Sample records for dynamic earth system

  1. The Emergence of Land Use as a Global Force in the Earth System

    NASA Astrophysics Data System (ADS)

    Ellis, E. C.

    2015-12-01

    Human societies have emerged as a global force capable of transforming the biosphere, hydrosphere, lithosphere, atmosphere and climate. As a result, the long-term dynamics of the Earth system can no longer be understood or predicted without understanding their coupling with human societal dynamics. Here, a general causal theory is presented to explain why behaviorally modern humans, unlike any prior multicellular species, gained this unprecedented capacity to reshape the Earth system and how this societal capacity has changed from the Pleistocene to the present and future. Sociocultural niche construction theory, building on existing theories of ecosystem engineering, niche construction, the extended evolutionary synthesis, cultural evolution, ultrasociality and social change, can explain both the long-term upscaling of human societies and their unprecedented capacity to transform the Earth system. Regime shifts in human sociocultural niche construction, from the clearing of land using fire, to shifting cultivation, to intensive agriculture, to global food systems dependent on fossil fuel combustion, have enabled human societies to scale up while gaining the capacity to reshape the global patterns and processes of biogeography, ecosystems, landscapes, biomes, the biosphere, and ultimately the functioning of the Earth system. Just as Earth's geophysical climate system shapes the long-term dynamics of energy and material flow across the "spheres" of the Earth system, human societies, interacting at global scale to form "human systems", are increasingly shaping the global dynamics of energy, material, biotic and information flow across the spheres of the Earth system, including a newly emerged anthroposphere comprised of human societies and their material cultures. Human systems and the anthroposphere are strongly coupled with climate and other Earth systems and are dynamic in response to evolutionary changes in human social organization, cooperative ecosystem engineering, non-kin exchange relationships, and energy systems. It is hoped that intentional societal efforts to alter the dynamics of human systems can ultimately move Earth systems towards more beneficial and less detrimental outcomes for both human societies and nonhuman species.

  2. The Australian Computational Earth Systems Simulator

    NASA Astrophysics Data System (ADS)

    Mora, P.; Muhlhaus, H.; Lister, G.; Dyskin, A.; Place, D.; Appelbe, B.; Nimmervoll, N.; Abramson, D.

    2001-12-01

    Numerical simulation of the physics and dynamics of the entire earth system offers an outstanding opportunity for advancing earth system science and technology but represents a major challenge due to the range of scales and physical processes involved, as well as the magnitude of the software engineering effort required. However, new simulation and computer technologies are bringing this objective within reach. Under a special competitive national funding scheme to establish new Major National Research Facilities (MNRF), the Australian government together with a consortium of Universities and research institutions have funded construction of the Australian Computational Earth Systems Simulator (ACcESS). The Simulator or computational virtual earth will provide the research infrastructure to the Australian earth systems science community required for simulations of dynamical earth processes at scales ranging from microscopic to global. It will consist of thematic supercomputer infrastructure and an earth systems simulation software system. The Simulator models and software will be constructed over a five year period by a multi-disciplinary team of computational scientists, mathematicians, earth scientists, civil engineers and software engineers. The construction team will integrate numerical simulation models (3D discrete elements/lattice solid model, particle-in-cell large deformation finite-element method, stress reconstruction models, multi-scale continuum models etc) with geophysical, geological and tectonic models, through advanced software engineering and visualization technologies. When fully constructed, the Simulator aims to provide the software and hardware infrastructure needed to model solid earth phenomena including global scale dynamics and mineralisation processes, crustal scale processes including plate tectonics, mountain building, interacting fault system dynamics, and micro-scale processes that control the geological, physical and dynamic behaviour of earth systems. ACcESS represents a part of Australia's contribution to the APEC Cooperation for Earthquake Simulation (ACES) international initiative. Together with other national earth systems science initiatives including the Japanese Earth Simulator and US General Earthquake Model projects, ACcESS aims to provide a driver for scientific advancement and technological breakthroughs including: quantum leaps in understanding of earth evolution at global, crustal, regional and microscopic scales; new knowledge of the physics of crustal fault systems required to underpin the grand challenge of earthquake prediction; new understanding and predictive capabilities of geological processes such as tectonics and mineralisation.

  3. The Dynamic Earth.

    ERIC Educational Resources Information Center

    Siever, Raymond

    1983-01-01

    Discusses how the earth is a dynamic system that maintains itself in a steady state. Areas considered include large/small-scale earth motions, geologic time, rock and hydrologic cycles, and other aspects dealing with the changing face of the earth. (JN)

  4. A Novel Approach to Teaching and Understanding Transformations of Matter in Dynamic Earth Systems

    ERIC Educational Resources Information Center

    Clark, Scott K.; Sibley, Duncan F.; Libarkin, Julie C.; Heidemann, Merle

    2009-01-01

    The need to engage K-12 and post-secondary students in considering the Earth as a dynamic system requires explicit discussion of system characteristics. Fundamentally, dynamic systems involve the movement and change of matter, often through processes that are difficult to see and comprehend. We introduce a novel instructional method, termed…

  5. Understanding the Earth Systems: Expressions of Dynamic and Cyclic Thinking among University Students

    ERIC Educational Resources Information Center

    Batzri, Or; Ben Zvi Assaraf, Orit; Cohen, Carmit; Orion, Nir

    2015-01-01

    In this two-part study, we examine undergraduate university students' expression of two important system thinking characteristics--dynamic thinking and cyclic thinking--focusing particularly on students of geology. The study was conducted using an Earth systems questionnaire designed to elicit and reflect either dynamic or cyclic thinking. The…

  6. Earth and ocean dynamics satellites and systems

    NASA Technical Reports Server (NTRS)

    Vonbun, F. O.

    1975-01-01

    An overview is presented of the present state of satellite and ground systems making observations of the dynamics of the solid earth and the oceans. Emphasis is placed on applications of space technology for practical use. Topics discussed include: satellite missions and results over the last two decades in the areas of earth gravity field, polar motions, earth tides, magnetic anomalies, and satellite-to-satellite tracking; laser ranging systems; development of the Very Long Baseline Interferometer; and Skylab radar altimeter data applications.

  7. Ontology of Earth's nonlinear dynamic complex systems

    NASA Astrophysics Data System (ADS)

    Babaie, Hassan; Davarpanah, Armita

    2017-04-01

    As a complex system, Earth and its major integrated and dynamically interacting subsystems (e.g., hydrosphere, atmosphere) display nonlinear behavior in response to internal and external influences. The Earth Nonlinear Dynamic Complex Systems (ENDCS) ontology formally represents the semantics of the knowledge about the nonlinear system element (agent) behavior, function, and structure, inter-agent and agent-environment feedback loops, and the emergent collective properties of the whole complex system as the result of interaction of the agents with other agents and their environment. It also models nonlinear concepts such as aperiodic, random chaotic behavior, sensitivity to initial conditions, bifurcation of dynamic processes, levels of organization, self-organization, aggregated and isolated functionality, and emergence of collective complex behavior at the system level. By incorporating several existing ontologies, the ENDCS ontology represents the dynamic system variables and the rules of transformation of their state, emergent state, and other features of complex systems such as the trajectories in state (phase) space (attractor and strange attractor), basins of attractions, basin divide (separatrix), fractal dimension, and system's interface to its environment. The ontology also defines different object properties that change the system behavior, function, and structure and trigger instability. ENDCS will help to integrate the data and knowledge related to the five complex subsystems of Earth by annotating common data types, unifying the semantics of shared terminology, and facilitating interoperability among different fields of Earth science.

  8. Coupling population dynamics with earth system models: the POPEM model.

    PubMed

    Navarro, Andrés; Moreno, Raúl; Jiménez-Alcázar, Alfonso; Tapiador, Francisco J

    2017-09-16

    Precise modeling of CO 2 emissions is important for environmental research. This paper presents a new model of human population dynamics that can be embedded into ESMs (Earth System Models) to improve climate modeling. Through a system dynamics approach, we develop a cohort-component model that successfully simulates historical population dynamics with fine spatial resolution (about 1°×1°). The population projections are used to improve the estimates of CO 2 emissions, thus transcending the bulk approach of existing models and allowing more realistic non-linear effects to feature in the simulations. The module, dubbed POPEM (from Population Parameterization for Earth Models), is compared with current emission inventories and validated against UN aggregated data. Finally, it is shown that the module can be used to advance toward fully coupling the social and natural components of the Earth system, an emerging research path for environmental science and pollution research.

  9. MODELING THE DYNAMICS OF THE INTEGRATED EARTH SYSTEM AND THE VALUE OF GLOBAL ECOSYSTEM SERVICES USING THE GUMBO MODEL. (R827169)

    EPA Science Inventory

    A global unified metamodel of the biosphere (GUMBO) was developed to simulate the integrated earth system and assess the dynamics and values of ecosystem services. It is a `metamodel' in that it represents a synthesis and a simplification of several existing dynamic gl...

  10. Nonlinear dynamics of global atmospheric and Earth system processes

    NASA Technical Reports Server (NTRS)

    Saltzman, Barry

    1993-01-01

    During the past eight years, we have been engaged in a NASA-supported program of research aimed at establishing the connection between satellite signatures of the earth's environmental state and the nonlinear dynamics of the global weather and climate system. Thirty-five publications and four theses have resulted from this work, which included contributions in five main areas of study: (1) cloud and latent heat processes in finite-amplitude baroclinic waves; (2) application of satellite radiation data in global weather analysis; (3) studies of planetary waves and low-frequency weather variability; (4) GCM studies of the atmospheric response to variable boundary conditions measurable from satellites; and (5) dynamics of long-term earth system changes. Significant accomplishments from the three main lines of investigation pursued during the past year are presented and include the following: (1) planetary atmospheric waves and low frequency variability; (2) GCM studies of the atmospheric response to changed boundary conditions; and (3) dynamics of long-term changes in the global earth system.

  11. Dynamics Simulation Model for Space Tethers

    NASA Technical Reports Server (NTRS)

    Levin, E. M.; Pearson, J.; Oldson, J. C.

    2006-01-01

    This document describes the development of an accurate model for the dynamics of the Momentum Exchange Electrodynamic Reboost (MXER) system. The MXER is a rotating tether about 100-km long in elliptical Earth orbit designed to catch payloads in low Earth orbit and throw them to geosynchronous orbit or to Earth escape. To ensure successful rendezvous between the MXER tip catcher and a payload, a high-fidelity model of the system dynamics is required. The model developed here quantifies the major environmental perturbations, and can predict the MXER tip position to within meters over one orbit.

  12. Dynamics Explorer twin spacecraft under evaluation tests

    NASA Technical Reports Server (NTRS)

    Redmond, C.

    1981-01-01

    The Dynamics Explorer A and B satellites designed to explore the interactive processes occuring between the magnetosphere and Earth's ionosphere, upper atmosphere, and plasmasphere are described. Effects of these interactions, satellite orbits, data collecting antennas, solar power systems, axes, configurations, and Earth based command, control and data display systems are mentioned.

  13. Stratigraphic and Earth System approaches to defining the Anthropocene

    NASA Astrophysics Data System (ADS)

    Steffen, Will; Leinfelder, Reinhold; Zalasiewicz, Jan; Waters, Colin N.; Williams, Mark; Summerhayes, Colin; Barnosky, Anthony D.; Cearreta, Alejandro; Crutzen, Paul; Edgeworth, Matt; Ellis, Erle C.; Fairchild, Ian J.; Galuszka, Agnieszka; Grinevald, Jacques; Haywood, Alan; Ivar do Sul, Juliana; Jeandel, Catherine; McNeill, J. R.; Odada, Eric; Oreskes, Naomi; Revkin, Andrew; Richter, Daniel deB.; Syvitski, James; Vidas, Davor; Wagreich, Michael; Wing, Scott L.; Wolfe, Alexander P.; Schellnhuber, H. J.

    2016-08-01

    Stratigraphy provides insights into the evolution and dynamics of the Earth System over its long history. With recent developments in Earth System science, changes in Earth System dynamics can now be observed directly and projected into the near future. An integration of the two approaches provides powerful insights into the nature and significance of contemporary changes to Earth. From both perspectives, the Earth has been pushed out of the Holocene Epoch by human activities, with the mid-20th century a strong candidate for the start date of the Anthropocene, the proposed new epoch in Earth history. Here we explore two contrasting scenarios for the future of the Anthropocene, recognizing that the Earth System has already undergone a substantial transition away from the Holocene state. A rapid shift of societies toward the UN Sustainable Development Goals could stabilize the Earth System in a state with more intense interglacial conditions than in the late Quaternary climate regime and with little further biospheric change. In contrast, a continuation of the present Anthropocene trajectory of growing human pressures will likely lead to biotic impoverishment and a much warmer climate with a significant loss of polar ice.

  14. Earth and ocean dynamics program

    NASA Technical Reports Server (NTRS)

    Vonbun, F. O.

    1976-01-01

    The objectives and requirements of the Earth and Ocean Dynamics Programs are outlined along with major goals and experiments. Spaceborne as well as ground systems needed to accomplish program goals are listed and discussed along with program accomplishments.

  15. The Onset of the Cataclysm: In Situ Dating of a Nearside Basin Impact-Melt Sheet Or, There and Not Back Again

    NASA Technical Reports Server (NTRS)

    Cohen, Barbara A.

    2017-01-01

    Impact-melt samples from Apollo Luna are 3.85-4.1 Ga, tied to Imbrium, Serenitatis, Crisium, Nectaris, plus other craters? May have been caused by destabilization of material in early solar system by dynamic forces such as gas drag and gravitational interactions Coincident with the oldest rocks on the Earth and later than the earliest isotopic signs of life on Earth. Earth was already a planet with oceans, plate tectonics, and single celled life What was happening on the Moon before 3.9 Ga affected the course of life on Earth, the structure of our Solar System, and the dynamics of extra solar planetary systems.

  16. Earth and ocean modeling

    NASA Technical Reports Server (NTRS)

    Knezovich, F. M.

    1976-01-01

    A modular structured system of computer programs is presented utilizing earth and ocean dynamical data keyed to finitely defined parameters. The model is an assemblage of mathematical algorithms with an inherent capability of maturation with progressive improvements in observational data frequencies, accuracies and scopes. The Eom in its present state is a first-order approach to a geophysical model of the earth's dynamics.

  17. Analytical investigation of the dynamics of tethered constellations in Earth orbit, phase 2

    NASA Technical Reports Server (NTRS)

    Lorenzini, Enrico C.; Gullahorn, Gordon E.; Cosmo, Mario L.; Estes, Robert D.; Grossi, Mario D.

    1994-01-01

    This final report covers nine years of research on future tether applications and on the actual flights of the Small Expendable Deployment System (SEDS). Topics covered include: (1) a description of numerical codes used to simulate the orbital and attitude dynamics of tethered systems during station keeping and deployment maneuvers; (2) a comparison of various tethered system simulators; (3) dynamics analysis, conceptual design, potential applications and propagation of disturbances and isolation from noise of a variable gravity/microgravity laboratory tethered to the Space Station; (4) stability of a tethered space centrifuge; (5) various proposed two-dimensional tethered structures for low Earth orbit for use as planar array antennas; (6) tethered high gain antennas; (7) numerical calculation of the electromagnetic wave field on the Earth's surface on an electrodynamically tethered satellite; (8) reentry of tethered capsules; (9) deployment dynamics of SEDS-1; (10) analysis of SEDS-1 flight data; and (11) dynamics and control of SEDS-2.

  18. Precise orbit determination for NASA's earth observing system using GPS (Global Positioning System)

    NASA Technical Reports Server (NTRS)

    Williams, B. G.

    1988-01-01

    An application of a precision orbit determination technique for NASA's Earth Observing System (EOS) using the Global Positioning System (GPS) is described. This technique allows the geometric information from measurements of GPS carrier phase and P-code pseudo-range to be exploited while minimizing requirements for precision dynamical modeling. The method combines geometric and dynamic information to determine the spacecraft trajectory; the weight on the dynamic information is controlled by adjusting fictitious spacecraft accelerations in three dimensions which are treated as first order exponentially time correlated stochastic processes. By varying the time correlation and uncertainty of the stochastic accelerations, the technique can range from purely geometric to purely dynamic. Performance estimates for this technique as applied to the orbit geometry planned for the EOS platforms indicate that decimeter accuracies for EOS orbit position may be obtainable. The sensitivity of the predicted orbit uncertainties to model errors for station locations, nongravitational platform accelerations, and Earth gravity is also presented.

  19. Determination of crustal motions using satellite laser ranging

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Satellite laser ranging has matured over the last decade into one of the essential space geodesy techniques. It has demonstrated centimeter site positioning and millimeter per year velocity determinations in a frame tied dynamically to the mass center of the solid Earth hydrosphere atmosphere system. Such a coordinate system is a requirement for studying long term eustatic sea level rise and other global change phenomena. Earth orientation parameters determined with the coordinate system have been produced in near real time operationally since 1983, at a relatively modest cost. The SLR ranging to Lageos has also provided a rich spectrum of results based upon the analysis of Lageos orbital dynamics. These include significant improvements in the knowledge of the mean and variable components of the Earth's gravity field and the Earth's gravitational parameter. The ability to measure the time variations of the Earth's gravity field has opened as exciting area of study in relating global processes, including meteorologically derived mass transport through changes in the satellite dynamics. New confirmation of general relativity was obtained using the Lageos SLR data.

  20. Solar System Dynamics

    NASA Technical Reports Server (NTRS)

    Wisdom, Jack

    2002-01-01

    In these 18 years, the research has touched every major dynamical problem in the solar system, including: the effect of chaotic zones on the distribution of asteroids, the delivery of meteorites along chaotic pathways, the chaotic motion of Pluto, the chaotic motion of the outer planets and that of the whole solar system, the delivery of short period comets from the Kuiper belt, the tidal evolution of the Uranian arid Galilean satellites, the chaotic tumbling of Hyperion and other irregular satellites, the large chaotic variations of the obliquity of Mars, the evolution of the Earth-Moon system, and the resonant core- mantle dynamics of Earth and Venus. It has introduced new analytical and numerical tools that are in widespread use. Today, nearly every long-term integration of our solar system, its subsystems, and other solar systems uses algorithms that was invented. This research has all been primarily Supported by this sequence of PGG NASA grants. During this period published major investigations of tidal evolution of the Earth-Moon system and of the passage of the Earth and Venus through non-linear core-mantle resonances were completed. It has published a major innovation in symplectic algorithms: the symplectic corrector. A paper was completed on non-perturbative hydrostatic equilibrium.

  1. Effects of dynamic long-period ocean tides on changes in earth's rotation rate

    NASA Technical Reports Server (NTRS)

    Nam, Young; Dickman, S. R.

    1990-01-01

    As a generalization of the zonal response coefficient first introduced by Agnew and Farrell (1978), the zonal response function kappa of the solid earth-ocean system is defined as the ratio, in the frequency domain, of the tidal change in earth's rotation rate to the tide-generating potential. Amplitudes and phases of kappa for the monthly, fortnightly, and nine-day lunar tides are estimated from 2 1/2 years of VLBI UT1 observations, corrected for atmospheric angular momentum effects using NMC wind and pressure series. Using the dynamic ocean tide model of Dickman (1988, 1989), amplitudes and phases of kappa for an elastic earth-ocean system are predicted. The predictions confirm earlier results which found that dynamic effects of the longer-period ocean tides reduce the amplitude of kappa by about 1 percent.

  2. EarthCube: A Community-Driven Cyberinfrastructure for the Geosciences

    NASA Astrophysics Data System (ADS)

    Koskela, Rebecca; Ramamurthy, Mohan; Pearlman, Jay; Lehnert, Kerstin; Ahern, Tim; Fredericks, Janet; Goring, Simon; Peckham, Scott; Powers, Lindsay; Kamalabdi, Farzad; Rubin, Ken; Yarmey, Lynn

    2017-04-01

    EarthCube is creating a dynamic, System of Systems (SoS) infrastructure and data tools to collect, access, analyze, share, and visualize all forms of geoscience data and resources, using advanced collaboration, technological, and computational capabilities. EarthCube, as a joint effort between the U.S. National Science Foundation Directorate for Geosciences and the Division of Advanced Cyberinfrastructure, is a quickly growing community of scientists across all geoscience domains, as well as geoinformatics researchers and data scientists. EarthCube has attracted an evolving, dynamic virtual community of more than 2,500 contributors, including earth, ocean, polar, planetary, atmospheric, geospace, computer and social scientists, educators, and data and information professionals. During 2017, EarthCube will transition to the implementation phase. The implementation will balance "innovation" and "production" to advance cross-disciplinary science goals as well as the development of future data scientists. This presentation will describe the current architecture design for the EarthCube cyberinfrastructure and implementation plan.

  3. Solar Dynamics Observatory Artist Concept

    NASA Image and Video Library

    2010-02-11

    The Solar Dynamics Observatory SDO spacecraft, shown above the Earth as it faces toward the Sun. SDO is designed to study the influence of the Sun on the Earth and the inner solar system by studying the solar atmosphere. http://photojournal.jpl.nasa.gov/catalog/PIA18169

  4. Estimated performance and future potential of solar dynamic and photovoltaic power systems for selected LEO and HEO missions

    NASA Technical Reports Server (NTRS)

    Bents, David J.; Lu, Cheng Y.

    1989-01-01

    Solar photovoltaic and thermal dynamic power systems for application to selected low-earth-orbit (LEO) and high-earth-orbit (HEO) missions are characterized in the regime 7 to 35 kWe. Input parameters to the characterization are varied to correspond to anticipated introduction of improved or new technologies. A comparative assessment is made of the two power system types for emerging technologies in cells and arrays, energy storage, optical surfaces, heat engines, thermal energy storage and thermal management. The assessment is made to common ground rules and assumptions. The four missions (Space Station, sun-synchronous, Van Allen belt, and GEO) are representative of the anticipated range of multikilowatt earth-orbit missions. The results give the expected performance, mass and drag of multikilowatt earth-orbiting solar power systems and show how the overall system figure of merit will improve as new component technologies are incorporated.

  5. An Earth-Moon System Trajectory Design Reference Catalog

    NASA Technical Reports Server (NTRS)

    Folta, David; Bosanac, Natasha; Guzzetti, Davide; Howell, Kathleen C.

    2014-01-01

    As demonstrated by ongoing concept designs and the recent ARTEMIS mission, there is, currently, significant interest in exploiting three-body dynamics in the design of trajectories for both robotic and human missions within the Earth-Moon system. The concept of an interactive and 'dynamic' catalog of potential solutions in the Earth-Moon system is explored within this paper and analyzed as a framework to guide trajectory design. Characterizing and compiling periodic and quasi-periodic solutions that exist in the circular restricted three-body problem may offer faster and more efficient strategies for orbit design, while also delivering innovative mission design parameters for further examination.

  6. Earth Observing System (EOS) Aqua Launch and Early Mission Attitude Support Experiences

    NASA Technical Reports Server (NTRS)

    Tracewell, D.; Glickman, J.; Hashmall, J.; Natanson, G.; Sedlak, J.

    2003-01-01

    The Earth Observing System (EOS) Aqua satellite was successfully launched on May 4,2002. Aqua is the second in the series of EOS satellites. EOS is part of NASA s Earth Science Enterprise Program, whose goals are to advance the scientific understanding of the Earth system. Aqua is a three-axis stabilized, Earth-pointing spacecraft in a nearly circular, sun-synchronous orbit at an altitude of 705 km. The Goddard Space Flight Center (GSFC) Flight Dynamics attitude team supported all phases of the launch and early mission. This paper presents the main results and lessons learned during this period, including: real-time attitude mode transition support, sensor calibration, onboard computer attitude validation, response to spacecraft emergencies, postlaunch attitude analyses, and anomaly resolution. In particular, Flight Dynamics support proved to be invaluable for successful Earth acquisition, fine-point mode transition, and recognition and correction of several anomalies, including support for the resolution of problems observed with the MODIS instrument.

  7. Heliophysics 2009 Roadmap and Global Change: Possibilities for Improved Understanding of the Connection

    NASA Technical Reports Server (NTRS)

    Spann, Jim

    2010-01-01

    Heliophysics is the science that includes all aspects of the research needed to understand the Sun and its effects on the Earth and the solar system. Six science targets: 1. Origins of Near-Earth Plasma - to understand the origin and transport of terrestrial plasma from its source to the magnetosphere and solar wind. 2. Solar Energetic Particle Acceleration and Transport - to understand how and where solar eruptions accelerate energetic particles that reach Earth. 3. Ion-Neutral Coupling in the Atmosphere - to understand how neutral winds control ionospheric variability. 4. Climate Impacts of Space Radiation - to understand our atmosphere s response to auroral, radiation belt, and solar energetic particles, and the associated effects on nitric oxide (NO) and ozone. 5. Dynamic Geospace Coupling - to understand how magnetospheric dynamics provides energy into the coupled ionosphere-magnetosphere system. 6. Heliospheric Magnetics - to understand the flow and dynamics of transient magnetic structures form the solar interior to Earth.

  8. GRACE, time-varying gravity, Earth system dynamics and climate change

    NASA Astrophysics Data System (ADS)

    Wouters, B.; Bonin, J. A.; Chambers, D. P.; Riva, R. E. M.; Sasgen, I.; Wahr, J.

    2014-11-01

    Continuous observations of temporal variations in the Earth's gravity field have recently become available at an unprecedented resolution of a few hundreds of kilometers. The gravity field is a product of the Earth's mass distribution, and these data—provided by the satellites of the Gravity Recovery And Climate Experiment (GRACE)—can be used to study the exchange of mass both within the Earth and at its surface. Since the launch of the mission in 2002, GRACE data has evolved from being an experimental measurement needing validation from ground truth, to a respected tool for Earth scientists representing a fixed bound on the total change and is now an important tool to help unravel the complex dynamics of the Earth system and climate change. In this review, we present the mission concept and its theoretical background, discuss the data and give an overview of the major advances GRACE has provided in Earth science, with a focus on hydrology, solid Earth sciences, glaciology and oceanography.

  9. GRACE, time-varying gravity, Earth system dynamics and climate change.

    PubMed

    Wouters, B; Bonin, J A; Chambers, D P; Riva, R E M; Sasgen, I; Wahr, J

    2014-11-01

    Continuous observations of temporal variations in the Earth's gravity field have recently become available at an unprecedented resolution of a few hundreds of kilometers. The gravity field is a product of the Earth's mass distribution, and these data-provided by the satellites of the Gravity Recovery And Climate Experiment (GRACE)-can be used to study the exchange of mass both within the Earth and at its surface. Since the launch of the mission in 2002, GRACE data has evolved from being an experimental measurement needing validation from ground truth, to a respected tool for Earth scientists representing a fixed bound on the total change and is now an important tool to help unravel the complex dynamics of the Earth system and climate change. In this review, we present the mission concept and its theoretical background, discuss the data and give an overview of the major advances GRACE has provided in Earth science, with a focus on hydrology, solid Earth sciences, glaciology and oceanography.

  10. Assessing global climate-terrestrial vegetation feedbacks on carbon and nitrogen cycling in the earth system model EC-Earth

    NASA Astrophysics Data System (ADS)

    Wårlind, David; Miller, Paul; Nieradzik, Lars; Söderberg, Fredrik; Anthoni, Peter; Arneth, Almut; Smith, Ben

    2017-04-01

    There has been great progress in developing an improved European Consortium Earth System Model (EC-Earth) in preparation for the Coupled Model Intercomparison Project Phase 6 (CMIP6) and the next Assessment Report of the IPCC. The new model version has been complemented with ocean biogeochemistry, atmospheric composition (aerosols and chemistry) and dynamic land vegetation components, and has been configured to use the recommended CMIP6 forcing data sets. These new components will give us fresh insights into climate change. This study focuses on the terrestrial biosphere component Lund-Potsdam-Jena General Ecosystem Simulator (LPJ-GUESS) that simulates vegetation dynamics and compound exchange between the terrestrial biosphere and the atmosphere in EC-Earth. LPJ-GUESS allows for vegetation to dynamically evolve, depending on climate input, and in return provides the climate system and land surface scheme with vegetation-dependent fields such as vegetation types and leaf area index. We present the results of a study to examine the feedbacks between the dynamic terrestrial vegetation and the climate and their impact on the terrestrial ecosystem carbon and nitrogen cycles. Our results are based on a set of global, atmosphere-only historical simulations (1870 to 2014) with and without feedback between climate and vegetation and including or ignoring the effect of nitrogen limitation on plant productivity. These simulations show to what extent the addition degree of freedom in EC-Earth, introduced with the coupling of interactive dynamic vegetation to the atmosphere, has on terrestrial carbon and nitrogen cycling, and represent contributions to CMIP6 (C4MIP and LUMIP) and the EU Horizon 2020 project CRESCENDO.

  11. The Stability of Orbital Configurations and the Ultimate Configurations of Planetary and Satellite Systems

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Duncan, Martin J.

    2004-01-01

    The contents include the following: 1) Dynamical Evolution of the Earth-Moon Progenitors. 2) Dynamical Connections between Giant and Terrestrial Planets. 3) Dynamics of the Upsilon Andromedae Planetary System. 4) Dynamics of the Planets Orbiting GJ 876. and 5) Integrators for Planetary Accretion in Binaries.

  12. Strategy for earth explorers in global earth sciences

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The goal of the current NASA Earth System Science initiative is to obtain a comprehensive scientific understanding of the Earth as an integrated, dynamic system. The centerpiece of the Earth System Science initiative will be a set of instruments carried on polar orbiting platforms under the Earth Observing System program. An Earth Explorer program can open new vistas in the earth sciences, encourage innovation, and solve critical scientific problems. Specific missions must be rigorously shaped by the demands and opportunities of high quality science and must complement the Earth Observing System and the Mission to Planet Earth. The committee believes that the proposed Earth Explorer program provides a substantial opportunity for progress in the earth sciences, both through independent missions and through missions designed to complement the large scale platforms and international research programs that represent important national commitments. The strategy presented is intended to help ensure the success of the Earth Explorer program as a vital stimulant to the study of the planet.

  13. The Dynamical Evolution of the Earth-Moon Progenitors. 1; Motivation and Methodology

    NASA Technical Reports Server (NTRS)

    Lissuer, Jack; Rivera, E.; Duncan, M. J.; Levison, H. F.; DeVincenzi, Donald (Technical Monitor)

    1999-01-01

    The Giant Impact Hypothesis was introduced in the mid-1970's after consideration of results from the Apollo Moon missions. This hypothesis best explains the similarity in elemental proportions in lunar and terrestrial rocks, the depletion of lunar volatiles, the lack of lunar iron. and the large angular momentum in the Earth-Moon system. Comparison between the radiometric ages of inclusions in the most primitive meteorites and those of inclusions in the oldest lunar rocks and the differentiation age of Earth suggests that the Earth-Moon system formed about 100 Myr after the oldest meteorites. In addition, the age of the famous Martian meteorite ALH84001 and an early solidification time estimated from the Martian crust, suggest that the inner Solar System was fairly clear of large bodies about 10 Myr after the oldest meteorites formed. Thus, the 'standard model' suggests that for a period of several tens of millions of years the terrestrial planet region had few. if any, lunar-sized bodies and there were five terrestrial planets, Mercury, Venus, the two progenitors of the Earth-Moon system, and Mars. To simulate the dynamics of the Solar System before the hypothesized Moon-forming impact, we are integrating the Solar System with the Earth-Moon system replaced by two bodies in heliocentric orbits between Venus and Mars. The total (orbital) angular momentum of the Earth-Moon progenitors is that of the present Earth-Moon system, and their total mass is that of the Earth-Moon system. We are looking at ranges in mass ratio and initial values for eccentricity, inclination. and semi-major axis. We are using the SYMBA integrator to integrate these systems until a collision occurs or a time of 200 Myr elapses. Results are presented in a companion paper.

  14. The Dynamical Evolution of the Earth-Moon Progenitors. 1; Motivation and Methodology

    NASA Technical Reports Server (NTRS)

    Lissauer, J. J.; Rivera, E.; Duncan, M. J.; Levison, H. F.

    1998-01-01

    The giant impact hypothesis was introduced in the mid-1970s after consideration of results from the Apollo missions. This hypothesis best explains the similarity in elemental proportions in lunar and terrestrial rocks, the depletion of lunar volatiles, the lack of lunar Fe, and the large angular momentum in the Earth-Moon system. Comparison between the radiometric ages of inclusions in the most primitive meteorites and in the oldest lunar rocks and the differentiation age of Earth suggests that the Earth-Moon system formed about100 m.y. after the oldest meteorites. In addition, the age of the famous martian meteorite ALH 84001 and an early Martian solidification time obtained by Lee and Halliday suggest that the inner solar system was fairly clear of large bodies about 10 m.y. after the oldest meteorites formed. Thus, the "standard model" suggests that for several tens of millions of years, the terrestrial planet region had few, if any, lunar-sized bodies, and there were five terrestrial planets: Mercury, Venus, the two progenitors of the Earth-Moon system, and Mars. To simulate the dynamics of the solar system before the hypothesized Moon-forming impact, we are integrating the solar system with the Earth-Moon system replaced by two bodies in heliocentric orbits between Venus and Mars. The total (orbital) angular momentum of the Earth-Moon progenitors is that of the present Earth-Moon system, and their total mass is that of the Earth-Moon System. We are looking at ranges in mass ratio and initial values for eccentricity, inclination, and semimajor axis. We are using the SYMBA integrator to integrate these systems until a collision occurs or a time of 200 m.y. elapses. Results are presented in a companion abstract, (also presented at this meeting).

  15. An introduction to orbit dynamics and its application to satellite-based earth monitoring systems

    NASA Technical Reports Server (NTRS)

    Brooks, D. R.

    1977-01-01

    The long term behavior of satellites is studied at a level of complexity suitable for the initial planning phases of earth monitoring missions. First-order perturbation theory is used to describe in detail the basic orbit dynamics of satellite motion around the earth and relative to the sun. Surface coverage capabilities of satellite orbits are examined. Several examples of simulated observation and monitoring missions are given to illustrate representative applications of the theory. The examples stress the need for devising ways of maximizing total mission output in order to make the best possible use of the resultant data base as input to those large-scale, long-term earth monitoring activities which can best justify the use of satellite systems.

  16. The Dynamic Earth: Recycling Naturally!

    ERIC Educational Resources Information Center

    Goldston, M. Jenice; Allison, Elizabeth; Fowler, Lisa; Glaze, Amanda

    2013-01-01

    This article begins with a thought-provoking question: What do you think of when you hear the term "recycle?" Many think about paper, glass, aluminum cans, landfills, and reducing waste by reusing some of these materials. How many of us ever consider the way the systems of Earth dynamically recycle its materials? In the following…

  17. The topology of non-linear global carbon dynamics: from tipping points to planetary boundaries

    NASA Astrophysics Data System (ADS)

    Anderies, J. M.; Carpenter, S. R.; Steffen, Will; Rockström, Johan

    2013-12-01

    We present a minimal model of land use and carbon cycle dynamics and use it to explore the relationship between non-linear dynamics and planetary boundaries. Only the most basic interactions between land cover and terrestrial, atmospheric, and marine carbon stocks are considered in the model. Our goal is not to predict global carbon dynamics as it occurs in the actual Earth System. Rather, we construct a conceptually reasonable heuristic model of a feedback system between different carbon stocks that captures the qualitative features of the actual Earth System and use it to explore the topology of the boundaries of what can be called a ‘safe operating space’ for humans. The model analysis illustrates the existence of dynamic, non-linear tipping points in carbon cycle dynamics and the potential complexity of planetary boundaries. Finally, we use the model to illustrate some challenges associated with navigating planetary boundaries.

  18. Anthropogenic biomes: a key contribution to earth-system science

    Treesearch

    Lilian Alessa; F. Stuart Chapin

    2008-01-01

    Human activities now dominate most of the ice-free terrestrial surface. A recent article presents a classification and global map of human-influenced biomes of the world that provides a novel and potentially appropriate framework for projecting changes in earth-system dynamics.

  19. Space Science in the Twenty-First Century: Imperatives for the Decades 1995 to 2015. Mission to Planet Earth

    NASA Technical Reports Server (NTRS)

    1988-01-01

    A unified program is outlined for studying the Earth, from its deep interior to its fluid envelopes. A system is proposed for measuring devices involving both space-based and in-situ observations that can accommodate simultaneously a large range of scientific needs. The scientific objectices served by this integrated infrastructure are cased into a framework of four grand themes. In summary these are: to determine the composition, structure, dynamics, and evolution of the Earth's crust and deeper interior; to establish and understand the structure, dynamics, and chemistry of the oceans, atmosphere, and cryosphere, and their interaction with the solid Earth; to characterize the history and dynamics of living organisms and their interaction with the environment; and to monitor and understand the interaction of human activities with the natural environment. A focus on these grand themes will help to understand the origin and fate of the planet, and to place it in the context of the solar system.

  20. Modeling pilot interaction with automated digital avionics systems: Guidance and control algorithms for contour and nap-of-the-Earth flight

    NASA Technical Reports Server (NTRS)

    Hess, Ronald A.

    1990-01-01

    A collection of technical papers are presented that cover modeling pilot interaction with automated digital avionics systems and guidance and control algorithms for contour and nap-of-the-earth flight. The titles of the papers presented are as follows: (1) Automation effects in a multiloop manual control system; (2) A qualitative model of human interaction with complex dynamic systems; (3) Generalized predictive control of dynamic systems; (4) An application of generalized predictive control to rotorcraft terrain-following flight; (5) Self-tuning generalized predictive control applied to terrain-following flight; and (6) Precise flight path control using a predictive algorithm.

  1. Classroom Demonstrations Of Atmosphere-ocean Dynamics: Baroclinic Instability

    NASA Astrophysics Data System (ADS)

    Aurnou, Jonathan; Nadiga, B. T.

    2008-09-01

    Here we will present simple hands-on experimental demonstrations that show how baroclinic instabilities develop in rotating fluid dynamical systems. Such instabilities are found in the Earth's oceans and atmosphere as well as in the atmospheres and oceans of planetary bodies throughout the solar system and beyond. Our inexpensive experimental apparatus consists of a vinyl-record player, a wide shallow pan, and a weighted, dyed block of ice. Most directly, these demonstrations can be used to explain winter-time atmospheric weather patterns observed in Earth's mid-latitudes.

  2. Satellite-tracking and Earth dynamics research programs

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The activities carried out by the Smithsonian Astrophysical Observatory (SAO) are described. The SAO network continued to track LAGEOS at highest priority for polar motion and Earth rotation studies, and for other geophysical investigations, including crustal dynamics, Earth and ocean tides, and the general development of precision orbit determination. The network performed regular tracking of several other retroreflector satellites including GEOS-1, GEOS-3, BE-C, and Starlette for refined determinations of station coordinates and the Earth's gravity field and for studies of solid Earth dynamics. A major program in laser upgrading continued to improve ranging accuracy and data yield. This program includes an increase in pulse repetition rate from 8 ppm to 30 ppm, a reduction in laser pulse width from 6 nsec to 2 to 3 nsec, improvements in the photoreceiver and the electronics to improve daylight ranging, and an analog pulse detection system to improve range noise and accuracy. Data processing hardware and software are discussed.

  3. Earth observing satellite: Understanding the Earth as a system

    NASA Technical Reports Server (NTRS)

    Soffen, Gerald

    1990-01-01

    There is now a plan for global studies which include two very large efforts. One is the International Geosphere/Biosphere Program (IGBP) sponsored by the International Council of Scientific Unions. The other initiative is Mission to Planet Earth, an unbrella program for doing three kinds of space missions. The major one is the Earth Observation Satellite (EOS). EOS is large polar orbiting satellites with heavy payloads. Two will be placed in orbit by NASA, one by the Japanese and one or two by ESA. The overall mission measurement objectives of EOS are summarized: (1) the global distribution of energy input to and energy output from the Earth; (2) the structure, state variables, composition, and dynamics of the atmosphere from the ground to the mesopause; (3) the physical and biological structure, state, composition, and dynamics of the land surface, including terrestrial and inland water ecosystems; (4) the rates, important sources and sinks, and key components and processes of the Earth's biogeochemical cycles; (5) the circulation, surface temperature, wind stress, sea state, and the biological activity of the oceans; (6) the extent, type, state, elevation, roughness, and dynamics of glaciers, ice sheets, snow and sea ice, and the liquid equivalent of snow in the global cryosphere; (7) the global rates, amounts, and distribution of precipitation; and (8) the dynamic motions of the Earth (geophysics) as a whole, including both rotational dynamics and the kinematic motions of the tectonic plates.

  4. Reference coordinate systems: An update. Supplement 11

    NASA Technical Reports Server (NTRS)

    Mueller, Ivan I.

    1988-01-01

    A common requirement for all geodetic investigations is a well-defined coordinate system attached to the earth in some prescribed way, as well as a well-defined inertial coordinate system in which the motions of the terrestrial frame can be monitored. The paper deals with the problems encountered when establishing such coordinate systems and the transformations between them. In addition, problems related to the modeling of the deformable earth are discussed. This paper is an updated version of the earlier work, Reference Coordinate Systems for Earth Dynamics: A Preview, by the author.

  5. Harnessing Big Data to Represent 30-meter Spatial Heterogeneity in Earth System Models

    NASA Astrophysics Data System (ADS)

    Chaney, N.; Shevliakova, E.; Malyshev, S.; Van Huijgevoort, M.; Milly, C.; Sulman, B. N.

    2016-12-01

    Terrestrial land surface processes play a critical role in the Earth system; they have a profound impact on the global climate, food and energy production, freshwater resources, and biodiversity. One of the most fascinating yet challenging aspects of characterizing terrestrial ecosystems is their field-scale (˜30 m) spatial heterogeneity. It has been observed repeatedly that the water, energy, and biogeochemical cycles at multiple temporal and spatial scales have deep ties to an ecosystem's spatial structure. Current Earth system models largely disregard this important relationship leading to an inadequate representation of ecosystem dynamics. In this presentation, we will show how existing global environmental datasets can be harnessed to explicitly represent field-scale spatial heterogeneity in Earth system models. For each macroscale grid cell, these environmental data are clustered according to their field-scale soil and topographic attributes to define unique sub-grid tiles. The state-of-the-art Geophysical Fluid Dynamics Laboratory (GFDL) land model is then used to simulate these tiles and their spatial interactions via the exchange of water, energy, and nutrients along explicit topographic gradients. Using historical simulations over the contiguous United States, we will show how a robust representation of field-scale spatial heterogeneity impacts modeled ecosystem dynamics including the water, energy, and biogeochemical cycles as well as vegetation composition and distribution.

  6. Earth system modelling on system-level heterogeneous architectures: EMAC (version 2.42) on the Dynamical Exascale Entry Platform (DEEP)

    NASA Astrophysics Data System (ADS)

    Christou, Michalis; Christoudias, Theodoros; Morillo, Julián; Alvarez, Damian; Merx, Hendrik

    2016-09-01

    We examine an alternative approach to heterogeneous cluster-computing in the many-core era for Earth system models, using the European Centre for Medium-Range Weather Forecasts Hamburg (ECHAM)/Modular Earth Submodel System (MESSy) Atmospheric Chemistry (EMAC) model as a pilot application on the Dynamical Exascale Entry Platform (DEEP). A set of autonomous coprocessors interconnected together, called Booster, complements a conventional HPC Cluster and increases its computing performance, offering extra flexibility to expose multiple levels of parallelism and achieve better scalability. The EMAC model atmospheric chemistry code (Module Efficiently Calculating the Chemistry of the Atmosphere (MECCA)) was taskified with an offload mechanism implemented using OmpSs directives. The model was ported to the MareNostrum 3 supercomputer to allow testing with Intel Xeon Phi accelerators on a production-size machine. The changes proposed in this paper are expected to contribute to the eventual adoption of Cluster-Booster division and Many Integrated Core (MIC) accelerated architectures in presently available implementations of Earth system models, towards exploiting the potential of a fully Exascale-capable platform.

  7. Earth survey applications division: Research leading to the effective use of space technology in applications relating to the Earth's surface and interior

    NASA Technical Reports Server (NTRS)

    Carpenter, L. (Editor)

    1980-01-01

    Accomplishments and future plans are described for the following areas: (1) geology - geobotanical indicators and geopotential data; (2) modeling magnetic fields; (3) modeling the structure, composition, and evolution of the Earth's crust; (4) global and regional motions of the Earth's crust and earthquake occurrence; (5) modeling geopotential from satellite tracking data; (6) modeling the Earth's gravity field; (7) global Earth dynamics; (8) sea surface topography, ocean dynamics; and geophysical interpretation; (9) land cover and land use; (10) physical and remote sensing attributes important in detecting, measuring, and monitoring agricultural crops; (11) prelaunch studies using LANDSAT D; (12) the multispectral linear array; (13) the aircraft linear array pushbroom radiometer; and (14) the spaceborne laser ranging system.

  8. Predicting Earth orientation changes from global forecasts of atmosphere-hydrosphere dynamics

    NASA Astrophysics Data System (ADS)

    Dobslaw, Henryk; Dill, Robert

    2018-02-01

    Effective Angular Momentum (EAM) functions obtained from global numerical simulations of atmosphere, ocean, and land surface dynamics are routinely processed by the Earth System Modelling group at Deutsches GeoForschungsZentrum. EAM functions are available since January 1976 with up to 3 h temporal resolution. Additionally, 6 days-long EAM forecasts are routinely published every day. Based on hindcast experiments with 305 individual predictions distributed over 15 months, we demonstrate that EAM forecasts improve the prediction accuracy of the Earth Orientation Parameters at all forecast horizons between 1 and 6 days. At day 6, prediction accuracy improves down to 1.76 mas for the terrestrial pole offset, and 2.6 mas for Δ UT1, which correspond to an accuracy increase of about 41% over predictions published in Bulletin A by the International Earth Rotation and Reference System Service.

  9. Nonlinear dynamics of global atmospheric and earth system processes

    NASA Technical Reports Server (NTRS)

    Zhang, Taiping; Verbitsky, Mikhail; Saltzman, Barry; Mann, Michael E.; Park, Jeffrey; Lall, Upmanu

    1995-01-01

    During the grant period, the authors continued ongoing studies aimed at enhancing their understanding of the operation of the atmosphere as a complex nonlinear system interacting with the hydrosphere, biosphere, and cryosphere in response to external radiative forcing. Five papers were completed with support from the grant, representing contributions in three main areas of study: (1) theoretical studies of the interactive atmospheric response to changed biospheric boundary conditions measurable from satellites; (2) statistical-observational studies of global-scale temperature variability on interannual to century time scales; and (3) dynamics of long-term earth system changes associated with ice sheet surges.

  10. Placing Ecosystem Sustainability Within the Context of Dynamic Earth Systems

    EPA Science Inventory

    Because the concept of ecosystem sustainability and the practice of sustainable land management both have long-term foci, it is necessary to view these from the perspective of dynamic rather than static systems. In addition to the typical static system approach for assessing ecos...

  11. Effects of dynamic long-period ocean tides on changes in Earth's rotation rate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nam, Y.S.; Dickman, S.R.

    1990-05-10

    As a generalization of the zonal response coefficient first introduced by Agnew and Farrell (1978), the authors define the zonal response function k of the solid earth-ocean system as the ratio, in the frequency domain, of the tidal change in Earth's rotation rate to the tide-generating potential. Amplitudes and phases of k for the monthly, fortnightly, and 9-day lunar tides are estimated from 2 1/2 years of very long baseline interferometry UTI observations (both 5-day and daily time series), corrected for atmospheric angular momentum effects using NMC wind and pressure series. Using the dynamic ocean tide model of Dickman (1988a,more » 1989a), the authors predict amplitudes and phases of k for an elastic earth-ocean system. The predictions confirm earlier results which found that dynamic effects of the longer-period ocean tides reduce the amplitude of k by about 1%. However, agreement with the observed k is best achieved for all three tides if the predicted tide amplitudes are combined with the much larger satellite-observed ocean tide phases; in these cases the dynamic tidal effects reduce k by up to 8%. Finally, comparison between the observed and predicted amplitudes of k implies that anelastic effects on Earth's rotation at periods less than fortnightly cannot exceed 2%.« less

  12. Is Earth F**ked? Dynamical Futility of Global Environmental Management and Possibilities for Sustainability via Direct Action Activism

    NASA Astrophysics Data System (ADS)

    wErnEr, B.

    2012-12-01

    Environmental challenges are dynamically generated within the dominant global culture principally by the mismatch between short-time-scale market and political forces driving resource extraction/use and longer-time-scale accommodations of the Earth system to these changes. Increasing resource demand is leading to the development of two-way, nonlinear interactions between human societies and environmental systems that are becoming global in extent, either through globalized markets and other institutions or through coupling to global environmental systems such as climate. These trends are further intensified by dissipation-reducing technological advances in transactions, communication and transport, which suppress emergence of longer-time-scale economic and political levels of description and facilitate long-distance connections, and by predictive environmental modeling, which strengthens human connections to a short-time-scale virtual Earth, and weakens connections to the longer time scales of the actual Earth. Environmental management seeks to steer fast scale economic and political interests of a coupled human-environmental system towards longer-time-scale consideration of benefits and costs by operating within the confines of the dominant culture using a linear, engineering-type connection to the system. Perhaps as evidenced by widespread inability to meaningfully address such global environmental challenges as climate change and soil degradation, nonlinear connections reduce the ability of managers to operate outside coupled human-environmental systems, decreasing their effectiveness in steering towards sustainable interactions and resulting in managers slaved to short-to-intermediate-term interests. In sum, the dynamics of the global coupled human-environmental system within the dominant culture precludes management for stable, sustainable pathways and promotes instability. Environmental direct action, resistance taken from outside the dominant culture, as in protests, blockades and sabotage by indigenous peoples, workers, anarchists and other activist groups, increases dissipation within the coupled system over fast to intermediate scales and pushes for changes in the dominant culture that favor transition to a stable, sustainable attractor. These dynamical relationships are illustrated and explored using a numerical model that simulates the short-, intermediate- and long-time-scale dynamics of the coupled human-environmental system. At fast scales, economic and political interests exploit environmental resources through a maze of environmental management and resistance, guided by virtual Earth predictions. At intermediate scales, managers become slaved to economic and political interests, which adapt to and repress resistance, and resistance is guided by patterns of environmental destruction. At slow scales, resistance interacts with the cultural context, which co-evolves with the environment. The transition from unstable dynamics to sustainability is sensitively dependent on the level of participation in and repression of resistance. Because of their differing impact inside and outside the dominant culture, virtual Earth predictions can either promote or oppose sustainability. Supported by the National Science Foundation, Geomorphology and Land Use Dynamics Program.

  13. Planetary formation and water delivery in the habitable zone around solar-type stars in different dynamical environments

    NASA Astrophysics Data System (ADS)

    Zain, P. S.; de Elía, G. C.; Ronco, M. P.; Guilera, O. M.

    2018-01-01

    Context. Observational and theoretical studies suggest that there are many and various planetary systems in the Universe. Aims: We study the formation and water delivery of planets in the habitable zone (HZ) around solar-type stars. In particular, we study different dynamical environments that are defined by the most massive body in the system. Methods: First of all, a semi-analytical model was used to define the mass of the protoplanetary disks that produce each of the five dynamical scenarios of our research. Then, we made use of the same semi-analytical model to describe the evolution of embryos and planetesimals during the gaseous phase. Finally, we carried out N-body simulations of planetary accretion in order to analyze the formation and water delivery of planets in the HZ in the different dynamical environments. Results: Water worlds are efficiently formed in the HZ in different dynamical scenarios. In systems with a giant planet analog to Jupiter or Saturn around the snow line, super-Earths tend to migrate into the HZ from outside the snow line as a result of interactions with other embryos and accrete water only during the gaseous phase. In systems without giant planets, Earths and super-Earths with high water by mass contents can either be formed in situ in the HZ or migrate into it from outer regions, and water can be accreted during the gaseous phase and in collisions with water-rich embryos and planetesimals. Conclusions: The formation of planets in the HZ with very high water by mass contents seems to be a common process around Sun-like stars. Our research suggests that such planets are still very efficiently produced in different dynamical environments. Moreover, our study indicates that the formation of planets in the HZ with masses and water contents similar to those of Earth seems to be a rare process around solar-type stars in the systems under consideration.

  14. Tube dynamics and low energy Earth-Moon transfers in the 4-body system

    NASA Astrophysics Data System (ADS)

    Onozaki, Kaori; Yoshimura, Hiroaki; Ross, Shane D.

    2017-11-01

    In this paper, we show a low energy Earth-Moon transfer in the context of the Sun-Earth-Moon-spacecraft 4-body system. We consider the 4-body system as the coupled system of the Sun-Earth-spacecraft 3-body system perturbed by the Moon (which we call the Moon-perturbed system) and the Earth-Moon-spacecraft 3-body system perturbed by the Sun (which we call the Sun-perturbed system). In both perturbed systems, analogs of the stable and unstable manifolds are computed numerically by using the notion of Lagrangian coherent structures, wherein the stable and unstable manifolds play the role of separating orbits into transit and non-transit orbits. We obtain a family of non-transit orbits departing from a low Earth orbit in the Moon-perturbed system, and a family of transit orbits arriving into a low lunar orbit in the Sun-perturbed system. Finally, we show that we can construct a low energy transfer from the Earth to the Moon by choosing appropriate trajectories from both families and patching these trajectories with a maneuver.

  15. Latent energy storage with salt and metal mixtures for solar dynamic applications

    NASA Technical Reports Server (NTRS)

    Crane, R. A.; Konstantinou, K. S.

    1988-01-01

    This paper examines three design alternatives for the development of a solar dynamic heat receiver as applied to power systems operating in low earth orbit. These include a base line design used for comparison in ongoing NASA studies, a system incorporating a salt energy storage system with the salt dispersed within a metal mesh and a hybrid system incorporating both a molten salt and molten metal for energy storage. Based on a typical low earth orbit condition, designs are developed and compared to determine the effect of resultant conductivity, heat capacity and heat of fusion on system size, weight, temperature gradients, cycle turbine inlet temperature and material utilization.

  16. VizieR Online Data Catalog: SMART97, rigid Earth rotation new solution (Bretagnon+ 1998)

    NASA Astrophysics Data System (ADS)

    Bretagnon, P.; Francou, G.; Rocher, P.; Simon, J. L.

    1998-03-01

    The Earth rotation solution SMART97 (Solution du Mouvement de l'Axe de Rotation de la Terre) is an analytical solution of the Earth rotation in the rigid case. It gives the expressions of precession-nutation and rotation of the Earth for the 3 Euler angles ψ, ω, φ as well as for the quantities p, ɛ, χ, and the sidereal time. For the axis of figure (fig), these 7 quantities are given in the dynamical system (dyn) and in the kinematical system (kin). SMART97 also gives the variables ψ and ω, in the dynamical system, for the differences (axis of figure - axis of rotation) (rot) and (axis of figure - axis of the angular momentum) (ang). The accuracy of the solution is better than 2.2 microarcseconds for all these variables over 20000 days, between 1968 and 2023. A program EXAMPLE (Fortran 77) is provided which makes use of the subroutine SMART97 which substitutes the time in the series of the solutions SMART97. (18 data files).

  17. GFDL's ESM2 global coupled climate-carbon Earth System Models. Part I: physical formulation and baseline simulation characteristics

    USGS Publications Warehouse

    Dunne, John P.; John, Jasmin G.; Adcroft, Alistair J.; Griffies, Stephen M.; Hallberg, Robert W.; Shevalikova, Elena; Stouffer, Ronald J.; Cooke, William; Dunne, Krista A.; Harrison, Matthew J.; Krasting, John P.; Malyshev, Sergey L.; Milly, P.C.D.; Phillipps, Peter J.; Sentman, Lori A.; Samuels, Bonita L.; Spelman, Michael J.; Winton, Michael; Wittenberg, Andrew T.; Zadeh, Niki

    2012-01-01

    We describe the physical climate formulation and simulation characteristics of two new global coupled carbon-climate Earth System Models, ESM2M and ESM2G. These models demonstrate similar climate fidelity as the Geophysical Fluid Dynamics Laboratory's previous CM2.1 climate model while incorporating explicit and consistent carbon dynamics. The two models differ exclusively in the physical ocean component; ESM2M uses Modular Ocean Model version 4.1 with vertical pressure layers while ESM2G uses Generalized Ocean Layer Dynamics with a bulk mixed layer and interior isopycnal layers. Differences in the ocean mean state include the thermocline depth being relatively deep in ESM2M and relatively shallow in ESM2G compared to observations. The crucial role of ocean dynamics on climate variability is highlighted in the El Niño-Southern Oscillation being overly strong in ESM2M and overly weak ESM2G relative to observations. Thus, while ESM2G might better represent climate changes relating to: total heat content variability given its lack of long term drift, gyre circulation and ventilation in the North Pacific, tropical Atlantic and Indian Oceans, and depth structure in the overturning and abyssal flows, ESM2M might better represent climate changes relating to: surface circulation given its superior surface temperature, salinity and height patterns, tropical Pacific circulation and variability, and Southern Ocean dynamics. Our overall assessment is that neither model is fundamentally superior to the other, and that both models achieve sufficient fidelity to allow meaningful climate and earth system modeling applications. This affords us the ability to assess the role of ocean configuration on earth system interactions in the context of two state-of-the-art coupled carbon-climate models.

  18. Non-dynamic decimeter tracking of earth satellites using the Global Positioning System

    NASA Technical Reports Server (NTRS)

    Yunck, T. P.; Wu, S. C.

    1986-01-01

    A technique is described for employing the Global Positioning System (GPS) to determine the position of a low earth orbiter with decimeter accuracy without the need for user dynamic models. A differential observing strategy is used requiring a GPS receiver on the user vehicle and a network of six ground receivers. The technique uses the continuous record of position change obtained from GPS carrier phase to smooth position measurements made with pseudo-range. The result is a computationally efficient technique that can deliver decimeter accuracy down to the lowest altitude orbits.

  19. Earth's Minimoons: Opportunities for Science and Technology.

    NASA Astrophysics Data System (ADS)

    Jedicke, Robert; Bolin, Bryce T.; Bottke, William F.; Chyba, Monique; Fedorets, Grigori; Granvik, Mikael; Jones, Lynne; Urrutxua, Hodei

    2018-05-01

    Twelve years ago the Catalina Sky Survey discovered Earth's first known natural geocentric object other than the Moon, a few-meter diameter asteroid designated \\RH. Despite significant improvements in ground-based asteroid surveying technology in the past decade they have not discovered another temporarily-captured orbiter (TCO; colloquially known as minimoons) but the all-sky fireball system operated in the Czech Republic as part of the European Fireball Network detected a bright natural meteor that was almost certainly in a geocentric orbit before it struck Earth's atmosphere. Within a few years the Large Synoptic Survey Telescope (LSST) will either begin to regularly detect TCOs or force a re-analysis of the creation and dynamical evolution of small asteroids in the inner solar system. The first studies of the provenance, properties, and dynamics of Earth's minimoons suggested that there should be a steady state population with about one 1- to 2-meter diameter captured objects at any time, with the number of captured meteoroids increasing exponentially for smaller sizes. That model was then improved and extended to include the population of temporarily-captured flybys (TCFs), objects that fail to make an entire revolution around Earth while energetically bound to the Earth-Moon system. Several different techniques for discovering TCOs have been considered but their small diameters, proximity, and rapid motion make them challenging targets for existing ground-based optical, meteor, and radar surveys. However, the LSST's tremendous light gathering power and short exposure times could allow it to detect and discover many minimoons. We expect that if the TCO population is confirmed, and new objects are frequently discovered, they can provide new opportunities for 1) studying the dynamics of the Earth-Moon system, 2) testing models of the production and dynamical evolution of small asteroids from the asteroid belt, 3) rapid and frequent low delta-v missions to multiple minimoons, and 4) evaluating in-situ resource utilization techniques on asteroidal material. Here we review the past decade of minimoon studies in preparation for capitalizing on the scientific and commercial opportunities of TCOs in the first decade of LSST operations.

  20. Tidal-friction theory of the earth-moon system

    NASA Technical Reports Server (NTRS)

    Lyttleton, R. A.

    1980-01-01

    Serious errors contained in Jeffreys' (1952, 1959, 1970, 1976) discussion of tidal friction in the earth-moon system are identified and their consequences are discussed. A direct solution of the dynamical tidal equations for the couple from the earth acting upon the moon and the couple from the earth acting upon the sun, which were left unsolved by Jeffreys, is found to be incompatible with observations and the predictions of linear or quadratic friction theory, due to his failure to take into account the possible change of the moment of inertia of the earth with time in the derivation of the dynamical equations. Consideration of this factor leads to the conclusion that the earth must be contracting at a rate of 14.7 x 10 to the -11th/year, which can be accounted for only by the Ramsey theory, in which the terrestrial core is considered as a phase change rather than a change in chemical composition. Implications of this value for the rates of changes in day length and lunar distance are also indicated.

  1. The Representation of Tropical Cyclones Within the Global William Putman Non-Hydrostatic Goddard Earth Observing System Model (GEOS-5) at Cloud-Permitting Resolutions

    NASA Technical Reports Server (NTRS)

    Putman, William M.

    2010-01-01

    The Goddard Earth Observing System Model (GEOS-S), an earth system model developed in the NASA Global Modeling and Assimilation Office (GMAO), has integrated the non-hydrostatic finite-volume dynamical core on the cubed-sphere grid. The extension to a non-hydrostatic dynamical framework and the quasi-uniform cubed-sphere geometry permits the efficient exploration of global weather and climate modeling at cloud permitting resolutions of 10- to 4-km on today's high performance computing platforms. We have explored a series of incremental increases in global resolution with GEOS-S from irs standard 72-level 27-km resolution (approx.5.5 million cells covering the globe from the surface to 0.1 hPa) down to 3.5-km (approx. 3.6 billion cells).

  2. Earth Observation System Flight Dynamics System Covariance Realism

    NASA Technical Reports Server (NTRS)

    Zaidi, Waqar H.; Tracewell, David

    2016-01-01

    This presentation applies a covariance realism technique to the National Aeronautics and Space Administration (NASA) Earth Observation System (EOS) Aqua and Aura spacecraft based on inferential statistics. The technique consists of three parts: collection calculation of definitive state estimates through orbit determination, calculation of covariance realism test statistics at each covariance propagation point, and proper assessment of those test statistics.

  3. On the spin-axis dynamics of a Moonless Earth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Gongjie; Batygin, Konstantin, E-mail: gli@cfa.harvard.edu

    2014-07-20

    The variation of a planet's obliquity is influenced by the existence of satellites with a high mass ratio. For instance, Earth's obliquity is stabilized by the Moon and would undergo chaotic variations in the Moon's absence. In turn, such variations can lead to large-scale changes in the atmospheric circulation, rendering spin-axis dynamics a central issue for understanding climate. The relevant quantity for dynamically forced climate change is the rate of chaotic diffusion. Accordingly, here we re-examine the spin-axis evolution of a Moonless Earth within the context of a simplified perturbative framework. We present analytical estimates of the characteristic Lyapunov coefficientmore » as well as the chaotic diffusion rate and demonstrate that even in absence of the Moon, the stochastic change in Earth's obliquity is sufficiently slow to not preclude long-term habitability. Our calculations are consistent with published numerical experiments and illustrate the putative system's underlying dynamical structure in a simple and intuitive manner.« less

  4. Earth-moon system: Dynamics and parameter estimation

    NASA Technical Reports Server (NTRS)

    Breedlove, W. J., Jr.

    1975-01-01

    A theoretical development of the equations of motion governing the earth-moon system is presented. The earth and moon were treated as finite rigid bodies and a mutual potential was utilized. The sun and remaining planets were treated as particles. Relativistic, non-rigid, and dissipative effects were not included. The translational and rotational motion of the earth and moon were derived in a fully coupled set of equations. Euler parameters were used to model the rotational motions. The mathematical model is intended for use with data analysis software to estimate physical parameters of the earth-moon system using primarily LURE type data. Two program listings are included. Program ANEAMO computes the translational/rotational motion of the earth and moon from analytical solutions. Program RIGEM numerically integrates the fully coupled motions as described above.

  5. Application of dynamical systems theory to global weather phenomena revealed by satellite imagery

    NASA Technical Reports Server (NTRS)

    Saltzman, Barry; Ebisuzaki, Wesley; Maasch, Kirk A.; Oglesby, Robert; Pandolfo, Lionel; Tang, Chung-Muh

    1989-01-01

    Theoretical studies of low frequency and seasonal weather variability; dynamical properties of observational and general circulation model (GCM)-generated records; effects of the hydrologic cycle and latent heat release on extratropical weather; and Earth-system science studies are summarized.

  6. Noise analysis of the seismic system employed in the northern and southern California seismic nets

    USGS Publications Warehouse

    Eaton, J.P.

    1984-01-01

    The seismic networks have been designed and operated to support recording on Develocorders (less than 40db dynamic range) and analog magnetic tape (about 50 db dynamic range). The principal analysis of the records has been based on Develocorder films; and background earth noise levels have been adjusted to be about 1 to 2 mm p-p on the film readers. Since the traces are separated by only 10 to 12 mm on the reader screen, they become hopelessly tangled when signal amplitudes on several adjacent traces exceed 10 to 20 mm p-p. Thus, the background noise level is hardly more than 20 db below the level of largest readable signals. The situation is somewhat better on tape playbacks, but the high level of background noise set to accomodate processing from film records effectively limits the range of maximum-signal to background-earth-noise on high gain channels to a little more than 30 db. Introduction of the PDP 11/44 seismic data acquisition system has increased the potential dynamic range of recorded network signals to more than 60 db. To make use of this increased dynamic range we must evaluate the characteristics and performance of the seismic system. In particular, we must determine whether the electronic noise in the system is or can be made sufficiently low so that background earth noise levels can be lowered significantly to take advantage of the increased dynamic range of the digital recording system. To come to grips with the complex problem of system noise, we have carried out a number of measurements and experiments to evaluate critical components of the system as well as to determine the noise characteristics of the system as a whole.

  7. Nonlinear dynamics of global atmospheric and Earth-system processes

    NASA Technical Reports Server (NTRS)

    Saltzman, Barry; Ebisuzaki, Wesley; Maasch, Kirk A.; Oglesby, Robert; Pandolfo, Lionel

    1990-01-01

    Researchers are continuing their studies of the nonlinear dynamics of global weather systems. Sensitivity analyses of large-scale dynamical models of the atmosphere (i.e., general circulation models i.e., GCM's) were performed to establish the role of satellite-signatures of soil moisture, sea surface temperature, snow cover, and sea ice as crucial boundary conditions determining global weather variability. To complete their study of the bimodality of the planetary wave states, they are using the dynamical systems approach to construct a low-order theoretical explanation of this phenomenon. This work should have important implications for extended range forecasting of low-frequency oscillations, elucidating the mechanisms for the transitions between the two wave modes. Researchers are using the methods of jump analysis and attractor dimension analysis to examine the long-term satellite records of significant variables (e.g., long wave radiation, and cloud amount), to explore the nature of mode transitions in the atmosphere, and to determine the minimum number of equations needed to describe the main weather variations with a low-order dynamical system. Where feasible they will continue to explore the applicability of the methods of complex dynamical systems analysis to the study of the global earth-system from an integrative viewpoint involving the roles of geochemical cycling and the interactive behavior of the atmosphere, hydrosphere, and biosphere.

  8. Examples of the nonlinear dynamics of ballistic capture and escape in the earth-moon system

    NASA Technical Reports Server (NTRS)

    Belbruno, Edward A.

    1990-01-01

    An example of a trajectory is given which is initially captured in an elliptic resonant orbit about the earth and then ballistically escapes the earth-moon system. This is demonstrated by a numerical example in three-dimensions using a planetary ephemeris. Another example shows a mechanism of how an elliptic orbit about the earth can increase its energy by performing a complex nonlinear transition to an elliptic orbit of a larger semi-major axis. Capture is also considered. An application of ballistic capture at the moon via an unstable periodic orbit using the four-body sun-earth-moon-S/C interaction is described.

  9. What Makes Earth and Space Science Sexy? A Model for Developing Systemic Change in Earth and Space Systems Science Curriculum and Instruction

    NASA Astrophysics Data System (ADS)

    Slutskin, R. L.

    2001-12-01

    Earth and Space Science may be the neglected child in the family of high school sciences. In this session, we examine the strategies that Anne Arundel County Public Schools and NASA Goddard Space Flight Center used to develop a dynamic and highly engaging program which follows the vision of the National Science Education Standards, is grounded in key concepts of NASA's Earth Science Directorate, and allows students to examine and apply the current research of NASA scientists. Find out why Earth/Space Systems Science seems to have usurped biology and has made students, principals, and teachers clamor for similar instructional practices in what is traditionally thought of as the "glamorous" course.

  10. Optimal design of near-Earth asteroid sample-return trajectories in the Sun-Earth-Moon system

    NASA Astrophysics Data System (ADS)

    He, Shengmao; Zhu, Zhengfan; Peng, Chao; Ma, Jian; Zhu, Xiaolong; Gao, Yang

    2016-08-01

    In the 6th edition of the Chinese Space Trajectory Design Competition held in 2014, a near-Earth asteroid sample-return trajectory design problem was released, in which the motion of the spacecraft is modeled in multi-body dynamics, considering the gravitational forces of the Sun, Earth, and Moon. It is proposed that an electric-propulsion spacecraft initially parking in a circular 200-km-altitude low Earth orbit is expected to rendezvous with an asteroid and carry as much sample as possible back to the Earth in a 10-year time frame. The team from the Technology and Engineering Center for Space Utilization, Chinese Academy of Sciences has reported a solution with an asteroid sample mass of 328 tons, which is ranked first in the competition. In this article, we will present our design and optimization methods, primarily including overall analysis, target selection, escape from and capture by the Earth-Moon system, and optimization of impulsive and low-thrust trajectories that are modeled in multi-body dynamics. The orbital resonance concept and lunar gravity assists are considered key techniques employed for trajectory design. The reported solution, preliminarily revealing the feasibility of returning a hundreds-of-tons asteroid or asteroid sample, envisions future space missions relating to near-Earth asteroid exploration.

  11. Satellite Gravity and the Geosphere: Contributions to the Study of the Solid Earth and Its Fluid Earth

    NASA Technical Reports Server (NTRS)

    Dickey, J. O.; Bentley, C. R.; Bilham, R.; Carton, J. A.; Eanes, R. J.; Herring, T. A.; Kaula, W. M.; Lagerloef, G. S. E.; Rojstaczer, S.; Smith, W. H. F.; hide

    1998-01-01

    The Earth is a dynamic system-it has a fluid, mobile atmosphere and oceans, a continually changing distribution of ice, snow, and groundwater, a fluid core undergoing hydromagnetic motion, a mantle undergoing both thermal convection and rebound from glacial loading of the last ice age, and mobile tectonic plates.

  12. Noise-induced transitions and shifts in a climate-vegetation feedback model.

    PubMed

    Alexandrov, Dmitri V; Bashkirtseva, Irina A; Ryashko, Lev B

    2018-04-01

    Motivated by the extremely important role of the Earth's vegetation dynamics in climate changes, we study the stochastic variability of a simple climate-vegetation system. In the case of deterministic dynamics, the system has one stable equilibrium and limit cycle or two stable equilibria corresponding to two opposite (cold and warm) climate-vegetation states. These states are divided by a separatrix going across a point of unstable equilibrium. Some possible stochastic scenarios caused by different externally induced natural and anthropogenic processes inherit properties of deterministic behaviour and drastically change the system dynamics. We demonstrate that the system transitions across its separatrix occur with increasing noise intensity. The climate-vegetation system therewith fluctuates, transits and localizes in the vicinity of its attractor. We show that this phenomenon occurs within some critical range of noise intensities. A noise-induced shift into the range of smaller global average temperatures corresponding to substantial oscillations of the Earth's vegetation cover is revealed. Our analysis demonstrates that the climate-vegetation interactions essentially contribute to climate dynamics and should be taken into account in more precise and complex models of climate variability.

  13. Online Student Learning and Earth System Processes

    NASA Astrophysics Data System (ADS)

    Mackay, R. M.

    2002-12-01

    Many students have difficulty understanding dynamical processes related to Earth's climate system. This is particularly true in Earth System Science courses designed for non-majors. It is often tempting to gloss over these conceptually difficult topics and have students spend more study time learning factual information or ideas that require rather simple linear thought processes. Even when the professor is ambitious and tackles the more difficult ideas of system dynamics in such courses, they are typically greeted with frustration and limited success. However, an understanding of generic system concepts and processes is quite arguably an essential component of any quality liberal arts education. We present online student-centered learning modules that are designed to help students explore different aspects of Earth's climate system (see http://www.cs.clark.edu/mac/physlets/GlobalPollution/maintrace.htm for a sample activity). The JAVA based learning activities are designed to: be assessable to anyone with Web access; be self-paced, engaging, and hands-on; and make use of past results from science education research. Professors can use module activities to supplement lecture, as controlled-learning-lab activities, or as stand-alone homework assignments. Acknowledgement This work was supported by NASA Office of Space Science contract NASW-98037, Atmospheric and Environmental Research Inc. of Lexington, MA., and Clark College.

  14. Modeling Sustainability: Population, Inequality, Consumption, and Bidirectional Coupling of the Earth and Human Systems

    NASA Technical Reports Server (NTRS)

    Motesharrei, Safa; Rivas, Jorge; Kalnay, Eugenia; Asrar, Ghassem R.; Busalacchi, Antonio J.; Cahalan, Robert F.; Cane, Mark A.; Colwell, Rita R.; Feng, Kuishuang; Franklin, Rachel S.; hide

    2016-01-01

    Over the last two centuries, the impact of the Human System has grown dramatically, becoming strongly dominant within the Earth System in many different ways. Consumption, inequality, and population have increased extremely fast, especially since about 1950, threatening to overwhelm the many critical functions and ecosystems of the Earth System. Changes in the Earth System, in turn, have important feedback effects on the Human System, with costly and potentially serious consequences. However, current models do not incorporate these critical feedbacks. We argue that in order to understand the dynamics of either system, Earth System Models must be coupled with Human System Models through bidirectional couplings representing the positive, negative, and delayed feedbacks that exist in the real systems. In particular, key Human System variables, such as demographics, inequality, economic growth, and migration, are not coupled with the Earth System but are instead driven by exogenous estimates, such as UN population projections. This makes current models likely to miss important feedbacks in the real Earth-Human system, especially those that may result in unexpected or counterintuitive outcomes, and thus requiring different policy interventions from current models. The importance and imminence of sustainability challenges, the dominant role of the Human System in the Earth System, and the essential roles the Earth System plays for the Human System, all call for collaboration of natural scientists, social scientists, and engineers in multidisciplinary research and modeling to develop coupled Earth-Human system models for devising effective science-based policies and measures to benefit current and future generations.

  15. Vesper - Venus Chemistry and Dynamics Orbiter - A NASA Discovery Mission Proposal: Submillimeter Investigation of Atmospheric Chemistry and Dynamics

    NASA Technical Reports Server (NTRS)

    Chin, Gordon

    2011-01-01

    Vesper conducts a focused investigation of the chemistry and dynamics of the middle atmosphere of our sister planet- from the base of the global cloud cover to the lower thermosphere. The middle atmosphere controls the stability of the Venus climate system. Vesper determines what processes maintain the atmospheric chemical stability, cause observed variability of chemical composition, control the escape of water, and drive the extreme super-rotation. The Vesper science investigation provides a unique perspective on the Earth environment due to the similarities in the middle atmosphere processes of both Venus and the Earth. Understanding key distinctions and similarities between Venus and Earth will increase our knowledge of how terrestrial planets evolve along different paths from nearly identical initial conditions.

  16. Climate Dynamics and Hysteresis at Low and High Obliquity

    NASA Astrophysics Data System (ADS)

    Colose, C.; Del Genio, A. D.; Way, M.

    2017-12-01

    We explore the large-scale climate dynamics at low and high obliquity for an Earth-like planet using the ROCKE-3D (Resolving Orbital and Climate Keys of Earth and Extraterrestrial Environments with Dynamics) 3-D General Circulation model being developed at NASA GISS as part of the Nexus for Exoplanet System Science (NExSS) initiative. We highlight the role of ocean heat storage and transport in determining the seasonal cycle at high obliquity, and describe the large-scale circulation and resulting regional climate patterns using both aquaplanet and Earth topographical boundary conditions. Finally, we contrast the hysteresis structure to varying CO2 concentration for a low and high obliquity planet near the outer edge of the habitable zone. We discuss the prospects for habitability for a high obliquity planet susceptible to global glaciation.

  17. Pre-late heavy bombardment evolution of the Earth's obliquity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Gongjie; Batygin, Konstantin, E-mail: gli@cfa.harvard.edu

    2014-11-01

    The Earth's obliquity is stabilized by the Moon, which facilitates a rapid precession of the Earth's spin axis, detuning the system away from resonance with orbital modulation. It is, however, likely that the architecture of the solar system underwent a dynamical instability-driven transformation, where the primordial configuration was more compact. Hence, the characteristic frequencies associated with orbital perturbations were likely faster in the past, potentially allowing for secular resonant encounters. In this work, we examine if, at any point in the Earth's evolutionary history, the obliquity varied significantly. Our calculations suggest that even though the orbital perturbations were different, themore » system nevertheless avoided resonant encounters throughout its evolution. This indicates that the Earth obtained its current obliquity during the formation of the Moon.« less

  18. The Earth: Plasma Sources, Losses, and Transport Processes

    NASA Astrophysics Data System (ADS)

    Welling, Daniel T.; André, Mats; Dandouras, Iannis; Delcourt, Dominique; Fazakerley, Andrew; Fontaine, Dominique; Foster, John; Ilie, Raluca; Kistler, Lynn; Lee, Justin H.; Liemohn, Michael W.; Slavin, James A.; Wang, Chih-Ping; Wiltberger, Michael; Yau, Andrew

    2015-10-01

    This paper reviews the state of knowledge concerning the source of magnetospheric plasma at Earth. Source of plasma, its acceleration and transport throughout the system, its consequences on system dynamics, and its loss are all discussed. Both observational and modeling advances since the last time this subject was covered in detail (Hultqvist et al., Magnetospheric Plasma Sources and Losses, 1999) are addressed.

  19. Tidal tomography constrains Earth's deep-mantle buoyancy.

    PubMed

    Lau, Harriet C P; Mitrovica, Jerry X; Davis, James L; Tromp, Jeroen; Yang, Hsin-Ying; Al-Attar, David

    2017-11-15

    Earth's body tide-also known as the solid Earth tide, the displacement of the solid Earth's surface caused by gravitational forces from the Moon and the Sun-is sensitive to the density of the two Large Low Shear Velocity Provinces (LLSVPs) beneath Africa and the Pacific. These massive regions extend approximately 1,000 kilometres upward from the base of the mantle and their buoyancy remains actively debated within the geophysical community. Here we use tidal tomography to constrain Earth's deep-mantle buoyancy derived from Global Positioning System (GPS)-based measurements of semi-diurnal body tide deformation. Using a probabilistic approach, we show that across the bottom two-thirds of the two LLSVPs the mean density is about 0.5 per cent higher than the average mantle density across this depth range (that is, its mean buoyancy is minus 0.5 per cent), although this anomaly may be concentrated towards the very base of the mantle. We conclude that the buoyancy of these structures is dominated by the enrichment of high-density chemical components, probably related to subducted oceanic plates or primordial material associated with Earth's formation. Because the dynamics of the mantle is driven by density variations, our result has important dynamical implications for the stability of the LLSVPs and the long-term evolution of the Earth system.

  20. Climate Literacy: Progress in Climate and Global Change Undergraduate Courses in Meteorology and Earth System Science Programs at Jackson State University

    NASA Astrophysics Data System (ADS)

    Reddy, S. R.; Tuluri, F.; Fadavi, M.

    2017-12-01

    JSU Meteorology Program will be offering AMS Climate Studies undergraduate course under MET 210: Climatology in spring 2013. AMS Climate Studies is offered as a 3 credit hour laboratory course with 2 lectures and 1 lab sessions per week. Although this course places strong intellectual demands upon each student, the instructors' objective is to help each student to pass the course with an adequate understanding of the fundamentals and advanced and advanced courses. AMS Climate Studies is an introductory college-level course developed by the American Meteorological Society for implementation at undergraduate institutions nationwide. The course places students in a dynamic and highly motivational educational environment where they investigate Earth's climate system using real-world environmental data. The AMS Climate Studies course package consists of a textbook, investigations manual, course website, and course management system-compatible files. Instructors can use these resources in combinations that make for an exciting learning experience for their students. This is a content course in Earth Science. It introduces a new concept that views Earth as a synergistic physical system applied concepts of climatology, for him/her to understand basic atmospheric/climate processes, physical and dynamical climatology, regional climatology, past and future climates and statistical analysis using climate data and to be prepared to profit from studying more of interrelated phenomenon governed by complex processes involving the atmosphere, the hydrosphere, the biosphere, and the solid Earth. The course emphasizes that the events that shape the physical, chemical, and biological processes of the Earth do not occur in isolation. Rather, there is a delicate relationship between the events that occur in the ocean, atmosphere, and the solid Earth. The course provides a multidimensional approach in solving scientific issues related to Earth-related sciences,

  1. The Sun to the Earth - and Beyond: A Decadal Research Strategy in Solar and Space Physics

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The sun is the source of energy for life on earth and is the strongest modulator of the human physical environment. In fact, the Sun's influence extends throughout the solar system, both through photons, which provide heat, light, and ionization, and through the continuous outflow of a magnetized, supersonic ionized gas known as the solar wind. While the accomplishments of the past decade have answered important questions about the physics of the Sun, the interplanetary medium, and the space environments of Earth and other solar system bodies, they have also highlighted other questions, some of which are long-standing and fundamental. The Sun to the Earth--and Beyond organizes these questions in terms of five challenges that are expected to be the focus of scientific investigations in solar and space physics during the coming decade and beyond. While the accomplishments of the past decades have answered important questions about the physics of the Sun, the interplanetary medium, and the space environments of Earth and other solar system bodies, they have also highlighted other questions, some of which are long-standing and fundamental. This report organizes these questions in terms of five challenges that are expected to be the focus of scientific investigations in solar and space physics during the coming decade and beyond: Challenge 1: Understanding the structure and dynamics of the Sun's interior, the generation of solar magnetic fields, the origin of the solar cycle, the causes of solar activity, and the structure and dynamics of the corona. Challenge 2: Understanding heliospheric structure, the distribution of magnetic fields and matter throughout the solar system, and the interaction of the solar atmosphere with the local interstellar medium. Challenge 3: Understanding the space environments of Earth and other solar system bodies and their dynamical response to external and internal influences. Challenge 4: Understanding the basic physical principles manifest in processes observed in solar and space plasmas. Challenge 5: Developing a near-real-time predictive capability for understanding and quantifying the impact on human activities of dynamical processes at the Sun, in the interplanetary medium, and in Earth's magnetosphere and ionosphere. This report summarizes the state of knowledge about the total heliospheric system, poses key scientific questions for further research, and presents an integrated research strategy, with prioritized initiatives, for the next decade. The recommended strategy embraces both basic research programs and targeted basic research activities that will enhance knowledge and prediction of space weather effects on Earth. The report emphasizes the importance of understanding the Sun, the heliosphere, and planetary magnetospheres and ionospheres as astrophysical objects and as laboratories for the investigation of fundamental plasma physics phenomena.

  2. The Earth System (ES-DOC) Project

    NASA Astrophysics Data System (ADS)

    Greenslade, Mark; Murphy, Sylvia; Treshansky, Allyn; DeLuca, Cecilia; Guilyardi, Eric; Denvil, Sebastien

    2014-05-01

    ESSI1.3 New Paradigms, Modelling, and International Collaboration Strategies for Earth System Sciences Earth System Documentation (ES-DOC) is an international project supplying tools & services in support of earth system documentation creation, analysis and dissemination. It is nurturing a sustainable standards based documentation eco-system that aims to become an integral part of the next generation of exa-scale dataset archives. ES-DOC leverages open source software and places end-user narratives at the heart of all it does. ES-DOC has initially focused upon nurturing the Earth System Model (ESM) documentation eco-system. Within this context ES-DOC leverages emerging documentation standards and supports the following projects: Coupled Model Inter-comparison Project Phase 5 (CMIP5); Dynamical Core Model Inter-comparison Project (DCMIP); National Climate Predictions and Projections Platforms Quantitative Evaluation of Downscaling Workshop. This presentation will introduce the project to a wider audience and demonstrate the range of tools and services currently available for use. It will also demonstrate how international collaborative efforts are essential to the success of ES-DOC.

  3. Commons problems, common ground: Earth-surface dynamics and the social-physical interdisciplinary frontier

    NASA Astrophysics Data System (ADS)

    Lazarus, E.

    2015-12-01

    In the archetypal "tragedy of the commons" narrative, local farmers pasture their cows on the town common. Soon the common becomes crowded with cows, who graze it bare, and the arrangement of open access to a shared resource ultimately fails. The "tragedy" involves social and physical processes, but the denouement depends on who is telling the story. An economist might argue that the system collapses because each farmer always has a rational incentive to graze one more cow. An ecologist might remark that the rate of grass growth is an inherent control on the common's carrying capacity. And a geomorphologist might point out that processes of soil degradation almost always outstrip processes of soil production. Interdisciplinary research into human-environmental systems still tends to favor disciplinary vantages. In the context of Anthropocene grand challenges - including fundamental insight into dynamics of landscape resilience, and what the dominance of human activities means for processes of change and evolution on the Earth's surface - two disciplines in particular have more to talk about than they might think. Here, I use three examples - (1) beach nourishment, (2) upstream/downstream fluvial asymmetry, and (3) current and historical "land grabbing" - to illustrate a range of interconnections between physical Earth-surface science and common-pool resource economics. In many systems, decision-making and social complexity exert stronger controls on landscape expression than do physical geomorphological processes. Conversely, human-environmental research keeps encountering multi-scale, emergent problems of resource use made 'common-pool' by water, nutrient and sediment transport dynamics. Just as Earth-surface research can benefit from decades of work on common-pool resource systems, quantitative Earth-surface science can make essential contributions to efforts addressing complex problems in environmental sustainability.

  4. Crustal dynamics project observing plan for highly mobile systems 1981 - 1986

    NASA Technical Reports Server (NTRS)

    Frey, H.

    1980-01-01

    Measurement of crustal motion in the western United States and other tectonically active regions makes use of fixed, movable and highly mobile satellite laser ranging and very long baseline interferometry systems. Measurement of the rotational dynamics of the Earth as well as regional deformation and plate motion are discussed.

  5. Is there a single origin of life?

    NASA Astrophysics Data System (ADS)

    Soffen, Gerald A.

    The emergence of the first life on the earth is now established as an early event, and closely related to the evolving earth. Laboratory experiments examining possible chemical events have revealed a multitude of plausible pathways. Lack of knowledge of the primitive terrestrial conditions contemporary with the evolving prebolic organic chemistry limits reconstruction techniques. The primitive earth's aqueous history is essential to unraveling this problem. Based on our current knowledge of other planets of the solar system, we do not expect close analogues to the early earth. We still do not know if there was a second origin or if only earth has life. This may depend upon the question of the survival of information bearing chemical systems in a dynamic or chaotic environment and the chemical protection afforded within such a system. Water is the central molecule of controversy: the blessing and the curse of the chemist. New and novel chemical mechanisms and systems abound.

  6. Wet Tectonics: A New Planetary Synthesis

    NASA Astrophysics Data System (ADS)

    Grimm, K. A.

    2005-12-01

    Most geoscientists (and geoscience textbooks) describe plate tectonics as a `solid-Earth' phenomenon, with fluids playing an important role in discrete geodynamic processes. As a community of diverse research specialists, the critical role of water is being widely elucidated, however these diverse studies do not address the fundamental origin and operation of the global plate tectonic phenomenon, and its expressions in planetary geodynamics and geomorphology. The Wet Tectonics hypothesis extends well beyond the plate tectonics paradigm, to constitute a new synthesis of diverse geoscience specializations and self-organizing complexity into a simple, internally consistent and explicitly testable model. The Wet Tectonics hypothesis asserts that Earth's plate tectonic system arose from and is the explicit and dynamic result of water interacting with the hot silicate mantle. The tectosphere is defined as an interactive functional (rather than structural, compositional or rheological) entity, a planetary-scale dynamic system of plate formation, plate motion, and rock/volatile recycling. Earth's tectosphere extends from the base of the asthenosphere to the top of the crust, arising and evolving as a dynamic pattern of organization that creates, orders and perpetuates itself. Earth's tectosphere is energetically-open, materially ajar (steady-state operation may not require sub-asthenospheric inputs; shifts between distinct tectonic modes may result from changes in coupling between the tectosphere and subasthenospheric reservoirs) and chemically-closed (i.e. the tectosphere recycles its own wastes). Water is a fundamental requirement in all of the constituent processes of Earth's tectosphere, including seafloor spreading, slab cooling/subsidence, plate motion, asthenosphere rheology, and subduction (where crustal and volatile recycling occur). As a working hypothesis, we suggest that the dynamic and persistent hydrosphere and tectosphere on planet Earth are fully interdependent and co-evolving phenomena. The concept of autocatalytic hypercycles has been adapted from molecular biology to resolve the apparent paradox of circular causality amongst the coupled phenomena of liquid water oceans and `plate tectonics'. This new planetary synthesis presents fundamental implications for geological, geophysical, Earth system and planetary sciences, as well as novel hypotheses concerning plate drive (gravity sliding ± slab pull), origin of plate tectonics (Hadean, >=4.4Ga), biogeochemical cycling (balanced global fluxes of water into and out of the tectosphere; is the asthenosphere continuously rehydrated via lateral advection) and planetary geomorphology (simple contrasts between Mars, Earth and Venus).

  7. An Integrated Approach to Modeling Solar Electric Propulsion Vehicles During Long Duration, Near-Earth Orbit Transfers

    NASA Technical Reports Server (NTRS)

    Smith, David A.; Hojnicki, Jeffrey S.; Sjauw, Waldy K.

    2014-01-01

    Recent NASA interest in utilizing solar electronic propulsion (SEP) technology to transfer payloads, e.g. from low-Earth orbit (LEO) to higher energy geostationary-Earth orbit (GEO) or to Earth escape, has necessitated the development of high fidelity SEP vehicle models and simulations. These models and simulations need to be capable of capturing vehicle dynamics and sub-system interactions experienced during the transfer trajectories which are typically accomplished with continuous-burn (potentially interrupted by solar eclipse), long duration "spiral out" maneuvers taking several months or more to complete. This paper presents details of an integrated simulation approach achieved by combining a high fidelity vehicle simulation code with a detailed solar array model. The combined simulation tool gives researchers the functionality to study the integrated effects of various vehicle sub-systems (e.g. vehicle guidance, navigation and control (GN&C), electric propulsion system (EP)) with time varying power production. Results from a simulation model of a vehicle with a 50 kW class SEP system using the integrated tool are presented and compared to the results from another simulation model employing a 50 kW end-of-life (EOL) fixed power level assumption. These models simulate a vehicle under three degree of freedom dynamics (i.e. translational dynamics only) and include the effects of a targeting guidance algorithm (providing a "near optimal" transfer) during a LEO to near Earth escape (C (sub 3) = -2.0 km (sup 2) / sec (sup -2) spiral trajectory. The presented results include the impact of the fully integrated, time-varying solar array model (e.g. cumulative array degradation from traversing the Van Allen belts, impact of solar eclipses on the vehicle and the related temperature responses in the solar arrays due to operating in the Earth's thermal environment, high fidelity array power module, etc.); these are used to assess the impact on vehicle performance (i.e. propellant consumption) and transit times.

  8. Celestial reference frames and the gauge freedom in the post-Newtonian mechanics of the Earth-Moon system

    NASA Astrophysics Data System (ADS)

    Kopeikin, Sergei; Xie, Yi

    2010-11-01

    We introduce the Jacobi coordinates adopted to the advanced theoretical analysis of the relativistic Celestial Mechanics of the Earth-Moon system. Theoretical derivation utilizes the relativistic resolutions on reference frames adopted by the International Astronomical Union (IAU) in 2000. The resolutions assume that the Solar System is isolated and space-time is asymptotically flat at infinity and the primary reference frame covers the entire space-time, has its origin at the Solar System barycenter (SSB) with spatial axes stretching up to infinity. The SSB frame is not rotating with respect to a set of distant quasars that are assumed to be at rest on the sky forming the International Celestial Reference Frame (ICRF). The second reference frame has its origin at the Earth-Moon barycenter (EMB). The EMB frame is locally inertial and is not rotating dynamically in the sense that equation of motion of a test particle moving with respect to the EMB frame, does not contain the Coriolis and centripetal forces. Two other local frames—geocentric and selenocentric—have their origins at the center of mass of Earth and Moon respectively and do not rotate dynamically. Each local frame is subject to the geodetic precession both with respect to other local frames and with respect to the ICRF because of their relative motion with respect to each other. Theoretical advantage of the dynamically non-rotating local frames is in a more simple mathematical description of the metric tensor and relative equations of motion of the Moon with respect to Earth. Each local frame can be converted to kinematically non-rotating one after alignment with the axes of ICRF by applying the matrix of the relativistic precession as recommended by the IAU resolutions. The set of one global and three local frames is introduced in order to decouple physical effects of gravity from the gauge-dependent effects in the equations of relative motion of the Moon with respect to Earth.

  9. Earth Rotation Dynamics: Review and Prospects

    NASA Technical Reports Server (NTRS)

    Chao, Benjamin F.

    2004-01-01

    Modem space geodetic measurement of Earth rotation variations, particularly by means of the VLBI technique, has over the years allowed studies of Earth rotation dynamics to advance in ever-increasing precision, accuracy, and temporal resolution. A review will be presented on our understanding of the geophysical and climatic causes, or "excitations", for length-of-day change, polar motion, and nutations. These excitations sources come from mass transports that constantly take place in the Earth system comprised of the atmosphere, hydrosphere, cryosphere, lithosphere, mantle, and the cores. In this sense, together with other space geodetic measurements of time-variable gravity and geocenter motion, Earth rotation variations become a remote-sensing tool for the integral of all mass transports, providing valuable information about the latter on a wide range of spatial and temporal scales. Future prospects with respect to geophysical studies with even higher accuracy and resolution will be discussed.

  10. Notes on Earth Atmospheric Entry for Mars Sample Return Missions

    NASA Technical Reports Server (NTRS)

    Rivell, Thomas

    2006-01-01

    The entry of sample return vehicles (SRVs) into the Earth's atmosphere is the subject of this document. The Earth entry environment for vehicles, or capsules, returning from the planet Mars is discussed along with the subjects of dynamics, aerodynamics, and heat transfer. The material presented is intended for engineers and scientists who do not have strong backgrounds in aerodynamics, aerothermodynamics and flight mechanics. The document is not intended to be comprehensive and some important topics are omitted. The topics considered in this document include basic principles of physics (fluid mechanics, dynamics and heat transfer), chemistry and engineering mechanics. These subjects include: a) fluid mechanics (aerodynamics, aerothermodynamics, compressible fluids, shock waves, boundary layers, and flow regimes from subsonic to hypervelocity; b) the Earth s atmosphere and gravity; c) thermal protection system design considerations; d) heat and mass transfer (convection, radiation, and ablation); e) flight mechanics (basic rigid body dynamics and stability); and f) flight- and ground-test requirements; and g) trajectory and flow simulation methods.

  11. UNAVCO facility support of NASA Dynamics of the Solid Earth (DOSE) GPS investigation for years 1995-1996

    NASA Technical Reports Server (NTRS)

    Ware, Randolph (Principal Investigator)

    1996-01-01

    This report consists of the following sections: a list of the NASA DOSE (Dynamics of the Solid Earth) Program Global Positioning System (GPS)-based campaigns supported by the UNAVCO (University Navstar Consortium) Boulder Facility; a list of NASA DOSE GPS permanent site installations supported by the UNAVCO Boulder Facility; and example science snapshots indicating the research projects supported with equipment and technical support available to DOSE Principal Investigators via the UNAVCO Boulder Facility.

  12. Benchmark Problems for Space Mission Formation Flying

    NASA Technical Reports Server (NTRS)

    Carpenter, J. Russell; Leitner, Jesse A.; Folta, David C.; Burns, Richard

    2003-01-01

    To provide a high-level focus to distributed space system flight dynamics and control research, several benchmark problems are suggested for space mission formation flying. The problems cover formation flying in low altitude, near-circular Earth orbit, high altitude, highly elliptical Earth orbits, and large amplitude lissajous trajectories about co-linear libration points of the Sun-Earth/Moon system. These problems are not specific to any current or proposed mission, but instead are intended to capture high-level features that would be generic to many similar missions that are of interest to various agencies.

  13. Advances in terrestrial physics research at NASA/Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Salomonson, Vincent V.

    1987-01-01

    Some past, current, and future terrestrial physics research activities at NASA/Goddard Space Flight Center are described. The uses of satellites and sensors, such as Tiros, Landsat, Nimbus, and SMMR, for terrestrial physics research are discussed. The spaceborne data are applicable for monitoring and studying vegetation, snow, and ice dynamics; geological features; soil moisture; water resources; the geoid of the earth; and the earth's magnetic field. Consideration is given to improvements in remote sensing systems and data records and the Earth Observing System sensor concepts.

  14. Dynamical sequestration of the Moon-forming impactor in co-orbital resonance with Earth

    NASA Astrophysics Data System (ADS)

    Kortenkamp, Stephen J.; Hartmann, William K.

    2016-09-01

    Recent concerns about the giant impact hypothesis for the origin of the Moon, and an associated "isotope crisis" may be assuaged if the impactor was a local object that formed near Earth. We investigated a scenario that may meet this criterion, with protoplanets assumed to originate in 1:1 co-orbital resonance with Earth. Using N-body numerical simulations we explored the dynamical consequences of placing Mars-mass companions in various co-orbital configurations with a proto-Earth of 0.9 Earth-masses (M⊕). We modeled 162 different configurations, some with just the four terrestrial planets and others that included the four giant planets. In both the 4- and 8-planet models we found that a single Mars-mass companion typically remained a stable co-orbital of Earth for the entire 250 million year (Myr) duration of our simulations (59 of 68 unique simulations). In an effort to destabilize such a system we carried out an additional 94 simulations that included a second Mars-mass co-orbital companion. Even with two Mars-mass companions sharing Earth's orbit about two-thirds of these models (66) also remained stable for the entire 250 Myr duration of the simulations. Of the 28 2-companion models that eventually became unstable 24 impacts were observed between Earth and an escaping co-orbital companion. The average delay we observed for an impact of a Mars-mass companion with Earth was 102 Myr, and the longest delay was 221 Myr. In 40% of the 8-planet models that became unstable (10 out of 25) Earth collided with the nearly equal mass Venus to form a super-Earth (loosely defined here as mass ≥1.7 M⊕). These impacts were typically the final giant impact in the system and often occurred after Earth and/or Venus has accreted one or more of the other large objects. Several of the stable configurations involved unusual 3-planet hierarchical co-orbital systems.

  15. Spaceflight dynamics 1993; AAS/NASA International Symposium, 8th, Greenbelt, MD, Apr. 26-30, 1993, Parts 1 & 2

    NASA Technical Reports Server (NTRS)

    Teles, Jerome (Editor); Samii, Mina V. (Editor)

    1993-01-01

    A conference on spaceflight dynamics produced papers in the areas of orbit determination, spacecraft tracking, autonomous navigation, the Deep Space Program Science Experiment Mission (DSPSE), the Global Positioning System, attitude control, geostationary satellites, interplanetary missions and trajectories, applications of estimation theory, flight dynamics systems, low-Earth orbit missions, orbital mechanics, mission experience in attitude dynamics, mission experience in sensor studies, attitude dynamics theory and simulations, and orbit-related experience. These papaers covered NASA, European, Russian, Japanese, Chinese, and Brazilian space programs and hardware.

  16. Autonomous scheduling technology for Earth orbital missions

    NASA Technical Reports Server (NTRS)

    Srivastava, S.

    1982-01-01

    The development of a dynamic autonomous system (DYASS) of resources for the mission support of near-Earth NASA spacecraft is discussed and the current NASA space data system is described from a functional perspective. The future (late 80's and early 90's) NASA space data system is discussed. The DYASS concept, the autonomous process control, and the NASA space data system are introduced. Scheduling and related disciplines are surveyed. DYASS as a scheduling problem is also discussed. Artificial intelligence and knowledge representation is considered as well as the NUDGE system and the I-Space system.

  17. 800 Hours of Operational Experience from a 2 kW(sub e) Solar Dynamic System

    NASA Technical Reports Server (NTRS)

    Shaltens, Richard K.; Mason, Lee S.

    1999-01-01

    From December 1994 to September 1998, testing with a 2 kW(sub e) Solar Dynamic power system resulted in 33 individual tests, 886 hours of solar heating, and 783 hours of power generation. Power generation ranged from 400 watts to over 2 kW(sub e), and SD system efficiencies have been measured up to 17 per cent, during simulated low-Earth orbit operation. Further, the turbo-alternator-compressors successfully completed 100 start/stops on foil bearings. Operation was conducted in a large thermal/vacuum facility with a simulated Sun at the NASA Lewis Research Center. The Solar Dynamic system featured a closed Brayton conversion unit integrated with a solar heat receiver, which included thermal energy storage for continuous power output through a typical low-Earth orbit. Two power conversion units and three alternator configurations were used during testing. This paper will review the test program, provide operational and performance data, and review a number of technology issues.

  18. Beyond Our Boundaries: Research and Technology

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Topics considered include: Propulsion and Fluid Management; Structures and Dynamics; Materials and Manufacturing Processes; Sensor Technology; Software Technology; Optical Systems; Microgravity Science; Earth System Science; Astrophysics; Solar Physics; and Technology Transfer.

  19. The fluid dynamics of atmospheric clouds

    NASA Astrophysics Data System (ADS)

    Randall, David A.

    2017-11-01

    Clouds of many types are of leading-order importance for Earth's weather and climate. This importance is most often discussed in terms of the effects of clouds on radiative transfer, but the fluid dynamics of clouds are at least equally significant. Some very small-scale cloud fluid-dynamical processes have significant consequences on the global scale. These include viscous dissipation near falling rain drops, and ``buoyancy reversal'' associated with the evaporation of liquid water. Major medium-scale cloud fluid-dynamical processes include cumulus convection and convective aggregation. Planetary-scale processes that depend in an essential way on cloud fluid dynamics include the Madden-Julian Oscillation, which is one of the largest and most consequential weather systems on Earth. I will attempt to give a coherent introductory overview of this broad range of phenomena.

  20. Teaching Sustainability through System Dynamics: Exploring Stocks and Flows Embedded in Dynamic Computer Models of an Agricultural Land Management System

    ERIC Educational Resources Information Center

    Pallant, Amy; Lee, Hee-Sun

    2017-01-01

    During the past several decades, there has been a growing awareness of the ways humans affect Earth systems. As global problems emerge, educating the next generation of citizens to be able to make informed choices related to future outcomes is increasingly important. The challenge for educators is figuring out how to prepare students to think…

  1. Formation Flying of Tethered and Nontethered Spacecraft

    NASA Technical Reports Server (NTRS)

    Quadrelli, Marco B.

    2005-01-01

    A paper discusses the effect of the dynamic interaction taking place within a formation composed of a rigid and a deformable vehicle, and presents the concept of two or more tethered spacecraft flying in formation with one or more separated free-flying spacecraft. Although progress toward formation flight of nontethered spacecraft has already been achieved, the document cites potential advantages of tethering, including less consumption of fuel to maintain formation, very high dynamic stability of a rotating tethered formation, and intrinsically passive gravity-gradient stabilization. The document presents a theoretical analysis of the dynamics of a system comprising one free-flying spacecraft and two tethered spacecraft in orbit, as a prototype of more complex systems. The spacecraft are modeled as rigid bodies and the tether as a mass-less spring with structural viscous damping. Included in the analysis is a study of the feasibility of a centralized control system for maintaining a required formation in low Earth orbit. A numerical simulation of a retargeting maneuver is reported to show that even if the additional internal dynamics of the system caused by flexibility is considered, high pointing precision can be achieved if a fictitious rigid frame is used to track the tethered system, and it should be possible to position the spacecraft with centimeter accuracy and to orient the formation within arc seconds of the desired direction also in the presence of low Earth orbit environmental perturbations. The results of the study demonstrate that the concept is feasible in Earth orbit and point the way to further study of these hybrid tethered and free-flying systems for related applications in orbit around other Solar System bodies.

  2. European Workshop on Planetary Sciences, Rome, Italy, April 23-27, 1979, Proceedings. Part 1

    NASA Astrophysics Data System (ADS)

    1980-02-01

    Papers are presented on the dynamics and evolution of the solar system and its components. Specific topics include the dynamic stability of the solar system, the tidal friction theory of the earth moon system, the stability and irregularity of extrasolar planetary systems, angular momentum and magnetic braking during star formation, the collisional growth of planetesimals, the dynamics, interrelations and evolution of the asteroids and comets, the formation and stability of Saturn's rings, and the importance of nearly tangent orbits in planetary close encounters.

  3. Geophysical Fluid Dynamics Outreach Films

    NASA Astrophysics Data System (ADS)

    Aurnou, J. M.; Schwarz, J. W.; Noguez, G.

    2012-12-01

    Here we will present high definition films of laboratory experiments demonstrating basic fluid motions similar to those occurring in atmospheres and oceans. In these experiments, we use water to simulate the fluid dynamics of both the liquid (oceans) and gaseous (atmospheric) envelopes. To simulate the spinning of the earth, we carry out the experiments on a rotating table. For each experiment, we begin by looking at our system first without the effects of rotation. Then, we include rotation to see how the behavior of the fluid changes due to the Coriolis accelerations. Our hope is that by viewing these experiments one will develop a sense for how fluids behave both in rotating and non-rotating systems. By noting the differences between the experiments, it should then be possible to establish a basis to think about large-scale fluid motions that exist in Earth's oceans and atmospheres as well as on planets other than Earth.Plan view image of vortices in a rotating tank of fluid. Movies of such flows make accessible the often difficult to comprehend fluid dynamical processes that occur in planetary atmospheres and oceans.

  4. The lunar nodal tide and the distance to tne Moon during the Precambrian era

    NASA Technical Reports Server (NTRS)

    Walker, J. C. G.; Zahnle, K. J.

    1986-01-01

    The origin and early evolution of life on Earth occurred under physical and chemical conditions distinctly different from those of the present day. The broad goal of this research program is to characterize these conditions. One aspect involves the dynamics of the Earth-Moon system, the distance of the Moon from the Earth, and the length of the day. These have evolved during the course of Earth history as a result of the dissipation of tidal energy. As the moon has receded the amplitude of oceanic tides has decreased while the increasing length of the day should have influenced climate and the circulation of atmosphere and ocean. A 23.3 year periodicity preserved in a 2500 million year old banded iron-formation was interpreted as reflecting the climatic influence of the lunar nodal tide. The corresponding lunar distance would then have been approx. 52 Earth radii. The influence of the lunar nodal tide is also apparent in rocks with an age of 680 million years B.P. The derived value for lunar distance 2500 million years ago is the only datum on the dynamics of the Earth-Moon system during the Precambrian era of Earth history. The implied development of Precambrian tidal friction is in accord with more recent paleontological evidence as well as the long term stability of the lunar orbit.

  5. Simulation of interference between Earth stations and Earth-orbiting satellites

    NASA Technical Reports Server (NTRS)

    Bishop, D. F.

    1994-01-01

    It is often desirable to determine the potential for radio frequency interference between earth stations and orbiting spacecraft. This information can be used to select frequencies for radio systems to avoid interference or it can be used to determine if coordination between radio systems is necessary. A model is developed that will determine the statistics of interference between earth stations and elliptical orbiting spacecraft. The model uses orbital dynamics, detailed antenna patterns, and spectral characteristics to obtain accurate levels of interference at the victim receiver. The model is programmed into a computer simulation to obtain long-term statistics of interference. Two specific examples are shown to demonstrate the model. The first example is a simulation of interference from a fixed-satellite earth station to an orbiting scatterometer receiver. The second example is a simulation of interference from earth-exploration satellites to a deep-space earth station.

  6. Analytical study of inside-out Gimbal dynamics. Volume 2: Appendix

    NASA Technical Reports Server (NTRS)

    Rybak, S. C.

    1976-01-01

    Stability data, eigenvalue data, and instrument pointing system earth point tracking time histories at various orbital altitudes are presented. These data apply to the inside-out Gimbal system configuration and the coincident Gimbal system configuration.

  7. Modeling Sustainability: Population, Inequality, Consumption, and Bidirectional Coupling of the Earth and Human Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Motesharrei, Safa; Rivas, Jorge; Kalnay, Eugenia

    Over the last two centuries, the impact of the Human System has grown dramatically, becoming strongly dominant within the Earth System in many different ways. Consumption, inequality, and population have increased extremely fast, especially since about 1950, threatening to overwhelm the many critical functions and ecosystems of the Earth System. Changes in the Earth System, in turn, have important feedback effects on the Human System, with costly and potentially serious consequences. However, current models do not incorporate these critical feedbacks. Here, we argue that in order to understand the dynamics of either system, Earth System Models must be coupled withmore » Human System Models through bidirectional couplings representing the positive, negative, and delayed feedbacks that exist in the real systems. In particular, key Human System variables, such as demographics, inequality, economic growth, and migration, are not coupled with the Earth System but are instead driven by exogenous estimates, such as United Nations population projections.This makes current models likely to miss important feedbacks in the real Earth–Human system, especially those that may result in unexpected or counterintuitive outcomes, and thus requiring different policy interventions from current models. Lastly, the importance and imminence of sustainability challenges, the dominant role of the Human System in the Earth System, and the essential roles the Earth System plays for the Human System, all call for collaboration of natural scientists, social scientists, and engineers in multidisciplinary research and modeling to develop coupled Earth–Human system models for devising effective science-based policies and measures to benefit current and future generations.« less

  8. Modeling Sustainability: Population, Inequality, Consumption, and Bidirectional Coupling of the Earth and Human Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Motesharrei, Safa; Rivas, Jorge; Kalnay, Eugenia

    Over the last two centuries, the impact of the Human System has grown dramatically, becoming strongly dominant within the Earth System in many different ways. Consumption, inequality, and population have increased extremely fast, especially since about 1950, threatening to overwhelm the many critical functions and ecosystems of the Earth System. Changes in the Earth System, in turn, have important feedback effects on the Human System, with costly and potentially serious consequences. However, current models do not incorporate these critical feedbacks. We argue that in order to understand the dynamics of either system, Earth System Models must be coupled with Humanmore » System Models through bidirectional couplings representing the positive, negative, and delayed feedbacks that exist in the real systems. In particular, key Human System variables, such as demographics, inequality, economic growth, and migration, are not coupled with the Earth System but are instead driven by exogenous estimates, such as United Nations population projections. This makes current models likely to miss important feedbacks in the real Earth–Human system, especially those that may result in unexpected or counterintuitive outcomes, and thus requiring different policy interventions from current models. The importance and imminence of sustainability challenges, the dominant role of the Human System in the Earth System, and the essential roles the Earth System plays for the Human System, all call for collaboration of natural scientists, social scientists, and engineers in multidisciplinary research and modeling to develop coupled Earth–Human system models for devising effective science-based policies and measures to benefit current and future generations.« less

  9. Modeling Sustainability: Population, Inequality, Consumption, and Bidirectional Coupling of the Earth and Human Systems

    DOE PAGES

    Motesharrei, Safa; Rivas, Jorge; Kalnay, Eugenia; ...

    2016-12-11

    Over the last two centuries, the impact of the Human System has grown dramatically, becoming strongly dominant within the Earth System in many different ways. Consumption, inequality, and population have increased extremely fast, especially since about 1950, threatening to overwhelm the many critical functions and ecosystems of the Earth System. Changes in the Earth System, in turn, have important feedback effects on the Human System, with costly and potentially serious consequences. However, current models do not incorporate these critical feedbacks. Here, we argue that in order to understand the dynamics of either system, Earth System Models must be coupled withmore » Human System Models through bidirectional couplings representing the positive, negative, and delayed feedbacks that exist in the real systems. In particular, key Human System variables, such as demographics, inequality, economic growth, and migration, are not coupled with the Earth System but are instead driven by exogenous estimates, such as United Nations population projections.This makes current models likely to miss important feedbacks in the real Earth–Human system, especially those that may result in unexpected or counterintuitive outcomes, and thus requiring different policy interventions from current models. Lastly, the importance and imminence of sustainability challenges, the dominant role of the Human System in the Earth System, and the essential roles the Earth System plays for the Human System, all call for collaboration of natural scientists, social scientists, and engineers in multidisciplinary research and modeling to develop coupled Earth–Human system models for devising effective science-based policies and measures to benefit current and future generations.« less

  10. Near Earth Asteroid Solar Sail Engineering Development Unit Test Program

    NASA Technical Reports Server (NTRS)

    Lockett, Tiffany Russell; Few, Alexander; Wilson, Richard

    2017-01-01

    The Near Earth Asteroid (NEA) Scout project is a 30x20x10cm (6U) cubesat reconnaissance mission to investigate a near Earth asteroid utilizing an 86m2 solar sail as the primary propulsion system. This will be the largest solar sail NASA will launch to date. NEA Scout is a secondary payload currently manifested on the maiden voyage of the Space Launch System in 2018. In development of the solar sail subsystem, design challenges were identified and investigated for packaging within a 6U form factor and deployment in cis-lunar space. Analysis furthered understanding of thermal, stress, and dynamics of the stowed system and matured an integrated sail membrane model for deployed flight dynamics. This paper will address design, fabrication, and lessons learned from the NEA Scout solar sail subsystem engineering development unit. From optical properties of the sail material to folding and spooling the single 86m2 sail, the team has developed a robust deployment system for the solar sail. This paper will also address expected and received test results from ascent vent, random vibration, and deployment tests.

  11. Autonomous Multi-sensor Coordination: The Science Goal Monitor

    NASA Technical Reports Server (NTRS)

    Koratkar, Anuradha; Jung, John; Geiger, Jenny; Grosvenor, Sandy

    2004-01-01

    Next-generation science and exploration systems will employ new observation strategies that will use multiple sensors in a dynamic environment to provide high quality monitoring, self-consistent analyses and informed decision making. The Science Goal Monitor (SGM) is a prototype software tool being developed to explore the nature of automation necessary to enable dynamic observing of earth phenomenon. The tools being developed in SGM improve our ability to autonomously monitor multiple independent sensors and coordinate reactions to better observe the dynamic phenomena. The SGM system enables users to specify events of interest and how to react when an event is detected. The system monitors streams of data to identify occurrences of the key events previously specified by the scientist/user. When an event occurs, the system autonomously coordinates the execution of the users desired reactions between different sensors. The information can be used to rapidly respond to a variety of fast temporal events. Investigators will no longer have to rely on after-the-fact data analysis to determine what happened. Our paper describes a series of prototype demonstrations that we have developed using SGM and NASA's Earth Observing-1 (EO-1) satellite and Earth Observing Systems Aqua/Terra spacecrafts MODIS instrument. Our demonstrations show the promise of coordinating data from different sources, analyzing the data for a relevant event, autonomously updating and rapidly obtaining a follow-on relevant image. SGM is being used to investigate forest fires, floods and volcanic eruptions. We are now identifying new earth science scenarios that will have more complex SGM reasoning. By developing and testing a prototype in an operational environment, we are also establishing and gathering metrics to gauge the success of automating science campaigns.

  12. Transitions between multiple equilibria of paleo climate: a glimpse in to the dynamics of abrupt climate change

    NASA Astrophysics Data System (ADS)

    Ferreira, David; Marshall, John; Ito, Takamitsu; McGee, David; Moreno-Chamarro, Eduardo

    2017-04-01

    The dynamics regulating large climatic transitions such as glacial-interglacial cycles or DO events remains a puzzle. Forcings behind these transitions are not robustly identified and potential candidates (e.g. Milankovitch cycles, freshwater perturbations) often appear too weak to explain such dramatic transitions. A potential solution to this long-standing puzzle is that Earth's climate is endowed with multiple equilibrium states of global extent. Such states are commonly found in low-order or conceptual climate models, but it is unclear whether a system as complex as Earth's climate can sustain multiple equilibrium states. Here we report that multiple equilibrium states of the climate system are also possible in a complex, fully dynamical coupled ocean-atmosphere-sea ice GCM with idealized Earth-like geometry, resolved weather systems and a hydrological cycle. In our model, two equilibrium states coexist for the same parameters and external forcings: a Warm climate with a small Northern hemisphere sea ice cap and a large southern one and a Cold climate with large ice caps at both poles. The dynamical states of the Warm and Cold solutions exhibit striking similarities with our present-day climate and the climate of the Last Glacial Maximum, respectively. A carbon cycle model driven by the two dynamical states produces an atmospheric pCO2 draw-down of about 110 pm between the Warm and Cold states, close to Glacial-Interglacial differences found in ice cores. Mechanism controlling the existence of the multiple states and changes in the atmospheric CO2 will be briefly presented. Finally we willdescribe transition experiments from the Cold to the Warm state, focusing on the lead-lags in the system, notably between the Northern and Southern Hemispheres climates.

  13. Newtonian-Machian analysis of the neo-Tychonian model of planetary motions

    NASA Astrophysics Data System (ADS)

    Popov, Luka

    2013-03-01

    The calculation of the trajectories in the Sun-Earth-Mars system is performed using two different models, both in the framework of Newtonian mechanics. The first model is the well-known Copernican system, which assumes that the Sun is at rest and that all the planets orbit around it. The second is a less well-known model, developed by Tycho Brahe (1546-1601), according to which the Earth stands still, the Sun orbits around the Earth, and the other planets orbit around the Sun. The term ‘neo-Tychonian system’ refers to the assumption that orbits of distant masses around the Earth are synchronized with the Sun's orbit. It is the aim of this paper to show the kinematical and dynamical equivalence of these systems, under the assumption of Mach's principle.

  14. Update on the NASA GEOS-5 Aerosol Forecasting and Data Assimilation System

    NASA Technical Reports Server (NTRS)

    Colarco, Peter; da Silva, Arlindo; Aquila, Valentina; Bian, Huisheng; Buchard, Virginie; Castellanos, Patricia; Darmenov, Anton; Follette-Cook, Melanie; Govindaraju, Ravi; Keller, Christoph; hide

    2017-01-01

    GEOS-5 is the Goddard Earth Observing System model. GEOS-5 is maintained by the NASA Global Modeling and Assimilation Office. Core development is within GMAO,Goddard Atmospheric Chemistry and Dynamics Laboratory, and with external partners. Primary GEOS-5 functions: Earth system model for studying climate variability and change, provide research quality reanalyses for supporting NASA instrument teams and scientific community, provide near-real time forecasts of meteorology,aerosols, and other atmospheric constituents to support NASA airborne campaigns.

  15. Scaling view by the Virtual Nature Systems

    NASA Astrophysics Data System (ADS)

    Klenov, Valeriy

    2010-05-01

    The Actual Nature Systems (ANS) continually are under spatial-temporal governing external influences from other systems (Meteorology and Geophysics). This influences provide own spatial temporal patterns on the Earth Nature Systems, which reforms these influences by own manner and scales. These at last three systems belong to the Open Non Equilibrium Nature Systems (ONES). The Geophysics and Meteorology Systems are both governing for the ANS on the Earth. They provide as continual energetic pressure and impacts, and direct Extremes from the both systems to the ANS on Earth surface (earthquakes, storms, and others). The Geodynamics of the ANS is under mixing of influence for both systems, on their scales and on dynamics of their spatial-temporal structures, and by own ANS properties, as the ONES. To select influences of external systems on the Earth systems always is among major tasks of the Geomorphology. Mixing of the Systems scales and dynamics provide specific properties for the memory of Earth system. The memory of the ANS has practical value for their multi-purpose management. The knowledge of these properties is the key for research spatial-temporal GeoDynamics and Trends of Earth Nature Systems. Selection of the influences in time and space requires for special tool, requires elaboration and action of the Virtual Nature Systems (VNS), which are enliven computer doubles for analysis Geodynamics of the ANS. The Experience on the VNS enables to assess influence of each and both external factors on the ANS. It is source of knowledge for regional tectonic and climate oscillations, trends, and threats. Research by the VNS for spatial-temporal dynamics and structures of stochastic regimes of governing systems and processes results in stochastic GeoDynamics of environmental processes, in forming of false trends and blanks in natural records. This ‘wild dance' of 2D stochastic patterns and their interaction each other and generates acting structures of river nets, and of river basins, in multi-layer, multi-scale, and multi-driven structures of surface processes. It results in the Information Loss Law for observed memory of the VNS (and of external drivers) which gradually cut off own Past and distort own history. This view on the GeoDynamics appeared after long time field measurements thousand of terrace levels, hundreds of terrace ranks, and many terrace complexes in river basins of all scales - for the purpose to recognize their deforming by climatic and tectonic spatial-temporal influences. The method for following up of terrace levels along valleys was used in the Geomorphology and Geology for a long time, by linking fragments of level to ‘cycles'. It gradually linked them by heights above riverbed. The understanding of this logical mistake was happened (as insight) during observing from upstream a valley. All fragmental levels downstream were good visible, without chances for their correlation ‘by height' or ‘by number'. Instead of link of fragments, this explains process of river valleys' stochastic GeoDynamics by properties of the ONES (I. Prigogine et al., 1984) to generate oscillations. Is only first view, but later it turned to simple mechanic of Information Loss Law action in the GeoInformatics for Nature Systems (Klenov, 1980, et al.). The Information Loss distorts and destroys natural records (sources for data on the Past exogenous and endogenous rivers). This simple equation was received by multiple measures of terrace rank, and other natural records. It explains origin of false trend in natural records, destroys most own history by stochastic dynamics of the ONES. It prevents to restore of nature records as a memory of the Past. Non-disturbed is only small time between the Past and the Future, which looks like a peak between two non-linear losses. The history of Past (of the ANS, and of external drivers) are destroyed by the ANS. The Future becomes none determined due unknown 2D data of future external influences. However, the effect is the reliable Outstripping Monitoring for impending disasters and of other processes with satisfactory exactness. It was proved by direct validations (by use observed records). The conclusions are as follows: The ILL is mechanics for dissipation the Past and indeterminism the Future of the Nature. Moving back along the VNS' Phase Trajectory changes a view on natural records, and is chance to restore history of the ANS and its external drivers.

  16. Visualizing Dynamic Weather and Ocean Data in Google Earth

    NASA Astrophysics Data System (ADS)

    Castello, C.; Giencke, P.

    2008-12-01

    Katrina. Climate change. Rising sea levels. Low lake levels. These headliners, and countless others like them, underscore the need to better understand our changing oceans and lakes. Over the past decade, efforts such as the Global Ocean Observing System (GOOS) have added to this understanding, through the creation of interoperable ocean observing systems. These systems, including buoy networks, gliders, UAV's, etc, have resulted in a dramatic increase in the amount of Earth observation data available to the public. Unfortunately, these data tend to be restrictive to mass consumption, owing to large file sizes, incompatible formats, and/or a dearth of user friendly visualization software. Google Earth offers a flexible way to visualize Earth observation data. Marrying high resolution orthoimagery, user friendly query and navigation tools, and the power of OGC's KML standard, Google Earth can make observation data universally understandable and accessible. This presentation will feature examples of meteorological and oceanographic data visualized using KML and Google Earth, along with tools and tips for integrating other such environmental datasets.

  17. Satellite-tracking and Earth dynamics research programs

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Tracking of LAGEOS for polar motion and Earth rotation studies and for other geophysical investigations, including crustal dynamics, Earth and ocean tides, and the general development of precision orbit determination continues. The BE-C and Starlette satellites were tracked for refined determinations of station coordinates and the Earth's gravity field and for studies of solid Earth dynamics.

  18. A Community Framework for Integrative, Coupled Modeling of Human-Earth Systems

    NASA Astrophysics Data System (ADS)

    Barton, C. M.; Nelson, G. C.; Tucker, G. E.; Lee, A.; Porter, C.; Ullah, I.; Hutton, E.; Hoogenboom, G.; Rogers, K. G.; Pritchard, C.

    2017-12-01

    We live today in a humanized world, where critical zone dynamics are driven by coupled human and biophysical processes. First generation modeling platforms have been invaluable in providing insight into dynamics of biophysical systems and social systems. But to understand today's humanized planet scientifically and to manage it sustainably, we need integrative modeling of this coupled human-Earth system. To address both scientific and policy questions, we also need modeling that can represent variable combinations of human-Earth system processes at multiple scales. Simply adding more code needed to do this to large, legacy first generation models is impractical, expensive, and will make them even more difficult to evaluate or understand. We need an approach to modeling that mirrors and benefits from the architecture of the complexly coupled systems we hope to model. Building on a series of international workshops over the past two years, we present a community framework to enable and support an ecosystem of diverse models as components that can be interconnected as needed to facilitate understanding of a range of complex human-earth systems interactions. Models are containerized in Docker to make them platform independent. A Basic Modeling Interface and Standard Names ontology (developed by the Community Surface Dynamics Modeling System) is applied to make them interoperable. They are then transformed into RESTful micro-services to allow them to be connected and run in a browser environment. This enables a flexible, multi-scale modeling environment to help address diverse issues with combinations of smaller, focused, component models that are easier to understand and evaluate. We plan to develop, deploy, and maintain this framework for integrated, coupled modeling in an open-source collaborative development environment that can democratize access to advanced technology and benefit from diverse global participation in model development. We also present an initial proof-of-concept of this framework, coupling a widely used agricultural crop model (DSSAT) with a widely used hydrology model (TopoFlow).

  19. Middle Atmosphere Program. Handbook for MAP, volume 25

    NASA Technical Reports Server (NTRS)

    Roper, R. G. (Editor)

    1987-01-01

    GLOBMET (the Global Meteor Observation System) was first proposed by the Soviet Geophysical Committee and was accepted by the Middle Atmosphere Program Steering Committee in 1982. While the atmospheric dynamics data from the system are of primary interest to MAP, GLOBMET also encompasses the astronomical radio and optical observations of meteoroids, and the physics of their interaction with the Earth's atmosphere. These astronomical observations and interactional physics with the Earth's atmosphere are discussed in detail.

  20. Progress in Earth System Modeling since the ENIAC Calculation

    NASA Astrophysics Data System (ADS)

    Fung, I.

    2009-05-01

    The success of the first numerical weather prediction experiment on the ENIAC computer in 1950 was hinged on the expansion of the meteorological observing network, which led to theoretical advances in atmospheric dynamics and subsequently the implementation of the simplified equations on the computer. This paper briefly reviews the progress in Earth System Modeling and climate observations, and suggests a strategy to sustain and expand the observations needed to advance climate science and prediction.

  1. Winter NH low-frequency variability in a hierarchy of low-order stochastic dynamical models of earth-atmosphere system

    NASA Astrophysics Data System (ADS)

    Zhao, Nan

    2018-02-01

    The origin of winter Northern Hemispheric low-frequency variability (hereafter, LFV) is regarded to be related to the coupled earth-atmosphere system characterized by the interaction of the jet stream with mid-latitude mountain ranges. On the other hand, observed LFV usually appears as transitions among multiple planetary-scale flow regimes of Northern Hemisphere like NAO + , AO +, AO - and NAO - . Moreover, the interaction between synoptic-scale eddies and the planetary-scale disturbance is also inevitable in the origin of LFV. These raise a question regarding how to incorporate all these aspects into just one framework to demonstrate (1) a planetary-scale dynamics of interaction of the jet stream with mid-latitude mountain ranges can really produce LFV, (2) such a dynamics can be responsible for the existence of above multiple flow regimes, and (3) the role of interaction with eddy is also clarified. For this purpose, a hierarchy of low-order stochastic dynamical models of the coupled earth-atmosphere system derived empirically from different timescale ranges of indices of Arctic Oscillation (AO), North Atlantic Oscillation (NAO), Pacific/North American (PNA), and length of day (LOD) and related probability density function (PDF) analysis are employed in this study. The results seem to suggest that the origin of LFV cannot be understood completely within the planetary-scale dynamics of the interaction of the jet stream with mid-latitude mountain ranges, because (1) the existence of multiple flow regimes such as NAO+, AO+, AO- and NAO- resulted from processes with timescales much longer than LFV itself, which may have underlying dynamics other than topography-jet stream interaction, and (2) we find LFV seems not necessarily to come directly from the planetary-scale dynamics of the interaction of the jet stream with mid-latitude mountain, although it can produce similar oscillatory behavior. The feedback/forcing of synoptic-scale eddies on the planetary-scale dynamics seems to play a more essential role in its origin.

  2. Redesigning NASA Earthdata to Become Powered by EOSDIS Components

    NASA Astrophysics Data System (ADS)

    Bagwell, R.; Siarto, J.; Wong, M. M.; Murphy, K. J.; McLaughlin, B. D.

    2014-12-01

    Two years ago, NASA's Earth Science Data and Information Systems (ESDIS) Project launched the Earthdata website (https://earthdata.nasa.gov) in order to make Earth Observing System Data and Information System (EOSDIS) data, data products, data tools, and services available to a broad range of user communities across Earth science disciplines to foster collaboration and learning amongst the communities. Earthdata is being redesigned to be the one-stop shop in providing Earth science data, services, and information to the Earth science community. The goal is to move from the current static, manually-intensive content format to a dynamic, data-driven website in order to provide a more flexible and usable design website infrastructure that leverages EOSDIS components such as the User Registration System (URS), the Common Metadata Repository (CMR) and the Global Imagery Browse Services (GIBS). This will reorganize information content to make the website easier to use and to make easily accessible the high-value Earth science content throughout the site. The website will also easily accept and incorporate upcoming new projects such as the Earthdata Search Client and the Sea Level Change Portal.

  3. Non-extensive statistical analysis of magnetic field during the March 2012 ICME event using a multi-spacecraft approach

    NASA Astrophysics Data System (ADS)

    Pavlos, G. P.; Malandraki, O. E.; Pavlos, E. G.; Iliopoulos, A. C.; Karakatsanis, L. P.

    2016-12-01

    In this study we present some new and significant results concerning the dynamics of interplanetary coronal mass ejections (ICMEs) observed in the near Earth at L1 solar wind environment, as well as its effect in Earth's magnetosphere. The results are referred to Tsallis non-extensive statistics and in particular to the estimation of Tsallis q-triplet, (qstat ,qsen ,qrel) of magnetic field time series of the ICME observed at the Earth resulting from the solar eruptive activity on March 7, 2012 at the Sun. For this, we used a multi-spacecraft approach based on data experiments from ACE, CLUSTER 4, THEMIS-E and THEMIS-C spacecraft. For the data analysis different time periods were considered, sorted as ;quiet;, ;shock; and ;aftershock;, while different space domains such as the Interplanetary space (near Earth at L1 and upstream of the Earth's bowshock), the Earth's magnetosheath and magnetotail, were also taken into account. Our results reveal significant differences in statistical and dynamical features, indicating important variations of the magnetic field dynamics both in time and space domains during the shock event, in terms of rate of entropy production, relaxation dynamics and non-equilibrium meta-stable stationary states. So far, Tsallis non-extensive statistical theory and Tsallis extension of the Boltzmann-Gibbs entropy principle to the q-entropy principle (Tsallis, 1988, 2009) reveal strong universality character concerning non-equilibrium dynamics (Pavlos et al. 2012a,b, 2014a,b; Karakatsanis et al. 2013). Tsallis q-entropy principle can explain the emergence of a series of new and significant physical characteristics in distributed systems as well as in space plasmas. Such characteristics are: non-Gaussian statistics and anomalous diffusion processes, strange and fractional dynamics, multifractal, percolating and intermittent turbulence structures, multiscale and long spatio-temporal correlations, fractional acceleration and Non-Equilibrium Stationary States (NESS) or non-equilibrium self-organization process and non-equilibrium phase transition and topological phase transition processes according to Zelenyi and Milovanov (2004). In this direction, our results reveal clearly strong self-organization and development of macroscopic ordering of plasma system related to strengthen of non-extensivity, multifractality and intermittency everywhere in the space plasmas region during the CME event.

  4. 14 CFR 1201.200 - General.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... development in astrophysics, life sciences, Earth sciences and applications, solar system exploration, space physics, communications, microgravity science and applications, and communications and information systems... computational and experimental fluid dynamics and aerodynamics; fluid and thermal physics; rotorcraft, powered...

  5. 14 CFR § 1201.200 - General.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... development in astrophysics, life sciences, Earth sciences and applications, solar system exploration, space physics, communications, microgravity science and applications, and communications and information systems... computational and experimental fluid dynamics and aerodynamics; fluid and thermal physics; rotorcraft, powered...

  6. 14 CFR 1201.200 - General.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... development in astrophysics, life sciences, Earth sciences and applications, solar system exploration, space physics, communications, microgravity science and applications, and communications and information systems... computational and experimental fluid dynamics and aerodynamics; fluid and thermal physics; rotorcraft, powered...

  7. The Changing Earth Science Network- Projects and Results from the First Call

    NASA Astrophysics Data System (ADS)

    Dransfeld, Steffen; Fernandez, Diego; Doron, Maeva; Martinez, Elodie; Shutler, Jamie; Papandrea, Enzo; Biggs, Juliet; Dagestad, Knut-Frode; Palazzi, Elisa; Garcia-Comas, Maya; de Graaf, Martin; Schneising, Oliver; Pavon, Patricia Oliva

    2010-12-01

    To better understand the different processes and interactions that govern the earth system and to determine whether recent human-induced changes could ultimately de-stabilise its dynamics, both natural system variability and the consequences of human activities have to be observed and quantified. In this context, the European Space Agency published in 2006 "The Changing Earth: New Scientific Challenges for ESA's living Planet Programme" as the main driver of ESA's new EO science strategy. The document outlines 25 major scientific challenges covering all the different aspects of the Earth system, where EO technology and ESA missions may provide a key contribution. In this context, and responding to a request from ESAC (Earth Science Advisory Committee) to enhance the ESA scientific support towards the achievement of "The Challenges", the Agency has launched the Changing Earth Science Network as an important programmatic component of the new Support To Science Element (STSE) of the Earth Observation Envelope Programme (EOEP). In this paper we summarize the objectives of this initive and provide a review of the first projects that were selected in 2009 and are now generating their first results.

  8. Using Authentic Data in High School Earth System Science Research - Inspiring Future Scientists

    NASA Astrophysics Data System (ADS)

    Bruck, L. F.

    2006-05-01

    Using authentic data in a science research class is an effective way to teach students the scientific process, problem solving, and communication skills. In Frederick County Public Schools, MD a course has been developed to hone scientific research skills, and inspire interest in careers in science and technology. The Earth System Science Research course provides eleventh and twelfth grade students an opportunity to study Earth System Science using the latest information developed through current technologies. The system approach to this course helps students understand the complexity and interrelatedness of the Earth system. Consequently students appreciate the dynamics of local and global environments as part of a complex system. This course is an elective offering designed to engage students in the study of the atmosphere, biosphere, cryosphere, geosphere, and hydrosphere. This course allows students to utilize skills and processes gained from previous science courses to study the physical, chemical, and biological aspects of the Earth system. The research component of the course makes up fifty percent of course time in which students perform independent research on the interactions within the Earth system. Students are required to produce a scientific presentation to communicate the results of their research. Posters are then presented to the scientific community. Some of these presentations have led to internships and other scientific opportunities.

  9. Sul moto del baricentro del sistema Terra-Luna intorno al Sole in assenza di perturbazioni planetarie

    NASA Astrophysics Data System (ADS)

    Sambo, Alberto

    2003-09-01

    The Sun, the Earth and the Moon are considered from the point of view of a dynamical problem of three point masses. In this setting, we are interested in investigating the motion of the barycentre C of the Earth/Moon system with respect to the Sun. The differential equation of the motion considered is obtained in vectorial form from the first principles. Its investigation allows to conclude that the motion of the barycentre C of the Earth/Moon system around the Sun is not keplerian, even in absence of planetary perturbations. The equation is derived without specific assumptions, and can thus be applied to any other "three body" system.

  10. Guidance Scheme for Modulation of Drag Devices to Enable Return from Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Dutta, Soumyo; Bowes, Angela L.; Cianciolo, Alicia D.; Glass, Christopher E.; Powell, Richard W.

    2017-01-01

    Passive drag devices provide opportunities to return payloads from low Earth orbits quickly without using onboard propulsive systems to de-orbit the spacecraft. However, one potential disadvantage of such systems has been the lack of landing accuracy. Drag modulation or changing the shape of the drag device during flight offer a way to control the de-orbit trajectory and target a specific landing location. This paper discusses a candidate passive drag based system, called Exo-brake, as well as efforts to model the dynamics of the vehicle as it de-orbits and guidance schemes used to control the trajectory. Such systems can enable quick return of payloads from low Earth orbit assets like the International Space Station without the use of large re-entry cargo capsules or propulsive systems.

  11. Autonomous Multi-Sensor Coordination: The Science Goal Monitor

    NASA Technical Reports Server (NTRS)

    Koratkar, Anuradha; Grosvenor, Sandy; Jung, John; Hess, Melissa; Jones, Jeremy

    2004-01-01

    Many dramatic earth phenomena are dynamic and coupled. In order to fully understand them, we need to obtain timely coordinated multi-sensor observations from widely dispersed instruments. Such a dynamic observing system must include the ability to Schedule flexibly and react autonomously to sciencehser driven events; Understand higher-level goals of a sciencehser defined campaign; Coordinate various space-based and ground-based resources/sensors effectively and efficiently to achieve goals. In order to capture transient events, such a 'sensor web' system must have an automated reactive capability built into its scientific operations. To do this, we must overcome a number of challenges inherent in infusing autonomy. The Science Goal Monitor (SGM) is a prototype software tool being developed to explore the nature of automation necessary to enable dynamic observing. The tools being developed in SGM improve our ability to autonomously monitor multiple independent sensors and coordinate reactions to better observe dynamic phenomena. The SGM system enables users to specify what to look for and how to react in descriptive rather than technical terms. The system monitors streams of data to identify occurrences of the key events previously specified by the scientisther. When an event occurs, the system autonomously coordinates the execution of the users' desired reactions between different sensors. The information can be used to rapidly respond to a variety of fast temporal events. Investigators will no longer have to rely on after-the-fact data analysis to determine what happened. Our paper describes a series of prototype demonstrations that we have developed using SGM and NASA's Earth Observing-1 (EO-1) satellite and Earth Observing Systems' Aqua/Terra spacecrafts' MODIS instrument. Our demonstrations show the promise of coordinating data from different sources, analyzing the data for a relevant event, autonomously updating and rapidly obtaining a follow-on relevant image. SGM was used to investigate forest fires, floods and volcanic eruptions. We are now identifying new Earth science scenarios that will have more complex SGM reasoning. By developing and testing a prototype in an operational environment, we are also establishing and gathering metrics to gauge the success of automating science campaigns.

  12. Linear and nonlinear dynamics of liquid planetary cores

    NASA Astrophysics Data System (ADS)

    Lathrop, D. P.

    2013-12-01

    This is the 50th anniversary of Ed Lorenz brilliant paper "Deterministic Nonperiodic Flow.'' Lorenz's work, along with many other founders' efforts, gave rise to the study of nonlinear dynamics. That field has allowed us to move beyond simple linear characterizations of nature, and to open up a deeper understanding of the Earth, other planets, and stars. Of the many things that make the Earth a habitable home, one is the existence of a planetary magnetic field generated in our liquid iron outer core. The generation process is known to be strongly nonlinear, and thereby almost certainly turbulent. Yet it is not a simple homogeneous isotropic turbulent flow, but is instead heavily modified by rotation and magnetic forces. We attempt to better understand the Earth's core using a three-meter liquid sodium laboratory model of the core. Our work in sodium in this system has just begun. The system exhibits a variety of behaviors with at least twelve different states, drawing different amounts of power, and causing varying levels of magnetic field amplification. In some states, rotation and magnetic fields cause the dynamics to simplify relative to more general turbulent flows in comparable conditions. Acknowledgements: I gratefully acknowledge my collaborators Daniel Zimmerman, Santiago Triana, Donald Martin, Nolan Balew, Henri-Claude Nataf, and Barbara Brawn-Cinani, and funding from the National Science Foundation Earth Sciences Instrumentation and Geophysics programs.

  13. Swarm: ESA's Magnetic Field Mission

    NASA Astrophysics Data System (ADS)

    Plank, G.; Floberghagen, R.; Menard, Y.; Haagmans, R.

    2012-12-01

    Swarm is the fifth Earth Explorer mission in ESA's Living Planet Programme, and is scheduled for launch in fall 2012. The objective of the Swarm mission is to provide the best-ever survey of the geomagnetic field and its temporal evolution using a constellation of three identical satellites. The mission shall deliver data that allow access to new insights into the Earth system by improved scientific understanding of the Earth's interior and near-Earth electromagnetic environment. After launch and triple satellite release at an initial altitude of about 490 km, a pair of the satellites will fly side-by-side with slowly decaying altitude, while the third satellite will be lifted to 530 km to complete the Swarm constellation. High-precision and high-resolution measurements of the strength, direction and variation of the magnetic field, complemented by precise navigation, accelerometer and electric field measurements, will provide the observations required to separate and model various sources of the geomagnetic field and near-Earth current systems. The mission science goals are to provide a unique view into Earth's core dynamics, mantle conductivity, crustal magnetisation, ionospheric and magnetospheric current systems and upper atmosphere dynamics - ranging from understanding the geodynamo to contributing to space weather. The scientific objectives and results from recent scientific studies will be presented. In addition the current status of the project, which is presently in the final stage of the development phase, will be addressed. A consortium of European scientific institutes is developing a distributed processing system to produce geophysical (Level 2) data products for the Swarm user community. The setup of the Swarm ground segment and the contents of the data products will be addressed. In case the Swarm satellites are already in orbit, a summary of the on-going mission operations activities will be given.

  14. 2-kW Solar Dynamic Space Power System Tested in Lewis' Thermal Vacuum Facility

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Working together, a NASA/industry team successfully operated and tested a complete solar dynamic space power system in a large thermal vacuum facility with a simulated sun. This NASA Lewis Research Center facility, known as Tank 6 in building 301, accurately simulates the temperatures, high vacuum, and solar flux encountered in low-Earth orbit. The solar dynamic space power system shown in the photo in the Lewis facility, includes the solar concentrator and the solar receiver with thermal energy storage integrated with the power conversion unit. Initial testing in December 1994 resulted in the world's first operation of an integrated solar dynamic system in a relevant environment.

  15. NASA/MSFC FY91 Global Scale Atmospheric Processes Research Program Review

    NASA Technical Reports Server (NTRS)

    Leslie, Fred W. (Editor)

    1991-01-01

    The reports presented at the annual Marshall Research Review of Earth Science and Applications are compiled. The following subject areas are covered: understanding of atmospheric processes in a variety of spatial and temporal scales; measurements of geophysical parameters; measurements on a global scale from space; the Mission to Planet Earth Program (comprised of and Earth Observation System and the scientific strategy to analyze these data); and satellite data analysis and fundamental studies of atmospheric dynamics.

  16. Dynamics of global vegetation biomass simulated by the integrated Earth System Model

    NASA Astrophysics Data System (ADS)

    Mao, J.; Shi, X.; Di Vittorio, A. V.; Thornton, P. E.; Piao, S.; Yang, X.; Truesdale, J. E.; Bond-Lamberty, B. P.; Chini, L. P.; Thomson, A. M.; Hurtt, G. C.; Collins, W.; Edmonds, J.

    2014-12-01

    The global vegetation biomass stores huge amounts of carbon and is thus important to the global carbon budget (Pan et al., 2010). For the past few decades, different observation-based estimates and modeling of biomass in the above- and below-ground vegetation compartments have been comprehensively conducted (Saatchi et al., 2011; Baccini et al., 2012). However, uncertainties still exist, in particular for the simulation of biomass magnitude, tendency, and the response of biomass to climatic conditions and natural and human disturbances. The recently successful coupling of the integrated Earth System Model (iESM) (Di Vittorio et al., 2014; Bond-Lamberty et al., 2014), which links the Global Change Assessment Model (GCAM), Global Land-use Model (GLM), and Community Earth System Model (CESM), offers a great opportunity to understand the biomass-related dynamics in a fully-coupled natural and human modeling system. In this study, we focus on the systematic analysis and evaluation of the iESM simulated historical (1850-2005) and future (2006-2100) biomass changes and the response of the biomass dynamics to various impact factors, in particular the human-induced Land Use/Land Cover Change (LULCC). By analyzing the iESM simulations with and without the interactive LULCC feedbacks, we further study how and where the climate feedbacks affect socioeconomic decisions and LULCC, such as to alter vegetation carbon storage. References Pan Y et. al: A large and persistent carbon sink in the World's forests. Science 2011, 333:988-993. Saatchi SS et al: Benchmark map of forest carbon stocks in tropical regions across three continents. Proc Natl Acad Sci 2011, 108:9899-9904. Baccini A et al: Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nature Clim Change 2012, 2:182-185. Di Vittorio AV et al: From land use to land cover: restoring the afforestation signal in a coupled integrated assessment-earth system model and the implications for CMIP5 RCP simulations. Biogeosciences Discuss 2014, 11:7151-7188. Bond-Lamberty, B et al: Coupling earth system and integrated assessment models: The problem of steady state. Geosci. Model Dev. Discuss 2014, 7: 1499-1524, doi:10.5194/gmdd-7-1499-2014.

  17. A dynamical study on the origin of the Moon

    NASA Astrophysics Data System (ADS)

    Loibnegger, B.; Dvorak, R.; Burger, C.; Maindl, T. I.; Schäfer, C.; Speith, R.

    2016-02-01

    The process of the formation of the Moon still yields many open questions. The generally accepted scenario proposes a giant impact of a Mars-sized body onto the proto-Earth between 70 to 100 million years after the formation of the terrestrial planets. According to popular theories the Moon formed from the debris disk generated by this giant impact. The goal of our dynamical studies is to find the initial orbit of the Mars-sized impactor (Theia) by investigating the regarding probability of a collision with Earth. Due to previous studies it is assumed that Theia formed between Earth and Mars at the same time as the other terrestrial planets did. Then the planet has to stay on a stable orbit for tens of millions of years till it may collide with the Earth leaving the rest of the inner solar system almost unaffected. In order to investigate the most probable origin of Theia we did n-body simulations starting a Mars-sized object with semi-major axis between 1.085 AU to 1.119 AU at low inclination altering the mean anomaly for each starting position from 0-360 deg. Additionally, simulations with an initial position of Theia inside the orbit of Earth (semi-major axis between 0.875 AU and 0.940 AU) were carried out. In total up to 10000 scenarios were calculated. The used model consists of an inner solar system with Venus, Earth and Mars at their known positions and the additional Theia as well as Jupiter and Saturn at their present orbits. The system was calculated up to 100 million years finding three possible outcomes namely collision with Earth, ejection or stability for the whole calculation period for Theia. Our results place the possible origin of Theia at 1.17 AU where most collisions happen after more than 70 million years. Additionally, the results of the dynamical n-body studies provide important data of the impact such as impact velocity and impact angle which will serve as basis for further detailed investigation of the impact itself by SPH (Smooth Particle Hydrodynamics) computations.

  18. The provenances of asteroids, and their contributions to the volatile inventories of the terrestrial planets.

    PubMed

    Alexander, C M O'D; Bowden, R; Fogel, M L; Howard, K T; Herd, C D K; Nittler, L R

    2012-08-10

    Determining the source(s) of hydrogen, carbon, and nitrogen accreted by Earth is important for understanding the origins of water and life and for constraining dynamical processes that operated during planet formation. Chondritic meteorites are asteroidal fragments that retain records of the first few million years of solar system history. The deuterium/hydrogen (D/H) values of water in carbonaceous chondrites are distinct from those in comets and Saturn's moon Enceladus, implying that they formed in a different region of the solar system, contrary to predictions of recent dynamical models. The D/H values of water in carbonaceous chondrites also argue against an influx of water ice from the outer solar system, which has been invoked to explain the nonsolar oxygen isotopic composition of the inner solar system. The bulk hydrogen and nitrogen isotopic compositions of CI chondrites suggest that they were the principal source of Earth's volatiles.

  19. Building Thematic and Integrated Services for European Solid Earth Sciences: the EPOS Integrated Approach

    NASA Astrophysics Data System (ADS)

    Harrison, M.; Cocco, M.

    2017-12-01

    EPOS (European Plate Observing System) has been designed with the vision of creating a pan-European infrastructure for solid Earth science to support a safe and sustainable society. In accordance with this scientific vision, the EPOS mission is to integrate the diverse and advanced European Research Infrastructures for solid Earth science relying on new e-science opportunities to monitor and unravel the dynamic and complex Earth System. EPOS will enable innovative multidisciplinary research for a better understanding of the Earth's physical and chemical processes that control earthquakes, volcanic eruptions, ground instability and tsunami as well as the processes driving tectonics and Earth's surface dynamics. To accomplish its mission, EPOS is engaging different stakeholders, to allow the Earth sciences to open new horizons in our understanding of the planet. EPOS also aims at contributing to prepare society for geo-hazards and to responsibly manage the exploitation of geo-resources. Through integration of data, models and facilities, EPOS will allow the Earth science community to make a step change in developing new concepts and tools for key answers to scientific and socio-economic questions concerning geo-hazards and geo-resources as well as Earth sciences applications to the environment and human welfare. The research infrastructures (RIs) that EPOS is coordinating include: i) distributed geophysical observing systems (seismological and geodetic networks); ii) local observatories (including geomagnetic, near-fault and volcano observatories); iii) analytical and experimental laboratories; iv) integrated satellite data and geological information services; v) new services for natural and anthropogenic hazards; vi) access to geo-energy test beds. Here we present the activities planned for the implementation phase focusing on the TCS, the ICS and on their interoperability. We will discuss the data, data-products, software and services (DDSS) presently under implementation, which will be validated and tested during 2018. Particular attention in this talk will be given to connecting EPOS with similar global initiatives and identifying common best practice and approaches.

  20. Understanding the Role of Air-Sea Interaction on Extreme Rainfall in Aquaplanet and Earth-like CESM2

    NASA Astrophysics Data System (ADS)

    Benedict, J. J.; Clement, A. C.; Medeiros, B.

    2017-12-01

    Extreme precipitation events are associated with anomalous, latitudinally dependent dynamical and convective weather systems. For example, plumes of excessive poleward water vapor transport and topographical effects drive extreme precipitation events in the midlatitudes, while intense tropical precipitation is associated with organized convective systems. In both cases, air-sea fluxes have the potential to contribute significantly to the moisture budget of these storms, but the roles of surface fluxes and upper-ocean processes and their impact on precipitation extremes have yet to be explored in sufficient detail. To examine such mechanisms, we implement a climate model hierarchy that encompasses a spectrum of ocean models, from prescribed-SST to fully dynamic, as well as both aquaplanet and Earth-like lower boundary types within version 2 of the Community Earth System Model (CESM2). Using the CESM2 hierarchy and comparing to observations, we identify key moisture processes and related air-sea interactions that drive extreme precipitation events across different latitudes in Earth-like models and then generalize the analyses in aquaplanet configurations to highlight the most salient features. The analyses are applied to both present-day and global warming conditions to investigate how these fundamental mechanisms might change extreme precipitation events in the future climate.

  1. Preliminary Design Considerations for Access and Operations in Earth-Moon L1/L2 Orbits

    NASA Technical Reports Server (NTRS)

    Folta, David C.; Pavlak, Thomas A.; Haapala, Amanda F.; Howell, Kathleen C.

    2013-01-01

    Within the context of manned spaceflight activities, Earth-Moon libration point orbits could support lunar surface operations and serve as staging areas for future missions to near-Earth asteroids and Mars. This investigation examines preliminary design considerations including Earth-Moon L1/L2 libration point orbit selection, transfers, and stationkeeping costs associated with maintaining a spacecraft in the vicinity of L1 or L2 for a specified duration. Existing tools in multi-body trajectory design, dynamical systems theory, and orbit maintenance are leveraged in this analysis to explore end-to-end concepts for manned missions to Earth-Moon libration points.

  2. Lightweight Phase-Change Material For Solar Power

    NASA Technical Reports Server (NTRS)

    Stark, Philip

    1993-01-01

    Lightweight panels containing phase-change materials developed for use as heat-storage elements of compact, lightweight, advanced solar dynamic power system. During high insolation, heat stored in panels via latent heat of fusion of phase-change material; during low insolation, heat withdrawn from panels. Storage elements consist mainly of porous carbon-fiber structures imbued with germanium. Developed for use aboard space station in orbit around Earth, also adapted to lightweight, compact, portable solar-power systems for use on Earth.

  3. Rotating Space Elevators: Classical and Statistical Mechanics

    NASA Astrophysics Data System (ADS)

    Knudsen, Steven

    We investigate a novel and unique dynamical system, the Rotating Space Elevator (RSE). The RSE is a multiply rotating system of strings reaching beyond the Earth geo-synchronous satellite orbit. Objects sliding along the RSE string ("climbers") do not require internal engines or propulsion to be transported far away from the Earth's surface. The RSE thus solves a major problem in the space elevator technology which is how to supply the energy to the climbers moving along the string. The RSE is a double rotating floppy string. The RSE can be made in various shapes that are stabilized by an approximate equilibrium between the gravitational and inertial forces acting in the double rotating frame. The RSE exhibits a variety of interesting dynamical phenomena studied in this thesis.

  4. The Contribution of GGOS to Understanding Dynamic Earth Processes

    NASA Astrophysics Data System (ADS)

    Gross, Richard

    2017-04-01

    Geodesy is the science of the Earth's shape, size, gravity and rotation, including their evolution in time. Geodetic observations play a major role in the solid Earth sciences because they are fundamental for the understanding and modeling of Earth system processes. Changes in the Earth's shape, its gravitational field, and its rotation are caused by external forces acting on the Earth system and internal processes involving mass transfer and exchange of angular and linear momentum. Thus, variations in these geodetic quantities of the Earth reflect and constrain mechanical and thermo-dynamic processes in the Earth system. Mitigating the impact on human life and property of natural hazards such as earthquakes, volcanic eruptions, debris flows, landslides, land subsidence, sea level change, tsunamis, floods, storm surges, hurricanes and extreme weather is an important scientific task to which geodetic observations make fundamental contributions. Geodetic observations can be used to monitor the pre-eruptive deformation of volcanoes and the pre-seismic deformation of earthquake fault zones, aiding in the issuance of volcanic eruption and earthquake warnings. They can also be used to rapidly estimate earthquake fault motion, aiding in the modeling of tsunami genesis and the issuance of tsunami warnings. Geodetic observations are also used in other areas of the Earth sciences, not just the solid Earth sciences. For example, geodesy contributes to atmospheric science by supporting both observation and prediction of the weather by geo-referencing meteorological observing data and by globally tracking change in stratospheric mass and lower tropospheric water vapor fields. Geodetic measurements of refraction profiles derived from satellite occultation data are routinely assimilated into numerical weather prediction models. Geodesy contributes to hydrologic studies by providing a unique global reference system for measurements of: sub-seasonal, seasonal and secular movements of continental and basin-scale water masses; loading and unloading of the land surface due to seasonal changes of groundwater; measurement of water level of major lakes and rivers by satellite altimetry; and improved digital terrain models as basis for flux modeling of surface water and flood modeling. Geodesy is crucial for cryospheric studies because of its ability to measure the motions of ice masses and changes in their volumes. Ice sheets, glaciers, and sea ice are intricately linked to the Earth's climate system. They store a record of past climate; they strongly affect surface energy budget, global water cycle, and sea-level change; and they are sensitive indicators of climate change. Geodesy is at the heart of all present-day ocean studies. Geodetic observations uniquely produce accurate, quantitative, and integrated observations of gravity, ocean circulation, sea surface height, ocean bottom pressure, and mass exchanges among the ocean, cryosphere, and land. Geodetic observations have made fundamental contributions to monitoring and understanding physical ocean processes. In particular, geodesy is the basic technique used to determine an accurate geoid model, allowing for the determination of absolute surface geostrophic currents, which are necessary to quantify heat transport of the ocean. Geodesy also provides the absolute reference for tide gauge measurements, allowing those measurements to be merged with satellite altimetric measurements to provide a coherent worldwide monitoring system for sea level change. In this presentation, selected examples of the contribution of geodetic observations to understanding the dynamic Earth system will be presented.

  5. Next Generation Community Based Unified Global Modeling System Development and Operational Implementation Strategies at NCEP

    NASA Astrophysics Data System (ADS)

    Tallapragada, V.

    2017-12-01

    NOAA's Next Generation Global Prediction System (NGGPS) has provided the unique opportunity to develop and implement a non-hydrostatic global model based on Geophysical Fluid Dynamics Laboratory (GFDL) Finite Volume Cubed Sphere (FV3) Dynamic Core at National Centers for Environmental Prediction (NCEP), making a leap-step advancement in seamless prediction capabilities across all spatial and temporal scales. Model development efforts are centralized with unified model development in the NOAA Environmental Modeling System (NEMS) infrastructure based on Earth System Modeling Framework (ESMF). A more sophisticated coupling among various earth system components is being enabled within NEMS following National Unified Operational Prediction Capability (NUOPC) standards. The eventual goal of unifying global and regional models will enable operational global models operating at convective resolving scales. Apart from the advanced non-hydrostatic dynamic core and coupling to various earth system components, advanced physics and data assimilation techniques are essential for improved forecast skill. NGGPS is spearheading ambitious physics and data assimilation strategies, concentrating on creation of a Common Community Physics Package (CCPP) and Joint Effort for Data Assimilation Integration (JEDI). Both initiatives are expected to be community developed, with emphasis on research transitioning to operations (R2O). The unified modeling system is being built to support the needs of both operations and research. Different layers of community partners are also established with specific roles/responsibilities for researchers, core development partners, trusted super-users, and operations. Stakeholders are engaged at all stages to help drive the direction of development, resources allocations and prioritization. This talk presents the current and future plans of unified model development at NCEP for weather, sub-seasonal, and seasonal climate prediction applications with special emphasis on implementation of NCEP FV3 Global Forecast System (GFS) and Global Ensemble Forecast System (GEFS) into operations by 2019.

  6. Engineering a Sustainable Blue Planet: Exploring the dynamics

    NASA Astrophysics Data System (ADS)

    Lall, U.

    2004-12-01

    Man's hand as a geomorphic agent is now endemic. The dynamics of water and other material cycles is now significantly impacted at all scales: from hillsides to watersheds to the earth, and from urban flash flood events to mean long term flow. Locally and regionally, climatic exigencies serve to spur either ruin (in the poorest societies) or a flurry of human infrastructure development. Thus, at the local scale, geomorphology depends on man's struggle for survival, and the associated interaction with nature's vagaries. Of course, we now recognize that man induced changes in land surface attributes (related to agriculture or deforestation) and in atmospheric composition translate into relatively unforeseeable climate changes, i.e., nature at a planetary scale has a different face. Despite the recognition of these interacting factors, a conceptual model that treats the dynamics of man and nature as separable and separate, dominates the earth sciences. We study global climate change and its impacts as sequential outcomes of a carbon emission scenario, and not as endogenous processes of the earth-man system with mutual feedbacks. The definition of a man-nature dynamical system is feasible as an abstraction. I explore such a definition through examples, one at the global scale, and one at a local scale. These examples are formulated in the context of meeting the challenge of poverty reduction through the provision of water for health and food, while considering vulnerability to a dynamic climate and to changes in the environment.

  7. Lessons Learned from a Collaborative Sensor Web Prototype

    NASA Technical Reports Server (NTRS)

    Ames, Troy; Case, Lynne; Krahe, Chris; Hess, Melissa; Hennessy, Joseph F. (Technical Monitor)

    2002-01-01

    This paper describes the Sensor Web Application Prototype (SWAP) system that was developed for the Earth Science Technology Office (ESTO). The SWAP is aimed at providing an initial engineering proof-of-concept prototype highlighting sensor collaboration, dynamic cause-effect relationship between sensors, dynamic reconfiguration, and remote monitoring of sensor webs.

  8. Integrating legacy data to understand agroecosystem regional dynamics to catastrophic events

    USDA-ARS?s Scientific Manuscript database

    Multi-year extreme drought events are part of the history of the Earth system. Legacy data on the climate drivers, geomorphic features, and agroecosystem responses across a dynamically changing landscape throughout a region can provide important insights to a future where large-scale catastrophic ev...

  9. Solar wind dynamic pressure and electric field as the main factors controlling Saturn's aurorae.

    PubMed

    Crary, F J; Clarke, J T; Dougherty, M K; Hanlon, P G; Hansen, K C; Steinberg, J T; Barraclough, B L; Coates, A J; Gérard, J-C; Grodent, D; Kurth, W S; Mitchell, D G; Rymer, A M; Young, D T

    2005-02-17

    The interaction of the solar wind with Earth's magnetosphere gives rise to the bright polar aurorae and to geomagnetic storms, but the relation between the solar wind and the dynamics of the outer planets' magnetospheres is poorly understood. Jupiter's magnetospheric dynamics and aurorae are dominated by processes internal to the jovian system, whereas Saturn's magnetosphere has generally been considered to have both internal and solar-wind-driven processes. This hypothesis, however, is tentative because of limited simultaneous solar wind and magnetospheric measurements. Here we report solar wind measurements, immediately upstream of Saturn, over a one-month period. When combined with simultaneous ultraviolet imaging we find that, unlike Jupiter, Saturn's aurorae respond strongly to solar wind conditions. But in contrast to Earth, the main controlling factor appears to be solar wind dynamic pressure and electric field, with the orientation of the interplanetary magnetic field playing a much more limited role. Saturn's magnetosphere is, therefore, strongly driven by the solar wind, but the solar wind conditions that drive it differ from those that drive the Earth's magnetosphere.

  10. Use of Semantic Technology to Create Curated Data Albums

    NASA Technical Reports Server (NTRS)

    Ramachandran, Rahul; Kulkarni, Ajinkya; Li, Xiang; Sainju, Roshan; Bakare, Rohan; Basyal, Sabin

    2014-01-01

    One of the continuing challenges in any Earth science investigation is the discovery and access of useful science content from the increasingly large volumes of Earth science data and related information available online. Current Earth science data systems are designed with the assumption that researchers access data primarily by instrument or geophysical parameter. Those who know exactly the data sets they need can obtain the specific files using these systems. However, in cases where researchers are interested in studying an event of research interest, they must manually assemble a variety of relevant data sets by searching the different distributed data systems. Consequently, there is a need to design and build specialized search and discover tools in Earth science that can filter through large volumes of distributed online data and information and only aggregate the relevant resources needed to support climatology and case studies. This paper presents a specialized search and discovery tool that automatically creates curated Data Albums. The tool was designed to enable key elements of the search process such as dynamic interaction and sense-making. The tool supports dynamic interaction via different modes of interactivity and visual presentation of information. The compilation of information and data into a Data Album is analogous to a shoebox within the sense-making framework. This tool automates most of the tedious information/data gathering tasks for researchers. Data curation by the tool is achieved via an ontology-based, relevancy ranking algorithm that filters out nonrelevant information and data. The curation enables better search results as compared to the simple keyword searches provided by existing data systems in Earth science.

  11. Use of Semantic Technology to Create Curated Data Albums

    NASA Technical Reports Server (NTRS)

    Ramachandran, Rahul; Kulkarni, Ajinkya; Li, Xiang; Sainju, Roshan; Bakare, Rohan; Basyal, Sabin; Fox, Peter (Editor); Norack, Tom (Editor)

    2014-01-01

    One of the continuing challenges in any Earth science investigation is the discovery and access of useful science content from the increasingly large volumes of Earth science data and related information available online. Current Earth science data systems are designed with the assumption that researchers access data primarily by instrument or geophysical parameter. Those who know exactly the data sets they need can obtain the specific files using these systems. However, in cases where researchers are interested in studying an event of research interest, they must manually assemble a variety of relevant data sets by searching the different distributed data systems. Consequently, there is a need to design and build specialized search and discovery tools in Earth science that can filter through large volumes of distributed online data and information and only aggregate the relevant resources needed to support climatology and case studies. This paper presents a specialized search and discovery tool that automatically creates curated Data Albums. The tool was designed to enable key elements of the search process such as dynamic interaction and sense-making. The tool supports dynamic interaction via different modes of interactivity and visual presentation of information. The compilation of information and data into a Data Album is analogous to a shoebox within the sense-making framework. This tool automates most of the tedious information/data gathering tasks for researchers. Data curation by the tool is achieved via an ontology-based, relevancy ranking algorithm that filters out non-relevant information and data. The curation enables better search results as compared to the simple keyword searches provided by existing data systems in Earth science.

  12. CubeSats in Hydrology: Ultrahigh-Resolution Insights Into Vegetation Dynamics and Terrestrial Evaporation

    NASA Astrophysics Data System (ADS)

    McCabe, M. F.; Aragon, B.; Houborg, R.; Mascaro, J.

    2017-12-01

    Satellite-based remote sensing has generally necessitated a trade-off between spatial resolution and temporal frequency, affecting the capacity to observe fast hydrological processes and rapidly changing land surface conditions. An avenue for overcoming these spatiotemporal restrictions is the concept of using constellations of satellites, as opposed to the mission focus exemplified by the more conventional space-agency approach to earth observation. Referred to as CubeSats, these platforms offer the potential to provide new insights into a range of earth system variables and processes. Their emergence heralds a paradigm shift from single-sensor launches to an operational approach that envisions tens to hundreds of small, lightweight, and comparatively inexpensive satellites placed into a range of low earth orbits. Although current systems are largely limited to sensing in the optical portion of the electromagnetic spectrum, we demonstrate the opportunity and potential that CubeSats present the hydrological community via the retrieval of vegetation dynamics and terrestrial evaporation and foreshadow future sensing capabilities.

  13. Recovery of a geocentric reference frame using the present-day GPS system

    NASA Technical Reports Server (NTRS)

    Malla, Rajendra P.; Wu, Sien-Chong

    1990-01-01

    A geocentric reference frame adopts the center of mass of the earth as the origin of the coordinate axes. The center of mass of the earth is the natural and unambiguous origin of a geocentric satellite dynamical system. But in practice a kinematically obtained terrestrial reference frame may assume an origin other than the geocenter. The establishment of a geocentric reference frame, to which all relevant observations and results can be referred and in which geodynamic theories or models for the dynamic behavior of earth can be formulated, requires the ability to accurately recover a given coordinate frame origin offset from the geocenter. GPS measurements, because of their abundance and broad distribution, provide a powerful tool to obtain this origin offset in a short period of time. Two effective strategies have been devised. Data from the First Central And South America (Casa Uno) geodynamics experiment has been studied, in order to demonstrate the ability of recovering the geocenter location with present day GPS satellites and receivers.

  14. Toward more realistic projections of soil carbon dynamics by Earth system models

    USGS Publications Warehouse

    Luo, Y.; Ahlström, Anders; Allison, Steven D.; Batjes, Niels H.; Brovkin, V.; Carvalhais, Nuno; Chappell, Adrian; Ciais, Philippe; Davidson, Eric A.; Finzi, Adien; Georgiou, Katerina; Guenet, Bertrand; Hararuk, Oleksandra; Harden, Jennifer; He, Yujie; Hopkins, Francesca; Jiang, L.; Koven, Charles; Jackson, Robert B.; Jones, Chris D.; Lara, M.; Liang, J.; McGuire, A. David; Parton, William; Peng, Changhui; Randerson, J.; Salazar, Alejandro; Sierra, Carlos A.; Smith, Matthew J.; Tian, Hanqin; Todd-Brown, Katherine E. O; Torn, Margaret S.; van Groenigen, Kees Jan; Wang, Ying; West, Tristram O.; Wei, Yaxing; Wieder, William R.; Xia, Jianyang; Xu, Xia; Xu, Xiaofeng; Zhou, T.

    2016-01-01

    Soil carbon (C) is a critical component of Earth system models (ESMs), and its diverse representations are a major source of the large spread across models in the terrestrial C sink from the third to fifth assessment reports of the Intergovernmental Panel on Climate Change (IPCC). Improving soil C projections is of a high priority for Earth system modeling in the future IPCC and other assessments. To achieve this goal, we suggest that (1) model structures should reflect real-world processes, (2) parameters should be calibrated to match model outputs with observations, and (3) external forcing variables should accurately prescribe the environmental conditions that soils experience. First, most soil C cycle models simulate C input from litter production and C release through decomposition. The latter process has traditionally been represented by first-order decay functions, regulated primarily by temperature, moisture, litter quality, and soil texture. While this formulation well captures macroscopic soil organic C (SOC) dynamics, better understanding is needed of their underlying mechanisms as related to microbial processes, depth-dependent environmental controls, and other processes that strongly affect soil C dynamics. Second, incomplete use of observations in model parameterization is a major cause of bias in soil C projections from ESMs. Optimal parameter calibration with both pool- and flux-based data sets through data assimilation is among the highest priorities for near-term research to reduce biases among ESMs. Third, external variables are represented inconsistently among ESMs, leading to differences in modeled soil C dynamics. We recommend the implementation of traceability analyses to identify how external variables and model parameterizations influence SOC dynamics in different ESMs. Overall, projections of the terrestrial C sink can be substantially improved when reliable data sets are available to select the most representative model structure, constrain parameters, and prescribe forcing fields.

  15. Sustainability Indicators for Coupled Human-Earth Systems

    NASA Astrophysics Data System (ADS)

    Motesharrei, S.; Rivas, J. R.; Kalnay, E.

    2014-12-01

    Over the last two centuries, the Human System went from having a small impact on the Earth System (including the Climate System) to becoming dominant, because both population and per capita consumption have grown extremely fast, especially since about 1950. We therefore argue that Human System Models must be included into Earth System Models through bidirectional couplings with feedbacks. In particular, population should be modeled endogenously, rather than exogenously as done currently in most Integrated Assessment Models. The growth of the Human System threatens to overwhelm the Carrying Capacity of the Earth System, and may be leading to catastrophic climate change and collapse. We propose a set of Ecological and Economic "Sustainability Indicators" that can employ large data-sets for developing and assessing effective mitigation and adaptation policies. Using the Human and Nature Dynamical Model (HANDY) and Coupled Human-Climate-Water Model (COWA), we carry out experiments with this set of Sustainability Indicators and show that they are applicable to various coupled systems including Population, Climate, Water, Energy, Agriculture, and Economy. Impact of nonrenewable resources and fossil fuels could also be understood using these indicators. We demonstrate interconnections of Ecological and Economic Indicators. Coupled systems often include feedbacks and can thus display counterintuitive dynamics. This makes it difficult for even experts to see coming catastrophes from just the raw data for different variables. Sustainability Indicators boil down the raw data into a set of simple numbers that cross their sustainability thresholds with a large time-lag before variables enter their catastrophic regimes. Therefore, we argue that Sustainability Indicators constitute a powerful but simple set of tools that could be directly used for making policies for sustainability.

  16. Sun's influence on climate: Explored with SDO

    NASA Astrophysics Data System (ADS)

    Lundstedt, H.

    2010-09-01

    Stunning images and movies recorded of the Sun, with Solar Dynamics Observatory (SDO), makes one wonder: How would this change our view on the Sun-Earth climate coupling? SDO shows a much more variable Sun, on all spatial and temporal scales. Detailed pictures of solar storms are foreseen to improve our understanding of the direct Sun-Earth coupling. Dynamo models, described by dynamical systems using input from helioseismic observations, are foreseen to improve our knowledge of the the Sun's cyclic influence on climate. Both the direct-, and the cycle-influence will be discussed in view of the new SDO observations.

  17. Investigation of Alternative Return Strategies for Orion Trans-earth Injection Design Options

    NASA Technical Reports Server (NTRS)

    Marchand, Belinda G.; Scarritt, Sara K.; Howell, Kathleen C.; Weeks, Michael W.

    2010-01-01

    The purpose of this study is to investigate alternative return strategies for the Orion trans-Earth injection (TEI) phase. A dynamical systems analysis approach considers the structure of the stable and unstable Sun perturbed Earth-Moon manifolds near the Earth-Moon interface region. A hybrid approach, then, combines the results from this analysis with classical two-body methods in a targeting process that seeks to expand the window of return opportunities in a precision entry scenario. The resulting startup arcs can be used, for instance, to enhance the block set of solutions available onboard during an autonomous targeting process.

  18. Gaia and the colonization of Mars.

    PubMed

    Margulis, L; West, O

    1993-11-01

    The Gaia hypothesis states that the atmosphere, hydrosphere, surface sediments, and life on Earth behave dynamically as a single integrated physiological system. What has been traditionally viewed as the passive environment is a highly active, integral part of the gaian system. Aspects of the surface temperature and chemistry are regulated by the sum of life, the biota. Formulated first by James E. Lovelock, in the late 1960s, the Gaia hypothesis has been in the scientific literature for more than 25 years. Because of its properties of exponential growth and propagation, life is a powerful geologic force. A useful aspect of the Gaia idea is that it requires integration of scientific disciplines for the study of Earth. The recently touted Earth system science is broadly parallel with the gaian concept of the physiochemical regulation of Earth's surface. We discuss here, in a gaian context, the colonization of Mars by Earth organisms. Although colonizing Mars may be impossible, its accomplishment would be exactly equivalent to "the reproduction of Gaia by budding."

  19. Space observations for global and regional studies of the biosphere

    NASA Technical Reports Server (NTRS)

    Cihlar, J.; Li, Z.; Chen, J.; Sellers, P.; Hall, F.

    1994-01-01

    The capability to make space-based measurements of Earth at high spatial and temporal resolutions, which would not otherwise be economically or practically feasible, became available just in time to contribute to scientific understanding of the interactive processes governing the total Earth system. Such understanding has now become essential in order to take practical steps which would counteract or mitigate the pervasive impact of the growing human population on the future habitability of the Earth. The paper reviews the rationale for using space observations for studies of climate and terrestrial ecosystems at global and regional scales, as well as the requirements for such observations for studies of climate and ecosystem dynamics. The present status of these developments is reported along with initiatives under way to advance the use of satellite observations for Earth system studies. The most important contribution of space observations is the provision of physical or biophysical parameters for models representing various components of the Earth system. Examples of such parameters are given for climatic and ecosystem studies.

  20. Gaia and the colonization of Mars

    NASA Technical Reports Server (NTRS)

    Margulis, L.; West, O.

    1993-01-01

    The Gaia hypothesis states that the atmosphere, hydrosphere, surface sediments, and life on Earth behave dynamically as a single integrated physiological system. What has been traditionally viewed as the passive environment is a highly active, integral part of the gaian system. Aspects of the surface temperature and chemistry are regulated by the sum of life, the biota. Formulated first by James E. Lovelock, in the late 1960s, the Gaia hypothesis has been in the scientific literature for more than 25 years. Because of its properties of exponential growth and propagation, life is a powerful geologic force. A useful aspect of the Gaia idea is that it requires integration of scientific disciplines for the study of Earth. The recently touted Earth system science is broadly parallel with the gaian concept of the physiochemical regulation of Earth's surface. We discuss here, in a gaian context, the colonization of Mars by Earth organisms. Although colonizing Mars may be impossible, its accomplishment would be exactly equivalent to "the reproduction of Gaia by budding.".

  1. Nondynamic Tracking Using The Global Positioning System

    NASA Technical Reports Server (NTRS)

    Yunck, T. P.; Wu, Sien-Chong

    1988-01-01

    Report describes technique for using Global Positioning System (GPS) to determine position of low Earth orbiter without need for dynamic models. Differential observing strategy requires GPS receiver on user vehicle and network of six ground receivers. Computationally efficient technique delivers decimeter accuracy on orbits down to lowest altitudes. New technique nondynamic long-arc strategy having potential for accuracy of best dynamic techniques while retaining much of computational simplicity of geometric techniques.

  2. Low Energy Transfer to the Moon

    NASA Astrophysics Data System (ADS)

    Koon, W. S.; Lo, M. W.; Marsden, J. E.; Ross, S. D.

    2001-11-01

    New space missions are increasingly more complex; demand for exotic orbits to solve engineering problems has grown beyond the existing astrodynamic infrastructure based on two-body interactions. The delicate heteroclinic dynamics used by the Genesis Mission dramatically illustrate the need for a new paradigm: dynamical system study of three-body problem. Furthermore, this dynamics has much to say about the morphology and transport of materials within the Solar System. The cross-fertilization of ideas between the natural dynamics of the Solar System and applications to engineering has produced new techniques for constructing spacecraft trajectories with interesting characteristics. Specifically, these techniques are used here to produce a lunar capture mission which uses less fuel than a Hohmann transfer. We approximate the Sun-Earth-Moon-Spacecraft four-body problem as two three-body problems. Using the invariant manifold structures of the Lagrange points of the three-body systems, we are able to construct low energy transfer trajectories from the Earth which exhibit ballistic capture at the Moon. The techniques used in the design and construction of this trajectory may be applied in many situations. This is joint work with Martin W. Lo, Jerrold E. Marsden and Shane D. Ross and was partially supported by the National Science Foundation Grant No. KFI/ATM-9873133 under a contract with the Jet Propulsion Laboratory, NASA.

  3. GPS Data Analysis for Earth Orientation at the Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Zumberge, J.; Webb, F.; Lindqwister, U.; Lichten, S.; Jefferson, D.; Ibanez-Meier, R.; Heflin, M.; Freedman, A.; Blewitt, G.

    1994-01-01

    Beginning June 1992 and continuing indefinitely as part of our contribution to FLINN (Fiducial Laboratories for an International Natural Science Network), DOSE (NASA's Dynamics of the Solid Earth Program), and the IGS (International GPS Geodynamics Service), analysts at the Jet Propulsion Laboratory (JPL) have routinely been reducing data from a globally-distributed network of Rogue Global Positioning System (GPS) receivers.

  4. Mode and Intermediate Waters in Earth System Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gnanadesikan, Anand; Sarmiento, Jorge L.

    This report describes work done as part of a joint Princeton-Johns Hopkins project to look at the impact of mode and intermediate waters in Earth System Models. The Johns Hopkins portion of this work focussed on the role of lateral mixing in ventilating such waters, with important implications for hypoxia, the uptake of anthropogenic carbon, the dynamics of El Nino and carbon pumps. The Johns Hopkins group also collaborated with the Princeton Group to help develop a watermass diagnostics framework.

  5. Introduction: Man and his total environment

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Environmental changes and the utilization of finite resources are analyzed. Beyond the satisfaction of basic physical needs, the advancement of civilization toward an ever-improving quality of like is likewise dependent upon mans' interaction with his entire environment. This larger system is controlled externally by electromagnetic and particle energy from the sun and internally by the dynamic interchange of energy between the solid earth, oceans, the atmosphere, and the magnetosphere. This exchange of energy that determines the structure of the earth's environemental system is evaluated.

  6. Earth-moon system: Dynamics and parameter estimation; numerical considerations and program documentation

    NASA Technical Reports Server (NTRS)

    Breedlove, W. J., Jr.

    1976-01-01

    Major activities included coding and verifying equations of motion for the earth-moon system. Some attention was also given to numerical integration methods and parameter estimation methods. Existing analytical theories such as Brown's lunar theory, Eckhardt's theory for lunar rotation, and Newcomb's theory for the rotation of the earth were coded and verified. These theories serve as checks for the numerical integration. Laser ranging data for the period January 1969 - December 1975 was collected and stored on tape. The main goal of this research is the development of software to enable physical parameters of the earth-moon system to be estimated making use of data available from the Lunar Laser Ranging Experiment and the Very Long Base Interferometry experiment of project Apollo. A more specific goal is to develop software for the estimation of certain physical parameters of the moon such as inertia ratios, and the third and fourth harmonic gravity coefficients.

  7. Dynamics and structure of planetary rings

    NASA Technical Reports Server (NTRS)

    French, R. G.

    1991-01-01

    Recent research efforts were directed towards sharpening the understanding of kinematical and dynamical properties of the Uranian rings, with the combination of Earth-based and Voyager observations, and in obtaining and interpreting new observations of the Saturn system from the remarkable stellar occultation of 3 Jul. 1989. Some of the highlights studied include: (1) a detailed comparison of structure and dynamics of the Uranus rings from joint analysis of high quality Earth-based data and the complete set of Voyager occultation measurements; (2) a comprehensive search for weak normal modes excited in the Uranian rings, analogous to the m = 2 and m = 0 normal modes previously identified for the delta and gamma rings; (3) an ongoing search for faint rings and ring arcs of Uranus, using both Voyager images of the rings and Earth-based and spacecraft stellar occultation data; (4) a comparison of upper stratospheric temperatures of Uranus inferred from Voyager ultraviolet occultations with results of ground-based occultation observations; and (5) observations of the 3 Jul. 1989 Saturn occultation of 28 Sgr.

  8. Cascading elastic perturbation in Japan due to the 2012 M w 8.6 Indian Ocean earthquake.

    PubMed

    Delorey, Andrew A; Chao, Kevin; Obara, Kazushige; Johnson, Paul A

    2015-10-01

    Since the discovery of extensive earthquake triggering occurring in response to the 1992 M w (moment magnitude) 7.3 Landers earthquake, it is now well established that seismic waves from earthquakes can trigger other earthquakes, tremor, slow slip, and pore pressure changes. Our contention is that earthquake triggering is one manifestation of a more widespread elastic disturbance that reveals information about Earth's stress state. Earth's stress state is central to our understanding of both natural and anthropogenic-induced crustal processes. We show that seismic waves from distant earthquakes may perturb stresses and frictional properties on faults and elastic moduli of the crust in cascading fashion. Transient dynamic stresses place crustal material into a metastable state during which the material recovers through a process termed slow dynamics. This observation of widespread, dynamically induced elastic perturbation, including systematic migration of offshore seismicity, strain transients, and velocity transients, presents a new characterization of Earth's elastic system that will advance our understanding of plate tectonics, seismicity, and seismic hazards.

  9. Towards representing human behavior and decision making in Earth system models - an overview of techniques and approaches

    NASA Astrophysics Data System (ADS)

    Müller-Hansen, Finn; Schlüter, Maja; Mäs, Michael; Donges, Jonathan F.; Kolb, Jakob J.; Thonicke, Kirsten; Heitzig, Jobst

    2017-11-01

    Today, humans have a critical impact on the Earth system and vice versa, which can generate complex feedback processes between social and ecological dynamics. Integrating human behavior into formal Earth system models (ESMs), however, requires crucial modeling assumptions about actors and their goals, behavioral options, and decision rules, as well as modeling decisions regarding human social interactions and the aggregation of individuals' behavior. Here, we review existing modeling approaches and techniques from various disciplines and schools of thought dealing with human behavior at different levels of decision making. We demonstrate modelers' often vast degrees of freedom but also seek to make modelers aware of the often crucial consequences of seemingly innocent modeling assumptions. After discussing which socioeconomic units are potentially important for ESMs, we compare models of individual decision making that correspond to alternative behavioral theories and that make diverse modeling assumptions about individuals' preferences, beliefs, decision rules, and foresight. We review approaches to model social interaction, covering game theoretic frameworks, models of social influence, and network models. Finally, we discuss approaches to studying how the behavior of individuals, groups, and organizations can aggregate to complex collective phenomena, discussing agent-based, statistical, and representative-agent modeling and economic macro-dynamics. We illustrate the main ingredients of modeling techniques with examples from land-use dynamics as one of the main drivers of environmental change bridging local to global scales.

  10. Globalization: Ecological consequences of global-scale connectivity in people, resources and information

    USDA-ARS?s Scientific Manuscript database

    Globalization is a phenomenon affecting all facets of the Earth System. Within the context of ecological systems, it is becoming increasingly apparent that global connectivity among terrestrial systems, the atmosphere, and oceans is driving many ecological dynamics at finer scales and pushing thresh...

  11. Validation of a Statistical Methodology for Extracting Vegetation Feedbacks: Focus on North African Ecosystems in the Community Earth System Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Yan; Notaro, Michael; Wang, Fuyao

    Generalized equilibrium feedback assessment (GEFA) is a potentially valuable multivariate statistical tool for extracting vegetation feedbacks to the atmosphere in either observations or coupled Earth system models. The reliability of GEFA at capturing the terrestrial impacts on regional climate is demonstrated in this paper using the National Center for Atmospheric Research Community Earth System Model (CESM), with focus on North Africa. The feedback is assessed statistically by applying GEFA to output from a fully coupled control run. To reduce the sampling error caused by short data records, the traditional or full GEFA is refined through stepwise GEFA by dropping unimportantmore » forcings. Two ensembles of dynamical experiments are developed for the Sahel or West African monsoon region against which GEFA-based vegetation feedbacks are evaluated. In these dynamical experiments, regional leaf area index (LAI) is modified either alone or in conjunction with soil moisture, with the latter runs motivated by strong regional soil moisture–LAI coupling. Stepwise GEFA boasts higher consistency between statistically and dynamically assessed atmospheric responses to land surface anomalies than full GEFA, especially with short data records. GEFA-based atmospheric responses are more consistent with the coupled soil moisture–LAI experiments, indicating that GEFA is assessing the combined impacts of coupled vegetation and soil moisture. Finally, both the statistical and dynamical assessments reveal a negative vegetation–rainfall feedback in the Sahel associated with an atmospheric stability mechanism in CESM versus a weaker positive feedback in the West African monsoon region associated with a moisture recycling mechanism in CESM.« less

  12. Validation of a Statistical Methodology for Extracting Vegetation Feedbacks: Focus on North African Ecosystems in the Community Earth System Model

    DOE PAGES

    Yu, Yan; Notaro, Michael; Wang, Fuyao; ...

    2018-02-05

    Generalized equilibrium feedback assessment (GEFA) is a potentially valuable multivariate statistical tool for extracting vegetation feedbacks to the atmosphere in either observations or coupled Earth system models. The reliability of GEFA at capturing the terrestrial impacts on regional climate is demonstrated in this paper using the National Center for Atmospheric Research Community Earth System Model (CESM), with focus on North Africa. The feedback is assessed statistically by applying GEFA to output from a fully coupled control run. To reduce the sampling error caused by short data records, the traditional or full GEFA is refined through stepwise GEFA by dropping unimportantmore » forcings. Two ensembles of dynamical experiments are developed for the Sahel or West African monsoon region against which GEFA-based vegetation feedbacks are evaluated. In these dynamical experiments, regional leaf area index (LAI) is modified either alone or in conjunction with soil moisture, with the latter runs motivated by strong regional soil moisture–LAI coupling. Stepwise GEFA boasts higher consistency between statistically and dynamically assessed atmospheric responses to land surface anomalies than full GEFA, especially with short data records. GEFA-based atmospheric responses are more consistent with the coupled soil moisture–LAI experiments, indicating that GEFA is assessing the combined impacts of coupled vegetation and soil moisture. Finally, both the statistical and dynamical assessments reveal a negative vegetation–rainfall feedback in the Sahel associated with an atmospheric stability mechanism in CESM versus a weaker positive feedback in the West African monsoon region associated with a moisture recycling mechanism in CESM.« less

  13. A study of the thermal and optical characteristics of radiometric channels for Earth radiation budget applications

    NASA Technical Reports Server (NTRS)

    Mahan, J. R.; Tira, Nour E.

    1991-01-01

    An improved dynamic electrothermal model for the Earth Radiation Budget Experiment (ERBE) total, nonscanning channels is formulated. This model is then used to accurately simulate two types of dynamic solar observation: the solar calibration and the so-called pitchover maneuver. Using a second model, the nonscanner active cavity radiometer (ACR) thermal noise is studied. This study reveals that radiative emission and scattering by the surrounding parts of the nonscanner cavity are acceptably small. The dynamic electrothermal model is also used to compute ACR instrument transfer function. Accurate in-flight measurement of this transfer function is shown to depend on the energy distribution over the frequency spectrum of the radiation input function. A new array-type field of view limiter, whose geometry controls the input function, is proposed for in-flight calibration of an ACR and other types of radiometers. The point spread function (PSF) of the ERBE and the Clouds and Earth's Radiant Energy System (CERES) scanning radiometers is computed. The PSF is useful in characterizing the channel optics. It also has potential for recovering the distribution of the radiative flux from Earth by deconvolution.

  14. A Model for Dynamic Simulation and Analysis of Tether Momentum Exchange

    NASA Technical Reports Server (NTRS)

    Canfield, Stephen; Johnson, David; Sorensen, Kirk; Welzyn, Ken; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    Momentum-exchange/electrodynamic reboost (MXER) tether systems may enable high-energy missions to the Moon, Mars, and beyond by serving as an 'upper stage in space'. Existing rockets that use an MXER tether station could double their capability to launch communications satellites and help improve US competitiveness. A MXER tether station would boost spacecraft from low Earth orbit to a high-energy orbit quickly, like a high-thrust rocket. Then, using the same principles that make an electric motor work, it would slowly rebuild its orbital momentum by pushing against the Earth's magnetic field-without using any propellant. One of the significant challenges in developing a momentum-exchange/electrodynamic reboost tether systems is in the analysis and design of the capture mechanism and its effects on the overall dynamics of the system. This paper will present a model for a momentum-exchange tether system that can simulate and evaluate the performance and requirements of such a system.

  15. Dynamical evidence regarding the relationship between asteroids and meteorites

    NASA Technical Reports Server (NTRS)

    Wetherill, G. W.

    1978-01-01

    Meteorites are fragments of small solar system bodies transferring into the vicinity of earth from the inner edge of the asteroid belt. Photometric measurements support an association between Apollo objects and chondritic meteorites. Dynamical arguments indicate that most Apollo objects are devolatilized comet residues, however; petrographic and cosmogonical reasons argue against this conclusion.

  16. Resolving Orbital and Climate Keys of Earth and Extraterrestrial Environments with Dynamics (ROCKE-3D) 1.0: A General Circulation Model for Simulating the Climates of Rocky Planets

    NASA Technical Reports Server (NTRS)

    Way, M. J.; Aleinov, I.; Amundsen, David S.; Chandler, M. A.; Clune, T. L.; Del Genio, A.; Fujii, Y.; Kelley, M.; Kiang, N. Y.; Sohl, L.; hide

    2017-01-01

    Resolving Orbital and Climate Keys of Earth and Extraterrestrial Environments with Dynamics (ROCKE-3D) is a three-dimensional General Circulation Model (GCM) developed at the NASA Goddard Institute for Space Studies for the modeling of atmospheres of solar system and exoplanetary terrestrial planets. Its parent model, known as ModelE2, is used to simulate modern Earth and near-term paleo-Earth climates. ROCKE-3D is an ongoing effort to expand the capabilities of ModelE2 to handle a broader range of atmospheric conditions, including higher and lower atmospheric pressures, more diverse chemistries and compositions, larger and smaller planet radii and gravity, different rotation rates (from slower to more rapid than modern Earth's, including synchronous rotation), diverse ocean and land distributions and topographies, and potential basic biosphere functions. The first aim of ROCKE-3D is to model planetary atmospheres on terrestrial worlds within the solar system such as paleo-Earth, modern and paleo-Mars, paleo-Venus, and Saturn's moon Titan. By validating the model for a broad range of temperatures, pressures, and atmospheric constituents, we can then further expand its capabilities to those exoplanetary rocky worlds that have been discovered in the past, as well as those to be discovered in the future. We also discuss the current and near-future capabilities of ROCKE-3D as a community model for studying planetary and exoplanetary atmospheres.

  17. Military Applications of High-Altitude Satellite Orbits in a Multi-Body Dynamical Environment Using Numerical Methods and Dynamical Systems Theory

    DTIC Science & Technology

    2016-03-01

    Anno vi Acknowledgments First, I would like to express my incredible gratitude...Earth-Moon and Sun-Earth systems in Table 1. 51 T a b le 1 . J a c o b i C o n st a n t V a lu e s a n d R o ta ti n g F ra m e C o o rd in a te s o...g C o o rd in a te s in S y st em E q u a l M a ss S y st em P o in t E a rt h -M o o n S y st em in J a co b i C o n st a n t

  18. Coarse-grained component concurrency in Earth system modeling: parallelizing atmospheric radiative transfer in the GFDL AM3 model using the Flexible Modeling System coupling framework

    NASA Astrophysics Data System (ADS)

    Balaji, V.; Benson, Rusty; Wyman, Bruce; Held, Isaac

    2016-10-01

    Climate models represent a large variety of processes on a variety of timescales and space scales, a canonical example of multi-physics multi-scale modeling. Current hardware trends, such as Graphical Processing Units (GPUs) and Many Integrated Core (MIC) chips, are based on, at best, marginal increases in clock speed, coupled with vast increases in concurrency, particularly at the fine grain. Multi-physics codes face particular challenges in achieving fine-grained concurrency, as different physics and dynamics components have different computational profiles, and universal solutions are hard to come by. We propose here one approach for multi-physics codes. These codes are typically structured as components interacting via software frameworks. The component structure of a typical Earth system model consists of a hierarchical and recursive tree of components, each representing a different climate process or dynamical system. This recursive structure generally encompasses a modest level of concurrency at the highest level (e.g., atmosphere and ocean on different processor sets) with serial organization underneath. We propose to extend concurrency much further by running more and more lower- and higher-level components in parallel with each other. Each component can further be parallelized on the fine grain, potentially offering a major increase in the scalability of Earth system models. We present here first results from this approach, called coarse-grained component concurrency, or CCC. Within the Geophysical Fluid Dynamics Laboratory (GFDL) Flexible Modeling System (FMS), the atmospheric radiative transfer component has been configured to run in parallel with a composite component consisting of every other atmospheric component, including the atmospheric dynamics and all other atmospheric physics components. We will explore the algorithmic challenges involved in such an approach, and present results from such simulations. Plans to achieve even greater levels of coarse-grained concurrency by extending this approach within other components, such as the ocean, will be discussed.

  19. Innovation: Key to the future

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The NASA Marshall Space Flight Center Annual Report is presented. A description of research and development projects is included. Topics covered include: space science; space systems; transportation systems; astronomy and astrophysics; earth sciences; solar terrestrial physics; microgravity science; diagnostic and inspection system; information, electronic, and optical systems; materials and manufacturing; propulsion; and structures and dynamics.

  20. Secular Resonances During Main-Sequence and Post-Main-Sequence Planetary System Dynamics

    NASA Astrophysics Data System (ADS)

    Smallwood, Jeremy L.

    We investigate gravitational perturbations of an asteroid belt by secular resonances. We ap- ply analytic and numerical models to main-sequence and post-main-sequence planetary systems. First, we investigate how the asteroid impact rate on the Earth is affected by the architecture of the planetary system. We find that the nu6 resonance plays an important role in the asteroid collision rate with the Earth. Compared to exoplanetary systems, the solar system is somewhat special in its lack of a super-Earth mass planet in the inner solar system. We therefore consider the effects of the presence of a super-Earth in the terrestrial planet region. We find a significant effect for super-Earths with a mass of around 10 M_{Earth} and a separation greater than about 0.7 AU. These results have implications for the habitability of exoplanetary systems. Secondly, we model white dwarf pollution by asteroids from secular resonances. In the past few decades, observations have revealed signatures of metals polluting the atmospheres of white dwarfs that require a continu- ous accretion of asteroids. We show that secular resonances driven by two outer companions can provide a source of pollution if an inner terrestrial planet is engulfed during the red-giant branch phase. Secular resonances may be a viable mechanism for the pollution of white dwarfs in a variety of exoplanetary system architectures including systems with two giant planets and systems with one giant planet and a binary star companion.

  1. The Effect of Surface Topography on the Nonlinear Dynamics of Rossby Waves

    NASA Technical Reports Server (NTRS)

    Abarzhi, S. I.; Desjardins, O.; Pitsch, H.

    2003-01-01

    Boussinesq convection in rotating systems attracts a sustained attention of the fluid dynamics community, because it has intricate non-linear dynamics (Cross & Hohenberg 1993) and plays an important role in geophysical and astrophysical applications, such as the motion of the liquid outer core of Earth, the Red Spot in Jupiter, the giant cells in the Sun etc. (Alridge et al. 1990). A fundamental distinction between the real geo- and astrophysical problems and the idealized laboratory studies is that natural systems are inhomogeneous (Alridge et al. 1990). Heterogeneities modulate the flow and influence significantly the dynamics of convective patterns (Alridge et al. 1990; Hide 1971). The effect of modulations on pattern formation and transition to turbulence in Boussinesq convection is far from being completely understood (Cross & Hohenberg 1993; Aranson & Kramer 2002). It is generally accepted that in the liquid outer core of the Earth the transport of the angular momentum and internal heat occurs via thermal Rossby waves (Zhang et al. 2001; Kuang & Bloxham 1999). These waves been visualized in laboratory experiments in rotating liquid-filled spheres and concentric spherical shells (Zhang et al. 2001; Kuang & Bloxham 1999). The basic dynamical features of Rossby waves have been reproduced in a cylindrical annulus, a system much simpler than the spherical ones (Busse & Or 1986; Or & Busse 1987). For convection in a cylindrical annulus, the fluid motion is two-dimensional, and gravity is replaced by a centrifugal force, (Busse & Or 1986; Or & Busse 1987). Hide (1971) has suggested that the momentum and heat transport in the core might be influenced significantly by so-called bumps, which are heterogeneities on the mantle-core boundary. To model the effect of surface topography on the transport of momentum and energy in the liquid outer core of the Earth, Bell & Soward (1996), Herrmann & Busse (1998) and Westerburg & Busse (2001) have studied the nonlinear dynamics of thermal Rossby waves in a cylindrical annulus with azimuthally modulated height.

  2. Challenges in integrating multidisciplinary data into a single e-infrastructure

    NASA Astrophysics Data System (ADS)

    Atakan, Kuvvet; Jeffery, Keith G.; Bailo, Daniele; Harrison, Matthew

    2015-04-01

    The European Plate Observing System (EPOS) aims to create a pan-European infrastructure for solid Earth science to support a safe and sustainable society. The mission of EPOS is to monitor and understand the dynamic and complex Earth system by relying on new e-science opportunities and integrating diverse and advanced Research Infrastructures in Europe for solid Earth Science. EPOS will enable innovative multidisciplinary research for a better understanding of the Earth's physical and chemical processes that control earthquakes, volcanic eruptions, ground instability and tsunami as well as the processes driving tectonics and Earth's surface dynamics. EPOS will improve our ability to better manage the use of the subsurface of the Earth. Through integration of data, models and facilities EPOS will allow the Earth Science community to make a step change in developing new concepts and tools for key answers to scientific and socio-economic questions concerning geo-hazards and geo-resources as well as Earth sciences applications to the environment and to human welfare. EPOS is now getting into its Implementation Phase (EPOS-IP). One of the main challenges during the implementation phase is the integration of multidisciplinary data into a single e-infrastructure. Multidisciplinary data are organized and governed by the Thematic Core Services (TCS) and are driven by various scientific communities encompassing a wide spectrum of Earth science disciplines. TCS data, data products and services will be integrated into a platform "the ICS system" that will ensure their interoperability and access to these services by the scientific community as well as other users within the society. This requires dedicated tasks for interactions with the various TCS-WPs, as well as the various distributed ICS (ICS-Ds), such as High Performance Computing (HPC) facilities, large scale data storage facilities, complex processing and visualization tools etc. Computational Earth Science (CES) services are identified as a transversal activity and as such need to be harmonized and provided within the ICS. In order to develop a metadata catalogue and the ICS system, the content from the entire spectrum of services included in TCS, ICS-Ds as well as CES activities, need to be organized in a systematic manner taking into account global and European IT-standards, while complying with the user needs and data provider requirements.

  3. Visualizing global change: earth and biodiversity sciences for museum settings using HDTV

    NASA Astrophysics Data System (ADS)

    Duba, A.; Gardiner, N.; Kinzler, R.; Trakinski, V.

    2006-12-01

    Science Bulletins, a production group at the American Museum of Natural History (New York, USA), brings biological and Earth system science data and concepts to over 10 million visitors per year at 27 institutions around the U.S.A. Our target audience is diverse, from novice to expert. News stories and visualizations use the capabilities of satellite imagery to focus public attention on four general themes: human influences on species and ecosystems across all observable spatial extents; biotic feedbacks with the Earth's physical system; characterizing species and ecosystems; and recent events such as natural changes to ecosystems, major findings and publications, or recent syntheses. For Earth science, we use recent natural events to explain the broad scientific concepts of tectonic activity and the processes that underlie climate and weather events. Visualizations show the global, dynamic distribution of atmospheric constituents, ocean temperature and temperature anomaly, and sea ice. Long-term changes are set in contrast to seasonal and longer-term cycles so that viewers appreciate the variety of forces that affect Earth's physical system. We illustrate concepts at a level appropriate for a broad audience to learn more about the dynamic nature of Earth's biota and physical processes. Programming also includes feature stories that explain global change phenomena from the perspectives of eminent scientists and managers charged with implementing public policy based on the best available science. Over the past two and one-half years, biological science stories have highlighted applied research addressing lemur conservation in Madagascar, marine protected areas in the Bahamas, effects of urban sprawl on wood turtles in New England, and taxonomic surveys of marine jellies in Monterey Bay. Earth science stories have addressed the volcanic history of present-day Yellowstone National Park, tsunamis, the disappearance of tropical mountain glaciers, the North Atlantic Oscillation, and the oxygenation of the atmosphere. All of these visualizations and HD videos are accessible via the worldwide web with accompanying explanatory material. Periodic surveys of visitors indicate that these media are popular and are effective at communicating important biological and Earth system science concepts to the general public.

  4. Steering operational synergies in terrestrial observation networks: opportunity for advancing Earth system dynamics modelling

    NASA Astrophysics Data System (ADS)

    Baatz, Roland; Sullivan, Pamela L.; Li, Li; Weintraub, Samantha R.; Loescher, Henry W.; Mirtl, Michael; Groffman, Peter M.; Wall, Diana H.; Young, Michael; White, Tim; Wen, Hang; Zacharias, Steffen; Kühn, Ingolf; Tang, Jianwu; Gaillardet, Jérôme; Braud, Isabelle; Flores, Alejandro N.; Kumar, Praveen; Lin, Henry; Ghezzehei, Teamrat; Jones, Julia; Gholz, Henry L.; Vereecken, Harry; Van Looy, Kris

    2018-05-01

    Advancing our understanding of Earth system dynamics (ESD) depends on the development of models and other analytical tools that apply physical, biological, and chemical data. This ambition to increase understanding and develop models of ESD based on site observations was the stimulus for creating the networks of Long-Term Ecological Research (LTER), Critical Zone Observatories (CZOs), and others. We organized a survey, the results of which identified pressing gaps in data availability from these networks, in particular for the future development and evaluation of models that represent ESD processes, and provide insights for improvement in both data collection and model integration. From this survey overview of data applications in the context of LTER and CZO research, we identified three challenges: (1) widen application of terrestrial observation network data in Earth system modelling, (2) develop integrated Earth system models that incorporate process representation and data of multiple disciplines, and (3) identify complementarity in measured variables and spatial extent, and promoting synergies in the existing observational networks. These challenges lead to perspectives and recommendations for an improved dialogue between the observation networks and the ESD modelling community, including co-location of sites in the existing networks and further formalizing these recommendations among these communities. Developing these synergies will enable cross-site and cross-network comparison and synthesis studies, which will help produce insights around organizing principles, classifications, and general rules of coupling processes with environmental conditions.

  5. Solar dynamic heat receiver thermal characteristics in low earth orbit

    NASA Technical Reports Server (NTRS)

    Wu, Y. C.; Roschke, E. J.; Birur, G. C.

    1988-01-01

    A simplified system model is under development for evaluating the thermal characteristics and thermal performance of a solar dynamic spacecraft energy system's heat receiver. Results based on baseline orbit, power system configuration, and operational conditions, are generated for three basic receiver concepts and three concentrator surface slope errors. Receiver thermal characteristics and thermal behavior in LEO conditions are presented. The configuration in which heat is directly transferred to the working fluid is noted to generate the best system and thermal characteristics. as well as the lowest performance degradation with increasing slope error.

  6. Transfer to the Collinear Libration Point L3 in the Sun-Earth+Moon System

    NASA Technical Reports Server (NTRS)

    Hou, Xi-yun; Tang, Jing-shi; Liu, Lin

    2007-01-01

    The collinear libration point L3 of the sun-earth+moon system is an ideal place for some space missions. Although there has been a great amount of work concerning the applications of the other two collinear libration points L1 and L2, little work has been done about the point L3. In this paper, the dynamics of the libration points was briefly introduced first. Then a way to transfer the spacecraft to the collinear libration point L3 via the invariant manifolds of the other two collinear libration points was proposed. Theoretical works under the model of circular restricted three-body problem were done. For the sun-earth+moon system, this model is a good approximation. The results obtained are useful when a transfer trajectory under the real solar system is designed.

  7. EarthCube - Earth System Bridge: Spanning Scientific Communities with Interoperable Modeling Frameworks

    NASA Astrophysics Data System (ADS)

    Peckham, S. D.; DeLuca, C.; Gochis, D. J.; Arrigo, J.; Kelbert, A.; Choi, E.; Dunlap, R.

    2014-12-01

    In order to better understand and predict environmental hazards of weather/climate, ecology and deep earth processes, geoscientists develop and use physics-based computational models. These models are used widely both in academic and federal communities. Because of the large effort required to develop and test models, there is widespread interest in component-based modeling, which promotes model reuse and simplified coupling to tackle problems that often cross discipline boundaries. In component-based modeling, the goal is to make relatively small changes to models that make it easy to reuse them as "plug-and-play" components. Sophisticated modeling frameworks exist to rapidly couple these components to create new composite models. They allow component models to exchange variables while accommodating different programming languages, computational grids, time-stepping schemes, variable names and units. Modeling frameworks have arisen in many modeling communities. CSDMS (Community Surface Dynamics Modeling System) serves the academic earth surface process dynamics community, while ESMF (Earth System Modeling Framework) serves many federal Earth system modeling projects. Others exist in both the academic and federal domains and each satisfies design criteria that are determined by the community they serve. While they may use different interface standards or semantic mediation strategies, they share fundamental similarities. The purpose of the Earth System Bridge project is to develop mechanisms for interoperability between modeling frameworks, such as the ability to share a model or service component. This project has three main goals: (1) Develop a Framework Description Language (ES-FDL) that allows modeling frameworks to be described in a standard way so that their differences and similarities can be assessed. (2) Demonstrate that if a model is augmented with a framework-agnostic Basic Model Interface (BMI), then simple, universal adapters can go from BMI to a modeling framework's native component interface. (3) Create semantic mappings between modeling frameworks that support semantic mediation. This third goal involves creating a crosswalk between the CF Standard Names and the CSDMS Standard Names (a set of naming conventions). This talk will summarize progress towards these goals.

  8. Forced nutations of the earth: Influence of inner core dynamics. I - Theory. II - Numerical results and comparisons. III - Very long interferometry data analysis

    NASA Technical Reports Server (NTRS)

    Mathews, P. M.; Buffett, Bruce A.; Herring, Thomas A.; Shapiro, Irwin I.

    1991-01-01

    A treatment is presented of the nutation problem for an oceanless, elastic, spheroidally stratified earth, with the dynamical role of the inner core explicitly included in the formulation. Solving the enlarged system of equations shows that a new almost diurnal eigenfrequency emerges. A rough estimate places it not far from the prograde annual tidal excitation frequency, so that possible resonance effects on nutation amplitudes need careful consideration. Tables are provided that exhibit the sensitivities of various relevant quantities, the eigenfrequencies and the coefficients which appear in the resonance expansion, as well as the nutation amplitudes at important tidal frequencies, to possible errors in the earth parameters which enter the theory set forth. Finally, the analysis of 798 VLBI experiments performed between July 1980 and February 1989 and the determination from this analysis of corrections to selected coefficients in the International Astronomical Union 1980 theory of the nutations of the earth are discussed.

  9. Numerical simulations of earthquakes and the dynamics of fault systems using the Finite Element method.

    NASA Astrophysics Data System (ADS)

    Kettle, L. M.; Mora, P.; Weatherley, D.; Gross, L.; Xing, H.

    2006-12-01

    Simulations using the Finite Element method are widely used in many engineering applications and for the solution of partial differential equations (PDEs). Computational models based on the solution of PDEs play a key role in earth systems simulations. We present numerical modelling of crustal fault systems where the dynamic elastic wave equation is solved using the Finite Element method. This is achieved using a high level computational modelling language, escript, available as open source software from ACcESS (Australian Computational Earth Systems Simulator), the University of Queensland. Escript is an advanced geophysical simulation software package developed at ACcESS which includes parallel equation solvers, data visualisation and data analysis software. The escript library was implemented to develop a flexible Finite Element model which reliably simulates the mechanism of faulting and the physics of earthquakes. Both 2D and 3D elastodynamic models are being developed to study the dynamics of crustal fault systems. Our final goal is to build a flexible model which can be applied to any fault system with user-defined geometry and input parameters. To study the physics of earthquake processes, two different time scales must be modelled, firstly the quasi-static loading phase which gradually increases stress in the system (~100years), and secondly the dynamic rupture process which rapidly redistributes stress in the system (~100secs). We will discuss the solution of the time-dependent elastic wave equation for an arbitrary fault system using escript. This involves prescribing the correct initial stress distribution in the system to simulate the quasi-static loading of faults to failure; determining a suitable frictional constitutive law which accurately reproduces the dynamics of the stick/slip instability at the faults; and using a robust time integration scheme. These dynamic models generate data and information that can be used for earthquake forecasting.

  10. Research and technology, 1990

    NASA Technical Reports Server (NTRS)

    Potter, P. Y.

    1990-01-01

    The annual report of the Marshall Space Flight Center for 1990 is presented. Brief summaries of research are presented for work in the fields of transportation systems, space systems, data systems, microgravity science, astronomy, astrophysics, solar physics, magnetospheric physics, atomic physics, aeronomy, Earth science and applications, propulsion technology, materials and processes, structures and dynamics, automated systems, space systems, and avionics.

  11. Theory of chaotic orbital variations confirmed by Cretaceous geological evidence.

    PubMed

    Ma, Chao; Meyers, Stephen R; Sageman, Bradley B

    2017-02-22

    Variations in the Earth's orbit and spin vector are a primary control on insolation and climate; their recognition in the geological record has revolutionized our understanding of palaeoclimate dynamics, and has catalysed improvements in the accuracy and precision of the geological timescale. Yet the secular evolution of the planetary orbits beyond 50 million years ago remains highly uncertain, and the chaotic dynamical nature of the Solar System predicted by theoretical models has yet to be rigorously confirmed by well constrained (radioisotopically calibrated and anchored) geological data. Here we present geological evidence for a chaotic resonance transition associated with interactions between the orbits of Mars and the Earth, using an integrated radioisotopic and astronomical timescale from the Cretaceous Western Interior Basin of what is now North America. This analysis confirms the predicted chaotic dynamical behaviour of the Solar System, and provides a constraint for refining numerical solutions for insolation, which will enable a more precise and accurate geological timescale to be produced.

  12. The Earth System Documentation (ES-DOC) Software Process

    NASA Astrophysics Data System (ADS)

    Greenslade, M. A.; Murphy, S.; Treshansky, A.; DeLuca, C.; Guilyardi, E.; Denvil, S.

    2013-12-01

    Earth System Documentation (ES-DOC) is an international project supplying high-quality tools & services in support of earth system documentation creation, analysis and dissemination. It is nurturing a sustainable standards based documentation eco-system that aims to become an integral part of the next generation of exa-scale dataset archives. ES-DOC leverages open source software, and applies a software development methodology that places end-user narratives at the heart of all it does. ES-DOC has initially focused upon nurturing the Earth System Model (ESM) documentation eco-system and currently supporting the following projects: * Coupled Model Inter-comparison Project Phase 5 (CMIP5); * Dynamical Core Model Inter-comparison Project (DCMIP); * National Climate Predictions and Projections Platforms Quantitative Evaluation of Downscaling Workshop. This talk will demonstrate that ES-DOC implements a relatively mature software development process. Taking a pragmatic Agile process as inspiration, ES-DOC: * Iteratively develops and releases working software; * Captures user requirements via a narrative based approach; * Uses online collaboration tools (e.g. Earth System CoG) to manage progress; * Prototypes applications to validate their feasibility; * Leverages meta-programming techniques where appropriate; * Automates testing whenever sensibly feasible; * Streamlines complex deployments to a single command; * Extensively leverages GitHub and Pivotal Tracker; * Enforces strict separation of the UI from underlying API's; * Conducts code reviews.

  13. On the development of an interactive resource information management system for analysis and display of spatiotemporal data

    NASA Technical Reports Server (NTRS)

    Schell, J. A.

    1974-01-01

    The recent availability of timely synoptic earth imagery from the Earth Resources Technology Satellites (ERTS) provides a wealth of information for the monitoring and management of vital natural resources. Formal language definitions and syntax interpretation algorithms were adapted to provide a flexible, computer information system for the maintenance of resource interpretation of imagery. These techniques are incorporated, together with image analysis functions, into an Interactive Resource Information Management and Analysis System, IRIMAS, which is implemented on a Texas Instruments 980A minicomputer system augmented with a dynamic color display for image presentation. A demonstration of system usage and recommendations for further system development are also included.

  14. Non-Extensive Statistical Analysis of Magnetic Field and SEPs during the March 2012 ICME event, using a multi-spacecraft approach

    NASA Astrophysics Data System (ADS)

    Pavlos, George; Malandraki, Olga; Pavlos, Evgenios; Iliopoulos, Aggelos; Karakatsanis, Leonidas

    2017-04-01

    As the solar plasma lives far from equilibrium it is an excellent laboratory for testing non-equilibrium statistical mechanics. In this study, we present the highlights of Tsallis non-extensive statistical mechanics as concerns their applications at solar plasma dynamics, especially at solar wind phenomena and magnetosphere. In this study we present some new and significant results concerning the dynamics of interplanetary coronal mass ejections (ICMEs) observed in the near Earth at L1 solar wind environment, as well as its effect in Earth's magnetosphere. The results are referred to Tsallis non-extensive statistics and in particular to the estimation of Tsallis q-triplet, (qstat, qsen, qrel) of SEPs time series observed at the interplanetary space and magnetic field time series of the ICME observed at the Earth resulting from the solar eruptive activity on March 7, 2012 at the Sun. For the magnetic field, we used a multi-spacecraft approach based on data experiments from ACE, CLUSTER 4, THEMIS-E and THEMIS-C spacecraft. For the data analysis different time periods were considered, sorted as "quiet", "shock" and "aftershock", while different space domains such as the Interplanetary space (near Earth at L1 and upstream of the Earth's bowshock), the Earth's magnetosheath and magnetotail, were also taken into account. Our results reveal significant differences in statistical and dynamical features, indicating important variations of the SEPs profile in time, and magnetic field dynamics both in time and space domains during the shock event, in terms of rate of entropy production, relaxation dynamics and non-equilibrium meta-stable stationary states. So far, Tsallis non-extensive statistical theory and Tsallis extension of the Boltzmann-Gibbs entropy principle to the q-entropy entropy principle (Tsallis, 1988, 2009) reveal strong universality character concerning non-equilibrium dynamics (Pavlos et al. 2012a,b, 2014, 2015, 2016; Karakatsanis et al. 2013). Tsallis q-entropy principle can explain the emergence of a series of new and significant physical characteristics in distributed systems as well as in space plasmas. Such characteristics are: non-Gaussian statistics and anomalous diffusion processes, strange and fractional dynamics, multifractal, percolating and intermittent turbulence structures, multiscale and long spatio-temporal correlations, fractional acceleration and Non-Equilibrium Stationary States (NESS) or non-equilibrium self-organization process and non-equilibrium phase transition and topological phase transition processes according to Zelenyi and Milovanov (2004). In this direction, our results reveal clearly strong self-organization and development of macroscopic ordering of plasma system related to strengthen of non-extensivity, multifractality and intermittency everywhere in the space plasmas region during the CME event. Acknowledgements: This project has received funding form the European Union's Horizon 2020 research and innovation program under grant agreement No 637324.

  15. Dynamics of tethered satellites in the vicinity of the Lagrangian point L2 of the Earth-Moon system

    NASA Astrophysics Data System (ADS)

    Baião, M. F.; Stuchi, T. J.

    2017-08-01

    This paper analyzes the dynamical evolution of satellites formed by two masses connected by a cable— tethered satellites. We derive the Lagrangian equations of motion in the neighborhood of the collinear equilibrium points, especially for the L2 , of the restricted problem of three bodies. The rigid body configuration is expanded in Legendre polynomials up to fourth degree. We present some numerical simulations of the influence of the parameters such as cable length, mass ratio and initial conditions in the behavior of the tethered satellites. The equation for the collinear equilibrium point is derived and numerically solved. The evolution of the equilibria with the variation of the cable length as a parameter is studied. We also present a discussion of the linear stability around these equilibria. Based on this analysis calculate some unstable Lyapunov orbits associated to these equilibrium points. We found periodic orbits in which the tether travels parallel to itself without involving the angular motion. The numerical applications are focused on the Earth-Moon system. However, the general character of the equations allows applications to the L1 equilibrium and obviously to systems other than the Earth-Moon.

  16. DCMIP2016: a review of non-hydrostatic dynamical core design and intercomparison of participating models

    NASA Astrophysics Data System (ADS)

    Ullrich, Paul A.; Jablonowski, Christiane; Kent, James; Lauritzen, Peter H.; Nair, Ramachandran; Reed, Kevin A.; Zarzycki, Colin M.; Hall, David M.; Dazlich, Don; Heikes, Ross; Konor, Celal; Randall, David; Dubos, Thomas; Meurdesoif, Yann; Chen, Xi; Harris, Lucas; Kühnlein, Christian; Lee, Vivian; Qaddouri, Abdessamad; Girard, Claude; Giorgetta, Marco; Reinert, Daniel; Klemp, Joseph; Park, Sang-Hun; Skamarock, William; Miura, Hiroaki; Ohno, Tomoki; Yoshida, Ryuji; Walko, Robert; Reinecke, Alex; Viner, Kevin

    2017-12-01

    Atmospheric dynamical cores are a fundamental component of global atmospheric modeling systems and are responsible for capturing the dynamical behavior of the Earth's atmosphere via numerical integration of the Navier-Stokes equations. These systems have existed in one form or another for over half of a century, with the earliest discretizations having now evolved into a complex ecosystem of algorithms and computational strategies. In essence, no two dynamical cores are alike, and their individual successes suggest that no perfect model exists. To better understand modern dynamical cores, this paper aims to provide a comprehensive review of 11 non-hydrostatic dynamical cores, drawn from modeling centers and groups that participated in the 2016 Dynamical Core Model Intercomparison Project (DCMIP) workshop and summer school. This review includes a choice of model grid, variable placement, vertical coordinate, prognostic equations, temporal discretization, and the diffusion, stabilization, filters, and fixers employed by each system.

  17. PDEMOD: Software for control/structures optimization

    NASA Technical Reports Server (NTRS)

    Taylor, Lawrence W., Jr.; Zimmerman, David

    1991-01-01

    Because of the possibility of adverse interaction between the control system and the structural dynamics of large, flexible spacecraft, great care must be taken to ensure stability and system performance. Because of the high cost of insertion of mass into low earth orbit, it is prudent to optimize the roles of structure and control systems simultaneously. Because of the difficulty and the computational burden in modeling and analyzing the control structure system dynamics, the total problem is often split and treated iteratively. It would aid design if the control structure system dynamics could be represented in a single system of equations. With the use of the software PDEMOD (Partial Differential Equation Model), it is now possible to optimize structure and control systems simultaneously. The distributed parameter modeling approach enables embedding the control system dynamics into the same equations for the structural dynamics model. By doing this, the current difficulties involved in model order reduction are avoided. The NASA Mini-MAST truss is used an an example for studying integrated control structure design.

  18. Spacecraft formation keeping near the libration points of the Sun-Earth/Moon system

    NASA Astrophysics Data System (ADS)

    Marchand, Belinda G.

    Multi-spacecraft formations, evolving near the vicinity of the libration points of the Sun-Earth/Moon system, have drawn increased interest for a variety of applications. This is particularly true for space based interferometry missions such as Terrestrial Planet Finder (TPF) and the Micro Arcsecond X-Ray Imaging Mission (MAXIM). Recent studies in formation flight have focused, primarily, on the control of formations that evolve in the immediate vicinity of the Earth. However, the unique dynamical structure near the libration points requires that the effectiveness and feasibility of these methods be re-examined. The present study is divided into two main topics. First, a dynamical systems approach is employed to develop a better understanding of the natural uncontrolled formation dynamics in this region of space. The focus is formations that evolve near halo orbits and Lissajous trajectories, near the L1 and L2 libration points of the Sun-Earth/Moon system. This leads to the development of a Floquet controller designed to simplify the process of identifying naturally existing formations as well as the associated stable manifolds for deployment. The initial analysis is presented in the Circular Restricted Three-Body Problem, but the results are later transitioned into the more complete Ephemeris model. The next subject of interest in this investigation is non-natural formations. That is, formations that are not consistent with the natural dynamical flow near the libration points. Mathematically, precise formation keeping of a given nominal configuration requires continuous control. Hence, a detailed analysis is presented to contrast the effectiveness and issues associated with linear optimal control and feedback linearization methods. Of course, continuous operation of the thrusters, may not represent a feasible option for a particular mission. If discrete formation keeping is implemented, however, the formation keeping goal will be subject to increased tracking errors relative to the nominal path. With this in mind, the final phase of the analysis presented here is centered on discrete formation keeping. The initial analysis is devoted to both linear state and radial targeters. The results from these two methodologies are later employed as a starting solution for an optimal impulsive control algorithm.

  19. Using natural archives to detect climate and environmental tipping points in the Earth System

    NASA Astrophysics Data System (ADS)

    Thomas, Zoë A.

    2016-11-01

    'Tipping points' in the Earth system are characterised by a nonlinear response to gradual forcing, and may have severe and wide-ranging impacts. Many abrupt events result from simple underlying system dynamics termed 'critical transitions' or 'bifurcations'. One of the best ways to identify and potentially predict threshold behaviour in the climate system is through analysis of natural ('palaeo') archives. Specifically, on the approach to a tipping point, early warning signals can be detected as characteristic fluctuations in a time series as a system loses stability. Testing whether these early warning signals can be detected in highly complex real systems is a key challenge, since much work is either theoretical or only tested with simple models. This is particularly problematic in palaeoclimate and palaeoenvironmental records with low resolution, non-equidistant data, which can limit accurate analysis. Here, a range of different datasets are examined to explore generic rules that can be used to detect such dramatic events. A number of key criteria are identified to be necessary for the reliable identification of early warning signals in natural archives, most crucially, the need for a low-noise record of sufficient data length, resolution and accuracy. A deeper understanding of the underlying system dynamics is required to inform the development of more robust system-specific indicators, or to indicate the temporal resolution required, given a known forcing. This review demonstrates that time series precursors from natural archives provide a powerful means of forewarning tipping points within the Earth System.

  20. Dynamical and Physical Properties of 65803 Didymos, the AIDA Mission Target

    NASA Astrophysics Data System (ADS)

    Campo Bagatin, A.; Richardson, D. C.; Tsiganis, K.; Cheng, A. F.; Michel, P.

    2017-09-01

    The near-Earth asteroid (NEA) 65803 Didymos is a binary system and is the target of the proposed Asteroid Impact & Deflection Assessment (AIDA) mission, which combines an orbiter (Asteroid Impact Mission, AIM, or the reduced-scope AIM Deflection Demonstration, AIM-D2) [1, 2] and a kinetic impactor experiment (Double Asteroid Redirection Test, DART) planned to impact the secondary of the Didymos binary system in October, 2022 [3]. The Dynamical and Physical Properties of Didymos Working Group supports the AIDA mission by addressing questions related to understanding the dynamical state of the system and inferring the physical properties of the components

  1. A Solar Dynamic Power Option for Space Solar Power

    NASA Technical Reports Server (NTRS)

    Mason, Lee S.

    1999-01-01

    A study was performed to determine the potential performance and related technology requirements of Solar Dynamic power systems for a Space Solar Power satellite. Space Solar Power is a concept where solar energy is collected in orbit and beamed to Earth receiving stations to supplement terrestrial electric power service. Solar Dynamic systems offer the benefits of high solar-to-electric efficiency, long life with minimal performance degradation, and high power scalability. System analyses indicate that with moderate component development, SD systems can exhibit excellent mass and deployed area characteristics. Using the analyses as a guide, a technology roadmap was -enerated which identifies the component advances necessary to make SD power generation a competitive option for the SSP mission.

  2. Understanding Global Change: Frameworks and Models for Teaching Systems Thinking

    NASA Astrophysics Data System (ADS)

    Bean, J. R.; Mitchell, K.; Zoehfeld, K.; Oshry, A.; Menicucci, A. J.; White, L. D.; Marshall, C. R.

    2017-12-01

    The scientific and education communities must impart to teachers, students, and the public an understanding of how the various factors that drive climate and global change operate, and why the rates and magnitudes of these changes related to human perturbation of Earth system processes today are cause for deep concern. Even though effective educational modules explaining components of the Earth and climate system exist, interdisciplinary learning tools are necessary to conceptually link the causes and consequences of global changes. To address this issue, the Understanding Global Change Project at the University of California Museum of Paleontology (UCMP) at UC Berkeley developed an interdisciplinary framework that organizes global change topics into three categories: (1) causes of climate change, both human and non-human (e.g., burning of fossil fuels, deforestation, Earth's tilt and orbit), (2) Earth system processes that shape the way the Earth works (e.g., Earth's energy budget, water cycle), and (3) the measurable changes in the Earth system (e.g., temperature, precipitation, ocean acidification). To facilitate student learning about the Earth as a dynamic, interacting system, a website will provide visualizations of Earth system models and written descriptions of how each framework topic is conceptually linked to other components of the framework. These visualizations and textual summarizations of relationships and feedbacks in the Earth system are a unique and crucial contribution to science communication and education, informed by a team of interdisciplinary scientists and educators. The system models are also mechanisms by which scientists can communicate how their own work informs our understanding of the Earth system. Educators can provide context and relevancy for authentic datasets and concurrently can assess student understanding of the interconnectedness of global change phenomena. The UGC resources will be available through a web-based platform and scalable professional development programming to facilitate systemic changes in the teaching and learning about climate and global change. We are establishing a diverse community of scientists and educators across the country that are using these tools, and plan to create local networks supported by UGC staff and partners.

  3. The Physical, Geological, and Dynamical Nature of Asteroid (101955) Bennu - Target of OSIRIS-REx

    NASA Astrophysics Data System (ADS)

    Lauretta, Dante

    2014-11-01

    OSIRIS-REx will survey asteroid (101955) Bennu to understand its properties, assess its resource potential, refine the impact hazard, and return a sample to Earth. This mission launches in 2016. Bennu is different from all other near-Earth asteroids previously visited by spacecraft. (433) Eros, target of the NEAR-Shoemaker mission, and (25143) Itokawa, target of Hayabusa, are both high-albedo, S-type asteroids with irregular shapes. In contrast, Bennu has a low albedo, is a B-type asteroid, and has a distinct spheroidal shape. While Eros and Itokawa are similar to ordinary chondrites, Bennu is likely related to carbonaceous chondrites, meteorites that record the history of volatiles and organic compounds in the early Solar System.We performed an extensive campaign to determine the properties of Bennu. This investigation provides information on the orbit, shape, mass, rotation state, radar response, photometric, spectroscopic, thermal, regolith, and environmental properties of Bennu. Combining these data with cosmochemical and dynamical models yields a hypothetical timeline for Bennu’s formation and evolution. Bennu is an ancient object that has witnessed over 4.5 Gyr of Solar System history. Its chemistry and mineralogy were established within the first 10 Myr of the Solar System. It likely originated as a discrete asteroid in the main belt ~0.7 - 2 Gyr ago as a fragment from the catastrophic disruption of a large, carbonaceous asteroid. It was delivered to near-Earth space via a combination of Yarkovsky-induced drift and interaction with giant-planet resonances. During its journey, YORP processes and planetary encounters modified Bennu’s spin state, potentially reshaping and resurfacing the asteroid. Bennu is a Potentially Hazardous Asteroids with an ~1-in-2700 chance of impacting the Earth in the late 22nd century. It will most likely end its dynamical life by falling into the Sun. The highest probability for a planetary impact is with Venus, followed by the Earth. There is a chance that Bennu will be ejected from the inner Solar System after a close encounter with Jupiter. OSIRIS-REx will return samples from this intriguing asteroid in September 2023.

  4. Estimability and simple dynamical analyses of range (range-rate range-difference) observations to artificial satellites. [laser range observations to LAGEOS using non-Bayesian statistics

    NASA Technical Reports Server (NTRS)

    Vangelder, B. H. W.

    1978-01-01

    Non-Bayesian statistics were used in simulation studies centered around laser range observations to LAGEOS. The capabilities of satellite laser ranging especially in connection with relative station positioning are evaluated. The satellite measurement system under investigation may fall short in precise determinations of the earth's orientation (precession and nutation) and earth's rotation as opposed to systems as very long baseline interferometry (VLBI) and lunar laser ranging (LLR). Relative station positioning, determination of (differential) polar motion, positioning of stations with respect to the earth's center of mass and determination of the earth's gravity field should be easily realized by satellite laser ranging (SLR). The last two features should be considered as best (or solely) determinable by SLR in contrast to VLBI and LLR.

  5. Satellite-tracking and Earth dynamics research programs

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The major focus for operations during this period was the preliminary MERIT Campaign and its intensive tracking of LAGEOS for polar motion and Earth rotation studies. The data acquired from LAGEOS were used for other geophysical investigations, including studies of crustal dynamics, and Earth and ocean tides, and for the general development of precision orbit determination. The network performed regular tracking of several other retroreflector satellites including GEOS-1, GEOS-3, BE-C, and Starlette for refined determinations of station coordinates and Earth's gravity field and for studies of solid Earth dynamics.

  6. Swarm: ESA's Magnetic Field Mission

    NASA Astrophysics Data System (ADS)

    Plank, G.; Floberghagen, R.; Menard, Y.; Haagmans, R.

    2013-12-01

    Swarm is the fifth Earth Explorer mission in ESA's Living Planet Programme, and is scheduled for launch in fall 2013. The objective of the Swarm mission is to provide the best-ever survey of the geomagnetic field and its temporal evolution using a constellation of three identical satellites. The mission shall deliver data that allow access to new insights into the Earth system by improved scientific understanding of the Earth's interior and near-Earth electromagnetic environment. After launch and triple satellite release at an initial altitude of about 490 km, a pair of the satellites will fly side-by-side with slowly decaying altitude, while the third satellite will be lifted to 530 km to complete the Swarm constellation. High-precision and high-resolution measurements of the strength, direction and variation of the magnetic field, complemented by precise navigation, accelerometer and electric field measurements, will provide the observations required to separate and model various sources of the geomagnetic field and near-Earth current systems. The mission science goals are to provide a unique view into Earth's core dynamics, mantle conductivity, crustal magnetisation, ionospheric and magnetospheric current systems and upper atmosphere dynamics - ranging from understanding the geodynamo to contributing to space weather. The scientific objectives and results from recent scientific studies will be presented. In addition the current status of the project, which is presently in the final stage of the development phase, will be addressed. A consortium of European scientific institutes is developing a distributed processing system to produce geophysical (Level 2) data products for the Swarm user community. The setup of the Swarm ground segment and the contents of the data products will be addressed. In case the Swarm satellites are already in orbit, a summary of the on-going mission operations activities will be given. More information on Swarm can be found at www.esa.int/esaLP/LPswarm.html.

  7. Global change modeling for Northern Eurasia: a review and strategies to move forward

    NASA Astrophysics Data System (ADS)

    Monier, E.; Kicklighter, D. W.; Sokolov, A. P.; Zhuang, Q.; Sokolik, I. N.; Lawford, R. G.; Kappas, M.; Paltsev, S.; Groisman, P. Y.

    2017-12-01

    Northern Eurasia is made up of a complex and diverse set of physical, ecological, climatic and human systems, which provide important ecosystem services including the storage of substantial stocks of carbon in its terrestrial ecosystems. At the same time, the region has experienced dramatic climate change, natural disturbances and changes in land management practices over the past century. For these reasons, Northern Eurasia is both a critical region to understand and a complex system with substantial challenges for the modeling community. This review is designed to highlight the state of past and ongoing efforts of the research community to understand and model these environmental, socioeconomic, and climatic changes. We further aim to provide perspectives on the future direction of global change modeling to improve our understanding of the role of Northern Eurasia in the coupled human-Earth system. Modeling efforts have shown that environmental and socioeconomic changes in Northern Eurasia can have major impacts on biodiversity, ecosystems services, environmental sustainability, and the carbon cycle of the region, and beyond. These impacts have the potential to feedback onto and alter the global Earth system. We find that past and ongoing studies have largely focused on specific components of Earth system dynamics and have not systematically examined their feedbacks to the global Earth system and to society. We identify the crucial role of Earth system models in advancing our understanding of feedbacks within the region and with the global system. We further argue for the need for integrated assessment models (IAMs), a suite of models that couple human activity models to Earth system models, which are key to address many emerging issues that require a representation of the coupled human-Earth system.

  8. A review of and perspectives on global change modeling for Northern Eurasia

    NASA Astrophysics Data System (ADS)

    Monier, Erwan; Kicklighter, David W.; Sokolov, Andrei P.; Zhuang, Qianlai; Sokolik, Irina N.; Lawford, Richard; Kappas, Martin; Paltsev, Sergey V.; Groisman, Pavel Ya

    2017-08-01

    Northern Eurasia is made up of a complex and diverse set of physical, ecological, climatic and human systems, which provide important ecosystem services including the storage of substantial stocks of carbon in its terrestrial ecosystems. At the same time, the region has experienced dramatic climate change, natural disturbances and changes in land management practices over the past century. For these reasons, Northern Eurasia is both a critical region to understand and a complex system with substantial challenges for the modeling community. This review is designed to highlight the state of past and ongoing efforts of the research community to understand and model these environmental, socioeconomic, and climatic changes. We further aim to provide perspectives on the future direction of global change modeling to improve our understanding of the role of Northern Eurasia in the coupled human-Earth system. Modeling efforts have shown that environmental and socioeconomic changes in Northern Eurasia can have major impacts on biodiversity, ecosystems services, environmental sustainability, and the carbon cycle of the region, and beyond. These impacts have the potential to feedback onto and alter the global Earth system. We find that past and ongoing studies have largely focused on specific components of Earth system dynamics and have not systematically examined their feedbacks to the global Earth system and to society. We identify the crucial role of Earth system models in advancing our understanding of feedbacks within the region and with the global system. We further argue for the need for integrated assessment models (IAMs), a suite of models that couple human activity models to Earth system models, which are key to address many emerging issues that require a representation of the coupled human-Earth system.

  9. integrated Earth System Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Andew; Di Vittorio, Alan; Collins, William

    The integrated Earth system model (iESM) has been developed as a new tool for projecting the joint human/climate system. The iESM is based upon coupling an integrated assessment model (IAM) and an Earth system model (ESM) into a common modeling infrastructure. IAMs are the primary tool for describing the human-Earth system, including the sources of global greenhouse gases (GHGs) and short-lived species (SLS), land use and land cover change (LULCC), and other resource-related drivers of anthropogenic climate change. ESMs are the primary scientific tools for examining the physical, chemical, and biogeochemical impacts of human-induced changes to the climate system. Themore » iESM project integrates the economic and human-dimension modeling of an IAM and a fully coupled ESM within a single simulation system while maintaining the separability of each model if needed. Both IAM and ESM codes are developed and used by large communities and have been extensively applied in recent national and international climate assessments. By introducing heretofore-omitted feedbacks between natural and societal drivers, we can improve scientific understanding of the human-Earth system dynamics. Potential applications include studies of the interactions and feedbacks leading to the timing, scale, and geographic distribution of emissions trajectories and other human influences, corresponding climate effects, and the subsequent impacts of a changing climate on human and natural systems.« less

  10. Global analysis of river systems: from Earth system controls to Anthropocene syndromes.

    PubMed Central

    Meybeck, Michel

    2003-01-01

    Continental aquatic systems from rivers to the coastal zone are considered within two perspectives: (i) as a major link between the atmosphere, pedosphere, biosphere and oceans within the Earth system with its Holocene dynamics, and (ii) as water and aquatic biota resources progressively used and transformed by humans. Human pressures have now reached a state where the continental aquatic systems can no longer be considered as being controlled by only Earth system processes, thus defining a new era, the Anthropocene. Riverine changes, now observed at the global scale, are described through a first set of syndromes (flood regulation, fragmentation, sediment imbalance, neo-arheism, salinization, chemical contamination, acidification, eutrophication and microbial contamination) with their related causes and symptoms. These syndromes have direct influences on water uses, either positive or negative. They also modify some Earth system key functions such as sediment, water, nutrient and carbon balances, greenhouse gas emissions and aquatic biodiversity. Evolution of river syndromes over the past 2000 years is complex: it depends upon the stages of regional human development and on natural conditions, as illustrated here for the chemical contamination syndrome. River damming, eutrophication and generalized decrease of river flow due to irrigation are some of the other global features of river changes. Future management of river systems should also consider these long-term impacts on the Earth system. PMID:14728790

  11. Toward understanding early Earth evolution: Prescription for approach from terrestrial noble gas and light element records in lunar soils

    PubMed Central

    Ozima, Minoru; Yin, Qing-Zhu; Podosek, Frank A.; Miura, Yayoi N.

    2008-01-01

    Because of the almost total lack of geological record on the Earth's surface before 4 billion years ago, the history of the Earth during this period is still enigmatic. Here we describe a practical approach to tackle the formidable problems caused by this lack. We propose that examinations of lunar soils for light elements such as He, N, O, Ne, and Ar would shed a new light on this dark age in the Earth's history and resolve three of the most fundamental questions in earth science: the onset time of the geomagnetic field, the appearance of an oxygen atmosphere, and the secular variation of an Earth–Moon dynamical system. PMID:19001263

  12. Report of the panel on earth rotation and reference frames, section 7

    NASA Technical Reports Server (NTRS)

    Dickey, Jean O.; Dickman, Steven R.; Eubanks, Marshall T.; Feissel, Martine; Herring, Thomas A.; Mueller, Ivan I.; Rosen, Richard D.; Schutz, Robert E.; Wahr, John M.; Wilson, Charles R.

    1991-01-01

    Objectives and requirements for Earth rotation and reference frame studies in the 1990s are discussed. The objectives are to observe and understand interactions of air and water with the rotational dynamics of the Earth, the effects of the Earth's crust and mantle on the dynamics and excitation of Earth rotation variations over time scales of hours to centuries, and the effects of the Earth's core on the rotational dynamics and the excitation of Earth rotation variations over time scales of a year or longer. Another objective is to establish, refine and maintain terrestrial and celestrial reference frames. Requirements include improvements in observations and analysis, improvements in celestial and terrestrial reference frames and reference frame connections, and improved observations of crustal motion and mass redistribution on the Earth.

  13. Periodic orbit-attitude solutions along planar orbits in a perturbed circular restricted three-body problem for the Earth-Moon system

    NASA Astrophysics Data System (ADS)

    Bucci, Lorenzo; Lavagna, Michèle; Guzzetti, Davide; Howell, Kathleen C.

    2018-06-01

    Interest on Large Space Structures (LSS), orbiting in strategic and possibly long-term stable locations, is nowadays increasing in the space community. LSS can serve as strategic outpost to support a variety of manned and unmanned mission, or may carry scientific payloads for astronomical observations. The paper focuses on analysing LSS in the Earth-Moon system, exploring dynamical structures that are available within a multi-body gravitational environment. Coupling between attitude and orbital dynamics is investigated, with particular interest on the gravity gradient torque exerted by the two massive attractors. First, natural periodic orbit-attitude solutions are obtained; a LSS that exploits such solutions would benefit of a naturally periodic body rotation synchronous with the orbital motion, easing the effort of the attitude control system to satisfy pointing requirements. Then, the solar radiation pressure is introduced into the fully coupled dynamical model and its effects investigated, discovering novel periodic attitude solutions. Benefits of periodic behaviours that incorporate solar radiation pressure are discussed, and analysed via the variation of some parameters (e.g reflection/absorption coefficients, position of the centre of pressure). As a final step to refine the current perturbed orbit-attitude model, a structure flexibility is also superimposed to a reference orbit-attitude rigid body motion via a simple, yet effective model. The coupling of structural vibrations and attitude motion is preliminarily explored, and allows identification of possible challenges, that may be faced to position a LSS in a periodic orbit within the Earth-Moon system.

  14. Multi-Agent Simulations of Earth's Dynamics: Towards a Virtual Laboratory for Plate Tectonics

    NASA Astrophysics Data System (ADS)

    Grigne, C.; Combes, M.; Tisseau, C.; LeYaouanq, S.; Parenthoen, M.; Tisseau, J.

    2012-12-01

    MACMA (Multi-Agent Convective MAntle) is a new tool developed at Laboratoire Domaines Océaniques (UMR CNRS 6538) and CERV-LabSTICC (Centre Européen de Réalité Virtuelle, UMR CNRS 6285) to simulate evolutive plates tectonics and mantle convection in a 2-D cylindrical geometry (Combes et al., 2012). In this approach, ridges, subduction zones, continents and convective cells are agents, whose behavior is controlled by analytical and phenomenological laws. These agents are autonomous entities which collect information from their environment and interact with each other. The dynamics of the system is mainly based on a force balance on each plate, that accounts for slab pull, ridge push, bending dissipation and viscous convective drag. Insulating continents are accounted for. Tectonic processes such as trench migration, plate suturing or continental breakup are controlled by explicit parameterizations. A heat balance is used to compute Earth's thermal evolution as a function of seafloor age distribution. We thereby obtain an evolutive system where the geometry and the number of tectonic plates are not imposed but emerge naturally from its dynamical history. Our approach has a very low computational cost and allows us to study the effect of a wide range of input parameters on the long-term thermal evolution of the Earth. MACMA can thus be seen as a 'plate tectonics virtual laboratory'. We can test not only the effect of input parameters, such as mantle initial temperature and viscosity, initial plate tectonics configuration, number and geometry of continents etc., but also study the effect of the analytical and empirical rules that we are using to describe the system. These rules can be changed at any time, and MACMA is an evolutive tool that can easily integrate new behavioral laws. Even poorly understood processes, that cannot be accounted for with differential equations, can be studied with this virtual laboratory. For Earth-like input parameters, MACMA yields plate velocities and heat flux that are in good agreement with observations. The long-term thermal evolution of the Earth obtained with our model shows a slow monotonous decrease of mantle mean temperature, with a cooling rate of around 50-100 K per billion years, which is in good agreement with petrological and geochemical constraints. Heat flux and plate velocities show a more irregular evolution, because tectonic events, such as a continental breakup, give rise to abrupt changes in Earth's surface dynamics and heat loss. Therefore MACMA is a powerful tool to study in a systematic way the effect of local events (subduction initiation, continental breakup, ridge vanishing) on plate reorganizations and global surface dynamics.

  15. Comets as Messengers from the Early Solar System - Emerging Insights on Delivery of Water, Nitriles, and Organics to Earth

    NASA Technical Reports Server (NTRS)

    Mumma, Michael J.; Charnley, Steven B.

    2012-01-01

    The question of exogenous delivery of water and organics to Earth and other young planets is of critical importance for understanding the origin of Earth's volatiles, and for assessing the possible existence of exo-planets similar to Earth. Viewed from a cosmic perspective, Earth is a dry planet, yet its oceans are enriched in deuterium by a large factor relative to nebular hydrogen and analogous isotopic enrichments in atmospheric nitrogen and noble gases are also seen. Why is this so? What are the implications for Mars? For icy Worlds in our Planetary System? For the existence of Earth-like exoplanets? An exogenous (vs. outgassed) origin for Earth's atmosphere is implied, and intense debate on the relative contributions of comets and asteroids continues - renewed by fresh models for dynamical transport in the protoplanetary disk, by revelations on the nature and diversity of volatile and rocky material within comets, and by the discovery of ocean-like water in a comet from the Kuiper Belt (cf., Mumma & Charnley 2011). Assessing the creation of conditions favorable to the emergence and sustenance of life depends critically on knowledge of the nature of the impacting bodies. Active comets have long been grouped according to their orbital properties, and this has proven useful for identifying the reservoir from which a given comet emerged (OC, KB) (Levison 1996). However, it is now clear that icy bodies were scattered into each reservoir from a range of nebular distances, and the comet populations in today's reservoirs thus share origins that are (in part) common. Comets from the Oort Cloud and Kuiper Disk reservoirs should have diverse composition, resulting from strong gradients in temperature and chemistry in the proto-planetary disk, coupled with dynamical models of early radial transport and mixing with later dispersion of the final cometary nuclei into the long-term storage reservoirs. The inclusion of material from the natal interstellar cloud is probable, for comets formed in the outer solar system.

  16. Re-Examining the Way We Teach: The Earth System Science Education Alliance Online Courses

    NASA Astrophysics Data System (ADS)

    Botti, J. A.; Myers, R. J.

    2003-12-01

    Science education reform has skyrocketed over the last decade thanks in large part to the technology of the Internet, opening up dynamic new online communities of learners. It has allowed educators worldwide to share thoughts about Earth system science and reexamine the way science is taught. The Earth System Science Education Alliance (ESSEA) is one positive offshoot of this reform effort. This developing partnership among universities, colleges, and science education organizations is led by the Institute for Global Environmental Strategies and the Center for Educational TechnologiesTM at Wheeling Jesuit University. ESSEA's mission is to improve Earth system science education. ESSEA has developed three Earth system science courses for K-12 teachers. These online courses guide teachers into collaborative, student-centered science education experiences. Not only do these courses support teachers' professional development, they also help teachers implement Earth systems science content and age-appropriate pedagogical methods into their classrooms. The ESSEA semester-long courses are open to elementary, middle school, and high school educators. After three weeks of introductory content, teachers develop content and pedagogical and technological knowledge in four three-week learning cycles. The elementary school course focuses on basic Earth system interactions between land, life, air, and water. The middle school course stresses the effects of real-world events-volcanic eruptions, hurricanes, rainforest destruction-on Earth's lithosphere, atmosphere, biosphere, and hydrosphere, using "jigsaw" to study the interactions between events, spheres, and positive and negative feedback loops. The high school course uses problem-based learning to examine critical areas of global change, such as coral reef degradation, ozone depletion, and climate change. This ESSEA presentation provides examples of learning environments from each of the three courses.

  17. Chemical Mechanisms and Their Applications in the Goddard Earth Observing System (GEOS) Earth System Model.

    PubMed

    Nielsen, J Eric; Pawson, Steven; Molod, Andrea; Auer, Benjamin; da Silva, Arlindo M; Douglass, Anne R; Duncan, Bryan; Liang, Qing; Manyin, Michael; Oman, Luke D; Putman, William; Strahan, Susan E; Wargan, Krzysztof

    2017-12-01

    NASA's Goddard Earth Observing System (GEOS) Earth System Model (ESM) is a modular, general circulation model (GCM), and data assimilation system (DAS) that is used to simulate and study the coupled dynamics, physics, chemistry, and biology of our planet. GEOS is developed by the Global Modeling and Assimilation Office (GMAO) at NASA Goddard Space Flight Center. It generates near-real-time analyzed data products, reanalyses, and weather and seasonal forecasts to support research targeted to understanding interactions among Earth System processes. For chemistry, our efforts are focused on ozone and its influence on the state of the atmosphere and oceans, and on trace gas data assimilation and global forecasting at mesoscale discretization. Several chemistry and aerosol modules are coupled to the GCM, which enables GEOS to address topics pertinent to NASA's Earth Science Mission. This paper describes the atmospheric chemistry components of GEOS and provides an overview of its Earth System Modeling Framework (ESMF)-based software infrastructure, which promotes a rich spectrum of feedbacks that influence circulation and climate, and impact human and ecosystem health. We detail how GEOS allows model users to select chemical mechanisms and emission scenarios at run time, establish the extent to which the aerosol and chemical components communicate, and decide whether either or both influence the radiative transfer calculations. A variety of resolutions facilitates research on spatial and temporal scales relevant to problems ranging from hourly changes in air quality to trace gas trends in a changing climate. Samples of recent GEOS chemistry applications are provided.

  18. Chemical Mechanisms and Their Applications in the Goddard Earth Observing System (GEOS) Earth System Model

    PubMed Central

    Pawson, Steven; Molod, Andrea; Auer, Benjamin; da Silva, Arlindo M.; Douglass, Anne R.; Duncan, Bryan; Liang, Qing; Manyin, Michael; Oman, Luke D.; Putman, William; Strahan, Susan E.; Wargan, Krzysztof

    2017-01-01

    Abstract NASA's Goddard Earth Observing System (GEOS) Earth System Model (ESM) is a modular, general circulation model (GCM), and data assimilation system (DAS) that is used to simulate and study the coupled dynamics, physics, chemistry, and biology of our planet. GEOS is developed by the Global Modeling and Assimilation Office (GMAO) at NASA Goddard Space Flight Center. It generates near‐real‐time analyzed data products, reanalyses, and weather and seasonal forecasts to support research targeted to understanding interactions among Earth System processes. For chemistry, our efforts are focused on ozone and its influence on the state of the atmosphere and oceans, and on trace gas data assimilation and global forecasting at mesoscale discretization. Several chemistry and aerosol modules are coupled to the GCM, which enables GEOS to address topics pertinent to NASA's Earth Science Mission. This paper describes the atmospheric chemistry components of GEOS and provides an overview of its Earth System Modeling Framework (ESMF)‐based software infrastructure, which promotes a rich spectrum of feedbacks that influence circulation and climate, and impact human and ecosystem health. We detail how GEOS allows model users to select chemical mechanisms and emission scenarios at run time, establish the extent to which the aerosol and chemical components communicate, and decide whether either or both influence the radiative transfer calculations. A variety of resolutions facilitates research on spatial and temporal scales relevant to problems ranging from hourly changes in air quality to trace gas trends in a changing climate. Samples of recent GEOS chemistry applications are provided. PMID:29497478

  19. Zero, minimum and maximum relative radial acceleration for planar formation flight dynamics near triangular libration points in the Earth-Moon system

    NASA Astrophysics Data System (ADS)

    Salazar, F. J. T.; Masdemont, J. J.; Gómez, G.; Macau, E. E.; Winter, O. C.

    2014-11-01

    Assume a constellation of satellites is flying near a given nominal trajectory around L4 or L5 in the Earth-Moon system in such a way that there is some freedom in the selection of the geometry of the constellation. We are interested in avoiding large variations of the mutual distances between spacecraft. In this case, the existence of regions of zero and minimum relative radial acceleration with respect to the nominal trajectory will prevent from the expansion or contraction of the constellation. In the other case, the existence of regions of maximum relative radial acceleration with respect to the nominal trajectory will produce a larger expansion and contraction of the constellation. The goal of this paper is to study these regions in the scenario of the Circular Restricted Three Body Problem by means of a linearization of the equations of motion relative to the periodic orbits around L4 or L5. This study corresponds to a preliminar planar formation flight dynamics about triangular libration points in the Earth-Moon system. Additionally, the cost estimate to maintain the constellation in the regions of zero and minimum relative radial acceleration or keeping a rigid configuration is computed with the use of the residual acceleration concept. At the end, the results are compared with the dynamical behavior of the deviation of the constellation from a periodic orbit.

  20. Precise Masses in the WASP-47 System

    NASA Astrophysics Data System (ADS)

    Vanderburg, Andrew; Becker, Juliette C.; Buchhave, Lars A.; Mortier, Annelies; Lopez, Eric; Malavolta, Luca; Haywood, Raphaëlle D.; Latham, David W.; Charbonneau, David; López-Morales, Mercedes; Adams, Fred C.; Bonomo, Aldo Stefano; Bouchy, François; Collier Cameron, Andrew; Cosentino, Rosario; Di Fabrizio, Luca; Dumusque, Xavier; Fiorenzano, Aldo; Harutyunyan, Avet; Johnson, John Asher; Lorenzi, Vania; Lovis, Christophe; Mayor, Michel; Micela, Giusi; Molinari, Emilio; Pedani, Marco; Pepe, Francesco; Piotto, Giampaolo; Phillips, David; Rice, Ken; Sasselov, Dimitar; Ségransan, Damien; Sozzetti, Alessandro; Udry, Stéphane; Watson, Chris

    2017-12-01

    We present precise radial velocity observations of WASP-47, a star known to host a hot Jupiter, a distant Jovian companion, and, uniquely, two additional transiting planets in short-period orbits: a super-Earth in a ≈19 hr orbit, and a Neptune in a ≈9 day orbit. We analyze our observations from the HARPS-N spectrograph along with previously published data to measure the most precise planet masses yet for this system. When combined with new stellar parameters and reanalyzed transit photometry, our mass measurements place strong constraints on the compositions of the two small planets. We find that, unlike most other ultra-short-period planets, the inner planet, WASP-47 e, has a mass (6.83 ± 0.66 {M}\\oplus ) and a radius (1.810 ± 0.027 {R}\\oplus ) that are inconsistent with an Earth-like composition. Instead, WASP-47 e likely has a volatile-rich envelope surrounding an Earth-like core and mantle. We also perform a dynamical analysis to constrain the orbital inclination of WASP-47 c, the outer Jovian planet. This planet likely orbits close to the plane of the inner three planets, suggesting a quiet dynamical history for the system. Our dynamical constraints also imply that WASP-47 c is much more likely to transit than a geometric calculation would suggest. We calculate a transit probability for WASP-47 c of about 10%, more than an order of magnitude larger than the geometric transit probability of 0.6%.

  1. NASA Global Hawk Project Update and Future Plans: A New Tool for Earth Science Research

    NASA Technical Reports Server (NTRS)

    Naftel, Chris

    2009-01-01

    Science objectives include: First demonstration of the Global Hawk unmanned aircraft system (UAS) for NASA and NOAA Earth science research and applications; Validation of instruments on-board the Aura satellite; Exploration of trace gases, aerosols, and dynamics of remote upper Troposphere/lower Stratosphere regions; Sample polar vortex fragments and atmospheric rivers; Risk reduction for future missions that will study hurricanes and atmospheric rivers.

  2. From Order to Chaos in Earth Satellite Orbits

    NASA Astrophysics Data System (ADS)

    Gkolias, Ioannis; Daquin, Jérôme; Gachet, Fabien; Rosengren, Aaron J.

    2016-11-01

    We consider Earth satellite orbits in the range of semimajor axes where the perturbing effects of Earth’s oblateness and lunisolar gravity are of comparable order. This range covers the medium-Earth orbits (MEO) of the Global Navigation Satellite Systems and the geosynchronous orbits (GEO) of the communication satellites. We recall a secular and quadrupolar model, based on the Milankovitch vector formulation of perturbation theory, which governs the long-term orbital evolution subject to the predominant gravitational interactions. We study the global dynamics of this two-and-a-half degrees-of-freedom Hamiltonian system by means of the fast Lyapunov indicator (FLI), used in a statistical sense. Specifically, we characterize the degree of chaoticity of the action space using angle-averaged normalized FLI maps, thereby overcoming the angle dependencies of the conventional stability maps. Emphasis is placed upon the phase-space structures near secular resonances, which are of primary importance to the space debris community. We confirm and quantify the transition from order to chaos in MEO, stemming from the critical inclinations and find that highly inclined GEO orbits are particularly unstable. Despite their reputed normality, Earth satellite orbits can possess an extraordinarily rich spectrum of dynamical behaviors and, from a mathematical perspective, have all the complications that make them very interesting candidates for testing the modern tools of chaos theory.

  3. RIO+10 = Concept of synergetic cosmoecology

    NASA Astrophysics Data System (ADS)

    Alekseev, A. S.; Vedernikov, Y. A.; Dulov, V. G.

    The dynamic concept of synergetic ecology of the near space as the Earth's civilization living space is discussed. It is proposed to formulate the scientific problem of protection of the Earth, orbital stations, and flyers from meteoroids and plasmoids of natural and artificial origin. Natural meteoroids intersect the Earth's orbit once in five years, whereas flyers often hit on natural plasmoids, sometimes even once a year. In contrast to nuclear, kinetic, and gravitational actions on threatening meteoroids, free electron lasers are used for protection against plasmoids. Some complementarity between cosmophysics and biology is revealed, and mathematical models of biosphere are constructed. Mathematical-synergetic modeling in the "man-environment" system is performed. Certain ways for improving noosphere on the basis of synergetics are determined. The principles of work of the social Institutes of Cosmic Anthropoecology and the University of Man and Planet Ecology are presented. References 1. A. S. Alekseev, Yu. .A. Vedernikov, I.I. Velichko, and V.A. Volkov, The rocket conception of cumulative impact defense of the Earth against dangerous space objects, Impact Engineering, 1997, V. 20, No. 1-5, 1-12. 2. A.S. Alekseev, Yu.A. Vedernikov et al., Computer Detection and Rocket Interception of Asteroids at an Atmospheric Boundary, 5th Cranfield Conference on Dynamics and Control of Systems and Structures in Space 2002, King's College, Cambridge, 185-193 pp.

  4. Trajectory Design and Orbital Dynamics of Deep Space Exploration

    NASA Astrophysics Data System (ADS)

    Zhao, Y. H.

    2013-05-01

    The term of deep space exploration is used for the exploration in which a probe, unlike an earth satellite, escapes from the Earth's gravitation field, and conducts the exploration of celestial bodies within or away from the solar system. As the progress of aerospace science and technology, the exploration of the Moon and other planets of the solar system has attracted more and more attention throughout the world since late 1990s. China also accelerated its progress of the lunar exploration in recent years. Its first lunar-orbiting spacecraft, Chang'e 1, was successfully launched on 2007 October 24. It then achieved the goals of accurate maneuver and lunar orbiting, acquired a large amount of scientific data and a full lunar image, and finally impacted the Moon under control. On 2010 October 1, China launched Chang'e 2 with success, which obtained a full lunar image with a higher resolution and a high-definition image of the Sinus Iridum, and completed multiple extended missions such as orbiting the Lagrangian point L2, laying the groundwork for future deep space exploration. As the first phase of the three main operational phases (orbiting, landing, return) of the Chinese Lunar Exploration Program, the successful launches and flights of Chang'e 1 and Chang'e 2 are excellent applications of the orbit design of both the Earth-Moon transfer orbit and the circumlunar orbit, yet not involving the design of the entire trajectory consisting of the Earth-Moon transfer orbit, the circumlunar orbit, and the return orbit, which is produced particularly for sample return spacecraft. This paper studies the entire orbit design of the lunar sample return spacecraft which would be employed in both the third phase of the lunar exploration program and the human lunar landing program, analyzes the dynamic characteristics of the orbit, and works out the launch windows based on specific conditions. The results are universally applicable, and could serve as the basis of the orbit design of the lunar sample return spacecraft. Meanwhile, China's independent Mars exploration is in progress. In this context, this paper also carries out comprehensive related researches, such as the orbit design and computation of the Earth-Mars transfer orbit, the selection of its launch window, and mid-course trajectory correction maneuver (TCM), etc. It conducts calculations and dynamic analysis for Hohmann transfer orbit in accurate dynamic model, providing basis for the selection and design of the transfer orbit in China's Mars exploration. On the basis of orbit dynamics theory of the small bodies including detectors in the solar system, all the works concerned about trajectory design in this paper are worked out in a complete and reasonable dynamic model, that is why the results have some referential value for the trajectory design in the deep space exploration. The major innovations in this paper are as follows: (1) This paper studies different types of the Earth-Moon transfer orbit on the basis of orbit dynamics theory of small bodies in the solar system, and provides the theoretical basis of the orbit type selection in practical missions; (2) This paper works on the orbit dynamics of the free return orbit, which intends to guarantee the safety of the astronauts in the human landing moon exploration, and carries out the free return orbit calculated in the real dynamic model; (3) This paper shows the characteristics of the reentry angle of the Moon-Earth transfer orbit. With the conditions of the landing range of our country taken into account, our works carry out the constraints of the reentry angle and the latitude of the explorer at reentry time, and provide the basis of orbit type choice for practical applications; (4) Based on the error transition matrix of the small bodies' motion, this paper analyzes the attributes of the error propagation of the Earth-Moon transfer orbit, on the basis of which it proposes the timing methods as well as the equation for the determination of the velocity increment for TCMs; (5) Based on the IAU2000 Mars orientation model, this paper studies the precession part of the change of Mars gravitation, which lays the foundation for further study of its influence on the Mars orbiter's orbit of precession. This paper proposes the analytical solution of the corresponding coordinate additional perturbations; (6) This paper studies the characteristics of the Earth-Mars transfer orbit in the real dynamic model, and puts forward the according theoretical analysis; (7) The theoretical analysis of the error propagation of the Earth-Mars transfer orbit is performed on the basis of error transition matrix, thereafter the determination of time and the calculation of velocity increment for TCMs are given. By comparing the results of different methods, it proves that the linear method of TCM calculation is the most timesaving one among all applicable methods for a certain accuracy requirement; (8) All the numerical simulations in the production of this paper are carried out by programs written on my own, which could apply to other relevant missions.

  5. Origin of the Earth's Electromagnetic Field Based on the Pulsating Mantle Hypothesis (PMH)

    NASA Astrophysics Data System (ADS)

    Gholibeigian, Hassan

    2017-11-01

    In PMH, the Earth's Inner Core's Dislocation (ICD) and Outer Core's Bulge (OCB) phenomena are generated by unbalanced gravitational fields of the Sun and Moon on the Earth. Distance between the Earth's center and inner core's center varies permanently in magnitude and direction inside two hemispheres. Geometrical loci of the inner core's center has the shape of back and force spiral cone in each hemisphere. In other words, the inner core is rotating fast in the outer core inverse of the Earth's rotation a round per day. This mechanism speed up the processes inside the core and generates a Large Scale Forced Convection System (LSFCS) inverse of the Earth's rotation in the core. The LSFCS is the origin of the Earth's electromagnetic field. The LSFCS generates huge mass transfer and momentum of inertia inside the Earth too. The inner core's axis which is the Earth's electromagnetic axis doesn't cross the Earth's geophysical axis and rotates around it per day. The mechanism of this LSFCS has diurnal, monthly and yearly cycles. These cycles are sources of the Earth's electromagnetic field variability. Direction of the variable Earth's magnetic field lines from the South Pole (hemisphere) to the sky and 146 seconds/years apparent solar day length variations can be two observable factors for this mechanism. This dynamic system may occurred inside the other planets like the Sun and the Jupiter.

  6. The thermoelectric properties of strongly correlated systems

    NASA Astrophysics Data System (ADS)

    Cai, Jianwei

    Strongly correlated systems are among the most interesting and complicated systems in physics. Large Seebeck coefficients are found in some of these systems, which highlight the possibility for thermoelectric applications. In this thesis, we study the thermoelectric properties of these strongly correlated systems with various methods. We derived analytic formulas for the resistivity and Seebeck coefficient of the periodic Anderson model based on the dynamic mean field theory. These formulas were possible as the self energy of the single impurity Anderson model could be given by an analytic ansatz derived from experiments and numerical calculations instead of complicated numerical calculations. The results show good agreement with the experimental data of rare-earth compound in a restricted temperature range. These formulas help to understand the properties of periodic Anderson model. Based on the study of rare-earth compounds, we proposed a design for the thermoelectric meta-material. This manmade material is made of quantum dots linked by conducting linkers. The quantum dots act as the rare-earth atoms with heavier mass. We set up a model similar to the periodic Anderson model for this new material. The new model was studied with the perturbation theory for energy bands. The dynamic mean field theory with numerical renormalization group as the impurity solver was used to study the transport properties. With these studies, we confirmed the improved thermoelectric properties of the designed material.

  7. Enhancing climate literacy through the use of an interdisciplinary global change framework and conceptual models

    NASA Astrophysics Data System (ADS)

    Bean, J. R.; Zoehfeld, K.; Mitchell, K.; Levine, J.; White, L. D.

    2016-12-01

    Understanding climate change and how to mitigate the causes and consequences of anthropogenic activities are essential components of the Next Generations Science Standards. To comprehend climate change today and why current rates and magnitudes of change are of concern, students must understand the various factors that drive Earth system processes and also how they interrelate. The Understanding Global Change web resource in development from the UC Museum of Paleontology will provide science educators with a conceptual framework, graphical models, lessons, and assessment templates for teaching NGSS aligned, interdisciplinary, climate change curricula. To facilitate students learning about the Earth as a dynamic, interacting system of ongoing processes, the Understanding Global Change site will provide explicit conceptual links for the causes of climate change (e.g., burning of fossil fuels, deforestation), Earth system processes (e.g., Earth's energy budget, water cycle), and the changes scientists measure in the Earth system (e.g., temperature, precipitation). The conceptual links among topics will be presented in a series of storyboards that visually represent relationships and feedbacks among components of the Earth system and will provide teachers with guides for implementing NGSS-aligned climate change instruction that addresses physical science, life sciences, Earth and space science, and engineering performance expectations. These visualization and instructional methods are used by teachers during professional development programs at UC Berkeley and the Smithsonian National Museum of Natural History and are being tested in San Francisco Bay Area classrooms.

  8. Celestial Exoplanet Survey Occulter: A Concept for Direct Imaging of Extrasolar Earth-like Planets from the Ground

    NASA Astrophysics Data System (ADS)

    Janson, M.

    2007-02-01

    We present a new concept for detecting and characterizing extrasolar planets down to Earth size or smaller through direct imaging. The New Worlds Observer (NWO) occulter developed by Cash and coworkers is placed in a particular geometrical setup in which fuel requirements are small and the occulter is used in combination with ground-based telescopes, presumably leading to an extreme cost efficiency compared to other concepts with similar science goals. We investigate the various aspects of the given geometry, such as the dynamics and radiation environment of the occulter, and construct a detailed example target list to ensure that an excellent science case can be maintained despite the limited sky coverage. It is found that more than 200 systems can be observed with two to three visits per system, using only a few tons of fuel. For each system, an Earth-sized planet with an Earth-like albedo can be found in the habitable zone in less than 2 hr.

  9. MMS at NRL

    NASA Image and Video Library

    2014-08-04

    Engineers work on one of four Magnetospheric Multiscale (MMS) spacecraft in a cleanroom at the Naval Research Lab, Monday, August 4, 2014, in Washington. The Magnetospheric Multiscale, or MMS, mission will study the mystery of how magnetic fields around Earth connect and disconnect, explosively releasing energy via a process known as magnetic reconnection. The four identical spacecraft are scheduled to launch in 2015 from Cape Canaveral and will orbit around Earth in varying formations through the dynamic magnetic system surrounding our planet to provide the first three-dimensional views of the magnetic reconnection process. The goal of the STP Program is to understand the fundamental physical processes of the space environment from the sun to Earth, other planets, and the extremes of the solar system boundary. Photo Credit: (NASA/Bill Ingalls)

  10. Adaptive guidance for an aero-assisted boost vehicle

    NASA Astrophysics Data System (ADS)

    Pamadi, Bandu N.; Taylor, Lawrence W., Jr.; Price, Douglas B.

    An adaptive guidance system incorporating dynamic pressure constraint is studied for a single stage to low earth orbit (LEO) aero-assist booster with thrust gimbal angle as the control variable. To derive an adaptive guidance law, cubic spline functions are used to represent the ascent profile. The booster flight to LEO is divided into initial and terminal phases. In the initial phase, the ascent profile is continuously updated to maximize the performance of the boost vehicle enroute. A linear feedback control is used in the terminal phase to guide the aero-assisted booster onto the desired LEO. The computer simulation of the vehicle dynamics considers a rotating spherical earth, inverse square (Newtonian) gravity field and an exponential model for the earth's atmospheric density. This adaptive guidance algorithm is capable of handling large deviations in both atmospheric conditions and modeling uncertainties, while ensuring maximum booster performance.

  11. Baltic Earth - Earth System Science for the Baltic Sea Region

    NASA Astrophysics Data System (ADS)

    Meier, Markus; Rutgersson, Anna; Lehmann, Andreas; Reckermann, Marcus

    2014-05-01

    The Baltic Sea region, defined as its river catchment basin, spans different climate and population zones, from a temperate, highly populated, industrialized south with intensive agriculture to a boreal, rural north. It encompasses most of the Scandinavian Peninsula in the west; most of Finland and parts of Russia, Belarus, and the Baltic states in the east; and Poland and small parts of Germany and Denmark in the south. The region represents an old cultural landscape, and the Baltic Sea itself is among the most studied sea areas of the world. Baltic Earth is the new Earth system research network for the Baltic Sea region. It is the successor to BALTEX, which was terminated in June 2013 after 20 years and two successful phases. Baltic Earth stands for the vision to achieve an improved Earth system understanding of the Baltic Sea region. This means that the research disciplines of BALTEX continue to be relevant, i.e. atmospheric and climate sciences, hydrology, oceanography and biogeochemistry, but a more holistic view of the Earth system encompassing processes in the atmosphere, on land and in the sea as well as in the anthroposphere shall gain in importance in Baltic Earth. Specific grand research challenges have been formulated, representing interdisciplinary research questions to be tackled in the coming years. A major means will be scientific assessments of particular research topics by expert groups, similar to the BACC approach, which shall help to identify knowledge gaps and develop research strategies. Preliminary grand challenges and topics for which Working Groups have been installed include: • Salinity dynamics in the Baltic Sea • Land-Sea biogeochemical feedbacks in the Baltic Sea region • Natural hazards and extreme events in the Baltic Sea region • Understanding sea level dynamics in the Baltic Sea • Understanding regional variability of water and energy exchange • Utility of Regional Climate Models • Assessment of Scenario Simulations for the Baltic Sea 1960-2100 • Outreach and Communication • Education The issue of anthropogenic changes and impacts on the Earth system of the Baltic Sea region is recognized as a major topic, and shall receive special attention. The intention of the "Outreach and Communication" and "Education" groups will be to initiate and design potential outreach activities and to provide an arena for scientific exchange and discussion around the Baltic Sea, to communicate findings and exchange views within the Baltic Earth research community internally and to other researchers and society, both professionals and non-professionals. A regular international Baltic Earth Summer School shall be established from 2015. There will be a strong continuity related to BALTEX in infrastructure (secretariat, conferences, publications) and the network (people and institutions).

  12. Documentation and Validation of the Goddard Earth Observing System (GEOS) Data Assimilation System, Version 4

    NASA Technical Reports Server (NTRS)

    Suarez, Max J. (Editor); daSilva, Arlindo; Dee, Dick; Bloom, Stephen; Bosilovich, Michael; Pawson, Steven; Schubert, Siegfried; Wu, Man-Li; Sienkiewicz, Meta; Stajner, Ivanka

    2005-01-01

    This document describes the structure and validation of a frozen version of the Goddard Earth Observing System Data Assimilation System (GEOS DAS): GEOS-4.0.3. Significant features of GEOS-4 include: version 3 of the Community Climate Model (CCM3) with the addition of a finite volume dynamical core; version two of the Community Land Model (CLM2); the Physical-space Statistical Analysis System (PSAS); and an interactive retrieval system (iRET) for assimilating TOVS radiance data. Upon completion of the GEOS-4 validation in December 2003, GEOS-4 became operational on 15 January 2004. Products from GEOS-4 have been used in supporting field campaigns and for reprocessing several years of data for CERES.

  13. A Survey Of Earth-Moon Libration Orbits: Stationkeeping Strategies And Intra-Orbit Transfers

    NASA Technical Reports Server (NTRS)

    Folta, David; Vaughn, Frank

    2004-01-01

    Cislunar space is a readily accessible region that may well develop into a prime staging area in the effort to colonize space near Earth or to colonize the Moon. While there have been statements made by various NASA programs regarding placement of resources in orbit about the Earth-Moon Lagrangian locations, there is no survey of the total cost associated with attaining and maintaining these unique orbits in an operational fashion. Transfer trajectories between these orbits required for assembly, servicing, and positioning of these resources have not been extensively investigated. These orbits are dynamically similar to those used for the Sun-Earth missions, but differences in governing gravitational ratios and perturbation sources result in unique characteristics. We implement numerical computations using high fidelity models and linear and nonlinear targeting techniques to compute the various maneuver (Delta)V and temporal costs associated with orbits about each of the Earth-Moon Lagrangian locations (L1, L2, L3, L4, and L5). From a dynamical system standpoint, we speak to the nature of these orbits and their stability. We address the cost of transfers between each pair of Lagrangian locations.

  14. Dynamics and stability of a tethered centrifuge in low earth orbit

    NASA Technical Reports Server (NTRS)

    Quadrelli, B. M.; Lorenzini, E. C.

    1992-01-01

    The three-dimensional attitude dynamics of a spaceborne tethered centrifuge for artificial gravity experiments in low earth orbit is analyzed using two different methods. First, the tethered centrifuge is modeled as a dumbbell with a straight viscoelastic tether, point tip-masses, and sophisticated environmental models such as nonspherical gravity, thermal perturbations, and a dynamic atmospheric model. The motion of the centrifuge during spin-up, de-spin, and steady-rotation is then simulated. Second, a continuum model of the tether is developed for analyzing the stability of lateral tether oscillations. Results indicate that the maximum fluctuation about the 1-g radial acceleration level is less than 0.001 g; the time required for spin-up and de-spin is less than one orbit; and lateral oscillations are stable for any practical values of the system parameters.

  15. A Dynamic/Anisotropic Low Earth Orbit (LEO) Ionizing Radiation Model

    NASA Technical Reports Server (NTRS)

    Badavi, Francis F.; West, Katie J.; Nealy, John E.; Wilson, John W.; Abrahms, Briana L.; Luetke, Nathan J.

    2006-01-01

    The International Space Station (ISS) provides the proving ground for future long duration human activities in space. Ionizing radiation measurements in ISS form the ideal tool for the experimental validation of ionizing radiation environmental models, nuclear transport code algorithms, and nuclear reaction cross sections. Indeed, prior measurements on the Space Transportation System (STS; Shuttle) have provided vital information impacting both the environmental models and the nuclear transport code development by requiring dynamic models of the Low Earth Orbit (LEO) environment. Previous studies using Computer Aided Design (CAD) models of the evolving ISS configurations with Thermo Luminescent Detector (TLD) area monitors, demonstrated that computational dosimetry requires environmental models with accurate non-isotropic as well as dynamic behavior, detailed information on rack loading, and an accurate 6 degree of freedom (DOF) description of ISS trajectory and orientation.

  16. BIOME: A scientific data archive search-and-order system using browser-aware, dynamic pages.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jennings, S.V.; Yow, T.G.; Ng, V.W.

    1997-08-01

    The Oak Ridge National Laboratory`s (ORNL) Distributed Active Archive Center (DAAC) is a data archive and distribution center for the National Air and Space Administration`s (NASA) Earth Observing System Data and Information System (EOSDIS). Both the Earth Observing System (EOS) and EOSDIS are components of NASA`s contribution to the US Global Change Research Program through its Mission to Planet Earth Program. The ORNL DAAC provides access to data used in ecological and environmental research such as global change, global warming, and terrestrial ecology. Because of its large and diverse data holdings, the challenge for the ORNL DAAC is to helpmore » users find data of interest from the hundreds of thousands of files available at the DAAC without overwhelming them. Therefore, the ORNL DAAC has developed the Biogeochemical Information Ordering Management Environment (BIOME), a customized search and order system for the World Wide Web (WWW). BIOME is a public system located at http://www-eosdis.ornl.gov/BIOME/biome.html.« less

  17. BIOME: A scientific data archive search-and-order system using browser-aware, dynamic pages

    NASA Technical Reports Server (NTRS)

    Jennings, S. V.; Yow, T. G.; Ng, V. W.

    1997-01-01

    The Oak Ridge National Laboratory's (ORNL) Distributed Active Archive Center (DAAC) is a data archive and distribution center for the National Air and Space Administration's (NASA) Earth Observing System Data and Information System (EOSDIS). Both the Earth Observing System (EOS) and EOSDIS are components of NASA's contribution to the US Global Change Research Program through its Mission to Planet Earth Program. The ORNL DAAC provides access to data used in ecological and environmental research such as global change, global warming, and terrestrial ecology. Because of its large and diverse data holdings, the challenge for the ORNL DAAC is to help users find data of interest from the hundreds of thousands of files available at the DAAC without overwhelming them. Therefore, the ORNL DAAC has developed the Biogeochemical Information Ordering Management Environment (BIOME), a customized search and order system for the World Wide Web (WWW). BIOME is a public system located at http://www-eosdis. ornl.gov/BIOME/biome.html.

  18. Advancing Capabilities for Understanding the Earth System Through Intelligent Systems, the NSF Perspective

    NASA Astrophysics Data System (ADS)

    Gil, Y.; Zanzerkia, E. E.; Munoz-Avila, H.

    2015-12-01

    The National Science Foundation (NSF) Directorate for Geosciences (GEO) and Directorate for Computer and Information Science (CISE) acknowledge the significant scientific challenges required to understand the fundamental processes of the Earth system, within the atmospheric and geospace, Earth, ocean and polar sciences, and across those boundaries. A broad view of the opportunities and directions for GEO are described in the report "Dynamic Earth: GEO imperative and Frontiers 2015-2020." Many of the aspects of geosciences research, highlighted both in this document and other community grand challenges, pose novel problems for researchers in intelligent systems. Geosciences research will require solutions for data-intensive science, advanced computational capabilities, and transformative concepts for visualizing, using, analyzing and understanding geo phenomena and data. Opportunities for the scientific community to engage in addressing these challenges are available and being developed through NSF's portfolio of investments and activities. The NSF-wide initiative, Cyberinfrastructure Framework for 21st Century Science and Engineering (CIF21), looks to accelerate research and education through new capabilities in data, computation, software and other aspects of cyberinfrastructure. EarthCube, a joint program between GEO and the Advanced Cyberinfrastructure Division, aims to create a well-connected and facile environment to share data and knowledge in an open, transparent, and inclusive manner, thus accelerating our ability to understand and predict the Earth system. EarthCube's mission opens an opportunity for collaborative research on novel information systems enhancing and supporting geosciences research efforts. NSF encourages true, collaborative partnerships between scientists in computer sciences and the geosciences to meet these challenges.

  19. Toward more realistic projections of soil carbon dynamics by Earth system models

    DOE PAGES

    Luo, Yiqi; Ahlstrom, Anders; Allison, Steven D.; ...

    2016-01-21

    Soil carbon (C) is a critical component of Earth system models (ESMs), and its diverse representations are a major source of the large spread across models in the terrestrial C sink from the third to fifth assessment reports of the Intergovernmental Panel on Climate Change (IPCC). Improving soil C projections is of a high priority for Earth system modeling in the future IPCC and other assessments. To achieve this goal, we suggest that (1) model structures should reflect real-world processes, (2) parameters should be calibrated to match model outputs with observations, and (3) external forcing variables should accurately prescribe themore » environmental conditions that soils experience. First, most soil C cycle models simulate C input from litter production and C release through decomposition. The latter process has traditionally been represented by first-order decay functions, regulated primarily by temperature, moisture, litter quality, and soil texture. While this formulation well captures macroscopic soil organic C (SOC) dynamics, better understanding is needed of their underlying mechanisms as related to microbial processes, depth-dependent environmental controls, and other processes that strongly affect soil C dynamics. Second, incomplete use of observations in model parameterization is a major cause of bias in soil C projections from ESMs. Optimal parameter calibration with both pool-and flux-based data sets through data assimilation is among the highest priorities for near-term research to reduce biases among ESMs. Third, external variables are represented inconsistently among ESMs, leading to differences in modeled soil C dynamics. Furthermore, we recommend the implementation of traceability analyses to identify how external variables and model parameterizations influence SOC dynamics in different ESMs. Overall, projections of the terrestrial C sink can be substantially improved when reliable data sets are available to select the most representative model structure, constrain parameters, and prescribe forcing fields.« less

  20. Intelligent excavator control system for lunar mining system

    NASA Astrophysics Data System (ADS)

    Lever, Paul J. A.; Wang, Fei-Yue

    1995-01-01

    A major benefit of utilizing local planetary resources is that it reduces the need and cost of lifting materials from the Earth's surface into Earth orbit. The location of the moon makes it an ideal site for harvesting the materials needed to assist space activities. Here, lunar excavation will take place in the dynamic unstructured lunar environment, in which conditions are highly variable and unpredictable. Autonomous mining (excavation) machines are necessary to remove human operators from this hazardous environment. This machine must use a control system structure that can identify, plan, sense, and control real-time dynamic machine movements in the lunar environment. The solution is a vision-based hierarchical control structure. However, excavation tasks require force/torque sensor feedback to control the excavation tool after it has penetrated the surface. A fuzzy logic controller (FLC) is used to interpret the forces and torques gathered from a bucket mounted force/torque sensor during excavation. Experimental results from several excavation tests using the FLC are presented here. These results represent the first step toward an integrated sensing and control system for a lunar mining system.

  1. Efficient optical cloud removal technique for earth observation based on MOEMs device

    NASA Astrophysics Data System (ADS)

    Zamkotsian, Frédéric; Lanzoni, Patrick; Liotard, Arnaud; Viard, Thierry; Noell, Wilfried

    2017-11-01

    In Earth Observation instruments, observation of scenes including bright sources leads to an important degradation of the recorded signal. We propose a new concept to remove dynamically the bright sources and then obtain a field of view with an optically enhanced Signal-to-Noise Ratio (SNR). Micro-Opto-Electro-Mechanical Systems (MOEMS) could be key components in future generation of space instruments. MOEMS-based programmable slit masks will permit the straylight control in future Earth Observation instruments. Experimental demonstration of this concept has been conducted on a dedicated bench. This successful first demonstration shows the high potential of this new concept in future spectro-imager for Earth Observation.

  2. Autonomous Navigation Improvements for High-Earth Orbiters Using GPS

    NASA Technical Reports Server (NTRS)

    Long, Anne; Kelbel, David; Lee, Taesul; Garrison, James; Carpenter, J. Russell; Bauer, F. (Technical Monitor)

    2000-01-01

    The Goddard Space Flight Center is currently developing autonomous navigation systems for satellites in high-Earth orbits where acquisition of the GPS signals is severely limited This paper discusses autonomous navigation improvements for high-Earth orbiters and assesses projected navigation performance for these satellites using Global Positioning System (GPS) Standard Positioning Service (SPS) measurements. Navigation performance is evaluated as a function of signal acquisition threshold, measurement errors, and dynamic modeling errors using realistic GPS signal strength and user antenna models. These analyses indicate that an autonomous navigation position accuracy of better than 30 meters root-mean-square (RMS) can be achieved for high-Earth orbiting satellites using a GPS receiver with a very stable oscillator. This accuracy improves to better than 15 meters RMS if the GPS receiver's signal acquisition threshold can be reduced by 5 dB-Hertz to track weaker signals.

  3. Urban Dynamics: Analyzing Land Use Change in Urban Environments

    NASA Technical Reports Server (NTRS)

    Acevedo, William; Richards, Lora R.; Buchanan, Janis T.; Wegener, Whitney R.

    2000-01-01

    In FY99, the Earth Resource Observation System (EROS) staff at Ames continued managing the U.S. Geological Survey's (USGS) Urban Dynamics Research program, which has mapping and analysis activities at five USGS mapping centers. Historic land use reconstruction work continued while activities in geographic analysis and modeling were expanded. Retrospective geographic information system (GIS) development - the spatial reconstruction of a region's urban land-use history - focused on the Detroit River Corridor, California's Central Valley, and the city of Sioux Falls, South Dakota.

  4. Resolving Orbital and Climate Keys of Earth and Extraterrestrial Environments with Dynamics (ROCKE-3D) 1.0: A General Circulation Model for Simulating the Climates of Rocky Planets

    NASA Astrophysics Data System (ADS)

    Way, M. J.; Aleinov, I.; Amundsen, David S.; Chandler, M. A.; Clune, T. L.; Del Genio, A. D.; Fujii, Y.; Kelley, M.; Kiang, N. Y.; Sohl, L.; Tsigaridis, K.

    2017-07-01

    Resolving Orbital and Climate Keys of Earth and Extraterrestrial Environments with Dynamics (ROCKE-3D) is a three-dimensional General Circulation Model (GCM) developed at the NASA Goddard Institute for Space Studies for the modeling of atmospheres of solar system and exoplanetary terrestrial planets. Its parent model, known as ModelE2, is used to simulate modern Earth and near-term paleo-Earth climates. ROCKE-3D is an ongoing effort to expand the capabilities of ModelE2 to handle a broader range of atmospheric conditions, including higher and lower atmospheric pressures, more diverse chemistries and compositions, larger and smaller planet radii and gravity, different rotation rates (from slower to more rapid than modern Earth’s, including synchronous rotation), diverse ocean and land distributions and topographies, and potential basic biosphere functions. The first aim of ROCKE-3D is to model planetary atmospheres on terrestrial worlds within the solar system such as paleo-Earth, modern and paleo-Mars, paleo-Venus, and Saturn’s moon Titan. By validating the model for a broad range of temperatures, pressures, and atmospheric constituents, we can then further expand its capabilities to those exoplanetary rocky worlds that have been discovered in the past, as well as those to be discovered in the future. We also discuss the current and near-future capabilities of ROCKE-3D as a community model for studying planetary and exoplanetary atmospheres.

  5. Low Energy Transfer to the Moon

    NASA Astrophysics Data System (ADS)

    Koon, W. S.; Lo, M. W.; Marsden, J. E.; Ross, S. D.

    In 1991, the Japanese Hiten mission used a low energy transfer with a ballistic capture at the Moon which required less Δ V than a standard Hohmann transfer. In this paper, we apply the dynamical systems techniques developed in our earlier work to reproduce systematically a Hiten-like mission. We approximate the Sun-Earth-Moon-spacecraft 4-body system as two 3-body systems. Using the invariant manifold structures of the Lagrange points of the 3-body systems, we are able to construct low energy transfer trajectories from the Earth which execute ballistic capture at the Moon. The techniques used in the design and construction of this trajectory may be applied in many situations.

  6. Fractal analysis of GPS time series for early detection of disastrous seismic events

    NASA Astrophysics Data System (ADS)

    Filatov, Denis M.; Lyubushin, Alexey A.

    2017-03-01

    A new method of fractal analysis of time series for estimating the chaoticity of behaviour of open stochastic dynamical systems is developed. The method is a modification of the conventional detrended fluctuation analysis (DFA) technique. We start from analysing both methods from the physical point of view and demonstrate the difference between them which results in a higher accuracy of the new method compared to the conventional DFA. Then, applying the developed method to estimate the measure of chaoticity of a real dynamical system - the Earth's crust, we reveal that the latter exhibits two distinct mechanisms of transition to a critical state: while the first mechanism has already been known due to numerous studies of other dynamical systems, the second one is new and has not previously been described. Using GPS time series, we demonstrate efficiency of the developed method in identification of critical states of the Earth's crust. Finally we employ the method to solve a practically important task: we show how the developed measure of chaoticity can be used for early detection of disastrous seismic events and provide a detailed discussion of the numerical results, which are shown to be consistent with outcomes of other researches on the topic.

  7. Simulating the Earth System Response to Negative Emissions

    NASA Astrophysics Data System (ADS)

    Jackson, R. B.; Milne, J.; Littleton, E. W.; Jones, C.; Canadell, J.; Peters, G. P.; van Vuuren, D.; Davis, S. J.; Jonas, M.; Smith, P.; Ciais, P.; Rogelj, J.; Torvanger, A.; Shrestha, G.

    2016-12-01

    The natural carbon sinks of the land and oceans absorb approximately half the anthropogenic CO2 emitted every year. The CO2 that is not absorbed accumulates in the Earth's atmosphere and traps the suns rays causing an increase in the global mean temperature. Removing this left over CO2 using negative emissions technologies (NETs) has been proposed as a strategy to lessen the accumulating CO2 and avoid dangerous climate change. Using CMIP5 Earth system model simulations this study assessed the impact on the global carbon cycle, and how the Earth system might respond, to negative emissions strategies applied to low emissions scenarios, over different times horizons from the year 2000 to 2300. The modeling results suggest that using NETs to remove atmospheric CO2 over five 50-year time horizons has varying effects at different points in time. The effects of anthropogenic and natural sources and sinks, can result in positive or negative changes in atmospheric CO2 concentration. Results show that historic emissions and the current state of the Earth System have impacts on the behavior of atmospheric CO2, as do instantaneous anthropogenic emissions. Indeed, varying background scenarios seemed to have a greater effect on atmospheric CO2 than the actual amount and timing of NETs. These results show how NETs interact with the physical climate-carbon cycle system and highlight the need for more research on earth-system dynamics as they relate to carbon sinks and sources and anthropogenic perturbations.

  8. Land management: data availability and process understanding for global change studies.

    PubMed

    Erb, Karl-Heinz; Luyssaert, Sebastiaan; Meyfroidt, Patrick; Pongratz, Julia; Don, Axel; Kloster, Silvia; Kuemmerle, Tobias; Fetzel, Tamara; Fuchs, Richard; Herold, Martin; Haberl, Helmut; Jones, Chris D; Marín-Spiotta, Erika; McCallum, Ian; Robertson, Eddy; Seufert, Verena; Fritz, Steffen; Valade, Aude; Wiltshire, Andrew; Dolman, Albertus J

    2017-02-01

    In the light of daunting global sustainability challenges such as climate change, biodiversity loss and food security, improving our understanding of the complex dynamics of the Earth system is crucial. However, large knowledge gaps related to the effects of land management persist, in particular those human-induced changes in terrestrial ecosystems that do not result in land-cover conversions. Here, we review the current state of knowledge of ten common land management activities for their biogeochemical and biophysical impacts, the level of process understanding and data availability. Our review shows that ca. one-tenth of the ice-free land surface is under intense human management, half under medium and one-fifth under extensive management. Based on our review, we cluster these ten management activities into three groups: (i) management activities for which data sets are available, and for which a good knowledge base exists (cropland harvest and irrigation); (ii) management activities for which sufficient knowledge on biogeochemical and biophysical effects exists but robust global data sets are lacking (forest harvest, tree species selection, grazing and mowing harvest, N fertilization); and (iii) land management practices with severe data gaps concomitant with an unsatisfactory level of process understanding (crop species selection, artificial wetland drainage, tillage and fire management and crop residue management, an element of crop harvest). Although we identify multiple impediments to progress, we conclude that the current status of process understanding and data availability is sufficient to advance with incorporating management in, for example, Earth system or dynamic vegetation models in order to provide a systematic assessment of their role in the Earth system. This review contributes to a strategic prioritization of research efforts across multiple disciplines, including land system research, ecological research and Earth system modelling. © 2016 John Wiley & Sons Ltd.

  9. Quantum geodesy

    NASA Astrophysics Data System (ADS)

    Jitrik, Oliverio; Lanzagorta, Marco; Uhlmann, Jeffrey; Venegas-Andraca, Salvador E.

    2017-05-01

    The study of plate tectonic motion is important to generate theoretical models of the structure and dynamics of the Earth. In turn, understanding tectonic motion provides insight to develop sophisticated models that can be used for earthquake early warning systems and for nuclear forensics. Tectonic geodesy uses the position of a network of points on the surface of earth to determine the motion of tectonic plates and the deformation of the earths crust. GPS and interferometric synthetic aperture radar are commonly used techniques used in tectonic geodesy. In this paper we will describe the feasibility of interferometric synthetic aperture quantum radar and its theoretical performance for tectonic geodesy.

  10. Beyond Classical Information Theory: Advancing the Fundamentals for Improved Geophysical Prediction

    NASA Astrophysics Data System (ADS)

    Perdigão, R. A. P.; Pires, C. L.; Hall, J.; Bloeschl, G.

    2016-12-01

    Information Theory, in its original and quantum forms, has gradually made its way into various fields of science and engineering. From the very basic concepts of Information Entropy and Mutual Information to Transit Information, Interaction Information and respective partitioning into statistical synergy, redundancy and exclusivity, the overall theoretical foundations have matured as early as the mid XX century. In the Earth Sciences various interesting applications have been devised over the last few decades, such as the design of complex process networks of descriptive and/or inferential nature, wherein earth system processes are "nodes" and statistical relationships between them designed as information-theoretical "interactions". However, most applications still take the very early concepts along with their many caveats, especially in heavily non-Normal, non-linear and structurally changing scenarios. In order to overcome the traditional limitations of information theory and tackle elusive Earth System phenomena, we introduce a new suite of information dynamic methodologies towards a more physically consistent and information comprehensive framework. The methodological developments are then illustrated on a set of practical examples from geophysical fluid dynamics, where high-order nonlinear relationships elusive to the current non-linear information measures are aptly captured. In doing so, these advances increase the predictability of critical events such as the emergence of hyper-chaotic regimes in ocean-atmospheric dynamics and the occurrence of hydro-meteorological extremes.

  11. Proterozoic Milankovitch cycles and the history of the solar system.

    PubMed

    Meyers, Stephen R; Malinverno, Alberto

    2018-06-19

    The geologic record of Milankovitch climate cycles provides a rich conceptual and temporal framework for evaluating Earth system evolution, bestowing a sharp lens through which to view our planet's history. However, the utility of these cycles for constraining the early Earth system is hindered by seemingly insurmountable uncertainties in our knowledge of solar system behavior (including Earth-Moon history), and poor temporal control for validation of cycle periods (e.g., from radioisotopic dates). Here we address these problems using a Bayesian inversion approach to quantitatively link astronomical theory with geologic observation, allowing a reconstruction of Proterozoic astronomical cycles, fundamental frequencies of the solar system, the precession constant, and the underlying geologic timescale, directly from stratigraphic data. Application of the approach to 1.4-billion-year-old rhythmites indicates a precession constant of 85.79 ± 2.72 arcsec/year (2σ), an Earth-Moon distance of 340,900 ± 2,600 km (2σ), and length of day of 18.68 ± 0.25 hours (2σ), with dominant climatic precession cycles of ∼14 ky and eccentricity cycles of ∼131 ky. The results confirm reduced tidal dissipation in the Proterozoic. A complementary analysis of Eocene rhythmites (∼55 Ma) illustrates how the approach offers a means to map out ancient solar system behavior and Earth-Moon history using the geologic archive. The method also provides robust quantitative uncertainties on the eccentricity and climatic precession periods, and derived astronomical timescales. As a consequence, the temporal resolution of ancient Earth system processes is enhanced, and our knowledge of early solar system dynamics is greatly improved.

  12. Sustainability, collapse and oscillations in a simple World-Earth model

    NASA Astrophysics Data System (ADS)

    Nitzbon, Jan; Heitzig, Jobst; Parlitz, Ulrich

    2017-07-01

    The Anthropocene is characterized by close interdependencies between the natural Earth system and the global human society, posing novel challenges to model development. Here we present a conceptual model describing the long-term co-evolution of natural and socio-economic subsystems of Earth. While the climate is represented via a global carbon cycle, we use economic concepts to model socio-metabolic flows of biomass and fossil fuels between nature and society. A well-being-dependent parametrization of fertility and mortality governs human population dynamics. Our analysis focuses on assessing possible asymptotic states of the Earth system for a qualitative understanding of its complex dynamics rather than quantitative predictions. Low dimension and simple equations enable a parameter-space analysis allowing us to identify preconditions of several asymptotic states and hence fates of humanity and planet. These include a sustainable co-evolution of nature and society, a global collapse and everlasting oscillations. We consider different scenarios corresponding to different socio-cultural stages of human history. The necessity of accounting for the ‘human factor’ in Earth system models is highlighted by the finding that carbon stocks during the past centuries evolved opposing to what would ‘naturally’ be expected on a planet without humans. The intensity of biomass use and the contribution of ecosystem services to human well-being are found to be crucial determinants of the asymptotic state in a (pre-industrial) biomass-only scenario without capital accumulation. The capitalistic, fossil-based scenario reveals that trajectories with fundamentally different asymptotic states might still be almost indistinguishable during even a centuries-long transient phase. Given current human population levels, our study also supports the claim that besides reducing the global demand for energy, only the extensive use of renewable energies may pave the way into a sustainable future.

  13. Exploring tropical forest vegetation dynamics using the FATES model

    NASA Astrophysics Data System (ADS)

    Koven, C. D.; Fisher, R.; Knox, R. G.; Chambers, J.; Kueppers, L. M.; Christoffersen, B. O.; Davies, S. J.; Dietze, M.; Holm, J.; Massoud, E. C.; Muller-Landau, H. C.; Powell, T.; Serbin, S.; Shuman, J. K.; Walker, A. P.; Wright, S. J.; Xu, C.

    2017-12-01

    Tropical forest vegetation dynamics represent a critical climate feedback in the Earth system, which is poorly represented in current global modeling approaches. We discuss recent progress on exploring these dynamics using the Functionally Assembled Terrestrial Ecosystem Simulator (FATES), a demographic vegetation model for the CESM and ACME ESMs. We will discuss benchmarks of FATES predictions for forest structure against inventory sites, sensitivity of FATES predictions of size and age structure to model parameter uncertainty, and experiments using the FATES model to explore PFT competitive dynamics and the dynamics of size and age distributions in responses to changing climate and CO2.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ingmann, P.; Readings, C. J.; Knott, K.

    For the post-2000 time-frame two general classes of Earth Observation missions have been identified to address user requirements (see e.g. ESA, 1995), namely Earth Watch and Earth Explorer missions. One of the candidate Earth Explorer Missions selected for Phase A study is the Atmospheric Dynamics Mission which is intended to exploit a Doppler wind lidar, ALADIN, to measure winds in clear air (ESA, 1995 and ESA, 1996). It is being studied as a candidate for flight on the International Space Station (ISS) as an externally attached payload. The primary, long-term objective of the Atmospheric Dynamics Mission is to provide observationsmore » of wind profiles (e.g. radial wind component). Such data would be assimilated into numerical forecasting models leading to an improvement in objective analyses and hence in Numerical Weather Prediction. The mission would also provide data needed to address some of the key concerns of the World Climate Research Programme (WCRP) i.e. quantification of climate variability, validation and improvement of numerical models and process studies relevant to climate change. The newly acquired data would also help realize some of the objectives of the Global Climate Observing System (GCOS)« less

  15. Dynamical Stability and Evolution of Kepler’s compact inner multi-planet systems

    NASA Astrophysics Data System (ADS)

    Pu, Bonan

    2017-06-01

    NASA’s Kepler mission has revealed a population of highly compact inner multi-planet systems. These systems, typically consisting of 4-6 super-Earths, feature tight orbital spacing between planets as well as low orbital inclinations (~2 deg. ) and eccentricities (~2%). This stands in contrast to Kepler’s singles population, which appears to feature higher orbital obliquities and eccentricities, as well as a lower transit timing variation fraction indicative of lower true planet multiplicities.In this talk, I will present some previous and ongoing research aimed at understanding the dynamical evolution of these Kepler systems. First, I will present numerical N-body investigations on the long-term stability of multi-planet systems, the results of which suggest that Kepler’s systems are near the edge of stability. Next, I will discuss some current research on the dynamics of planetary close encounters and collisions, and their implications for the ultimate fate of dynamically unstable multi-planet systems. Finally, I will highlight some recent results on the dynamical stability and evolution of inner multi-planet systems when they are accompanied by external giant planet and/or stellar companions.

  16. Advanced Earth-to-Orbit Propulsion Technology 1986, volume 2

    NASA Technical Reports Server (NTRS)

    Richmond, R. J.; Wu, S. T.

    1986-01-01

    Technology issues related to oxygen/hydrogen and oxygen/hydrocarbon propulsion are addressed. Specific topics addressed include: rotor dynamics; fatigue/fracture and life; bearings; combustion and cooling processes; and hydrogen environment embrittlement in advanced propulsion systems.

  17. The first geocenter estimation results using GPS measurements

    NASA Technical Reports Server (NTRS)

    Malla, R. P.; Wu, S. C.

    1990-01-01

    The center of mass of the Earth is the natural and unambiguous origin of a geocentric satellite dynamical system. A geocentric reference frame assumes that the origin of its coordinate axes is at the geocenter, in which all relevant observations and results can be referred and in which geodynamic theories or models for the dynamic behavior of Earth can be formulated. In practice, however, a kinematically obtained terrestrial reference frame may assume an origin other than the geocenter. A fast and accurate method of determining origin offset from the geocenter is highly desirable. Global Positioning System (GPS) measurements, because of their abundance and broad distribution, provide a powerful tool to obtain this origin offset in a short period of time. Two effective strategies have been devised. Data from the first Central and South America (Casa Uno) global GPS experiment were studied to demonstrate the ability of recovering the geocenter location with present-day GPS satellites and receivers.

  18. Dynamical reference frames in the planetary and earth-moon systems

    NASA Technical Reports Server (NTRS)

    Standish, E. M.; Williams, G.

    1990-01-01

    Estimates of the accuracies of the ephemerides are reviewed using data for planetary and lunar systems to determine the efficacy of the inherent dynamical reference frame. The varied observational data are listed and given with special attention given to ephemeris improvements. The importance of ranging data is discussed with respect to the inner four planets and the moon, and the discrepancy of 1 arcsec/century between mean motions determined by optical observations versus ranging data is addressed. The Viking mission data provide inertial mean motions for the earth and Mars of 0.003 arcsec/century which will deteriorate to 0.01 arcsec after about 10 years. Uncertainties for other planets and the moon are found to correspond to approximately the same level of degradation. In general the data measurements and error estimates are improving the ephemerides, although refitting the data cannot account for changes in mean motion.

  19. Photogrammetric Measurements of CEV Airbag Landing Attenuation Systems

    NASA Technical Reports Server (NTRS)

    Barrows, Danny A.; Burner, Alpheus W.; Berry, Felecia C.; Dismond, Harriett R.; Cate, Kenneth H.

    2008-01-01

    High-speed photogrammetric measurements are being used to assess the impact dynamics of the Orion Crew Exploration Vehicle (CEV) for ground landing contingency upon return to earth. Test articles representative of the Orion capsule are dropped at the NASA Langley Landing and Impact Research (LandIR) Facility onto a sand/clay mixture representative of a dry lakebed from elevations as high as 62 feet (18.9 meters). Two different types of test articles have been evaluated: (1) half-scale metal shell models utilized to establish baseline impact dynamics and soil characterization, and (2) geometric full-scale drop models with shock-absorbing airbags which are being evaluated for their ability to cushion the impact of the Orion CEV with the earth s surface. This paper describes the application of the photogrammetric measurement technique and provides drop model trajectory and impact data that indicate the performance of the photogrammetric measurement system.

  20. Post-Newtonian Reference Frames for Advanced Theory of the Lunar Motion and a New Generation of Lunar Laser Ranging

    NASA Astrophysics Data System (ADS)

    Xie, Yi; Kopeikin, Sergei Affiliaiton: AB(Department of Physics and Astronomy, University of Missouri, USA kopeikins@missouri.edu)

    2010-08-01

    We overview a set of post-Newtonian reference frames for a comprehensive study of the orbital dynamics and rotational motion of Moon and Earth by means of lunar laser ranging (LLR). We employ a scalar-tensor theory of gravity depending on two post-Newtonian parameters, and , and utilize the relativistic resolutions on reference frames adopted by the International Astronomical Union (IAU) in 2000. We assume that the solar system is isolated and space-time is asymptotically flat at infinity. The primary reference frame covers the entire space-time, has its origin at the solar-system barycenter (SSB) and spatial axes stretching up to infinity. The SSB frame is not rotating with respect to a set of distant quasars that are forming the International Celestial Reference Frame (ICRF). The secondary reference frame has its origin at the Earth-Moon barycenter (EMB). The EMB frame is locally-inertial and is not rotating dynamically in the sense that equation of motion of a test particle moving with respect to the EMB frame, does not contain the Coriolis and centripetal forces. Two other local frames geocentric (GRF) and selenocentric (SRF) have their origins at the center of mass of Earth and Moon respectively and do not rotate dynamically. Each local frame is subject to the geodetic precession both with respect to other local frames and with respect to the ICRF because of their relative motion with respect to each other. Theoretical advantage of the dynamically non-rotating local frames is in a more simple mathematical description. Each local frame can be aligned with the axes of ICRF after applying the matrix of the relativistic precession. The set of one global and three local frames is introduced in order to fully decouple the relative motion of Moon with respect to Earth from the orbital motion of the Earth-Moon barycenter as well as to connect the coordinate description of the lunar motion, an observer on Earth, and a retro-reflector on Moon to directly measurable quantities such as the proper time and the round-trip laser-light distance. We solve the gravity field equations and find out the metric tensor and the scalar field in all frames which description includes the post-Newtonian multipole moments of the gravitational field of Earth and Moon. We also derive the post-Newtonian coordinate transformations between the frames and analyze the residual gauge freedom.

  1. Narrow Scale Flow and a Weak Field by the Top of Earth's Core: Evidence from Orsted, Magsat and Secular Variation

    NASA Technical Reports Server (NTRS)

    Voorhies, Coerte V.

    2004-01-01

    As Earth's main magnetic field weakens, our magnetic shield against the onslaught of the solar wind thins. And the field strength needed to fend off battering by solar coronal mass ejections is decreasing, just when the delicate complexity of modem, vulnerable, electro-technological systems is increasing at an unprecedented rate. Recently, a working group of distinguished scientist from across the nation has asked NASA's Solid Earth and Natural Hazards program a key question: What are the dynamics of Earth s magnetic field and its interactions with the Earth system? Paleomagnetic studies of crustal rocks magnetized in the geologic past reveal that polarity reversals have occurred many times during Earth s history. Networked super-computer simulations of core field and flow, including effects of gravitational, pressure, rotational Coriolis, magnetic and viscous forces, suggest how this might happen in detail. And space-based measurements of the real, time-varying magnetic field help constrain estimates of the speed and direction of fluid iron flowing near the top of the core and enable tests of some hypotheses about such flow. Now scientists at NASA s Goddard Space Flight Center have developed and applied methods to test the hypotheses of narrow scale flow and of a dynamically weak magnetic field near the top of Earth s core. Using two completely different methods, C. V. Voorhies has shown these hypotheses lead to specific theoretical forms for the "spectrum" of Earth s main magnetic field and the spectrum of its rate of change. Much as solar physicists use a prism to separate sunlight into its spectrum, from long wavelength red to short wavelength blue light, geophysicists use a digital prism, spherical harmonic analysis, to separate the measured geomagnetic field into its spectrum, from long to short wavelength fields. They do this for the rate of change of the field as well.

  2. Dynamic Assessment of Seismic Risk (DASR) by Multi-parametric Observations: Preliminary Results of PRIME experiment within the PRE-EARTHQUAKES EU-FP7 Project

    NASA Astrophysics Data System (ADS)

    Tramutoli, V.; Inan, S.; Jakowski, N.; Pulinets, S. A.; Romanov, A.; Filizzola, C.; Shagimuratov, I.; Pergola, N.; Ouzounov, D. P.; Papadopoulos, G. A.; Parrot, M.; Genzano, N.; Lisi, M.; Alparlsan, E.; Wilken, V.; Tsybukia, K.; Romanov, A.; Paciello, R.; Zakharenkova, I.; Romano, G.

    2012-12-01

    The integration of different observations together with the refinement of data analysis methods, is generally expected to improve our present knowledge of preparatory phases of earthquakes and of their possible precursors. This is also the main goal of PRE-EARTHQUAKES (Processing Russian and European EARTH observations for earthQUAKE precursors Studies) the FP7 Project which, to this aim, committed together, different international expertise and observational capabilities, in the last 2 years. In the learning phase of the project, different parameters (e.g. thermal anomalies, total electron content, radon concentration, etc.), measured from ground and satellite systems and analyzed by using different data analysis approaches, have been studied for selected geographic areas and specific seismic events in the past. Since July 2012 the PRIME (PRE-EARTHQUAKES Real-time Integration and Monitoring Experiment) started attempting to perform, on the base of independent observations collected and integrated in real-time through the PEG (PRE-EARTHQUAKES Geo-portal), a Dynamic Assessment of Seismic Risk (DASR) on selected geographic areas of Europe (Italy-Greece-Turkey) and Asia (Kamchatka, Sakhalin, Japan). In this paper, results so far achieved as well as the potential and opportunities they open for a worldwide Earthquake Observation System (EQuOS) - as a dedicated component of GEOSS (Global Earth Observation System of Systems) - will be presented.

  3. Early solar system. Early accretion of water in the inner solar system from a carbonaceous chondrite-like source.

    PubMed

    Sarafian, Adam R; Nielsen, Sune G; Marschall, Horst R; McCubbin, Francis M; Monteleone, Brian D

    2014-10-31

    Determining the origin of water and the timing of its accretion within the inner solar system is important for understanding the dynamics of planet formation. The timing of water accretion to the inner solar system also has implications for how and when life emerged on Earth. We report in situ measurements of the hydrogen isotopic composition of the mineral apatite in eucrite meteorites, whose parent body is the main-belt asteroid 4 Vesta. These measurements sample one of the oldest hydrogen reservoirs in the solar system and show that Vesta contains the same hydrogen isotopic composition as that of carbonaceous chondrites. Taking into account the old ages of eucrite meteorites and their similarity to Earth's isotopic ratios of hydrogen, carbon, and nitrogen, we demonstrate that these volatiles could have been added early to Earth, rather than gained during a late accretion event. Copyright © 2014, American Association for the Advancement of Science.

  4. Application of the Regional Atmospheric Modeling System to the Martian Atmosphere

    NASA Technical Reports Server (NTRS)

    Rafkin, Scot C. R.

    1998-01-01

    The core dynamics of the Regional Atmospheric Modeling System (RAMS), a widely used and powerful mesoscale Earth model, is adapted to the Martian Atmosphere and applied in the study of aeolian surface features. In particular, research efforts focused on the substitution of Martian planetary and atmospheric properties such as rotation rate, and thermodynamic constants in place of hard-wired Earth properties. Application of the model was restricted to three-dimensional flow impinging upon impact craters, and the search for plausible wind patterns that could produce the so-called light and dark streaks downwind of topographic barriers.

  5. Chaotic Dynamics in a Low-Energy Transfer Strategy to the Equilateral Equilibrium Points in the Earth-Moon System

    NASA Astrophysics Data System (ADS)

    Salazar, F. J. T.; Macau, E. E. N.; Winter, O. C.

    In the frame of the equilateral equilibrium points exploration, numerous future space missions will require maximization of payload mass, simultaneously achieving reasonable transfer times. To fulfill this request, low-energy non-Keplerian orbits could be used to reach L4 and L5 in the Earth-Moon system instead of high energetic transfers. Previous studies have shown that chaos in physical systems like the restricted three-body Earth-Moon-particle problem can be used to direct a chaotic trajectory to a target that has been previously considered. In this work, we propose to transfer a spacecraft from a circular Earth Orbit in the chaotic region to the equilateral equilibrium points L4 and L5 in the Earth-Moon system, exploiting the chaotic region that connects the Earth with the Moon and changing the trajectory of the spacecraft (relative to the Earth) by using a gravity assist maneuver with the Moon. Choosing a sequence of small perturbations, the time of flight is reduced and the spacecraft is guided to a proper trajectory so that it uses the Moon's gravitational force to finally arrive at a desired target. In this study, the desired target will be an orbit about the Lagrangian equilibrium points L4 or L5. This strategy is not only more efficient with respect to thrust requirement, but also its time transfer is comparable to other known transfer techniques based on time optimization.

  6. Prospect of Using Numerical Dynamo Model for Prediction of Geomagnetic Secular Variation

    NASA Technical Reports Server (NTRS)

    Kuang, Weijia; Tangborn, Andrew

    2003-01-01

    Modeling of the Earth's core has reached a level of maturity to where the incorporation of observations into the simulations through data assimilation has become feasible. Data assimilation is a method by which observations of a system are combined with a model output (or forecast) to obtain a best guess of the state of the system, called the analysis. The analysis is then used as an initial condition for the next forecast. By doing assimilation, not only we shall be able to predict partially secular variation of the core field, we could also use observations to further our understanding of dynamical states in the Earth's core. One of the first steps in the development of an assimilation system is a comparison between the observations and the model solution. The highly turbulent nature of core dynamics, along with the absence of any regular external forcing and constraint (which occurs in atmospheric dynamics, for example) means that short time comparisons (approx. 1000 years) cannot be made between model and observations. In order to make sensible comparisons, a direct insertion assimilation method has been implemented. In this approach, magnetic field observations at the Earth's surface have been substituted into the numerical model, such that the ratio of the multiple components and the dipole component from observation is adjusted at the core-mantle boundary and extended to the interior of the core, while the total magnetic energy remains unchanged. This adjusted magnetic field is then used as the initial field for a new simulation. In this way, a time tugged simulation is created which can then be compared directly with observations. We present numerical solutions with and without data insertion and discuss their implications for the development of a more rigorous assimilation system.

  7. Stable habitable zones of single Jovian planet systems

    NASA Astrophysics Data System (ADS)

    Agnew, Matthew T.; Maddison, Sarah T.; Thilliez, Elodie; Horner, Jonathan

    2017-11-01

    With continued improvement in telescope sensitivity and observational techniques, the search for rocky planets in stellar habitable zones is entering an exciting era. With so many exoplanetary systems available for follow-up observations to find potentially habitable planets, one needs to prioritize the ever-growing list of candidates. We aim to determine which of the known planetary systems are dynamically capable of hosting rocky planets in their habitable zones, with the goal of helping to focus future planet search programmes. We perform an extensive suite of numerical simulations to identify regions in the habitable zones of single Jovian planet systems where Earth-mass planets could maintain stable orbits, specifically focusing on the systems in the Catalog of Earth-like Exoplanet Survey Targets (CELESTA). We find that small, Earth-mass planets can maintain stable orbits in cases where the habitable zone is largely, or partially, unperturbed by a nearby Jovian, and that mutual gravitational interactions and resonant mechanisms are capable of producing stable orbits even in habitable zones that are significantly or completely disrupted by a Jovian. Our results yield a list of 13 single Jovian planet systems in CELESTA that are not only capable of supporting an Earth-mass planet on stable orbits in their habitable zone, but for which we are also able to constrain the orbits of the Earth-mass planet such that the induced radial velocity signals would be detectable with next generation instruments.

  8. A preliminary design for a satellite power system

    NASA Technical Reports Server (NTRS)

    Enriquez, Clara V.; Kokaly, Ray; Nandi, Saumya; Timmons, Mike; Garrard, Mark; Mercado, Rommel; Rogers, Brian; Ugaz, Victor

    1991-01-01

    Outlined here is a preliminary design for a Solar Power Satellite (SPS) system. The SPS will provide a clean, reliable source of energy for mass consumption. The system will use satellites in geostationary orbits around the Earth to capture the sun's energy. The intercepted sunlight will be converted to laser beam energy which can be transmitted to the Earth's surface. Ground systems on the Earth will convert the transmissions from space into electric power. The preliminary design for the SPS consists of one satellite in orbit around the Earth transmitting to one ground station. The SPs technology uses multi-layer solar cell technology arranged on a 20 sq km planar array to intercept sunlight and convert it to an electric voltage. Power conditioning devices then send the electricity to a laser, which transmits the power to the surface of the Earth. A ground station will convert the beam into electricity. Construction will take place in low Earth orbit and array sections, 20 in total, will be sailed on the solar wind out to the GEO location in 150 days. These individual transportation sections are referred to as solar sailing panels (SSAPs). The primary truss elements used to support the arrays are composed on composite tubular members in a pentahedral arrangement. Smart segments consisting of passive and active damping devices will increase the control of dynamic SPS modes.

  9. The Nonlinear Magnetosphere: Expressions in MHD and in Kinetic Models

    NASA Technical Reports Server (NTRS)

    Hesse, Michael; Birn, Joachim

    2011-01-01

    Like most plasma systems, the magnetosphere of the Earth is governed by nonlinear dynamic evolution equations. The impact of nonlinearities ranges from large scales, where overall dynamics features are exhibiting nonlinear behavior, to small scale, kinetic, processes, where nonlinear behavior governs, among others, energy conversion and dissipation. In this talk we present a select set of examples of such behavior, with a specific emphasis on how nonlinear effects manifest themselves in MHD and in kinetic models of magnetospheric plasma dynamics.

  10. Integrated Vehicle and Trajectory Design of Small Spacecraft with Electric Propulsion for Earth and Interplanetary Missions

    NASA Technical Reports Server (NTRS)

    Spangelo, Sara; Dalle, Derek; Longmier, Benjamin

    2015-01-01

    This paper investigates the feasibility of Earth-transfer and interplanetary mission architectures for miniaturized spacecraft using emerging small solar electric propulsion technologies. Emerging small SEP thrusters offer significant advantages relative to existing technologies and will enable U-class systems to perform trajectory maneuvers with significant Delta V requirements. The approach in this paper is unique because it integrates trajectory design with vehicle sizing and accounts for the system and operational constraints of small U-class missions. The modeling framework includes integrated propulsion, orbit, energy, and external environment dynamics and systems-level power, energy, mass, and volume constraints. The trajectory simulation environment models orbit boosts in Earth orbit and flyby and capture trajectories to interplanetary destinations. A family of small spacecraft mission architectures are studied, including altitude and inclination transfers in Earth orbit and trajectories that escape Earth orbit and travel to interplanetary destinations such as Mercury, Venus, and Mars. Results are presented visually to show the trade-offs between competing performance objectives such as maximizing available mass and volume for payloads and minimizing transfer time. The results demonstrate the feasibility of using small spacecraft to perform significant Earth and interplanetary orbit transfers in less than one year with reasonable U-class mass, power, volume, and mission durations.

  11. Global ice sheet/RSL simulations using the higher-order Ice Sheet System Model.

    NASA Astrophysics Data System (ADS)

    Larour, E. Y.; Ivins, E. R.; Adhikari, S.; Schlegel, N.; Seroussi, H. L.; Morlighem, M.

    2017-12-01

    Relative sea-level rise is driven by processes that are intimately linked to the evolution ofglacial areas and ice sheets in particular. So far, most Earth System models capable of projecting theevolution of RSL on decadal to centennial time scales have relied on offline interactions between RSL andice sheets. In particular, grounding line and calving front dynamics have not been modeled in a way that istightly coupled with Elasto-Static Adjustment (ESA) and/or Glacial-Isostatic Adjustment (GIA). Here, we presenta new simulation of the entire Earth System in which both Greenland and Antarctica ice sheets are tightly coupledto an RSL model that includes both ESA and GIA at resolutions and time scales compatible with processes suchas grounding line dynamics for Antarctica ice shelves and calving front dynamics for Greenland marine-terminatingglaciers. The simulations rely on the Ice Sheet System Model (ISSM) and show the impact of higher-orderice flow dynamics and coupling feedbacks between ice flow and RSL. We quantify the exact impact of ESA andGIA inclusion on grounding line evolution for large ice shelves such as the Ronne and Ross ice shelves, as well asthe Agasea Embayment ice streams, and demonstate how offline vs online RSL simulations diverge in the long run,and the consequences for predictions of sea-level rise.This work was performed at the California Institute of Technology's Jet Propulsion Laboratory undera contract with the National Aeronautics and Space Administration's Cryosphere Science Program.

  12. The Earth Phenomena Observing System: Intelligent Autonomy for Satellite Operations

    NASA Technical Reports Server (NTRS)

    Ricard, Michael; Abramson, Mark; Carter, David; Kolitz, Stephan

    2003-01-01

    Earth monitoring systems of the future may include large numbers of inexpensive small satellites, tasked in a coordinated fashion to observe both long term and transient targets. For best performance, a tool which helps operators optimally assign targets to satellites will be required. We present the design of algorithms developed for real-time optimized autonomous planning of large numbers of small single-sensor Earth observation satellites. The algorithms will reduce requirements on the human operators of such a system of satellites, ensure good utilization of system resources, and provide the capability to dynamically respond to temporal terrestrial phenomena. Our initial real-time system model consists of approximately 100 satellites and large number of points of interest on Earth (e.g., hurricanes, volcanoes, and forest fires) with the objective to maximize the total science value of observations over time. Several options for calculating the science value of observations include the following: 1) total observation time, 2) number of observations, and the 3) quality (a function of e.g., sensor type, range, slant angle) of the observations. An integrated approach using integer programming, optimization and astrodynamics is used to calculate optimized observation and sensor tasking plans.

  13. The Dynamical Evolution of the Earth-Moon Progenitors. 2; Results and Interpretation

    NASA Technical Reports Server (NTRS)

    Rivera, E.; Lissauer, J. J.; Duncan, M. J.; Levison, H. F.

    1998-01-01

    Substantial evidence indicates that the Earth-Moon system formed about 100 m.y. after the oldest meteorites and that the inner solar system had five terrestrial planets for several tens of millions of years before the hypothesized Moon-forming impact. We present and discuss some results from a series of N-body integrations in which the mass ratio of the Earth-Moon progenitors is 8:1 or 1:1. We want to know if it is plausible to have the Earth-Moon progenitors collide between 8 m.y. and 200 m.y. after the other planets had formed and to have the resulting system look "similar" to the solar system. If a collision occurs, the integrations tell us which two bodies collide and the time of the collision. We also determine the angular momentum deficit (AMD) of the resulting terrestrial planets. Additionally, we calculate several parameters of the collision. We use the AMD of the terrestrial planets to compare the resulting system to our own. The AMD or a planet is the difference between its orbital angular momentum and its orbital angular momentum if it were in a circular orbit with zero inclination.

  14. Analytical investigation of the dynamics of tethered constellations in Earth orbit, phase 2

    NASA Technical Reports Server (NTRS)

    Lorenzini, E.; Arnold, D. A.; Grossi, M. D.; Gullahorn, G. E.

    1986-01-01

    The development of a two dimensional analytical model that describes the dynamics of an n-mass vertical tethered system is reported. Two different approaches are described: in the first one the control quantities are the independent variables while in the second one the Cartesian coordinates of each mass expressed in the orbiting reference frame are the independent variables. The latter model was used in the 3-mass version to simulate the dynamics of the tethered system in applications involving the displacement of the middle mass along the tether. In particular, issues related to reproducing predetermined acceleration profiles and g-tuning are reported.

  15. The optical antenna system design research on earth integrative network laser link in the future

    NASA Astrophysics Data System (ADS)

    Liu, Xianzhu; Fu, Qiang; He, Jingyi

    2014-11-01

    Earth integrated information network can be real-time acquisition, transmission and processing the spatial information with the carrier based on space platforms, such as geostationary satellites or in low-orbit satellites, stratospheric balloons or unmanned and manned aircraft, etc. It is an essential infrastructure for China to constructed earth integrated information network. Earth integrated information network can not only support the highly dynamic and the real-time transmission of broadband down to earth observation, but the reliable transmission of the ultra remote and the large delay up to the deep space exploration, as well as provide services for the significant application of the ocean voyage, emergency rescue, navigation and positioning, air transportation, aerospace measurement or control and other fields.Thus the earth integrated information network can expand the human science, culture and productive activities to the space, ocean and even deep space, so it is the global research focus. The network of the laser communication link is an important component and the mean of communication in the earth integrated information network. Optimize the structure and design the system of the optical antenna is considered one of the difficulty key technologies for the space laser communication link network. Therefore, this paper presents an optical antenna system that it can be used in space laser communication link network.The antenna system was consisted by the plurality mirrors stitched with the rotational paraboloid as a substrate. The optical system structure of the multi-mirror stitched was simulated and emulated by the light tools software. Cassegrain form to be used in a relay optical system. The structural parameters of the relay optical system was optimized and designed by the optical design software of zemax. The results of the optimal design and simulation or emulation indicated that the antenna system had a good optical performance and a certain reference value in engineering. It can provide effective technical support to realize interconnection of earth integrated laser link information network in the future.

  16. Applying Parallel Adaptive Methods with GeoFEST/PYRAMID to Simulate Earth Surface Crustal Dynamics

    NASA Technical Reports Server (NTRS)

    Norton, Charles D.; Lyzenga, Greg; Parker, Jay; Glasscoe, Margaret; Donnellan, Andrea; Li, Peggy

    2006-01-01

    This viewgraph presentation reviews the use Adaptive Mesh Refinement (AMR) in simulating the Crustal Dynamics of Earth's Surface. AMR simultaneously improves solution quality, time to solution, and computer memory requirements when compared to generating/running on a globally fine mesh. The use of AMR in simulating the dynamics of the Earth's Surface is spurred by future proposed NASA missions, such as InSAR for Earth surface deformation and other measurements. These missions will require support for large-scale adaptive numerical methods using AMR to model observations. AMR was chosen because it has been successful in computation fluid dynamics for predictive simulation of complex flows around complex structures.

  17. Laser technology developments in support of ESA's earth observation missions

    NASA Astrophysics Data System (ADS)

    Durand, Y.; Bézy, J.-L.; Meynart, R.

    2008-02-01

    Within the context of ESA's Living Planet Programme, the European Space Agency has selected three missions embarking lidar instruments: ADM-Aeolus (Atmospheric Dynamics Mission) planed for launch in 2009 with a Doppler Wind Lidar, ALADIN, as unique payload; EarthCARE (Earth Clouds, Aerosols, and Radiation Explorer) planed for launch in 2013 including an ATmospheric backscatter LIDar (ATLID); at last, A-SCOPE (Advanced Space Carbon and Climate Observation of Planet Earth), candidate for the 7 th Earth Explorer, relying on a CO II Total Column Differential Absorption Lidar. To mitigate the technical risks for selected missions associated with the different sorts of lidar, ESA has undertaken critical technology developments, from the transmitter to the receiver and covering both components and sub-systems development and characterization. The purpose of this paper is to present the latest results obtained in the area of laser technology that are currently ongoing in support to EarthCARE, A-SCOPE and ADM-Aeolus.

  18. Honors

    NASA Astrophysics Data System (ADS)

    2013-01-01

    U.S. president Barack Obama recently announced his intent to appoint several people, four of whom are AGU members, to the Nuclear Waste Technical Review Board, an independent agency of the U.S. federal government that provides independent scientific and technical oversight of the Department of Energy's program for managing and disposing of high-level radioactive waste and spent nuclear fuel. The appointees include Jean Bahr, professor in the Department of Geoscience at the University of Wisconsin-Madison; Susan Brantley, distinguished professor of geosciences and director of the Earth and Environmental Systems Institute at The Pennsylvania State University; Efi Foufoula-Georgiou, professor of civil engineering and director of the National Center for Earth-Surface Dynamics at the University of Minnesota; and Mary Lou Zoback, consulting professor in the Environmental Earth System Science Department at Stanford University.

  19. MMS at NRL

    NASA Image and Video Library

    2014-08-04

    One of four Magnetospheric Multiscale (MMS) spacecraft, in the background, is seen in a cleanroom at the Naval Research Lab’s, Naval Center for Space Technology, Monday, August 4, 2014, in Washington. The Magnetospheric Multiscale, or MMS, mission will study the mystery of how magnetic fields around Earth connect and disconnect, explosively releasing energy via a process known as magnetic reconnection. The four identical spacecraft are scheduled to launch in 2015 from Cape Canaveral and will orbit around Earth in varying formations through the dynamic magnetic system surrounding our planet to provide the first three-dimensional views of the magnetic reconnection process. The goal of the STP Program is to understand the fundamental physical processes of the space environment from the sun to Earth, other planets, and the extremes of the solar system boundary. Photo Credit: (NASA/Bill Ingalls)

  20. The European Plate Observing System (EPOS) Services for Solid Earth Science

    NASA Astrophysics Data System (ADS)

    Cocco, Massimo; Atakan, Kuvvet; Pedersen, Helle; Consortium, Epos

    2016-04-01

    The European Plate Observing System (EPOS) aims to create a pan-European infrastructure for solid Earth science to support a safe and sustainable society. The main vision of the European Plate Observing System (EPOS) is to address the three basic challenges in Earth Sciences: (i) unravelling the Earth's deformational processes which are part of the Earth system evolution in time, (ii) understanding the geo-hazards and their implications to society, and (iii) contributing to the safe and sustainable use of geo-resources. The mission of EPOS is to monitor and understand the dynamic and complex Earth system by relying on new e-science opportunities and integrating diverse and advanced Research Infrastructures in Europe for solid Earth Science. EPOS will enable innovative multidisciplinary research for a better understanding of the Earth's physical and chemical processes that control earthquakes, volcanic eruptions, ground instability and tsunami as well as the processes driving tectonics and Earth's surface dynamics. EPOS will improve our ability to better manage the use of the subsurface of the Earth. Through integration of data, models and facilities EPOS will allow the Earth Science community to make a step change in developing new concepts and tools for key answers to scientific and socio-economic questions concerning geo-hazards and geo-resources as well as Earth sciences applications to the environment and to human welfare. EPOS has now started its Implementation Phase (EPOS-IP). One of the main challenges during the implementation phase is the integration of multidisciplinary data into a single e-infrastructure. Multidisciplinary data are organized and governed by the Thematic Core Services (TCS) and are driven by various scientific communities encompassing a wide spectrum of Earth science disciplines. These include Data, Data-products, Services and Software (DDSS), from seismology, near fault observatories, geodetic observations, volcano observations, satellite observations, geomagnetic observations, as well as data from various anthropogenic hazard episodes, geological information and modelling. In addition, transnational access to multi-scale laboratories and geo-energy test-beds for low-carbon energy will be provided. TCS DDSS will be integrated into Integrated Core Services (ICS), a platform that will ensure their interoperability and access to these services by the scientific community as well as other users within the society. This requires dedicated tasks for interactions with the various TCS-WPs, as well as the various distributed ICS (ICS-Ds), such as High Performance Computing (HPC) facilities, large scale data storage facilities, complex processing and visualization tools etc. Computational Earth Science (CES) services are identified as a transversal activity and is planned to be harmonized and provided within the ICS. The EPOS Thematic Services will rely in part on strong and sustainable participation by national organisations and international consortia. While this distributed architecture will contribute to ensure pan European involvement in EPOS, it also raises specific challenges: ensuring similar granularity of services, compatibility of technical solutions, homogeneous legal agreements and sustainable financial engagement from the partner institutions and organisations. EPOS is engaging actions to address all of these issues during 2016-2017, after which the services will enter a final validation phase by the EPOS Board of Governmental Representatives.

  1. Dynamics of the Final Stages of Terrestrial Planet Growth and the Formation of the Earth-Moon System

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Rivera, Eugenio J.; DeVincenzi, Donald (Technical Monitor)

    2000-01-01

    An overview of current theories of star and planet formation, with emphasis on terrestrial planet accretion and the formation of the Earth-Moon system is presented. These models predict that rocky planets should form around most single stars, although it is possible that in some cases such planets are lost to orbital decay within the protoplanetary disk. The frequency of formation of gas giant planets is more difficult to predict theoretically. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant impacts during the final stages of growth can produce large planetary satellites, such as Earth's Moon. Giant planets begin their growth like terrestrial planets, but they become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates.

  2. An extrasolar planetary system with three Neptune-mass planets.

    PubMed

    Lovis, Christophe; Mayor, Michel; Pepe, Francesco; Alibert, Yann; Benz, Willy; Bouchy, François; Correia, Alexandre C M; Laskar, Jacques; Mordasini, Christoph; Queloz, Didier; Santos, Nuno C; Udry, Stéphane; Bertaux, Jean-Loup; Sivan, Jean-Pierre

    2006-05-18

    Over the past two years, the search for low-mass extrasolar planets has led to the detection of seven so-called 'hot Neptunes' or 'super-Earths' around Sun-like stars. These planets have masses 5-20 times larger than the Earth and are mainly found on close-in orbits with periods of 2-15 days. Here we report a system of three Neptune-mass planets with periods of 8.67, 31.6 and 197 days, orbiting the nearby star HD 69830. This star was already known to show an infrared excess possibly caused by an asteroid belt within 1 au (the Sun-Earth distance). Simulations show that the system is in a dynamically stable configuration. Theoretical calculations favour a mainly rocky composition for both inner planets, while the outer planet probably has a significant gaseous envelope surrounding its rocky/icy core; the outer planet orbits within the habitable zone of this star.

  3. Multiplex Recurrence Networks

    NASA Astrophysics Data System (ADS)

    Eroglu, Deniz; Marwan, Norbert

    2017-04-01

    The complex nature of a variety of phenomena in physical, biological, or earth sciences is driven by a large number of degrees of freedom which are strongly interconnected. Although the evolution of such systems is described by multivariate time series (MTS), so far research mostly focuses on analyzing these components one by one. Recurrence based analyses are powerful methods to understand the underlying dynamics of a dynamical system and have been used for many successful applications including examples from earth science, economics, or chemical reactions. The backbone of these techniques is creating the phase space of the system. However, increasing the dimension of a system requires increasing the length of the time series in order get significant and reliable results. This requirement is one of the challenges in many disciplines, in particular in palaeoclimate, thus, it is not easy to create a phase space from measured MTS due to the limited number of available obervations (samples). To overcome this problem, we suggest to create recurrence networks from each component of the system and combine them into a multiplex network structure, the multiplex recurrence network (MRN). We test the MRN by using prototypical mathematical models and demonstrate its use by studying high-dimensional palaeoclimate dynamics derived from pollen data from the Bear Lake (Utah, US). By using the MRN, we can distinguish typical climate transition events, e.g., such between Marine Isotope Stages.

  4. NASA's Earth Observing System (EOS): Observing the Atmosphere, Land, Oceans, and Ice from Space

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    2004-01-01

    The Earth Observing System (EOS) is a space-based observing system comprised of a series of satellite sensors by which scientists can monitor the Earth, a Data and Information System (EOSDIS) enabling researchers worldwide to access the satellite data, and an interdisciplinary science research program to interpret the satellite data. During this year, the last of the first series of EOS missions, Aura, was launched. Aura is designed exclusively to conduct research on the composition, chemistry, and dynamics of the Earth's upper and lower atmosphere, employing multiple instruments on a single spacecraft. Aura is the third in a series of major Earth observing satellites to study the environment and climate change and is part of NASA's Earth Science Enterprise. The first and second missions, Terra and Aqua, are designed to study the land, oceans, atmospheric constituents (aerosols, clouds, temperature, and water vapor), and the Earth's radiation budget. The other seven EOS spacecraft include satellites to study (i) land cover & land use change, (ii) solar irradiance and solar spectral variation, (iii) ice volume, (iv) ocean processes (vector wind and sea surface topography), and (v) vertical variations of clouds, water vapor, and aerosols up to and including the stratosphere. Aura's chemistry measurements will also follow up on measurements that began with NASA's Upper Atmosphere Research Satellite and continue the record of satellite ozone data collected from the TOMS missions. In this presentation I will describe how scientists are using EOS data to examine the health of the earth's atmosphere, including atmospheric chemistry, aerosol properties, and cloud properties, with a special but not exclusive look at the latest earth observing mission, Aura.

  5. NASA's Earth Observing System (EOS): Observing the Atmosphere, Land, Oceans, and Ice from Space

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    2005-01-01

    The Earth Observing System (EOS) is a space-based observing system comprised of a series of satellite sensors by whch scientists can monitor the Earth, a Data and Information System (EOSDIS) enabling researchers worldwide to access the satellite data, and an interdisciplinary science research program to interpret the satellite data. During this year, the last of the first series of EOS missions, Aura, was launched. Aura is designed exclusively to conduct research on the composition, chemistry, and dynamics of the Earth's upper and lower atmosphere, employing multiple instruments on a single spacecraft. Aura is the third in a series of major Earth observing satellites to study the environment and climate change and is part of NASA's Earth Science Enterprise. The first and second missions, Terra and Aqua, are designed to study the land, oceans, atmospheric constituents (aerosols, clouds, temperature, and water vapor), and the Earth's radiation budget. The other seven EOS spacecraft include satellites to study (i) land cover & land use change, (ii) solar irradiance and solar spectral variation, (iii) ice volume, (iv) ocean processes (vector wind and sea surface topography), and (v) vertical variations of clouds, water vapor, and aerosols up to and including the stratosphere. Aura's chemistry measurements will also follow up on measurements that began with NASA's Upper Atmosphere Research Satellite and continue the record of satellite ozone data collected from the TOMS missions. In this presentation I will describe how scientists are using EOS data to examine the health of the earth's atmosphere, including atmospheric chemistry, aerosol properties, and cloud properties, with a special look at the latest earth observing mission, Aura.

  6. Tablet and Face-to-Face Hybrid Professional Development: Providing Earth Systems Science Educators Authentic Research Opportunities through The GLOBE Program at Purdue University

    NASA Astrophysics Data System (ADS)

    Wegner, K.; Branch, B. D.; Smith, S. C.

    2013-12-01

    The Global Learning and Observations to Benefit the Environment (GLOBE) program is a worldwide hands-on, primary and secondary school-based science and education program (www.globe.gov). GLOBE's vision promotes and supports students, teachers and scientists to collaborate on inquiry-based authentic science investigations of the environment and the Earth system working in close partnership with NASA, NOAA and NSF Earth System Science Projects (ESSP's) in study and research about the dynamics of Earth's environment. GLOBE Partners conduct face-to-face Professional Development in more than 110 countries, providing authentic scientific research experience in five investigation areas: atmosphere, earth as a system, hydrology, land cover, and soil. This presentation will provide a sample for a new framework of Professional Development that was implemented in July 2013 at Purdue University lead by Mr. Steven Smith who has tested GLOBE training materials for future training. The presentation will demonstrate how institutions can provide educators authentic scientific research opportunities through various components, including: - Carrying out authentic research investigations - Learning how to enter their authentic research data into the GLOBE database and visualize it on the GLOBE website - Learn how to access to NASA's Earth System Science resources via GLOBE's new online 'e-Training Program' - Exploring the connections of their soil protocol measurements and the history of the soil in their area through iPad soils app - LIDAR data exposure, Hydrology data exposure

  7. Innermost Planets of the Solar System

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The appearance and characteristics of Mercury and Venus as evening and morning stars are discussed. Inferior and superior conjunction are defined. The motions, phases, and planetary dynamics of the two planets are compared with those of the earth and moon.

  8. FROM ORDER TO CHAOS IN EARTH SATELLITE ORBITS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gkolias, Ioannis; Gachet, Fabien; Daquin, Jérôme

    We consider Earth satellite orbits in the range of semimajor axes where the perturbing effects of Earth’s oblateness and lunisolar gravity are of comparable order. This range covers the medium-Earth orbits (MEO) of the Global Navigation Satellite Systems and the geosynchronous orbits (GEO) of the communication satellites. We recall a secular and quadrupolar model, based on the Milankovitch vector formulation of perturbation theory, which governs the long-term orbital evolution subject to the predominant gravitational interactions. We study the global dynamics of this two-and-a-half degrees-of-freedom Hamiltonian system by means of the fast Lyapunov indicator (FLI), used in a statistical sense. Specifically,more » we characterize the degree of chaoticity of the action space using angle-averaged normalized FLI maps, thereby overcoming the angle dependencies of the conventional stability maps. Emphasis is placed upon the phase-space structures near secular resonances, which are of primary importance to the space debris community. We confirm and quantify the transition from order to chaos in MEO, stemming from the critical inclinations and find that highly inclined GEO orbits are particularly unstable. Despite their reputed normality, Earth satellite orbits can possess an extraordinarily rich spectrum of dynamical behaviors and, from a mathematical perspective, have all the complications that make them very interesting candidates for testing the modern tools of chaos theory.« less

  9. EarthLabs Modules: Engaging Students In Extended, Rigorous Investigations Of The Ocean, Climate and Weather

    NASA Astrophysics Data System (ADS)

    Manley, J.; Chegwidden, D.; Mote, A. S.; Ledley, T. S.; Lynds, S. E.; Haddad, N.; Ellins, K.

    2016-02-01

    EarthLabs, envisioned as a national model for high school Earth or Environmental Science lab courses, is adaptable for both undergraduate middle school students. The collection includes ten online modules that combine to feature a global view of our planet as a dynamic, interconnected system, by engaging learners in extended investigations. EarthLabs support state and national guidelines, including the NGSS, for science content. Four modules directly guide students to discover vital aspects of the oceans while five other modules incorporate ocean sciences in order to complete an understanding of Earth's climate system. Students gain a broad perspective on the key role oceans play in fishing industry, droughts, coral reefs, hurricanes, the carbon cycle, as well as life on land and in the seas to drive our changing climate by interacting with scientific research data, manipulating satellite imagery, numerical data, computer visualizations, experiments, and video tutorials. Students explore Earth system processes and build quantitative skills that enable them to objectively evaluate scientific findings for themselves as they move through ordered sequences that guide the learning. As a robust collection, EarthLabs modules engage students in extended, rigorous investigations allowing a deeper understanding of the ocean, climate and weather. This presentation provides an overview of the ten curriculum modules that comprise the EarthLabs collection developed by TERC and found at http://serc.carleton.edu/earthlabs/index.html. Evaluation data on the effectiveness and use in secondary education classrooms will be summarized.

  10. Earth System Science Education Interdisciplinary Partnerships

    NASA Astrophysics Data System (ADS)

    Ruzek, M.; Johnson, D. R.

    2002-05-01

    Earth system science in the classroom is the fertile crucible linking science with societal needs for local, national and global sustainability. The interdisciplinary dimension requires fruitful cooperation among departments, schools and colleges within universities and among the universities and the nation's laboratories and agencies. Teaching and learning requires content which brings together the basic and applied sciences with mathematics and technology in addressing societal challenges of the coming decades. Over the past decade remarkable advances have emerged in information technology, from high bandwidth Internet connectivity to raw computing and visualization power. These advances which have wrought revolutionary capabilities and resources are transforming teaching and learning in the classroom. With the launching of NASA's Earth Observing System (EOS) the amount and type of geophysical data to monitor the Earth and its climate are increasing dramatically. The challenge remains, however, for skilled scientists and educators to interpret this information based upon sound scientific perspectives and utilize it in the classroom. With an increasing emphasis on the application of data gathered, and the use of the new technologies for practical benefit in the lives of ordinary citizens, there comes the even more basic need for understanding the fundamental state, dynamics, and complex interdependencies of the Earth system in mapping valid and relevant paths to sustainability. Technology and data in combination with the need to understand Earth system processes and phenomena offer opportunities for new and productive partnerships between researchers and educators to advance the fundamental science of the Earth system and in turn through discovery excite students at all levels in the classroom. This presentation will discuss interdisciplinary partnership opportunities for educators and researchers at the undergraduate and graduate levels.

  11. Model Meets Data: Challenges and Opportunities to Implement Land Management in Earth System Models

    NASA Astrophysics Data System (ADS)

    Pongratz, J.; Dolman, A. J.; Don, A.; Erb, K. H.; Fuchs, R.; Herold, M.; Jones, C.; Luyssaert, S.; Kuemmerle, T.; Meyfroidt, P.

    2016-12-01

    Land-based demand for food and fibre is projected to increase in the future. In light of global sustainability challenges only part of this increase will be met by expansion of land use into relatively untouched regions. Additional demand will have to be fulfilled by intensification and other adjustments in management of land that already is under agricultural and forestry use. Such land management today occurs on about half of the ice-free land surface, as compared to only about one quarter that has undergone a change in land cover. As the number of studies revealing substantial biogeophysical and biogeochemical effects of land management is increasing, moving beyond land cover change towards including land management has become a key focus for Earth system modeling. However, a basis for prioritizing land management activities for implementation in models is lacking. We lay this basis for prioritization in a collaborative project across the disciplines of Earth system modeling, land system science, and Earth observation. We first assess the status and plans of implementing land management in Earth system and dynamic global vegetation models. A clear trend towards higher complexity of land use representation is visible. We then assess five criteria for prioritizing the implementation of land management activities: (1) spatial extent, (2) evidence for substantial effects on the Earth system, (3) process understanding, (4) possibility to link the management activity to existing concepts and structures of models, (5) availability of data required as model input. While the first three criteria have been assessed by an earlier study for ten common management activities, we review strategies for implementation in models and the availability of required datasets. We can thus evaluate the management activities for their performance in terms of importance for the Earth system, possibility of technical implementation in models, and data availability. This synthesis reveals some "low-hanging" fruits for model implementation, but also challenges for the assessment of land management effects by modeling. The identified gaps can guide prioritization within the data community from the Earth system and Earth system modeling perspective.

  12. Model meets data: Challenges and opportunities to implement land management in Earth System Models

    NASA Astrophysics Data System (ADS)

    Pongratz, Julia; Dolman, Han; Don, Axel; Erb, Karl-Heinz; Fuchs, Richard; Herold, Martin; Jones, Chris; Luyssaert, Sebastiaan; Kuemmerle, Tobias; Meyfroidt, Patrick; Naudts, Kim

    2017-04-01

    Land-based demand for food and fibre is projected to increase in the future. In light of global sustainability challenges only part of this increase will be met by expansion of land use into relatively untouched regions. Additional demand will have to be fulfilled by intensification and other adjustments in management of land that already is under agricultural and forestry use. Such land management today occurs on about half of the ice-free land surface, as compared to only about one quarter that has undergone a change in land cover. As the number of studies revealing substantial biogeophysical and biogeochemical effects of land management is increasing, moving beyond land cover change towards including land management has become a key focus for Earth system modeling. However, a basis for prioritizing land management activities for implementation in models is lacking. We lay this basis for prioritization in a collaborative project across the disciplines of Earth system modeling, land system science, and Earth observation. We first assess the status and plans of implementing land management in Earth system and dynamic global vegetation models. A clear trend towards higher complexity of land use representation is visible. We then assess five criteria for prioritizing the implementation of land management activities: (1) spatial extent, (2) evidence for substantial effects on the Earth system, (3) process understanding, (4) possibility to link the management activity to existing concepts and structures of models, (5) availability of data required as model input. While the first three criteria have been assessed by an earlier study for ten common management activities, we review strategies for implementation in models and the availability of required datasets. We can thus evaluate the management activities for their performance in terms of importance for the Earth system, possibility of technical implementation in models, and data availability. This synthesis reveals some "low-hanging" fruits for model implementation, but also challenges for the assessment of land management effects by modeling. The identified gaps can guide prioritization within the data community from the Earth system and Earth system modeling perspective.

  13. Overview of past, ongoing and future efforts of the integrated modeling of global change for Northern Eurasia

    NASA Astrophysics Data System (ADS)

    Monier, Erwan; Kicklighter, David; Sokolov, Andrei; Zhuang, Qianlai; Melillo, Jerry; Reilly, John

    2016-04-01

    Northern Eurasia is both a major player in the global carbon budget (it includes roughly 70% of the Earth's boreal forest and more than two-thirds of the Earth's permafrost) and a region that has experienced dramatic climate change (increase in temperature, growing season length, floods and droughts) over the past century. Northern Eurasia has also undergone significant land-use change, both driven by human activity (including deforestation, expansion of agricultural lands and urbanization) and natural disturbances (such as wildfires and insect outbreaks). These large environmental and socioeconomic impacts have major implications for the carbon cycle in the region. Northern Eurasia is made up of a diverse set of ecosystems that range from tundra to forests, with significant areas of croplands and pastures as well as deserts, with major urban areas. As such, it represents a complex system with substantial challenges for the modeling community. In this presentation, we provide an overview of past, ongoing and possible future efforts of the integrated modeling of global change for Northern Eurasia. We review the variety of existing modeling approaches to investigate specific components of Earth system dynamics in the region. While there are a limited number of studies that try to integrate various aspects of the Earth system (through scale, teleconnections or processes), we point out that there are few systematic analyses of the various feedbacks within the Earth system (between components, regions or scale). As a result, there is a lack of knowledge of the relative importance of such feedbacks, and it is unclear how policy relevant current studies are that fail to account for these feedbacks. We review the role of Earth system models, and their advantages/limitations compared to detailed single component models. We further introduce the human activity system (global trade, economic models, demographic model and so on), the need for coupled human/earth system models and Integrated Assessment Models (IAMs), a suite of models that couple human activity models to Earth System Models. Finally, we conclude the presentation with examples of emerging issues that require a representation of the coupled human/earth system models.

  14. The Geochemical Earth Reference Model (GERM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Staudigel, H.; Albarede, F.; Shaw, H.

    The Geochemical Earth Reference Model (GERM) initiative is a grass- roots effort with the goal of establishing a community consensus on a chemical characterization of the Earth, its major reservoirs, and the fluxes between them. Long term goal of GERM is a chemical reservoir characterization analogous to the geophysical effort of the Preliminary Reference Earth Model (PREM). Chemical fluxes between reservoirs are included into GERM to illuminate the long-term chemical evolution of the Earth and to characterize the Earth as a dynamic chemical system. In turn, these fluxes control geological processes and influence hydrosphere-atmosphere-climate dynamics. While these long-term goals aremore » clearly the focus of GERM, the process of establishing GERM itself is just as important as its ultimate goal. The GERM initiative is developed in an open community discussion on the World Wide Web (GERM home page is at http://www-ep.es.llnl. gov/germ/germ-home.html) that is mediated by a series of editors with responsibilities for distinct reservoirs and fluxes. Beginning with the original workshop in Lyons (March 1996) GERM is continued to be developed on the Internet, punctuated by workshops and special sessions at professional meetings. It is planned to complete the first model by mid-1997, followed by a call for papers for a February 1998 GERM conference in La Jolla, California.« less

  15. Pegasus ICON Spacecraft Mate to Separation System

    NASA Image and Video Library

    2018-05-09

    Technicians prepare NASA's Ionospheric Connection Explorer (ICON) to be attached to the spacecraft separation system May 9, 2018, in a clean room inside Building 1555 at Vandenberg Air Force Base in California. The explorer will launch on June 15, 2018, from Kwajalein Atoll in the Marshall Islands (June 14 in the continental United States) on Orbital ATK's Pegasus XL rocket, which is attached to the company's L-1011 Stargazer aircraft. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.

  16. Pegasus ICON Spacecraft Mate to Separation System

    NASA Image and Video Library

    2018-05-09

    Technicians secure NASA's Ionospheric Connection Explorer (ICON) on the spacecraft separation system May 9, 2018, in a clean room inside Building 1555 at Vandenberg Air Force Base in California. The explorer will launch on June 15, 2018, from Kwajalein Atoll in the Marshall Islands (June 14 in the continental United States) on Orbital ATK's Pegasus XL rocket, which is attached to the company's L-1011 Stargazer aircraft. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.

  17. NASA Soil Moisture Data Products and Their Incorporation in DREAM

    NASA Technical Reports Server (NTRS)

    Blonski, Slawomir; Holland, Donald; Henderson, Vaneshette

    2005-01-01

    NASA provides soil moisture data products that include observations from the Advanced Microwave Scanning Radiometer on the Earth Observing System Aqua satellite, field measurements from the Soil Moisture Experiment campaigns, and model predictions from the Land Information System and the Goddard Earth Observing System Data Assimilation System. Incorporation of the NASA soil moisture products in the Dust Regional Atmospheric Model is possible through use of the satellite observations of soil moisture to set initial conditions for the dust simulations. An additional comparison of satellite soil moisture observations with mesoscale atmospheric dynamics modeling is recommended. Such a comparison would validate the use of NASA soil moisture data in applications and support acceptance of satellite soil moisture data assimilation in weather and climate modeling.

  18. The Nexus for Exoplanet System Science

    NASA Technical Reports Server (NTRS)

    Batalha, Natalie Marie; Gelino, Dawn; Del Genio, Tony

    2016-01-01

    NExSS is a research coordination network dedicated to the study of planetary habitability. A NASA cross-division initiative bringing astrophysicists, planetary scientists, Earth scientists, and heliophysicists together to bring a systems science approach to this problem. NExSS's goals being to investigate the diversity of planets, understanding how planet history, geology, and climate interact to create the conditions for life. Also, to put planets into an architectural context as stellar systems built over time by dynamical processes and sculpted by stars. Use experience from solar system (including Earth) history to identify where habitable niches are most likely to occur and which planets are most likely to be habitable. Leverage NASA investments in research and missions to accelerate discovery and characterization of potential life-bearing worlds.

  19. Modeling change from large-scale high-dimensional spatio-temporal array data

    NASA Astrophysics Data System (ADS)

    Lu, Meng; Pebesma, Edzer

    2014-05-01

    The massive data that come from Earth observation satellite and other sensors provide significant information for modeling global change. At the same time, the high dimensionality of the data has brought challenges in data acquisition, management, effective querying and processing. In addition, the output of earth system modeling tends to be data intensive and needs methodologies for storing, validation, analyzing and visualization, e.g. as maps. An important proportion of earth system observations and simulated data can be represented as multi-dimensional array data, which has received increasingly attention in big data management and spatial-temporal analysis. Study cases will be developed in natural science such as climate change, hydrological modeling, sediment dynamics, from which the addressing of big data problems is necessary. Multi-dimensional array-based database management and analytics system such as Rasdaman, SciDB, and R will be applied to these cases. From these studies will hope to learn the strengths and weaknesses of these systems, how they might work together or how semantics of array operations differ, through addressing the problems associated with big data. Research questions include: • How can we reduce dimensions spatially and temporally, or thematically? • How can we extend existing GIS functions to work on multidimensional arrays? • How can we combine data sets of different dimensionality or different resolutions? • Can map algebra be extended to an intelligible array algebra? • What are effective semantics for array programming of dynamic data driven applications? • In which sense are space and time special, as dimensions, compared to other properties? • How can we make the analysis of multi-spectral, multi-temporal and multi-sensor earth observation data easy?

  20. Vestibular ataxia following shuttle flights: effects of microgravity on otolith-mediated sensorimotor control of posture.

    PubMed

    Paloski, W H; Black, F O; Reschke, M F; Calkins, D S; Shupert, C

    1993-01-01

    Orbital spaceflight exposes astronauts to an environment in which gravity is reduced to negligible magnitudes of 10(-3) to 10(-6) G. Upon insertion into earth orbit, the abrupt loss of the constant linear acceleration provided by gravity removes the otolith stimulus for vestibular sensation of vertical orientation constantly present on Earth. Since the central nervous system (CNS) assesses spatial orientation by simultaneously interpreting sensory inputs from the vestibular, visual, and proprioceptive systems, loss of the otolith-mediated vertical reference input results in an incorrect estimation of spatial orientation, which, in turn, causes a degradation in movement control. Over time, however, the CNS adapts to the loss of gravitational signals. Upon return to Earth, the vertical reference provided by gravitational stimulation of the otolith organ reappears. As a result, a period of CNS readaptation must occur upon return to terrestrial environment. Among the physiological changes observed during the postflight CNS readaptation period is a disruption of postural equilibrium control. Using a dynamic posturography system (modified NeuroCom EquiTest), 16 astronauts were tested at 60, 30, and 10 days preflight and retested at 1 to 5 hours, and 8 days postflight. All astronauts tested demonstrated decreased postural stability immediately upon return to Earth. The most dramatic increases in postural sway occurred during those sensory conditions in which both the visual and proprioceptive feedback information used for postural control were altered by the dynamic posturography system, requiring reliance primarily upon vestibular function for control of upright stance. Less marked but statistically significant increases in sway were observed under those conditions in which visual and foot support surface inputs alone were altered.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Analysis For Monitoring the Earth Science Afternoon Constellation

    NASA Technical Reports Server (NTRS)

    Demarest, Peter; Richon, Karen V.; Wright, Frank

    2005-01-01

    The Earth Science Afternoon Constellation consists of Aqua, Aura, PARASOL, CALIPSO, Cloudsat, and the Orbiting Carbon Observatory (OCO). The coordination of flight dynamics activities between these missions is critical to the safety and success of the Afternoon Constellation. This coordination is based on two main concepts, the control box and the zone-of-exclusion. This paper describes how these two concepts are implemented in the Constellation Coordination System (CCS). The CCS is a collection of tools that enables the collection and distribution of flight dynamics products among the missions, allows cross-mission analyses to be performed through a web-based interface, performs automated analyses to monitor the overall constellation, and notifies the missions of changes in the status of the other missions.

  2. Oxygen isotopic evidence for accretion of Earth's water before a high-energy Moon-forming giant impact.

    PubMed

    Greenwood, Richard C; Barrat, Jean-Alix; Miller, Martin F; Anand, Mahesh; Dauphas, Nicolas; Franchi, Ian A; Sillard, Patrick; Starkey, Natalie A

    2018-03-01

    The Earth-Moon system likely formed as a result of a collision between two large planetary objects. Debate about their relative masses, the impact energy involved, and the extent of isotopic homogenization continues. We present the results of a high-precision oxygen isotope study of an extensive suite of lunar and terrestrial samples. We demonstrate that lunar rocks and terrestrial basalts show a 3 to 4 ppm (parts per million), statistically resolvable, difference in Δ 17 O. Taking aubrite meteorites as a candidate impactor material, we show that the giant impact scenario involved nearly complete mixing between the target and impactor. Alternatively, the degree of similarity between the Δ 17 O values of the impactor and the proto-Earth must have been significantly closer than that between Earth and aubrites. If the Earth-Moon system evolved from an initially highly vaporized and isotopically homogenized state, as indicated by recent dynamical models, then the terrestrial basalt-lunar oxygen isotope difference detected by our study may be a reflection of post-giant impact additions to Earth. On the basis of this assumption, our data indicate that post-giant impact additions to Earth could have contributed between 5 and 30% of Earth's water, depending on global water estimates. Consequently, our data indicate that the bulk of Earth's water was accreted before the giant impact and not later, as often proposed.

  3. Modeling global change impacts on Northern Eurasia

    NASA Astrophysics Data System (ADS)

    Kicklighter, D. W.; Monier, E.; Sokolov, A. P.; Zhuang, Q.; Melillo, J. M.; Reilly, J. M.

    2016-12-01

    Northern Eurasia is a major player in the global carbon budget and includes roughly 70% of the Earth's boreal forest and more than two-thirds of the Earth's permafrost. The region has experienced dramatic climate change (increase in temperature, growing season length, floods and droughts), natural disturbances (wildfires and insect outbreaks), and land-use change (timber harvest, urbanization, expansion and abandonment of agricultural lands) over the past century. These large environmental and socioeconomic impacts have major implications for the carbon cycle in the region. Northern Eurasia is made up of a diverse set of ecosystems that range from deserts to forests, with significant areas of croplands, pastures, and urban areas. As such, it represents a complex system with substantial challenges for the modeling community. We provide an overview of past, ongoing and possible future efforts of the integrated modeling of global change for Northern Eurasia. First, we review the variety of existing modeling approaches to investigate specific components of Earth system dynamics in the region. While there are a limited number of studies that try to integrate various aspects of the Earth system through scale, teleconnections or processes, there are few systematic analyses of the various feedbacks among components within the Earth system. As a result, there is a lack of knowledge of the relative importance of such feedbacks, and it is unclear how relevant current studies, which do not account for these feedbacks, may be for policymaking. Next, we review the role of Earth system models, and their advantages/limitations compared to detailed single component models. We further introduce human activity models (e.g., global trade, economic models, demographic models), and the need for Integrated Assessment Models (IAMs), a suite of models that couple human activity models to Earth System Models. Finally, we examine emerging issues that require a representation of the coupled human/earth system models to address.

  4. NASA's Earth Observing Data and Information System - Near-Term Challenges

    NASA Technical Reports Server (NTRS)

    Behnke, Jeanne; Mitchell, Andrew; Ramapriyan, Hampapuram

    2018-01-01

    NASA's Earth Observing System Data and Information System (EOSDIS) has been a central component of the NASA Earth observation program since the 1990's. EOSDIS manages data covering a wide range of Earth science disciplines including cryosphere, land cover change, polar processes, field campaigns, ocean surface, digital elevation, atmosphere dynamics and composition, and inter-disciplinary research, and many others. One of the key components of EOSDIS is a set of twelve discipline-based Distributed Active Archive Centers (DAACs) distributed across the United States. Managed by NASA's Earth Science Data and Information System (ESDIS) Project at Goddard Space Flight Center, these DAACs serve over 3 million users globally. The ESDIS Project provides the infrastructure support for EOSDIS, which includes other components such as the Science Investigator-led Processing systems (SIPS), common metadata and metrics management systems, specialized network systems, standards management, and centralized support for use of commercial cloud capabilities. Given the long-term requirements, and the rapid pace of information technology and changing expectations of the user community, EOSDIS has evolved continually over the past three decades. However, many challenges remain. Challenges addressed in this paper include: growing volume and variety, achieving consistency across a diverse set of data producers, managing information about a large number of datasets, migration to a cloud computing environment, optimizing data discovery and access, incorporating user feedback from a diverse community, keeping metadata updated as data collections grow and age, and ensuring that all the content needed for understanding datasets by future users is identified and preserved.

  5. Carbon-climate-human interactions in an integrated human-Earth system model

    NASA Astrophysics Data System (ADS)

    Calvin, K. V.; Bond-Lamberty, B. P.; Jones, A. D.; Shi, X.

    2016-12-01

    The C4MIP and CMIP5 results highlighted large uncertainties in climate projections, driven to a large extent by limited understanding of the interactions between terrestrial carbon-cycle and climate feedbacks, and their associated uncertainties. These feedbacks are dominated by uncertainties in soil processes, disturbance dynamics, ecosystem response to climate change, and agricultural productivity, and land-use change. This research addresses three questions: (1) how do terrestrial feedbacks vary across different levels of climate change, (2) what is the relative contribution of CO2 fertilization and climate change, and (3) how robust are the results across different models and methods? We used a coupled modeling framework that integrates an Integrated Assessment Model (modeling economic and energy activity) with an Earth System Model (modeling the natural earth system) to examine how business-as-usual (RCP 8.5) climate change will affect ecosystem productivity, cropland extent, and other aspects of the human-Earth system. We find that higher levels of radiative forcing result in higher productivity growth, that increases in CO2 concentrations are the dominant contributors to that growth, and that our productivity increases fall in the middle of the range when compared to other CMIP5 models and the AgMIP models. These results emphasize the importance of examining both the anthropogenic and natural components of the earth system, and their long-term interactive feedbacks.

  6. Resolving Orbital and Climate Keys of Earth and Extraterrestrial Environments with Dynamics (ROCKE-3D) 1.0: A General Circulation Model for Simulating the Climates of Rocky Planets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Way, M. J.; Aleinov, I.; Amundsen, David S.

    Resolving Orbital and Climate Keys of Earth and Extraterrestrial Environments with Dynamics (ROCKE-3D) is a three-dimensional General Circulation Model (GCM) developed at the NASA Goddard Institute for Space Studies for the modeling of atmospheres of solar system and exoplanetary terrestrial planets. Its parent model, known as ModelE2, is used to simulate modern Earth and near-term paleo-Earth climates. ROCKE-3D is an ongoing effort to expand the capabilities of ModelE2 to handle a broader range of atmospheric conditions, including higher and lower atmospheric pressures, more diverse chemistries and compositions, larger and smaller planet radii and gravity, different rotation rates (from slower tomore » more rapid than modern Earth’s, including synchronous rotation), diverse ocean and land distributions and topographies, and potential basic biosphere functions. The first aim of ROCKE-3D is to model planetary atmospheres on terrestrial worlds within the solar system such as paleo-Earth, modern and paleo-Mars, paleo-Venus, and Saturn’s moon Titan. By validating the model for a broad range of temperatures, pressures, and atmospheric constituents, we can then further expand its capabilities to those exoplanetary rocky worlds that have been discovered in the past, as well as those to be discovered in the future. We also discuss the current and near-future capabilities of ROCKE-3D as a community model for studying planetary and exoplanetary atmospheres.« less

  7. Currents and Flows in Distant Magnetospheres

    NASA Technical Reports Server (NTRS)

    Kivelson, Margaret Galland

    2000-01-01

    Space scientists have explored, described, and explained the terrestrial magnetosphere for four decades. Rarely do they point out that the planetary and solar wind parameters controlling the size, shape, and activity of Earth's magnetosphere map out only a small portion of the space of dimensionless parameters that govern magnetospheric properties. With the discovery of Ganymede's magnetosphere, the range of parameters relevant to magnetospheric studies has grown by orders of magnitude. Consider the extremes of Ganymede's and Jupiter's magnetospheres. Jupiter's magnetosphere forms within a plasma flowing at super-Alfvenic speed, whereas Ganymede's forms in a sub-Alfvenic flow. The scale sizes of these magnetospheres, characterized by distances to the magnetopause of order 7x10(exp 6) km and 5x10(exp 3) km, respectively, differ by three orders of magnitude, ranging from 100 to 0.1 times the scale of Earth's magnetosphere. The current systems that control the structure and dynamics of a magnetosphere depend on specific plasma and field properties. Magnetopause currents at Ganymede differ greatly from the forms familiar for Earth and Jupiter, principally because the Mach number of the ambient plasma flow greatly influences the shape of the magnetosphere. A magnetodisk current, present at Jupiter because of its rapid rotation, is absent at Earth and Ganymede. The ring current, extensively investigated at Earth, is probably unimportant at Ganymede because the dynamical variations of the external flow are slow. The ring current is subsumed within the magnetodisk current at Jupiter. This paper describes and contrasts aspects of these and other current systems for the three bodies.

  8. EM Diffusion for a Time-Domain Airborne EM System

    NASA Astrophysics Data System (ADS)

    Yin, C.; Qiu, C.; Liu, Y.; Cai, J.

    2014-12-01

    Visualization of EM diffusion for an airborne EM (AEM) system is important for understanding the transient procedure of EM diffusion. The current distribution and diffusion features also provide effective means to evaluate EM footprint, depth of exploration and further help AEM system design and data interpretation. Most previous studies on EM diffusion (or "smoke ring" effect) are based on the static presentation of EM field, where the dynamic features of EM diffusion were not visible. For visualizing the dynamic feature of EM diffusion, we first calculate in this paper the frequency-domain EM field by downward continuation of the EM field at the EM receiver to the deep earth. After that, we transform the results to time-domain via a Fourier transform. We take a homogeneous half-space and a two-layered earth induced by a step pulse to calculate the EM fields and display the EM diffusion in the earth as 3D animated vectors or time-varying contours. The "smoke ring" effect of EM diffusion, dominated by the resistivity distribution of the earth, is clearly observed. The numerical results for an HCP (vertical magnetic dipole) and a VCX (horizontal magnetic dipole) transmitting coil above a homogeneous half-space of 100 ohm-m are shown in Fig.1. We display as example only the distribution of EM field inside the earth for the diffusion time of 0.05ms. The detailed EM diffusion will be shown in our future presentation. From the numerical experiments for different models, we find that 1) the current for either an HCP or a VCX transmitting dipole propagates downward and outward with time, becoming wider and more diffuse, forming a "smoke ring"; 2) for a VCX transmitter, the underground current forms two ellipses, corresponding to the two polarities of the magnetic flux of a horizontal magnetic dipole, injecting into or ejected from the earth; 3) for a HCP transmitter, however, the underground current forms only one circle, corresponding to the polarity of the magnetic flux for a vertical magnetic dipole, injecting into the earth; 4) there exists no vertical current in an isotropic homogeneous half-space. The currents for both HCP and VCX transmitting dipole flow horizontally.

  9. JPL's Role in Advancing Earth System Science to Meet the Challenges of Climate and Environmental Change

    NASA Technical Reports Server (NTRS)

    Evans, Diane

    2012-01-01

    Objective 2.1.1: Improve understanding of and improve the predictive capability for changes in the ozone layer, climate forcing, and air quality associated with changes in atmospheric composition. Objective 2.1.2: Enable improved predictive capability for weather and extreme weather events. Objective 2.1.3: Quantify, understand, and predict changes in Earth s ecosystems and biogeochemical cycles, including the global carbon cycle, land cover, and biodiversity. Objective 2.1.4: Quantify the key reservoirs and fluxes in the global water cycle and assess water cycle change and water quality. Objective 2.1.5: Improve understanding of the roles of the ocean, atmosphere, land and ice in the climate system and improve predictive capability for its future evolution. Objective 2.1.6: Characterize the dynamics of Earth s surface and interior and form the scientific basis for the assessment and mitigation of natural hazards and response to rare and extreme events. Objective 2.1.7: Enable the broad use of Earth system science observations and results in decision-making activities for societal benefits.

  10. How Earth Educators Can Help Students Develop a Holistic Understanding of Sustainability

    NASA Astrophysics Data System (ADS)

    Curren, R. R.; Metzger, E. P.

    2017-12-01

    With their expert understanding of planetary systems, Earth educators play a pivotal role in helping students understand the scientific dimensions of solution-resistant ("wicked") challenges to sustainability that arise from complex interactions between intertwined and co-evolving natural and human systems. However, teaching the science of sustainability in isolation from consideration of human values and social dynamics leaves students with a fragmented understanding and obscures the underlying drivers of unsustainability. Geoscience instructors who wish to address sustainability in their courses may feel ill-equipped to engage students in investigation of the fundamental nature of sustainability and its social and ethical facets. This presentation will blend disciplinary perspectives from Earth system science, philosophy, psychology, and anthropology to: 1) outline a way to conceptualize sustainability that synthesizes scientific, social, and ethical perspectives and 2) provide an overview of resources and teaching strategies designed to help students connect science content to the socio-political dimensions of sustainability through activities and assignments that promote active learning, systems thinking, reflection, and collaborative problem-solving.

  11. Brief Communication: A low-cost Arduino®-based wire extensometer for earth flow monitoring

    NASA Astrophysics Data System (ADS)

    Guerriero, Luigi; Guerriero, Giovanni; Grelle, Gerardo; Guadagno, Francesco M.; Revellino, Paola

    2017-06-01

    Continuous monitoring of earth flow displacement is essential for the understanding of the dynamic of the process, its ongoing evolution and designing mitigation measures. Despite its importance, it is not always applied due to its expense and the need for integration with additional sensors to monitor factors controlling movement. To overcome these problems, we developed and tested a low-cost Arduino-based wire-rail extensometer integrating a data logger, a power system and multiple digital and analog inputs. The system is equipped with a high-precision position transducer that in the test configuration offers a measuring range of 1023 mm and an associated accuracy of ±1 mm, and integrates an operating temperature sensor that should allow potential thermal drift that typically affects this kind of systems to be identified and corrected. A field test, conducted at the Pietrafitta earth flow where additional monitoring systems had been installed, indicates a high reliability of the measurement and a high monitoring stability without visible thermal drift.

  12. The Global Distribution of Precipitation and Clouds. Chapter 2.4

    NASA Technical Reports Server (NTRS)

    Shepherd, J. Marshall; Adler, Robert; Huffman, George; Rossow, William; Ritter, Michael; Curtis, Scott

    2004-01-01

    The water cycle is the key circuit moving water through the Earth's system. This large system, powered by energy from the sun, is a continuous exchange of moisture between the oceans, the atmosphere, and the land. Precipitation (including rain, snow, sleet, freezing rain, and hail), is the primary mechanism for transporting water from the atmosphere back to the Earth's surface and is the key physical process that links aspects of climate, weather, and the global water cycle. Global precipitation and associate cloud processes are critical for understanding the water cycle balance on a global scale and interactions with the Earth's climate system. However, unlike measurement of less dynamic and more homogenous meteorological fields such as pressure or even temperature, accurate assessment of global precipitation is particularly challenging due to its highly stochastic and rapidly changing nature. It is not uncommon to observe a broad spectrum of precipitation rates and distributions over very localized time scales. Furthermore, precipitating systems generally exhibit nonhomogeneous spatial distributions of rain rates over local to global domains.

  13. Characterizing the Meso-scale Plasma Flows in Earth's Coupled Magnetosphere-Ionosphere-Thermosphere System

    NASA Astrophysics Data System (ADS)

    Gabrielse, C.; Nishimura, T.; Lyons, L. R.; Gallardo-Lacourt, B.; Deng, Y.; McWilliams, K. A.; Ruohoniemi, J. M.

    2017-12-01

    NASA's Heliophysics Decadal Survey put forth several imperative, Key Science Goals. The second goal communicates the urgent need to "Determine the dynamics and coupling of Earth's magnetosphere, ionosphere, and atmosphere and their response to solar and terrestrial inputs...over a range of spatial and temporal scales." Sun-Earth connections (called Space Weather) have strong societal impacts because extreme events can disturb radio communications and satellite operations. The field's current modeling capabilities of such Space Weather phenomena include large-scale, global responses of the Earth's upper atmosphere to various inputs from the Sun, but the meso-scale ( 50-500 km) structures that are much more dynamic and powerful in the coupled system remain uncharacterized. Their influences are thus far poorly understood. We aim to quantify such structures, particularly auroral flows and streamers, in order to create an empirical model of their size, location, speed, and orientation based on activity level (AL index), season, solar cycle (F10.7), interplanetary magnetic field (IMF) inputs, etc. We present a statistical study of meso-scale flow channels in the nightside auroral oval and polar cap using SuperDARN. These results are used to inform global models such as the Global Ionosphere Thermosphere Model (GITM) in order to evaluate the role of meso-scale disturbances on the fully coupled magnetosphere-ionosphere-thermosphere system. Measuring the ionospheric footpoint of magnetospheric fast flows, our analysis technique from the ground also provides a 2D picture of flows and their characteristics during different activity levels that spacecraft alone cannot.

  14. Estimated performance and future potential of solar dynamic and photovoltaic power systems for selected LEO and HEO missions

    NASA Technical Reports Server (NTRS)

    Bents, David J.; Lu, Cheng Y.

    1989-01-01

    Solar Photo Voltaic (PV) and thermal dynamic power systems for application to selected Low Earth Orbit (LEO) and High Eccentric Orbit (Energy) (HEO) missions are characterized in the regime 7 to 35 kWe. Input parameters to the characterization are varied corresponding to anticipated introduction of improved or new technologies. Comparative assessment is made between the two power system types utilizing newly emerging technologies in cells and arrays, energy storage, optical surfaces, heat engines, thermal energy storage, and thermal management. The assessment is made to common ground rules and assumptions. The four missions (space station, sun-synchronous, Van Allen belt and GEO) are representative of the anticipated range of multi-kWe earth orbit missions. System characterizations include all required subsystems, including power conditioning, cabling, structure, to deliver electrical power to the user. Performance is estimated on the basis of three different levels of component technology: (1) state-of-art, (2) near-term, and (3) advanced technologies. These range from planar array silicon/IPV nickel hydrogen batteries and Brayton systems at 1000 K to thin film GaAs with high energy density secondary batteries or regenerative fuel cells and 1300 K Stirling systems with ultra-lightweight concentrators and radiators. The system estimates include design margin for performance degradations from the known environmental mechanisms (micrometeoroids and space debris, atomic oxygen, electron and proton flux) which are modeled and applied depending on the mission. The results give expected performance, mass and drag of multi-kWe earth orbiting solar power systems and show how overall system figures of merit will improve as new component technologies are incorporated.

  15. Spatial nonlinearities: Cascading effects in the earth system

    USGS Publications Warehouse

    Peters, Debra P.C.; Pielke, R.A.; Bestelmeyer, B.T.; Allen, Craig D.; Munson-McGee, Stuart; Havstad, K. M.; Canadell, Josep G.; Pataki, Diane E.; Pitelka, Louis F.

    2006-01-01

    Nonlinear behavior is prevalent in all aspects of the Earth System, including ecological responses to global change (Gallagher and Appenzeller 1999; Steffen et al. 2004). Nonlinear behavior refers to a large, discontinuous change in response to a small change in a driving variable (Rial et al. 2004). In contrast to linear systems where responses are smooth, well-behaved, continuous functions, nonlinear systems often undergo sharp or discontinuous transitions resulting from the crossing of thresholds. These nonlinear responses can result in surprising behavior that makes forecasting difficult (Kaplan and Glass 1995). Given that many system dynamics are nonlinear, it is imperative that conceptual and quantitative tools be developed to increase our understanding of the processes leading to nonlinear behavior in order to determine if forecasting can be improved under future environmental changes (Clark et al. 2001).

  16. Penetration into Granular Earth Materials (Topic H): A Multi-scale Physics-Based Approach Towards Developing a Greater Understanding of Dynamically Loaded Heterogeneous Systems

    DTIC Science & Technology

    2016-08-01

    7 2.1. DYNAMIC DART GUN EXPERIMENTS...penetration, and cavity formation associated with high-speed projectile penetration of sand. A new half-inch gun was constructed for this project. A...inch gun with them. Data was collected utilizing NSWC’s Cordin 550, 64 frame, high-speed camera. In addition, several student participated in the

  17. Mechanistic Representation of Soil C Dynamics: for Arctic Ecosystem

    NASA Astrophysics Data System (ADS)

    Dwivedi, D.; Riley, W. J.; Bisht, G.

    2013-12-01

    Arctic and sub-Arctic soils store vast amounts of carbon, approximately 1700 billion metric tones of frozen organic carbon. This carbon is susceptible to release to the atmosphere due to environmental changes (e.g., rapidly evolving landscape, warming); however, the mechanisms responsible for this susceptibility of soil organic matter (SOM) are not well understood, and uncertainties exist in terms of their representation in Earth System models. The representation of SOM dynamics in Earth System Models is critical for future climate prediction. To investigate the impacts of various physical (e.g., multi-phase transport, sorption, desorption, temperature), chemical (e.g., pH), and biological (e.g., microbial activity, enzyme dynamics) factors on SOM stability, we have developed CENTURY-like (describing labile and recalcitrant pools) and complex (describing multiple archetypal polymers and monomers C substrate groups) reaction networks. These reaction networks are integrated in a three-dimensional, multi-phase reactive transport solver (PFLOTRAN) and include representations of bacterial and fungal activity as well as population dynamics, gaseous and aqueous advection, and adsorption and desorption. We test and compare these reaction networks in PFLOTRAN to accurately predict depth-resolved soil organic matter (SOM) in the subsurface. We present results showing impacts of abiotic controls (e.g., surface interactions and temperature) on the long-term stabilization of SOM under permafrost conditions.

  18. Polar Misunderstandings: Earth's Dynamic Dynamo

    ERIC Educational Resources Information Center

    DiSpezio, Michael A.

    2011-01-01

    This article discusses the movement of Earth's north and south poles. The Earth's poles may be a bit more complex and dynamic than what many students and teachers believe. With better understanding, offer them up as a rich landscape for higher-level critical analysis and subject integration. Possible curriculum tie-ins include magnets, Earth…

  19. Worldwide Telescope as an earth and planetary science educational platform

    NASA Astrophysics Data System (ADS)

    Fatland, D. R.; Rush, K.; van Ingen, C.; Wong, C.; Fay, J.; Xu, Y.; Fay, D.

    2009-12-01

    Worldwide Telescope (WWT) -available at no cost from Microsoft Research as both Windows desktop and web browser applications - enables personal computers to function as virtual telescopes for viewing the earth, the solar system and the cosmos across many wavelengths. Bringing together imagery from ground and space-based telescopes as well as photography from Mars rovers and Apollo astronauts, WWT is designed to work as both a research tool and a platform for educational exploration. Central to the latter purpose is the Tour authoring facility which enables a student or educator to create narrative stories with dynamic perspective, voice-over narrative, background sound and superimposed content. We describe here the application of recent developments in WWT, particularly the 2009 updates, towards planetary science education with particular emphasis on WWT earth models. Two core themes informing this development are the notions of enabling social networking through WWT Communities and including the earth as part of the bigger picture, in effect swinging the telescope around from the deep sky to look back at our observatory. moon, earth (WWT solar system view)

  20. A new conceptual framework for water and sediment connectivity

    NASA Astrophysics Data System (ADS)

    Keesstra, Saskia; Cerdà, Artemi; Parsons, Tony; Nunes, Joao Pedro; Saco, Patricia

    2016-04-01

    For many years scientists have tried to understand, describe and quantify sediment transport on multiple scales; from the geomorphological work triggered by a single thunderstorm to the geological time scale land scape evolution, and from particles and soil aggregates up to the continental scale. In the last two decades, a new concept called connectivity (Baartman et al., 2013; Bracken et al., 2013, 2015; Parsons et al., 2015) has been used by the scientific community to describe the connection between the different scales at which the sediment redistribution research along the watershed are being studied: pedon, slope tram, slope, watersheds, and basins. This concept is seen as a means to describe and quantify the results of processes influencing the transport of sediment on all these scales. Therefore the concept of connectivity and the way scales are used in the design of a measurement and monitoring scheme are interconnected (Cerdà et al., 2012), which shows that connectivity is not only a tool for process understanding, but also a tool to measure processes on multiple scales. This research aims to describe catchment system dynamics from a connectivity point of view. This conceptual framework can be helpful to look at catchment systems and synthesize which data are necessary to take into account when measuring or modelling water and sediment transfer in catchment systems, Identifying common patterns and generalities will help discover physical reasons for differences in responses and interaction between these processes. We describe a conceptual framework which is meant to bring a better understanding of the system dynamics of a catchment in terms of water and sediment transfer by breaking apart the system dynamics in stocks (the system state at a given moment) and flows (the system fluxes). Breaking apart the internal system dynamics that determine the behaviour of the catchment system is in our opinion a way to bring a better insight into the concepts of hydrological and sediment connectivity as described in previous research by Bracken et al (2013, 2015). By looking at the individual parts of the system, it becomes more manageable and less conceptual, which is important because we have to indicate where the research on connectivity should focus on. With this approach, processes and feedbacks in the catchment system can be pulled apart to study separately, making the system understandable and measureable, which will enable parameterization of models with actual measured data. The approach we took in describing water and sediment transfer is to first assess how they work in a system in dynamic equilibrium. After describing this, an assessment is made of how such dynamic equilibriums can be taken out of balance by an external push. Baartman, J.E.M., Masselink, R.H., Keesstra, S.D., Temme, A.J.A.M., 2013. Linking landscape morphological complexity and sediment connectivity. Earth Surface Processes and Landforms 38: 1457-1471. Bracken, L.J., Wainwright, J., Ali, G.A., Tetzlaff, D., Smith, M.W., Reaney, S.M., and Roy, A.G. 2013. Concepts of hydrological connectivity: research approaches, pathways and future agendas. Earth Science Reviews, 119, 17-34. Bracken, L.J., Turnbull, L, Wainwright, J. and Boogart, P. Submitted. Sediment Connectivity: A Framework for Understanding Sediment Transfer at Multiple Scales. Earth Surface Processes and Landforms. Cerdà, A., Brazier, R., Nearing, M., and de Vente, J. 2012. scales and erosion. Catena, 102, 1-2. doi:10.1016/j.catena.2011.09.006 Parsons A.J., Bracken L., Peoppl , R., Wainwright J., Keesstra, S.D., 2015. Editorial: Introduction to special issue on connectivity in water and sediment dynamics. In press in Earth Surface Processes and Landforms. DOI: 10.1002/esp.3714

  1. The Earth System Documentation (ES-DOC) project

    NASA Astrophysics Data System (ADS)

    Murphy, S.; Greenslade, M. A.; Treshansky, A.; DeLuca, C.; Guilyardi, E.; Denvil, S.

    2013-12-01

    Earth System Documentation (ES-DOC) is an international project supplying high quality tools and services in support of Earth system documentation creation, analysis and dissemination. It is nurturing a sustainable standards based documentation ecosystem that aims to become an integral part of the next generation of exa-scale dataset archives. ES-DOC leverages open source software, and applies a software development methodology that places end-user narratives at the heart of all it does. ES-DOC has initially focused upon nurturing the Earth System Model (ESM) documentation eco-system. Within this context ES-DOC leverages the emerging Common Information Model (CIM) metadata standard, which has supported the following projects: ** Coupled Model Inter-comparison Project Phase 5 (CMIP5); ** Dynamical Core Model Inter-comparison Project (DCMIP-2012); ** National Climate Predictions and Projections Platforms (NCPP) Quantitative Evaluation of Downscaling Workshop (QED-2013). This presentation will introduce the project to a wider audience and will demonstrate the current production level capabilities of the eco-system: ** An ESM documentation Viewer embeddable into any website; ** An ESM Questionnaire configurable on a project by project basis; ** An ESM comparison tool reusable across projects; ** An ESM visualization tool reusable across projects; ** A search engine for speedily accessing published documentation; ** Libraries for streamlining document creation, validation and publishing pipelines.

  2. Engaging Middle School Students with Google Earth Technology to Analyze Ocean Cores as Evidence for Sea Floor Spreading

    NASA Astrophysics Data System (ADS)

    Prouhet, T.; Cook, J.

    2006-12-01

    Google Earth's ability to captivate students' attention, its ease of use, and its high quality images give it the potential to be an extremely effective tool for earth science educators. The unique properties of Google Earth satisfy a growing demand to incorporate technology in science instruction. Google Earth is free and relatively easy to use unlike some other visualization software. Students often have difficulty conceptualizing and visualizing earth systems, such as deep-ocean basins, because of the complexity and dynamic nature of the processes associated with them (e.g. plate tectonics). Google Earth's combination of aerial photography, satellite images and remote sensing data brings a sense of realism to science concepts. The unobstructed view of the ocean floor provided by this technology illustrates three-dimensional subsurface features such as rift valleys, subduction zones, and sea-mounts enabling students to better understand the seafloor's dynamic nature. Students will use Google Earth to navigate the sea floor, and examine Deep Sea Drilling Project (DSDP) core locations the from the Glomar Challenger Leg 3 expedition. The lesson to be implemented was expanded upon and derived from the Joint Oceanographic Insitute (JOI) Learning exercise, Nannofossils Reveal Seafloor Spreading. In addition, students take on the role of scientists as they graph and analyze paleontological data against the distance from the Mid Ocean Ridge. The integration of ocean core data in this three-dimensional view aids students' ability to draw and communicate valid conclusions about their scientific observations. A pre and post survey will be given to examine attitudes, self-efficacy, achievement and content mastery to a sample of approximately 300 eighth grade science students. The hypothesis is that the integration of Google Earth will significantly improve all areas of focus as mentioned above.

  3. Characterizing an Integrated Annual Global Measure of the Earth's Maximum Land Surface Temperatures from 2003 to 2012 Reveals Strong Biogeographic Influences

    NASA Astrophysics Data System (ADS)

    Mildrexler, D. J.; Zhao, M.; Running, S. W.

    2014-12-01

    Land Surface Temperature (LST) is a good indicator of the surface energy balance because it is determined by interactions and energy fluxes between the atmosphere and the ground. The variability of land surface properties and vegetation densities across the Earth's surface changes these interactions and gives LST a unique biogeographic influence. Natural and human-induced disturbances modify the surface characteristics and alter the expression of LST. This results in a heterogeneous and dynamic thermal environment. Measurements that merge these factors into a single global metric, while maintaining the important biophysical and biogeographical factors of the land surface's thermal environment are needed to better understand integrated temperature changes in the Earth system. Using satellite-based LST we have developed a new global metric that focuses on one critical component of LST that occurs when the relationship between vegetation density and surface temperature is strongly coupled: annual maximum LST (LSTmax). A 10 year evaluation of LSTmax histograms that include every 1-km pixel across the Earth's surface reveals that this integrative measurement is strongly influenced by the biogeographic patterns of the Earth's ecosystems, providing a unique comparative view of the planet every year that can be likened to the Earth's thermal maximum fingerprint. The biogeographical component is controlled by the frequency and distribution of vegetation types across the Earth's land surface and displays a trimodal distribution. The three modes are driven by ice covered polar regions, forests, and hot desert/shrubland environments. In ice covered areas the histograms show that the heat of fusion results in a convergence of surface temperatures around the melting point. The histograms also show low interannual variability reflecting two important global land surface dynamics; 1) only a small fraction of the Earth's surface is disturbed in any given year, and 2) when considered at the global scale, the positive and negative climate forcings resulting from the aggregate effects of the loss of vegetation to disturbances and the regrowth from natural succession are roughly in balance. Changes in any component of the histogram can be tracked and would indicate a major change in the Earth system.

  4. Development and application of earth system models.

    PubMed

    Prinn, Ronald G

    2013-02-26

    The global environment is a complex and dynamic system. Earth system modeling is needed to help understand changes in interacting subsystems, elucidate the influence of human activities, and explore possible future changes. Integrated assessment of environment and human development is arguably the most difficult and most important "systems" problem faced. To illustrate this approach, we present results from the integrated global system model (IGSM), which consists of coupled submodels addressing economic development, atmospheric chemistry, climate dynamics, and ecosystem processes. An uncertainty analysis implies that without mitigation policies, the global average surface temperature may rise between 3.5 °C and 7.4 °C from 1981-2000 to 2091-2100 (90% confidence limits). Polar temperatures, absent policy, are projected to rise from about 6.4 °C to 14 °C (90% confidence limits). Similar analysis of four increasingly stringent climate mitigation policy cases involving stabilization of greenhouse gases at various levels indicates that the greatest effect of these policies is to lower the probability of extreme changes. The IGSM is also used to elucidate potential unintended environmental consequences of renewable energy at large scales. There are significant reasons for attention to climate adaptation in addition to climate mitigation that earth system models can help inform. These models can also be applied to evaluate whether "climate engineering" is a viable option or a dangerous diversion. We must prepare young people to address this issue: The problem of preserving a habitable planet will engage present and future generations. Scientists must improve communication if research is to inform the public and policy makers better.

  5. The integrated Earth system model version 1: formulation and functionality

    DOE PAGES

    Collins, W. D.; Craig, A. P.; Truesdale, J. E.; ...

    2015-07-23

    The integrated Earth system model (iESM) has been developed as a new tool for projecting the joint human/climate system. The iESM is based upon coupling an integrated assessment model (IAM) and an Earth system model (ESM) into a common modeling infrastructure. IAMs are the primary tool for describing the human–Earth system, including the sources of global greenhouse gases (GHGs) and short-lived species (SLS), land use and land cover change (LULCC), and other resource-related drivers of anthropogenic climate change. ESMs are the primary scientific tools for examining the physical, chemical, and biogeochemical impacts of human-induced changes to the climate system. Themore » iESM project integrates the economic and human-dimension modeling of an IAM and a fully coupled ESM within a single simulation system while maintaining the separability of each model if needed. Both IAM and ESM codes are developed and used by large communities and have been extensively applied in recent national and international climate assessments. By introducing heretofore-omitted feedbacks between natural and societal drivers, we can improve scientific understanding of the human–Earth system dynamics. Potential applications include studies of the interactions and feedbacks leading to the timing, scale, and geographic distribution of emissions trajectories and other human influences, corresponding climate effects, and the subsequent impacts of a changing climate on human and natural systems. This paper describes the formulation, requirements, implementation, testing, and resulting functionality of the first version of the iESM released to the global climate community.« less

  6. Wave-Particle Interactions in the Earth's Radiation Belts: Recent Advances and Unprecedented Future Opportunities

    NASA Astrophysics Data System (ADS)

    Li, W.

    2017-12-01

    In the collisionless heliospheric plasmas, wave-particle interaction is a fundamental physical process in transferring energy and momentum between particles with different species and energies. This presentation focuses on one of the important wave-particle interaction processes: interaction between whistler-mode waves and electrons. Whistler-mode waves have frequencies between proton and electron cyclotron frequency and are ubiquitously present in the heliospheric plasmas including solar wind and planetary magnetospheres. I use Earth's Van Allen radiation belt as "local space laboratory" to discuss the role of whistler-mode waves in energetic electron dynamics using multi-satellite observations, theory and modeling. I further discuss solar wind drivers leading to energetic electron dynamics in the Earth's radiation belts, which is critical in predicting space weather that has broad impacts on our technological systems and society. At last, I discuss the unprecedented future opportunities of exploring space science using multi-satellite observations and state-of-the-art theory and modeling.

  7. Heliophysics: The New Science of the Sun-Solar System Connection. Recommended Roadmap for Science and Technology 2005-2035

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This is a Roadmap to understanding the environment of our Earth, from its life-sustaining Sun out past the frontiers of the solar system. A collection of spacecraft now patrols this space, revealing not a placid star and isolated planets, but an immense, dynamic, interconnected system within which our home planet is embedded and through which space explorers must journey. These spacecraft already form a great observatory with which the Heliophysics program can study the Sun, the heliosphere, the Earth, and other planetary environments as elements of a system--one that contains dynamic space weather and evolves in response to solar, planetary, and interstellar variability. NASA continually evolves the Heliophysics Great Observatory by adding new missions and instruments in order to answer the challenging questions confronting us now and in the future as humans explore the solar system. The three heliophysics science objectives: opening the frontier to space environment prediction; understanding the nature of our home in space, and safeguarding the journey of exploration, require sustained research programs that depend on combining new data, theory, analysis, simulation, and modeling. Our program pursues a deeper understanding of the fundamental physical processes that underlie the exotic phenomena of space.

  8. The population of natural Earth satellites

    NASA Astrophysics Data System (ADS)

    Granvik, Mikael; Vaubaillon, Jeremie; Jedicke, Robert

    2012-03-01

    We have for the first time calculated the population characteristics of the Earth’s irregular natural satellites (NESs) that are temporarily captured from the near-Earth-object (NEO) population. The steady-state NES size-frequency and residence-time distributions were determined under the dynamical influence of all the massive bodies in the Solar System (but mainly the Sun, Earth, and Moon) for NEOs of negligible mass. To this end, we compute the NES capture probability from the NEO population as a function of the latter’s heliocentric orbital elements and combine those results with the current best estimates for the NEO size-frequency and orbital distribution. At any given time there should be at least one NES of 1-m diameter orbiting the Earth. The average temporarily-captured orbiter (TCO; an object that makes at least one revolution around the Earth in a co-rotating coordinate system) completes (2.88 ± 0.82) rev around the Earth during a capture event that lasts (286 ± 18) d. We find a small preference for capture events starting in either January or July. Our results are consistent with the single known natural TCO, 2006 RH120, a few-meter diameter object that was captured for about a year starting in June 2006. We estimate that about 0.1% of all meteors impacting the Earth were TCOs.

  9. Direct and indirect capture of near-Earth asteroids in the Earth-Moon system

    NASA Astrophysics Data System (ADS)

    Tan, Minghu; McInnes, Colin; Ceriotti, Matteo

    2017-09-01

    Near-Earth asteroids have attracted attention for both scientific and commercial mission applications. Due to the fact that the Earth-Moon L1 and L2 points are candidates for gateway stations for lunar exploration, and an ideal location for space science, capturing asteroids and inserting them into periodic orbits around these points is of significant interest for the future. In this paper, we define a new type of lunar asteroid capture, termed direct capture. In this capture strategy, the candidate asteroid leaves its heliocentric orbit after an initial impulse, with its dynamics modeled using the Sun-Earth-Moon restricted four-body problem until its insertion, with a second impulse, onto the L2 stable manifold in the Earth-Moon circular restricted three-body problem. A Lambert arc in the Sun-asteroid two-body problem is used as an initial guess and a differential corrector used to generate the transfer trajectory from the asteroid's initial obit to the stable manifold associated with Earth-Moon L2 point. Results show that the direct asteroid capture strategy needs a shorter flight time compared to an indirect asteroid capture, which couples capture in the Sun-Earth circular restricted three-body problem and subsequent transfer to the Earth-Moon circular restricted three-body problem. Finally, the direct and indirect asteroid capture strategies are also applied to consider capture of asteroids at the triangular libration points in the Earth-Moon system.

  10. Stratospheric Dynamical Response and Ozone Feedbacks in the Presence of SO2 Injections

    NASA Astrophysics Data System (ADS)

    Richter, Jadwiga H.; Tilmes, Simone; Mills, Michael J.; Tribbia, Joseph J.; Kravitz, Ben; MacMartin, Douglas G.; Vitt, Francis; Lamarque, Jean-Francois

    2017-12-01

    Injections of sulfur dioxide into the stratosphere are among several proposed methods of solar radiation management. Such injections could cool the Earth's climate. However, they would significantly alter the dynamics of the stratosphere. We explore here the stratospheric dynamical response to sulfur dioxide injections ˜5 km above the tropopause at multiple latitudes (equator, 15°S, 15°N, 30°S and 30°N) using a fully coupled Earth system model, Community Earth System Model, version 1, with the Whole Atmosphere Community Climate Model as its atmospheric component (CESM1(WACCM)). We find that in all simulations, the tropical lower stratosphere warms primarily between 30°S and 30°N, regardless of injection latitude. The quasi-biennial oscillation (QBO) of the tropical zonal wind is altered by the various sulfur dioxide injections. In a simulation with a 12 Tg yr-1 equatorial injection, and with fully interactive chemistry, the QBO period lengthens to ˜3.5 years but never completely disappears. However, in a simulation with specified (or noninteractive) chemical fields, including O3 and prescribed aerosols taken from the interactive simulation, the oscillation is virtually lost. In addition, we find that geoengineering does not always lengthen the QBO. We further demonstrate that the QBO period changes from 24 to 12-17 months in simulations with sulfur dioxide injections placed poleward of the equator. Our study points to the importance of understanding and verifying of the complex interactions between aerosols, atmospheric dynamics, and atmospheric chemistry as well as understanding the effects of sulfur dioxide injections placed away from the Equator on the QBO.

  11. Small unmanned aircraft systems for remote sensing and Earth science research

    NASA Astrophysics Data System (ADS)

    Hugenholtz, Chris H.; Moorman, Brian J.; Riddell, Kevin; Whitehead, Ken

    2012-06-01

    To understand and predict Earth-surface dynamics, scientists often rely on access to the latest remote sensing data. Over the past several decades, considerable progress has been made in the development of specialized Earth observation sensors for measuring a wide range of processes and features. Comparatively little progress has been made, however, in the development of new platforms upon which these sensors can be deployed. Conventional platforms are still almost exclusively restricted to piloted aircraft and satellites. For many Earth science research questions and applications these platforms do not yet have the resolution or operational flexibility to provide answers affordably. The most effective remote sensing data match the spatiotemporal scale of the process or feature of interest. An emerging technology comprising unmanned aircraft systems (UAS), also known as unmanned aerial vehicles (UAV), is poised to offer a viable alternative to conventional platforms for acquiring high-resolution remote sensing data with increased operational flexibility, lower cost, and greater versatility (Figure 1).

  12. Mission Analysis Program for Solar Electric Propulsion (MAPSEP). Volume 1: Analytical manual for earth orbital MAPSEP

    NASA Technical Reports Server (NTRS)

    1975-01-01

    An introduction to the MAPSEP organization and a detailed analytical description of all models and algorithms are given. These include trajectory and error covariance propagation methods, orbit determination processes, thrust modeling, and trajectory correction (guidance) schemes. Earth orbital MAPSEP contains the capability of analyzing almost any currently projected low thrust mission from low earth orbit to super synchronous altitudes. Furthermore, MAPSEP is sufficiently flexible to incorporate extended dynamic models, alternate mission strategies, and almost any other system requirement imposed by the user. As in the interplanetary version, earth orbital MAPSEP represents a trade-off between precision modeling and computational speed consistent with defining necessary system requirements. It can be used in feasibility studies as well as in flight operational support. Pertinent operational constraints are available both implicitly and explicitly. However, the reader should be warned that because of program complexity, MAPSEP is only as good as the user and will quickly succumb to faulty user inputs.

  13. Development of the reentry flight dynamics simulator for evaluation of space shuttle orbiter entry systems

    NASA Technical Reports Server (NTRS)

    Rowell, L. F.; Powell, R. W.; Stone, H. W., Jr.

    1980-01-01

    A nonlinear, six degree of freedom, digital computer simulation of a vehicle which has constant mass properties and whose attitudes are controlled by both aerodynamic surfaces and reaction control system thrusters was developed. A rotating, oblate Earth model was used to describe the gravitational forces which affect long duration Earth entry trajectories. The program is executed in a nonreal time mode or connected to a simulation cockpit to conduct piloted and autopilot studies. The program guidance and control software used by the space shuttle orbiter for its descent from approximately 121.9 km to touchdown on the runway.

  14. Development of a Mars Environmental Control and Life Support System (ECLSS).

    NASA Technical Reports Server (NTRS)

    Henninger, Donald L.

    2016-01-01

    ECLS systems for very long-duration human missions to Mars will be designed to operate reliably for many years and will never be returned to Earth. The need for high reliability is driven by unsympathetic abort scenarios. Abort from a Mars mission could be as long as 450 days to return to Earth. Simply put, the goal of an ECLSS is to duplicate the functions the Earth provides in terms of human living and working on our home planet but without the benefit of the Earth's large buffers - the atmospheres, the oceans and land masses. With small buffers a space-based ECLSS must operate as a true dynamic system rather than independent processors taking things from tanks, processing them, and then returning them to product tanks. Key is a development process that allows for a logical sequence of validating successful development (maturation) in a stepwise manner with key performance parameters (KPPs) at each step; especially KPPs for technologies evaluated in a full systems context with human crews on Earth and on space platforms such as the ISS. This paper will explore the implications of such an approach to ECLSS development and the roles of ground and space-based testing necessary to develop a highly reliable life support system for long duration human exploration missions. Historical development and testing of ECLS systems from Mercury to the International Space Station (ISS) will be reviewed. Current work as well as recommendations for future work will be described.

  15. Overview of the Earth System Science Education Alliance Online Courses

    NASA Astrophysics Data System (ADS)

    Botti, J. A.

    2001-12-01

    Science education reform has skyrocketed over the last decade in large part thanks to technology-and one technology in particular, the Internet. The World Wide Web has opened up dynamic new online communities of learners. It has allowed educators from around the world to share thoughts about Earth system science and reexamine the way science is taught. A positive offshoot of this reform effort is the Earth System Science Education Alliance (ESSEA). This partnership among universities, colleges, and science education organizations is led by the Institute for Global Environmental Strategies and the Center for Educational TechnologiesTM at Wheeling Jesuit University. ESSEA's mission is to improve Earth system science education. ESSEA has developed three Earth system science courses for K-12 teachers. These online courses guide teachers into collaborative, student-centered science education experiences. Not only do these courses support teachers' professional development, they also help teachers implement Earth systems science content and age-appropriate pedagogical methods into their classrooms. The ESSEA courses are open to elementary, middle school, and high school teachers. Each course lasts one semester. The courses begin with three weeks of introductory content. Then teachers develop content and pedagogical and technological knowledge in four three-week learning cycles. The elementary school course focuses on basic Earth system interactions between land, life, air, and water. In week A of each learning cycle, teachers do earth system activities with their students. In week B teachers investigate aspects of the Earth system -- for instance, the reason rocks change to soil, the relationship between rock weathering and soil nutrients, and the consequent development of biomes. In week C teachers develop classroom activities and share them online with other course participants. The middle school course stresses the effects of real-world events -- volcanic eruptions, hurricanes, rainforest destruction -- on Earth's lithosphere, atmosphere, biosphere, and hydrosphere. Teachers team during week A of each cycle to research the effect of each event on individual spheres. In week B groups "jigsaw" to study the interactions between events, spheres, and positive and negative feedback loops. In week C teachers develop classroom activities. The high school course uses problem-based learning to examine critical areas of global change, such as coral reef degradation, ozone depletion, and climate change. The ESSEA presentation provides examples of learning environments from each of the three courses.

  16. Overview of the Earth System Science Education Alliance Online Courses

    NASA Astrophysics Data System (ADS)

    Botti, J.; Myers, R.

    2002-12-01

    Science education reform has skyrocketed over the last decade in large part thanks to technology-and one technology in particular, the Internet. The World Wide Web has opened up dynamic new online communities of learners. It has allowed educators from around the world to share thoughts about Earth system science and reexamine the way science is taught. A positive offshoot of this reform effort is the Earth System Science Education Alliance (ESSEA). This partnership among universities, colleges, and science education organizations is led by the Institute for Global Environmental Strategies and the Center for Educational Technologiestm at Wheeling Jesuit University. ESSEA's mission is to improve Earth system science education. ESSEA has developed three Earth system science courses for K-12 teachers. These online courses guide teachers into collaborative, student-centered science education experiences. Not only do these courses support teachers' professional development, they also help teachers implement Earth systems science content and age-appropriate pedagogical methods into their classrooms. The ESSEA courses are open to elementary, middle school, and high school teachers. Each course lasts one semester. The courses begin with three weeks of introductory content. Then teachers develop content and pedagogical and technological knowledge in four three-week learning cycles. The elementary school course focuses on basic Earth system interactions between land, life, air, and water. In week A of each learning cycle, teachers do earth system activities with their students. In week B teachers investigate aspects of the Earth system-for instance, the reason rocks change to soil, the relationship between rock weathering and soil nutrients, and the consequent development of biomes. In week C teachers develop classroom activities and share them online with other course participants. The middle school course stresses the effects of real-world events-volcanic eruptions, hurricanes, rainforest destruction-on Earth's lithosphere, atmosphere, biosphere, and hydrosphere. Teachers team during week A of each cycle to research the effect of each event on individual spheres. In week B groups "jigsaw" to study the interactions between events, spheres, and positive and negative feedback loops. In week C teachers develop classroom activities. The high school course uses problem-based learning to examine critical areas of global change, such as coral reef degradation, ozone depletion, and climate change. The ESSEA presentation provides examples of learning environments from each of the three courses.

  17. Aeolian processes and the bioshpere: Interactions and feedback loops

    USDA-ARS?s Scientific Manuscript database

    Aeolian processes affect landform evolution, biogeochemical cycles, regional climate, human health, and desertification. The entrainment, transport and deposition of aeolian sediments are recognized as major drivers in the dynamics of the earth system and there is a growing interest in the scientif...

  18. Modelling the Diversity of Outer Planetary Systems. 1; Formation and Evolution

    NASA Technical Reports Server (NTRS)

    Lissauer, J. J.; Levison, H. F.; Duncan, M. J.; Young, Richard E. (Technical Monitor)

    1998-01-01

    The process of planetary growth is extremely complicated, involving a myriad of physical and chemical processes, many of which are poorly understood. The ultimate configuration that a planetary system attains depends upon the properties of the disk out of which it grew, of the star at the center of the disk and, at least in some cases, of the interstellar environment. However, this dependence is poorly understood. Thus, in an effort to numerically survey the possible diversity of planetary systems, we have constructed synthetic systems of giant planets and integrated their orbits to determine the dynamical lifetimes and thus the viability of these systems. Our construction algorithm begins with 110 -- 180 planetesimals located between 4 and 40 AU from a one solar mass star; most initial planetesimals have masses several tenths that of Earth. We integrate the orbits of these bodies subject to mutual gravitational perturbations and gas drag for $10^6 - 10^7$ years, merging any pair of planetesimals which passed within one-tenth of a Hill Sphere of one another and adding "gas" to embryos larger than 10 Earth masses. Use of such large planetesimal radii provided sufficient damping to prevent the system from excessive dynamical heating. Subsequently, systems were evolved without gas drag, either with the inflated radii or with more realistic radii. Systems took from a few million years to greater than ten billion years to become stable ($10^9$ years without mergers of ejections). Some of the systems produced with the inflated radii closely resemble our Solar System. Encounters in simulations using realistic radii resulted in ejections, typically leaving only a few planets per system, most of which were in highly eccentric orbits. The structure and dynamics of the resulting "stable" systems is discussed in detail in the abstract by Levison et al.

  19. Understanding why the volume of suboxic waters does not increase over centuries of global warming in an Earth System Model

    NASA Astrophysics Data System (ADS)

    Gnanadesikan, A.; Dunne, J. P.; John, J.

    2012-03-01

    Global warming is expected to reduce oxygen solubility and vertical exchange in the ocean, changes which would be expected to result in an increase in the volume of hypoxic waters. A simulation made with a full Earth System model with dynamical atmosphere, ocean, sea ice and biogeochemical cycling (the Geophysical Fluid Dynamics Laboratory's Earth System Model 2.1) shows that this holds true if the condition for hypoxia is set relatively high. However, the volume of the most hypoxic (i.e., suboxic) waters does not increase under global warming, as these waters actually become more oxygenated. We show that the rise in dissolved oxygen in the tropical Pacific is associated with a drop in ventilation time. A term-by-term analysis within the least oxygenated waters shows an increased supply of dissolved oxygen due to lateral diffusion compensating an increase in remineralization within these highly hypoxic waters. This lateral diffusive flux is the result of an increase of ventilation along the Chilean coast, as a drying of the region under global warming opens up a region of wintertime convection in our model. The results highlight the potential sensitivity of suboxic waters to changes in subtropical ventilation as well as the importance of constraining lateral eddy transport of dissolved oxygen in such waters.

  20. Solar System Chaos and its climatic and biogeochemical consequences

    NASA Astrophysics Data System (ADS)

    Ikeda, M.; Tada, R.; Ozaki, K.; Olsen, P. E.

    2017-12-01

    Insolation changes caused by changes in Earth's orbital parameters are the main driver of climatic variations, whose pace has been used for astronomically-calibrated geologic time scales of high accuracy to understand Earth system dynamics. However, the astrophysical models beyond several tens of million years ago have large uncertainty due to chaotic behavior of the Solar System, and its impact on amplitude modulation of multi-Myr-scale orbital variations and consequent climate changes has become the subject of debate. Here we show the geologic constraints on the past chaotic behavior of orbital cycles from early Mesozoic monsoon-related records; the 30-Myr-long lake level records of the lacustrine sequence in Newark-Hartford basins (North America) and 70-Myr-long biogenic silica (BSi) burial flux record of pelagic deep-sea chert sequence in Inuyama area (Japan). BSi burial flux of chert could be considered as proportional to the dissolved Si (DSi) input from chemical weathering on timescales longer than the residence time of DSi ( 100 kyr), because chert could represent a major sink for oceanic dissolved silica (Ikeda et al., 2017).These geologic records show multi-Myr cycles with similar frequency modulations of eccentricity solution of astronomical model La2010d (Laskar et al., 2011) compared with other astronomical solutions, but not exactly same. Our geologic records provide convincing evidence for the past chaotic dynamical behaviour of the Solar System and new and challenging additional constraints for astrophysical models. In addition, we find that ˜10 Myr cycle detected in monsoon proxies and their amplitude modulation of ˜2 Myr cycle may be related to the amplitude modulation of ˜2 Myr eccentricity cycle through non-linear process(es) of Earth system dynamics, suggesting possible impact of the chaotic behavior of Solar planets on climate change. Further impact of multi-Myr orbital cycles on global biogeochemical cycles will be discussed.

  1. Earth from Space: The Power of Perspective

    NASA Astrophysics Data System (ADS)

    Abdalati, W.

    2016-12-01

    Throughout history, humans have always valued the view from above, seeking high ground to survey the land, find food, assess threats, and understand their immediate environment. The advent of aircraft early in the 20th century took this capability literally to new levels, as aerial photos of farm lands, hazards, military threats, etc. provided new opportunities for security and prosperity. And in 1960, with the launch of the first weather satellite, TIROS, we came to know our world in ways that were not possible before, as we saw the Earth as a system of interacting components. In the decades since, our ability to understand the Earth System and its dynamic components has been transformed profoundly and repeatedly by satellite observations. From examining changes in sea level, to deformation of the Earth surface, to ozone depletion, to the Earth's energy balance, satellites have helped us understand our changing planet in ways that would not have otherwise been possible. The challenge moving forward is to continue to evolve beyond watching Earth processes unfold and understanding the underlying mechanisms of change, to anticipating future conditions, more comprehensively than we do today, for the benefit of society. The capabilities to do so are well within our reach, and with appropriate investments in observing systems, research, and activities that support translating observations into societal value, we can realize the full potential of this tremendous space-based perspective. Doing so will not just change our views of the Earth, but will improve our relationship with it.

  2. Application of Digital Object Identifiers to data sets at the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC)

    NASA Astrophysics Data System (ADS)

    Vollmer, B.; Ostrenga, D.; Johnson, J. E.; Savtchenko, A. K.; Shen, S.; Teng, W. L.; Wei, J. C.

    2013-12-01

    Digital Object Identifiers (DOIs) are applied to selected data sets at the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC). The DOI system provides an Internet resolution service for unique and persistent identifiers of digital objects. Products assigned DOIs include data from the NASA MEaSUREs Program, the Earth Observing System (EOS) Aqua Atmospheric Infrared Sounder (AIRS) and EOS Aura High Resolution Dynamics Limb Sounder (HIRDLS). DOIs are acquired and registered through EZID, California Digital Library and DataCite. GES DISC hosts a data set landing page associated with each DOI containing information on and access to the data including a recommended data citation when using the product in research or applications. This work includes participation with the earth science community (e.g., Earth Science Information Partners (ESIP) Federation) and the NASA Earth Science Data and Information System (ESDIS) Project to identify, establish and implement best practices for assigning DOIs and managing supporting information, including metadata, for earth science data sets. Future work includes (1) coordination with NASA mission Science Teams and other data providers on the assignment of DOIs for other GES DISC data holdings, particularly for future missions such as Orbiting Carbon Observatory -2 and -3 (OCO-2, OCO-3) and projects (MEaSUREs 2012), (2) construction of landing pages that are both human and machine readable, and (3) pursuing the linking of data and publications with tools such as the Thomson Reuters Data Citation Index.

  3. Satellite image atlas of glaciers of the world

    USGS Publications Warehouse

    Williams, Richard S.; Ferrigno, Jane G.; Williams, Richard S.; Ferrigno, Jane G.

    1988-01-01

    U.S. Geological Survey Professional Paper 1386, Satellite Image Atlas of Glaciers of the World, contains 11 chapters designated by the letters A through K. Chapter A provides a comprehensive, yet concise, review of the "State of the Earth's Cryosphere at the Beginning of the 21st Century: Glaciers, Global Snow Cover, Floating Ice, and Permafrost and Periglacial Environments," and a "Map/Poster of the Earth's Dynamic Cryosphere," and a set of eight "Supplemental Cryosphere Notes" about the Earth's Dynamic Cryosphere and the Earth System. The next 10 chapters, B through K, are arranged geographically and present glaciological information from Landsat and other sources of historic and modern data on each of the geographic areas. Chapter B covers Antarctica; Chapter C, Greenland; Chapter D, Iceland; Chapter E, Continental Europe (except for the European part of the former Soviet Union), including the Alps, the Pyrenees, Norway, Sweden, Svalbard (Norway), and Jan Mayen (Norway); Chapter F, Asia, including the European part of the former Soviet Union, China, Afghanistan, Pakistan, India, Nepal, and Bhutan; Chapter G, Turkey, Iran, and Africa; Chapter H, Irian Jaya (Indonesia) and New Zealand; Chapter I, South America; Chapter J, North America (excluding Alaska); and Chapter K, Alaska. Chapters A–D each include map plates.

  4. NASA's EOSDIS Approach to Big Earth Data Challenges

    NASA Astrophysics Data System (ADS)

    Lowe, D. R.; Behnke, J.; Murphy, K. J.

    2014-12-01

    Over the past 20 years, NASA has been committed to making our Earth Science data more useable and accessible, not only to the community of NASA science researchers, but also to the world-wide public research community. The data collected by NASA's remote sensing instruments represent a significant public investment in research. NASA holds these data in a public trust to promote comprehensive, long-term Earth science research. The Earth Observing System Data & Information System (EOSDIS) was established to meet this goal. From the beginning, NASA employed a free, open and non-discriminatory data policy to maximize the global utilization of the products derived from NASA's observational data and related analyses. EOSDIS is designed to ingest, process, archive, and distribute data in a multi-mission environment. The system supports a wide variety of Earth science disciplines, including cryosphere, land cover change, radiation budget, atmosphere dynamics and composition, as well as inter-disciplinary research, including global climate change. A distributed architecture was adopted to ensure discipline-specific support for the science data, while also leveraging standards and establishing policies and tools to enable interdisciplinary research, and analysis across multiple instruments. Over the past 2 decades the EOSDIS has evolved substantially. Today's EOSDIS is a tightly coupled, yet heterogeneous system designed to meet the requirements of a diverse user community. The system was scaled to expand to meet the ever-growing volume of data (currently ~10 petabytes), and the exponential increase in user demand that has occurred over the past 15 years. We will present how the EOSDIS has evolved to support the variety and volume of NASA's Earth Science data.

  5. Mesoscale weather and climate modeling with the global non-hydrostatic Goddard Earth Observing System Model (GEOS-5) at cloud-permitting resolutions

    NASA Astrophysics Data System (ADS)

    Putman, W. M.; Suarez, M.

    2009-12-01

    The Goddard Earth Observing System Model (GEOS-5), an earth system model developed in the NASA Global Modeling and Assimilation Office (GMAO), has integrated the non-hydrostatic finite-volume dynamical core on the cubed-sphere grid. The extension to a non-hydrostatic dynamical framework and the quasi-uniform cubed-sphere geometry permits the efficient exploration of global weather and climate modeling at cloud permitting resolutions of 10- to 4-km on today's high performance computing platforms. We have explored a series of incremental increases in global resolution with GEOS-5 from it's standard 72-level 27-km resolution (~5.5 million cells covering the globe from the surface to 0.1 hPa) down to 3.5-km (~3.6 billion cells). We will present results from a series of forecast experiments exploring the impact of the non-hydrostatic dynamics at transition resolutions of 14- to 7-km, and the influence of increased horizontal/vertical resolution on convection and physical parameterizations within GEOS-5. Regional and mesoscale features of 5- to 10-day weather forecasts will be presented and compared with satellite observations. Our results will highlight the impact of resolution on the structure of cloud features including tropical convection and tropical cyclone predicability, cloud streets, von Karman vortices, and the marine stratocumulus cloud layer. We will also present experiment design and early results from climate impact experiments for global non-hydrostatic models using GEOS-5. Our climate experiments will focus on support for the Year of Tropical Convection (YOTC). We will also discuss a seasonal climate time-slice experiment design for downscaling coarse resolution century scale climate simulations to global non-hydrostatic resolutions of 14- to 7-km with GEOS-5.

  6. Manifestations of the rotation and gravity of the Earth in high-energy physics experiments

    NASA Astrophysics Data System (ADS)

    Obukhov, Yuri N.; Silenko, Alexander J.; Teryaev, Oleg V.

    2016-08-01

    The inertial (due to rotation) and gravitational fields of the Earth affect the motion of an elementary particle and its spin dynamics. This influence is not negligible and should be taken into account in high-energy physics experiments. Earth's influence is manifest in perturbations in the particle motion, in an additional precession of the spin, and in a change of the constitutive tensor of the Maxwell electrodynamics. Bigger corrections are oscillatory, and their contributions average to zero. Other corrections due to the inhomogeneity of the inertial field are not oscillatory but they are very small and may be important only for the storage ring electric dipole moment experiments. Earth's gravity causes the Newton-like force, the reaction force provided by a focusing system, and additional torques acting on the spin. However, there are no observable indications of the electromagnetic effects due to Earth's gravity.

  7. Earth Rotational Variations Excited by Geophysical Fluids

    NASA Technical Reports Server (NTRS)

    Chao, Benjamin F.

    2004-01-01

    Modern space geodetic measurement of Earth rotation variations, particularly by means of the VLBI technique, has over the years allowed studies of Earth rotation dynamics to advance in ever-increasing precision, accuracy, and temporal resolution. A review will be presented on our understanding of the geophysical and climatic causes, or "excitations". for length-of-day change, polar motion, and nutations. These excitations sources come from mass transports that constantly take place in the Earth system comprised of the atmosphere, hydrosphere, cryosphere, lithosphere, mantle, and the cores. In this sense, together with other space geodetic measurements of time-variable gravity and geocenter motion, Earth rotation variations become a remote-sensing tool for the integral of all mass transports, providing valuable information about the latter on a wide range of spatial and temporal scales. Future prospects with respect to geophysical studies with even higher accuracy and resolution will be discussed.

  8. Continued reduction and analysis of data from the Dynamics Explorer Plasma Wave Instrument

    NASA Technical Reports Server (NTRS)

    Gurnett, Donald A.; Weimer, Daniel R.

    1994-01-01

    The plasma wave instrument on the Dynamics Explorer 1 spacecraft provided measurements of the electric and magnetic components of plasma waves in the Earth's magnetosphere. Four receiver systems processed signals from five antennas. Sixty-seven theses, scientific papers and reports were prepared from the data generated. Data processing activities and techniques used to analyze the data are described and highlights of discoveries made and research undertaken are tabulated.

  9. Characterization of the K2-18 multi-planetary system with HARPS. A habitable zone super-Earth and discovery of a second, warm super-Earth on a non-coplanar orbit

    NASA Astrophysics Data System (ADS)

    Cloutier, R.; Astudillo-Defru, N.; Doyon, R.; Bonfils, X.; Almenara, J.-M.; Benneke, B.; Bouchy, F.; Delfosse, X.; Ehrenreich, D.; Forveille, T.; Lovis, C.; Mayor, M.; Menou, K.; Murgas, F.; Pepe, F.; Rowe, J.; Santos, N. C.; Udry, S.; Wünsche, A.

    2017-12-01

    Aims: The bright M2.5 dwarf K2-18 (Ms = 0.36 M⊙, Rs = 0.41 R⊙) at 34 pc is known to host a transiting super-Earth-sized planet orbiting within the star's habitable zone; K2-18b. Given the superlative nature of this system for studying an exoplanetary atmosphere receiving similar levels of insolation as the Earth, we aim to characterize the planet's mass which is required to interpret atmospheric properties and infer the planet's bulk composition. Methods: We have obtained precision radial velocity measurements with the HARPS spectrograph. We then coupled those measurements with the K2 photometry to jointly model the observed radial velocity variation with planetary signals and a correlated stellar activity model based on Gaussian process regression. Results: We measured the mass of K2-18b to be 8.0 ± 1.9M⊕ with a bulk density of 3.3 ± 1.2 g/cm3 which may correspond to a predominantly rocky planet with a significant gaseous envelope or an ocean planet with a water mass fraction ≳50%. We also find strong evidence for a second, warm super-Earth K2-18c (mp,csinic = 7.5 ± 1.3 M⊕) at approximately nine days with a semi-major axis 2.4 times smaller than the transiting K2-18b. After re-analyzing the available light curves of K2-18 we conclude that K2-18c is not detected in transit and therefore likely has an orbit that is non-coplanar with the orbit of K2-18b although only a small mutual inclination is required for K2-18c to miss a transiting configuration; | Δi| 1-2°. A suite of dynamical integrations are performed to numerically confirm the system's dynamical stability. By varying the simulated orbital eccentricities of the two planets, dynamical stability constraints are used as an additional prior on each planet's eccentricity posterior from which we constrain eb < 0.43 and ec < 0.47 at the level of 99% confidence. Conclusions: The discovery of the inner planet K2-18c further emphasizes the prevalence of multi-planet systems around M dwarfs. The characterization of the density of K2-18b reveals that the planet likely has a thick gaseous envelope which, along with its proximity to the solar system, makes the K2-18 planetary system an interesting target for the atmospheric study of an exoplanet receiving Earth-like insolation. Table A.2 is also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/608/A35

  10. Early Results from Solar Dynamic Space Power System Testing

    NASA Technical Reports Server (NTRS)

    Shaltens, Richard K.; Mason, Lee S.

    1996-01-01

    A government/industry team designed, built and tested a 2-kWe solar dynamic space power system in a large thermal vacuum facility with a simulated Sun at the NASA Lewis Research Center. The Lewis facility provides an accurate simulation of temperatures, high vacuum and solar flux as encountered in low-Earth orbit. The solar dynamic system includes a Brayton power conversion unit integrated with a solar receiver which is designed to store energy for continuous power operation during the eclipse phase of the orbit. This paper reviews the goals and status of the Solar Dynamic Ground Test Demonstration project and describes the initial testing, including both operational and performance data. System testing to date has accumulated over 365 hours of power operation (ranging from 400 watts to 2.0-W(sub e)), including 187 simulated orbits, 16 ambient starts and 2 hot restarts. Data are shown for an orbital startup, transient and steady-state orbital operation and shutdown. System testing with varying insolation levels and operating speeds is discussed. The solar dynamic ground test demonstration is providing the experience and confidence toward a successful flight demonstration of the solar dynamic technologies on the Space Station Mir in 1997.

  11. Nutrient cycle benchmarks for earth system land model

    NASA Astrophysics Data System (ADS)

    Zhu, Q.; Riley, W. J.; Tang, J.; Zhao, L.

    2017-12-01

    Projecting future biosphere-climate feedbacks using Earth system models (ESMs) relies heavily on robust modeling of land surface carbon dynamics. More importantly, soil nutrient (particularly, nitrogen (N) and phosphorus (P)) dynamics strongly modulate carbon dynamics, such as plant sequestration of atmospheric CO2. Prevailing ESM land models all consider nitrogen as a potentially limiting nutrient, and several consider phosphorus. However, including nutrient cycle processes in ESM land models potentially introduces large uncertainties that could be identified and addressed by improved observational constraints. We describe the development of two nutrient cycle benchmarks for ESM land models: (1) nutrient partitioning between plants and soil microbes inferred from 15N and 33P tracers studies and (2) nutrient limitation effects on carbon cycle informed by long-term fertilization experiments. We used these benchmarks to evaluate critical hypotheses regarding nutrient cycling and their representation in ESMs. We found that a mechanistic representation of plant-microbe nutrient competition based on relevant functional traits best reproduced observed plant-microbe nutrient partitioning. We also found that for multiple-nutrient models (i.e., N and P), application of Liebig's law of the minimum is often inaccurate. Rather, the Multiple Nutrient Limitation (MNL) concept better reproduces observed carbon-nutrient interactions.

  12. The Unifying Principle of Coordinated Measurements in Geospace Science

    NASA Astrophysics Data System (ADS)

    Lotko, William

    2017-04-01

    Space scientists recognize geospace as a coupled dynamical system extending from the Earth's upper atmosphere, ionosphere, and magnetosphere, through interplanetary space to the Sun. The weather in geospace describes variability in the electromagnetic fields, particle radiation, plasmas, and gases permeating it, usually in response to solar disturbances. Severe space weather poses a significant threat to human activities in space and to modern technological systems deployed both in space and at Earth. The challenge of characterizing and predicting space weather requires widely distributed, coordinated observations. Partnerships among government agencies, international consortia, and the private sector are developing creative solutions to address this challenge. This brief commentary highlights some of the coordinated measurements and data systems that are unifying knowledge of the geospace environment.

  13. Pegasus ICON Spacecraft Mate to Separation System

    NASA Image and Video Library

    2018-05-09

    A crane is used to move and lower NASA's Ionospheric Connection Explorer (ICON) onto the spacecraft separation system May 9, 2018, in a clean room inside Building 1555 at Vandenberg Air Force Base in California. The explorer will launch on June 15, 2018, from Kwajalein Atoll in the Marshall Islands (June 14 in the continental United States) on Orbital ATK's Pegasus XL rocket, which is attached to the company's L-1011 Stargazer aircraft. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.

  14. Earth system dynamics: The interrelation of atmospheric, ocean and solid earth dynamics

    NASA Technical Reports Server (NTRS)

    Tapley, Byron D.; Asrar, Ghassem

    1993-01-01

    The research work performed during the time period 16 Oct. 1992 through 31 Dec. 1993 is summarized. The overall research activity, including a list of the major findings of the EOS IDS research to date, is described, the publications and presentations are listed, and a budget request for the subsequent year is attached. Specifically, the report covers: EOS panel activities; major findings of research; team member contributions; new research directions; EOS restructuring effect; changes in requirements; plans for using existing data; collaborations with other EOS and non-EOS investigations; EOS instrument team interaction; instrument development verification and validation; interaction with EOSDIS and DAAC's; team coordination; overall management; summary of response to site review questions and comments; science computing facility; and additional new research activities.

  15. Two-craft Coulomb formation study about circular orbits and libration points

    NASA Astrophysics Data System (ADS)

    Inampudi, Ravi Kishore

    This dissertation investigates the dynamics and control of a two-craft Coulomb formation in circular orbits and at libration points; it addresses relative equilibria, stability and optimal reconfigurations of such formations. The relative equilibria of a two-craft tether formation connected by line-of-sight elastic forces moving in circular orbits and at libration points are investigated. In circular Earth orbits and Earth-Moon libration points, the radial, along-track, and orbit normal great circle equilibria conditions are found. An example of modeling the tether force using Coulomb force is discussed. Furthermore, the non-great-circle equilibria conditions for a two-spacecraft tether structure in circular Earth orbit and at collinear libration points are developed. Then the linearized dynamics and stability analysis of a 2-craft Coulomb formation at Earth-Moon libration points are studied. For orbit-radial equilibrium, Coulomb forces control the relative distance between the two satellites. The gravity gradient torques on the formation due to the two planets help stabilize the formation. Similar analysis is performed for along-track and orbit-normal relative equilibrium configurations. Where necessary, the craft use a hybrid thrusting-electrostatic actuation system. The two-craft dynamics at the libration points provide a general framework with circular Earth orbit dynamics forming a special case. In the presence of differential solar drag perturbations, a Lyapunov feedback controller is designed to stabilize a radial equilibrium, two-craft Coulomb formation at collinear libration points. The second part of the thesis investigates optimal reconfigurations of two-craft Coulomb formations in circular Earth orbits by applying nonlinear optimal control techniques. The objective of these reconfigurations is to maneuver the two-craft formation between two charged equilibria configurations. The reconfiguration of spacecraft is posed as an optimization problem using the calculus of variations approach. The optimality criteria are minimum time, minimum acceleration of the separation distance, minimum Coulomb and electric propulsion fuel usage, and minimum electrical power consumption. The continuous time problem is discretized using a pseudospectral method, and the resulting finite dimensional problem is solved using a sequential quadratic programming algorithm. The software package, DIDO, implements this approach. This second part illustrates how pseudospectral methods significantly simplify the solution-finding process.

  16. Numerical simulation of the geodynamo reaches Earth's core dynamical regime

    NASA Astrophysics Data System (ADS)

    Aubert, J.; Gastine, T.; Fournier, A.

    2016-12-01

    Numerical simulations of the geodynamo have been successful at reproducing a number of static (field morphology) and kinematic (secular variation patterns, core surface flows and westward drift) features of Earth's magnetic field, making them a tool of choice for the analysis and retrieval of geophysical information on Earth's core. However, classical numerical models have been run in a parameter regime far from that of the real system, prompting the question of whether we do get "the right answers for the wrong reasons", i.e. whether the agreement between models and nature simply occurs by chance and without physical relevance in the dynamics. In this presentation, we show that classical models succeed in describing the geodynamo because their large-scale spatial structure is essentially invariant as one progresses along a well-chosen path in parameter space to Earth's core conditions. This path is constrained by the need to enforce the relevant force balance (MAC or Magneto-Archimedes-Coriolis) and preserve the ratio of the convective overturn and magnetic diffusion times. Numerical simulations performed along this path are shown to be spatially invariant at scales larger than that where the magnetic energy is ohmically dissipated. This property enables the definition of large-eddy simulations that show good agreement with direct numerical simulations in the range where both are feasible, and that can be computed at unprecedented values of the control parameters, such as an Ekman number E=10-8. Combining direct and large-eddy simulations, large-scale invariance is observed over half the logarithmic distance in parameter space between classical models and Earth. The conditions reached at this mid-point of the path are furthermore shown to be representative of the rapidly-rotating, asymptotic dynamical regime in which Earth's core resides, with a MAC force balance undisturbed by viscosity or inertia, the enforcement of a Taylor state and strong-field dynamo action. We conclude that numerical modelling has advanced to a stage where it is possible to use models correctly representing the statics, kinematics and now the dynamics of the geodynamo. This opens the way to a better analysis of the geomagnetic field in the time and space domains.

  17. Water and the Earth System in the Anthropocene: Evolution of Socio-Hydrology

    NASA Astrophysics Data System (ADS)

    Sivapalan, M.; Bloeschl, G.

    2014-12-01

    Over the past century, hydrological science has evolved through distinct eras as judged by ideas, information sources, technological advances and societal influences: Empirical Era which was data based with little theory, Systems Era that focused on input-output relationships, Process Era with a focus on processes, and the Geosciences Era where hydrology was considered an Earth System science. We argue that as the human footprint on earth becomes increasingly dominant, we are moving into a Co-evolution Era. Co-evolution implies that the components of the Earth system are intimately intertwined at many time scales - fast scales of immediate feedbacks that translate into slow scale interdependencies and trends. These involve feedbacks between the atmosphere, biota, soils and landforms, mediated by water flow and transport processes. The human factor is becoming a key component of this coupled system. While there is a long tradition of considering effects of water on humans, and vice versa, the new thrust on socio-hydrology has a number of defining characteristics that sets it apart from traditional approaches: - Capturing feedbacks of human-natural water system in a dynamic way (slow and fast processes) to go beyond prescribing human factors as mere boundary conditions. These feedbacks will be essential to understand how the system may evolve in the future into new, perhaps previously unobserved, states. - Quantifying system dynamics in a generalizable way. So far, water resources assessment has been context dependent, tied to local conditions. While for immediate decision making this is undoubtedly essential, for more scientific inquiry, a more uniform knowledge base is indispensable. - Not necessarily predictive. The coupled human-nature system is inherently non-linear, which may prohibit predictability in the traditional sense. The socio-hydrologic approach may still be predictive in a statistical sense and, perhaps even more importantly, it may yet reveal possible futures not predicted by traditional forecasts, yet essential for long-term decision making. Guided by these overarching arguments, and a review of recent progress, we will present a structured overview of socio-hydrology, framing the theoretical, observational and methodological challenges that lie ahead and ways to address them.

  18. Development and application of earth system models

    PubMed Central

    Prinn, Ronald G.

    2013-01-01

    The global environment is a complex and dynamic system. Earth system modeling is needed to help understand changes in interacting subsystems, elucidate the influence of human activities, and explore possible future changes. Integrated assessment of environment and human development is arguably the most difficult and most important “systems” problem faced. To illustrate this approach, we present results from the integrated global system model (IGSM), which consists of coupled submodels addressing economic development, atmospheric chemistry, climate dynamics, and ecosystem processes. An uncertainty analysis implies that without mitigation policies, the global average surface temperature may rise between 3.5 °C and 7.4 °C from 1981–2000 to 2091–2100 (90% confidence limits). Polar temperatures, absent policy, are projected to rise from about 6.4 °C to 14 °C (90% confidence limits). Similar analysis of four increasingly stringent climate mitigation policy cases involving stabilization of greenhouse gases at various levels indicates that the greatest effect of these policies is to lower the probability of extreme changes. The IGSM is also used to elucidate potential unintended environmental consequences of renewable energy at large scales. There are significant reasons for attention to climate adaptation in addition to climate mitigation that earth system models can help inform. These models can also be applied to evaluate whether “climate engineering” is a viable option or a dangerous diversion. We must prepare young people to address this issue: The problem of preserving a habitable planet will engage present and future generations. Scientists must improve communication if research is to inform the public and policy makers better. PMID:22706645

  19. Connecting the dots: a versatile model for the atmospheres of tidally locked Super-Earths

    NASA Astrophysics Data System (ADS)

    Carone, L.; Keppens, R.; Decin, L.

    2014-11-01

    Radiative equilibrium temperatures are calculated for the troposphere of a tidally locked Super-Earth based on a simple greenhouse model, using Solar system data as a guideline. These temperatures provide in combination with a Newtonian relaxation scheme thermal forcing for a 3D atmosphere model using the dynamical core of the Massachusetts Institute of Technology global circulation model. Our model is of the same conceptional simplicity than the model of Held & Suarez and is thus computationally fast. Furthermore, because of the coherent, general derivation of radiative equilibrium temperatures, our model is easily adaptable for different planets and atmospheric scenarios. As a case study relevant for Super-Earths, we investigate a Gl581g-like planet with Earth-like atmosphere and irradiation and present results for two representative rotation periods of Prot = 10 d and Prot = 36.5 d. Our results provide proof of concept and highlight interesting dynamical features for the rotating regime 3 < Prot < 100 d, which was shown by Edson et al. to be an intermediate regime between equatorial superrotation and divergence. We confirm that the Prot = 10 d case is more dominated by equatorial superrotation dynamics than the Prot = 36.5 d case, which shows diminishing influence of standing Rossby-Kelvin waves and increasing influence of divergence at the top of the atmosphere. We argue that this dynamical regime change relates to the increase in Rossby deformation radius, in agreement with previous studies. However, we also pay attention to other features that are not or only in partial agreement with other studies, like, e.g. the number of circulation cells and their strength, the role and extent of thermal inversion layers, and the details of heat transport.

  20. Solar dynamic power system definition study

    NASA Technical Reports Server (NTRS)

    Wallin, Wayne E.; Friefeld, Jerry M.

    1988-01-01

    The solar dynamic power system design and analysis study compared Brayton, alkali-metal Rankine, and free-piston Stirling cycles with silicon planar and GaAs concentrator photovoltaic power systems for application to missions beyond the Phase 2 Space Station level of technology for all power systems. Conceptual designs for Brayton and Stirling power systems were developed for 35 kWe and 7 kWe power levels. All power systems were designed for 7-year end-of-life conditions in low Earth orbit. LiF was selected for thermal energy storage for the solar dynamic systems. Results indicate that the Stirling cycle systems have the highest performance (lowest weight and area) followed by the Brayton cycle, with photovoltaic systems considerably lower in performance. For example, based on the performance assumptions used, the planar silicon power system weight was 55 to 75 percent higher than for the Stirling system. A technology program was developed to address areas wherein significant performance improvements could be realized relative to the current state-of-the-art as represented by Space Station. In addition, a preliminary evaluation of hardenability potential found that solar dynamic systems can be hardened beyond the hardness inherent in the conceptual designs of this study.

  1. Recent Earth oblateness variations: unraveling climate and postglacial rebound effects.

    PubMed

    Dickey, Jean O; Marcus, Steven L; de Viron, Olivier; Fukumori, Ichiro

    2002-12-06

    Earth's dynamic oblateness (J2) has been decreasing due to postglacial rebound (PGR). However, J2 began to increase in 1997, indicating a pronounced global-scale mass redistribution within Earth's system. We have determined that the observed increases in J2 are caused primarily by a recent surge in subpolar glacial melting and by mass shifts in the Southern, Pacific, and Indian oceans. When these effects are removed, the residual trend in J2 (-2.9 x 10(-11) year-1) becomes consistent with previous estimates of PGR from satellite and eclipse data. The climatic significance of these rapid shifts in glacial and oceanic mass, however, remains to be investigated.

  2. Asymmetric Catalysis with bis(hydroxyphenyl)diamides/rare-earth metal complexes.

    PubMed

    Kumagai, Naoya; Shibasaki, Masakatsu

    2013-01-02

    A series of asymmetric catalysts composed of conformationally flexible amide-based chiral ligands and rare-earth metals was developed for proton-transfer catalysis. These ligands derived from amino acids provide an intriguing chiral platform for the formation of asymmetric catalysts upon complexation with rare-earth metals. The scope of this arsenal of catalysts was further broadened by the development of heterobimetallic catalytic systems. The cooperative function of hydrogen bonding and metal coordination resulted in intriguing substrate specificity and stereocontrol, and the dynamic nature of the catalysts led to a switch of their function. Herein, we summarize our recent exploration of this class of catalysts. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Analytical investigation of the dynamics of tethered constellations in Earth orbit (phase 2)

    NASA Technical Reports Server (NTRS)

    Lorenzini, E.; Arnold, D. A.; Grossi, M. D.; Gullahorn, G. E.

    1985-01-01

    The deployment maneuver of three axis vertical constellations with elastic tethers is analyzed. The deployment strategy devised previously was improved. Dampers were added to the system. Effective algorithms for damping out the fundamental vibrational modes of the system were implemented. Simulations of a complete deployment and a subsequent station keeping phase of a three mass constellation is shown.

  4. ENERGY-NET (Energy, Environment and Society Learning Network): Enhancing opportunities for learning using an Earth systems science framework

    NASA Astrophysics Data System (ADS)

    Elliott, E. M.; Bain, D. J.; Divers, M. T.; Crowley, K. J.; Povis, K.; Scardina, A.; Steiner, M.

    2012-12-01

    We describe a newly funded collaborative NSF initiative, ENERGY-NET (Energy, Environment and Society Learning Network), that brings together the Carnegie Museum of Natural History (CMNH) with the Learning Science and Geoscience research strengths at the University of Pittsburgh. ENERGY-NET aims to create rich opportunities for participatory learning and public education in the arena of energy, the environment, and society using an Earth systems science framework. We build upon a long-established teen docent program at CMNH and to form Geoscience Squads comprised of underserved teens. Together, the ENERGY-NET team, including museum staff, experts in informal learning sciences, and geoscientists spanning career stage (undergraduates, graduate students, faculty) provides inquiry-based learning experiences guided by Earth systems science principles. Together, the team works with Geoscience Squads to design "Exploration Stations" for use with CMNH visitors that employ an Earth systems science framework to explore the intersecting lenses of energy, the environment, and society. The goals of ENERGY-NET are to: 1) Develop a rich set of experiential learning activities to enhance public knowledge about the complex dynamics between Energy, Environment, and Society for demonstration at CMNH; 2) Expand diversity in the geosciences workforce by mentoring underrepresented teens, providing authentic learning experiences in earth systems science and life skills, and providing networking opportunities with geoscientists; and 3) Institutionalize ENERGY-NET collaborations among geosciences expert, learning researchers, and museum staff to yield long-term improvements in public geoscience education and geoscience workforce recruiting.

  5. Zirconium isotope constraints on the composition of Theia and current Moon-forming theories

    NASA Astrophysics Data System (ADS)

    Akram, W.; Schönbächler, M.

    2016-09-01

    The giant impact theory is the most widely recognized formation scenario of the Earth's Moon. Giant impact models based on dynamical simulations predict that the Moon acquired a significant amount of impactor (Theia) material, which is challenging to reconcile with geochemical data for O, Si, Cr, Ti and W isotopes in the Earth and Moon. Three new giant impact scenarios have been proposed to account for this discrepancy - hit-and-run impact, impact with a fast-spinning protoEarth and massive impactors - each one reducing the proportion of the impactor in the Moon compared to the original canonical giant impact model. The validity of each theory and their different dynamical varieties are evaluated here using an integrated approach that considers new high-precision Zr isotope measurements of lunar rocks, and quantitative geochemical modelling of the isotopic composition of the impactor Theia. All analysed lunar samples (whole-rock, ilmenite and pyroxene separates) display identical Zr isotope compositions to that of the Earth within the uncertainty of 13 ppm for 96Zr/90Zr (2σ weighted average). This 13 ppm upper limit is used to infer the most extreme isotopic composition that Theia could have possessed, relative to the Earth, for each of the proposed giant impact theories. The calculated Theian composition is compared with the Zr isotope compositions of different solar system materials in order to constrain the source region of the impactor. As a first order approximation, we show that all considered models (including the canonical) are plausible, alleviating the initial requirement for the new giant impact models. Albeit, the canonical and hit-and-run models are the most restrictive, suggesting that the impactor originated from a region close to the Earth. The fast-spinning protoEarth and massive impactor models are more relaxed and increase the allowed impactor distance from the Earth. Similar calculations carried out for O, Cr, Ti and Si isotope data support these conclusions but exclude a CI- and enstatite chondrite-like composition for Theia. Thus, the impactor Theia most likely had a Zr isotope composition close to that of the Earth, and this suggests that a large part of the inner solar system (or accretion region of the Earth, Theia and enstatite chondrites) had a uniform Zr isotope composition.

  6. The Earth Data Analytic Services (EDAS) Framework

    NASA Astrophysics Data System (ADS)

    Maxwell, T. P.; Duffy, D.

    2017-12-01

    Faced with unprecedented growth in earth data volume and demand, NASA has developed the Earth Data Analytic Services (EDAS) framework, a high performance big data analytics framework built on Apache Spark. This framework enables scientists to execute data processing workflows combining common analysis operations close to the massive data stores at NASA. The data is accessed in standard (NetCDF, HDF, etc.) formats in a POSIX file system and processed using vetted earth data analysis tools (ESMF, CDAT, NCO, etc.). EDAS utilizes a dynamic caching architecture, a custom distributed array framework, and a streaming parallel in-memory workflow for efficiently processing huge datasets within limited memory spaces with interactive response times. EDAS services are accessed via a WPS API being developed in collaboration with the ESGF Compute Working Team to support server-side analytics for ESGF. The API can be accessed using direct web service calls, a Python script, a Unix-like shell client, or a JavaScript-based web application. New analytic operations can be developed in Python, Java, or Scala (with support for other languages planned). Client packages in Python, Java/Scala, or JavaScript contain everything needed to build and submit EDAS requests. The EDAS architecture brings together the tools, data storage, and high-performance computing required for timely analysis of large-scale data sets, where the data resides, to ultimately produce societal benefits. It is is currently deployed at NASA in support of the Collaborative REAnalysis Technical Environment (CREATE) project, which centralizes numerous global reanalysis datasets onto a single advanced data analytics platform. This service enables decision makers to compare multiple reanalysis datasets and investigate trends, variability, and anomalies in earth system dynamics around the globe.

  7. Trajectory Design for the Transiting Exoplanet Survey Satellite (TESS)

    NASA Technical Reports Server (NTRS)

    Dichmann, Donald J.; Parker, Joel; Williams, Trevor; Mendelsohn, Chad

    2014-01-01

    The Transiting Exoplanet Survey Satellite (TESS) is a National Aeronautics and Space Administration (NASA) mission launching in 2017. TESS will travel in a highly eccentric orbit around Earth, with initial perigee radius near 17 Earth radii (Re) and apogee radius near 59 Re. The orbit period is near 2:1 resonance with the Moon, with apogee nearly 90 degrees out-of-phase with the Moon, in a configuration that has been shown to be operationally stable. TESS will execute phasing loops followed by a lunar flyby, with a final maneuver to achieve 2:1 resonance with the Moon. The goals of a resonant orbit with long-term stability, short eclipses and limited oscillations of perigee present significant challenges to the trajectory design. To rapidly assess launch opportunities, we adapted the SWM76 launch window tool to assess the TESS mission constraints. To understand the long-term dynamics of such a resonant orbit in the Earth-Moon system we employed Dynamical Systems Theory in the Circular Restricted 3-Body Problem (CR3BP). For precise trajectory analysis we use a high-fidelity model and multiple shooting in the General Mission Analysis Tool (GMAT) to optimize the maneuver delta-V and meet mission constraints. Finally we describe how the techniques we have developed can be applied to missions with similar requirements.

  8. Earth System Models Underestimate Soil Carbon Diagnostic Times in Dry and Cold Regions.

    NASA Astrophysics Data System (ADS)

    Jing, W.; Xia, J.; Zhou, X.; Huang, K.; Huang, Y.; Jian, Z.; Jiang, L.; Xu, X.; Liang, J.; Wang, Y. P.; Luo, Y.

    2017-12-01

    Soils contain the largest organic carbon (C) reservoir in the Earth's surface and strongly modulate the terrestrial feedback to climate change. Large uncertainty exists in current Earth system models (ESMs) in simulating soil organic C (SOC) dynamics, calling for a systematic diagnosis on their performance based on observations. Here, we built a global database of SOC diagnostic time (i.e.,turnover times; τsoil) measured at 320 sites with four different approaches. We found that the estimated τsoil was comparable among approaches of 14C dating () (median with 25 and 75 percentiles), 13C shifts due to vegetation change () and the ratio of stock over flux (), but was shortest from laboratory incubation studies (). The state-of-the-art ESMs underestimated the τsoil in most biomes, even by >10 and >5 folds in cold and dry regions, respectively. Moreover,we identified clear negative dependences of τsoil on temperature and precipitation in both of the observational and modeling results. Compared with Community Land Model (version 4), the incorporation of soil vertical profile (CLM4.5) could substantially extend the τsoil of SOC. Our findings suggest the accuracy of climate-C cycle feedback in current ESMs could be enhanced by an improved understanding of SOC dynamics under the limited hydrothermal conditions.

  9. Long term evolution of distant retrograde orbits in the Earth-Moon system

    NASA Astrophysics Data System (ADS)

    Bezrouk, Collin; Parker, Jeffrey S.

    2017-09-01

    This work studies the evolution of several Distant Retrograde Orbits (DROs) of varying size in the Earth-Moon system over durations up to tens of millennia. This analysis is relevant for missions requiring a completely hands off, long duration quarantine orbit, such as a Mars Sample Return mission or the Asteroid Redirect Mission. Four DROs are selected from four stable size regions and are propagated for up to 30,000 years with an integrator that uses extended precision arithmetic techniques and a high fidelity dynamical model. The evolution of the orbit's size, shape, orientation, period, out-of-plane amplitude, and Jacobi constant are tracked. It has been found that small DROs, with minor axis amplitudes of approximately 45,000 km or less decay in size and period largely due to the Moon's solid tides. Larger DROs (62,000 km and up) are more influenced by the gravity of bodies external to the Earth-Moon system, and remain bound to the Moon for significantly less time.

  10. Expanding the Reach of Physics-Engaging Students in Interdisciplinary Research Involving complex, real-world situation

    NASA Astrophysics Data System (ADS)

    Bililign, Solomon

    2014-03-01

    Physics plays a very important role in most interdisciplinary efforts and can provide a solid foundation for students. Retention of students in STEM areas can be facilitated by enhanced interdisciplinary education and research since students are strongly attracted to research with societal relevance and show increasing enthusiasm about problems that have practical consequences. One such area of research is a collaborative Earth System Science. The Earth System is dynamic and complex. It is comprised of diverse components that interact. By providing students the opportunities to work in interdisciplinary groups on a problem that reflects a complex, real-world situation they can see the linkages between components of the Earth system that encompass climate and all its components (weather precipitation, temperature, etc.) and technology development and deployment of sensors and sensor networks and social impacts. By involving students in the creation of their own personalized professional development plan, students are more focused and engaged and are more likely to remain in the program.

  11. Non-Extensive Statistical Analysis of Solar Wind Electric, Magnetic Fields and Solar Energetic Particle time series.

    NASA Astrophysics Data System (ADS)

    Pavlos, G. P.; Malandraki, O.; Khabarova, O.; Livadiotis, G.; Pavlos, E.; Karakatsanis, L. P.; Iliopoulos, A. C.; Parisis, K.

    2017-12-01

    In this work we study the non-extensivity of Solar Wind space plasma by using electric-magnetic field data obtained by in situ spacecraft observations at different dynamical states of solar wind system especially in interplanetary coronal mass ejections (ICMEs), Interplanetary shocks, magnetic islands, or near the Earth Bow shock. Especially, we study the energetic particle non extensive fractional acceleration mechanism producing kappa distributions as well as the intermittent turbulence mechanism producing multifractal structures related with the Tsallis q-entropy principle. We present some new and significant results concerning the dynamics of ICMEs observed in the near Earth at L1 solar wind environment, as well as its effect in Earth's magnetosphere as well as magnetic islands. In-situ measurements of energetic particles at L1 are analyzed, in response to major solar eruptive events at the Sun (intense flares, fast CMEs). The statistical characteristics are obtained and compared for the Solar Energetic Particles (SEPs) originating at the Sun, the energetic particle enhancements associated with local acceleration during the CME-driven shock passage over the spacecraft (Energetic Particle Enhancements, ESPs) as well as the energetic particle signatures observed during the passage of the ICME. The results are referred to Tsallis non-extensive statistics and in particular to the estimation of Tsallis q-triplet, (qstat, qsen, qrel) of electric-magnetic field and the kappa distributions of solar energetic particles time series of the ICME, magnetic islands, resulting from the solar eruptive activity or the internal Solar Wind dynamics. Our results reveal significant differences in statistical and dynamical features, indicating important variations of the magnetic field dynamics both in time and space domains during the shock event, in terms of rate of entropy production, relaxation dynamics and non-equilibrium meta-stable stationary states.

  12. Spaceborne observations of a changing Earth - Contribution from ESÁ s operating and approved satellite missions.

    NASA Astrophysics Data System (ADS)

    Johannessen, J. A.

    2009-04-01

    The overall vision for ESÁs Earth Observation activities is to play a central role in developing the global capability to understand planet Earth, predict changes, and mitigate negative effects of global change on its populations. Since Earth observation from space first became possible more than forty years ago, it has become central to monitoring and understanding how the dynamics of the Earth System work. The greatest progress has been in meteorology, where space-based observations have become indispensable, but it is now also progressively penetrating many of the fields making up Earth sciences. Exploiting Earth observation from space presents major multidisciplinary challenges to the researches working in the Earth sciences, to the technologists who build the state-of-the-art sensors, and to the scientists interpreting measurements made of processes occurring on or within the Earth's surface and in its atmosphere. The scientific community has shown considerable imagination in rising to these challenges, and in exploiting the latest technological developments to measure from space the complex processes and interactions that occur in the Earth System. In parallel, there has been significant progress in developing computer models that represent the many processes that make up the Earth System, and the interactions and feedback between them. Success in developing this holistic view is inextricably linked to the data provided by Earth Observation systems. Satellites provide the fundamental, consistent, regular and global measurements needed to drive, parameterise, test and improve those Earth System models. These developments, together with changes in society's awareness of the need for information on a changing world, have repetitively supported the decisions on how ESA can best focus its resources, and those of the European community that it serves, in order to address critical issues in Earth System science. Moreover, it is a fact that many operational, managerial and regulatory activities (i.e. weather forecasting, deforestation, flooding, etc.) essential to the safe exploitation of global resources, conservation of sustainable ecosystems, and the compliance with numerous international treaties and conventions, depend absolutely on continuity of satellite missions to maximise socio-economic and environmental benefits. This presentation will highlight some of the multidisciplinary Earth science achievements and operational applications using ESA satellite missions. It will also address some of the key scientific challenges and need for operational monitoring services in the years to come. It capitalizes on the knowledge and awareness outlined in "The Changing Earth - New scientific challenges for ESÁs Living Planet Programme" issued in 2006 together with updated views and approved plans expressed during ESÁs Earth Sciences Advisory Committee (ESAC) meetings and agreed at the recent User Consultation meeting in January 2009.

  13. Variations of the Milankovitch frequencies in time

    NASA Technical Reports Server (NTRS)

    Loutre, Marie-France; Berger, A.

    1992-01-01

    The sensitivity of the amplitudes and frequencies in the development of the Earth's orbital and rotational elements involved in the astronomical theory of paleoclimates (eccentricity, obliquity, and climate precession), to the Earth-Moon distance and consequently to the length of the day and to the dynamical ellipticity of the Earth has been discussed for the last billions of years. The shortening of the Earth-Moon distance and of the length of the day, as well as the lengthening of the dynamical ellipticity of the Earth back in time induce a shortening of the fundamental astronomical periods for precession and obliquity. At the same time, the amplitudes of the different terms in the development of the obliquity are undergoing a relative enlargement of about 50 percent at 2 x 10(exp 9) yr BP but the independent term is increasing very weakly (less than 0.1 percent). In other words, the value of the obliquity, which lies within a range of 21.7 to 24.9 deg over the Quarternary was restricted to a range of 22.5 to 24.1 deg at 2 x 10(exp 9) yr BP. On the other hand, the amplitudes in the development of the climatic precession do not change. Moreover, these changes in the frequencies and amplitudes for both obliquity and climatic precession are larger for longer period terms. Finally, the periods in the eccentricity development are not influenced by the variation of the lunar distance. But the motion of the solar system, especially of the inner planets, was shown to be chaotic. It means that it is impossible to compute the exact motion of the planets over more than about 100 Myr, and the fundamental frequencies of the systems are not fixed quantities, but are slowly varying with time. As long as we consider the most important terms, the maximum deviation from the present-day value of the 19-kyr precessional period due to the chaotic motion of the solar system only does not reach more than a few tens of years around 80 Myr BP. Therefore the shortening of the obliquity and climatic precession periods is mostly driven by the change in the lunar distance and the consequent variations in the dynamical ellipticity of the Earth's angular speed. At first sight, the deviation in the period for the eccentricity can be neglected, as the chaotic behavior of the solar system implies a relative change of the main periods by less than 0.2 percent, 1.4 percent, and 1.9 percent respectively, this maximum change being achieved around 80 Myr BP. This implies, in particular, that the eccentricity periods for Quarternary climate studies may be considered more or less constant for pre-Quaternay times and equal to their Quaternary values.

  14. The Autonomous Sciencecraft and applications to future science missions

    NASA Astrophysics Data System (ADS)

    Chien, S.

    2006-05-01

    The Autonomous Sciencecraft Software has operated the Earth Observing One (EO-1) Mission for over 5000 science observations [Chien et al. 2005a]. This software enables onboard analysis of data to drive: 1. production of rapid alerts summary products, 2. data editing, and 3. to inform subsequent observations. This methodology has been applied to more effectively study Volcano, Flooding, and Cryosphere processes on Earth. In this talk we discuss how this software enables new paradigms for science missions and discuss the types of science phenomena that can now be more readily studied (e.g. dynamic investigations, large scale searches for specific events). We also describe a range of Earth, Solar, and Space science applications under concept study for onboard autonomy. Finally, we describe ongoing work to link EO-1 with other spacecraft and in-situ sensor networks to enable a sensorweb for monitoring dynamic science events [Chien et al. 2005b]. S. Chien, R. Sherwood, D. Tran, B. Cichy, G. Rabideau, R. Castano, A. Davies, D. Mandl, S. Frye, B. Trout, S. Shulman, D. Boyer, "Using Autonomy Flight Software to Improve Science Return on Earth Observing One, Journal of Aerospace Computing, Information, & Communication, April 2005, AIAA. S. Chien, B. Cichy, A. Davies, D. Tran, G. Rabideau, R. Castano, R. Sherwood, D. Mandl, S. Frye, S. Shulman, J. Jones, S. Grosvenor, "An Autonomous Earth Observing Sensorweb," IEEE Intelligent Systems, May-June 2005, pp. 16- 24.

  15. Evaluation of thermal control coatings for use on solar dynamic radiators in low earth orbit

    NASA Technical Reports Server (NTRS)

    Dever, Joyce A.; Rodriguez, Elvin; Slemp, Wayne S.; Stoyack, Joseph E.

    1991-01-01

    Thermal control coatings with high thermal emittance and low solar absorptance are needed for Space Station Freedom (SSF) solar dynamic power module radiator (SDR) surfaces for efficient heat rejection. Additionally, these coatings must be durable to low earth orbital (LEO) environmental effects of atomic oxygen, ultraviolet radiation and deep thermal cycles which occur as a result of start-up and shut-down of the solar dynamic power system. Eleven candidate coatings were characterized for their solar absorptance and emittance before and after exposure to ultraviolet (UV) radiation (200 to 400 nm), vacuum UV (VUV) radiation (100 to 200 nm) and atomic oxygen. Results indicated that the most durable and best performing coatings were white paint thermal control coatings Z-93, zinc oxide pigment in potassium silicate binder, and YB-71, zinc orthotitanate pigment in potassium silicate binder. Optical micrographs of these materials exposed to the individual environmental effects of atomic oxygen and vacuum thermal cycling showed that no surface cracking occurred.

  16. Evaluation of thermal control coatings for use on solar dynamic radiators in low Earth orbit

    NASA Technical Reports Server (NTRS)

    Dever, Joyce A.; Rodriguez, Elvin; Slemp, Wayne S.; Stoyack, Joseph E.

    1991-01-01

    Thermal control coatings with high thermal emittance and low solar absorptance are needed for Space Station Freedom (SSF) solar dynamic power module radiator (SDR) surfaces for efficient heat rejection. Additionally, these coatings must be durable to low earth orbital (LEO) environmental effects of atomic oxygen, ultraviolet radiation and deep thermal cycles which occur as a result of start-up and shut-down of the solar dynamic power system. Eleven candidate coatings were characterized for their solar absorptance and emittance before and after exposure to ultraviolet (UV) radiation (200 to 400 nm), vacuum UV (VUV) radiation (100 to 200 nm) and atomic oxygen. Results indicated that the most durable and best performing coatings were white paint thermal control coatings Z-93, zinc oxide pigment in potassium silicate binder, and YB-71, zinc orthotitanate pigment in potassium silicate binder. Optical micrographs of these materials exposed to the individual environmental effects of atomic oxygen and vacuum thermal cycling showed that no surface cracking occurred.

  17. Advanced platform technologies for Earth science

    NASA Astrophysics Data System (ADS)

    Lemmerman, Loren; Raymond, Carol; Shotwell, Robert; Chase, James; Bhasin, Kul; Connerton, Robert

    2005-01-01

    Historically, Earth science investigations have been independent and highly focused. However, the Earth's environment is a very dynamic and interrelated system and to understand it, significant improvements in spatial and temporal observations will be required. Science needs to document the need for constellations to achieve desired spatial and temporal observations. A key element envisioned for accomplishing these difficult challenges is the idea of a distributed, heterogeneous, and adaptive observing system or sensor web. This paper focuses on one possible approach based on a LEO constellation composed of 100 spacecraft. A cost analysis has been done to indicate the financial pressures of each mission phase and conclusions are drawn suggesting that new technology investments are needed, directed toward lowering production costs; that operations costs will need to be reduced through autonomy; and that, of the on-board subsystems considered, advanced power generation and management may be the most enabling of new technologies.

  18. MMS at NRL

    NASA Image and Video Library

    2014-08-04

    A photograph showing what all four Magnetospheric Multiscale (MMS) spacecraft look like when stacked is seen taped to the window of a Naval Research Laboratory cleanroom where one of the four spacecraft is undergoing testing, Monday, August 4, 2014, in Washington. The Magnetospheric Multiscale, or MMS, mission will study the mystery of how magnetic fields around Earth connect and disconnect, explosively releasing energy via a process known as magnetic reconnection. The four identical spacecraft are scheduled to launch in 2015 from Cape Canaveral and will orbit around Earth in varying formations through the dynamic magnetic system surrounding our planet to provide the first three-dimensional views of the magnetic reconnection process. The goal of the STP Program is to understand the fundamental physical processes of the space environment from the sun to Earth, other planets, and the extremes of the solar system boundary. Photo Credit: (NASA/Bill Ingalls)

  19. MMS at NRL

    NASA Image and Video Library

    2014-08-04

    NASA Administrator Charles Bolden listens to Magnetospheric Multiscale (MMS) Mission Project Manager Craig Tooley talk about the MMS mission outside of a Naval Research Laboratory cleanroom where one of four Magnetospheric Multiscale (MMS) spacecraft is currently undergoing testing, Monday, August 4, 2014, in Washington. The Magnetospheric Multiscale, or MMS, mission will study the mystery of how magnetic fields around Earth connect and disconnect, explosively releasing energy via a process known as magnetic reconnection. The four identical spacecraft are scheduled to launch in 2015 from Cape Canaveral and will orbit around Earth in varying formations through the dynamic magnetic system surrounding our planet to provide the first three-dimensional views of the magnetic reconnection process. The goal of the STP Program is to understand the fundamental physical processes of the space environment from the sun to Earth, other planets, and the extremes of the solar system boundary. Photo Credit: (NASA/Bill Ingalls)

  20. Critical Thresholds in Earth-System Dynamics

    NASA Astrophysics Data System (ADS)

    Rothman, D.

    2017-12-01

    The history of the Earth system is a story of change. Some changesare gradual and benign, but others, especially those associated withcatastrophic mass extinction, are relatively abrupt and destructive.What sets one group apart from the other? Here I hypothesize thatperturbations of Earth's carbon cycle lead to mass extinction if theyexceed either a critical rate at long time scales or a critical sizeat short time scales. By analyzing 31 carbon-isotopic events duringthe last 542 million years, I identify the critical rate with a limitimposed by mass conservation. Further analysis identifies thecrossover timescale separating fast from slow events with thetimescale of the ocean's homeostatic response to a change in pH. Theproduct of the critical rate and the crossover timescale then yieldsthe critical size. The modern critical size for the marine carboncycle is roughly similar to the mass of carbon that human activitieswill likely have added to the oceans by the year 2100.

  1. Plate tectonics and planetary habitability: current status and future challenges.

    PubMed

    Korenaga, Jun

    2012-07-01

    Plate tectonics is one of the major factors affecting the potential habitability of a terrestrial planet. The physics of plate tectonics is, however, still far from being complete, leading to considerable uncertainty when discussing planetary habitability. Here, I summarize recent developments on the evolution of plate tectonics on Earth, which suggest a radically new view on Earth dynamics: convection in the mantle has been speeding up despite its secular cooling, and the operation of plate tectonics has been facilitated throughout Earth's history by the gradual subduction of water into an initially dry mantle. The role of plate tectonics in planetary habitability through its influence on atmospheric evolution is still difficult to quantify, and, to this end, it will be vital to better understand a coupled core-mantle-atmosphere system in the context of solar system evolution. © 2012 New York Academy of Sciences.

  2. Universities Earth System Scientists Program

    NASA Technical Reports Server (NTRS)

    Estes, John E.

    1995-01-01

    This document constitutes the final technical report for the National Aeronautics and Space Administration (NASA) Grant NAGW-3172. This grant was instituted to provide for the conduct of research under the Universities Space Research Association's (USRA's) Universities Earth System Scientist Program (UESSP) for the Office of Mission to Planet Earth (OMTPE) at NASA Headquarters. USRA was tasked with the following requirements in support of the Universities Earth System Scientists Programs: (1) Bring to OMTPE fundamental scientific and technical expertise not currently resident at NASA Headquarters covering the broad spectrum of Earth science disciplines; (2) Conduct basic research in order to help establish the state of the science and technological readiness, related to NASA issues and requirements, for the following, near-term, scientific uncertainties, and data/information needs in the areas of global climate change, clouds and radiative balance, sources and sinks of greenhouse gases and the processes that control them, solid earth, oceans, polar ice sheets, land-surface hydrology, ecological dynamics, biological diversity, and sustainable development; (3) Evaluate the scientific state-of-the-field in key selected areas and to assist in the definition of new research thrusts for missions, including those that would incorporate the long-term strategy of the U.S. Global Change Research Program (USGCRP). This will, in part, be accomplished by study and evaluation of the basic science needs of the community as they are used to drive the development and maintenance of a global-scale observing system, the focused research studies, and the implementation of an integrated program of modeling, prediction, and assessment; and (4) Produce specific recommendations and alternative strategies for OMTPE that can serve as a basis for interagency and national and international policy on issues related to Earth sciences.

  3. DETECTABILITY OF EARTH-LIKE PLANETS IN CIRCUMSTELLAR HABITABLE ZONES OF BINARY STAR SYSTEMS WITH SUN-LIKE COMPONENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eggl, Siegfried; Pilat-Lohinger, Elke; Haghighipour, Nader, E-mail: siegfried.eggl@univie.ac.at

    2013-02-20

    Given the considerable percentage of stars that are members of binaries or stellar multiples in the solar neighborhood, it is expected that many of these binaries host planets, possibly even habitable ones. The discovery of a terrestrial planet in the {alpha} Centauri system supports this notion. Due to the potentially strong gravitational interaction that an Earth-like planet may experience in such systems, classical approaches to determining habitable zones (HZ), especially in close S-type binary systems, can be rather inaccurate. Recent progress in this field, however, allows us to identify regions around the star permitting permanent habitability. While the discovery ofmore » {alpha} Cen Bb has shown that terrestrial planets can be detected in solar-type binary stars using current observational facilities, it remains to be shown whether this is also the case for Earth analogs in HZs. We provide analytical expressions for the maximum and rms values of radial velocity and astrometric signals, as well as transit probabilities of terrestrial planets in such systems, showing that the dynamical interaction of the second star with the planet may indeed facilitate the planets' detection. As an example, we discuss the detectability of additional Earth-like planets in the averaged, extended, and permanent HZs around both stars of the {alpha} Centauri system.« less

  4. Basic research for the Earth dynamics program

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The technique of range differencing with Lageos ranges to obtain more accurate estimates of baseline lengths and polar motion variation was studied. Differencing quasi simultaneous range observations eliminate a great deal of orbital biases. Progress is reported on the definition and maintenance of a conventional terrestrial reference system.

  5. NASA's Earth Science Flight Program Meets the Challenges of Today and Tomorrow

    NASA Technical Reports Server (NTRS)

    Ianson, Eric E.

    2016-01-01

    NASA's Earth science flight program is a dynamic undertaking that consists of a large fleet of operating satellites, an array of satellite and instrument projects in various stages of development, a robust airborne science program, and a massive data archiving and distribution system. Each element of the flight program is complex and present unique challenges. NASA builds upon its successes and learns from its setbacks to manage this evolving portfolio to meet NASA's Earth science objectives. NASA fleet of 16 operating missions provide a wide range of scientific measurements made from dedicated Earth science satellites and from instruments mounted to the International Space Station. For operational missions, the program must address issues such as an aging satellites operating well beyond their prime mission, constellation flying, and collision avoidance with other spacecraft and orbital debris. Projects in development are divided into two broad categories: systematic missions and pathfinders. The Earth Systematic Missions (ESM) include a broad range of multi-disciplinary Earth-observing research satellite missions aimed at understanding the Earth system and its response to natural and human-induced forces and changes. Understanding these forces will help determine how to predict future changes, and how to mitigate or adapt to these changes. The Earth System Science Pathfinder (ESSP) program provides frequent, regular, competitively selected Earth science research opportunities that accommodate new and emerging scientific priorities and measurement capabilities. This results in a series of relatively low-cost, small-sized investigations and missions. Principal investigators whose scientific objectives support a variety of studies lead these missions, including studies of the atmosphere, oceans, land surface, polar ice regions, or solid Earth. This portfolio of missions and investigations provides opportunity for investment in innovative Earth science that enhances NASA's capability for better understanding the current state of the Earth system. ESM and ESSP projects often involve partnerships with other US agencies and/or international organizations. This adds to the complexity of mission development, but allows for a greater scientific return on NASA's investments. The Earth Science Airborne Science Program provides manned and unmanned aircraft systems that further science and advance the use of satellite data. NASA uses these assets worldwide in campaigns to investigate extreme weather events, observe Earth system processes, obtain data for Earth science modeling activities, and calibrate instruments flying aboard Earth science spacecraft. The Airborne Science Program has six dedicated aircraft and access to many other platforms. The Earth Science Multi-Mission Operations program acquires, preserves, and distributes observational data from operating spacecraft to support Earth Science research focus areas. The Earth Observing System Data and Information System (EOSDIS), which has been in operations since 1994, primarily accomplishes this. EOSDIS acquires, processes, archives, and distributes Earth Science data and information products. The archiving of NASA Earth Science information happens at eight Distributed Active Archive Centers (DAACs) and four disciplinary data centers located across the United States. The DAACs specialize by topic area, and make their data available to researchers around the world. The DAACs currently house over 9 petabytes of data, growing at a rate of 6.4 terabytes per day. NASA's current Earth Science portfolio is responsive to the National Research Council (NRC) 2007 Earth Science Decadal Survey and well as the 2010 NASA Response to President Obama's Climate Plan. As the program evolves into the future it will leverage the lessons learned from the current missions in operations and development, and plan for adjustments to future objectives in response to the anticipated 2017 NRC Decadal Survey.

  6. Life, hierarchy, and the thermodynamic machinery of planet Earth.

    PubMed

    Kleidon, Axel

    2010-12-01

    Throughout Earth's history, life has increased greatly in abundance, complexity, and diversity. At the same time, it has substantially altered the Earth's environment, evolving some of its variables to states further and further away from thermodynamic equilibrium. For instance, concentrations in atmospheric oxygen have increased throughout Earth's history, resulting in an increased chemical disequilibrium in the atmosphere as well as an increased redox gradient between the atmosphere and the Earth's reducing crust. These trends seem to contradict the second law of thermodynamics, which states for isolated systems that gradients and free energy are dissipated over time, resulting in a state of thermodynamic equilibrium. This seeming contradiction is resolved by considering planet Earth as a coupled, hierarchical and evolving non-equilibrium thermodynamic system that has been substantially altered by the input of free energy generated by photosynthetic life. Here, I present this hierarchical thermodynamic theory of the Earth system. I first present simple considerations to show that thermodynamic variables are driven away from a state of thermodynamic equilibrium by the transfer of power from some other process and that the resulting state of disequilibrium reflects the past net work done on the variable. This is applied to the processes of planet Earth to characterize the generation and transfer of free energy and its dissipation, from radiative gradients to temperature and chemical potential gradients that result in chemical, kinetic, and potential free energy and associated dynamics of the climate system and geochemical cycles. The maximization of power transfer among the processes within this hierarchy yields thermodynamic efficiencies much lower than the Carnot efficiency of equilibrium thermodynamics and is closely related to the proposed principle of Maximum Entropy Production (MEP). The role of life is then discussed as a photochemical process that generates substantial amounts of chemical free energy which essentially skips the limitations and inefficiencies associated with the transfer of power within the thermodynamic hierarchy of the planet. This perspective allows us to view life as being the means to transform many aspects of planet Earth to states even further away from thermodynamic equilibrium than is possible by purely abiotic means. In this perspective pockets of low-entropy life emerge from the overall trend of the Earth system to increase the entropy of the universe at the fastest possible rate. The implications of the theory are discussed regarding fundamental deficiencies in Earth system modeling, applications of the theory to reconstructions of Earth system history, and regarding the role of human activity for the future of the planet. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Rotational breakup as the origin of small binary asteroids.

    PubMed

    Walsh, Kevin J; Richardson, Derek C; Michel, Patrick

    2008-07-10

    Asteroids with satellites are observed throughout the Solar System, from subkilometre near-Earth asteroid pairs to systems of large and distant bodies in the Kuiper belt. The smallest and closest systems are found among the near-Earth and small inner main-belt asteroids, which typically have rapidly rotating primaries and close secondaries on circular orbits. About 15 per cent of near-Earth and main-belt asteroids with diameters under 10 km have satellites. The mechanism that forms such similar binaries in these two dynamically different populations was hitherto unclear. Here we show that these binaries are created by the slow spinup of a 'rubble pile' asteroid by means of the thermal YORP (Yarkovsky-O'Keefe-Radzievskii-Paddack) effect. We find that mass shed from the equator of a critically spinning body accretes into a satellite if the material is collisionally dissipative and the primary maintains a low equatorial elongation. The satellite forms mostly from material originating near the primary's surface and enters into a close, low-eccentricity orbit. The properties of binaries produced by our model match those currently observed in the small near-Earth and main-belt asteroid populations, including 1999 KW(4) (refs 3, 4).

  8. Rotational breakup as the origin of small binary asteroids

    NASA Astrophysics Data System (ADS)

    Walsh, Kevin J.; Richardson, Derek C.; Michel, Patrick

    2008-07-01

    Asteroids with satellites are observed throughout the Solar System, from subkilometre near-Earth asteroid pairs to systems of large and distant bodies in the Kuiper belt. The smallest and closest systems are found among the near-Earth and small inner main-belt asteroids, which typically have rapidly rotating primaries and close secondaries on circular orbits. About 15 per cent of near-Earth and main-belt asteroids with diameters under 10km have satellites. The mechanism that forms such similar binaries in these two dynamically different populations was hitherto unclear. Here we show that these binaries are created by the slow spinup of a `rubble pile' asteroid by means of the thermal YORP (Yarkovsky-O'Keefe-Radzievskii-Paddack) effect. We find that mass shed from the equator of a critically spinning body accretes into a satellite if the material is collisionally dissipative and the primary maintains a low equatorial elongation. The satellite forms mostly from material originating near the primary's surface and enters into a close, low-eccentricity orbit. The properties of binaries produced by our model match those currently observed in the small near-Earth and main-belt asteroid populations, including 1999KW4 (refs 3, 4).

  9. Influence of dynamic vegetation on carbon-nitrogen cycle feedback in the Community Land Model (CLM4)

    DOE PAGES

    Sakaguchi, K.; Zeng, X.; Leung, L. R.; ...

    2016-12-21

    Land carbon sensitivity to atmospheric CO 2 concentration (β L) and climate warming (γ L) is a crucial part of carbon-climate feedbacks in the earth system. Using the Community Land Model version 4 with a coupled carbon-nitrogen cycle, we examine whether the inclusion of a dynamic global vegetation model (CNDV) significantly changes the land carbon sensitivity from that obtained with prescribed vegetation cover (CN). For decadal timescale in the late twentieth century, β L is not substantially different between the two models but γ L of CNDV is stronger (more negative) than that of CN. The main reason for themore » difference in γL is not the concurrent change in vegetation cover driving the carbon dynamics, but rather the smaller nitrogen constraint on plant growth in CNDV compared with CN, which arises from the deviation of CNDV's near-equilibrium vegetation distribution from CN’s prescribed, historical land cover. The smaller nitrogen constraint makes the enhanced nitrogen mineralization with warming less effective in stimulating plant productivity to counter moisture stress in a warmer climate, leading to a more negative γ L. This represents a new indirect pathway that has not been identified for dynamic vegetation in the coupled carbon-nitrogen cycle to affect the terrestrial carbon-climate feedbacks in the earth system.« less

  10. Influence of dynamic vegetation on carbon-nitrogen cycle feedback in the Community Land Model (CLM4)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakaguchi, K.; Zeng, X.; Leung, L. R.

    Land carbon sensitivity to atmospheric CO 2 concentration (β L) and climate warming (γ L) is a crucial part of carbon-climate feedbacks in the earth system. Using the Community Land Model version 4 with a coupled carbon-nitrogen cycle, we examine whether the inclusion of a dynamic global vegetation model (CNDV) significantly changes the land carbon sensitivity from that obtained with prescribed vegetation cover (CN). For decadal timescale in the late twentieth century, β L is not substantially different between the two models but γ L of CNDV is stronger (more negative) than that of CN. The main reason for themore » difference in γL is not the concurrent change in vegetation cover driving the carbon dynamics, but rather the smaller nitrogen constraint on plant growth in CNDV compared with CN, which arises from the deviation of CNDV's near-equilibrium vegetation distribution from CN’s prescribed, historical land cover. The smaller nitrogen constraint makes the enhanced nitrogen mineralization with warming less effective in stimulating plant productivity to counter moisture stress in a warmer climate, leading to a more negative γ L. This represents a new indirect pathway that has not been identified for dynamic vegetation in the coupled carbon-nitrogen cycle to affect the terrestrial carbon-climate feedbacks in the earth system.« less

  11. Solar sail trajectory design in the Earth-Moon circular restricted three body problem

    NASA Astrophysics Data System (ADS)

    Das, Ashwati

    The quest to explore the Moon has helped resolve scientific questions, has spurred leaps in technology development, and has revealed Earth's celestial companion to be a gateway to other destinations. With a renewed focus on returning to the Moon in this decade, alternatives to chemical propulsion systems are becoming attractive methods to efficiently use scarce resources and support extended mission durations. Thus, an investigation is conducted to develop a general framework, that facilitates propellant-free Earth-Moon transfers by exploiting sail dynamics in combination with advantageous transfer options offered in the Earth-Moon circular restricted multi-body dynamical model. Both periodic orbits in the vicinity of the Earth-Moon libration points, and lunar-centric long-term capture orbits are incorporated as target destinations to demonstrate the applicability of the general framework to varied design scanarios, each incorporating a variety of complexities and challenges. The transfers are comprised of three phases - a spiral Earth escape, a transit period, and, finally, the capture into a desirable orbit in the vicinity of the Moon. The Earth-escape phase consists of spiral trajectories constructed using three different sail steering strategies - locally optimal, on/off and velocity tangent. In the case of the Earth-libration point transfers, naturally occurring flow structures (e.g., invariant manifolds) arising from the mutual gravitational interaction of the Earth and Moon are exploited to link an Earth departure spiral with a destination orbit. In contrast, sail steering alone is employed to establish a link between the Earth-escape phase and capture orbits about the Moon due to a lack of applicable natural structures for the required connection. Metrics associated with the transfers including flight-time and the influence of operational constraints, such as occultation events, are investigated to determine the available capabilities for Earth-Moon transfers given current sail technology levels. Although the implemented steering laws suffice to generate baseline paths, infeasible turn rate demands placed on the sail are also investigated to explore the technical hurdles in designing Earth-Moon transfers. The methodologies are suitable for a variety of mission scenarios and sail configurations, rendering the resulting trajectories valuable for a diverse range of applications.

  12. Challenges in Modeling the Sun-Earth System

    NASA Technical Reports Server (NTRS)

    Spann, James

    2004-01-01

    The transfer of mass, energy and momentum through the coupled Sun-Earth system spans a wide range of scales in time and space. While profound advances have been made in modeling isolated regions of the Sun-Earth system, minimal progress has been achieved in modeling the end-to-end system. Currently, end-to-end modeling of the Sun-Earth system is a major goal of the National Space Weather and NASA Living With a Star (LWS) programs. The uncertainty in the underlying physics responsible for coupling contiguous regions of the Sun-Earth system is recognized as a significant barrier to progress. Our limited understanding of the underlying coupling physics is illustrated by the following example questions: how does the propagation of a typical CME/solar flare influence the measured properties of the solar wind at 1 AU? How does the solar wind compel the dynamic response of the Earth's magnetosphere? How is variability in the ionosphere-thermosphere system coupled to magnetospheric variations? Why do these and related important questions remain unanswered? What are the primary problems that need to be resolved to enable significant progress in comprehensive modeling of the Sun-Earth system? Which model/technique improvements are required and what new data coverage is required to enable full model advances? This poster opens the discussion for how these and other important questions can be addressed. A workshop scheduled for October 8-22, 2004 in Huntsville, Alabama, will be a forum for identifying ana exploring promising new directions and approaches for characterizing and understanding the system. To focus the discussion, the workshop will emphasize the genesis, evolution, propagation and interaction of high-speed solar wind streamers or CME/flares with geospace and the subsequent response of geospace from its outer reaches in the magnetosphere to the lower edge of the ionosphere-mesosphere-thermosphere. Particular emphasis will be placed on modeling the coupling aspects of these phenomena across boundaries between regions and on data analysis that guides and constrains model results. Specific topics to be addressed are: Corotating interaction regions, Coronal mass ejections, Energetic particles, System preconditioning, Extreme events and super storms, End-to-End modeling efforts.

  13. A system dynamics model of human-water interaction in anthropogenic droughts

    NASA Astrophysics Data System (ADS)

    Blair, Peter; Buytaert, Wouter

    2016-04-01

    Modelling is set to be a key part of socio-hydrology's quest to understand the dynamics and long-term consequences of human-water interactions. As a subject in its infancy, still learning the questions to ask, conceptual models are of particular use in trying to understand the general nature of human-water systems. The conceptual model of Di Baldassarre et al. (2013), which investigates human-flood interactions, has been widely discussed, prompting great steps forward in understanding and coverage of socio-hydrology. The development of further conceptual models could generate further discussion and understanding. Flooding is one archetypal example of a system of human-water interaction; another is the case of water stress and drought. There has been a call to recognise and understand anthropogenic drought (Aghakouchak et al. 2015), and so this study investigates the nature of the socio-hydrological dynamics involved in these situations. Here we present a system dynamics model to simulate human-water interactions in the context of water-stressed areas, where drought is induced via a combination of lower than usual water availability and relatively high water use. It is designed based on an analysis of several case-studies where recent droughts have occurred, or where the prospect of drought looms. The locations investigated are Spain, Southeast Brazil, Northeast China and California. The numerical system dynamics model is based on causal loop, and stocks and flows diagrams, which are in turn developed from the qualitative analysis of the different cases studied. The study uses a comparative approach, which has the advantage of eliciting general system characteristics from the similarities between cases, while using the differences to determine the important factors which lead to different system behaviours. References: Aghakouchak, A., Feldman, D., Hoerling, M., Huxman, T., Lund, J., 2015. Recognize anthropogenic drought. Nature, 524, pp.409-411. Di Baldassarre, G., Viglione, A., Carr, G., Kuil, L., Salinas, J. L., Blöschl, G., 2013. Socio-hydrology: conceptualising human-flood interactions. Hydrology and Earth System Sciences, 17(8), pp.3295-3303. Available at: http://www.hydrol-earth-syst-sci.net/17/3295/2013/ [Accessed August 8, 2014].

  14. Evaluations of high-resolution dynamically downscaled ensembles over the contiguous United States Climate Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zobel, Zachary; Wang, Jiali; Wuebbles, Donald J.

    This study uses Weather Research and Forecast (WRF) model to evaluate the performance of six dynamical downscaled decadal historical simulations with 12-km resolution for a large domain (7200 x 6180 km) that covers most of North America. The initial and boundary conditions are from three global climate models (GCMs) and one reanalysis data. The GCMs employed in this study are the Geophysical Fluid Dynamics Laboratory Earth System Model with Generalized Ocean Layer Dynamics component, Community Climate System Model, version 4, and the Hadley Centre Global Environment Model, version 2-Earth System. The reanalysis data is from the National Centers for Environmentalmore » Prediction-US. Department of Energy Reanalysis II. We analyze the effects of bias correcting, the lateral boundary conditions and the effects of spectral nudging. We evaluate the model performance for seven surface variables and four upper atmospheric variables based on their climatology and extremes for seven subregions across the United States. The results indicate that the simulation’s performance depends on both location and the features/variable being tested. We find that the use of bias correction and/or nudging is beneficial in many situations, but employing these when running the RCM is not always an improvement when compared to the reference data. The use of an ensemble mean and median leads to a better performance in measuring the climatology, while it is significantly biased for the extremes, showing much larger differences than individual GCM driven model simulations from the reference data. This study provides a comprehensive evaluation of these historical model runs in order to make informed decisions when making future projections.« less

  15. Exploring the anisotropic Kondo model in and out of equilibrium with alkaline-earth atoms

    NASA Astrophysics Data System (ADS)

    Kanász-Nagy, Márton; Ashida, Yuto; Shi, Tao; Moca, Cǎtǎlin Paşcu; Ikeda, Tatsuhiko N.; Fölling, Simon; Cirac, J. Ignacio; Zaránd, Gergely; Demler, Eugene A.

    2018-04-01

    We propose a scheme to realize the Kondo model with tunable anisotropy using alkaline-earth atoms in an optical lattice. The new feature of our setup is Floquet engineering of interactions using time-dependent Zeeman shifts, that can be realized either using state-dependent optical Stark shifts or magnetic fields. The properties of the resulting Kondo model strongly depend on the anisotropy of the ferromagnetic interactions. In particular, easy-plane couplings give rise to Kondo singlet formation even though microscopic interactions are all ferromagnetic. We discuss both equilibrium and dynamical properties of the system that can be measured with ultracold atoms, including the impurity spin susceptibility, the impurity spin relaxation rate, as well as the equilibrium and dynamical spin correlations between the impurity and the ferromagnetic bath atoms. We analyze the nonequilibrium time evolution of the system using a variational non-Gaussian approach, which allows us to explore coherent dynamics over both short and long timescales, as set by the bandwidth and the Kondo singlet formation, respectively. In the quench-type experiments, when the Kondo interaction is suddenly switched on, we find that real-time dynamics shows crossovers reminiscent of poor man's renormalization group flow used to describe equilibrium systems. For bare easy-plane ferromagnetic couplings, this allows us to follow the formation of the Kondo screening cloud as the dynamics crosses over from ferromagnetic to antiferromagnetic behavior. On the other side of the phase diagram, our scheme makes it possible to measure quantum corrections to the well-known Korringa law describing the temperature dependence of the impurity spin relaxation rate. Theoretical results discussed in our paper can be measured using currently available experimental techniques.

  16. Towards The Exo-Earth Era

    NASA Astrophysics Data System (ADS)

    Horner, J.

    2017-09-01

    In the past few years, the number of planets discovered orbiting other stars has grown dramatically, and newly discovered planets are now announced on an almost daily basis. In this presentation, I will describe how simulations of the orbital evolution of such planets can help us to better constrain their orbits, and even allow us to identify systems that are not all they seem to be. In addition, in coming years it is likely that the first truly Earth-like exoplanets will be discovered, and I will describe how those same dynamical tools will prove vital in assessing which of those planets are the most promising targets in the search for life beyond the Solar system.

  17. Development and Evaluation of the Interferometric Monitor for Greenhouse Gases: a High-throughput Fourier-transform Infrared Radiometer for Nadir Earth Observation

    NASA Astrophysics Data System (ADS)

    Kobayashi, Hirokazu; Shimota, Akiro; Kondo, Kayoko; Okumura, Eisuke; Kameda, Yoshihiko; Shimoda, Haruhisa; Ogawa, Toshihiro

    1999-11-01

    The interferometric monitor for greenhouse gases (IMG) was the precursor of the high-resolution Fourier-transform infrared radiometer (FTIR) onboard a satellite for observation of the Earth. The IMG endured the stress of a rocket launch, demonstrating that the high-resolution, high-throughput spectrometer is indeed feasible for use onboard a satellite. The IMG adopted a newly developed lubricant-free magnetic suspension mechanism and a dynamic alignment system for the moving mirror with a maximum traveling distance of 10 cm. We present the instrumentation of the IMG, characteristics of the movable mirror drive system, and the evaluation results of sensor specifications during space operation.

  18. The Functionally-Assembled Terrestrial Ecosystem Simulator Version 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Chonggang; Christoffersen, Bradley

    The Functionally-Assembled Terrestrial Ecosystem Simulator (FATES) is a vegetation model for use in Earth system models (ESMs). The model includes a size- and age-structured representation of tree dynamics, competition between functionally diverse plant functional types, and the biophysics underpinning plant growth, competition, mortality, as well as the carbon, water, and energy exchange with the atmosphere. The FATES model is designed as a modular vegetation model that can be integrated within a host land model for inclusion in ESMs. The model is designed for use in global change studies to understand and project the responses and feedbacks between terrestrial ecosystems andmore » the Earth system under changing climate and other forcings.« less

  19. Multilayer Insulation Ascent Venting Model

    NASA Technical Reports Server (NTRS)

    Tramel, R. W.; Sutherlin, S. G.; Johnson, W. L.

    2017-01-01

    The thermal and venting transient experienced by tank-applied multilayer insulation (MLI) in the Earth-to-orbit environment is very dynamic and not well characterized. This new predictive code is a first principles-based engineering model which tracks the time history of the mass and temperature (internal energy) of the gas in each MLI layer. A continuum-based model is used for early portions of the trajectory while a kinetic theory-based model is used for the later portions of the trajectory, and the models are blended based on a reference mean free path. This new capability should improve understanding of the Earth-to-orbit transient and enable better insulation system designs for in-space cryogenic propellant systems.

  20. ESA Swarm Mission - Level 1b Products

    NASA Astrophysics Data System (ADS)

    Tøffner-Clausen, Lars; Floberghagen, Rune; Mecozzi, Riccardo; Menard, Yvon

    2014-05-01

    Swarm, a three-satellite constellation to study the dynamics of the Earth's magnetic field and its interactions with the Earth system, has been launched in November 2013. The objective of the Swarm mission is to provide the best ever survey of the geomagnetic field and its temporal evolution, which will bring new insights into the Earth system by improving our understanding of the Earth's interior and environment. The Level 1b Products of the Swarm mission contain time-series of the quality screened, calibrated, corrected, and fully geo-localized measurements of the magnetic field intensity, the magnetic field vector (provided in both instrument and Earth-fixed frames), the plasma density, temperature, and velocity. Additionally, quality screened and pre-calibrated measurements of the nongravitational accelerations are provided. Geo-localization is performed by 24- channel GPS receivers and by means of unique, three head Advanced Stellar Compasses for high-precision satellite attitude information. The Swarm Level 1b data will be provided in daily products separately for each of the three Swarm spacecrafts. This poster will present detailed lists of the contents of the Swarm Level 1b Products and brief descriptions of the processing algorithms used in the generation of these data.

  1. Radiation Belts Throughout the Solar System

    NASA Astrophysics Data System (ADS)

    Mauk, B. H.

    2008-12-01

    The several preceding decades of deep space missions have demonstrated that the generation of planetary radiation belts is a universal phenomenon. All strongly magnetized planets show well developed radiation regions, specifically Earth, Jupiter, Saturn, Uranus, and Neptune. The similarities occur despite the tremendous differences between the planets in size, levels of magnetization, external environments, and most importantly, in the fundamental processes that power them. Some planets like Jupiter are powered overwhelmingly by planetary rotation, much like astrophysical pulsars, whereas others, like Earth and probably Uranus, are powered externally by the interplanetary environment. Uranus is a particularly interesting case in that despite the peculiarities engendered by its ecliptic equatorial spin axis orientation, its magnetosphere shows dynamical behavior similar to that of Earth as well as radiation belt populations and associated wave emissions that are perhaps more intense than expected based on Earth-derived theories. Here I review the similarities and differences between the radiation regions of radiation belts throughout the solar system. I discuss the value of the comparative approach to radiation belt physics as one that allows critical factors to be evaluated in environments that are divorced from the special complex conditions that prevail in any one environment, such as those at Earth.

  2. Depending on Partnerships to Manage NASA's Earth Science Data

    NASA Astrophysics Data System (ADS)

    Behnke, J.; Lindsay, F. E.; Lowe, D. R.

    2015-12-01

    NASA's Earth Observing System Data and Information System (EOSDIS) has been a central component of the NASA Earth observation program since the 1990's.The data collected by NASA's remote sensing instruments represent a significant public investment in research, providing access to a world-wide public research community. From the beginning, NASA employed a free, open and non-discriminatory data policy to maximize the global utilization of the products derived from NASA's observational data and related analyses. EOSDIS is designed to ingest, process, archive, and distribute data in a multi-mission environment. The system supports a wide variety of Earth science disciplines, including cryosphere, land cover change, radiation budget, atmosphere dynamics and composition, as well as inter-disciplinary research, including global climate change. To this end, EOSDIS has collocated NASA Earth science data and processing with centers of science discipline expertise located at universities, other government agencies and NASA centers. Commercial industry is also part of this partnership as it focuses on developing the EOSDIS cross-element infrastructure. The partnership to develop and operate EOSDIS has made for a robust, flexible system that evolves continuously to take advantage of technological opportunities. The centralized entrance point to the NASA Earth Science data collection can be found at http://earthdata.nasa.gov. A distributed architecture was adopted to ensure discipline-specific support for the science data, while also leveraging standards and establishing policies and tools to enable interdisciplinary research, and analysis across multiple instruments. Today's EOSDIS is a loosely coupled, yet heterogeneous system designed to meet the requirements of both a diverse user community and a growing collection of data to be archived and distributed. The system was scaled to expand to meet the ever-growing volume of data (currently ~10 petabytes), and the exponential increase in user demand that has occurred over the past 15 years. We will present how the EOSDIS has relies on partnerships to support the challenges of managing NASA's Earth Science data.

  3. A Service Oriented Infrastructure for Earth Science exchange

    NASA Astrophysics Data System (ADS)

    Burnett, M.; Mitchell, A.

    2008-12-01

    NASA's Earth Science Distributed Information System (ESDIS) program has developed an infrastructure for the exchange of Earth Observation related resources. Fundamentally a platform for Service Oriented Architectures, ECHO provides standards-based interfaces based on the basic interactions for a SOA pattern: Publish, Find and Bind. This infrastructure enables the realization of the benefits of Service Oriented Architectures, namely the reduction of stove-piped systems, the opportunity for reuse and flexibility to meet dynamic business needs, on a global scale. ECHO is the result of the infusion of IT technologies, including those standards of Web Services and Service Oriented Architecture technologies. The infrastructure is based on standards and leverages registries for data, services, clients and applications. As an operational system, ECHO currently representing over 110 million Earth Observation resources from a wide number of provider organizations. These partner organizations each have a primary mission - serving a particular facet of the Earth Observation community. Through ECHO, those partners can serve the needs of not only their target portion of the community, but also enable a wider range of users to discover and leverage their data resources, thereby increasing the value of their offerings. The Earth Observation community benefits from this infrastructure because it provides a set of common mechanisms for the discovery and access to resources from a much wider range of data and service providers. ECHO enables innovative clients to be built for targeted user types and missions. There several examples of those clients already in process. Applications built on this infrastructure can include User-driven, GUI-clients (web-based or thick clients), analysis programs (as intermediate components of larger systems), models or decision support systems. This paper will provide insight into the development of ECHO, as technologies were evaluated for infusion, and a summary of how technologies where leveraged into a significant operational system for the Earth Observation community.

  4. Moving Carbon, Changing Earth: Bringing the Carbon Cycle to Life

    NASA Astrophysics Data System (ADS)

    Zabel, I.; Duggan-Haas, D.; Ross, R. M.; Stricker, B.; Mahowald, N. M.

    2014-12-01

    The carbon cycle presents challenges to researchers - in how to understand the complex interactions of fluxes, reservoirs, and systems - and to outreach professionals - in how to get across the complexity of the carbon cycle and still make it accessible to the public. At Cornell University and the Museum of the Earth in Ithaca, NY, researchers and outreach staff tackled these challenges together through a 2013 temporary museum exhibition: Moving Carbon, Changing Earth. Moving Carbon, Changing Earth introduced visitors to the world of carbon and its effect on every part of our lives. The exhibit was the result of the broader impacts portion of an NSF grant awarded to Natalie Mahowald, Professor in the Department of Earth and Atmospheric Sciences at Cornell University, who has been working with a team to improve simulations of regional and decadal variability in the carbon cycle. Within the exhibition, visitors used systems thinking to understand the distribution of carbon in and among Earth's systems, learning how (and how quickly or slowly) carbon moves between and within these systems, the relative scale of different reservoirs, and how carbon's movement changes climate and other environmental dynamics. Five interactive stations represented the oceans, lithosphere, atmosphere, biosphere, and a mystery reservoir. Puzzles, videos, real specimens, and an interview with Mahowald clarified and communicated the complexities of the carbon cycle. In this talk we'll present background information on Mahowald's research as well as photos of the exhibition and discussion of the components and motivations behind them, showing examples of innovative ways to bring a complex topic to life for museum visitors.

  5. Building sector feedbacks lead to increased energy demands

    NASA Astrophysics Data System (ADS)

    Hartin, C.; Link, R. P.; Patel, P.; Horowitz, R.; Clarke, L.; Mundra, A.

    2017-12-01

    Typically in human-earth system modeling studies, feedbacks between the earth and human systems are analyzed by passing information between independent models, leading to data errors and poor reproducibility. In this study we explore the two-way feedbacks between the human and earth systems in the building sector of GCAM, an integrated assessment model and, its fully-integrated climate component, Hector. While there is a general agreement in the literature that increasing temperatures will increase cooling energy demands and decrease heating energy demands, there has been no fully-coupled analysis of this dynamic that would, for example, account for the feedbacks on hydrofluorocarbons from increased cooling demands. Using a statistical relationship between global mean temperature change and heating and cooling degree days, we find that the feedbacks on hydrofluorocarbons lead to an increase in global mean temperature of between 0.16 to 0.27 °C in 2100. Demands for electricity increase by about 10% in Africa, while demands decrease in Canada by about 3.0% when taking into account these feedbacks. While the feedbacks between building energy demand and global mean temperature are modest by themselves, this study prompts future research on coupled human-earth system feedbacks, in particular in regards to land, water, and other energy infrastructure.

  6. Understanding Water-Energy-Ecology Nexus from an Integrated Earth-Human System Perspective

    NASA Astrophysics Data System (ADS)

    Li, H. Y.; Zhang, X.; Wan, W.; Zhuang, Y.; Hejazi, M. I.; Leung, L. R.

    2017-12-01

    Both Earth and human systems exert notable controls on streamflow and stream temperature that influence energy production and ecosystem health. An integrated water model representing river processes and reservoir regulations has been developed and coupled to a land surface model and an integrated assessment model of energy, land, water, and socioeconomics to investigate the energy-water-ecology nexus in the context of climate change and water management. Simulations driven by two climate change projections following the RCP 4.5 and RCP 8.5 radiative forcing scenarios, with and without water management, are analyzed to evaluate the individual and combined effects of climate change and water management on streamflow and stream temperature in the U.S. The simulations revealed important impacts of climate change and water management on hydrological droughts. The simulations also revealed the dynamics of competition between changes in water demand and water availability in the RCP 4.5 and RCP 8.5 scenarios that influence streamflow and stream temperature, with important consequences to thermoelectricity production and future survival of juvenile Salmon. The integrated water model is being implemented to the Accelerated Climate Modeling for Energy (ACME), a coupled Earth System Model, to enable future investigations of the energy-water-ecology nexus in the integrated Earth-Human system.

  7. Technology Projections for Solar Dynamic Power

    NASA Technical Reports Server (NTRS)

    Mason, Lee S.

    1999-01-01

    Solar Dynamic power systems can offer many potential benefits to Earth orbiting satellites including high solar-to-electric efficiency, long life without performance degradation, and high power capability. A recent integrated system test of a 2 kilowatt SD power system in a simulated space environment has successfully demonstrated technology readiness for space flight. Conceptual design studies of SD power systems have addressed several potential mission applications: a 10 kilowatt LEO satellite, a low power Space Based Radar, and a 30 kilowatt GEO communications satellite. The studies show that with moderate component development, SD systems can exhibit excellent mass and deployed area characteristics. Using the conceptual design studies as a basis, a SD technology roadmap was generated which identifies the component advances necessary to assure SD systems a competitive advantage for future NASA, DOD, and commercial missions.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, William D.; Craig, Anthony P.; Truesdale, John E.

    The integrated Earth System Model (iESM) has been developed as a new tool for pro- jecting the joint human/climate system. The iESM is based upon coupling an Integrated Assessment Model (IAM) and an Earth System Model (ESM) into a common modeling in- frastructure. IAMs are the primary tool for describing the human–Earth system, including the sources of global greenhouse gases (GHGs) and short-lived species, land use and land cover change, and other resource-related drivers of anthropogenic climate change. ESMs are the primary scientific tools for examining the physical, chemical, and biogeochemical impacts of human-induced changes to the climate system. Themore » iESM project integrates the economic and human dimension modeling of an IAM and a fully coupled ESM within a sin- gle simulation system while maintaining the separability of each model if needed. Both IAM and ESM codes are developed and used by large communities and have been extensively applied in recent national and international climate assessments. By introducing heretofore- omitted feedbacks between natural and societal drivers, we can improve scientific under- standing of the human–Earth system dynamics. Potential applications include studies of the interactions and feedbacks leading to the timing, scale, and geographic distribution of emissions trajectories and other human influences, corresponding climate effects, and the subsequent impacts of a changing climate on human and natural systems. This paper de- scribes the formulation, requirements, implementation, testing, and resulting functionality of the first version of the iESM released to the global climate community.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, W. D.; Craig, A. P.; Truesdale, J. E.

    The integrated Earth system model (iESM) has been developed as a new tool for projecting the joint human/climate system. The iESM is based upon coupling an integrated assessment model (IAM) and an Earth system model (ESM) into a common modeling infrastructure. IAMs are the primary tool for describing the human–Earth system, including the sources of global greenhouse gases (GHGs) and short-lived species (SLS), land use and land cover change (LULCC), and other resource-related drivers of anthropogenic climate change. ESMs are the primary scientific tools for examining the physical, chemical, and biogeochemical impacts of human-induced changes to the climate system. Themore » iESM project integrates the economic and human-dimension modeling of an IAM and a fully coupled ESM within a single simulation system while maintaining the separability of each model if needed. Both IAM and ESM codes are developed and used by large communities and have been extensively applied in recent national and international climate assessments. By introducing heretofore-omitted feedbacks between natural and societal drivers, we can improve scientific understanding of the human–Earth system dynamics. Potential applications include studies of the interactions and feedbacks leading to the timing, scale, and geographic distribution of emissions trajectories and other human influences, corresponding climate effects, and the subsequent impacts of a changing climate on human and natural systems. This paper describes the formulation, requirements, implementation, testing, and resulting functionality of the first version of the iESM released to the global climate community.« less

  10. Dynamic behavior of solar wind as revealed by a correlation study of magnetic fields observed at the Venus and Earth orbits

    NASA Technical Reports Server (NTRS)

    Marubashi, K.

    1995-01-01

    Correlations between interplanetary magnetic fields (IMFs) at 0.72 AU and 1.0 AU have been examined using data sets obtained from the Pioneer Venus orbiter and Earth-orbiting spacecraft. While the two-sector structures are evident in long-term variations at these two heliocentric distances, the corresponding auto-correlation coefficients are consistently smaller at 1.0 AU than at 0.72 AU. This suggests that the IMF structures become less persistent at 1.0 AU due to the effects of changing solar wind dynamics between the Venus and Earth orbits. Short-term variations exhibit generally poor correlations between IMFs near Venus and those near Earth, though good correlations are sometimes obtained for well-defined structures when the Sun, Venus, and Earth are closely aligned. The rather poor correlations in the background streams indicate that the IMFs are still changing between the Venus and Earth orbits under the strong influence of solar wind dynamics.

  11. Operational fitness of box truss antennas in response to dynamic slewing

    NASA Technical Reports Server (NTRS)

    Bachtell, E. E.; Bettadapur, S. S.; Schartel, W. A.; Karanian, L. A.

    1985-01-01

    A parametric study was performed to define slewing capability of large satellites along with associated system changes or subsystem weight and complexity impacts. The satellite configuration and structural arrangement from the Earth Observation Spacecraft (EOS) study was used as the baseline spacecraft. Varying slew rates, settling times, damping, maneuver frequencies, and attitude hold times provided the data required to establish applicability to a wide range of potential missions. The key elements of the study are: (1) determine the dynamic transient response of the antenna system; (2) calculate the system errors produced by the dynamic response; (3) determine if the antenna has exceeded operational requirements at completion of the slew, and if so; (4) determine when the antenna has settled to the operational requirements. The slew event is not considered complete until the antenna is within operational limits.

  12. Towards a paradigm shift in the modeling of soil organic carbon decomposition for earth system models

    NASA Astrophysics Data System (ADS)

    He, Yujie

    Soils are the largest terrestrial carbon pools and contain approximately 2200 Pg of carbon. Thus, the dynamics of soil carbon plays an important role in the global carbon cycle and climate system. Earth System Models are used to project future interactions between terrestrial ecosystem carbon dynamics and climate. However, these models often predict a wide range of soil carbon responses and their formulations have lagged behind recent soil science advances, omitting key biogeochemical mechanisms. In contrast, recent mechanistically-based biogeochemical models that explicitly account for microbial biomass pools and enzyme kinetics that catalyze soil carbon decomposition produce notably different results and provide a closer match to recent observations. However, a systematic evaluation of the advantages and disadvantages of the microbial models and how they differ from empirical, first-order formulations in soil decomposition models for soil organic carbon is still needed. This dissertation consists of a series of model sensitivity and uncertainty analyses and identifies dominant decomposition processes in determining soil organic carbon dynamics. Poorly constrained processes or parameters that require more experimental data integration are also identified. This dissertation also demonstrates the critical role of microbial life-history traits (e.g. microbial dormancy) in the modeling of microbial activity in soil organic matter decomposition models. Finally, this study surveys and synthesizes a number of recently published microbial models and provides suggestions for future microbial model developments.

  13. Turbulence vs Self-organized criticality: A hybrid approach, with implications for substorm dynamics of the magnetosphere

    NASA Astrophysics Data System (ADS)

    Milovanov, Alexander

    Plasmas in astrophysics, cosmical geophysics, and laboratory plasmas are often found in far-from-equilibrium dynamical state usually described as ``turbulence". It has been argued and discussed in the literature that the typical signatures of turbulent systems including power-law power spectral density and the scale-free statistics of fluctuating observable quantities can more or less successfully be reproduced by complex systems in the state of self-organized criticality (SOC). An obvious distinction between the theoretical concepts of turbulence and SOC has not been obtained, though (for the challenges that lie ahead, and current scientific debate, see the recently announced book on ``Self-Organized Criticality Systems" - available in open access from Open Academic Press, http://www.openacademicpress.de/). Here we discuss these issues further and show that the behavior crucially depends on the type of boundary conditions, feedback mechanisms, and the role of nonlinearity. We then apply this approach to the dynamics of Earth's geomagnetic tail and propose a hybrid model of ``turbulent" current sheet, which explicitly takes into account the self-organization processes taking place. The model yields the slope of magnetic fluctuation spectra in the near-Earth stretched magnetotail prior to the substorm below the characteristic frequency turnover scales posed by convection. A comparison between the model theoretical predictions and the available data of in situ satellite observations is given.

  14. Integrating the Earth, Atmospheric, and Ocean Sciences at Millersville University

    NASA Astrophysics Data System (ADS)

    Clark, R. D.

    2005-12-01

    For nearly 40 years, the Department of Earth Sciences at Millersville University (MU-DES) of Pennsylvania has been preparing students for careers in the earth, atmospheric, and ocean sciences by providing a rigorous and comprehensive curricula leading to B.S. degrees in geology, meteorology, and oceanography. Undergraduate research is a hallmark of these earth sciences programs with over 30 students participating in some form of meritorious research each year. These programs are rich in applied physics, couched in mathematics, and steeped in technical computing and computer languages. Our success is measured by the number of students that find meaningful careers or go on to earn graduate degrees in their respective fields, as well as the high quality of faculty that the department has retained over the years. Student retention rates in the major have steadily increased with the introduction of a formal learning community and peer mentoring initiatives, and the number of new incoming freshmen and transfer students stands at an all-time high. Yet until recently, the disciplines have remained largely disparate with only minor inroads made into integrating courses that seek to address the Earth as a system. This is soon to change as the MU-DES unveils a new program leading to a B.S. in Integrated Earth Systems. The B.S. in Integrated Earth Systems (ISS) is not a reorganization of existing courses to form a marketable program. Instead, it is a fully integrated program two years in development that borrows from the multi-disciplinary backgrounds and experiences of faculty, while bringing in resources that are tailored to visualizing and modeling the Earth system. The result is the creation of a cross-cutting curriculum designed to prepare the 21st century student for the challenges and opportunities attending the holistic study of the Earth as a system. MU-DES will continue to offer programs leading to degrees in geology, meteorology, and ocean science, but in addition, the B.S. in Integrated Earth Systems will serve those students who find excitement at the boundaries of these disciplines, and prepare them for careers in this emerging field. The ISS program will target high school students of the highest caliber who demonstrate strong aptitude in mathematics and the physical sciences, who will need a minimum amount of remedial work. These select students will be exposed to courses in Earth Systems: Cycles and Interactions, Geophysical Fluid Dynamics, Air-Sea Interaction, Boundary Layers and Turbulence, Climate Variability and Global Change, Atmosphere-Ocean Modeling, Solar-Terrestrial Interactions, Weather Systems Science, Earth Observing Systems, Remote Sensing and more, as part of the ISS curriculum. This paper will highlight the MU-DES programs and learning initiatives and expand and elaborate on the new program in ISS.

  15. Make Earth science education as dynamic as Earth itself

    NASA Astrophysics Data System (ADS)

    Lautenbacher, Conrad C.; Groat, Charles G.

    2004-12-01

    The images of rivers spilling over their banks and washing away entire towns, buildings decimated to rubble by the violent shaking of the Earth's plates, and molten lava flowing up from inside the Earth's core are constant reminders of the power of the Earth. Humans are simply at the whim of the forces of Mother Nature—or are we? Whether it is from a great natural disaster, a short-term weather event like El Nino, or longer-term processes like plate tectonics, Earth processes affect us all. Yet,we are only beginning to scratch the surface of our understanding of Earth sciences. We believe the day will come when our understanding of these dynamic Earth processes will prompt better policies and decisions about saving lives and property. One key place to start is in America's classrooms.

  16. The Terrestrial Planet Finder coronagraph dynamics error budget

    NASA Technical Reports Server (NTRS)

    Shaklan, Stuart B.; Marchen, Luis; Green, Joseph J.; Lay, Oliver P.

    2005-01-01

    The Terrestrial Planet Finder Coronagraph (TPF-C) demands extreme wave front control and stability to achieve its goal of detecting earth-like planets around nearby stars. We describe the performance models and error budget used to evaluate image plane contrast and derive engineering requirements for this challenging optical system.

  17. Earth-Moon system: Dynamics and parameter estimation

    NASA Technical Reports Server (NTRS)

    Breedlove, W. J., Jr.

    1979-01-01

    The following topics are discussed: (1) the Unified Model of Lunar Translation/Rotation (UMLTR); (2) the effect of figure-figure interactions on lunar physical librations; (3) the effect of translational-rotational coupling on the lunar orbit; and(4) an error analysis for estimating lunar inertias from LURE (Lunar Laser Ranging Experiment) data.

  18. Soil Science Education: Philosophy and Perspectives. SSSA Special Publication Number 37.

    ERIC Educational Resources Information Center

    Baveye, Philippe, Ed.; And Others

    Soil science provides the educational framework to integrate components of earth science systems, to understand the causes and consequences of spatial variability, and view dynamic processes impacting ecosystems in a holistic perspective. This book, a special publication of the Soil Science Society of America (SSSA), identifies and analyzes…

  19. Multiobjective Optimization of Low-Energy Trajectories Using Optimal Control on Dynamical Channels

    NASA Technical Reports Server (NTRS)

    Coffee, Thomas M.; Anderson, Rodney L.; Lo, Martin W.

    2011-01-01

    We introduce a computational method to design efficient low-energy trajectories by extracting initial solutions from dynamical channels formed by invariant manifolds, and improving these solutions through variational optimal control. We consider trajectories connecting two unstable periodic orbits in the circular restricted 3-body problem (CR3BP). Our method leverages dynamical channels to generate a range of solutions, and approximates the areto front for impulse and time of flight through a multiobjective optimization of these solutions based on primer vector theory. We demonstrate the application of our method to a libration orbit transfer in the Earth-Moon system.

  20. Numerical modelling of multiphase multicomponent reactive transport in the Earth's interior

    NASA Astrophysics Data System (ADS)

    Oliveira, Beñat; Afonso, Juan Carlos; Zlotnik, Sergio; Diez, Pedro

    2018-01-01

    We present a conceptual and numerical approach to model processes in the Earth's interior that involve multiple phases that simultaneously interact thermally, mechanically and chemically. The approach is truly multiphase in the sense that each dynamic phase is explicitly modelled with an individual set of mass, momentum, energy and chemical mass balance equations coupled via interfacial interaction terms. It is also truly multicomponent in the sense that the compositions of the system and its constituent phases are expressed by a full set of fundamental chemical components (e.g. SiO2, Al2O3, MgO, etc.) rather than proxies. These chemical components evolve, react with and partition into different phases according to an internally consistent thermodynamic model. We combine concepts from Ensemble Averaging and Classical Irreversible Thermodynamics to obtain sets of macroscopic balance equations that describe the evolution of systems governed by multiphase multicomponent reactive transport (MPMCRT). Equilibrium mineral assemblages, their compositions and physical properties, and closure relations for the balance equations are obtained via a `dynamic' Gibbs free-energy minimization procedure (i.e. minimizations are performed on-the-fly as needed by the simulation). Surface tension and surface energy contributions to the dynamics and energetics of the system are taken into account. We show how complex rheologies, that is, visco-elasto-plastic, and/or different interfacial models can be incorporated into our MPMCRT ensemble-averaged formulation. The resulting model provides a reliable platform to study the dynamics and nonlinear feedbacks of MPMCRT systems of different nature and scales, as well as to make realistic comparisons with both geophysical and geochemical data sets. Several numerical examples are presented to illustrate the benefits and limitations of the model.

  1. Redistribution Principle Approach for Evaluation of Seismic Active Earth Pressure Behind Retaining Wall

    NASA Astrophysics Data System (ADS)

    Maskar, A. D.; Madhekar, S. N.; Phatak, D. R.

    2017-11-01

    The knowledge of seismic active earth pressure behind the rigid retaining wall is very essential in the design of retaining wall in earthquake prone regions. Commonly used Mononobe-Okabe (MO) method considers pseudo-static approach. Recently there are many pseudo-dynamic methods used to evaluate the seismic earth pressure. However, available pseudo-static and pseudo-dynamic methods do not incorporate the effect of wall movement on the earth pressure distribution. Dubrova (Interaction between soils and structures, Rechnoi Transport, Moscow, 1963) was the first, who considered such effect and till date, it is used for cohesionless soil, without considering the effect of seismicity. In this paper, Dubrova's model based on redistribution principle, considering the seismic effect has been developed. It is further used to compute the distribution of seismic active earth pressure, in a more realistic manner, by considering the effect of wall movement on the earth pressure, as it is displacement based method. The effects of a wide range of parameters like soil friction angle (ϕ), wall friction angle (δ), horizontal and vertical seismic acceleration coefficients (kh and kv); on seismic active earth pressure (Kae) have been studied. Results are presented for comparison of pseudo-static and pseudo-dynamic methods, to highlight the realistic, non-linearity of seismic active earth pressure distribution. The current study results in the variation of Kae with kh in the same manner as that of MO method and Choudhury and Nimbalkar (Geotech Geol Eng 24(5):1103-1113, 2006) study. To increase in ϕ, there is a reduction in static as well as seismic earth pressure. Also, by keeping constant ϕ value, as kh increases from 0 to 0.3, earth pressure increases; whereas as δ increases, active earth pressure decreases. The seismic active earth pressure coefficient (Kae) obtained from the present study is approximately same as that obtained by previous researchers. Though seismic earth pressure obtained by pseudo-dynamic approach and seismic earth pressure obtained by redistribution principle have different background of formulation, the final earth pressure distribution is approximately same.

  2. Development of Improved Algorithms and Multiscale Modeling Capability with SUNTANS

    DTIC Science & Technology

    2013-09-30

    solves the Navier-Stokes equations under the Boussinesq approximation (Fringer et al.,2006). The formulation is based on the method outlined by...stratified systems . Figure 4 shows a nonhydrostatic isopycnal simulation of oscillatory flow in a continuously stratified fluid over a Gaussian sill. This...Modeling the Earth System , Boulder (invited). Sankaranarayanan, S., and Fringer, O. B., 2013, "Dynamics of barotropic low-frequency fluctuations in

  3. Vizualization of Arctic Landscapes in the Geoinformation System

    NASA Astrophysics Data System (ADS)

    Panidi, E. A.; Tsepelev, V. Yu.; Bobkov, A. A.

    2010-12-01

    In order to investigate the long-scale dynamics of an ice cover, authors suggest to use the geoinformation system (GIS) which allows to conduct the operative and historical analysis of the Polar Region water-ice landscapes variability. Such GIS should include longterm monthly average fields of sea ice, hydrological and atmospheric characters. All collected data and results of their processing have been structured in ArcGISTM . For presentation in the INTERNET resources all datasets were transformed to the open format KML for using in the virtual reality of Google EarthTM . The double component system elaborating on the base of ArcGIS and Google Earth allows to make accumulation, processing and joint synchronous and asynchronous analysis of data and provide wide circle of remote users with accessibility of visual datasets analysis.

  4. Electronic transport on the Shastry-Sutherland lattice in Ising-type rare-earth tetraborides

    NASA Astrophysics Data System (ADS)

    Ye, Linda; Suzuki, Takehito; Checkelsky, Joseph G.

    2017-05-01

    In the presence of a magnetic field frustrated spin systems may exhibit plateaus at fractional values of saturation magnetization. Such plateau states are stabilized by classical and quantum mechanisms including order by disorder, triplon crystallization, and various competing order effects. In the case of electrically conducting systems, free electrons represent an incisive probe for the plateau states. Here we study the electrical transport of Ising-type rare-earth tetraborides R B4 (R =Er , Tm), a metallic Shastry-Sutherland lattice showing magnetization plateaus. We find that the longitudinal and transverse resistivities reflect scattering with both the static and the dynamic plateau structure. We model these results consistently with the expected strong uniaxial anisotropy on a quantitative level, providing a framework for the study of plateau states in metallic frustrated systems.

  5. A real-time guidance algorithm for aerospace plane optimal ascent to low earth orbit

    NASA Technical Reports Server (NTRS)

    Calise, A. J.; Flandro, G. A.; Corban, J. E.

    1989-01-01

    Problems of onboard trajectory optimization and synthesis of suitable guidance laws for ascent to low Earth orbit of an air-breathing, single-stage-to-orbit vehicle are addressed. A multimode propulsion system is assumed which incorporates turbojet, ramjet, Scramjet, and rocket engines. An algorithm for generating fuel-optimal climb profiles is presented. This algorithm results from the application of the minimum principle to a low-order dynamic model that includes angle-of-attack effects and the normal component of thrust. Maximum dynamic pressure and maximum aerodynamic heating rate constraints are considered. Switching conditions are derived which, under appropriate assumptions, govern optimal transition from one propulsion mode to another. A nonlinear transformation technique is employed to derived a feedback controller for tracking the computed trajectory. Numerical results illustrate the nature of the resulting fuel-optimal climb paths.

  6. CORRELATIONS BETWEEN COMPOSITIONS AND ORBITS ESTABLISHED BY THE GIANT IMPACT ERA OF PLANET FORMATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dawson, Rebekah I.; Lee, Eve J.; Chiang, Eugene, E-mail: rdawson@psu.edu

    The giant impact phase of terrestrial planet formation establishes connections between super-Earths’ orbital properties (semimajor axis spacings, eccentricities, mutual inclinations) and interior compositions (the presence or absence of gaseous envelopes). Using N -body simulations and analytic arguments, we show that spacings derive not only from eccentricities, but also from inclinations. Flatter systems attain tighter spacings, a consequence of an eccentricity equilibrium between gravitational scatterings, which increase eccentricities, and mergers, which damp them. Dynamical friction by residual disk gas plays a critical role in regulating mergers and in damping inclinations and eccentricities. Systems with moderate gas damping and high solid surfacemore » density spawn gas-enveloped super-Earths with tight spacings, small eccentricities, and small inclinations. Systems in which super-Earths coagulate without as much ambient gas, in disks with low solid surface density, produce rocky planets with wider spacings, larger eccentricities, and larger mutual inclinations. A combination of both populations can reproduce the observed distributions of spacings, period ratios, transiting planet multiplicities, and transit duration ratios exhibited by Kepler super-Earths. The two populations, both formed in situ, also help to explain observed trends of eccentricity versus planet size, and bulk density versus method of mass measurement (radial velocities versus transit timing variations). Simplifications made in this study—including the limited time span of the simulations, and the approximate treatments of gas dynamical friction and gas depletion history—should be improved on in future work to enable a detailed quantitative comparison to the observations.« less

  7. Dynamic Electrothermal Model of a Sputtered Thermopile Thermal Radiation Detector for Earth Radiation Budget Applications

    NASA Technical Reports Server (NTRS)

    Weckmann, Stephanie

    1997-01-01

    The Clouds and the Earth's Radiant Energy System (CERES) is a program sponsored by the National Aeronautics and Space Administration (NASA) aimed at evaluating the global energy balance. Current scanning radiometers used for CERES consist of thin-film thermistor bolometers viewing the Earth through a Cassegrain telescope. The Thermal Radiation Group, a laboratory in the Department of Mechanical Engineering at Virginia Polytechnic Institute and State University, is currently studying a new sensor concept to replace the current bolometer: a thermopile thermal radiation detector. This next-generation detector would consist of a thermal sensor array made of thermocouple junction pairs, or thermopiles. The objective of the current research is to perform a thermal analysis of the thermopile. Numerical thermal models are particularly suited to solve problems for which temperature is the dominant mechanism of the operation of the device (through the thermoelectric effect), as well as for complex geometries composed of numerous different materials. Feasibility and design specifications are studied by developing a dynamic electrothermal model of the thermopile using the finite element method. A commercial finite element-modeling package, ALGOR, is used.

  8. Satellite tracking and earth dynamics research programs

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The SAO laser site in Arequipa continued routine operations throughout the reporting period except for the months of March and April when upgrading was underway. The laser in Orroral Valley was operational through March. Together with the cooperating stations in Wettzell, Grasse, Kootwikj, San Fernando, Helwan, and Metsahove the laser stations obtained a total of 37,099 quick-look observations on 978 passes of BE-C, Starlette, and LAGEOS. The Network continued to track LAGEOS at highest priority for polar motion and Earth rotation studies, and for other geophysical investigations, including crustal dynamics, Earth and ocean tides, and the general development of precision orbit determination. The Network performed regular tracking of BE-C and Starlette for refined determinations of station coordinate and the Earth's gravity field and for studies of solid earth dynamics. Monthly statistics of the passes and points are given by station and by satellite.

  9. Satellite-tracking and earth-dynamics research programs

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The activities and progress in the satellite tracking and earth dynamics research during the first half of calendar year 1975 are described. Satellite tracking network operations, satellite geodesy and geophysics programs, GEOS 3 project support, and atmospheric research are covered.

  10. The Swarm Satellite Constellation Application and Research Facility (SCARF) and Swarm data products

    NASA Astrophysics Data System (ADS)

    Olsen, Nils; Friis-Christensen, Eigil; Floberghagen, Rune; Alken, Patrick; Beggan, Ciaran D.; Chulliat, Arnaud; Doornbos, Eelco; da Encarnação, João Teixeira; Hamilton, Brian; Hulot, Gauthier; van den IJssel, Jose; Kuvshinov, Alexey; Lesur, Vincent; Lühr, Hermann; Macmillan, Susan; Maus, Stefan; Noja, Max; Olsen, Poul Erik H.; Park, Jaeheung; Plank, Gernot; Püthe, Christoph; Rauberg, Jan; Ritter, Patricia; Rother, Martin; Sabaka, Terence J.; Schachtschneider, Reyko; Sirol, Olivier; Stolle, Claudia; Thébault, Erwan; Thomson, Alan W. P.; Tøffner-Clausen, Lars; Velímský, Jakub; Vigneron, Pierre; Visser, Pieter N.

    2013-11-01

    Swarm, a three-satellite constellation to study the dynamics of the Earth's magnetic field and its interactions with the Earth system, is expected to be launched in late 2013. The objective of the Swarm mission is to provide the best ever survey of the geomagnetic field and its temporal evolution, in order to gain new insights into the Earth system by improving our understanding of the Earth's interior and environment. In order to derive advanced models of the geomagnetic field (and other higher-level data products) it is necessary to take explicit advantage of the constellation aspect of Swarm. The Swarm SCARF ( S atellite C onstellation A pplication and R esearch F acility) has been established with the goal of deriving Level-2 products by combination of data from the three satellites, and of the various instruments. The present paper describes the Swarm input data products (Level-1b and auxiliary data) used by SCARF, the various processing chains of SCARF, and the Level-2 output data products determined by SCARF.

  11. A Dynamic Earth: 50 Years of Observations from Space

    NASA Technical Reports Server (NTRS)

    Evans, Cynthia A.

    2013-01-01

    Observations of the surface of the Earth began more than a half century ago with the earliest space missions. The global geopolitical environment at the beginning of the space age fueled advances in rocketry and human exploration, but also advances in remote sensing. At the same time that space-based Earth Observations were developing, global investments in infrastructure that were initiated after World War II accelerated large projects such as the construction of highways, the expansion of cities and suburbs, the damming of rivers, and the growth of big agriculture. These developments have transformed the Earth s surface at unprecedented rates. Today, we have a remarkable library of 50 years of observations of the Earth taken by satellite-based sensors and astronauts, and these images and observations provide insight into the workings of the Earth as a system. In addition, these observations record the footprints of human activities around the world, and illustrate how our activities contribute to the changing face of the Earth. Starting with the iconic "Blue Marble" image of the whole Earth taken by Apollo astronauts, we will review a timeline of observations of our planet as viewed from space.

  12. Crew Earth Observations: Twelve Years of Documenting Earth from the International Space Station

    NASA Technical Reports Server (NTRS)

    Evans, Cynthia A.; Stefanov, William L.; Willis, Kimberley; Runco, Susan; Wilkinson, M. Justin; Dawson, Melissa; Trenchard, Michael

    2012-01-01

    The Crew Earth Observations (CEO) payload was one of the initial experiments aboard the International Space Station, and has been continuously collecting data about the Earth since Expedition 1. The design of the experiment is simple: using state-of-the-art camera equipment, astronauts collect imagery of the Earth's surface over defined regions of scientific interest and also document dynamic events such as storms systems, floods, wild fires and volcanic eruptions. To date, CEO has provided roughly 600,000 images of Earth, capturing views of features and processes on land, the oceans, and the atmosphere. CEO data are less rigorously constrained than other remote sensing data, but the volume of data, and the unique attributes of the imagery provide a rich and understandable view of the Earth that is difficult to achieve from the classic remote sensing platforms. In addition, the length-of-record of the imagery dataset, especially when combined with astronaut photography from other NASA and Russian missions starting in the early 1960s, provides a valuable record of changes on the surface of the Earth over 50 years. This time period coincides with the rapid growth of human settlements and human infrastructure.

  13. Evaluations of high-resolution dynamically downscaled ensembles over the contiguous United States

    NASA Astrophysics Data System (ADS)

    Zobel, Zachary; Wang, Jiali; Wuebbles, Donald J.; Kotamarthi, V. Rao

    2018-02-01

    This study uses Weather Research and Forecast (WRF) model to evaluate the performance of six dynamical downscaled decadal historical simulations with 12-km resolution for a large domain (7200 × 6180 km) that covers most of North America. The initial and boundary conditions are from three global climate models (GCMs) and one reanalysis data. The GCMs employed in this study are the Geophysical Fluid Dynamics Laboratory Earth System Model with Generalized Ocean Layer Dynamics component, Community Climate System Model, version 4, and the Hadley Centre Global Environment Model, version 2-Earth System. The reanalysis data is from the National Centers for Environmental Prediction-US. Department of Energy Reanalysis II. We analyze the effects of bias correcting, the lateral boundary conditions and the effects of spectral nudging. We evaluate the model performance for seven surface variables and four upper atmospheric variables based on their climatology and extremes for seven subregions across the United States. The results indicate that the simulation's performance depends on both location and the features/variable being tested. We find that the use of bias correction and/or nudging is beneficial in many situations, but employing these when running the RCM is not always an improvement when compared to the reference data. The use of an ensemble mean and median leads to a better performance in measuring the climatology, while it is significantly biased for the extremes, showing much larger differences than individual GCM driven model simulations from the reference data. This study provides a comprehensive evaluation of these historical model runs in order to make informed decisions when making future projections.

  14. Dynamical Sequestration of the Moon-Forming Impactor in Co-Orbital Resonance with Earth

    NASA Astrophysics Data System (ADS)

    Kortenkamp, Stephen J.; Hartmann, William J.

    2015-11-01

    Recent concerns about the giant impact hypothesis for the origin of the moon, and an associated “isotope crisis” are assuaged if the impactor was a local object that formed near Earth and the impact occurred relatively late. We investigated a scenario that may meet these criteria, with the moon-forming impactor originating in 1:1 co-orbital resonance with Earth. Using N-body numerical simulations we explored the dynamical consequences of placing Mars-mass companions in various co-orbital configurations with a proto-Earth having 90% of its current mass. We modeled configurations that include the four terrestrial planets as well as configurations that also include the four giant planets. In both the 4- and 8-planet models we found that a single additional Mars-mass companion typically remains a stable co-orbital of Earth for the entire 250 million year (Myr) duration of our simulations (33 of 34 simulations). In an effort to destabilize such a system we carried out an additional 45 simulations that included a second Mars-mass co-orbital companion. Even with two Mars-mass companions sharing Earth’s orbit most of these models (28) also remained stable for the entire 250 Myr duration of the simulations. Of the 17 two-companion models that eventually became unstable 12 impacts were observed between Earth and an escaping co-orbital companion. The average delay we observed for an impact of a Mars-mass companion with Earth was 101 Myr, and the longest delay was 221 Myr. Several of the stable simulations involved unusual 3-planet co-orbital configurations that could exhibit interesting observational signatures in plantetary transit surveys.

  15. Earth System Chemistry integrated Modelling (ESCiMo) with the Modular Earth Submodel System (MESSy) version 2.51

    NASA Astrophysics Data System (ADS)

    Jöckel, Patrick; Tost, Holger; Pozzer, Andrea; Kunze, Markus; Kirner, Oliver; Brenninkmeijer, Carl A. M.; Brinkop, Sabine; Cai, Duy S.; Dyroff, Christoph; Eckstein, Johannes; Frank, Franziska; Garny, Hella; Gottschaldt, Klaus-Dirk; Graf, Phoebe; Grewe, Volker; Kerkweg, Astrid; Kern, Bastian; Matthes, Sigrun; Mertens, Mariano; Meul, Stefanie; Neumaier, Marco; Nützel, Matthias; Oberländer-Hayn, Sophie; Ruhnke, Roland; Runde, Theresa; Sander, Rolf; Scharffe, Dieter; Zahn, Andreas

    2016-03-01

    Three types of reference simulations, as recommended by the Chemistry-Climate Model Initiative (CCMI), have been performed with version 2.51 of the European Centre for Medium-Range Weather Forecasts - Hamburg (ECHAM)/Modular Earth Submodel System (MESSy) Atmospheric Chemistry (EMAC) model: hindcast simulations (1950-2011), hindcast simulations with specified dynamics (1979-2013), i.e. nudged towards ERA-Interim reanalysis data, and combined hindcast and projection simulations (1950-2100). The manuscript summarizes the updates of the model system and details the different model set-ups used, including the on-line calculated diagnostics. Simulations have been performed with two different nudging set-ups, with and without interactive tropospheric aerosol, and with and without a coupled ocean model. Two different vertical resolutions have been applied. The on-line calculated sources and sinks of reactive species are quantified and a first evaluation of the simulation results from a global perspective is provided as a quality check of the data. The focus is on the intercomparison of the different model set-ups. The simulation data will become publicly available via CCMI and the Climate and Environmental Retrieval and Archive (CERA) database of the German Climate Computing Centre (DKRZ). This manuscript is intended to serve as an extensive reference for further analyses of the Earth System Chemistry integrated Modelling (ESCiMo) simulations.

  16. Probable Disastrous Consequences of Collision Between Unknown Small (100 m) Asteroids with Known (Approximately 1 km) Near Earth Orbiting (NEO) Asteroids

    NASA Technical Reports Server (NTRS)

    Smalley, Larry

    2003-01-01

    The long-term stability of the Solar System is not well understood. Ironically its stability is taken for granted even though our knowledge of all the constituents [comets, asteroids. (The Asteroid Belt between Mars and Jupiter, Trojan Asteroids, Kuiper belt, Ort Cloud), planetoids, planets, moons, etc], and its long-term dynamics cannot be easily computed. At best one might say that the solar system is chaotic, but much of the time it seems to exists near a quasi-stationary state. An asteroid that passes near the Earth regularly returns with clock-like precision. Taking into account every known detail of its path through the solar system, its orbit is calculated forward thousands of years with no untoward calamity on the horizon. And then one day, this passive visitor slams into the Earth during a sunny afternoon picnic! Can this happen? Unfortunately, this is a real possibility in the ordinary history of the solar system. In fact our knowledge of the solar system in the small is sketchy, as will be pointed out. Events, which lie outside our awareness, can precipitate disasters that we may perceive when it's too late to launch effective counter measures. In this work, one such scenario is described and the direct consequences for the Earth are calculated.

  17. Feedbacks between geomorphology and biota controlling Earth surface processes and landforms: A review of foundation concepts and current understandings

    NASA Astrophysics Data System (ADS)

    Corenblit, Dov; Baas, Andreas C. W.; Bornette, Gudrun; Darrozes, José; Delmotte, Sébastien; Francis, Robert A.; Gurnell, Angela M.; Julien, Frédéric; Naiman, Robert J.; Steiger, Johannes

    2011-06-01

    This review article presents recent advances in the field of biogeomorphology related to the reciprocal coupling between Earth surface processes and landforms, and ecological and evolutionary processes. The aim is to present to the Earth Science community ecological and evolutionary concepts and associated recent conceptual developments for linking geomorphology and biota. The novelty of the proposed perspective is that (1) in the presence of geomorphologic-engineer species, which modify sediment and landform dynamics, natural selection operating at the scale of organisms may have consequences for the physical components of ecosystems, and particularly Earth surface processes and landforms; and (2) in return, these modifications of geomorphologic processes and landforms often feed back to the ecological characteristics of the ecosystem (structure and function) and thus to biological characteristics of engineer species and/or other species (adaptation and speciation). The main foundation concepts from ecology and evolutionary biology which have led only recently to an improved conception of landform dynamics in geomorphology are reviewed and discussed. The biogeomorphologic macroevolutionary insights proposed explicitly integrate geomorphologic niche-dimensions and processes within an ecosystem framework and reflect current theories of eco-evolutionary and ecological processes. Collectively, these lead to the definition of an integrated model describing the overall functioning of biogeomorphologic systems over ecological and evolutionary timescales.

  18. The NASA Earth Science Flight Program: an update

    NASA Astrophysics Data System (ADS)

    Neeck, Steven P.

    2015-10-01

    Earth's changing environment impacts every aspect of life on our planet and climate change has profound implications on society. Studying Earth as a single complex system is essential to understanding the causes and consequences of climate change and other global environmental concerns. NASA's Earth Science Division (ESD) shapes an interdisciplinary view of Earth, exploring interactions among the atmosphere, oceans, ice sheets, land surface interior, and life itself. This enables scientists to measure global and climate changes and to inform decisions by government, other organizations, and people in the United States and around the world. The data collected and results generated are accessible to other agencies and organizations to improve the products and services they provide, including air quality indices, disaster prediction and response, agricultural yield projections, and aviation safety. ESD's Flight Program provides the space based observing systems and infrastructure for mission operations and scientific data processing and distribution that support NASA's Earth science research and modeling activities. The Flight Program currently has 21 operating Earth observing space missions, including the recently launched Global Precipitation Measurement (GPM) mission, the Orbiting Carbon Observatory-2 (OCO-2), the Soil Moisture Active Passive (SMAP) mission, and the International Space Station (ISS) RapidSCAT and Cloud-Aerosol Transport System (CATS) instruments. The ESD has 22 more missions and instruments planned for launch over the next decade. These include first and second tier missions from the 2007 Earth Science Decadal Survey, Climate Continuity missions and selected instruments to assure availability of key climate data sets, operational missions to ensure sustained land imaging provided by the Landsat system, and small-sized competitively selected orbital missions and instrument missions of opportunity belonging to the Earth Venture (EV) Program. Some examples are the NASA-ISRO Synthetic Aperture Radar (NISAR), Surface Water and Ocean Topography (SWOT), ICESat-2, SAGE III on ISS, Gravity Recovery and Climate Experiment Follow On (GRACE FO), Tropospheric Emissions: Monitoring of Pollution (TEMPO), Cyclone Global Navigation Satellite System (CYGNSS), ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS), and Global Ecosystem Dynamics Investigation (GEDI) Lidar missions. An overview of plans and current status will be presented.

  19. Connected Worlds: Connecting the public with complex environmental systems

    NASA Astrophysics Data System (ADS)

    Uzzo, S. M.; Chen, R. S.; Downs, R. R.

    2016-12-01

    Among the most important concepts in environmental science learning is the structure and dynamics of coupled human and natural systems (CHANS). But the fundamental epistemology for understanding CHANS requires systems thinking, interdisciplinarity, and complexity. Although the Next Generation Science Standards mandate connecting ideas across disciplines and systems, traditional approaches to education do not provide more than superficial understanding of this concept. Informal science learning institutions have a key role in bridging gaps between the reductive nature of classroom learning and contemporary data-driven science. The New York Hall of Science, in partnership with Design I/O and Columbia University's Center for International Earth Science Information Network, has developed an approach to immerse visitors in complex human nature interactions and provide opportunities for those of all ages to elicit and notice environmental consequences of their actions. Connected Worlds is a nearly 1,000 m2 immersive, playful environment in which students learn about complexity and interconnectedness in ecosystems and how ecosystems might respond to human intervention. It engages students through direct interactions with fanciful flora and fauna within and among six biomes: desert, rainforest, grassland, mountain valley, reservoir, and wetlands, which are interconnected through stocks and flows of water. Through gestures and the manipulation of a dynamic water system, Connected Worlds enables students, teachers, and parents to experience how the ecosystems of planet Earth are connected and to observe relationships between the behavior of Earth's inhabitants and our shared world. It is also a cyberlearning platform to study how visitors notice and scaffold their understanding of complex environmental processes and the responses of these processes to human intervention, to help inform the improvement of education practices in complex environmental science.

  20. A user-friendly earth system model of low complexity: the ESCIMO system dynamics model of global warming towards 2100

    NASA Astrophysics Data System (ADS)

    Randers, Jorgen; Golüke, Ulrich; Wenstøp, Fred; Wenstøp, Søren

    2016-11-01

    We have made a simple system dynamics model, ESCIMO (Earth System Climate Interpretable Model), which runs on a desktop computer in seconds and is able to reproduce the main output from more complex climate models. ESCIMO represents the main causal mechanisms at work in the Earth system and is able to reproduce the broad outline of climate history from 1850 to 2015. We have run many simulations with ESCIMO to 2100 and beyond. In this paper we present the effects of introducing in 2015 six possible global policy interventions that cost around USD 1000 billion per year - around 1 % of world GDP. We tentatively conclude (a) that these policy interventions can at most reduce the global mean surface temperature - GMST - by up to 0.5 °C in 2050 and up to 1.0 °C in 2100 relative to no intervention. The exception is injection of aerosols into the stratosphere, which can reduce the GMST by more than 1.0 °C in a decade but creates other serious problems. We also conclude (b) that relatively cheap human intervention can keep global warming in this century below +2 °C relative to preindustrial times. Finally, we conclude (c) that run-away warming is unlikely to occur in this century but is likely to occur in the longer run. The ensuing warming is slow, however. In ESCIMO, it takes several hundred years to lift the GMST to +3 °C above preindustrial times through gradual self-reinforcing melting of the permafrost. We call for research to test whether more complex climate models support our tentative conclusions from ESCIMO.

  1. Energy Balance Models and Planetary Dynamics

    NASA Technical Reports Server (NTRS)

    Domagal-Goldman, Shawn

    2012-01-01

    We know that planetary dynamics can have a significant affect on the climate of planets. Planetary dynamics dominate the glacial-interglacial periods on Earth, leaving a significant imprint on the geological record. They have also been demonstrated to have a driving influence on the climates of other planets in our solar system. We should therefore expect th.ere to be similar relationships on extrasolar planets. Here we describe a simple energy balance model that can predict the growth and thickness of glaciers, and their feedbacks on climate. We will also describe model changes that we have made to include planetary dynamics effects. This is the model we will use at the start of our collaboration to handle the influence of dynamics on climate.

  2. Exploration of Venus' Deep Atmosphere and Surface Environment

    NASA Technical Reports Server (NTRS)

    Glaze, L. S.; Amato, M.; Garvin, J. B.; Johnson, N. M.

    2017-01-01

    Venus formed in the same part of our solar system as Earth, apparently from similar materials. Although both planets are about the same size, their differences are profound. Venus and Earth experienced vastly different evolutionary pathways resulting in unexplained differences in atmospheric composition and dynamics, as well as in geophysical processes of the planetary surfaces and interiors. Understanding when and why the evolutionary pathways of Venus and Earth diverged is key to understanding how terrestrial planets form and how their atmospheres and surfaces evolve. Measurements made in situ, within the near-surface or surface environment, are critical to addressing unanswered questions. We have made substantial progress modernizing and maturing pressure vessel technologies to enable science operations in the high temperature and pressure near-surface/surfaceenvironment of Venus.

  3. NASA/MSFC FY92 Earth Science and Applications Program Research Review

    NASA Technical Reports Server (NTRS)

    Arnold, James E. (Editor); Leslie, Fred W. (Editor)

    1993-01-01

    A large amount of attention has recently been given to global issues such as the ozone hole, tropospheric temperature variability, etc. A scientific challenge is to better understand atmospheric processes on a variety of spatial and temporal scales in order to predict environmental changes. Measurement of geophysical parameters such as wind, temperature, and moisture are needed to validate theories, provide analyzed data sets, and initialize or constrain numerical models. One of NASA's initiatives is the Mission to Planet Earth Program comprised of an Earth Observation System (EOS) and the scientific strategy to analyze these data. This work describes these efforts in the context of satellite data analysis and fundamental studies of atmospheric dynamics which examine selected processes important to the global circulation.

  4. A Novel Grid SINS/DVL Integrated Navigation Algorithm for Marine Application

    PubMed Central

    Kang, Yingyao; Zhao, Lin; Cheng, Jianhua; Fan, Xiaoliang

    2018-01-01

    Integrated navigation algorithms under the grid frame have been proposed based on the Kalman filter (KF) to solve the problem of navigation in some special regions. However, in the existing study of grid strapdown inertial navigation system (SINS)/Doppler velocity log (DVL) integrated navigation algorithms, the Earth models of the filter dynamic model and the SINS mechanization are not unified. Besides, traditional integrated systems with the KF based correction scheme are susceptible to measurement errors, which would decrease the accuracy and robustness of the system. In this paper, an adaptive robust Kalman filter (ARKF) based hybrid-correction grid SINS/DVL integrated navigation algorithm is designed with the unified reference ellipsoid Earth model to improve the navigation accuracy in middle-high latitude regions for marine application. Firstly, to unify the Earth models, the mechanization of grid SINS is introduced and the error equations are derived based on the same reference ellipsoid Earth model. Then, a more accurate grid SINS/DVL filter model is designed according to the new error equations. Finally, a hybrid-correction scheme based on the ARKF is proposed to resist the effect of measurement errors. Simulation and experiment results show that, compared with the traditional algorithms, the proposed navigation algorithm can effectively improve the navigation performance in middle-high latitude regions by the unified Earth models and the ARKF based hybrid-correction scheme. PMID:29373549

  5. The Power of the Crowd: An Up Close and Personal Perspective on Planet Earth.

    NASA Astrophysics Data System (ADS)

    Abdalati, W.

    2015-12-01

    The space-based view of Earth has changed the way we look at our home planet, providing a perspective on the Earth as a system that can only be realized when viewed from a distance. Throughout my career as a researcher, including 2 years as NASA Chief Scientist, this "power of perspective" has been a tool through which I have engaged both colleagues and the public. These capabilities have transformed our understanding of climate and weather phenomena, ecosystem dynamics, changes in the cryosphere, and much more, through their macro-scale look at the various, highly complex components of the Earth system. But within these domains, there is a tremendous amount of small-scale variability that, if appropriately observed, can reveal new information about how elements within the Earth system work in ways that can directly impact people's lives. Consequently, there is a different power in this additional local perspective: it is one fueled by up-close and personal data collection. Through their engagement and commitment, citizen scientists are providing valuable data as well as personalized experience in the collection of those data. This presentation will include video clips that show a diverse set of citizen science projects in North America and worldwide, illustrating this scientifically useful combination of local and global. Such projects engage citizens and scientists alike in efforts to understand the world in which we live.

  6. The Community Surface Dynamics Modeling System: Experiences on Building a Collaborative Modeling Platform

    NASA Astrophysics Data System (ADS)

    Overeem, I.; Hutton, E.; Kettner, A.; Peckham, S. D.; Syvitski, J. P.

    2012-12-01

    The Community Surface Dynamics Modeling System - CSDMS- develops a software platform with shared and coupled modules for modeling earth surface processes as a community resource. The framework allows prediction of water, sediment and nutrient transport through the landscape and seacape. The underlying paradigm is that the Earth surface we live on is a dynamic system; topography changes with seasons, with landslides and earthquakes, with erosion and deposition. The Earth Surface changes due to storms and floods, and important boundaries, like the coast, are ever-moving features. CSDMS sets out to make better predictions of these changes. Earth surface process modeling bridges the terrestrial, coastal and marine domains and requires understanding of the system over a range of time scales, which inherently needs interdisciplinarity. Members of CSDMS (~830 in July 2012) are largely from academic institutions (˜75%), followed by federal agencies (˜17%), and oil and gas companies (˜5%). Members and governmental bodies meet once annually and rely additionally on web-based information for communication. As an organization that relies on volunteer participation, CSDMS faces challenges to scientific collaboration. Encouraging volunteerism among its members to provide and adapt metadata and model code to be sufficiently standardized for coupling is crucial to building an integrated community modeling system. We here present CSDMS strategies aimed at providing the appropriate technical tools and cyberinfrastructure to support a variety of user types, ranging from advanced to novice modelers. Application of these advances in science is key, both into the educational realm and for managers and decision-makers. We discuss some of the implemented ideas to further organizational transparency and user engagement in small-scale governance, such as advanced trackers and voting systems for model development prioritization through the CSDMS wiki. We analyzed data on community contributions and novice user engagement and evaluate the effectiveness of CSDMS' strategies toward these two challenges over the first 5 years based on member and user data, surveys, computing logs and web log analysis. Analysis shows that sponsored member participation in annual meetings (˜30%) is relatively high. Direct CSDMS governance relies on ˜4% of members. About 15% of members contributed code and metadata, and 18% use the common supercomputing resources. Technological development and documentation lie predominantly in hands of funded members, and a small number of others (˜3% together). Potential new users are trained in clinics and courses, and on a one-to-one basis with quantified positive effects on self-efficacy and recruitment of new advanced developers.

  7. Emergence of the Green’s Functions from Noise and Passive Acoustic Remote Sensing of Ocean Dynamics

    DTIC Science & Technology

    2009-09-30

    Acoustic Remote Sensing of Ocean Dynamics Oleg A. Godin CIRES/Univ. of Colorado and NOAA/OAR/Earth System Research Lab., R/PSD99, 325 Broadway...characterization of a time-varying ocean where ambient acoustic noise is utilized as a probing signal. • To develop a passive remote sensing technique for...inapplicable. 3. To quantify degradation of performance of passive remote sensing techniques due to ocean surface motion and other variations of underwater

  8. Towards a Refined Realisation of the Terrestrial Reference System

    NASA Astrophysics Data System (ADS)

    Angermann, D.; Drewes, H.; Meisel, B.; Kruegel, M.; Tesmer, V.

    2004-12-01

    Global reference frames provide the framework for scientific investigations of the Earth's system (e.g. plate tectonics, sea level change, seasonal and secular loading signals, atmosphere dynamics, Earth orientation excitation), as well as for many practical applications (e.g. surveying and navigation). Today, space geodetic techniques allow to determine geodetic parameters (e.g. station positions, Earth rotation) with a precision of a few millimeters (or even better). However, this high accuracy is not reflected by current realisations of the terrestrial reference system. To fully exploit the potential of the space geodetic observations for investigations of various global and regional, short-term, seasonal and secular phenomena of the Earth's system, the reference frame must be realised with the highest accuracy, spatial and temporal consistency and stability over decades. Furthermore, future progress in Earth sciences will fundamentally depend on understanding the Earth as a system, into which the three areas of geodetic research (geometry/deformation, Earth rotation, gravity) are to be integrated. The presentation focusses on various aspects that must be considered for a refined realisation of the terrestrial reference system, such as the development of suitable methods for the combination of the contributing space geodetic observations, the realisation of the TRF datum and the parameterisation of site motions. For this purpose we investigated time series of station positions and datum parameters obtained from VLBI, SLR, GPS and DORIS solutions, and compared the results at co-location sites and with other studies. Furthermore, we present results obtained from a TRS realisation based on epoch (weekly/daily) normal equations with station positions and daily Earth Orientation Parameters (EOP) using five years (1999-2004) of VLBI, SLR, GPS and DORIS data. This refined approach has major advantages compared to past TRF realisations based on multi-year solutions with station positions at a given epoch and constant velocities, as for instance non-linear effects of site positions and datum parameters can be considered, and consistency between TRF and EOPs can be achieved. First results of this new approach are promising.

  9. Cx-02 Program, workshop on modeling complex systems

    USGS Publications Warehouse

    Mossotti, Victor G.; Barragan, Jo Ann; Westergard, Todd D.

    2003-01-01

    This publication contains the abstracts and program for the workshop on complex systems that was held on November 19-21, 2002, in Reno, Nevada. Complex systems are ubiquitous within the realm of the earth sciences. Geological systems consist of a multiplicity of linked components with nested feedback loops; the dynamics of these systems are non-linear, iterative, multi-scale, and operate far from equilibrium. That notwithstanding, It appears that, with the exception of papers on seismic studies, geology and geophysics work has been disproportionally underrepresented at regional and national meetings on complex systems relative to papers in the life sciences. This is somewhat puzzling because geologists and geophysicists are, in many ways, preadapted to thinking of complex system mechanisms. Geologists and geophysicists think about processes involving large volumes of rock below the sunlit surface of Earth, the accumulated consequence of processes extending hundreds of millions of years in the past. Not only do geologists think in the abstract by virtue of the vast time spans, most of the evidence is out-of-sight. A primary goal of this workshop is to begin to bridge the gap between the Earth sciences and life sciences through demonstration of the universality of complex systems science, both philosophically and in model structures.

  10. The Global Geodetic Observing System: Recent Activities and Accomplishments

    NASA Astrophysics Data System (ADS)

    Gross, R. S.

    2017-12-01

    The Global Geodetic Observing System (GGOS) of the International Association of Geodesy (IAG) provides the basis on which future advances in geosciences can be built. By considering the Earth system as a whole (including the geosphere, hydrosphere, cryosphere, atmosphere and biosphere), monitoring Earth system components and their interactions by geodetic techniques and studying them from the geodetic point of view, the geodetic community provides the global geosciences community with a powerful tool consisting mainly of high-quality services, standards and references, and theoretical and observational innovations. The mission of GGOS is: (a) to provide the observations needed to monitor, map and understand changes in the Earth's shape, rotation and mass distribution; (b) to provide the global frame of reference that is the fundamental backbone for measuring and consistently interpreting key global change processes and for many other scientific and societal applications; and (c) to benefit science and society by providing the foundation upon which advances in Earth and planetary system science and applications are built. The goals of GGOS are: (1) to be the primary source for all global geodetic information and expertise serving society and Earth system science; (2) to actively promote, sustain, improve, and evolve the integrated global geodetic infrastructure needed to meet Earth science and societal requirements; (3) to coordinate with the international geodetic services that are the main source of key parameters and products needed to realize a stable global frame of reference and to observe and study changes in the dynamic Earth system; (4) to communicate and advocate the benefits of GGOS to user communities, policy makers, funding organizations, and society. In order to accomplish its mission and goals, GGOS depends on the IAG Services, Commissions, and Inter-Commission Committees. The Services provide the infrastructure and products on which all contributions of GGOS are based. The IAG Commissions and Inter-Commission Committees provide expertise and support for the scientific development within GGOS. In summary, GGOS is IAG's central interface to the scientific community and to society in general. Recent activities and accomplishments of the Global Geodetic Observing System will be presented.

  11. Overview of the SHIELDS Project at LANL

    NASA Astrophysics Data System (ADS)

    Jordanova, V.; Delzanno, G. L.; Henderson, M. G.; Godinez, H. C.; Jeffery, C. A.; Lawrence, E. C.; Meierbachtol, C.; Moulton, D.; Vernon, L.; Woodroffe, J. R.; Toth, G.; Welling, D. T.; Yu, Y.; Birn, J.; Thomsen, M. F.; Borovsky, J.; Denton, M.; Albert, J.; Horne, R. B.; Lemon, C. L.; Markidis, S.; Young, S. L.

    2015-12-01

    The near-Earth space environment is a highly dynamic and coupled system through a complex set of physical processes over a large range of scales, which responds nonlinearly to driving by the time-varying solar wind. Predicting variations in this environment that can affect technologies in space and on Earth, i.e. "space weather", remains a big space physics challenge. We present a recently funded project through the Los Alamos National Laboratory (LANL) Directed Research and Development (LDRD) program that is developing a new capability to understand, model, and predict Space Hazards Induced near Earth by Large Dynamic Storms, the SHIELDS framework. The project goals are to specify the dynamics of the hot (keV) particles (the seed population for the radiation belts) on both macro- and micro-scale, including important physics of rapid particle injection and acceleration associated with magnetospheric storms/substorms and plasma waves. This challenging problem is addressed using a team of world-class experts in the fields of space science and computational plasma physics and state-of-the-art models and computational facilities. New data assimilation techniques employing data from LANL instruments on the Van Allen Probes and geosynchronous satellites are developed in addition to physics-based models. This research will provide a framework for understanding of key radiation belt drivers that may accelerate particles to relativistic energies and lead to spacecraft damage and failure. The ability to reliably distinguish between various modes of failure is critically important in anomaly resolution and forensics. SHIELDS will enhance our capability to accurately specify and predict the near-Earth space environment where operational satellites reside.

  12. Variance decomposition shows the importance of human-climate feedbacks in the Earth system

    NASA Astrophysics Data System (ADS)

    Calvin, K. V.; Bond-Lamberty, B. P.; Jones, A. D.; Shi, X.; Di Vittorio, A. V.; Thornton, P. E.

    2017-12-01

    The human and Earth systems are intricately linked: climate influences agricultural production, renewable energy potential, and water availability, for example, while anthropogenic emissions from industry and land use change alter temperature and precipitation. Such feedbacks have the potential to significantly alter future climate change. Current climate change projections contain significant uncertainties, however, and because Earth System Models do not generally include dynamic human (demography, economy, energy, water, land use) components, little is known about how climate feedbacks contribute to that uncertainty. Here we use variance decomposition of a novel coupled human-earth system model to show that the influence of human-climate feedbacks can be as large as 17% of the total variance in the near term for global mean temperature rise, and 11% in the long term for cropland area. The near-term contribution of energy and land use feedbacks to the climate on global mean temperature rise is as large as that from model internal variability, a factor typically considered in modeling studies. Conversely, the contribution of climate feedbacks to cropland extent, while non-negligible, is less than that from socioeconomics, policy, or model. Previous assessments have largely excluded these feedbacks, with the climate community focusing on uncertainty due to internal variability, scenario, and model and the integrated assessment community focusing on uncertainty due to socioeconomics, technology, policy, and model. Our results set the stage for a new generation of models and hypothesis testing to determine when and how bidirectional feedbacks between human and Earth systems should be considered in future assessments of climate change.

  13. Durable thin film coatings for reflectors used in low earth orbit

    NASA Technical Reports Server (NTRS)

    Mcclure, Donald J.

    1989-01-01

    This paper discusses the properties of thin film coatings used to provide a durable reflective surface for solar concentrators used in the solar dynamic system designed for the Space Station. The material system to be used consists of an adhesion promotion layer, a silver reflective layer, and a protective layer of aluminum oxide and silicon dioxide. The performance characteristics of this system are described and compared to those of several alternative systems which use aluminum as the reflective layer.

  14. Engineered Structured Sorbents for the Adsorption of Carbon Dioxide and Water Vapor from Manned Spacecraft Atmospheres: Applications and Modeling 2007/2008

    NASA Technical Reports Server (NTRS)

    Knox, James C.; Howard, David F.; Perry, Jay L.

    2007-01-01

    In NASA s Vision for Space Exploration, humans will once again travel beyond the confines of earth s gravity, this time to remain there for extended periods. These forays will place unprecedented demands on launch systems. They must not only blast out of earth s gravity well as during the Apollo moon missions, but also launch the supplies needed to sustain a larger crew over much longer periods. Thus all spacecraft systems, including those for the separation of metabolic carbon dioxide and water from a crewed vehicle, must be minimized with respect to mass, power, and volume. Emphasis is also placed on system robustness both to minimize replacement parts and ensure crew safety when a quick return to earth is not possible. This paper describes efforts to improve on typical packed beds of sorbent pellets by making use of structured sorbents and alternate bed configurations to improve system efficiency and reliability. The development efforts described offer a complimentary approach combining testing of subscale systems and multiphysics computer simulations to characterize the regenerative heating substrates and evaluation of engineered structured sorbent geometries. Mass transfer, heat transfer, and fluid dynamics are included in the transient simulations.

  15. Moon-based Earth Observation for Large Scale Geoscience Phenomena

    NASA Astrophysics Data System (ADS)

    Guo, Huadong; Liu, Guang; Ding, Yixing

    2016-07-01

    The capability of Earth observation for large-global-scale natural phenomena needs to be improved and new observing platform are expected. We have studied the concept of Moon as an Earth observation in these years. Comparing with manmade satellite platform, Moon-based Earth observation can obtain multi-spherical, full-band, active and passive information,which is of following advantages: large observation range, variable view angle, long-term continuous observation, extra-long life cycle, with the characteristics of longevity ,consistency, integrity, stability and uniqueness. Moon-based Earth observation is suitable for monitoring the large scale geoscience phenomena including large scale atmosphere change, large scale ocean change,large scale land surface dynamic change,solid earth dynamic change,etc. For the purpose of establishing a Moon-based Earth observation platform, we already have a plan to study the five aspects as follows: mechanism and models of moon-based observing earth sciences macroscopic phenomena; sensors' parameters optimization and methods of moon-based Earth observation; site selection and environment of moon-based Earth observation; Moon-based Earth observation platform; and Moon-based Earth observation fundamental scientific framework.

  16. Earth System Model Needs for Including the Interactive Representation of Nitrogen Deposition and Drought Effects on Forested Ecosystems

    DOE PAGES

    Drewniak, Beth; Gonzalez-Meler, Miquel

    2017-07-27

    One of the biggest uncertainties of climate change is determining the response of vegetation to many co-occurring stressors. In particular, many forests are experiencing increased nitrogen deposition and are expected to suffer in the future from increased drought frequency and intensity. Interactions between drought and nitrogen deposition are antagonistic and non-additive, which makes predictions of vegetation response dependent on multiple factors. The tools we use (Earth system models) to evaluate the impact of climate change on the carbon cycle are ill equipped to capture the physiological feedbacks and dynamic responses of ecosystems to these types of stressors. In this manuscript,more » we review the observed effects of nitrogen deposition and drought on vegetation as they relate to productivity, particularly focusing on carbon uptake and partitioning. We conclude there are several areas of model development that can improve the predicted carbon uptake under increasing nitrogen deposition and drought. This includes a more flexible framework for carbon and nitrogen partitioning, dynamic carbon allocation, better representation of root form and function, age and succession dynamics, competition, and plant modeling using trait-based approaches. These areas of model development have the potential to improve the forecasting ability and reduce the uncertainty of climate models.« less

  17. Earth System Model Needs for Including the Interactive Representation of Nitrogen Deposition and Drought Effects on Forested Ecosystems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drewniak, Beth; Gonzalez-Meler, Miquel

    One of the biggest uncertainties of climate change is determining the response of vegetation to many co-occurring stressors. In particular, many forests are experiencing increased nitrogen deposition and are expected to suffer in the future from increased drought frequency and intensity. Interactions between drought and nitrogen deposition are antagonistic and non-additive, which makes predictions of vegetation response dependent on multiple factors. The tools we use (Earth system models) to evaluate the impact of climate change on the carbon cycle are ill equipped to capture the physiological feedbacks and dynamic responses of ecosystems to these types of stressors. In this manuscript,more » we review the observed effects of nitrogen deposition and drought on vegetation as they relate to productivity, particularly focusing on carbon uptake and partitioning. We conclude there are several areas of model development that can improve the predicted carbon uptake under increasing nitrogen deposition and drought. This includes a more flexible framework for carbon and nitrogen partitioning, dynamic carbon allocation, better representation of root form and function, age and succession dynamics, competition, and plant modeling using trait-based approaches. These areas of model development have the potential to improve the forecasting ability and reduce the uncertainty of climate models.« less

  18. Geologic evolution of the terrestrial planets

    NASA Technical Reports Server (NTRS)

    Head, J. W.; Mutch, T. A.; Wood, C. A.

    1977-01-01

    The paper presents a geologic comparison of the terrestrial planets Mercury, Venus, Earth, the Moon and Mars, in the light of the recent photogeologic and other evidence gathered by satellites, and discusses the relationships between their regional terrain types, ages, and planetary evolution. The importance of the two fundamental processes, impact cratering and volcanism, which had formed these planets are stressed and the factors making the earth unique, such as high planetary evolution index (PEI), dynamic geological agents and the plate tectonics, are pointed out. The igneous processes which dominate earth and once existed on the others are outlined together with the planetary elevations of the earth which has a bimodal distribution, the moon which has a unimodal Gaussian distribution and Mars with a distribution intermediate between the earth and moon. Questions are raised concerning the existence of a minimum planetary mass below which mantle convection will not cause lithospheric rifting, and as to whether each planet follows a separate path of evolution depending on its physical properties and position within the solar system.

  19. Dynamics of Space Particles and Spacecrafts Passing by the Atmosphere of the Earth

    PubMed Central

    Prado, Antonio Fernando Bertachini de Almeida; Golebiewska, Justyna

    2013-01-01

    The present research studies the motion of a particle or a spacecraft that comes from an orbit around the Sun, which can be elliptic or hyperbolic, and that makes a passage close enough to the Earth such that it crosses its atmosphere. The idea is to measure the Sun-particle two-body energy before and after this passage in order to verify its variation as a function of the periapsis distance, angle of approach, and velocity at the periapsis of the particle. The full system is formed by the Sun, the Earth, and the particle or the spacecraft. The Sun and the Earth are in circular orbits around their center of mass and the motion is planar for all the bodies involved. The equations of motion consider the restricted circular planar three-body problem with the addition of the atmospheric drag. The initial conditions of the particle or spacecraft (position and velocity) are given at the periapsis of its trajectory around the Earth. PMID:24396298

  20. Dynamics of space particles and spacecrafts passing by the atmosphere of the Earth.

    PubMed

    Gomes, Vivian Martins; Prado, Antonio Fernando Bertachini de Almeida; Golebiewska, Justyna

    2013-01-01

    The present research studies the motion of a particle or a spacecraft that comes from an orbit around the Sun, which can be elliptic or hyperbolic, and that makes a passage close enough to the Earth such that it crosses its atmosphere. The idea is to measure the Sun-particle two-body energy before and after this passage in order to verify its variation as a function of the periapsis distance, angle of approach, and velocity at the periapsis of the particle. The full system is formed by the Sun, the Earth, and the particle or the spacecraft. The Sun and the Earth are in circular orbits around their center of mass and the motion is planar for all the bodies involved. The equations of motion consider the restricted circular planar three-body problem with the addition of the atmospheric drag. The initial conditions of the particle or spacecraft (position and velocity) are given at the periapsis of its trajectory around the Earth.

  1. NASA Earth Science Partnerships - A Multi-Level Approach to Effectively Collaborating with Communities and Organizations to Utilize Earth Science Data for Societal Benefit

    NASA Astrophysics Data System (ADS)

    Favors, J.

    2016-12-01

    NASA's Earth Science Division (ESD) seeks to develop a scientific understanding of the Earth as a dynamic, integrated system of diverse components that interact in complex ways - analogous to the human body. The Division approaches this goal through a coordinated series of satellite and airborne missions, sponsored basic and applied research, technology development, and science education. Integral to this approach are strong collaborations and partnerships with a spectrum of organizations that produce substantive benefit to communities - both locally and globally. This presentation will showcase various ways ESD approaches partnering and will highlight best practices, challenges, and provide case studies related to rapid partnerships, co-location of scientists and end-user communities, capacity building, and ESD's new Partnerships Program which is built around taking an innovative approach to partnering that fosters interdisplinary teaming & co-production of knowledge to broaden the applicability of Earth observations and answer new, big questions for partners and NASA, alike.

  2. Kinematic validation of a quasi-geostrophic model for the fast dynamics in the Earth's outer core

    NASA Astrophysics Data System (ADS)

    Maffei, S.; Jackson, A.

    2017-09-01

    We derive a quasi-geostrophic (QG) system of equations suitable for the description of the Earth's core dynamics on interannual to decadal timescales. Over these timescales, rotation is assumed to be the dominant force and fluid motions are strongly invariant along the direction parallel to the rotation axis. The diffusion-free, QG system derived here is similar to the one derived in Canet et al. but the projection of the governing equations on the equatorial disc is handled via vertical integration and mass conservation is applied to the velocity field. Here we carefully analyse the properties of the resulting equations and we validate them neglecting the action of the Lorentz force in the momentum equation. We derive a novel analytical solution describing the evolution of the magnetic field under these assumptions in the presence of a purely azimuthal flow and an alternative formulation that allows us to numerically solve the evolution equations with a finite element method. The excellent agreement we found with the analytical solution proves that numerical integration of the QG system is possible and that it preserves important physical properties of the magnetic field. Implementation of magnetic diffusion is also briefly considered.

  3. Multidimensional analysis and probabilistic model of volcanic and seismic activities

    NASA Astrophysics Data System (ADS)

    Fedorov, V.

    2009-04-01

    A search for space and time regularities in volcanic and seismic events for the purpose of forecast method development seems to be of current concern, both scientifically and practically. The seismic and volcanic processes take place in the Earth's field of gravity which in turn is closely related to gravitational fields of the Moon, the Sun, and the planets of the Solar System. It is mostly gravity and tidal forces that exercise control over the Earth's configuration and relief. Dynamic gravitational interaction between the Earth and other celestial bodies makes itself evident in tidal phenomena and other effects in the geospheres (including the Earth's crust). Dynamics of the tidal and attractive forces is responsible for periodical changes in gravity force, both in value and direction [Darwin, 1965], in the rate of rotation and orbital speed; that implies related changes in the endogenic activity of the Earth. The Earth's rotation in the alternating gravitational field accounts to a considerable extent for regular pattern of crustal deformations and dislocations; it is among principal factors that control the Earth's form and structure, distribution of oceans and continents and, probably, continental drift [Peive, 1969; Khain, 1973; Kosygin, 1983]. The energy of gravitational interaction is transmitted through the tidal energy to planetary spheres and feeds various processes there, including volcanic and seismic ones. To determine degree, character and special features of tidal force contribution to the volcanic and seismic processes is of primary importance for understanding of genetic and dynamic aspects of volcanism and seismicity. Both volcanic and seismic processes are involved in evolution of celestial bodies; they are operative on the planets of the Earth group and many satellites [Essays…, 1981; Lukashov, 1996]. From this standpoint, studies of those processes are essential with a view to development of scenarios of the Earth's evolution as a celestial body, as well as to forecast of changes in its relief. As the volcanic and seismic processes are of cosmic nature and occurrence, it seems logical to investigate their chronological structure in terms of astronomical time reference system or in parameters of the Earth orbital movement. Gravitational interaction of the Earth with the moon, the Sun and planets of the Solar system forms the physical basis of this multidimensional system; it manifests itself in tidal deformations of the Earth's lithosphere and in periodical changes in the planet rotation and orbital speed. A search for chronological correlation between the Earth's volcanism and seismicity on one hand and the orbital parameters dynamic on the other shows a certain promise in relation to prognostic decisions. It should be kept in mind that the calculation of astronomical characteristics (Ephemerides), which is one of the main lines in theoretical astronomy, spans many years both in the past and in future. It seems appropriate therefore to apply the astronomical time reference system to investigations of chronological structure of volcanic and seismic processes from the methodical viewpoint, as well as for retrospective and prognostic analyses. To investigate temporal pattern of the volcanic and seismic processes and to find a degree of their dependence on tidal forces, we used the astronomical time reference system as related to the Earth's orbital movement. The system is based on substitution of calendar dates of eruption and earthquakes for corresponding values of known astronomical characteristics, such as the Earth to Sun and Earth to Moon distances, ecliptic latitude of the Moon, etc. In coordinates of astronomical parameters (JPL Planetary and Lunar Efemerides, 1997, as compiled by the Jet Propulsion Laboratory, California Institute of Technology, on the basis of DE 406 block developed by NASA), we analyzed massifs of information, both volcanological (Catalogue of the World volcanic eruptions by I.I. Gushchenko, 1979) and seismological (database of USGS/NEIC Significant Worldwide Earthquakes, 2150 B.C.- 1994 A.D.) information which displays dynamics of endogenic relief-forming processes over a period of 1900 to 1994. In the course of the analysis, a substitution of calendar variable by a corresponding astronomical one has been performed and the epoch superposition method was applied. In essence, the method consists in that the massifs of information on volcanic eruptions (over a period of 1900 to 1977) and seismic events (1900-1994) are differentiated with respect to value of astronomical parameters which correspond to the calendar dates of the known eruptions and earthquakes, regardless of the calendar year. The obtained spectra of volcanic eruptions and violent earthquake distribution in the fields of the Earth orbital movement parameters were used as a basis for calculation of frequency spectra and diurnal probability of volcanic and seismic activity. The objective of the proposed investigations is a probabilistic model development of the volcanic and seismic events, as well as GIS designing for monitoring and forecast of volcanic and seismic activities. In accordance with the stated objective, three probability parameters have been found in the course of preliminary studies; they form the basis for GIS-monitoring and forecast development. 1. A multidimensional analysis of volcanic eruption and earthquakes (of magnitude 7) have been performed in terms of the Earth orbital movement. Probability characteristics of volcanism and seismicity have been defined for the Earth as a whole. Time intervals have been identified with a diurnal probability twice as great as the mean value. Diurnal probability of volcanic and seismic events has been calculated up to 2020. 2. A regularity is found in duration of dormant (repose) periods has been established. A relationship has been found between the distribution of the repose period probability density and duration of the period. 3. Features of spatial distribution of volcanic eruptions and earthquakes of magnitude 7 were analyzed, and those related to the Earth rotation identified. Frequencies of their spatial distribution are calculated. Using those parameters as the base, a scheme (algorithm) of probabilistic monitoring (long-range forecast) has been developed for volcanic and seismic events. Refereces (in Russian): 1. Fedorov V.M. Gravitational factors and astronomy-based chronology of processes in geospheres. Moscow University Publishing House, 2000. 368 p. 2. Fedorov V.M. Comparison between chronology of the Earth volcanic activity and characteristics of its orbital motion // Vulkanologiya i seismologiya, № 5, 2001, p. 65-67. 3. Fedorov V.M. Specific features of latitudinal distribution of volcanic eruptions// Vulkanologiya i seismologiya, № 4, 2002, p.39-43. 4. Fedorov V.M. Specific features of latitudinal distribution of endogenic relief-forming processes and the rotation of the Earth // Geomorphologiya, № 1, 2003, p.3-9. 5. Fedorov V.M. Comparison between chronology of the Earth volcanic and seismic activity and characteristics of its orbital motion // Izvestiya RAS. Ser. Geogr. № 5, 2003, p.16-20. 6. Fedorov V.M. Chronological structure and probability of volcanic events as related to tidal deformation of lithosphere // Vulkanologiya i seismologiya, № 1, 2005, p.44-50. 7. Fedorov V.M. Multidimensional analysis and a probabilistic model of the activity of endogenic relief-forming processes // Geomorphology, № 2, 2007, p. 37 - 48. 8. Fedorov V.M. Multidimensional analysis - is a spatiotemporal structure of the geodynamic activity of Earth// Vestnik Moskovskogo Universiteta; Ser. 4. Geology, № 4, 2007, p. 24-31.

  4. Statistical Study of the Early Solar System's Instability with Four, Five, and Six Giant Planets

    NASA Astrophysics Data System (ADS)

    Nesvorný, David; Morbidelli, Alessandro

    2012-10-01

    Several properties of the solar system, including the wide radial spacing and orbital eccentricities of giant planets, can be explained if the early solar system evolved through a dynamical instability followed by migration of planets in the planetesimal disk. Here we report the results of a statistical study, in which we performed nearly 104 numerical simulations of planetary instability starting from hundreds of different initial conditions. We found that the dynamical evolution is typically too violent, if Jupiter and Saturn start in the 3:2 resonance, leading to ejection of at least one ice giant from the solar system. Planet ejection can be avoided if the mass of the transplanetary disk of planetesimals was large (M disk >~ 50 M Earth), but we found that a massive disk would lead to excessive dynamical damping (e.g., final e 55 <~ 0.01 compared to present e 55 = 0.044, where e 55 is the amplitude of the fifth eccentric mode in the Jupiter's orbit), and to smooth migration that violates constraints from the survival of the terrestrial planets. Better results were obtained when the solar system was assumed to have five giant planets initially, and one ice giant, with mass comparable to that of Uranus and Neptune, was ejected into interstellar space by Jupiter. The best results were obtained when the ejected planet was placed into the external 3:2 or 4:3 resonance with Saturn and M disk ~= 20 M Earth. The range of possible outcomes is rather broad in this case, indicating that the present solar system is neither a typical nor expected result for a given initial state, and occurs, in best cases, with only a sime5% probability (as defined by the success criteria described in the main text). The case with six giant planets shows interesting dynamics but does offer significant advantages relative to the five-planet case.

  5. Advancing coupled human-earth system models: The integrated Earth System Model Project

    NASA Astrophysics Data System (ADS)

    Thomson, A. M.; Edmonds, J. A.; Collins, W.; Thornton, P. E.; Hurtt, G. C.; Janetos, A. C.; Jones, A.; Mao, J.; Chini, L. P.; Calvin, K. V.; Bond-Lamberty, B. P.; Shi, X.

    2012-12-01

    As human and biogeophysical models develop, opportunities for connections between them evolve and can be used to advance our understanding of human-earth systems interaction in the context of a changing climate. One such integration is taking place with the Community Earth System Model (CESM) and the Global Change Assessment Model (GCAM). A multi-disciplinary, multi-institution team has succeeded in integrating the GCAM integrated assessment model of human activity into CESM to dynamically represent the feedbacks between changing climate and human decision making, in the context of greenhouse gas mitigation policies. The first applications of this capability have focused on the feedbacks between climate change impacts on terrestrial ecosystem productivity and human decisions affecting future land use change, which are in turn connected to human decisions about energy systems and bioenergy production. These experiments have been conducted in the context of the RCP4.5 scenario, one of four pathways of future radiative forcing being used in CMIP5, which constrains future human-induced greenhouse gas emissions from energy and land activities to stabilize radiative forcing at 4.5 W/m2 (~650 ppm CO2 -eq) by 2100. When this pathway is run in GCAM with the climate feedback on terrestrial productivity from CESM, there are implications for both the land use and energy system changes required for stabilization. Early findings indicate that traditional definitions of radiative forcing used in scenario development are missing a critical component of the biogeophysical consequences of land use change and their contribution to effective radiative forcing. Initial full coupling of the two global models has important implications for how climate impacts on terrestrial ecosystems changes the dynamics of future land use change for agriculture and forestry, particularly in the context of a climate mitigation policy designed to reduce emissions from land use as well as energy systems. While these initial experiments have relied on offline coupling methodologies, current and future experiments are utilizing a single model code developed to integrate GCAM into CESM as a component of the land model. This unique capability facilitates many new applications to scientific questions arising from human and biogeophysical systems interaction. Future developments will further integrate the energy system decisions and greenhouse gas emissions as simulated in GCAM with the appropriate climate and land system components of CESM.

  6. Dynamics of exoplanetary systems, links to their habitability

    NASA Astrophysics Data System (ADS)

    Bolmont, E.; Raymond, S. N.; Selsis, F.

    2014-12-01

    Our knowledge of planets' orbital dynamics, which was based on Solar System studies, has been challenged by the diversity of exoplanetary systems. Around cool and ultra cool dwarfs, the influence of tides on the orbital and spin evolution of planets can strongly affect their climate and their capacity to host surface liquid water. We illustrate the role of tides and dynamics with the extreme case of planets orbiting around brown dwarfs. In multiple planet systems, the eccentricity is excited by planet-planet interactions. Planets are therefore heated up from the inside by the tidally-induced friction. This process can heat a habitable zone planet to such a level that surface liquid water cannot exist. We also talk about the newly discovered potentially habitable Earth-sized planet Kepler-186f. Given the poorly estimated age of the system, the planet could still be evolving towards synchronization and have a high obliquity or be pseudo-synchronized with a zero obliquity. These two configurations would have a different effect on the climate of this planet.

  7. Lunar Cube Transfer Trajectory Options

    NASA Technical Reports Server (NTRS)

    Folta, David; Dichmann, Donald James; Clark, Pamela E.; Haapala, Amanda; Howell, Kathleen

    2015-01-01

    Numerous Earth-Moon trajectory and lunar orbit options are available for Cubesat missions. Given the limited Cubesat injection infrastructure, transfer trajectories are contingent upon the modification of an initial condition of the injected or deployed orbit. Additionally, these transfers can be restricted by the selection or designs of Cubesat subsystems such as propulsion or communication. Nonetheless, many trajectory options can b e considered which have a wide range of transfer duration, fuel requirements, and final destinations. Our investigation of potential trajectories highlights several options including deployment from low Earth orbit (LEO) geostationary transfer orbits (GTO) and higher energy direct lunar transfer and the use of longer duration Earth-Moon dynamical systems. For missions with an intended lunar orbit, much of the design process is spent optimizing a ballistic capture while other science locations such as Sun-Earth libration or heliocentric orbits may simply require a reduced Delta-V imparted at a convenient location along the trajectory.

  8. Sun, Earth and man: The need to know. The quest for knowledge of Sun-Earth relations

    NASA Technical Reports Server (NTRS)

    Stafford, E. P.

    1982-01-01

    Solar physics and the effects of emanations from the Sun on communications and Earth's weather and climate are discussed. Scientific interest in the solar system from the old Stone Age to the present is reviewed with particular emphasis on the objectives sought and information obtained by Explorer satellites, Pioneer satellites, Skylab, Helios, ISEE, the solar maximum mission, and the Dynamics Explorer. The goals of missions planned for the 1980's are discussed including those using space shuttle, Spacelab, the Solar Mesosphere Explorer, the solar optical telescope, the upper atmosphere research satellite, and the solar probe. The objectives of the international solar polar mission and of the Origin of Plasma in Earth's Neighborhood mission are also delineated. Other missions being considered are reviewed and the prospect of taming the fusion process to provide clean, harmless electrical energy like that obtained from the Sun is entertained.

  9. Lunar Cube Transfer Trajectory Options

    NASA Technical Reports Server (NTRS)

    Folta, David; Dichmann, Donald J.; Clark, Pamela; Haapala, Amanda; Howell, Kathleen

    2015-01-01

    Numerous Earth-Moon trajectory and lunar orbit options are available for Cubesat missions. Given the limited Cubesat injection infrastructure, transfer trajectories are contingent upon the modification of an initial condition of the injected or deployed orbit. Additionally, these transfers can be restricted by the selection or designs of Cubesat subsystems such as propulsion or communication. Nonetheless, many trajectory options can be considered which have a wide range of transfer durations, fuel requirements, and final destinations. Our investigation of potential trajectories highlights several options including deployment from low Earth orbit (LEO), geostationary transfer orbits (GTO), and higher energy direct lunar transfers and the use of longer duration Earth-Moon dynamical systems. For missions with an intended lunar orbit, much of the design process is spent optimizing a ballistic capture while other science locations such as Sun-Earth libration or heliocentric orbits may simply require a reduced Delta-V imparted at a convenient location along the trajectory.

  10. NASA's Van Allen Probes Discover a Surprise Circling Earth

    NASA Image and Video Library

    2017-12-08

    On Aug. 31, 2012, a giant prominence on the sun erupted, sending out particles and a shock wave that traveled near Earth. This event may have been one of the causes of a third radiation belt that appeared around Earth a few days later, a phenomenon that was observed for the very first time by the newly-launched Van Allen Probes. This image of the prominence before it erupted was captured by NASA's Solar Dynamics Observatory (SDO). Credit: NASA/SDO/AIA/Goddard Space Flight Center To read more go to: www.nasa.gov/mission_pages/rbsp/news/third-belt.html NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  11. Autonomous navigation using lunar beacons

    NASA Technical Reports Server (NTRS)

    Khatib, A. R.; Ellis, J.; French, J.; Null, G.; Yunck, T.; Wu, S.

    1983-01-01

    The concept of using lunar beacon signal transmission for on-board navigation for earth satellites and near-earth spacecraft is described. The system would require powerful transmitters on the earth-side of the moon's surface and black box receivers with antennae and microprocessors placed on board spacecraft for autonomous navigation. Spacecraft navigation requires three position and three velocity elements to establish location coordinates. Two beacons could be soft-landed on the lunar surface at the limits of allowable separation and each would transmit a wide-beam signal with cones reaching GEO heights and be strong enough to be received by small antennae in near-earth orbit. The black box processor would perform on-board computation with one-way Doppler/range data and dynamical models. Alternatively, GEO satellites such as the GPS or TDRSS spacecraft can be used with interferometric techniques to provide decimeter-level accuracy for aircraft navigation.

  12. Diurnal polar motion

    NASA Technical Reports Server (NTRS)

    Mcclure, P.

    1973-01-01

    An analytical theory is developed to describe diurnal polar motion in the earth which arises as a forced response due to lunisolar torques and tidal deformation. Doodson's expansion of the tide generating potential is used to represent the lunisolar torques. Both the magnitudes and the rates of change of perturbations in the earth's inertia tensor are included in the dynamical equations for the polar motion so as to account for rotational and tidal deformation. It is found that in a deformable earth with Love's number k = 0.29, the angular momentum vector departs by as much as 20 cm from the rotation axis rather than remaining within 1 or 2 cm as it would in a rigid earth. This 20 cm separation is significant in the interpretation of submeter polar motion observations because it necessitates an additional coordinate transformation in order to remove what would otherwise be a 20 cm error source in the conversion between inertial and terrestrial reference systems.

  13. Satellite-tracking and earth-dynamics research programs. [NASA Programs on satellite orbits and satellite ground tracks of geodetic satellites

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Observations and research progress of the Smithsonian Astrophysical Observatory are reported. Satellite tracking networks (ground stations) are discussed and equipment (Baker-Nunn cameras) used to observe the satellites is described. The improvement of the accuracy of a laser ranging system of the ground stations is discussed. Also, research efforts in satellite geodesy (tides, gravity anomalies, plate tectonics) is discussed. The use of data processing for geophysical data is examined, and a data base for the Earth and Ocean Physics Applications Program is proposed. Analytical models of the earth's motion (computerized simulation) are described and the computation (numerical integration and algorithms) of satellite orbits affected by the earth's albedo, using computer techniques, is also considered. Research efforts in the study of the atmosphere are examined (the effect of drag on satellite motion), and models of the atmosphere based on satellite data are described.

  14. Earth Survey Applications Division. [a bibliography

    NASA Technical Reports Server (NTRS)

    Carpenter, L. (Editor)

    1981-01-01

    Accomplishments of research and data analysis conducted to study physical parameters and processes inside the Earth and on the Earth's surface, to define techniques and systems for remotely sensing the processes and measuring the parameters of scientific and applications interest, and the transfer of promising operational applications techniques to the user community of Earth resources monitors, managers, and decision makers are described. Research areas covered include: geobotany, magnetic field modeling, crustal studies, crustal dynamics, sea surface topography, land resources, remote sensing of vegetation and soils, and hydrological sciences. Major accomplishments include: production of global maps of magnetic anomalies using Magsat data; computation of the global mean sea surface using GEOS-3 and Seasat altimetry data; delineation of the effects of topography on the interpretation of remotely-sensed data; application of snowmelt runoff models to water resources management; and mapping of snow depth over wheat growing areas using Nimbus microwave data.

  15. Cooperative Institute for Dynamic Earth Research (CIDER): Contributions to Education (Invited)

    NASA Astrophysics Data System (ADS)

    Romanowicz, B. A.

    2010-12-01

    The Cooperative Institute for Dynamic Earth Research (http://www.deep-earth.org) began its activities in 2003 and has so far held four summer programs of duration ranging from 3 to 7 weeks, funded by the NSF/CSEDI program, with support from and at the Kavli Institute for Theoretical Physics in Santa Barbara. CIDER's goals are twofold: (1) as a "synthesis center", to provide an environment for transformative studies of Earth's internal dynamics, requiring a concerted multi-disciplinary effort of leading researchers, and (2) to educate a new generation of Earth scientists with a breadth of competence across the disciplines required to understand the dynamic earth: mineral physics, geodynamics, geochemistry and geomagnetism. CIDER summer programs, so far, have focused on themes related to the Deep Earth: "Reconciling seismic and geochemical heterogeneity in the Earth", "The Earth's transition zone", "Boundary layers in the Earth" and "Fluids and volatiles in the Earth's mantle and core". These programs typically include three weeks of unstructured program designed for senior (assistant professor level and higher) researchers, and a 3-4 weeks "tutorial and workshop" part geared towards advanced graduate students and post-docs, but open also to more senior participants. The first two weeks of the tutorial part include lectures and practical exercises in the different disciplines aimed at providing participants with a basic understanding of the fundamentals and current challenges in disciplines other than their own. During the second week, topics related to the summer program's theme are proposed for further study in a workshop mode by multi-disciplinary groups formed on the fly, continued through the last week or two of the program. These activities often lead to the development of new collaborations and research proposals to the CSEDI program. In 2011, CIDER will hold a summer program at UC Berkeley on the theme "Mountain Building", expanding the scope of the Institute to the shallower parts of our planet.

  16. Cardiovascular and other dynamic systems in long-term space flight

    NASA Technical Reports Server (NTRS)

    Tipton, David A.

    1987-01-01

    The paper examines the physiology of the cardiovascular system, and to a lesser extent the endocrine, renal, and hematopoietic systems. The paper highlights the aspects of these areas that are most pertinent to space manufacturing, i.e., working in space. Areas covered include the physiological costs of working in microgravity and partial gravity (e.g., the moon or Mars), countermeasures to potentially adverse physiological adaptations, and problems associated with return to earth after long periods of weightlessness.

  17. Space Suit Thermal Dynamics

    NASA Technical Reports Server (NTRS)

    Campbell, Anthony B.; Nair, Satish S.; Miles, John B.; Iovine, John V.; Lin, Chin H.

    1998-01-01

    The present NASA space suit (the Shuttle EMU) is a self-contained environmental control system, providing life support, environmental protection, earth-like mobility, and communications. This study considers the thermal dynamics of the space suit as they relate to astronaut thermal comfort control. A detailed dynamic lumped capacitance thermal model of the present space suit is used to analyze the thermal dynamics of the suit with observations verified using experimental and flight data. Prior to using the model to define performance characteristics and limitations for the space suit, the model is first evaluated and improved. This evaluation includes determining the effect of various model parameters on model performance and quantifying various temperature prediction errors in terms of heat transfer and heat storage. The observations from this study are being utilized in two future design efforts, automatic thermal comfort control design for the present space suit and design of future space suit systems for Space Station, Lunar, and Martian missions.

  18. Dynamical spreading of small bodies in 1:1 resonance with planets by the diurnal Yarkovsky effect

    NASA Astrophysics Data System (ADS)

    Wang, Xuefeng; Hou, Xiyun

    2017-10-01

    A simple model is introduced to describe the inherent dynamics of Trojans in the presence of the diurnal Yarkovsky effect. For different spin statuses, the orbital elements of the Trojans (mainly semimajor axis, eccentricity and inclination) undergo different variations. The variation rate is generally very small, but the total variation of the semimajor axis or the orbit eccentricity over the age of the Solar system may be large enough to send small Trojans out of the regular region (or, vice versa, to capture small bodies in the regular region). In order to demonstrate the analytical analysis, we first carry out numerical simulations in a simple model, and then generalize these to two 'real' systems, namely the Sun-Jupiter system and the Sun-Earth system. In the Sun-Jupiter system, where the motion of Trojans is regular, the Yarkovsky effect gradually alters the libration width or the orbit eccentricity, forcing the Trojan to move from regular regionsto chaotic regions, where chaos may eventually cause it to escape. In the Sun-Earth system, where the motion of Trojans is generally chaotic, our limited numerical simulations indicate that the Yarkovsky effect is negligible for Trojans of 100 m in size, and even for larger ones. The Yarkovsky effect on small bodies captured in other 1:1 resonance orbits is also briefly discussed.

  19. Sun-Earth Day - Teaching Heliophysics Through Education Technology

    NASA Technical Reports Server (NTRS)

    Thieman, J.; Cline, T.; Lewis, E.

    2010-01-01

    Sun-Earth Day (SED) is an Education and Outreach program supported by the U.S, National Aeronautics and Space Administration (NASA). The intent of the program is to teach students and the general public about Heliophysics (the science of the study of the Sun, how it varies, and how solar dynamics affect the rest of the solar system, especially the Earth). The program was begun ten years ago. Each year since that time a particular day has been designated as "Sun-Earth Day ,,. Usually the day of the spring equinox (March 20 or 21) is Sun-Earth Day, but other days have been used as well. Each year a theme is chosen relating to Heliophysics and events reflecting that theme are planned not only for Sun-Earth Day, but for the entire year. From the very beginning educational technology was emphasized in the events in order to effectively reach wide audiences with the SED message. The main approach has been to have a "webcast" related to each year's theme, often from a location that supports the theme as well. For example, a webcast took place from the Mayan pyramids at Chichen Itza, Mexico to highlight the theme of "Ancient Observatories, Timeless Knowledge". Webcasts were not the only technology employed, however. Many of the themes centered on the dynamic nature of the Sun and the effects that solar storms can have on interplanetary space and in our day-to-day life on Earth. Activities for tracking when solar storms happen and how they affect the Earth were developed and brought together in an educational package called Space Weather Action Centers. This project is explained in more detail in another presentation in this session being given by Norma Teresinha Oliveira Reis. Recent Sun-Earth Days have utilized "social networking" technologies to reach widespread groups on the internet. Podcasts, Vodcasts, Facebook, Twitter, and Second Life are the types of network technologies being employed now. The NASA Distance learning Network is another method for bringing Sun-Earth Day events and training to widespread educators and classrooms in order to magnify the reach of Sun-Earth Day. Examples of the technologies will be shown along with an assessment of their effectiveness.

  20. The development of an autonomous rendezvous and docking simulation using rapid integration and prototyping technology

    NASA Technical Reports Server (NTRS)

    Shackelford, John H.; Saugen, John D.; Wurst, Michael J.; Adler, James

    1991-01-01

    A generic planar 3 degree of freedom simulation was developed that supports hardware in the loop simulations, guidance and control analysis, and can directly generate flight software. This simulation was developed in a small amount of time utilizing rapid prototyping techniques. The approach taken to develop this simulation tool, the benefits seen using this approach to development, and on-going efforts to improve and extend this capability are described. The simulation is composed of 3 major elements: (1) Docker dynamics model, (2) Dockee dynamics model, and (3) Docker Control System. The docker and dockee models are based on simple planar orbital dynamics equations using a spherical earth gravity model. The docker control system is based on a phase plane approach to error correction.

  1. Magnetohydrodynamic Convection in the Outer Core and its Geodynamic Consequences

    NASA Technical Reports Server (NTRS)

    Kuang, Weijia; Chao, Benjamin F.; Fang, Ming

    2004-01-01

    The Earth's fluid outer core is in vigorous convection through much of the Earth's history. In addition to generating and maintaining Earth s time-varying magnetic field (geodynamo), the core convection also generates mass redistribution in the core and a dynamical pressure field on the core-mantle boundary (CMB). All these shall result in various core-mantle interactions, and contribute to surface geodynamic observables. For example, electromagnetic core-mantle coupling arises from finite electrically conducting lower mantle; gravitational interaction occurs between the cores and the heterogeneous mantle; mechanical coupling may also occur when the CMB topography is aspherical. Besides changing the mantle rotation via the coupling torques, the mass-redistribution in the core shall produce a spatial-temporal gravity anomaly. Numerical modeling of the core dynamical processes contributes in several geophysical disciplines. It helps explain the physical causes of surface geodynamic observables via space geodetic techniques and other means, e.g. Earth's rotation variation on decadal time scales, and secular time-variable gravity. Conversely, identification of the sources of the observables can provide additional insights on the dynamics of the fluid core, leading to better constraints on the physics in the numerical modeling. In the past few years, our core dynamics modeling efforts, with respect to our MoSST model, have made significant progress in understanding individual geophysical consequences. However, integrated studies are desirable, not only because of more mature numerical core dynamics models, but also because of inter-correlation among the geophysical phenomena, e.g. mass redistribution in the outer core produces not only time-variable gravity, but also gravitational core-mantle coupling and thus the Earth's rotation variation. They are expected to further facilitate multidisciplinary studies of core dynamics and interactions of the core with other components of the Earth.

  2. Integration of Geophysical and Geochemical Data

    NASA Astrophysics Data System (ADS)

    Yamagishi, Y.; Suzuki, K.; Tamura, H.; Nagao, H.; Yanaka, H.; Tsuboi, S.

    2006-12-01

    Integration of geochemical and geophysical data would give us a new insight to the nature of the Earth. It should advance our understanding for the dynamics of the Earth's interior and surface processes. Today various geochemical and geophysical data are available on Internet. These data are stored in various database systems. Each system is isolated and provides own format data. The goal of this study is to display both the geochemical and geophysical data obtained from such databases together visually. We adopt Google Earth as the presentation tool. Google Earth is virtual globe software and is provided free of charge by Google, Inc. Google Earth displays the Earth's surface using satellite images with mean resolution of ~15m. We display any graphical features on Google Earth by KML format file. We have developed softwares to convert geochemical and geophysical data to KML file. First of all, we tried to overlay data from Georoc and PetDB and seismic tomography data on Google Earth. Georoc and PetDB are both online database systems for geochemical data. The data format of Georoc is CSV and that of PetDB is Microsoft Excel. The format of tomography data we used is plain text. The conversion software can process these different file formats. The geochemical data (e. g. compositional abundance) is displayed as a three-dimensional column on the Earth's surface. The shape and color of the column mean the element type. The size and color tone vary according to the abundance of the element. The tomography data can be converted into a KML file for each depth. This overlay plot of geochemical data and tomography data should help us to correlate internal temperature anomalies to geochemical anomalies, which are observed at the surface of the Earth. Our tool can convert any geophysical and geochemical data to a KML as long as the data is associated with longitude and latitude. We are going to support more geophysical data formats. In addition, we are currently trying to obtain scientific insights for the Earth's interior based on the view of both geophysical and geochemical data on Google Earth.

  3. The Anthropocene Generalized: Evolution of Exo-Civilizations and Their Planetary Feedback.

    PubMed

    Frank, A; Carroll-Nellenback, Jonathan; Alberti, M; Kleidon, A

    2018-05-01

    We present a framework for studying generic behaviors possible in the interaction between a resource-harvesting technological civilization (an exo-civilization) and the planetary environment in which it evolves. Using methods from dynamical systems theory, we introduce and analyze a suite of simple equations modeling a population which consumes resources for the purpose of running a technological civilization and the feedback those resources drive on the state of the host planet. The feedbacks can drive the planet away from the initial state the civilization originated in and into domains that are detrimental to its sustainability. Our models conceptualize the problem primarily in terms of feedbacks from the resource use onto the coupled planetary systems. In addition, we also model the population growth advantages gained via the harvesting of these resources. We present three models of increasing complexity: (1) Civilization-planetary interaction with a single resource; (2) Civilization-planetary interaction with two resources each of which has a different level of planetary system feedback; (3) Civilization-planetary interaction with two resources and nonlinear planetary feedback (i.e., runaways). All three models show distinct classes of exo-civilization trajectories. We find smooth entries into long-term, "sustainable" steady states. We also find population booms followed by various levels of "die-off." Finally, we also observe rapid "collapse" trajectories for which the population approaches n = 0. Our results are part of a program for developing an "Astrobiology of the Anthropocene" in which questions of sustainability, centered on the coupled Earth-system, can be seen in their proper astronomical/planetary context. We conclude by discussing the implications of our results for both the coupled Earth system and for the consideration of exo-civilizations across cosmic history. Key Words: Anthropocene-Astrobiology-Civilization-Dynamical system theory-Exoplanets-Population dynamics. Astrobiology 18, 503-518.

  4. Dynamical Networks Characterization of Space Weather Events

    NASA Astrophysics Data System (ADS)

    Orr, L.; Chapman, S. C.; Dods, J.; Gjerloev, J. W.

    2017-12-01

    Space weather can cause disturbances to satellite systems, impacting navigation technology and telecommunications; it can cause power loss and aviation disruption. A central aspect of the earth's magnetospheric response to space weather events are large scale and rapid changes in ionospheric current patterns. Space weather is highly dynamic and there are still many controversies about how the current system evolves in time. The recent SuperMAG initiative, collates ground-based vector magnetic field time series from over 200 magnetometers with 1-minute temporal resolution. In principle this combined dataset is an ideal candidate for quantification using dynamical networks. Network properties and parameters allow us to characterize the time dynamics of the full spatiotemporal pattern of the ionospheric current system. However, applying network methodologies to physical data presents new challenges. We establish whether a given pair of magnetometers are connected in the network by calculating their canonical cross correlation. The magnetometers are connected if their cross correlation exceeds a threshold. In our physical time series this threshold needs to be both station specific, as it varies with (non-linear) individual station sensitivity and location, and able to vary with season, which affects ground conductivity. Additionally, the earth rotates and therefore the ground stations move significantly on the timescales of geomagnetic disturbances. The magnetometers are non-uniformly spatially distributed. We will present new methodology which addresses these problems and in particular achieves dynamic normalization of the physical time series in order to form the network. Correlated disturbances across the magnetometers capture transient currents. Once the dynamical network has been obtained [1][2] from the full magnetometer data set it can be used to directly identify detailed inferred transient ionospheric current patterns and track their dynamics. We will show our first results that use network properties such as cliques and clustering coefficients to map these highly dynamic changes in ionospheric current patterns.[l] Dods et al, J. Geophys. Res 120, doi:10.1002/2015JA02 (2015). [2] Dods et al, J. Geophys. Res. 122, doi:10.1002/2016JA02 (2017).

  5. DigitalCrust – a 4D data system of material properties for transforming research on crustal fluid flow

    USGS Publications Warehouse

    Fan, Yin; Richard, Steve; Bristol, R. Sky; Peters, Shanan; Ingebritsen, Steven E.; Moosdorf, Nils; Packman, Aaron I.; Gleeson, Tom; Zazlavsky, Ilya; Peckham, Scott; Murdoch, Larry; Cardiff, Michael; Tarboton, David; Jones, Norm; Hooper, Richard; Arrigo, Jennifer; Gochis, David; Olson, John

    2015-01-01

    Fluid circulation in the Earth's crust plays an essential role in surface, near surface, and deep crustal processes. Flow pathways are driven by hydraulic gradients but controlled by material permeability, which varies over many orders of magnitude and changes over time. Although millions of measurements of crustal properties have been made, including geophysical imaging and borehole tests, this vast amount of data and information has not been integrated into a comprehensive knowledge system. A community data infrastructure is needed to improve data access, enable large-scale synthetic analyses, and support representations of the subsurface in Earth system models. Here, we describe the motivation, vision, challenges, and an action plan for a community-governed, four-dimensional data system of the Earth's crustal structure, composition, and material properties from the surface down to the brittle–ductile transition. Such a system must not only be sufficiently flexible to support inquiries in many different domains of Earth science, but it must also be focused on characterizing the physical crustal properties of permeability and porosity, which have not yet been synthesized at a large scale. The DigitalCrust is envisioned as an interactive virtual exploration laboratory where models can be calibrated with empirical data and alternative hypotheses can be tested at a range of spatial scales. It must also support a community process for compiling and harmonizing models into regional syntheses of crustal properties. Sustained peer review from multiple disciplines will allow constant refinement in the ability of the system to inform science questions and societal challenges and to function as a dynamic library of our knowledge of Earth's crust.

  6. Montane ecosystem productivity responds more to global circulation patterns than climatic trends.

    PubMed

    Desai, A R; Wohlfahrt, G; Zeeman, M J; Katata, G; Eugster, W; Montagnani, L; Gianelle, D; Mauder, M; Schmid, H-P

    2016-02-01

    Regional ecosystem productivity is highly sensitive to inter-annual climate variability, both within and outside the primary carbon uptake period. However, Earth system models lack sufficient spatial scales and ecosystem processes to resolve how these processes may change in a warming climate. Here, we show, how for the European Alps, mid-latitude Atlantic ocean winter circulation anomalies drive high-altitude summer forest and grassland productivity, through feedbacks among orographic wind circulation patterns, snowfall, winter and spring temperatures, and vegetation activity. Therefore, to understand future global climate change influence to regional ecosystem productivity, Earth systems models need to focus on improvements towards topographic downscaling of changes in regional atmospheric circulation patterns and to lagged responses in vegetation dynamics to non-growing season climate anomalies.

  7. Montane ecosystem productivity responds more to global circulation patterns than climatic trends

    NASA Astrophysics Data System (ADS)

    Desai, A. R.; Wohlfahrt, G.; Zeeman, M. J.; Katata, G.; Eugster, W.; Montagnani, L.; Gianelle, D.; Mauder, M.; Schmid, H.-P.

    2016-02-01

    Regional ecosystem productivity is highly sensitive to inter-annual climate variability, both within and outside the primary carbon uptake period. However, Earth system models lack sufficient spatial scales and ecosystem processes to resolve how these processes may change in a warming climate. Here, we show, how for the European Alps, mid-latitude Atlantic ocean winter circulation anomalies drive high-altitude summer forest and grassland productivity, through feedbacks among orographic wind circulation patterns, snowfall, winter and spring temperatures, and vegetation activity. Therefore, to understand future global climate change influence to regional ecosystem productivity, Earth systems models need to focus on improvements towards topographic downscaling of changes in regional atmospheric circulation patterns and to lagged responses in vegetation dynamics to non-growing season climate anomalies.

  8. Near Earth Asteroid Scout Solar Sail Engineering Development Unit Test Suite

    NASA Technical Reports Server (NTRS)

    Lockett, Tiffany Russell; Few, Alexander; Wilson, Richard

    2017-01-01

    The Near Earth Asteroid (NEA) Scout project is a 6U reconnaissance mission to investigate a near Earth asteroid utilizing an 86m(sub 2) solar sail as the primary propulsion system. This will be the largest solar sail NASA has launched to date. NEA Scout is currently manifested on the maiden voyage of the Space Launch System in 2018. In development of the solar sail subsystem, design challenges were identified and investigated for packaging within a 6U form factor and deployment in cis-lunar space. Analysis was able to capture understanding of thermal, stress, and dynamics of the stowed system as well as mature an integrated sail membrane model for deployed flight dynamics. Full scale system testing on the ground is the optimal way to demonstrate system robustness, repeatability, and overall performance on a compressed flight schedule. To physically test the system, the team developed a flight sized engineering development unit with design features as close to flight as possible. The test suite included ascent vent, random vibration, functional deployments, thermal vacuum, and full sail deployments. All of these tests contributed towards development of the final flight unit. This paper will address several of the design challenges and lessons learned from the NEA Scout solar sail subsystem engineering development unit. Testing on the component level all the way to the integrated subsystem level. From optical properties of the sail material to fold and spooling the single sail, the team has developed a robust deployment system for the solar sail. The team completed several deployments of the sail system in preparation for flight at half scale (4m) and full scale (6.8m): boom only, half scale sail deployment, and full scale sail deployment. This paper will also address expected and received test results from ascent vent, random vibration, and deployment tests.

  9. Trajectory Design for the Transiting Exoplanet Survey Satellite

    NASA Technical Reports Server (NTRS)

    Dichmann, Donald J.; Parker, Joel J. K.; Williams, Trevor W.; Mendelsohn, Chad R.

    2014-01-01

    The Transiting Exoplanet Survey Satellite (TESS) is a National Aeronautics and Space Administration (NASA) mission, scheduled to be launched in 2017. TESS will travel in a highly eccentric orbit around Earth, with initial perigee radius near 17 Earth radii (Re) and apogee radius near 59 Re. The orbit period is near 2:1 resonance with the Moon, with apogee nearly 90 degrees out-of-phase with the Moon, in a configuration that has been shown to be operationally stable. TESS will execute phasing loops followed by a lunar flyby, with a final maneuver to achieve 2:1 resonance with the Moon. The goals of a resonant orbit with long-term stability, short eclipses and limited oscillations of perigee present significant challenges to the trajectory design. To rapidly assess launch opportunities, we adapted the Schematics Window Methodology (SWM76) launch window analysis tool to assess the TESS mission constraints. To understand the long-term dynamics of such a resonant orbit in the Earth-Moon system we employed Dynamical Systems Theory in the Circular Restricted 3-Body Problem (CR3BP). For precise trajectory analysis we use a high-fidelity model and multiple shooting in the General Mission Analysis Tool (GMAT) to optimize the maneuver delta-V and meet mission constraints. Finally we describe how the techniques we have developed can be applied to missions with similar requirements. Keywords: resonant orbit, stability, lunar flyby, phasing loops, trajectory optimization

  10. Geomagnetic acceleration and rapid hydromagnetic wave dynamics in advanced numerical simulations of the geodynamo

    NASA Astrophysics Data System (ADS)

    Aubert, Julien

    2018-04-01

    Geomagnetic secular acceleration, the second temporal derivative of Earth's magnetic field, is a unique window on the dynamics taking place in Earth's core. In this study, the behaviours of the secular acceleration and underlying core dynamics are examined in new numerical simulations of the geodynamo that are dynamically closer to Earth's core conditions than earlier models. These new models reside on a theoretical path in parameter space connecting the region where most classical models are found to the natural conditions. The typical time scale for geomagnetic acceleration is found to be invariant along this path, at a value close to 10 years that matches Earth's core estimates. Despite this invariance, the spatio-temporal properties of secular acceleration show significant variability along the path, with an asymptotic regime of rapid rotation reached after 30% of this path (corresponding to a model Ekman number E = 3 - 7). In this regime, the energy of secular acceleration is entirely found at periods longer than that of planetary rotation, and the underlying flow acceleration patterns acquire a two-dimensional columnar structure representative of the rapid rotation limit. The spatial pattern of the secular acceleration at the core-mantle boundary shows significant localisation of energy within an equatorial belt. Rapid hydromagnetic wave dynamics is absent at the start of the path because of insufficient time scale separation with convective processes, weak forcing and excessive damping but can be clearly exhibited in the asymptotic regime. This study reports on ubiquitous axisymmetric geostrophic torsional waves of weak amplitude relatively to convective transport, and also stronger, laterally limited, quasi-geostrophic Alfvén waves propagating in the cylindrical radial direction from the tip of convective plumes towards the core-mantle boundary. In a system similar to Earth's core where the typical Alfvén velocity is significantly larger than the typical convective velocity, quasi-geostrophic Alfvén waves are shown to be an important carrier of flow acceleration to the core surface that links with the generation of strong, short-lived and intermittent equatorial pulses in the secular acceleration energy. The secular acceleration time scale is shown to be insensitive to magnetic signatures from torsional waves because of their weak amplitude, and from quasi-geostrophic Alfvén waves because of their intermittent character, and is therefore only indicative of convective transport phenomena that remain invariant along the parameter space path.

  11. Managing Sustainable Data Infrastructures: The Gestalt of EOSDIS

    NASA Astrophysics Data System (ADS)

    Behnke, J.; Lindsay, F. E.; Lowe, D. R.; Mitchell, A. E.; Lynnes, C.

    2016-12-01

    NASA's Earth Observing System Data and Information System (EOSDIS) has been a central component of the NASA Earth observation program since the 1990's. The data collected by NASA's remote sensing instruments represent a significant public investment in research. EOSDIS provides free and open access to this data to a worldwide public research community. From the very beginning, EOSDIS was conceived as a system built on partnerships between NASA Centers, US agencies and academia. EOSDIS manages a wide range of Earth science discipline data that include cryosphere, land cover change, polar processes, field campaigns, ocean surface, digital elevation, atmosphere dynamics and composition, and inter-disciplinary research, among many others. Over the years, EOSDIS has evolved to support increasingly complex and diverse NASA Earth Science data collections. EOSDIS epitomizes a System of Systems, whose many varied and distributed parts are integrated into a single, highly functional organized science data system. A distributed architecture was adopted to ensure discipline-specific support for the science data, while also leveraging standards and establishing policies and tools to enable interdisciplinary research, and analysis across multiple scientific instruments. The EOSDIS is composed of system elements such as geographically distributed archive centers used to manage the stewardship of data. The infrastructure consists of underlying capabilities/connections that enable the primary system elements to function together. For example, one key infrastructure component is the common metadata repository, which enables discovery of all data within the EOSDIS system. . EOSDIS employs processes and standards to ensure partners can work together effectively, and provide coherent services to users. While the separation into domain-specific science archives helps to manage the wide variety of missions and datasets, the common services and practices serve to knit the overall system together into a coherent whole, with sharing of data, metadata, information and software making EOSDIS more than the simple sum of its parts. This paper will describe those parts and how the whole system works together to deliver Earth science data to millions of users.

  12. A global assessment of gross and net land change dynamics for current conditions and future scenarios

    NASA Astrophysics Data System (ADS)

    Fuchs, Richard; Prestele, Reinhard; Verburg, Peter H.

    2018-05-01

    The consideration of gross land changes, meaning all area gains and losses within a pixel or administrative unit (e.g. country), plays an essential role in the estimation of total land changes. Gross land changes affect the magnitude of total land changes, which feeds back to the attribution of biogeochemical and biophysical processes related to climate change in Earth system models. Global empirical studies on gross land changes are currently lacking. Whilst the relevance of gross changes for global change has been indicated in the literature, it is not accounted for in future land change scenarios. In this study, we extract gross and net land change dynamics from large-scale and high-resolution (30-100 m) remote sensing products to create a new global gross and net change dataset. Subsequently, we developed an approach to integrate our empirically derived gross and net changes with the results of future simulation models by accounting for the gross and net change addressed by the land use model and the gross and net change that is below the resolution of modelling. Based on our empirical data, we found that gross land change within 0.5° grid cells was substantially larger than net changes in all parts of the world. As 0.5° grid cells are a standard resolution of Earth system models, this leads to an underestimation of the amount of change. This finding contradicts earlier studies, which assumed gross land changes to appear in shifting cultivation areas only. Applied in a future scenario, the consideration of gross land changes led to approximately 50 % more land changes globally compared to a net land change representation. Gross land changes were most important in heterogeneous land systems with multiple land uses (e.g. shifting cultivation, smallholder farming, and agro-forestry systems). Moreover, the importance of gross changes decreased over time due to further polarization and intensification of land use. Our results serve as an empirical database for land change dynamics that can be applied in Earth system models and integrated assessment models.

  13. Towards coupled physical-biogeochemical models of the ocean carbon cycle

    NASA Technical Reports Server (NTRS)

    Rintoul, Stephen R.

    1992-01-01

    The purpose of this review is to discuss the critical gaps in our knowledge of ocean dynamics and biogeochemical cycles. It is assumed that the ultimate goal is the design of a model of the earth system that can predict the response to changes in the external forces driving climate.

  14. Role of buoyant flame dynamics in wildfire spread

    Treesearch

    Mark A. Finney; Jack D. Cohen; Jason M. Forthofer; Sara S. McAllister; Michael J. Gollner; Daniel J. Gorham; Kozo Saito; Nelson K. Akafuah; Brittany A. Adam; Justin D. English

    2015-01-01

    Large wildfires of increasing frequency and severity threaten local populations and natural resources and contribute carbon emissions into the earth-climate system. Although wildfires have been researched and modeled for decades, no verifiable physical theory of spread is available to form the basis for the precise predictions needed to manage fires more effectively...

  15. An integrated view of complex landscapes: a big data-model integration approach to trans-disciplinary science

    USDA-ARS?s Scientific Manuscript database

    The Earth is a complex system comprised of many interacting spatial and temporal scales. Understanding, predicting, and managing for these dynamics requires a trans-disciplinary integrated approach. Although there have been calls for this integration, a general approach is needed. We developed a Tra...

  16. Derivation and definition of a linear aircraft model

    NASA Technical Reports Server (NTRS)

    Duke, Eugene L.; Antoniewicz, Robert F.; Krambeer, Keith D.

    1988-01-01

    A linear aircraft model for a rigid aircraft of constant mass flying over a flat, nonrotating earth is derived and defined. The derivation makes no assumptions of reference trajectory or vehicle symmetry. The linear system equations are derived and evaluated along a general trajectory and include both aircraft dynamics and observation variables.

  17. Earth System Modeling 2.0: A Blueprint for Models That Learn From Observations and Targeted High-Resolution Simulations

    NASA Astrophysics Data System (ADS)

    Schneider, Tapio; Lan, Shiwei; Stuart, Andrew; Teixeira, João.

    2017-12-01

    Climate projections continue to be marred by large uncertainties, which originate in processes that need to be parameterized, such as clouds, convection, and ecosystems. But rapid progress is now within reach. New computational tools and methods from data assimilation and machine learning make it possible to integrate global observations and local high-resolution simulations in an Earth system model (ESM) that systematically learns from both and quantifies uncertainties. Here we propose a blueprint for such an ESM. We outline how parameterization schemes can learn from global observations and targeted high-resolution simulations, for example, of clouds and convection, through matching low-order statistics between ESMs, observations, and high-resolution simulations. We illustrate learning algorithms for ESMs with a simple dynamical system that shares characteristics of the climate system; and we discuss the opportunities the proposed framework presents and the challenges that remain to realize it.

  18. Tidal Friction in the Earth-Moon System and Laplace Planes: Darwin Redux

    NASA Technical Reports Server (NTRS)

    Rubincam, David P.

    2015-01-01

    The dynamical evolution of the Earth-Moon system due to tidal friction is treated here. George H. Darwin used Laplace planes (also called proper planes) in his study of tidal evolution. The Laplace plane approach is adapted here to the formalisms of W.M. Kaula and P. Goldreich. Like Darwin, the approach assumes a three-body problem: Earth, Moon, and Sun, where the Moon and Sun are point-masses. The tidal potential is written in terms of the Laplace plane angles. The resulting secular equations of motion can be easily integrated numerically assuming the Moon is in a circular orbit about the Earth and the Earth is in a circular orbit about the Sun. For Earth-Moon distances greater than 10 Earth radii, the Earth's approximate tidal response can be characterized with a single parameter, which is a ratio: a Love number times the sine of a lag angle divided by another such product. For low parameter values it can be shown that Darwin's low-viscosity molten Earth, M. Ross's and G. Schubert's model of an Earth near melting, and Goldreich's equal tidal lag angles must all give similar histories. For higher parameter values, as perhaps has been the case at times with the ocean tides, the Earth's obliquity may have decreased slightly instead of increased once the Moon's orbit evolved further than 50 Earth radii from the Earth, with possible implications for climate. This is contrast to the other tidal friction models mentioned, which have the obliquity always increasing with time. As for the Moon, its orbit is presently tilted to its Laplace plane by 5.2deg. The equations do not allow the Moon to evolve out of its Laplace plane by tidal friction alone, so that if it was originally in its Laplace plane, the tilt arose with the addition of other mechanisms, such as resonance passages.

  19. Origins and Dynamics of Interplanetary Dust Particles

    NASA Technical Reports Server (NTRS)

    Dermott, Stanley F.

    2005-01-01

    This is a final report for research supported by the National Aeronautics and Space Administration issued through the Office of Space Science Planetary Geology and Geophysics Program, covering all relevant activities during its 3-year period of funding from 02/01/2002 through to 01/31/2005. The ongoing aim of the research supported through this grant, and now through a successor award, is to investigate the origin of interplanetary dust particles (IDPs) and their dynamical and collisional evolution, in order to: (1) understand the provenance of zodiacal cloud particles and their transport from their source regions to the inner solar system; (2) produce detailed models of the zodiacal cloud and its constituent components; (3) determine the origin of the dust particles accreted by the Earth; (4) ascertain the level of temporal variations in the dust environment of the inner solar system and the accretion rate of IDPs by the Earth, and evaluate potential effects on global climate; and to (5) exploit this research as a basis for interpreting the structure observed in exozodiacal clouds that may result from the collisional evolution of planetesimals and the presence of unseen planets.

  20. Technical report series on global modeling and data assimilation. Volume 4: Documentation of the Goddard Earth Observing System (GEOS) data assimilation system, version 1

    NASA Technical Reports Server (NTRS)

    Suarez, Max J. (Editor); Pfaendtner, James; Bloom, Stephen; Lamich, David; Seablom, Michael; Sienkiewicz, Meta; Stobie, James; Dasilva, Arlindo

    1995-01-01

    This report describes the analysis component of the Goddard Earth Observing System, Data Assimilation System, Version 1 (GEOS-1 DAS). The general features of the data assimilation system are outlined, followed by a thorough description of the statistical interpolation algorithm, including specification of error covariances and quality control of observations. We conclude with a discussion of the current status of development of the GEOS data assimilation system. The main components of GEOS-1 DAS are an atmospheric general circulation model and an Optimal Interpolation algorithm. The system is cycled using the Incremental Analysis Update (IAU) technique in which analysis increments are introduced as time independent forcing terms in a forecast model integration. The system is capable of producing dynamically balanced states without the explicit use of initialization, as well as a time-continuous representation of non- observables such as precipitation and radiational fluxes. This version of the data assimilation system was used in the five-year reanalysis project completed in April 1994 by Goddard's Data Assimilation Office (DAO) Data from this reanalysis are available from the Goddard Distributed Active Center (DAAC), which is part of NASA's Earth Observing System Data and Information System (EOSDIS). For information on how to obtain these data sets, contact the Goddard DAAC at (301) 286-3209, EMAIL daac@gsfc.nasa.gov.

Top