental stress distributions and compared with the experimental stress distributions. In conclusion, appropriate conditions for crack nucleation in the form of stress gradients were demonstrated and created by virtue of the inclusion, specifically the residual stress state and local bonding state at the inclusion-matrix interface.« less
Naragani, Diwakar; Sangid, Michael D.; Shade, Paul A.; ...
2017-07-14
Crack initiation at inclusions is a dominant, unavoidable and life-limiting failure mechanism of important structural materials. Fatigue progresses in a complex manner to find the ‘weakest link’ in the microstructure, leading to crack nucleation. In this study, fully 3-D characterization methods using high-energy synchrotron x-rays are combined with in-situ mechanical testing to study the crack initiation mechanism in a Ni-based superalloy specimen. The specimen was produced via powder metallurgy and seeded with a non-metallic inclusion. Two x-ray techniques were employed: absorption contrast computed micro-tomography (μ-CT) to determine the morphology of the inclusion and its location in the gauge section ofmore » the specimen; and far-field high-energy diffraction microscopy (FF-HEDM) to resolve the centroids, average orientations, and lattice strains of the individual grains comprising the microstructure surrounding the inclusion. Sequential μ-CT and FF-HEDM scans were carried out at both peak and zero applied stress following schedules of cyclic deformation. The µ-CT data showed the onset and location of crack initiation, and the FF-HEDM data provided temporal and spatial evolution of the intergranular strains. Strain partitioning and the associated stress heterogeneities that develop are shown to stabilize within a few loading cycles. Elasto-viscoplastic fast Fourier transform simulations were utilized to supplement interpretation of the experimental stress distributions and compared with the experimental stress distributions. In conclusion, appropriate conditions for crack nucleation in the form of stress gradients were demonstrated and created by virtue of the inclusion, specifically the residual stress state and local bonding state at the inclusion-matrix interface.« less
Analytical and experimental investigation of fatigue in lap joints
NASA Astrophysics Data System (ADS)
Swenson, Daniel V.; Chih-Chien, Chia; Derber, Thomas G.
A finite element model is presented that can simulate crack growth in layered structures such as lap joints. The layers can be joined either by rivets or adhesives. The crack is represented discretely in the mesh, and automatic remeshing is performed as the crack grows. Because of the connections between the layers, load is transferred to the uncracked layer as the crack grows. This reduces the stress intensity and slows the crack growth rate. The model is used to analyze tests performed on a section of a wing spanwise lap joint. The crack was initiated at a rivet and grown under constant amplitude cyclic loads. Both experimentally observed crack growth rates and the analysis show the retardation that occurs as a result of load transfer between layers. A good correlation is obtained between predicted and observed crack growth rates for the fullly developed through-thickness crack.
NASA Astrophysics Data System (ADS)
Yang, Minghong; Qi, Hongji; Zhao, Yuanan; Yi, Kui
2012-01-01
The 355 nm laser-induced damage thresholds (LIDTs) of polished fused silica with and without the residual subsurface cracks were explored. HF based wet etching and magnetorheological finishing was used to remove the subsurface cracks. To isolate the effect of subsurface cracks, chemical leaching was used to eliminate the photoactive impurities in the polishing layer. Results show that the crack number density decreased from~103 to <1cm-2, and the LIDT was improved as high as 2.8-fold with both the subsurface cracks and the polishing layer being removed. Subsurface cracks play a significant role in laser damage at fluencies between 15~31 J/cm2 (355nm, 8ns). HF Etching of the cracks was shown to increase the damage performance as nearly high as that of the samples in which subsurface cracks are well controlled.
Fatigue life and crack growth prediction methodology
NASA Technical Reports Server (NTRS)
Newman, J. C., Jr.; Phillips, E. P.; Everett, R. A., Jr.
1993-01-01
The capabilities of a plasticity-induced crack-closure model and life-prediction code to predict fatigue crack growth and fatigue lives of metallic materials are reviewed. Crack-tip constraint factors, to account for three-dimensional effects, were selected to correlate large-crack growth rate data as a function of the effective-stress-intensity factor range (delta(K(sub eff))) under constant-amplitude loading. Some modifications to the delta(K(sub eff))-rate relations were needed in the near threshold regime to fit small-crack growth rate behavior and endurance limits. The model was then used to calculate small- and large-crack growth rates, and in some cases total fatigue lives, for several aluminum and titanium alloys under constant-amplitude, variable-amplitude, and spectrum loading. Fatigue lives were calculated using the crack growth relations and microstructural features like those that initiated cracks. Results from the tests and analyses agreed well.
Simulation of 90{degrees} ply fatigue crack growth along the width of cross-ply carbon-epoxy coupons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henaff-Gardin, C.; Urwald, E.; Lafarie-Frenot, M.C.
1994-07-01
We study the mechanism of fatigue cracking of the matrix of cross-ply carbon-epoxy laminates. Primary attention is given to the study of the influence of the specimen width on the evolution of damage. On the basis of shear lag analysis, we determine the strain energy release rate in the processes of initiation and growth of transverse fatigue cracks. We also present results of experimental research on the evolution of the edge crack density per ply, the average length of the cracks, and the crack propagation rate under transverse fatigue cracking. It is shown that these characteristics are independent of themore » specimen width. At the same time, as soon as the edge crack density reaches its saturation value, the average crack growth rate becomes constant. All the experimental results are in good agreement with results obtained by using the theoretical model.« less
Corrosion-Fatigue Crack Growth in Plates: A Model Based on the Paris Law
Toribio, Jesús; Matos, Juan-Carlos; González, Beatriz
2017-01-01
In this paper, a Paris law-based model is presented whereby crack propagation occurs under cyclic loading in air (fatigue) and in an aggressive environment (corrosion-fatigue) for the case of corner cracks (with a wide range of aspect ratios in the matter of the initial cracks) in finite-thickness plates of 316L austenitic stainless steel subjected to tension, bending, or combined (tension + bending) loading. Results show that the cracks tend during their growth towards a preferential propagation path, exhibiting aspect ratios slightly lower than unity only for the case of very shallow cracks, and diminishing as the crack grows (increasing the relative crack depth)—more intensely in the case of bending than in the case of tension (the mixed loading tension/bending representing an intermediate case). In addition, the crack aspect ratios during fatigue propagation evolution are lower in fatigue (in air) than in corrosion-fatigue (in aggressive environment). PMID:28772798
Geometry and Material Constraint Effects on Creep Crack Growth Behavior in Welded Joints
NASA Astrophysics Data System (ADS)
Li, Y.; Wang, G. Z.; Xuan, F. Z.; Tu, S. T.
2017-02-01
In this work, the geometry and material constraint effects on creep crack growth (CCG) and behavior in welded joints were investigated. The CCG paths and rates of two kinds of specimen geometry (C(T) and M(T)) with initial cracks located at soft HAZ (heat-affected zone with lower creep strength) and different material mismatches were simulated. The effect of constraint on creep crack initiation (CCI) time was discussed. The results show that there exists interaction between geometry and material constraints in terms of their effects on CCG rate and CCI time of welded joints. Under the condition of low geometry constraint, the effect of material constraint on CCG rate and CCI time becomes more obvious. Higher material constraint can promote CCG due to the formation of higher stress triaxiality around crack tip. Higher geometry constraint can increase CCG rate and reduce CCI time of welded joints. Both geometry and material constraints should be considered in creep life assessment and design for high-temperature welded components.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Linwen; Université de Sherbrooke, Quebec; François, Raoul, E-mail: raoul.francois@insa-toulouse.fr
2015-01-15
This paper deals with corrosion initiation and propagation in pre-cracked reinforced concrete beams under sustained loading during exposure to a chloride environment. Specimen beams that were cast in 2010 were compared to specimens cast in 1984. The only differences between the two sets of beams were the casting direction in relation to tensile reinforcement and the exposure conditions in the salt-fog chamber. The cracking maps, corrosion maps, chloride profiles, and cross-sectional loss of one group of two beams cast in 2010 were studied and their calculated corrosion rates were compared to that of beams cast in 1984 in order tomore » investigate the factors influencing the natural corrosion process. Experimental results show that, after rapid initiation of corrosion at the crack tip, the corrosion process practically halted and the time elapsing before corrosion resumed depended on the exposure conditions and cover depth.« less
Delamination initiated by a defect
NASA Astrophysics Data System (ADS)
Biel, A.; Toftegaard, H.
2016-07-01
Composite materials in wind turbines are mainly joined with adhesives. Adhesive joining is preferable since it distributes the stresses over a larger area. This study shows how a defect can influence the fracture behaviour of adhesively joined composite. Repeated experiments are performed using double cantilever beam specimens loaded with bending moments. The specimens consist of two 8 mm thick GFRP-laminates which are joined by a 3 mm thick epoxy adhesive. A thin foil close to one of the laminates is used to start the crack. For some of the specimens a defect is created by an initial load-unload operation. During this operation, a clamp is used in order to prevent crack propagation in the main direction. For the specimens without defect, the crack propagates in the middle of the adhesive layer. For the specimens with defect, the crack directly deviates into the laminate. After about 25 mm propagation in the laminate, the crack returns to the adhesive. Compared to the adhesive the fracture energy for the laminate is significantly higher.
Erasure of memory in paste by irradiation of ultrasonic waves
NASA Astrophysics Data System (ADS)
Nakahara, Akio; Yoneyama, Ryota; Ito, Maruto; Matsuo, Yousuke; Kitsunezaki, So
2017-06-01
Densely packed colloidal suspension, called paste, remembers the direction of applied forces, such as vibration and flow, and these memories kept in paste can be visualized as morphology of desiccation crack patterns. For example, when the paste remembers the direction of vibration, all primary cracks propagate in the direction perpendicular to the direction of initial vibration. On the other hand, when the paste remembers the direction of flow, all primary cracks propagate along the direction of initial flow. These results indicate that external forces imprint easy-breakable direction into paste as memories. Therefore, by controlling memories in paste, we can tune to produce various types of crack patterns, such as cellular, radial, lamellar, ring, spiral and lattice structures. Recently we have found that memories in paste can be erased by the irradiation of ultrasonic waves to paste as we obtain only isotropic and cellular crack patterns without any anisotropy related to memory effect. This method can be applied to increase the breaking strength of dried paste by homogenizing microstructure in paste.
NASA Astrophysics Data System (ADS)
Smith, D. E.; Aagaard, B. T.; Heaton, T. H.
2001-12-01
It has been hypothesized (Brune, 1996) that teleseismic inversions may underestimate the moment of shallow thrust fault earthquakes if energy becomes trapped in the hanging wall of the fault, i.e. if the fault boundary becomes opaque. We address this by creating and analyzing synthetic P and SH seismograms for a variety of friction models. There are a total of five models: (1) crack model (slip weakening) with instantaneous healing (2) crack model without healing (3) crack model with zero sliding friction (4) pulse model (slip and rate weakening) (5) prescribed model (Haskell-like rupture with the same final slip and peak slip-rate as model 4). Models 1-4 are all dynamic models where fault friction laws determine the rupture history. This allows feedback between the ongoing rupture and waves from the beginning of the rupture that hit the surface and reflect downwards. Hence, models 1-4 can exhibit opaque fault characteristics. Model 5, a prescribed rupture, allows for no interaction between the rupture and reflected waves, therefore, it is a transparent fault. We first produce source time functions for the different friction models by rupturing shallow thrust faults in 3-D dynamic finite-element simulations. The source time functions are used as point dislocations in a teleseismic body-wave code. We examine the P and SH waves for different azimuths and epicentral distances. The peak P and S first arrival displacement amplitudes for the crack, crack with healing and pulse models are all very similar. These dynamic models with opaque faults produce smaller peak P and S first arrivals than the prescribed, transparent fault. For example, a fault with strike = 90 degrees, azimuth = 45 degrees has P arrivals smaller by about 30% and S arrivals smaller by about 15%. The only dynamic model that doesn't fit this pattern is the crack model with zero sliding friction. It oscillates around its equilibrium position; therefore, it overshoots and yields an excessively large peak first arrival. In general, it appears that the dynamic, opaque faults have smaller peak teleseismic displacements that would lead to lower moment estimates by a modest amount.
Lee, Jae-Hwang; Loya, Phillip E; Lou, Jun; Thomas, Edwin L
2014-11-28
Multilayer graphene is an exceptional anisotropic material due to its layered structure composed of two-dimensional carbon lattices. Although the intrinsic mechanical properties of graphene have been investigated at quasi-static conditions, its behavior under extreme dynamic conditions has not yet been studied. We report the high-strain-rate behavior of multilayer graphene over a range of thicknesses from 10 to 100 nanometers by using miniaturized ballistic tests. Tensile stretching of the membrane into a cone shape is followed by initiation of radial cracks that approximately follow crystallographic directions and extend outward well beyond the impact area. The specific penetration energy for multilayer graphene is ~10 times more than literature values for macroscopic steel sheets at 600 meters per second. Copyright © 2014, American Association for the Advancement of Science.
Linking Carbon Flux Dynamics and Soil Structure in Dryland Soils
NASA Astrophysics Data System (ADS)
DeCarlo, K. F.; Caylor, K. K.
2016-12-01
Biological sources in the form of microbes and plants play a fundamental role in determining the magnitude of carbon flux. However, the geophysical structure of the soil (which the carbon must pass through before entering the atmosphere) often serves as a constraining entity, which has the potential to serve as instigators or mitigators of those carbon and hydrologic flux processes. We characterized soil carbon dynamics in three dryland soil systems: bioturbated soils, biocompacted soils, and undisturbed soils. Carbon fluxes were characterized using a closed-system respiration chamber, with CO2 concentration differences measured using an infrared gas analyzer (IRGA). Structure of the soil systems, with a focus on the macro-crack structure, were characterized using a combined resin-casting/X-ray imaging technique. Results show fundamental differences in carbon dynamics between the different soil systems/structures: control soils have gaussian distributions of carbon flux that decrease with progressive drying of the soil, while biocompacted soils exhibit exponentially distributed fluxes that do not regularly decrease with increased drying of the soil. Bioturbated soils also exhibit an exponential distribution of carbon flux, though at a much higher magnitude. These differences are evaluated in the context of the underlying soil structure: while the control soils exhibit a shallow and narrow crack structure, the biocompacted soils exhibit a "systematic" crack network with moderate cracking intensity and large depth. The deep crack networks of the biocompacted soils may serve to physically enhance an otherwise weak source of carbon via advection and/or convection, inducing fluxes that are equal or greater than an otherwise carbon-rich soil. The bioturbated soils exhibit a "surficial" crack network that is shallow but extensive, but additionally have deep holes known to convectively vent carbon, which may explain their periodically large carbon fluxes. Our results suggest that variability in soil structure, as well as carbon source, plays a fundamental role in carbon flux dynamics, and the importance of evaluating biological carbon source and geophysical soil structure in a dryland environment.
Xue, Wen; Chen, Ju; Jiang, Ao-yu
2018-01-01
The corrosion development of the reinforcement and shear stud connectors in the cracked steel–concrete composite beams under the salt-fog wet–dry cycles is presented in this investigation. Seven identical composite beams with load-induced concrete cracks were exposed to an aggressive chloride environment. The reinforcement and shear connectors were retrieved after specimens underwent a specified number of wet–dry cycles to obtain the corrosion pattern and the cross-section loss at different exposure times and their evolutions. The crack map, the corrosion pattern and the cross-section loss were measured and presented. Based on the experimental results, the influence of crack characteristics, including crack widths, orientations and positions on the corrosion rate and distribution, were accessed. Moreover, the effects of the connecting weldments on the corrosion initiations and patterns were analyzed. It was shown that the corrosion rate would increase with the number of wet–dry cycles. The characteristics of load-induced cracks could have different influences on the steel grids and shear stud connectors. The corrosion tended to initiate from the connecting weldments, due to the potential difference with the parent steel and the aggressive exposure environment, leading to a preferential weldment attack. PMID:29565836
NASA Astrophysics Data System (ADS)
Li, Bing Qiuyi; Einstein, Herbert H.
2017-09-01
We present an experimental study in which a pre-notched specimen of Barre Granite was subjected to four point bending under crack mouth opening displacement control. The experimental observations consisted of load-displacement measurements, acoustic emissions, and photography on a macroscopic ( cm) as well as microscopic ( μm) scale. These observations were compared and analysed to better understand process zone development and crack propagation. Load-displacement data showed that the load reaches its maximum at crack initiation, and the machine input work is constant while the crack propagates. AE moment magnitudes between Mw = -6 to -10 were observed, and focal mechanisms consisted of both shear and tensile components. During process zone development, AE formed a large cloud of events located near the notch tip and then tended to occur away from the notch tip as the crack propagated. Image analysis at the microscopic scale showed that microcracks formed and coalesced during process zone development; specifically, the microcracks initiated in tension and then propagated as a series of en-echelon cracks. In general, the synthesis of the three observations showed that a wider bulb of activity at lower energy tended to occur during process zone development, while crack propagation tended to be more spatially concentrated and contained higher energy.
Hydrogen-Assisted Crack Propagation in Austenitic Stainless Steel Fusion Welds
NASA Astrophysics Data System (ADS)
Somerday, B. P.; Dadfarnia, M.; Balch, D. K.; Nibur, K. A.; Cadden, C. H.; Sofronis, P.
2009-10-01
The objective of this study was to characterize hydrogen-assisted crack propagation in gas-tungsten arc (GTA) welds of the nitrogen-strengthened, austenitic stainless steel 21Cr-6Ni-9Mn (21-6-9), using fracture mechanics methods. The fracture initiation toughness and crack growth resistance curves were measured using fracture mechanics specimens that were thermally precharged with 230 wppm (1.3 at. pct) hydrogen. The fracture initiation toughness and slope of the crack growth resistance curve for the hydrogen-precharged weld were reduced by as much as 60 and 90 pct, respectively, relative to the noncharged weld. A physical model for hydrogen-assisted crack propagation in the welds was formulated from microscopy evidence and finite-element modeling. Hydrogen-assisted crack propagation proceeded by a sequence of microcrack formation at the weld ferrite, intense shear deformation in the ligaments separating microcracks, and then fracture of the ligaments. One salient role of hydrogen in the crack propagation process was promoting microcrack formation at austenite/ferrite interfaces and within the ferrite. In addition, hydrogen may have facilitated intense shear deformation in the ligaments separating microcracks. The intense shear deformation could be related to the development of a nonuniform distribution of hydrogen trapped at dislocations between microcracks, which in turn created a gradient in the local flow stress.
Crack Cocaine Injection Practices and HIV Risk: Findings From New York and Bridgeport
Lankenau, Stephen E.; Clatts, Michael C.; Goldsamt, Lloyd A.; Welle, Dorinda L.
2007-01-01
This article examines the behavioral practices and health risks associated with preparing crack cocaine for injection. Using an ethno-epidemiological approach, injection drug users (n=38) were recruited between 1999 and 2000 from public settings in New York City and Bridgeport, Connecticut and responded to a semistructured interview focusing on crack injection initiation and their most recent crack injection. Study findings indicate that methods of preparing crack for injection were impacted by a transforming agent, heat applied to the “cooker,” heroin use, age of the injector, and geographic location of the injector. The findings suggest that crack injectors use a variety of methods to prepare crack, which may carry different risks for the transmission of bloodborne pathogens. In particular, crack injection may be an important factor in the current HIV epidemic. PMID:18079990
NSTS Orbiter auxiliary power unit turbine wheel cracking risk assessment
NASA Technical Reports Server (NTRS)
Cruse, T. A.; Mcclung, R. C.; Torng, T. Y.
1992-01-01
The present investigation of turbine-wheel cracking problems in the hydrazine-fueled APU turbine wheel of the Space Shuttle Orbiter's Main Engines has indicated the efficacy of systematic probabilistic risk assessment in flight certification and safety resolution. Nevertheless, real crack-initiation and propagation problems do not lend themselves to purely analytical studies. The high-cycle fatigue problem is noted to generally be unsuited to probabilistic modeling, due to its extremely high degree of intrinsic scatter. In the case treated, the cracks appear to trend toward crack arrest in a low cycle fatigue mode, due to a detuning of the resonance model.
Automatic crack detection method for loaded coal in vibration failure process
Li, Chengwu
2017-01-01
In the coal mining process, the destabilization of loaded coal mass is a prerequisite for coal and rock dynamic disaster, and surface cracks of the coal and rock mass are important indicators, reflecting the current state of the coal body. The detection of surface cracks in the coal body plays an important role in coal mine safety monitoring. In this paper, a method for detecting the surface cracks of loaded coal by a vibration failure process is proposed based on the characteristics of the surface cracks of coal and support vector machine (SVM). A large number of cracked images are obtained by establishing a vibration-induced failure test system and industrial camera. Histogram equalization and a hysteresis threshold algorithm were used to reduce the noise and emphasize the crack; then, 600 images and regions, including cracks and non-cracks, were manually labelled. In the crack feature extraction stage, eight features of the cracks are extracted to distinguish cracks from other objects. Finally, a crack identification model with an accuracy over 95% was trained by inputting the labelled sample images into the SVM classifier. The experimental results show that the proposed algorithm has a higher accuracy than the conventional algorithm and can effectively identify cracks on the surface of the coal and rock mass automatically. PMID:28973032
Automatic crack detection method for loaded coal in vibration failure process.
Li, Chengwu; Ai, Dihao
2017-01-01
In the coal mining process, the destabilization of loaded coal mass is a prerequisite for coal and rock dynamic disaster, and surface cracks of the coal and rock mass are important indicators, reflecting the current state of the coal body. The detection of surface cracks in the coal body plays an important role in coal mine safety monitoring. In this paper, a method for detecting the surface cracks of loaded coal by a vibration failure process is proposed based on the characteristics of the surface cracks of coal and support vector machine (SVM). A large number of cracked images are obtained by establishing a vibration-induced failure test system and industrial camera. Histogram equalization and a hysteresis threshold algorithm were used to reduce the noise and emphasize the crack; then, 600 images and regions, including cracks and non-cracks, were manually labelled. In the crack feature extraction stage, eight features of the cracks are extracted to distinguish cracks from other objects. Finally, a crack identification model with an accuracy over 95% was trained by inputting the labelled sample images into the SVM classifier. The experimental results show that the proposed algorithm has a higher accuracy than the conventional algorithm and can effectively identify cracks on the surface of the coal and rock mass automatically.
Concrete Behavior under Dynamic Tensile-Compressive Load.
1984-01-01
be reviewed as well. Although structural concrete does not possess the thermal cracking problems during curing to the extent that mass concrete does...reasonable bounds for these unknown properties were assumed, suggests that the extent of cracking induced by seismic ground motion can be very...space. But an understanding of biaxial tension-compression be- havior is the foremost concern, since the stress state of a dam’s cracked regions occur in
Cascaded image analysis for dynamic crack detection in material testing
NASA Astrophysics Data System (ADS)
Hampel, U.; Maas, H.-G.
Concrete probes in civil engineering material testing often show fissures or hairline-cracks. These cracks develop dynamically. Starting at a width of a few microns, they usually cannot be detected visually or in an image of a camera imaging the whole probe. Conventional image analysis techniques will detect fissures only if they show a width in the order of one pixel. To be able to detect and measure fissures with a width of a fraction of a pixel at an early stage of their development, a cascaded image analysis approach has been developed, implemented and tested. The basic idea of the approach is to detect discontinuities in dense surface deformation vector fields. These deformation vector fields between consecutive stereo image pairs, which are generated by cross correlation or least squares matching, show a precision in the order of 1/50 pixel. Hairline-cracks can be detected and measured by applying edge detection techniques such as a Sobel operator to the results of the image matching process. Cracks will show up as linear discontinuities in the deformation vector field and can be vectorized by edge chaining. In practical tests of the method, cracks with a width of 1/20 pixel could be detected, and their width could be determined at a precision of 1/50 pixel.
Small crack test program for helicopter materials
NASA Technical Reports Server (NTRS)
Annigeri, Bal; Schneider, George
1994-01-01
Crack propagation tests were conducted to determine crack growth behavior in five helicopter materials for surface cracks between 0.005 to 0.020 inches in depth. Constant amplitude tests were conducted at stress ratios R equals 0.1 and 0.5, and emphasis was placed on near threshold data (i.e., 10-8 to 10-6 inches/cycle). Spectrum tests were conducted using a helicopter spectrum. The test specimen was an unnotched tension specimen, and cracks were initiated from a small EDM notch. An optical/video system was used to monitor crack growth. The material for the test specimens was obtained from helicopter part forgings. Testing was conducted at stresses below yield to reflect actual stresses in helicopter parts.
Subsize specimen testing of nuclear reactor pressure vessel material
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, A.S.; Rosinski, S.T.; Cannon, N.S.
1991-12-31
A new methodology is proposed to correlate the upper shelf energy (USE) of full size and subsize Charpy specimens of a nuclear reactor pressure vessel plate material, A533B. The methodology appears to be more satisfactory than the methodologies proposed earlier. USE of a notched-only specimen is partitioned into macro-crack initiation and crack propagation energies. USE of a notched and precracked specimen provides the crack propagation energy. {Delta}USE, the difference between the USE`s of notched-only and precracked specimens, is an estimate of the crack initiation energy. {Delta}USE was normalized by a factor involving the dimensions of the Charpy specimen and themore » stress concentration factor at the notch root. The normalized values of the {Delta}USE were found to be invariant with specimen size.« less
Evaluation of the C* Model for Addressing Short Fatigue Crack Growth
2008-10-01
FASTRAN/CGAP, the internal solution which evaluates the crack growth independently in the thickness and width direction was used . The analysis ...that used for the FASTRAN/CGAP analysis . The initial crack size used for all the models is 77 μm, as per [8]. From the viewpoint of engineering...Haddad Model, a0=0.05 mm El Haddad Model, a0=0.103 mm Figure 17: Comparison of crack growth analysis using modified El Haddad approach with
A Continuum-Atomistic Analysis of Transgranular Crack Propagation in Aluminum
NASA Technical Reports Server (NTRS)
Yamakov, V.; Saether, E.; Glaessgen, E.
2009-01-01
A concurrent multiscale modeling methodology that embeds a molecular dynamics (MD) region within a finite element (FEM) domain is used to study plastic processes at a crack tip in a single crystal of aluminum. The case of mode I loading is studied. A transition from deformation twinning to full dislocation emission from the crack tip is found when the crack plane is rotated around the [111] crystallographic axis. When the crack plane normal coincides with the [112] twinning direction, the crack propagates through a twinning mechanism. When the crack plane normal coincides with the [011] slip direction, the crack propagates through the emission of full dislocations. In intermediate orientations, a transition from full dislocation emission to twinning is found to occur with an increase in the stress intensity at the crack tip. This finding confirms the suggestion that the very high strain rates, inherently present in MD simulations, which produce higher stress intensities at the crack tip, over-predict the tendency for deformation twinning compared to experiments. The present study, therefore, aims to develop a more realistic and accurate predictive modeling of fracture processes.
NASA Astrophysics Data System (ADS)
Toni Liong, Rugerri; Proppe, Carsten
2013-04-01
The breathing mechanism of a transversely cracked rotor and its influence on a rotor system that appears due to shaft weight and inertia forces is studied. A method is proposed for the evaluation of the stiffness losses in the cross-section that contains the crack. This method is based on a cohesive zone model (CZM) instead of linear elastic fracture mechanics (LEFM). The CZM is developed for mode-I plane strain conditions and accounts explicitly for triaxiality of the stress state by using constitutive relations. The breathing crack is modelled by a parabolic shape. As long as the relative crack depth is small, a crack closure straight line model may be used, while the crack closure parabolic line should be used in the case of a deep crack. The CZM is also implemented in a one-dimensional continuum rotor model by means of finite element (FE) discretisation in order to predict and to analyse the dynamic behavior of a cracked rotor. The proposed method provides a useful tool for the analysis of rotor systems containing cracks.
NASA Technical Reports Server (NTRS)
Lu, M. C.; Erdogan, F.
1980-01-01
The basic crack problem which is essential for the study of subcritical crack propagation and fracture of layered structural materials is considered. Because of the apparent analytical difficulties, the problem is idealized as one of plane strain or plane stress. An additional simplifying assumption is made by restricting the formulation of the problem to crack geometries and loading conditions which have a plane of symmetry perpendicular to the interface. The general problem is formulated in terms of a coupled system of four integral equations. For each relevant crack configuration of practical interest, the singular behavior of the solution near and at the ends and points of intersection of the cracks is investigated and the related characteristic equations are obtained. The edge crack terminating at and crossing the interface, the T-shaped crack consisting of a broken layer and a delamination crack, the cross-shaped crack which consists of a delamination crack intersecting a crack which is perpendicular to the interface, and a delamination crack initiating from a stress-free boundary of the bonded layers are some of the practical crack geometries considered.
NASA Astrophysics Data System (ADS)
Zhang, Yuwei; Guo, Zhansheng
2018-03-01
Mechanical degradation, especially fractures in active particles in an electrode, is a major reason why the capacity of lithium-ion batteries fades. This paper proposes a model that couples Li-ion diffusion, stress evolution, and damage mechanics to simulate the growth of central cracks in cathode particles (LiMn2O4) by an extended finite element method by considering the influence of multiple factors. The simulation shows that particles are likely to crack at a high discharge rate, when the particle radius is large, or when the initial central crack is longer. It also shows that the maximum principal tensile stress decreases and cracking becomes more difficult when the influence of crack surface diffusion is considered. The fracturing process occurs according to the following stages: no crack growth, stable crack growth, and unstable crack growth. Changing the charge/discharge strategy before unstable crack growth sets in is beneficial to prevent further capacity fading during electrochemical cycling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palin, D., E-mail: d.palin@tudelft.nl; Jonkers, H. M.; Wiktor, V.
Concrete has an autogenous ability to heal cracks potentially contributing to its functional water tightness and durability. Here, we quantify the crack-healing capacity of sea-water submerged mortar specimens through a simple and rapid permeability test. Defined crack width geometries were created in blast furnace slag cement specimens allowing healed specimens to be quantified against unhealed specimens. Specimens with 0.2 mm wide cracks were not permeable after 28 days submersion. Specimens with 0.4 mm cracks had decreases in permeability of 66% after 28 days submersion, and 50–53% after 56 days submersion. Precipitation of aragonite and brucite in the cracks was themore » main cause of crack healing. Healing potential was dependent on the initial crack width, thermodynamic considerations and the amount of ions available in the crack. To our knowledge, this is the first study to quantify the functional autogenous healing capacity of cracked sea-water exposed cementitious specimens.« less
Jingjing, Zheng; Tiezhou, Hou; Hong, Tao; Xueyan, Guo; Cui, Wu
2014-10-01
This study aims to identify the crack tip stress intensity factor of the propagation process, crack propagation path, and the changes in the shape of the crack tip by the finite element method. The finite element model of dentino-enamel junction was established with ANSYS software, and the length of the initial crack in the single edge was set to 0.1 mm. The lower end of the sample was fixed. The tensile load of 1 MPa with frequency of 5 Hz was applied to the upper end. The stress intensity factor, deflection angle, and changes in the shape of the crack tip in the crack propagation were calculated by ANSYS. The stress intensity factor suddenly and continuously decreased in dentino-enamel junction as the crack extended. A large skewed angle appeared, and the stress on crack tip was reduced. The dentino-enamel junction on human teeth may resist crack propagation through stress reduction.
The crack problem for a half plane stiffened by elastic cover plates
NASA Technical Reports Server (NTRS)
Delale, F.; Erdogan, F.
1981-01-01
An elastic half plane containing a crack and stiffened by a cover plate is discussed. The asymptotic nature of the stress state in the half plane around an end point of the stiffener to determine the likely orientation of a possible fracture initiation and growth was studied. The problem is formulated for an arbitrary oriented radial crack in a system of singular integral equations. For an internal crack and for an edge crack, the problem is solved and the stress intensity factors at the crack tips and the interface stress are calculated. A cracked half plane with two symmetrically located cover plates is also considered. It is concluded that the case of two stiffeners appears to be more severe than that of a single stiffener.
Crack propagation of brittle rock under high geostress
NASA Astrophysics Data System (ADS)
Liu, Ning; Chu, Weijiang; Chen, Pingzhi
2018-03-01
Based on fracture mechanics and numerical methods, the characteristics and failure criterions of wall rock cracks including initiation, propagation, and coalescence are analyzed systematically under different conditions. In order to consider the interaction among cracks, adopt the sliding model of multi-cracks to simulate the splitting failure of rock in axial compress. The reinforcement of bolts and shotcrete supporting to rock mass can control the cracks propagation well. Adopt both theory analysis and simulation method to study the mechanism of controlling the propagation. The best fixed angle of bolts is calculated. Then use ansys to simulate the crack arrest function of bolt to crack. Analyze the influence of different factors on stress intensity factor. The method offer more scientific and rational criterion to evaluate the splitting failure of underground engineering under high geostress.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anandakumar, U.; Webb, J.E.; Singh, R.N.
The matrix cracking behavior of a zircon matrix - uniaxial SCS 6 fiber composite was studied as a function of initial flaw size and temperature. The composites were fabricated by a tape casting and hot pressing technique. Surface flaws of controlled size were introduced using a vicker`s indenter. The composite samples were tested in three point flexure at three different temperatures to study the non steady state and steady state matrix cracking behavior. The composite samples exhibited steady state and non steady matrix cracking behavior at all temperatures. The steady state matrix cracking stress and steady state crack size increasedmore » with increasing temperature. The results of the study correlated well with the results predicted by the matrix cracking models.« less
NASA Technical Reports Server (NTRS)
Delgado, Irebert R.
2015-01-01
An experimental and analytical fatigue life study was performed on the Grainex Mar-M 247 disk used in NASA s Turbine Seal Test Facility. To preclude fatigue cracks from growing to critical size in the NASA disk bolt holes due to cyclic loading at severe test conditions, a retirement-for-cause methodology was adopted to detect and monitor cracks within the bolt holes using eddy-current inspection. For the NASA disk material that was tested, the fatigue strain-life to crack initiation at a total strain of 0.5 percent, a minimum to maximum strain ratio of 0, and a bolt hole temperature of 649 C was calculated to be 665 cycles using -99.95 percent prediction intervals. The fatigue crack propagation life was calculated to be 367 cycles after implementing a safety factor of 2 on life. Thus, the NASA disk bolt hole total life or retirement life was determined to be 1032 cycles at a crack depth of 0.501 mm. An initial NASA disk bolt hole inspection at 665 cycles is suggested with 50 cycle inspection intervals thereafter to monitor fatigue crack growth.
Tracking and Motion Analysis of Crack Propagations in Crystals for Molecular Dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsap, L V; Duchaineau, M; Goldgof, D B
2001-05-14
This paper presents a quantitative analysis for a discovery in molecular dynamics. Recent simulations have shown that velocities of crack propagations in crystals under certain conditions can become supersonic, which is contrary to classical physics. In this research, they present a framework for tracking and motion analysis of crack propagations in crystals. It includes line segment extraction based on Canny edge maps, feature selection based on physical properties, and subsequent tracking of primary and secondary wavefronts. This tracking is completely automated; it runs in real time on three 834-image sequences using forty 250 MHZ processors. Results supporting physical observations aremore » presented in terms of both feature tracking and velocity analysis.« less
Inclusion models of tensile fracture in fiber-reinforced brittle-matrix composites. Ph.D. Thesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, W.
1993-12-31
Inclusion models of tensile fracture in fiber-reinforced brittle-matrix composites are proposed in this study. Three stages of matrix cracking including initiation of microcracks, propagation of a bridged crack and multiplication of periodic cracks are modeled using the unique approach - Eshelby`s equivalent inclusion method. Moreover, the interfacial debonding may occur during matrix cracking and is taken into account by the present analysis. After interfacial debonding initiates, the fiber slides against the friction which is assumed to be constant in chapter 2 and chapter 3. However, the fiber-matrix interfaces are assumed to be Coulomb`s friction controlled in chapter 4. Energy releasemore » rate and crack resistance are obtained analytically. From the fracture criterion, the equivalence of energy release rate and crack resistance, the critical applied stress is also obtained. On the critical applied stress the effects of material parameters such as interfacial frictional stress, interfacial surface energy, volume fraction of fibers, misfit strain are evaluated. These evaluations are important for the purpose of material design. Finally, it is attempted in chapter 5 to solve the crack-inhomogeneity interaction problem inhomogeneities. First, the formulation of two inhomogeneities without overlapping is derived in detail. When one of the inhomogeneities is the penny-shape crack and the other one is the ellipsoidal inhomogeneity, the interaction energy between the crack and the applied stress and the energy release rate of the crack are evaluated. Based on the framework of this chapter, one can deal with the real configuration including many inhomogeneities in the similar way. Also, the misfit strains due to thermal mismatch, phase transformation et al. can be included in the present analysis with no difficulty.« less
NASA Astrophysics Data System (ADS)
Kroon, Martin
2012-01-01
In the present study, a computational framework for studying high-speed crack growth in rubber-like solids under conditions of plane stress and steady-state is proposed. Effects of inertia, viscoelasticity and finite strains are included. The main purpose of the study is to examine the contribution of viscoelastic dissipation to the total work of fracture required to propagate a crack in a rubber-like solid. The computational framework builds upon a previous work by the present author (Kroon in Int J Fract 169:49-60, 2011). The model was fully able to predict experimental results in terms of the local surface energy at the crack tip and the total energy release rate at different crack speeds. The predicted distributions of stress and dissipation around the propagating crack tip are presented. The predicted crack tip profiles also agree qualitatively with experimental findings.
Fatigue behavior of a 2XXX series aluminum alloy reinforced with 15 vol Pct SiCp
NASA Astrophysics Data System (ADS)
Bonnen, J. J.; Allison, J. E.; Jones, J. W.
1991-05-01
The fatigue behavior of a naturally aged powder metallurgy 2xxx series aluminum alloy (Alcoa MB85) and a composite made of this alloy with 15 vol pct SiCp, has been investigated. Fatigue lives were determined using load-controlled axial testing of unnotched cylindrical samples. The influence of mean stress was determined at stress ratios of -1, 0.1, and 0.7. Mean stress had a significant influence on fatigue life, and this influence was consistent with that normally observed in metals. At each stress ratio, the incorporation of SiC reinforcement led to an increase in fatigue life at low and intermediate stresses. When considered on a strain-life basis, however, the composite materials had a somewhat inferior resistance to fatigue. Fatigue cracks initiated from several different microstructural features or defect types, but fatigue life did not vary significantly with the specific initiation site. As the fatigue crack advanced away from the fatigue crack initiation site, increasing numbers of SiC particles were fractured, in agreement with crack-tip process zone models.
NASA Technical Reports Server (NTRS)
Garcia, Daniel B.; Forman, Royce; Shindo, David
2010-01-01
A test program was developed and executed to evaluate the influence of corroded hemispherical notches on the fatigue crack initiation and propagation in aluminum 7075-T7351, 4340 steel, and D6AC steel. Surface enhancements such as shot peening and laser shock peening were also incorporated as part of the test effort with the intent of improving fatigue performance. In addition to the testing, fracture mechanics and endurance limit based analysis methods were evaluated to characterize the results with the objective of challenging typical assumptions used in modeling fatigue cracks from corrosion pits. The results specifically demonstrate that the aluminum and steel alloys behave differently with respect to fatigue crack initiation from hemispherical corrosion pits. The aluminum test results were bounded by the fracture mechanics and endurance limit models while exhibiting a general insensitivity to the residual stress field generated by shot peening. The steel specimens were better characterized by the endurance limit fatigue properties and did exhibit sensitivities to residual stresses from the shot peening and laser shock peening
NASA Technical Reports Server (NTRS)
Paris, Isabelle L.; Krueger, Ronald; OBrien, T. Kevin
2004-01-01
The difference in delamination onset predictions based on the type and location of the assumed initial damage are compared in a specimen consisting of a tapered flange laminate bonded to a skin laminate. From previous experimental work, the damage was identified to consist of a matrix crack in the top skin layer followed by a delamination between the top and second skin layer (+45 deg./-45 deg. interface). Two-dimensional finite elements analyses were performed for three different assumed flaws and the results show a considerable reduction in critical load if an initial delamination is assumed to be present, both under tension and bending loads. For a crack length corresponding to the peak in the strain energy release rate, the delamination onset load for an assumed initial flaw in the bondline is slightly higher than the critical load for delamination onset from an assumed skin matrix crack, both under tension and bending loads. As a result, assuming an initial flaw in the bondline is simpler while providing a critical load relatively close to the real case. For the configuration studied, a small delamination might form at a lower tension load than the critical load calculated for a 12.7 mm (0.5") delamination, but it would grow in a stable manner. For the bending case, assuming an initial flaw of 12.7 mm (0.5") is conservative, the crack would grow unstably.
Effect of porcelain and enamel thickness on porcelain veneer failure loads in vitro.
Ge, Chunling; Green, Chad C; Sederstrom, Dalene; McLaren, Edward A; White, Shane N
2014-05-01
Bonded porcelain veneers are widely used esthetic restorations. Although high success and survival rates have been reported, failures occur. Fracture is the most common failure mode. Fractures range from incomplete cracks to the catastrophic. Minimally invasive or thin partial veneers have gained popularity. The aim of this study was to measure the influences of porcelain veneer thickness and enamel substrate thickness on the loads needed to cause the initial fracture and catastrophic failure of porcelain veneers. Model discoid porcelain veneer specimens of varying thickness were bonded to the flattened facial surfaces of incisors, artificially aged, and loaded to failure with a small sphere. Individual fracture events were identified and analyzed statistically and fractographically. Fracture events included initial Hertzian cracks, intermediate radial cracks, and catastrophic gross failure. Increased porcelain, enamel, and their combined thickness had like effects in substantially raising resistance to catastrophic failure but also slightly decreased resistance to initial Hertzian cracking. Fractographic and numerical data demonstrated that porcelain and tooth enamel behaved in a remarkably similar manner. As porcelain thickness, enamel thickness, and their combined thickness increased, the loads needed to produce initial fracture and catastrophic failure rose substantially. Porcelain veneers withstood considerable damage before catastrophic failure. Increased enamel thickness, increased porcelain thickness, and increased combined enamel and porcelain thickness all profoundly raised the failure loads necessary to cause catastrophic failure. Enamel and feldspathic porcelain behaved in a like manner. Surface contact damage occurred initially. Final catastrophic failure followed flexural radial cracking. Bonded porcelain veneers were highly damage tolerant. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Temperature effects on the deformation and fracture of Al-Li-Cu-In alloys
NASA Technical Reports Server (NTRS)
Wagner, John A.; Gangloff, Richard P.
1991-01-01
The crack initiation and growth fracture resistance of Al-Cu-Li and Al-Cu-Li-In alloys were characterized and optimized for cryogenic tank applications. Presently, the effects of stress state and temperature is being determined on the fracture toughness and fracture mechanisms of commercially available Vintage 3 2090-T81 and experimental 2090+In-T6. Precracked J-integral specimens of both alloys were tested at ambient and cryogenic temperatures in the plane stress and plane strain conditions. Considering ambient temperature, results showed that 2090-T81 exhibited the highest toughness in both plane strain and plane stress conditions. For the plane strain condition, reasonable crack initiation and growth toughness of 1090-T81 are associated with a significant amount of delamination and transgranular fracture. Plane stress toughnesses were higher and fracture was characterized by shear cracking with minimal delaminations. In comparisons, the fracture behavior of 2090+In-T6 is significantly degraded by subgrain boundary precipitation. Toughness is low and characterized by intersubgranular fracture with no delamination in the plane stress or plane strain conditions. Intersubgranular cracking is a low energy event which presumably occurs prior to the onset of slip band cracking. Copious grain boundary precipitation is atypical of commercially available 2090. At cryogenic temperatures, both alloys exhibit increased yield strength, toughness, and amount of delamination and shear cracking. The change in fracture mode of 2090+In-T6 from intersubgranular cracking at ambient temperature to a combination of intersubgranular cracking, shear cracking, and delamination at cryogenic temperature is the subject of further investigation.
Seismically damaged regolith as self-organized fragile geological feature
NASA Astrophysics Data System (ADS)
Sleep, Norman H.
2011-12-01
The S-wave velocity in the shallow subsurface within seismically active regions self-organizes so that typical strong dynamic shear stresses marginally exceed the Coulomb elastic limit. The dynamic velocity from major strike-slip faults yields simple dimensional relations. The near-field velocity pulse is essentially a Love wave. The dynamic shear strain is the ratio of the measured particle velocity over the deep S-wave velocity. The shallow dynamic shear stress is this quantity times the local shear modulus. The dynamic shear traction on fault parallel vertical planes is finite at the free surface. Coulomb failure occurs on favorably oriented fractures and internally in intact rock. I obtain the equilibrium shear modulus by starting a sequence of earthquakes with intact stiff rock extending all the way to the surface. The imposed dynamic shear strain in stiff rock causes Coulomb failure at shallow depths and leaves cracks in it wake. Cracked rock is more compliant than the original intact rock. Cracked rock is also weaker in friction, but shear modulus changes have a larger effect. Each subsequent event causes additional shallow cracking until the rock becomes compliant enough that it just reaches Coulomb failure over a shallow depth range of tens to hundreds of meters. Further events maintain the material at the shear modulus as a function where it just fails. The formalism provided in the paper yields reasonable representation of the S-wave velocity in exhumed sediments near Cajon Pass and the San Fernando Valley of California. A general conclusion is that shallow rocks in seismically active areas just become nonlinear during typical shaking. This process causes transient changes in S-wave velocity, but not strong nonlinear attenuation of seismic waves. Wave amplitudes significantly larger than typical ones would strongly attenuate and strongly damage the rock.
Influence of Microstructural Disorder and Wavefield in Dynamic Fracture
NASA Astrophysics Data System (ADS)
Alizee, D.; Bonamy, D.
2017-12-01
Dynamic fracture and its instabilities have been widely studied but the influence of the finite sample size and subsequent 3D aspects are generally neglected. However, a sample of a few centimeter is a waveguide for the elastodynamic field emitted by the propagating crack front (from 100kHz to a few GHz): It excites the sample's free oscillations (or normal modes), and creates a fluctuating landscape of elastic energy. This may be seen as an effective noise, with an amplitude proportional to the frequency of a given mode, which can reach the same order of magnitude as that of the fracture toughness (In PMMA: 103 J.m-2 for f ˜ MHz). We designed an experiment to evidence this effect in a homogeneous brittle material (PMMA) and subsequently to characterize the possible coupling between the fracture front and its wavefield. Dynamic cracks are driven by means of a wedge splitting geometry which allow us to modulate, over a wide range, the velocity of the crack tip. Spatial geometry and frequency content of the emitted wavefield are modulated by adjusting the geometry of the sample and the loading conditions. Hints of the wavefield are looked in the high-frequency fluctuations of the crack speed, measured on both sides of the specimen via a state-of-the art potential drop method. Fractography and statistical analysis of the post-mortem fracture surfaces are used to characterize the mesoscale/microstructure scale response of the crack front to the wavefield. Experiments performed in PMMA will finally be compared to others performed on heterogeneous materials with controlled defects size (40 - 500µm). This study will permit (i) to shed light on the key role of elastic wavefield in dynamic fracture, and how those are selected by the sample geometry and microstructure and finally and (ii) to give some leads on how to account for these effects by adapting the paradigm of interface growth model to the case of dynamic fracture.
Development of a Distributed Crack Sensor Using Coaxial Cable.
Zhou, Zhi; Jiao, Tong; Zhao, Peng; Liu, Jia; Xiao, Hai
2016-07-29
Cracks, the important factor of structure failure, reflect structural damage directly. Thus, it is significant to realize distributed, real-time crack monitoring. To overcome the shortages of traditional crack detectors, such as the inconvenience of installation, vulnerability, and low measurement range, etc., an improved topology-based cable sensor with a shallow helical groove on the outside surface of a coaxial cable is proposed in this paper. The sensing mechanism, fabrication method, and performances are investigated both numerically and experimentally. Crack monitoring experiments of the reinforced beams are also presented in this paper, illustrating the utility of this sensor in practical applications. These studies show that the sensor can identify a minimum crack width of 0.02 mm and can measure multiple cracks with a spatial resolution of 3 mm. In addition, it is also proved that the sensor performs well to detect the initiation and development of cracks until structure failure.
Development of a Distributed Crack Sensor Using Coaxial Cable
Zhou, Zhi; Jiao, Tong; Zhao, Peng; Liu, Jia; Xiao, Hai
2016-01-01
Cracks, the important factor of structure failure, reflect structural damage directly. Thus, it is significant to realize distributed, real-time crack monitoring. To overcome the shortages of traditional crack detectors, such as the inconvenience of installation, vulnerability, and low measurement range, etc., an improved topology-based cable sensor with a shallow helical groove on the outside surface of a coaxial cable is proposed in this paper. The sensing mechanism, fabrication method, and performances are investigated both numerically and experimentally. Crack monitoring experiments of the reinforced beams are also presented in this paper, illustrating the utility of this sensor in practical applications. These studies show that the sensor can identify a minimum crack width of 0.02 mm and can measure multiple cracks with a spatial resolution of 3 mm. In addition, it is also proved that the sensor performs well to detect the initiation and development of cracks until structure failure. PMID:27483280
NASA Astrophysics Data System (ADS)
Bilčík, Juraj; Sonnenschein, Róbert; Gažovičová, Natália
2017-09-01
This paper focuses on the causes and consequences of early-age cracking of mass concrete foundation slabs due to restrained volume changes. Considering the importance of water leaking through cracks in terms of the serviceability, durability and environmental impact of watertight concrete structures, emphasis is placed on the effect of temperature loads on foundation slabs. Foundation slabs are usually restrained to some degree externally or internally. To evaluate the effect of external restraints on foundation slabs, friction and interaction models are introduced. The reinforcement of concrete cannot prevent the initiation of cracking, but when cracking has occurred, it may act to reduce the spacing and width of cracks. According to EN 1992-1-1, results of calculating crack widths with local variations included in National Annexes (NAs) vary considerably. A comparison of the required reinforcement areas according to different NAs is presented.
Molecular dynamics simulation of propagating cracks
NASA Technical Reports Server (NTRS)
Mullins, M.
1982-01-01
Steady state crack propagation is investigated numerically using a model consisting of 236 free atoms in two (010) planes of bcc alpha iron. The continuum region is modeled using the finite element method with 175 nodes and 288 elements. The model shows clear (010) plane fracture to the edge of the discrete region at moderate loads. Analysis of the results obtained indicates that models of this type can provide realistic simulation of steady state crack propagation.
Flow and Fracture in Drying Nanoparticle Suspensions
NASA Astrophysics Data System (ADS)
Dufresne, E. R.; Corwin, E. I.; Greenblatt, N. A.; Ashmore, J.; Wang, D. Y.; Dinsmore, A. D.; Cheng, J. X.; Xie, X. S.; Hutchinson, J. W.; Weitz, D. A.
2003-11-01
Drying aqueous suspensions of monodisperse silica nanoparticles can fracture in remarkable patterns. As the material solidifies, evenly spaced cracks invade from the drying surface, with individual cracks undergoing intermittent motion. We show that the growth of cracks is limited by the advancement of the compaction front, which is governed by a balance of evaporation and flow of fluid at the drying surface. Surprisingly, the macroscopic dynamics of drying show signatures of molecular-scale fluid effects.