Sample records for dynamic developmental process

  1. Virtual Embryo: Cell-Agent Based Modeling of Developmental Processes and Toxicities (CSS BOSC)

    EPA Science Inventory

    Spatial regulation of cellular dynamics is fundamental to morphological development. As such, chemical disruption of spatial dynamics is a determinant of developmental toxicity. Incorporating spatial dynamics into AOPs for developmental toxicity is desired but constrained by the ...

  2. Robust and irreversible development in cell society as a general consequence of intra-inter dynamics

    NASA Astrophysics Data System (ADS)

    Kaneko, Kunihiko; Furusawa, Chikara

    2000-05-01

    A dynamical systems scenario for developmental cell biology is proposed, based on numerical studies of a system with interacting units with internal dynamics and reproduction. Diversification, formation of discrete and recursive types, and rules for differentiation are found as a natural consequence of such a system. “Stem cells” that either proliferate or differentiate to different types stochastically are found to appear when intra-cellular dynamics are chaotic. Robustness of the developmental process against microscopic and macroscopic perturbations is shown to be a natural consequence of such intra-inter dynamics, while irreversibility in developmental process is discussed in terms of the gain of stability, loss of diversity and chaotic instability.

  3. The Co-Development of Looking Dynamics and Discrimination Performance

    ERIC Educational Resources Information Center

    Perone, Sammy; Spencer, John P.

    2014-01-01

    The study of looking dynamics and discrimination form the backbone of developmental science and are central processes in theories of infant cognition. Looking dynamics and discrimination change dramatically across the 1st year of life. Surprisingly, developmental changes in looking and discrimination have not been studied together. Recent…

  4. The co-development of looking dynamics and discrimination performance

    PubMed Central

    Perone, Sammy; Spencer, John P.

    2015-01-01

    The study of looking dynamics and discrimination form the backbone of developmental science and are central processes in theories of infant cognition. Looking dynamics and discrimination change dramatically across the first year of life. Surprisingly, developmental changes in looking and discrimination have not been studied together. Recent simulations of a dynamic neural field (DNF) model of infant looking and memory suggest that looking and discrimination do change together over development and arise from a single neurodevelopmental mechanism. We probe this claim by measuring looking dynamics and discrimination along continuous, metrically organized dimensions in 5-, 7, and 10-month-old infants (N = 119). The results showed that looking dynamics and discrimination changed together over development and are linked within individuals. Quantitative simulations of a DNF model provide insights into the processes that underlie developmental change in looking dynamics and discrimination. Simulation results support the view that these changes might arise from a single neurodevelopmental mechanism. PMID:23957821

  5. Developmental Dynamics of Emotion and Cognition Processes in Preschoolers

    PubMed Central

    Blankson, A. Nayena; O’Brien, Marion; Leerkes, Esther M.; Marcovitch, Stuart; Calkins, Susan D.; Weaver, Jennifer Miner

    2012-01-01

    Dynamic relations during the preschool years across processes of control and understanding in the domains of emotion and cognition were examined. Participants were 263 children (42% non-white) and their mothers who were seen first when the children were 3 years old and again when they were 4. Results indicated dynamic dependence among the processes studied. Specifically, change in cognitive processes of control and understanding were dependent upon initial levels of the other processes. Changes in emotion control and understanding were not predicted by earlier performance in the other processes. Findings are discussed with regard to the constructs of control and understanding and the developmental interrelations among emotion and cognitive processes. PMID:22925076

  6. Cell Migration Analysis: A Low-Cost Laboratory Experiment for Cell and Developmental Biology Courses Using Keratocytes from Fish Scales

    ERIC Educational Resources Information Center

    Prieto, Daniel; Aparicio, Gonzalo; Sotelo-Silveira, Jose R.

    2017-01-01

    Cell and developmental processes are complex, and profoundly dependent on spatial relationships that change over time. Innovative educational or teaching strategies are always needed to foster deep comprehension of these processes and their dynamic features. However, laboratory exercises in cell and developmental biology at the undergraduate level…

  7. Exploring Regularities and Dynamic Systems in L2 Development

    ERIC Educational Resources Information Center

    Lenzing, Anke

    2015-01-01

    This article focuses on a theoretical and empirical exploration of developmental trajectories and individual learner variation in second language (L2) acquisition. Taking a processability perspective, I view learner language as a dynamic system that includes predictable universal developmental trajectories as well as individual learner variation,…

  8. The dynamic lift of developmental process.

    PubMed

    Smith, Linda B; Breazeal, Cynthia

    2007-01-01

    What are the essential properties of human intelligence, currently unparalleled in its power relative to other biological forms and relative to artificial forms of intelligence? We suggest that answering this question depends critically on understanding developmental process. This paper considers three principles potentially essential to building human-like intelligence: the heterogeneity of the component processes, the embedding of development in a social world, and developmental processes that change the cognitive system as a function of the history of soft-assemblies of these heterogeneous processes in specific tasks. The paper uses examples from human development and from developmental robotics to show how these processes also may underlie biological intelligence and enable us to generate more advanced forms of artificial intelligence.

  9. The Dynamic Lift of Developmental Process

    ERIC Educational Resources Information Center

    Smith, Linda B.; Breazeal, Cynthia

    2007-01-01

    What are the essential properties of human intelligence, currently unparalleled in its power relative to other biological forms and relative to artificial forms of intelligence? We suggest that answering this question depends critically on understanding developmental process. This paper considers three principles potentially essential to building…

  10. Complex Dynamics in Academics' Developmental Processes in Teaching

    ERIC Educational Resources Information Center

    Trautwein, Caroline; Nückles, Matthias; Merkt, Marianne

    2015-01-01

    Improving teaching in higher education is a concern for universities worldwide. This study explored academics' developmental processes in teaching using episodic interviews and teaching portfolios. Eight academics in the context of teaching development reported changes in their teaching and change triggers. Thematic analyses revealed seven areas…

  11. Second Language Developmental Dynamics: How Dynamic Systems Theory Accounts for Issues in Second Language Learning

    ERIC Educational Resources Information Center

    Rosmawati

    2014-01-01

    Dynamic systems theory (DST) is presented in this article as a suitable approach to research the acquisition of second language (L2) because of its close alignment with the process of second language learning. Through a process of identifying and comparing the characteristics of a dynamic system with the process of L2 learning, this article…

  12. Patterns of gender development.

    PubMed

    Martin, Carol Lynn; Ruble, Diane N

    2010-01-01

    A comprehensive theory of gender development must describe and explain long-term developmental patterning and changes and how gender is experienced in the short term. This review considers multiple views on gender patterning, illustrated with contemporary research. First, because developmental research involves understanding normative patterns of change with age, several theoretically important topics illustrate gender development: how children come to recognize gender distinctions and understand stereotypes, and the emergence of prejudice and sexism. Second, developmental researchers study the stability of individual differences over time, which elucidates developmental processes. We review stability in two domains-sex segregation and activities/interests. Finally, a new approach advances understanding of developmental patterns, based on dynamic systems theory. Dynamic systems theory is a metatheoretical framework for studying stability and change, which developed from the study of complex and nonlinear systems in physics and mathematics. Some major features and examples show how dynamic approaches have been and could be applied in studying gender development.

  13. Patterns of Gender Development

    PubMed Central

    Martin, Carol Lynn; Ruble, Diane N.

    2013-01-01

    A comprehensive theory of gender development must describe and explain long-term developmental patterning and changes and how gender is experienced in the short term. This review considers multiple views on gender patterning, illustrated with contemporary research. First, because developmental research involves understanding normative patterns of change with age, several theoretically important topics illustrate gender development: how children come to recognize gender distinctions and understand stereotypes, and the emergence of prejudice and sexism. Second, developmental researchers study the stability of individual differences over time, which elucidates developmental processes. We review stability in two domains—sex segregation and activities/interests. Finally, a new approach advances understanding of developmental patterns, based on dynamic systems theory. Dynamic systems theory is a metatheoretical framework for studying stability and change, which developed from the study of complex and nonlinear systems in physics and mathematics. Some major features and examples show how dynamic approaches have been and could be applied in studying gender development. PMID:19575615

  14. Interdyad Differences in Early Mother-Infant Face-to-Face Communication: Real-Time Dynamics and Developmental Pathways

    ERIC Educational Resources Information Center

    Lavelli, Manuela; Fogel, Alan

    2013-01-01

    A microgenetic research design with a multiple case study method and a combination of quantitative and qualitative analyses was used to investigate interdyad differences in real-time dynamics and developmental change processes in mother-infant face-to-face communication over the first 3 months of life. Weekly observations of 24 mother-infant dyads…

  15. Developmental Dynamics of Emotion and Cognition Processes in Preschoolers

    ERIC Educational Resources Information Center

    Blankson, A. Nayena; O'Brien, Marion; Leerkes, Esther M.; Marcovitch, Stuart; Calkins, Susan D.; Weaver, Jennifer Miner

    2013-01-01

    Dynamic relations during the preschool years across processes of control and understanding in the domains of emotion and cognition were examined. Participants were 263 children (42% non-White) and their mothers who were seen first when the children were 3 years old and again when they were 4. Results indicated dynamic dependence among the…

  16. A developmental-psychobiological approach to developmental neuropsychology.

    PubMed

    Michel, G F

    2001-01-01

    Although both developmental psychobiology and developmental neuropsychology examine the interface between biological and psychological processes, they differ in conceptual framework. This article argues for the incorporation into developmental neuropsychology of certain aspects of the conceptual framework of developmental psychobiology. Three principles of dynamic psychobiological interaction are described and applied to four issues in neuropsychology (handedness, sex differences in behavior, critical periods, and modularity of structure-function relations). Then, it is proposed that developmental psychobiology can make four direct contributions to developmental neuropsychology. Finally, it is argued that the value of the conceptual framework provided by developmental psychobiology depends, in part, on how well it translates into procedures that can be applied in the clinical settings of the developmental neuropsychologist.

  17. Testing all six person-oriented principles in dynamic factor analysis.

    PubMed

    Molenaar, Peter C M

    2010-05-01

    All six person-oriented principles identified by Sterba and Bauer's Keynote Article can be tested by means of dynamic factor analysis in its current form. In particular, it is shown how complex interactions and interindividual differences/intraindividual change can be tested in this way. In addition, the necessity to use single-subject methods in the analysis of developmental processes is emphasized, and attention is drawn to the possibility to optimally treat developmental psychopathology by means of new computational techniques that can be integrated with dynamic factor analysis.

  18. Boolean Dynamic Modeling Approaches to Study Plant Gene Regulatory Networks: Integration, Validation, and Prediction.

    PubMed

    Velderraín, José Dávila; Martínez-García, Juan Carlos; Álvarez-Buylla, Elena R

    2017-01-01

    Mathematical models based on dynamical systems theory are well-suited tools for the integration of available molecular experimental data into coherent frameworks in order to propose hypotheses about the cooperative regulatory mechanisms driving developmental processes. Computational analysis of the proposed models using well-established methods enables testing the hypotheses by contrasting predictions with observations. Within such framework, Boolean gene regulatory network dynamical models have been extensively used in modeling plant development. Boolean models are simple and intuitively appealing, ideal tools for collaborative efforts between theorists and experimentalists. In this chapter we present protocols used in our group for the study of diverse plant developmental processes. We focus on conceptual clarity and practical implementation, providing directions to the corresponding technical literature.

  19. Guided Autobiography's Developmental Exchange: What's in It for Me?

    ERIC Educational Resources Information Center

    Thornton, James E.; Collins, John B.; Birren, James E.; Svensson, Cheryl

    2011-01-01

    The developmental exchange is a central feature of social development, interpersonal dynamics, situated learning, and personal transformation. It is the enabling process in Guided Autobiography (GAB) settings that promotes the achievement of personal goals and group accomplishments. Nevertheless, these exchanges are embedded in the GAB structures…

  20. Current Approaches to Intervention in Children with Developmental Coordination Disorder

    ERIC Educational Resources Information Center

    Sugden, David

    2007-01-01

    This review analyzes approaches to intervention in children with developmental coordination disorder within the framework of how children develop and learn motor skills, drawing upon maturational, cognitive, and dynamic systems models. The approaches to intervention are divided into two categories: (1) process or deficit-oriented approaches; and…

  1. The Down Syndrome Behavioural Phenotype: Taking a Developmental Approach

    ERIC Educational Resources Information Center

    Fidler, Deborah; Most, David; Philofsky, Amy

    2009-01-01

    Individuals with Down syndrome are predisposed to show a specific behavioural phenotype, or a pattern of strengths and challenges in functioning across different domains of development. It is argued that a developmental approach to researching the Down syndrome behavioural phenotype, including an examination of the dynamic process of the unfolding…

  2. Brief report: Representational momentum for dynamic facial expressions in pervasive developmental disorder.

    PubMed

    Uono, Shota; Sato, Wataru; Toichi, Motomi

    2010-03-01

    Individuals with pervasive developmental disorder (PDD) have difficulty with social communication via emotional facial expressions, but behavioral studies involving static images have reported inconsistent findings about emotion recognition. We investigated whether dynamic presentation of facial expression would enhance subjective perception of expressed emotion in 13 individuals with PDD and 13 typically developing controls. We presented dynamic and static emotional (fearful and happy) expressions. Participants were asked to match a changeable emotional face display with the last presented image. The results showed that both groups perceived the last image of dynamic facial expression to be more emotionally exaggerated than the static facial expression. This finding suggests that individuals with PDD have an intact perceptual mechanism for processing dynamic information in another individual's face.

  3. System-Level and Granger Network Analysis of Integrated Proteomic and Metabolomic Dynamics Identifies Key Points of Grape Berry Development at the Interface of Primary and Secondary Metabolism.

    PubMed

    Wang, Lei; Sun, Xiaoliang; Weiszmann, Jakob; Weckwerth, Wolfram

    2017-01-01

    Grapevine is a fruit crop with worldwide economic importance. The grape berry undergoes complex biochemical changes from fruit set until ripening. This ripening process and production processes define the wine quality. Thus, a thorough understanding of berry ripening is crucial for the prediction of wine quality. For a systemic analysis of grape berry development we applied mass spectrometry based platforms to analyse the metabolome and proteome of Early Campbell at 12 stages covering major developmental phases. Primary metabolites involved in central carbon metabolism, such as sugars, organic acids and amino acids together with various bioactive secondary metabolites like flavonols, flavan-3-ols and anthocyanins were annotated and quantified. At the same time, the proteomic analysis revealed the protein dynamics of the developing grape berries. Multivariate statistical analysis of the integrated metabolomic and proteomic dataset revealed the growth trajectory and corresponding metabolites and proteins contributing most to the specific developmental process. K-means clustering analysis revealed 12 highly specific clusters of co-regulated metabolites and proteins. Granger causality network analysis allowed for the identification of time-shift correlations between metabolite-metabolite, protein- protein and protein-metabolite pairs which is especially interesting for the understanding of developmental processes. The integration of metabolite and protein dynamics with their corresponding biochemical pathways revealed an energy-linked metabolism before veraison with high abundances of amino acids and accumulation of organic acids, followed by protein and secondary metabolite synthesis. Anthocyanins were strongly accumulated after veraison whereas other flavonoids were in higher abundance at early developmental stages and decreased during the grape berry developmental processes. A comparison of the anthocyanin profile of Early Campbell to other cultivars revealed similarities to Concord grape and indicates the strong effect of genetic background on metabolic partitioning in primary and secondary metabolism.

  4. System-Level and Granger Network Analysis of Integrated Proteomic and Metabolomic Dynamics Identifies Key Points of Grape Berry Development at the Interface of Primary and Secondary Metabolism

    PubMed Central

    Wang, Lei; Sun, Xiaoliang; Weiszmann, Jakob; Weckwerth, Wolfram

    2017-01-01

    Grapevine is a fruit crop with worldwide economic importance. The grape berry undergoes complex biochemical changes from fruit set until ripening. This ripening process and production processes define the wine quality. Thus, a thorough understanding of berry ripening is crucial for the prediction of wine quality. For a systemic analysis of grape berry development we applied mass spectrometry based platforms to analyse the metabolome and proteome of Early Campbell at 12 stages covering major developmental phases. Primary metabolites involved in central carbon metabolism, such as sugars, organic acids and amino acids together with various bioactive secondary metabolites like flavonols, flavan-3-ols and anthocyanins were annotated and quantified. At the same time, the proteomic analysis revealed the protein dynamics of the developing grape berries. Multivariate statistical analysis of the integrated metabolomic and proteomic dataset revealed the growth trajectory and corresponding metabolites and proteins contributing most to the specific developmental process. K-means clustering analysis revealed 12 highly specific clusters of co-regulated metabolites and proteins. Granger causality network analysis allowed for the identification of time-shift correlations between metabolite-metabolite, protein- protein and protein-metabolite pairs which is especially interesting for the understanding of developmental processes. The integration of metabolite and protein dynamics with their corresponding biochemical pathways revealed an energy-linked metabolism before veraison with high abundances of amino acids and accumulation of organic acids, followed by protein and secondary metabolite synthesis. Anthocyanins were strongly accumulated after veraison whereas other flavonoids were in higher abundance at early developmental stages and decreased during the grape berry developmental processes. A comparison of the anthocyanin profile of Early Campbell to other cultivars revealed similarities to Concord grape and indicates the strong effect of genetic background on metabolic partitioning in primary and secondary metabolism. PMID:28713396

  5. Ecological Factors in Human Development.

    PubMed

    Cross, William E

    2017-05-01

    Urie Bronfenbrenner (1992) helped developmental psychologists comprehend and define "context" as a rich, thick multidimensional construct. His ecological systems theory consists of five layers, and within each layer are developmental processes unique to each layer. The four articles in this section limit the exploration of context to the three innermost systems: the individual plus micro- and macrolayers. Rather than examine both the physical features and processes, the articles tend to focus solely on processes associated with a niche. Processes explored include social identity development, social network dynamics, peer influences, and school-based friendship patterns. The works tend to extend the generalization of extant theory to the developmental experience of various minority group experiences. © 2017 The Authors. Child Development © 2017 Society for Research in Child Development, Inc.

  6. A Dynamical Systems Theory Examination of Social Connections in Outdoor Recreation Programs

    ERIC Educational Resources Information Center

    Jostad, Jeremy

    2015-01-01

    Adolescence is a developmental time period in which social connections are an important aspect to fostering positive growth and identity. Outdoor Adventure Education (OAE) programs are strategically positioned to help in this developmental process because of the novel social environment, however, little is known about how these types of social…

  7. Mixing Qualitative and Quantitative Research in Developmental Science: Uses and Methodological Choices

    ERIC Educational Resources Information Center

    Yoshikawa, Hirokazu; Weisner, Thomas S.; Kalil, Ariel; Way, Niobe

    2008-01-01

    Multiple methods are vital to understanding development as a dynamic, transactional process. This article focuses on the ways in which quantitative and qualitative methodologies can be combined to enrich developmental science and the study of human development, focusing on the practical questions of "when" and "how." Research situations that may…

  8. In Vitro Experimental Model for the Long-Term Analysis of Cellular Dynamics During Bronchial Tree Development from Lung Epithelial Cells

    PubMed Central

    Maruta, Naomichi; Marumoto, Moegi

    2017-01-01

    Lung branching morphogenesis has been studied for decades, but the underlying developmental mechanisms are still not fully understood. Cellular movements dynamically change during the branching process, but it is difficult to observe long-term cellular dynamics by in vivo or tissue culture experiments. Therefore, developing an in vitro experimental model of bronchial tree would provide an essential tool for developmental biology, pathology, and systems biology. In this study, we succeeded in reconstructing a bronchial tree in vitro by using primary human bronchial epithelial cells. A high concentration gradient of bronchial epithelial cells was required for branching initiation, whereas homogeneously distributed endothelial cells induced the formation of successive branches. Subsequently, the branches grew in size to the order of millimeter. The developed model contains only two types of cells and it facilitates the analysis of lung branching morphogenesis. By taking advantage of our experimental model, we carried out long-term time-lapse observations, which revealed self-assembly, collective migration with leader cells, rotational motion, and spiral motion of epithelial cells in each developmental event. Mathematical simulation was also carried out to analyze the self-assembly process and it revealed simple rules that govern cellular dynamics. Our experimental model has provided many new insights into lung development and it has the potential to accelerate the study of developmental mechanisms, pattern formation, left–right asymmetry, and disease pathogenesis of the human lung. PMID:28471293

  9. The Dynamic Systems Approach as Metatheory for Developmental Psychology

    ERIC Educational Resources Information Center

    Witherington, David C.

    2007-01-01

    The dynamic systems perspective has been touted as an integrative metatheoretical framework for the study of stability and change in development. However, two dynamic systems camps exist with respect to the role higher-order form, once emergent, plays in the process of development. This paper evaluates these two camps in terms of the overarching…

  10. Moral motivation based on multiple developmental structures: an exploration of cognitive and emotional dynamics.

    PubMed

    Kaplan, Ulas; Tivnan, Terrence

    2014-01-01

    Intrapersonal variability and multiplicity in the complexity of moral motivation were examined from Dynamic Systems and Self-Determination Theory perspectives. L. Kohlberg's (1969) stages of moral development are reconceptualized as soft-assembled and dynamically transformable process structures of motivation that may operate simultaneously within person in different degrees. Moral motivation is conceptualized as the real-time process of self-organization of cognitive and emotional dynamics out of which moral judgment and action emerge. A detailed inquiry into intrapersonal variation in moral motivation is carried out based on the differential operation of multiple motivational structures. A total of 74 high school students and 97 college students participated in the study by completing a new questionnaire, involving 3 different hypothetical moral judgments. As hypothesized, findings revealed significant multiplicity in the within-person operation of developmental stage structures, and intrapersonal variability in the degrees to which stages were used. Developmental patterns were found in terms of different distributions of multiple stages between high school and college samples, as well as the association between age and overall motivation scores. Differential relations of specific emotions to moral motivation revealed and confirmed the value of differentiating multiple emotions. Implications of the present theoretical perspective and the findings for understanding the complexity of moral judgment and motivation are discussed.

  11. The Slow Developmental Time Course of Real-Time Spoken Word Recognition

    ERIC Educational Resources Information Center

    Rigler, Hannah; Farris-Trimble, Ashley; Greiner, Lea; Walker, Jessica; Tomblin, J. Bruce; McMurray, Bob

    2015-01-01

    This study investigated the developmental time course of spoken word recognition in older children using eye tracking to assess how the real-time processing dynamics of word recognition change over development. We found that 9-year-olds were slower to activate the target words and showed more early competition from competitor words than…

  12. Developmental Dynamics of General and School-Subject-Specific Components of Academic Self-Concept, Academic Interest, and Academic Anxiety

    PubMed Central

    Gogol, Katarzyna; Brunner, Martin; Preckel, Franzis; Goetz, Thomas; Martin, Romain

    2016-01-01

    The present study investigated the developmental dynamics of general and subject-specific (i.e., mathematics, French, and German) components of students' academic self-concept, anxiety, and interest. To this end, the authors integrated three lines of research: (a) hierarchical and multidimensional approaches to the conceptualization of each construct, (b) longitudinal analyses of bottom-up and top-down developmental processes across hierarchical levels, and (c) developmental processes across subjects. The data stemmed from two longitudinal large-scale samples (N = 3498 and N = 3863) of students attending Grades 7 and 9 in Luxembourgish schools. Nested-factor models were applied to represent each construct at each grade level. The analyses demonstrated that several characteristics were shared across constructs. All constructs were multidimensional in nature with respect to the different subjects, showed a hierarchical organization with a general component at the apex of the hierarchy, and had a strong separation between the subject-specific components at both grade levels. Further, all constructs showed moderate differential stabilities at both the general (0.42 < r < 0.55) and subject-specific levels (0.45 < r < 0.73). Further, little evidence was found for top-down or bottom-up developmental processes. Rather, general and subject-specific components in Grade 9 proved to be primarily a function of the corresponding components in Grade 7. Finally, change in several subject-specific components could be explained by negative effects across subjects. PMID:27014162

  13. Developmental Dynamics of General and School-Subject-Specific Components of Academic Self-Concept, Academic Interest, and Academic Anxiety.

    PubMed

    Gogol, Katarzyna; Brunner, Martin; Preckel, Franzis; Goetz, Thomas; Martin, Romain

    2016-01-01

    The present study investigated the developmental dynamics of general and subject-specific (i.e., mathematics, French, and German) components of students' academic self-concept, anxiety, and interest. To this end, the authors integrated three lines of research: (a) hierarchical and multidimensional approaches to the conceptualization of each construct, (b) longitudinal analyses of bottom-up and top-down developmental processes across hierarchical levels, and (c) developmental processes across subjects. The data stemmed from two longitudinal large-scale samples (N = 3498 and N = 3863) of students attending Grades 7 and 9 in Luxembourgish schools. Nested-factor models were applied to represent each construct at each grade level. The analyses demonstrated that several characteristics were shared across constructs. All constructs were multidimensional in nature with respect to the different subjects, showed a hierarchical organization with a general component at the apex of the hierarchy, and had a strong separation between the subject-specific components at both grade levels. Further, all constructs showed moderate differential stabilities at both the general (0.42 < r < 0.55) and subject-specific levels (0.45 < r < 0.73). Further, little evidence was found for top-down or bottom-up developmental processes. Rather, general and subject-specific components in Grade 9 proved to be primarily a function of the corresponding components in Grade 7. Finally, change in several subject-specific components could be explained by negative effects across subjects.

  14. A developmental psychopathology perspective on adolescence.

    PubMed

    Cicchetti, Dante; Rogosch, Fred A

    2002-02-01

    Developmental psychopathology offers an integrative framework for conceptualizing the course of development during adolescence, with particular relevance for understanding continuity and the emergence of psychopathology during this and subsequent developmental periods. In this article, the utility of a developmental psychopathology perspective for informing the design of research, prevention, and intervention is highlighted. Interdisciplinary, organizational models of development, emphasizing the dynamic relations between the developing individual and internal and external contexts, are discussed. Examination of boundaries between abnormal and normal development during adolescence offers important vantage points for articulating diversity in the developmental course during this period. Conceptualizing divergence and convergence in developmental pathways, continuity and discontinuity in development, and the transactions of risk and protective processes leading to maladaptation, psychopathology, and resilience are highlighted.

  15. Disturbance dynamics of forested ecosystems

    Treesearch

    John A. Stanturf

    2004-01-01

    Forested ecosystems are dynamic, subject to natural developmental processes as well as natural and anthropogenic stresses and disturbances. Degradation is a related term. for lowered productive capacity from changes to forest structure of function (FAO. 2001). Degradation is not synonymous with disturbance, however; disturbance becomes degradation when natural...

  16. Event-related potential and eye tracking evidence of the developmental dynamics of face processing.

    PubMed

    Meaux, Emilie; Hernandez, Nadia; Carteau-Martin, Isabelle; Martineau, Joëlle; Barthélémy, Catherine; Bonnet-Brilhault, Frédérique; Batty, Magali

    2014-04-01

    Although the wide neural network and specific processes related to faces have been revealed, the process by which face-processing ability develops remains unclear. An interest in faces appears early in infancy, and developmental findings to date have suggested a long maturation process of the mechanisms involved in face processing. These developmental changes may be supported by the acquisition of more efficient strategies to process faces (theory of expertise) and by the maturation of the face neural network identified in adults. This study aimed to clarify the link between event-related potential (ERP) development in response to faces and the behavioral changes in the way faces are scanned throughout childhood. Twenty-six young children (4-10 years of age) were included in two experimental paradigms, the first exploring ERPs during face processing, the second investigating the visual exploration of faces using an eye-tracking system. The results confirmed significant age-related changes in visual ERPs (P1, N170 and P2). Moreover, an increased interest in the eye region and an attentional shift from the mouth to the eyes were also revealed. The proportion of early fixations on the eye region was correlated with N170 and P2 characteristics, highlighting a link between the development of ERPs and gaze behavior. We suggest that these overall developmental dynamics may be sustained by a gradual, experience-dependent specialization in face processing (i.e. acquisition of face expertise), which produces a more automatic and efficient network associated with effortless identification of faces, and allows the emergence of human-specific social and communication skills. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  17. Interdyad differences in early mother-infant face-to-face communication: real-time dynamics and developmental pathways.

    PubMed

    Lavelli, Manuela; Fogel, Alan

    2013-12-01

    A microgenetic research design with a multiple case study method and a combination of quantitative and qualitative analyses was used to investigate interdyad differences in real-time dynamics and developmental change processes in mother-infant face-to-face communication over the first 3 months of life. Weekly observations of 24 mother-infant dyads with analyses performed dyad by dyad showed that most dyads go through 2 qualitatively different developmental phases of early face-to-face communication: After a phase of mutual attentiveness, mutual engagement begins in Weeks 7-8, with infant smiling and cooing bidirectionally linked with maternal mirroring. This gives rise to sequences of positive feedback that, by the 3rd month, dynamically stabilizes into innovative play routines. However, when there is a lack of bidirectional positive feedback between infant and maternal behaviors, and a lack of permeability of the early communicative patterns to incorporate innovations, the development of the mutual engagement phase is compromised. The findings contribute both to theories of relationship change processes and to clinical work with at-risk mother-infant interactions. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  18. Live dynamic imaging and analysis of developmental cardiac defects in mouse models with optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Lopez, Andrew L.; Wang, Shang; Garcia, Monica; Valladolid, Christian; Larin, Kirill V.; Larina, Irina V.

    2015-03-01

    Understanding mouse embryonic development is an invaluable resource for our interpretation of normal human embryology and congenital defects. Our research focuses on developing methods for live imaging and dynamic characterization of early embryonic development in mouse models of human diseases. Using multidisciplinary methods: optical coherence tomography (OCT), live mouse embryo manipulations and static embryo culture, molecular biology, advanced image processing and computational modeling we aim to understand developmental processes. We have developed an OCT based approach to image live early mouse embryos (E8.5 - E9.5) cultured on an imaging stage and visualize developmental events with a spatial resolution of a few micrometers (less than the size of an individual cell) and a frame rate of up to hundreds of frames per second and reconstruct cardiodynamics in 4D (3D+time). We are now using these methods to study how specific embryonic lethal mutations affect cardiac morphology and function during early development.

  19. An Analysis of Japanese University Students' Oral Performance in English Using Processability Theory

    ERIC Educational Resources Information Center

    Sakai, Hideki

    2008-01-01

    This paper presents a brief summary of processability theory as proposed by [Pienemann, M., 1998a. "Language Processing and Second Language Development: Processability Theory." John Benjamins, Amsterdam; Pienemann, M., 1998b. "Developmental dynamics in L1 and L2 acquisition: processability theory and generative entrenchment." "Bilingualism:…

  20. Parental effects in ecology and evolution: mechanisms, processes and implications

    PubMed Central

    Badyaev, Alexander V.; Uller, Tobias

    2009-01-01

    As is the case with any metaphor, parental effects mean different things to different biologists—from developmental induction of novel phenotypic variation to an evolved adaptation, and from epigenetic transference of essential developmental resources to a stage of inheritance and ecological succession. Such a diversity of perspectives illustrates the composite nature of parental effects that, depending on the stage of their expression and whether they are considered a pattern or a process, combine the elements of developmental induction, homeostasis, natural selection, epigenetic inheritance and historical persistence. Here, we suggest that by emphasizing the complexity of causes and influences in developmental systems and by making explicit the links between development, natural selection and inheritance, the study of parental effects enables deeper understanding of developmental dynamics of life cycles and provides a unique opportunity to explicitly integrate development and evolution. We highlight these perspectives by placing parental effects in a wider evolutionary framework and suggest that far from being only an evolved static outcome of natural selection, a distinct channel of transmission between parents and offspring, or a statistical abstraction, parental effects on development enable evolution by natural selection by reliably transferring developmental resources needed to reconstruct, maintain and modify genetically inherited components of the phenotype. The view of parental effects as an essential and dynamic part of an evolutionary continuum unifies mechanisms behind the origination, modification and historical persistence of organismal form and function, and thus brings us closer to a more realistic understanding of life's complexity and diversity. PMID:19324619

  1. Psychological Dynamics of Adolescent Satanism.

    ERIC Educational Resources Information Center

    Moriarty, Anthony R.; Story, Donald W.

    1990-01-01

    Attempts to describe the psychological processes that predispose an individual to adopt a Satanic belief system. Describes processes in terms of child-parent relationships and the developmental tasks of adolescence. Proposes a model called the web of psychic tension to represent the process of Satanic cult adoption. Describes techniques for…

  2. First Selection, Then Influence: Developmental Differences in Friendship Dynamics Regarding Academic Achievement

    ERIC Educational Resources Information Center

    Gremmen, Mariola Claudia; Dijkstra, Jan Kornelis; Steglich, Christian; Veenstra, René

    2017-01-01

    This study concerns peer selection and influence dynamics in early adolescents' friendships regarding academic achievement. Using longitudinal social network analysis (RSiena), both selection and influence processes were investigated for students' average grades and their cluster-specific grades (i.e., language, exact, and social cluster). Data…

  3. Dynamic changes of genome-wide DNA methylation during soybean seed development

    USDA-ARS?s Scientific Manuscript database

    Seed development is programmed by expression of many genes in plants. Seed maturation is an important developmental process to soybean seed quality and yield. DNA methylation is a major epigenetic modification regulating gene expression. However, little is known about the dynamic nature of DNA me...

  4. Bulimia: A Review of the Literature with an Emphasis on Treatment and the Dynamic Perspective.

    ERIC Educational Resources Information Center

    Coull, Charles Edward

    This paper presents a dynamic perspective of some of the major issues surrounding the eating disorder of bulimia. The focus is specifically on the relationship of the bulimia nervosa syndrome to the historical dynamics of the developmental process of the individual. Three major aspects of bulimia are discussed. First, there is a discussion of…

  5. Predictive computation of genomic logic processing functions in embryonic development

    PubMed Central

    Peter, Isabelle S.; Faure, Emmanuel; Davidson, Eric H.

    2012-01-01

    Gene regulatory networks (GRNs) control the dynamic spatial patterns of regulatory gene expression in development. Thus, in principle, GRN models may provide system-level, causal explanations of developmental process. To test this assertion, we have transformed a relatively well-established GRN model into a predictive, dynamic Boolean computational model. This Boolean model computes spatial and temporal gene expression according to the regulatory logic and gene interactions specified in a GRN model for embryonic development in the sea urchin. Additional information input into the model included the progressive embryonic geometry and gene expression kinetics. The resulting model predicted gene expression patterns for a large number of individual regulatory genes each hour up to gastrulation (30 h) in four different spatial domains of the embryo. Direct comparison with experimental observations showed that the model predictively computed these patterns with remarkable spatial and temporal accuracy. In addition, we used this model to carry out in silico perturbations of regulatory functions and of embryonic spatial organization. The model computationally reproduced the altered developmental functions observed experimentally. Two major conclusions are that the starting GRN model contains sufficiently complete regulatory information to permit explanation of a complex developmental process of gene expression solely in terms of genomic regulatory code, and that the Boolean model provides a tool with which to test in silico regulatory circuitry and developmental perturbations. PMID:22927416

  6. Primary sex determination of placental mammals: a modelling study uncovers dynamical developmental constraints in the formation of Sertoli and granulosa cells.

    PubMed

    Sánchez, Lucas; Chaouiya, Claudine

    2016-05-26

    Primary sex determination in placental mammals is a very well studied developmental process. Here, we aim to investigate the currently established scenario and to assess its adequacy to fully recover the observed phenotypes, in the wild type and perturbed situations. Computational modelling allows clarifying network dynamics, elucidating crucial temporal constrains as well as interplay between core regulatory modules. Relying on a comprehensive revision of the literature, we define a logical model that integrates the current knowledge of the regulatory network controlling this developmental process. Our analysis indicates the necessity for some genes to operate at distinct functional thresholds and for specific developmental conditions to ensure the reproducibility of the sexual pathways followed by bi-potential gonads developing into either testes or ovaries. Our model thus allows studying the dynamics of wild type and mutant XX and XY gonads. Furthermore, the model analysis reveals that the gonad sexual fate results from the operation of two sub-networks associated respectively with an initiation and a maintenance phases. At the core of the process is the resolution of two connected feedback loops: the mutual inhibition of Sox9 and ß-catenin at the initiation phase, which in turn affects the mutual inhibition between Dmrt1 and Foxl2, at the maintenance phase. Three developmental signals related to the temporal activity of those sub-networks are required: a signal that determines Sry activation, marking the beginning of the initiation phase, and two further signals that define the transition from the initiation to the maintenance phases, by inhibiting the Wnt4 signalling pathway on the one hand, and by activating Foxl2 on the other hand. Our model reproduces a wide range of experimental data reported for the development of wild type and mutant gonads. It also provides a formal support to crucial aspects of the gonad sexual development and predicts gonadal phenotypes for mutations not tested yet.

  7. Understanding development and stem cells using single cell-based analyses of gene expression

    PubMed Central

    Kumar, Pavithra; Tan, Yuqi

    2017-01-01

    In recent years, genome-wide profiling approaches have begun to uncover the molecular programs that drive developmental processes. In particular, technical advances that enable genome-wide profiling of thousands of individual cells have provided the tantalizing prospect of cataloging cell type diversity and developmental dynamics in a quantitative and comprehensive manner. Here, we review how single-cell RNA sequencing has provided key insights into mammalian developmental and stem cell biology, emphasizing the analytical approaches that are specific to studying gene expression in single cells. PMID:28049689

  8. Computer-aided software development process design

    NASA Technical Reports Server (NTRS)

    Lin, Chi Y.; Levary, Reuven R.

    1989-01-01

    The authors describe an intelligent tool designed to aid managers of software development projects in planning, managing, and controlling the development process of medium- to large-scale software projects. Its purpose is to reduce uncertainties in the budget, personnel, and schedule planning of software development projects. It is based on dynamic model for the software development and maintenance life-cycle process. This dynamic process is composed of a number of time-varying, interacting developmental phases, each characterized by its intended functions and requirements. System dynamics is used as a modeling methodology. The resulting Software LIfe-Cycle Simulator (SLICS) and the hybrid expert simulation system of which it is a subsystem are described.

  9. Cumulative risk and developmental health: an argument for the importance of a family-wide science.

    PubMed

    Browne, Dillon T; Plamondon, Andre; Prime, Heather; Puente-Duran, Sofia; Wade, Mark

    2015-01-01

    A substantial body of research links social disadvantage and developmental health via a cascade running from poverty, to cumulative psychosocial risk, to disrupted family dynamics, to child biological regulatory systems and neurocognitive processing, and finally to morbidity across the lifespan. Most research in this area employs single-dyad or between-family methodology. While informative, there are limitations to this approach. Specifically, it is impossible to determine how risk alters psychosocial environments that are similar for all persons within a household, versus processes that are unique to particular children. This is important in light of literature citing the primacy of child-specific environments in driving developmental health. Methodologically speaking, there are both benefits and challenges to family-wide approaches that differentiate between- and within-family environments. This review describes literature linking cumulative risk and developmental health via family process, while articulating the importance of family-wide approaches. Areas of shortcoming and recommendations for a family-wide science are provided. © 2015 John Wiley & Sons, Ltd.

  10. The developmental dynamics of behavioral growth processes in rodent egocentric and allocentric space.

    PubMed

    Golani, Ilan

    2012-06-01

    In this review I focus on how three methodological principles advocated by Philip Teitelbaum influenced my work to this day: that similar principles of organization should be looked for in ontogeny and recovery of function; that the order of emergence of behavioral components provides a view on the organization of that behavior; and that the components of behavior should be exhibited by the animal itself in relatively pure form. I start by showing how these principles influenced our common work on the developmental dynamics of rodent egocentric space, and then proceed to describe how these principles affected my work with Yoav Benjamini and others on the developmental dynamics of rodent allocentric space. We analyze issues traditionally addressed by physiological psychologists with methods borrowed from ethology, EW (Eshkol-Wachman) movement notation, dynamical systems and exploratory data analysis. Then we show how the natural origins of axes embodied by the behavior of the organism itself, are used by us as the origins of axes for the measurement of the developmental moment-by-moment dynamics of behavior. Using this methodology we expose similar principles of organization across situations, species and preparations, provide a developmental view on the organization of behavior, expose the natural components of behavior in relatively pure form, and reveal how low level primitives generate higher level constructs. Advances in tracking technology should allow us to study how movements in egocentric and allocentric spaces interlace. Tracking of multi-limb coordination, progress in online recording of neural activity in freely moving animals, and the unprecedented accumulation of genetically engineered mouse preparations makes the behavioral ground plan exposed in this review essential for a systematic study of the brain/behavior interface. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Process-product dynamics: the role of Otherness in cultural cultivation.

    PubMed

    Lyra, Maria C D P

    2014-06-01

    Carriere (2013) presents a stimulating perspective on the cultural phenomena aiming to recover the role of the external products of culture to imbalance the currently popular emphasis on subject's process of cultivation highlighted by semiotic developmental cultural psychology. The excessive focus on subject's internal processes dismissing a better consideration of products of culture and the compelling objective realities of other dimensions of culture are pointed out. By this way the author's proposes a better dialogue with others perspectives on (cross)cultural psychology. These arguments are analyzed through a closer consideration of I-Other perennial movement. A dialogical view of process-product dynamics is then proposed. The role of Otherness--the one that (partially)shares and the one as witness, approving or disapproving subject's products of cultivation--is discussed through the analysis of a concrete episode of the cultivation of the subject. It is concluded that a semiotic developmental cultural psychology and (cross) cultural psychology have different objects of knowledge comprising distinct interests and research fields.

  12. Developmental improvements in the resolution and capacity of visual working memory share a common source

    PubMed Central

    Simmering, Vanessa R.; Miller, Hilary E.

    2016-01-01

    The nature of visual working memory (VWM) representations is currently a source of debate between characterizations as slot-like versus a flexibly-divided pool of resources. Recently, a dynamic neural field model has been proposed as an alternative account that focuses more on the processes by which VWM representations are formed, maintained, and used in service of behavior. This dynamic model has explained developmental increases in VWM capacity and resolution through strengthening excitatory and inhibitory connections. Simulations of developmental improvements in VWM resolution suggest that one important change is the accuracy of comparisons between items held in memory and new inputs. Thus, the ability to detect changes is a critical component of developmental improvements in VWM performance across tasks, leading to the prediction that capacity and resolution should correlate during childhood. Comparing 5- to 8-year-old children’s performance across color discrimination and change detection tasks revealed the predicted correlation between estimates of VWM capacity and resolution, supporting the hypothesis that increasing connectivity underlies improvements in VWM during childhood. These results demonstrate the importance of formalizing the processes that support the use of VWM, rather than focusing solely on the nature of representations. We conclude by considering our results in the broader context of VWM development. PMID:27329264

  13. Emotion regulation: a theme in search of definition.

    PubMed

    Thompson, R A

    1994-01-01

    Contemporary interest in emotion regulation promises to advance important new views of emotional development as well as offering applications to developmental psychopathology, but these potential contributions are contingent on developmentalists' attention to some basic definitional issues. This essay offers a perspective on these issues by considering how emotion regulation should be defined, the various components of the management of emotion, how emotion regulation strategies fit into the dynamics of social interaction, and how individual differences in emotion regulation should be conceptualized and measured. In the end, it seems clear that emotion regulation is a conceptual rubric for a remarkable range of developmental processes, each of which may have its own catalysts and control processes. Likewise, individual differences in emotion regulation skills likely have multifaceted origins and are also related in complex ways to the person's emotional goals and the immediate demands of the situation. Assessment approaches that focus on the dynamics of emotion are well suited to elucidating these complex developmental and individual differences. In sum, a challenging research agenda awaits those who enter this promising field of study.

  14. The Zebrafish Models to Explore Genetic and Epigenetic Impacts on Evolutionary Developmental Origins of Aging

    PubMed Central

    Kishi, Shuji

    2014-01-01

    Can we reset, reprogram, rejuvenate or reverse the organismal aging process? Certain genetic manipulations could at least reset and reprogram epigenetic dynamics beyond phenotypic plasticity and elasticity in cells, which can be further manipulated into organisms. However, in a whole complex aging organism, how can we rejuvenate intrinsic resources and infrastructures in an intact/noninvasive manner? The incidence of diseases increases exponentially with age, accompanied by progressive deteriorations of physiological functions in organisms. Aging-associated diseases are sporadic but essentially inevitable complications arising from senescence. Senescence is often considered the antithesis of early development, but yet there may be factors and mechanisms in common between these two phenomena to rejuvenate over the dynamic process of aging. The association between early development and late-onset disease with advancing age is thought to come from a consequence of developmental plasticity, the phenomenon by which one genotype can give rise to a range of physiologically and/or morphologically adaptive states based on diverse epigenotypes, in response to intrinsic or extrinsic environmental cues and genetic perturbations. We hypothesized that the future aging process can be predictive based on adaptivity during the early developmental period. Modulating the thresholds and windows of plasticity and its robustness by molecular genetic and chemical epigenetic approaches, we have successfully conducted experiments to isolate zebrafish mutants expressing apparently altered senescence phenotypes during their embryonic and/or larval stages (“embryonic/larval senescence”). Subsequently, at least some of these mutant animals were found to show shortened lifespan, while some others would be expected to live longer in adulthoods. We anticipate that previously uncharacterized developmental genes may mediate the aging process and play a pivotal role in senescence. On the other hand, unexpected senescence-related genes might also be involved in the early developmental process and its regulation. The ease of manipulation using the zebrafish system allows us to conduct an exhaustive exploration of novel genes/genotypes and epigenotype that can be linked to the senescence phenotype, and thereby facilitates searching for the evolutionary and developmental origins of aging in vertebrates. PMID:24239812

  15. Classifying acoustic signals into phoneme categories: average and dyslexic readers make use of complex dynamical patterns and multifractal scaling properties of the speech signal

    PubMed Central

    2015-01-01

    Several competing aetiologies of developmental dyslexia suggest that the problems with acquiring literacy skills are causally entailed by low-level auditory and/or speech perception processes. The purpose of this study is to evaluate the diverging claims about the specific deficient peceptual processes under conditions of strong inference. Theoretically relevant acoustic features were extracted from a set of artificial speech stimuli that lie on a /bAk/-/dAk/ continuum. The features were tested on their ability to enable a simple classifier (Quadratic Discriminant Analysis) to reproduce the observed classification performance of average and dyslexic readers in a speech perception experiment. The ‘classical’ features examined were based on component process accounts of developmental dyslexia such as the supposed deficit in Envelope Rise Time detection and the deficit in the detection of rapid changes in the distribution of energy in the frequency spectrum (formant transitions). Studies examining these temporal processing deficit hypotheses do not employ measures that quantify the temporal dynamics of stimuli. It is shown that measures based on quantification of the dynamics of complex, interaction-dominant systems (Recurrence Quantification Analysis and the multifractal spectrum) enable QDA to classify the stimuli almost identically as observed in dyslexic and average reading participants. It seems unlikely that participants used any of the features that are traditionally associated with accounts of (impaired) speech perception. The nature of the variables quantifying the temporal dynamics of the speech stimuli imply that the classification of speech stimuli cannot be regarded as a linear aggregate of component processes that each parse the acoustic signal independent of one another, as is assumed by the ‘classical’ aetiologies of developmental dyslexia. It is suggested that the results imply that the differences in speech perception performance between average and dyslexic readers represent a scaled continuum rather than being caused by a specific deficient component. PMID:25834769

  16. Medium-throughput processing of whole mount in situ hybridisation experiments into gene expression domains.

    PubMed

    Crombach, Anton; Cicin-Sain, Damjan; Wotton, Karl R; Jaeger, Johannes

    2012-01-01

    Understanding the function and evolution of developmental regulatory networks requires the characterisation and quantification of spatio-temporal gene expression patterns across a range of systems and species. However, most high-throughput methods to measure the dynamics of gene expression do not preserve the detailed spatial information needed in this context. For this reason, quantification methods based on image bioinformatics have become increasingly important over the past few years. Most available approaches in this field either focus on the detailed and accurate quantification of a small set of gene expression patterns, or attempt high-throughput analysis of spatial expression through binary pattern extraction and large-scale analysis of the resulting datasets. Here we present a robust, "medium-throughput" pipeline to process in situ hybridisation patterns from embryos of different species of flies. It bridges the gap between high-resolution, and high-throughput image processing methods, enabling us to quantify graded expression patterns along the antero-posterior axis of the embryo in an efficient and straightforward manner. Our method is based on a robust enzymatic (colorimetric) in situ hybridisation protocol and rapid data acquisition through wide-field microscopy. Data processing consists of image segmentation, profile extraction, and determination of expression domain boundary positions using a spline approximation. It results in sets of measured boundaries sorted by gene and developmental time point, which are analysed in terms of expression variability or spatio-temporal dynamics. Our method yields integrated time series of spatial gene expression, which can be used to reverse-engineer developmental gene regulatory networks across species. It is easily adaptable to other processes and species, enabling the in silico reconstitution of gene regulatory networks in a wide range of developmental contexts.

  17. Understanding development and stem cells using single cell-based analyses of gene expression.

    PubMed

    Kumar, Pavithra; Tan, Yuqi; Cahan, Patrick

    2017-01-01

    In recent years, genome-wide profiling approaches have begun to uncover the molecular programs that drive developmental processes. In particular, technical advances that enable genome-wide profiling of thousands of individual cells have provided the tantalizing prospect of cataloging cell type diversity and developmental dynamics in a quantitative and comprehensive manner. Here, we review how single-cell RNA sequencing has provided key insights into mammalian developmental and stem cell biology, emphasizing the analytical approaches that are specific to studying gene expression in single cells. © 2017. Published by The Company of Biologists Ltd.

  18. Synchronous Computer-Mediated Dynamic Assessment: A Case Study of L2 Spanish Past Narration

    ERIC Educational Resources Information Center

    Darhower, Mark Anthony

    2014-01-01

    In this study, dynamic assessment is employed to help understand the developmental processes of two university Spanish learners as they produce a series of past narrations in a synchronous computer mediated environment. The assessments were conducted in six weekly one-hour chat sessions about various scenes of a Spanish language film. The analysis…

  19. Dynamic Adaptation in Child-Adult Language Interaction

    ERIC Educational Resources Information Center

    van Dijk, Marijn; van Geert, Paul; Korecky-Kröll, Katharina; Maillochon, Isabelle; Laaha, Sabine; Dressler, Wolfgang U.; Bassano, Dominique

    2013-01-01

    When speaking to young children, adults adapt their language to that of the child. In this article, we suggest that this child-directed speech (CDS) is the result of a transactional process of dynamic adaptation between the child and the adult. The study compares developmental trajectories of three children to those of the CDS of their caregivers.…

  20. Requirements for efficient cell-type proportioning: regulatory timescales, stochasticity and lateral inhibition

    NASA Astrophysics Data System (ADS)

    Pfeuty, B.; Kaneko, K.

    2016-04-01

    The proper functioning of multicellular organisms requires the robust establishment of precise proportions between distinct cell types. This developmental differentiation process typically involves intracellular regulatory and stochastic mechanisms to generate cell-fate diversity as well as intercellular signaling mechanisms to coordinate cell-fate decisions at tissue level. We thus surmise that key insights about the developmental regulation of cell-type proportion can be captured by the modeling study of clustering dynamics in population of inhibitory-coupled noisy bistable systems. This general class of dynamical system is shown to exhibit a very stable two-cluster state, but also metastability, collective oscillations or noise-induced state hopping, which can prevent from timely and reliably reaching a robust and well-proportioned clustered state. To circumvent these obstacles or to avoid fine-tuning, we highlight a general strategy based on dual-time positive feedback loops, such as mediated through transcriptional versus epigenetic mechanisms, which improves proportion regulation by coordinating early and flexible lineage priming with late and firm commitment. This result sheds new light on the respective and cooperative roles of multiple regulatory feedback, stochasticity and lateral inhibition in developmental dynamics.

  1. Developmental Risk and Goodness of Fit in the Mother-Child Relationship: Links to Parenting Stress and Children's Behaviour Problems.

    PubMed

    Newland, Rebecca P; Crnic, Keith A

    2017-01-01

    Despite the compelling nature of goodness of fit, empirical support has lagged for this construct. The present study examined an interactional approach to measuring goodness of fit and prospectively explored associations with mother-child relationship quality, child behavior problems, and parenting stress across the preschool period. In addition, as goodness of fit might be particularly important for children at developmental risk, the presence of early developmental delay was considered as a moderator of goodness of fit processes. Children with ( n = 110) and without ( n = 137) developmental delays and their mothers were coded while interacting in the lab at child age 36 months and during naturalistic home observations at child ages 36 and 48 months. Mothers also completed questionnaires at child age 60 months. Results highlight the effects of child developmental risk as a moderator of mother-child goodness of fit processes across the preschool period. There was also evidence that the goodness of fit between maternal scaffolding and child activity level at 36 months influenced both mother and child functioning at 60 months. Findings call for more precise models and expanded developmental perspectives to fully capture the transactional and dynamic nature of goodness of fit.

  2. Beginnings and Endings in Social Work Supervision: The Interaction between Attachment and Developmental Processes

    ERIC Educational Resources Information Center

    Bennett, Susanne; Deal, Kathleen Holtz

    2009-01-01

    This article discusses the interaction of attachment processes and stages of social work student development within the field supervisory relationship and suggests ways supervisors can modify interactions with students. Attachment theory and research provide a framework for understanding innate capacities of students and the relational dynamics of…

  3. Understanding the Developmental Dynamics of Subject Omission: The Role of Processing Limitations in Learning

    ERIC Educational Resources Information Center

    Freudenthal, Daniel; Pine, Julian M.; Gobet, Fernand

    2007-01-01

    P. Bloom's (1990) data on subject omission are often taken as strong support for the view that child language can be explained in terms of full competence coupled with processing limitations in production. This paper examines whether processing limitations in learning may provide a more parsimonious explanation of the data without the need to…

  4. Oscillatory Protein Expression Dynamics Endows Stem Cells with Robust Differentiation Potential

    PubMed Central

    Kaneko, Kunihiko

    2011-01-01

    The lack of understanding of stem cell differentiation and proliferation is a fundamental problem in developmental biology. Although gene regulatory networks (GRNs) for stem cell differentiation have been partially identified, the nature of differentiation dynamics and their regulation leading to robust development remain unclear. Herein, using a dynamical system modeling cell approach, we performed simulations of the developmental process using all possible GRNs with a few genes, and screened GRNs that could generate cell type diversity through cell-cell interactions. We found that model stem cells that both proliferated and differentiated always exhibited oscillatory expression dynamics, and the differentiation frequency of such stem cells was regulated, resulting in a robust number distribution. Moreover, we uncovered the common regulatory motifs for stem cell differentiation, in which a combination of regulatory motifs that generated oscillatory expression dynamics and stabilized distinct cellular states played an essential role. These findings may explain the recently observed heterogeneity and dynamic equilibrium in cellular states of stem cells, and can be used to predict regulatory networks responsible for differentiation in stem cell systems. PMID:22073296

  5. A Computational Model Predicting Disruption of Blood Vessel Development

    EPA Science Inventory

    Vascular development is a complex process regulated by dynamic biological networks that vary in topology and state across different tissues and developmental stages. Signals regulating de novo blood vessel formation (vasculogenesis) and remodeling (angiogenesis) come from a varie...

  6. Genetic variation of growth dynamics in maize (Zea mays L.) revealed through automated non-invasive phenotyping.

    PubMed

    Muraya, Moses M; Chu, Jianting; Zhao, Yusheng; Junker, Astrid; Klukas, Christian; Reif, Jochen C; Altmann, Thomas

    2017-01-01

    Hitherto, most quantitative trait loci of maize growth and biomass yield have been identified for a single time point, usually the final harvest stage. Through this approach cumulative effects are detected, without considering genetic factors causing phase-specific differences in growth rates. To assess the genetics of growth dynamics, we employed automated non-invasive phenotyping to monitor the plant sizes of 252 diverse maize inbred lines at 11 different developmental time points; 50 k SNP array genotype data were used for genome-wide association mapping and genomic selection. The heritability of biomass was estimated to be over 71%, and the average prediction accuracy amounted to 0.39. Using the individual time point data, 12 main effect marker-trait associations (MTAs) and six pairs of epistatic interactions were detected that displayed different patterns of expression at various developmental time points. A subset of them also showed significant effects on relative growth rates in different intervals. The detected MTAs jointly explained up to 12% of the total phenotypic variation, decreasing with developmental progression. Using non-parametric functional mapping and multivariate mapping approaches, four additional marker loci affecting growth dynamics were detected. Our results demonstrate that plant biomass accumulation is a complex trait governed by many small effect loci, most of which act at certain restricted developmental phases. This highlights the need for investigation of stage-specific growth affecting genes to elucidate important processes operating at different developmental phases. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  7. Imaging C. elegans embryos using an epifluorescent microscope and open source software.

    PubMed

    Verbrugghe, Koen J C; Chan, Raymond C

    2011-03-24

    Cellular processes, such as chromosome assembly, segregation and cytokinesis,are inherently dynamic. Time-lapse imaging of living cells, using fluorescent-labeled reporter proteins or differential interference contrast (DIC) microscopy, allows for the examination of the temporal progression of these dynamic events which is otherwise inferred from analysis of fixed samples(1,2). Moreover, the study of the developmental regulations of cellular processes necessitates conducting time-lapse experiments on an intact organism during development. The Caenorhabiditis elegans embryo is light-transparent and has a rapid, invariant developmental program with a known cell lineage(3), thus providing an ideal experiment model for studying questions in cell biology(4,5)and development(6-9). C. elegans is amendable to genetic manipulation by forward genetics (based on random mutagenesis(10,11)) and reverse genetics to target specific genes (based on RNAi-mediated interference and targeted mutagenesis(12-15)). In addition, transgenic animals can be readily created to express fluorescently tagged proteins or reporters(16,17). These traits combine to make it easy to identify the genetic pathways regulating fundamental cellular and developmental processes in vivo(18-21). In this protocol we present methods for live imaging of C. elegans embryos using DIC optics or GFP fluorescence on a compound epifluorescent microscope. We demonstrate the ease with which readily available microscopes, typically used for fixed sample imaging, can also be applied for time-lapse analysis using open-source software to automate the imaging process.

  8. Building Brains, Forging Futures: A Call to Action for the Family-Centered Medical Home

    ERIC Educational Resources Information Center

    Kraft, Colleen

    2013-01-01

    The family-centered medical home describes an approach to providing comprehensive primary care. Research advances in developmental neuroscience, genetics, and epigenetics offer a framework for understanding the dynamic process of brain development. It is this process that sets the life-course trajectory for an individual; in turn, a child's…

  9. Developmental Risk and Goodness of Fit in the Mother–Child Relationship: Links to Parenting Stress and Children’s Behaviour Problems

    PubMed Central

    Newland, Rebecca P.; Crnic, Keith A.

    2016-01-01

    Despite the compelling nature of goodness of fit, empirical support has lagged for this construct. The present study examined an interactional approach to measuring goodness of fit and prospectively explored associations with mother-child relationship quality, child behavior problems, and parenting stress across the preschool period. In addition, as goodness of fit might be particularly important for children at developmental risk, the presence of early developmental delay was considered as a moderator of goodness of fit processes. Children with (n = 110) and without (n = 137) developmental delays and their mothers were coded while interacting in the lab at child age 36 months and during naturalistic home observations at child ages 36 and 48 months. Mothers also completed questionnaires at child age 60 months. Results highlight the effects of child developmental risk as a moderator of mother-child goodness of fit processes across the preschool period. There was also evidence that the goodness of fit between maternal scaffolding and child activity level at 36 months influenced both mother and child functioning at 60 months. Findings call for more precise models and expanded developmental perspectives to fully capture the transactional and dynamic nature of goodness of fit. PMID:28943806

  10. Cell migration analysis: A low-cost laboratory experiment for cell and developmental biology courses using keratocytes from fish scales.

    PubMed

    Prieto, Daniel; Aparicio, Gonzalo; Sotelo-Silveira, Jose R

    2017-11-01

    Cell and developmental processes are complex, and profoundly dependent on spatial relationships that change over time. Innovative educational or teaching strategies are always needed to foster deep comprehension of these processes and their dynamic features. However, laboratory exercises in cell and developmental biology at the undergraduate level do not often take into account the time dimension. In this article, we provide a laboratory exercise focused in cell migration, aiming to stimulate thinking in time and space dimensions through a simplification of more complex processes occurring in cell or developmental biology. The use of open-source tools for the analysis, as well as the whole package of raw results (available at http://github.com/danielprieto/keratocyte) make it suitable for its implementation in courses with very diverse budgets. Aiming to facilitate the student's transition from science-students to science-practitioners we propose an exercise of scientific thinking, and an evaluation method. This in turn is communicated here to facilitate the finding of common caveats and weaknesses in the process of producing simple scientific communications describing the results achieved. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(6):475-482, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.

  11. Linking Biological and Cognitive Aging: Toward Improving Characterizations of Developmental Time

    PubMed Central

    DeCarlo, Correne A.; Dixon, Roger A.

    2011-01-01

    Objectives. Chronological age is the most frequently employed predictor in life-span developmental research, despite repeated assertions that it is best conceived as a proxy for true mechanistic changes that influence cognition across time. The present investigation explores the potential that selected functional biomarkers may contribute to the more effective conceptual and operational definitions of developmental time. Methods. We used data from the Victoria Longitudinal Study to explore both static and dynamic biological or physiological markers that arguably influence process-specific mechanisms underlying cognitive changes in late life. Multilevel models were fit to test the dynamic coupling between change in theoretically relevant biomarkers (e.g., grip strength, pulmonary function) and change in select cognitive measures (e.g., executive function, episodic and semantic memory). Results. Results showed that, independent of the passage of developmental time (indexed as years in study), significant time-varying covariation was observed linking corresponding declines for select cognitive outcomes and biological markers. Discussion. Our findings support the interpretation that cognitive decline is not due to chronological aging per se but rather reflects multiple causal factors from a broad range of biological and physical health domains that operate along the age continuum. PMID:21743053

  12. Mixing qualitative and quantitative research in developmental science: uses and methodological choices.

    PubMed

    Yoshikawa, Hirokazu; Weisner, Thomas S; Kalil, Ariel; Way, Niobe

    2008-03-01

    Multiple methods are vital to understanding development as a dynamic, transactional process. This article focuses on the ways in which quantitative and qualitative methodologies can be combined to enrich developmental science and the study of human development, focusing on the practical questions of "when" and "how." Research situations that may be especially suited to mixing qualitative and quantitative approaches are described. The authors also discuss potential choices for using mixed quantitative- qualitative approaches in study design, sampling, construction of measures or interview protocols, collaborations, and data analysis relevant to developmental science. Finally, they discuss some common pitfalls that occur in mixing these methods and include suggestions for surmounting them.

  13. In search of intelligence: evolving a developmental neuron capable of learning

    NASA Astrophysics Data System (ADS)

    Khan, Gul Muhammad; Miller, Julian Francis

    2014-10-01

    A neuro-inspired multi-chromosomal genotype for a single developmental neuron capable of learning and developing memory is proposed. This genotype is evolved so that the phenotype which changes and develops during an agent's lifetime (while problem-solving) gives the agent the capacity for learning by experience. Seven important processes of signal processing and neural structure development are identified from biology and encoded using Cartesian Genetic Programming. These chromosomes represent the electrical and developmental aspects of dendrites, axonal branches, synapses and the neuron soma. The neural morphology that occurs by running these chromosomes is highly dynamic. The dendritic/axonal branches and synaptic connections form and change in response to situations encountered in the learning task. The approach has been evaluated in the context of maze-solving and the board game of checkers (draughts) demonstrating interesting learning capabilities. The motivation underlying this research is to, ab initio, evolve genotypes that build phenotypes with an ability to learn.

  14. The Biological Implausibility of the Nature-Nurture Dichotomy & What It Means for the Study of Infancy.

    PubMed

    Lewkowicz, David J

    2011-01-01

    Since the time of the Greeks, philosophers and scientists have wondered about the origins of structure and function. Plato proposed that the origins of structure and function lie in the organism's nature whereas Aristotle proposed that they lie in its nurture. This nature/nurture dichotomy and the emphasis on the origins question has had a powerful effect on our thinking about development right into modern times. Despite this, empirical findings from various branches of developmental science have made a compelling case that the nature/nurture dichotomy is biologically implausible and, thus, that a search for developmental origins must be replaced by research into developmental processes. This change in focus recognizes that development is an immensely complex, dynamic, embedded, interdependent, and probabilistic process and, therefore, renders simplistic questions such as whether a particular behavioral capacity is innate or acquired scientifically uninteresting.

  15. The Biological Implausibility of the Nature-Nurture Dichotomy & What It Means for the Study of Infancy

    PubMed Central

    Lewkowicz, David J.

    2011-01-01

    Since the time of the Greeks, philosophers and scientists have wondered about the origins of structure and function. Plato proposed that the origins of structure and function lie in the organism's nature whereas Aristotle proposed that they lie in its nurture. This nature/nurture dichotomy and the emphasis on the origins question has had a powerful effect on our thinking about development right into modern times. Despite this, empirical findings from various branches of developmental science have made a compelling case that the nature/nurture dichotomy is biologically implausible and, thus, that a search for developmental origins must be replaced by research into developmental processes. This change in focus recognizes that development is an immensely complex, dynamic, embedded, interdependent, and probabilistic process and, therefore, renders simplistic questions such as whether a particular behavioral capacity is innate or acquired scientifically uninteresting. PMID:21709807

  16. Attachment Theory: Implications for School Psychology

    ERIC Educational Resources Information Center

    Kennedy, Janice H.; Kennedy, Charles E.

    2004-01-01

    The effective practice of school psychology requires a strong research and theoretical base, a framework that encompasses developmental processes and outcomes, both adaptive and maladaptive, which facilitates assessment and intervention and offers insight into classroom and family dynamics. Attachment theory provides the school psychologist with…

  17. Examining the "Whole Child" to Generate Usable Knowledge

    ERIC Educational Resources Information Center

    Rappolt-Schlichtmann, Gabrielle; Ayoub, Catherine C.; Gravel, Jenna W.

    2009-01-01

    Despite the promise of scientific knowledge contributing to issues facing vulnerable children, families, and communities, typical approaches to research have made applications challenging. While contemporary theories of human development offer appropriate complexity, research has mostly failed to address dynamic developmental processes. Research…

  18. Parenting and Child Development in "Nontraditional" Families.

    ERIC Educational Resources Information Center

    Lamb, Michael E., Ed.

    Selections in this volume discuss the ways in which various "deviations" from traditional family styles affect childrearing practices and child development. Contributors attempt to illustrate the dynamic developmental processes that characterize parenting in nontraditional contexts. The collection contains the following chapters: (1)…

  19. A new dynamic 3D virtual methodology for teaching the mechanics of atrial septation as seen in the human heart.

    PubMed

    Schleich, Jean-Marc; Dillenseger, Jean-Louis; Houyel, Lucile; Almange, Claude; Anderson, Robert H

    2009-01-01

    Learning embryology remains difficult, since it requires understanding of many complex phenomena. The temporal evolution of developmental events has classically been illustrated using cartoons, which create difficulty in linking spatial and temporal aspects, such correlation being the keystone of descriptive embryology. We synthesized the bibliographic data from recent studies of atrial septal development. On the basis of this synthesis, consensus on the stages of atrial septation as seen in the human heart has been reached by a group of experts in cardiac embryology and pediatric cardiology. This has permitted the preparation of three-dimensional (3D) computer graphic objects for the anatomical components involved in the different stages of normal human atrial septation. We have provided a virtual guide to the process of normal atrial septation, the animation providing an appreciation of the temporal and morphologic events necessary to separate the systemic and pulmonary venous returns. We have shown that our animations of normal human atrial septation increase significantly the teaching of the complex developmental processes involved, and provide a new dynamic for the process of learning.

  20. Vertex Models of Epithelial Morphogenesis

    PubMed Central

    Fletcher, Alexander G.; Osterfield, Miriam; Baker, Ruth E.; Shvartsman, Stanislav Y.

    2014-01-01

    The dynamic behavior of epithelial cell sheets plays a central role during numerous developmental processes. Genetic and imaging studies of epithelial morphogenesis in a wide range of organisms have led to increasingly detailed mechanisms of cell sheet dynamics. Computational models offer a useful means by which to investigate and test these mechanisms, and have played a key role in the study of cell-cell interactions. A variety of modeling approaches can be used to simulate the balance of forces within an epithelial sheet. Vertex models are a class of such models that consider cells as individual objects, approximated by two-dimensional polygons representing cellular interfaces, in which each vertex moves in response to forces due to growth, interfacial tension, and pressure within each cell. Vertex models are used to study cellular processes within epithelia, including cell motility, adhesion, mitosis, and delamination. This review summarizes how vertex models have been used to provide insight into developmental processes and highlights current challenges in this area, including progressing these models from two to three dimensions and developing new tools for model validation. PMID:24896108

  1. Colloquium: Modeling the dynamics of multicellular systems: Application to tissue engineering

    NASA Astrophysics Data System (ADS)

    Kosztin, Ioan; Vunjak-Novakovic, Gordana; Forgacs, Gabor

    2012-10-01

    Tissue engineering is a rapidly evolving discipline that aims at building functional tissues to improve or replace damaged ones. To be successful in such an endeavor, ideally, the engineering of tissues should be based on the principles of developmental biology. Recent progress in developmental biology suggests that the formation of tissues from the composing cells is often guided by physical laws. Here a comprehensive computational-theoretical formalism is presented that is based on experimental input and incorporates biomechanical principles of developmental biology. The formalism is described and it is shown that it correctly reproduces and predicts the quantitative characteristics of the fundamental early developmental process of tissue fusion. Based on this finding, the formalism is then used toward the optimization of the fabrication of tubular multicellular constructs, such as a vascular graft, by bioprinting, a novel tissue engineering technology.

  2. Molecular and Chemical Genetic Approaches to Developmental Origins of Aging and Disease in Zebrafish

    PubMed Central

    Sasaki, Tomoyuki; Kishi, Shuji

    2013-01-01

    The incidence of diseases increases rapidly with age, accompanied by progressive deteriorations of physiological functions in organisms. Aging-associated diseases are sporadic but mostly inevitable complications arising from senescence. Senescence is often considered the antithesis of early development, but yet there may be factors and mechanisms in common between these two phenomena over the dynamic process of aging. The association between early development and late-onset disease with advancing age is thought to come from a consequence of developmental plasticity, the phenomenon by which one genotype can give rise to a range of physiologically and/or morphologically adaptive states in response to different environmental or genetic perturbations. On the one hand, we hypothesized that the future aging process can be predictive based on adaptivity during the early developmental period. Modulating the thresholds of adaptive plasticity by chemical genetic approaches, we have been investigating whether any relationship exists between the regulatory mechanisms that function in early development and in senescence using the zebrafish (Danio rerio), a small freshwater fish and a useful model animal for genetic studies. We have successfully conducted experiments to isolate zebrafish mutants expressing apparently altered senescence phenotypes during embryogenesis (“embryonic senescence”), subsequently showing shortened lifespan in adulthoods. We anticipate that previously uncharacterized developmental genes may mediate the aging process and play a pivotal role in senescence. On the other hand, unexpected senescence-related genes might also be involved in the early developmental process and regulation. The ease of manipulation using the zebrafish system allows us to conduct an exhaustive exploration of novel genes and small molecular compounds that can be linked to the senescence phenotype, and thereby facilitates searching for the evolutionary and developmental origins of aging in vertebrates. PMID:23660559

  3. Dynamical Analyses for Developmental Science: A Primer for Intrigued Scientists

    ERIC Educational Resources Information Center

    DiDonato, M. D.; England, D.; Martin, C. L.; Amazeen, P. G.

    2013-01-01

    Dynamical systems theory is becoming more popular in social and developmental science. However, unfamiliarity with dynamical analysis techniques remains an obstacle for developmentalists who would like to quantitatively apply dynamics in their own research. The goal of this article is to address this issue by clearly and simply presenting several…

  4. The evaluation life cycle: a retrospective assessment of stages and phases of the circles of care initiative.

    PubMed

    Bess, Gary; Allen, James; Deters, Pamela B

    2004-08-12

    A life cycle metaphor characterizes the evolving relationship between the evaluator and program staff. This framework suggests that common developmental dynamics occur in roughly the same order across groups and settings. There are stage-specific dynamics that begin with Pre-History, which characterize the relationship between the grantees and evaluator. The stages are: (a) Pre-History, (b) Process, (c) Development, (d) Action, (e) Findings-Compilation, and (f) Transition. The common dynamics, expectations, and activities for each stage are discussed.

  5. Multi-scale computational modeling of developmental biology.

    PubMed

    Setty, Yaki

    2012-08-01

    Normal development of multicellular organisms is regulated by a highly complex process in which a set of precursor cells proliferate, differentiate and move, forming over time a functioning tissue. To handle their complexity, developmental systems can be studied over distinct scales. The dynamics of each scale is determined by the collective activity of entities at the scale below it. I describe a multi-scale computational approach for modeling developmental systems and detail the methodology through a synthetic example of a developmental system that retains key features of real developmental systems. I discuss the simulation of the system as it emerges from cross-scale and intra-scale interactions and describe how an in silico study can be carried out by modifying these interactions in a way that mimics in vivo experiments. I highlight biological features of the results through a comparison with findings in Caenorhabditis elegans germline development and finally discuss about the applications of the approach in real developmental systems and propose future extensions. The source code of the model of the synthetic developmental system can be found in www.wisdom.weizmann.ac.il/~yaki/MultiScaleModel. yaki.setty@gmail.com Supplementary data are available at Bioinformatics online.

  6. Smart in Everything Except School.

    ERIC Educational Resources Information Center

    Getman, G. N.

    This book focuses on the prevention of academic failure through focus on developmental processes (especially development of essential visual skills) within the individual learner. A distinction is made between sight and vision with vision involving the entire person and his/her learning experiences The first chapter examines "The Dynamics of the…

  7. Comparative RNA-seq analysis of transcriptome dynamics during petal development in Rosa chinensis

    PubMed Central

    Han, Yu; Wan, Huihua; Cheng, Tangren; Wang, Jia; Yang, Weiru; Pan, Huitang; Zhang, Qixiang

    2017-01-01

    The developmental process that produces the ornate petals of the China rose (Rosa chinensis) is complex and is thought to depend on the balanced expression of a functionally diverse array of genes; however, the molecular basis of rose petal development is largely unknown. Here, petal growth of the R. chinensis cultivar ‘Old Blush’ was divided into four developmental stages, and RNA-seq technology was used to analyse the dynamic changes in transcription that occur as development progresses. In total, 598 million clean reads and 61,456 successfully annotated unigenes were obtained. Differentially expressed gene (DEG) analysis comparing the transcriptomes of the developmental stages resulted in the identification of several potential candidate genes involved in petal development. DEGs involved in anthocyanin biosynthesis, petal expansion, and phytohormone pathways were considered in depth, in addition to several candidate transcription factors. These results lay a foundation for future studies on the regulatory mechanisms underlying rose petal development and may be used in molecular breeding programs aimed at generating ornamental rose lines with desirable traits. PMID:28225056

  8. Understanding the developmental dynamics of subject omission: the role of processing limitations in learning.

    PubMed

    Freudenthal, Daniel; Pine, Julian M; Gobet, Fernand

    2007-02-01

    P. Bloom's (1990) data on subject omission are often taken as strong support for the view that child language can be explained in terms of full competence coupled with processing limitations in production. This paper examines whether processing limitations in learning may provide a more parsimonious explanation of the data without the need to assume full competence. We extended P. Bloom's study by using a larger sample (12 children) and measuring subject omission phenomena in three developmental phases. The results revealed a Verb Phrase-length effect consistent with that reported by P. Bloom. However, contrary to the predictions of the processing limitations account, the proportion of overt subjects that were pronominal increased with developmental phase. The data were simulated with MOSAIC, a computational model that learns to produce progressively longer utterances as a function of training. MOSAIC was able to capture all of the effects reported by P. Bloom through a resource-limited distributional analysis of child-directed speech. Since MOSAIC does not have any built-in linguistic knowledge, these results show that the phenomena identified by P. Bloom do not constitute evidence for underlying competence on the part of the child. They also underline the need to develop more empirically grounded models of the way that processing limitations in learning might influence the language acquisition process.

  9. Bone Marrow Adipocyte Developmental Origin and Biology.

    PubMed

    Bukowska, Joanna; Frazier, Trivia; Smith, Stanley; Brown, Theodore; Bender, Robert; McCarthy, Michelle; Wu, Xiying; Bunnell, Bruce A; Gimble, Jeffrey M

    2018-06-01

    This review explores how the relationships between bone marrow adipose tissue (BMAT) adipogenesis with advancing age, obesity, and/or bone diseases (osteopenia or osteoporosis) contribute to mechanisms underlying musculoskeletal pathophysiology. Recent studies have re-defined adipose tissue as a dynamic, vital organ with functions extending beyond its historic identity restricted solely to that of an energy reservoir or sink. "State of the art" methodologies provide novel insights into the developmental origin, physiology, and function of different adipose tissue depots. These include genetic tracking of adipose progenitors, viral vectors application, and sophisticated non-invasive imaging modalities. While constricted within the rigid bone cavity, BMAT vigorously contributes to local and systemic metabolic processes including hematopoiesis, osteogenesis, and energy metabolism and undergoes dynamic changes as a function of age, diet, bone topography, or sex. These insights will impact future research and therapies relating to osteoporosis.

  10. Developmental and Individual Differences in the Neural Processing of Dynamic Expressions of Pain and Anger

    PubMed Central

    Missana, Manuela; Grigutsch, Maren; Grossmann, Tobias

    2014-01-01

    We examined the processing of facial expressions of pain and anger in 8-month-old infants and adults by measuring event-related brain potentials (ERPs) and frontal EEG alpha asymmetry. The ERP results revealed that while adults showed a late positive potential (LPP) to emotional expressions that was enhanced to pain expressions, reflecting increased evaluation and emotional arousal to pain expressions, infants showed a negative component (Nc) to emotional expressions that was enhanced to angry expressions, reflecting increased allocation of attention to angry faces. Moreover, infants and adults showed opposite patterns in their frontal asymmetry responses to pain and anger, suggesting developmental differences in the motivational processes engendered by these facial expressions. These findings are discussed in the light of associated individual differences in infant temperament and adult dispositional empathy. PMID:24705497

  11. The guided autobiography method: a learning experience.

    PubMed

    Thornton, James E

    2008-01-01

    This article discusses the proposition that learning is an unexplored feature of the guided autobiography method and its developmental exchange. Learning, conceptualized and explored as the embedded and embodied processes, is essential in narrative activities of the guided autobiography method leading to psychosocial development and growth in dynamic, temporary social groups. The article is organized in four sections and summary. The first section provides a brief overview of the guided autobiography method describing the interplay of learning and experiencing in temporary social groups. The second section offers a limited review on learning and experiencing as processes that are essential for development, growth, and change. The third section reviews the small group activities and the emergence of the "developmental exchange" in the guided autobiography method. Two theoretical constructs provide a conceptual foundation for the developmental exchange: a counterpart theory of aging as development and collaborative-situated group learning theory. The summary recaps the main ideas and issues that shape the guided autobiography method as learning and social experience using the theme, "Where to go from here."

  12. Tissue specific characterisation of Lim-kinase 1 expression during mouse embryogenesis

    PubMed Central

    Lindström, Nils O.; Neves, Carlos; McIntosh, Rebecca; Miedzybrodzka, Zosia; Vargesson, Neil; Collinson, J. Martin

    2012-01-01

    The Lim-kinase (LIMK) proteins are important for the regulation of the actin cytoskeleton, in particular the control of actin nucleation and depolymerisation via regulation of cofilin, and hence may control a large number of processes during development, including cell tensegrity, migration, cell cycling, and axon guidance. LIMK1/LIMK2 knockouts disrupt spinal cord morphogenesis and synapse formation but other tissues and developmental processes that require LIMK are yet to be fully determined. To identify tissues and cell-types that may require LIMK, we characterised the pattern of LIMK1 protein during mouse embryogenesis. We showed that LIMK1 displays an expression pattern that is temporally dynamic and tissue-specific. In several tissues LIMK1 is detected in cell-types that also express Wilms’ tumour protein 1 and that undergo transitions between epithelial and mesenchymal states, including the pleura, epicardium, kidney nephrons, and gonads. LIMK1 was also found in a subset of cells in the dorsal retina, and in mesenchymal cells surrounding the peripheral nerves. This detailed study of the spatial and temporal expression of LIMK1 shows that LIMK1 expression is more dynamic than previously reported, in particular at sites of tissue–tissue interactions guiding multiple developmental processes. PMID:21167960

  13. A new dynamic 3D virtual methodology for teaching the mechanics of atrial septation as seen in the human heart

    PubMed Central

    Schleich, Jean-Marc; Dillenseger, Jean-Louis; Houyel, Lucile; Almange, Claude; Anderson, Robert H.

    2009-01-01

    Background Learning embryology remains difficult, since it requires understanding of many complex phenomena. The temporal evolution of developmental events has classically been illustrated using cartoons, which create difficulty in linking spatial and temporal aspects, such correlation being the keystone of descriptive embryology. Methods We synthesized the bibliographic data from recent studies of atrial septal development. On the basis of this synthesis, consensus on the stages of atrial septation as seen in the human heart has been reached by a group of experts in cardiac embryology and paediatric cardiology. This has permitted the preparation of three-dimensional (3-D) computer graphic objects for the anatomical components involved in the different stages of normal human atrial septation. Results We have provided a virtual guide to the process of normal atrial septation, the animation providing an appreciation of the temporal and morphologic events necessary to separate the systemic and pulmonary venous returns. Conclusion We have shown that our animations of normal human atrial septation increase significantly the teaching of the complex developmental processes involved, and provide a new dynamic for the process of learning. PMID:19363807

  14. Computer Simulation of Developmental Processes and ...

    EPA Pesticide Factsheets

    Rationale: Recent progress in systems toxicology and synthetic biology have paved the way to new thinking about in vitro/in silico modeling of developmental processes and toxicities, both for embryological and reproductive impacts. Novel in vitro platforms such as 3D organotypic culture models, engineered microscale tissues and complex microphysiological systems (MPS), together with computational models and computer simulation of tissue dynamics, lend themselves to a integrated testing strategies for predictive toxicology. As these emergent methodologies continue to evolve, they must be integrally tied to maternal/fetal physiology and toxicity of the developing individual across early lifestage transitions, from fertilization to birth, through puberty and beyond. Scope: This symposium will focus on how the novel technology platforms can help now and in the future, with in vitro/in silico modeling of complex biological systems for developmental and reproductive toxicity issues, and translating systems models into integrative testing strategies. The symposium is based on three main organizing principles: (1) that novel in vitro platforms with human cells configured in nascent tissue architectures with a native microphysiological environments yield mechanistic understanding of developmental and reproductive impacts of drug/chemical exposures; (2) that novel in silico platforms with high-throughput screening (HTS) data, biologically-inspired computational models of

  15. Understanding retirement: the promise of life-span developmental frameworks.

    PubMed

    Löckenhoff, Corinna E

    2012-09-01

    The impending retirement of large population cohorts creates a pressing need for practical interventions to optimize outcomes at the individual and societal level. This necessitates comprehensive theoretical models that acknowledge the multi-layered nature of the retirement process and shed light on the dynamic mechanisms that drive longitudinal patterns of adjustment. The present commentary highlights ways in which contemporary life-span developmental frameworks can inform retirement research, drawing on the specific examples of Bronfenbrenner's Ecological Model, Baltes and Baltes Selective Optimization with Compensation Framework, Schulz and Heckhausen's Motivational Theory of Life-Span Development, and Carstensen's Socioemotional Selectivity Theory. Ultimately, a life-span developmental perspective on retirement offers not only new interpretations of known phenomena but may also help to identify novel directions for future research as well as promising pathways for interventions.

  16. Temporal variations in early developmental decisions: an engine of forebrain evolution.

    PubMed

    Bielen, H; Pal, S; Tole, S; Houart, C

    2017-02-01

    Tight control of developmental timing is pivotal to many major processes in developmental biology, such as patterning, fate specification, cell cycle dynamics, cell migration and connectivity. Temporal change in these ontogenetic sequences is known as heterochrony, a major force in the evolution of body plans and organogenesis. In the last 5 years, studies in fish and rodents indicate that heterochrony in signaling during early development generates diversity in forebrain size and complexity. Here, we summarize these findings and propose that, additionally to spatio-temporal tuning of neurogenesis, temporal and quantitative modulation of signaling events drive pivotal changes in shape, size and complexity of the forebrain across evolution, participating to the generation of diversity in animal behavior and emergence of cognition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. A Dynamical System Approach Explaining the Process of Development by Introducing Different Time-scales.

    PubMed

    Hashemi Kamangar, Somayeh Sadat; Moradimanesh, Zahra; Mokhtari, Setareh; Bakouie, Fatemeh

    2018-06-11

    A developmental process can be described as changes through time within a complex dynamic system. The self-organized changes and emergent behaviour during development can be described and modeled as a dynamical system. We propose a dynamical system approach to answer the main question in human cognitive development i.e. the changes during development happens continuously or in discontinuous stages. Within this approach there is a concept; the size of time scales, which can be used to address the aforementioned question. We introduce a framework, by considering the concept of time-scale, in which "fast" and "slow" is defined by the size of time-scales. According to our suggested model, the overall pattern of development can be seen as one continuous function, with different time-scales in different time intervals.

  18. Annual Research Review: Resilient functioning in maltreated children: Past, present, and future perspectives

    PubMed Central

    Cicchetti, Dante

    2012-01-01

    Through a process of probabilistic epigenesis, child maltreatment progressively contributes to compromised adaptation on a variety of developmental domains central to successful adjustment. These developmental failures pose significant risk for the emergence of psychopathology across the life course. In addition to the psychological consequences of maltreatment, a growing body of research has documented the deleterious effects of abuse and neglect on biological processes. Nonetheless, not all maltreated children develop maladaptively. Indeed, some percentage of maltreated children develop in a resilient fashion despite the significant adversity and stress they experience. The literature on the determinants of resilience in maltreated children is selectively reviewed and criteria for the inclusion of the studies are delineated. The majority of the research on the contributors to resilient functioning has focused on a single level of analysis and on psychosocial processes. Multilevel investigations have begun to appear, resulting in several studies on the processes to resilient functioning that integrate biological/genetic and psychological domains. Much additional research on the determinants of resilient functioning must be completed before we possess adequate knowledge based on a multiple levels of analysis approach that is commensurate with the complexity inherent in this dynamic developmental process. Suggestions for future research on the development of resilient functioning in maltreated children are proffered and intervention implications are discussed. PMID:22928717

  19. Building a Literacy Community: The Role of Literacy and Social Practice in Early Childhood Program Reform.

    ERIC Educational Resources Information Center

    Meier, Daniel R.; Britsch, Susan J.

    Preschool can be an opportunity to emphasize literacy teaching and learning and to develop the role of "literacy as community," rather than being only kindergarten preparation. The results of two studies view children's literacy development as a dynamic, developmental process involving language, thought, and social interaction. In…

  20. Parental Involvement in Child Assessment: A Dynamic Approach.

    ERIC Educational Resources Information Center

    SeokHoon, Alice Seng

    This paper examines the status of parents in the developmental assessment process and considers how involving parents jointly with the professional to assess their young child may yield more accurate and valuable information. The paper explores the use of a mediated learning experience (MLE) approach as a framework for increasing support for…

  1. The Dynamic Association between Motor Skill Development and Physical Activity

    ERIC Educational Resources Information Center

    Stodden, David F.; Goodway, Jacqueline D.

    2007-01-01

    Although significant attention has been given to promoting physical activity among children, little attention has been given to the developmental process of how children learn to move or to the changing role that motor skill development plays in children's physical activity levels as they grow. In order to successfully address the obesity…

  2. Developmental Pathways to Integrated Social Skills: The Roles of Parenting and Early Intervention

    ERIC Educational Resources Information Center

    Ayoub, Catherine; Vallotton, Claire D.; Mastergeorge, Ann M.

    2011-01-01

    Dynamic skill theory was utilized to explain the multiple mechanisms and mediating processes influencing development of self-regulatory and language skills in children at 14, 24, and 36 months of age. Relations were found between family risks, parenting-related stresses, and parent-child interactions that contribute either independently or through…

  3. Implications of Vygotsky's Sociocultural Theory for Second Language (L2) Assessment

    ERIC Educational Resources Information Center

    Shabani, Karim

    2016-01-01

    Dynamic assessment (DA) research, still in its infancy, takes its roots from Vygotsky's concept of zone of proximal development (ZPD) to account for learner's developmental process. Breaking away from a static, incomplete and, thus, unethical assessment of learner's abilities, DA came to the fore to better crystallize learner's levels of abilities…

  4. Emergent Literacy in Children with Autism: An Exploration of Developmental and Contextual Dynamic Processes

    ERIC Educational Resources Information Center

    Lanter, Elizabeth; Watson, Linda R.; Erickson, Karen A.; Freeman, Daniel

    2012-01-01

    Purpose: This investigation describes emergent literacy skills, print motivation, and home literacy environments in a linguistically diverse group of children with autism spectrum disorders (ASD). Method: Emergent literacy skills were directly assessed in 41 children between the ages of 4 and 8 years. Parent report was solicited to provide…

  5. Quantitative 4D analyses of epithelial folding during Drosophila gastrulation.

    PubMed

    Khan, Zia; Wang, Yu-Chiun; Wieschaus, Eric F; Kaschube, Matthias

    2014-07-01

    Understanding the cellular and mechanical processes that underlie the shape changes of individual cells and their collective behaviors in a tissue during dynamic and complex morphogenetic events is currently one of the major frontiers in developmental biology. The advent of high-speed time-lapse microscopy and its use in monitoring the cellular events in fluorescently labeled developing organisms demonstrate tremendous promise in establishing detailed descriptions of these events and could potentially provide a foundation for subsequent hypothesis-driven research strategies. However, obtaining quantitative measurements of dynamic shapes and behaviors of cells and tissues in a rapidly developing metazoan embryo using time-lapse 3D microscopy remains technically challenging, with the main hurdle being the shortage of robust imaging processing and analysis tools. We have developed EDGE4D, a software tool for segmenting and tracking membrane-labeled cells using multi-photon microscopy data. Our results demonstrate that EDGE4D enables quantification of the dynamics of cell shape changes, cell interfaces and neighbor relations at single-cell resolution during a complex epithelial folding event in the early Drosophila embryo. We expect this tool to be broadly useful for the analysis of epithelial cell geometries and movements in a wide variety of developmental contexts. © 2014. Published by The Company of Biologists Ltd.

  6. Tests of the Dynamic Field Theory and the Spatial Precision Hypothesis: Capturing a Qualitative Developmental Transition in Spatial Working Memory

    PubMed Central

    Schutte, Anne R.; Spencer, John P.

    2009-01-01

    This study tested a dynamic field theory (DFT) of spatial working memory and an associated spatial precision hypothesis (SPH). Between three and six years of age there is a qualitative shift in how children use reference axes to remember locations: 3-year-olds’ spatial recall responses are biased toward reference axes after short memory delays, whereas 6-year-olds’ responses are biased away from reference axes. According to the DFT and the SPH, quantitative improvements over development in the precision of excitatory and inhibitory working memory processes lead to this qualitative shift. Simulations of the DFT in Experiment 1 predict that improvements in precision should cause the spatial range of targets attracted toward a reference axis to narrow gradually over development with repulsion emerging and gradually increasing until responses to most targets show biases away from the axis. Results from Experiment 2 with 3- to 5-year-olds support these predictions. Simulations of the DFT in Experiment 3 quantitatively fit the empirical results and offer insights into the neural processes underlying this developmental change. PMID:19968430

  7. The developmental dynamics of gait maturation with a focus on spatiotemporal measures.

    PubMed

    Kraan, C M; Tan, A H J; Cornish, K M

    2017-01-01

    Gait analysis is recognised as a powerful clinical tool for studying relationships between motor control and brain function. By drawing on the literature investigating gait in individuals with neurological disorders, this review provides insight into the neural processes that contribute to and regulate specific spatiotemporal sub-components of gait and how they may mature across early to late childhood. This review also discusses the roles of changing anthropomorphic characteristics, and maturing sensory and higher-order cognitive processes in differentiating the developmental trajectories of the sub-components of gait. Importantly, although studies have shown that cognitive-gait interference is larger in children compared to adults, the contributing neurocognitive mechanisms may vary across age groups who have different types of attentional or cognitive vulnerabilities. These findings have implications for current models of gait maturation by highlighting the need for a dynamic model that focuses on the integration of various factors that contribute to gait though experience and practice. This is essential to elucidating why gait and other motor deficits are often contiguous with cognitive neurodevelopmental disorders. Copyright © 2016. Published by Elsevier B.V.

  8. Annual research review: Rare genotypes and childhood psychopathology--uncovering diverse developmental mechanisms of ADHD risk.

    PubMed

    Scerif, Gaia; Baker, Kate

    2015-03-01

    Through the increased availability and sophistication of genetic testing, it is now possible to identify causal diagnoses in a growing proportion of children with neurodevelopmental disorders. In addition to developmental delay and intellectual disability, many genetic disorders are associated with high risks of psychopathology, which curtail the wellbeing of affected individuals and their families. Beyond the identification of significant clinical needs, understanding the diverse pathways from rare genetic mutations to cognitive dysfunction and emotional-behavioural disturbance has theoretical and practical utility. We overview (based on a strategic search of the literature) the state-of-the-art on causal mechanisms leading to one of the most common childhood behavioural diagnoses - attention deficit hyperactivity disorder (ADHD) - in the context of specific genetic disorders. We focus on new insights emerging from the mapping of causal pathways from identified genetic differences to neuronal biology, brain abnormalities, cognitive processing differences and ultimately behavioural symptoms of ADHD. First, ADHD research in the context of rare genotypes highlights the complexity of multilevel mechanisms contributing to psychopathology risk. Second, comparisons between genetic disorders associated with similar psychopathology risks can elucidate convergent or distinct mechanisms at each level of analysis, which may inform therapeutic interventions and prognosis. Third, genetic disorders provide an unparalleled opportunity to observe dynamic developmental interactions between neurocognitive risk and behavioural symptoms. Fourth, variation in expression of psychopathology risk within each genetic disorder points to putative moderating and protective factors within the genome and the environment. A common imperative emerging within psychopathology research is the need to investigate mechanistically how developmental trajectories converge or diverge between and within genotype-defined groups. Crucially, as genetic predispositions modify interaction dynamics from the outset, longitudinal research is required to understand the multi-level developmental processes that mediate symptom evolution. © 2014 Association for Child and Adolescent Mental Health.

  9. Adaptation as process: the future of Darwinism and the legacy of Theodosius Dobzhansky.

    PubMed

    Depew, David J

    2011-03-01

    Conceptions of adaptation have varied in the history of genetic Darwinism depending on whether what is taken to be focal is the process of adaptation, adapted states of populations, or discrete adaptations in individual organisms. I argue that Theodosius Dobzhansky's view of adaptation as a dynamical process contrasts with so-called "adaptationist" views of natural selection figured as "design-without-a-designer" of relatively discrete, enumerable adaptations. Correlated with these respectively process and product oriented approaches to adaptive natural selection are divergent pictures of organisms themselves as developmental wholes or as "bundles" of adaptations. While even process versions of genetical Darwinism are insufficiently sensitive to the fact much of the variation on which adaptive selection works consists of changes in the timing, rate, or location of ontogenetic events, I argue that articulations of the Modern Synthesis influenced by Dobzhansky are more easily reconciled with the recent shift to evolutionary developmentalism than are versions that make discrete adaptations central. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. The Developmental Dynamics of Task-Avoidant Behavior and Math Performance in Kindergarten and Elementary School

    ERIC Educational Resources Information Center

    Hirvonen, Riikka; Tolvanen, Asko; Aunola, Kaisa; Nurmi, Jari-Erik

    2012-01-01

    Besides cognitive factors, children's learning at school may be influenced by more dynamic phenomena, such as motivation and achievement-related task-avoidant behavior. The present study examined the developmental dynamics of task-avoidant behavior and math performance from kindergarten to Grade 4. A total of 225 children were tested for their…

  11. Linking social change and developmental change: shifting pathways of human development.

    PubMed

    Greenfield, Patricia M

    2009-03-01

    P. M. Greenfield's new theory of social change and human development aims to show how changing sociodemographic ecologies alter cultural values and learning environments and thereby shift developmental pathways. Worldwide sociodemographic trends include movement from rural residence, informal education at home, subsistence economy, and low-technology environments to urban residence, formal schooling, commerce, and high-technology environments. The former ecology is summarized by the German term Gemeinschaft ("community") and the latter by the German term Gesellschaft ("society"; Tönnies, 1887/1957). A review of empirical research demonstrates that, through adaptive processes, movement of any ecological variable in a Gesellschaft direction shifts cultural values in an individualistic direction and developmental pathways toward more independent social behavior and more abstract cognition--to give a few examples of the myriad behaviors that respond to these sociodemographic changes. In contrast, the (much less frequent) movement of any ecological variable in a Gemeinschaft direction is predicted to move cultural values and developmental pathways in the opposite direction. In conclusion, sociocultural environments are not static either in the developed or the developing world and therefore must be treated dynamically in developmental research.

  12. Mathematical modelling in developmental biology.

    PubMed

    Vasieva, Olga; Rasolonjanahary, Manan'Iarivo; Vasiev, Bakhtier

    2013-06-01

    In recent decades, molecular and cellular biology has benefited from numerous fascinating developments in experimental technique, generating an overwhelming amount of data on various biological objects and processes. This, in turn, has led biologists to look for appropriate tools to facilitate systematic analysis of data. Thus, the need for mathematical techniques, which can be used to aid the classification and understanding of this ever-growing body of experimental data, is more profound now than ever before. Mathematical modelling is becoming increasingly integrated into biological studies in general and into developmental biology particularly. This review outlines some achievements of mathematics as applied to developmental biology and demonstrates the mathematical formulation of basic principles driving morphogenesis. We begin by describing a mathematical formalism used to analyse the formation and scaling of morphogen gradients. Then we address a problem of interplay between the dynamics of morphogen gradients and movement of cells, referring to mathematical models of gastrulation in the chick embryo. In the last section, we give an overview of various mathematical models used in the study of the developmental cycle of Dictyostelium discoideum, which is probably the best example of successful mathematical modelling in developmental biology.

  13. Dynamic Proteomic Characteristics and Network Integration Revealing Key Proteins for Two Kernel Tissue Developments in Popcorn.

    PubMed

    Dong, Yongbin; Wang, Qilei; Zhang, Long; Du, Chunguang; Xiong, Wenwei; Chen, Xinjian; Deng, Fei; Ma, Zhiyan; Qiao, Dahe; Hu, Chunhui; Ren, Yangliu; Li, Yuling

    2015-01-01

    The formation and development of maize kernel is a complex dynamic physiological and biochemical process that involves the temporal and spatial expression of many proteins and the regulation of metabolic pathways. In this study, the protein profiles of the endosperm and pericarp at three important developmental stages were analyzed by isobaric tags for relative and absolute quantification (iTRAQ) labeling coupled with LC-MS/MS in popcorn inbred N04. Comparative quantitative proteomic analyses among developmental stages and between tissues were performed, and the protein networks were integrated. A total of 6,876 proteins were identified, of which 1,396 were nonredundant. Specific proteins and different expression patterns were observed across developmental stages and tissues. The functional annotation of the identified proteins revealed the importance of metabolic and cellular processes, and binding and catalytic activities for the development of the tissues. The whole, endosperm-specific and pericarp-specific protein networks integrated 125, 9 and 77 proteins, respectively, which were involved in 54 KEGG pathways and reflected their complex metabolic interactions. Confirmation for the iTRAQ endosperm proteins by two-dimensional gel electrophoresis showed that 44.44% proteins were commonly found. However, the concordance between mRNA level and the protein abundance varied across different proteins, stages, tissues and inbred lines, according to the gene cloning and expression analyses of four relevant proteins with important functions and different expression levels. But the result by western blot showed their same expression tendency for the four proteins as by iTRAQ. These results could provide new insights into the developmental mechanisms of endosperm and pericarp, and grain formation in maize.

  14. Dynamic Proteomic Characteristics and Network Integration Revealing Key Proteins for Two Kernel Tissue Developments in Popcorn

    PubMed Central

    Du, Chunguang; Xiong, Wenwei; Chen, Xinjian; Deng, Fei; Ma, Zhiyan; Qiao, Dahe; Hu, Chunhui; Ren, Yangliu; Li, Yuling

    2015-01-01

    The formation and development of maize kernel is a complex dynamic physiological and biochemical process that involves the temporal and spatial expression of many proteins and the regulation of metabolic pathways. In this study, the protein profiles of the endosperm and pericarp at three important developmental stages were analyzed by isobaric tags for relative and absolute quantification (iTRAQ) labeling coupled with LC-MS/MS in popcorn inbred N04. Comparative quantitative proteomic analyses among developmental stages and between tissues were performed, and the protein networks were integrated. A total of 6,876 proteins were identified, of which 1,396 were nonredundant. Specific proteins and different expression patterns were observed across developmental stages and tissues. The functional annotation of the identified proteins revealed the importance of metabolic and cellular processes, and binding and catalytic activities for the development of the tissues. The whole, endosperm-specific and pericarp-specific protein networks integrated 125, 9 and 77 proteins, respectively, which were involved in 54 KEGG pathways and reflected their complex metabolic interactions. Confirmation for the iTRAQ endosperm proteins by two-dimensional gel electrophoresis showed that 44.44% proteins were commonly found. However, the concordance between mRNA level and the protein abundance varied across different proteins, stages, tissues and inbred lines, according to the gene cloning and expression analyses of four relevant proteins with important functions and different expression levels. But the result by western blot showed their same expression tendency for the four proteins as by iTRAQ. These results could provide new insights into the developmental mechanisms of endosperm and pericarp, and grain formation in maize. PMID:26587848

  15. Time-Limited Psychotherapy With Adolescents

    PubMed Central

    Shefler, Gaby

    2000-01-01

    Short-term dynamic therapies, characterized by abbreviated lengths (10–40 sessions) and, in many cases, preset termination dates, have become more widespread in the past three decades. Short-term therapies are based on rapid psychodynamic diagnosis, a therapeutic focus, a rapidly formed therapeutic alliance, awareness of termination and separation processes, and the directive stance of the therapist. The emotional storm of adolescence, stemming from both developmental and psychopathological sources, leaves many adolescents in need of psychotherapy. Many adolescents in need of therapy resist long-term attachment and involvement in an ambiguous relationship, which they experience as a threat to their emerging sense of independence and separateness. Short-term dynamic therapy can be the treatment of choice for many adolescents because it minimizes these threats and is more responsive to their developmental needs. The article presents treatment and follow-up of a 17-year-old youth, using James Mann's time-limited psychotherapy method. PMID:10793128

  16. The gene expression database for mouse development (GXD): putting developmental expression information at your fingertips.

    PubMed

    Smith, Constance M; Finger, Jacqueline H; Kadin, James A; Richardson, Joel E; Ringwald, Martin

    2014-10-01

    Because molecular mechanisms of development are extraordinarily complex, the understanding of these processes requires the integration of pertinent research data. Using the Gene Expression Database for Mouse Development (GXD) as an example, we illustrate the progress made toward this goal, and discuss relevant issues that apply to developmental databases and developmental research in general. Since its first release in 1998, GXD has served the scientific community by integrating multiple types of expression data from publications and electronic submissions and by making these data freely and widely available. Focusing on endogenous gene expression in wild-type and mutant mice and covering data from RNA in situ hybridization, in situ reporter (knock-in), immunohistochemistry, reverse transcriptase-polymerase chain reaction, Northern blot, and Western blot experiments, the database has grown tremendously over the years in terms of data content and search utilities. Currently, GXD includes over 1.4 million annotated expression results and over 260,000 images. All these data and images are readily accessible to many types of database searches. Here we describe the data and search tools of GXD; explain how to use the database most effectively; discuss how we acquire, curate, and integrate developmental expression information; and describe how the research community can help in this process. Copyright © 2014 The Authors Developmental Dynamics published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists.

  17. Dynamic Organization of lncRNA and Circular RNA Regulators Collectively Controlled Cardiac Differentiation in Humans.

    PubMed

    Li, Yongsheng; Zhang, Jinwen; Huo, Caiqin; Ding, Na; Li, Junyi; Xiao, Jun; Lin, Xiaoyu; Cai, Benzhi; Zhang, Yunpeng; Xu, Juan

    2017-10-01

    Advances in developmental cardiology have increased our understanding of the early aspects of heart differentiation. However, understanding noncoding RNA (ncRNA) transcription and regulation during this process remains elusive. Here, we constructed transcriptomes for both long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) in four important developmental stages ranging from early embryonic to cardiomyocyte based on high-throughput sequencing datasets, which indicate the high stage-specific expression patterns of two ncRNA types. Additionally, higher similarities of samples within each stage were found, highlighting the divergence of samples collected from distinct cardiac developmental stages. Next, we developed a method to identify numerous lncRNA and circRNA regulators whose expression was significantly stage-specific and shifted gradually and continuously during heart differentiation. We inferred that these ncRNAs are important for the stages of cardiac differentiation. Moreover, transcriptional regulation analysis revealed that the expression of stage-specific lncRNAs is controlled by known key stage-specific transcription factors (TFs). In addition, circRNAs exhibited dynamic expression patterns independent from their host genes. Functional enrichment analysis revealed that lncRNAs and circRNAs play critical roles in pathways that are activated specifically during heart differentiation. We further identified candidate TF-ncRNA-gene network modules for each differentiation stage, suggesting the dynamic organization of lncRNAs and circRNAs collectively controlled cardiac differentiation, which may cause heart-related diseases when defective. Our study provides a foundation for understanding the dynamic regulation of ncRNA transcriptomes during heart differentiation and identifies the dynamic organization of novel key lncRNAs and circRNAs to collectively control cardiac differentiation. Copyright © 2017. Published by Elsevier B.V.

  18. Cellular and Molecular Dynamics of Th17 Differentiation and its Developmental Plasticity in the Intestinal Immune Response

    PubMed Central

    Bhaumik, Suniti; Basu, Rajatava

    2017-01-01

    After emerging from the thymus, naive CD4 T cells circulate through secondary lymphoid tissues, including gut-associated lymphoid tissue of the intestine. The activation of naïve CD4 T cells by antigen-presenting cells offering cognate antigen initiate differentiation programs that lead to the development of highly specialized T helper (Th) cell lineages. Although initially believed that developmental programing of effector T cells such as T helper 1 (Th1) or T helper 2 (Th2) resulted in irreversible commitment to a fixed fate, subsequent studies have demonstrated greater flexibility, or plasticity, in effector T cell stability than originally conceived. This is particularly so for the Th17 subset, differentiation of which is a highly dynamic process with overlapping developmental axes with inducible regulatory T (iTreg), T helper 22 (Th22), and Th1 cells. Accordingly, intermediary stages of Th17 cells are found in various tissues, which co-express lineage-specific transcription factor(s) or cytokine(s) of developmentally related CD4 T cell subsets. A highly specialized tissue like that of the intestine, which harbors the largest immune compartment of the body, adds several layers of complexity to the intricate process of Th differentiation. Due to constant exposure to millions of commensal microbes and periodic exposure to pathogens, the intestinal mucosa maintains a delicate balance between regulatory and effector T cells. It is becoming increasingly clear that equilibrium between tolerogenic and inflammatory axes is maintained in the intestine by shuttling the flexible genetic programming of a developing CD4 T cell along the developmental axis of iTreg, Th17, Th22, and Th1 subsets. Currently, Th17 plasticity remains an unresolved concern in the field of clinical research as targeting Th17 cells to cure immune-mediated disease might also target its related subsets. In this review, we discuss the expanding sphere of Th17 plasticity through its shared developmental axes with related cellular subsets such as Th22, Th1, and iTreg in the context of intestinal inflammation and also examine the molecular and epigenetic features of Th17 cells that mediate these overlapping developmental programs. PMID:28408906

  19. Low-dose ionizing radiation limitations to seed germination: Results from a model linking physiological characteristics and developmental-dynamics simulation strategy.

    PubMed

    Liu, Hui; Hu, Dawei; Dong, Chen; Fu, Yuming; Liu, Guanghui; Qin, Youcai; Sun, Yi; Liu, Dianlei; Li, Lei; Liu, Hong

    2017-08-01

    There is much uncertainty about the risks of seed germination after repeated or protracted environmental low-dose ionizing radiation exposure. The purpose of this study is to explore the influence mechanism of low-dose ionizing radiation on wheat seed germination using a model linking physiological characteristics and developmental-dynamics simulation. A low-dose ionizing radiation environment simulator was built to investigate wheat (Triticum aestivum L.) seeds germination process and then a kinetic model expressing the relationship between wheat seed germination dynamics and low-dose ionizing radiation intensity variations was developed by experimental data, plant physiology, relevant hypotheses and system dynamics, and sufficiently validated and accredited by computer simulation. Germination percentages were showing no differences in response to different dose rates. However, root and shoot lengths were reduced significantly. Plasma governing equations were set up and the finite element analysis demonstrated H 2 O, CO 2 , O 2 as well as the seed physiological responses to the low-dose ionizing radiation. The kinetic model was highly valid, and simultaneously the related influence mechanism of low-dose ionizing radiation on wheat seed germination proposed in the modeling process was also adequately verified. Collectively these data demonstrate that low-dose ionizing radiation has an important effect on absorbing water, consuming O 2 and releasing CO 2 , which means the risk for embryo and endosperm development was higher. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. EFL Learners' Production of Questions over Time: Linguistic, Usage-Based, and Developmental Features

    ERIC Educational Resources Information Center

    Nekrasova-Beker, Tatiana M.

    2011-01-01

    The recognition of second language (L2) development as a dynamic process has led to different claims about how language development unfolds, what represents a learner's linguistic system (i.e., interlanguage) at a certain point in time, and how that system changes over time (Verspoor, de Bot, & Lowie, 2011). Responding to de Bot and…

  1. Scaffolding Interaction in Parent-Child Dyads: Multimodal Analysis of Parental Scaffolding with Task and Non-Task Oriented Children

    ERIC Educational Resources Information Center

    Salonen, Pekka; Lepola, Janne; Vauras, Marja

    2007-01-01

    In this exploratory study we conceptualized and explored socio-cognitive, emotional and motivational regulatory processes displayed in scaffolding interaction between parents and their non-task and task-oriented children. Based on the dynamic systems view and findings from developmental research, we assumed that parents with non-task oriented and…

  2. Dynamic and Widespread lncRNA Expression in a Sponge and the Origin of Animal Complexity

    PubMed Central

    Gaiti, Federico; Fernandez-Valverde, Selene L.; Nakanishi, Nagayasu; Calcino, Andrew D.; Yanai, Itai; Tanurdzic, Milos; Degnan, Bernard M.

    2015-01-01

    Long noncoding RNAs (lncRNAs) are important developmental regulators in bilaterian animals. A correlation has been claimed between the lncRNA repertoire expansion and morphological complexity in vertebrate evolution. However, this claim has not been tested by examining morphologically simple animals. Here, we undertake a systematic investigation of lncRNAs in the demosponge Amphimedon queenslandica, a morphologically simple, early-branching metazoan. We combine RNA-Seq data across multiple developmental stages of Amphimedon with a filtering pipeline to conservatively predict 2,935 lncRNAs. These include intronic overlapping lncRNAs, exonic antisense overlapping lncRNAs, long intergenic nonprotein coding RNAs, and precursors for small RNAs. Sponge lncRNAs are remarkably similar to their bilaterian counterparts in being relatively short with few exons and having low primary sequence conservation relative to protein-coding genes. As in bilaterians, a majority of sponge lncRNAs exhibit typical hallmarks of regulatory molecules, including high temporal specificity and dynamic developmental expression. Specific lncRNA expression profiles correlate tightly with conserved protein-coding genes likely involved in a range of developmental and physiological processes, such as the Wnt signaling pathway. Although the majority of Amphimedon lncRNAs appears to be taxonomically restricted with no identifiable orthologs, we find a few cases of conservation between demosponges in lncRNAs that are antisense to coding sequences. Based on the high similarity in the structure, organization, and dynamic expression of sponge lncRNAs to their bilaterian counterparts, we propose that these noncoding RNAs are an ancient feature of the metazoan genome. These results are consistent with lncRNAs regulating the development of animals, regardless of their level of morphological complexity. PMID:25976353

  3. Cultural values and immigrant entrepreneurship: the Chinese in Singapore.

    PubMed

    Chan, K B; Chiang, S N

    1994-01-01

    "It is the intent of this paper to examine the interrelationships between early socialisation into core Chinese cultural values, international migration and Chinese immigrant entrepreneurship.... It is through a developmental socialisation process by which [cultural] values are articulated in family and kin network dynamics that social organisations begin to develop and define what is popularly understood as the 'Chinese way of doing business'. We argue that among the overseas Chinese, this way of doing business must be viewed historically and developmentally, as it is intimately intertwined with transmigration experiences and their consequences in shaping values necessary for the emergence and development of entrepreneurship." (SUMMARY IN FRE AND SPA) excerpt

  4. Grounded in the World: Developmental Origins of the Embodied Mind

    NASA Astrophysics Data System (ADS)

    Thelen, Esther

    Piaget's question of how the adult mind emerges from the sensorimotor infant is still the framing issue for developmental psychology. Here I suggest that real-life skill is better understood if the sensorimotor origins of cognition are not abandoned. Skilled people are better at both abstract and logical thinking, but also at processing the world 'on-line' and most importantly, seamlessly and rapidly shifting between the two modes. I illustrate the tight coupling between action, perception, and cognition in early life and propose that this coupling remains, but becomes more flexibly adaptive. Furthermore, I show that the language of dynamics is appropriate to capture these mind-body-world interconnections.

  5. Brief Report: Representational Momentum for Dynamic Facial Expressions in Pervasive Developmental Disorder

    ERIC Educational Resources Information Center

    Uono, Shota; Sato, Wataru; Toichi, Motomi

    2010-01-01

    Individuals with pervasive developmental disorder (PDD) have difficulty with social communication via emotional facial expressions, but behavioral studies involving static images have reported inconsistent findings about emotion recognition. We investigated whether dynamic presentation of facial expression would enhance subjective perception of…

  6. Addiction, adolescence, and the integration of control and motivation.

    PubMed

    Gladwin, Thomas E; Figner, Bernd; Crone, Eveline A; Wiers, Reinout W

    2011-10-01

    The likelihood of initiating addictive behaviors is higher during adolescence than during any other developmental period. The differential developmental trajectories of brain regions involved in motivation and control processes may lead to adolescents' increased risk taking in general, which may be exacerbated by the neural consequences of drug use. Neuroimaging studies suggest that increased risk-taking behavior in adolescence is related to an imbalance between prefrontal cortical regions, associated with executive functions, and subcortical brain regions related to affect and motivation. Dual-process models of addictive behaviors are similarly concerned with difficulties in controlling abnormally strong motivational processes. We acknowledge concerns raised about dual-process models, but argue that they can be addressed by carefully considering levels of description: motivational processes and top-down biasing can be understood as intertwined, co-developing components of more versus less reflective states of processing. We illustrate this with a model that further emphasizes temporal dynamics. Finally, behavioral interventions for addiction are discussed. Insights in the development of control and motivation may help to better understand - and more efficiently intervene in - vulnerabilities involving control and motivation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Neuronal Circuitry Mechanisms Regulating Adult Mammalian Neurogenesis

    PubMed Central

    Song, Juan; Olsen, Reid H.J.; Sun, Jiaqi; Ming, Guo-li; Song, Hongjun

    2017-01-01

    The adult mammalian brain is a dynamic structure, capable of remodeling in response to various physiological and pathological stimuli. One dramatic example of brain plasticity is the birth and subsequent integration of newborn neurons into the existing circuitry. This process, termed adult neurogenesis, recapitulates neural developmental events in two specialized adult brain regions: the lateral ventricles of the forebrain. Recent studies have begun to delineate how the existing neuronal circuits influence the dynamic process of adult neurogenesis, from activation of quiescent neural stem cells (NSCs) to the integration and survival of newborn neurons. Here, we review recent progress toward understanding the circuit-based regulation of adult neurogenesis in the hippocampus and olfactory bulb. PMID:27143698

  8. Analyzing developmental processes on an individual level using nonstationary time series modeling.

    PubMed

    Molenaar, Peter C M; Sinclair, Katerina O; Rovine, Michael J; Ram, Nilam; Corneal, Sherry E

    2009-01-01

    Individuals change over time, often in complex ways. Generally, studies of change over time have combined individuals into groups for analysis, which is inappropriate in most, if not all, studies of development. The authors explain how to identify appropriate levels of analysis (individual vs. group) and demonstrate how to estimate changes in developmental processes over time using a multivariate nonstationary time series model. They apply this model to describe the changing relationships between a biological son and father and a stepson and stepfather at the individual level. The authors also explain how to use an extended Kalman filter with iteration and smoothing estimator to capture how dynamics change over time. Finally, they suggest further applications of the multivariate nonstationary time series model and detail the next steps in the development of statistical models used to analyze individual-level data.

  9. Emotional insecurity about the community: A dynamic, within-person mediator of child adjustment in contexts of political violence.

    PubMed

    Cummings, E Mark; Merrilees, Christine; Taylor, Laura K; Goeke-Morey, Marcie; Shirlow, Peter

    2017-02-01

    Over 1 billion children worldwide are exposed to political violence and armed conflict. The current conclusions are qualified by limited longitudinal research testing sophisticated process-oriented explanatory models for child adjustment outcomes. In this study, consistent with a developmental psychopathology perspective emphasizing the value of process-oriented longitudinal study of child adjustment in developmental and social-ecological contexts, we tested emotional insecurity about the community as a dynamic, within-person mediating process for relations between sectarian community violence and child adjustment. Specifically, this study explored children's emotional insecurity at a person-oriented level of analysis assessed over 5 consecutive years, with child gender examined as a moderator of indirect effects between sectarian community violence and child adjustment. In the context of a five-wave longitudinal research design, participants included 928 mother-child dyads in Belfast (453 boys, 475 girls) drawn from socially deprived, ethnically homogenous areas that had experienced political violence. Youth ranged in age from 10 to 20 years and were 13.24 (SD = 1.83) years old on average at the initial time point. Greater insecurity about the community measured over multiple time points mediated relations between sectarian community violence and youth's total adjustment problems. The pathway from sectarian community violence to emotional insecurity about the community was moderated by child gender, with relations to emotional insecurity about the community stronger for girls than for boys. The results suggest that ameliorating children's insecurity about community in contexts of political violence is an important goal toward improving adolescents' well-being and adjustment. These results are discussed in terms of their translational research implications, consistent with a developmental psychopathology model for the interface between basic and intervention research.

  10. Bridging Developmental Systems Theory and Evolutionary Psychology Using Dynamic Optimization

    ERIC Educational Resources Information Center

    Frankenhuis, Willem E.; Panchanathan, Karthik; Clark Barrett, H.

    2013-01-01

    Interactions between evolutionary psychologists and developmental systems theorists have been largely antagonistic. This is unfortunate because potential synergies between the two approaches remain unexplored. This article presents a method that may help to bridge the divide, and that has proven fruitful in biology: dynamic optimization. Dynamic…

  11. Developmental evaluation and the 'Stronger Economies Together' initiative in the United States.

    PubMed

    Honadle, Beth Walter; Zapata, Marisa A; Auffrey, Christopher; vom Hofe, Rainer; Looye, Johanna

    2014-04-01

    This article describes a developmental evaluation and explains its impact on the Stronger Economies Together (SET) initiative of the U.S. Department of Agriculture in collaboration with the Nation's four Regional Rural Development Centers and Land-Grant universities. Through a dynamic process, this evaluation of the early phases of an initiative led to continuous program alterations based on feedback. The relationship of the evaluation team to the initiative's coordinating team enabled seamless transfer of observations, suggestions, and recommendations to decision makers. The multidisciplinary character of the evaluation team provided a diverse set of perspectives with a depth of subject matter and knowledge from relevant fields. One lesson is that developmental evaluators must be flexible, nimble, creative, and adaptive. When expected data are imperfect or nonexistent, the team must collect alternate information and make recommendations to improve data collection. As the initiative proceeded and modifications came about, the evaluation team had to recognize the changes in the program and focus on different questions. This experience with developmental evaluation provides insights into how interdisciplinary teams may need to change course and conduct a developmental evaluation when a formative evaluation was originally envisioned. Published by Elsevier Ltd.

  12. Developmental Demands of Cognitive Behavioral Therapy for Depression in Children and Adolescents: Cognitive, Social, and Emotional Processes.

    PubMed

    Garber, Judy; Frankel, Sarah A; Herrington, Catherine G

    2016-01-01

    Although some treatments for depression in children and adolescents have been found to be efficacious, the effects sizes have tended to be modest. Thus, there is considerable room to improve upon existing depression treatments. Some children may respond poorly because they do not yet have the cognitive, social, or emotional maturity needed to understand and apply the skills being taught in therapy. Therefore, treatments for depression may need to be tailored to match children's ability to both comprehend and implement the therapeutic techniques. This review outlines the steps needed for such developmental tailoring: (a) Specify the skills being taught in depression treatments; (b) identify what cognitive, social, and emotional developmental abilities are needed to attain these skills; (c) describe the normative developmental course of these skills and how to determine a child's developmental level; and (d) use this information to design an individualized treatment plan. Possible approaches to intervening include: alter the therapy to meet the child's level of development, train the child on the skills needed to engage in the therapy, or apply a dynamic assessment approach that integrates evaluation into treatment and measures children's current abilities as well as their potential.

  13. Control of neuronal polarity and plasticity--a renaissance for microtubules?

    PubMed

    Hoogenraad, Casper C; Bradke, Frank

    2009-12-01

    Microtubules have been regarded as essential structures for stable neuronal morphology but new studies are highlighting their role in dynamic neuronal processes. Recent work demonstrates that the microtubule cytoskeleton has an active role during different phases of neuronal polarization - microtubules and their stability determine axon formation, they maintain the identity of axons and they regulate the dynamics of dendritic spines, the major sites of excitatory synaptic input. Although microtubules fulfill distinct cellular functions at different developmental stages, the underlying molecular mechanisms are remarkably similar. Reccurring themes are that microtubules direct specific membrane traffic and affect actin dynamics to locally organize axon growth and spine dynamics. We review the novel role of microtubules during neuronal development and discuss models for microtubule-dependent signaling in neuronal plasticity.

  14. Examining the Developmental Dynamics between Achievement Strategies and Different Literacy Skills

    ERIC Educational Resources Information Center

    Georgiou, George K.; Manolitsis, George; Zhang, Xiao; Parrila, Rauno; Nurmi, Jari-Erik

    2013-01-01

    We examined the developmental dynamics between task-avoidant behavior and different literacy outcomes, and possible precursors of task-avoidant behavior. Seventy Greek children were followed from Grade 4 until Grade 6 and were assessed every year on reading fluency, spelling, and reading comprehension. The teachers assessed the children's…

  15. The changing landscape of functional brain networks for face processing in typical development.

    PubMed

    Joseph, Jane E; Swearingen, Joshua E; Clark, Jonathan D; Benca, Chelsie E; Collins, Heather R; Corbly, Christine R; Gathers, Ann D; Bhatt, Ramesh S

    2012-11-15

    Greater expertise for faces in adults than in children may be achieved by a dynamic interplay of functional segregation and integration of brain regions throughout development. The present study examined developmental changes in face network functional connectivity in children (5-12 years) and adults (18-43 years) during face-viewing using a graph-theory approach. A face-specific developmental change involved connectivity of the right occipital face area. During childhood, this node increased in strength and within-module clustering based on positive connectivity. These changes reflect an important role of the ROFA in segregation of function during childhood. In addition, strength and diversity of connections within a module that included primary visual areas (left and right calcarine) and limbic regions (left hippocampus and right inferior orbitofrontal cortex) increased from childhood to adulthood, reflecting increased visuo-limbic integration. This integration was pronounced for faces but also emerged for natural objects. Taken together, the primary face-specific developmental changes involved segregation of a posterior visual module during childhood, possibly implicated in early stage perceptual face processing, and greater integration of visuo-limbic connections from childhood to adulthood, which may reflect processing related to development of perceptual expertise for individuation of faces and other visually homogenous categories. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Temporally Regular Musical Primes Facilitate Subsequent Syntax Processing in Children with Specific Language Impairment.

    PubMed

    Bedoin, Nathalie; Brisseau, Lucie; Molinier, Pauline; Roch, Didier; Tillmann, Barbara

    2016-01-01

    Children with developmental language disorders have been shown to be also impaired in rhythm and meter perception. Temporal processing and its link to language processing can be understood within the dynamic attending theory. An external stimulus can stimulate internal oscillators, which orient attention over time and drive speech signal segmentation to provide benefits for syntax processing, which is impaired in various patient populations. For children with Specific Language Impairment (SLI) and dyslexia, previous research has shown the influence of an external rhythmic stimulation on subsequent language processing by comparing the influence of a temporally regular musical prime to that of a temporally irregular prime. Here we tested whether the observed rhythmic stimulation effect is indeed due to a benefit provided by the regular musical prime (rather than a cost subsequent to the temporally irregular prime). Sixteen children with SLI and 16 age-matched controls listened to either a regular musical prime sequence or an environmental sound scene (without temporal regularities in event occurrence; i.e., referred to as "baseline condition") followed by grammatically correct and incorrect sentences. They were required to perform grammaticality judgments for each auditorily presented sentence. Results revealed that performance for the grammaticality judgments was better after the regular prime sequences than after the baseline sequences. Our findings are interpreted in the theoretical framework of the dynamic attending theory (Jones, 1976) and the temporal sampling (oscillatory) framework for developmental language disorders (Goswami, 2011). Furthermore, they encourage the use of rhythmic structures (even in non-verbal materials) to boost linguistic structure processing and outline perspectives for rehabilitation.

  17. Developmental finite element analysis of cichlid pharyngeal jaws: Quantifying the generation of a key innovation.

    PubMed

    Peterson, Tim; Müller, Gerd B

    2018-01-01

    Advances in imaging and modeling facilitate the calculation of biomechanical forces in biological specimens. These factors play a significant role during ontogenetic development of cichlid pharyngeal jaws, a key innovation responsible for one of the most prolific species diversifications in recent times. MicroCT imaging of radiopaque-stained vertebrate embryos were used to accurately capture the spatial relationships of the pharyngeal jaw apparatus in two cichlid species (Haplochromis elegans and Amatitlania nigrofasciata) for the purpose of creating a time series of developmental stages using finite element models, which can be used to assess the effects of biomechanical forces present in a system at multiple points of its ontogeny. Changes in muscle vector orientations, bite forces, force on the neurocranium where cartilage originates, and stress on upper pharyngeal jaws are analyzed in a comparative context. In addition, microCT scanning revealed the presence of previously unreported cement glands in A. nigrofasciata. The data obtained provide an underrepresented dimension of information on physical forces present in developmental processes and assist in interpreting the role of developmental dynamics in evolution.

  18. Developmental finite element analysis of cichlid pharyngeal jaws: Quantifying the generation of a key innovation

    PubMed Central

    Müller, Gerd B.

    2018-01-01

    Advances in imaging and modeling facilitate the calculation of biomechanical forces in biological specimens. These factors play a significant role during ontogenetic development of cichlid pharyngeal jaws, a key innovation responsible for one of the most prolific species diversifications in recent times. MicroCT imaging of radiopaque-stained vertebrate embryos were used to accurately capture the spatial relationships of the pharyngeal jaw apparatus in two cichlid species (Haplochromis elegans and Amatitlania nigrofasciata) for the purpose of creating a time series of developmental stages using finite element models, which can be used to assess the effects of biomechanical forces present in a system at multiple points of its ontogeny. Changes in muscle vector orientations, bite forces, force on the neurocranium where cartilage originates, and stress on upper pharyngeal jaws are analyzed in a comparative context. In addition, microCT scanning revealed the presence of previously unreported cement glands in A. nigrofasciata. The data obtained provide an underrepresented dimension of information on physical forces present in developmental processes and assist in interpreting the role of developmental dynamics in evolution. PMID:29320528

  19. Primer and interviews: Molecular mechanisms of morphological evolution

    PubMed Central

    Kiefer, Julie C

    2010-01-01

    The beauty of the developing embryo, and the awe that it inspires, lure many scientists into the field of developmental biology. What compels cells to divide, migrate, and morph into a being with a complex body plan? Evolutionary developmental biologists hold similar fascinations, with dynamics that take place on a grander timescale. How do phenotypic traits diverge over evolutionary time? This primer illustrates how a deep understanding of the basic principles that underlie developmental biology have changed how scientists think about the evolution of body form. The primer culminates in a conversation with David Stern, PhD, and Michael Shapiro, PhD, who discuss current topics in morphological evolution, why the field should be of interest to classic developmental biologists, and what lies ahead. Developmental Dynamics 239:3497–3505, 2010. © 2010 Wiley-Liss, Inc. PMID:21069831

  20. Long-term C. elegans immobilization enables high resolution developmental studies in vivo.

    PubMed

    Berger, Simon; Lattmann, Evelyn; Aegerter-Wilmsen, Tinri; Hengartner, Michael; Hajnal, Alex; deMello, Andrew; Casadevall I Solvas, Xavier

    2018-05-01

    Live-imaging of C. elegans is essential for the study of conserved cellular pathways (e.g. EGFR/Wnt signaling) and morphogenesis in vivo. However, the usefulness of live imaging as a research tool has been severely limited by the need to immobilize worms prior to and during imaging. Conventionally, immobilization is achieved by employing both physical and chemical interventions. These are known to significantly affect many physiological processes, and thus limit our understanding of dynamic developmental processes. Herein we present a novel, easy-to-use microfluidic platform for the long-term immobilization of viable, normally developing C. elegans, compatible with image acquisition at high resolution, thereby overcoming the limitations associated with conventional worm immobilization. The capabilities of the platform are demonstrated through the continuous assessment of anchor cell (AC) invasion and distal tip cell (DTC) migration in larval C. elegans and germ cell apoptosis in adult C. elegans in vivo for the first time.

  1. Impaired encoding of rapid pitch information underlies perception and memory deficits in congenital amusia.

    PubMed

    Albouy, Philippe; Cousineau, Marion; Caclin, Anne; Tillmann, Barbara; Peretz, Isabelle

    2016-01-06

    Recent theories suggest that the basis of neurodevelopmental auditory disorders such as dyslexia or specific language impairment might be a low-level sensory dysfunction. In the present study we test this hypothesis in congenital amusia, a neurodevelopmental disorder characterized by severe deficits in the processing of pitch-based material. We manipulated the temporal characteristics of auditory stimuli and investigated the influence of the time given to encode pitch information on participants' performance in discrimination and short-term memory. Our results show that amusics' performance in such tasks scales with the duration available to encode acoustic information. This suggests that in auditory neuro-developmental disorders, abnormalities in early steps of the auditory processing can underlie the high-level deficits (here musical disabilities). Observing that the slowing down of temporal dynamics improves amusics' pitch abilities allows considering this approach as a potential tool for remediation in developmental auditory disorders.

  2. Neutrality and Robustness in Evo-Devo: Emergence of Lateral Inhibition

    PubMed Central

    Munteanu, Andreea; Solé, Ricard V.

    2008-01-01

    Embryonic development is defined by the hierarchical dynamical process that translates genetic information (genotype) into a spatial gene expression pattern (phenotype) providing the positional information for the correct unfolding of the organism. The nature and evolutionary implications of genotype–phenotype mapping still remain key topics in evolutionary developmental biology (evo-devo). We have explored here issues of neutrality, robustness, and diversity in evo-devo by means of a simple model of gene regulatory networks. The small size of the system allowed an exhaustive analysis of the entire fitness landscape and the extent of its neutrality. This analysis shows that evolution leads to a class of robust genetic networks with an expression pattern characteristic of lateral inhibition. This class is a repertoire of distinct implementations of this key developmental process, the diversity of which provides valuable clues about its underlying causal principles. PMID:19023404

  3. From Understanding the Development Landscape of the Canonical Fate-Switch Pair to Constructing a Dynamic Landscape for Two-Step Neural Differentiation

    PubMed Central

    2012-01-01

    Abstract Recent progress in stem cell biology, notably cell fate conversion, calls for novel theoretical understanding for cell differentiation. The existing qualitative concept of Waddington’s “epigenetic landscape” has attracted particular attention because it captures subsequent fate decision points, thus manifesting the hierarchical (“tree-like”) nature of cell fate diversification. Here, we generalized a recent work and explored such a developmental landscape for a two-gene fate decision circuit by integrating the underlying probability landscapes with different parameters (corresponding to distinct developmental stages). The change of entropy production rate along the parameter changes indicates which parameter changes can represent a normal developmental process while other parameters’ change can not. The transdifferentiation paths over the landscape under certain conditions reveal the possibility of a direct and reversible phenotypic conversion. As the intensity of noise increases, we found that the landscape becomes flatter and the dominant paths more straight, implying the importance of biological noise processing mechanism in development and reprogramming. We further extended the landscape of the one-step fate decision to that for two-step decisions in central nervous system (CNS) differentiation. A minimal network and dynamic model for CNS differentiation was firstly constructed where two three-gene motifs are coupled. We then implemented the SDEs (Stochastic Differentiation Equations) simulation for the validity of the network and model. By integrating the two landscapes for the two switch gene pairs, we constructed the two-step development landscape for CNS differentiation. Our work provides new insights into cellular differentiation and important clues for better reprogramming strategies. PMID:23300518

  4. Toward a comprehensive model of antisocial development: a dynamic systems approach.

    PubMed

    Granic, Isabela; Patterson, Gerald R

    2006-01-01

    The purpose of this article is to develop a preliminary comprehensive model of antisocial development based on dynamic systems principles. The model is built on the foundations of behavioral research on coercion theory. First, the authors focus on the principles of multistability, feedback, and nonlinear causality to reconceptualize real-time parent-child and peer processes. Second, they model the mechanisms by which these real-time processes give rise to negative developmental outcomes, which in turn feed back to determine real-time interactions. Third, they examine mechanisms of change and stability in early- and late-onset antisocial trajectories. Finally, novel clinical designs and predictions are introduced. The authors highlight new predictions and present studies that have tested aspects of the model

  5. Dynamics of DNA methylomes underlie oyster development

    PubMed Central

    Sourdaine, Pascal; Guo, Ximing; Favrel, Pascal

    2017-01-01

    DNA methylation is a critical epigenetic regulator of development in mammals and social insects, but its significance in development outside these groups is not understood. Here we investigated the genome-wide dynamics of DNA methylation in a mollusc model, the oyster Crassostrea gigas, from the egg to the completion of organogenesis. Large-scale methylation maps reveal that the oyster genome displays a succession of methylated and non methylated regions, which persist throughout development. Differentially methylated regions (DMRs) are strongly regulated during cleavage and metamorphosis. The distribution and levels of methylated DNA within genomic features (exons, introns, promoters, repeats and transposons) show different developmental lansdscapes marked by a strong increase in the methylation of exons against introns after metamorphosis. Kinetics of methylation in gene-bodies correlate to their transcription regulation and to distinct functional gene clusters, and DMRs at cleavage and metamorphosis bear the genes functionally related to these steps, respectively. This study shows that DNA methylome dynamics underlie development through transcription regulation in the oyster, a lophotrochozoan species. To our knowledge, this is the first demonstration of such epigenetic regulation outside vertebrates and ecdysozoan models, bringing new insights into the evolution and the epigenetic regulation of developmental processes. PMID:28594821

  6. Dynamics of DNA methylomes underlie oyster development.

    PubMed

    Riviere, Guillaume; He, Yan; Tecchio, Samuele; Crowell, Elizabeth; Gras, Michaël; Sourdaine, Pascal; Guo, Ximing; Favrel, Pascal

    2017-06-01

    DNA methylation is a critical epigenetic regulator of development in mammals and social insects, but its significance in development outside these groups is not understood. Here we investigated the genome-wide dynamics of DNA methylation in a mollusc model, the oyster Crassostrea gigas, from the egg to the completion of organogenesis. Large-scale methylation maps reveal that the oyster genome displays a succession of methylated and non methylated regions, which persist throughout development. Differentially methylated regions (DMRs) are strongly regulated during cleavage and metamorphosis. The distribution and levels of methylated DNA within genomic features (exons, introns, promoters, repeats and transposons) show different developmental lansdscapes marked by a strong increase in the methylation of exons against introns after metamorphosis. Kinetics of methylation in gene-bodies correlate to their transcription regulation and to distinct functional gene clusters, and DMRs at cleavage and metamorphosis bear the genes functionally related to these steps, respectively. This study shows that DNA methylome dynamics underlie development through transcription regulation in the oyster, a lophotrochozoan species. To our knowledge, this is the first demonstration of such epigenetic regulation outside vertebrates and ecdysozoan models, bringing new insights into the evolution and the epigenetic regulation of developmental processes.

  7. Dynamic CRM occupancy reflects a temporal map of developmental progression.

    PubMed

    Wilczyński, Bartek; Furlong, Eileen E M

    2010-06-22

    Development is driven by tightly coordinated spatio-temporal patterns of gene expression, which are initiated through the action of transcription factors (TFs) binding to cis-regulatory modules (CRMs). Although many studies have investigated how spatial patterns arise, precise temporal control of gene expression is less well understood. Here, we show that dynamic changes in the timing of CRM occupancy is a prevalent feature common to all TFs examined in a developmental ChIP time course to date. CRMs exhibit complex binding patterns that cannot be explained by the sequence motifs or expression of the TFs themselves. The temporal changes in TF binding are highly correlated with dynamic patterns of target gene expression, which in turn reflect transitions in cellular function during different stages of development. Thus, it is not only the timing of a TF's expression, but also its temporal occupancy in refined time windows, which determines temporal gene expression. Systematic measurement of dynamic CRM occupancy may therefore serve as a powerful method to decode dynamic changes in gene expression driving developmental progression.

  8. Dual-Schemata Model

    NASA Astrophysics Data System (ADS)

    Taniguchi, Tadahiro; Sawaragi, Tetsuo

    In this paper, a new machine-learning method, called Dual-Schemata model, is presented. Dual-Schemata model is a kind of self-organizational machine learning methods for an autonomous robot interacting with an unknown dynamical environment. This is based on Piaget's Schema model, that is a classical psychological model to explain memory and cognitive development of human beings. Our Dual-Schemata model is developed as a computational model of Piaget's Schema model, especially focusing on sensori-motor developing period. This developmental process is characterized by a couple of two mutually-interacting dynamics; one is a dynamics formed by assimilation and accommodation, and the other dynamics is formed by equilibration and differentiation. By these dynamics schema system enables an agent to act well in a real world. This schema's differentiation process corresponds to a symbol formation process occurring within an autonomous agent when it interacts with an unknown, dynamically changing environment. Experiment results obtained from an autonomous facial robot in which our model is embedded are presented; an autonomous facial robot becomes able to chase a ball moving in various ways without any rewards nor teaching signals from outside. Moreover, emergence of concepts on the target movements within a robot is shown and discussed in terms of fuzzy logics on set-subset inclusive relationships.

  9. A longitudinal examination of event-related potentials sensitive to monetary reward and loss feedback from late childhood to middle adolescence.

    PubMed

    Kujawa, Autumn; Carroll, Ashley; Mumper, Emma; Mukherjee, Dahlia; Kessel, Ellen M; Olino, Thomas; Hajcak, Greg; Klein, Daniel N

    2017-11-04

    Brain regions involved in reward processing undergo developmental changes from childhood to adolescence, and alterations in reward-related brain function are thought to contribute to the development of psychopathology. Event-related potentials (ERPs), such as the reward positivity (RewP) component, are valid measures of reward responsiveness that are easily assessed across development and provide insight into temporal dynamics of reward processing. Little work has systematically examined developmental changes in ERPs sensitive to reward. In this longitudinal study of 75 youth assessed 3 times across 6years, we used principal components analyses (PCA) to differentiate ERPs sensitive to monetary reward and loss feedback in late childhood, early adolescence, and middle adolescence. We then tested reliability of, and developmental changes in, ERPs. A greater number of ERP components differentiated reward and loss feedback in late childhood compared to adolescence, but components in childhood accounted for only a small proportion of variance. A component consistent with RewP was the only one to consistently emerge at each of the 3 assessments. RewP demonstrated acceptable reliability, particularly from early to middle adolescence, though reliability estimates varied depending on scoring approach and developmental period. The magnitude of the RewP component did not significantly change across time. Results provide insight into developmental changes in the structure of ERPs sensitive to reward, and indicate that RewP is a consistently observed and relatively stable measure of reward responsiveness, particularly across adolescence. Copyright © 2017. Published by Elsevier B.V.

  10. Genetic and flow anomalies in congenital heart disease.

    PubMed

    Rugonyi, Sandra

    2016-01-01

    Congenital heart defects are the most common malformations in humans, affecting approximately 1% of newborn babies. While genetic causes of congenital heart disease have been studied, only less than 20% of human cases are clearly linked to genetic anomalies. The cause for the majority of the cases remains unknown. Heart formation is a finely orchestrated developmental process and slight disruptions of it can lead to severe malformations. Dysregulation of developmental processes leading to heart malformations are caused by genetic anomalies but also environmental factors including blood flow. Intra-cardiac blood flow dynamics plays a significant role regulating heart development and perturbations of blood flow lead to congenital heart defects in animal models. Defects that result from hemodynamic alterations, however, recapitulate those observed in human babies, even those due to genetic anomalies and toxic teratogen exposure. Because important cardiac developmental events, such as valve formation and septation, occur under blood flow conditions while the heart is pumping, blood flow regulation of cardiac formation might be a critical factor determining cardiac phenotype. The contribution of flow to cardiac phenotype, however, is frequently ignored. More research is needed to determine how blood flow influences cardiac development and the extent to which flow may determine cardiac phenotype.

  11. Dynamic Object Representations in Infants with and without Fragile X Syndrome

    PubMed Central

    Farzin, Faraz; Rivera, Susan M.

    2009-01-01

    Our visual world is dynamic in nature. The ability to encode, mentally represent, and track an object's identity as it moves across time and space is critical for integrating and maintaining a complete and coherent view of the world. Here we investigated dynamic object processing in typically developing (TD) infants and infants with fragile X syndrome (FXS), a single-gene disorder associated with deficits in dorsal stream functioning. We used the violation of expectation method to assess infants’ visual response to expected versus unexpected outcomes following a brief dynamic (dorsal stream) or static (ventral stream) occlusion event. Consistent with previous reports of deficits in dorsal stream-mediated functioning in individuals with this disorder, these results reveal that, compared to mental age-matched TD infants, infants with FXS could maintain the identity of static, but not dynamic, object information during occlusion. These findings are the first to experimentally evaluate visual object processing skills in infants with FXS, and further support the hypothesis of dorsal stream difficulties in infants with this developmental disorder. PMID:20224809

  12. Developmental Demands of Cognitive Behavioral Therapy for Depression in Children and Adolescents: Cognitive, Social, and Emotional Processes

    PubMed Central

    Garber, Judy; Frankel, Sarah A.; Herrington, Catherine G.

    2017-01-01

    Although some treatments for depression in children and adolescents have been found to be efficacious, the effects sizes have tended to be modest. Thus, there is considerable room to improve upon existing depression treatments. Some children may respond poorly because they do not yet have the cognitive, social, or emotional maturity needed to understand and apply the skills being taught in therapy. Therefore, treatments for depression may need to be tailored to match children’s ability to both comprehend and implement the therapeutic techniques. This paper outlines the steps needed for such developmental tailoring: (1) specify the skills being taught in depression treatments; (2) identify what cognitive, social, and emotional developmental abilities are needed to attain these skills; (3) describe the normative developmental course of these skills, and how to determine a child’s developmental level; and (4) use this information to design an individualized treatment plan. Possible approaches to intervening include: alter the therapy to meet the child’s level of development, train the child on the skills needed to engage in the therapy, or apply a dynamic assessment approach that integrates evaluation into treatment and measures children’s potential as well as their current abilities. PMID:27019397

  13. Vascular Cells in Blood Vessel Wall Development and Disease.

    PubMed

    Mazurek, R; Dave, J M; Chandran, R R; Misra, A; Sheikh, A Q; Greif, D M

    2017-01-01

    The vessel wall is composed of distinct cellular layers, yet communication among individual cells within and between layers results in a dynamic and versatile structure. The morphogenesis of the normal vascular wall involves a highly regulated process of cell proliferation, migration, and differentiation. The use of modern developmental biological and genetic approaches has markedly enriched our understanding of the molecular and cellular mechanisms underlying these developmental events. Additionally, the application of similar approaches to study diverse vascular diseases has resulted in paradigm-shifting insights into pathogenesis. Further investigations into the biology of vascular cells in development and disease promise to have major ramifications on therapeutic strategies to combat pathologies of the vasculature. © 2017 Elsevier Inc. All rights reserved.

  14. Using a Multivariate Multilevel Polytomous Item Response Theory Model to Study Parallel Processes of Change: The Dynamic Association between Adolescents' Social Isolation and Engagement with Delinquent Peers in the National Youth Survey

    ERIC Educational Resources Information Center

    Hsieh, Chueh-An; von Eye, Alexander A.; Maier, Kimberly S.

    2010-01-01

    The application of multidimensional item response theory models to repeated observations has demonstrated great promise in developmental research. It allows researchers to take into consideration both the characteristics of item response and measurement error in longitudinal trajectory analysis, which improves the reliability and validity of the…

  15. Auditory scene analysis in school-aged children with developmental language disorders

    PubMed Central

    Sussman, E.; Steinschneider, M.; Lee, W.; Lawson, K.

    2014-01-01

    Natural sound environments are dynamic, with overlapping acoustic input originating from simultaneously active sources. A key function of the auditory system is to integrate sensory inputs that belong together and segregate those that come from different sources. We hypothesized that this skill is impaired in individuals with phonological processing difficulties. There is considerable disagreement about whether phonological impairments observed in children with developmental language disorders can be attributed to specific linguistic deficits or to more general acoustic processing deficits. However, most tests of general auditory abilities have been conducted with a single set of sounds. We assessed the ability of school-aged children (7–15 years) to parse complex auditory non-speech input, and determined whether the presence of phonological processing impairments was associated with stream perception performance. A key finding was that children with language impairments did not show the same developmental trajectory for stream perception as typically developing children. In addition, children with language impairments required larger frequency separations between sounds to hear distinct streams compared to age-matched peers. Furthermore, phonological processing ability was a significant predictor of stream perception measures, but only in the older age groups. No such association was found in the youngest children. These results indicate that children with language impairments have difficulty parsing speech streams, or identifying individual sound events when there are competing sound sources. We conclude that language group differences may in part reflect fundamental maturational disparities in the analysis of complex auditory scenes. PMID:24548430

  16. Neuroimmune mechanisms of stress: sex differences, developmental plasticity, and implications for pharmacotherapy of stress-related disease

    PubMed Central

    Deak, Terrence; Quinn, Matt; Cidlowski, John A.; Victoria, Nicole C.; Murphy, Anne Z.; Sheridan, John F.

    2016-01-01

    The last decade has witnessed profound growth in studies examining the role of fundamental neuroimmune processes as key mechanisms that might form a natural bridge between normal physiology and pathological outcomes. Rooted in core concepts from psychoneuroimmunology, this review utilizes a succinct, exemplar-driven approach of several model systems that contribute significantly to our knowledge of the mechanisms by which neuroimmune processes interact with stress physiology. Specifically, we review recent evidence showing that (i) stress challenges produce time-dependent and stressor-specific patterns of cytokine/chemokine expression in the CNS; (ii) inflammation-related genes exhibit unique expression profiles in males and females depending upon individual, cooperative, or antagonistic interactions between steroid hormone receptors (Estrogen and Glucocorticoid receptors); (iii) adverse social experiences incurred through repeated social defeat engage a dynamic process of immune cell migration from the bone marrow to brain and prime neuroimmune function; and (iv) early developmental exposure to an inflammatory stimulus (carageenin injection into the hindpaw) has a lasting influence on stress reactivity across the lifespan. As such, the present review provides a theoretical framework for understanding the role that neuroimmune mechanisms might play in stress plasticity and pathological outcomes, while at the same time pointing toward features of the individual (sex, developmental experience, stress history) that might ultimately be used for the development of personalized strategies for therapeutic intervention in stress-related pathologies. PMID:26176590

  17. Neuroimmune mechanisms of stress: sex differences, developmental plasticity, and implications for pharmacotherapy of stress-related disease.

    PubMed

    Deak, Terrence; Quinn, Matt; Cidlowski, John A; Victoria, Nicole C; Murphy, Anne Z; Sheridan, John F

    2015-01-01

    The last decade has witnessed profound growth in studies examining the role of fundamental neuroimmune processes as key mechanisms that might form a natural bridge between normal physiology and pathological outcomes. Rooted in core concepts from psychoneuroimmunology, this review utilizes a succinct, exemplar-driven approach of several model systems that contribute significantly to our knowledge of the mechanisms by which neuroimmune processes interact with stress physiology. Specifically, we review recent evidence showing that (i) stress challenges produce time-dependent and stressor-specific patterns of cytokine/chemokine expression in the CNS; (ii) inflammation-related genes exhibit unique expression profiles in males and females depending upon individual, cooperative or antagonistic interactions between steroid hormone receptors (estrogen and glucocorticoid receptors); (iii) adverse social experiences incurred through repeated social defeat engage a dynamic process of immune cell migration from the bone marrow to brain and prime neuroimmune function and (iv) early developmental exposure to an inflammatory stimulus (carageenin injection into the hindpaw) has a lasting influence on stress reactivity across the lifespan. As such, the present review provides a theoretical framework for understanding the role that neuroimmune mechanisms might play in stress plasticity and pathological outcomes, while at the same time pointing toward features of the individual (sex, developmental experience, stress history) that might ultimately be used for the development of personalized strategies for therapeutic intervention in stress-related pathologies.

  18. The fetal programming of telomere biology hypothesis: an update.

    PubMed

    Entringer, Sonja; de Punder, Karin; Buss, Claudia; Wadhwa, Pathik D

    2018-03-05

    Research on mechanisms underlying fetal programming of health and disease risk has focused primarily on processes that are specific to cell types, organs or phenotypes of interest. However, the observation that developmental conditions concomitantly influence a diverse set of phenotypes, the majority of which are implicated in age-related disorders, raises the possibility that such developmental conditions may additionally exert effects via a common underlying mechanism that involves cellular/molecular ageing-related processes. In this context, we submit that telomere biology represents a process of particular interest in humans because, firstly, this system represents among the most salient antecedent cellular phenotypes for common age-related disorders; secondly, its initial (newborn) setting appears to be particularly important for its long-term effects; and thirdly, its initial setting appears to be plastic and under developmental regulation. We propose that the effects of suboptimal intrauterine conditions on the initial setting of telomere length and telomerase expression/activity capacity may be mediated by the programming actions of stress-related maternal-placental-fetal oxidative, immune, endocrine and metabolic pathways in a manner that may ultimately accelerate cellular dysfunction, ageing and disease susceptibility over the lifespan. This perspectives paper provides an overview of each of the elements underlying this hypothesis, with an emphasis on recent developments, findings and future directions.This article is part of the theme issue 'Understanding diversity in telomere dynamics'. © 2018 The Author(s).

  19. Roles of Diffusion Dynamics in Stem Cell Signaling and Three-Dimensional Tissue Development.

    PubMed

    McMurtrey, Richard J

    2017-09-15

    Recent advancements in the ability to construct three-dimensional (3D) tissues and organoids from stem cells and biomaterials have not only opened abundant new research avenues in disease modeling and regenerative medicine but also have ignited investigation into important aspects of molecular diffusion in 3D cellular architectures. This article describes fundamental mechanics of diffusion with equations for modeling these dynamic processes under a variety of scenarios in 3D cellular tissue constructs. The effects of these diffusion processes and resultant concentration gradients are described in the context of the major molecular signaling pathways in stem cells that both mediate and are influenced by gas and nutrient concentrations, including how diffusion phenomena can affect stem cell state, cell differentiation, and metabolic states of the cell. The application of these diffusion models and pathways is of vital importance for future studies of developmental processes, disease modeling, and tissue regeneration.

  20. Emerging Imaging and Genomic Tools for Developmental Systems Biology.

    PubMed

    Liu, Zhe; Keller, Philipp J

    2016-03-21

    Animal development is a complex and dynamic process orchestrated by exquisitely timed cell lineage commitment, divisions, migration, and morphological changes at the single-cell level. In the past decade, extensive genetic, stem cell, and genomic studies provided crucial insights into molecular underpinnings and the functional importance of genetic pathways governing various cellular differentiation processes. However, it is still largely unknown how the precise coordination of these pathways is achieved at the whole-organism level and how the highly regulated spatiotemporal choreography of development is established in turn. Here, we discuss the latest technological advances in imaging and single-cell genomics that hold great promise for advancing our understanding of this intricate process. We propose an integrated approach that combines such methods to quantitatively decipher in vivo cellular dynamic behaviors and their underlying molecular mechanisms at the systems level with single-cell, single-molecule resolution. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. The Developmental Course of Supportive Dyadic Coping in Couples

    ERIC Educational Resources Information Center

    Johnson, Matthew D.; Horne, Rebecca M.; Galovan, Adam M.

    2016-01-01

    Drawing from a relational developmental systems (RDS) perspective (Lerner, Agans, DeSouza, & Gasca, 2013) and data from 1,427 continuously partnered young adult and midlife mixed-sex couples over the first 5 years of the German Panel Analysis of Intimate Relationships and Family Dynamics (pairfam), this study examined the developmental course…

  2. Evolution-development congruence in pattern formation dynamics: Bifurcations in gene expression and regulation of networks structures.

    PubMed

    Kohsokabe, Takahiro; Kaneko, Kunihiko

    2016-01-01

    Search for possible relationships between phylogeny and ontogeny is important in evolutionary-developmental biology. Here we uncover such relationships by numerical evolution and unveil their origin in terms of dynamical systems theory. By representing developmental dynamics of spatially located cells with gene expression dynamics with cell-to-cell interaction under external morphogen gradient, gene regulation networks are evolved under mutation and selection with the fitness to approach a prescribed spatial pattern of expressed genes. For most numerical evolution experiments, evolution of pattern over generations and development of pattern by an evolved network exhibit remarkable congruence. Both in the evolution and development pattern changes consist of several epochs where stripes are formed in a short time, while for other temporal regimes, pattern hardly changes. In evolution, these quasi-stationary regimes are generations needed to hit relevant mutations, while in development, they are due to some gene expression that varies slowly and controls the pattern change. The morphogenesis is regulated by combinations of feedback or feedforward regulations, where the upstream feedforward network reads the external morphogen gradient, and generates a pattern used as a boundary condition for the later patterns. The ordering from up to downstream is common in evolution and development, while the successive epochal changes in development and evolution are represented as common bifurcations in dynamical-systems theory, which lead to the evolution-development congruence. Mechanism of exceptional violation of the congruence is also unveiled. Our results provide a new look on developmental stages, punctuated equilibrium, developmental bottlenecks, and evolutionary acquisition of novelty in morphogenesis. © 2015 The Authors. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution Published by Wiley Periodicals, Inc.

  3. A dynamic systems approach to psychotherapy: A meta-theoretical framework for explaining psychotherapy change processes.

    PubMed

    Gelo, Omar Carlo Gioacchino; Salvatore, Sergio

    2016-07-01

    Notwithstanding the many methodological advances made in the field of psychotherapy research, at present a metatheoretical, school-independent framework to explain psychotherapy change processes taking into account their dynamic and complex nature is still lacking. Over the last years, several authors have suggested that a dynamic systems (DS) approach might provide such a framework. In the present paper, we review the main characteristics of a DS approach to psychotherapy. After an overview of the general principles of the DS approach, we describe the extent to which psychotherapy can be considered as a self-organizing open complex system, whose developmental change processes are described in terms of a dialectic dynamics between stability and change over time. Empirical evidence in support of this conceptualization is provided and discussed. Finally, we propose a research design strategy for the empirical investigation of psychotherapy from a DS approach, together with a research case example. We conclude that a DS approach may provide a metatheoretical, school-independent framework allowing us to constructively rethink and enhance the way we conceptualize and empirically investigate psychotherapy. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  4. The developmental dynamics of the Populus stem transcriptome.

    PubMed

    Chao, Qing; Gao, Zhi-Fang; Zhang, Dong; Zhao, Biligen-Gaowa; Dong, Feng-Qin; Fu, Chun-Xiang; Liu, Li-Jun; Wang, Bai-Chen

    2018-05-31

    The Populus shoot undergoes primary growth (longitudinal growth) followed by secondary growth (radial growth), which produces biomass that is an important source of energy worldwide. We adopted joint PacBio Iso-Seq and RNA-seq analysis to identify differentially expressed transcripts along a developmental gradient from the shoot apex to the fifth internode of Populus Nanlin895. We obtained 87,150 full-length transcripts, including 2,081 new isoforms and 62,058 new alternatively spliced isoforms, most of which were produced by intron retention, that were used to update the Populus annotation. Among these novel isoforms, there are 1,187 long noncoding RNAs and 356 fusion genes. Using this annotation, we found 15,838 differentially expressed transcripts along the shoot developmental gradient, of which 1,216 were transcription factors (TFs). Only a few of these genes were reported previously. The differential expression of these TFs suggests that they may play important roles in primary and secondary growth. AP2, ARF, YABBY and GRF TFs are highly expressed in the apex, whereas NAC, bZIP, PLATZ and HSF TFs are likely to be important for secondary growth. Overall, our findings provide evidence that long-read sequencing can complement short-read sequencing for cataloging and quantifying eukaryotic transcripts and increase our understanding of the vital and dynamic process of shoot development. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  5. Transcriptome Dynamics during Maize Endosperm Development

    PubMed Central

    Feng, Jiaojiao; Xu, Shutu; Wang, Lei; Li, Feifei; Li, Yibo; Zhang, Renhe; Zhang, Xinghua; Xue, Jiquan; Guo, Dongwei

    2016-01-01

    The endosperm is a major organ of the seed that plays vital roles in determining seed weight and quality. However, genome-wide transcriptome patterns throughout maize endosperm development have not been comprehensively investigated to date. Accordingly, we performed a high-throughput RNA sequencing (RNA-seq) analysis of the maize endosperm transcriptome at 5, 10, 15 and 20 days after pollination (DAP). We found that more than 11,000 protein-coding genes underwent alternative splicing (AS) events during the four developmental stages studied. These genes were mainly involved in intracellular protein transport, signal transmission, cellular carbohydrate metabolism, cellular lipid metabolism, lipid biosynthesis, protein modification, histone modification, cellular amino acid metabolism, and DNA repair. Additionally, 7,633 genes, including 473 transcription factors (TFs), were differentially expressed among the four developmental stages. The differentially expressed TFs were from 50 families, including the bZIP, WRKY, GeBP and ARF families. Further analysis of the stage-specific TFs showed that binding, nucleus and ligand-dependent nuclear receptor activities might be important at 5 DAP, that immune responses, signalling, binding and lumen development are involved at 10 DAP, that protein metabolic processes and the cytoplasm might be important at 15 DAP, and that the responses to various stimuli are different at 20 DAP compared with the other developmental stages. This RNA-seq analysis provides novel, comprehensive insights into the transcriptome dynamics during early endosperm development in maize. PMID:27695101

  6. A Theoretical Approach to Understanding Population Dynamics with Seasonal Developmental Durations

    NASA Astrophysics Data System (ADS)

    Lou, Yijun; Zhao, Xiao-Qiang

    2017-04-01

    There is a growing body of biological investigations to understand impacts of seasonally changing environmental conditions on population dynamics in various research fields such as single population growth and disease transmission. On the other side, understanding the population dynamics subject to seasonally changing weather conditions plays a fundamental role in predicting the trends of population patterns and disease transmission risks under the scenarios of climate change. With the host-macroparasite interaction as a motivating example, we propose a synthesized approach for investigating the population dynamics subject to seasonal environmental variations from theoretical point of view, where the model development, basic reproduction ratio formulation and computation, and rigorous mathematical analysis are involved. The resultant model with periodic delay presents a novel term related to the rate of change of the developmental duration, bringing new challenges to dynamics analysis. By investigating a periodic semiflow on a suitably chosen phase space, the global dynamics of a threshold type is established: all solutions either go to zero when basic reproduction ratio is less than one, or stabilize at a positive periodic state when the reproduction ratio is greater than one. The synthesized approach developed here is applicable to broader contexts of investigating biological systems with seasonal developmental durations.

  7. Quantitation of Cellular Dynamics in Growing Arabidopsis Roots with Light Sheet Microscopy

    PubMed Central

    Birnbaum, Kenneth D.; Leibler, Stanislas

    2011-01-01

    To understand dynamic developmental processes, living tissues have to be imaged frequently and for extended periods of time. Root development is extensively studied at cellular resolution to understand basic mechanisms underlying pattern formation and maintenance in plants. Unfortunately, ensuring continuous specimen access, while preserving physiological conditions and preventing photo-damage, poses major barriers to measurements of cellular dynamics in growing organs such as plant roots. We present a system that integrates optical sectioning through light sheet fluorescence microscopy with hydroponic culture that enables us to image, at cellular resolution, a vertically growing Arabidopsis root every few minutes and for several consecutive days. We describe novel automated routines to track the root tip as it grows, to track cellular nuclei and to identify cell divisions. We demonstrate the system's capabilities by collecting data on divisions and nuclear dynamics. PMID:21731697

  8. Mitochondrial dynamics in the regulation of neurogenesis: From development to the adult brain.

    PubMed

    Khacho, Mireille; Slack, Ruth S

    2018-01-01

    Mitochondria are classically known to be the cellular energy producers, but a renewed appreciation for these organelles has developed with the accumulating discoveries of additional functions. The importance of mitochondria within the brain has been long known, particularly given the high-energy demanding nature of neurons. The energy demands imposed by neurons require the well-orchestrated morphological adaptation and distribution of mitochondria. Recent studies now reveal the importance of mitochondrial dynamics not only in mature neurons but also during neural development, particularly during the process of neurogenesis and neural stem cell fate decisions. In this review, we will highlight the recent findings that illustrate the importance of mitochondrial dynamics in neurodevelopment and neural stem cell function. Developmental Dynamics 247:47-53, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  9. 20170312 - Computer Simulation of Developmental ...

    EPA Pesticide Factsheets

    Rationale: Recent progress in systems toxicology and synthetic biology have paved the way to new thinking about in vitro/in silico modeling of developmental processes and toxicities, both for embryological and reproductive impacts. Novel in vitro platforms such as 3D organotypic culture models, engineered microscale tissues and complex microphysiological systems (MPS), together with computational models and computer simulation of tissue dynamics, lend themselves to a integrated testing strategies for predictive toxicology. As these emergent methodologies continue to evolve, they must be integrally tied to maternal/fetal physiology and toxicity of the developing individual across early lifestage transitions, from fertilization to birth, through puberty and beyond. Scope: This symposium will focus on how the novel technology platforms can help now and in the future, with in vitro/in silico modeling of complex biological systems for developmental and reproductive toxicity issues, and translating systems models into integrative testing strategies. The symposium is based on three main organizing principles: (1) that novel in vitro platforms with human cells configured in nascent tissue architectures with a native microphysiological environments yield mechanistic understanding of developmental and reproductive impacts of drug/chemical exposures; (2) that novel in silico platforms with high-throughput screening (HTS) data, biologically-inspired computational models of

  10. Culture and the Trajectories of Developmental Pathology: Insights from Control and Information Theories.

    PubMed

    Wallace, Rodrick

    2018-06-01

    Cognition in living entities-and their social groupings or institutional artifacts-is necessarily as complicated as their embedding environments, which, for humans, includes a particularly rich cultural milieu. The asymptotic limit theorems of information and control theories permit construction of a new class of empirical 'regression-like' statistical models for cognitive developmental processes, their dynamics, and modes of dysfunction. Such models may, as have their simpler analogs, prove useful in the study and re-mediation of cognitive failure at and across the scales and levels of organization that constitute and drive the phenomena of life. These new models particularly focus on the roles of sociocultural environment and stress, in a large sense, as both trigger for the failure of the regulation of bio-cognition and as 'riverbanks' determining the channels of pathology, with implications across life-course developmental trajectories. We examine the effects of an embedding cultural milieu and its socioeconomic implementations using the 'lenses' of metabolic optimization, control system theory, and an extension of symmetry-breaking appropriate to information systems. A central implication is that most, if not all, human developmental disorders are fundamentally culture-bound syndromes. This has deep implications for both individual treatment and public health policy.

  11. A developmental and clinical perspective of rhythmic interpersonal coordination: From mimicry toward the interconnection of minds.

    PubMed

    Xavier, Jean; Magnat, Julien; Sherman, Alain; Gauthier, Soizic; Cohen, David; Chaby, Laurence

    2016-11-01

    Imitation plays a critical role in the development of intersubjectivity and serves as a prerequisite for understanding the emotions and intentions of others. In our review, we consider spontaneous motor imitation between children and their peers as a developmental process involving repetition and perspective-taking as well as flexibility and reciprocity. During childhood, this playful dynamic challenges developing visuospatial abilities and requires temporal coordination between partners. As such, we address synchrony as form of communication and social signal per se, that leads, from an experience of similarity, to the interconnection of minds. In this way, we argue that, from a developmental perspective, rhythmic interpersonal coordination through childhood imitative interactions serves as a precursor to higher- level social and cognitive abilities, such as theory of mind (TOM) and empathy. Finally, to clinically illustrate our idea, we focus on developmental coordination disorder (DCD), a condition characterized not only by learning difficulties, but also childhood deficits in motor imitation. We address the challenges faced by these children on an emotional and socio-interactional level through the perspective of their impairments in intra- and interpersonal synchrony. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Longitudinal Growth Curves of Brain Function Underlying Inhibitory Control through Adolescence

    PubMed Central

    Foran, William; Velanova, Katerina; Luna, Beatriz

    2013-01-01

    Neuroimaging studies suggest that developmental improvements in inhibitory control are primarily supported by changes in prefrontal executive function. However, studies are contradictory with respect to how activation in prefrontal regions changes with age, and they have yet to analyze longitudinal data using growth curve modeling, which allows characterization of dynamic processes of developmental change, individual differences in growth trajectories, and variables that predict any interindividual variability in trajectories. In this study, we present growth curves modeled from longitudinal fMRI data collected over 302 visits (across ages 9 to 26 years) from 123 human participants. Brain regions within circuits known to support motor response control, executive control, and error processing (i.e., aspects of inhibitory control) were investigated. Findings revealed distinct developmental trajectories for regions within each circuit and indicated that a hierarchical pattern of maturation of brain activation supports the gradual emergence of adult-like inhibitory control. Mean growth curves of activation in motor response control regions revealed no changes with age, although interindividual variability decreased with development, indicating equifinality with maturity. Activation in certain executive control regions decreased with age until adolescence, and variability was stable across development. Error-processing activation in the dorsal anterior cingulate cortex showed continued increases into adulthood and no significant interindividual variability across development, and was uniquely associated with task performance. These findings provide evidence that continued maturation of error-processing abilities supports the protracted development of inhibitory control over adolescence, while motor response control regions provide early-maturing foundational capacities and suggest that some executive control regions may buttress immature networks as error processing continues to mature. PMID:24227721

  13. Conversation, development, and gender: a study of changes in children's concepts of punishment.

    PubMed

    Leman, Patrick J; Björnberg, Marina

    2010-01-01

    One hundred thirty-three children, average age 9.58 years, were read vignettes describing a moral transgression and then discussed what would constitute a fair punishment. Children's gender influenced conversation dynamics (use of interruption and other simultaneous speech) but not conversation content (justifications for judgments). All children who engaged in conversation showed development in judgments after 8 weeks compared with a control (no interaction) group. However, there was no relation between conversation dynamics or content and development, or any effects of gender, on the developmental process. The benefits of peer collaboration were general rather than specific to the stimulus story.

  14. Reversing DNA Methylation: Mechanisms, Genomics, and Biological Functions

    PubMed Central

    Wu, Hao; Zhang, Yi

    2014-01-01

    Methylation of cytosines in the mammalian genome represents a key epigenetic modification and is dynamically regulated during development. Compelling evidence now suggests that dynamic regulation of DNA methylation is mainly achieved through a cyclic enzymatic cascade comprised of cytosine methylation, iterative oxidation of methyl group by TET dioxygenases, and restoration of unmodified cytosines by either replication-dependent dilution or DNA glycosylase-initiated base excision repair. In this review, we discuss the mechanism and function of DNA demethylation in mammalian genomes, focusing particularly on how developmental modulation of the cytosine-modifying pathway is coupled to active reversal of DNA methylation in diverse biological processes. PMID:24439369

  15. Regulatory Role of N6 -methyladenosine (m6 A) Methylation in RNA Processing and Human Diseases.

    PubMed

    Wei, Wenqiang; Ji, Xinying; Guo, Xiangqian; Ji, Shaoping

    2017-09-01

    N 6 -methyladenosine (m 6 A) modification is an abundant and conservative RNA modification in bacterial and eukaryotic cells. m 6 A modification mainly occurs in the 3' untranslated regions (UTRs) and near the stop codons of mRNA. Diverse strategies have been developed for identifying m 6 A sites in single nucleotide resolution. Dynamic regulation of m 6 A is found in metabolism, embryogenesis, and developmental processes, indicating a possible epigenetic regulation role along RNA processing and exerting biological functions. It has been known that m 6 A editing involves in nuclear RNA export, mRNA degradation, protein translation, and RNA splicing. Deficiency of m 6 A modification will lead to kinds of diseases, such as obesity, cancer, type 2 diabetes mellitus (T2DM), infertility, and developmental arrest. Some specific inhibitors against methyltransferase and demethylase have been developed to selectively regulate m 6 A modification, which may be advantageous for treatment of m 6 A related diseases. J. Cell. Biochem. 118: 2534-2543, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  16. Genetic and Cellular Mechanisms Regulating Anterior Foregut and Esophageal Development

    PubMed Central

    Jacobs, Ian J.; Ku, Wei-Yao; Que, Jianwen

    2012-01-01

    Separation of the single anterior foregut tube into the esophagus and trachea involves cell proliferation and differentiation, as well as dynamic changes in cell-cell adhesion and migration. These biological processes are regulated and coordinated at multiple levels through the interplay of the epithelium and mesenchyme. Genetic studies and in vitro modeling have shed light on relevant regulatory networks that include a number of transcription factors and signaling pathways. These signaling molecules exhibit unique expression patterns and play specific functions in their respective territories before the separation process occurs. Disruption of regulatory networks inevitably leads to defective separation and malformation of the trachea and esophagus and results in the formation of a relatively common birth defect, esophageal atresia with or without tracheoesophageal fistula (EA/TEF). Significantly, some of the signaling pathways and transcription factors involved in anterior foregut separation continue to play important roles in the morphogenesis of the individual organs. In this review, we will focus on new findings related to these different developmental processes and discuss them in the context of developmental disorders (or birth defects) commonly seen in clinics. PMID:22750256

  17. An introduction to using children's drawings as an assessment tool.

    PubMed

    Wilson, D; Ratekin, C

    1990-03-01

    This article is intended to familiarize the ambulatory care provider with possible uses of children's drawings as assessment tools. Drawings can be a useful adjunct in detecting perceptual-motor difficulties and developmental delay, and can provide clues to self-image and family dynamics. Piaget's theory of cognitive development provides a framework to evaluate the child's intellectual development as reflected in drawings. The developmental scales of Koppitz are presented as a practical screening tool. The Koppitz scales include both developmental norms and items that might indicate emotional problems. Observing the child's drawing of the family provides clues to family dynamics. Becoming highly skilled in the evaluation of children's drawings requires a familiarity with neurophysiology, education, psychology, and psychoanalytic and developmental theory, along with intuition and practice. This article presents an introduction to evaluating children's drawings.

  18. Synchronization of developmental processes and defense signaling by growth regulating transcription factors.

    PubMed

    Liu, Jinyi; Rice, J Hollis; Chen, Nana; Baum, Thomas J; Hewezi, Tarek

    2014-01-01

    Growth regulating factors (GRFs) are a conserved class of transcription factor in seed plants. GRFs are involved in various aspects of tissue differentiation and organ development. The implication of GRFs in biotic stress response has also been recently reported, suggesting a role of these transcription factors in coordinating the interaction between developmental processes and defense dynamics. However, the molecular mechanisms by which GRFs mediate the overlaps between defense signaling and developmental pathways are elusive. Here, we report large scale identification of putative target candidates of Arabidopsis GRF1 and GRF3 by comparing mRNA profiles of the grf1/grf2/grf3 triple mutant and those of the transgenic plants overexpressing miR396-resistant version of GRF1 or GRF3. We identified 1,098 and 600 genes as putative targets of GRF1 and GRF3, respectively. Functional classification of the potential target candidates revealed that GRF1 and GRF3 contribute to the regulation of various biological processes associated with defense response and disease resistance. GRF1 and GRF3 participate specifically in the regulation of defense-related transcription factors, cell-wall modifications, cytokinin biosynthesis and signaling, and secondary metabolites accumulation. GRF1 and GRF3 seem to fine-tune the crosstalk between miRNA signaling networks by regulating the expression of several miRNA target genes. In addition, our data suggest that GRF1 and GRF3 may function as negative regulators of gene expression through their association with other transcription factors. Collectively, our data provide new insights into how GRF1 and GRF3 might coordinate the interactions between defense signaling and plant growth and developmental pathways.

  19. Eco-Evo-Devo: developmental symbiosis and developmental plasticity as evolutionary agents.

    PubMed

    Gilbert, Scott F; Bosch, Thomas C G; Ledón-Rettig, Cristina

    2015-10-01

    The integration of research from developmental biology and ecology into evolutionary theory has given rise to a relatively new field, ecological evolutionary developmental biology (Eco-Evo-Devo). This field integrates and organizes concepts such as developmental symbiosis, developmental plasticity, genetic accommodation, extragenic inheritance and niche construction. This Review highlights the roles that developmental symbiosis and developmental plasticity have in evolution. Developmental symbiosis can generate particular organs, can produce selectable genetic variation for the entire animal, can provide mechanisms for reproductive isolation, and may have facilitated evolutionary transitions. Developmental plasticity is crucial for generating novel phenotypes, facilitating evolutionary transitions and altered ecosystem dynamics, and promoting adaptive variation through genetic accommodation and niche construction. In emphasizing such non-genomic mechanisms of selectable and heritable variation, Eco-Evo-Devo presents a new layer of evolutionary synthesis.

  20. Gene networks, occlusal clocks, and functional patches: new understanding of pattern and process in the evolution of the dentition.

    PubMed

    Polly, P David

    2015-05-01

    Our understanding of the evolution of the dentition has been transformed by advances in the developmental biology, genetics, and functional morphology of teeth, as well as the methods available for studying tooth form and function. The hierarchical complexity of dental developmental genetics combined with dynamic effects of cells and tissues during development allow for substantial, rapid, and potentially non-linear evolutionary changes. Studies of selection on tooth function in the wild and evolutionary functional comparisons both suggest that tooth function and adaptation to diets are the most important factors guiding the evolution of teeth, yet selection against random changes that produce malocclusions (selectional drift) may be an equally important factor in groups with tribosphenic dentitions. These advances are critically reviewed here.

  1. Neuronal expression of fibroblast growth factor receptors in zebrafish.

    PubMed

    Rohs, Patricia; Ebert, Alicia M; Zuba, Ania; McFarlane, Sarah

    2013-12-01

    Fibroblast growth factor (FGF) signaling is important for a host of developmental processes such as proliferation, differentiation, tissue patterning, and morphogenesis. In vertebrates, FGFs signal through a family of four fibroblast growth factor receptors (FGFR 1-4), one of which is duplicated in zebrafish (FGFR1). Here we report the mRNA expression of the five known zebrafish fibroblast growth factor receptors at five developmental time points (24, 36, 48, 60, and 72h postfertilization), focusing on expression within the central nervous system. We show that the receptors have distinct and dynamic expression in the developing zebrafish brain, eye, inner ear, lateral line, and pharynx. In many cases, the expression patterns are similar to those of homologous FGFRs in mouse, chicken, amphibians, and other teleosts. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Subfamily-Specific Fluorescent Probes for Cysteine Proteases Display Dynamic Protease Activities during Seed Germination.

    PubMed

    Lu, Haibin; Chandrasekar, Balakumaran; Oeljeklaus, Julian; Misas-Villamil, Johana C; Wang, Zheming; Shindo, Takayuki; Bogyo, Matthew; Kaiser, Markus; van der Hoorn, Renier A L

    2015-08-01

    Cysteine proteases are an important class of enzymes implicated in both developmental and defense-related programmed cell death and other biological processes in plants. Because there are dozens of cysteine proteases that are posttranslationally regulated by processing, environmental conditions, and inhibitors, new methodologies are required to study these pivotal enzymes individually. Here, we introduce fluorescence activity-based probes that specifically target three distinct cysteine protease subfamilies: aleurain-like proteases, cathepsin B-like proteases, and vacuolar processing enzymes. We applied protease activity profiling with these new probes on Arabidopsis (Arabidopsis thaliana) protease knockout lines and agroinfiltrated leaves to identify the probe targets and on other plant species to demonstrate their broad applicability. These probes revealed that most commercially available protease inhibitors target unexpected proteases in plants. When applied on germinating seeds, these probes reveal dynamic activities of aleurain-like proteases, cathepsin B-like proteases, and vacuolar processing enzymes, coinciding with the remobilization of seed storage proteins. © 2015 American Society of Plant Biologists. All Rights Reserved.

  3. Phase separation like dynamics during Myxococcus xanthus fruiting body formation

    NASA Astrophysics Data System (ADS)

    Liu, Guannan; Thutupalli, Shashi; Wigbers, Manon; Shaevitz, Joshua

    2015-03-01

    Collective motion exists in many living organisms as an advantageous strategy to help the entire group with predation, forage, and survival. However, the principles of self-organization underlying such collective motions remain unclear. During various developmental stages of the soil-dwelling bacterium, Myxococcus xanthus, different types of collective motions are observed. In particular, when starved, M. xanthus cells eventually aggregate together to form 3-dimensional structures (fruiting bodies), inside which cells sporulate in response to the stress. We study the fruiting body formation process as an out of equilibrium phase separation process. As local cell density increases, the dynamics of the aggregation M. xanthus cells switch from a spatio-temporally random process, resembling nucleation and growth, to an emergent pattern formation process similar to a spinodal decomposition. By employing high-resolution microscopy and a video analysis system, we are able to track the motion of single cells within motile collective groups, while separately tuning local cell density, cell velocity and reversal frequency, probing the multi-dimensional phase space of M. xanthus development.

  4. Composition and emission dynamics of migratory locust volatiles in response to changes in developmental stages and population density.

    PubMed

    Wei, Jianing; Shao, Wenbo; Wang, Xianhui; Ge, Jin; Chen, Xiangyong; Yu, Dan; Kang, Le

    2017-02-01

    Chemical communication plays an important role in density-dependent phase change in locusts. However, the volatile components and emission patterns of the migratory locust, Locusta migratoria, are largely unknown. In this study, we identified the chemical compositions and emission dynamics of locust volatiles from the body and feces and associated them with developmental stages, sexes and phase changes. The migratory locust shares a number of volatile components with the desert locust (Schistocerca gregaria), but the emission dynamics of the two locust species are significantly different. The body odors of the gregarious nymphs in the migratory locust consisted of phenylacetonitrile (PAN), benzaldehyde, guaiacol, phenol, aliphatic acids and 2,3-butanediol, and PAN was the dominant volatile. Volatiles from the fecal pellets of the nymphs primarily consist of guaiacol and phenol. Principal component analysis (PCA) showed significant differences in the volatile profiles between gregarious and solitary locusts. PAN and 4-vinylanisole concentrations were significantly higher in gregarious individuals than in solitary locusts. Gregarious mature males released significantly higher amounts of PAN and 4-vinylanisole during adulthood than mature females and immature adults of both sexes. Furthermore, PAN and 4-vinylanisole were completely lost in gregarious nymphs during the solitarization process, but were obtained by solitary nymphs during gregarization. The amounts of benzaldehyde, guaiacol and phenol only unidirectionally decreased from solitary to crowded treatment. Aliphatic aldehydes (C7 to C10), which were previously reported as locust volatiles, are now identified as environmental contaminants. Therefore, our results illustrate the precise odor profiles of migratory locusts during developmental stages, sexes and phase change. However, the function and role of PAN and other aromatic compounds during phase transition need further investigation. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  5. Tracking developmentally regulated post-synthetic processing of homogalacturonan and chitin using reciprocal oligosaccharide probes.

    PubMed

    Mravec, Jozef; Kračun, Stjepan K; Rydahl, Maja G; Westereng, Bjørge; Miart, Fabien; Clausen, Mads H; Fangel, Jonatan U; Daugaard, Mathilde; Van Cutsem, Pierre; De Fine Licht, Henrik H; Höfte, Herman; Malinovsky, Frederikke G; Domozych, David S; Willats, William G T

    2014-12-01

    Polysaccharides are major components of extracellular matrices and are often extensively modified post-synthetically to suit local requirements and developmental programmes. However, our current understanding of the spatiotemporal dynamics and functional significance of these modifications is limited by a lack of suitable molecular tools. Here, we report the development of a novel non-immunological approach for producing highly selective reciprocal oligosaccharide-based probes for chitosan (the product of chitin deacetylation) and for demethylesterified homogalacturonan. Specific reciprocal binding is mediated by the unique stereochemical arrangement of oppositely charged amino and carboxy groups. Conjugation of oligosaccharides to fluorophores or gold nanoparticles enables direct and rapid imaging of homogalacturonan and chitosan with unprecedented precision in diverse plant, fungal and animal systems. We demonstrated their potential for providing new biological insights by using them to study homogalacturonan processing during Arabidopsis thaliana root cap development and by analyzing sites of chitosan deposition in fungal cell walls and arthropod exoskeletons. © 2014. Published by The Company of Biologists Ltd.

  6. Developmental trajectories of brain maturation and behavior: Relevance to major mental illnesses.

    PubMed

    Lockhart, Sedona; Sawa, Akira; Niwa, Minae

    2018-05-01

    Adverse events in childhood and adolescence, such as social neglect or drug abuse, are known to lead to behavioral changes in young adulthood. This is particularly true for the subset of people who are intrinsically more vulnerable to stressful conditions. Yet the underlying mechanisms for such developmental trajectory from early life insult to aberrant adult behavior remains elusive. Adolescence is a period of dynamic physiological, psychological, and behavioral changes, encompassing a distinct neurodevelopmental stage called the 'critical period'. During adolescence, the brain is uniquely susceptible to stress. Stress mediators may lead to disturbances to biological processes that can cause permanent alterations in the adult stage, even as severe as the onset of mental illness when paired with genetic risk and environmental factors. Understanding the molecular factors governing the critical period and how stress can disturb the maturation processes will allow for better treatment and prevention of late adolescent/young adult onset psychiatric disorders. Copyright © 2018 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  7. Attention trajectories, mechanisms and outcomes: at the interface between developing cognition and environment.

    PubMed

    Scerif, Gaia

    2010-11-01

    Attentional processes play a crucial role in prioritizing information for further processing and they therefore sit at the interface between internal goals and the challenges presented by the environment. How does attentional control interact with the changing constraints imposed by the developing cognitive system? Emerging work in this area has employed a range of complementary techniques, from increasingly refined neurocognitive measures in typically developing individuals, to the investigation of risk or protective factors influencing attention trajectories in developmental disorders. A growing corpus of data suggests that, while attentional biases for specific input characteristics (e.g. suddenly appearing stimuli, emotional expressions) are in place from infancy, it is the interplay between these predispositions, genetic and environmental factors that drives attention development over time. With the advent of multidisciplinary approaches to the developmental cognitive neuroscience of attention, unravelling these complex dynamics from infancy and their outcome on learning is increasingly within reach. © 2010 Blackwell Publishing Ltd.

  8. Neuron class-specific requirements for Fragile X Mental Retardation Protein in critical period development of calcium signaling in learning and memory circuitry.

    PubMed

    Doll, Caleb A; Broadie, Kendal

    2016-05-01

    Neural circuit optimization occurs through sensory activity-dependent mechanisms that refine synaptic connectivity and information processing during early-use developmental critical periods. Fragile X Mental Retardation Protein (FMRP), the gene product lost in Fragile X syndrome (FXS), acts as an activity sensor during critical period development, both as an RNA-binding translation regulator and channel-binding excitability regulator. Here, we employ a Drosophila FXS disease model to assay calcium signaling dynamics with a targeted transgenic GCaMP reporter during critical period development of the mushroom body (MB) learning/memory circuit. We find FMRP regulates depolarization-induced calcium signaling in a neuron-specific manner within this circuit, suppressing activity-dependent calcium transients in excitatory cholinergic MB input projection neurons and enhancing calcium signals in inhibitory GABAergic MB output neurons. Both changes are restricted to the developmental critical period and rectified at maturity. Importantly, conditional genetic (dfmr1) rescue of null mutants during the critical period corrects calcium signaling defects in both neuron classes, indicating a temporally restricted FMRP requirement. Likewise, conditional dfmr1 knockdown (RNAi) during the critical period replicates constitutive null mutant defects in both neuron classes, confirming cell-autonomous requirements for FMRP in developmental regulation of calcium signaling dynamics. Optogenetic stimulation during the critical period enhances depolarization-induced calcium signaling in both neuron classes, but this developmental change is eliminated in dfmr1 null mutants, indicating the activity-dependent regulation requires FMRP. These results show FMRP shapes neuron class-specific calcium signaling in excitatory vs. inhibitory neurons in developing learning/memory circuitry, and that FMRP mediates activity-dependent regulation of calcium signaling specifically during the early-use critical period. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Developmental Family Processes and Interparental Conflict: Patterns of Micro-level Influences

    PubMed Central

    Schermerhorn, Alice C.; Chow, Sy-Miin; Cummings, E. Mark

    2010-01-01

    Although frequent calls are made for the study of effects of children on families and mutual influence processes within families, little empirical progress has been made. We address these questions at the level of micro processes during marital conflict, including children’s influence on marital conflict and parents’ influence on each other. Participants were 111 cohabiting couples with a child (55 males, 56 females) aged 8 – 16 years. Data were drawn from parents’ diary reports of interparental conflict over 15 days, analyzed using dynamic systems modeling tools. Child emotions and behavior during conflicts were associated with interparental positivity, negativity, and resolution at the end of the same conflicts. For example, children’s agentic behavior was associated with more marital conflict resolution whereas child negativity was linked with more marital negativity. Regarding parents’ influence on each other, among the findings, husbands’ and wives’ influence on themselves from one conflict to the next was indicated, and total number of conflicts predicted greater influence of wives’ positivity on husbands’ positivity. Contributions of these findings to the understanding of developmental family processes are discussed, including implications for advanced understanding of interrelations between child and adult functioning and development. PMID:20604608

  10. Cortical representations of communication sounds.

    PubMed

    Heiser, Marc A; Cheung, Steven W

    2008-10-01

    This review summarizes recent research into cortical processing of vocalizations in animals and humans. There has been a resurgent interest in this topic accompanied by an increased number of studies using animal models with complex vocalizations and new methods in human brain imaging. Recent results from such studies are discussed. Experiments have begun to reveal the bilateral cortical fields involved in communication sound processing and the transformations of neural representations that occur among those fields. Advances have also been made in understanding the neuronal basis of interaction between developmental exposures and behavioral experiences with vocalization perception. Exposure to sounds during the developmental period produces large effects on brain responses, as do a variety of specific trained tasks in adults. Studies have also uncovered a neural link between the motor production of vocalizations and the representation of vocalizations in cortex. Parallel experiments in humans and animals are answering important questions about vocalization processing in the central nervous system. This dual approach promises to reveal microscopic, mesoscopic, and macroscopic principles of large-scale dynamic interactions between brain regions that underlie the complex phenomenon of vocalization perception. Such advances will yield a greater understanding of the causes, consequences, and treatment of disorders related to speech processing.

  11. Novel aspects of endometrial function: a biological sensor of embryo quality and driver of pregnancy success.

    PubMed

    Sandra, Olivier; Mansouri-Attia, Nadéra; Lea, Richard G

    2011-01-01

    Successful pregnancy depends on complex biological processes that are regulated temporally and spatially throughout gestation. The molecular basis of these processes have been examined in relation to gamete quality, early blastocyst development and placental function, and data have been generated showing perturbations of these developmental stages by environmental insults or embryo biotechnologies. The developmental period falling between the entry of the blastocyst into the uterine cavity to implantation has also been examined in terms of the biological function of the endometrium. Indeed several mechanisms underlying uterine receptivity, controlled by maternal factors, and the maternal recognition of pregnancy, requiring conceptus-produced signals, have been clarified. Nevertheless, recent data based on experimental perturbations have unveiled unexpected biological properties of the endometrium (sensor/driver) that make this tissue a dynamic and reactive entity. Persistent or transient modifications in organisation and functionality of the endometrium can dramatically affect pre-implantation embryo trajectory through epigenetic alterations with lasting consequences on later stages of pregnancy, including placentation, fetal development, pregnancy outcome and post-natal health. Developing diagnostic and prognostic tools based on endometrial factors may enable the assessment of maternal reproductive capacity and/or the developmental potential of the embryo, particularly when assisted reproductive technologies are applied.

  12. The short-time structural plasticity of dendritic spines is altered in a model of Rett syndrome.

    PubMed

    Landi, Silvia; Putignano, Elena; Boggio, Elena Maria; Giustetto, Maurizio; Pizzorusso, Tommaso; Ratto, Gian Michele

    2011-01-01

    The maturation of excitatory transmission comes about through a developmental period in which dendritic spines are highly motile and their number, form and size are rapidly changing. Surprisingly, although these processes are crucial for the formation of cortical circuitry, little is known about possible alterations of these processes in brain disease. By means of acute in vivo 2-photon imaging we show that the dynamic properties of dendritic spines of layer V cortical neurons are deeply affected in a mouse model of Rett syndrome (RTT) at a time around P25 when the neuronal phenotype of the disease is still mild. Then, we show that 24h after a subcutaneous injection of IGF-1 spine dynamics is restored. Our study demonstrates that spine dynamics in RTT mice is severely impaired early during development and suggest that treatments for RTT should be started very early in order to reestablish a normal period of spine plasticity.

  13. Environmental-stress-induced Chromatin Regulation and its Heritability

    PubMed Central

    Fang, Lei; Wuptra, Kenly; Chen, Danqi; Li, Hongjie; Huang, Shau-Ku; Jin, Chunyuan; Yokoyama, Kazunari K

    2014-01-01

    Chromatin is subject to proofreading and repair mechanisms during the process of DNA replication, as well as repair to maintain genetic and epigenetic information and genome stability. The dynamic structure of chromatin modulates various nuclear processes, including transcription and replication, by altering the accessibility of the DNA to regulatory factors. Structural changes in chromatin are affected by the chemical modification of histone proteins and DNA, remodeling of nucleosomes, incorporation of variant histones, noncoding RNAs, and nonhistone DNA-binding proteins. Phenotypic diversity and fidelity can be balanced by controlling stochastic switching of chromatin structure and dynamics in response to the environmental disruptors and endogenous stresses. The dynamic chromatin remodeling can, therefore, serve as a sensor, through which environmental and/or metabolic agents can alter gene expression, leading to global cellular changes involving multiple interactive networks. Furthermore its recent evidence also suggests that the epigenetic changes are heritable during the development. This review will discuss the environmental sensing system for chromatin regulation and genetic and epigenetic controls from developmental perspectives. PMID:25045581

  14. Cell Patterns Emerge from Coupled Chemical and Physical Fields with Cell Proliferation Dynamics: The Arabidopsis thaliana Root as a Study System

    PubMed Central

    Barrio, Rafael A.; Romero-Arias, José Roberto; Noguez, Marco A.; Azpeitia, Eugenio; Ortiz-Gutiérrez, Elizabeth; Hernández-Hernández, Valeria; Cortes-Poza, Yuriria; Álvarez-Buylla, Elena R.

    2013-01-01

    A central issue in developmental biology is to uncover the mechanisms by which stem cells maintain their capacity to regenerate, yet at the same time produce daughter cells that differentiate and attain their ultimate fate as a functional part of a tissue or an organ. In this paper we propose that, during development, cells within growing organs obtain positional information from a macroscopic physical field that is produced in space while cells are proliferating. This dynamical interaction triggers and responds to chemical and genetic processes that are specific to each biological system. We chose the root apical meristem of Arabidopsis thaliana to develop our dynamical model because this system is well studied at the molecular, genetic and cellular levels and has the key traits of multicellular stem-cell niches. We built a dynamical model that couples fundamental molecular mechanisms of the cell cycle to a tension physical field and to auxin dynamics, both of which are known to play a role in root development. We perform extensive numerical calculations that allow for quantitative comparison with experimental measurements that consider the cellular patterns at the root tip. Our model recovers, as an emergent pattern, the transition from proliferative to transition and elongation domains, characteristic of stem-cell niches in multicellular organisms. In addition, we successfully predict altered cellular patterns that are expected under various applied auxin treatments or modified physical growth conditions. Our modeling platform may be extended to explicitly consider gene regulatory networks or to treat other developmental systems. PMID:23658505

  15. Effects of developmental variability on the dynamics and self-organization of cell populations

    NASA Astrophysics Data System (ADS)

    Prabhakara, Kaumudi H.; Gholami, Azam; Zykov, Vladimir S.; Bodenschatz, Eberhard

    2017-11-01

    We report experimental and theoretical results for spatiotemporal pattern formation in cell populations, where the parameters vary in space and time due to mechanisms intrinsic to the system, namely Dictyostelium discoideum (D.d.) in the starvation phase. We find that different patterns are formed when the populations are initialized at different developmental stages, or when populations at different initial developmental stages are mixed. The experimentally observed patterns can be understood with a modified Kessler-Levine model that takes into account the initial spatial heterogeneity of the cell populations and a developmental path introduced by us, i.e. the time dependence of the various biochemical parameters. The dynamics of the parameters agree with known biochemical studies. Most importantly, the modified model reproduces not only our results, but also the observations of an independent experiment published earlier. This shows that pattern formation can be used to understand and quantify the temporal evolution of the system parameters.

  16. Quantitative Microscopic Analysis of Plasma Membrane Receptor Dynamics in Living Plant Cells.

    PubMed

    Luo, Yu; Russinova, Eugenia

    2017-01-01

    Plasma membrane-localized receptors are essential for cellular communication and signal transduction. In Arabidopsis thaliana, BRASSINOSTEROID INSENSITIVE1 (BRI1) is one of the receptors that is activated by binding to its ligand, the brassinosteroid (BR) hormone, at the cell surface to regulate diverse plant developmental processes. The availability of BRI1 in the plasma membrane is related to its signaling output and is known to be controlled by the dynamic endomembrane trafficking. Advances in fluorescence labeling and confocal microscopy techniques enabled us to gain a better understanding of plasma membrane receptor dynamics in living cells. Here we describe different quantitative microscopy methods to monitor the relative steady-state levels of the BRI1 protein in the plasma membrane of root epidermal cells and its relative exocytosis and recycling rates. The methods can be applied also to analyze similar dynamics of other plasma membrane-localized receptors.

  17. Multivariate dynamical modelling of structural change during development.

    PubMed

    Ziegler, Gabriel; Ridgway, Gerard R; Blakemore, Sarah-Jayne; Ashburner, John; Penny, Will

    2017-02-15

    Here we introduce a multivariate framework for characterising longitudinal changes in structural MRI using dynamical systems. The general approach enables modelling changes of states in multiple imaging biomarkers typically observed during brain development, plasticity, ageing and degeneration, e.g. regional gray matter volume of multiple regions of interest (ROIs). Structural brain states follow intrinsic dynamics according to a linear system with additional inputs accounting for potential driving forces of brain development. In particular, the inputs to the system are specified to account for known or latent developmental growth/decline factors, e.g. due to effects of growth hormones, puberty, or sudden behavioural changes etc. Because effects of developmental factors might be region-specific, the sensitivity of each ROI to contributions of each factor is explicitly modelled. In addition to the external effects of developmental factors on regional change, the framework enables modelling and inference about directed (potentially reciprocal) interactions between brain regions, due to competition for space, or structural connectivity, and suchlike. This approach accounts for repeated measures in typical MRI studies of development and aging. Model inversion and posterior distributions are obtained using earlier established variational methods enabling Bayesian evidence-based comparisons between various models of structural change. Using this approach we demonstrate dynamic cortical changes during brain maturation between 6 and 22 years of age using a large openly available longitudinal paediatric dataset with 637 scans from 289 individuals. In particular, we model volumetric changes in 26 bilateral ROIs, which cover large portions of cortical and subcortical gray matter. We account for (1) puberty-related effects on gray matter regions; (2) effects of an early transient growth process with additional time-lag parameter; (3) sexual dimorphism by modelling parameter differences between boys and girls. There is evidence that the regional pattern of sensitivity to dynamic hidden growth factors in late childhood is similar across genders and shows a consistent anterior-posterior gradient with strongest impact to prefrontal cortex (PFC) brain changes. Finally, we demonstrate the potential of the framework to explore the coupling of structural changes across a priori defined subnetworks using an example of previously established resting state functional connectivity. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Cardiovascular Imaging and Image Processing: Theory and Practice - 1975

    NASA Technical Reports Server (NTRS)

    Harrison, Donald C. (Editor); Sandler, Harold (Editor); Miller, Harry A. (Editor); Hood, Manley J. (Editor); Purser, Paul E. (Editor); Schmidt, Gene (Editor)

    1975-01-01

    Ultrasonography was examined in regard to the developmental highlights and present applicatons of cardiac ultrasound. Doppler ultrasonic techniques and the technology of miniature acoustic element arrays were reported. X-ray angiography was discussed with special considerations on quantitative three dimensional dynamic imaging of structure and function of the cardiopulmonary and circulatory systems in all regions of the body. Nuclear cardiography and scintigraphy, three--dimensional imaging of the myocardium with isotopes, and the commercialization of the echocardioscope were studied.

  19. Risky decision making from childhood through adulthood: Contributions of learning and sensitivity to negative feedback.

    PubMed

    Humphreys, Kathryn L; Telzer, Eva H; Flannery, Jessica; Goff, Bonnie; Gabard-Durnam, Laurel; Gee, Dylan G; Lee, Steve S; Tottenham, Nim

    2016-02-01

    Decision making in the context of risk is a complex and dynamic process that changes across development. Here, we assessed the influence of sensitivity to negative feedback (e.g., loss) and learning on age-related changes in risky decision making, both of which show unique developmental trajectories. In the present study, we examined risky decision making in 216 individuals, ranging in age from 3-26 years, using the balloon emotional learning task (BELT), a computerized task in which participants pump up a series of virtual balloons to earn points, but risk balloon explosion on each trial, which results in no points. It is important to note that there were 3 balloon conditions, signified by different balloon colors, ranging from quick- to slow-to-explode, and participants could learn the color-condition pairings through task experience. Overall, we found age-related increases in pumps made and points earned. However, in the quick-to-explode condition, there was a nonlinear adolescent peak for points earned. Follow-up analyses indicated that this adolescent phenotype occurred at the developmental intersection of linear age-related increases in learning and decreases in sensitivity to negative feedback. Adolescence was marked by intermediate values on both these processes. These findings show that a combination of linearly changing processes can result in nonlinear changes in risky decision making, the adolescent-specific nature of which is associated with developmental improvements in learning and reduced sensitivity to negative feedback. (c) 2016 APA, all rights reserved).

  20. The architecture and dynamics of developing mind: experiential structuralism as a frame for unifying cognitive developmental theories.

    PubMed

    Demetriou, A; Efklides, A; Platsidou, M

    1993-01-01

    This Monograph presents a theory of cognitive development. The theory argues that the mind develops across three fronts. The first refers to a general processing system that defines the general potentials of mind to develop cognitive strategies and skills. The second refers to a hypercognitive system that governs self-understanding and self-regulation. The third involves a set of specialized structural systems (SSSs) that are responsible for the representation and processing of different reality domains. There are specific forces that are responsible for this organization of mind. These are expressed in the Monograph in terms of a set of five organizational principles. The developmental course of the major systems is outlined. Developmental change is ascribed by the theory to the interaction between the various systems. Different types of development require different change mechanisms. Five studies are presented that provide empirical support for these postulates. Study 1 demonstrated the organizational power of principles and SSSs. Study 2 showed that the SSSs constrain the effect of learning. Study 3 established that the hypercognitive system does function as the interface between tasks and SSS-specific processes or between SSSs and general cognitive functions such as attention and memory. Study 4 investigated the relations between one of the components of the processing system, storage, and two different SSSs expressed via two different symbolic systems, namely, the numeric and the imaginal. Finally, Study 5 examined the interaction between the components of the processing system and the relations between each of these components and one SSS, namely, the quantitative-relational SSS. The theoretical implications of these studies with regard to general issues, such as the nature of representation, the causation of cognitive change, and individual differences in cognitive development, are discussed in the concluding chapter.

  1. Mdivi-1, mitochondrial fission inhibitor, impairs developmental competence and mitochondrial function of embryos and cells in pigs

    PubMed Central

    YEON, Ji-Yeong; MIN, Sung-Hun; PARK, Hyo-Jin; KIM, Jin-Woo; LEE, Yong-Hee; PARK, Soo-Yong; JEONG, Pil-Soo; PARK, Humdai; LEE, Dong-Seok; KIM, Sun-Uk; CHANG, Kyu-Tae; KOO, Deog-Bon

    2014-01-01

    Mitochondria are highly dynamic organelles that undergo constant fusion/fission as well as activities orchestrated by large dynamin-related GTPases. These dynamic mitochondrial processes influence mitochondrial morphology, size and function. Therefore, this study was conducted to evaluate the effects of mitochondrial fission inhibitor, mdivi-1, on developmental competence and mitochondrial function of porcine embryos and primary cells. Presumptive porcine embryos were cultured in PZM-3 medium supplemented with mdivi-1 (0, 10 and 50 μM) for 6 days. Porcine fibroblast cells were cultured in growth medium with mdivi-1 (0 and 50 μM) for 2 days. Our results showed that the rate of blastocyst production and cell growth in the mdivi-1 (50 μM) treated group was lower than that of the control group (P < 0.05). Moreover, loss of mitochondrial membrane potential in the mdivi-1 (50 μM) treated group was increased relative to the control group (P < 0.05). Subsequent evaluation revealed that the intracellular levels of reactive oxygen species (ROS) and the apoptotic index were increased by mdivi-1 (50 μM) treatment (P < 0.05). Finally, the expression of mitochondrial fission-related protein (Drp 1) was lower in the embryos and cells in the mdivi-1-treated group than the control group. Taken together, these results indicate that mdivi-1 treatment may inhibit developmental competence and mitochondrial function in porcine embryos and primary cells. PMID:25501014

  2. The developmental transcriptome atlas of the spoon worm Urechis unicinctus (Echiurida: Annelida).

    PubMed

    Park, Chungoo; Han, Yong-Hee; Lee, Sung-Gwon; Ry, Kyoung-Bin; Oh, Jooseong; Kern, Elizabeth M A; Park, Joong-Ki; Cho, Sung-Jin

    2018-03-01

    Echiurida is one of the most intriguing major subgroups of annelida because, unlike most other annelids, echiurids lack metameric body segmentation as adults. For this reason, transcriptome analyses from various developmental stages of echiurid species can be of substantial value for understanding precise expression levels and the complex regulatory networks during early and larval development. A total of 914 million raw RNA-Seq reads were produced from 14 developmental stages of Urechis unicinctus and were de novo assembled into contigs spanning 63,928,225 bp with an N50 length of 2700 bp. The resulting comprehensive transcriptome database of the early developmental stages of U. unicinctus consists of 20,305 representative functional protein-coding transcripts. Approximately 66% of unigenes were assigned to superphylum-level taxa, including Lophotrochozoa (40%). The completeness of the transcriptome assembly was assessed using benchmarking universal single-copy orthologs; 75.7% of the single-copy orthologs were presented in our transcriptome database. We observed 3 distinct patterns of global transcriptome profiles from 14 developmental stages and identified 12,705 genes that showed dynamic regulation patterns during the differentiation and maturation of U. unicinctus cells. We present the first large-scale developmental transcriptome dataset of U. unicinctus and provide a general overview of the dynamics of global gene expression changes during its early developmental stages. The analysis of time-course gene expression data is a first step toward understanding the complex developmental gene regulatory networks in U. unicinctus and will furnish a valuable resource for analyzing the functions of gene repertoires in various developmental phases.

  3. A gene network model accounting for development and evolution of mammalian teeth

    PubMed Central

    Salazar-Ciudad, Isaac; Jernvall, Jukka

    2002-01-01

    Generation of morphological diversity remains a challenge for evolutionary biologists because it is unclear how an ultimately finite number of genes involved in initial pattern formation integrates with morphogenesis. Ideally, models used to search for the simplest developmental principles on how genes produce form should account for both developmental process and evolutionary change. Here we present a model reproducing the morphology of mammalian teeth by integrating experimental data on gene interactions and growth into a morphodynamic mechanism in which developing morphology has a causal role in patterning. The model predicts the course of tooth-shape development in different mammalian species and also reproduces key transitions in evolution. Furthermore, we reproduce the known expression patterns of several genes involved in tooth development and their dynamics over developmental time. Large morphological effects frequently can be achieved by small changes, according to this model, and similar morphologies can be produced by different changes. This finding may be consistent with why predicting the morphological outcomes of molecular experiments is challenging. Nevertheless, models incorporating morphology and gene activity show promise for linking genotypes to phenotypes. PMID:12048258

  4. Toward a Developmentally-Informed Approach to Parenting Interventions: Seeking Hidden Effects

    PubMed Central

    Brock, Rebecca L.; Kochanska, Grazyna

    2015-01-01

    Drawing from developmental psychology and psychopathology, we propose a new, developmentally-informed approach to parenting interventions that focuses on elucidating changes in the unfolding developmental process between the parent and child. We present data from 186 low-income mothers of toddlers, randomly assigned to Child-Oriented Play group or Play-as-Usual group. We examined the maladaptive cascade from child difficulty to mother adversarial, negative parenting to child maladjustment, well documented in the literature. The measures incorporated multiple observations and reports. As expected, the sequence from child difficulty (Pretest) to mother adversarial, negative parenting (Posttest 1, after 3-month intervention) to child maladjustment (Posttest 2, 6 months later) was present in Play-as-Usual group, but absent, or defused, in Child-Oriented Play group. The findings are consistent with a view of intervention presumably enhancing the mother-child relationship, which in turn served to moderate future mother-child dynamics, altering its otherwise anticipated negative trajectory. A closer examination of the cascade revealed that, at Posttest 1, mothers in Play-as-Usual group engaged in more adversarial, negative parenting (controlling for Pretest) than mothers in Child-Oriented Play group when their children were of high difficulty. The intervention appears to exert its primary influence on the cascade by weakening the link between child difficulty and maternal adversarial, negative parenting. PMID:27063895

  5. Predictability of spatio-temporal patterns in a lattice of coupled FitzHugh–Nagumo oscillators

    PubMed Central

    Grace, Miriam; Hütt, Marc-Thorsten

    2013-01-01

    In many biological systems, variability of the components can be expected to outrank statistical fluctuations in the shaping of self-organized patterns. In pioneering work in the late 1990s, it was hypothesized that a drift of cellular parameters (along a ‘developmental path’), together with differences in cell properties (‘desynchronization’ of cells on the developmental path) can establish self-organized spatio-temporal patterns (in their example, spiral waves of cAMP in a colony of Dictyostelium discoideum cells) starting from a homogeneous state. Here, we embed a generic model of an excitable medium, a lattice of diffusively coupled FitzHugh–Nagumo oscillators, into a developmental-path framework. In this minimal model of spiral wave generation, we can now study the predictability of spatio-temporal patterns from cell properties as a function of desynchronization (or ‘spread’) of cells along the developmental path and the drift speed of cell properties on the path. As a function of drift speed and desynchronization, we observe systematically different routes towards fully established patterns, as well as strikingly different correlations between cell properties and pattern features. We show that the predictability of spatio-temporal patterns from cell properties contains important information on the pattern formation process as well as on the underlying dynamical system. PMID:23349439

  6. Evolution‐development congruence in pattern formation dynamics: Bifurcations in gene expression and regulation of networks structures

    PubMed Central

    Kohsokabe, Takahiro

    2016-01-01

    ABSTRACT Search for possible relationships between phylogeny and ontogeny is important in evolutionary‐developmental biology. Here we uncover such relationships by numerical evolution and unveil their origin in terms of dynamical systems theory. By representing developmental dynamics of spatially located cells with gene expression dynamics with cell‐to‐cell interaction under external morphogen gradient, gene regulation networks are evolved under mutation and selection with the fitness to approach a prescribed spatial pattern of expressed genes. For most numerical evolution experiments, evolution of pattern over generations and development of pattern by an evolved network exhibit remarkable congruence. Both in the evolution and development pattern changes consist of several epochs where stripes are formed in a short time, while for other temporal regimes, pattern hardly changes. In evolution, these quasi‐stationary regimes are generations needed to hit relevant mutations, while in development, they are due to some gene expression that varies slowly and controls the pattern change. The morphogenesis is regulated by combinations of feedback or feedforward regulations, where the upstream feedforward network reads the external morphogen gradient, and generates a pattern used as a boundary condition for the later patterns. The ordering from up to downstream is common in evolution and development, while the successive epochal changes in development and evolution are represented as common bifurcations in dynamical‐systems theory, which lead to the evolution‐development congruence. Mechanism of exceptional violation of the congruence is also unveiled. Our results provide a new look on developmental stages, punctuated equilibrium, developmental bottlenecks, and evolutionary acquisition of novelty in morphogenesis. J. Exp. Zool. (Mol. Dev. Evol.) 326B:61–84, 2016. © 2015 The Authors. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution Published by Wiley Periodicals, Inc. PMID:26678220

  7. Dynamic Environmental Photosynthetic Imaging Reveals Emergent Phenotypes

    DOE PAGES

    Cruz, Jeffrey A.; Savage, Linda J.; Zegarac, Robert; ...

    2016-06-22

    Understanding and improving the productivity and robustness of plant photosynthesis requires high-throughput phenotyping under environmental conditions that are relevant to the field. Here we demonstrate the dynamic environmental photosynthesis imager (DEPI), an experimental platform for integrated, continuous, and high-throughput measurements of photosynthetic parameters during plant growth under reproducible yet dynamic environmental conditions. Using parallel imagers obviates the need to move plants or sensors, reducing artifacts and allowing simultaneous measurement on large numbers of plants. As a result, DEPI can reveal phenotypes that are not evident under standard laboratory conditions but emerge under progressively more dynamic illumination. We show examples inmore » mutants of Arabidopsis of such “emergent phenotypes” that are highly transient and heterogeneous, appearing in different leaves under different conditions and depending in complex ways on both environmental conditions and plant developmental age. Finally, these emergent phenotypes appear to be caused by a range of phenomena, suggesting that such previously unseen processes are critical for plant responses to dynamic environments.« less

  8. Genetic dissection of the maize kernel development process via conditional QTL mapping for three developing kernel-related traits in an immortalized F2 population.

    PubMed

    Zhang, Zhanhui; Wu, Xiangyuan; Shi, Chaonan; Wang, Rongna; Li, Shengfei; Wang, Zhaohui; Liu, Zonghua; Xue, Yadong; Tang, Guiliang; Tang, Jihua

    2016-02-01

    Kernel development is an important dynamic trait that determines the final grain yield in maize. To dissect the genetic basis of maize kernel development process, a conditional quantitative trait locus (QTL) analysis was conducted using an immortalized F2 (IF2) population comprising 243 single crosses at two locations over 2 years. Volume (KV) and density (KD) of dried developing kernels, together with kernel weight (KW) at different developmental stages, were used to describe dynamic changes during kernel development. Phenotypic analysis revealed that final KW and KD were determined at DAP22 and KV at DAP29. Unconditional QTL mapping for KW, KV and KD uncovered 97 QTLs at different kernel development stages, of which qKW6b, qKW7a, qKW7b, qKW10b, qKW10c, qKV10a, qKV10b and qKV7 were identified under multiple kernel developmental stages and environments. Among the 26 QTLs detected by conditional QTL mapping, conqKW7a, conqKV7a, conqKV10a, conqKD2, conqKD7 and conqKD8a were conserved between the two mapping methodologies. Furthermore, most of these QTLs were consistent with QTLs and genes for kernel development/grain filling reported in previous studies. These QTLs probably contain major genes associated with the kernel development process, and can be used to improve grain yield and quality through marker-assisted selection.

  9. Child neurology: autism as a model: considerations for advanced training in behavioral child neurology.

    PubMed

    Jeste, Shafali S; Friedman, Sandra L; Urion, David K

    2009-09-01

    In this article, we advocate for advanced training for child neurologists in behavior and development in order to facilitate the investigation of childhood behavioral and neurodevelopmental disabilities, with autism serving as a model disorder. We explore the current training options and then propose alternative subspecialty training options that focus on behavior and development, with appreciation that most developmental disabilities are not static encephalopathies but, rather, dynamic processes representing the influence of genetics and environment on neural circuitry.

  10. 3D Analysis of Human Embryos and Fetuses Using Digitized Datasets From the Kyoto Collection.

    PubMed

    Takakuwa, Tetsuya

    2018-06-01

    Three-dimensional (3D) analysis of the human embryonic and early-fetal period has been performed using digitized datasets obtained from the Kyoto Collection, in which the digital datasets play a primary role in research. Datasets include magnetic resonance imaging (MRI) acquired with 1.5 T, 2.35 T, and 7 T magnet systems, phase-contrast X-ray computed tomography (CT), and digitized histological serial sections. Large, high-resolution datasets covering a broad range of developmental periods obtained with various methods of acquisition are key elements for the studies. The digital data have gross merits that enabled us to develop various analysis. Digital data analysis accelerated the speed of morphological observations using precise and improved methods by providing a suitable plane for a morphometric analysis from staged human embryos. Morphometric data are useful for quantitatively evaluating and demonstrating the features of development and for screening abnormal samples, which may be suggestive in the pathogenesis of congenital malformations. Morphometric data are also valuable for comparing sonographic data in a process known as "sonoembryology." The 3D coordinates of anatomical landmarks may be useful tools for analyzing the positional change of interesting landmarks and their relationships during development. Several dynamic events could be explained by differential growth using 3D coordinates. Moreover, 3D coordinates can be utilized in mathematical analysis as well as statistical analysis. The 3D analysis in our study may serve to provide accurate morphologic data, including the dynamics of embryonic structures related to developmental stages, which is required for insights into the dynamic and complex processes occurring during organogenesis. Anat Rec, 301:960-969, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  11. Dynamical patterning modules: physico-genetic determinants of morphological development and evolution

    NASA Astrophysics Data System (ADS)

    Newman, Stuart A.; Bhat, Ramray

    2008-03-01

    The shapes and forms of multicellular organisms arise by the generation of new cell states and types and changes in the numbers and rearrangements of the various kinds of cells. While morphogenesis and pattern formation in all animal species are widely recognized to be mediated by the gene products of an evolutionarily conserved 'developmental-genetic toolkit', the link between these molecular players and the physics underlying these processes has been generally ignored. This paper introduces the concept of 'dynamical patterning modules' (DPMs), units consisting of one or more products of the 'toolkit' genes that mobilize physical processes characteristic of chemically and mechanically excitable meso- to macroscopic systems such as cell aggregates: cohesion, viscoelasticity, diffusion, spatiotemporal heterogeneity based on lateral inhibition and multistable and oscillatory dynamics. We suggest that ancient toolkit gene products, most predating the emergence of multicellularity, assumed novel morphogenetic functions due to change in the scale and context inherent to multicellularity. We show that DPMs, acting individually and in concert with each other, constitute a 'pattern language' capable of generating all metazoan body plans and organ forms. The physical dimension of developmental causation implies that multicellular forms during the explosive radiation of animal body plans in the middle Cambrian, approximately 530 million years ago, could have explored an extensive morphospace without concomitant genotypic change or selection for adaptation. The morphologically plastic body plans and organ forms generated by DPMs, and their ontogenetic trajectories, would subsequently have been stabilized and consolidated by natural selection and genetic drift. This perspective also solves the apparent 'molecular homology-analogy paradox', whereby widely divergent modern animal types utilize the same molecular toolkit during development by proposing, in contrast to the Neo-Darwinian principle, that phenotypic disparity early in evolution occurred in advance of, rather than closely tracked, genotypic change.

  12. Sequential pattern formation governed by signaling gradients

    NASA Astrophysics Data System (ADS)

    Jörg, David J.; Oates, Andrew C.; Jülicher, Frank

    2016-10-01

    Rhythmic and sequential segmentation of the embryonic body plan is a vital developmental patterning process in all vertebrate species. However, a theoretical framework capturing the emergence of dynamic patterns of gene expression from the interplay of cell oscillations with tissue elongation and shortening and with signaling gradients, is still missing. Here we show that a set of coupled genetic oscillators in an elongating tissue that is regulated by diffusing and advected signaling molecules can account for segmentation as a self-organized patterning process. This system can form a finite number of segments and the dynamics of segmentation and the total number of segments formed depend strongly on kinetic parameters describing tissue elongation and signaling molecules. The model accounts for existing experimental perturbations to signaling gradients, and makes testable predictions about novel perturbations. The variety of different patterns formed in our model can account for the variability of segmentation between different animal species.

  13. Computer-mediated interdisciplinary teams: theory and reality.

    PubMed

    Vroman, Kerryellen; Kovacich, Joann

    2002-05-01

    The benefit of experience, tempered with the wisdom of hindsight and 5 years of text-based, asynchronous, computer-mediated, interdisciplinary team communications, provides the energy, insights and data shared in this article. Through the theoretical lens of group dynamics and the epistemology of interdisciplinary teaming, we analyze the interactions of a virtual interdisciplinary team to provide an understanding and appreciation of collaborative interdisciplinary communication in the context of interactive technologies. Whilst interactive technologies may require new patterns of language similar to that of learning a foreign language, what is communicated in the interdisciplinary team process does not change. Most important is the recognition that virtual teams, similar to their face-to-face counterparts, undergo the same challenges of interdisciplinary teaming and group developmental processes of formation: forming, storming, norming, performing, and transforming. After examining these dynamics of communication and collaboration in the context of the virtual team, the article concludes with guidelines facilitating interdisciplinary team computer-mediated communication.

  14. Individual Meaning and Increasing Complexity: Contributions of Sigmund Freud and Rene Spitz to Developmental Psychology.

    ERIC Educational Resources Information Center

    Emde, Robert N.

    1992-01-01

    Considers contributions of Sigmund Freud and Rene Spitz to developmental psychology. Freud's contributions include his observations about play, perspectives on developmental processes, and ideas about unconscious mental activity. Spitz's contributions include his assessments of infants, perspectives on developmental processes, and his concept of…

  15. Apoptotic Cell Clearance in Development.

    PubMed

    Shklover, Jeny; Levy-Adam, Flonia; Kurant, Estee

    2015-01-01

    Programmed cell death and its specific form apoptosis play an important role during development of multicellular organisms. They are crucial for morphogenesis and organ sculpting as well as for adjusting cell number in different systems. Removal of apoptotic cells is the last critical step of apoptosis. Apoptotic cells are properly and efficiently recognized and eliminated through phagocytosis, which is performed by professional and nonprofessional phagocytes. Phagocytosis of apoptotic cells or apoptotic cell clearance is a dynamic multistep process, involving interactions between phagocytic receptors and ligands on apoptotic cells, which are highly conserved in evolution. However, this process is extremely redundant in mammals, containing multiple factors playing similar roles in the process. Using model organisms such as Caenorhabditis elegans, Drosophila melanogaster, zebrafish, and mouse permits addressing fundamental questions in developmental cell clearance by a comprehensive approach including powerful genetics and cell biological tools enriched by live imaging. Recent studies in model organisms have enhanced significantly our understanding of the molecular and cellular basis of apoptotic cell clearance during development. Here, we review the current knowledge and illuminate the great potential of the research performed in genetic models, which opens new directions in developmental biology. © 2015 Elsevier Inc. All rights reserved.

  16. Serotonin homeostasis and serotonin receptors as actors of cortical construction: special attention to the 5-HT3A and 5-HT6 receptor subtypes

    PubMed Central

    Vitalis, Tania; Ansorge, Mark S.; Dayer, Alexandre G.

    2013-01-01

    Cortical circuits control higher-order cognitive processes and their function is highly dependent on their structure that emerges during development. The construction of cortical circuits involves the coordinated interplay between different types of cellular processes such as proliferation, migration, and differentiation of neural and glial cell subtypes. Among the multiple factors that regulate the assembly of cortical circuits, 5-HT is an important developmental signal that impacts on a broad diversity of cellular processes. 5-HT is detected at the onset of embryonic telencephalic formation and a variety of serotonergic receptors are dynamically expressed in the embryonic developing cortex in a region and cell-type specific manner. Among these receptors, the ionotropic 5-HT3A receptor and the metabotropic 5-HT6 receptor have recently been identified as novel serotonergic targets regulating different aspects of cortical construction including neuronal migration and dendritic differentiation. In this review, we focus on the developmental impact of serotonergic systems on the construction of cortical circuits and discuss their potential role in programming risk for human psychiatric disorders. PMID:23801939

  17. Genome-wide identification and characterisation of HOT regions in the human genome.

    PubMed

    Li, Hao; Liu, Feng; Ren, Chao; Bo, Xiaochen; Shu, Wenjie

    2016-09-15

    HOT (high-occupancy target) regions, which are bound by a surprisingly large number of transcription factors, are considered to be among the most intriguing findings of recent years. An improved understanding of the roles that HOT regions play in biology would be afforded by knowing the constellation of factors that constitute these domains and by identifying HOT regions across the spectrum of human cell types. We characterised and validated HOT regions in embryonic stem cells (ESCs) and produced a catalogue of HOT regions in a broad range of human cell types. We found that HOT regions are associated with genes that control and define the developmental processes of the respective cell and tissue types. We also showed evidence of the developmental persistence of HOT regions at primitive enhancers and demonstrate unique signatures of HOT regions that distinguish them from typical enhancers and super-enhancers. Finally, we performed a dynamic analysis to reveal the dynamical regulation of HOT regions upon H1 differentiation. Taken together, our results provide a resource for the functional exploration of HOT regions and extend our understanding of the key roles of HOT regions in development and differentiation.

  18. Identity Development and Future Orientation in Immigrant Adolescents and Young Adults: A Narrative View of Cultural Transitions From Ethiopia to Israel.

    PubMed

    Flum, Hanoch; Buzukashvili, Tamara

    2018-06-01

    This paper examines a major aspect of identity development in the context of cultural transition. Following Eriksonian psychosocial and sociocultural perspectives, it investigates self-continuity and identity integration in light of inherent discontinuity among young immigrants. More specifically, this examination draws on three distinct narrative studies, within the framework of Dynamic Narrative Approach, with first- and second-generation adolescents and young adult Ethiopian immigrants to Israel. Their negotiations of identity, with a focus on their narrative construction of past, present, and future across life domains (education, career, military service, family), are illustrated in this article in a variety of developmental paths. Dynamics of reciprocity between early life experiences and future orientation are revealed in the narratives. A capacity to connect cultural resources in the past with challenges in the new culture is identified as a key. By processing them and bringing them up-to-date, meaning becomes relevant to current experiences and developmental challenges. Across the three distinct studies, a variety of exploratory activities and relational qualities are found to facilitate or impede the reconstruction and integration of identity. © 2018 Wiley Periodicals, Inc.

  19. Development of a Refined Space Vehicle Rollout Forcing Function

    NASA Technical Reports Server (NTRS)

    James, George; Tucker, Jon-Michael; Valle, Gerard; Grady, Robert; Schliesing, John; Fahling, James; Emory, Benjamin; Armand, Sasan

    2016-01-01

    For several decades, American manned spaceflight vehicles and the associated launch platforms have been transported from final assembly to the launch pad via a pre-launch phase called rollout. The rollout environment is rich with forced harmonics and higher order effects can be used for extracting structural dynamics information. To enable this utilization, processing tools are needed to move from measured and analytical data to dynamic metrics such as transfer functions, mode shapes, modal frequencies, and damping. This paper covers the range of systems and tests that are available to estimate rollout forcing functions for the Space Launch System (SLS). The specific information covered in this paper includes: the different definitions of rollout forcing functions; the operational and developmental data sets that are available; the suite of analytical processes that are currently in-place or in-development; and the plans and future work underway to solve two immediate problems related to rollout forcing functions. Problem 1 involves estimating enforced accelerations to drive finite element models for developing design requirements for the SLS class of launch vehicles. Problem 2 involves processing rollout measured data in near real time to understand structural dynamics properties of a specific vehicle and the class to which it belongs.

  20. Modeling the spatial and temporal population dynamics of the copepod Centropages typicus in the northwestern Mediterranean Sea during the year 2001 using a 3D ecosystem model

    NASA Astrophysics Data System (ADS)

    Carlotti, F.; Eisenhauer, L.; Campbell, R.; Diaz, F.

    2014-07-01

    The spatio-temporal dynamics of a simulated Centropages typicus (Kröyer) population during the year 2001 at the regional scale of the northwestern Mediterranean Sea are addressed using a 3D coupled physical-biogeochemical model. The setup of the coupled biological model comprises a pelagic plankton ecosystem model and a stage-structured population model forced by the 3D velocity and temperature fields provided by an eddy-resolving regional circulation model. The population model for C. typicus (C. t. below) represents demographic processes through five groups of developmental stages, which depend on underlying individual growth and development processes and are forced by both biotic (prey and predator fields) and abiotic (temperature, advection) factors from the coupled physical-biogeochemical model. The objective is to characterize C. t. ontogenic habitats driven by physical and trophic processes. The annual dynamics are presented for two of the main oceanographic stations in the Gulf of Lions, which are representative of shelf and open sea conditions, while the spatial distributions over the whole area are presented for three dates during the year, in early and late spring and in winter. The simulated spatial patterns of C. t. developmental stages are closely related to mesoscale hydrodynamic features and circulation patterns. The seasonal and spatial distributions on the Gulf of Lions shelf depend on the seasonal interplay between the Rhône river plume, the mesoscale eddies on the shelf and the Northern Current acting as either as a dynamic barrier between the shelf and the open sea or allowing cross-shelf exchanges. In the central gyre of the northwestern Mediterranean Sea, the patchiness of plankton is tightly linked to mesoscale frontal systems, surface eddies and filaments and deep gradients. Due to its flexibility in terms of its diet, C. t. succeeds in maintaining its population in both coastal and offshore areas year round. The simulations suggest that the winte-spring food conditions are more favorable on the shelf for C. t., whereas in late summer and fall, the offshore depth-integrated food biomasses represent a larger resource for C. t., particularly when mesoscale structures and vertical discontinuities increase food patchiness. The development and reproduction of C. t. depend on the prey field within the mesoscale structures that induce a contrasting spatial distribution of successive developmental stages on a given observation date. In late fall and winter, the results of the model suggest the existence of three refuge areas where the population maintains winter generations near the coast and within the Rhone River plume, or offshore within canyons within the shelf break, or in the frontal system related to the Northern Current. The simulated spatial and temporal distributions as well as the life cycle and physiological features of C. t. are discussed in light of recent reviews on the dynamics of C. t. in the northwestern Mediterranean Sea.

  1. Space-time dynamics of Stem Cell Niches: a unified approach for Plants.

    PubMed

    Pérez, Maria Del Carmen; López, Alejandro; Padilla, Pablo

    2013-06-01

    Many complex systems cannot be analyzed using traditional mathematical tools, due to their irreducible nature. This makes it necessary to develop models that can be implemented computationally to simulate their evolution. Examples of these models are cellular automata, evolutionary algorithms, complex networks, agent-based models, symbolic dynamics and dynamical systems techniques. We review some representative approaches to model the stem cell niche in Arabidopsis thaliana and the basic biological mechanisms that underlie its formation and maintenance. We propose a mathematical model based on cellular automata for describing the space-time dynamics of the stem cell niche in the root. By making minimal assumptions on the cell communication process documented in experiments, we classify the basic developmental features of the stem-cell niche, including the basic structural architecture, and suggest that they could be understood as the result of generic mechanisms given by short and long range signals. This could be a first step in understanding why different stem cell niches share similar topologies, not only in plants. Also the fact that this organization is a robust consequence of the way information is being processed by the cells and to some extent independent of the detailed features of the signaling mechanism.

  2. Space-time dynamics of stem cell niches: a unified approach for plants.

    PubMed

    Pérez, Maria del Carmen; López, Alejandro; Padilla, Pablo

    2013-04-02

    Many complex systems cannot be analyzed using traditional mathematical tools, due to their irreducible nature. This makes it necessary to develop models that can be implemented computationally to simulate their evolution. Examples of these models are cellular automata, evolutionary algorithms, complex networks, agent-based models, symbolic dynamics and dynamical systems techniques. We review some representative approaches to model the stem cell niche in Arabidopsis thaliana and the basic biological mechanisms that underlie its formation and maintenance. We propose a mathematical model based on cellular automata for describing the space-time dynamics of the stem cell niche in the root. By making minimal assumptions on the cell communication process documented in experiments, we classify the basic developmental features of the stem-cell niche, including the basic structural architecture, and suggest that they could be understood as the result of generic mechanisms given by short and long range signals. This could be a first step in understanding why different stem cell niches share similar topologies, not only in plants. Also the fact that this organization is a robust consequence of the way information is being processed by the cells and to some extent independent of the detailed features of the signaling mechanism.

  3. Progressive and regressive developmental changes in neural substrates for face processing: Testing specific predictions of the Interactive Specialization account

    PubMed Central

    Joseph, Jane E.; Gathers, Ann D.; Bhatt, Ramesh S.

    2010-01-01

    Face processing undergoes a fairly protracted developmental time course but the neural underpinnings are not well understood. Prior fMRI studies have only examined progressive changes (i.e., increases in specialization in certain regions with age), which would be predicted by both the Interactive Specialization (IS) and maturational theories of neural development. To differentiate between these accounts, the present study also examined regressive changes (i.e., decreases in specialization in certain regions with age), which is predicted by the IS but not maturational account. The fMRI results show that both progressive and regressive changes occur, consistent with IS. Progressive changes mostly occurred in occipital-fusiform and inferior frontal cortex whereas regressive changes largely emerged in parietal and lateral temporal cortices. Moreover, inconsistent with the maturational account, all of the regions involved in face viewing in adults were active in children, with some regions already specialized for face processing by 5 years of age and other regions activated in children but not specifically for faces. Thus, neurodevelopment of face processing involves dynamic interactions among brain regions including age-related increases and decreases in specialization and the involvement of different regions at different ages. These results are more consistent with IS than maturational models of neural development. PMID:21399706

  4. Rho-guanine nucleotide exchange factors during development

    PubMed Central

    Mulinari, Shai

    2010-01-01

    The development of multicellular organisms is associated with extensive rearrangements of tissues and cell sheets. The driving force for these rearrangements is generated mostly by the actin cytoskeleton. In order to permit the reproducible development of a specific body plan, dynamic reorganization of the actin cytoskeleton must be precisely coordinated in space and time. GTP-exchange factors that activate small GTPases of the Rho family play an important role in this process. Here we review the role of this class of cytoskeletal regulators during important developmental processes such as epithelial morphogenesis, cytokinesis, cell migration, cell polarity, neuronal growth cone extension and phagocytosis in different model systems. PMID:21686118

  5. Sixty years of dynamic examination of drawings.

    PubMed

    Hárdi, István

    2010-01-01

    Dynamic examination of drawing is a serial-comparative follow-up of drawings asking the patients to draw a person and an animal, - before, during the course and after - the treatment. We follow and compare clinical, psychopathological changes with the graphic ones based on dynamic psychopathologic processes. The material collected over 60 years consists of 85714 drawings, with 4710 series, including extended time observation of more than 10 years with 454 patients. Contrary to projective-associative methods, the emphasis here is placed on the changes of formal, dynamic elements and afterwards on the content. Some aspects of our evaluation are the following: alterations of line, impoverishment-enrichment, disproportion-proportion, deformation-harmony, deficiency-completeness, regression progression, and reintegration. Personality levels of drawings is one of the most important category, various types of adult drawings similar but not identical to children developmental phases of drawings. By the aid of personality levels of drawings comparison of the members of series regression could be more precisely stated, just as the grade of recovery. Dynamic examination of drawing has been practiced in outpatient and inpatient circumstances, differing from the atelier situation. It does not need special expensive technical equipments, or conditions and you can use it for evaluating pathologic and therapeutic processes, states and progression.

  6. Developmental metaplasticity in neural circuit codes of firing and structure.

    PubMed

    Baram, Yoram

    2017-01-01

    Firing-rate dynamics have been hypothesized to mediate inter-neural information transfer in the brain. While the Hebbian paradigm, relating learning and memory to firing activity, has put synaptic efficacy variation at the center of cortical plasticity, we suggest that the external expression of plasticity by changes in the firing-rate dynamics represents a more general notion of plasticity. Hypothesizing that time constants of plasticity and firing dynamics increase with age, and employing the filtering property of the neuron, we obtain the elementary code of global attractors associated with the firing-rate dynamics in each developmental stage. We define a neural circuit connectivity code as an indivisible set of circuit structures generated by membrane and synapse activation and silencing. Synchronous firing patterns under parameter uniformity, and asynchronous circuit firing are shown to be driven, respectively, by membrane and synapse silencing and reactivation, and maintained by the neuronal filtering property. Analytic, graphical and simulation representation of the discrete iteration maps and of the global attractor codes of neural firing rate are found to be consistent with previous empirical neurobiological findings, which have lacked, however, a specific correspondence between firing modes, time constants, circuit connectivity and cortical developmental stages. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Simultaneous imaging of blood flow dynamics and vascular remodelling during development.

    PubMed

    Ghaffari, Siavash; Leask, Richard L; Jones, Elizabeth A V

    2015-12-01

    Normal vascular development requires blood flow. Time-lapse imaging techniques have revolutionised our understanding of developmental biology, but measuring changes in blood flow dynamics has met with limited success. Ultrasound biomicroscopy and optical coherence tomography can concurrently image vascular structure and blood flow velocity, but these techniques lack the resolution to accurately calculate fluid forces such as shear stress. This is important because hemodynamic forces are biologically active and induce changes in the expression of genes important for vascular development. Regional variations in shear stress, rather than the overall level, control processes such as vessel enlargement and regression during vascular remodelling. We present a technique to concurrently visualise vascular remodelling and blood flow dynamics. We use an avian embryonic model and inject an endothelial-specific dye and fluorescent microspheres. The motion of the microspheres is captured with a high-speed camera and the velocity of the blood flow in and out of the region of interest is quantified by micro-particle image velocitymetry (µPIV). The vessel geometry and flow are used to numerically solve the flow physics with computational fluid dynamics (CFD). Using this technique, we can analyse changes in shear stress, pressure drops and blood flow velocities over a period of 10 to 16 h. We apply this to study the relationship between shear stress and chronic changes in vessel diameter during embryonic development, both in normal development and after TGFβ stimulation. This technique allows us to study the interaction of biomolecular and biomechanical signals during vascular remodelling using an in vivo developmental model. © 2015. Published by The Company of Biologists Ltd.

  8. Managing Contextual Complexity in an Experiential Learning Course: A Dynamic Systems Approach through the Identification of Turning Points in Students' Emotional Trajectories

    PubMed Central

    Nogueiras, Gloria; Kunnen, E. Saskia; Iborra, Alejandro

    2017-01-01

    This study adopts a dynamic systems approach to investigate how individuals successfully manage contextual complexity. To that end, we tracked individuals' emotional trajectories during a challenging training course, seeking qualitative changes–turning points—and we tested their relationship with the perceived complexity of the training. The research context was a 5-day higher education course based on process-oriented experiential learning, and the sample consisted of 17 students. The students used a five-point Likert scale to rate the intensity of 16 emotions and the complexity of the training on 8 measurement points. Monte Carlo permutation tests enabled to identify 30 turning points in the 272 emotional trajectories analyzed (17 students * 16 emotions each). 83% of the turning points indicated a change of pattern in the emotional trajectories that consisted of: (a) increasingly intense positive emotions or (b) decreasingly intense negative emotions. These turning points also coincided with particularly complex periods in the training as perceived by the participants (p = 0.003, and p = 0.001 respectively). The relationship between positively-trended turning points in the students' emotional trajectories and the complexity of the training may be interpreted as evidence of a successful management of the cognitive conflict arising from the clash between the students' prior ways of meaning-making and the challenging demands of the training. One of the strengths of this study is that it provides a relatively simple procedure for identifying turning points in developmental trajectories, which can be applied to various longitudinal experiences that are very common in educational and developmental contexts. Additionally, the findings contribute to sustaining that the assumption that complex contextual demands lead unfailingly to individuals' learning is incomplete. Instead, it is how individuals manage complexity which may or may not lead to learning. Finally, this study can also be considered a first step in research on the developmental potential of process-oriented experiential learning training. PMID:28515703

  9. Orthographic Processing Efficiency in Developmental Dyslexia: An Investigation of Age and Treatment Factors at the Sublexical Level

    ERIC Educational Resources Information Center

    O'Brien, Beth A.; Wolf, Maryanne; Miller, Lynne T.; Lovett, Maureen W.; Morris, Robin

    2011-01-01

    Reading fluency beyond decoding is a limitation to many children with developmental reading disorders. In the interest of remediating dysfluency, contributing factors need to be explored and understood in a developmental framework. The focus of this study is orthographic processing in developmental dyslexia, and how it may contribute to reading…

  10. Design of a dynamic test platform for autonomous robot vision systems

    NASA Technical Reports Server (NTRS)

    Rich, G. C.

    1980-01-01

    The concept and design of a dynamic test platform for development and evluation of a robot vision system is discussed. The platform is to serve as a diagnostic and developmental tool for future work with the RPI Mars Rover's multi laser/multi detector vision system. The platform allows testing of the vision system while its attitude is varied, statically or periodically. The vision system is mounted on the test platform. It can then be subjected to a wide variety of simulated can thus be examined in a controlled, quantitative fashion. Defining and modeling Rover motions and designing the platform to emulate these motions are also discussed. Individual aspects of the design process are treated separately, as structural, driving linkages, and motors and transmissions.

  11. Neurocognitive accounts of developmental dyscalculia and its remediation.

    PubMed

    Iuculano, T

    2016-01-01

    Numbers are one of the most pervasive stimulus categories in our environment and an integral foundation of modern society. Yet, up to 20% of individuals fail to understand, represent, and manipulate numbers and form the basis of arithmetic, a condition termed developmental dyscalculia (DD). Multiple cognitive and neural systems including those that serve numerical, mnemonic, visuospatial, and cognitive control functions have independently been implicated in the etiology of DD, yet most studies have not taken a comprehensive or dynamic view of the disorder. This chapter supports the view of DD as a multifaceted neurodevelopmental disorder that is the result of multiple aberrancies at one or multiple levels of the information processing hierarchy, which supports successful arithmetic learning, and suggests that interventions should target all these systems to achieve successful outcomes, at the behavioral and neural levels. © 2016 Elsevier B.V. All rights reserved.

  12. Hollywood takes on intellectual/ developmental disability: cinematic representations of occupational participation.

    PubMed

    Renwick, Rebecca; Schormans, Ann Fudge; Shore, Deborah

    2014-01-01

    Adults with intellectual/developmental disability (IDD), and their occupational participation, are vastly under-represented in Hollywood films. Because films often provide individuals' only experience of people with IDD, cinematic representations can influence audience perceptions. Thus, films can help inform public perceptions about desired and appropriate occupational participation for people with IDD, potentially impacting their access to meaningful occupational participation and achievement of occupational potential. Accordingly, this research examined occupational portrayals of adults with IDD in contemporary Hollywood films. Occupational portrayals, as defined here, refer to representations of the dynamic process of the person participating in occupation(s) in a context. Grounded theory methods guided coding and analysis of qualitative data collected from eight contemporary films using an occupation-focused tool. Two major, striking themes emerging from the qualitative analysis--infantilization and simplification of participation in complex occupations (with three associated sub-themes)--are discussed. Implications of the findings and future research directions are considered.

  13. Stability of Attachment Style in Adolescence: An Empirical Test of Alternative Developmental Processes.

    PubMed

    Jones, Jason D; Fraley, R Chris; Ehrlich, Katherine B; Stern, Jessica A; Lejuez, C W; Shaver, Phillip R; Cassidy, Jude

    2018-05-01

    Few studies have examined stability and change in attachment during adolescence. This 5-year longitudinal study (a) examined whether prototype or revisionist developmental dynamics better characterized patterns of stability and change in adolescent attachment (at T1, N = 176; M age  = 14.0 years, SD = 0.9), (b) tested potential moderators of prototype-like attachment stability, and (c) compared attachment stability in adolescence to stability in adulthood. The results supported the prototype model, which assumes that there is a stable, enduring factor underlying stability and change in attachment. Exploratory moderation analyses revealed that family conflict, parental separation or divorce, minority status, and male sex might undermine the prototype-like stability of adolescent attachment. Stability of attachment was lower in adolescence relative to adulthood. © 2017 The Authors. Child Development © 2017 Society for Research in Child Development, Inc.

  14. Multi-functionality and plasticity characterize epithelial cells in Hydra

    PubMed Central

    Buzgariu, W; Al Haddad, S; Tomczyk, S; Wenger, Y; Galliot, B

    2015-01-01

    Epithelial sheets, a synapomorphy of all metazoans but porifers, are present as 2 layers in cnidarians, ectoderm and endoderm, joined at their basal side by an extra-cellular matrix named mesoglea. In the Hydra polyp, epithelial cells of the body column are unipotent stem cells that continuously self-renew and concomitantly express their epitheliomuscular features. These multifunctional contractile cells maintain homeostasis by providing a protective physical barrier, by digesting nutrients, by selecting a stable microbiota, and by rapidly closing wounds. In addition, epithelial cells are highly plastic, supporting the adaptation of Hydra to physiological and environmental changes, such as long starvation periods where survival relies on a highly dynamic autophagy flux. Epithelial cells also play key roles in developmental processes as evidenced by the organizer activity they develop to promote budding and regeneration. We propose here an integrative view of the homeostatic and developmental aspects of epithelial plasticity in Hydra. PMID:26716072

  15. Dynamic Positioning System (DPS) Risk Analysis Using Probabilistic Risk Assessment (PRA)

    NASA Technical Reports Server (NTRS)

    Thigpen, Eric B.; Boyer, Roger L.; Stewart, Michael A.; Fougere, Pete

    2017-01-01

    The National Aeronautics and Space Administration (NASA) Safety & Mission Assurance (S&MA) directorate at the Johnson Space Center (JSC) has applied its knowledge and experience with Probabilistic Risk Assessment (PRA) to projects in industries ranging from spacecraft to nuclear power plants. PRA is a comprehensive and structured process for analyzing risk in complex engineered systems and/or processes. The PRA process enables the user to identify potential risk contributors such as, hardware and software failure, human error, and external events. Recent developments in the oil and gas industry have presented opportunities for NASA to lend their PRA expertise to both ongoing and developmental projects within the industry. This paper provides an overview of the PRA process and demonstrates how this process was applied in estimating the probability that a Mobile Offshore Drilling Unit (MODU) operating in the Gulf of Mexico and equipped with a generically configured Dynamic Positioning System (DPS) loses location and needs to initiate an emergency disconnect. The PRA described in this paper is intended to be generic such that the vessel meets the general requirements of an International Maritime Organization (IMO) Maritime Safety Committee (MSC)/Circ. 645 Class 3 dynamically positioned vessel. The results of this analysis are not intended to be applied to any specific drilling vessel, although provisions were made to allow the analysis to be configured to a specific vessel if required.

  16. Descriptive vs. mechanistic network models in plant development in the post-genomic era.

    PubMed

    Davila-Velderrain, J; Martinez-Garcia, J C; Alvarez-Buylla, E R

    2015-01-01

    Network modeling is now a widespread practice in systems biology, as well as in integrative genomics, and it constitutes a rich and diverse scientific research field. A conceptually clear understanding of the reasoning behind the main existing modeling approaches, and their associated technical terminologies, is required to avoid confusions and accelerate the transition towards an undeniable necessary more quantitative, multidisciplinary approach to biology. Herein, we focus on two main network-based modeling approaches that are commonly used depending on the information available and the intended goals: inference-based methods and system dynamics approaches. As far as data-based network inference methods are concerned, they enable the discovery of potential functional influences among molecular components. On the other hand, experimentally grounded network dynamical models have been shown to be perfectly suited for the mechanistic study of developmental processes. How do these two perspectives relate to each other? In this chapter, we describe and compare both approaches and then apply them to a given specific developmental module. Along with the step-by-step practical implementation of each approach, we also focus on discussing their respective goals, utility, assumptions, and associated limitations. We use the gene regulatory network (GRN) involved in Arabidopsis thaliana Root Stem Cell Niche patterning as our illustrative example. We show that descriptive models based on functional genomics data can provide important background information consistent with experimentally supported functional relationships integrated in mechanistic GRN models. The rationale of analysis and modeling can be applied to any other well-characterized functional developmental module in multicellular organisms, like plants and animals.

  17. Developmental Evaluation: Applying Complexity Concepts to Enhance Innovation and Use

    ERIC Educational Resources Information Center

    Patton, Michael Quinn

    2010-01-01

    Developmental evaluation (DE) offers a powerful approach to monitoring and supporting social innovations by working in partnership with program decision makers. In this book, eminent authority shows how to conduct evaluations within a DE framework. Patton draws on insights about complex dynamic systems, uncertainty, nonlinearity, and emergence. He…

  18. The Developmental Dynamics of Terrorist Organizations

    PubMed Central

    Clauset, Aaron; Gleditsch, Kristian Skrede

    2012-01-01

    We identify robust statistical patterns in the frequency and severity of violent attacks by terrorist organizations as they grow and age. Using group-level static and dynamic analyses of terrorist events worldwide from 1968–2008 and a simulation model of organizational dynamics, we show that the production of violent events tends to accelerate with increasing size and experience. This coupling of frequency, experience and size arises from a fundamental positive feedback loop in which attacks lead to growth which leads to increased production of new attacks. In contrast, event severity is independent of both size and experience. Thus larger, more experienced organizations are more deadly because they attack more frequently, not because their attacks are more deadly, and large events are equally likely to come from large and small organizations. These results hold across political ideologies and time, suggesting that the frequency and severity of terrorism may be constrained by fundamental processes. PMID:23185267

  19. Visualization of Notch signaling oscillation in cells and tissues.

    PubMed

    Shimojo, Hiromi; Harima, Yukiko; Kageyama, Ryoichiro

    2014-01-01

    The Notch signaling effectors Hes1 and Hes7 exhibit oscillatory expression with a period of about 2-3 h during embryogenesis. Hes1 oscillation is important for proliferation and differentiation of neural stem cells, whereas Hes7 oscillation regulates periodic formation of somites. Continuous expression of Hes1 and Hes7 inhibits these developmental processes. Thus, expression dynamics are very important for gene functions, but it is difficult to distinguish between oscillatory and persistent expression by conventional methods such as in situ hybridization and immunostaining. Here, we describe time-lapse imaging methods using destabilized luciferase reporters and a highly sensitive cooled charge-coupled device camera, which can monitor dynamic gene expression. Furthermore, the expression of two genes can be examined simultaneously by a dual reporter system using two-color luciferase reporters. Time-lapse imaging analyses reveal how dynamically gene expression changes in many biological events.

  20. A dynamic intron retention program enriched in RNA processing genes regulates gene expression during terminal erythropoiesis

    DOE PAGES

    Pimentel, Harold; Parra, Marilyn; Gee, Sherry L.; ...

    2015-11-03

    Differentiating erythroblasts execute a dynamic alternative splicing program shown here to include extensive and diverse intron retention (IR) events. Cluster analysis revealed hundreds of developmentallydynamic introns that exhibit increased IR in mature erythroblasts, and are enriched in functions related to RNA processing such as SF3B1 spliceosomal factor. Distinct, developmentally-stable IR clusters are enriched in metal-ion binding functions and include mitoferrin genes SLC25A37 and SLC25A28 that are critical for iron homeostasis. Some IR transcripts are abundant, e.g. comprising ~50% of highly-expressed SLC25A37 and SF3B1 transcripts in late erythroblasts, and thereby limiting functional mRNA levels. IR transcripts tested were predominantly nuclearlocalized. Splicemore » site strength correlated with IR among stable but not dynamic intron clusters, indicating distinct regulation of dynamically-increased IR in late erythroblasts. Retained introns were preferentially associated with alternative exons with premature termination codons (PTCs). High IR was observed in disease-causing genes including SF3B1 and the RNA binding protein FUS. Comparative studies demonstrated that the intron retention program in erythroblasts shares features with other tissues but ultimately is unique to erythropoiesis. Finally, we conclude that IR is a multi-dimensional set of processes that post-transcriptionally regulate diverse gene groups during normal erythropoiesis, misregulation of which could be responsible for human disease.« less

  1. Quantifying Aggregation Dynamics during Myxococcus xanthus Development▿†

    PubMed Central

    Zhang, Haiyang; Angus, Stuart; Tran, Michael; Xie, Chunyan; Igoshin, Oleg A.; Welch, Roy D.

    2011-01-01

    Under starvation conditions, a swarm of Myxococcus xanthus cells will undergo development, a multicellular process culminating in the formation of many aggregates called fruiting bodies, each of which contains up to 100,000 spores. The mechanics of symmetry breaking and the self-organization of cells into fruiting bodies is an active area of research. Here we use microcinematography and automated image processing to quantify several transient features of developmental dynamics. An analysis of experimental data indicates that aggregation reaches its steady state in a highly nonmonotonic fashion. The number of aggregates rapidly peaks at a value 2- to 3-fold higher than the final value and then decreases before reaching a steady state. The time dependence of aggregate size is also nonmonotonic, but to a lesser extent: average aggregate size increases from the onset of aggregation to between 10 and 15 h and then gradually decreases thereafter. During this process, the distribution of aggregates transitions from a nearly random state early in development to a more ordered state later in development. A comparison of experimental results to a mathematical model based on the traffic jam hypothesis indicates that the model fails to reproduce these dynamic features of aggregation, even though it accurately describes its final outcome. The dynamic features of M. xanthus aggregation uncovered in this study impose severe constraints on its underlying mechanisms. PMID:21784940

  2. A dynamic intron retention program enriched in RNA processing genes regulates gene expression during terminal erythropoiesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pimentel, Harold; Parra, Marilyn; Gee, Sherry L.

    Differentiating erythroblasts execute a dynamic alternative splicing program shown here to include extensive and diverse intron retention (IR) events. Cluster analysis revealed hundreds of developmentallydynamic introns that exhibit increased IR in mature erythroblasts, and are enriched in functions related to RNA processing such as SF3B1 spliceosomal factor. Distinct, developmentally-stable IR clusters are enriched in metal-ion binding functions and include mitoferrin genes SLC25A37 and SLC25A28 that are critical for iron homeostasis. Some IR transcripts are abundant, e.g. comprising ~50% of highly-expressed SLC25A37 and SF3B1 transcripts in late erythroblasts, and thereby limiting functional mRNA levels. IR transcripts tested were predominantly nuclearlocalized. Splicemore » site strength correlated with IR among stable but not dynamic intron clusters, indicating distinct regulation of dynamically-increased IR in late erythroblasts. Retained introns were preferentially associated with alternative exons with premature termination codons (PTCs). High IR was observed in disease-causing genes including SF3B1 and the RNA binding protein FUS. Comparative studies demonstrated that the intron retention program in erythroblasts shares features with other tissues but ultimately is unique to erythropoiesis. Finally, we conclude that IR is a multi-dimensional set of processes that post-transcriptionally regulate diverse gene groups during normal erythropoiesis, misregulation of which could be responsible for human disease.« less

  3. Efficient Reverse-Engineering of a Developmental Gene Regulatory Network

    PubMed Central

    Cicin-Sain, Damjan; Ashyraliyev, Maksat; Jaeger, Johannes

    2012-01-01

    Understanding the complex regulatory networks underlying development and evolution of multi-cellular organisms is a major problem in biology. Computational models can be used as tools to extract the regulatory structure and dynamics of such networks from gene expression data. This approach is called reverse engineering. It has been successfully applied to many gene networks in various biological systems. However, to reconstitute the structure and non-linear dynamics of a developmental gene network in its spatial context remains a considerable challenge. Here, we address this challenge using a case study: the gap gene network involved in segment determination during early development of Drosophila melanogaster. A major problem for reverse-engineering pattern-forming networks is the significant amount of time and effort required to acquire and quantify spatial gene expression data. We have developed a simplified data processing pipeline that considerably increases the throughput of the method, but results in data of reduced accuracy compared to those previously used for gap gene network inference. We demonstrate that we can infer the correct network structure using our reduced data set, and investigate minimal data requirements for successful reverse engineering. Our results show that timing and position of expression domain boundaries are the crucial features for determining regulatory network structure from data, while it is less important to precisely measure expression levels. Based on this, we define minimal data requirements for gap gene network inference. Our results demonstrate the feasibility of reverse-engineering with much reduced experimental effort. This enables more widespread use of the method in different developmental contexts and organisms. Such systematic application of data-driven models to real-world networks has enormous potential. Only the quantitative investigation of a large number of developmental gene regulatory networks will allow us to discover whether there are rules or regularities governing development and evolution of complex multi-cellular organisms. PMID:22807664

  4. Toward a developmentally informed approach to parenting interventions: Seeking hidden effects.

    PubMed

    Brock, Rebecca L; Kochanska, Grazyna

    2016-05-01

    Drawing from developmental psychology and psychopathology, we propose a new, developmentally informed approach to parenting interventions that focuses on elucidating changes in the unfolding developmental process between the parent and child. We present data from 186 low-income mothers of toddlers, randomly assigned to a child-oriented play group or a play-as-usual group. We examined the maladaptive cascade from child difficulty to mother adversarial, negative parenting to child maladjustment, well documented in the literature. The measures incorporated multiple observations and reports. As expected, the sequence from child difficulty (pretest) to mother adversarial, negative parenting (Posttest 1, after 3-month intervention) to child maladjustment (Posttest 2, 6 months later) was present in the play-as-usual group, but absent, or defused, in the child-oriented play group. The findings are consistent with a view of intervention presumably enhancing the mother-child relationship, which in turn served to moderate future mother-child dynamics, altering its otherwise anticipated negative trajectory. A closer examination of the cascade revealed that, at Posttest 1, mothers in the play-as-usual group engaged in more adversarial, negative parenting (controlling for pretest) than did mothers in the child-oriented play group when their children were of high difficulty. The intervention appears to exert its primary influence on the cascade by weakening the link between child difficulty and maternal adversarial, negative parenting.

  5. Applications and Challenges in Dynamic Assessment.

    ERIC Educational Resources Information Center

    Haywood, H. Carl; Tzuriel, David

    2002-01-01

    Reviews what is known about dynamic assessment, offering examples of its utility as a tool for research and clinical work in psychopathology, neuropsychology, education, the study of cultural differences, and developmental research. After discussing the use of dynamic assessment in assessing outcomes of cognitive education programs, the paper…

  6. Applying a Lifespan Developmental Perspective to Chronic Pain: Pediatrics to Geriatrics.

    PubMed

    Walco, Gary A; Krane, Elliot J; Schmader, Kenneth E; Weiner, Debra K

    2016-09-01

    An ideal taxonomy of chronic pain would be applicable to people of all ages. Developmental sciences focus on lifespan developmental approaches, and view the trajectory of processes in the life course from birth to death. In this article we provide a review of lifespan developmental models, describe normal developmental processes that affect pain processing, and identify deviations from those processes that lead to stable individual differences of clinical interest, specifically the development of chronic pain syndromes. The goals of this review were 1) to unify what are currently separate purviews of "pediatric pain," "adult pain," and "geriatric pain," and 2) to generate models so that specific elements of the chronic pain taxonomy might include important developmental considerations. A lifespan developmental model is applied to the forthcoming Analgesic, Anesthetic, and Addiction Clinical Trial Translations, Innovations, Opportunities, and Networks-American Pain Society Pain Taxonomy to ascertain the degree to which general "adult" descriptions apply to pediatric and geriatric populations, or if age- or development-related considerations need to be invoked. Copyright © 2016. Published by Elsevier Inc.

  7. From emotion resonance to empathic understanding: a social developmental neuroscience account.

    PubMed

    Decety, Jean; Meyer, Meghan

    2008-01-01

    The psychological construct of empathy refers to an intersubjective induction process by which positive and negative emotions are shared, without losing sight of whose feelings belong to whom. Empathy can lead to personal distress or to empathic concern (sympathy). The goal of this paper is to address the underlying cognitive processes and their neural underpinnings that constitute empathy within a developmental neuroscience perspective. In addition, we focus on how these processes go awry in developmental disorders marked by impairments in social cognition, such as autism spectrum disorder, and conduct disorder. We argue that empathy involves both bottom-up and top-down information processing, underpinned by specific and interacting neural systems. We discuss data from developmental psychology as well as cognitive neuroscience in support of such a model, and highlight the impact of neural dysfunctions on social cognitive developmental behavior. Altogether, bridging developmental science and cognitive neuroscience helps approach a more complete understanding of social cognition. Synthesizing these two domains also contributes to a better characterization of developmental psychopathologies that impacts the development of effective treatment strategies.

  8. Future Directions in Sleep and Developmental Psychopathology.

    PubMed

    Meltzer, Lisa J

    2017-01-01

    It is critical for psychologists to gain a better understanding about the intersection between sleep and developmental psychopathology. However, while many strive to answer the question of whether sleep causes developmental psychopathology, or vice versa, ultimately the relationship between sleep and developmental psychopathology is complex and dynamic. This article considers future directions in the field of clinical child and adolescent psychology that go beyond this mechanistic question, highlighting areas important to address for clinicians and researchers who strive to better understand how best to serve children and adolescents with developmental psychopathology. Questions are presented about what is normal in terms of sleep across development, the role of individual variability in terms of sleep needs and vulnerability to sleep loss, and how sleep may serve as a risk or resilience factor for developmental psychopathology, concluding with considerations for interventions.

  9. How Resource Dynamics Explain Accumulating Developmental and Health Disparities for Teen Parents’ Children

    PubMed Central

    Mollborn, Stefanie; Lawrence, Elizabeth; James-Hawkins, Laurie; Fomby, Paula

    2014-01-01

    This study examines the puzzle of disparities experienced by U.S. teen parents’ young children, whose health and development increasingly lag behind those of peers while their parents are simultaneously experiencing socioeconomic improvements. Using the nationally representative Early Childhood Longitudinal Study-Birth Cohort (2001–2007; N ≈ 8,600), we assess four dynamic patterns in socioeconomic resources that might account for these growing developmental and health disparities throughout early childhood and then test them in multilevel growth curve models. Persistently low socioeconomic resources constituted the strongest explanation, given that consistently low income, maternal education, and assets fully or partially account for growth in cognitive, behavioral, and health disparities experienced by teen parents’ children from infancy through kindergarten. That is, although teen parents gained socioeconomic resources over time, those resources remained relatively low, and the duration of exposure to limited resources explains observed growing disparities. Results suggest that policy interventions addressing the time dynamics of low socioeconomic resources in a household, in terms of both duration and developmental timing, are promising for reducing disparities experienced by teen parents’ children. PMID:24802282

  10. Transgenesis of the Wolffian duct visualizes dynamic behavior of cells undergoing tubulogenesis in vivo.

    PubMed

    Atsuta, Yuji; Tadokoro, Ryosuke; Saito, Daisuke; Takahashi, Yoshiko

    2013-05-01

    Deciphering how the tubulogenesis is regulated is an essential but unsolved issue in developmental biology. Here, using Wolffian duct (WD) formation in chicken embryos, we have developed a novel method that enables gene manipulation during tubulogenesis in vivo. Exploiting that WD arises from a defined site located anteriorly in the embryo (pronephric region), we targeted this region with the enhanced green fluorescent protein (EGFP) gene by the in ovo electroporation technique. EGFP-positive signals were detected in a wide area of elongating WD, where transgenic cells formed an epithelial component in a mosaic manner. Time-lapse live imaging analyses further revealed dynamic behavior of cells during WD elongation: some cells possessed numerous filopodia, and others exhibited cellular tails that repeated elongation and retraction. The retraction of the tail was precisely regulated by Rho activity via actin dynamics. When electroporated with the C3 gene, encoding Rho inhibitor, WD cells failed to contract their tails, resulting in an aberrantly elongated process. We further combined with the Tol2 transposon-mediated gene transfer technique, and could trace EGFP-positive cells at later stages in the ureteric bud sprouting from WD. This is the first demonstration that exogenous gene(s) can directly be introduced into elongating tubular structures in living amniote embryos. This method has opened a way to investigate how a complex tubulogenesis proceeds in higher vertebrates. © 2013 The Authors Development, Growth & Differentiation © 2013 Japanese Society of Developmental Biologists.

  11. A multi-Poisson dynamic mixture model to cluster developmental patterns of gene expression by RNA-seq.

    PubMed

    Ye, Meixia; Wang, Zhong; Wang, Yaqun; Wu, Rongling

    2015-03-01

    Dynamic changes of gene expression reflect an intrinsic mechanism of how an organism responds to developmental and environmental signals. With the increasing availability of expression data across a time-space scale by RNA-seq, the classification of genes as per their biological function using RNA-seq data has become one of the most significant challenges in contemporary biology. Here we develop a clustering mixture model to discover distinct groups of genes expressed during a period of organ development. By integrating the density function of multivariate Poisson distribution, the model accommodates the discrete property of read counts characteristic of RNA-seq data. The temporal dependence of gene expression is modeled by the first-order autoregressive process. The model is implemented with the Expectation-Maximization algorithm and model selection to determine the optimal number of gene clusters and obtain the estimates of Poisson parameters that describe the pattern of time-dependent expression of genes from each cluster. The model has been demonstrated by analyzing a real data from an experiment aimed to link the pattern of gene expression to catkin development in white poplar. The usefulness of the model has been validated through computer simulation. The model provides a valuable tool for clustering RNA-seq data, facilitating our global view of expression dynamics and understanding of gene regulation mechanisms. © The Author 2014. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  12. The fossil record of phenotypic integration and modularity: A deep-time perspective on developmental and evolutionary dynamics.

    PubMed

    Goswami, Anjali; Binder, Wendy J; Meachen, Julie; O'Keefe, F Robin

    2015-04-21

    Variation is the raw material for natural selection, but the factors shaping variation are still poorly understood. Genetic and developmental interactions can direct variation, but there has been little synthesis of these effects with the extrinsic factors that can shape biodiversity over large scales. The study of phenotypic integration and modularity has the capacity to unify these aspects of evolutionary study by estimating genetic and developmental interactions through the quantitative analysis of morphology, allowing for combined assessment of intrinsic and extrinsic effects. Data from the fossil record in particular are central to our understanding of phenotypic integration and modularity because they provide the only information on deep-time developmental and evolutionary dynamics, including trends in trait relationships and their role in shaping organismal diversity. Here, we demonstrate the important perspective on phenotypic integration provided by the fossil record with a study of Smilodon fatalis (saber-toothed cats) and Canis dirus (dire wolves). We quantified temporal trends in size, variance, phenotypic integration, and direct developmental integration (fluctuating asymmetry) through 27,000 y of Late Pleistocene climate change. Both S. fatalis and C. dirus showed a gradual decrease in magnitude of phenotypic integration and an increase in variance and the correlation between fluctuating asymmetry and overall integration through time, suggesting that developmental integration mediated morphological response to environmental change in the later populations of these species. These results are consistent with experimental studies and represent, to our knowledge, the first deep-time validation of the importance of developmental integration in stabilizing morphological evolution through periods of environmental change.

  13. The fossil record of phenotypic integration and modularity: A deep-time perspective on developmental and evolutionary dynamics

    PubMed Central

    Goswami, Anjali; Binder, Wendy J.; Meachen, Julie; O’Keefe, F. Robin

    2015-01-01

    Variation is the raw material for natural selection, but the factors shaping variation are still poorly understood. Genetic and developmental interactions can direct variation, but there has been little synthesis of these effects with the extrinsic factors that can shape biodiversity over large scales. The study of phenotypic integration and modularity has the capacity to unify these aspects of evolutionary study by estimating genetic and developmental interactions through the quantitative analysis of morphology, allowing for combined assessment of intrinsic and extrinsic effects. Data from the fossil record in particular are central to our understanding of phenotypic integration and modularity because they provide the only information on deep-time developmental and evolutionary dynamics, including trends in trait relationships and their role in shaping organismal diversity. Here, we demonstrate the important perspective on phenotypic integration provided by the fossil record with a study of Smilodon fatalis (saber-toothed cats) and Canis dirus (dire wolves). We quantified temporal trends in size, variance, phenotypic integration, and direct developmental integration (fluctuating asymmetry) through 27,000 y of Late Pleistocene climate change. Both S. fatalis and C. dirus showed a gradual decrease in magnitude of phenotypic integration and an increase in variance and the correlation between fluctuating asymmetry and overall integration through time, suggesting that developmental integration mediated morphological response to environmental change in the later populations of these species. These results are consistent with experimental studies and represent, to our knowledge, the first deep-time validation of the importance of developmental integration in stabilizing morphological evolution through periods of environmental change. PMID:25901310

  14. Novel methodology to examine cognitive and experiential factors in language development: combining eye-tracking and LENA technology

    PubMed Central

    Odean, Rosalie; Nazareth, Alina; Pruden, Shannon M.

    2015-01-01

    Developmental systems theory posits that development cannot be segmented by influences acting in isolation, but should be studied through a scientific lens that highlights the complex interactions between these forces over time (Overton, 2013a). This poses a unique challenge for developmental psychologists studying complex processes like language development. In this paper, we advocate for the combining of highly sophisticated data collection technologies in an effort to move toward a more systemic approach to studying language development. We investigate the efficiency and appropriateness of combining eye-tracking technology and the LENA (Language Environment Analysis) system, an automated language analysis tool, in an effort to explore the relation between language processing in early development, and external dynamic influences like parent and educator language input in the home and school environments. Eye-tracking allows us to study language processing via eye movement analysis; these eye movements have been linked to both conscious and unconscious cognitive processing, and thus provide one means of evaluating cognitive processes underlying language development that does not require the use of subjective parent reports or checklists. The LENA system, on the other hand, provides automated language output that describes a child’s language-rich environment. In combination, these technologies provide critical information not only about a child’s language processing abilities but also about the complexity of the child’s language environment. Thus, when used in conjunction these technologies allow researchers to explore the nature of interacting systems involved in language development. PMID:26379591

  15. DNA methylation as a dynamic regulator of development and disease processes: spotlight on the prostate.

    PubMed

    Keil, Kimberly P; Vezina, Chad M

    2015-01-01

    Prostate development, benign hyperplasia and cancer involve androgen and growth factor signaling as well as stromal-epithelial interactions. We review how DNA methylation influences these and related processes in other organ systems such as how proliferation is restricted to specific cell populations during defined temporal windows, how androgens elicit their actions and how cells establish, maintain and remodel DNA methylation in a time and cell specific fashion. We also discuss mechanisms by which hormones and endocrine disrupting chemicals reprogram DNA methylation in the prostate and elsewhere and examine evidence for a reawakening of developmental epigenetic pathways as drivers of prostate cancer and benign prostate hyperplasia.

  16. DNA methylation as a dynamic regulator of development and disease processes: spotlight on the prostate

    PubMed Central

    Keil, Kimberly P; Vezina, Chad M

    2015-01-01

    Prostate development, benign hyperplasia and cancer involve androgen and growth factor signaling as well as stromal–epithelial interactions. We review how DNA methylation influences these and related processes in other organ systems such as how proliferation is restricted to specific cell populations during defined temporal windows, how androgens elicit their actions and how cells establish, maintain and remodel DNA methylation in a time and cell specific fashion. We also discuss mechanisms by which hormones and endocrine disrupting chemicals reprogram DNA methylation in the prostate and elsewhere and examine evidence for a reawakening of developmental epigenetic pathways as drivers of prostate cancer and benign prostate hyperplasia. PMID:26077429

  17. Spatiotemporal Dynamics of Speech Sound Perception in Chronic Developmental Stuttering

    ERIC Educational Resources Information Center

    Liotti, Mario; Ingham, Janis C.; Takai, Osamu; Paskos, Delia Kothmann; Perez, Ricardo; Ingham, Roger J.

    2010-01-01

    High-density ERPs were recorded in eight adults with persistent developmental stuttering (PERS) and eight matched normally fluent (CONT) control volunteers while participants either repeatedly uttered the vowel "ah" or listened to their own previously recorded vocalizations. The fronto-central N1 auditory wave was reduced in response to spoken…

  18. Regulatory RNA at the root of animals: dynamic expression of developmental lincRNAs in the calcisponge Sycon ciliatum.

    PubMed

    Bråte, Jon; Adamski, Marcin; Neumann, Ralf S; Shalchian-Tabrizi, Kamran; Adamska, Maja

    2015-12-22

    Long non-coding RNAs (lncRNAs) play important regulatory roles during animal development, and it has been hypothesized that an RNA-based gene regulation was important for the evolution of developmental complexity in animals. However, most studies of lncRNA gene regulation have been performed using model animal species, and very little is known about this type of gene regulation in non-bilaterians. We have therefore analysed RNA-Seq data derived from a comprehensive set of embryogenesis stages in the calcareous sponge Sycon ciliatum and identified hundreds of developmentally expressed intergenic lncRNAs (lincRNAs) in this species. In situ hybridization of selected lincRNAs revealed dynamic spatial and temporal expression during embryonic development. More than 600 lincRNAs constitute integral parts of differentially expressed gene modules, which also contain known developmental regulatory genes, e.g. transcription factors and signalling molecules. This study provides insights into the non-coding gene repertoire of one of the earliest evolved animal lineages, and suggests that RNA-based gene regulation was probably present in the last common ancestor of animals. © 2015 The Authors.

  19. A hundred years of latency: from Freudian psychosexual theory to dynamic systems nonlinear development in middle childhood.

    PubMed

    Knight, Rona

    2014-04-01

    A focus on the latency phase is used to illustrate how theory and developmental research have influenced our psychoanalytic views of development over the past hundred years. Beginning with Freud's psychosexual theory and his conception of latency, an historical overview of the major psychoanalytic contributions bearing on this developmental period over the past century is presented. Recent longitudinal research in latency supports a nonlinear dynamic systems approach to development. This approach obliges us to reconsider our linear theories and how we think about and work with our patients.

  20. The bioelectric code: An ancient computational medium for dynamic control of growth and form.

    PubMed

    Levin, Michael; Martyniuk, Christopher J

    2018-02-01

    What determines large-scale anatomy? DNA does not directly specify geometrical arrangements of tissues and organs, and a process of encoding and decoding for morphogenesis is required. Moreover, many species can regenerate and remodel their structure despite drastic injury. The ability to obtain the correct target morphology from a diversity of initial conditions reveals that the morphogenetic code implements a rich system of pattern-homeostatic processes. Here, we describe an important mechanism by which cellular networks implement pattern regulation and plasticity: bioelectricity. All cells, not only nerves and muscles, produce and sense electrical signals; in vivo, these processes form bioelectric circuits that harness individual cell behaviors toward specific anatomical endpoints. We review emerging progress in reading and re-writing anatomical information encoded in bioelectrical states, and discuss the approaches to this problem from the perspectives of information theory, dynamical systems, and computational neuroscience. Cracking the bioelectric code will enable much-improved control over biological patterning, advancing basic evolutionary developmental biology as well as enabling numerous applications in regenerative medicine and synthetic bioengineering. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. The Residency as a Developmental Process.

    ERIC Educational Resources Information Center

    Brent, David A.

    1981-01-01

    The residency is examined from the standpoint of adult developmental theory, and significant developmental tasks facing residents are described. Recommendations for management of common developmental conflicts occurring in residency are discussed. (Author/MLW)

  2. Tracking of time-varying genomic regulatory networks with a LASSO-Kalman smoother

    PubMed Central

    2014-01-01

    It is widely accepted that cellular requirements and environmental conditions dictate the architecture of genetic regulatory networks. Nonetheless, the status quo in regulatory network modeling and analysis assumes an invariant network topology over time. In this paper, we refocus on a dynamic perspective of genetic networks, one that can uncover substantial topological changes in network structure during biological processes such as developmental growth. We propose a novel outlook on the inference of time-varying genetic networks, from a limited number of noisy observations, by formulating the network estimation as a target tracking problem. We overcome the limited number of observations (small n large p problem) by performing tracking in a compressed domain. Assuming linear dynamics, we derive the LASSO-Kalman smoother, which recursively computes the minimum mean-square sparse estimate of the network connectivity at each time point. The LASSO operator, motivated by the sparsity of the genetic regulatory networks, allows simultaneous signal recovery and compression, thereby reducing the amount of required observations. The smoothing improves the estimation by incorporating all observations. We track the time-varying networks during the life cycle of the Drosophila melanogaster. The recovered networks show that few genes are permanent, whereas most are transient, acting only during specific developmental phases of the organism. PMID:24517200

  3. Long-term in vivo harmonics imaging of zebrafish embryonic development based on a femtosecond Cr:forsterite laser

    NASA Astrophysics Data System (ADS)

    Chen, S.-Y.; Tsai, T.-H.; Hsieh, C.-S.; Tai, S.-P.; Lin, C.-Y.; Ko, C.-Y.; Chen, Y.-C.; Tsai, H.-J.; Hu, C.-H.; Sun, C.-K.

    2005-03-01

    Based on a femtosecond Cr:forsterite laser, harmonics optical microscopy (HOM) provides a truly "noninvasive" tool for in vivo and long-term study of vertebrate embryonic development. Based on optical nonlinearity, HOM provides sub-micrometer 3D spatial resolution and high 3D optical-sectioning power without using invasive and toxic fluorophores. Since only virtual-level-transition is involved, HOM is known to leave no energy deposition and no photodamage. Combined with second harmonic generation, which is sensitive to specific structure such as nerve and muscle fibers, HOM can perform functional studies of early developmental dynamics of many vertebrate physiological systems. Recently, zebrafish has become a standard model for many biological and medical studies of vertebrates, due to the similarity between embryonic development of zebrafish and human being. Here we demonstrate in vivo HOM studies of developmental dynamics of several important embryonic physiological systems in live zebrafish embryos, with focuses on the developments of brains, eyes, ears, and hearts. Based on a femtosecond Cr:forsterite laser, which provides the deepest penetration (~1.5mm) and least photodamage in the zebrafish embryo, complete developing processes of different physiological systems within a period of time longer than 20 hours can be non-invasively observed inside the same embryo.

  4. Extending and expanding the Darwinian synthesis: the role of complex systems dynamics.

    PubMed

    Weber, Bruce H

    2011-03-01

    Darwinism is defined here as an evolving research tradition based upon the concepts of natural selection acting upon heritable variation articulated via background assumptions about systems dynamics. Darwin's theory of evolution was developed within a context of the background assumptions of Newtonian systems dynamics. The Modern Evolutionary Synthesis, or neo-Darwinism, successfully joined Darwinian selection and Mendelian genetics by developing population genetics informed by background assumptions of Boltzmannian systems dynamics. Currently the Darwinian Research Tradition is changing as it incorporates new information and ideas from molecular biology, paleontology, developmental biology, and systems ecology. This putative expanded and extended synthesis is most perspicuously deployed using background assumptions from complex systems dynamics. Such attempts seek to not only broaden the range of phenomena encompassed by the Darwinian Research Tradition, such as neutral molecular evolution, punctuated equilibrium, as well as developmental biology, and systems ecology more generally, but to also address issues of the emergence of evolutionary novelties as well as of life itself. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Quantifying Cell Fate Decisions for Differentiation and Reprogramming of a Human Stem Cell Network: Landscape and Biological Paths

    PubMed Central

    Li, Chunhe; Wang, Jin

    2013-01-01

    Cellular reprogramming has been recently intensively studied experimentally. We developed a global potential landscape and kinetic path framework to explore a human stem cell developmental network composed of 52 genes. We uncovered the underlying landscape for the stem cell network with two basins of attractions representing stem and differentiated cell states, quantified and exhibited the high dimensional biological paths for the differentiation and reprogramming process, connecting the stem cell state and differentiated cell state. Both the landscape and non-equilibrium curl flux determine the dynamics of cell differentiation jointly. Flux leads the kinetic paths to be deviated from the steepest descent gradient path, and the corresponding differentiation and reprogramming paths are irreversible. Quantification of paths allows us to find out how the differentiation and reprogramming occur and which important states they go through. We show the developmental process proceeds as moving from the stem cell basin of attraction to the differentiation basin of attraction. The landscape topography characterized by the barrier heights and transition rates quantitatively determine the global stability and kinetic speed of cell fate decision process for development. Through the global sensitivity analysis, we provided some specific predictions for the effects of key genes and regulation connections on the cellular differentiation or reprogramming process. Key links from sensitivity analysis and biological paths can be used to guide the differentiation designs or reprogramming tactics. PMID:23935477

  6. Development of hierarchical structures for actions and motor imagery: a constructivist view from synthetic neuro-robotics study.

    PubMed

    Nishimoto, Ryunosuke; Tani, Jun

    2009-07-01

    The current paper shows a neuro-robotics experiment on developmental learning of goal-directed actions. The robot was trained to predict visuo-proprioceptive flow of achieving a set of goal-directed behaviors through iterative tutor training processes. The learning was conducted by employing a dynamic neural network model which is characterized by their multiple time-scale dynamics. The experimental results showed that functional hierarchical structures emerge through stages of developments where behavior primitives are generated in earlier stages and their sequences of achieving goals appear in later stages. It was also observed that motor imagery is generated in earlier stages compared to actual behaviors. Our claim that manipulatable inner representation should emerge through the sensory-motor interactions is corresponded to Piaget's constructivist view.

  7. Developmental coordination disorders and sensory processing and integration: Incidence, associations and co-morbidities.

    PubMed

    Allen, Susan; Casey, Jackie

    2017-09-01

    Children with developmental coordination disorder or sensory processing and integration difficulties face challenges to participation in daily living. To date there has been no exploration of the co-occurrence of developmental coordination disorders and sensory processing and integration difficulties. Records of children meeting Diagnostic and Statistical Manual - V criteria for developmental coordination disorder ( n  = 93) age 5 to 12 years were examined. Data on motor skills (Movement Assessment Battery for Children - 2) and sensory processing and integration (Sensory Processing Measure) were interrogated. Of the total sample, 88% exhibited some or definite differences in sensory processing and integration. No apparent relationship was observed between motor coordination and sensory processing and integration. The full sample showed high rates of some difficulties in social participation, hearing, body awareness, balance and motion, and planning and ideation. Further, children with co-morbid autistic spectrum disorder showed high rates of difficulties with touch and vision. Most, but not all, children with developmental coordination disorder presented with some difficulties in sensory processing and integration that impacted on their participation in everyday activities. Sensory processing and integration difficulties differed significantly between those with and without co-morbid autistic spectrum disorder.

  8. Working Memory Capacity as a Dynamic Process

    PubMed Central

    Simmering, Vanessa R.; Perone, Sammy

    2013-01-01

    A well-known characteristic of working memory (WM) is its limited capacity. The source of such limitations, however, is a continued point of debate. Developmental research is positioned to address this debate by jointly identifying the source(s) of limitations and the mechanism(s) underlying capacity increases. Here we provide a cross-domain survey of studies and theories of WM capacity development, which reveals a complex picture: dozens of studies from 50 papers show nearly universal increases in capacity estimates with age, but marked variation across studies, tasks, and domains. We argue that the full pattern of performance cannot be captured through traditional approaches emphasizing single causes, or even multiple separable causes, underlying capacity development. Rather, we consider WM capacity as a dynamic process that emerges from a unified cognitive system flexibly adapting to the context and demands of each task. We conclude by enumerating specific challenges for researchers and theorists that will need to be met in order to move our understanding forward. PMID:23335902

  9. Descriptors of Friendship between Secondary Students with and without Autism or Intellectual and Developmental Disability

    ERIC Educational Resources Information Center

    Rossetti, Zachary

    2015-01-01

    This article reports findings from an interpretevist, qualitative study exploring the connections and dynamics of friendship among three groups of secondary school-aged young adults. Each group included an individual with autism or intellectual and developmental disabilities who had extensive or pervasive support needs, and at least one high…

  10. Effects of temperature on development, survival and reproduction of insects: Experimental design, data analysis and modeling

    Treesearch

    Jacques Regniere; James Powell; Barbara Bentz; Vincent Nealis

    2012-01-01

    The developmental response of insects to temperature is important in understanding the ecology of insect life histories. Temperature-dependent phenology models permit examination of the impacts of temperature on the geographical distributions, population dynamics and management of insects. The measurement of insect developmental, survival and reproductive responses to...

  11. Teachers' Initial Orchestration of Students' Dynamic Geometry Software Use: Consequences for Students' Opportunities to Learn Mathematics

    ERIC Educational Resources Information Center

    Erfjord, Ingvald

    2011-01-01

    This paper reports from a case study with teachers at two schools in Norway participating in developmental projects aiming for inquiry communities in mathematics teaching and learning. In the reported case study, the teachers participated in one of the developmental projects focusing on implementation and use of computer software in mathematics…

  12. Web-Delivered Supplemental Instruction: Dynamic Customizing of Search Algorithms to Enhance Independent Learning for Developmental Mathematics Students

    ERIC Educational Resources Information Center

    Taksa, Isak; Goldberg, Robert

    2004-01-01

    Traditional peer-to-peer Supplemental Instruction (SI) was introduced into higher education over a quarter of a century ago and promptly became an integral part of the developmental mathematics curricula in many senior and community colleges. Later, some colleges introduced Video-based Supplemental Instruction (VSI) and, in recent years,…

  13. Adolescent development and risk of injury: Using developmental science to improve interventions

    PubMed Central

    Johnson, Sara B.; Jones, Vanya C.

    2015-01-01

    In adolescence, there is a complex interaction among physical, cognitive, and psychosocial developmental processes, culminating in greater risk-taking and novelty-seeking. Concurrently, adolescents face an increasingly demanding environment, which results in heightened vulnerability to injury. In this paper, we provide an overview of developmental considerations for adolescent injury interventions based on developmental science including findings from behavioral neuroscience and psychology. We examine the role that typical developmental processes play in the way adolescents perceive and respond to risk and how this integrated body of developmental research adds to our understanding of how to do injury prevention with adolescents. We then highlight strategies to improve the translation of developmental research into adolescent injury prevention practice, calling on examples of existing interventions including graduated driver licensing. PMID:20876765

  14. Seeing double: visual physiology of double-retina eye ontogeny in stomatopod crustaceans.

    PubMed

    Feller, Kathryn D; Cohen, Jonathan H; Cronin, Thomas W

    2015-03-01

    Stomatopod eye development is unusual among crustaceans. Just prior to metamorphosis, an adult retina and associated neuro-processing structures emerge adjacent to the existing material in the larval compound eye. Depending on the species, the duration of this double-retina eye can range from a few hours to several days. Although this developmental process occurs in all stomatopod species observed to date, the retinal physiology and extent to which each retina contributes to the animal's visual sensitivity during this transition phase is unknown. We investigated the visual physiology of stomatopod double retinas using microspectrophotometry and electroretinogram recordings from different developmental stages of the Western Atlantic species Squilla empusa. Though microspectrophotometry data were inconclusive, we found robust ERG responses in both larval and adult retinas at all sampled time points indicating that the adult retina responds to light from the very onset of its emergence. We also found evidence of an increase in the response dynamics with ontogeny as well as an increase in sensitivity of retinal tissue during the double-retina phase relative to single retinas. These data provide an initial investigation into the ontogeny of vision during stomatopod double-retina eye development.

  15. Plant hormone cross-talk: the pivot of root growth.

    PubMed

    Pacifici, Elena; Polverari, Laura; Sabatini, Sabrina

    2015-02-01

    Root indeterminate growth and its outstanding ability to produce new tissues continuously make this organ a highly dynamic structure able to respond promptly to external environmental stimuli. Developmental processes therefore need to be finely tuned, and hormonal cross-talk plays a pivotal role in the regulation of root growth. In contrast to what happens in animals, plant development is a post-embryonic process. A pool of stem cells, placed in a niche at the apex of the meristem, is a source of self-renewing cells that provides cells for tissue formation. During the first days post-germination, the meristem reaches its final size as a result of a balance between cell division and cell differentiation. A complex network of interactions between hormonal pathways co-ordinates such developmental inputs. In recent years, by means of molecular and computational approaches, many efforts have been made aiming to define the molecular components of these networks. In this review, we focus our attention on the molecular mechanisms at the basis of hormone cross-talk during root meristem size determination. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  16. Adaptation of pancreatic islet cyto-architecture during development

    NASA Astrophysics Data System (ADS)

    Striegel, Deborah A.; Hara, Manami; Periwal, Vipul

    2016-04-01

    Plasma glucose in mammals is regulated by hormones secreted by the islets of Langerhans embedded in the exocrine pancreas. Islets consist of endocrine cells, primarily α, β, and δ cells, which secrete glucagon, insulin, and somatostatin, respectively. β cells form irregular locally connected clusters within islets that act in concert to secrete insulin upon glucose stimulation. Varying demands and available nutrients during development produce changes in the local connectivity of β cells in an islet. We showed in earlier work that graph theory provides a framework for the quantification of the seemingly stochastic cyto-architecture of β cells in an islet. To quantify the dynamics of endocrine connectivity during development requires a framework for characterizing changes in the probability distribution on the space of possible graphs, essentially a Fokker-Planck formalism on graphs. With large-scale imaging data for hundreds of thousands of islets containing millions of cells from human specimens, we show that this dynamics can be determined quantitatively. Requiring that rearrangement and cell addition processes match the observed dynamic developmental changes in quantitative topological graph characteristics strongly constrained possible processes. Our results suggest that there is a transient shift in preferred connectivity for β cells between 1-35 weeks and 12-24 months.

  17. NeuroRhythmics: software for analyzing time-series measurements of saltatory movements in neuronal processes.

    PubMed

    Kerlin, Aaron M; Lindsley, Tara A

    2008-08-15

    Time-lapse imaging of living neurons both in vivo and in vitro has revealed that the growth of axons and dendrites is highly dynamic and characterized by alternating periods of extension and retraction. These growth dynamics are associated with important features of neuronal development and are differentially affected by experimental treatments, but the underlying cellular mechanisms are poorly understood. NeuroRhythmics was developed to semi-automate specific quantitative tasks involved in analysis of two-dimensional time-series images of processes that exhibit saltatory elongation. This software provides detailed information on periods of growth and nongrowth that it identifies by transitions in elongation (i.e. initiation time, average rate, duration) and information regarding the overall pattern of saltatory growth (i.e. time of pattern onset, frequency of transitions, relative time spent in a state of growth vs. nongrowth). Plots and numeric output are readily imported into other applications. The user has the option to specify criteria for identifying transitions in growth behavior, which extends the potential application of the software to neurons of different types or developmental stage and to other time-series phenomena that exhibit saltatory dynamics. NeuroRhythmics will facilitate mechanistic studies of periodic axonal and dendritic growth in neurons.

  18. A Developmental Guide to the Organisation of Close Relationships

    PubMed Central

    Laursen, Brett; Bukowski, William M.

    2009-01-01

    A developmental guide to close relationships is presented. Parent-child, sibling, friend, and romantic relationships are described along dimensions that address permanence, power, and gender. These dimensions describe relationship differences in organisational principles that encompass internal representations, social understanding, and interpersonal experiences. The concept of domain specificity is borrowed from cognitive development to address the shifting developmental dynamics of close relationships. Distinct relationships are organised around distinct socialisation tasks, so each relationship requires its own organisational system. As a consequence, different principles guide different relationships, and these organisational principles change with development. PMID:20090927

  19. What Aspects of Face Processing Are Impaired in Developmental Prosopagnosia?

    ERIC Educational Resources Information Center

    Le Grand, Richard; Cooper, Philip A.; Mondloch, Catherine J.; Lewis, Terri L.; Sagiv, Noam; de Gelder, Beatrice; Maurer, Daphne

    2006-01-01

    Developmental prosopagnosia (DP) is a severe impairment in identifying faces that is present from early in life and that occurs despite no apparent brain damage and intact visual and intellectual function. Here, we investigated what aspects of face processing are impaired/spared in developmental prosopagnosia by examining a relatively large group…

  20. Developmental changes in head movement kinematics during swimming in Xenopus laevis tadpoles.

    PubMed

    Hänzi, Sara; Straka, Hans

    2017-01-15

    During the post-embryonic developmental growth of animals, a number of physiological parameters such as locomotor performance, dynamics and behavioural repertoire are adjusted to match the requirements determined by changes in body size, proportions and shape. Moreover, changes in movement parameters also cause changes in the dynamics of self-generated sensory stimuli, to which motion-detecting sensory systems have to adapt. Here, we examined head movements and swimming kinematics of Xenopus laevis tadpoles with a body length of 10-45 mm (developmental stage 46-54) and compared these parameters with fictive swimming, recorded as ventral root activity in semi-intact in vitro preparations. Head movement kinematics was extracted from high-speed video recordings of freely swimming tadpoles. Analysis of these locomotor episodes indicated that the swimming frequency decreased with development, along with the angular velocity and acceleration of the head, which represent self-generated vestibular stimuli. In contrast, neither head oscillation amplitude nor forward velocity changed with development despite the ∼3-fold increase in body size. The comparison between free and fictive locomotor dynamics revealed very similar swimming frequencies for similarly sized animals, including a comparable developmental decrease of the swimming frequency. Body morphology and the motor output rhythm of the spinal central pattern generator therefore develop concurrently. This study thus describes development-specific naturalistic head motion profiles, which form the basis for more natural stimuli in future studies probing the vestibular system. © 2017. Published by The Company of Biologists Ltd.

  1. I. WORKING MEMORY CAPACITY IN CONTEXT: MODELING DYNAMIC PROCESSES OF BEHAVIOR, MEMORY, AND DEVELOPMENT.

    PubMed

    Simmering, Vanessa R

    2016-09-01

    Working memory is a vital cognitive skill that underlies a broad range of behaviors. Higher cognitive functions are reliably predicted by working memory measures from two domains: children's performance on complex span tasks, and infants' performance in looking paradigms. Despite the similar predictive power across these research areas, theories of working memory development have not connected these different task types and developmental periods. The current project takes a first step toward bridging this gap by presenting a process-oriented theory, focusing on two tasks designed to assess visual working memory capacity in infants (the change-preference task) versus children and adults (the change detection task). Previous studies have shown inconsistent results, with capacity estimates increasing from one to four items during infancy, but only two to three items during early childhood. A probable source of this discrepancy is the different task structures used with each age group, but prior theories were not sufficiently specific to explain how performance relates across tasks. The current theory focuses on cognitive dynamics, that is, how memory representations are formed, maintained, and used within specific task contexts over development. This theory was formalized in a computational model to generate three predictions: 1) capacity estimates in the change-preference task should continue to increase beyond infancy; 2) capacity estimates should be higher in the change-preference versus change detection task when tested within individuals; and 3) performance should correlate across tasks because both rely on the same underlying memory system. I also tested a fourth prediction, that development across tasks could be explained through increasing real-time stability, realized computationally as strengthening connectivity within the model. Results confirmed these predictions, supporting the cognitive dynamics account of performance and developmental changes in real-time stability. The monograph concludes with implications for understanding memory, behavior, and development in a broader range of cognitive development. © 2016 The Society for Research in Child Development, Inc.

  2. Investigation of the spatial structure and developmental dynamics of near-Earth plasma perturbations under the action of powerful HF radio waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belov, A. S., E-mail: alexis-belov@yandex.ru

    2015-10-15

    Results of numerical simulations of the near-Earth plasma perturbations induced by powerful HF radio waves from the SURA heating facility are presented. The simulations were performed using a modified version of the SAMI2 ionospheric model for the input parameters corresponding to the series of in-situ SURA–DEMETER experiments. The spatial structure and developmental dynamics of large-scale plasma temperature and density perturbations have been investigated. The characteristic formation and relaxation times of the induced large-scale plasma perturbations at the altitudes of the Earth’s outer ionosphere have been determined.

  3. Holistic face training enhances face processing in developmental prosopagnosia

    PubMed Central

    Cohan, Sarah; Nakayama, Ken

    2014-01-01

    Prosopagnosia has largely been regarded as an untreatable disorder. However, recent case studies using cognitive training have shown that it is possible to enhance face recognition abilities in individuals with developmental prosopagnosia. Our goal was to determine if this approach could be effective in a larger population of developmental prosopagnosics. We trained 24 developmental prosopagnosics using a 3-week online face-training program targeting holistic face processing. Twelve subjects with developmental prosopagnosia were assessed before and after training, and the other 12 were assessed before and after a waiting period, they then performed the training, and were then assessed again. The assessments included measures of front-view face discrimination, face discrimination with view-point changes, measures of holistic face processing, and a 5-day diary to quantify potential real-world improvements. Compared with the waiting period, developmental prosopagnosics showed moderate but significant overall training-related improvements on measures of front-view face discrimination. Those who reached the more difficult levels of training (‘better’ trainees) showed the strongest improvements in front-view face discrimination and showed significantly increased holistic face processing to the point of being similar to that of unimpaired control subjects. Despite challenges in characterizing developmental prosopagnosics’ everyday face recognition and potential biases in self-report, results also showed modest but consistent self-reported diary improvements. In summary, we demonstrate that by using cognitive training that targets holistic processing, it is possible to enhance face perception across a group of developmental prosopagnosics and further suggest that those who improved the most on the training task received the greatest benefits. PMID:24691394

  4. Developmental mechanisms underlying variation in craniofacial disease and evolution.

    PubMed

    Fish, Jennifer L

    2016-07-15

    Craniofacial disease phenotypes exhibit significant variation in penetrance and severity. Although many genetic contributions to phenotypic variation have been identified, genotype-phenotype correlations remain imprecise. Recent work in evolutionary developmental biology has exposed intriguing developmental mechanisms that potentially explain incongruities in genotype-phenotype relationships. This review focuses on two observations from work in comparative and experimental animal model systems that highlight how development structures variation. First, multiple genetic inputs converge on relatively few developmental processes. Investigation of when and how variation in developmental processes occurs may therefore help predict potential genetic interactions and phenotypic outcomes. Second, genetic mutation is typically associated with an increase in phenotypic variance. Several models outlining developmental mechanisms underlying mutational increases in phenotypic variance are discussed using Satb2-mediated variation in jaw size as an example. These data highlight development as a critical mediator of genotype-phenotype correlations. Future research in evolutionary developmental biology focusing on tissue-level processes may help elucidate the "black box" between genotype and phenotype, potentially leading to novel treatment, earlier diagnoses, and better clinical consultations for individuals affected by craniofacial anomalies. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Infant Attention to Dynamic Audiovisual Stimuli: Look Duration from 3 to 9 Months of Age

    ERIC Educational Resources Information Center

    Reynolds, Greg D.; Zhang, Dantong; Guy, Maggie W.

    2013-01-01

    The goal of this study was to examine developmental change in visual attention to dynamic visual and audiovisual stimuli in 3-, 6-, and 9-month-old infants. Infant look duration was measured during exposure to dynamic geometric patterns and Sesame Street video clips under three different stimulus modality conditions: unimodal visual, synchronous…

  6. Regulatory gene networks and the properties of the developmental process

    NASA Technical Reports Server (NTRS)

    Davidson, Eric H.; McClay, David R.; Hood, Leroy

    2003-01-01

    Genomic instructions for development are encoded in arrays of regulatory DNA. These specify large networks of interactions among genes producing transcription factors and signaling components. The architecture of such networks both explains and predicts developmental phenomenology. Although network analysis is yet in its early stages, some fundamental commonalities are already emerging. Two such are the use of multigenic feedback loops to ensure the progressivity of developmental regulatory states and the prevalence of repressive regulatory interactions in spatial control processes. Gene regulatory networks make it possible to explain the process of development in causal terms and eventually will enable the redesign of developmental regulatory circuitry to achieve different outcomes.

  7. Developmental Relations between Vocabulary Knowledge and Reading Comprehension: A Latent Change Score Modeling Study

    ERIC Educational Resources Information Center

    Quinn, Jamie M.; Wagner, Richard K.; Petscher, Yaacov; Lopez, Danielle

    2015-01-01

    The present study followed a sample of first-grade (N = 316, M[subscript age] = 7.05 at first test) through fourth-grade students to evaluate dynamic developmental relations between vocabulary knowledge and reading comprehension. Using latent change score modeling, competing models were fit to the repeated measurements of vocabulary knowledge and…

  8. Epigenetic Patterns Modulate the Connection between Developmental Dynamics of Parenting and Offspring Psychosocial Adjustment

    ERIC Educational Resources Information Center

    Naumova, Oksana Yu.; Hein, Sascha; Suderman, Matthew; Barbot, Baptiste; Lee, Maria; Raefski, Adam; Dobrynin, Pavel V.; Brown, Pamela J.; Szyf, Moshe; Luthar, Suniya S.; Grigorenko, Elena L.

    2016-01-01

    This study attempted to establish and quantify the connections between parenting, offspring psychosocial adjustment, and the epigenome. The participants, 35 African American young adults (19 females and 16 males; age = 17-29.5 years), represented a subsample of a 3-wave longitudinal 15-year study on the developmental trajectories of low-income…

  9. Tissue Specificity and Dynamics of Sex-Biased Gene Expression in a Common Frog Population with Differentiated, Yet Homomorphic, Sex Chromosomes.

    PubMed

    Ma, Wen-Juan; Veltsos, Paris; Toups, Melissa A; Rodrigues, Nicolas; Sermier, Roberto; Jeffries, Daniel L; Perrin, Nicolas

    2018-06-12

    Sex-biased genes are central to the study of sexual selection, sexual antagonism, and sex chromosome evolution. We describe a comprehensive de novo assembled transcriptome in the common frog Rana temporaria based on five developmental stages and three adult tissues from both sexes, obtained from a population with karyotypically homomorphic but genetically differentiated sex chromosomes. This allows the study of sex-biased gene expression throughout development, and its effect on the rate of gene evolution while accounting for pleiotropic expression, which is known to negatively correlate with the evolutionary rate. Overall, sex-biased genes had little overlap among developmental stages and adult tissues. Late developmental stages and gonad tissues had the highest numbers of stage- or tissue-specific genes. We find that pleiotropic gene expression is a better predictor than sex bias for the evolutionary rate of genes, though it often interacts with sex bias. Although genetically differentiated, the sex chromosomes were not enriched in sex-biased genes, possibly due to a very recent arrest of XY recombination. These results extend our understanding of the developmental dynamics, tissue specificity, and genomic localization of sex-biased genes.

  10. Computational Modeling and Simulation of Developmental ...

    EPA Pesticide Factsheets

    Standard practice for assessing developmental toxicity is the observation of apical endpoints (intrauterine death, fetal growth retardation, structural malformations) in pregnant rats/rabbits following exposure during organogenesis. EPA’s computational toxicology research program (ToxCast) generated vast in vitro cellular and molecular effects data on >1858 chemicals in >600 high-throughput screening (HTS) assays. The diversity of assays has been increased for developmental toxicity with several HTS platforms, including the devTOX-quickPredict assay from Stemina Biomarker Discovery utilizing the human embryonic stem cell line (H9). Translating these HTS data into higher order-predictions of developmental toxicity is a significant challenge. Here, we address the application of computational systems models that recapitulate the kinematics of dynamical cell signaling networks (e.g., SHH, FGF, BMP, retinoids) in a CompuCell3D.org modeling environment. Examples include angiogenesis (angiodysplasia) and dysmorphogenesis. Being numerically responsive to perturbation, these models are amenable to data integration for systems Toxicology and Adverse Outcome Pathways (AOPs). The AOP simulation outputs predict potential phenotypes based on the in vitro HTS data ToxCast. A heuristic computational intelligence framework that recapitulates the kinematics of dynamical cell signaling networks in the embryo, together with the in vitro profiling data, produce quantitative predic

  11. Proteome labelling and protein identification in specific tissues and at specific developmental stages in an animal

    PubMed Central

    Elliott, Thomas S.; Townsley, Fiona M.; Bianco, Ambra; Ernst, Russell J.; Sachdeva, Amit; Elsässer, Simon J.; Davis, Lloyd; Lang, Kathrin; Pisa, Rudolf; Greiss, Sebastian.; Lilley, Kathryn S.; Chin, Jason W.

    2014-01-01

    Identifying the proteins synthesized in defined cells at specific times in an animal will facilitate the study of cellular functions and dynamic processes. Here we introduce stochastic orthogonal recoding of translation with chemoselective modification (SORT-M) to address this challenge. SORT-M involves modifying cells to express an orthogonal aminoacyl-tRNA synthetase/tRNA pair to enable the incorporation of chemically modifiable analogs of amino acids at diverse sense codons in cells in rich media. We apply SORT-M to Drosophila melanogaster fed standard food to label and image proteins in specific tissues at precise developmental stages with diverse chemistries, including cyclopropene-tetrazine inverse electron demand Diels-Alder cycloaddition reactions. We also use SORT-M to identify proteins synthesized in germ cells of the fly ovary without dissection. SORT-M will facilitate the definition of proteins synthesized in specific sets of cells to study development, and learning and memory in flies, and may be extended to other animals. PMID:24727715

  12. A Process Evaluation of Project Developmental Continuity. Interim Report IV, Volume 2: Development of the Implementation and Cost Studies.

    ERIC Educational Resources Information Center

    Smith, Allen G.; And Others

    This interim report describes the development of program implementation and cost studies for Year II of the process evaluation of Project Developmental Continuity (PDC), a Head Start demonstration program aimed at providing educational and developmental continuity between children's Head Start and primary school experiences. Specific areas focused…

  13. Capitalizing on Basic Brain Processes in Developmental Algebra--Part 2

    ERIC Educational Resources Information Center

    Laughbaum, Edward D.

    2011-01-01

    Basic brain function is not a mystery. Given that neuroscientists understand its basic functioning processes, one wonders what their research suggests to teachers of developmental algebra. What if we knew how to teach so as to improve understanding of the algebra taught to developmental algebra students? What if we knew how the brain processes…

  14. Capitalizing on Basic Brain Processes in Developmental Algebra--Part One

    ERIC Educational Resources Information Center

    Laughbaum, Edward D.

    2011-01-01

    Basic brain function is not a mystery. Given that neuroscientists understand the brain's basic functioning processes, one wonders what their research suggests to teachers of developmental algebra. What if we knew how to teach so as to improve understanding of the algebra taught to developmental algebra students? What if we knew how the brain…

  15. Dynamic Cytology and Transcriptional Regulation of Rice Lamina Joint Development1[OPEN

    PubMed Central

    2017-01-01

    Rice (Oryza sativa) leaf angle is determined by lamina joint and is an important agricultural trait determining leaf erectness and, hence, the photosynthesis efficiency and grain yield. Genetic studies reveal a complex regulatory network of lamina joint development; however, the morphological changes, cytological transitions, and underlying transcriptional programming remain to be elucidated. A systemic morphological and cytological study reveals a dynamic developmental process and suggests a common but distinct regulation of the lamina joint. Successive and sequential cell division and expansion, cell wall thickening, and programmed cell death at the adaxial or abaxial sides form the cytological basis of the lamina joint, and the increased leaf angle results from the asymmetric cell proliferation and elongation. Analysis of the gene expression profiles at four distinct developmental stages ranging from initiation to senescence showed that genes related to cell division and growth, hormone synthesis and signaling, transcription (transcription factors), and protein phosphorylation (protein kinases) exhibit distinct spatiotemporal patterns during lamina joint development. Phytohormones play crucial roles by promoting cell differentiation and growth at early stages or regulating the maturation and senescence at later stages, which is consistent with the quantitative analysis of hormones at different stages. Further comparison with the gene expression profile of leaf inclination1, a mutant with decreased auxin and increased leaf angle, indicates the coordinated effects of hormones in regulating lamina joint. These results reveal a dynamic cytology of rice lamina joint that is fine-regulated by multiple factors, providing informative clues for illustrating the regulatory mechanisms of leaf angle and plant architecture. PMID:28500269

  16. Dynamic Cytology and Transcriptional Regulation of Rice Lamina Joint Development.

    PubMed

    Zhou, Li-Juan; Xiao, Lang-Tao; Xue, Hong-Wei

    2017-07-01

    Rice ( Oryza sativa ) leaf angle is determined by lamina joint and is an important agricultural trait determining leaf erectness and, hence, the photosynthesis efficiency and grain yield. Genetic studies reveal a complex regulatory network of lamina joint development; however, the morphological changes, cytological transitions, and underlying transcriptional programming remain to be elucidated. A systemic morphological and cytological study reveals a dynamic developmental process and suggests a common but distinct regulation of the lamina joint. Successive and sequential cell division and expansion, cell wall thickening, and programmed cell death at the adaxial or abaxial sides form the cytological basis of the lamina joint, and the increased leaf angle results from the asymmetric cell proliferation and elongation. Analysis of the gene expression profiles at four distinct developmental stages ranging from initiation to senescence showed that genes related to cell division and growth, hormone synthesis and signaling, transcription (transcription factors), and protein phosphorylation (protein kinases) exhibit distinct spatiotemporal patterns during lamina joint development. Phytohormones play crucial roles by promoting cell differentiation and growth at early stages or regulating the maturation and senescence at later stages, which is consistent with the quantitative analysis of hormones at different stages. Further comparison with the gene expression profile of leaf inclination1 , a mutant with decreased auxin and increased leaf angle, indicates the coordinated effects of hormones in regulating lamina joint. These results reveal a dynamic cytology of rice lamina joint that is fine-regulated by multiple factors, providing informative clues for illustrating the regulatory mechanisms of leaf angle and plant architecture. © 2017 American Society of Plant Biologists. All Rights Reserved.

  17. Dynamics of DNA methylation and Histone H4 acetylation during floral bud differentiation in azalea

    PubMed Central

    2010-01-01

    Background The ability to control the timing of flowering is a key strategy for planning production in ornamental species such as azalea, however it requires a thorough understanding of floral transition. Floral transition is achieved through a complex genetic network and regulated by multiple environmental and endogenous cues. Dynamic changes between chromatin states facilitating or inhibiting DNA transcription regulate the expression of floral induction pathways in response to environmental and developmental signals. DNA methylation and histone modifications are involved in controlling the functional state of chromatin and gene expression. Results The results of this work indicate that epigenetic mechanisms such as DNA methylation and histone H4 acetylation have opposite and particular dynamics during the transition from vegetative to reproductive development in the apical shoots of azalea. Global levels of DNA methylation and histone H4 acetylation as well as immunodetection of 5-mdC and acetylated H4, in addition to a morphological study have permitted the delimitation of four basic phases in the development of the azalea bud and allowed the identification of a stage of epigenetic reprogramming which showed a sharp decrease of whole DNA methylation similar to that is defined in other developmental processes in plants and in mammals. Conclusion The epigenetic control and reorganization of chromatin seem to be decisive for coordinating floral development in azalea. DNA methylation and H4 deacetylation act simultaneously and co-ordinately, restructuring the chromatin and regulating the gene expression during soot apical meristem development and floral differentiation. PMID:20067625

  18. Dynamics of acoustic droplet vaporization in gas embolotherapy

    NASA Astrophysics Data System (ADS)

    Qamar, Adnan; Wong, Zheng Z.; Fowlkes, J. Brian; Bull, Joseph L.

    2010-04-01

    Acoustic droplet vaporization is investigated in a theoretical model. This work is motivated by gas embolotherapy, a developmental cancer treatment involving tumor infarction with gas microbubbles that are selectively formed from liquid droplets. The results indicate that there exists a threshold value for initial droplet size below which the bubble evolution is oscillatory and above which it is smooth and asymptotic, and show that the vaporization process affects the subsequent microbubble expansion. Dampening of the bubble expansion is observed for higher viscosity and surface tension, with effects more pronounced for droplet size less than 6 μm in radius.

  19. Werner's Relevance for Contemporary Developmental Psychology.

    ERIC Educational Resources Information Center

    Glick, Joseph A.

    1992-01-01

    Considers the contributions of Heinz Werner to developmental psychology and identifies the tensions between Werner's theory and the practices of contemporary developmental psychology. Core issues of Werner's psychology concern: (1) development as heuristic, rather than phenomenon; (2) developmental process analysis; and (3) conceptions of the…

  20. Experimental Replication of an Aeroengine Combustion Instability

    NASA Technical Reports Server (NTRS)

    Cohen, J. M.; Hibshman, J. R.; Proscia, W.; Rosfjord, T. J.; Wake, B. E.; McVey, J. B.; Lovett, J.; Ondas, M.; DeLaat, J.; Breisacher, K.

    2000-01-01

    Combustion instabilities in gas turbine engines are most frequently encountered during the late phases of engine development, at which point they are difficult and expensive to fix. The ability to replicate an engine-traceable combustion instability in a laboratory-scale experiment offers the opportunity to economically diagnose the problem (to determine the root cause), and to investigate solutions to the problem, such as active control. The development and validation of active combustion instability control requires that the causal dynamic processes be reproduced in experimental test facilities which can be used as a test bed for control system evaluation. This paper discusses the process through which a laboratory-scale experiment was designed to replicate an instability observed in a developmental engine. The scaling process used physically-based analyses to preserve the relevant geometric, acoustic and thermo-fluid features. The process increases the probability that results achieved in the single-nozzle experiment will be scalable to the engine.

  1. Psychological needs and the facilitation of integrative processes.

    PubMed

    Ryan, R M

    1995-09-01

    The assumption that there are innate integrative or actualizing tendencies underlying personality and social development is reexamined. Rather than viewing such processes as either nonexistent or as automatic, I argue that they are dynamic and dependent upon social-contextual supports pertaining to basic human psychological needs. To develop this viewpoint, I conceptually link the notion of integrative tendencies to specific developmental processes, namely intrinsic motivation; internalization; and emotional integration. These processes are then shown to be facilitated by conditions that fulfill psychological needs for autonomy, competence, and relatedness, and forestalled within contexts that frustrate these needs. Interactions between psychological needs and contextual supports account, in part, for the domain and situational specificity of motivation, experience, and relative integration. The meaning of psychological needs (vs. wants) is directly considered, as are the relations between concepts of integration and autonomy and those of independence, individualism, efficacy, and cognitive models of "multiple selves."

  2. Birth weight predicts aging trajectory: A hypothesis.

    PubMed

    Vaiserman, Alexander M

    2018-04-04

    Increasing evidence suggests that risk for age-related disease and longevity can be programmed early in life. In human populations, convincing evidence has been accumulated indicating that intrauterine growth restriction (IUGR) resulting in low birth weight (<2.5 kg) followed by postnatal catch-up growth is associated with various aspects of metabolic syndrome, type 2 diabetes and cardiovascular disease in adulthood. Fetal macrosomia (birth weight > 4.5 kg), by contrast, is associated with high risk of non-diabetic obesity and cancers in later life. Developmental modification of epigenetic patterns is considered to be a central mechanism in determining such developmentally programmed phenotypes. Growth hormone/insulin-like growth factor (GH/IGF) axis is likely a key driver of these processes. In this review, evidence is discussed that suggests that different aging trajectories can be realized depending on developmentally programmed life-course dynamics of IGF-1. In this hypothetical scenario, IUGR-induced deficit of IGF-1 causes "diabetic" aging trajectory associated with various metabolic disorders in adulthood, while fetal macrosomia-induced excessive levels of IGF-1 lead to "cancerous" aging trajectory. If the above reasoning is correct, then both low and high birth weights are predictors of short life expectancy, while the normal birth weight is a predictor of "normal" aging and maximum longevity. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Genome-wide analysis of coordinated transcript abundance during seed development in different Brassica rapa morphotypes.

    PubMed

    Basnet, Ram Kumar; Moreno-Pachon, Natalia; Lin, Ke; Bucher, Johan; Visser, Richard G F; Maliepaard, Chris; Bonnema, Guusje

    2013-12-01

    Brassica seeds are important as basic units of plant growth and sources of vegetable oil. Seed development is regulated by many dynamic metabolic processes controlled by complex networks of spatially and temporally expressed genes. We conducted a global microarray gene co-expression analysis by measuring transcript abundance of developing seeds from two diverse B. rapa morphotypes: a pak choi (leafy-type) and a yellow sarson (oil-type), and two of their doubled haploid (DH) progenies, (1) to study the timing of metabolic processes in developing seeds, (2) to explore the major transcriptional differences in developing seeds of the two morphotypes, and (3) to identify the optimum stage for a genetical genomics study in B. rapa seed. Seed developmental stages were similar in developing seeds of pak choi and yellow sarson of B. rapa; however, the colour of embryo and seed coat differed among these two morphotypes. In this study, most transcriptional changes occurred between 25 and 35 DAP, which shows that the timing of seed developmental processes in B. rapa is at later developmental stages than in the related species B. napus. Using a Weighted Gene Co-expression Network Analysis (WGCNA), we identified 47 "gene modules", of which 27 showed a significant association with temporal and/or genotypic variation. An additional hierarchical cluster analysis identified broad spectra of gene expression patterns during seed development. The predominant variation in gene expression was according to developmental stages rather than morphotype differences. Since lipids are the major storage compounds of Brassica seeds, we investigated in more detail the regulation of lipid metabolism. Four co-regulated gene clusters were identified with 17 putative cis-regulatory elements predicted in their 1000 bp upstream region, either specific or common to different lipid metabolic pathways. This is the first study of genome-wide profiling of transcript abundance during seed development in B. rapa. The identification of key physiological events, major expression patterns, and putative cis-regulatory elements provides useful information to construct gene regulatory networks in B. rapa developing seeds and provides a starting point for a genetical genomics study of seed quality traits.

  4. Foot deformation during walking: differences between static and dynamic 3D foot morphology in developing feet.

    PubMed

    Barisch-Fritz, Bettina; Schmeltzpfenning, Timo; Plank, Clemens; Grau, Stefan

    2014-01-01

    The complex functions of feet require a specific composition, which is progressively achieved by developmental processes. This development should take place without being affected by footwear. The aim of this study is to evaluate differences between static and dynamic foot morphology in developing feet. Feet of 2554 participants (6-16 years) were recorded using a new scanner system (DynaScan4D). Each foot was recorded in static half and full weight-bearing and during walking. Several foot measures corresponding to those used in last construction were calculated. The differences were identified by one-way ANOVA and paired Student's t-test. Static and dynamic values of each foot measure must be considered to improve the fit of footwear. In particular, footwear must account for the increase of forefoot width and the decrease of midfoot girth. Furthermore, the toe box should have a more rounded shape. The findings are important for the construction of footwear for developing feet.

  5. Role of transcriptional regulation in the evolution of plant phenotype: A dynamic systems approach.

    PubMed

    Rodríguez-Mega, Emiliano; Piñeyro-Nelson, Alma; Gutierrez, Crisanto; García-Ponce, Berenice; Sánchez, María De La Paz; Zluhan-Martínez, Estephania; Álvarez-Buylla, Elena R; Garay-Arroyo, Adriana

    2015-03-02

    A growing body of evidence suggests that alterations in transcriptional regulation of genes involved in modulating development are an important part of phenotypic evolution, and this can be documented among species and within populations. While the effects of differential transcriptional regulation in organismal development have been preferentially studied in animal systems, this phenomenon has also been addressed in plants. In this review, we summarize evidence for cis-regulatory mutations, trans-regulatory changes and epigenetic modifications as molecular events underlying important phenotypic alterations, and thus shaping the evolution of plant development. We postulate that a mechanistic understanding of why such molecular alterations have a key role in development, morphology and evolution will have to rely on dynamic models of complex regulatory networks that consider the concerted action of genetic and nongenetic components, and that also incorporate the restrictions underlying the genotype to phenotype mapping process. Developmental Dynamics, 2015. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  6. Temporal dynamics and developmental memory of 3D chromatin architecture at Hox gene loci

    PubMed Central

    Noordermeer, Daan; Leleu, Marion; Schorderet, Patrick; Joye, Elisabeth; Chabaud, Fabienne; Duboule, Denis

    2014-01-01

    Hox genes are essential regulators of embryonic development. Their step-wise transcriptional activation follows their genomic topology and the various states of activation are subsequently memorized into domains of progressively overlapping gene products. We have analyzed the 3D chromatin organization of Hox clusters during their early activation in vivo, using high-resolution circular chromosome conformation capture. Initially, Hox clusters are organized as single chromatin compartments containing all genes and bivalent chromatin marks. Transcriptional activation is associated with a dynamic bi-modal 3D organization, whereby the genes switch autonomously from an inactive to an active compartment. These local 3D dynamics occur within a framework of constitutive interactions within the surrounding Topological Associated Domains, indicating that this regulation process is mostly cluster intrinsic. The step-wise progression in time is fixed at various body levels and thus can account for the chromatin architectures previously described at a later stage for different anterior to posterior levels. DOI: http://dx.doi.org/10.7554/eLife.02557.001 PMID:24843030

  7. ROBUS-2: A Fault-Tolerant Broadcast Communication System

    NASA Technical Reports Server (NTRS)

    Torres-Pomales, Wilfredo; Malekpour, Mahyar R.; Miner, Paul S.

    2005-01-01

    The Reliable Optical Bus (ROBUS) is the core communication system of the Scalable Processor-Independent Design for Enhanced Reliability (SPIDER), a general-purpose fault-tolerant integrated modular architecture currently under development at NASA Langley Research Center. The ROBUS is a time-division multiple access (TDMA) broadcast communication system with medium access control by means of time-indexed communication schedule. ROBUS-2 is a developmental version of the ROBUS providing guaranteed fault-tolerant services to the attached processing elements (PEs), in the presence of a bounded number of faults. These services include message broadcast (Byzantine Agreement), dynamic communication schedule update, clock synchronization, and distributed diagnosis (group membership). The ROBUS also features fault-tolerant startup and restart capabilities. ROBUS-2 is tolerant to internal as well as PE faults, and incorporates a dynamic self-reconfiguration capability driven by the internal diagnostic system. This version of the ROBUS is intended for laboratory experimentation and demonstrations of the capability to reintegrate failed nodes, dynamically update the communication schedule, and tolerate and recover from correlated transient faults.

  8. The Relation between Item Identification Difficulty and Elaborative Conceptual Processing for Children and Adults.

    ERIC Educational Resources Information Center

    Ackerman, Brian P.; And Others

    1990-01-01

    Results of four experiments show that developmental differences in elaborative conceptual processing at acquisition and retrieval contribute independently to developmental increases in recall. Item identification processes for both words and pictures constrain children's elaborative processing. The constraints are time limited. (RH)

  9. Representing Ontogeny Through Ontology: A Developmental Biologist’s Guide to The Gene Ontology

    PubMed Central

    Hill, David P.; Berardini, Tanya Z.; Howe, Douglas G.; Van Auken, Kimberly M.

    2010-01-01

    Developmental biology, like many other areas of biology, has undergone a dramatic shift in the perspective from which developmental processes are viewed. Instead of focusing on the actions of a handful of genes or functional RNAs, we now consider the interactions of large functional gene networks and study how these complex systems orchestrate the unfolding of an organism, from gametes to adult. Developmental biologists are beginning to realize that understanding ontogeny on this scale requires the utilization of computational methods to capture, store and represent the knowledge we have about the underlying processes. Here we review the use of the Gene Ontology (GO) to study developmental biology. We describe the organization and structure of the GO and illustrate some of the ways we use it to capture the current understanding of many common developmental processes. We also discuss ways in which gene product annotations using the GO have been used to ask and answer developmental questions in a variety of model developmental systems. We provide suggestions as to how the GO might be used in more powerful ways to address questions about development. Our goal is to provide developmental biologists with enough background about the GO that they can begin to think about how they might use the ontology efficiently and in the most powerful ways possible. PMID:19921742

  10. Positive Disintegration as a Process of Symmetry Breaking.

    PubMed

    Laycraft, Krystyna

    2017-04-01

    This article presents an analysis of the positive disintegration as a process of symmetry breaking. Symmetry breaking plays a major role in self-organized patterns formation and correlates directly to increasing complexity and function specialization. According to Dabrowski, a creator of the Theory of Positive Disintegration, the change from lower to higher levels of human development requires a major restructuring of an individual's psychological makeup. Each level of human development is a relatively stable and coherent configuration of emotional-cognitive patterns called developmental dynamisms. Their main function is to restructure a mental structure by breaking the symmetry of a low level and bringing differentiation and then integration to higher levels. The positive disintegration is then the process of transitions from a lower level of high symmetry and low complexity to higher levels of low symmetry and high complexity of mental structure.

  11. Boolean Networks in Inference and Dynamic Modeling of Biological Systems at the Molecular and Physiological Level

    NASA Astrophysics Data System (ADS)

    Thakar, Juilee; Albert, Réka

    The following sections are included: * Introduction * Boolean Network Concepts and History * Extensions of the Classical Boolean Framework * Boolean Inference Methods and Examples in Biology * Dynamic Boolean Models: Examples in Plant Biology, Developmental Biology and Immunology * Conclusions * References

  12. Twenty years and going strong: A dynamic systems revolution in motor and cognitive development

    PubMed Central

    Spencer, John P.; Perone, Sammy; Buss, Aaron T.

    2011-01-01

    This article reviews the major contributions of dynamic systems theory in advancing thinking about development, the empirical insights the theory has generated, and the key challenges for the theory on the horizon. The first section discusses the emergence of dynamic systems theory in developmental science, the core concepts of the theory, and the resonance it has with other approaches that adopt a systems metatheory. The second section reviews the work of Esther Thelen and colleagues, who revolutionized how researchers think about the field of motor development. It also reviews recent extensions of this work to the domain of cognitive development. Here, the focus is on dynamic field theory, a formal, neurally grounded approach that has yielded novel insights into the embodied nature of cognition. The final section proposes that the key challenge on the horizon is to formally specify how interactions among multiple levels of analysis interact across multiple time scales to create developmental change. PMID:22125575

  13. Analysing growth and development of plants jointly using developmental growth stages

    PubMed Central

    Dambreville, Anaëlle; Lauri, Pierre-Éric; Normand, Frédéric; Guédon, Yann

    2015-01-01

    Background and Aims Plant growth, the increase of organ dimensions over time, and development, the change in plant structure, are often studied as two separate processes. However, there is structural and functional evidence that these two processes are strongly related. The aim of this study was to investigate the co-ordination between growth and development using mango trees, which have well-defined developmental stages. Methods Developmental stages, determined in an expert way, and organ sizes, determined from objective measurements, were collected during the vegetative growth and flowering phases of two cultivars of mango, Mangifera indica. For a given cultivar and growth unit type (either vegetative or flowering), a multistage model based on absolute growth rate sequences deduced from the measurements was first built, and then growth stages deduced from the model were compared with developmental stages. Key Results Strong matches were obtained between growth stages and developmental stages, leading to a consistent definition of integrative developmental growth stages. The growth stages highlighted growth asynchronisms between two topologically connected organs, namely the vegetative axis and its leaves. Conclusions Integrative developmental growth stages emphasize that developmental stages are closely related to organ growth rates. The results are discussed in terms of the possible physiological processes underlying these stages, including plant hydraulics, biomechanics and carbohydrate partitioning. PMID:25452250

  14. Transcriptome dynamics through alternative polyadenylation in developmental and environmental responses in plants revealed by deep sequencing

    PubMed Central

    Shen, Yingjia; Venu, R.C.; Nobuta, Kan; Wu, Xiaohui; Notibala, Varun; Demirci, Caghan; Meyers, Blake C.; Wang, Guo-Liang; Ji, Guoli; Li, Qingshun Q.

    2011-01-01

    Polyadenylation sites mark the ends of mRNA transcripts. Alternative polyadenylation (APA) may alter sequence elements and/or the coding capacity of transcripts, a mechanism that has been demonstrated to regulate gene expression and transcriptome diversity. To study the role of APA in transcriptome dynamics, we analyzed a large-scale data set of RNA “tags” that signify poly(A) sites and expression levels of mRNA. These tags were derived from a wide range of tissues and developmental stages that were mutated or exposed to environmental treatments, and generated using digital gene expression (DGE)–based protocols of the massively parallel signature sequencing (MPSS-DGE) and the Illumina sequencing-by-synthesis (SBS-DGE) sequencing platforms. The data offer a global view of APA and how it contributes to transcriptome dynamics. Upon analysis of these data, we found that ∼60% of Arabidopsis genes have multiple poly(A) sites. Likewise, ∼47% and 82% of rice genes use APA, supported by MPSS-DGE and SBS-DGE tags, respectively. In both species, ∼49%–66% of APA events were mapped upstream of annotated stop codons. Interestingly, 10% of the transcriptomes are made up of APA transcripts that are differentially distributed among developmental stages and in tissues responding to environmental stresses, providing an additional level of transcriptome dynamics. Examples of pollen-specific APA switching and salicylic acid treatment-specific APA clearly demonstrated such dynamics. The significance of these APAs is more evident in the 3034 genes that have conserved APA events between rice and Arabidopsis. PMID:21813626

  15. Culture and Development: A Systematic Relationship.

    PubMed

    Keller, Heidi

    2017-09-01

    This article argues that the relationships between culture and development are differential and systematic. Therefore the presentation of the Western middle-class developmental pathway in textbooks as universal is grossly neglecting the reality and the psychologies of the majority of the world' s population. First, the conception of culture as the representation of environmental conditions is presented. The level of formal education acts as organizer of social milieus that define different learning environments for children. Mainly two developmental pathways are portrayed: the Western middle-class trajectory and the traditional farmer childhood. Different developmental principles are highlighted, demonstrating systematic cultural differences in the development of a conception of the self: developmental dynamics as exemplified in early mother infant interactions, the timing of developmental milestones emphasizing cultural precocities in motor development and self-recognition, developmental gestalts in different attachment relationships and precursors and consequences demonstrating that different, sometimes contradictory behavioral patterns have the same developmental consequences with the examples of empathy development and autobiographical memory. It is argued that evaluating the development in one pathway with the principles and standards of the other is unscientific and unethical. The recognition of different developmental pathways is a necessity for basic science and a moral obligation for the applied fields.

  16. Generation of a transgenic medaka (Oryzias latipes) strain for visualization of nuclear dynamics in early developmental stages.

    PubMed

    Inoue, Takanobu; Iida, Atsuo; Maegawa, Shingo; Sehara-Fujisawa, Atsuko; Kinoshita, Masato

    2016-12-01

    In this study, we verified nuclear transport activity of an artificial nuclear localization signal (aNLS) in medaka fish (Oryzias latipes). We generated a transgenic medaka strain expresses the aNLS tagged enhanced green fluorescent protein (EGFP) driven by a medaka beta-actin promoter. The aNLS-EGFP was accumulated in the nuclei of somatic tissues and yolk nuclei of oocytes, but undetectable in the spermatozoa. The fluorescent signal was observed from immediately after fertilization by a maternal contribution. Furthermore, male and female pronuclei were visualized in fertilized eggs, and nuclear dynamics of pronuclear fusion and subsequent cleavage were captured by time-lapse imaging. In contrast, SV40NLS exhibited no activity of nuclear transport in early embryos. In conclusion, the aNLS possesses a strong nuclear localization activity and is a useful probe for fluorescent observation of the pronuclei and nuclei in early developmental stage of medaka. © 2016 Japanese Society of Developmental Biologists.

  17. Incremental learning of skill collections based on intrinsic motivation

    PubMed Central

    Metzen, Jan H.; Kirchner, Frank

    2013-01-01

    Life-long learning of reusable, versatile skills is a key prerequisite for embodied agents that act in a complex, dynamic environment and are faced with different tasks over their lifetime. We address the question of how an agent can learn useful skills efficiently during a developmental period, i.e., when no task is imposed on him and no external reward signal is provided. Learning of skills in a developmental period needs to be incremental and self-motivated. We propose a new incremental, task-independent skill discovery approach that is suited for continuous domains. Furthermore, the agent learns specific skills based on intrinsic motivation mechanisms that determine on which skills learning is focused at a given point in time. We evaluate the approach in a reinforcement learning setup in two continuous domains with complex dynamics. We show that an intrinsically motivated, skill learning agent outperforms an agent which learns task solutions from scratch. Furthermore, we compare different intrinsic motivation mechanisms and how efficiently they make use of the agent's developmental period. PMID:23898265

  18. Developmental perspectives on personality: implications for ecological and evolutionary studies of individual differences.

    PubMed

    Stamps, Judy A; Groothuis, Ton G G

    2010-12-27

    Developmental processes can have major impacts on the correlations in behaviour across contexts (contextual generality) and across time (temporal consistency) that are the hallmarks of animal personality. Personality can and does change: at any given age or life stage it is contingent upon a wide range of experiential factors that occurred earlier in life, from prior to conception through adulthood. We show how developmental reaction norms that describe the effects of prior experience on a given behaviour can be used to determine whether the effects of a given experience at a given age will affect contextual generality at a later age, and to illustrate how variation within individuals in developmental plasticity leads to variation in contextual generality across individuals as a function of experience. We also show why niche-picking and niche-construction, behavioural processes which allow individuals to affect their own developmental environment, can affect the contextual generality and the temporal consistency of personality. We conclude by discussing how an appreciation of developmental processes can alert behavioural ecologists studying animal personality to critical, untested assumptions that underlie their own research programmes, and outline situations in which a developmental perspective can improve studies of the functional significance and evolution of animal personality.

  19. [Contemporary cognitive theories about developmental dyscalculia].

    PubMed

    Castro-Cañizares, D; Estévez-Pérez, N; Reigosa-Crespo, V

    To analyze the current theories describing the cognitive mechanisms underlying developmental dyscalculia. The four most researched hypotheses concerning the cognitive deficits related to developmental dyscalculia, as well as experimental evidences supporting or refusing them are presented. The first hypothesis states that developmental dyscalculia is consequence of domain general cognitive deficits. The second hypothesis suggests that it is due to a failure in the development of specialized brain systems dedicated to numerosity processing. The third hypothesis asserts the disorder is caused by a deficit in accessing quantity representation through numerical symbols. The last hypothesis states developmental dyscalculia appears as a consequence of impairments in a generalized magnitude system dedicated to the processing of continuous and discrete magnitudes. None of the hypotheses has been proven more plausible than the rest. Relevant issues rose by them need to be revisited and answered in the light of new experimental designs. In the last years the understanding of cognitive disorders involved in developmental dyscalculia has remarkably increased, but it is nonetheless insufficient. Additional research is required in order to achieve a comprehensive cognitive model of numerical processing development and its disorders. This will improve the diagnostic precision and the effectiveness of developmental dyscalculia intervention strategies.

  20. The Emergent Executive: A Dynamic Field Theory of the Development of Executive Function

    PubMed Central

    Buss, Aaron T.; Spencer, John P.

    2015-01-01

    A dynamic neural field (DNF) model is presented which provides a process-based account of behavior and developmental change in a key task used to probe the early development of executive function—the Dimensional Change Card Sort (DCCS) task. In the DCCS, children must flexibly switch from sorting cards either by shape or color to sorting by the other dimension. Typically, 3-year-olds, but not 4-year-olds, lack the flexibility to do so and perseverate on the first set of rules when instructed to switch. In the DNF model, rule-use and behavioral flexibility come about through a form of dimensional attention which modulates activity within different cortical fields tuned to specific feature dimensions. In particular, we capture developmental change by increasing the strength of excitatory and inhibitory neural interactions in the dimensional attention system as well as refining the connectivity between this system and the feature-specific cortical fields. Note that although this enables the model to effectively switch tasks, the dimensional attention system does not ‘know’ the details of task-specific performance. Rather, correct performance emerges as a property of system-wide neural interactions. We show how this captures children's behavior in quantitative detail across 12 versions of the DCCS task. Moreover, we successfully test a set of novel predictions with 3-year-old children from a version of the task not explained by other theories. PMID:24818836

  1. Long-term in vivo study of vertebrate embryonic development using noninvasive harmonics optical microscopy

    NASA Astrophysics Data System (ADS)

    Chen, Szu-Yu; Hsieh, C.-S.; Chu, S.-W.; Lin, Cheng-Yung; Ko, C.-Y.; Chen, Y.-C.; Tsai, Huai-Jen; Hu, C.-H.; Sun, Chi-Kuang

    2005-03-01

    Harmonics optical microscopy (HOM) provides a truly "noninvasive" tool for in vivo and long-term study of vertebrate embryonic development. Based on the nonlinear natures, it provides sub-micrometer 3D spatial resolution and high 3D optical-sectioning power (~1μm axial resolution) without using invasive and toxic fluorophores. Since only virtual-level-transition is involved, HOM is known to leave no energy deposition and no photodamages. Combined with second harmonic generation, which is sensitive to specific structure such as nerve and muscle fibers, HOM can be used to do functional studies of early developmental dynamics of many vertebrate physiological systems. Recently, zebrafish has become a standard model for many biological and medical studies of vertebrates, due to the similarity between embryonic development of zebrafish and human being. Zebrafish embryos now have been used to study many vertebrate physiological systems. We have demonstrated an in vivo HOM study of developmental dynamics of several embryonic physiological systems in live zebrafish embryos, with focuses on the developments of brains, eyes, ears, and hearts. Based on a femtosecond Cr:forsterite laser, which provides the deepest penetration (~1.5mm) and least photodamage in the zebrafish embryo, complete developing processes of different physiological systems within a period of time longer than 20 hours can be non-invasively observed inside the same embryo.

  2. F-BAR family proteins, emerging regulators for cell membrane dynamic changes-from structure to human diseases.

    PubMed

    Liu, Suxuan; Xiong, Xinyu; Zhao, Xianxian; Yang, Xiaofeng; Wang, Hong

    2015-05-09

    Eukaryotic cell membrane dynamics change in curvature during physiological and pathological processes. In the past ten years, a novel protein family, Fes/CIP4 homology-Bin/Amphiphysin/Rvs (F-BAR) domain proteins, has been identified to be the most important coordinators in membrane curvature regulation. The F-BAR domain family is a member of the Bin/Amphiphysin/Rvs (BAR) domain superfamily that is associated with dynamic changes in cell membrane. However, the molecular basis in membrane structure regulation and the biological functions of F-BAR protein are unclear. The pathophysiological role of F-BAR protein is unknown. This review summarizes the current understanding of structure and function in the BAR domain superfamily, classifies F-BAR family proteins into nine subfamilies based on domain structure, and characterizes F-BAR protein structure, domain interaction, and functional relevance. In general, F-BAR protein binds to cell membrane via F-BAR domain association with membrane phospholipids and initiates membrane curvature and scission via Src homology-3 (SH3) domain interaction with its partner proteins. This process causes membrane dynamic changes and leads to seven important cellular biological functions, which include endocytosis, phagocytosis, filopodium, lamellipodium, cytokinesis, adhesion, and podosome formation, via distinct signaling pathways determined by specific domain-binding partners. These cellular functions play important roles in many physiological and pathophysiological processes. We further summarize F-BAR protein expression and mutation changes observed in various diseases and developmental disorders. Considering the structure feature and functional implication of F-BAR proteins, we anticipate that F-BAR proteins modulate physiological and pathophysiological processes via transferring extracellular materials, regulating cell trafficking and mobility, presenting antigens, mediating extracellular matrix degradation, and transmitting signaling for cell proliferation.

  3. Normal composite face effects in developmental prosopagnosia.

    PubMed

    Biotti, Federica; Wu, Esther; Yang, Hua; Jiahui, Guo; Duchaine, Bradley; Cook, Richard

    2017-10-01

    Upright face perception is thought to involve holistic processing, whereby local features are integrated into a unified whole. Consistent with this view, the top half of one face appears to fuse perceptually with the bottom half of another, when aligned spatially and presented upright. This 'composite face effect' reveals a tendency to integrate information from disparate regions when faces are presented canonically. In recent years, the relationship between susceptibility to the composite effect and face recognition ability has received extensive attention both in participants with normal face recognition and participants with developmental prosopagnosia. Previous results suggest that individuals with developmental prosopagnosia may show reduced susceptibility to the effect suggestive of diminished holistic face processing. Here we describe two studies that examine whether developmental prosopagnosia is associated with reduced composite face effects. Despite using independent samples of developmental prosopagnosics and different composite procedures, we find no evidence for reduced composite face effects. The experiments yielded similar results; highly significant composite effects in both prosopagnosic groups that were similar in magnitude to the effects found in participants with normal face processing. The composite face effects exhibited by both samples and the controls were greatly diminished when stimulus arrangements were inverted. Our finding that the whole-face binding process indexed by the composite effect is intact in developmental prosopagnosia indicates that other factors are responsible for developmental prosopagnosia. These results are also inconsistent with suggestions that susceptibility to the composite face effect and face recognition ability are tightly linked. While the holistic process revealed by the composite face effect may be necessary for typical face perception, it is not sufficient; individual differences in face recognition ability likely reflect variability in multiple sequential processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Citrus Chlorophyllase Dynamics at Ethylene-Induced Fruit Color-Break: A Study of Chlorophyllase Expression, Posttranslational Processing Kinetics, and in Situ Intracellular Localization1[OA

    PubMed Central

    Azoulay Shemer, Tamar; Harpaz-Saad, Smadar; Belausov, Eduard; Lovat, Nicole; Krokhin, Oleg; Spicer, Victor; Standing, Kenneth G.; Goldschmidt, Eliezer E.; Eyal, Yoram

    2008-01-01

    Fruit color-break is the visual manifestation of the developmentally regulated transition of chloroplasts to chromoplasts during fruit ripening and often involves biosynthesis of copious amounts of carotenoids concomitant with massive breakdown of chlorophyll. Regulation of chlorophyll breakdown at different physiological and developmental stages of the plant life cycle, particularly at fruit color-break, is still not well understood. Here, we present the dynamics of native chlorophyllase (Chlase) and chlorophyll breakdown in lemon (Citrus limon) fruit during ethylene-induced color-break. We show, using in situ immunofluorescence on ethylene-treated fruit peel (flavedo) tissue, that citrus Chlase is located in the plastid, in contrast to recent reports suggesting cytoplasmic localization of Arabidopsis (Arabidopsis thaliana) Chlases. At the intra-organellar level, Chlase signal was found to overlap mostly with chlorophyll fluorescence, suggesting association of most of the Chlase protein with the photosynthetic membranes. Confocal microscopy analysis showed that the kinetics of chlorophyll breakdown was not uniform in the flavedo cells. Chlorophyll quantity at the cellular level was negatively correlated with plastid Chlase accumulation; plastids with reduced chlorophyll content were found by in situ immunofluorescence to contain significant levels of Chlase, while plastids containing still-intact chlorophyll lacked any Chlase signal. Immunoblot and protein-mass spectrometry analyses were used to demonstrate that citrus Chlase initially accumulates as an approximately 35-kD precursor, which is subsequently N-terminally processed to approximately 33-kD mature forms by cleavage at either of three consecutive amino acid positions. Chlase plastid localization, expression kinetics, and the negative correlation with chlorophyll levels support the central role of the enzyme in chlorophyll breakdown during citrus fruit color-break. PMID:18633118

  5. EXTRAPOLATION FROM IN VITRO MECHANISMS TO IN VIVO EFFECTS FOR DEVELOPMENTAL NEUROTOXICOLOGY.

    EPA Science Inventory

    Processes that are critical to development of the nervous system can be altered by both genetic and epigenetic factors. Developmental exposure to neurotoxicants can alter these processes and lead to perturbation of normal neural development. As numerous processes occur in tande...

  6. Auditory Processing of Amplitude Envelope Rise Time in Adults Diagnosed with Developmental Dyslexia

    ERIC Educational Resources Information Center

    Pasquini, Elisabeth S.; Corriveau, Kathleen H.; Goswami, Usha

    2007-01-01

    Studies of basic (nonspeech) auditory processing in adults thought to have developmental dyslexia have yielded a variety of data. Yet there has been little consensus regarding the explanatory value of auditory processing in accounting for reading difficulties. Recently, however, a number of studies of basic auditory processing in children with…

  7. Dynamics of venom composition across a complex life cycle

    PubMed Central

    Macrander, Jason; Fridrich, Arie; Modepalli, Vengamanaidu; Reitzel, Adam M; Sunagar, Kartik

    2018-01-01

    Little is known about venom in young developmental stages of animals. The appearance of toxins and stinging cells during early embryonic stages in the sea anemone Nematostella vectensis suggests that venom is already expressed in eggs and larvae of this species. Here, we harness transcriptomic, biochemical and transgenic tools to study venom production dynamics in Nematostella. We find that venom composition and arsenal of toxin-producing cells change dramatically between developmental stages of this species. These findings can be explained by the vastly different interspecific interactions of each life stage, as individuals develop from a miniature non-feeding mobile planula to a larger sessile polyp that predates on other animals and interact differently with predators. Indeed, behavioral assays involving prey, predators and Nematostella are consistent with this hypothesis. Further, the results of this work suggest a much wider and dynamic venom landscape than initially appreciated in animals with a complex life cycle. PMID:29424690

  8. The dynamic development of gender variability.

    PubMed

    Fausto-Sterling, Anne

    2012-01-01

    We diagram and discuss theories of gender identity development espoused by the clinical groups represented in this special issue. We contend that theories of origin relate importantly to clinical practice, and argue that the existing clinical theories are under-developed. Therefore, we develop a dynamic systems framework for gender identity development. Specifically, we suggest that critical aspects of presymbolic gender embodiment occur during infancy as part of the synchronous interplay of caregiver-infant dyads. By 18 months, a transition to symbolic representation and the beginning of an internalization of a sense of gender can be detected and consolidation is quite evident by 3 years of age. We conclude by suggesting empirical studies that could expand and test this framework. With the belief that better, more explicit developmental theory can improve clinical practice, we urge that clinicians take a dynamic developmental view of gender identity formation into account.

  9. Virtual Tissue Models in Developmental Toxicity Research

    EPA Science Inventory

    Prenatal exposure to drugs and chemicals may perturb, directly or indirectly, core developmental processes in the embryo (patterning, morphogenesis, proliferation and apoptosis, and cell differentiation), leading to adverse developmental outcomes. Because embryogenesis entails a...

  10. Non-linearities in Theory-of-Mind Development.

    PubMed

    Blijd-Hoogewys, Els M A; van Geert, Paul L C

    2016-01-01

    Research on Theory-of-Mind (ToM) has mainly focused on ages of core ToM development. This article follows a quantitative approach focusing on the level of ToM understanding on a measurement scale, the ToM Storybooks, in 324 typically developing children between 3 and 11 years of age. It deals with the eventual occurrence of developmental non-linearities in ToM functioning, using smoothing techniques, dynamic growth model building and additional indicators, namely moving skewness, moving growth rate changes and moving variability. The ToM sum-scores showed an overall developmental trend that leveled off toward the age of 10 years. Within this overall trend two non-linearities in the group-based change pattern were found: a plateau at the age of around 56 months and a dip at the age of 72-78 months. These temporary regressions in ToM sum-score were accompanied by a decrease in growth rate and variability, and a change in skewness of the ToM data, all suggesting a developmental shift in ToM understanding. The temporary decreases also occurred in the different ToM sub-scores and most clearly so in the core ToM component of beliefs. It was also found that girls had an earlier growth spurt than boys and that the underlying developmental path was more salient in girls than in boys. The consequences of these findings are discussed from various theoretical points of view, with an emphasis on a dynamic systems interpretation of the underlying developmental paths.

  11. Non-linearities in Theory-of-Mind Development

    PubMed Central

    Blijd-Hoogewys, Els M. A.; van Geert, Paul L. C.

    2017-01-01

    Research on Theory-of-Mind (ToM) has mainly focused on ages of core ToM development. This article follows a quantitative approach focusing on the level of ToM understanding on a measurement scale, the ToM Storybooks, in 324 typically developing children between 3 and 11 years of age. It deals with the eventual occurrence of developmental non-linearities in ToM functioning, using smoothing techniques, dynamic growth model building and additional indicators, namely moving skewness, moving growth rate changes and moving variability. The ToM sum-scores showed an overall developmental trend that leveled off toward the age of 10 years. Within this overall trend two non-linearities in the group-based change pattern were found: a plateau at the age of around 56 months and a dip at the age of 72–78 months. These temporary regressions in ToM sum-score were accompanied by a decrease in growth rate and variability, and a change in skewness of the ToM data, all suggesting a developmental shift in ToM understanding. The temporary decreases also occurred in the different ToM sub-scores and most clearly so in the core ToM component of beliefs. It was also found that girls had an earlier growth spurt than boys and that the underlying developmental path was more salient in girls than in boys. The consequences of these findings are discussed from various theoretical points of view, with an emphasis on a dynamic systems interpretation of the underlying developmental paths. PMID:28101065

  12. The psychobiological theory of temperament and character: comment on Farmer and Goldberg (2008).

    PubMed

    Cloninger, C Robert

    2008-09-01

    The revised Temperament and Character Inventory (TCI-R) is the third stage of development of a widely used multiscale personality inventory that began with the Tridimensional Personality Questionnaire (TPQ) and then the Temperament and Character Inventory (TCI). The author describes the third stage of the psychobiological theory of temperament and character; empirical tests of its predictions from genetics, neurobiology, psychosocial development, and clinical studies; and empirical findings that stimulated incremental changes in theory and test construction. Linear factor analysis is an inadequate method for evaluating the nonlinear and dynamical nature of the intrapsychic processes that influence human personality. Traits derived by factor analysis under the doubtful assumption of linearity are actually heterogeneous composites of rational and emotional processes that differ fundamentally in their underlying brain processes. The predictions of the psychobiological theory are strongly validated by extensive data from genetics, neurobiology, longitudinal studies of development, and clinical assessment. The distinction between temperament and character allows the TCI and TCI-R to outperform other popular personality inventories in distinguishing individuals with personality disorders from others and in describing the developmental path to well-being in terms of dynamical processes within the individual that are useful for both research and clinical practice. (c) 2008 APA, all rights reserved.

  13. Compositional shifts in root-associated bacterial and archaeal microbiota track the plant life cycle in field-grown rice

    PubMed Central

    Edwards, Joseph A.; Santos-Medellín, Christian M.; Liechty, Zachary S.; Nguyen, Bao; Lurie, Eugene; Eason, Shane; Phillips, Gregory

    2018-01-01

    Bacterial communities associated with roots impact the health and nutrition of the host plant. The dynamics of these microbial assemblies over the plant life cycle are, however, not well understood. Here, we use dense temporal sampling of 1,510 samples from root spatial compartments to characterize the bacterial and archaeal components of the root-associated microbiota of field grown rice (Oryza sativa) over the course of 3 consecutive growing seasons, as well as 2 sites in diverse geographic regions. The root microbiota was found to be highly dynamic during the vegetative phase of plant growth and then stabilized compositionally for the remainder of the life cycle. Bacterial and archaeal taxa conserved between field sites were defined as predictive features of rice plant age by modeling using a random forest approach. The age-prediction models revealed that drought-stressed plants have developmentally immature microbiota compared to unstressed plants. Further, by using genotypes with varying developmental rates, we show that shifts in the microbiome are correlated with rates of developmental transitions rather than age alone, such that different microbiota compositions reflect juvenile and adult life stages. These results suggest a model for successional dynamics of the root-associated microbiota over the plant life cycle. PMID:29474469

  14. Compositional shifts in root-associated bacterial and archaeal microbiota track the plant life cycle in field-grown rice.

    PubMed

    Edwards, Joseph A; Santos-Medellín, Christian M; Liechty, Zachary S; Nguyen, Bao; Lurie, Eugene; Eason, Shane; Phillips, Gregory; Sundaresan, Venkatesan

    2018-02-01

    Bacterial communities associated with roots impact the health and nutrition of the host plant. The dynamics of these microbial assemblies over the plant life cycle are, however, not well understood. Here, we use dense temporal sampling of 1,510 samples from root spatial compartments to characterize the bacterial and archaeal components of the root-associated microbiota of field grown rice (Oryza sativa) over the course of 3 consecutive growing seasons, as well as 2 sites in diverse geographic regions. The root microbiota was found to be highly dynamic during the vegetative phase of plant growth and then stabilized compositionally for the remainder of the life cycle. Bacterial and archaeal taxa conserved between field sites were defined as predictive features of rice plant age by modeling using a random forest approach. The age-prediction models revealed that drought-stressed plants have developmentally immature microbiota compared to unstressed plants. Further, by using genotypes with varying developmental rates, we show that shifts in the microbiome are correlated with rates of developmental transitions rather than age alone, such that different microbiota compositions reflect juvenile and adult life stages. These results suggest a model for successional dynamics of the root-associated microbiota over the plant life cycle.

  15. Label-free in vivo imaging of Drosophila melanogaster by multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Lin, Chiao-Ying; Hovhannisyan, Vladimir; Wu, June-Tai; Lin, Sung-Jan; Lin, Chii-Wann; Chen, Jyh-Horng; Dong, Chen-Yuan

    2008-02-01

    The fruit fly Drosophila melanogaster is one of the most valuable organisms in genetic and developmental biology studies. Drosophila is a small organism with a short life cycle, and is inexpensive and easy to maintain. The entire genome of Drosophila has recently been sequenced (cite the reference). These advantages make fruit fly an attractive model organism for biomedical researches. Unlike humans, Drosophila can be subjected to genetic manipulation with relative ease. Originally, Drosophila was mostly used in classical genetics studies. In the model era of molecular biology, the fruit fly has become a model organ for developmental biology researches. In the past, numerous molecularly modified mutants with well defined genetic defects affecting different aspects of the developmental processes have been identified and studied. However, traditionally, the developmental defects of the mutant flies are mostly examined in isolated fixed tissues which preclude the observation of the dynamic interaction of the different cell types and the extracellular matrix. Therefore, the ability to image different organelles of the fruit fly without extrinsic labeling is invaluable for Drosophila biology. In this work, we successfully acquire in vivo images of both developing muscles and axons of motor neurons in the three larval stages by using the minimially invasive imaging modality of multiphoton (SHG) microscopy. We found that while SHG imaging is useful in revealing the muscular architecture of the developing larva, it is the autofluorescence signal that allows label-free imaging of various organelles to be achieved. Our results demonstrate that multiphoton imaging is a powerful technique for investigation the development of Drosophila.

  16. The Marriage of Science and Spirit: Dynamic Systems Theory and the Development of Spirituality

    ERIC Educational Resources Information Center

    Cupit, C. Glenn

    2007-01-01

    The adherence of traditional developmental theories to a linear paradigm is incompatible with the nature of "spirit". Dynamic Systems Theory (DST), a recent contributor to understanding child development, offers an alternative which avoids these paradigmatic limitations. Concepts of agency, "top-down" causality, emergence and…

  17. The Promise of Dynamic Systems Approaches for an Integrated Account of Human Development.

    ERIC Educational Resources Information Center

    Lewis, Marc D.

    2000-01-01

    Argues that dynamic systems approaches may provide an explanatory framework based on general scientific principles for developmental psychology, using principles of self-organization to explain how novel forms emerge without predetermination and become increasingly complex with development. Contends that self-organization provides a single…

  18. Dynamic Assessment of Language Disabilities

    ERIC Educational Resources Information Center

    Martin, Deirdre

    2015-01-01

    The paper reports a study of a narrative-based Dynamic Assessment (DA) procedure developed in the USA that is used in the UK with children with developmental language disabilities. Three monolingual English children with language disabilities are assessed by a speech/language pathologist/therapist who is learning to work with DA in collaboration…

  19. Dynamic Visual Perception and Reading Development in Chinese School Children

    ERIC Educational Resources Information Center

    Meng, Xiangzhi; Cheng-Lai, Alice; Zeng, Biao; Stein, John F.; Zhou, Xiaolin

    2011-01-01

    The development of reading skills may depend to a certain extent on the development of basic visual perception. The magnocellular theory of developmental dyslexia assumes that deficits in the magnocellular pathway, indicated by less sensitivity in perceiving dynamic sensory stimuli, are responsible for a proportion of reading difficulties…

  20. Emotion and Cognition: An Intricately Bound Developmental Process

    ERIC Educational Resources Information Center

    Bell, Martha Ann; Wolfe, Christy D.

    2004-01-01

    Regulatory aspects of development can best be understood by research that conceptualizes relations between cognition and emotion. The neural mechanisms associated with regulatory processes may be the same as those associated with higher order cognitive processes. Thus, from a developmental cognitive neuroscience perspective, emotion and cognition…

  1. Developmental trends in adaptive memory.

    PubMed

    Otgaar, Henry; Howe, Mark L; Smeets, Tom; Garner, Sarah R

    2014-01-01

    Recent studies have revealed that memory is enhanced when information is processed for fitness-related purposes. The main objective of the current experiments was to test developmental trends in the evolutionary foundation of memory using different types of stimuli and paradigms. In Experiment 1, 11-year-olds and adults were presented with neutral, negative, and survival-related DRM word lists. We found a memory benefit for the survival-related words and showed that false memories were more likely to be elicited for the survival-related word lists than for the other lists. Experiment 2 examined developmental trends in the survival processing paradigm using neutral, negative, and survival-related pictures. A survival processing advantage was found for survival-related pictures in adults, for negative pictures in 11/12-year-olds, and for neutral pictures in 7/8-year-olds. In Experiment 3, 11/12-year-olds and adults had to imagine the standard survival scenario or an adapted survival condition (or pleasantness condition) that was designed to reduce the possibilities for elaborative processing. We found superior memory retention for both survival scenarios in children and adults. Collectively, our results evidently show that the survival processing advantage is developmentally invariant and that certain proximate mechanisms (elaboration and distinctiveness) underlie these developmental trends.

  2. Analysing growth and development of plants jointly using developmental growth stages.

    PubMed

    Dambreville, Anaëlle; Lauri, Pierre-Éric; Normand, Frédéric; Guédon, Yann

    2015-01-01

    Plant growth, the increase of organ dimensions over time, and development, the change in plant structure, are often studied as two separate processes. However, there is structural and functional evidence that these two processes are strongly related. The aim of this study was to investigate the co-ordination between growth and development using mango trees, which have well-defined developmental stages. Developmental stages, determined in an expert way, and organ sizes, determined from objective measurements, were collected during the vegetative growth and flowering phases of two cultivars of mango, Mangifera indica. For a given cultivar and growth unit type (either vegetative or flowering), a multistage model based on absolute growth rate sequences deduced from the measurements was first built, and then growth stages deduced from the model were compared with developmental stages. Strong matches were obtained between growth stages and developmental stages, leading to a consistent definition of integrative developmental growth stages. The growth stages highlighted growth asynchronisms between two topologically connected organs, namely the vegetative axis and its leaves. Integrative developmental growth stages emphasize that developmental stages are closely related to organ growth rates. The results are discussed in terms of the possible physiological processes underlying these stages, including plant hydraulics, biomechanics and carbohydrate partitioning. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. The Effectiveness of Aligned Developmental Feedback on the Overhand Throw in Third-Grade Students

    ERIC Educational Resources Information Center

    Cohen, Rona; Goodway, Jacqueline D.; Lidor, Ronnie

    2012-01-01

    Background: To improve student performance, teachers need to evaluate the developmental level of the child and to deliver feedback statements that correspond with the student's ability to process the information delivered. Therefore, feedback aligned with the developmental level of the child (aligned developmental feedback--ADF) is sometimes…

  4. Different developmental trajectories across feature types support a dynamic field model of visual working memory development

    PubMed Central

    Simmering, Vanessa R.; Miller, Hilary E.; Bohache, Kevin

    2015-01-01

    Research on visual working memory has focused on characterizing the nature of capacity limits as “slots” or “resources” based almost exclusively on adults’ performance with little consideration for developmental change. Here we argue that understanding how visual working memory develops can shed new light onto the nature of representations. We present an alternative model, the Dynamic Field Theory (DFT), which can capture effects that have been previously attributed either to “slot” or “resource” explanations. The DFT includes a specific developmental mechanism to account for improvements in both resolution and capacity of visual working memory throughout childhood. Here we show how development in the DFT can account for different capacity estimates across feature types (i.e., color and shape). The current paper tests this account by comparing children’s (3, 5, and 7 years of age) performance across different feature types. Results showed that capacity for colors increased faster over development than capacity for shapes. A second experiment confirmed this difference across feature types within subjects, but also showed that the difference can be attenuated by testing memory for less-familiar colors. Model simulations demonstrate how developmental changes in connectivity within the model—purportedly arising through experience—can capture differences across feature types. PMID:25737253

  5. Different developmental trajectories across feature types support a dynamic field model of visual working memory development.

    PubMed

    Simmering, Vanessa R; Miller, Hilary E; Bohache, Kevin

    2015-05-01

    Research on visual working memory has focused on characterizing the nature of capacity limits as "slots" or "resources" based almost exclusively on adults' performance with little consideration for developmental change. Here we argue that understanding how visual working memory develops can shed new light onto the nature of representations. We present an alternative model, the Dynamic Field Theory (DFT), which can capture effects that have been previously attributed either to "slot" or "resource" explanations. The DFT includes a specific developmental mechanism to account for improvements in both resolution and capacity of visual working memory throughout childhood. Here we show how development in the DFT can account for different capacity estimates across feature types (i.e., color and shape). The current paper tests this account by comparing children's (3, 5, and 7 years of age) performance across different feature types. Results showed that capacity for colors increased faster over development than capacity for shapes. A second experiment confirmed this difference across feature types within subjects, but also showed that the difference can be attenuated by testing memory for less familiar colors. Model simulations demonstrate how developmental changes in connectivity within the model-purportedly arising through experience-can capture differences across feature types.

  6. Progression paths in children's problem solving: The influence of dynamic testing, initial variability, and working memory.

    PubMed

    Resing, Wilma C M; Bakker, Merel; Pronk, Christine M E; Elliott, Julian G

    2017-01-01

    The current study investigated developmental trajectories of analogical reasoning performance of 104 7- and 8-year-old children. We employed a microgenetic research method and multilevel analysis to examine the influence of several background variables and experimental treatment on the children's developmental trajectories. Our participants were divided into two treatment groups: repeated practice alone and repeated practice with training. Each child received an initial working memory assessment and was subsequently asked to solve figural analogies on each of several sessions. We examined children's analogical problem-solving behavior and their subsequent verbal accounts of their employed solving processes. We also investigated the influence of verbal and visual-spatial working memory capacity and initial variability in strategy use on analogical reasoning development. Results indicated that children in both treatment groups improved but that gains were greater for those who had received training. Training also reduced the influence of children's initial variability in the use of analogical strategies with the degree of improvement in reasoning largely unrelated to working memory capacity. Findings from this study demonstrate the value of a microgenetic research method and the use of multilevel analysis to examine inter- and intra-individual change in problem-solving processes. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. AUTONOMY AND RELATEDNESS IN MOTHER-TEEN INTERACTIONS AS PREDICTORS OF INVOLVEMENT IN ADOLESCENT DATING AGGRESSION.

    PubMed

    Niolon, Phyllis Holditch; Kuperminc, Gabriel P; Allen, Joseph P

    2015-04-01

    This multi-method, longitudinal study examines the negotiation of autonomy and relatedness between teens and their mothers as etiologic predictors of perpetration and victimization of dating aggression two years later. Observations of 88 mid-adolescents and their mothers discussing a topic of disagreement were coded for each individual's demonstrations of autonomy and relatedness using a validated coding system. Adolescents self-reported on perpetration and victimization of physical and psychological dating aggression two years later. We hypothesized that mother's and adolescents' behaviors supporting autonomy and relatedness would longitudinally predict lower reporting of dating aggression, and that their behaviors inhibiting autonomy and relatedness would predict higher reporting of dating aggression. Hypotheses were not supported; main findings were characterized by interactions of sex and risk status with autonomy. Maternal behaviors supporting autonomy predicted higher reports of perpetration and victimization of physical dating aggression for girls, but not for boys. Adolescent behaviors supporting autonomy predicted higher reports of perpetration of physical dating aggression for high-risk adolescents, but not for low-risk adolescents. Results indicate that autonomy is a dynamic developmental process, operating differently as a function of social contexts in predicting dating aggression. Examination of these and other developmental processes within parent-child relationships is important in predicting dating aggression, but may depend on social context.

  8. A New, Dynamic Era for Somatic Cell Nuclear Transfer?

    PubMed

    Loi, Pasqualino; Iuso, Domenico; Czernik, Marta; Ogura, Atsuo

    2016-10-01

    Cloning animals by somatic cell nuclear transfer (SCNT) has remained an uncontrollable process for many years. High rates of embryonic losses, stillbirths, and postnatal mortality have been typical outcomes. These developmental problems arise from abnormal genomic reprogramming: the capacity of the oocyte to reset the differentiated memory of a somatic cell. However, effective reprogramming strategies are now available. These target the whole genome or single domains such as the Xist gene, and their effectiveness has been validated with the ability of experimental animals to develop to term. Thus, SCNT has become a controllable process that can be used to 'rescue' endangered species, and for biomedical research such as therapeutic cloning and the isolation of induced pluripotent stem cells (iPSCs). Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters.

    PubMed

    Yamaguchi-Shinozaki, Kazuko; Shinozaki, Kazuo

    2005-02-01

    cis-Acting regulatory elements are important molecular switches involved in the transcriptional regulation of a dynamic network of gene activities controlling various biological processes, including abiotic stress responses, hormone responses and developmental processes. In particular, understanding regulatory gene networks in stress response cascades depends on successful functional analyses of cis-acting elements. The ever-improving accuracy of transcriptome expression profiling has led to the identification of various combinations of cis-acting elements in the promoter regions of stress-inducible genes involved in stress and hormone responses. Here we discuss major cis-acting elements, such as the ABA-responsive element (ABRE) and the dehydration-responsive element/C-repeat (DRE/CRT), that are a vital part of ABA-dependent and ABA-independent gene expression in osmotic and cold stress responses.

  10. Beyond Auditory Sensory Processing Deficits: Lexical Tone Perception Deficits in Chinese Children with Developmental Dyslexia

    ERIC Educational Resources Information Center

    Tong, Xiuhong; Tong, Xiuli; King Yiu, Fung

    2018-01-01

    Increasing evidence suggests that children with developmental dyslexia exhibit a deficit not only at the segmental level of phonological processing but also, by extension, at the suprasegmental level. However, it remains unclear whether such a suprasegmental phonological processing deficit is due to a difficulty in processing acoustic cues of…

  11. The Complexity of Developmental Predictions from Dual Process Models

    ERIC Educational Resources Information Center

    Stanovich, Keith E.; West, Richard F.; Toplak, Maggie E.

    2011-01-01

    Drawing developmental predictions from dual-process theories is more complex than is commonly realized. Overly simplified predictions drawn from such models may lead to premature rejection of the dual process approach as one of many tools for understanding cognitive development. Misleading predictions can be avoided by paying attention to several…

  12. Developmental Implications of the Levels of Processing Memory Framework.

    ERIC Educational Resources Information Center

    Naus, Mary J.

    The levels of processing framework for understanding memory development has generated little empirical or theoretical work that furthers an understanding of the developmental memory system. Although empirical studies by those testing the levels of processing framework have demonstrated that mnemonic strategies employed by children are the critical…

  13. Cultural Variations in Global versus Local Processing: A Developmental Perspective

    ERIC Educational Resources Information Center

    Oishi, Shigehiro; Jaswal, Vikram K.; Lillard, Angeline S.; Mizokawa, Ai; Hitokoto, Hidefumi; Tsutsui, Yoshiro

    2014-01-01

    We conducted 3 studies to explore cultural differences in global versus local processing and their developmental trajectories. In Study 1 ("N" = 363), we found that Japanese college students were less globally oriented in their processing than American or Argentine participants. We replicated this effect in Study 2 ("N" =…

  14. Cognitive Development and Reading Processes. Developmental Program Report Number 76.

    ERIC Educational Resources Information Center

    West, Richard F.

    In discussing the relationship between cognitive development (perception, pattern recognition, and memory) and reading processes, this paper especially emphasizes developmental factors. After an overview of some issues that bear on how written language is processed, the paper presents a discussion of pattern recognition, including general pattern…

  15. Observing the cell in its native state: Imaging subcellular dynamics in multicellular organisms.

    PubMed

    Liu, Tsung-Li; Upadhyayula, Srigokul; Milkie, Daniel E; Singh, Ved; Wang, Kai; Swinburne, Ian A; Mosaliganti, Kishore R; Collins, Zach M; Hiscock, Tom W; Shea, Jamien; Kohrman, Abraham Q; Medwig, Taylor N; Dambournet, Daphne; Forster, Ryan; Cunniff, Brian; Ruan, Yuan; Yashiro, Hanako; Scholpp, Steffen; Meyerowitz, Elliot M; Hockemeyer, Dirk; Drubin, David G; Martin, Benjamin L; Matus, David Q; Koyama, Minoru; Megason, Sean G; Kirchhausen, Tom; Betzig, Eric

    2018-04-20

    True physiological imaging of subcellular dynamics requires studying cells within their parent organisms, where all the environmental cues that drive gene expression, and hence the phenotypes that we actually observe, are present. A complete understanding also requires volumetric imaging of the cell and its surroundings at high spatiotemporal resolution, without inducing undue stress on either. We combined lattice light-sheet microscopy with adaptive optics to achieve, across large multicellular volumes, noninvasive aberration-free imaging of subcellular processes, including endocytosis, organelle remodeling during mitosis, and the migration of axons, immune cells, and metastatic cancer cells in vivo. The technology reveals the phenotypic diversity within cells across different organisms and developmental stages and may offer insights into how cells harness their intrinsic variability to adapt to different physiological environments. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  16. The Morphogenetic Role of Apoptosis.

    PubMed

    Monier, Bruno; Suzanne, Magali

    2015-01-01

    Beyond safeguarding the organism from cell misbehavior and controlling cell number, apoptosis (or programmed cell death) plays key roles during animal development. In particular, it has long been acknowledged that apoptosis participates in tissue remodeling. Yet, until recently, this contribution to morphogenesis was considered as "passive," consisting simply in the local removal of unnecessary cells leading to a new shape. In recent years, applying live imaging methods to study the dynamics of apoptosis in various contexts has considerably modified our vision, revealing that in fact, dying cells remodel their neighborhood actively. Here, we first focus on the intrinsic cellular properties of apoptotic cells during their dismantling, in particular the role of the cytoskeleton during their characteristic morphological changes. Second, we review the various roles of apoptosis during developmental morphogenetic processes and pinpoint the crucial role of live imaging in revealing new concepts, in particular apoptosis as a generator of mechanical forces to control tissue dynamics. © 2015 Elsevier Inc. All rights reserved.

  17. The Interplay Between Language, Gesture, and Affect During Communicative Transition: A Dynamic Systems Approach

    PubMed Central

    Parladé, Meaghan V.; Iverson, Jana M.

    2012-01-01

    From a dynamic systems perspective, transition points in development are times of increased instability, during which behavioral patterns are susceptible to temporary decoupling. This study investigated the impact of the vocabulary spurt on existing patterns of communicative coordination. Eighteen typically developing infants were videotaped at home 1 month before, at, and after the vocabulary spurt. Infants were identified as spurters if they underwent a discrete phase transition in vocabulary development (marked by an inflection point), and compared with a group of nonspurters whose word-learning rates followed a trajectory of continuous change. Relative to surrounding sessions, there were significant reductions in overall coordination of communicative behaviors and in words produced in coordination at the vocabulary spurt session for infants who experienced more dramatic vocabulary growth. In contrast, nonspurters demonstrated little change across sessions. Findings underscore the importance of transitions as opportunities for observing processes of developmental change. PMID:21219063

  18. Plants: Novel Developmental Processes.

    ERIC Educational Resources Information Center

    Goldberg, Robert B.

    1988-01-01

    Describes the diversity of plants. Outlines novel developmental and complex genetic processes that are specific to plants. Identifies approaches that can be used to solve problems in plant biology. Cites the advantages of using higher plants for experimental systems. (RT)

  19. Genetic Modulation of Training and Transfer in Older Adults: BDNF Val66Met Polymorphism is Associated with Wider Useful Field of View

    PubMed Central

    Colzato, Lorenza S.; van Muijden, Jesse; Band, Guido P. H.; Hommel, Bernhard

    2011-01-01

    Western society has an increasing proportion of older adults. Increasing age is associated with a general decrease in the control over task-relevant mental processes. In the present study we investigated the possibility that successful transfer of game-based cognitive improvements to untrained tasks in elderly people is modulated by preexisting neuro-developmental factors as genetic variability related to levels of the brain-derived neurotrophic factor (BDNF), an important neuromodulator underlying cognitive processes. We trained participants, genotyped for the BDNF Val66Met polymorphism, on cognitive tasks developed to improve dynamic attention. Pre-training (baseline) and post-training measures of attentional processes (divided and selective attention) were acquired by means of the useful field of view task. As expected, Val/Val homozygous individuals showed larger beneficial transfer effects than Met/-carriers. Our findings support the idea that genetic predisposition modulates transfer effects. PMID:21909331

  20. Endocytosis and Endosomal Trafficking in Plants.

    PubMed

    Paez Valencia, Julio; Goodman, Kaija; Otegui, Marisa S

    2016-04-29

    Endocytosis and endosomal trafficking are essential processes in cells that control the dynamics and turnover of plasma membrane proteins, such as receptors, transporters, and cell wall biosynthetic enzymes. Plasma membrane proteins (cargo) are internalized by endocytosis through clathrin-dependent or clathrin-independent mechanism and delivered to early endosomes. From the endosomes, cargo proteins are recycled back to the plasma membrane via different pathways, which rely on small GTPases and the retromer complex. Proteins that are targeted for degradation through ubiquitination are sorted into endosomal vesicles by the ESCRT (endosomal sorting complex required for transport) machinery for degradation in the vacuole. Endocytic and endosomal trafficking regulates many cellular, developmental, and physiological processes, including cellular polarization, hormone transport, metal ion homeostasis, cytokinesis, pathogen responses, and development. In this review, we discuss the mechanisms that mediate the recognition and sorting of endocytic and endosomal cargos, the vesiculation processes that mediate their trafficking, and their connection to cellular and physiological responses in plants.

  1. Integrative analyses of human reprogramming reveal dynamic nature of induced pluripotency

    PubMed Central

    Cacchiarelli, Davide; Trapnell, Cole; Ziller, Michael J.; Soumillon, Magali; Cesana, Marcella; Karnik, Rahul; Donaghey, Julie; Smith, Zachary D.; Ratanasirintrawoot, Sutheera; Zhang, Xiaolan; Ho Sui, Shannan J.; Wu, Zhaoting; Akopian, Veronika; Gifford, Casey A.; Doench, John; Rinn, John L.; Daley, George Q.; Meissner, Alexander; Lander, Eric S.; Mikkelsen, Tarjei S.

    2015-01-01

    Summary Induced pluripotency is a promising avenue for disease modeling and therapy, but the molecular principles underlying this process, particularly in human cells, remain poorly understood due to donor-to-donor variability and intercellular heterogeneity. Here we constructed and characterized a clonal, inducible human reprogramming system that provides a reliable source of cells at any stage of the process. This system enabled integrative transcriptional and epigenomic analysis across the human reprogramming timeline at high resolution. We observed distinct waves of gene network activation, including the ordered reactivation of broad developmental regulators followed by early embryonic patterning genes and culminating in the emergence of a signature reminiscent of pre-implantation stages. Moreover, complementary functional analyses allowed us to identify and validate novel regulators of the reprogramming process. Altogether, this study sheds light on the molecular underpinnings of induced pluripotency in human cells and provides a robust cell platform for further studies. PMID:26186193

  2. Visualizing time-related data in biology, a review

    PubMed Central

    Secrier, Maria; Schneider, Reinhard

    2014-01-01

    Time is of the essence in biology as in so much else. For example, monitoring disease progression or the timing of developmental defects is important for the processes of drug discovery and therapy trials. Furthermore, an understanding of the basic dynamics of biological phenomena that are often strictly time regulated (e.g. circadian rhythms) is needed to make accurate inferences about the evolution of biological processes. Recent advances in technologies have enabled us to measure timing effects more accurately and in more detail. This has driven related advances in visualization and analysis tools that try to effectively exploit this data. Beyond timeline plots, notable attempts at more involved temporal interpretation have been made in recent years, but awareness of the available resources is still limited within the scientific community. Here, we review some advances in biological visualization of time-driven processes and consider how they aid data analysis and interpretation. PMID:23585583

  3. Children's representations of multiple family relationships: organizational structure and development in early childhood.

    PubMed

    Schermerhorn, Alice C; Cummings, E Mark; Davies, Patrick T

    2008-02-01

    The authors examine mutual family influence processes at the level of children's representations of multiple family relationships, as well as the structure of those representations. From a community sample with 3 waves, each spaced 1 year apart, kindergarten-age children (105 boys and 127 girls) completed a story-stem completion task, tapping representations of multiple family relationships. Structural equation modeling with autoregressive controls indicated that representational processes involving different family relationships were interrelated over time, including links between children's representations of marital conflict and reactions to conflict, between representations of security about marital conflict and parent-child relationships, and between representations of security in father-child and mother-child relationships. Mixed support was found for notions of increasing stability in representations during this developmental period. Results are discussed in terms of notions of transactional family dynamics, including family-wide perspectives on mutual influence processes attributable to multiple family relationships.

  4. Reaction-diffusion pattern in shoot apical meristem of plants.

    PubMed

    Fujita, Hironori; Toyokura, Koichi; Okada, Kiyotaka; Kawaguchi, Masayoshi

    2011-03-29

    A fundamental question in developmental biology is how spatial patterns are self-organized from homogeneous structures. In 1952, Turing proposed the reaction-diffusion model in order to explain this issue. Experimental evidence of reaction-diffusion patterns in living organisms was first provided by the pigmentation pattern on the skin of fishes in 1995. However, whether or not this mechanism plays an essential role in developmental events of living organisms remains elusive. Here we show that a reaction-diffusion model can successfully explain the shoot apical meristem (SAM) development of plants. SAM of plants resides in the top of each shoot and consists of a central zone (CZ) and a surrounding peripheral zone (PZ). SAM contains stem cells and continuously produces new organs throughout the lifespan. Molecular genetic studies using Arabidopsis thaliana revealed that the formation and maintenance of the SAM are essentially regulated by the feedback interaction between WUSHCEL (WUS) and CLAVATA (CLV). We developed a mathematical model of the SAM based on a reaction-diffusion dynamics of the WUS-CLV interaction, incorporating cell division and the spatial restriction of the dynamics. Our model explains the various SAM patterns observed in plants, for example, homeostatic control of SAM size in the wild type, enlarged or fasciated SAM in clv mutants, and initiation of ectopic secondary meristems from an initial flattened SAM in wus mutant. In addition, the model is supported by comparing its prediction with the expression pattern of WUS in the wus mutant. Furthermore, the model can account for many experimental results including reorganization processes caused by the CZ ablation and by incision through the meristem center. We thus conclude that the reaction-diffusion dynamics is probably indispensable for the SAM development of plants.

  5. Reaction-Diffusion Pattern in Shoot Apical Meristem of Plants

    PubMed Central

    Fujita, Hironori; Toyokura, Koichi; Okada, Kiyotaka; Kawaguchi, Masayoshi

    2011-01-01

    A fundamental question in developmental biology is how spatial patterns are self-organized from homogeneous structures. In 1952, Turing proposed the reaction-diffusion model in order to explain this issue. Experimental evidence of reaction-diffusion patterns in living organisms was first provided by the pigmentation pattern on the skin of fishes in 1995. However, whether or not this mechanism plays an essential role in developmental events of living organisms remains elusive. Here we show that a reaction-diffusion model can successfully explain the shoot apical meristem (SAM) development of plants. SAM of plants resides in the top of each shoot and consists of a central zone (CZ) and a surrounding peripheral zone (PZ). SAM contains stem cells and continuously produces new organs throughout the lifespan. Molecular genetic studies using Arabidopsis thaliana revealed that the formation and maintenance of the SAM are essentially regulated by the feedback interaction between WUSHCEL (WUS) and CLAVATA (CLV). We developed a mathematical model of the SAM based on a reaction-diffusion dynamics of the WUS-CLV interaction, incorporating cell division and the spatial restriction of the dynamics. Our model explains the various SAM patterns observed in plants, for example, homeostatic control of SAM size in the wild type, enlarged or fasciated SAM in clv mutants, and initiation of ectopic secondary meristems from an initial flattened SAM in wus mutant. In addition, the model is supported by comparing its prediction with the expression pattern of WUS in the wus mutant. Furthermore, the model can account for many experimental results including reorganization processes caused by the CZ ablation and by incision through the meristem center. We thus conclude that the reaction-diffusion dynamics is probably indispensable for the SAM development of plants. PMID:21479227

  6. Nicotine-induced plasticity during development: modulation of the cholinergic system and long-term consequences for circuits involved in attention and sensory processing.

    PubMed

    Heath, Christopher J; Picciotto, Marina R

    2009-01-01

    Despite a great deal of progress, more than 10% of pregnant women in the USA smoke. Epidemiological studies have demonstrated correlations between developmental tobacco smoke exposure and sensory processing deficits, as well as a number of neuropsychiatric conditions, including attention deficit hyperactivity disorder. Significantly, data from animal models of developmental nicotine exposure have suggested that the nicotine in tobacco contributes significantly to the effects of developmental smoke exposure. Consequently, we hypothesize that nicotinic acetylcholine receptors (nAChRs) are important for setting and refining the strength of corticothalamic-thalamocortical loops during critical periods of development and that disruption of this process by developmental nicotine exposure can result in long-lasting dysregulation of sensory processing. The ability of nAChR activation to modulate synaptic plasticity is likely to underlie the effects of both endogenous cholinergic signaling and pharmacologically administered nicotine to alter cellular, physiological and behavioral processes during critical periods of development.

  7. Nuclear Lamins

    PubMed Central

    Dechat, Thomas; Adam, Stephen A.; Taimen, Pekka; Shimi, Takeshi; Goldman, Robert D.

    2010-01-01

    The nuclear lamins are type V intermediate filament proteins that are critically important for the structural properties of the nucleus. In addition, they are involved in the regulation of numerous nuclear processes, including DNA replication, transcription and chromatin organization. The developmentally regulated expression of lamins suggests that they are involved in cellular differentiation. Their assembly dynamic properties throughout the cell cycle, particularly in mitosis, are influenced by posttranslational modifications. Lamins may regulate nuclear functions by direct interactions with chromatin and determining the spatial organization of chromosomes within the nuclear space. They may also regulate chromatin functions by interacting with factors that epigenetically modify the chromatin or directly regulate replication or transcription. PMID:20826548

  8. Tools for assessing mitochondrial dynamics in mouse tissues and neurodegenerative models

    NASA Astrophysics Data System (ADS)

    Pham, Anh H.

    Mitochondria are dynamic organelles that undergo membrane fusion and fission and transport. The dynamic properties of mitochondria are important for regulating mitochondrial function. Defects in mitochondrial dynamics are linked neurodegenerative diseases and affect the development of many tissues. To investigate the role of mitochondrial dynamics in diseases, versatile tools are needed to explore the physiology of these dynamic organelles in multiple tissues. Current tools for monitoring mitochondrial dynamics have been limited to studies in cell culture, which may be inadequate model systems for exploring the network of tissues. Here, we have generated mouse models for monitoring mitochondrial dynamics in a broad spectrum of tissues and cell types. The Photo-Activatable Mitochondrial (PhAM floxed) line enables Cre-inducible expression of a mitochondrial targeted photoconvertible protein, Dendra2 (mito-Dendra2). In the PhAMexcised line, mito-Dendra2 is ubiquitously expressed to facilitate broad analysis of mitochondria at various developmental processes. We have utilized these models to study mitochondrial dynamics in the nigrostriatal circuit of Parkinson's disease (PD) and in the development of skeletal muscles. Increasing evidences implicate aberrant regulation of mitochondrial fusion and fission in models of PD. To assess the function of mitochondrial dynamics in the nigrostriatal circuit, we utilized transgenic techniques to abrogate mitochondrial fusion. We show that deletion of the Mfn2 leads to the degeneration of dopaminergic neurons and Parkinson's-like features in mice. To elucidate the dynamic properties of mitochondria during muscle development, we established a platform for examining mitochondrial compartmentalization in skeletal muscles. This model system may yield clues to the role of mitochondrial dynamics in mitochondrial myopathies.

  9. Phonological processes in the speech of school-age children with hearing loss: Comparisons with children with normal hearing.

    PubMed

    Asad, Areej Nimer; Purdy, Suzanne C; Ballard, Elaine; Fairgray, Liz; Bowen, Caroline

    2018-04-27

    In this descriptive study, phonological processes were examined in the speech of children aged 5;0-7;6 (years; months) with mild to profound hearing loss using hearing aids (HAs) and cochlear implants (CIs), in comparison to their peers. A second aim was to compare phonological processes of HA and CI users. Children with hearing loss (CWHL, N = 25) were compared to children with normal hearing (CWNH, N = 30) with similar age, gender, linguistic, and socioeconomic backgrounds. Speech samples obtained from a list of 88 words, derived from three standardized speech tests, were analyzed using the CASALA (Computer Aided Speech and Language Analysis) program to evaluate participants' phonological systems, based on lax (a process appeared at least twice in the speech of at least two children) and strict (a process appeared at least five times in the speech of at least two children) counting criteria. Developmental phonological processes were eliminated in the speech of younger and older CWNH while eleven developmental phonological processes persisted in the speech of both age groups of CWHL. CWHL showed a similar trend of age of elimination to CWNH, but at a slower rate. Children with HAs and CIs produced similar phonological processes. Final consonant deletion, weak syllable deletion, backing, and glottal replacement were present in the speech of HA users, affecting their overall speech intelligibility. Developmental and non-developmental phonological processes persist in the speech of children with mild to profound hearing loss compared to their peers with typical hearing. The findings indicate that it is important for clinicians to consider phonological assessment in pre-school CWHL and the use of evidence-based speech therapy in order to reduce non-developmental and non-age-appropriate developmental processes, thereby enhancing their speech intelligibility. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. The dynamics of free recall and their relation to rehearsal between 8 and 10 years of age.

    PubMed

    Lehmann, Martin; Hasselhorn, Marcus

    2010-01-01

    The present study longitudinally examined changes in recall in children between the ages of 8 and 10 years. Given the increasingly sophisticated use of memory strategies during this developmental period, correspondences between study and recall dynamics were of particular interest. Seventy-six children performed free-recall tasks on 5 occasions over a 2-year period. Video and audio analyses revealed that children tended to recall items successively from nearby serial positions. This so-called lag-recency effect was particularly pronounced when items from nearby serial positions were conjunctly rehearsed during study. Implications for understanding study-recall correspondences are discussed in relation to other developmental changes of this period including memory capacity.

  11. Non-rigid, but not rigid, motion interferes with the processing of structural face information in developmental prosopagnosia.

    PubMed

    Maguinness, Corrina; Newell, Fiona N

    2015-04-01

    There is growing evidence to suggest that facial motion is an important cue for face recognition. However, it is poorly understood whether motion is integrated with facial form information or whether it provides an independent cue to identity. To provide further insight into this issue, we compared the effect of motion on face perception in two developmental prosopagnosics and age-matched controls. Participants first learned faces presented dynamically (video), or in a sequence of static images, in which rigid (viewpoint) or non-rigid (expression) changes occurred. Immediately following learning, participants were required to match a static face image to the learned face. Test face images varied by viewpoint (Experiment 1) or expression (Experiment 2) and were learned or novel face images. We found similar performance across prosopagnosics and controls in matching facial identity across changes in viewpoint when the learned face was shown moving in a rigid manner. However, non-rigid motion interfered with face matching across changes in expression in both individuals with prosopagnosia compared to the performance of control participants. In contrast, non-rigid motion did not differentially affect the matching of facial expressions across changes in identity for either prosopagnosics (Experiment 3). Our results suggest that whilst the processing of rigid motion information of a face may be preserved in developmental prosopagnosia, non-rigid motion can specifically interfere with the representation of structural face information. Taken together, these results suggest that both form and motion cues are important in face perception and that these cues are likely integrated in the representation of facial identity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Prolonged Exposure versus Dynamic Therapy for Adolescent PTSD: A Pilot Randomized Controlled Trial

    ERIC Educational Resources Information Center

    Gilboa-Schechtman, Eva; Foa, Edna B.; Shafran, Naama; Aderka, Idan M.; Powers, Mark B.; Rachamim, Lilach; Rosenbach, Lea; Yadin, Elna; Apter, Alan

    2010-01-01

    Objective: To examine the efficacy and maintenance of developmentally adapted prolonged exposure therapy for adolescents (PE-A) compared with active control time-limited dynamic therapy (TLDP-A) for decreasing posttraumatic and depressive symptoms in adolescent victims of single-event traumas. Method: Thirty-eight adolescents (12 to 18 years old)…

  13. Taking Emergence Seriously: The Centrality of Circular Causality for Dynamic Systems Approaches to Development

    ERIC Educational Resources Information Center

    Witherington, David C.

    2011-01-01

    The dynamic systems (DS) approach has emerged as an influential and potentially unifying metatheory for developmental science. Its central platform--the argument against design--suggests that structure spontaneously and without prescription emerges through self-organization. In one of the most prominent accounts of DS, Thelen and her colleagues…

  14. Understanding of Relation Structures of Graphical Models by Lower Secondary Students

    ERIC Educational Resources Information Center

    van Buuren, Onne; Heck, André; Ellermeijer, Ton

    2016-01-01

    A learning path has been developed on system dynamical graphical modelling, integrated into the Dutch lower secondary physics curriculum. As part of the developmental research for this learning path, students' understanding of the relation structures shown in the diagrams of graphical system dynamics based models has been investigated. One of our…

  15. The Development of Rhythmic Attending in Auditory Sequences: Attunement, Referent Period, Focal Attending.

    ERIC Educational Resources Information Center

    Drake, Carolyn; Jones, Mari Riess; Baruch, Clarisse

    2000-01-01

    Extends dynamic attending theory to developmental questions concerning tempo and time hierarchies. Compares performance of 4- to 10-year-olds, and adults on dynamic attending activities. Suggests that growth trends could be expressed in terms of listeners' engagement of slower attending oscillators with age and musical experience, accompanied by…

  16. Reduced Sensitivity to Slow-Rate Dynamic Auditory Information in Children with Dyslexia

    ERIC Educational Resources Information Center

    Poelmans, Hanne; Luts, Heleen; Vandermosten, Maaike; Boets, Bart; Ghesquiere, Pol; Wouters, Jan

    2011-01-01

    The etiology of developmental dyslexia remains widely debated. An appealing theory postulates that the reading and spelling problems in individuals with dyslexia originate from reduced sensitivity to slow-rate dynamic auditory cues. This low-level auditory deficit is thought to provoke a cascade of effects, including inaccurate speech perception…

  17. Defending Qualitative Change: The View from Dynamical Systems Theory

    ERIC Educational Resources Information Center

    Spencer, John P.; Perone, Sammy

    2008-01-01

    A central controversy in developmental science, enflamed by nativist accounts, is whether development is best viewed as a series of qualitative or continuous changes. This article defends the notion of qualitative change from the perspective of dynamical systems theory (DST). Qualitative change within DST refers to the shift that occurs when a…

  18. E-Index for Differentiating Complex Dynamic Traits

    PubMed Central

    Qi, Jiandong; Sun, Jianfeng; Wang, Jianxin

    2016-01-01

    While it is a daunting challenge in current biology to understand how the underlying network of genes regulates complex dynamic traits, functional mapping, a tool for mapping quantitative trait loci (QTLs) and single nucleotide polymorphisms (SNPs), has been applied in a variety of cases to tackle this challenge. Though useful and powerful, functional mapping performs well only when one or more model parameters are clearly responsible for the developmental trajectory, typically being a logistic curve. Moreover, it does not work when the curves are more complex than that, especially when they are not monotonic. To overcome this inadaptability, we therefore propose a mathematical-biological concept and measurement, E-index (earliness-index), which cumulatively measures the earliness degree to which a variable (or a dynamic trait) increases or decreases its value. Theoretical proofs and simulation studies show that E-index is more general than functional mapping and can be applied to any complex dynamic traits, including those with logistic curves and those with nonmonotonic curves. Meanwhile, E-index vector is proposed as well to capture more subtle differences of developmental patterns. PMID:27064292

  19. The non-human primate striatum undergoes marked prolonged remodeling during postnatal development

    PubMed Central

    Martin, Lee J.; Cork, Linda C.

    2014-01-01

    We examined the postnatal ontogeny of the striatum in rhesus monkeys (Macaca mulatta) to identify temporal and spatial patterns of histological and chemical maturation. Our goal was to determine whether this forebrain structure is developmentally static or dynamic in postnatal life. Brains from monkeys at 1 day, 1, 4, 6, 9, and 12 months of age (N = 12) and adult monkeys (N = 4) were analyzed. Nissl staining was used to assess striatal volume, cytoarchitecture, and apoptosis. Immunohistochemistry was used to localize and measure substance P (SP), leucine-enkephalin (LENK), tyrosine hydroxylase (TH), and calbindin D28 (CAL) immunoreactivities. Mature brain to body weight ratio was achieved at 4 months of age, and striatal volume increased from ∼1.2 to ∼1.4 cm3 during the first postnatal year. Nissl staining identified, prominently in the caudate nucleus, developmentally persistent discrete cell islands with neuronal densities greater than the surrounding striatal parenchyma (matrix). Losses in neuronal density were observed in island and matrix regions during maturation, and differential developmental programmed cell death was observed in islands and matrix regions. Immunohistochemistry revealed striking changes occurring postnatally in striatal chemical neuroanatomy. At birth, the immature dopaminergic nigrostriatal innervation was characterized by islands enriched in TH-immunoreactive puncta (putative terminals) in the neuropil; TH-enriched islands aligned completely with areas enriched in SP immunoreactivity but low in LENK immunoreactivity. These areas enriched in SP immunoreactivity but low in LENK immunoreactivity were identified as striosome and matrix areas, respectively, because CAL immunoreactivity clearly delineated these territories. SP, LENK, and CAL immunoreactivities appeared as positive neuronal cell bodies, processes, and puncta. The matrix compartment at birth contained relatively low TH-immunoreactive processes and few SP-positive neurons but was densely populated with LENK-immunoreactive neurons. The nucleus accumbens part of the ventral striatum also showed prominent differences in SP, LENK, and CAL immunoreactivities in shell and core territories. During 12 months of postnatal maturation salient changes occurred in neurotransmitter marker localization: TH-positive afferents densely innervated the matrix to exceed levels of immunoreactivity in the striosomes; SP immunoreactivity levels increased in the matrix; and LENK-immunoreactivity levels decreased in the matrix and increased in the striosomes. At 12 months of age, striatal chemoarchitecture was similar qualitatively to adult patterns, but quantitatively different in LENK and SP in caudate, putamen, and nucleus accumbens. This study shows for the first time that the rhesus monkey striatum requires more than 12 months after birth to develop an adult-like pattern of chemical neuroanatomy and that principal neurons within striosomes and matrix have different developmental programs for neuropeptide expression. We conclude that postnatal maturation of the striatal mosaic in primates is not static but, rather, is a protracted and dynamic process that requires many synchronous and compartment-selective changes in afferent innervation and in the expression of genes that regulate neuronal phenotypes. PMID:25294985

  20. Hemostasis in the Very Young.

    PubMed

    Kenet, Gili; Barg, Assaf Arie; Nowak-Göttl, Ulrike

    2018-06-18

    Hemostasis is a dynamic process that starts in utero. The coagulation system evolves with age, as evidenced by marked physiological differences in the concentration of the majority of hemostatic proteins in early life compared with adulthood. This concept, known as "developmental hemostasis," has important biological and clinical implications. Overall, impaired platelet function, along with physiologically reduced levels of vitamin K-dependent and contact coagulation factors, may cause poorer clot firmness even in healthy neonates. However, increased activity of von Willebrand factor and low levels of coagulation inhibitors that promote hemostasis counterbalance the delicate and immature hemostatic system. Since this hemostatic system has little reserve capacity, preterm neonates or sick infants are extremely vulnerable and predisposed to either hemorrhagic or thrombotic complications. This review will address the concept and manifestations of developmental hemostasis with respect to clinical disease phenotypes. It will discuss bleeding diagnosis in neonates, dealing especially with the devastating complications of intracerebral and pulmonary hemorrhage in preterm infants. Neonates, especially the sickest preterm ones, are also extremely susceptible to thrombotic complications; thus, thrombosis in neonates will be reviewed, with special focus on arterial ischemic perinatal stroke. Based on the concept of developmental hemostasis, the phenotypes of clinically relevant bleeding or thrombotic disorders among neonates may differ from those of older infants and children. Treatment options for these conditions will be suggested and reviewed. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  1. Atypical Default Network Connectivity in Youth with ADHD

    PubMed Central

    Fair, Damien A.; Posner, Jonathan; Nagel, Bonnie J.; Bathula, Deepti; Dias, Taciana G. Costa; Mills, Kathryn L.; Blythe, Michael S.; Giwa, Aishat; Schmitt, Colleen F.; Nigg, Joel T.

    2010-01-01

    Background Attention deficit/hyperactivity disorder (ADHD) is a major public health concern. It has been suggested that the brain’s default network may provide a crucial avenue for understanding the neurobiology of ADHD. Evaluations of the default network have increased over recent years with the applied technique of resting-state functional connectivity MRI (rs-fcMRI). These investigations have established that spontaneous activity in this network is highly correlated at rest in young adult populations. This coherence seems to be reduced in adults with ADHD. This is an intriguing finding, as coherence in spontaneous activity within the default network strengthens with age. Thus, the pathophysiology of ADHD might include delayed or disrupted maturation of the default network. If so, it is important to determine whether an altered developmental picture can be detected using rs-fcMRI in children with ADHD. Methods The present study utilized the typical developmental context provided previously by Fair et al (1) to examine coherence of brain activity within the default network using rs-fcMRI in children with (n=23) and without ADHD (n=23). Results We found that functional connections previously shown as developmentally dynamic in the default network were atypical in children with ADHD - consistent with perturbation or failure of the maturational processes. Conclusions These findings are consistent with the hypothesis that atypical consolidation of this network over development plays a role in ADHD. PMID:20728873

  2. Decline in the Quality of Family Relationships Predicts Escalation in Children’s Internalizing Symptoms from Middle to Late Childhood

    PubMed Central

    Kochanska, Grazyna

    2015-01-01

    An integration of family systems perspectives with developmental psychopathology provides a framework for examining the complex interplay between family processes and developmental trajectories of child psychopathology over time. In a community sample of 98 families, we investigated the evolution of family relationships, across multiple subsystems of the family (i.e., interparental, mother-child, father-child), and the impact of these changing family dynamics on developmental trajectories of child internalizing symptoms over 6 years, from preschool age to pre-adolescence. Parent–child relationship quality was observed during lengthy sessions, consisting of multiple naturalistic, carefully scripted contexts. Each parent completed reports about interparental relationship satisfaction and child internalizing symptoms. To the extent that mothers experienced a steeper decline in interparental relationship satisfaction over time, children developed internalizing symptoms at a faster rate. Further, symptoms escalated at a faster rate to the extent that negative mother-child relationship quality increased (more negative affect expressed by both mother and child, greater maternal power assertion) and positive mother-child relationship quality decreased (less positive affect expressed by both mother and child, less warmth and positive reciprocity). Time-lagged growth curve analyses established temporal precedence such that decline in family relationships preceded escalation in child internalizing symptoms. Results suggest that family dysfunction, across multiple subsystems, represents a driving force in the progression of child internalizing symptoms. PMID:25790794

  3. Decline in the Quality of Family Relationships Predicts Escalation in Children's Internalizing Symptoms from Middle to Late Childhood.

    PubMed

    Brock, Rebecca L; Kochanska, Grazyna

    2015-10-01

    An integration of family systems perspectives with developmental psychopathology provides a framework for examining the complex interplay between family processes and developmental trajectories of child psychopathology over time. In a community sample of 98 families, we investigated the evolution of family relationships, across multiple subsystems of the family (i.e., interparental, mother-child, father-child), and the impact of these changing family dynamics on developmental trajectories of child internalizing symptoms over 6 years, from preschool age to pre-adolescence. Parent-child relationship quality was observed during lengthy sessions, consisting of multiple naturalistic, carefully scripted contexts. Each parent completed reports about interparental relationship satisfaction and child internalizing symptoms. To the extent that mothers experienced a steeper decline in interparental relationship satisfaction over time, children developed internalizing symptoms at a faster rate. Further, symptoms escalated at a faster rate to the extent that negative mother-child relationship quality increased (more negative affect expressed by both mother and child, greater maternal power assertion) and positive mother-child relationship quality decreased (less positive affect expressed by both mother and child, less warmth and positive reciprocity). Time-lagged growth curve analyses established temporal precedence such that decline in family relationships preceded escalation in child internalizing symptoms. Results suggest that family dysfunction, across multiple subsystems, represents a driving force in the progression of child internalizing symptoms.

  4. The RNA-Seq-based high resolution gene expression atlas of chickpea (Cicer arietinum L.) reveals dynamic spatio-temporal changes associated with growth and development.

    PubMed

    Kudapa, Himabindu; Garg, Vanika; Chitikineni, Annapurna; Varshney, Rajeev K

    2018-04-10

    Chickpea is one of the world's largest cultivated food legumes and is an excellent source of high-quality protein to the human diet. Plant growth and development are controlled by programmed expression of a suite of genes at the given time, stage, and tissue. Understanding how the underlying genome sequence translates into specific plant phenotypes at key developmental stages, information on gene expression patterns is crucial. Here, we present a comprehensive Cicer arietinum Gene Expression Atlas (CaGEA) across different plant developmental stages and organs covering the entire life cycle of chickpea. One of the widely used drought tolerant cultivars, ICC 4958 has been used to generate RNA-Seq data from 27 samples at 5 major developmental stages of the plant. A total of 816 million raw reads were generated and of these, 794 million filtered reads after quality control (QC) were subjected to downstream analysis. A total of 15,947 unique number of differentially expressed genes across different pairwise tissue combinations were identified. Significant differences in gene expression patterns contributing in the process of flowering, nodulation, and seed and root development were inferred in this study. Furthermore, differentially expressed candidate genes from "QTL-hotspot" region associated with drought stress response in chickpea were validated. © 2018 The Authors. Plant, Cell & Environment Published by John Wiley & Sons Ltd.

  5. Dual Systems Competence [Image Omitted] Procedural Processing: A Relational Developmental Systems Approach to Reasoning

    ERIC Educational Resources Information Center

    Ricco, Robert B.; Overton, Willis F.

    2011-01-01

    Many current psychological models of reasoning minimize the role of deductive processes in human thought. In the present paper, we argue that deduction is an important part of ordinary cognition and we propose that a dual systems Competence [image omitted] Procedural processing model conceptualized within relational developmental systems theory…

  6. Process Dissociation of Sight Vocabulary and Phonetic Decoding in Reading: A New Perspective on Surface and Phonological Dyslexias

    ERIC Educational Resources Information Center

    McDougall, Patricia; Borowsky, Ron; MacKinnon, G. E.; Hymel, Shelley

    2005-01-01

    Recent research on developmental dyslexia has suggested a phonological core deficit hypothesis (e.g., Manis, Seidenberg, Doi, McBride-Chang, & Peterson, 1996; Stanovich, Siegel, & Gottardo, 1997) whereby pure cases of developmental phonological dyslexia (dysfunctional phonetic decoding processing but normal sight vocabulary processing) can exist,…

  7. Advances in Special Education: Volume I. Basic Constructs and Theoretical Orientations. A Research Annual.

    ERIC Educational Resources Information Center

    Keogh, Barbara K., Ed.

    Intended for graduate students in special education, the text presents seven author contributed papers dealing with theoretical issues in the field. M. Faust and W. Faust ("Cognitive Constructing: Levels of Processing and Developmental Change") consider cognitive processing from a developmental perspective. In "Memory Processes in Exceptional…

  8. Mapping the developmental constraints on working memory span performance.

    PubMed

    Bayliss, Donna M; Jarrold, Christopher; Baddeley, Alan D; Gunn, Deborah M; Leigh, Eleanor

    2005-07-01

    This study investigated the constraints underlying developmental improvements in complex working memory span performance among 120 children of between 6 and 10 years of age. Independent measures of processing efficiency, storage capacity, rehearsal speed, and basic speed of processing were assessed to determine their contribution to age-related variance in complex span. Results showed that developmental improvements in complex span were driven by 2 age-related but separable factors: 1 associated with general speed of processing and 1 associated with storage ability. In addition, there was an age-related contribution shared between working memory, processing speed, and storage ability that was important for higher level cognition. These results pose a challenge for models of complex span performance that emphasize the importance of processing speed alone.

  9. [The principle of the energy minimum in ontogeny and the channeling of developmental processes].

    PubMed

    Ozerniuk, N D

    1989-01-01

    The principle of minimum of energy in ontogenesis has been formulated on the basis of data concerning age changes in energetic metabolism, as well as the influence of ecological factors on this process. According to this principle the smallest expenditures of energy are observed in the zone of the most favorable developmental conditions. The minimal level of energetic metabolism at every developmental stage that corresponds to the most stable state of organism is treated as homeostasis and the developmental stability is treated as homeorrhesis. Regulation mechanisms of energetic metabolism during ontogenesis and under the influence of environmental factors are analyzed.

  10. Systems theory and cascades in developmental psychopathology.

    PubMed

    Cox, Martha J; Mills-Koonce, Roger; Propper, Cathi; Gariépy, Jean-Louis

    2010-08-01

    In the wake of prominent theoreticians in developmental science, whose contributions we review in this article, many developmental psychologists came to endorse a systems approach to understanding how the individual, as it develops, establishes functional relationships to social ecological contexts that from birth to school entry rapidly increase in complexity. The concept of developmental cascade has been introduced in this context to describe lawful processes by which antecedent conditions may be related with varying probabilities to specified outcomes. These are understood as processes by which function at one level or in one domain of behavior affect the organization of competency in later developing domains of general adaptation. Here we propose a developmental sequence by which the developing child acquires regulative capacities that are key to adjustment to a society that demands considerable control of emotional and cognitive functions early in life. We report empirical evidence showing that the acquisition of regulative capacities may be understood as a cascade of shifts in control parameters induced by the progressive integration of biological, transactional, and socioaffective systems over development. We conclude by suggesting how the developmental process may be accessed for effective intervention in populations deemed "at risk" for later problems of psychosocial adjustment.

  11. How Stuttering Develops: The Multifactorial Dynamic Pathways Theory

    PubMed Central

    Weber, Christine

    2017-01-01

    Purpose We advanced a multifactorial, dynamic account of the complex, nonlinear interactions of motor, linguistic, and emotional factors contributing to the development of stuttering. Our purpose here is to update our account as the multifactorial dynamic pathways theory. Method We review evidence related to how stuttering develops, including genetic/epigenetic factors; motor, linguistic, and emotional features; and advances in neuroimaging studies. We update evidence for our earlier claim: Although stuttering ultimately reflects impairment in speech sensorimotor processes, its course over the life span is strongly conditioned by linguistic and emotional factors. Results Our current account places primary emphasis on the dynamic developmental context in which stuttering emerges and follows its course during the preschool years. Rapid changes in many neurobehavioral systems are ongoing, and critical interactions among these systems likely play a major role in determining persistence of or recovery from stuttering. Conclusion Stuttering, or childhood onset fluency disorder (Diagnostic and Statistical Manual of Mental Disorders, 5th edition; American Psychiatric Association [APA], 2013), is a neurodevelopmental disorder that begins when neural networks supporting speech, language, and emotional functions are rapidly developing. The multifactorial dynamic pathways theory motivates experimental and clinical work to determine the specific factors that contribute to each child's pathway to the diagnosis of stuttering and those most likely to promote recovery. PMID:28837728

  12. How Stuttering Develops: The Multifactorial Dynamic Pathways Theory.

    PubMed

    Smith, Anne; Weber, Christine

    2017-09-18

    We advanced a multifactorial, dynamic account of the complex, nonlinear interactions of motor, linguistic, and emotional factors contributing to the development of stuttering. Our purpose here is to update our account as the multifactorial dynamic pathways theory. We review evidence related to how stuttering develops, including genetic/epigenetic factors; motor, linguistic, and emotional features; and advances in neuroimaging studies. We update evidence for our earlier claim: Although stuttering ultimately reflects impairment in speech sensorimotor processes, its course over the life span is strongly conditioned by linguistic and emotional factors. Our current account places primary emphasis on the dynamic developmental context in which stuttering emerges and follows its course during the preschool years. Rapid changes in many neurobehavioral systems are ongoing, and critical interactions among these systems likely play a major role in determining persistence of or recovery from stuttering. Stuttering, or childhood onset fluency disorder (Diagnostic and Statistical Manual of Mental Disorders, 5th edition; American Psychiatric Association [APA], 2013), is a neurodevelopmental disorder that begins when neural networks supporting speech, language, and emotional functions are rapidly developing. The multifactorial dynamic pathways theory motivates experimental and clinical work to determine the specific factors that contribute to each child's pathway to the diagnosis of stuttering and those most likely to promote recovery.

  13. Impairment in face processing in autism spectrum disorder: a developmental perspective.

    PubMed

    Greimel, Ellen; Schulte-Rüther, Martin; Kamp-Becker, Inge; Remschmidt, Helmut; Herpertz-Dahlmann, Beate; Konrad, Kerstin

    2014-09-01

    Findings on face identity and facial emotion recognition in autism spectrum disorder (ASD) are inconclusive. Moreover, little is known about the developmental trajectory of face processing skills in ASD. Taking a developmental perspective, the aim of this study was to extend previous findings on face processing skills in a sample of adolescents and adults with ASD. N = 38 adolescents and adults (13-49 years) with high-functioning ASD and n = 37 typically developing (TD) control subjects matched for age and IQ participated in the study. Moreover, n = 18 TD children between the ages of 8 and 12 were included to address the question whether face processing skills in ASD follow a delayed developmental pattern. Face processing skills were assessed using computerized tasks of face identity recognition (FR) and identification of facial emotions (IFE). ASD subjects showed impaired performance on several parameters of the FR and IFE task compared to TD control adolescents and adults. Whereas TD adolescents and adults outperformed TD children in both tasks, performance in ASD adolescents and adults was similar to the group of TD children. Within the groups of ASD and control adolescents and adults, no age-related changes in performance were found. Our findings corroborate and extend previous studies showing that ASD is characterised by broad impairments in the ability to process faces. These impairments seem to reflect a developmentally delayed pattern that remains stable throughout adolescence and adulthood.

  14. Epigenetics and the Developmental Origins of Health and ...

    EPA Pesticide Factsheets

    Epigenetic programming is likely to be an important mechanism underlying the lasting influence of the developmental environment on lifelong health, a concept known as the Developmental Origins of Health and Disease (DOHaD). DNA methylation, posttranslational histone protei n modifications, noncoding RNAs and recruited protein complexes are elements of the epigenetic regulation of gene transcription. These heritable but reversible changes in gene function are dynamic and labile during specific stages of the reproductive cycle and development. Epigenetic marks may be maintained throughout an individual's lifespan and can alter the life-long risk of disease; the nature of these epigenetic marks and their potential alteration by environmental factors is an area of active research. This chapter provides an overview of epigenetic regulation, particularly as it occurs as an essential component of embryo-fetal development. In this chapter we will present key features of DNA methylation and histone protein modifications, including the enzymes involved and the effects of these modifications on gene transcription. We will discuss the interplay of these dynamic modifications and the emerging role of noncoding RNAs in epigenetic gene regulation.

  15. Information Propagation in Developmental Enhancers

    NASA Astrophysics Data System (ADS)

    Jena, Siddhartha; Levine, Michael

    Rather than encoding information about protein sequence, certain lengths of noncoding DNA, called enhancers, interact with protein machinery such as transcription factors to precisely regulate gene expression. Enhancers have been studied extensively in the fruit fly Drosophila melanogaster, where they regulate the expression of developmental genes that establish the blueprint of the adult fly. It has been suggested that enhancer sequences possess a specific but unknown syntax with regards to the placement and strength of transcription factor binding sites. Moreover, studies in divergent fly species have shown that compensatory evolution allows for maintenance of enhancer functionality despite considerable variation in primary DNA sequence. Here, the possible role of enhancers as signal processing modules is studied as a way of explaining these two findings. We first demonstrate how this framework can be used to explain the fine-tuned spatiotemporal dynamics of gene expression. We then explore the evolutionary pressure on enhancer sequences and the resulting emergence of enhancers that are linked by compensatory mutations. This study provides a possible mechanism for the function of multiple enhancers linked to a single gene.

  16. Plants under Stress: Involvement of Auxin and Cytokinin

    PubMed Central

    Bielach, Agnieszka; Hrtyan, Monika; Tognetti, Vanesa B.

    2017-01-01

    Plant growth and development are critically influenced by unpredictable abiotic factors. To survive fluctuating changes in their environments, plants have had to develop robust adaptive mechanisms. The dynamic and complementary actions of the auxin and cytokinin pathways regulate a plethora of developmental processes, and their ability to crosstalk makes them ideal candidates for mediating stress-adaptation responses. Other crucial signaling molecules responsible for the tremendous plasticity observed in plant morphology and in response to abiotic stress are reactive oxygen species (ROS). Proper temporal and spatial distribution of ROS and hormone gradients is crucial for plant survival in response to unfavorable environments. In this regard, the convergence of ROS with phytohormone pathways acts as an integrator of external and developmental signals into systemic responses organized to adapt plants to their environments. Auxin and cytokinin signaling pathways have been studied extensively. Nevertheless, we do not yet understand the impact on plant stress tolerance of the sophisticated crosstalk between the two hormones. Here, we review current knowledge on the function of auxin and cytokinin in redirecting growth induced by abiotic stress in order to deduce their potential points of crosstalk. PMID:28677656

  17. Plants under Stress: Involvement of Auxin and Cytokinin.

    PubMed

    Bielach, Agnieszka; Hrtyan, Monika; Tognetti, Vanesa B

    2017-07-04

    Plant growth and development are critically influenced by unpredictable abiotic factors. To survive fluctuating changes in their environments, plants have had to develop robust adaptive mechanisms. The dynamic and complementary actions of the auxin and cytokinin pathways regulate a plethora of developmental processes, and their ability to crosstalk makes them ideal candidates for mediating stress-adaptation responses. Other crucial signaling molecules responsible for the tremendous plasticity observed in plant morphology and in response to abiotic stress are reactive oxygen species (ROS). Proper temporal and spatial distribution of ROS and hormone gradients is crucial for plant survival in response to unfavorable environments. In this regard, the convergence of ROS with phytohormone pathways acts as an integrator of external and developmental signals into systemic responses organized to adapt plants to their environments. Auxin and cytokinin signaling pathways have been studied extensively. Nevertheless, we do not yet understand the impact on plant stress tolerance of the sophisticated crosstalk between the two hormones. Here, we review current knowledge on the function of auxin and cytokinin in redirecting growth induced by abiotic stress in order to deduce their potential points of crosstalk.

  18. Visualization of protein interactions in living Drosophila embryos by the bimolecular fluorescence complementation assay.

    PubMed

    Hudry, Bruno; Viala, Séverine; Graba, Yacine; Merabet, Samir

    2011-01-28

    Protein interactions control the regulatory networks underlying developmental processes. The understanding of developmental complexity will, therefore, require the characterization of protein interactions within their proper environment. The bimolecular fluorescence complementation (BiFC) technology offers this possibility as it enables the direct visualization of protein interactions in living cells. However, its potential has rarely been applied in embryos of animal model organisms and was only performed under transient protein expression levels. Using a Hox protein partnership as a test case, we investigated the suitability of BiFC for the study of protein interactions in the living Drosophila embryo. Importantly, all BiFC parameters were established with constructs that were stably expressed under the control of endogenous promoters. Under these physiological conditions, we showed that BiFC is specific and sensitive enough to analyse dynamic protein interactions. We next used BiFC in a candidate interaction screen, which led to the identification of several Hox protein partners. Our results establish the general suitability of BiFC for revealing and studying protein interactions in their physiological context during the rapid course of Drosophila embryonic development.

  19. Survey of O-GlcNAc level variations in Xenopus laevis from oogenesis to early development.

    PubMed

    Dehennaut, Vanessa; Lefebvre, Tony; Leroy, Yves; Vilain, Jean-Pierre; Michalski, Jean-Claude; Bodart, Jean-François

    2009-04-01

    Little is known about the impact of O-linked-N-acetylglucosaminylation (O-GlcNAc) in gametes production and developmental processes. Here we investigated changes in O-GlcNAc, UDP-GlcNAc and O-GlcNAc transferase (OGT) levels in Xenopus laevis from oogenesis to embryo hatching. We showed that in comparison to stage VI, stages I-V oocytes expressed higher levels of O-GlcNAc correlating changes in OGT expression, but not in UDP-GlcNAc pools. Upon progesterone stimulation, an O-GlcNAc level burst occurred during meiotic resumption long before MPF and Mos-Erk2 pathways activations. Finally, we observed high levels of O-GlcNAc, UDP-GlcNAc and OGT during segmentation that decreased concomitantly at the onset of gastrulation. Nevertheless, no correlation between the glycosylation, the nucleotide-sugar and the glycosyltransferase was observed after neurulation. Our results show that O-GlcNAc is regulated throughout oogenesis and development within a complex pattern and suggest that dysfunctions in the dynamics of this glycosylation could lead to developmental abnormalities.

  20. Exploring the Williams syndrome face-processing debate: the importance of building developmental trajectories.

    PubMed

    Karmiloff-Smith, Annette; Thomas, Michael; Annaz, Dagmara; Humphreys, Kate; Ewing, Sandra; Brace, Nicola; Duuren, Mike; Pike, Graham; Grice, Sarah; Campbell, Ruth

    2004-10-01

    Face processing in Williams syndrome (WS) has been a topic of heated debate over the past decade. Initial claims about a normally developing ('intact') face-processing module were challenged by data suggesting that individuals with WS used a different balance of cognitive processes from controls, even when their behavioural scores fell within the normal range. Measurement of evoked brain potentials also point to atypical processes. However, two recent studies have claimed that people with WS process faces exactly like normal controls. In this paper, we examine the details of this continuing debate on the basis of three new face-processing experiments. In particular, for two of our experiments we built task-specific full developmental trajectories from childhood to adolescence/adulthood and plotted the WS data on these trajectories. The first experiment used photos of real faces. While it revealed broadly equivalent accuracy across groups, the WS participants were worse at configural processing when faces were upright and less sensitive than controls to face inversion. In Experiment 2, measuring face processing in a storybook context, the face inversion effect emerged clearly in controls but only weakly in the WS developmental trajectory. Unlike the controls, the Benton Face Recognition Test and the Pattern Construction results were not correlated in WS, highlighting the different developmental patterns in the two groups. Again in contrast to the controls, Experiment 3 with schematic faces and non-face stimuli revealed a configural-processing deficit in WS both with respect to their chronological age (CA) and to their level of performance on the Benton. These findings point to both delay and deviance in WS face processing and illustrate how vital it is to build developmental trajectories for each specific task.

  1. Development of Civic Engagement: Theoretical and Methodological Issues

    ERIC Educational Resources Information Center

    Lerner, Richard M.; Wang, Jun; Champine, Robey B.; Warren, Daniel J. A.; Erickson, Karl

    2014-01-01

    Within contemporary developmental science, models derived from relational developmental systems (RDS) metatheory emphasize that the basic process of human development involves mutually-influential relations, termed developmental regulations, between the developing individual and his or her complex and changing physical, social, and cultural…

  2. PARD3 dysfunction in conjunction with dynamic HIPPO signaling drives cortical enlargement with massive heterotopia.

    PubMed

    Liu, Wenying Angela; Chen, She; Li, Zhizhong; Lee, Choong Heon; Mirzaa, Ghayda; Dobyns, William B; Ross, M Elizabeth; Zhang, Jiangyang; Shi, Song-Hai

    2018-06-01

    Proper organization and orderly mitosis of radial glial progenitors (RGPs) drive the formation of a laminated mammalian cortex in the correct size. However, the molecular underpinnings of the intricate process remain largely unclear. Here we show that RGP behavior and cortical development are controlled by temporally distinct actions of partitioning-defective 3 (PARD3) in concert with dynamic HIPPO signaling. RGPs lacking PARD3 exhibit developmental stage-dependent abnormal switches in division mode, resulting in an initial overproduction of RGPs located largely outside the ventricular zone at the expense of deep-layer neurons. Ectopically localized RGPs subsequently undergo accelerated and excessive neurogenesis, leading to the formation of an enlarged cortex with massive heterotopia and increased seizure susceptibility. Simultaneous removal of HIPPO pathway effectors Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) suppresses cortical enlargement and heterotopia formation. These results define a dynamic regulatory program of mammalian cortical development and highlight a progenitor origin of megalencephaly with ribbon heterotopia and epilepsy. © 2018 Liu et al.; Published by Cold Spring Harbor Laboratory Press.

  3. Past climate change on Sky Islands drives novelty in a core developmental gene network and its phenotype.

    PubMed

    Favé, Marie-Julie; Johnson, Robert A; Cover, Stefan; Handschuh, Stephan; Metscher, Brian D; Müller, Gerd B; Gopalan, Shyamalika; Abouheif, Ehab

    2015-09-04

    A fundamental and enduring problem in evolutionary biology is to understand how populations differentiate in the wild, yet little is known about what role organismal development plays in this process. Organismal development integrates environmental inputs with the action of gene regulatory networks to generate the phenotype. Core developmental gene networks have been highly conserved for millions of years across all animals, and therefore, organismal development may bias variation available for selection to work on. Biased variation may facilitate repeatable phenotypic responses when exposed to similar environmental inputs and ecological changes. To gain a more complete understanding of population differentiation in the wild, we integrated evolutionary developmental biology with population genetics, morphology, paleoecology and ecology. This integration was made possible by studying how populations of the ant species Monomorium emersoni respond to climatic and ecological changes across five 'Sky Islands' in Arizona, which are mountain ranges separated by vast 'seas' of desert. Sky Islands represent a replicated natural experiment allowing us to determine how repeatable is the response of M. emersoni populations to climate and ecological changes at the phenotypic, developmental, and gene network levels. We show that a core developmental gene network and its phenotype has kept pace with ecological and climate change on each Sky Island over the last ~90,000 years before present (BP). This response has produced two types of evolutionary change within an ant species: one type is unpredictable and contingent on the pattern of isolation of Sky lsland populations by climate warming, resulting in slight changes in gene expression, organ growth, and morphology. The other type is predictable and deterministic, resulting in the repeated evolution of a novel wingless queen phenotype and its underlying gene network in response to habitat changes induced by climate warming. Our findings reveal dynamics of developmental gene network evolution in wild populations. This holds important implications: (1) for understanding how phenotypic novelty is generated in the wild; (2) for providing a possible bridge between micro- and macroevolution; and (3) for understanding how development mediates the response of organisms to past, and potentially, future climate change.

  4. Computer Simulation of Developmental Processes and Toxicities (SOT)

    EPA Science Inventory

    Rationale: Recent progress in systems toxicology and synthetic biology have paved the way to new thinking about in vitro/in silico modeling of developmental processes and toxicities, both for embryological and reproductive impacts. Novel in vitro platforms such as 3D organotypic ...

  5. HIGH-CONTENT ANALYSIS OF PRIMARY RAT NEURAL CORTICALCULTURES FOR DEVELOPMENTAL NEUROTOXICITY SCREENING

    EPA Science Inventory

    Development of the vertebrate nervous system proceeds through a number of critical processes, ultimately concluding with the extension of neurites and establishment of synaptic networks. Early-life exposure to toxicants that perturb these critical developmental processes can po...

  6. Epilepsy: habilitation and rehabilitation.

    PubMed

    Marks, Warren A; Hernandez, Angel; Gabriel, Marsha

    2003-06-01

    Rehabilitation represents not only a distinct field of medicine, but also a philosophical and practical treatment approach that can be applied to a variety of chronic disorders. Neurology encompasses many chronic disorders, making it ideal for the application of rehabilitation principles in daily practice. Epilepsy offers a unique opportunity to incorporate rehabilitation principles into the management of a complex medical disorder. Epilepsy is an evolving disease process that changes with the maturation of the central nervous system. The rehabilitative model provides the framework for a dynamic treatment plan to meet the changing needs of the child with epilepsy through the social and developmental changes of childhood, adolescence, and adulthood. The development of epilepsy may complicate the recovery from many acute and chronic conditions that affect the central nervous system. The rehabilitation process must address these many aspects of the disease process and its sequelae. This makes neurologists uniquely qualified to manage the rehabilitation team. The impact of the therapeutic milieu on the recovery process may be as important as any specific medical or surgical intervention.

  7. Combustion Stability Verification for the Thrust Chamber Assembly of J-2X Developmental Engines 10001, 10002, and 10003

    NASA Technical Reports Server (NTRS)

    Morgan, C. J.; Hulka, J. R.; Casiano, M. J.; Kenny, R. J.; Hinerman, T. D.; Scholten, N.

    2015-01-01

    The J-2X engine, a liquid oxygen/liquid hydrogen propellant rocket engine available for future use on the upper stage of the Space Launch System vehicle, has completed testing of three developmental engines at NASA Stennis Space Center. Twenty-one tests of engine E10001 were conducted from June 2011 through September 2012, thirteen tests of the engine E10002 were conducted from February 2013 through September 2013, and twelve tests of engine E10003 were conducted from November 2013 to April 2014. Verification of combustion stability of the thrust chamber assembly was conducted by perturbing each of the three developmental engines. The primary mechanism for combustion stability verification was examining the response caused by an artificial perturbation (bomb) in the main combustion chamber, i.e., dynamic combustion stability rating. No dynamic instabilities were observed in the TCA, although a few conditions were not bombed. Additional requirements, included to guard against spontaneous instability or rough combustion, were also investigated. Under certain conditions, discrete responses were observed in the dynamic pressure data. The discrete responses were of low amplitude and posed minimal risk to safe engine operability. Rough combustion analyses showed that all three engines met requirements for broad-banded frequency oscillations. Start and shutdown transient chug oscillations were also examined to assess the overall stability characteristics, with no major issues observed.

  8. Impaired Letter-String Processing in Developmental Dyslexia: What Visual-to-Phonology Code Mapping Disorder?

    ERIC Educational Resources Information Center

    Valdois, Sylviane; Lassus-Sangosse, Delphine; Lobier, Muriel

    2012-01-01

    Poor parallel letter-string processing in developmental dyslexia was taken as evidence of poor visual attention (VA) span, that is, a limitation of visual attentional resources that affects multi-character processing. However, the use of letter stimuli in oral report tasks was challenged on its capacity to highlight a VA span disorder. In…

  9. Auditory Processing Interventions and Developmental Dyslexia: A Comparison of Phonemic and Rhythmic Approaches

    ERIC Educational Resources Information Center

    Thomson, Jennifer M.; Leong, Victoria; Goswami, Usha

    2013-01-01

    The purpose of this study was to compare the efficacy of two auditory processing interventions for developmental dyslexia, one based on rhythm and one based on phonetic training. Thirty-three children with dyslexia participated and were assigned to one of three groups (a) a novel rhythmic processing intervention designed to highlight auditory…

  10. Electrocortical Reflections of Face and Gaze Processing in Children with Pervasive Developmental Disorder

    ERIC Educational Resources Information Center

    Kemner, C.; Schuller, A-M.; Van Engeland, H.

    2006-01-01

    Background: Children with pervasive developmental disorder (PDD) show behavioral abnormalities in gaze and face processing, but recent studies have indicated that normal activation of face-specific brain areas in response to faces is possible in this group. It is not clear whether the brain activity related to gaze processing is also normal in…

  11. Understanding Social Dynamics and School Shootings Requires Larger Context. Commentary on: "Bullying, Romantic Rejection, and Conflicts with Teachers: The Crucial Role of Social Dynamics in the Development of School Shootings--A Systematic Review"

    ERIC Educational Resources Information Center

    Klein, Jessie

    2014-01-01

    Jessie Klein begins her commentary on "Bullying, Romantic Rejection, and Conflicts with Teachers: The Crucial Role of Social Dynamics in the Development of School Shootings--A Systematic Review" (Sommer, Leuschner, and Scheithauer," International Journal of Developmental Science" v 8, n1-2, p3-24, 2014) by saying that to…

  12. Somatic mutations reveal asymmetric cellular dynamics in the early human embryo

    DOE PAGES

    Ju, Young Seok; Martincorena, Inigo; Gerstung, Moritz; ...

    2017-03-22

    Somatic cells acquire mutations throughout the course of an individual’s life. Mutations occurring early in embryogenesis are often present in a substantial proportion of, but not all, cells in postnatal humans and thus have particular characteristics and effects. Depending on their location in the genome and the proportion of cells they are present in, these mosaic mutations can cause a wide range of genetic disease syndromes and predispose carriers to cancer. They have a high chance of being transmitted to offspring as de novo germline mutations and, in principle, can provide insights into early human embryonic cell lineages and theirmore » contributions to adult tissues. Although it is known that gross chromosomal abnormalities are remarkably common in early human embryos, our understanding of early embryonic somatic mutations is very limited. Here we use whole-genome sequences of normal blood from 241 adults to identify 163 early embryonic mutations. We estimate that approximately three base substitution mutations occur per cell per cell-doubling event in early human embryogenesis and these are mainly attributable to two known mutational signatures. We used the mutations to reconstruct developmental lineages of adult cells and demonstrate that the two daughter cells of many early embryonic cell-doubling events contribute asymmetrically to adult blood at an approximately 2:1 ratio. As a result, this study therefore provides insights into the mutation rates, mutational processes and developmental outcomes of cell dynamics that operate during early human embryogenesis.« less

  13. Somatic mutations reveal asymmetric cellular dynamics in the early human embryo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ju, Young Seok; Martincorena, Inigo; Gerstung, Moritz

    Somatic cells acquire mutations throughout the course of an individual’s life. Mutations occurring early in embryogenesis are often present in a substantial proportion of, but not all, cells in postnatal humans and thus have particular characteristics and effects. Depending on their location in the genome and the proportion of cells they are present in, these mosaic mutations can cause a wide range of genetic disease syndromes and predispose carriers to cancer. They have a high chance of being transmitted to offspring as de novo germline mutations and, in principle, can provide insights into early human embryonic cell lineages and theirmore » contributions to adult tissues. Although it is known that gross chromosomal abnormalities are remarkably common in early human embryos, our understanding of early embryonic somatic mutations is very limited. Here we use whole-genome sequences of normal blood from 241 adults to identify 163 early embryonic mutations. We estimate that approximately three base substitution mutations occur per cell per cell-doubling event in early human embryogenesis and these are mainly attributable to two known mutational signatures. We used the mutations to reconstruct developmental lineages of adult cells and demonstrate that the two daughter cells of many early embryonic cell-doubling events contribute asymmetrically to adult blood at an approximately 2:1 ratio. As a result, this study therefore provides insights into the mutation rates, mutational processes and developmental outcomes of cell dynamics that operate during early human embryogenesis.« less

  14. Multiscale digital Arabidopsis predicts individual organ and whole-organism growth.

    PubMed

    Chew, Yin Hoon; Wenden, Bénédicte; Flis, Anna; Mengin, Virginie; Taylor, Jasper; Davey, Christopher L; Tindal, Christopher; Thomas, Howard; Ougham, Helen J; de Reffye, Philippe; Stitt, Mark; Williams, Mathew; Muetzelfeldt, Robert; Halliday, Karen J; Millar, Andrew J

    2014-09-30

    Understanding how dynamic molecular networks affect whole-organism physiology, analogous to mapping genotype to phenotype, remains a key challenge in biology. Quantitative models that represent processes at multiple scales and link understanding from several research domains can help to tackle this problem. Such integrated models are more common in crop science and ecophysiology than in the research communities that elucidate molecular networks. Several laboratories have modeled particular aspects of growth in Arabidopsis thaliana, but it was unclear whether these existing models could productively be combined. We test this approach by constructing a multiscale model of Arabidopsis rosette growth. Four existing models were integrated with minimal parameter modification (leaf water content and one flowering parameter used measured data). The resulting framework model links genetic regulation and biochemical dynamics to events at the organ and whole-plant levels, helping to understand the combined effects of endogenous and environmental regulators on Arabidopsis growth. The framework model was validated and tested with metabolic, physiological, and biomass data from two laboratories, for five photoperiods, three accessions, and a transgenic line, highlighting the plasticity of plant growth strategies. The model was extended to include stochastic development. Model simulations gave insight into the developmental control of leaf production and provided a quantitative explanation for the pleiotropic developmental phenotype caused by overexpression of miR156, which was an open question. Modular, multiscale models, assembling knowledge from systems biology to ecophysiology, will help to understand and to engineer plant behavior from the genome to the field.

  15. The emergent executive: a dynamic field theory of the development of executive function.

    PubMed

    Buss, Aaron T; Spencer, John P

    2014-06-01

    Executive function (EF) is a central aspect of cognition that undergoes significant changes in early childhood. Changes in EF in early childhood are robustly predictive of academic achievement and general quality of life measures later in adulthood. We present a dynamic neural field (DNF) model that provides a process-based account of behavior and developmental change in a key task used to probe the early development of executive function—the Dimensional Change Card Sort (DCCS) task. In the DCCS, children must flexibly switch from sorting cards either by shape or color to sorting by the other dimension. Typically, 3-year-olds, but not 5-year-olds, lack the flexibility to do so and perseverate on the first set of rules when instructed to switch. Using the DNF model, we demonstrate how rule-use and behavioral flexibility come about through a form of dimensional attention. Further, developmental change is captured by increasing the robustness and precision of dimensional attention. Note that although this enables the model to effectively switch tasks, the dimensional attention system does not “know” the details of task-specific performance. Rather, correct performance emerges as a property of system–wide interactions. We show how this captures children’s behavior in quantitative detail across 14 versions of the DCCS task. Moreover, we successfully test a set of novel predictions with 3-year-old children from a version of the task not explained by other theories.

  16. The wish for annihilation in 'love-death' as collapse of the need for recognition, in Wagner's Tristan und Isolde.

    PubMed

    Bergstein, Moshe

    2013-08-01

    Wagner's Tristan und Isolde holds a central position in Western music and culture. It is shown to demonstrate consequences of interruption of developmental processes involving the need for recognition of subjectivity, resulting in the collapse of this need into the wish for annihilation of self and other through 'love-death' [Liebestod]. A close reading of the musical language of the opera reveals how this interruption is demonstrated, and the consequent location of identity outside of language, particularly suitable for expression in music. Isolde's dynamics are presented as distinct from that of Tristan, and in contrast to other interpretations of Tristan and Isolde's love as an attack on the Oedipal order, or as a regressive wish for pre-Oedipal union. Isolde's Act I narrative locates the origin of her desire in the protagonists' mutual gaze at a traumatic moment. In this moment powerful and contrasting emotions converge, evoking thwarted developmental needs, and arousing the fantasy of redemption in love-death. By removing the magical elements, Wagner enables a deeper understanding of the characters' positions in relation to each other, each with his or her own needs for recognition and traumatic experiences. These positions invite mutual identifications resulting in rising tension between affirmation of identity and annihilation, with actual death as the only possible psychic solution. The dynamics described in the opera demonstrate the function of music and opera in conveying meaning which is not verbally expressible. Copyright © 2013 Institute of Psychoanalysis.

  17. Assessment of Diagnostic Value of Single View Dynamic Technique in Diagnosis of Developmental Dysplasia of Hip: A Comparison with Static and Dynamic Ultrasond Techniques

    PubMed Central

    Alamdaran, Seyed Ali; Kazemi, Sahar; Parsa, Ali; Moghadam, Mohammad Hallaj; Feyzi, Ali; Mardani, Reza

    2016-01-01

    Background: Developmental dysplasia of hip (DDH) is a common childhood disorder, and ultrasonography examination is routinely used for screening purposes. In this study, we aimed to evaluate a modified combined static and dynamic ultrasound technique for the detection of DDH and to compare with the results of static and dynamic ultrasound techniques. Methods: In this cross-sectional study, during 2013- 2015, 300 high-risk infants were evaluated by ultrasound for DDH. Both hips were examined with three techniques: static, dynamic and single view static and dynamic technique. Statistical analysis was performed using SPSS version 11.5. Results: Patients aged 9 days to 83 weeks. 75% of the patients were 1 to 3 months old. Among 600 hip joints, about 5% were immature in static sonography and almost all of them were unstable in dynamic techniques. 0.3% of morphologically normal hips were unstable in dynamic sonography and 9% of unstable hips had normal morphology. The mean β angle differences in coronal view before and after stress maneuver was 14.43±5.47° in unstable hips. Single view static and dynamic technique revealed that all cases with acetabular dysplasia, instability and dislocation, except two dislocations, were detected by dynamic transverse view. For two cases, Ortolani maneuver showed femoral head reversibility in dislocated hips. Using single view static and dynamic technique was indicative and applicable for detection of more than 99% of cases. Conclusion: Single view static and dynamic technique not only is a fast and easy technique, but also it is of high diagnostic value in assessment of DDH. PMID:27847852

  18. Temporal and spatial complexity of maternal thermoregulation in tropical pythons.

    PubMed

    Stahlschmidt, Zachary Ross; Shine, Richard; Denardo, Dale F

    2012-01-01

    Parental care is a widespread adaptation that evolved independently in a broad range of taxa. Although the dynamics by which two parents meet the developmental needs of offspring are well studied in birds, we lack understanding about the temporal and spatial complexity of parental care in taxa exhibiting female-only care, the predominant mode of parental care. Thus, we examined the behavioral and physiological mechanisms by which female water pythons Liasis fuscus meet a widespread developmental need (thermoregulation) in a natural setting. Although female L. fuscus were not facultatively thermogenic, they did use behaviors on multiple spatial scales (e.g., shifts in egg-brooding postures and surface activity patterns) to balance the thermal needs of their offspring throughout reproduction (gravidity and egg brooding). Maternal behaviors in L. fuscus varied by stage within reproduction and were mediated by interindividual variation in body size and fecundity. Female pythons with relatively larger clutch sizes were cooler during egg brooding, suggesting a trade-off between reproductive quantity (size of clutch) and quality (developmental temperature). In nature, caregiving parents of all taxa must navigate both extrinsic factors (temporal and spatial complexity) and intrinsic factors (body size and fecundity) to meet the needs of their offspring. Our study used a comprehensive approach that can be used as a general template for future research examining the dynamics by which parents meet other developmental needs (e.g., predation risk or energy balance).

  19. Systematically labeling developmental stage-specific genes for the study of pancreatic β-cell differentiation from human embryonic stem cells.

    PubMed

    Liu, Haisong; Yang, Huan; Zhu, Dicong; Sui, Xin; Li, Juan; Liang, Zhen; Xu, Lei; Chen, Zeyu; Yao, Anzhi; Zhang, Long; Zhang, Xi; Yi, Xing; Liu, Meng; Xu, Shiqing; Zhang, Wenjian; Lin, Hua; Xie, Lan; Lou, Jinning; Zhang, Yong; Xi, Jianzhong; Deng, Hongkui

    2014-10-01

    The applications of human pluripotent stem cell (hPSC)-derived cells in regenerative medicine has encountered a long-standing challenge: how can we efficiently obtain mature cell types from hPSCs? Attempts to address this problem are hindered by the complexity of controlling cell fate commitment and the lack of sufficient developmental knowledge for guiding hPSC differentiation. Here, we developed a systematic strategy to study hPSC differentiation by labeling sequential developmental genes to encompass the major developmental stages, using the directed differentiation of pancreatic β cells from hPSCs as a model. We therefore generated a large panel of pancreas-specific mono- and dual-reporter cell lines. With this unique platform, we visualized the kinetics of the entire differentiation process in real time for the first time by monitoring the expression dynamics of the reporter genes, identified desired cell populations at each differentiation stage and demonstrated the ability to isolate these cell populations for further characterization. We further revealed the expression profiles of isolated NGN3-eGFP(+) cells by RNA sequencing and identified sushi domain-containing 2 (SUSD2) as a novel surface protein that enriches for pancreatic endocrine progenitors and early endocrine cells both in human embryonic stem cells (hESC)-derived pancreatic cells and in the developing human pancreas. Moreover, we captured a series of cell fate transition events in real time, identified multiple cell subpopulations and unveiled their distinct gene expression profiles, among heterogeneous progenitors for the first time using our dual reporter hESC lines. The exploration of this platform and our new findings will pave the way to obtain mature β cells in vitro.

  20. The evolution of environmental and genetic sex determination in fluctuating environments.

    PubMed

    Van Dooren, Tom J M; Leimar, Olof

    2003-12-01

    Twenty years ago, Bulmer and Bull suggested that disruptive selection, produced by environmental fluctuations, can result in an evolutionary transition from environmental sex determination (ESD) to genetic sex determination (GSD). We investigated the feasibility of such a process, using mutation-limited adaptive dynamics and individual-based computer simulations. Our model describes the evolution of a reaction norm for sex determination in a metapopulation setting with partial migration and variation in an environmental variable both within and between local patches. The reaction norm represents the probability of becoming a female as a function of environmental state and was modeled as a sigmoid function with two parameters, one giving the location (i.e., the value of the environmental variable for which an individual has equal chance of becoming either sex) and the other giving the slope of the reaction norm for that environment. The slope can be interpreted as being set by the level of developmental noise in morph determination, with less noise giving a steeper slope and a more switchlike reaction norm. We found convergence stable reaction norms with intermediate to large amounts of developmental noise for conditions characterized by low migration rates, small differential competitive advantages between the sexes over environments, and little variation between individual environments within patches compared to variation between patches. We also considered reaction norms with the slope parameter constrained to a high value, corresponding to little developmental noise. For these we found evolutionary branching in the location parameter and a transition from ESD toward GSD, analogous to the original analysis by Bulmer and Bull. Further evolutionary change, including dominance evolution, produced a polymorphism acting as a GSD system with heterogamety. Our results point to the role of developmental noise in the evolution of sex determination.

  1. Computational Modeling and Simulation of Developmental ...

    EPA Pesticide Factsheets

    SYNOPSIS: The question of how tissues and organs are shaped during development is crucial for understanding human birth defects. Data from high-throughput screening assays on human stem cells may be utilized predict developmental toxicity with reasonable accuracy. Other types of models are necessary, however, for mechanism-specific analysis because embryogenesis requires precise timing and control. Agent-based modeling and simulation (ABMS) is an approach to virtually reconstruct these dynamics, cell-by-cell and interaction-by-interaction. Using ABMS, HTS lesions from ToxCast can be integrated with patterning systems heuristically to propagate key events This presentation to FDA-CFSAN will update progress on the applications of in silico modeling tools and approaches for assessing developmental toxicity.

  2. Communication Deficits in Infants and Toddlers with Developmental Disabilities

    ERIC Educational Resources Information Center

    Hattier, Megan A.; Matson, Johnny L.; Sipes, Megan; Turygin, Nicole

    2011-01-01

    Research that focuses on detecting and assessing the presence of communication impairments in children with developmental disabilities exists. However, more research is needed which compares these deficits across individuals with various developmental disabilities. This information could inform the assessment process and treatment programs.…

  3. Parents' Goals for Children: The Dynamic Coexistence of Individualism and Collectivism in Cultures and Individuals

    ERIC Educational Resources Information Center

    Tamis-LeMonda, Catherine S.; Way, Niobe; Hughes, Diane; Yoshikawa, Hirokazu; Kalman, Ronit Kahana; Niwa, Erika Y.

    2008-01-01

    Current scholarship on the cultural value systems of individualism and collectivism, and the associated developmental goals of autonomy and relatedness, has moved beyond grand divide theories to emphasize variation within individuals and cultures. We present a theoretical model on the dynamic coexistence of cultural value systems (at the macro…

  4. Frames of Interaction in Dynamic Assessment: Developmental Diagnoses of Second Language Learning

    ERIC Educational Resources Information Center

    Poehner, Matthew E.; van Compernolle, Remi A.

    2011-01-01

    The Zone of Proximal Development (ZPD), first proposed by the Russian psychologist L.S. Vygotsky, is frequently cited as the theoretical basis behind Dynamic Assessment (DA). However, this concept has led to varied interpretations and practices in education. This paper outlines readings of the ZPD that motivate many current approaches to DA and…

  5. A Strategy for Assessing the Impact of Time-Varying Family Risk Factors on High School Dropout

    ERIC Educational Resources Information Center

    Randolph, Karen A.; Fraser, Mark W.; Orthner, Dennis K.

    2006-01-01

    Human behavior is dynamic, influenced by changing situations over time. Yet the impact of the dynamic nature of important explanatory variables on outcomes has only recently begun to be estimated in developmental models. Using a risk factor perspective, this article demonstrates the potential benefits of regressing time-varying outcome measures on…

  6. The Dynamics of Free Recall and Their Relation to Rehearsal between 8 and 10 Years of Age

    ERIC Educational Resources Information Center

    Lehmann, Martin; Hasselhorn, Marcus

    2010-01-01

    The present study longitudinally examined changes in recall in children between the ages of 8 and 10 years. Given the increasingly sophisticated use of memory strategies during this developmental period, correspondences between study and recall dynamics were of particular interest. Seventy-six children performed free-recall tasks on 5 occasions…

  7. Dynamics of Identity Development and Separation-Individuation in Parent-Child Relationships during Adolescence and Emerging Adulthood--A Conceptual Integration

    ERIC Educational Resources Information Center

    Koepke, Sabrina; Denissen, Jaap J. A.

    2012-01-01

    Identity development and separation-individuation in parent-child relationships are widely perceived as related tasks of psychosocial maturation. However, a dynamic, developmental perspective that explains how intra-personal change in identity evolves from transactions between parents and children is not sufficiently represented in the literature.…

  8. The Evaluation Life Cycle: A Retrospective Assessment of Stages and Phases of the Circles of Care Initiative

    ERIC Educational Resources Information Center

    Bess, Gary; Allen, James; Deters, Pamela B.

    2004-01-01

    A life cycle metaphor characterizes the evolving relationship between the evaluator and program staff. This framework suggests that common developmental dynamics occur in roughly the same order across groups and settings. There are stage-specific dynamics that begin with Pre-History, which characterize the relationship between the grantees and…

  9. Myosin II Controls Junction Fluctuations to Guide Epithelial Tissue Ordering.

    PubMed

    Curran, Scott; Strandkvist, Charlotte; Bathmann, Jasper; de Gennes, Marc; Kabla, Alexandre; Salbreux, Guillaume; Baum, Buzz

    2017-11-20

    Under conditions of homeostasis, dynamic changes in the length of individual adherens junctions (AJs) provide epithelia with the fluidity required to maintain tissue integrity in the face of intrinsic and extrinsic forces. While the contribution of AJ remodeling to developmental morphogenesis has been intensively studied, less is known about AJ dynamics in other circumstances. Here, we study AJ dynamics in an epithelium that undergoes a gradual increase in packing order, without concomitant large-scale changes in tissue size or shape. We find that neighbor exchange events are driven by stochastic fluctuations in junction length, regulated in part by junctional actomyosin. In this context, the developmental increase of isotropic junctional actomyosin reduces the rate of neighbor exchange, contributing to tissue order. We propose a model in which the local variance in tension between junctions determines whether actomyosin-based forces will inhibit or drive the topological transitions that either refine or deform a tissue. Copyright © 2017. Published by Elsevier Inc.

  10. Parenting Practices in Cultural Context: An Ecological Perspective

    ERIC Educational Resources Information Center

    Zarnegar, Zohreh

    2015-01-01

    Despite general consensus that parenting practices influence the developmental processes of children, many questions about the impacts of parenting practices on child development within the cultural context remain unanswered. This article presents how cultural templates influence parenting practices and developmental processes of young children.…

  11. More normal than not: a qualitative assessment of the developmental experiences of gay male youth.

    PubMed

    Eccles, Thomas A; Sayegh, M A; Fortenberry, J D; Zimet, G D

    2004-11-01

    To examine gay youth experiences within the context of normal adolescent development. Thematic analyses of interviews with 13 self-identified gay male youth, aged 16-22 years, each reporting minimal sexual identity distress, were completed. Interviews focused on: (a) descriptions of developmental changes perceived to occur for all adolescents, (b) descriptions of the participants' developmental experience, and (c) participants' direct comparisons of their perceptions of gay and nongay developmental experience. Data were analyzed by two investigators who, after initial review of the interview transcripts, developed a unified coding template to permit systematic analysis of the transcripts for recurrent themes. (a) Few (2 of 13) participants reported overall developmental experience markedly different from nongay peers. (b) Peer interaction was seen as the domain most different from that of nongay peers. (c) Open gay self-identification altered, generally positively, all peer interaction. (d) Increased peer interaction enhanced maturity in other domains. (e) Family dynamics were not substantively altered by open gay self-identification. (f) Middle and high school were identified as relatively hostile environments in which to openly identify as gay, affecting the timing and the extent of self-disclosure. (g) Developmental progress showed asynchrony across developmental domains. General developmental dysfunction is not inevitable for gay adolescents, nor is identifiable personal or family pathology directly related to sexual identity.

  12. The Growth of Developmental Thought: Implications for a New Evolutionary Psychology

    PubMed Central

    Lickliter, Robert

    2009-01-01

    Evolution has come to be increasingly discussed in terms of changes in developmental processes rather than simply in terms of changes in gene frequencies. This shift is based in large part on the recognition that since all phenotypic traits arise during ontogeny as products of individual development, a primary basis for evolutionary change must be variations in the patterns and processes of development. Further, the products of development are epigenetic, not just genetic, and this is the case even when considering the evolutionary process. These insights have led investigators to reconsider the established notion of genes as the primary cause of development, opening the door to research programs focused on identifying how genetic and non-genetic factors coact to guide and constrain the process of development and its outcomes. I explore this growth of developmental thought and its implications for the achievement of a unified theory of heredity, development, and evolution and consider its implications for the realization of a new, developmentally-based evolutionary psychology. PMID:19956346

  13. Tracking and Quantifying Developmental Processes in C. elegans Using Open-source Tools.

    PubMed

    Dutta, Priyanka; Lehmann, Christina; Odedra, Devang; Singh, Deepika; Pohl, Christian

    2015-12-16

    Quantitatively capturing developmental processes is crucial to derive mechanistic models and key to identify and describe mutant phenotypes. Here protocols are presented for preparing embryos and adult C. elegans animals for short- and long-term time-lapse microscopy and methods for tracking and quantification of developmental processes. The methods presented are all based on C. elegans strains available from the Caenorhabditis Genetics Center and on open-source software that can be easily implemented in any laboratory independently of the microscopy system used. A reconstruction of a 3D cell-shape model using the modelling software IMOD, manual tracking of fluorescently-labeled subcellular structures using the multi-purpose image analysis program Endrov, and an analysis of cortical contractile flow using PIVlab (Time-Resolved Digital Particle Image Velocimetry Tool for MATLAB) are shown. It is discussed how these methods can also be deployed to quantitatively capture other developmental processes in different models, e.g., cell tracking and lineage tracing, tracking of vesicle flow.

  14. Integrative psychotherapy.

    PubMed

    Kozarić-Kovacić, Dragica

    2008-09-01

    The main purposes of the article are to present the history of integration in psychotherapy, the reasons of the development integrative approaches, and the approaches to integration in psychotherapy. Three approaches to integration in psychotherapy exist: theoretical integration, theoretical eclecticism, and common factors in different psychotherapeutic trends. In integrative psychotherapy, the basic epistemology, theory, and clinical practice are based on the phenomenology, field theory, holism, dialogue, and co-creation of dialogue in the therapeutic relationship. The main criticism is that integrative psychotherapy suffers from confusion and many unresolved controversies. It is difficult to theoretically and methodologically define the clinically applied model that is based on such a different epistemological and theoretical presumptions. Integrative psychotherapy is a synthesis of humanistic psychotherapy, object relations theory, and psychoanalytical self psychology. It focuses on the dynamics and potentials of human relationships, with a goal of changing the relations and understanding internal and external resistances. The process of integrative psychotherapy is primarily focused on the developmental-relational model and co-creation of psychotherapeutic relationship as a single interactive event, which is not unilateral, but rather a joint endeavor by both the therapist and the patient/client. The need for a relationship is an important human need and represents a process of attunement that occurs as a response to the need for a relationship, a unique interpersonal contact between two people. If this need is not met, it manifests with the different feelings and various defenses. To meet this need, we need to have another person with whom we can establish a sensitive, attuned relationship. Thus, the therapist becomes this person who tries to supplement what the person did not receive. Neuroscience can be a source of integration through different therapies. We may say that both neuroscience and neurobiology offer yet another bridge for integration of different schools of thought and supports the importance of the developmental relational model during the developmental phases and relational process in psychotherapy in which the quality of therapeutic relationship is the primary healing process. Furthermore, the development of integrative psychotherapy in Croatia and the organization of the Croatian program, which is identical to the program of the European Association for Integrative Psychotherapy is shortly described.

  15. Apical constriction: themes and variations on a cellular mechanism driving morphogenesis

    PubMed Central

    Martin, Adam C.; Goldstein, Bob

    2014-01-01

    Apical constriction is a cell shape change that promotes tissue remodeling in a variety of homeostatic and developmental contexts, including gastrulation in many organisms and neural tube formation in vertebrates. In recent years, progress has been made towards understanding how the distinct cell biological processes that together drive apical constriction are coordinated. These processes include the contraction of actin-myosin networks, which generates force, and the attachment of actin networks to cell-cell junctions, which allows forces to be transmitted between cells. Different cell types regulate contractility and adhesion in unique ways, resulting in apical constriction with varying dynamics and subcellular organizations, as well as a variety of resulting tissue shape changes. Understanding both the common themes and the variations in apical constriction mechanisms promises to provide insight into the mechanics that underlie tissue morphogenesis. PMID:24803648

  16. Effective Connectivity from Early Visual Cortex to Posterior Occipitotemporal Face Areas Supports Face Selectivity and Predicts Developmental Prosopagnosia

    PubMed Central

    Garrido, Lucia; Driver, Jon; Dolan, Raymond J.; Duchaine, Bradley C.; Furl, Nicholas

    2016-01-01

    Face processing is mediated by interactions between functional areas in the occipital and temporal lobe, and the fusiform face area (FFA) and anterior temporal lobe play key roles in the recognition of facial identity. Individuals with developmental prosopagnosia (DP), a lifelong face recognition impairment, have been shown to have structural and functional neuronal alterations in these areas. The present study investigated how face selectivity is generated in participants with normal face processing, and how functional abnormalities associated with DP, arise as a function of network connectivity. Using functional magnetic resonance imaging and dynamic causal modeling, we examined effective connectivity in normal participants by assessing network models that include early visual cortex (EVC) and face-selective areas and then investigated the integrity of this connectivity in participants with DP. Results showed that a feedforward architecture from EVC to the occipital face area, EVC to FFA, and EVC to posterior superior temporal sulcus (pSTS) best explained how face selectivity arises in both controls and participants with DP. In this architecture, the DP group showed reduced connection strengths on feedforward connections carrying face information from EVC to FFA and EVC to pSTS. These altered network dynamics in DP contribute to the diminished face selectivity in the posterior occipitotemporal areas affected in DP. These findings suggest a novel view on the relevance of feedforward projection from EVC to posterior occipitotemporal face areas in generating cortical face selectivity and differences in face recognition ability. SIGNIFICANCE STATEMENT Areas of the human brain showing enhanced activation to faces compared to other objects or places have been extensively studied. However, the factors leading to this face selectively have remained mostly unknown. We show that effective connectivity from early visual cortex to posterior occipitotemporal face areas gives rise to face selectivity. Furthermore, people with developmental prosopagnosia, a lifelong face recognition impairment, have reduced face selectivity in the posterior occipitotemporal face areas and left anterior temporal lobe. We show that this reduced face selectivity can be predicted by effective connectivity from early visual cortex to posterior occipitotemporal face areas. This study presents the first network-based account of how face selectivity arises in the human brain. PMID:27030766

  17. Quantitative developmental transcriptomes of the Mediterranean sea urchin Paracentrotus lividus.

    PubMed

    Gildor, Tsvia; Malik, Assaf; Sher, Noa; Avraham, Linor; Ben-Tabou de-Leon, Smadar

    2016-02-01

    Embryonic development progresses through the timely activation of thousands of differentially activated genes. Quantitative developmental transcriptomes provide the means to relate global patterns of differentially expressed genes to the emerging body plans they generate. The sea urchin is one of the classic model systems for embryogenesis and the models of its developmental gene regulatory networks are of the most comprehensive of their kind. Thus, the sea urchin embryo is an excellent system for studies of its global developmental transcriptional profiles. Here we produced quantitative developmental transcriptomes of the sea urchin Paracentrotus lividus (P. lividus) at seven developmental stages from the fertilized egg to prism stage. We generated de-novo reference transcriptome and identified 29,817 genes that are expressed at this time period. We annotated and quantified gene expression at the different developmental stages and confirmed the reliability of the expression profiles by QPCR measurement of a subset of genes. The progression of embryo development is reflected in the observed global expression patterns and in our principle component analysis. Our study illuminates the rich patterns of gene expression that participate in sea urchin embryogenesis and provide an essential resource for further studies of the dynamic expression of P. lividus genes. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Childhood Depression: A Developmental Perspective on Disruption of Functioning.

    ERIC Educational Resources Information Center

    Snyder, Rebecca Lynne

    This paper reviews research on childhood depression and its relation to developmental processes, family functioning, academic performance, and peer relationships. The methodological strengths and weaknesses of the research are examined. A section on developmental perspectives looks at early childhood, school age children, and adolescence. Support…

  19. Constructivist developmental theory is needed in developmental neuroscience

    NASA Astrophysics Data System (ADS)

    Arsalidou, Marie; Pascual-Leone, Juan

    2016-12-01

    Neuroscience techniques provide an open window previously unavailable to the origin of thoughts and actions in children. Developmental cognitive neuroscience is booming, and knowledge from human brain mapping is finding its way into education and pediatric practice. Promises of application in developmental cognitive neuroscience rests however on better theory-guided data interpretation. Massive amounts of neuroimaging data from children are being processed, yet published studies often do not frame their work within developmental models—in detriment, we believe, to progress in this field. Here we describe some core challenges in interpreting the data from developmental cognitive neuroscience, and advocate the use of constructivist developmental theories of human cognition with a neuroscience interpretation.

  20. Where Do Epigenetics and Developmental Origins Take the Field of Developmental Psychopathology?

    PubMed

    Nigg, Joel T

    2016-04-01

    The time is ripe for upgrading or rethinking the assumed paradigms for how we study developmental psychopathology. The classic transactional models appear robust but need specification in terms of biological and psychosocial processes. That specification is increasingly tractable due to developments in genetics, epigenetics, the measurement of psychosocial processes, and theory and data on developmental origins of health and disease. This essay offers a high-level view of where the field has been and where it may be going in regard to nosology and conceptions of etiology. Remarks seek to consider rapidly evolving contexts not only for children, but also for the science itself due to progress in our field and in neighboring fields. Illustrations are provided as to how syndromal nosology can be enriched and advanced by careful integration with biologically relevant behavioral dimensions and application of quantitative methods. It is concluded that a revised, forward-looking, transactional model of abnormal child psychology will incorporate prenatal and postnatal developmental programming, epigenetic mechanisms and their associated genotype x environment interactions, and inflammatory processes as a potential common mediator influencing numerous health and mental health conditions.

  1. Social defense: an evolutionary-developmental model of children's strategies for coping with threat in the peer group.

    PubMed

    Martin, Meredith J; Davies, Patrick T; MacNeill, Leigha A

    2014-04-29

    Navigating the ubiquitous conflict, competition, and complex group dynamics of the peer group is a pivotal developmental task of childhood. Difficulty negotiating these challenges represents a substantial source of risk for psychopathology. Evolutionary developmental psychology offers a unique perspective with the potential to reorganize the way we think about the role of peer relationships in shaping how children cope with the everyday challenges of establishing a social niche. To address this gap, we utilize the ethological reformulation of the emotional security theory as a guide to developing an evolutionary framework for advancing an understanding of the defense strategies children use to manage antagonistic peer relationships and protect themselves from interpersonal threat (Davies and Sturge-Apple, 2007). In this way, we hope to illustrate the value of an evolutionary developmental lens in generating unique theoretical insight and novel research directions into the role of peer relationships in the development of psychopathology.

  2. Developmental dyscalculia is related to visuo-spatial memory and inhibition impairment☆

    PubMed Central

    Szucs, Denes; Devine, Amy; Soltesz, Fruzsina; Nobes, Alison; Gabriel, Florence

    2013-01-01

    Developmental dyscalculia is thought to be a specific impairment of mathematics ability. Currently dominant cognitive neuroscience theories of developmental dyscalculia suggest that it originates from the impairment of the magnitude representation of the human brain, residing in the intraparietal sulcus, or from impaired connections between number symbols and the magnitude representation. However, behavioral research offers several alternative theories for developmental dyscalculia and neuro-imaging also suggests that impairments in developmental dyscalculia may be linked to disruptions of other functions of the intraparietal sulcus than the magnitude representation. Strikingly, the magnitude representation theory has never been explicitly contrasted with a range of alternatives in a systematic fashion. Here we have filled this gap by directly contrasting five alternative theories (magnitude representation, working memory, inhibition, attention and spatial processing) of developmental dyscalculia in 9–10-year-old primary school children. Participants were selected from a pool of 1004 children and took part in 16 tests and nine experiments. The dominant features of developmental dyscalculia are visuo-spatial working memory, visuo-spatial short-term memory and inhibitory function (interference suppression) impairment. We hypothesize that inhibition impairment is related to the disruption of central executive memory function. Potential problems of visuo-spatial processing and attentional function in developmental dyscalculia probably depend on short-term memory/working memory and inhibition impairments. The magnitude representation theory of developmental dyscalculia was not supported. PMID:23890692

  3. Componential Differences and Varying Developmental Patterns Exhibited in Immersion Programmes

    ERIC Educational Resources Information Center

    Asano, Sachiko

    2015-01-01

    In bilingual literature, few studies have examined the processes of concept formation (CF); even fewer studies have discussed their developmental changes. This study explores language-cognition links and CF fractionation processes by comparing total and partial immersion programmes (TIPs and PIPs). Descriptive statistics (DS), correlational…

  4. Differential representation of albumins and globulins during grain development in durum wheat and its possible functional consequences.

    PubMed

    Arena, Simona; D'Ambrosio, Chiara; Vitale, Monica; Mazzeo, Fiorella; Mamone, Gianfranco; Di Stasio, Luigia; Maccaferri, Marco; Curci, Pasquale Luca; Sonnante, Gabriella; Zambrano, Nicola; Scaloni, Andrea

    2017-06-06

    Durum wheat (Triticum turgidum ssp. durum (Desf.) Husn.) is an economically important crop used for the production of semolina, which is the basis of pasta and other food products. Its grains provide proteins and starch for human consumption. Grain development is a key process in wheat physiology; it is highly affected by a number of enzymes that control the metabolic processes governing accumulation of starch and storage proteins and ultimately grain weight. Most of these enzymes are present in the albumin/globulin grain fraction, which represents about a quarter of total seed proteins. With the aim to describe the dynamic profile of the albumin/globulin fraction during durum wheat grain development, we performed a proteomic analysis of this subproteome using a two-dimensional differential gel electrophoresis (2D-DIGE)-based approach and compared six developmental stages. A total of 285 differentially (237 over- and 48 under-) represented spots was identified by nanoLC-ESI-LIT-MS/MS, which were associated with 217 non-redundant Triticum sequence entries. Quantitative protein dynamics demonstrated that carbon metabolism, energy, protein destination/storage, disease/defense and cell growth/division functional categories were highly affected during grain development, concomitantly with progressive grain size increase and starch/protein reserve accumulation. Bioinformatic interaction prediction revealed a complex network of differentially represented proteins mainly centered at enzymes involved in carbon and protein metabolism. A description of 18 proteins associated with wheat flour human allergies was also obtained; these components showed augmented levels at the last developmental stages. By providing a comprehensive understanding of the molecular basis of durum wheat grain development, yield and quality formation, this study provides the foundation and reveals potential biomarkers for further investigations of durum wheat breeding and semolina quality. A 2D-DIGE-based comparative analysis of the albumin/globulin fraction from durum wheat caryopses at six developmental stages was performed to describe the dynamic subproteomic changes associated with grain development. Quantitative variations of 217 differentially proteins demonstrated that highly affected are the functional categories of carbon metabolism, energy, protein destination/storage, disease/defense and cell growth/division, which displayed a general over-representation, consistently with concomitant occurrence of grain size increase and starch/protein reserve accumulation. Bioinformatics revealed a complex protein network centered mainly at enzymes involved in carbon and protein metabolism. Differentially represented proteins and corresponding functional categories highly resembled those previously identified as variable in developing bread wheat grain. This suggests that the main differences in kernel hardness between durum and bread wheat probably do not depend on proteomic changes in corresponding albumins/globulins, but on other specific factors affecting the interaction between the starch granules and the endosperm protein matrix in the kernel. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Developmentally dynamic genome: Evidence of genetic influences on increases and decreases in conduct problems from early childhood to adolescence

    PubMed Central

    Pingault, Jean-Baptiste; Rijsdijk, Frühling; Zheng, Yao; Plomin, Robert; Viding, Essi

    2015-01-01

    The development of conduct problems in childhood and adolescence is associated with adverse long-term outcomes, including psychiatric morbidity. Although genes constitute a proven factor of stability in conduct problems, less is known regarding their role in conduct problems’ developmental course (i.e. systematic age changes, for instance linear increases or decreases).Mothers rated conduct problems from age 4 to 16 years in 10,038 twin pairs from the Twins Early Development Study. Individual differences in the baseline level (.78; 95% CI: .68-.88) and the developmental course of conduct problems (.73; 95% CI: .60-.86) were under high and largely independent additive genetic influences. Shared environment made a small contribution to the baseline level but not to the developmental course of conduct problems. These results show that genetic influences not only contribute to behavioural stability but also explain systematic change in conduct problems. Different sets of genes may be associated with the developmental course versus the baseline level of conduct problems. The structure of genetic and environmental influences on the development of conduct problems suggests that repeated preventive interventions at different developmental stages might be necessary to achieve a long-term impact. PMID:25944445

  6. Developmentally dynamic genome: Evidence of genetic influences on increases and decreases in conduct problems from early childhood to adolescence.

    PubMed

    Pingault, Jean-Baptiste; Rijsdijk, Frühling; Zheng, Yao; Plomin, Robert; Viding, Essi

    2015-05-06

    The development of conduct problems in childhood and adolescence is associated with adverse long-term outcomes, including psychiatric morbidity. Although genes constitute a proven factor of stability in conduct problems, less is known regarding their role in conduct problems' developmental course (i.e. systematic age changes, for instance linear increases or decreases).Mothers rated conduct problems from age 4 to 16 years in 10,038 twin pairs from the Twins Early Development Study. Individual differences in the baseline level (.78; 95% CI: .68-.88) and the developmental course of conduct problems (.73; 95% CI: .60-.86) were under high and largely independent additive genetic influences. Shared environment made a small contribution to the baseline level but not to the developmental course of conduct problems. These results show that genetic influences not only contribute to behavioural stability but also explain systematic change in conduct problems. Different sets of genes may be associated with the developmental course versus the baseline level of conduct problems. The structure of genetic and environmental influences on the development of conduct problems suggests that repeated preventive interventions at different developmental stages might be necessary to achieve a long-term impact.

  7. Early Developmental Conditioning of Later Health and Disease: Physiology or Pathophysiology?

    PubMed Central

    Hanson, M. A.; Gluckman, P. D.

    2014-01-01

    Extensive experimental animal studies and epidemiological observations have shown that environmental influences during early development affect the risk of later pathophysiological processes associated with chronic, especially noncommunicable, disease (NCD). This field is recognized as the developmental origins of health and disease (DOHaD). We discuss the extent to which DOHaD represents the result of the physiological processes of developmental plasticity, which may have potential adverse consequences in terms of NCD risk later, or whether it is the manifestation of pathophysiological processes acting in early life but only becoming apparent as disease later. We argue that the evidence suggests the former, through the operation of conditioning processes induced across the normal range of developmental environments, and we summarize current knowledge of the physiological processes involved. The adaptive pathway to later risk accords with current concepts in evolutionary developmental biology, especially those concerning parental effects. Outside the normal range, effects on development can result in nonadaptive processes, and we review their underlying mechanisms and consequences. New concepts concerning the underlying epigenetic and other mechanisms involved in both disruptive and nondisruptive pathways to disease are reviewed, including the evidence for transgenerational passage of risk from both maternal and paternal lines. These concepts have wider implications for understanding the causes and possible prevention of NCDs such as type 2 diabetes and cardiovascular disease, for broader social policy and for the increasing attention paid in public health to the lifecourse approach to NCD prevention. PMID:25287859

  8. Effect of science teaching on the young child's concept of piagetian physical causality: Animism and dynamism

    NASA Astrophysics Data System (ADS)

    Wolfinger, Donna M.

    The purpose of this research was to determine whether the young child's understanding of physical causality is affected by school science instruction. Sixty-four subjects, four and one-half through seven years of age, received 300 min of instruction designed to affect the subject's conception of causality as reflected in animism and dynamism. Instruction took place for 30 min per day on ten successive school days. Pretesting was done to allow a stratified random sample to be based on vocabulary level and developmental stage as well as on age and gender. Post-testing consisted of testing of developmental level and level within the causal relations of animism and dynamism. Significant differences (1.05 level) were found between the experimental and control groups for animism. Within the experimental group, males differed significantly (1.001 level) from females. The elimination of animism appeared to have occurred. For dynamism, significant differences (0.05 level) were found only between concrete operational subjects in the experimental and control groups, indicating a concrete level of operations was necessary if dynamism was to be affected. However, a review of interview protocols indicated that subjects classified as nonanimistic had learned to apply a definition rather than to think in a nonanimistic manner.

  9. Project Developmental Continuity Evaluation: Site Visitors' Manual.

    ERIC Educational Resources Information Center

    Morris, Mary; Smith, Allen

    This site visitors' manual is part of a series of documents on the evaluation of Project Developmental Continuity (PDC), a Head Start demonstration program aimed at providing educational and developmental continuity between children's Head Start and primary school experiences. The PDC evaluation documents and analyzes the process of program…

  10. Focus on Methodology: Salivary Bioscience and Research on Adolescence: An Integrated Perspective

    ERIC Educational Resources Information Center

    Granger, Douglas A.; Fortunato, Christine K.; Beltzer, Emilie K.; Virag, Marta; Bright, Melissa A.; Out, Dorothee

    2012-01-01

    The characterization of the salivary proteome and advances in biotechnology create an opportunity for developmental scientists to measure multi-level components of biological systems in oral fluids and identify relationships with developmental processes and behavioral and social forces. The implications for developmental science are profound…

  11. Parent Recognition and Responses to Developmental Concerns in Young Children

    ERIC Educational Resources Information Center

    Marshall, Jennifer; Coulter, Martha L.; Gorski, Peter A.; Ewing, Aldenise

    2016-01-01

    This mixed-methods study examined influences, factors, and processes associated with parental recognition and appraisal of developmental concerns among 23 English- and Spanish-speaking parents of young children with signs of developmental or behavioral problems. Participants shared their experiences through in-depth interviews or focus groups and…

  12. Developmental Planning: An Introduction for Parents

    ERIC Educational Resources Information Center

    Noland, Jim

    2009-01-01

    "Developmental Planning" is the thinking process of using developmental milestones as a general basis for planning and predicting needs for the child within the early years. It considers the time frames associated with normal development across all facets of the child's development. The areas include bone and joint development, movement, sensory…

  13. Games and Simulations in Developmental Education.

    ERIC Educational Resources Information Center

    Clavner, Jerry B.

    Developmental education activities should attempt to provide experiences which do not hold the student back from the normal flow of learning and which utilize processes already in the student's repertoire. Virtually all areas of developmental instruction can be supplemented with games and simulations, that is, activities designed to show the…

  14. The Relation of Emotional Maltreatment to Early Adolescent Competence: Developmental Processes in a Prospective Study

    ERIC Educational Resources Information Center

    Shaffer, Anne; Yates, Tuppett M.; Egeland, Byron R.

    2009-01-01

    Objectives: This investigation examined developmental pathways between childhood emotional maltreatment and adaptational outcomes in early adolescence. This study utilized a developmental psychopathology perspective in adopting a multidimensional approach to the assessment of different forms of emotional maltreatment and later adjustment outcomes.…

  15. TWISTED DWARF1 Mediates the Action of Auxin Transport Inhibitors on Actin Cytoskeleton Dynamics

    PubMed Central

    Bailly, Aurelien; Zwiewka, Marta; Sovero, Valpuri; Ge, Pei; Aryal, Bibek; Hao, Pengchao; Linnert, Miriam; Burgardt, Noelia Inés; Lücke, Christian; Weiwad, Matthias; Michel, Max; Weiergräber, Oliver H.; Pollmann, Stephan; Azzarello, Elisa; Fukao, Yoichiro; Hoffmann, Céline; Wedlich-Söldner, Roland

    2016-01-01

    Plant growth and architecture is regulated by the polar distribution of the hormone auxin. Polarity and flexibility of this process is provided by constant cycling of auxin transporter vesicles along actin filaments, coordinated by a positive auxin-actin feedback loop. Both polar auxin transport and vesicle cycling are inhibited by synthetic auxin transport inhibitors, such as 1-N-naphthylphthalamic acid (NPA), counteracting the effect of auxin; however, underlying targets and mechanisms are unclear. Using NMR, we map the NPA binding surface on the Arabidopsis thaliana ABCB chaperone TWISTED DWARF1 (TWD1). We identify ACTIN7 as a relevant, although likely indirect, TWD1 interactor, and show TWD1-dependent regulation of actin filament organization and dynamics and that TWD1 is required for NPA-mediated actin cytoskeleton remodeling. The TWD1-ACTIN7 axis controls plasma membrane presence of efflux transporters, and as a consequence act7 and twd1 share developmental and physiological phenotypes indicative of defects in auxin transport. These can be phenocopied by NPA treatment or by chemical actin (de)stabilization. We provide evidence that TWD1 determines downstream locations of auxin efflux transporters by adjusting actin filament debundling and dynamizing processes and mediating NPA action on the latter. This function appears to be evolutionary conserved since TWD1 expression in budding yeast alters actin polarization and cell polarity and provides NPA sensitivity. PMID:27053424

  16. Ovary and oocyte maturation of the tick Amblyomma brasiliense Aragão, 1908 (Acari: Ixodidae).

    PubMed

    Seron Sanches, Gustavo; Bechara, Gervásio Henrique; Camargo-Mathias, Maria Izabel

    2010-01-01

    This study describes the ovary anatomy and dynamics of oocytes maturation process of Amblyomma brasiliense ticks. The ovary is of panoistic type lacking nurse and follicular cells. This organ consists of a single continuous tubular structure comprising a lumen delimited by the ovarian wall. Oocytes of this tick species are classified into five stages (I-V) and described based on cytoplasm appearance, presence of germ vesicle, yolk granules aspects, and chorium deposition. Oocytes of various sizes and at different developmental stages remain attached to the ovary by a cellular pedicel until completing stage V. Then they are released into the ovary lumen and from there into the exterior.

  17. Plant chromatin warms up in Madrid

    PubMed Central

    Jarillo, José A; Gaudin, Valerie; Hennig, Lars; Köhler, Claudia; Piñeiro, Manuel

    2014-01-01

    The 3rd European Workshop on Plant Chromatin (EWPC) was held on August 2013 in Madrid, Spain. A number of different topics on plant chromatin were presented during the meeting, including new factors mediating Polycomb Group protein function in plants, chromatin-mediated reprogramming in plant developmental transitions, the role of histone variants, and newly identified chromatin remodeling factors. The function of interactions between chromatin and transcription factors in the modulation of gene expression, the role of chromatin dynamics in the control of nuclear processes and the influence of environmental factors on chromatin organization were also reported. In this report, we highlight some of the new insights emerging in this growing area of research, presented at the 3rd EWPC. PMID:24504145

  18. Regulation of floral stem cell termination in Arabidopsis

    PubMed Central

    Sun, Bo; Ito, Toshiro

    2015-01-01

    In Arabidopsis, floral stem cells are maintained only at the initial stages of flower development, and they are terminated at a specific time to ensure proper development of the reproductive organs. Floral stem cell termination is a dynamic and multi-step process involving many transcription factors, chromatin remodeling factors and signaling pathways. In this review, we discuss the mechanisms involved in floral stem cell maintenance and termination, highlighting the interplay between transcriptional regulation and epigenetic machinery in the control of specific floral developmental genes. In addition, we discuss additional factors involved in floral stem cell regulation, with the goal of untangling the complexity of the floral stem cell regulatory network. PMID:25699061

  19. Microscopic Optical Projection Tomography In Vivo

    PubMed Central

    Meyer, Heiko; Ripoll, Jorge; Tavernarakis, Nektarios

    2011-01-01

    We describe a versatile optical projection tomography system for rapid three-dimensional imaging of microscopic specimens in vivo. Our tomographic setup eliminates the in xy and z strongly asymmetric resolution, resulting from optical sectioning in conventional confocal microscopy. It allows for robust, high resolution fluorescence as well as absorption imaging of live transparent invertebrate animals such as C. elegans. This system offers considerable advantages over currently available methods when imaging dynamic developmental processes and animal ageing; it permits monitoring of spatio-temporal gene expression and anatomical alterations with single-cell resolution, it utilizes both fluorescence and absorption as a source of contrast, and is easily adaptable for a range of small model organisms. PMID:21559481

  20. Reframing Balint: thoughts on family medicine departmental Balint groups.

    PubMed

    Stein, Howard F

    2003-04-01

    This paper explores recurrent processes and themes in the 1,300 family medicine faculty, resident, intern, and community Balint groups the author has facilitated/led. The frequent group "deviation" from the central Balint task of understanding difficult physician-patient relationships is reframed as less "resistance" or "obstacle" to work, as it is an expression of unmet developmental needs and organizational realities. When group members are carefully attended to (by facilitator and one another), the group often becomes emotionally capable of addressing a "case " in the conventional Balint understanding of the work the group has assembled to do. The group dynamics of such "hybrid" Balint groups thus become comprehensible as other than error.

  1. Current and future needs for developmental toxicity testing.

    PubMed

    Makris, Susan L; Kim, James H; Ellis, Amy; Faber, Willem; Harrouk, Wafa; Lewis, Joseph M; Paule, Merle G; Seed, Jennifer; Tassinari, Melissa; Tyl, Rochelle

    2011-10-01

    A review is presented of the use of developmental toxicity testing in the United States and international regulatory assessment of human health risks associated with exposures to pharmaceuticals (human and veterinary), chemicals (agricultural, industrial, and environmental), food additives, cosmetics, and consumer products. Developmental toxicology data are used for prioritization and screening of pharmaceuticals and chemicals, for evaluating and labeling of pharmaceuticals, and for characterizing hazards and risk of exposures to industrial and environmental chemicals. The in vivo study designs utilized in hazard characterization and dose-response assessment for developmental outcomes have not changed substantially over the past 30 years and have served the process well. Now there are opportunities to incorporate new technologies and approaches to testing into the existing assessment paradigm, or to apply innovative approaches to various aspects of risk assessment. Developmental toxicology testing can be enhanced by the refinement or replacement of traditional in vivo protocols, including through the use of in vitro assays, studies conducted in alternative nonmammalian species, the application of new technologies, and the use of in silico models. Potential benefits to the current regulatory process include the ability to screen large numbers of chemicals quickly, with the commitment of fewer resources than traditional toxicology studies, and to refine the risk assessment process through an enhanced understanding of the mechanisms of developmental toxicity and their relevance to potential human risk. As the testing paradigm evolves, the ability to use developmental toxicology data to meet diverse critical regulatory needs must be retained. © 2011 Wiley Periodicals, Inc.

  2. The Visual Magnocellular Pathway in Chinese-Speaking Children with Developmental Dyslexia

    ERIC Educational Resources Information Center

    Wang, Jiu-Ju; Bi, Hong-Yan; Gao, Li-Qun; Wydell, Taeko N.

    2010-01-01

    Previous research into the cognitive processes involved in reading Chinese and developmental dyslexia in Chinese, revealed that the single most important factor appears to be orthographic processing skills rather than phonological skills. Also some studies have indicated that even in alphabetic languages some dyslexic individuals reveal deficits…

  3. New Developments in Developmental Research on Social Information Processing and Antisocial Behavior

    ERIC Educational Resources Information Center

    Fontaine, Reid Griffith

    2010-01-01

    The Special Section on developmental research on social information processing (SIP) and antisocial behavior is here introduced. Following a brief history of SIP theory, comments on several themes--measurement and assessment, attributional and interpretational style, response evaluation and decision, and the relation between emotion and SIP--that…

  4. Event-Related Potentials Reveal Anomalous Morphosyntactic Processing in Developmental Dyslexia

    ERIC Educational Resources Information Center

    Cantiani, Chiara; Lorusso, Maria Luisa; Perego, Paolo; Molteni, Massimo; Guasti, Maria Teresa

    2013-01-01

    In the light of the literature describing oral language difficulties in developmental dyslexia (DD), event-related potentials were used in order to compare morphosyntactic processing in 16 adults with DD (aged 20-28 years) and unimpaired controls. Sentences including subject-verb agreement violations were presented auditorily, with grammaticality…

  5. Dual-Process Theories of Reasoning: The Test of Development

    ERIC Educational Resources Information Center

    Barrouillet, Pierre

    2011-01-01

    Dual-process theories have become increasingly influential in the psychology of reasoning. Though the distinction they introduced between intuitive and reflective thinking should have strong developmental implications, the developmental approach has rarely been used to refine or test these theories. In this article, I review several contemporary…

  6. Children's Competence or Adults' Incompetence: Different Developmental Trajectories in Different Tasks

    ERIC Educational Resources Information Center

    Furlan, Sarah; Agnoli, Franca; Reyna, Valerie F.

    2013-01-01

    Dual-process theories have been proposed to explain normative and heuristic responses to reasoning and decision-making problems. Standard unitary and dual-process theories predict that normative responses should increase with age. However, research has focused recently on exceptions to this standard pattern, including developmental increases in…

  7. ERPs and Eye Movements Reflect Atypical Visual Perception in Pervasive Developmental Disorder

    ERIC Educational Resources Information Center

    Kemner, Chantal; van Engeland, Herman

    2006-01-01

    Many studies of eye tracking or event-related brain potentials (ERPs) in subjects with Pervasive Developmental Disorder (PDD) have yielded inconsistent results on attentional processing. However, recent studies have indicated that there are specific abnormalities in early processing that are probably related to perception. ERP amplitudes in…

  8. AUTONOMY AND RELATEDNESS IN MOTHER-TEEN INTERACTIONS AS PREDICTORS OF INVOLVEMENT IN ADOLESCENT DATING AGGRESSION

    PubMed Central

    Niolon, Phyllis Holditch; Kuperminc, Gabriel P.; Allen, Joseph P.

    2015-01-01

    Objective This multi-method, longitudinal study examines the negotiation of autonomy and relatedness between teens and their mothers as etiologic predictors of perpetration and victimization of dating aggression two years later. Method Observations of 88 mid-adolescents and their mothers discussing a topic of disagreement were coded for each individual’s demonstrations of autonomy and relatedness using a validated coding system. Adolescents self-reported on perpetration and victimization of physical and psychological dating aggression two years later. We hypothesized that mother’s and adolescents’ behaviors supporting autonomy and relatedness would longitudinally predict lower reporting of dating aggression, and that their behaviors inhibiting autonomy and relatedness would predict higher reporting of dating aggression. Results Hypotheses were not supported; main findings were characterized by interactions of sex and risk status with autonomy. Maternal behaviors supporting autonomy predicted higher reports of perpetration and victimization of physical dating aggression for girls, but not for boys. Adolescent behaviors supporting autonomy predicted higher reports of perpetration of physical dating aggression for high-risk adolescents, but not for low-risk adolescents. Conclusions Results indicate that autonomy is a dynamic developmental process, operating differently as a function of social contexts in predicting dating aggression. Examination of these and other developmental processes within parent-child relationships is important in predicting dating aggression, but may depend on social context. PMID:25914852

  9. Proteome profiling of early seed development in Cunninghamia lanceolata (Lamb.) Hook

    PubMed Central

    Shi, Jisen; Zhen, Yan; Zheng, Ren-Hua

    2010-01-01

    Knowledge of the proteome of the early gymnosperm embryo could provide important information for optimizing plant cloning procedures and for establishing platforms for research into plant development/regulation and in vitro transgenic studies. Compared with angiosperms, it is more difficult to induce somatic embryogenesis in gymnosperms; success in this endeavour could be increased, however, if proteomic information was available on the complex, dynamic, and multistage processes of gymnosperm embryogenesis in vivo. A proteomic analysis of Chinese fir seeds in six developmental stages was carried out during early embryogenesis. Proteins were extracted from seeds dissected from immature cones and separated by two-dimensional difference gel electrophoresis. Analysis with DeCyder 6.5 software revealed 136 spots that differed in kinetics of appearance. Analysis by liquid chromatography coupled to tandem mass spectrometry and MALDI-TOF mass spectrometry identified proteins represented by 71 of the spots. Functional annotation of these seed proteins revealed their involvement in programmed cell death and chromatin modification, indicating that the proteins may play a central role in determining the number of zygotic embryos generated and controlling embryo patterning and shape remodelling. The analysis also revealed other proteins involved in carbon metabolism, methionine metabolism, energy production, protein storage, synthesis and stabilization, disease/defence, the cytoskeleton, and embryo development. The comprehensive protein expression profiles generated by our study provide new insights into the complex developmental processes in the seeds of the Chinese fir. PMID:20363864

  10. Do mitochondria play a role in remodelling lace plant leaves during programmed cell death?

    PubMed

    Lord, Christina E N; Wertman, Jaime N; Lane, Stephanie; Gunawardena, Arunika H L A N

    2011-06-06

    Programmed cell death (PCD) is the regulated death of cells within an organism. The lace plant (Aponogeton madagascariensis) produces perforations in its leaves through PCD. The leaves of the plant consist of a latticework of longitudinal and transverse veins enclosing areoles. PCD occurs in the cells at the center of these areoles and progresses outwards, stopping approximately five cells from the vasculature. The role of mitochondria during PCD has been recognized in animals; however, it has been less studied during PCD in plants. The following paper elucidates the role of mitochondrial dynamics during developmentally regulated PCD in vivo in A. madagascariensis. A single areole within a window stage leaf (PCD is occurring) was divided into three areas based on the progression of PCD; cells that will not undergo PCD (NPCD), cells in early stages of PCD (EPCD), and cells in late stages of PCD (LPCD). Window stage leaves were stained with the mitochondrial dye MitoTracker Red CMXRos and examined. Mitochondrial dynamics were delineated into four categories (M1-M4) based on characteristics including distribution, motility, and membrane potential (ΔΨm). A TUNEL assay showed fragmented nDNA in a gradient over these mitochondrial stages. Chloroplasts and transvacuolar strands were also examined using live cell imaging. The possible importance of mitochondrial permeability transition pore (PTP) formation during PCD was indirectly examined via in vivo cyclosporine A (CsA) treatment. This treatment resulted in lace plant leaves with a significantly lower number of perforations compared to controls, and that displayed mitochondrial dynamics similar to that of non-PCD cells. Results depicted mitochondrial dynamics in vivo as PCD progresses within the lace plant, and highlight the correlation of this organelle with other organelles during developmental PCD. To the best of our knowledge, this is the first report of mitochondria and chloroplasts moving on transvacuolar strands to form a ring structure surrounding the nucleus during developmental PCD. Also, for the first time, we have shown the feasibility for the use of CsA in a whole plant system. Overall, our findings implicate the mitochondria as playing a critical and early role in developmentally regulated PCD in the lace plant.

  11. Developmental trends in the process of constructing own- and other-race facial composites.

    PubMed

    Kehn, Andre; Renken, Maggie D; Gray, Jennifer M; Nunez, Narina L

    2014-01-01

    The current study examined developmental differences from the age of 5 to 18 in the creation process of own- and other-race facial composites. In addition, it considered how differences in the creation process affect similarity ratings. Participants created two composites (one own- and one other-race) from memory. The complexity of the composite creation process was recorded during Phase One. In Phase Two, a separate group of participants rated the composites for similarity to the corresponding target face. Results support the cross-race effect, developmental differences (based on composite creators) in similarity ratings, and the importance of the creation process for own- and other-race facial composites. Together, these findings suggest that as children get older the process through which they create facial composites becomes more complex and their ability to create facial composites improves. Increased complexity resulted in higher rated composites. Results are discussed from a psycho-legal perspective.

  12. Impaired letter-string processing in developmental dyslexia: what visual-to-phonology code mapping disorder?

    PubMed

    Valdois, Sylviane; Lassus-Sangosse, Delphine; Lobier, Muriel

    2012-05-01

    Poor parallel letter-string processing in developmental dyslexia was taken as evidence of poor visual attention (VA) span, that is, a limitation of visual attentional resources that affects multi-character processing. However, the use of letter stimuli in oral report tasks was challenged on its capacity to highlight a VA span disorder. In particular, report of poor letter/digit-string processing but preserved symbol-string processing was viewed as evidence of poor visual-to-phonology code mapping, in line with the phonological theory of developmental dyslexia. We assessed here the visual-to-phonological-code mapping disorder hypothesis. In Experiment 1, letter-string, digit-string and colour-string processing was assessed to disentangle a phonological versus visual familiarity account of the letter/digit versus symbol dissociation. Against a visual-to-phonological-code mapping disorder but in support of a familiarity account, results showed poor letter/digit-string processing but preserved colour-string processing in dyslexic children. In Experiment 2, two tasks of letter-string report were used, one of which was performed simultaneously to a high-taxing phonological task. Results show that dyslexic children are similarly impaired in letter-string report whether a concurrent phonological task is simultaneously performed or not. Taken together, these results provide strong evidence against a phonological account of poor letter-string processing in developmental dyslexia. Copyright © 2012 John Wiley & Sons, Ltd.

  13. Developmental Role of Static, Dynamic, and Contextual Cues in Speech Perception

    ERIC Educational Resources Information Center

    Hicks, Candace Bourland; Ohde, Ralph N.

    2005-01-01

    The purpose of the current study was to examine the role of syllable duration context as well as static and dynamic acoustic properties in child and adult speech perception. Ten adults and eleven 4?5-year-old children identified a syllable as [ba] or [wa] (stop-glide contrast) in 3 conditions differing in synthetic continua. The 1st condition…

  14. The Dynamics of Development on the Dimensional Change Card Sorting Task

    ERIC Educational Resources Information Center

    van Bers, Bianca M. C. W.; Visser, Ingmar; van Schijndel, Tessa J. P.; Mandell, Dorothy J.; Raijmakers, Maartje E. J.

    2011-01-01

    A widely used paradigm to study cognitive flexibility in preschoolers is the Dimensional Change Card Sorting (DCCS) task. The developmental dynamics of DCCS performance was studied in a cross-sectional design (N = 93, 3 to 5 years of age) using a computerized version of the standard DCCS task. A model-based analysis of the data showed that…

  15. Dynamic Assessment for 3- and 4-Year-Old Children Who Use Augmentative and Alternative Communication: Evaluating Expressive Syntax

    ERIC Educational Resources Information Center

    Binger, Cathy; Kent-Walsh, Jennifer; King, Marika

    2017-01-01

    Purpose: The developmental readiness to produce early sentences with an iPad communication application was assessed with ten 3- and 4-year-old children with severe speech disorders using graduated prompting dynamic assessment (DA) techniques. The participants' changes in performance within the DA sessions were evaluated, and DA performance was…

  16. Developmental Changes in Visual Scanning of Dynamic Faces and Abstract Stimuli in Infants: A Longitudinal Study

    ERIC Educational Resources Information Center

    Hunnius, Sabine; Geuze, Reint H.

    2004-01-01

    The characteristics of scanning patterns between the ages of 6 and 26 weeks were investigated through repeated assessments of 10 infants. Eye movements were recorded using a corneal-reflection system while the infants looked at 2 dynamic stimuli: the naturally moving face of their mother and an abstract stimulus. Results indicated that the way…

  17. Functional O-GlcNAc modifications: Implications in molecular regulation and pathophysiology

    PubMed Central

    Wells, Lance

    2016-01-01

    O-linked β-N-acetylglucosamine (O-GlcNAc) is a regulatory post-translational modification of intracellular proteins. The dynamic and inducible cycling of the modification is governed by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) in response to UDP-GlcNAc levels in the hexosamine biosynthetic pathway (HBP). Due to its reliance on glucose flux and substrate availability, a major focus in the field has been on how O-GlcNAc contributes to metabolic disease. For years this post-translational modification has been known to modify thousands of proteins implicated in various disorders, but direct functional connections have until recently remained elusive. New research is beginning to reveal the specific mechanisms through which O-GlcNAc influences cell dynamics and disease pathology including clear examples of O-GlcNAc modification at a specific site on a given protein altering its biological functions. The following review intends to focus primarily on studies in the last half decade linking O-GlcNAc modification of proteins with chromatin-directed gene regulation, developmental processes, and several metabolically related disorders including Alzheimer’s, heart disease and cancer. These studies illustrate the emerging importance of this post-translational modification in biological processes and multiple pathophysiologies. PMID:24524620

  18. Issues in the Medication Management Process in People Who Have Intellectual and Developmental Disabilities: A Qualitative Study of the Caregivers' Perspective

    ERIC Educational Resources Information Center

    Erickson, Steven R.; Salgado, Teresa M.; Tian, Xi

    2016-01-01

    People who have intellectual and developmental disabilities (IDD) often rely on caregivers to assist in the medication management process. The aim of this study was to learn from caregivers, who are either family or support staff, what major issues arise throughout the process of managing medication and how these might be addressed. Problems…

  19. From Cheerleader to Coach: The Developmental Progression of Bedside Teachers in Giving Feedback to Early Learners.

    PubMed

    Wenrich, Marjorie D; Jackson, Molly Blackley; Maestas, Ramoncita R; Wolfhagen, Ineke H A P; Scherpbier, Albert J J

    2015-11-01

    Medical students learn clinical skills at the bedside from teaching clinicians, who often learn to teach by teaching. Little is known about the process of becoming an effective clinical teacher. Understanding how teaching skills and approaches change with experience may help tailor faculty development for new teachers. Focusing on giving feedback to early learners, the authors asked: What is the developmental progression of clinician-teachers as they learn to give clinical skills feedback to medical students? This qualitative study included longitudinal interviews with clinician-teachers over five years in a new clinical skills teaching program for preclinical medical students. Techniques derived from grounded theory were used for initial analyses. The current study focused on one theme identified in initial analyses: giving feedback to students. Transcript passages were organized by interview year, coded, and discussed in year clusters; thematic codes were compared and emergent codes developed. Themes related to giving feedback demonstrated a dyadic structure: characteristic of less experienced teachers versus characteristic of experienced teachers. Seven dominant dyadic themes emerged, including teacher as cheerleader versus coach, concern about student fragility versus understanding resilience, and focus on creating a safe environment versus challenging students within a safe environment. With consistent teaching, clinical teachers demonstrated progress in giving feedback to students in multiple areas, including understanding students' developmental trajectory and needs, developing tools and strategies, and adopting a dynamic, challenging, inclusive team approach. Ongoing teaching opportunities with targeted faculty development may help improve clinician-teachers' feedback skills and approaches.

  20. Basic procedures for epigenetic analysis in plant cell and tissue culture.

    PubMed

    Rodríguez, José L; Pascual, Jesús; Viejo, Marcos; Valledor, Luis; Meijón, Mónica; Hasbún, Rodrigo; Yrei, Norma Yague; Santamaría, María E; Pérez, Marta; Fernández Fraga, Mario; Berdasco, María; Rodríguez Fernández, Roberto; Cañal, María J

    2012-01-01

    In vitro culture is one of the most studied techniques, and it is used to study many developmental processes, especially in forestry species, because of growth timing and easy manipulation. Epigenetics has been shown as an important influence on many research analyses such as cancer in mammals and developmental processes in plants such as flowering, but regarding in vitro culture, techniques to study DNA methylation or chromatin modifications were mainly limited to identify somaclonal variation of the micropropagated material. Because in vitro culture is not only a way to generate plant material but also a bunch of differentially induced developmental processes, an approach of techniques and some research carried out to study the different changes regarding DNA methylation and chromatin and translational modifications that take place during these processes is reviewed.

  1. Effect of embryo density on in vitro developmental characteristics of bovine preimplantative embryos with respect to micro and macroenvironments.

    PubMed

    Hoelker, M; Rings, F; Lund, Q; Phatsara, C; Schellander, K; Tesfaye, D

    2010-10-01

    To overcome developmental problems as a consequence of single embryo culture, the Well of the Well (WOW) culture system has been developed. In this study, we aimed to examine the effect of embryo densities with respect to both microenvironment and macroenvironment on developmental rates and embryo quality to get a deeper insight into developmentally important mechanisms. WOW diameter and depth significantly affected developmental rates (p < 0.05). WOWs with diameter of 500 μm reached significantly higher blastocyst rates (32.5 vs 21.1% vs 20.3%) compared to embryos cultured in WOWs of 300 μm diameter or plain cultured controls. Embryos cultured in WOWs with 700 μm depth reached significant higher developmental rates compared with embryos cultured in WOWs of 300 μm depth and control embryos (30.6 vs 22.6% vs 20.3%). Correlation of the embryo per WOW volume with developmental rates was higher (r(2) = 0.92, p = 0.0004) than correlation of WOW diameter or WOW depth with developmental rates. However, the embryo per WOW volume did not affect differential cell counts. An embryo per culture dish volume of 1 : 30 μl was identified to be optimal when the embryo per WOW volume was 1 : 0.27 μl increasing developmental rates up to the level of mass embryo production. Giving the opportunity to track each embryo over the complete culture period while keeping high developmental rates with normal mitotic dynamics, the results of this work will provide benefit for the single culture of embryos in human assisted reproduction, mammalian embryos with high economic interest as well as for scientific purpose. © 2009 Blackwell Verlag GmbH.

  2. Project Developmental Continuity Evaluation: Final Report. Volume II: The Process of Program Implementation in PDC.

    ERIC Educational Resources Information Center

    Wacker, Sally; And Others

    The second of two volumes, this document continues the final evaluation report of Project Developmental Continuity (PDC), a Head Start demonstration project initiated in 1974 to develop program models which enhance children's social competence by fostering developmental continuity from preschool through the early elementary grades. In particular,…

  3. A Developmental Perspective on Assessment of Infants with Clefts and Related Disorders.

    ERIC Educational Resources Information Center

    Savage, Hallie E.; And Others

    1994-01-01

    This article presents a rationale for comprehensive developmental assessment for infants with cleft palates/lips and related disorders. The assessment model is based on risk factors influencing early development and on clinical research on developmental outcomes. Implications on the clinical assessment process and early intervention are discussed.…

  4. Promoting Positive Youth Development: Implications for Future Directions in Developmental Theory, Methods, and Research

    ERIC Educational Resources Information Center

    Kurtines, William M.; Montgomery, Marilyn J.; Ferrer-Wreder, Laura; Berman, Steven L.; Lorente, Carolyn Cass; Silverman, Wendy K.

    2008-01-01

    The efforts of the Miami Youth Development Project reported in this special issue illustrate how Developmental Intervention Science (DIS; a fusion of the developmental and intervention science) extended to include outreach research contributes to the development of community-supported positive youth development programs. In the process, the…

  5. Capitalizing on Basic Brain Processes in Developmental Algebra--Part 3

    ERIC Educational Resources Information Center

    Laughbaum, Edward D.

    2011-01-01

    In Part Three, the author reviews the basic ideas presented in Parts One and Two while arguing why the traditional equation-solving developmental algebra curricula is not a good choice for implementing neural response strategies presented in the first two parts. He continues by showing that the developmental algebra student audience is simply…

  6. Developmental Trajectories for Children with Dyslexia and Low IQ Poor Readers

    ERIC Educational Resources Information Center

    Kuppen, Sarah E. A.; Goswami, Usha

    2016-01-01

    Reading difficulties are found in children with both high and low IQ and it is now clear that both groups exhibit difficulties in phonological processing. Here, we apply the developmental trajectories approach, a new methodology developed for studying language and cognitive impairments in developmental disorders, to both poor reader groups. The…

  7. A Quantitative Analysis of Methods Used for Avoidance and Acceleration of Developmental Mathematics Sequences in Community College

    ERIC Educational Resources Information Center

    Travers, Steven T.

    2017-01-01

    Many developmental mathematics programs at community colleges in recent years have undergone a process of redesign in an attempt increase the historical poor rate of student successful completion of required developmental coursework. Various curriculum and instructional design models that incorporate methods of avoiding and accelerating the…

  8. The Myths of Redesign in Developmental Mathematics

    ERIC Educational Resources Information Center

    Cafarella, Brian V.

    2016-01-01

    Due to poor student success rates in developmental mathematics, many institutions have implemented various forms of redesign into their developmental math curricula. Since the goal of redesign is to increase student success, it is salient to explore all aspects of the redesign process. Many studies have focused on the positive outcomes of redesign…

  9. Developmental Discourses as a Regime of Truth in Research with Primary School Students

    ERIC Educational Resources Information Center

    Bartholomaeus, Clare

    2016-01-01

    While developmental discourses have been heavily critiqued in relation to education systems, less attention has been paid to how these impact the data collection process in classroom research. This article utilises Foucault's concept of regime of truth to highlight the pervasiveness of developmental discourses when conducting research in primary…

  10. From the Infant's Smile to Mastery of Anxiety: The Developmental Role of Humor.

    ERIC Educational Resources Information Center

    Levine, Jacob

    The smiles and laughter of an infant form the beginning of the developmental process of interpersonal interaction and socialization. The earliest smiles are automatic expressions of internal states, but soon infants' smiles are communications of pleasure. The developmental changes in smiling and laughing in early infancy reflect the rapidity with…

  11. Evolutionary developmental genetics of fruit morphological variation within the Solanaceae

    PubMed Central

    Wang, Li; Li, Jing; Zhao, Jing; He, Chaoying

    2015-01-01

    Morphological variations of fruits such as shape and size, and color are a result of adaptive evolution. The evolution of morphological novelties is particularly intriguing. An understanding of these evolutionary processes calls for the elucidation of the developmental and genetic mechanisms that result in particular fruit morphological characteristics, which determine seed dispersal. The genetic and developmental basis for fruit morphological variation was established at a microevolutionary time scale. Here, we summarize the progress on the evolutionary developmental genetics of fruit size, shape and color in the Solanaceae. Studies suggest that the recruitment of a pre-existing gene and subsequent modification of its interaction and regulatory networks are frequently involved in the evolution of morphological diversity. The basic mechanisms underlying changes in plant morphology are alterations in gene expression and/or gene function. We also deliberate on the future direction in evolutionary developmental genetics of fruit morphological variation such as fruit type. These studies will provide insights into plant developmental processes and will help to improve the productivity and fruit quality of crops. PMID:25918515

  12. Computer Simulation of Embryonic Systems: What can a ...

    EPA Pesticide Factsheets

    (1) Standard practice for assessing developmental toxicity is the observation of apical endpoints (intrauterine death, fetal growth retardation, structural malformations) in pregnant rats/rabbits following exposure during organogenesis. EPA’s computational toxicology research program (ToxCast) generated vast in vitro cellular and molecular effects data on >1858 chemicals in >600 high-throughput screening (HTS) assays. The diversity of assays has been increased for developmental toxicity with several HTS platforms, including the devTOX-quickPredict assay from Stemina Biomarker Discovery utilizing the human embryonic stem cell line (H9). Translating these HTS data into higher order-predictions of developmental toxicity is a significant challenge. Here, we address the application of computational systems models that recapitulate the kinematics of dynamical cell signaling networks (e.g., SHH, FGF, BMP, retinoids) in a CompuCell3D.org modeling environment. Examples include angiogenesis (angiodysplasia) and dysmorphogenesis. Being numerically responsive to perturbation, these models are amenable to data integration for systems Toxicology and Adverse Outcome Pathways (AOPs). The AOP simulation outputs predict potential phenotypes based on the in vitro HTS data ToxCast. A heuristic computational intelligence framework that recapitulates the kinematics of dynamical cell signaling networks in the embryo, together with the in vitro profiling data, produce quantitative pr

  13. Developmental Approach for Behavior Learning Using Primitive Motion Skills.

    PubMed

    Dawood, Farhan; Loo, Chu Kiong

    2018-05-01

    Imitation learning through self-exploration is essential in developing sensorimotor skills. Most developmental theories emphasize that social interactions, especially understanding of observed actions, could be first achieved through imitation, yet the discussion on the origin of primitive imitative abilities is often neglected, referring instead to the possibility of its innateness. This paper presents a developmental model of imitation learning based on the hypothesis that humanoid robot acquires imitative abilities as induced by sensorimotor associative learning through self-exploration. In designing such learning system, several key issues will be addressed: automatic segmentation of the observed actions into motion primitives using raw images acquired from the camera without requiring any kinematic model; incremental learning of spatio-temporal motion sequences to dynamically generates a topological structure in a self-stabilizing manner; organization of the learned data for easy and efficient retrieval using a dynamic associative memory; and utilizing segmented motion primitives to generate complex behavior by the combining these motion primitives. In our experiment, the self-posture is acquired through observing the image of its own body posture while performing the action in front of a mirror through body babbling. The complete architecture was evaluated by simulation and real robot experiments performed on DARwIn-OP humanoid robot.

  14. Characterization and Expression Patterns of microRNAs Involved in Rice Grain Filling

    PubMed Central

    Du, Yanxiu; Zhang, Jing; Li, Junzhou; Liu, Yanxia; Zhao, Yafan; Zhao, Quanzhi

    2013-01-01

    MicroRNAs (miRNAs) are upstream gene regulators of plant development and hormone homeostasis through their directed cleavage or translational repression of the target mRNAs, which may play crucial roles in rice grain filling and determining the final grain weight and yield. In this study, high-throughput sequencing was performed to survey the dynamic expressions of miRNAs and their corresponding target genes at five distinct developmental stages of grain filling. In total, 445 known miRNAs and 45 novel miRNAs were detected with most of them expressed in a developmental stage dependent manner, and the majority of known miRNAs, which increased gradually with rice grain filling, showed negatively related to the grain filling rate. Detailed expressional comparisons revealed a clear negative correlation between most miRNAs and their target genes. It was found that specific miRNA cohorts are expressed in a developmental stage dependent manner during grain filling and the known functions of these miRNAs are involved in plant hormone homeostasis and starch accumulation, indicating that the expression dynamics of these miRNAs might play key roles in regulating rice grain filling. PMID:23365650

  15. Developmental patterns of chimpanzee cerebral tissues provide important clues for understanding the remarkable enlargement of the human brain.

    PubMed

    Sakai, Tomoko; Matsui, Mie; Mikami, Akichika; Malkova, Ludise; Hamada, Yuzuru; Tomonaga, Masaki; Suzuki, Juri; Tanaka, Masayuki; Miyabe-Nishiwaki, Takako; Makishima, Haruyuki; Nakatsukasa, Masato; Matsuzawa, Tetsuro

    2013-02-22

    Developmental prolongation is thought to contribute to the remarkable brain enlargement observed in modern humans (Homo sapiens). However, the developmental trajectories of cerebral tissues have not been explored in chimpanzees (Pan troglodytes), even though they are our closest living relatives. To address this lack of information, the development of cerebral tissues was tracked in growing chimpanzees during infancy and the juvenile stage, using three-dimensional magnetic resonance imaging and compared with that of humans and rhesus macaques (Macaca mulatta). Overall, cerebral development in chimpanzees demonstrated less maturity and a more protracted course during prepuberty, as observed in humans but not in macaques. However, the rapid increase in cerebral total volume and proportional dynamic change in the cerebral tissue in humans during early infancy, when white matter volume increases dramatically, did not occur in chimpanzees. A dynamic reorganization of cerebral tissues of the brain during early infancy, driven mainly by enhancement of neuronal connectivity, is likely to have emerged in the human lineage after the split between humans and chimpanzees and to have promoted the increase in brain volume in humans. Our findings may lead to powerful insights into the ontogenetic mechanism underlying human brain enlargement.

  16. Developmental patterns of chimpanzee cerebral tissues provide important clues for understanding the remarkable enlargement of the human brain

    PubMed Central

    Sakai, Tomoko; Matsui, Mie; Mikami, Akichika; Malkova, Ludise; Hamada, Yuzuru; Tomonaga, Masaki; Suzuki, Juri; Tanaka, Masayuki; Miyabe-Nishiwaki, Takako; Makishima, Haruyuki; Nakatsukasa, Masato; Matsuzawa, Tetsuro

    2013-01-01

    Developmental prolongation is thought to contribute to the remarkable brain enlargement observed in modern humans (Homo sapiens). However, the developmental trajectories of cerebral tissues have not been explored in chimpanzees (Pan troglodytes), even though they are our closest living relatives. To address this lack of information, the development of cerebral tissues was tracked in growing chimpanzees during infancy and the juvenile stage, using three-dimensional magnetic resonance imaging and compared with that of humans and rhesus macaques (Macaca mulatta). Overall, cerebral development in chimpanzees demonstrated less maturity and a more protracted course during prepuberty, as observed in humans but not in macaques. However, the rapid increase in cerebral total volume and proportional dynamic change in the cerebral tissue in humans during early infancy, when white matter volume increases dramatically, did not occur in chimpanzees. A dynamic reorganization of cerebral tissues of the brain during early infancy, driven mainly by enhancement of neuronal connectivity, is likely to have emerged in the human lineage after the split between humans and chimpanzees and to have promoted the increase in brain volume in humans. Our findings may lead to powerful insights into the ontogenetic mechanism underlying human brain enlargement. PMID:23256194

  17. Making Pages That Move.

    ERIC Educational Resources Information Center

    Gepner, Ivan

    2001-01-01

    Explains the mechanism of producing dynamic computer pages which is based on three technologies: (1) the document object model; (2) cascading stylesheets; and (3) javascript. Discusses the applications of these techniques in genetics and developmental biology. (YDS)

  18. Further Conceptualizing Ethnic and Racial Identity Research: The Social Identity Approach and Its Dynamic Model.

    PubMed

    Verkuyten, Maykel

    2016-11-01

    This article proposes a further conceptualization of ethnic and racial identity (ERI) as a fundamental topic in developmental research. Adding to important recent efforts to conceptually integrate and synthesize this field, it is argued that ERI research will be enhanced by more fully considering the implications of the social identity approach. These implications include (a) the conceptualization of social identity, (b) the importance of identity motives, (c) systematic ways for theorizing and examining the critical role of situational and societal contexts, and (d) a dynamic model of the relation between ERI and context. These implications have not been fully considered in the developmental literature but offer important possibilities for moving the field forward in new directions. © 2016 The Author. Child Development © 2016 Society for Research in Child Development, Inc.

  19. Bud detachment in hydra requires activation of fibroblast growth factor receptor and a Rho-ROCK-myosin II signaling pathway to ensure formation of a basal constriction.

    PubMed

    Holz, Oliver; Apel, David; Steinmetz, Patrick; Lange, Ellen; Hopfenmüller, Simon; Ohler, Kerstin; Sudhop, Stefanie; Hassel, Monika

    2017-07-01

    Hydra propagates asexually by exporting tissue into a bud, which detaches 4 days later as a fully differentiated young polyp. Prerequisite for detachment is activation of fibroblast growth factor receptor (FGFR) signaling. The mechanism which enables constriction and tissue separation within the monolayered ecto- and endodermal epithelia is unknown. Histological sections and staining of F-actin by phalloidin revealed conspicuous cell shape changes at the bud detachment site indicating a localized generation of mechanical forces and the potential enhancement of secretory functions in ectodermal cells. By gene expression analysis and pharmacological inhibition, we identified a candidate signaling pathway through Rho, ROCK, and myosin II, which controls bud base constriction and rearrangement of the actin cytoskeleton. Specific regional myosin phosphorylation suggests a crucial role of ectodermal cells at the detachment site. Inhibition of FGFR, Rho, ROCK, or myosin II kinase activity is permissive for budding, but represses myosin phosphorylation, rearrangement of F-actin and constriction. The young polyp remains permanently connected to the parent by a broad tissue bridge. Our data suggest an essential role of FGFR and a Rho-ROCK-myosin II pathway in the control of cell shape changes required for bud detachment. Developmental Dynamics 246:502-516, 2017. © 2017 The Authors Developmental Dynamics published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists. © 2017 The Authors Developmental Dynamics published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists.

  20. A genome-wide survey of maternal and embryonic transcripts during Xenopus tropicalis development.

    PubMed

    Paranjpe, Sarita S; Jacobi, Ulrike G; van Heeringen, Simon J; Veenstra, Gert Jan C

    2013-11-06

    Dynamics of polyadenylation vs. deadenylation determine the fate of several developmentally regulated genes. Decay of a subset of maternal mRNAs and new transcription define the maternal-to-zygotic transition, but the full complement of polyadenylated and deadenylated coding and non-coding transcripts has not yet been assessed in Xenopus embryos. To analyze the dynamics and diversity of coding and non-coding transcripts during development, both polyadenylated mRNA and ribosomal RNA-depleted total RNA were harvested across six developmental stages and subjected to high throughput sequencing. The maternally loaded transcriptome is highly diverse and consists of both polyadenylated and deadenylated transcripts. Many maternal genes show peak expression in the oocyte and include genes which are known to be the key regulators of events like oocyte maturation and fertilization. Of all the transcripts that increase in abundance between early blastula and larval stages, about 30% of the embryonic genes are induced by fourfold or more by the late blastula stage and another 35% by late gastrulation. Using a gene model validation and discovery pipeline, we identified novel transcripts and putative long non-coding RNAs (lncRNA). These lncRNA transcripts were stringently selected as spliced transcripts generated from independent promoters, with limited coding potential and a codon bias characteristic of noncoding sequences. Many lncRNAs are conserved and expressed in a developmental stage-specific fashion. These data reveal dynamics of transcriptome polyadenylation and abundance and provides a high-confidence catalogue of novel and long non-coding RNAs.

Top