NASA Astrophysics Data System (ADS)
Aiken, Chastity; Meng, Xiaofeng; Hardebeck, Jeanne
2018-03-01
The Geysers geothermal field is well known for being susceptible to dynamic triggering of earthquakes by large distant earthquakes, owing to the introduction of fluids for energy production. Yet, it is unknown if dynamic triggering of earthquakes is 'predictable' or whether dynamic triggering could lead to a potential hazard for energy production. In this paper, our goal is to investigate the characteristics of triggering and the physical conditions that promote triggering to determine whether or not triggering is in anyway foreseeable. We find that, at present, triggering in The Geysers is not easily 'predictable' in terms of when and where based on observable physical conditions. However, triggered earthquake magnitude positively correlates with peak imparted dynamic stress, and larger dynamic stresses tend to trigger sequences similar to mainshock-aftershock sequences. Thus, we may be able to 'predict' what size earthquakes to expect at The Geysers following a large distant earthquake.
Testing for the ‘predictability’ of dynamically triggered earthquakes in Geysers Geothermal Field
Aiken, Chastity; Meng, Xiaofeng; Hardebeck, Jeanne L.
2018-01-01
The Geysers geothermal field is well known for being susceptible to dynamic triggering of earthquakes by large distant earthquakes, owing to the introduction of fluids for energy production. Yet, it is unknown if dynamic triggering of earthquakes is ‘predictable’ or whether dynamic triggering could lead to a potential hazard for energy production. In this paper, our goal is to investigate the characteristics of triggering and the physical conditions that promote triggering to determine whether or not triggering is in anyway foreseeable. We find that, at present, triggering in The Geysers is not easily ‘predictable’ in terms of when and where based on observable physical conditions. However, triggered earthquake magnitude positively correlates with peak imparted dynamic stress, and larger dynamic stresses tend to trigger sequences similar to mainshock–aftershock sequences. Thus, we may be able to ‘predict’ what size earthquakes to expect at The Geysers following a large distant earthquake.
Permanently enhanced dynamic triggering probabilities as evidenced by two M ≥ 7.5 earthquakes
Gomberg, Joan S.
2013-01-01
The 2012 M7.7 Haida Gwaii earthquake radiated waves that likely dynamically triggered the 2013M7.5 Craig earthquake, setting two precedents. First, the triggered earthquake is the largest dynamically triggered shear failure event documented to date. Second, the events highlight a connection between geologic structure, sedimentary troughs that act as waveguides, and triggering probability. The Haida Gwaii earthquake excited extraordinarily large waves within and beyond the Queen Charlotte Trough, which propagated well into mainland Alaska and likely triggering the Craig earthquake along the way. Previously, focusing and associated dynamic triggering have been attributed to unpredictable source effects. This case suggests that elevated dynamic triggering probabilities may exist along the many structures where sedimentary troughs overlie major faults, such as subduction zones’ accretionary prisms and transform faults’ axial valleys. Although data are sparse, I find no evidence of accelerating seismic activity in the vicinity of the Craig rupture between it and the Haida Gwaii earthquake.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Paul A.
Nonlinear dynamics induced by seismic sources and seismic waves are common in Earth. Observations range from seismic strong ground motion (the most damaging aspect of earthquakes), intense near-source effects, and distant nonlinear effects from the source that have important consequences. The distant effects include dynamic earthquake triggering-one of the most fascinating topics in seismology today-which may be elastically nonlinearly driven. Dynamic earthquake triggering is the phenomenon whereby seismic waves generated from one earthquake trigger slip events on a nearby or distant fault. Dynamic triggering may take place at distances thousands of kilometers from the triggering earthquake, and includes triggering ofmore » the entire spectrum of slip behaviors currently identified. These include triggered earthquakes and triggered slow, silent-slip during which little seismic energy is radiated. It appears that the elasticity of the fault gouge-the granular material located between the fault blocks-is key to the triggering phenomenon.« less
Where do we stand after twenty years of dynamic triggering studies? (Invited)
NASA Astrophysics Data System (ADS)
Prejean, S. G.; Hill, D. P.
2013-12-01
In the past two decades, remote dynamic triggering of earthquakes by other earthquakes has been explored in a variety of physical environments with a wide array of observation and modeling techniques. These studies have significantly refined our understanding of the state of the crust and the physical conditions controlling earthquake nucleation. Despite an ever growing database of dynamic triggering observations, significant uncertainties remain and vigorous debate in almost all aspects of the science continues. For example, although dynamic earthquake triggering can occur with peak dynamic stresses as small as 1 kPa, triggering thresholds and their dependence on local stress state, hydrological environment, and frictional properties of faults are not well understood. Some studies find a simple threshold based on the peak amplitude of shaking while others find dependencies on frequency, recharge time, and other parameters. Considerable debate remains over the range of physical processes responsible for dynamic triggering, and the wide variation in dynamic triggering responses and time scales suggests triggering by multiple physical processes. Although Coulomb shear failure with various friction laws can often explain dynamic triggering, particularly instantaneous triggering, delayed dynamic triggering may be dependent on fluid transport and other slowly evolving aseismic processes. Although our understanding of the global distribution of dynamic triggering has improved, it is far from complete due to spatially uneven monitoring. A major challenge involves establishing statistical significance of potentially triggered earthquakes, particularly if they are isolated events or time-delayed with respect to triggering stresses. Here we highlight these challenges and opportunities with existing data. We focus on environmental dependence of dynamic triggering by large remote earthquakes particularly in volcanic and geothermal systems, as these systems often have high rates of background seismicity. In many volcanic and geothermal systems, such as the Geysers in Northern California, dynamic triggering of micro-earthquakes is frequent and predictable. In contrast, most active and even erupting volcanoes in Alaska (with the exception of the Katmai Volcanic Cluster) do not experience dynamic triggering. We explore why.
Dynamic Triggering of Seismic Events and Their Relation to Slow Slip in Interior Alaska
NASA Astrophysics Data System (ADS)
Sims, N. E.; Holtkamp, S. G.
2017-12-01
We conduct a search for dynamically triggered events in the Minto Flats Fault Zone (MFFZ), a left-lateral strike-slip zone expressed as multiple, partially overlapping faults, in central Alaska. We focus on the MFFZ because we have observed slow slip processes (earthquake swarms and Very Low Frequency Earthquakes) and interaction between earthquake swarms and larger main-shock (MS) events in this area before. We utilize the Alaska Earthquake Center catalog to identify potential earthquake swarms and dynamically triggered foreshock and mainshock events along the fault zone. We find 30 swarms occurring in the last two decades, five of which we classify as foreshock (FS) swarms due to their close proximity in both time and space to MS events. Many of the earthquake swarms cluster around 15-20 km depth, which is near the seismic-aseismic transition along this fault zone. Additionally, we observe instances of large teleseismic events such as the M8.6 2012 Sumatra earthquake and M7.4 2012 Guatemala earthquake triggering seismic events within the MFFZ, with the Sumatra earthquake triggering a mainshock event that was preceded by an ongoing earthquake swarm and the Guatemala event triggering earthquake swarms that subsequently transition into a larger mainshock event. In both cases an earthquake swarm transitioned into a mainshock-aftershock event and activity continued for several days after the teleseismic waves had passed, lending some evidence to delayed dynamic triggering of seismic events. We hypothesize that large dynamic transient strain associated with the passage of teleseismic surface waves is triggering slow slip processes near the base of the seismogenic zone. These triggered aseismic transient events result in earthquake swarms, which sometimes lead to the nucleation of larger earthquakes. We utilize network matched filtering to build more robust catalogs of swarm earthquake families in this region to search for additional swarm-like or triggered activity in response to teleseismic surface waves, and to test dynamic triggering hypotheses.
Earthquake triggering in southeast Africa following the 2012 Indian Ocean earthquake
NASA Astrophysics Data System (ADS)
Neves, Miguel; Custódio, Susana; Peng, Zhigang; Ayorinde, Adebayo
2018-02-01
In this paper we present evidence of earthquake dynamic triggering in southeast Africa. We analysed seismic waveforms recorded at 53 broad-band and short-period stations in order to identify possible increases in the rate of microearthquakes and tremor due to the passage of teleseismic waves generated by the Mw8.6 2012 Indian Ocean earthquake. We found evidence of triggered local earthquakes and no evidence of triggered tremor in the region. We assessed the statistical significance of the increase in the number of local earthquakes using β-statistics. Statistically significant dynamic triggering of local earthquakes was observed at 7 out of the 53 analysed stations. Two of these stations are located in the northeast coast of Madagascar and the other five stations are located in the Kaapvaal Craton, southern Africa. We found no evidence of dynamically triggered seismic activity in stations located near the structures of the East African Rift System. Hydrothermal activity exists close to the stations that recorded dynamic triggering, however, it also exists near the East African Rift System structures where no triggering was observed. Our results suggest that factors other than solely tectonic regime and geothermalism are needed to explain the mechanisms that underlie earthquake triggering.
Earthquake triggering by seismic waves following the landers and hector mine earthquakes
Gomberg, J.; Reasenberg, P.A.; Bodin, P.; Harris, R.A.
2001-01-01
The proximity and similarity of the 1992, magnitude 7.3 Landers and 1999, magnitude 7.1 Hector Mine earthquakes in California permit testing of earthquake triggering hypotheses not previously possible. The Hector Mine earthquake confirmed inferences that transient, oscillatory 'dynamic' deformations radiated as seismic waves can trigger seismicity rate increases, as proposed for the Landers earthquake1-6. Here we quantify the spatial and temporal patterns of the seismicity rate changes7. The seismicity rate increase was to the north for the Landers earthquake and primarily to the south for the Hector Mine earthquake. We suggest that rupture directivity results in elevated dynamic deformations north and south of the Landers and Hector Mine faults, respectively, as evident in the asymmetry of the recorded seismic velocity fields. Both dynamic and static stress changes seem important for triggering in the near field with dynamic stress changes dominating at greater distances. Peak seismic velocities recorded for each earthquake suggest the existence of, and place bounds on, dynamic triggering thresholds. These thresholds vary from a few tenths to a few MPa in most places, depend on local conditions, and exceed inferred static thresholds by more than an order of magnitude. At some sites, the onset of triggering was delayed until after the dynamic deformations subsided. Physical mechanisms consistent with all these observations may be similar to those that give rise to liquefaction or cyclic fatigue.
A hypothesis for delayed dynamic earthquake triggering
Parsons, T.
2005-01-01
It's uncertain whether more near-field earthquakes are triggered by static or dynamic stress changes. This ratio matters because static earthquake interactions are increasingly incorporated into probabilistic forecasts. Recent studies were unable to demonstrate all predictions from the static-stress-change hypothesis, particularly seismicity rate reductions. However, current dynamic stress change hypotheses do not explain delayed earthquake triggering and Omori's law. Here I show numerically that if seismic waves can alter some frictional contacts in neighboring fault zones, then dynamic triggering might cause delayed triggering and an Omori-law response. The hypothesis depends on faults following a rate/state friction law, and on seismic waves changing the mean critical slip distance (Dc) at nucleation zones.
NASA Astrophysics Data System (ADS)
Velasco, A. A.; Cerda, I.; Linville, L.; Kilb, D. L.; Pankow, K. L.
2013-05-01
Changes in field stress required to trigger earthquakes have been classified in two basic ways: static and dynamic triggering. Static triggering occurs when an earthquake that releases accumulated strain along a fault stress loads a nearby fault. Dynamic triggering occurs when an earthquake is induced by the passing of seismic waves from a large mainshock located at least two or more fault lengths from the epicenter of the main shock. We investigate details of dynamic triggering using data collected from EarthScope's USArray and regional seismic networks located in the United States. Triggered events are identified using an optimized automated detector based on the ratio of short term to long term average (Antelope software). Following the automated processing, the flagged waveforms are individually analyzed, in both the time and frequency domains, to determine if the increased detection rates correspond to local earthquakes (i.e., potentially remotely triggered aftershocks). Here, we show results using this automated schema applied to data from four large, but characteristically different, earthquakes -- Chile (Mw 8.8 2010), Tokoku-Oki (Mw 9.0 2011), Baja California (Mw 7.2 2010) and Wells Nevada (Mw 6.0 2008). For each of our four mainshocks, the number of detections within the 10 hour time windows span a large range (1 to over 200) and statistically >20% of the waveforms show evidence of anomalous signals following the mainshock. The results will help provide for a better understanding of the physical mechanisms involved in dynamic earthquake triggering and will help identify zones in the continental U.S. that may be more susceptible to dynamic earthquake triggering.
Earthquake nucleation by transient deformations caused by the M = 7.9 Denali, Alaska, earthquake
Gomberg, J.; Bodin, P.; Larson, K.; Dragert, H.
2004-01-01
The permanent and dynamic (transient) stress changes inferred to trigger earthquakes are usually orders of magnitude smaller than the stresses relaxed by the earthquakes themselves, implying that triggering occurs on critically stressed faults. Triggered seismicity rate increases may therefore be most likely to occur in areas where loading rates are highest and elevated pore pressures, perhaps facilitated by high-temperature fluids, reduce frictional stresses and promote failure. Here we show that the 2002 magnitude M = 7.9 Denali, Alaska, earthquake triggered wide-spread seismicity rate increases throughout British Columbia and into the western United States. Dynamic triggering by seismic waves should be enhanced in directions where rupture directivity focuses radiated energy, and we verify this using seismic and new high-sample GPS recordings of the Denali mainshock. These observations are comparable in scale only to the triggering caused by the 1992 M = 7.4 Landers, California, earthquake, and demonstrate that Landers triggering did not reflect some peculiarity of the region or the earthquake. However, the rate increases triggered by the Denali earthquake occurred in areas not obviously tectonically active, implying that even in areas of low ambient stressing rates, faults may still be critically stressed and that dynamic triggering may be ubiquitous and unpredictable.
Triggered creep as a possible mechanism for delayed dynamic triggering of tremor and earthquakes
Shelly, David R.; Peng, Zhigang; Hill, David P.; Aiken, Chastity
2011-01-01
The passage of radiating seismic waves generates transient stresses in the Earth's crust that can trigger slip on faults far away from the original earthquake source. The triggered fault slip is detectable in the form of earthquakes and seismic tremor. However, the significance of these triggered events remains controversial, in part because they often occur with some delay, long after the triggering stress has passed. Here we scrutinize the location and timing of tremor on the San Andreas fault between 2001 and 2010 in relation to distant earthquakes. We observe tremor on the San Andreas fault that is initiated by passing seismic waves, yet migrates along the fault at a much slower velocity than the radiating seismic waves. We suggest that the migrating tremor records triggered slow slip of the San Andreas fault as a propagating creep event. We find that the triggered tremor and fault creep can be initiated by distant earthquakes as small as magnitude 5.4 and can persist for several days after the seismic waves have passed. Our observations of prolonged tremor activity provide a clear example of the delayed dynamic triggering of seismic events. Fault creep has been shown to trigger earthquakes, and we therefore suggest that the dynamic triggering of prolonged fault creep could provide a mechanism for the delayed triggering of earthquakes. ?? 2011 Macmillan Publishers Limited. All rights reserved.
Unraveling earthquake stresses: Insights from dynamically triggered and induced earthquakes
NASA Astrophysics Data System (ADS)
Velasco, A. A.; Alfaro-Diaz, R. A.
2017-12-01
Induced seismicity, earthquakes caused by anthropogenic activity, has more than doubled in the last several years resulting from practices related to oil and gas production. Furthermore, large earthquakes have been shown to promote the triggering of other events within two fault lengths (static triggering), due to static stresses caused by physical movement along the fault, and also remotely from the passage of seismic waves (dynamic triggering). Thus, in order to understand the mechanisms for earthquake failure, we investigate regions where natural, induced, and dynamically triggered events occur, and specifically target Oklahoma. We first analyze data from EarthScope's USArray Transportable Array (TA) and local seismic networks implementing an optimized (STA/LTA) detector in order to develop local detection and earthquake catalogs. After we identify triggered events through statistical analysis, and perform a stress analysis to gain insight on the stress-states leading to triggered earthquake failure. We use our observations to determine the role of different transient stresses in contributing to natural and induced seismicity by comparing these stresses to regional stress orientation. We also delineate critically stressed regions of triggered seismicity that may indicate areas susceptible to earthquake hazards associated with sustained fluid injection in provinces of induced seismicity. Anthropogenic injection and extraction activity can alter the stress state and fluid flow within production basins. By analyzing the stress release of these ancient faults caused by dynamic stresses, we may be able to determine if fluids are solely responsible for increased seismic activity in induced regions.
Triggering of the Ms = 5.4 Little Skull Mountain, Nevada, earthquake with dynamic strains
Gomberg, Joan; Bodin, Paul
1994-01-01
We have developed an approach to test the viability of dynamic strains as a triggering mechanism by quantifying the dynamic strain tensor at seismogenic depths. We focus on the dynamic strains at the hypocenter of the Ms = 5.4 Little Skull Mountain (LSM), Nevada, earthquake. This event is noteworthy because it is the largest earthquake demonstrably triggered at remote distances (∼280 km) by the Ms = 7.4 Landers, California, earthquake and because of its ambiguous association with magmatic activity. Our analysis shows that, if dynamic strains initiate remote triggering, the orientation and modes of faulting most favorable for being triggered by a given strain transient change with depth. The geometry of the most probable LSM fault plane was favorably oriented with respect to the geometry of the dynamic strain tensor. We estimate that the magnitude of the peak dynamic strains at the hypocentral depth of the LSM earthquake were ∼4 μstrain (∼.2 MPa) which are ∼50% smaller than those estimated from velocity seismograms recorded at the surface. We suggest that these strains are too small to cause Mohr-Coulomb style failure unless the fault was prestrained to near failure levels, the fault was exceptionally weak, and/or the dynamic strains trigger other processes that lead to failure.
Observing earthquakes triggered in the near field by dynamic deformations
Gomberg, J.; Bodin, P.; Reasenberg, P.A.
2003-01-01
We examine the hypothesis that dynamic deformations associated with seismic waves trigger earthquakes in many tectonic environments. Our analysis focuses on seismicity at close range (within the aftershock zone), complementing published studies of long-range triggering. Our results suggest that dynamic triggering is not confined to remote distances or to geothermal and volcanic regions. Long unilaterally propagating ruptures may focus radiated dynamic deformations in the propagation direction. Therefore, we expect seismicity triggered dynamically by a directive rupture to occur asymmetrically, with a majority of triggered earthquakes in the direction of rupture propagation. Bilaterally propagating ruptures also may be directive, and we propose simple criteria for assessing their directivity. We compare the inferred rupture direction and observed seismicity rate change following 15 earthquakes (M 5.7 to M 8.1) that occured in California and Idaho in the United States, the Gulf of Aqaba, Syria, Guatemala, China, New Guinea, Turkey, Japan, Mexico, and Antarctica. Nine of these mainshocks had clearly directive, unilateral ruptures. Of these nine, seven apparently induced an asymmetric increase in seismicity rate that correlates with the rupture direction. The two exceptions include an earthquake preceded by a comparable-magnitude event on a conjugate fault and another for which data limitations prohibited conclusive results. Similar (but weaker) correlations were found for the bilaterally rupturing earthquakes we studied. Although the static stress change also may trigger seismicity, it and the seismicity it triggers are expected to be similarly asymmetric only if the final slip is skewed toward the rupture terminus. For several of the directive earthquakes, we suggest that the seismicity rate change correlates better with the dynamic stress field than the static stress change.
Hill, David P.; Prejean, Stephanie; Schubert, Gerald
2015-01-01
Dynamic stresses propagating as seismic waves from large earthquakes trigger a spectrum of responses at global distances. In addition to locally triggered earthquakes in a variety of tectonic environments, dynamic stresses trigger tectonic (nonvolcanic) tremor in the brittle–plastic transition zone along major plate-boundary faults, activity changes in hydrothermal and volcanic systems, and, in hydrologic domains, changes in spring discharge, water well levels, soil liquefaction, and the eruption of mud volcanoes. Surface waves with periods of 15–200 s are the most effective triggering agents; body-wave trigger is less frequent. Triggering dynamic stresses can be < 1 kPa.
On near-source earthquake triggering
Parsons, T.; Velasco, A.A.
2009-01-01
When one earthquake triggers others nearby, what connects them? Two processes are observed: static stress change from fault offset and dynamic stress changes from passing seismic waves. In the near-source region (r ??? 50 km for M ??? 5 sources) both processes may be operating, and since both mechanisms are expected to raise earthquake rates, it is difficult to isolate them. We thus compare explosions with earthquakes because only earthquakes cause significant static stress changes. We find that large explosions at the Nevada Test Site do not trigger earthquakes at rates comparable to similar magnitude earthquakes. Surface waves are associated with regional and long-range dynamic triggering, but we note that surface waves with low enough frequency to penetrate to depths where most aftershocks of the 1992 M = 5.7 Little Skull Mountain main shock occurred (???12 km) would not have developed significant amplitude within a 50-km radius. We therefore focus on the best candidate phases to cause local dynamic triggering, direct waves that pass through observed near-source aftershock clusters. We examine these phases, which arrived at the nearest (200-270 km) broadband station before the surface wave train and could thus be isolated for study. Direct comparison of spectral amplitudes of presurface wave arrivals shows that M ??? 5 explosions and earthquakes deliver the same peak dynamic stresses into the near-source crust. We conclude that a static stress change model can readily explain observed aftershock patterns, whereas it is difficult to attribute near-source triggering to a dynamic process because of the dearth of aftershocks near large explosions.
Triggering of repeating earthquakes in central California
Wu, Chunquan; Gomberg, Joan; Ben-Naim, Eli; Johnson, Paul
2014-01-01
Dynamic stresses carried by transient seismic waves have been found capable of triggering earthquakes instantly in various tectonic settings. Delayed triggering may be even more common, but the mechanisms are not well understood. Catalogs of repeating earthquakes, earthquakes that recur repeatedly at the same location, provide ideal data sets to test the effects of transient dynamic perturbations on the timing of earthquake occurrence. Here we employ a catalog of 165 families containing ~2500 total repeating earthquakes to test whether dynamic perturbations from local, regional, and teleseismic earthquakes change recurrence intervals. The distance to the earthquake generating the perturbing waves is a proxy for the relative potential contributions of static and dynamic deformations, because static deformations decay more rapidly with distance. Clear changes followed the nearby 2004 Mw6 Parkfield earthquake, so we study only repeaters prior to its origin time. We apply a Monte Carlo approach to compare the observed number of shortened recurrence intervals following dynamic perturbations with the distribution of this number estimated for randomized perturbation times. We examine the comparison for a series of dynamic stress peak amplitude and distance thresholds. The results suggest a weak correlation between dynamic perturbations in excess of ~20 kPa and shortened recurrence intervals, for both nearby and remote perturbations.
Dynamic triggering of deep earthquakes within a fossil slab
NASA Astrophysics Data System (ADS)
Cai, Chen; Wiens, Douglas A.
2016-09-01
The 9 November 2009 Mw 7.3 Fiji deep earthquake is the largest event in a region west of the Tonga slab defined by scattered seismicity and velocity anomalies. The main shock rupture was compact, but the aftershocks were distributed along a linear feature at distances of up to 126 km. The aftershocks and some background seismicity define a sharp northern boundary to the zone of outboard earthquakes, extending westward toward the Vitiaz deep earthquake cluster. The northern earthquake lineament is geometrically similar to tectonic reconstructions of the relict Vitiaz subduction zone at 8-10 Ma, suggesting the earthquakes are occurring in the final portion of the slab subducted at the now inactive Vitiaz trench. A Coulomb stress change calculation suggests many of the aftershocks were dynamically triggered. We propose that fossil slabs contain material that is too warm for earthquake nucleation but may be near the critical stress susceptible to dynamic triggering.
NASA Astrophysics Data System (ADS)
Ohta, Y.; Ohzono, M.; Takahashi, H.; Kawamoto, S.; Hino, R.
2017-12-01
A large and destructive earthquake (Mjma 7.3) occurred on April 15, 2016 in Kumamoto region, southwestern Japan. This earthquake was accompanied approximately 32 s later by an M 6 earthquake in central Oita region, which hypocenter located 80 km northeast from the hypocenter of the mainshock of the Kumamoto earthquake. This triggered earthquake also had the many aftershocks in and around the Oita region. It is important to understand how to occur such chain-reacted earthquake sequences. We used the 1Hz dual-frequency phase and range data from GEONET in Kyushu island. The data were processed using GIPSY-OASIS (version 6.4). We adopoted kinematic PPP strategy for the coordinate estimation. The reference GPS satellite orbit and 5 s clock information were obtained using the CODE product. We also applied simple sidereal filter technique for the estimated time series. Based on the obtained 1Hz GNSS time series, we estimated the areal strain and principle strain field using the method of the Shen et al. (1996). For the assessment of the dynamic strain, firstly we calculated the averaged absolute value of areal strain field between 60-85s after the origin time of the mainshock of the Kumamoto earthquake which was used as the "reference" static strain field. Secondly, we estimated the absolute value of areal strain in each time step. Finally, we calculated the strain ratio in each time step relative to the "reference". Based on this procedure, we can extract the spatial and temporal characteristic of the dynamic strain in each time step. Extracted strain ratio clearly shows the spatial and temporal dynamic strain characteristic. When an attention is paid to a region of triggered Oita earthquake, the timing of maximum dynamic strain ratio in the epicenter just corresponds to the origin time of the triggered event. It strongly suggested that the large dynamic strain may trigger the Oita event. The epicenter of the triggered earthquake located within the geothermal region. In the geothermal region, the crustal materials are more sensitive to stress perturbations, and the earthquakes are more easily triggered compared with other typical regions. Our result also suggested that the real-time strain field monitoring may be useful information for the understanding of the possibility of the remotely triggered earthquake in the future.
Stress/strain changes and triggered seismicity at The Geysers, California
Gomberg, J.; Davis, S.
1996-01-01
The principal results of this study of remotely triggered seismicity in The Geysers geothermal field are the demonstration that triggering (initiation of earthquake failure) depends on a critical strain threshold and that the threshold level increases with decreasing frequency or equivalently, depends on strain rate. This threshold function derives from (1) analyses of dynamic strains associated with surface waves of the triggering earthquakes, (2) statistically measured aftershock zone dimensions, and (3) analytic functional representations of strains associated with power production and tides. The threshold is also consistent with triggering by static strain changes and implies that both static and dynamic strains may cause aftershocks. The observation that triggered seismicity probably occurs in addition to background activity also provides an important constraint on the triggering process. Assuming the physical processes underlying earthquake nucleation to be the same, Gomberg [this issue] discusses seismicity triggered by the MW 7.3 Landers earthquake, its constraints on the variability of triggering thresholds with site, and the implications of time delays between triggering and triggered earthquakes. Our results enable us to reject the hypothesis that dynamic strains simply nudge prestressed faults over a Coulomb failure threshold sooner than they would have otherwise. We interpret the rate-dependent triggering threshold as evidence of several competing processes with different time constants, the faster one(s) facilitating failure and the other(s) inhibiting it. Such competition is a common feature of theories of slip instability. All these results, not surprisingly, imply that to understand earthquake triggering one must consider not only simple failure criteria requiring exceedence of some constant threshold but also the requirements for generating instabilities.
Stress/strain changes and triggered seismicity at The Geysers, California
NASA Astrophysics Data System (ADS)
Gomberg, Joan; Davis, Scott
1996-01-01
The principal results of this study of remotely triggered seismicity in The Geysers geothermal field are the demonstration that triggering (initiation of earthquake failure) depends on a critical strain threshold and that the threshold level increases with decreasing frequency, or, equivalently, depends on strain rate. This threshold function derives from (1) analyses of dynamic strains associated with surface waves of the triggering earthquakes, (2) statistically measured aftershock zone dimensions, and (3) analytic functional representations of strains associated with power production and tides. The threshold is also consistent with triggering by static strain changes and implies that both static and dynamic strains may cause aftershocks. The observation that triggered seismicity probably occurs in addition to background activity also provides an important constraint on the triggering process. Assuming the physical processes underlying earthquake nucleation to be the same, Gomberg [this issue] discusses seismicity triggered by the MW 7.3 Landers earthquake, its constraints on the variability of triggering thresholds with site, and the implications of time delays between triggering and triggered earthquakes. Our results enable us to reject the hypothesis that dynamic strains simply nudge prestressed faults over a Coulomb failure threshold sooner than they would have otherwise. We interpret the rate-dependent triggering threshold as evidence of several competing processes with different time constants, the faster one(s) facilitating failure and the other(s) inhibiting it. Such competition is a common feature of theories of slip instability. All these results, not surprisingly, imply that to understand earthquake triggering one must consider not only simple failure criteria requiring exceedence of some constant threshold but also the requirements for generating instabilities.
Stress/strain changes and triggered seismicity following the MW7.3 Landers, California, earthquake
Gomberg, J.
1996-01-01
Calculations of dynamic stresses and strains, constrained by broadband seismograms, are used to investigate their role in generating the remotely triggered seismicity that followed the June 28, 1992, MW7.3 Landers, California earthquake. I compare straingrams and dynamic Coulomb failure functions calculated for the Landers earthquake at sites that did experience triggered seismicity with those at sites that did not. Bounds on triggering thresholds are obtained from analysis of dynamic strain spectra calculated for the Landers and MW,6.1 Joshua Tree, California, earthquakes at various sites, combined with results of static strain investigations by others. I interpret three principal results of this study with those of a companion study by Gomberg and Davis [this issue]. First, the dynamic elastic stress changes themselves cannot explain the spatial distribution of triggered seismicity, particularly the lack of triggered activity along the San Andreas fault system. In addition to the requirement to exceed a Coulomb failure stress level, this result implies the need to invoke and satisfy the requirements of appropriate slip instability theory. Second, results of this study are consistent with the existence of frequency- or rate-dependent stress/strain triggering thresholds, inferred from the companion study and interpreted in terms of earthquake initiation involving a competition of processes, one promoting failure and the other inhibiting it. Such competition is also part of relevant instability theories. Third, the triggering threshold must vary from site to site, suggesting that the potential for triggering strongly depends on site characteristics and response. The lack of triggering along the San Andreas fault system may be correlated with the advanced maturity of its fault gouge zone; the strains from the Landers earthquake were either insufficient to exceed its larger critical slip distance or some other critical failure parameter; or the faults failed stably as aseismic creep events. Variations in the triggering threshold at sites of triggered seismicity may be attributed to variations in gouge zone development and properties. Finally, these interpretations provide ready explanations for the time delays between the Landers earthquake and the triggered events.
On to what extent stresses resulting from the earth's surface trigger earthquakes
NASA Astrophysics Data System (ADS)
Klose, C. D.
2009-12-01
The debate on static versus dynamic earthquake triggering mainly concentrates on endogenous crustal forces, including fault-fault interactions or seismic wave transients of remote earthquakes. Incomprehensibly, earthquake triggering due to surface processes, however, still receives little scientific attention. This presentation continues a discussion on the hypothesis of how “tiny” stresses stemming from the earth's surface can trigger major earthquakes, such as for example, China's M7.9 Wenchuan earthquake of May 2008. This seismic event is thought to be triggered by up to 1.1 billion metric tons of water (~130m) that accumulated in the Minjiang River Valley at the eastern margin of the Longmen Shan. Specifically, the water level rose by ~80m (static), with additional seasonal water level changes of ~50m (dynamic). Two and a half years prior to mainshock, static and dynamic Coulomb failure stresses were induced on the nearby Beichuan thrust fault system at <17km depth. Triggering stresses were equivalent to levels of daily tides and perturbed a fault area measuring 416+/-96km^2. The mainshock ruptured after 2.5 years when only the static stressing regime was predominant and the transient stressing (seasonal water level) was infinitesimal small. The short triggering delay of about 2 years suggests that the Beichuan fault might have been near the end of its seismic cycle, which may also confirm what previous geological findings have indicated. This presentation shows on to what extend the static and 1-year periodic triggering stress perturbations a) accounted for equivalent tectonic loading, given a 4-10kyr earthquake cycle and b) altered the background seismicity beneath the valley, i.e., daily event rate and earthquake size distribution.
Cascading elastic perturbation in Japan due to the 2012 M w 8.6 Indian Ocean earthquake.
Delorey, Andrew A; Chao, Kevin; Obara, Kazushige; Johnson, Paul A
2015-10-01
Since the discovery of extensive earthquake triggering occurring in response to the 1992 M w (moment magnitude) 7.3 Landers earthquake, it is now well established that seismic waves from earthquakes can trigger other earthquakes, tremor, slow slip, and pore pressure changes. Our contention is that earthquake triggering is one manifestation of a more widespread elastic disturbance that reveals information about Earth's stress state. Earth's stress state is central to our understanding of both natural and anthropogenic-induced crustal processes. We show that seismic waves from distant earthquakes may perturb stresses and frictional properties on faults and elastic moduli of the crust in cascading fashion. Transient dynamic stresses place crustal material into a metastable state during which the material recovers through a process termed slow dynamics. This observation of widespread, dynamically induced elastic perturbation, including systematic migration of offshore seismicity, strain transients, and velocity transients, presents a new characterization of Earth's elastic system that will advance our understanding of plate tectonics, seismicity, and seismic hazards.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferdowsi, Behrooz; Griffa, Michele; Guyer, Robert A.
A fundamental mystery in earthquake physics is “how can an earthquake be triggered by distant seismic sources?” We use discrete element method simulations of a granular layer, during stick slip, that is subject to transient vibrational excitation to gain further insight into the physics of dynamic earthquake triggering. We also observe delayed triggering of slip in the granular gouge, using Coulomb friction law for grains interaction. We find that at a critical vibrational amplitude (strain) there is an abrupt transition from negligible time-advanced slip (clock advance) to full clock advance; i.e., transient vibration and triggered slip are simultaneous. Moreover, themore » critical strain is of order 10 -6, similar to observations in the laboratory and in Earth. The transition is related to frictional weakening of the granular layer due to a dramatic decrease in coordination number and the weakening of the contact force network. Associated with this frictional weakening is a pronounced decrease in the elastic modulus of the layer. The study has important implications for mechanisms of triggered earthquakes and induced seismic events and points out the underlying processes in response of the fault gouge to dynamic transient stresses.« less
Ferdowsi, Behrooz; Griffa, Michele; Guyer, Robert A.; ...
2015-11-19
A fundamental mystery in earthquake physics is “how can an earthquake be triggered by distant seismic sources?” We use discrete element method simulations of a granular layer, during stick slip, that is subject to transient vibrational excitation to gain further insight into the physics of dynamic earthquake triggering. We also observe delayed triggering of slip in the granular gouge, using Coulomb friction law for grains interaction. We find that at a critical vibrational amplitude (strain) there is an abrupt transition from negligible time-advanced slip (clock advance) to full clock advance; i.e., transient vibration and triggered slip are simultaneous. Moreover, themore » critical strain is of order 10 -6, similar to observations in the laboratory and in Earth. The transition is related to frictional weakening of the granular layer due to a dramatic decrease in coordination number and the weakening of the contact force network. Associated with this frictional weakening is a pronounced decrease in the elastic modulus of the layer. The study has important implications for mechanisms of triggered earthquakes and induced seismic events and points out the underlying processes in response of the fault gouge to dynamic transient stresses.« less
Remote Triggering in the Koyna-Warna Reservoir-Induced Seismic Zone, Western India
NASA Astrophysics Data System (ADS)
Bansal, Abhey Ram; Rao, N. Purnachandra; Peng, Zhigang; Shashidhar, D.; Meng, Xiaofeng
2018-03-01
Dynamic triggering following large distant earthquakes has been observed in many regions globally. In this study, we present evidence for remote dynamic triggering in the Koyna-Warna region of Western India, which is known to be a premier site of reservoir-induced seismicity. Using data from a closely spaced broadband network of 11 stations operated in the region since 2005, we conduct a systematic search for dynamic triggering following 20 large distant earthquakes with dynamic stresses of at least 1 kPa in the region. We find that the only positive cases of dynamic triggering occurred during 11 April 2012, Mw8.6 Indian Ocean earthquake and its largest aftershock of Mw8.2. In the first case, microearthquakes started to occur in the first few cycles of the Love waves, and the largest event of magnitude 3.3 occurred during the first few cycles of the Rayleigh waves. The increase of microseismicity lasted for up to five days, including a magnitude 4.8 event occurred approximately three days later. Our results suggest that the Koyna-Warna region is stress sensitive and susceptible for remote dynamic triggering, although the apparent triggering threshold appears to be slightly higher than other regions.
The failure of earthquake failure models
Gomberg, J.
2001-01-01
In this study I show that simple heuristic models and numerical calculations suggest that an entire class of commonly invoked models of earthquake failure processes cannot explain triggering of seismicity by transient or "dynamic" stress changes, such as stress changes associated with passing seismic waves. The models of this class have the common feature that the physical property characterizing failure increases at an accelerating rate when a fault is loaded (stressed) at a constant rate. Examples include models that invoke rate state friction or subcritical crack growth, in which the properties characterizing failure are slip or crack length, respectively. Failure occurs when the rate at which these grow accelerates to values exceeding some critical threshold. These accelerating failure models do not predict the finite durations of dynamically triggered earthquake sequences (e.g., at aftershock or remote distances). Some of the failure models belonging to this class have been used to explain static stress triggering of aftershocks. This may imply that the physical processes underlying dynamic triggering differs or that currently applied models of static triggering require modification. If the former is the case, we might appeal to physical mechanisms relying on oscillatory deformations such as compaction of saturated fault gouge leading to pore pressure increase, or cyclic fatigue. However, if dynamic and static triggering mechanisms differ, one still needs to ask why static triggering models that neglect these dynamic mechanisms appear to explain many observations. If the static and dynamic triggering mechanisms are the same, perhaps assumptions about accelerating failure and/or that triggering advances the failure times of a population of inevitable earthquakes are incorrect.
Lack of Dependence of Dynamic Triggering on the Timing within the Seismic Cycle
NASA Astrophysics Data System (ADS)
Cattania, C.; McGuire, J. J.; Collins, J. A.
2009-12-01
Numerical models predict that dynamic triggering of earthquakes is more likely when faults are close to failure (e.g. late in their earthquake cycle), and laboratory experiments have supported this hypothesis. We attempted to test this idea by analysing data on three adjacent transform faults of the East Pacific Rise which have a relatively well defined, quasiperiodic seismic cycle with a median repeat time of 5 years. Moreover, the Gofar, Discovery and Quebrada transform faults share several seismicity properties with continental geothermal areas, including high geothermal gradients, high seismicity rates, and frequent earthquake swarms, that suggest they may be prone to dynamic triggering. We analyze an earthquake catalog of over 100,000 events recorded in 2008 by a network of 38 Ocean Bottom Seismometers. We extract Mw>6.3 mainshocks from the Global CMT catalog, and perform the β test for an array of time intervals covering from 5 hours before to 10 hours after the low-frequency Rayleigh wave arrival. To verify the presence of common seismicity patterns, β plots are also stacked for multiple earthquakes. We observe triggering after the May 12th Wenchuan earthquake. On the Quebrada transform a burst of seismicity starts during the wavetrain; in Gofar there is no response during the wave, but an increase in seismicity (β=5.08) starts about 2 h later; no triggering is visible on the Discovery fault. A Mw=6.0 earthquake ruptured the Gofar transform on September 18th, and triggered seismicity on Discovery: ~60 earthquakes (β=15.3), starting 1h after the wave arrival. We have no data from Quebrada for this period. Other instances of triggering are dubious. Stacked β plots suggest delayed triggering (Δt>1h) in Gofar and Discovery, but the statistical significance of these results is unclear. From a comparison of different fault segments, triggering does not appear to be more common at late stages in the seismic cycle. Instead, the events triggered by the largest dynamic stresses concentrate in the regions between rupture zones. This suggests that changes in rock composition or fluid content may make these areas act as barriers to rupture propagation as well as facilitating dynamic triggering. Using the Rate-and-State seismicity model, we estimate that the effective normal stress where triggering occurs: is extremely low (σ<0.1MPa in Quebrada and σ<0.5MPa on Discovery), implying a nearly lithostatic pore pressure.
Prejean, S.G.; Hill, D.P.; Brodsky, E.E.; Hough, S.E.; Johnston, M.J.S.; Malone, S.D.; Oppenheimer, D.H.; Pitt, A.M.; Richards-Dinger, K. B.
2004-01-01
The Mw 7.9 Denali fault earthquake in central Alaska of 3 November 2002 triggered earthquakes across western North America at epicentral distances of up to at least 3660 km. We describe the spatial and temporal development of triggered activity in California and the Pacific Northwest, focusing on Mount Rainier, the Geysers geothermal field, the Long Valley caldera, and the Coso geothermal field.The onset of triggered seismicity at each of these areas began during the Love and Raleigh waves of the Mw 7.9 wave train, which had dominant periods of 15 to 40 sec, indicating that earthquakes were triggered locally by dynamic stress changes due to low-frequency surface wave arrivals. Swarms during the wave train continued for ∼4 min (Mount Rainier) to ∼40 min (the Geysers) after the surface wave arrivals and were characterized by spasmodic bursts of small (M ≤ 2.5) earthquakes. Dynamic stresses within the surface wave train at the time of the first triggered earthquakes ranged from 0.01 MPa (Coso) to 0.09 MPa (Mount Rainier). In addition to the swarms that began during the surface wave arrivals, Long Valley caldera and Mount Rainier experienced unusually large seismic swarms hours to days after the Denali fault earthquake. These swarms seem to represent a delayed response to the Denali fault earthquake. The occurrence of spatially and temporally distinct swarms of triggered seismicity at the same site suggests that earthquakes may be triggered by more than one physical process.
Towards a Systematic Search for Triggered Seismic Events in the USA
NASA Astrophysics Data System (ADS)
Tang, V.; Chao, K.; Van der Lee, S.
2017-12-01
Dynamic triggering of small earthquakes and tectonic tremor by small stress variations associated with passing surface waves from large-magnitude teleseismic earthquakes have been observed in seismically active regions in the western US. Local stress variations as small as 5 10 kPa can suffice to advance slip on local faults. Observations of such triggered events share certain distinct characteristics. With an eye towards an eventual application of machine learning, we began a systematic search for dynamically triggered seismic events in the USA that have these characteristics. Such a systematic survey has the potential to help us to better understand the fundamental process of dynamic triggering and hazards implied by it. Using visual inspection on top of timing and frequency based selection criteria for these seismic phenomena, our search yielded numerous false positives, indicating the challenge posed by moving from ad-hoc observations of dynamic triggering to a systematic search that also includes a catalog of non-triggering, even when sufficient stress variations are supplied. Our search includes a dozen large earthquakes that occurred during the tenure of USArray. One of these earthquakes (11 April 2012 Mw8.6 Sumatra), for example, was observed by USArray-TA stations in the Midwest and other station networks (such as PB and UW), and yielded candidate-triggered events at 413 stations. We kept 79 of these observations after closer visual inspection of the observed events suggested distinct P and S arrivals from a local earthquake, or a tremor modulation with the same period as the surface wave, among other criteria. We confirmed triggered seismic events in 63 stations along the western plate boundary where triggered events have previously been observed. We also newly found triggered tremor sources in eastern Oregon and Yellowstone, and candidate-triggered earthquake sources in New Mexico and Minnesota. Learning whether 14 of remaining candidates are confirmed as triggered events or not will provide constraints on the state of intraplate stress in the USA. Learning what it takes to discriminate between triggered events and false positives will be important for future monitoring practices.
Dynamic Triggering around Fangshan Pluton near Beijing,China
NASA Astrophysics Data System (ADS)
Wang, W.; Gong, X.; Peng, Z.; Chen, Q.; Wu, C.
2011-12-01
Fangshan Pluton lies at SW of Beijing City and is formed at about 133-128Ma. The Pluton is surrounded by the NNE-trending Taihang mountain in the west as an "C" shape, and is in conjunction with the Northern China Plain along the Baobashan fault in the east. This region currently does not have abundant background seismicity, but previous studies (Peng et al., 2010, Wu et al. 2011) have shown that at least 4 major earthquakes in East Asia have triggered clear seismic events in this region. To further understand the dynamic triggering mechanism and improve the station coverage, we deployed the first batch temporal seismic array with 5 stations from 12/2008 to 7/2010 and the second batch with 11 stations around this area since 12/2010. Our temporary deployment was fortunate to capture the triggered seismicity following the 2011 Mw9.0 Tohoku-Oki, Japan, earthquake sequence. In this study, we use seismic data recorded by the permanent stations in the Capital Circle seismic network and our temporary deployment to investigate triggered seismicity following the 2010 Mw8.8 Chile earthquake and the Tohoku-Oki earthquake sequence. As was done before, we identify triggered earthquakes as impulsive seismic arrivals with clear P- and S-waves in 5 Hz high-pass-filtered three-component velocity seismograms and recorded by at least 3 stations. Most triggered earthquakes coincide with the large-amplitude Rayleigh waves. For the Tohoku-Oki case, we identify one weak event during the P-wave of the mainshock, and delayed triggering following the large-amplitude surface waves. In addition, triggered earthquakes can be seen in the Mw7.3 foreshock and mainshock of Tohoku earthquake, but not in aftershocks with 2 Mw>7.5 earthquakes in the following two months. These events mainly occurred at southwestern and western boundary region of the Pluton and are shallower (<5km) than normal earthquakes, which is similar to previous studies. Considering the abundant solution cavities and syncline/anticline structures developed during the magma intrusion, we suggest that the triggered earthquakes could occur at the weak boundary regions with abundant underground water that permeate into deep layer through the cracked syncline tips or faults. Our next step is to locate the triggered and background seismicity more precisely, and determine the focal mechanisms of the triggered events for better understanding of the source faults and necessary conditions for dynamic triggering in this region.
Tests of remote aftershock triggering by small mainshocks using Taiwan's earthquake catalog
NASA Astrophysics Data System (ADS)
Peng, W.; Toda, S.
2014-12-01
To understand earthquake interaction and forecast time-dependent seismic hazard, it is essential to evaluate which stress transfer, static or dynamic, plays a major role to trigger aftershocks and subsequent mainshocks. Felzer and Brodsky focused on small mainshocks (2≤M<3) and their aftershocks, and then argued that only dynamic stress change brings earthquake-to-earthquake triggering, whereas Richards-Dingers et al. (2010) claimed that those selected small mainshock-aftershock pairs were not earthquake-to-earthquake triggering but simultaneous occurrence of independent aftershocks following a larger earthquake or during a significant swarm sequence. We test those hypotheses using Taiwan's earthquake catalog by taking the advantage of lacking any larger event and the absence of significant seismic swarm typically seen with active volcano. Using Felzer and Brodsky's method and their standard parameters, we only found 14 mainshock-aftershock pairs occurred within 20 km distance in Taiwan's catalog from 1994 to 2010. Although Taiwan's catalog has similar number of earthquakes as California's, the number of pairs is about 10% of the California catalog. It may indicate the effect of no large earthquakes and no significant seismic swarm in the catalog. To fully understand the properties in the Taiwan's catalog, we loosened the screening parameters to earn more pairs and then found a linear aftershock density with a power law decay of -1.12±0.38 that is very similar to the one in Felzer and Brodsky. However, none of those mainshock-aftershock pairs were associated with a M7 rupture event or M6 events. To find what mechanism controlled the aftershock density triggered by small mainshocks in Taiwan, we randomized earthquake magnitude and location. We then found that those density decay in a short time period is more like a randomized behavior than mainshock-aftershock triggering. Moreover, 5 out of 6 pairs were found in a swarm-like temporal seismicity rate increase. They locate mostly in high geothermal gradient areas, which are probably triggered by a small-scale aseismic process. Thus it rather supports the argument of Richards-Dingers et al. in which dynamic triggering by small mainshock is untenable.
Tremor, remote triggering and earthquake cycle
NASA Astrophysics Data System (ADS)
Peng, Z.
2012-12-01
Deep tectonic tremor and episodic slow-slip events have been observed at major plate-boundary faults around the Pacific Rim. These events have much longer source durations than regular earthquakes, and are generally located near or below the seismogenic zone where regular earthquakes occur. Tremor and slow-slip events appear to be extremely stress sensitive, and could be instantaneously triggered by distant earthquakes and solid earth tides. However, many important questions remain open. For example, it is still not clear what are the necessary conditions for tremor generation, and how remote triggering could affect large earthquake cycle. Here I report a global search of tremor triggered by recent large teleseismic earthquakes. We mainly focus on major subduction zones around the Pacific Rim. These include the southwest and northeast Japan subduction zones, the Hikurangi subduction zone in New Zealand, the Cascadia subduction zone, and the major subduction zones in Central and South America. In addition, we examine major strike-slip faults around the Caribbean plate, the Queen Charlotte fault in northern Pacific Northwest Coast, and the San Andreas fault system in California. In each place, we first identify triggered tremor as a high-frequency non-impulsive signal that is in phase with the large-amplitude teleseismic waves. We also calculate the dynamic stress and check the triggering relationship with the Love and Rayleigh waves. Finally, we calculate the triggering potential with the local fault orientation and surface-wave incident angles. Our results suggest that tremor exists at many plate-boundary faults in different tectonic environments, and could be triggered by dynamic stress as low as a few kPas. In addition, we summarize recent observations of slow-slip events and earthquake swarms triggered by large distant earthquakes. Finally, we propose several mechanisms that could explain apparent clustering of large earthquakes around the world.
Seismicity remotely triggered by the magnitude 7.3 landers, california, earthquake
Hill, D.P.; Reasenberg, P.A.; Michael, A.; Arabaz, W.J.; Beroza, G.; Brumbaugh, D.; Brune, J.N.; Castro, R.; Davis, S.; Depolo, D.; Ellsworth, W.L.; Gomberg, J.; Harmsen, S.; House, L.; Jackson, S.M.; Johnston, M.J.S.; Jones, L.; Keller, Rebecca Hylton; Malone, S.; Munguia, L.; Nava, S.; Pechmann, J.C.; Sanford, A.; Simpson, R.W.; Smith, R.B.; Stark, M.; Stickney, M.; Vidal, A.; Walter, S.; Wong, V.; Zollweg, J.
1993-01-01
The magnitude 7.3 Landers earthquake of 28 June 1992 triggered a remarkably sudden and widespread increase in earthquake activity across much of the western United States. The triggered earthquakes, which occurred at distances up to 1250 kilometers (17 source dimensions) from the Landers mainshock, were confined to areas of persistent seismicity and strike-slip to normal faulting. Many of the triggered areas also are sites of geothermal and recent volcanic activity. Static stress changes calculated for elastic models of the earthquake appear to be too small to have caused the triggering. The most promising explanations involve nonlinear interactions between large dynamic strains accompanying seismic waves from the mainshock and crustal fluids (perhaps including crustal magma).
Cascading elastic perturbation in Japan due to the 2012 M w 8.6 Indian Ocean Earthquake
Delorey, A. A.; Johnson, P. A.; Chao, K.; ...
2015-10-02
Since the discovery of extensive earthquake triggering occurring in response to the 1992 M w 7.3 Landers earthquake, it is now well established that seismic waves from earthquakes can trigger other earthquakes, tremor, slow slip, and pore pressure changes. Our contention is that earthquake triggering is one manifestation of a more widespread elastic disturbance that reveals information about Earth’s stress state. Earth’s stress state is central to our understanding of both natural and anthropogenic-induced crustal processes. Here we present that seismic waves from distant earthquakes may perturb stresses and frictional properties on faults and elastic moduli of the crust inmore » cascading fashion. Transient dynamic stresses place crustal material into a metastable state during which material recovers through a process termed slow dynamics. This observation of widespread, dynamically induced elastic perturbation, including systematic migration of offshore seismicity, strain transients, and velocity transients, presents a new characterization of Earth’s elastic system that will advance our understanding of plate tectonics, seismicity, and seismic hazards.« less
Cascading elastic perturbation in Japan due to the 2012 M w 8.6 Indian Ocean Earthquake
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delorey, A. A.; Johnson, P. A.; Chao, K.
Since the discovery of extensive earthquake triggering occurring in response to the 1992 M w 7.3 Landers earthquake, it is now well established that seismic waves from earthquakes can trigger other earthquakes, tremor, slow slip, and pore pressure changes. Our contention is that earthquake triggering is one manifestation of a more widespread elastic disturbance that reveals information about Earth’s stress state. Earth’s stress state is central to our understanding of both natural and anthropogenic-induced crustal processes. Here we present that seismic waves from distant earthquakes may perturb stresses and frictional properties on faults and elastic moduli of the crust inmore » cascading fashion. Transient dynamic stresses place crustal material into a metastable state during which material recovers through a process termed slow dynamics. This observation of widespread, dynamically induced elastic perturbation, including systematic migration of offshore seismicity, strain transients, and velocity transients, presents a new characterization of Earth’s elastic system that will advance our understanding of plate tectonics, seismicity, and seismic hazards.« less
Cascading elastic perturbation in Japan due to the 2012 Mw 8.6 Indian Ocean earthquake
Delorey, Andrew A.; Chao, Kevin; Obara, Kazushige; Johnson, Paul A.
2015-01-01
Since the discovery of extensive earthquake triggering occurring in response to the 1992 Mw (moment magnitude) 7.3 Landers earthquake, it is now well established that seismic waves from earthquakes can trigger other earthquakes, tremor, slow slip, and pore pressure changes. Our contention is that earthquake triggering is one manifestation of a more widespread elastic disturbance that reveals information about Earth’s stress state. Earth’s stress state is central to our understanding of both natural and anthropogenic-induced crustal processes. We show that seismic waves from distant earthquakes may perturb stresses and frictional properties on faults and elastic moduli of the crust in cascading fashion. Transient dynamic stresses place crustal material into a metastable state during which the material recovers through a process termed slow dynamics. This observation of widespread, dynamically induced elastic perturbation, including systematic migration of offshore seismicity, strain transients, and velocity transients, presents a new characterization of Earth’s elastic system that will advance our understanding of plate tectonics, seismicity, and seismic hazards. PMID:26601289
Long- and short-term triggering and modulation of mud volcano eruptions by earthquakes
NASA Astrophysics Data System (ADS)
Bonini, Marco; Rudolph, Maxwell L.; Manga, Michael
2016-03-01
Earthquakes can trigger the eruption of mud. We use eruptions in Azerbaijan, Italy, Romania, Japan, Andaman Islands, Pakistan, Taiwan, Indonesia, and California to probe the nature of stress changes that induce new eruptions and modulate ongoing eruptions. Dynamic stresses produced by earthquakes are usually inferred to be the dominant triggering mechanism; however static stress changes acting on the feeder systems of mud volcanoes may also play a role. In Azerbaijan, eruptions within 2-10 fault lengths from the epicenter are favored in the year following earthquakes where the static stress changes cause compression of the mud source and unclamp feeder dikes. In Romania, Taiwan, and some Italian sites, increased activity is also favored where the static stress changes act to unclamp feeder dikes, but responses occur within days. The eruption in the Andaman Islands, and those of the Niikappu mud volcanoes, Japan are better correlated with amplitude of dynamic stresses produced by seismic waves. Similarly, a new island that emerged off the coast of Pakistan in 2013 was likely triggered by dynamic stresses, enhanced by directivity. At the southern end of the Salton Sea, California earthquakes increase the gas flux at small mud volcanoes. Responses are best correlated with dynamic stresses. The comparison of responses in these nine settings indicates that dynamic stresses are most often correlated with triggering, although permanent stress changes as small as, and possibly smaller than, 0.1 bar may be sufficient to also influence eruptions. Unclamping stresses with magnitude similar to Earth tides (0.01 bar) persist over time and may play a role in triggering delayed responses. Unclamping stresses may be important contributors to short-term triggering only if they exceed 0.1-1 bar.
Analyzing the Possibility of Dynamic Earthquake Triggering in Socorro, New Mexico
NASA Astrophysics Data System (ADS)
Morton, E.; Bilek, S. L.
2011-12-01
The release of energy during an earthquake changes the stress state and seismicity both locally and remotely. Far-field stress changes can lead to triggered earthquakes coinciding with the arrival of the surface waves. This dynamic triggering is found to occur in a variety of tectonic settings, but in particular magmatic regions. Here we test whether the Socorro Magma Body region in central New Mexico hosts triggered seismicity. Preliminary inspection of continuous network data in central New Mexico suggested a local triggered event with the passage of surface waves from an MW 6.9 event in 2009. For a more comprehensive view, we examine data from 379 earthquakes MW ≥ 6.0 between January 15, 2008 to March 13, 2010 recorded on the EarthScope USArray Transportable Network stations located within New Mexico and providing more dense coverage for better detectability. Waveforms from twenty EarthScope stations were windowed around the time of the large event, high-pass filtered at 5 Hz to remove low frequency signals and analyzed to detect high frequency triggered local earthquakes. For each possible trigger detected, waveforms from nine short-period stations in the Socorro Seismic Network were added to aid in locating the events. In the time period analyzed, twelve triggered events were detected. Only one of these events, on August 30, 2009, corresponded to the arrival of surface waves, occurring about a minute after their arrival. The majority of the triggered events occur well after the arrival of the surface waves, indicating that they are either independent of the main shock or the result of delayed dynamic triggering. Delayed dynamic triggering can occur hours or days after the passage of surface waves, and are marked by an increase in seismicity relative to background. Only one of the events, on September 18, 2009, occurred within the Socorro Magma Body area. The rest of these events occur spread throughout New Mexico. The widely spread distribution of possibly triggered events and the low ratio of triggers to main shocks indicates that the rifted magmatic region above the Socorro Magma Body is not particularly susceptible to dynamic triggering from remote main shocks. The lack of direct correspondence to a seismic phase can mean that the detected events may be independent (not triggered events), or the result of delayed dynamic triggering. A comparison to randomly chosen waveforms within the time period as background will reveal if the possible events are a result of delayed dynamic triggering or part of the background.
Effects of acoustic waves on stick-slip in granular media and implications for earthquakes
Johnson, P.A.; Savage, H.; Knuth, M.; Gomberg, J.; Marone, Chris
2008-01-01
It remains unknown how the small strains induced by seismic waves can trigger earthquakes at large distances, in some cases thousands of kilometres from the triggering earthquake, with failure often occurring long after the waves have passed. Earthquake nucleation is usually observed to take place at depths of 10-20 km, and so static overburden should be large enough to inhibit triggering by seismic-wave stress perturbations. To understand the physics of dynamic triggering better, as well as the influence of dynamic stressing on earthquake recurrence, we have conducted laboratory studies of stick-slip in granular media with and without applied acoustic vibration. Glass beads were used to simulate granular fault zone material, sheared under constant normal stress, and subject to transient or continuous perturbation by acoustic waves. Here we show that small-magnitude failure events, corresponding to triggered aftershocks, occur when applied sound-wave amplitudes exceed several microstrain. These events are frequently delayed or occur as part of a cascade of small events. Vibrations also cause large slip events to be disrupted in time relative to those without wave perturbation. The effects are observed for many large-event cycles after vibrations cease, indicating a strain memory in the granular material. Dynamic stressing of tectonic faults may play a similar role in determining the complexity of earthquake recurrence. ??2007 Nature Publishing Group.
Bei, Wang; Harrington, Rebecca M.; Liu, Yajing; Yu, Hongyu; Carey, Alex; van der Elst, Nicholas
2015-01-01
Here we search for dynamically triggered earthquakes in Canada following global main shocks between 2004 and 2014 with MS > 6, depth < 100 km, and estimated peak ground velocity > 0.2 cm/s. We use the Natural Resources Canada (NRCan) earthquake catalog to calculate β statistical values in 1° × 1° bins in 10 day windows before and after the main shocks. The statistical analysis suggests that triggering may occur near Vancouver Island, along the border of the Yukon and Northwest Territories, in western Alberta, western Ontario, and the Charlevoix seismic zone. We also search for triggering in Alberta where denser seismic station coverage renders regional earthquake catalogs with lower completeness thresholds. We find remote triggering in Alberta associated with three main shocks using a matched-filter approach on continuous waveform data. The increased number of local earthquakes following the passage of main shock surface waves suggests local faults may be in a critically stressed state.
Tremor evidence for dynamically triggered creep events on the deep San Andreas Fault
NASA Astrophysics Data System (ADS)
Peng, Z.; Shelly, D. R.; Hill, D. P.; Aiken, C.
2010-12-01
Deep tectonic tremor has been observed along major subduction zones and the San Andreas fault (SAF) in central and southern California. It appears to reflect deep fault slip, and it is often seen to be triggered by small stresses, including passing seismic waves from large regional and teleseismic earthquakes. Here we examine tremor activity along the Parkfield-Cholame section of the SAF from mid-2001 to early 2010, scrutinizing its relationship with regional and teleseismic earthquakes. Based on similarities in the shape and timing of seismic waveforms, we conclude that triggered and ambient tremor share common sources and a common physical mechanism. Utilizing this similarity in waveforms, we detect tremor triggered by numerous large events, including previously unreported triggering from the recent 2009 Mw7.3 Honduras, 2009 Mw8.1 Samoa, and 2010 Mw8.8 Chile earthquakes at teleseismic distances, and the relatively small 2007 Mw5.4 Alum Rock and 2008 Mw5.4 Chino Hills earthquakes at regional distances. We also find multiple examples of systematic migration in triggered tremor, similar to ambient tremor migration episodes observed at other times. Because these episodes propagate much more slowly than the triggering waves, the migration likely reflects a small, triggered creep event. As with ambient tremor bursts, triggered tremor at times persists for multiple days, probably indicating a somewhat larger creep event. This activity provides a clear example of delayed dynamic triggering, with a mechanism perhaps also relevant for triggering of regular earthquakes.
Evidence for remotely triggered micro-earthquakes during salt cavern collapse
NASA Astrophysics Data System (ADS)
Jousset, P.; Rohmer, J.
2012-04-01
Micro-seismicity is a good indicator of spatio-temporal evolution of physical properties of rocks prior to catastrophic events like volcanic eruptions or landslides and may be triggered by a number of causes including dynamic characteristics of processes in play or/and external forces. Micro-earthquake triggering has been in the recent years the subject of intense research and our work contribute to showing further evidence of possible triggering of micro-earthquakes by remote large earthquakes. We show evidence of triggered micro-seismicity in the vicinity of an underground salt cavern prone to collapse by a remote M~7.2 earthquake, which occurred ~12000 kilometres away. We demonstrate the near critical state of the cavern before the collapse by means of 2D axisymmetric elastic finite-element simulations. Pressure was lowered in the cavern by pumping operations of brine out of the cavern. We demonstrate that a very small stress increase would be sufficient to break the overburden. High-dynamic broadband records reveal a remarkable time-correlation between a dramatic increase of the local high-frequency micro-seismicity rate associated with the break of the stiffest layer stabilizing the overburden and the passage of low-frequency remote seismic waves, including body, Love and Rayleigh surface waves. Stress oscillations due to the seismic waves exceeded the strength required for the rupture of the complex media made of brine and rock triggering micro-earthquakes and leading to damage of the overburden and eventually collapse of the salt cavern. The increment of stress necessary for the failure of a Dolomite layer is of the same order or magnitude as the maximum dynamic stress magnitude observed during the passage of the earthquakes waves. On this basis, we discuss the possible contribution of the Love and Rayleigh low-frequency surfaces waves.
Remotely triggered earthquakes following moderate main shocks
Hough, S.E.
2007-01-01
Since 1992, remotely triggered earthquakes have been identified following large (M > 7) earthquakes in California as well as in other regions. These events, which occur at much greater distances than classic aftershocks, occur predominantly in active geothermal or volcanic regions, leading to theories that the earthquakes are triggered when passing seismic waves cause disruptions in magmatic or other fluid systems. In this paper, I focus on observations of remotely triggered earthquakes following moderate main shocks in diverse tectonic settings. I summarize evidence that remotely triggered earthquakes occur commonly in mid-continent and collisional zones. This evidence is derived from analysis of both historic earthquake sequences and from instrumentally recorded M5-6 earthquakes in eastern Canada. The latter analysis suggests that, while remotely triggered earthquakes do not occur pervasively following moderate earthquakes in eastern North America, a low level of triggering often does occur at distances beyond conventional aftershock zones. The inferred triggered events occur at the distances at which SmS waves are known to significantly increase ground motions. A similar result was found for 28 recent M5.3-7.1 earthquakes in California. In California, seismicity is found to increase on average to a distance of at least 200 km following moderate main shocks. This supports the conclusion that, even at distances of ???100 km, dynamic stress changes control the occurrence of triggered events. There are two explanations that can account for the occurrence of remotely triggered earthquakes in intraplate settings: (1) they occur at local zones of weakness, or (2) they occur in zones of local stress concentration. ?? 2007 The Geological Society of America.
Aftershocks halted by static stress shadows
Toda, Shinji; Stein, Ross S.; Beroza, Gregory C.; Marsan, David
2012-01-01
Earthquakes impart static and dynamic stress changes to the surrounding crust. Sudden fault slip causes small but permanent—static—stress changes, and passing seismic waves cause large, but brief and oscillatory—dynamic—stress changes. Because both static and dynamic stresses can trigger earthquakes within several rupture dimensions of a mainshock, it has proven difficult to disentangle their contributions to the triggering process1–3. However, only dynamic stress can trigger earthquakes far from the source4,5, and only static stress can create stress shadows, where the stress and thus the seismicity rate in the shadow area drops following an earthquake6–9 . Here we calculate the stress imparted by the magnitude 6.1 Joshua Tree and nearby magnitude 7.3 Landers earthquakes that occurred in California in April and June 1992, respectively, and measure seismicity through time. We show that, where the aftershock zone of the first earthquake was subjected to a static stress increase from the second, the seismicity rate jumped. In contrast, where the aftershock zone of the first earthquake fell under the stress shadow of the second and static stress dropped, seismicity shut down. The arrest of seismicity implies that static stress is a requisite element of spatial clustering of large earthquakes and should be a constituent of hazard assessment.
Dynamic Earthquake Triggering on Seismogenic Faults in Oklahoma
NASA Astrophysics Data System (ADS)
Qin, Y.; Chen, X.; Peng, Z.; Aiken, C.
2016-12-01
Regions with high pore pressure are generally more susceptible to dynamic triggering from transient stress change caused by surface wave of distant earthquakes. The stress threshold from triggering studies can help understand the stress state of seismogenic faults. The recent dramatic seismicity increase in central US provides a rich database for assessing dynamic triggering phenomena. We begin our study by conducting a systematic analysis of dynamic triggering for the continental U.S using ANSS catalog (with magnitude of completeness Mc=3) from 49 global mainshocks (Ms>6.5, depth<100km, estimated dynamic stress>1kPa). We calculate β value for each 1° by 1° bins in 30 days before and 10 days after the mainshock. To identify regions that experience triggering from a distant mainshock, we generate a stacked map using β≥2 - which represents significant seismicity rate increase. As expected, the geothermal and volcanic fields in California show clear response to distant earthquakes. We also note areas in Oklahoma and north Texas show enhanced triggering, where wastewater-injection induced seismicity are occurring. Next we focus on Oklahoma and use a local catalog from Oklahoma Geological Survey with lower completeness threshold Mc to calculate the beta map in 0.2° by 0.2° bins for each selected mainshock to obtain finer spatial resolutions of the triggering behavior. For those grids with β larger than 2.0, we use waveforms from nearby stations to search for triggered events. The April 2015 M7.8 Nepal earthquake causes a statistically significant increase of local seismicity (β=3.5) in the Woodward area (west Oklahoma) during an on-going earthquake sequence. By visually examining the surface wave from the nearest station, we identify 3 larger local events, and 10 additional smaller events with weaker but discernable amplitude. Preliminary analysis shows that the triggering is related to Rayleigh wave, which would cause dilatational or shear stress changes along the strike direction of Woodward fault, given the azimuth between Nepal and Oklahoma. Our next step is to apply matched-filter technique to generate a complete catalog for an extended period of time, in order to better understand dynamic triggering and spatio-temporal evolution of this sequence - one of the largest sequences in western Oklahoma.
Systematic Detection of Remotely Triggered Seismicity in Africa Following Recent Large Earthquakes
NASA Astrophysics Data System (ADS)
Ayorinde, A. O.; Peng, Z.; Yao, D.; Bansal, A. R.
2016-12-01
It is well known that large distant earthquakes can trigger micro-earthquakes/tectonic tremors during or immediately following their surface waves. Globally, triggered earthquakes have been mostly found in active plate boundary regions. It is not clear whether they could occur within stable intraplate regions in Africa as well as the active East African Rift Zone. In this study we conduct a systematic study of remote triggering in Africa following recent large earthquakes, including the 2004 Mw9.1 Sumatra and 2012 Mw8.6 Indian Ocean earthquakes. In particular, the 2012 Indian Ocean earthquake is the largest known strike slip earthquake and has triggered a global increase of magnitude larger than 5.5 earthquakes as well as numerous micro-earthquakes/tectonic tremors around the world. The entire Africa region was examined for possible remotely triggered seismicity using seismic data downloaded from the Incorporated Research Institutes for Seismology (IRIS) Data Management Center (DMC) and GFZ German Research Center for Geosciences. We apply a 5-Hz high-pass-filter to the continuous waveforms and visually identify high-frequency signals during and immediately after the large amplitude surface waves. Spectrograms are computed as additional tools to identify triggered seismicities and we further confirm them by statistical analysis comparing the high-frequency signals before and after the distant mainshocks. So far we have identified possible triggered seismicity in Botswana and northern Madagascar. This study could help to understand dynamic triggering in diverse tectonic settings of the African continent.
NASA Astrophysics Data System (ADS)
Harrington, Rebecca M.; Liu, Yajing; Wang, Bei; Kao, Honn; Yu, Hongyu
2017-04-01
Here we investigate the occurrence of remote dynamic triggering in three sedimentary basins in Canada where recent fluid injection activity is correlated with increasing numbers of earthquakes. In efforts to count as many small, local earthquakes as possible for the statistical test of triggering, we apply a multi-station matched-filter detection method to continuous waveforms to detect uncataloged local earthquakes in 10-day time windows surrounding triggering mainshocks occurring between 2013-2015 with an estimated local peak ground velocity exceeding 0.01 cm/s. We count the number of earthquakes in 24-hour bins and use a statistical p-value test to determine if the changes in seismicity levels after the mainshock waves have passed are statistically significant. The p-value tests show occurrences of triggering following transient stress perturbations of < 10 kPa at all three sites that suggest local faults may remain critically stressed over periods similar to the time frame of our study ( 2 years) or longer, potentially due to maintained high pore pressures in tight shale formations following injection. The time window over which seismicity rates change varies at each site, with more delayed triggering occurring at sites where production history is longer. The observations combined with new modeling results suggest that the poroelastic response of the medium may be the dominant factor influencing instantaneous triggering, particularly in low-permeability tight shales. At sites where production history is longer and permeabilities have been increased, both pore pressure diffusion and the poroelastic response of the medium may work together to promote both instantaneous and delayed triggering. Not only does the interplay of the poroelastic response of the medium and pore pressure diffusion have implications for triggering induced earthquakes near injection sites, but it may be a plausible explanation for observations of instantaneous and delayed earthquake triggering in general.
NASA Astrophysics Data System (ADS)
Ando, R.; Aoki, Y.; Uchide, T.; Imanishi, K.; Matsumoto, S.; Nishimura, T.
2016-12-01
A couple of interesting earthquake rupture phenomena were observed associated with the sequence of the 2016 Kumamoto, Japan, earthquake sequence. The sequence includes the April 15, 2016, Mw 7.0, mainshock, which was preceded by multiple M6-class foreshock. The mainshock mainly broke the Futagawa fault segment striking NE-SW direction extending over 50km, and it further triggered a M6-class earthquake beyond the distance more than 50km to the northeast (Uchide et al., 2016, submitted), where an active volcano is situated. Compiling the data of seismic analysis and InSAR, we presumed this dynamic triggering event occurred on an active fault known as Yufuin fault (Ando et al., 2016, JPGU general assembly). It is also reported that the coseismic slip was significantly large at a shallow portion of Futagawa Fault near Aso volcano. Since the seismogenic depth becomes significantly shallower in these two areas, we presume the geothermal anomaly play a role as well as the elasto-dynamic processes associated with the coseismic rupture. In this study, we conducted a set of fully dynamic simulations of the earthquake rupture process by assuming the inferred 3D fault geometry and the regional stress field obtained referring the stress tensor inversion. As a result, we showed that the dynamic rupture process was mainly controlled by the irregularity of the fault geometry subjected to the gently varying regional stress field. The foreshocks ruptures have been arrested at the juncture of the branch faults. We also show that the dynamic triggering of M-6 class earthquakes occurred along the Yufuin fault segment (located 50 km NE) because of the strong stress transient up to a few hundreds of kPa due to the rupture directivity effect of the M-7 event. It is also shown that the geothermal condition may lead to the susceptible condition of the dynamic triggering by considering the plastic shear zone on the down dip extension of the Yufuin segment, situated in the vicinity of an active volcano.
Tremors Triggered along the Queen Charlotte Fault
NASA Astrophysics Data System (ADS)
Aiken, C.; Peng, Z.; Chao, K.
2012-12-01
In the past decade, deep tectonic tremors have been observed in numerous tectonic environments surrounding the Pacific and Caribbean plates. In these regions, tremors triggered by both regional and distant earthquakes have also been observed. Despite the ubiquitous observations of triggered tremors, tremors triggered in differing strike-slip environments are less understood. Here, we conduct a preliminary search of tremors triggered by teleseismic earthquakes along the transpressive Queen Charlotte Fault (QCF) located between the Cascadia subduction zone and Alaska. Tectonic tremors have not been previously reported along the QCF. We select teleseismic earthquakes during the 1990-2012 period as having magnitude M ≥ 6.5 and occurring at least 1,000 km away from the region. We reduce the number of mainshocks by selecting those that generate greater than 1 kPa dynamic stress estimated from surface-wave magnitude equations [e.g. van der Elst and Brodsky, 2010]. Our mainshock waveforms are retrieved from the Canadian National Seismograph Network (CNSN), processed, and filtered for triggered tremor observations. We characterize triggered tremors as high-frequency signals visible among several stations and coincident with broadband surface wave peaks. So far, we have found tremors triggered along the QCF by surface waves of five great earthquakes - the 2002/11/03 Mw7.9 Denali Fault, 2004/12/26 Mw9.0 Sumatra, 2010/02/27 Mw8.8 Chile, 2011/03/11 Mw9.0 Japan, and 2012/04/11 Mw8.6 Sumatra earthquakes. We compare our results to tremors triggered by teleseismic earthquakes on strike-slip faults in central and southern California, as well as Cuba [Peng et al., 2012]. Among strike-slip faults in these regions, we also compare triggered tremor amplitudes to peak ground velocities from the mainshocks and compute dynamic stresses to determine a triggering threshold for the QCF. We find that in most cases tremors in the QCF are triggered primarily by the Love waves, and additional tremors are triggered by the subsequent Rayleigh waves. This is consistent with the near strike-parallel incidence for many triggering earthquakes, which tends to produce maximum triggering potential for vertical strike-slip faults. These results suggest a shear faulting mechanism is responsible for the triggered tremor on the QCF. The triggering threshold of dynamic stress is higher than that found at the Parkfield-Cholame section of the San Andreas Fault (2-3 KPa). This could be due to the sparse network coverage in the QCF, which may miss weak tremor signals triggered by smaller-size events. Our observations suggest that triggered tremor could occur in many places on major strike-slip faults around the world, although the necessary conditions for tremor generation are still not clear at this stage.
NASA Astrophysics Data System (ADS)
Han, Libo; Peng, Zhigang; Johnson, Christopher W.; Pollitz, Fred F.; Li, Lu; Wang, Baoshan; Wu, Jing; Li, Qiang; Wei, Hongmei
2017-12-01
We present a case of remotely triggered seismicity in Southwest China by the 2015/04/25 M7.8 Gorkha, Nepal earthquake. A local magnitude ML3.8 event occurred near the Qijiang district south of Chongqing city approximately 12 min after the Gorkha mainshock. Within 30 km of this ML3.8 event there are 62 earthquakes since 2009 and only 7 ML > 3 events, which corresponds to a likelihood of 0.3% for a ML > 3 on any given day by a random chance. This observation motivates us to investigate the relationship between the ML3.8 event and the Gorkha mainshock. The ML3.8 event was listed in the China Earthquake National Center (CENC) catalog and occurred at shallow depth (∼3 km). By examining high-frequency waveforms, we identify a smaller local event (∼ML 2.5) ∼ 15 s before the ML3.8 event. Both events occurred during the first two cycles of the Rayleigh waves from the Gorkha mainshock. We perform seismic event detection based on envelope function and waveform matching by using the two events as templates. Both analyses found a statistically significant rate change during the mainshock, suggesting that they were indeed dynamically triggered by the Rayleigh waves. Both events occurred during the peak normal and dilatational stress changes (∼10-30 kPa), consistent with observations of dynamic triggering in other geothermal/volcanic regions. Although other recent events (i.e., the 2011 M9.1 Tohoku-Oki earthquake) produced similar peak ground velocities, the 2015 Gorkha mainshock was the only event that produced clear dynamic triggering in this region. The triggering site is close to hydraulic fracturing wells that began production in 2013-2014. Hence we suspect that fluid injections may increase the region's susceptibility to remote dynamic triggering.
Han, Libo; Peng, Zhigang; Johnson, Christopher W.; Pollitz, Fred; Li, Lu; Wang, Baoshan; Wu, Jing; Li, Qiang; Wei, Hongmei
2017-01-01
We present a case of remotely triggered seismicity in Southwest China by the 2015/04/25 M7.8 Gorkha, Nepal earthquake. A local magnitude ML3.8 event occurred near the Qijiang district south of Chongqing city approximately 12 min after the Gorkha mainshock. Within 30km of this ML3.8 event there are 62 earthquakes since 2009 and only 7 ML>3events, which corresponds to a likelihood of 0.3% for a ML>3on any given day by a random chance. This observation motivates us to investigate the relationship between the ML3.8 event and the Gorkha mainshock. The ML3.8 event is listed in the China Earthquake National Center (CENC) catalog and occurred at shallow depth (∼3km). By examining high-frequency waveforms, we identify a smaller local event (∼ML2.5) ∼15s before the ML3.8 event. Both events occurred during the first two cycles of the Rayleigh waves from the Gorkha mainshock. We perform seismic event detection based on envelope function and waveform matching by using the two events as templates. Both analyses found a statistically significant rate change during the mainshock, suggesting that they were indeed dynamically triggered by the Rayleigh waves. Both events occurred during the peak normal and dilatational stress changes (∼10–30 kPa), consistent with observations of dynamic triggering in other geothermal/volcanic regions. Although other recent events (i.e., the 2011 M9.1 Tohoku-Oki earthquake) produced similar peak ground velocities, the 2015 Gorkha mainshock was the only event that produced clear dynamic triggering in this region. The triggering site is close to hydraulic fracturing wells that began production in 2013–2014. Hence we suspect that fluid injections may increase the region’s susceptibility to remote dynamic triggering.
Antarctic icequakes triggered by the 2010 Maule earthquake in Chile
NASA Astrophysics Data System (ADS)
Peng, Zhigang; Walter, Jacob I.; Aster, Richard C.; Nyblade, Andrew; Wiens, Douglas A.; Anandakrishnan, Sridhar
2014-09-01
Seismic waves from distant, large earthquakes can almost instantaneously trigger shallow micro-earthquakes and deep tectonic tremor as they pass through Earth's crust. Such remotely triggered seismic activity mostly occurs in tectonically active regions. Triggered seismicity is generally considered to reflect shear failure on critically stressed fault planes and is thought to be driven by dynamic stress perturbations from both Love and Rayleigh types of surface seismic wave. Here we analyse seismic data from Antarctica in the six hours leading up to and following the 2010 Mw 8.8 Maule earthquake in Chile. We identify many high-frequency seismic signals during the passage of the Rayleigh waves generated by the Maule earthquake, and interpret them as small icequakes triggered by the Rayleigh waves. The source locations of these triggered icequakes are difficult to determine owing to sparse seismic network coverage, but the triggered events generate surface waves, so are probably formed by near-surface sources. Our observations are consistent with tensile fracturing of near-surface ice or other brittle fracture events caused by changes in volumetric strain as the high-amplitude Rayleigh waves passed through. We conclude that cryospheric systems can be sensitive to large distant earthquakes.
NASA Astrophysics Data System (ADS)
Lupi, M.; Fuchs, Florian; Pacheco, Javier F.
2014-06-01
The M7.6 Nicoya earthquake struck at the interface between the Cocos plate and the Caribbean plate on 5 September 2012 inducing a ground acceleration of 0.5 m s-2 at the Irazú-Turrialba volcanic complex. We use data from six seismic stations deployed around and atop the Irazú-Turrialba volcanic complex to show the increase of local seismic activity after the M7.6 Nicoya earthquake. The response consists in more than 300 locatable earthquakes occurring in swarm sequences along a fault system that intersects the Irazú-Turrialba volcanic complex. In addition, we point out that major aftershocks are followed by increases of seismic activity in the same region. The weak static stress variation imposed by the main slip of the Nicoya earthquake at the Irazú-Turrialba volcanic complex suggests a dynamic triggering mechanism. We expand this concept suggesting that this behavior may be similar to the one observed in the Chilean and Japanese volcanic arcs during the M8.8 2010 Maule, Chile, and M9.0 2011 Tohoku, Japan, earthquakes. Finally, we highlight that the combined action of dynamic stress and short-lived coseismic relaxation may trigger seismic activity in geological systems in near-critical conditions.
Laboratory investigations of earthquake dynamics
NASA Astrophysics Data System (ADS)
Xia, Kaiwen
In this thesis this will be attempted through controlled laboratory experiments that are designed to mimic natural earthquake scenarios. The earthquake dynamic rupturing process itself is a complicated phenomenon, involving dynamic friction, wave propagation, and heat production. Because controlled experiments can produce results without assumptions needed in theoretical and numerical analysis, the experimental method is thus advantageous over theoretical and numerical methods. Our laboratory fault is composed of carefully cut photoelastic polymer plates (Homahte-100, Polycarbonate) held together by uniaxial compression. As a unique unit of the experimental design, a controlled exploding wire technique provides the triggering mechanism of laboratory earthquakes. Three important components of real earthquakes (i.e., pre-existing fault, tectonic loading, and triggering mechanism) correspond to and are simulated by frictional contact, uniaxial compression, and the exploding wire technique. Dynamic rupturing processes are visualized using the photoelastic method and are recorded via a high-speed camera. Our experimental methodology, which is full-field, in situ, and non-intrusive, has better control and diagnostic capacity compared to other existing experimental methods. Using this experimental approach, we have investigated several problems: dynamics of earthquake faulting occurring along homogeneous faults separating identical materials, earthquake faulting along inhomogeneous faults separating materials with different wave speeds, and earthquake faulting along faults with a finite low wave speed fault core. We have observed supershear ruptures, subRayleigh to supershear rupture transition, crack-like to pulse-like rupture transition, self-healing (Heaton) pulse, and rupture directionality.
Dehydration-driven stress transfer triggers intermediate-depth earthquakes
NASA Astrophysics Data System (ADS)
Ferrand, Thomas P.; Hilairet, Nadège; Incel, Sarah; Deldicque, Damien; Labrousse, Loïc; Gasc, Julien; Renner, Joerg; Wang, Yanbin; Green, Harry W., II; Schubnel, Alexandre
2017-05-01
Intermediate-depth earthquakes (30-300 km) have been extensively documented within subducting oceanic slabs, but their mechanics remains enigmatic. Here we decipher the mechanism of these earthquakes by performing deformation experiments on dehydrating serpentinized peridotites (synthetic antigorite-olivine aggregates, minerals representative of subduction zones lithologies) at upper mantle conditions. At a pressure of 1.1 gigapascals, dehydration of deforming samples containing only 5 vol% of antigorite suffices to trigger acoustic emissions, a laboratory-scale analogue of earthquakes. At 3.5 gigapascals, acoustic emissions are recorded from samples with up to 50 vol% of antigorite. Experimentally produced faults, observed post-mortem, are sealed by fluid-bearing micro-pseudotachylytes. Microstructural observations demonstrate that antigorite dehydration triggered dynamic shear failure of the olivine load-bearing network. These laboratory analogues of intermediate-depth earthquakes demonstrate that little dehydration is required to trigger embrittlement. We propose an alternative model to dehydration-embrittlement in which dehydration-driven stress transfer, rather than fluid overpressure, causes embrittlement.
Earthquake triggering at alaskan volcanoes following the 3 November 2002 denali fault earthquake
Moran, S.C.; Power, J.A.; Stihler, S.D.; Sanchez, J.J.; Caplan-Auerbach, J.
2004-01-01
The 3 November 2002 Mw 7.9 Denali fault earthquake provided an excellent opportunity to investigate triggered earthquakes at Alaskan volcanoes. The Alaska Volcano Observatory operates short-period seismic networks on 24 historically active volcanoes in Alaska, 247-2159 km distant from the mainshock epicenter. We searched for evidence of triggered seismicity by examining the unfiltered waveforms for all stations in each volcano network for ???1 hr after the Mw 7.9 arrival time at each network and for significant increases in located earthquakes in the hours after the mainshock. We found compelling evidence for triggering only at the Katmai volcanic cluster (KVC, 720-755 km southwest of the epicenter), where small earthquakes with distinct P and 5 arrivals appeared within the mainshock coda at one station and a small increase in located earthquakes occurred for several hours after the mainshock. Peak dynamic stresses of ???0.1 MPa at Augustine Volcano (560 km southwest of the epicenter) are significantly lower than those recorded in Yellowstone and Utah (>3000 km southeast of the epicenter), suggesting that strong directivity effects were at least partly responsible for the lack of triggering at Alaskan volcanoes. We describe other incidents of earthquake-induced triggering in the KVC, and outline a qualitative magnitude/distance-dependent triggering threshold. We argue that triggering results from the perturbation of magmatic-hydrothermal systems in the KVC and suggest that the comparative lack of triggering at other Alaskan volcanoes could be a result of differences in the nature of magmatic-hydrothermal systems.
NASA Astrophysics Data System (ADS)
Warren-Smith, Emily; Fry, Bill; Kaneko, Yoshihiro; Chamberlain, Calum J.
2018-01-01
We analyze the preparatory period of the September 2016 MW7.1 Te Araroa foreshock-mainshock sequence in the Northern Hikurangi margin, New Zealand, and subsequent reinvigoration of Te Araroa aftershocks driven by a large distant earthquake (the November 2016 MW7.8 Kaikōura earthquake). By adopting a matched-filter detection workflow using 582 well-defined template events, we generate an improved foreshock and aftershock catalog for the Te Araroa sequence (>8,000 earthquakes over 66 d). Templates characteristic of the MW7.1 sequence (including the mainshock template) detect several highly correlating events (ML2.5-3.5) starting 12 min after a MW5.7 foreshock. These pre-cursory events occurred within ∼1 km of the mainshock and migrate bilaterally, suggesting precursory slip was triggered by the foreshock on the MW7.1 fault patch prior to mainshock failure. We extend our matched-filter routine to examine the interactions between high dynamic stresses resulting from passing surface waves of the November 2016 MW7.8 Kaikōura earthquake, and the evolution of the Te Araroa aftershock sequence. We observe a sudden spike in moment release of the aftershock sequence immediately following peak dynamic Coulomb stresses of 50-150 kPa on the MW7.1 fault plane. The triggered increase in moment release culminated in a MW5.1 event, immediately followed by a ∼3 h temporal stress shadow. Our observations document the preparatory period of a major subduction margin earthquake following a significant foreshock, and quantify dynamic reinvigoration of a distant on-going major aftershock sequence amid a period of temporal clustering of seismic activity in New Zealand.
NASA Astrophysics Data System (ADS)
Peng, Z.; Yao, D.; Fry, B.; Wallace, L. M.; Kaneko, Y.; Meng, X.
2017-12-01
We conduct a systematic search for dynamically triggered earthquakes in the North Island of New Zealand following the 11/13/2016 Mw7.8 Kaikoura earthquake. This event ruptured multiple faults in the northeastern South Island of New Zealand, and propagated for more than 170 km mostly in the NE direction. By examining earthquakes listed in the GeoNet catalog, we can observe a clear increase of microseismicity in the North Island following the Kaikoura mainshock. However, visual inspection of high-frequency seismograms recorded by 130 dense broadband and short-period sensors revealed that many local earthquakes were not captured by the GeoNet catalog, likely due to being obscured by the mainshock coda and intense aftershock sequence in the South Island. To further quantify the triggering phenomenon in the North Island following the mainshock, we apply a waveform matched filter technique to obtain a more complete catalog around the mainshock occurrence time. Assuming many of the triggered North Island events occur on faults that were active prior to the Mw7.8 earthquake, we select 17,500 events listed in the GeoNet catalog from 04/2016 to 03/2017 as templates to scan through continuous data from 11/01/2017 to 11/30/2017. Currently, 19,000 additional events are detected within the one month study period, comparing to 1,950 events listed in the catalog. The initial locations from the GeoNet catalog reveal that most triggered earthquakes occurred in the uppermost crust (<20km), likely linked to inland crustal faults and/or volcanic systems. In addition, another burst of seismicity (including a magnitude 6 event) occurred near the Wairarapa coastline about 400km north of the main rupture, which was likely driven by a M7 slow slip events triggered by the mainshock. Our next step is to calibrate the magnitudes of both catalog and newly detected events by measuring their principle component slopes. In addition, we plan to measure cross-correlation differential times between newly detected and template events to obtain better relative locations, and compare seismicity rate changes with both static and dynamic stress changes to better understand the triggering mechanisms. Updated results will be presented at the meeting.
Dehydration-driven stress transfer triggers intermediate-depth earthquakes
Ferrand, Thomas P.; Hilairet, Nadège; Incel, Sarah; Deldicque, Damien; Labrousse, Loïc; Gasc, Julien; Renner, Joerg; Wang, Yanbin; Green II, Harry W.; Schubnel, Alexandre
2017-01-01
Intermediate-depth earthquakes (30–300 km) have been extensively documented within subducting oceanic slabs, but their mechanics remains enigmatic. Here we decipher the mechanism of these earthquakes by performing deformation experiments on dehydrating serpentinized peridotites (synthetic antigorite-olivine aggregates, minerals representative of subduction zones lithologies) at upper mantle conditions. At a pressure of 1.1 gigapascals, dehydration of deforming samples containing only 5 vol% of antigorite suffices to trigger acoustic emissions, a laboratory-scale analogue of earthquakes. At 3.5 gigapascals, acoustic emissions are recorded from samples with up to 50 vol% of antigorite. Experimentally produced faults, observed post-mortem, are sealed by fluid-bearing micro-pseudotachylytes. Microstructural observations demonstrate that antigorite dehydration triggered dynamic shear failure of the olivine load-bearing network. These laboratory analogues of intermediate-depth earthquakes demonstrate that little dehydration is required to trigger embrittlement. We propose an alternative model to dehydration-embrittlement in which dehydration-driven stress transfer, rather than fluid overpressure, causes embrittlement. PMID:28504263
Dehydration-driven stress transfer triggers intermediate-depth earthquakes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferrand, Thomas P.; Hilairet, Nadège; Incel, Sarah
Intermediate-depth earthquakes (30–300 km) have been extensively documented within subducting oceanic slabs, but their mechanics remains enigmatic. Here in this paper we decipher the mechanism of these earthquakes by performing deformation experiments on dehydrating serpentinized peridotites (synthetic antigorite-olivine aggregates, minerals representative of subduction zones lithologies) at upper mantle conditions. At a pressure of 1.1 gigapascals, dehydration of deforming samples containing only 5 vol% of antigorite suffices to trigger acoustic emissions, a laboratory-scale analogue of earthquakes. At 3.5 gigapascals, acoustic emissions are recorded from samples with up to 50 vol% of antigorite. Experimentally produced faults, observed post-mortem, are sealed by fluid-bearingmore » micro-pseudotachylytes. Microstructural observations demonstrate that antigorite dehydration triggered dynamic shear failure of the olivine load-bearing network. These laboratory analogues of intermediatedepth earthquakes demonstrate that little dehydration is required to trigger embrittlement. We propose an alternative model to dehydration-embrittlement in which dehydration-driven stress transfer, rather than fluid overpressure, causes embrittlement.« less
Dehydration-driven stress transfer triggers intermediate-depth earthquakes
Ferrand, Thomas P.; Hilairet, Nadège; Incel, Sarah; ...
2017-05-15
Intermediate-depth earthquakes (30–300 km) have been extensively documented within subducting oceanic slabs, but their mechanics remains enigmatic. Here in this paper we decipher the mechanism of these earthquakes by performing deformation experiments on dehydrating serpentinized peridotites (synthetic antigorite-olivine aggregates, minerals representative of subduction zones lithologies) at upper mantle conditions. At a pressure of 1.1 gigapascals, dehydration of deforming samples containing only 5 vol% of antigorite suffices to trigger acoustic emissions, a laboratory-scale analogue of earthquakes. At 3.5 gigapascals, acoustic emissions are recorded from samples with up to 50 vol% of antigorite. Experimentally produced faults, observed post-mortem, are sealed by fluid-bearingmore » micro-pseudotachylytes. Microstructural observations demonstrate that antigorite dehydration triggered dynamic shear failure of the olivine load-bearing network. These laboratory analogues of intermediatedepth earthquakes demonstrate that little dehydration is required to trigger embrittlement. We propose an alternative model to dehydration-embrittlement in which dehydration-driven stress transfer, rather than fluid overpressure, causes embrittlement.« less
Hill, David P.
2015-01-01
Accumulating evidence, although still strongly spatially aliased, indicates that although remote dynamic triggering of small-to-moderate (Mw<5) earthquakes can occur in all tectonic settings, transtensional stress regimes with normal and subsidiary strike-slip faulting seem to be more susceptible to dynamic triggering than transpressional regimes with reverse and subsidiary strike-slip faulting. Analysis of the triggering potential of Love- and Rayleigh-wave dynamic stresses incident on normal, reverse, and strike-slip faults assuming Andersonian faulting theory and simple Coulomb failure supports this apparent difference for rapid-onset triggering susceptibility.
Welcome to Pacific Earthquake Engineering Research Center - PEER
Triggering and Effects at Silty Soil Sites" - PEER Research Project Highlight: "Dissipative Base ; Upcoming Events More June 10-13, 2018 Geotechnical Earthquake Engineering and Soil Dynamics V 2018 - Call
Aftershocks and triggering processes in rock fracture
NASA Astrophysics Data System (ADS)
Davidsen, J.; Kwiatek, G.; Goebel, T.; Stanchits, S. A.; Dresen, G.
2017-12-01
One of the hallmarks of our understanding of seismicity in nature is the importance of triggering processes, which makes the forecasting of seismic activity feasible. These triggering processes by which one earthquake induces (dynamic or static) stress changes leading to potentially multiple other earthquakes are at the core relaxation processes. A specic example of triggering are aftershocks following a large earthquake, which have been observed to follow certain empirical relationships such as the Omori-Utsu relation. Such an empirical relation should arise from the underlying microscopic dynamics of the involved physical processes but the exact connection remains to be established. Simple explanations have been proposed but their general applicability is unclear. Many explanations involve the picture of an earthquake as a purely frictional sliding event. Here, we present experimental evidence that these empirical relationships are not limited to frictional processes but also arise in fracture zone formation and are mostly related to compaction-type events. Our analysis is based on tri-axial compression experiments under constant displacement rate on sandstone and granite samples using spatially located acoustic emission events and their focal mechanisms. More importantly, we show that event-event triggering plays an important role in the presence of large-scale or macrocopic imperfections while such triggering is basically absent if no signicant imperfections are present. We also show that spatial localization and an increase in activity rates close to failure do not necessarily imply triggering behavior associated with aftershocks. Only if a macroscopic crack is formed and its propagation remains subcritical do we observe significant triggering.
The 11 April 2012 east Indian Ocean earthquake triggered large aftershocks worldwide
Pollitz, Fred F.; Stein, Ross S.; Sevilgen, Volkan; Burgmann, Roland
2012-01-01
Large earthquakes trigger very small earthquakes globally during passage of the seismic waves and during the following several hours to days1, 2, 3, 4, 5, 6, 7, 8, 9, 10, but so far remote aftershocks of moment magnitude M≥5.5 have not been identified11, with the lone exception of an M=6.9 quake remotely triggered by the surface waves from an M=6.6 quake 4,800 kilometres away12. The 2012 east Indian Ocean earthquake that had a moment magnitude of 8.6 is the largest strike-slip event ever recorded. Here we show that the rate of occurrence of remote M≥5.5 earthquakes (>1,500 kilometres from the epicentre) increased nearly fivefold for six days after the 2012 event, and extended in magnitude to M≥7. These global aftershocks were located along the four lobes of Love-wave radiation; all struck where the dynamic shear strain is calculated to exceed 10-7 for at least 100 seconds during dynamic-wave passage. The other M≥8.5 mainshocks during the past decade are thrusts; after these events, the global rate of occurrence of remote M≥5.5 events increased by about one-third the rate following the 2012 shock and lasted for only two days, a weaker but possibly real increase. We suggest that the unprecedented delayed triggering power of the 2012 earthquake may have arisen because of its strike-slip source geometry or because the event struck at a time of an unusually low global earthquake rate, perhaps increasing the number of nucleation sites that were very close to failure.
Dynamic triggering of low magnitude earthquakes in the Middle American Subduction Zone
NASA Astrophysics Data System (ADS)
Escudero, C. R.; Velasco, A. A.
2010-12-01
We analyze global and Middle American Subduction Zone (MASZ) seismicity from 1998 to 2008 to quantify the transient stresses effects at teleseismic distances. We use the Bulletin of the International Seismological Centre Catalog (ISCCD) published by the Incorporated Research Institutions for Seismology (IRIS). To identify MASZ seismicity changes due to distant, large (Mw >7) earthquakes, we first identify local earthquakes that occurred before and after the mainshocks. We then group the local earthquakes within a cluster radius between 75 to 200 km. We obtain statistics based on characteristics of both mainshocks and local earthquakes clusters, such as local cluster-mainshock azimuth, mainshock focal mechanism, and local earthquakes clusters within the MASZ. Due to lateral variations of the dip along the subducted oceanic plate, we divide the Mexican subduction zone in four segments. We then apply the Paired Samples Statistical Test (PSST) to the sorted data to identify increment, decrement or either in the local seismicity associated with distant large earthquakes. We identify dynamic triggering for all MASZ segments produced by large earthquakes emerging from specific azimuths, as well as, a decrease for some cases. We find no depend of seismicity changes due to focal mainshock mechanism.
The Springdale, Utah, landslide: An extraordinary event
Jibson, R.W.; Harp, E.L.
1996-01-01
The most dramatic geologic effect of the M-5.7 St. George, Utah earthquake of 2 September 1992 was the triggering of the 14,000,000-m3 Springdale, Utah landslide. The roughly 10 m of landslide movement destroyed three houses, threatened several condominiums, disrupted utility lines, and temporarily closed the southwest entrance to Zion National Park. The seismic triggering of this landslide is puzzling because its distance from the earthquake epicenter, 44 km, is much greater than the farthest distance (18 km) at which similar landslides have been triggered in worldwide earthquakes of the same magnitude. Other Colorado Plateau earthquakes also have produced landslides far beyond worldwide distance limits, which suggests that regional variations in ground-shaking attenuation may require different landslide-triggering distance limits for different seismotectonic regions. Slope stability analysis and historical records of landslide movement suggest that the Springdale landslide was only slightly above limit-equilibrium conditions at the time of the earthquake. Dynamic stability analysis using Newmark's permanent-displacement method indicates coseismic landslide displacement of only 1-8 cm; this rather modest displacement probably induced enough deformation in the montmorillonitic clays along the failure surface to reduce shear strength and destabilize the slide, which continued to move for several hours after the earthquake.
Peng, Zhigang; Shelly, David R.; Ellsworth, William L.
2015-01-01
Large, distant earthquakes are known to trigger deep tectonic tremor along the San Andreas Fault and in subduction zones. However, there are relatively few observations of triggering from regional distance earthquakes. Here we show that a small tremor episode about 12–18 km NW of Parkfield was triggered during and immediately following the passage of surface waves from the 2014 Mw 6.0 South Napa main shock. More notably, a major tremor episode followed, beginning about 12 h later, and centered SE of Parkfield near Cholame. This major episode is one of the largest seen over the past several years, containing intense activity for ~3 days and taking more than 3 weeks to return to background levels. This episode showed systematic along-strike migration at ~5 km/d, suggesting that it was driven by a slow-slip event. Our results suggest that moderate-size earthquakes are capable of triggering major tremor and deep slow slip at regional distances.
NASA Astrophysics Data System (ADS)
Kilb, Debi
2003-01-01
The 1992 M7.3 Landers earthquake may have played a role in triggering the 1999 M7.1 Hector Mine earthquake as suggested by their close spatial (˜20 km) proximity. Current investigations of triggering by static stress changes produce differing conclusions when small variations in parameter values are employed. Here I test the hypothesis that large-amplitude dynamic stress changes, induced by the Landers rupture, acted to promote the Hector Mine earthquake. I use a flat layer reflectivity method to model the Landers earthquake displacement seismograms. By requiring agreement between the model seismograms and data, I can constrain the Landers main shock parameters and velocity model. A similar reflectivity method is used to compute the evolution of stress changes. I find a strong positive correlation between the Hector Mine hypocenter and regions of large (>4 MPa) dynamic Coulomb stress changes (peak Δσf(t)) induced by the Landers main shock. A positive correlation is also found with large dynamic normal and shear stress changes. Uncertainties in peak Δσf(t) (1.3 MPa) are only 28% of the median value (4.6 MPa) determined from an extensive set (160) of model parameters. Therefore the correlation with dynamic stresses is robust to a range of Hector Mine main shock parameters, as well as to variations in the friction and Skempton's coefficients used in the calculations. These results imply dynamic stress changes may be an important part of earthquake trigging, such that large-amplitude stress changes alter the properties of an existing fault in a way that promotes fault failure.
Triggered Seismicity in Utah from the November 3, 2002, Denali Fault Earthquake
NASA Astrophysics Data System (ADS)
Pankow, K. L.; Nava, S. J.; Pechmann, J. C.; Arabasz, W. J.
2002-12-01
Coincident with the arrival of the surface waves from the November 3, 2002, Mw 7.9 Denali Fault, Alaska earthquake (DFE), the University of Utah Seismograph Stations (UUSS) regional seismic network detected a marked increase in seismicity along the Intermountain Seismic Belt (ISB) in central and north-central Utah. The number of earthquakes per day in Utah located automatically by the UUSS's Earthworm system in the week following the DFE was approximately double the long-term average during the preceding nine months. From these preliminary data, the increased seismicity appears to be characterized by small magnitude events (M = 3.2) and concentrated in five distinct spatial clusters within the ISB between 38.75°and 42.0° N. The first of these earthquakes was an M 2.2 event located ~20 km east of Salt Lake City, Utah, which occurred during the arrival of the Love waves from the DFE. The increase in Utah earthquake activity at the time of the arrival of the surface waves from the DFE suggests that these surface waves triggered earthquakes in Utah at distances of more than 3,000 km from the source. We estimated the peak dynamic shear stress caused by these surface waves from measurements of their peak vector velocities at 43 recording sites: 37 strong-motion stations of the Advanced National Seismic System and six broadband stations. (The records from six other broadband instruments in the region of interest were clipped.) The estimated peak stresses ranged from 1.2 bars to 3.5 bars with a mean of 2.3 bars, and generally occurred during the arrival of Love waves of ~15 sec period. These peak dynamic shear stress estimates are comparable to those obtained from recordings of the 1992 Mw 7.3 Landers, California, earthquake in regions where the Landers earthquake triggered increased seismicity. We plan to present more complete analyses of UUSS seismic network data, further testing our hypothesis that the DFE remotely triggered seismicity in Utah. This hypothesis is important to investigate because well-documented evidence for triggering of seismicity by distant earthquakes comes primarily from areas characterized by recent volcanic or geothermal activity. The regions of apparent triggered seismicity from the DFE in Utah fall into neither of these two categories.
NASA Astrophysics Data System (ADS)
Ito, Y.; Wallace, L. M.; Henrys, S. A.; Kaneko, Y.; Webb, S. C.; Muramoto, T.; Ohta, K.; Mochizuki, K.; Suzuki, S.; Kido, M.; Hino, R.
2017-12-01
The two M7-class earthquakes struck in New Zealand in 2016. One is the M7.1 Te Araroa earthquake on 1st September, and the other is the M7.8 Kaikoura earthquake on 14th November. The M7.1 earthquake struck offshore, following a sequence of the Hikurangi slow slip event on the northern Hikurangi Margin. The M7.8 Kaikoura earthquake has triggered a shallow slow slip event of northern Hikurangi subduction margin. We present seismic and tsunami waves radiated from two large earthquakes of M7.8 Kaikoura and M7.1 Te Araroa earthquakes in 2016 using a network of absolute pressure gauges (APG) deployed at the Hikurangi subduction margin offshore New Zealand. We deployed 5 APG on the accretionary wedge at the northen part of the Hikurangi margnin in June 2016 at the northern part of Hikurangi subducting margin, and were recovered in June 2015. The pressure gauge recorded data continuously for one year, with a logging interval of 1 or 2 s. Our processing of the APG data to identify seismic is a band pass filter with a range of 10-100 s is applied for seismic signals. We observed seismic waves radiated from both the M7.8 Kaikoura and M7.1 Te Araroa earthquakes. The pressure fluctuation more than 20 hPa from the arrivals of seismic waves was observed on two both earthquakes. It should be noted that marine pressure records are nearly equivalent to vertical acceleration measurements [Webb, 1998]. Specifically, on the M7.8 Kaikoura earthquake, the characteristic seismic signals with large amplitude more than 20 hPa lasting more than 300 s was observed on the all of four APGs. The long duration seismic waves with relatively large amplitude observed after the 7.8 Kaikoura earthquake would dynamically trigger the Hikurangi slow slip event; the dynamic triggering and characteristic seismic waves in the accretionary wedge has been predicted from a wave-field modeling using a 3D velocity model with a low-velocity sedimentary basin [Wallace et al., 2017].
Bodin, Paul; Gomberg, Joan
1994-01-01
This article presents evidence for the channeling of strain energy released by the Ms = 7.4 Landers, California, earthquake within the eastern California shear zone (ECSZ). We document an increase in seismicity levels during the 22-hr period starting with the Landers earthquake and culminating 22 hr later with the Ms = 5.4 Little Skull Mountain (LSM), Nevada, earthquake. We evaluate the completeness of regional seismicity catalogs during this period and find that the continuity of post-Landers strain release within the ECSZ is even more pronounced than is evident from the catalog data. We hypothesize that regional-scale connectivity of faults within the ECSZ and LSM region is a critical ingredient in the unprecedented scale and distribution of remotely triggered earthquakes and geodetically manifest strain changes that followed the Landers earthquake. The viability of static strain changes as triggering agents is tested using numerical models. Modeling results illustrate that regional-scale fault connectivity can increase the static strain changes by approximately an order of magnitude at distances of at least 280 km, the distance between the Landers and LSM epicenters. This is possible for models that include both a network of connected faults that slip “sympathetically” and realistic levels of tectonic prestrain. Alternatively, if dynamic strains are a more significant triggering agent than static strains, ECSZ structure may still be important in determining the distribution of triggered seismic and aseismic deformation.
Source characterization and dynamic fault modeling of induced seismicity
NASA Astrophysics Data System (ADS)
Lui, S. K. Y.; Young, R. P.
2017-12-01
In recent years there are increasing concerns worldwide that industrial activities in the sub-surface can cause or trigger damaging earthquakes. In order to effectively mitigate the damaging effects of induced seismicity, the key is to better understand the source physics of induced earthquakes, which still remain elusive at present. Furthermore, an improved understanding of induced earthquake physics is pivotal to assess large-magnitude earthquake triggering. A better quantification of the possible causes of induced earthquakes can be achieved through numerical simulations. The fault model used in this study is governed by the empirically-derived rate-and-state friction laws, featuring a velocity-weakening (VW) patch embedded into a large velocity-strengthening (VS) region. Outside of that, the fault is slipping at the background loading rate. The model is fully dynamic, with all wave effects resolved, and is able to resolve spontaneous long-term slip history on a fault segment at all stages of seismic cycles. An earlier study using this model has established that aseismic slip plays a major role in the triggering of small repeating earthquakes. This study presents a series of cases with earthquakes occurring on faults with different fault frictional properties and fluid-induced stress perturbations. The effects to both the overall seismicity rate and fault slip behavior are investigated, and the causal relationship between the pre-slip pattern prior to the event and the induced source characteristics is discussed. Based on simulation results, the subsequent step is to select specific cases for laboratory experiments which allow well controlled variables and fault parameters. Ultimately, the aim is to provide better constraints on important parameters for induced earthquakes based on numerical modeling and laboratory data, and hence to contribute to a physics-based induced earthquake hazard assessment.
Systematic Analysis of Dynamic Earthquake Triggering Using the EarthScope's USArray Data
NASA Astrophysics Data System (ADS)
Cerda, I.; Gonzalez-Huizar, H.; Velasco, A. A.; Kilb, D. L.; Pankow, K. L.
2011-12-01
Advances are continually made in our understanding of the physics governing earthquake triggering, yet many questions remain. Here, we investigate if there exists a minimum dynamic stress threshold (i.e., in amplitude, frequency or both) required to trigger remote earthquakes using data collected by >400 stations in EarthScope's USArray Transportable Array (USArray TA) network, supplemented by data from ~100 local seismic network stations when available. We also assess if remote triggering is enhanced if the orientation of the passing seismic waves aligns favorably with the local stress field and/or orientation of faults in the local triggered region. The uniform spacing of the USArray TA stations across the contiguous USA allows us to examine these types of characteristics of remote triggering within a variety of tectonic provinces, background seismicity rates, and within regions of both documented cases of triggered earthquakes and areas of no known triggered earthquakes. Our work focuses on assessing remote triggering capabilities of two teleseismic megatrust events (Japan M=9.0 2011 and Chile M=8.8 2010) and two large regional events (Baja California M=7.2 2010 and Wells Nevada M=6.0 2008). These events provide a range of seismic wave amplitudes and orientations across the footprint of the USArray TA stations. We use the Antelope software to develop an automated detection algorithm that computes the short-term (1 s) average (STA) to long-term (10 s) average (LTA) ratio, which we apply to 5 Hz high pass filtered data. Using a threshold ratio of 3.5 we apply this algorithm to data spanning ±5 hours from the mainshock's P-wave arrival time. We find that for each of our four mainshocks our algorithm nets, on average, hundreds of detections within the 10 hour time windows. Results suggest the orientation of the passing seismic waves can play a role in the high (or low) number of detections in select regions (e.g., western part of Texas), but in other regions there is no apparent correlation.
Parsons, Thomas E.; Margaret Segou,; Warner Marzocchi,
2014-01-01
The aftershock zone of each large (M ≥ 7) earthquake extends throughout the shallows of planet Earth. Most aftershocks cluster near the mainshock rupture, but earthquakes send out shivers in the form of seismic waves, and these temporary distortions are large enough to trigger other earthquakes at global range. The aftershocks that happen at great distance from their mainshock are often superposed onto already seismically active regions, making them difficult to detect and understand. From a hazard perspective we are concerned that this dynamic process might encourage other high magnitude earthquakes, and wonder if a global alarm state is warranted after every large mainshock. From an earthquake process perspective we are curious about the physics of earthquake triggering across the magnitude spectrum. In this review we build upon past studies that examined the combined global response to mainshocks. Such compilations demonstrate significant rate increases during, and immediately after (~ 45 min) M > 7.0 mainshocks in all tectonic settings and ranges. However, it is difficult to find strong evidence for M > 5 rate increases during the passage of surface waves in combined global catalogs. On the other hand, recently published studies of individual large mainshocks associate M > 5 triggering at global range that is delayed by hours to days after surface wave arrivals. The longer the delay between mainshock and global aftershock, the more difficult it is to establish causation. To address these questions, we review the response to 260 M ≥ 7.0 shallow (Z ≤ 50 km) mainshocks in 21 global regions with local seismograph networks. In this way we can examine the detailed temporal and spatial response, or lack thereof, during passing seismic waves, and over the 24 h period after their passing. We see an array of responses that can involve immediate and widespread seismicity outbreaks, delayed and localized earthquake clusters, to no response at all. About 50% of the catalogs that we studied showed possible (localized delayed) remote triggering, and ~ 20% showed probable (instantaneous broadly distributed) remote triggering. However, in any given region, at most only about 2–3% of global mainshocks caused significant local earthquake rate increases. These rate increases are mostly composed of small magnitude events, and we do not find significant evidence of dynamically triggered M > 5 earthquakes. If we assume that the few observed M > 5 events are triggered, we find that they are not directly associated with surface wave passage, with first incidences being 9–10 h later. We note that mainshock magnitude, relative proximity, amplitude spectra, peak ground motion, and mainshock focal mechanisms are not reliable determining factors as to whether a mainshock will cause remote triggering. By elimination, azimuth, and polarization of surface waves with respect to receiver faults may be more important factors.
NASA Astrophysics Data System (ADS)
Farías, Cristian; Galván, Boris; Miller, Stephen A.
2017-09-01
Earthquake triggering of hydrothermal and volcanic systems is ubiquitous, but the underlying processes driving these systems are not well-understood. We numerically investigate the influence of seismic wave interaction with volcanic systems simulated as a trapped, high-pressure fluid reservoir connected to a fluid-filled fault system in a 2-D poroelastic medium. Different orientations and earthquake magnitudes are studied to quantify dynamic and static stress, and pore pressure changes induced by a seismic event. Results show that although the response of the system is mainly dominated by characteristics of the radiated seismic waves, local structures can also play an important role on the system dynamics. The fluid reservoir affects the seismic wave front, distorts the static overpressure pattern induced by the earthquake, and concentrates the kinetic energy of the incoming wave on its boundaries. The static volumetric stress pattern inside the fault system is also affected by the local structures. Our results show that local faults play an important role in earthquake-volcanic systems dynamics by concentrating kinetic energy inside and acting as wave-guides that have a breakwater-like behavior. This generates sudden changes in pore pressure, volumetric expansion, and stress gradients. Local structures also influence the regional Coulomb yield function. Our results show that local structures affect the dynamics of volcanic and hydrothermal systems, and should be taken into account when investigating triggering of these systems from nearby or distant earthquakes.
NASA Astrophysics Data System (ADS)
Enescu, B.; Chao, K.; Obara, K.; Peng, Z.; Matsuzawa, T.; Yagi, Y.
2013-12-01
The triggering of deep non-volcanic tremor (NVT) in the Nankai region, southwest Japan, by the surface waves of several large teleseismic earthquakes has been well documented (e.g., Miyazawa & Mori, 2005). These previous studies report that the Nankai NVT is primarily triggered by the passage of Rayleigh waves from the teleseismic events (e.g., Miyazawa & Brodsky, 2008). The relative lack of Love wave triggering in Nankai would be, however, an exception to the general observation that triggered tremor shows a positive correlation with the triggering potential, defined using the Coulomb failure criteria (Hill, 2012). To clarify the Nankai NVT triggering mechanism, we have systematically searched for triggered tremor due to large teleseismic events (Mw ≥ 7.5) occurred from 2001 to 2012. Our present analysis focuses on western Shikoku, where triggered NVT has been previously reported (e.g., Miyazawa & Mori, 2006). From a total of 55 teleseismic events, 18 show associated triggered NVT. Our analysis presents clear evidence of triggered NVT that correlates well with the passage of Love waves. The most outstanding example is that of the 2012 M8.6 Sumatra earthquake, a strike-slip event characterized by relatively large amplitude Love waves. The incoming surface waves from this earthquake are almost strike-parallel to the Nankai subduction zone, which corresponds to a higher Love wave triggering potential (Hill, 2012). The 2001 M7.8 Kunlun, the 2003 M8.3 Tokachi-oki, the 2004 M9.2 & 2007 M8.5 Sumatra, the 2006 M8.3 Kuril-Islands and the 2008 M7.9 Wenchuan earthquakes show as well Love-wave associated NVT triggering. In most of these cases the tremor is initiated by the incoming, faster-traveling Love waves and continues during the latter, larger-amplitude Rayleigh waves. We are also conducting dynamic stress modeling to better understand the triggering mechanism of tremor. Our approach builds up on the methods of Gonzalez-Huizar & Velasco (2011) and Obara (2012). In the case of the 2012 Sumatra earthquake, we found a high correlation between the Love waves dynamic Coulomb stress change at the tremor source and the triggered NVT, for a time period of about 400s, which starts from the first Love wave cycles. Afterwards, the tremor bursts have slightly larger amplitudes and the correlation with the surface waves becomes poor. Preliminary results indicate a shallower location for these later tremors. Our results indicate that the triggering mechanism of NVT in western Shikoku is essentially the same with the one operating (e.g., Hill, 2012) in other subduction regions around the world (e.g., Cascadia). The tremor responds to excitation by both Love and Rayleigh waves according to the Coulomb failure criterion; failure, once underway, might be controlled by other mechanisms (e.g., some form of rate-state friction), which we plan to address in future studies.
Remotely triggered nonvolcanic tremor in Sumbawa, Indonesia
NASA Astrophysics Data System (ADS)
Fuchs, Florian; Lupi, Matteo; Miller, Stephen
2015-04-01
Nonvolcanic (or tectonic) tremor is a seismic phenomenom which can provide important information about dynamics of plate boundaries but the underlying mechanisms are not well understood. Tectonic tremor is often associated with slow-slip (termed episodic tremor and slip) and understanding the mechanisms driving tremor presents an important challenge because it is likely a dominant aspect of the evolutionary processes leading to tsunamigenic, megathrust subduction zone earthquakes. Tectonic tremor is observed worldwide, mainly along major subduction zones and plate boundaries such as in Alaska/Aleutians, Cascadia, the San Andreas Fault, Japan or Taiwan. We present, for the first time, evidence for triggered tremor beneath the island of Sumbawa, Indonesia. The island of Sumbawa, Indonesia, is part of the Lesser Sunda Group about 250 km north of the Australian/Eurasian plate collision at the Java Trench with a convergence rate of approximately 70 mm/yr. We show surface wave triggered tremor beneath Sumbawa in response to three teleseismic earthquakes: the Mw9.0 2011 Tohoku earthquake and two oceanic strike-slip earthquakes (Mw 8.6 and Mw8.2) offshore of Sumatra in 2012. Tremor amplitudes scale with ground motion and peak at 180 nm/s ground velocity on the horizontal components. A comparison of ground motion of the three triggering events and a similar (nontriggering) Mw7.6 2012 Philippines event constrains an apparent triggering threshold of approximately 1 mm/s ground velocity or 8 kPa dynamic stress. Surface wave periods of 45-65 s appear optimal for triggering tremor at Sumbawa which predominantly correlates with Rayleigh waves, even though the 2012 oceanic events have stronger Love wave amplitudes and triggering potential. Rayleigh wave triggering, low-triggering amplitudes, and the tectonic setting all favor a model of tremor generated by localized fluid transport. We could not locate the tremor because of minimal station coverage, but data indicate several potential source volumes including the Flores Thrust, the Java subduction zone, or Tambora volcano.
NASA Astrophysics Data System (ADS)
Johnson, Christopher W.
Decomposing fault mechanical processes advances our understanding of active fault systems and properties of the lithosphere, thereby increasing the effectiveness of seismic hazard assessment and preventative measures implemented in urban centers. Along plate boundaries earthquakes are inevitable as tectonic forces reshape the Earth's surface. Earthquakes, faulting, and surface displacements are related systems that require multidisciplinary approaches to characterize deformation in the lithosphere. Modern geodetic instrumentation can resolve displacements to millimeter precision and provide valuable insight into secular deformation in near real-time. The expansion of permanent seismic networks as well as temporary deployments allow unprecedented detection of microseismic events that image fault interfaces and fracture networks in the crust. The research presented in this dissertation is at the intersection of seismology and geodesy to study the Earth's response to transient deformation and explores research questions focusing on earthquake triggering, induced seismicity, and seasonal loading while utilizing seismic data, geodetic data, and modeling tools. The focus is to quantify stress changes in the crust, explore seismicity rate variations and migration patterns, and model crustal deformation in order to characterize the evolving state of stress on faults and the migration of fluids in the crust. The collection of problems investigated all investigate the question: Why do earthquakes nucleate following a low magnitude stress perturbation? Answers to this question are fundamental to understanding the time dependent failure processes of the lithosphere. Dynamic triggering is the interaction of faults and triggering of earthquakes represents stress transferring from one system to another, at both local and remote distances [Freed, 2005]. The passage of teleseismic surface waves from the largest earthquakes produce dynamic stress fields and provides a natural laboratory to explore the causal relationship between low-amplitude stress changes and dynamically triggered events. Interestingly, observations of dynamically triggered M≥5.5 earthquakes are absent in the seismic records [Johnson et al., 2015; Parsons and Velasco, 2011], which invokes questions regarding whether or not large magnitude events can be dynamically triggered. Emerging results in the literature indicate undocumented M≥5.5 events at near to intermediate distances are dynamically triggered during the passage of surface waves but are undetected by automated networks [Fan and Shearer, 2016]. This raises new questions about the amplitude and duration of dynamic stressing for large magnitude events. I used 35-years of global seismicity and find that large event rate increases only occur following a delay from the transient load, suggesting aseismic processes are associated with large magnitude triggered events. To extend this finding I investigated three cases of large magnitude delayed dynamic triggering following the M8.6 2012 Indian Ocean earthquake [Pollitz et al., 2012] by producing microseismicity catalogs and modeling the transient stresses. The results indicate immediate triggering of microseismic events that hours later culminate into a large magnitude event and support the notion that large magnitude events are triggerable by transient loading, but seismic and aseismic processes (e.g. induced creep or fluid mobilization) are contributing to the nucleation process. Open questions remain concerning the source of a nucleation delay period following a stress perturbation that require both geodetic and seismic observations to constrain the source of delayed dynamic triggering and possibly provide insight into a precursory nucleation phase. Induced seismicity has gained much attention in the past 5 years as earthquake rates in regions of low tectonic strain accumulation accelerate to unprecedented levels [Ellsworth, 2013]. The source of the seismicity is attributed to shallow fluid injection associated with energy production. As hydrocarbon extraction continues to increase in the U.S. the deformation and induced seismicity from wastewater injection is providing new avenues to explore crustal properties. The large magnitude events associated with regions of high rate injection support the notion that the crust is critically stressed. Seismic data in these areas provides the opportunity to delineate fault structures in the crust using precise earthquake locations. To augment the studies of transient loading cycles I investigated induced seismicity at The Geysers geothermal field in northern California. Using high-resolution hypocenter data I implement an epidemic type aftershock sequence (ETAS) model to develop seismicity rate time series in the active geothermal field and characterize the migration of fluids from high volume water injection. Subtle stress changes induced by thermo- and poroelastic strains trigger seismicity for 5 months after peak injection at depths 3 km below the main injection interval. This suggests vertical migration paths are maintained in the geothermal field that allows fluid propagation on annual time scales. Fully describing the migration pattern of fluids in the crust and the associated stresses are applicable to tectonic related faulting and triggered seismic activity. Seasonal hydrological loading is a source of annual periodic transient deformation that is ideal for investigating the modulation of seismicity. The initial step in exploring the modulation of seismicity is to validate that a significant annual period does exist in California earthquake records. The periodicity results [Dutilleul et al., 2015] motivate continued investigation of seismically active regions that experience significant seasonal mass loading, i.e. high precipitation and snowfall rates, to quantify the magnitude of seasonal stress changes and possible correlation with seismicity modulation. The implication of this research addresses questions concerning the strength and state of stress on faults. High-resolution water storage time series throughout California are developed using continuous GPS records. The results allow an estimation of the stress changes induced by hydrological loading, which is combined with a detailed focal mechanism analysis to characterize the modulation of seismicity. The hydrologic loading is augmented with the contribution of additional deformation sources (e.g. tidal, atmosphere, and temperature) and find that annual stress changes of 5 kPa are modulating seismicity, most notably on dip-slip structures. These observations suggest that mechanical differences exist between the vertically dipping strike-slip faults and the shallowly dipping oblique structures in California. When comparing all the annual loading cycles it is evident that future studies incorporate all the sources of solid Earth deformation to fully describe the stresses realized on fault systems that respond to seasonal loads.
Increases in seismicity rate in the Tokyo Metropolitan area after the 2011 Tohoku Earthquake
NASA Astrophysics Data System (ADS)
Ishibe, T.; Satake, K.; Sakai, S.; Shimazaki, K.; Tsuruoka, H.; Nakagawa, S.; Hirata, N.
2013-12-01
Abrupt increases in seismicity rate have been observed in the Kanto region, where the Tokyo Metropolitan area is located, after the 2011 off the Pacific coast of Tohoku earthquake (M9.0) on March 11, 2011. They are well explained by the static increases in the Coulomb Failure Function (ΔCFF) imparted by the gigantic thrusting while some other possible factors (e.g., dynamic stress changes, excess of fluid dehydration, post-seismic slip) may also contribute the rate changes. Because of various types of earthquakes with different focal mechanisms occur in the Kanto region, the receiver faults for the calculation of ΔCFF were assumed to be two nodal planes of small earthquakes before and after the Tohoku earthquake. The regions where seismicity rate increased after the Tohoku earthquake well correlate with concentration on positive ΔCFF (i.e., southwestern Ibaraki and northern Chiba prefectures where intermediate-depth earthquakes occur, and in the shallow crust of western Kanagawa, eastern Shizuoka, and southeastern Yamanashi including the Izu and Hakone regions). The seismicity rate has increased since March 11, 2011 with respect to the Epidemic Type Aftershock Sequence (ETAS) model (Ogata, 1988), suggesting that the rate increase was due to the stress increase by the Tohoku earthquake. Furthermore, the z-values immediately after the Tohoku earthquake show the minimum values during the recent 10 years, indicating significant increases in seismicity rate. At intermediate depth, abrupt increases in thrust faulting earthquakes are well consistent with the Coulomb stress increase. At shallow depth, the earthquakes with the T-axes of roughly NE-SW were activated probably due to the E-W extension of the overriding continental plate, and this is also well explained by the Coulomb stress increase. However, the activated seismicity in the Izu and Hakone regions rapidly decayed following the Omori-Utsu formula, while the increased rate of seismicity in the southwestern Ibaraki and northern Chiba prefectures is still continuing. The ΔCFF values for the earthquakes after March 2011 show more positive values than those before March 2011, supporting a triggering hypothesis that the 2011 Tohoku earthquake triggered the seismicity changes in the Kanto region. Dynamic stress changes due to the passage of seismic waves would also contribute the rate changes. Indeed, many remotely-triggered local events, whose occurrence times are well correlated with the arrival times of impulsive P-wave or large amplitudes of Rayleigh or Love waves, were identified from densely distributed seismograms in Japanese islands (e.g., Yukutake et al., 2011; Miyazawa, 2012). Indirectly triggered earthquakes also contribute because stress changes from neighboring indirect aftershocks could be comparable with or larger than those from a distant mainshock. Post-seismic slip and viscoelastic effects will increase the importance of earthquake triggering.
NASA Astrophysics Data System (ADS)
Fan, W.; Shearer, P. M.
2017-12-01
Fan and Shearer [2016] analyzed the 2012 Mw 7.2 Sumatra earthquake and reported that the earthquake dynamically triggered early aftershock/aftershocks 150 km away from the mainshock and 50 s later. The early aftershock/aftershocks were detected with teleseismic P-wave back-projection, coincided with passing surface waves, and showed observable seismic waveforms in a wide frequency range (0.02—5 Hz). Recently, however, Yue et al. [2017] interpreted these coda arrivals as water reverberations from the mainshock, based mostly on EGF analysis of a nearby M6 earthquake and a water-phase synthetic test. Here, we show detailed back-projection and waveform analysis of three M6 earthquakes within 100km of the Mw 7.2 earthquake, including the EGF event analyzed in Yue et al. [2017]. In addition, we examine the waveforms of three M5.5 reverse faulting earthquakes close to our detected early aftershock landward of the trench. Our results show that the coda energy in question is more likely caused by a separate earthquake near the trench than by a mainshock water reverberation phase, thus supporting our earlier conclusion that the detected coherent radiators are likely to be dynamically triggered early aftershock/aftershocks.
Investigation of Potential Triggered Tremor in Latin America and the Caribbean
NASA Astrophysics Data System (ADS)
Gonzalez-Huizar, H.; Velasco, A. A.; Peng, Z.
2012-12-01
Recent observations have shown that seismic waves generate transient stresses capable of triggering earthquakes and tectonic (or non-volcanic) tremor far away from the original earthquake source. However, the mechanisms behind remotely triggered seismicity still remain unclear. Triggered tremor signals can be particularly useful in investigating remote triggering processes, since in many cases, the tremor pulses are very clearly modulated by the passing surface waves. The temporal stress changes (magnitude and orientation) caused by seismic waves at the tremor source region can be calculated and correlated with tremor pulses, which allows for exploring the stresses involved in the triggering process. Some observations suggest that triggered and ambient tremor signals are generated under similar physical conditions; thus, investigating triggered tremor might also provide important clues on how and under what conditions ambient tremor signals generate. In this work we present some of the results and techniques we employ in the research of potential cases of triggered tectonic tremor in Latin America and the Caribbean. This investigation includes: (1) the triggered tremor detection, with the use of specific signal filters; (2) localization of the sources, using uncommon techniques like time reversal signals; (3) and the analysis of the stress conditions under which they are generated, by modeling the triggering waves related dynamic stress. Our results suggest that tremor can be dynamically triggered by both Love and Rayleigh waves and in broad variety of tectonic environments depending strongly on the dynamic stress amplitude and orientation. Investigating remotely triggered seismicity offers the opportunity to improve our knowledge about deformation mechanisms and the physics of rupture.
Testing Earthquake Links in Mexico From 1978 to the 2017 M = 8.1 Chiapas and M = 7.1 Puebla Shocks
NASA Astrophysics Data System (ADS)
Segou, Margarita; Parsons, Tom
2018-01-01
The
Testing earthquake links in Mexico from 1978 up to the 2017 M=8.1 Chiapas and M=7.1 Puebla shocks
Segou, Margarita; Parsons, Thomas E.
2018-01-01
The M = 8.1 Chiapas and the M = 7.1 Puebla earthquakes occurred in the bending part of the subducting Cocos plate 11 days and ~600 km apart, a range that puts them well outside the typical aftershock zone. We find this to be a relatively common occurrence in Mexico, with 14% of M > 7.0 earthquakes since 1900 striking more than 300 km apart and within a 2 week interval, not different from a randomized catalog. We calculate the triggering potential caused by crustal stress redistribution from large subduction earthquakes over the last 40 years. There is no evidence that static stress transfer or dynamic triggering from the 8 September Chiapas earthquake promoted the 19 September earthquake. Both recent earthquakes were promoted by past thrust events instead, including delayed afterslip from the 2012 M = 7.5 Oaxaca earthquake. A repeated pattern of shallow thrust events promoting deep intraslab earthquakes is observed over the past 40 years.
Near-simultaneous great earthquakes at Tongan megathrust and outer rise in September 2009.
Beavan, J; Wang, X; Holden, C; Wilson, K; Power, W; Prasetya, G; Bevis, M; Kautoke, R
2010-08-19
The Earth's largest earthquakes and tsunamis are usually caused by thrust-faulting earthquakes on the shallow part of the subduction interface between two tectonic plates, where stored elastic energy due to convergence between the plates is rapidly released. The tsunami that devastated the Samoan and northern Tongan islands on 29 September 2009 was preceded by a globally recorded magnitude-8 normal-faulting earthquake in the outer-rise region, where the Pacific plate bends before entering the subduction zone. Preliminary interpretation suggested that this earthquake was the source of the tsunami. Here we show that the outer-rise earthquake was accompanied by a nearly simultaneous rupture of the shallow subduction interface, equivalent to a magnitude-8 earthquake, that also contributed significantly to the tsunami. The subduction interface event was probably a slow earthquake with a rise time of several minutes that triggered the outer-rise event several minutes later. However, we cannot rule out the possibility that the normal fault ruptured first and dynamically triggered the subduction interface event. Our evidence comes from displacements of Global Positioning System stations and modelling of tsunami waves recorded by ocean-bottom pressure sensors, with support from seismic data and tsunami field observations. Evidence of the subduction earthquake in global seismic data is largely hidden because of the earthquake's slow rise time or because its ground motion is disguised by that of the normal-faulting event. Earthquake doublets where subduction interface events trigger large outer-rise earthquakes have been recorded previously, but this is the first well-documented example where the two events occur so closely in time and the triggering event might be a slow earthquake. As well as providing information on strain release mechanisms at subduction zones, earthquakes such as this provide a possible mechanism for the occasional large tsunamis generated at the Tonga subduction zone, where slip between the plates is predominantly aseismic.
Relation of landslides triggered by the Kiholo Bay earthquake to modeled ground motion
Harp, Edwin L.; Hartzell, Stephen H.; Jibson, Randall W.; Ramirez-Guzman, L.; Schmitt, Robert G.
2014-01-01
The 2006 Kiholo Bay, Hawaii, earthquake triggered high concentrations of rock falls and slides in the steep canyons of the Kohala Mountains along the north coast of Hawaii. Within these mountains and canyons a complex distribution of landslides was triggered by the earthquake shaking. In parts of the area, landslides were preferentially located on east‐facing slopes, whereas in other parts of the canyons no systematic pattern prevailed with respect to slope aspect or vertical position on the slopes. The geology within the canyons is homogeneous, so we hypothesize that the variable landslide distribution is the result of localized variation in ground shaking; therefore, we used a state‐of‐the‐art, high‐resolution ground‐motion simulation model to see if it could reproduce the landslide‐distribution patterns. We used a 3D finite‐element analysis to model earthquake shaking using a 10 m digital elevation model and slip on a finite‐fault model constructed from teleseismic records of the mainshock. Ground velocity time histories were calculated up to a frequency of 5 Hz. Dynamic shear strain also was calculated and compared with the landslide distribution. Results were mixed for the velocity simulations, with some areas showing correlation of landslide locations with peak modeled ground motions but many other areas showing no such correlation. Results were much improved for the comparison with dynamic shear strain. This suggests that (1) rock falls and slides are possibly triggered by higher frequency ground motions (velocities) than those in our simulations, (2) the ground‐motion velocity model needs more refinement, or (3) dynamic shear strain may be a more fundamental measurement of the decoupling process of slope materials during seismic shaking.
NASA Astrophysics Data System (ADS)
Cocco, M.
2001-12-01
Earthquake stress changes can promote failures on favorably oriented faults and modify the seismicity pattern over broad regions around the causative faults. Because the induced stress perturbations modify the rate of production of earthquakes, they alter the probability of seismic events in a specified time window. Comparing the Coulomb stress changes with the seismicity rate changes and aftershock patterns can statistically test the role of stress transfer in earthquake occurrence. The interaction probability may represent a further tool to test the stress trigger or shadow model. The probability model, which incorporate stress transfer, has the main advantage to include the contributions of the induced stress perturbation (a static step in its present formulation), the loading rate and the fault constitutive properties. Because the mechanical conditions of the secondary faults at the time of application of the induced load are largely unkown, stress triggering can only be tested on fault populations and not on single earthquake pairs with a specified time delay. The interaction probability can represent the most suitable tool to test the interaction between large magnitude earthquakes. Despite these important implications and the stimulating perspectives, there exist problems in understanding earthquake interaction that should motivate future research but at the same time limit its immediate social applications. One major limitation is that we are unable to predict how and if the induced stress perturbations modify the ratio between small versus large magnitude earthquakes. In other words, we cannot distinguish between a change in this ratio in favor of small events or of large magnitude earthquakes, because the interaction probability is independent of magnitude. Another problem concerns the reconstruction of the stressing history. The interaction probability model is based on the response to a static step; however, we know that other processes contribute to the stressing history perturbing the faults (such as dynamic stress changes, post-seismic stress changes caused by viscolelastic relaxation or fluid flow). If, for instance, we believe that dynamic stress changes can trigger aftershocks or earthquakes years after the passing of the seismic waves through the fault, the perspective of calculating interaction probability is untenable. It is therefore clear we have learned a lot on earthquake interaction incorporating fault constitutive properties, allowing to solve existing controversy, but leaving open questions for future research.
Complex Non-volcanic Tremor in Guerrero Mexico Triggered by the 2010 Mw 8.8 Chilean Earthquake
NASA Astrophysics Data System (ADS)
Zigone, D.; Campillo, M.; Husker, A. L.; Kostoglodov, V.; Payero, J. S.; Frank, W.; Shapiro, N. M.; Voisin, C.; Cougoulat, G.; Cotte, N.
2010-12-01
In this study we analyze the tremors triggered in Guerrero region (Mexico) by the 2010 magnitude 8.8 Chilean Earthquake using mini-seismic array data from the French-Mexican G-GAP project and broadband data from the Servicio Sismologico Nacional of Mexico. The strong dynamic shaking by the earthquake produced the first observed triggered non-volcanic tremors (NVT) in Mexico so far with at least 3 different types of tremors at different time scales. There was a slow slip event (SSE) occurring at the time of the earthquake, which may have increased the probability of tremor triggering in the region. The first type of observed triggered tremors occurred during the S waves, Love waves and Rayleigh waves as already reported in other subductions zones and continental faults (Miyazawa and Mori, 2005, 2006; Rubinstein et al., 2007; Gomberg et al., 2008; Peng et al, 2009…). The greatest amount of energy and duration accompanies the long-period Rayleigh waves, with smaller bursts during the S and Love waves. For this particular tremor we observed the dispersion of Rayleigh waves in the envelopes of triggered tremors, which indicates a very strong modulation of the source by the passing surface wave. An unexpected short-term tremor occurred approximately one hour later of the arrival of the surface waves on the coastal stations. The NVT has only been previously observed at distances > 100 km inland. It also has a shorter frequency range (3-6 Hz) than other NVT (1-10 Hz) observed in the region. Finally, we observed a significant increase of so-called ambient tremor activity with higher intensity than all triggered NVT during the days after the earthquake. This study adds new types of tremors to the lexicon of triggered NVT observed in the world.
Earthquakes in Oita triggered by the 2016 M7.3 Kumamoto earthquake
NASA Astrophysics Data System (ADS)
Yoshida, Shingo
2016-11-01
During the passage of the seismic waves from the M7.3 Kumamoto, Kyushu, earthquake on April 16, 2016, a M5.7 [semiofficial value estimated by the Japan Meteorological Agency (JMA)] event occurred in the central part of Oita prefecture, approximately 80 km far away from the mainshock. Although there have been a number of reports that M < 5 earthquakes were remotely triggered during the passage of seismic waves from mainshocks, there has been no evidence for M > 5 triggered events. In this paper, we firstly confirm that this event is a M6-class event by re-estimating the magnitude using the strong-motion records of K-NET and KiK-net, and crustal deformation data at the Yufuin station observed by the Geospatial Information Authority of Japan. Next, by investigating the aftershocks of 45 mainshocks which occurred over the past 20 years based on the JMA earthquake catalog (JMAEC), we found that the delay time of the 2016 M5.7 event in Oita was the shortest. Therefore, the M5.7 event could be regarded as an exceptional M > 5 event that was triggered by passing seismic waves, unlike the usual triggered events and aftershocks. Moreover, a search of the JMAEC shows that in the 2016 Oita aftershock area, swarm earthquake activity was low over the past 30 years compared with neighboring areas. We also found that in the past, probably or possibly triggered events frequently occurred in the 2016 Oita aftershock area. The Oita area readily responds to remote triggering because of high geothermal activity and young volcanism in the area. The M5.7 Oita event was triggered by passing seismic waves, probably because large dynamic stress change was generated by the mainshock at a short distance and because the Oita area was already loaded to a critical stress state without a recent energy release as suggested by the past low swarm activity.[Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Li, Y.; Yang, H.; Zhou, S.; Yan, C.
2016-12-01
We perform a comprehensive analysis in Yunnan area based on continuous seismic data of 38 stations of Qiaojia Network in Xiaojiang Fault from 2012.3 to 2015.2. We use an effective method: Match and Locate (M&L, Zhang&Wen, 2015) to detect and locate microearthquakes to conduct our research. We first study dynamic triggering around the Xiaojiang Fault in Yunnan. The triggered earthquakes are identified as two impulsive seismic arrivals in 2Hz-highpass-filtered velocity seismograms during the passage of surface waves of large teleseismic earthquakes. We only find two earthquakes that may have triggered regional earthquakes through inspecting their spectrograms: Mexico Mw7.4 earthquake in 03/20/2012 and El Salvador Mw7.3 earthquake in 10/14/2014. To confirm the two earthquakes are triggered instead of coincidence, we use M&L to search if there are any repeating earthquakes. The result of the coefficients shows that it is a coincidence during the surface waves of El Salvador earthquake and whether 2012 Mexico have triggered earthquake is under discussion. We then visually inspect the 2-8Hz-bandpass-filterd velocity envelopes of these years to search for non-volcanic tremor. We haven't detected any signals similar to non-volcanic tremors yet. In the following months, we are going to study the 2012 M4.9 Qiaojia earthquake. It occurred only 30km west of the epicenter of the 2014 M6.5 Ludian earthquake. We use Match and Locate (M&L) technique to detect and relocate microearthquakes that occurred 2 days before and 3 days after the mainshock. Through this, we could obtain several times more events than listed in the catalogs provided by NEIC and reduce the magnitude of completeness Mc. We will also detect microearthquakes along Xiaojiang Fault using template earthquakes listed in the catalogs to learn more about fault shape and other properties of Xiaojiang Fault. Analyzing seismicity near Xiaojiang Fault systematically may cast insight on our understanding of the features of its nearby faults, geological structure in this area and rupture process of the typical earthquake. We will also try to compare its features with 2014 M6.5 Ludian earthquake.
Aron, A.; Hardebeck, J.L.
2009-01-01
We investigated the relationship between seismicity rate changes and modeled Coulomb static stress changes from the 2003 M 6.5 San Simeon and the 2004 M 6.0 Parkfield earthquakes in central California. Coulomb stress modeling indicates that the San Simeon mainshock loaded parts of the Rinconada, Hosgri, and San Andreas strike-slip faults, along with the reverse faults of the southern Los Osos domain. All of these loaded faults, except for the San Andreas, experienced a seismicity rate increase at the time of the San Simeon mainshock. The Parkfield earthquake occurred 9 months later on the loaded portion of the San Andreas fault. The Parkfield earthquake unloaded the Hosgri fault and the reverse faults of the southern Los Osos domain, which both experienced seismicity rate decreases at the time of the Parkfield event, although the decreases may be related to the decay of San Simeon-triggered seismicity. Coulomb stress unloading from the Parkfield earthquake appears to have altered the aftershock decay rate of the southern cluster of San Simeon after-shocks, which is deficient compared to the expected number of aftershocks from the Omori decay parameters based on the pre-Parkfield aftershocks. Dynamic stress changes cannot explain the deficiency of aftershocks, providing evidence that static stress changes affect earthquake occurrence. However, a burst of seismicity following the Parkfield earthquake at Ragged Point, where the static stress was decreased, provides evidence for dynamic stress triggering. It therefore appears that both Coulomb static stress changes and dynamic stress changes affect the seismicity rate.
NASA Astrophysics Data System (ADS)
Peña-Castro, A. F.; Dougherty, S. L.; Harrington, R. M.; Cochran, E. S.
2017-12-01
Oklahoma has recently experienced a large increase in seismicity that has been linked to injection of large volumes of wastewater into deep disposal wells, a by-product of oil and gas production. Recent studies have shown that areas with active fluid injection and induced seismicity, such as Oklahoma, may be susceptible to dynamic triggering during passage of seismic waves from large, remote earthquakes. In spring 2016, the 1833-station LArge-n Seismic Survey in Oklahoma (LASSO) array was deployed for 30 days to examine an area of active seismicity in Gran County, located in northern Oklahoma. Here we use the LASSO array to look for dynamic triggering caused by teleseismic earthquakes with magnitudes between Mw 6-8 that produce Peak-Ground-Velocities (PGVs) exceeding 10 μm/s at the LASSO array, consistent with PGV values seen to have triggered seismicity at other locations. We focus on examining seismicity around the shallow Mw7.8 event in Ecuador on 04/16/2016 which generated the largest PGV at LASSO (250 µm/s). To establish if earthquake rates change during or following the passage of the teleseismic surface waves, we develop a catalog of earthquakes around the time of each teleseismic event. We first create a preliminary catalogue using a Short-Term Average/Long-Term Average (STA/LTA) detection algorithm window spanning +/- 24 hours around each teleseism,requiring detection at a minimum of 110 LASSO stations to identify an event. Next, we enhance the STA/LTA catalog with manual detections for a period of +/- 1.5 hours around the time of the teleseismic P-wave arrival to explore if triggering occurs that is not detected by the automated procedure. All detected events are then located using standard location techniques. Any observed seismicity rate changes following the teleseismic arrivals will be examined compared to the short-term background rates to determine whether they are statistically significant. If triggering is observed, focal mechanisms will be determined to estimate fault plane orientations and resolve triggering stresses on receiver fault planes. Our preliminary results for the Mw 7.8 Ecuador event suggest there may be delayed triggering that starts roughly 4 hours after the teleseismic phase arrivals, with event rates increasing from 0-5 to 15-25 events per hour.
Long Range Earthquake Interaction in Iceland
NASA Astrophysics Data System (ADS)
Goltz, C.
2003-12-01
It has been observed that earthquakes can be triggered by similarly sized events at large distances. The phenomenon has recently been shown to be statistically significant at a range up to several source dimensions in global earthquake data. The most appropriate explanation of the phenomenon seems to be criticality of the Earth's crust as e.g. changes in static and dynamic stresses would otherwise be too small to trigger remote events. I present results for a regional (as opposed to global) study of seismicity in Iceland which is based on a high quality reprocessed catalogue. Results include the time-dependent determination of the maximum range of interaction and the correlation length and also address the question whether small events can trigger larger ones. Pitfalls such as data accuracy and geometry as well as boundary effects are thoroughly discussed. A comparison with surrogate data helps to assess the statistical significance of the results.
Evidences of landslide earthquake triggering due to self-excitation process
NASA Astrophysics Data System (ADS)
Bozzano, F.; Lenti, L.; Martino, Salvatore; Paciello, A.; Scarascia Mugnozza, G.
2011-06-01
The basin-like setting of stiff bedrock combined with pre-existing landslide masses can contribute to seismic amplifications in a wide frequency range (0-10 Hz) and induce a self-excitation process responsible for earthquake-triggered landsliding. Here, the self-excitation process is proposed to justify the far-field seismic trigger of the Cerda landslide (Sicily, Italy) which was reactivated by the 6th September 2002 Palermo earthquake ( M s = 5.4), about 50 km far from the epicentre. The landslide caused damage to farm houses, roads and aqueducts, close to the village of Cerda, and involved about 40 × 106 m3 of clay shales; the first ground cracks due to the landslide movement formed about 30 min after the main shock. A stress-strain dynamic numerical modelling, performed by FDM code FLAC 5.0, supports the notion that the combination of local geological setting and earthquake frequency content played a fundamental role in the landslide reactivation. Since accelerometric records of the triggering event are not available, dynamic equivalent inputs have been used for the numerical modelling. These inputs can be regarded as representative for the local ground shaking, having a PGA value up to 0.2 m/s2, which is the maximum expected in 475 years, according to the Italian seismic hazard maps. A 2D numerical modelling of the seismic wave propagation in the Cerda landslide area was also performed; it pointed out amplification effects due to both the structural setting of the stiff bedrock (at about 1 Hz) and the pre-existing landslide mass (in the range 3-6 Hz). The frequency peaks of the resulting amplification functions ( A( f)) fit well the H/ V spectral ratios from ambient noise and the H/ H spectral ratios to a reference station from earthquake records, obtained by in situ velocimetric measurements. Moreover, the Fourier spectra of earthquake accelerometric records, whose source and magnitude are consistent with the triggering event, show a main peak at about 1 Hz. This frequency value well fits the one amplified by the geological setting of the bedrock in correspondence with the landslide area, which is constituted of marly limestones and characterised by a basin-like geometry.
NASA Astrophysics Data System (ADS)
Scuderi, M. M.; Collettini, C.; Marone, C.
2017-11-01
It is widely recognized that the significant increase of M > 3.0 earthquakes in Western Canada and the Central United States is related to underground fluid injection. Following injection, fluid overpressure lubricates the fault and reduces the effective normal stress that holds the fault in place, promoting slip. Although, this basic physical mechanism for earthquake triggering and fault slip is well understood, there are many open questions related to induced seismicity. Models of earthquake nucleation based on rate- and state-friction predict that fluid overpressure should stabilize fault slip rather than trigger earthquakes. To address this controversy, we conducted laboratory creep experiments to monitor fault slip evolution at constant shear stress while the effective normal stress was systematically reduced via increasing fluid pressure. We sheared layers of carbonate-bearing fault gouge in a double direct shear configuration within a true-triaxial pressure vessel. We show that fault slip evolution is controlled by the stress state acting on the fault and that fluid pressurization can trigger dynamic instability even in cases of rate strengthening friction, which should favor aseismic creep. During fluid pressurization, when shear and effective normal stresses reach the failure condition, accelerated creep occurs in association with fault dilation; further pressurization leads to an exponential acceleration with fault compaction and slip localization. Our work indicates that fault weakening induced by fluid pressurization can overcome rate strengthening friction resulting in fast acceleration and earthquake slip. Our work points to modifications of the standard model for earthquake nucleation to account for the effect of fluid overpressure and to accurately predict the seismic risk associated with fluid injection.
NASA Astrophysics Data System (ADS)
Chang, Kuo-Jen; Taboada, Alfredo
2009-09-01
We present Contact Dynamics discrete element simulations of the earthquake-triggered Jiufengershan avalanche, which mobilized a 60 m thick, 1.5 km long sedimentary layer, dipping ˜22°SE toward a valley. The dynamic behavior of the avalanche is simulated under different assumptions about rock behavior, water table height, and boundary shear strength. Additionally, seismic shaking is introduced using strong motion records from nearby stations. We assume that seismic shaking generates shearing and frictional heating along the surface of rupture, which, in turn, may induce dynamic weakening and avalanche triggering; a simple "slip-weakening" criterion was adopted to simulate shear strength drop along the rupture surface. We investigate the mechanical processes occurring during triggering and propagation of an avalanche mobilizing shallowly dipping layers. Incipient deformation forms a pop-up structure at the toe of the dip slope. As the avalanche propagates, the pop-up deforms into an overturned fold, which overrides the surface of separation along a décollement. Simultaneously, uphill layers slide at high velocity (125 km/h) and are folded and disrupted as they reach the toe of the dip slope. The avalanche foot forms a wedge that is pushed forward as deformed rocks accrete at its rear. We simulated five cross sections across the Jiufengershan avalanche, which differ in the geometry of the surface of separation. Topographic and simulated surface profiles are similar. The friction coefficient at the surface of separation determined from back analysis is abnormally low (μSS = 0.2), possibly due to lubrication by liquefied soils. The granular deposits of simulated earthquake- and rain-triggered avalanches are similar.
NASA Astrophysics Data System (ADS)
Wallace, L. M.; Hreinsdottir, S.; Hamling, I. J.; D'Anastasio, E.; Bartlow, N. M.
2017-12-01
Just after midnight on 14 Nov 2016 (NZ Local time), the M7.8 Kaikoura earthquake ruptured a complex sequence of strike-slip and reverse faults over an approximately 150 km length in the northeastern South Island of New Zealand (Hamling et al., 2017, Science). In the months following the earthquake, time-dependent inversions of InSAR observations and continuous and semi-continuous GPS measurements reveal up to 0.5 m of afterslip on the subduction interface beneath the northern South Island underlying the region of large coseismic slip on crustal faults in the M7.8 earthquake. The geodetic data also require significant afterslip on a subset of the crustal faults that ruptured in the earthquake, including the Needles, Jordan Thrust, and Kekerengu faults. Our best-fitting models also suggest significant afterslip on an offshore reverse fault, in a similar position to one inferred by Clark et al. (2017, EPSL) from coseismic coastal uplift data. The M7.8 earthquake also triggered widespread slow slip occurring over much of the Hikurangi subduction zone beneath the North Island. Immediately following the earthquake, continuous GPS sites operated by GeoNet (www.geonet.org.nz) along the North Island's east coast (above the Hikurangi subduction zone) detected several to 30 mm of eastward motion over the two-week period immediately following the M7.8 event. These sites are located 350-650 km from the M7.8 earthquake. Such large eastward motion along the North Island's east coast following the earthquake is consistent with the initiation of a large slow slip event along the shallow, offshore portion of the Hikurangi subduction zone. In addition to shallow slow slip (<15 km depth) triggered offshore the east coast, we also observe deeper slow slip (>30 km depth) triggered in the Kapiti region at the southern Hikurangi margin. The Kapiti SSE was still ongoing as of August 2017, although we expect it to finish before the end of 2017. Given the large distance of the shallow east coast SSE from the M7.8 earthquake, we suggest that the shallow SSE was more likely to be triggered by dynamic stress changes, while the deeper SSEs closer to the Mw 7.8 were more likely triggered by static stress changes.
NASA Astrophysics Data System (ADS)
Linville, L. M.; Pankow, K. L.; Kilb, D. L.; Velasco, A. A.; Hayward, C.
2013-12-01
Because of the abundance of data from the Earthscope U.S. Transportable Array (TA), data paucity and station sampling bias in the US are no longer significant obstacles to understanding some of the physical parameters driving dynamic triggering. Initial efforts to determine locations of dynamic triggering in the US following large earthquakes (M ≥ 8.0) during TA relied on a time domain detection algorithm which used an optimized short-term average to long-term average (STA/LTA) filter and resulted in an unmanageably large number of false positive detections. Specific site sensitivities and characteristic noise when coupled with changes in detection rates often resulted in misleading output. To navigate this problem, we develop a frequency domain detection algorithm that first pre-whitens each seismogram and then computes a broadband frequency stack of the data using a three hour time window beginning at the origin time of the mainshock. This method is successful because of the broadband nature of earthquake signals compared with the more band-limited high frequency picks that clutter results from time domain picking algorithms. Preferential band filtering of the frequency stack for individual events can further increase the accuracy and drive the detection threshold to below magnitude one, but at general cost to detection levels across large scale data sets. Of the 15 mainshocks studied, 12 show evidence of discrete spatial clusters of local earthquake activity occurring within the array during the mainshock coda. Most of this activity is in the Western US with notable sequences in Northwest Wyoming, Western Texas, Southern New Mexico and Western Montana. Repeat stations (associated with 2 or more mainshocks) are generally rare, but when occur do so exclusively in California and Nevada. Notably, two of the most prolific regions of seismicity following a single mainshock occur following the 2009 magnitude 8.1 Samoa (Sep 29, 2009, 17:48:10) event, in areas with few or no known Quaternary faults and sparse historic seismicity. To gain a better understanding of the potential interaction between local events during the mainshock coda and the local stress changes induced by the passing surface waves, we juxtapose the local earthquake locations on maps of peak stress changes (e.g., radial, tangential and horizontal). Preliminary results reveal that triggering in the US is perhaps not as common as previously thought, and that dynamic triggering is most likely a more complicated interplay between physical parameters (e.g., amplitude threshold, wave orientation, tectonic environment, etc) than can be explained by a single dominant driver.
Johnston, M.J.S.; Prejean, S.G.; Hill, D.P.
2004-01-01
The 3 November 2002 Mw 7.9 Denali fault earthquake triggered deformational offsets and microseismicity under Mammoth Mountain (MM) on the rim of Long Valley caldera, California, some 3460 km from the earthquake. Such strain offsets and microseismicity were not recorded at other borehole strain sites along the San Andreas fault system in California. The Long Valley offsets were recorded on borehole strainmeters at three sites around the western part of the caldera that includes Mammoth Mountain - a young volcano on the southwestern rim of the caldera. The largest recorded strain offsets were -0.1 microstrain at PO on the west side of MM, 0.05 microstrain at MX to the southeast of MM, and -0.025 microstrain at BS to the northeast of MM with negative strain extensional. High sample rate strain data show initial triggering of the offsets began at 22:30 UTC during the arrival of the first Rayleigh waves from the Alaskan earthquake with peak-to-peak dynamic strain amplitudes of about 2 microstrain corresponding to a stress amplitude of about 0.06 MPa. The strain offsets grew to their final values in the next 10 min. The associated triggered seismicity occurred beneath the south flank of MM and also began at 22:30 UTC and died away over the next 15 min. This relatively weak seismicity burst included some 60 small events with magnitude all less than M = 1. While poorly constrained, these strain observations are consistent with triggered slip and intrusive opening on a north-striking normal fault centered at a depth of 8 km with a moment of l016 N m, or the equivalent of a M 4.3 earthquake. The cumulative seismic moment for the associated seismicity burst was more than three orders of magnitude smaller. These observations and this model resemble those for the triggered deformation and slip that occurred beneath the north side of MM following the 16 October 1999 M 7.1 Hector Mine, California, earthquake. However, in this case, we see little post-event slip decay reflected in the strain data after the Rayleigh-wave arrivals from the Denali fault earthquake and onset of triggered seismicity did not lag the triggered deformation by 20 min. These observations are also distinctly different from the more widespread and energetic seismicity and deformation triggered by the 1992 M 7.3 Landers earthquake in the Long Valley caldera. Thus, each of the three instances of remotely triggered unrest in Long Valley caldera recorded to date differ. In each case, however, the deformation moment inferred from the strain meter data was more than an order of magnitude larger than the cumulative moment for the associated triggered seismicity.
Widespread Triggering of Earthquakes in the Central US by the 2011 M9.0 Tohoku-Oki Earthquake
NASA Astrophysics Data System (ADS)
Rubinstein, J. L.; Savage, H. M.
2011-12-01
The strong shaking of the 2011 M9.0 off-Tohoku earthquake triggered tectonic tremor and earthquakes in many locations around the world. We analyze broadband records from the USARRAY to identify triggered seismicity in more than 10 different locations in the Central United States. We identify triggered events in many states including: Kansas, Nebraska, Arkansas, Minnesota, and Iowa. The locally triggered earthquakes are obscured in broadband records by the Tohoku-Oki mainshock but can be revealed with high-pass filtering. With the exception of one location (central Arkansas), the triggered seismicity occurred in regions that are seismically quiet. The coincidence of this seismicity with the Tohoku-Oki event suggests that these earthquakes were triggered. The triggered seismicity in Arkansas occurred in a region where there has been an active swarm of seismicity since August 2010. There are two lines of evidence to indicate that the seismicity in Arkansas is triggered instead of part of the swarm: (1) we observe two earthquakes that initiate coincident with the arrival of shear wave and Love wave; (2) the seismicity rate increased dramatically following the Tohoku-Oki mainshock. Our observations of widespread earthquake triggering in regions thought to be seismically quiet remind us that earthquakes can occur in most any location. Studying additional teleseismic events has the potential to reveal regions with a propensity for earthquake triggering.
Decay of aftershock density with distance does not indicate triggering by dynamic stress
Richards-Dinger, K.; Stein, R.S.; Toda, S.
2010-01-01
Resolving whether static or dynamic stress triggers most aftershocks and subsequent mainshocks is essential to understand earthquake interaction and to forecast seismic hazard. Felzer and Brodsky examined the distance distribution of earthquakes occurring in the first five minutes after 2 ≤ M M M ≥ 2 aftershocks showed a uniform power-law decay with slope −1.35 out to 50 km from the mainshocks. From this they argued that the distance decay could be explained only by dynamic triggering. Here we propose an alternative explanation for the decay, and subject their hypothesis to a series of tests, none of which it passes. At distances more than 300 m from the 2 ≤ M< 3 mainshocks, the seismicity decay 5 min before the mainshocks is indistinguishable from the decay five minutes afterwards, indicating that the mainshocks have no effect at distances outside their static triggering range. Omori temporal decay, the fundamental signature of aftershocks, is absent at distances exceeding 10 km from the mainshocks. Finally, the distance decay is found among aftershocks that occur before the arrival of the seismic wave front from the mainshock, which violates causality. We argue that Felzer and Brodsky implicitly assume that the first of two independent aftershocks along a fault rupture triggers the second, and that the first of two shocks in a creep- or intrusion-driven swarm triggers the second, when this need not be the case.
Evidence for earthquake triggering of large landslides in coastal Oregon, USA
Schulz, W.H.; Galloway, S.L.; Higgins, J.D.
2012-01-01
Landslides are ubiquitous along the Oregon coast. Many are large, deep slides in sedimentary rock and are dormant or active only during the rainy season. Morphology, observed movement rates, and total movement suggest that many are at least several hundreds of years old. The offshore Cascadia subduction zone produces great earthquakes every 300–500 years that generate tsunami that inundate the coast within minutes. Many slides and slide-prone areas underlie tsunami evacuation and emergency response routes. We evaluated the likelihood of existing and future large rockslides being triggered by pore-water pressure increase or earthquake-induced ground motion using field observations and modeling of three typical slides. Monitoring for 2–9 years indicated that the rockslides reactivate when pore pressures exceed readily identifiable levels. Measurements of total movement and observed movement rates suggest that two of the rockslides are 296–336 years old (the third could not be dated). The most recent great Cascadia earthquake was M 9.0 and occurred during January 1700, while regional climatological conditions have been stable for at least the past 600 years. Hence, the estimated ages of the slides support earthquake ground motion as their triggering mechanism. Limit-equilibrium slope-stability modeling suggests that increased pore-water pressures could not trigger formation of the observed slides, even when accompanied by progressive strength loss. Modeling suggests that ground accelerations comparable to those recorded at geologically similar sites during the M 9.0, 11 March 2011 Japan Trench subduction-zone earthquake would trigger formation of the rockslides. Displacement modeling following the Newmark approach suggests that the rockslides would move only centimeters upon coseismic formation; however, coseismic reactivation of existing rockslides would involve meters of displacement. Our findings provide better understanding of the dynamic coastal bluff environment and hazards from future subduction-zone earthquakes.
NASA Astrophysics Data System (ADS)
Gorum, Tolga; Yildirim, Cengiz
2017-04-01
This study presents the first results on analysis of the landslides triggered by the Mw 7.8 Kaikoura earthquake that occurred on November 14, 2016 in the region between the Hikurangi subduction system of the North Island and the oblique collisional regime of the South Island (Alpine Fault). The earthquake ruptured several faults that expand into two different tectonic domains which are compose of the strike-slip Marlborough fault system and the compressional North Canterbury Fault Zone. Here we present the preliminary mapping results of the distribution of landslides triggered by the earthquake. An extensive landslide interpretation was carried out using sets of optical high resolution satellite images (e.g. Sentinel-2 and Göktürk-2) for both the pre- and post-earthquake situation. The landslides were identified and mapped as polygons using multi-temporal visual image interpretation based on satellite imagery and morphological elements of landslide diagnostic indicators. Nearly 8,500 individual landslides with different sizes and types were mapped. The distribution pattern of the mapped coseismic landslides shows that the slope failures are highly concentrated along the ruptured faults and side slopes of the structurally controlled major rivers such as Hapuku and Clarence Rivers that drain the northeastern slopes of the region. Our spatial analysis of landslide occurrences with ground acceleration, lithology, slope, topographic relief and surface deformation indicated extensive control of steep slope and high topographic relief on landslides with ground acceleration as the trigger. We show that spatial distribution of slope failures shows decreasing frequency away from the earthquake faults up to 25 km towards east, and abundance of landslides spatially coincides with the coseismic fault geometries and aftershock distributions. We conclude that combined effect of complex rupture dynamics and topography primarily control the distribution pattern of the landslides triggered by the Kaikoura Earthquake sequence.
Stochastic dynamic modeling of regular and slow earthquakes
NASA Astrophysics Data System (ADS)
Aso, N.; Ando, R.; Ide, S.
2017-12-01
Both regular and slow earthquakes are slip phenomena on plate boundaries and are simulated by a (quasi-)dynamic modeling [Liu and Rice, 2005]. In these numerical simulations, spatial heterogeneity is usually considered not only for explaining real physical properties but also for evaluating the stability of the calculations or the sensitivity of the results on the condition. However, even though we discretize the model space with small grids, heterogeneity at smaller scales than the grid size is not considered in the models with deterministic governing equations. To evaluate the effect of heterogeneity at the smaller scales we need to consider stochastic interactions between slip and stress in a dynamic modeling. Tidal stress is known to trigger or affect both regular and slow earthquakes [Yabe et al., 2015; Ide et al., 2016], and such an external force with fluctuation can also be considered as a stochastic external force. A healing process of faults may also be stochastic, so we introduce stochastic friction law. In the present study, we propose a stochastic dynamic model to explain both regular and slow earthquakes. We solve mode III problem, which corresponds to the rupture propagation along the strike direction. We use BIEM (boundary integral equation method) scheme to simulate slip evolution, but we add stochastic perturbations in the governing equations, which is usually written in a deterministic manner. As the simplest type of perturbations, we adopt Gaussian deviations in the formulation of the slip-stress kernel, external force, and friction. By increasing the amplitude of perturbations of the slip-stress kernel, we reproduce complicated rupture process of regular earthquakes including unilateral and bilateral ruptures. By perturbing external force, we reproduce slow rupture propagation at a scale of km/day. The slow propagation generated by a combination of fast interaction at S-wave velocity is analogous to the kinetic theory of gasses: thermal diffusion appears much slower than the particle velocity of each molecule. The concept of stochastic triggering originates in the Brownian walk model [Ide, 2008], and the present study introduces the stochastic dynamics into dynamic simulations. The stochastic dynamic model has the potential to explain both regular and slow earthquakes more realistically.
Typhoon-driven landsliding induces earthquakes: example of the 2009 Morakot typhoon
NASA Astrophysics Data System (ADS)
Steer, Philippe; Jeandet, Louise; Cubas, Nadaya; Marc, Odin; Meunier, Patrick; Hovius, Niels; Simoes, Martine; Cattin, Rodolphe; Shyu, J. Bruce H.; Liang, Wen-Tzong; Theunissen, Thomas; Chiang, Shou-Hao
2017-04-01
Extreme rainfall events can trigger numerous landslides in mountainous areas and a prolonged increase of river sediment load. The resulting mass transfer at the Earth surface in turn induces stress changes at depth, which could be sufficient to trigger shallow earthquakes. The 2009 Morakot typhoon represents a good case study as it delivered 3 m of precipitation in 3 days and caused some of the most intense erosion ever recorded. Analysis of seismicity time-series before and after the Morakot typhoon reveals a systematic increase of shallow (i.e. 0-15 km of depth) earthquake frequency in the vicinity of the areas displaying a high spatial density of landslides. This step-like increase in frequency lasts for at least 2-3 years and does not follow an Omori-type aftershock sequence. Rather, it is associated to a step change of the Gutenberg-Richter b-value of the earthquake catalog. Both changes occurred in mountainous areas of southwest Taiwan, where typhoon Morakot caused extensive landsliding. These spatial and temporal correlations strongly suggest a causal relationship between the Morakot-triggered landslides and the increase of earthquake frequency and their associated b-value. We propose that the progressive removal of landslide materials from the steep mountain landscape by river sediment transport acts as an approximately constant increase of the stress rate with respect to pre-typhoon conditions, and that this in turn causes a step-wise increase in earthquake frequency. To test this hypothesis, we investigate the response of a rate-and-state fault to stress changes using a 2-D continuum elasto-dynamic model. Consistent with the results of Ader et al. (2013), our preliminary results show a step-like increase of earthquake frequency in response to a step-like decrease of the fault normal stress. We also investigate the sensitivity of the amplitude and time-scale of the earthquake frequency increase to the amplitude of the normal stress change and to rheological parameters. Our study offers new insights on the potential influence of extreme erosional events on the short-time scale dynamics of faults and earthquakes.
The initial subevent of the 1994 Northridge, California, earthquake: Is earthquake size predictable?
Kilb, Debi; Gomberg, J.
1999-01-01
We examine the initial subevent (ISE) of the M?? 6.7, 1994 Northridge, California, earthquake in order to discriminate between two end-member rupture initiation models: the 'preslip' and 'cascade' models. Final earthquake size may be predictable from an ISE's seismic signature in the preslip model but not in the cascade model. In the cascade model ISEs are simply small earthquakes that can be described as purely dynamic ruptures. In this model a large earthquake is triggered by smaller earthquakes; there is no size scaling between triggering and triggered events and a variety of stress transfer mechanisms are possible. Alternatively, in the preslip model, a large earthquake nucleates as an aseismically slipping patch in which the patch dimension grows and scales with the earthquake's ultimate size; the byproduct of this loading process is the ISE. In this model, the duration of the ISE signal scales with the ultimate size of the earthquake, suggesting that nucleation and earthquake size are determined by a more predictable, measurable, and organized process. To distinguish between these two end-member models we use short period seismograms recorded by the Southern California Seismic Network. We address questions regarding the similarity in hypocenter locations and focal mechanisms of the ISE and the mainshock. We also compare the ISE's waveform characteristics to those of small earthquakes and to the beginnings of earthquakes with a range of magnitudes. We find that the focal mechanisms of the ISE and mainshock are indistinguishable, and both events may have nucleated on and ruptured the same fault plane. These results satisfy the requirements for both models and thus do not discriminate between them. However, further tests show the ISE's waveform characteristics are similar to those of typical small earthquakes in the vicinity and more importantly, do not scale with the mainshock magnitude. These results are more consistent with the cascade model.
The Absence of Remotely Triggered Seismicity in Japan from 1997 to 2002
NASA Astrophysics Data System (ADS)
Wakefield, R. H.; Brodsky, E. E.
2003-12-01
Observations of increased seismicity following the Landers, Hector Mine, Izmit, and the Denali, earthquakes suggests remote seismic triggering occurs in geothermal locations as far as 3150 km. This study attempts to determine if the same effects occur in Japan, a geothermal region of high seismicity. For the period of 1997 to 2002, we searched for significant increases in the seismicity levels following earthquakes with Mw >= 6.5 at distances larger than conventionally associated with aftershocks. Additionally, we examined available waveform data in order to detect uncataloged events hidden by the coda of the mainshock. Five events had associated waveform data: March 24, 2001 Geiyo, Mw = 6.8; March 28, 2000 Volcano Islands, Mw = 7.6; July 30, 2000 Honshu, Mw = 6.5; October 6, 2000 Tottori, Mw = 6.7; and the January 28, 1999 Kuril Islands, Mw = 6.8 earthquake. Located 260 km from the Geiyo epicenter, station TKO recorded one possible triggered event within 65 km during the hour following the mainshock. However, the TKO data contains many anomalous spikes, and we are not confident the record is clear enough to differentiate small local events from noise. An ambiguous, two-day, regional seismicity increase followed the Volcano Islands event. We interpret the swarm associated with the signal as coincidental because no similar swarms occurred at the same location following Tottori or Geiyo, both of which had an order of magnitude larger shaking. Both waveforms and cataloged events indicate no triggering occurred following the Honshu, Tottori and Kuril Islands mainshocks. We do not interpret the one indefinite local event recorded by TKO as evidence for mid range dynamic triggering, implying that the 2.5 cm/s shaking at TKO did not exceed the local triggering threshold. Additionally, the lack of triggering following Honshu, Tottori, and Kuril Islands suggests that the 1, 2.5 and 2.6 cm/s shaking at distances of 182, 238, and 267 km, respectively, creates lower bounds for the dynamic triggering thresholds at the respective locations. This assumes the bound is frequency independent. In none of the cases were thresholds exceeded over a large enough region or by large enough amplitude to produce a statistically significant increase in the cataloged rate of seismicity during the period from 1997 to 2002. All previously documented examples of triggering have occurred following shallow earthquakes with Mw > 7. With the exception of Volcano Islands, all of the events of this study have Mw < 7, and have no triggering associated with them. This suggests two possibilities: either events with Mw > 7 are required to produce sufficient shaking to trigger seismicity, or Japan is less susceptible to triggering than the western US or Greece. We assume that the depth of the Volcano Islands earthquake prohibits any substantial surface shaking. We conclude that more data is required associated with shallow, crustal events with Mw > 7 in order to determine whether or not Japan is susceptible to regional triggering.
Earthquake Tidal Triggering Associated with the 2015 Eruption of Axial Seamount
NASA Astrophysics Data System (ADS)
Wilcock, W. S. D.; Tolstoy, M.; Waldhauser, F.; Tan, Y. J.; Garcia, C.; Arnulf, A. F.; Crone, T. J.
2016-12-01
The Ocean Observatories Initiative's real time cabled observatory at Axial Seamount includes a seven station seismic network that spans the southern half of the summit caldera. The network has been in operation since late 2014 and, in conjunction with geodetic sensors on the observatory, has recorded an exceptional data set to characterize the dynamics of the caldera through the April 2015 eruption. Prior to the eruption, earthquake rates were high and double-difference locations show that the inflation of the volcano was accommodated by deformation on an outward dipping caldera ring fault. The onset of the eruption was marked by a seismic crisis on April 24 and rapid deflation of the volcano; the caldera ring fault accommodated deflation and guided a dike beneath the east rim of the caldera. The seismic crisis was followed by a steady decline in the rates of earthquakes and deflation. Numerous seafloor explosions document the timing and location of lava flows in the caldera and on the north rift of the seamount. They ceased after about a month when the volcano started to reinflate. Efforts are presently underway to improve the resolution of hypocenters both through the use of cross-correlation-based double-difference hypocenter locations (Tan et al., this meeting) and by the incorporation of three-dimensional velocity models that account for the heterogeneous structure of the volcano. One particularly interesting aspect of the seismicity is the tidal triggering. Prior to the eruption, when the volcano is critically stressed, the earthquakes show a strong tidal triggering signal with higher rates of seismicity near low tides when faults are unclamped. Earthquake rates at the lowest tides are about six times those at the highest tides. There are also noticeable temporo-spatial patterns in the earthquake swarms that occur at each low tide suggesting that the characteristics of tidal triggering may be spatial dependent. Following the eruption, only a weak tidal triggering signal remains. We will present the results of ongoing efforts to characterize the patterns of tidal triggering, relate them to prior observations on mid-ocean ridges, and understand the implications for earthquake nucleation, eruption forecasting, and hydrological processes.
Crustal earthquake triggering by pre-historic great earthquakes on subduction zone thrusts
Sherrod, Brian; Gomberg, Joan
2014-01-01
Triggering of earthquakes on upper plate faults during and shortly after recent great (M>8.0) subduction thrust earthquakes raises concerns about earthquake triggering following Cascadia subduction zone earthquakes. Of particular regard to Cascadia was the previously noted, but only qualitatively identified, clustering of M>~6.5 crustal earthquakes in the Puget Sound region between about 1200–900 cal yr B.P. and the possibility that this was triggered by a great Cascadia thrust subduction thrust earthquake, and therefore portends future such clusters. We confirm quantitatively the extraordinary nature of the Puget Sound region crustal earthquake clustering between 1200–900 cal yr B.P., at least over the last 16,000. We conclude that this cluster was not triggered by the penultimate, and possibly full-margin, great Cascadia subduction thrust earthquake. However, we also show that the paleoseismic record for Cascadia is consistent with conclusions of our companion study of the global modern record outside Cascadia, that M>8.6 subduction thrust events have a high probability of triggering at least one or more M>~6.5 crustal earthquakes.
Aftershock triggering by complete Coulomb stress changes
Kilb, Debi; Gomberg, J.; Bodin, P.
2002-01-01
We examine the correlation between seismicity rate change following the 1992, M7.3, Landers, California, earthquake and characteristics of the complete Coulomb failure stress (CFS) changes (??CFS(t)) that this earthquake generated. At close distances the time-varying "dynamic" portion of the stress change depends on how the rupture develops temporally and spatially and arises from radiated seismic waves and from permanent coseismic fault displacement. The permanent "static" portion (??CFS) depends only on the final coseismic displacement. ??CFS diminishes much more rapidly with distance than the transient, dynamic stress changes. A common interpretation of the strong correlation between ??CFS and aftershocks is that load changes can advance or delay failure. Stress changes may also promote failure by physically altering properties of the fault or its environs. Because it is transient, ??CFS(t) can alter the failure rate only by the latter means. We calculate both ??CFS and the maximum positive value of ??CFS(t) (peak ??CFS(t)) using a reflectivity program. Input parameters are constrained by modeling Landers displacement seismograms. We quantify the correlation between maps of seismicity rate changes and maps of modeled ??CFS and peak ??CFS(t) and find agreement for both models. However, rupture directivity, which does not affect ??CFS, creates larger peak ??CFS(t) values northwest of the main shock. This asymmetry is also observed in seismicity rate changes but not in ??CFS. This result implies that dynamic stress changes are as effective as static stress changes in triggering aftershocks and may trigger earthquakes long after the waves have passed.
Peng, Zhigang; Hill, David P.; Shelly, David R.; Aiken, Chastity
2010-01-01
We examine remotely triggered microearthquakes and tectonic tremor in central California following the 2010 Mw 8.8 Chile earthquake. Several microearthquakes near the Coso Geothermal Field were apparently triggered, with the largest earthquake (Ml 3.5) occurring during the large-amplitude Love surface waves. The Chile mainshock also triggered numerous tremor bursts near the Parkfield-Cholame section of the San Andreas Fault (SAF). The locally triggered tremor bursts are partially masked at lower frequencies by the regionally triggered earthquake signals from Coso, but can be identified by applying high-pass or matched filters. Both triggered tremor along the SAF and the Ml 3.5 earthquake in Coso are consistent with frictional failure at different depths on critically-stressed faults under the Coulomb failure criteria. The triggered tremor, however, appears to be more phase-correlated with the surface waves than the triggered earthquakes, likely reflecting differences in constitutive properties between the brittle, seismogenic crust and the underlying lower crust.
Global observation of Omori-law decay in the rate of triggered earthquakes
NASA Astrophysics Data System (ADS)
Parsons, T.
2001-12-01
Triggered earthquakes can be large, damaging, and lethal as evidenced by the 1999 shocks in Turkey and the 2001 events in El Salvador. In this study, earthquakes with M greater than 7.0 from the Harvard CMT catalog are modeled as dislocations to calculate shear stress changes on subsequent earthquake rupture planes near enough to be affected. About 61% of earthquakes that occurred near the main shocks are associated with calculated shear stress increases, while ~39% are associated with shear stress decreases. If earthquakes associated with calculated shear stress increases are interpreted as triggered, then such events make up at least 8% of the CMT catalog. Globally, triggered earthquakes obey an Omori-law rate decay that lasts between ~7-11 years after the main shock. Earthquakes associated with calculated shear stress increases occur at higher rates than background up to 240 km away from the main-shock centroid. Earthquakes triggered by smaller quakes (foreshocks) also obey Omori's law, which is one of the few time-predictable patterns evident in the global occurrence of earthquakes. These observations indicate that earthquake probability calculations which include interactions from previous shocks should incorporate a transient Omori-law decay with time. In addition, a very simple model using the observed global rate change with time and spatial distribution of triggered earthquakes can be applied to immediately assess the likelihood of triggered earthquakes following large events, and can be in place until more sophisticated analyses are conducted.
Extending earthquakes' reach through cascading.
Marsan, David; Lengliné, Olivier
2008-02-22
Earthquakes, whatever their size, can trigger other earthquakes. Mainshocks cause aftershocks to occur, which in turn activate their own local aftershock sequences, resulting in a cascade of triggering that extends the reach of the initial mainshock. A long-lasting difficulty is to determine which earthquakes are connected, either directly or indirectly. Here we show that this causal structure can be found probabilistically, with no a priori model nor parameterization. Large regional earthquakes are found to have a short direct influence in comparison to the overall aftershock sequence duration. Relative to these large mainshocks, small earthquakes collectively have a greater effect on triggering. Hence, cascade triggering is a key component in earthquake interactions.
Controls of earthquake faulting style on near field landslide triggering: The role of coseismic slip
NASA Astrophysics Data System (ADS)
Tatard, L.; Grasso, J. R.
2013-06-01
compare the spatial distributions of seven databases of landslides triggered by Mw=5.6-7.9 earthquakes, using distances normalized by the earthquake fault length. We show that the normalized landslide distance distributions collapse, i.e., the normalized distance distributions overlap whatever the size of the earthquake, separately for the events associated with dip-slip, buried-faulting earthquakes, and surface-faulting earthquakes. The dip-slip earthquakes triggered landslides at larger normalized distances than the oblique-slip event of Loma Prieta. We further identify that the surface-faulting earthquakes of Wenchuan, Chi-Chi, and Kashmir triggered landslides at normalized distances smaller than the ones expected from their Mw ≥ 7.6 magnitudes. These results support a control of the seismic slip (through amplitude, rake, and surface versus buried slip) on the distances at which landslides are triggered. In terms of coseismic landslide management in mountainous areas, our results allow us to propose distances at which 95 and 75% of landslides will be triggered as a function of the earthquake focal mechanism.
Tsunami hazard assessment for the Azores archipelago: a historical review
NASA Astrophysics Data System (ADS)
Cabral, Nuno; Ferreira, Teresa; Queiroz, Maria Gabriela
2010-05-01
The Azores islands due to its complex geographical and geodynamic setting are exposed to tsunamigenic events associated to different triggering mechanisms, local or distant. Since the settlement of the Azores, in the fifteenth century, there are several documents that relate coastal areas flooding episodes with unusually high waves which caused death and destruction. This work had as main objective the characterization of the different events that can be associated with tsunamigenic phenomena, registered in the archipelago. With this aim, it was collected diverse documentation like chronics, manuscripts, newspaper articles and magazines, scientific publications, and international databases available online. From all the studied tsunami events it was identified the occurrence of some teletsunamis, among which the most relevant was triggered by the 1st November 1755 Lisbon earthquake, with an epicenter SW of Portugal, which killed 6 people in Terceira island. It is also noted the teletsunami generated by the 1761 earthquake, located in the same region as the latest, and the one generated in 1929 by an earthquake-triggered submarine landslide in the Grand Banks of Newfoundland. From the local events, originated in the Azores, the most significant were the tsunamis triggered by 1757 and 1980 earthquakes, both associated with the Terceira Rift dynamics. In the first case the waves may also be due to earthquake-triggered. With respect to tsunamis triggered by sea cliffs landslides it is important to mention the 1847 Quebrada Nova and the 1980 Rocha Alta events, both located in the Flores Island. The 1847 event is the deadliest tsunami recorded in Azores since 10 people died in Flores and Corvo islands in result of the propagated wave. The developed studies improve knowledge of the tsunami sources that affected the Azores during its history, also revealing the importance of awareness about this natural phenomenon. The obtained results showed that the tsunami hazard in the Azores is mostly driven from the events triggered by distant earthquakes and local earthquakes and landslides. In this context, were identified 12 tsunami events. In another context, it were identified 6 events associated with coastal areas flooding due to floods and/or extreme weather phenomena, hypothetically identified as meteotsunamis. It should be stressed that, despite the differences associated with their triggering mechanisms, both the tsunamis generated by geological factors and those related to atmospheric phenomena may have similar impact. Although the absence of reports identifying tsunamis associated with volcanic activity, the eruptive history of the Azores active volcanoes shows high magnitude eruptions with considerable tsunamigenic potential.
Intraplate triggered earthquakes: Observations and interpretation
Hough, S.E.; Seeber, L.; Armbruster, J.G.
2003-01-01
We present evidence that at least two of the three 1811-1812 New Madrid, central United States, mainshocks and the 1886 Charleston, South Carolina, earthquake triggered earthquakes at regional distances. In addition to previously published evidence for triggered earthquakes in the northern Kentucky/southern Ohio region in 1812, we present evidence suggesting that triggered events might have occurred in the Wabash Valley, to the south of the New Madrid Seismic Zone, and near Charleston, South Carolina. We also discuss evidence that earthquakes might have been triggered in northern Kentucky within seconds of the passage of surface waves from the 23 January 1812 New Madrid mainshock. After the 1886 Charleston earthquake, accounts suggest that triggered events occurred near Moodus, Connecticut, and in southern Indiana. Notwithstanding the uncertainty associated with analysis of historical accounts, there is evidence that at least three out of the four known Mw 7 earthquakes in the central and eastern United States seem to have triggered earthquakes at distances beyond the typically assumed aftershock zone of 1-2 mainshock fault lengths. We explore the possibility that remotely triggered earthquakes might be common in low-strain-rate regions. We suggest that in a low-strain-rate environment, permanent, nonelastic deformation might play a more important role in stress accumulation than it does in interplate crust. Using a simple model incorporating elastic and anelastic strain release, we show that, for realistic parameter values, faults in intraplate crust remain close to their failure stress for a longer part of the earthquake cycle than do faults in high-strain-rate regions. Our results further suggest that remotely triggered earthquakes occur preferentially in regions of recent and/or future seismic activity, which suggests that faults are at a critical stress state in only some areas. Remotely triggered earthquakes may thus serve as beacons that identify regions of long-lived stress concentration.
The 2009 Samoa-Tonga great earthquake triggered doublet
Lay, T.; Ammon, C.J.; Kanamori, H.; Rivera, L.; Koper, K.D.; Hutko, Alexander R.
2010-01-01
Great earthquakes (having seismic magnitudes of at least 8) usually involve abrupt sliding of rock masses at a boundary between tectonic plates. Such interplate ruptures produce dynamic and static stress changes that can activate nearby intraplate aftershocks, as is commonly observed in the trench-slope region seaward of a great subduction zone thrust event1-4. The earthquake sequence addressed here involves a rare instance in which a great trench-slope intraplate earthquake triggered extensive interplate faulting, reversing the typical pattern and broadly expanding the seismic and tsunami hazard. On 29 September 2009, within two minutes of the initiation of a normal faulting event with moment magnitude 8.1 in the outer trench-slope at the northern end of the Tonga subduction zone, two major interplate underthrusting subevents (both with moment magnitude 7.8), with total moment equal to a second great earthquake of moment magnitude 8.0, ruptured the nearby subduction zone megathrust. The collective faulting produced tsunami waves with localized regions of about 12metres run-up that claimed 192 lives in Samoa, American Samoa and Tonga. Overlap of the seismic signals obscured the fact that distinct faults separated by more than 50km had ruptured with different geometries, with the triggered thrust faulting only being revealed by detailed seismic wave analyses. Extensive interplate and intraplate aftershock activity was activated over a large region of the northern Tonga subduction zone. ?? 2010 Macmillan Publishers Limited. All rights reserved.
The 2009 Samoa-Tonga great earthquake triggered doublet.
Lay, Thorne; Ammon, Charles J; Kanamori, Hiroo; Rivera, Luis; Koper, Keith D; Hutko, Alexander R
2010-08-19
Great earthquakes (having seismic magnitudes of at least 8) usually involve abrupt sliding of rock masses at a boundary between tectonic plates. Such interplate ruptures produce dynamic and static stress changes that can activate nearby intraplate aftershocks, as is commonly observed in the trench-slope region seaward of a great subduction zone thrust event. The earthquake sequence addressed here involves a rare instance in which a great trench-slope intraplate earthquake triggered extensive interplate faulting, reversing the typical pattern and broadly expanding the seismic and tsunami hazard. On 29 September 2009, within two minutes of the initiation of a normal faulting event with moment magnitude 8.1 in the outer trench-slope at the northern end of the Tonga subduction zone, two major interplate underthrusting subevents (both with moment magnitude 7.8), with total moment equal to a second great earthquake of moment magnitude 8.0, ruptured the nearby subduction zone megathrust. The collective faulting produced tsunami waves with localized regions of about 12 metres run-up that claimed 192 lives in Samoa, American Samoa and Tonga. Overlap of the seismic signals obscured the fact that distinct faults separated by more than 50 km had ruptured with different geometries, with the triggered thrust faulting only being revealed by detailed seismic wave analyses. Extensive interplate and intraplate aftershock activity was activated over a large region of the northern Tonga subduction zone.
NASA Astrophysics Data System (ADS)
Lupi, Matteo; Frehner, Marcel; Weis, Philipp; Skelton, Alasdair; Saenger, Erik H.; Tisato, Nicola; Geiger, Sebastian; Chiodini, Giovanni; Driesner, Thomas
2017-09-01
Earthquake-triggered volcanic activity promoted by dynamic and static stresses are considered rare and difficult-to-capture geological processes. Calderas are ideal natural laboratories to investigate earthquake-volcano interactions due to their sensitivity to incoming seismic energy. The Campi Flegrei caldera, Italy, is one of the most monitored volcanic systems worldwide. We compare ground elevation time series at Campi Flegrei with earthquake catalogues showing that uplift events at Campi Flegrei are associated with large regional earthquakes. Such association is supported by (yet non-definitive) binomial tests. Over a 70-year time window we identify 14 uplift events, 12 of them were preceded by an earthquake, and for 8 of them the earthquake-to-uplift timespan ranges from immediate responses to 1.2 yr. Such variability in the response delay may be due to the preparedness of the system with faster responses probably occurring in periods during which the Campi Flegrei system was already in a critical state. To investigate the process that may be responsible for the proposed association we simulate the propagation of elastic waves and show that passing body waves impose high dynamic strains at the roof of the magmatic reservoir of the Campi Flegrei at about 7 km depth. This may promote a short-lived embrittlement of the magma reservoir's carapace otherwise marked by a ductile behaviour. Such failure allows magma and exsolved volatiles to be released from the magmatic reservoir. The fluids, namely exsolved volatiles and/or melts, ascend through a nominally plastic zone above the magmatic reservoir. This mechanism and the associated inherent uncertainties require further investigations but the new concept already implies that geological processes triggered by passing seismic waves may become apparent several months after passage of the seismic waves.
Delayed inflation triggerd by regional earthquakes at Campi Flegrei Caldera, Italy.
NASA Astrophysics Data System (ADS)
Lupi, M.; Frehner, M.; Weis, P.; Skelton, A.; Saenger, E.; Tisato, N.; Geiger, S.; Chiodini, G.; Driesner, T.
2017-12-01
What if earthquakes were affecting volcanoes more than we currently think because their effects are not immediately visible? Earthquake-volcano interactions promoted by dynamic and static stresses are considered seldom and difficult-to-capture geological processes. The Campi Flegrei caldera, Italy, is one of the best-monitored volcanic systems worldwide. We use a 70-years long time series to suggest a provocative and intriguing hypothesis to explain bradyseismic activity at Campi Flegrei. By comparing ground elevation time series at Campi Flegrei with seismic catalogues we show that uplift events at Campi Flegrei follow within 1.2 years large regional earthquakes. The accelerated uplifts are over-imposed on long-term inflation or deflation trends. Such association is supported by (yet-non definitive) binomial tests. Due to the non-definitive nature of the statistical tests we carried on additional numerical tests. We simulate the propagation of elastic waves showing that passing body waves impose high dynamic strains at the roof of the magmatic reservoir of the Campi Flegrei at about 7 km depth. Such elevated dynamic strains promote a brittle behaviour in an otherwise ductile material (i.e. the crystal mush) at near-lithostatic conditions. Such failure allows magma and exsolved volatiles to be released from the magmatic reservoir. The fluids would ascend through a plastic zone above the magmatic reservoir and inject into the shallow hydrothermal system where they phase-separate and expand causing a delayed effect, i.e. inflation. This mechanism and the associated inherent uncertainties require further investigations. However, the new concept already implies that geological processes triggered by passing seismic waves may become apparent several months after the triggering earthquake.
NASA Astrophysics Data System (ADS)
Rubinstein, Justin L.; Gomberg, Joan; Vidale, John E.; Wech, Aaron G.; Kao, Honn; Creager, Kenneth C.; Rogers, Garry
2009-02-01
We explore the physical conditions that enable triggering of nonvolcanic tremor and earthquakes by considering local seismic activity on Vancouver Island, British Columbia during and immediately after the arrival of large-amplitude seismic waves from 30 teleseismic and 17 regional or local earthquakes. We identify tremor triggered by four of the teleseismic earthquakes. The close temporal and spatial proximity of triggered tremor to ambient tremor and aseismic slip indicates that when a fault is close to or undergoing failure, it is particularly susceptible to triggering of further events. The amplitude of the triggering waves also influences the likelihood of triggering both tremor and earthquakes such that large amplitude waves triggered tremor in the absence of detectable aseismic slip or ambient tremor. Tremor and energy radiated from regional/local earthquakes share the same frequency passband so that tremor cannot be identified during these smaller, more frequent events. We confidently identify triggered local earthquakes following only one teleseism, that with the largest amplitude, and four regional or local events that generated vigorous aftershock sequences in their immediate vicinity. Earthquakes tend to be triggered in regions different from tremor and with high ambient seismicity rates. We also note an interesting possible correlation between large teleseismic events and episodic tremor and slip (ETS) episodes, whereby ETS events that are "late" and have built up more stress than normal are susceptible to triggering by the slight nudge of the shaking from a large, distant event, while ETS events that are "early" or "on time" are not.
Tsunami waves generated by dynamically triggered aftershocks of the 2010 Haiti earthquake
NASA Astrophysics Data System (ADS)
Ten Brink, U. S.; Wei, Y.; Fan, W.; Miller, N. C.; Granja, J. L.
2017-12-01
Dynamically-triggered aftershocks, thought to be set off by the passage of surface waves, are currently not considered in tsunami warnings, yet may produce enough seafloor deformation to generate tsunamis on their own, as judged from new findings about the January 12, 2010 Haiti earthquake tsunami in the Caribbean Sea. This tsunami followed the Mw7.0 Haiti mainshock, which resulted from a complex rupture along the north shore of Tiburon Peninsula, not beneath the Caribbean Sea. The mainshock, moreover, had a mixed strike-slip and thrust focal mechanism. There were no recorded aftershocks in the Caribbean Sea, only small coastal landslides and rock falls on the south shore of Tiburon Peninsula. Nevertheless, a tsunami was recorded on deep-sea DART buoy 42407 south of the Dominican Republic and on the Santo Domingo tide gauge, and run-ups of ≤3 m were observed along a 90-km-long stretch of the SE Haiti coast. Three dynamically-triggered aftershocks south of Haiti have been recently identified within the coda of the mainshock (<200 s) by analyzing P wave arrivals recorded by dense seismic arrays, parsing the arrivals into 20-s-long stacks, and back-projecting the arrivals to the vicinity of the main shock (50-300 km). Two of the aftershocks, coming 20-40 s and 40-60 s after the mainshock, plot along NW-SE-trending submarine ridges in the Caribbean Sea south of Haiti. The third event, 120-140 s was located along the steep eastern slope of Bahoruco Peninsula, which is delineated by a normal fault. Forward tsunami models show that the arrival times of the DART buoy and tide gauge times are best fit by the earliest of the three aftershocks, with a Caribbean source 60 km SW of the mainshock rupture zone. Preliminary inversion of the DART buoy time series for fault locations and orientations confirms the location of the first source, but requires an additional unidentified source closer to shore 40 km SW of the mainshock rupture zone. This overall agreement between earthquake and tsunami analyses suggests that land-based earthquake ruptures and/or non-thrust main shocks can generate tsunamis by means of dynamically-triggered aftershocks. It also provides an independent verification to the back-projection seismic method, and it indicates that the active NE-SW shortening of Hispaniola extends southward into the Caribbean Sea.
Dehydration-driven stress transfer triggers intermediate-depth earthquakes
NASA Astrophysics Data System (ADS)
Ferrand, T. P.; Schubnel, A.; Hilairet, N.; Incel, S.; Deldicque, D.; Labrousse, L.; Gasc, J.; Renner, J.; Wang, Y.; Green, H. W., II
2016-12-01
Intermediate-depth earthquakes (30-300 km) have been extensively documented within subducting oceanic slabs but their physical mechanisms remain enigmatic. Earthquakes occur both in the upper and lower Wadati-Benioff planes of seismicity (UBP and LBP). The LBP is located in the mantle of the subducted oceanic lithosphere, 20-40 km below the plate interface. Several mechanisms have been proposed: dehydration embrittlement of antigorite, shear heating instabilities, and the reactivation of pre-existing shear zones. We dehydrated synthetic antigorite-olivine aggregates, a proxy for serpentinized mantle, during deformation at upper mantle conditions. Acoustic emissions (AEs) were recorded during dehydration of samples with antigorite contents as low as 5 vol.% and with up to 50 vol.%, deformed at pressures of 1.1 GPa and 3.5 GPa, respectively. Source characteristics of these AEs are compatible with faults sealed by fluid-bearing micro-pseudotachylytes in recovered samples, demonstrating that antigorite dehydration triggered dynamic shear failure of the olivine load-bearing network. These intermediate-depth earthquake analogs reconcile the apparent contradictions of previous laboratory studies and confirm that little mantle hydration, as suggested by seismic imaging, may suffice to generate LBP seismicity. We propose an alternative model to dehydration-embrittlement in which dehydration-induced stress transfer, rather than fluid overpressure, is the trigger of mantle rocks embrittlement.
Swarms of similar long-period earthquakes in the mantle beneath Mauna Loa Volcano
Okubo, Paul G.; Wolfe, C.J.
2008-01-01
We present analyses of two swarms of long-period (LP) earthquakes at > 30 km depth that accompanied the geodetically observed 2002–2005 Mauna Loa intrusion. The first LP earthquake swarm in 2002 consisted of 31 events that were precursory and preceded the start of Mauna Loa inflation; the second LP swarm of two thousand events occurred from 2004–2005. The rate of LP earthquakes slowed significantly coincident with the occurrence of the December 26, 2004 Mw 9.3 Sumatra earthquake, suggesting that the seismic waves from this great earthquake may have had a dynamic triggering effect on the behavior of Mauna Loa's deep magma system. Using waveform cross correlation and double difference relocation, we find that a large number of earthquakes in each swarm are weakly similar and can be classified into two families. The relocated hypocenters for each family collapse to compact point source regions almost directly beneath the Mauna Loa intrusion. We suggest that the observed waveform characteristics are compatible with each family being associated with the resonance of a single fluid filled vertical crack of fixed geometry, with differences in waveforms between events being produced by slight variations in the trigger mechanism. If these LP earthquakes are part of the primary magma system that fed the 2002–2005 intrusion, as indicated by the spatial and temporal associations between mantle seismicity and surface deformation, then our results raise the possibility that this magma system may be quite focused at these depths as opposed to being a diffuse network. It is likely that only a few locations of Mauna Loa's deep magma system met the geometric and fluid dynamic conditions for generating LP earthquakes that were large enough to be recorded at the surface, and that much of the deep magma transfer associated with the 2002–2005 intrusion occurred aseismically.
Global Search of Triggered Tectonic Tremor
NASA Astrophysics Data System (ADS)
Peng, Z.; Aiken, C.; Chao, K.; Gonzalez-Huizar, H.; Wang, B.; Ojha, L.; Yang, H.
2013-05-01
Deep tectonic tremor has been observed at major plate-boundary faults around the Pacific Rim. While regular or ambient tremor occurs spontaneously or accompanies slow-slip events, tremor could be also triggered by large distant earthquakes and solid earth tides. Because triggered tremor occurs on the same fault patches as ambient tremor and is relatively easy to identify, a systematic global search of triggered tremor could help to identify the physical mechanisms and necessary conditions for tremor generation. Here we conduct a global search of tremor triggered by large teleseismic earthquakes. We mainly focus on major faults with significant strain accumulations where no tremor has been reported before. These includes subduction zones in Central and South America, strike-slip faults around the Caribbean plate, the Queen Charlotte-Fairweather fault system and the Denali fault in the western Canada and Alaska, the Sumatra-Java subduction zone, the Himalaya frontal thrust faults, as well as major strike-slip faults around Tibet. In each region, we first compute the predicted dynamic stresses σd from global earthquakes with magnitude>=5.0 in the past 20 years, and select events with σd > 1 kPa. Next, we download seismic data recorded by stations from local or global seismic networks, and identify triggered tremor as a high-frequency non-impulsive signal that is in phase with the large-amplitude teleseismic waves. In cases where station distributions are dense enough, we also locate tremor based on the standard envelope cross-correlation techniques. Finally, we calculate the triggering potential for the Love and Rayleigh waves with the local fault orientation and surface-wave incident angles. So far we have found several new places that are capable of generating triggered tremor. We will summarize these observations and discuss their implications on physical mechanisms of tremor and remote triggering.
The influence of one earthquake on another
NASA Astrophysics Data System (ADS)
Kilb, Deborah Lyman
1999-12-01
Part one of my dissertation examines the initiation of earthquake rupture. We study the initial subevent (ISE) of the Mw 6.7 1994 Northridge, California earthquake to distinguish between two end-member hypotheses of an organized and predictable earthquake rupture initiation process or, alternatively, a random process. We find that the focal mechanisms of the ISE and mainshock are indistinguishable, and both events may have nucleated on and ruptured the same fault plane. These results satisfy the requirements for both end-member models, and do not allow us to distinguish between them. However, further tests show the ISE's waveform characteristics are similar to those of typical nearby small earthquakes (i.e., dynamic ruptures). The second part of my dissertation examines aftershocks of the M 7.1 1989 Loma Prieta, California earthquake to determine if theoretical models of static Coulomb stress changes correctly predict the fault plane geometries and slip directions of Loma Prieta aftershocks. Our work shows individual aftershock mechanisms cannot be successfully predicted because a similar degree of predictability can be obtained using a randomized catalogue. This result is probably a function of combined errors in the models of mainshock slip distribution, background stress field, and aftershock locations. In the final part of my dissertation, we test the idea that earthquake triggering occurs when properties of a fault and/or its loading are modified by Coulomb failure stress changes that may be transient and oscillatory (i.e., dynamic) or permanent (i.e., static). We propose a triggering threshold failure stress change exists, above which the earthquake nucleation process begins although failure need not occur instantaneously. We test these ideas using data from the 1992 M 7.4 Landers earthquake and its aftershocks. Stress changes can be categorized as either dynamic (generated during the passage of seismic waves), static (associated with permanent fault offsets caused by fault slip) or complete (including both static and dynamic). We examine theoretically calculated Coulomb failure stress changes for the static (DeltaCFS) and complete (DeltaCFS(t)) cases, and statistically test for a correlation with spatially varying post-Landers seismicity rate changes. We find that directivity, which was required to model waveforms of the 1992 Landers earthquake, creates an asymmetry in mapped peak DeltaCFS(t). A similar asymmetry is apparent in the seismicity rate change map but not in the DeltaCFS map. Statistical analyses show that peak DeltaCFS(t) correlates as well or better with seismicity rate change as DeltaCFS, and qualitatively peak DeltaCFS(t) is the preferred model. (Abstract shortened by UMI.)
MyShake - A smartphone app to detect earthquake
NASA Astrophysics Data System (ADS)
Kong, Q.; Allen, R. M.; Schreier, L.; Kwon, Y. W.
2015-12-01
We designed an android app that harnesses the accelerometers in personal smartphones to record earthquake-shaking data for research, hazard information and warnings. The app has the function to distinguish earthquake shakings from daily human activities based on the different patterns behind the movements. It also can be triggered by the traditional earthquake early warning (EEW) system to record for a certain amount of time to collect earthquake data. When the app is triggered by the earthquake-like movements, it sends the trigger information back to our server which contains time and location of the trigger, at the same time, it stores the waveform data on local phone first, and upload to our server later. Trigger information from multiple phones will be processed in real time on the server to find the coherent signal to confirm the earthquakes. Therefore, the app provides the basis to form a smartphone seismic network that can detect earthquake and even provide warnings. A planned public roll-out of MyShake could collect millions of seismic recordings for large earthquakes in many regions around the world.
NASA Astrophysics Data System (ADS)
Lanagan, K. M.; Richardson, E.
2012-12-01
Although great earthquakes such as the recent moment-magnitude (M) 9 Tohoku-Oki earthquake have been shown to trigger remote seismicity in volcanoes, the extent to which subduction zone earthquakes can trigger shallow seismic swarms at volcanoes is largely unexplored. Unknowns in this relationship include the upper limit of distance, the lower limit of magnitude, the upper time limit between events, and the effects of rupture directivity. We searched the Advanced National Seismic System earthquake catalog from 1989 - 2011 for correlations in space and time between M > 5.0 earthquakes in the south central Alaskan subduction zone (between 58.5°N and 62.5°N, and 150.7°W and 154.7°W) and volcanic activity at Mt. Redoubt, Mt. Iliamna, and Mt. Spurr volcanoes. There are 48 earthquakes M > 5 in this catalog; five of these are M > 6. The depths of the 48 M>5 events range from 49km to 220km, and they are all between 100km and 350km of the three volcanoes. Preliminary analysis of our catalog shows that four of the five M > 6 earthquakes are followed by a volcanic earthquake swarm at either Redoubt or Spurr within 100 days, and three of them are followed by a volcanic earthquake swarm within a month. None of these events correlated in space and time with swarms at Mt. Iliamna. We are also searching for swarms and moderate earthquakes occurring in time windows far removed from each other. The likeliest case of remotely triggered seismicity in our search area to date occurred on January 24 2009, when a magnitude 5.8 earthquake beneath the Kenai Peninsula at 59.4°N, 152.8°W, and 95km depth was immediately followed by an increase of volcanic activity at Mt. Redoubt approximately 153km away. The first swarm began on Jan 25 2009. On Jan 30 2009, volcanologists at the Alaskan Volcano observatory determined the increased volcanic seismicity was indicative of an impending eruption. Mt. Redoubt erupted on March 15 2009. Proposed mechanisms for triggering of volcanoes by earthquakes include dynamic and static stress changes in the magmatic system, which could affect pressure in the magma chamber and overpressure, or affect phenocryst settling and bubble growth inside the chamber. However, these models have generally not been connected to specific events; expanding our catalog will help to refine these models to describe the mechanics of this relationship.
NASA Astrophysics Data System (ADS)
Uchide, Takahiko; Horikawa, Haruo; Nakai, Misato; Matsushita, Reiken; Shigematsu, Norio; Ando, Ryosuke; Imanishi, Kazutoshi
2016-11-01
The 2016 Kumamoto-Oita earthquake sequence involving three large events ( M w ≥ 6) in the central Kyushu Island, southwest Japan, activated seismicities in two volcanic areas with unusual and puzzling spatial gaps after the largest earthquake ( M w 7.0) of April 16, 2016. We attempt to reveal the seismic process during the sequence by following seismological data analyses. Our hypocenter relocation result implies that the large events ruptured different faults of a complex fault system. A slip inversion analysis of the largest event indicates a large slip in the seismicity gap (Aso gap) in the caldera of Mt. Aso, which probably released accumulated stress and resulted in little aftershock production. We identified that the largest event dynamically triggered a mid-M6 event at Yufuin (80 km northeast of the epicenter), which is consistent with existence of the 20-km long zone where seismicity was activated and surface offset was observed. These findings will help us study the contribution of the identified complexity in fault geometries and the geotherm in the volcanic areas to the revealed seismic process and consequently improve our understanding of the seismo-volcano tectonics.[Figure not available: see fulltext.
Diverse rupture processes in the 2015 Peru deep earthquake doublet.
Ye, Lingling; Lay, Thorne; Kanamori, Hiroo; Zhan, Zhongwen; Duputel, Zacharie
2016-06-01
Earthquakes in deeply subducted oceanic lithosphere can involve either brittle or dissipative ruptures. On 24 November 2015, two deep (606 and 622 km) magnitude 7.5 and 7.6 earthquakes occurred 316 s and 55 km apart. The first event (E1) was a brittle rupture with a sequence of comparable-size subevents extending unilaterally ~50 km southward with a rupture speed of ~4.5 km/s. This earthquake triggered several aftershocks to the north along with the other major event (E2), which had 40% larger seismic moment and the same duration (~20 s), but much smaller rupture area and lower rupture speed than E1, indicating a more dissipative rupture. A minor energy release ~12 s after E1 near the E2 hypocenter, possibly initiated by the S wave from E1, and a clear aftershock ~165 s after E1 also near the E2 hypocenter, suggest that E2 was likely dynamically triggered. Differences in deep earthquake rupture behavior are commonly attributed to variations in thermal state between subduction zones. However, the marked difference in rupture behavior of the nearby Peru doublet events suggests that local variations of stress state and material properties significantly contribute to diverse behavior of deep earthquakes.
Observing Triggered Earthquakes Across Iran with Calibrated Earthquake Locations
NASA Astrophysics Data System (ADS)
Karasozen, E.; Bergman, E.; Ghods, A.; Nissen, E.
2016-12-01
We investigate earthquake triggering phenomena in Iran by analyzing patterns of aftershock activity around mapped surface ruptures. Iran has an intense level of seismicity (> 40,000 events listed in the ISC Bulletin since 1960) due to it accommodating a significant portion of the continental collision between Arabia and Eurasia. There are nearly thirty mapped surface ruptures associated with earthquakes of M 6-7.5, mostly in eastern and northwestern Iran, offering a rich potential to study the kinematics of earthquake nucleation, rupture propagation, and subsequent triggering. However, catalog earthquake locations are subject to up to 50 km of location bias from the combination of unknown Earth structure and unbalanced station coverage, making it challenging to assess both the rupture directivity of larger events and the spatial patterns of their aftershocks. To overcome this limitation, we developed a new two-tiered multiple-event relocation approach to obtain hypocentral parameters that are minimally biased and have realistic uncertainties. In the first stage, locations of small clusters of well-recorded earthquakes at local spatial scales (100s of events across 100 km length scales) are calibrated either by using near-source arrival times or independent location constraints (e.g. local aftershock studies, InSAR solutions), using an implementation of the Hypocentroidal Decomposition relocation technique called MLOC. Epicentral uncertainties are typically less than 5 km. Then, these events are used as prior constraints in the code BayesLoc, a Bayesian relocation technique that can handle larger datasets, to yield region-wide calibrated hypocenters (1000s of events over 1000 km length scales). With locations and errors both calibrated, the pattern of aftershock activity can reveal the type of the earthquake triggering: dynamic stress changes promote an increase in the seismicity rate in the direction of unilateral propagation, whereas static stress changes should not be biased by rupture propagation direction. Here we present results from Ahar, Baladeh, Qom, Rigan, Silakhour and Zirkuh clusters, that include early-instrumental and modern mainshock-aftershock sequences. These will in turn provide a greatly improved basis for research into seismic hazards in this region.
Parsons, Tom
2002-01-01
Triggered earthquakes can be large, damaging, and lethal as evidenced by the 1999 shocks in Turkey and the 2001 earthquakes in El Salvador. In this study, earthquakes with Ms ≥ 7.0 from the Harvard centroid moment tensor (CMT) catalog are modeled as dislocations to calculate shear stress changes on subsequent earthquake rupture planes near enough to be affected. About 61% of earthquakes that occurred near (defined as having shear stress change ∣Δτ∣ ≥ 0.01 MPa) the Ms ≥ 7.0 shocks are associated with calculated shear stress increases, while ∼39% are associated with shear stress decreases. If earthquakes associated with calculated shear stress increases are interpreted as triggered, then such events make up at least 8% of the CMT catalog. Globally, these triggered earthquakes obey an Omori law rate decay that lasts between ∼7–11 years after the main shock. Earthquakes associated with calculated shear stress increases occur at higher rates than background up to 240 km away from the main shock centroid. Omori's law is one of the few time-predictable patterns evident in the global occurrence of earthquakes. If large triggered earthquakes habitually obey Omori's law, then their hazard can be more readily assessed. The characteristic rate change with time and spatial distribution can be used to rapidly assess the likelihood of triggered earthquakes following events of Ms ≥ 7.0. I show an example application to the M = 7.7 13 January 2001 El Salvador earthquake where use of global statistics appears to provide a better rapid hazard estimate than Coulomb stress change calculations.
Parsons, T.
2002-01-01
Triggered earthquakes can be large, damaging, and lethal as evidenced by the 1999 shocks in Turkey and the 2001 earthquakes in El Salvador. In this study, earthquakes with Ms ≥ 7.0 from the Harvard centroid moment tensor (CMT) catalog are modeled as dislocations to calculate shear stress changes on subsequent earthquake rupture planes near enough to be affected. About 61% of earthquakes that occured near (defined as having shear stress change |Δ| 0.01 MPa) the Ms ≥ 7.0 shocks are associated with calculated shear stress increases, while ~39% are associated with shear stress decreases. If earthquakes associated with calculated shear stress increases are interpreted as triggered, then such events make up at least 8% of the CMT catalog. Globally, these triggered earthquakes obey an Omori law rate decay that lasts between ~7-11 years after the main shock. Earthquakes associated with calculated shear stress increases occur at higher rates than background up to 240 km away from the main shock centroid. Omori's law is one of the few time-predictable patterns evident in the global occurrence of earthquakes. If large triggered earthquakes habitually obey Omori's law, then their hazard can be more readily assessed. The characteristics rate change with time and spatial distribution can be used to rapidly assess the likelihood of triggered earthquakes following events of Ms ≥7.0. I show an example application to the M = 7.7 13 January 2001 El Salvador earthquake where use of global statistics appears to provide a better rapid hazard estimate than Coulomb stress change calculations.
NASA Astrophysics Data System (ADS)
Parsons, Tom
2002-09-01
Triggered earthquakes can be large, damaging, and lethal as evidenced by the1999 shocks in Turkey and the 2001 earthquakes in El Salvador. In this study, earthquakes with Ms ≥ 7.0 from the Harvard centroid moment tensor (CMT) catalog are modeled as dislocations to calculate shear stress changes on subsequent earthquake rupture planes near enough to be affected. About 61% of earthquakes that occurred near (defined as having shear stress change ∣Δτ∣ ≥ 0.01 MPa) the Ms ≥ 7.0 shocks are associated with calculated shear stress increases, while ˜39% are associated with shear stress decreases. If earthquakes associated with calculated shear stress increases are interpreted as triggered, then such events make up at least 8% of the CMT catalog. Globally, these triggered earthquakes obey an Omori law rate decay that lasts between ˜7-11 years after the main shock. Earthquakes associated with calculated shear stress increases occur at higher rates than background up to 240 km away from the main shock centroid. Omori's law is one of the few time-predictable patterns evident in the global occurrence of earthquakes. If large triggered earthquakes habitually obey Omori's law, then their hazard can be more readily assessed. The characteristic rate change with time and spatial distribution can be used to rapidly assess the likelihood of triggered earthquakes following events of Ms ≥ 7.0. I show an example application to the M = 7.7 13 January 2001 El Salvador earthquake where use of global statistics appears to provide a better rapid hazard estimate than Coulomb stress change calculations.
Controls on Earthquake Rupture and Triggering Mechanisms in Subduction Zones
2010-06-01
weaken the fault [Wibber- ley and Shimamoto, 2005]. Song and Simons [2003] infer that strongly negative TPGA values correlate with increases in the...and Y. Hu (2006), Accretionary prisms in subduction earthquake cycles: The theory of dynamic Coulomb wedge, J. Geophys. Res., 111, B06410, doi:10.1029...modified Coulomb stress function, γ is a state variable, and A is a fault constitutive parameter. We assume that the normal stress σ remains constant, and
Decay of aftershock density with distance indicates triggering by dynamic stress
Felzer, K.R.; Brodsky, E.E.
2006-01-01
The majority of earthquakes are aftershocks, yet aftershock physics is not well understood. Many studies suggest that static stress changes trigger aftershocks, but recent work suggests that shaking (dynamic stresses) may also play a role. Here we measure the decay of aftershocks as a function of distance from magnitude 2-6 mainshocks in order to clarify the aftershock triggering process. We find that for short times after the mainshock, when low background seismicity rates allow for good aftershock detection, the decay is well fitted by a single inverse power law over distances of 0.2-50 km. The consistency of the trend indicates that the same triggering mechanism is working over the entire range. As static stress changes at the more distant aftershocks are negligible, this suggests that dynamic stresses may be triggering all of these aftershocks. We infer that the observed aftershock density is consistent with the probability of triggering aftershocks being nearly proportional to seismic wave amplitude. The data are not fitted well by models that combine static stress change with the evolution of frictionally locked faults. ?? 2006 Nature Publishing Group.
Multi-Satellite Scheduling Approach for Dynamic Areal Tasks Triggered by Emergent Disasters
NASA Astrophysics Data System (ADS)
Niu, X. N.; Zhai, X. J.; Tang, H.; Wu, L. X.
2016-06-01
The process of satellite mission scheduling, which plays a significant role in rapid response to emergent disasters, e.g. earthquake, is used to allocate the observation resources and execution time to a series of imaging tasks by maximizing one or more objectives while satisfying certain given constraints. In practice, the information obtained of disaster situation changes dynamically, which accordingly leads to the dynamic imaging requirement of users. We propose a satellite scheduling model to address dynamic imaging tasks triggered by emergent disasters. The goal of proposed model is to meet the emergency response requirements so as to make an imaging plan to acquire rapid and effective information of affected area. In the model, the reward of the schedule is maximized. To solve the model, we firstly present a dynamic segmenting algorithm to partition area targets. Then the dynamic heuristic algorithm embedding in a greedy criterion is designed to obtain the optimal solution. To evaluate the model, we conduct experimental simulations in the scene of Wenchuan Earthquake. The results show that the simulated imaging plan can schedule satellites to observe a wider scope of target area. We conclude that our satellite scheduling model can optimize the usage of satellite resources so as to obtain images in disaster response in a more timely and efficient manner.
The role of shear and tensile failure in dynamically triggered landslides
Gipprich, T.L.; Snieder, R.K.; Jibson, R.W.; Kimman, W.
2008-01-01
Dynamic stresses generated by earthquakes can trigger landslides. Current methods of landslide analysis such as pseudo-static analysis and Newmark's method focus on the effects of earthquake accelerations on the landslide mass to characterize dynamic landslide behaviour. One limitation of these methods is their use Mohr-Coulomb failure criteria, which only accounts for shear failure, but the role of tensile failure is not accounted for. We develop a limit-equilibrium model to investigate the dynamic stresses generated by a given ground motion due to a plane wave and use this model to assess the role of shear and tensile failure in the initiation of slope instability. We do so by incorporating a modified Griffith failure envelope, which combines shear and tensile failure into a single criterion. Tests of dynamic stresses in both homogeneous and layered slopes demonstrate that two modes of failure exist, tensile failure in the uppermost meters of a slope and shear failure at greater depth. Further, we derive equations that express the dynamic stress in the near-surface in the acceleration measured at the surface. These equations are used to approximately define the depth range for each mechanism of failure. The depths at which these failure mechanisms occur suggest that shear and tensile failure might collaborate in generating slope failure. ?? 2007 The Authors Journal compilation ?? 2007 RAS.
NASA Astrophysics Data System (ADS)
Wdowinski, S.; Peng, Z.; Ferrier, K.; Lin, C. H.; Hsu, Y. J.; Shyu, J. B. H.
2017-12-01
Earthquakes, landslides, and tropical cyclones are extreme hazards that pose significant threats to human life and property. Some of the couplings between these hazards are well known. For example, sudden, widespread landsliding can be triggered by large earthquakes and by extreme rainfall events like tropical cyclones. Recent studies have also shown that earthquakes can be triggered by erosional unloading over 100-year timescales. In a NASA supported project, titled "Cascading hazards: Understanding triggering relations between wet tropical cyclones, landslides, and earthquake", we study triggering relations between these hazard types. The project focuses on such triggering relations in Taiwan, which is subjected to very wet tropical storms, landslides, and earthquakes. One example for such triggering relations is the 2009 Morakot typhoon, which was the wettest recorded typhoon in Taiwan (2850 mm of rain in 100 hours). The typhoon caused widespread flooding and triggered more than 20,000 landslides, including the devastating Hsiaolin landslide. Six months later, the same area was hit by the 2010 M=6.4 Jiashian earthquake near Kaohsiung city, which added to the infrastructure damage induced by the typhoon and the landslides. Preliminary analysis of temporal relations between main-shock earthquakes and the six wettest typhoons in Taiwan's past 50 years reveals similar temporal relations between M≥5 events and wet typhoons. Future work in the project will include remote sensing analysis of landsliding, seismic and geodetic monitoring of landslides, detection of microseismicity and tremor activities, and mechanical modeling of crustal stress changes due to surface unloading.
NASA Astrophysics Data System (ADS)
Velasco, A. A.; Karplus, M. S.; Dena, O.; Gonzalez-Huizar, H.; Husker, A. L.; Perez-Campos, X.; Calo, M.; Valdes, C. M.
2017-12-01
The September 7 Tehuantepec, Mexico (M=8.1) and the September 19 Morelos-Puebla, Mexico (M=7.1) earthquakes ruptured with extensional faulting within the Cocos Plate at 70-km and 50-km depth, as it subducts beneath the continental North American Plate. Both earthquakes caused significant damage and loss of life. These events were followed by a M=6.1 extensional earthquake at only 10-km depth in Oaxaca on September 23, 2017. While the Morelos-Puebla earthquake was likely too far away to be statically triggered by the Tehuantepec earthquake, initial Coulomb stress analyses show that the M=6.1 event may have been an aftershock of the Tehuantepec earthquake. Many questions remain about these earthquakes, including: Did the Cocos Plate earthquakes load the upper plate, and could they possibly trigger an equal or larger earthquake on the plate interface? Are these the result of plate bending? Do the aftershocks migrate to the locked zone in the subduction zone? Why did the intermediate depth earthquakes create so much damage? Are these earthquakes linked by dynamic stresses? Is it possible that a potential slow-slip event triggered both events? To address some of these questions, we deployed 10 broadband seismometers near the epicenter of the Tehuantepec, Mexico earthquake and 51 UTEP-owned nodes (5-Hz, 3-component geophones) to record aftershocks and augment networks deployed by the Universidad Nacional Autónoma de México (UNAM). The 10 broadband instruments will be deployed for 6 months, while the nodes were deployed 25 days. The relative ease-of-deployment and larger numbers of the nodes allowed us to deploy them quickly in the area near the M=6.1 Oaxaca earthquake, just a few days after that earthquake struck. We deployed them near the heavily-damaged cities of Juchitan, Ixtaltepec, and Ixtepec as well as in Tehuantepec and Salina Cruz, Oaxaca in order to test their capabilities for site characterization and aftershock studies. This is the first test of these instruments in a region heavily affected by aftershocks, outside of Oklahoma. Analysis of the nodal and broadband data will allow us to investigate fault geometries from aftershock locations, stress release and orientation from the determination of fault plane solutions, and site effects and characteristics in regions of extensive damage.
Prejean, Stephanie G.; Haney, Matthew M.
2014-01-01
Most volcanic eruptions that occur shortly after a large distant earthquake do so by random chance. A few compelling cases for earthquake-triggered eruptions exist, particularly within 200 km of the earthquake, but this phenomenon is rare in part because volcanoes must be poised to erupt in order to be triggered by an earthquake (1). Large earthquakes often perturb volcanoes in more subtle ways by triggering small earthquakes and changes in spring discharge and groundwater levels (1, 2). On page 80 of this issue, Brenguier et al. (3) provide fresh insight into the interaction of large earthquakes and volcanoes by documenting a temporary change in seismic velocity beneath volcanoes in Honshu, Japan, after the devastating Tohoku-Oki earthquake in 2011.
Hurwitz, Shaul; Sohn, Robert A.; Luttrell, Karen; Manga, Michael
2014-01-01
We analyze intervals between eruptions (IBEs) data acquired between 2001 and 2011 at Daisy and Old Faithful geysers in Yellowstone National Park. We focus our statistical analysis on the response of these geysers to stress perturbations from within the solid earth (earthquakes and earth tides) and from weather (air pressure and temperature, precipitation, and wind). We conclude that (1) the IBEs of these geysers are insensitive to periodic stresses induced by solid earth tides and barometric pressure variations; (2) Daisy (pool geyser) IBEs lengthen by evaporation and heat loss in response to large wind storms and cold air; and (3) Old Faithful (cone geyser) IBEs are not modulated by air temperature and pressure variations, wind, and precipitation, suggesting that the subsurface water column is decoupled from the atmosphere. Dynamic stress changes of 0.1−0.2 MPa resulting from the 2002 M-7.9 Denali, Alaska, earthquake surface waves caused a statistically significant shortening of Daisy geyser's IBEs. Stresses induced by other large global earthquakes during the study period were at least an order of magnitude smaller. In contrast, dynamic stresses of >0.5 MPa from three large regional earthquakes in 1959, 1975, and 1983 caused lengthening of Old Faithful's IBEs. We infer that most subannual geyser IBE variability is dominated by internal processes and interaction with other geysers. The results of this study provide quantitative bounds on the sensitivity of hydrothermal systems to external stress perturbations and have implications for studying the triggering and modulation of volcanic eruptions by external forces.
NASA Astrophysics Data System (ADS)
Chao, K.; Gonzalez-Huizar, H.; Tang, V.; Klaeser, R. D.; Mattia, M.; Van der Lee, S.
2017-12-01
Triggered tremor is one type of slow earthquake that activated by teleseismic surfaces waves of large magnitude earthquake. Observations of triggered tremor can help to evaluate the background ambient tremor rate and slow slip events in the surrounding region. The Mw 8.1 Tehuantepec earthquake in Mexico is an ideal tremor-triggering candidate for a global search for triggered tremor. Here, we examine triggered tremor globally following the M8.1 event and model the tremor-triggering potential. We examine 7,000 seismic traces and found a widely spread triggered tremor along the western coast of the North America occur during the surface waves of the Mw 8.1 event. Triggered tremor appeared in the San Jacinto Fault, San Andreas Fault around Parkfield, and Calaveras Fault in California, in Vancouver Island in Cascadia subduction zone, in Queen Charlotte Margin and Eastern Denali Fault in Canada, and in Alaska and Aleutian Arc. In addition, we observe a newly found triggered tremor source in Mt. Etna in Sicily Island, Italy. However, we do not find clear triggered tremor evidences in the tremor active regions in Japan, Taiwan, and in New Zealand. We model tremor-triggering potential at the triggering earthquake source and triggered tremor sources. Our modeling results suggest the source parameters of the M8.1 triggering events and the stress at the triggered fault zone are two critical factors to control tremor-triggering threshold.
NASA Astrophysics Data System (ADS)
Boese, C. M.; Townend, J.; Chamberlain, C. J.; Warren-Smith, E.
2016-12-01
Microseismicity recorded since 2008 by the Southern Alps Microseismicity Borehole Array (SAMBA) and other predominantly short-period seismic networks deployed in the central Southern Alps, New Zealand, reveals distinctive patterns of triggering in response to regional seismicity (magnitudes larger than 5, epicentral distances of 100-500 km). Using matched-filter detection methods implemented in the EQcorrscan package (Chamberlain et al., in prep.), we analyze microseismicity occurring in several geographically distinct swarms in order to examine the responses of specific microearthquake sources to earthquakes of different sizes occurring at different distances and azimuths. The swarms exhibit complex responses to regional seismicity which reveal that microearthquake triggering in these cases involves a combination of extrinsic factors (related to the dynamic stresses produced by the regional earthquake) and intrinsic factors (controlled by the local state of stress and possibly by hydrogeological processes). We find also that the microearthquakes detected by individual templates have Gutenberg-Richter magnitude-frequency characteristics. Since the detected events, by design, have very similar hypocentres and focal mechanisms, the observed scaling pertains to a restricted set of fault planes.
Triggering Factor of Strong Earthquakes and Its Prediction Verification
NASA Astrophysics Data System (ADS)
Ren, Z. Q.; Ren, S. H.
After 30 yearsS research, we have found that great earthquakes are triggered by tide- generation force of the moon. ItSs not the tide-generation force in classical view- points, but is a non-classical viewpoint tide-generation force. We call it as TGFR (Tide-Generation ForcesS Resonance). TGFR strongly depends on the tide-generation force at time of the strange astronomical points (SAP). The SAP mostly are when the moon and another celestial body are arranged with the earth along a straight line (with the same apparent right ascension or 180o difference), the other SAP are the turning points of the moonSs relatively motion to the earth. Moreover, TGFR have four different types effective areas. Our study indicates that a majority of earthquakes are triggering by the rare superimposition of TGFRsS effective areas. In China the great earthquakes in the plain area of Hebei Province, Taiwan, Yunnan Province and Sichuan province are trigger by the decompression TGFR; Other earthquakes are trig- gered by compression TGFR which are in Gansu Province, Ningxia Provinces and northwest direction of Beijing. The great earthquakes in Japan, California, southeast of Europe also are triggered by compression of the TGFR. and in the other part of the world like in Philippines, Central America countries, and West Asia, great earthquakes are triggered by decompression TGFR. We have carried out examinational immediate prediction cooperate TGFR method with other earthquake impending signals such as suggested by Professor Li Junzhi. The successful ratio is about 40%(from our fore- cast reports to the China Seismological Administration). Thus we could say the great earthquake can be predicted (include immediate earthquake prediction). Key words: imminent prediction; triggering factor; TGFR (Tide-Generation ForcesS Resonance); TGFR compression; TGFR compression zone; TGFR decompression; TGFR decom- pression zone
NASA Astrophysics Data System (ADS)
Li, Gen; West, A. Joshua; Densmore, Alexander L.; Hammond, Douglas E.; Jin, Zhangdong; Zhang, Fei; Wang, Jin; Hilton, Robert G.
2016-04-01
Evaluating the influence of earthquakes on erosion, landscape evolution, and sediment-related hazards requires understanding fluvial transport of material liberated in earthquake-triggered landslides. The location of landslides relative to river channels is expected to play an important role in postearthquake sediment dynamics. In this study, we assess the position of landslides triggered by the Mw 7.9 Wenchuan earthquake, aiming to understand the relationship between landslides and the fluvial network of the steep Longmen Shan mountain range. Combining a landslide inventory map and geomorphic analysis, we quantify landslide-channel connectivity in terms of the number of landslides, landslide area, and landslide volume estimated from scaling relationships. We observe a strong spatial variability in landslide-channel connectivity, with volumetric connectivity (ξ) ranging from ~20% to ~90% for different catchments. This variability is linked to topographic effects that set local channel densities, seismic effects (including seismogenic faulting) that regulate landslide size, and substrate effects that may influence both channelization and landslide size. Altogether, we estimate that the volume of landslides connected to channels comprises 43 + 9/-7% of the total coseismic landslide volume. Following the Wenchuan earthquake, fine-grained (<~0.25 mm) suspended sediment yield across the Longmen Shan catchments is positively correlated to catchment-wide landslide density, but this correlation is statistically indistinguishable whether or not connectivity is considered. The weaker-than-expected influence of connectivity on suspended sediment yield may be related to mobilization of fine-grained landslide material that resides in hillslope domains, i.e., not directly connected to river channels. In contrast, transport of the coarser fraction (which makes up >90% of the total landslide volume) may be more significantly affected by landslide locations.
Combining historical and geomorphological information to investigate earthquake induced landslides
NASA Astrophysics Data System (ADS)
Cardinali, M.; Ferrari, G.; Galli, M.; Guidoboni, E.; Guzzetti, F.
2003-04-01
Landslides are caused by many different triggers, including earthquakes. In Italy, a detailed new generation catalogue of information on historical earthquakes for the period 461 B.C to 1997 is available (Catalogue of Strong Italian Earthquakes from 461 B.C. to 1997, ING-SGA 2000). The catalogue lists 548 earthquakes and provides information on a total of about 450 mass-movements triggered by 118 seismic events. The information on earthquake-induced landslides listed in the catalogue was obtained through the careful scrutiny of historical documents and chronicles, but was rarely checked in the field. We report on an attempt to combine the available historical information on landslides caused by earthquakes with standard geomorphological techniques, including the interpretation of aerial photographs and field surveys, to better determine the location, type and distribution of seismically induced historical slope failures. We present four examples in the Central Apennines. The first example describes a rock slide triggered by the 1279 April 30 Umbria-Marche Apennines earthquake (Io = IX) at Serravalle, along the Chienti River (Central Italy). The landslide is the oldest known earthquake-induced slope failure in Italy. The second example describes the location of 2 large landslides triggered by the 1584 September 10 earthquake (Io = IX) at San Piero in Bagno, along the Savio River (Northern Italy). The landslides were subsequently largely modified by mass movements occurred on 1855 making the recognition of the original seismically induced failures difficult, if not impossible. In the third example we present the geographical distribution of the available information on landslide events triggered by 8 earthquakes in Central Valnerina, in the period 1703 to 1979. A comparison with the location of landslides triggered by the September-October 1997 Umbria-Marche earthquake sequence is presented. The fourth example describes the geographical distribution of the available information on landslides triggered by the great 1915 January 13 Marsica (Central Italy) earthquake (Io = XI) mostly along the Liri River valley. Problems encountered in matching the recent historical information with the local geomorphological setting are discussed. A critical analysis of the four studied examples allows general considerations on the advantages and limitations of a combined historical and geomorphological approach to investigate past earthquake induced landslides. Lastly, a preliminary analysis of the relationship between the earthquake intensity and the distance of the known slope failures to the triggering earthquake epicentres is presented, for the four investigated areas and for the entire catalogue of historical earthquakes.
NASA Astrophysics Data System (ADS)
Wang, Tien-Huei
Non-volcanic tremor (NVT) has been discovered in recent years due to advances in seismic instruments and increased density of seismic networks. The NVT is a special kind of seismic signal indicative of the physical conditions and the failure mechanism on the source on the fault where NVT occurs. The detection methods used and the sensitivity of them relies on the density, distance and instrumentation of the station network available. How accurately the tremor is identified in different regions varies greatly among different studies. Therefore, there has not been study that rigorously documents tectonic tremors in different regions under limited methods and data. Meanwhile, many incidences of NVTs are observed during or after small but significant strain change induced by teleseismic, regional or local earthquake. The understanding of the triggering mechanisms critical for tremor remains unclear. In addition, characteristics of the triggering of NVT in different regions are rarely compared because of the short time frame after the discovery of the triggered NVTs. We first explore tectonic tremor based on observations to learn about its triggering, frequency of occurrence, location and spectral characteristics. Then, we numerically model the triggering of instability on the estimated tremor-source, under assumptions fine-tuned according to previous studies (Thomas et al., 2009; Miyazawa et al., 2005; Hill, 2008; Ito, 2009; Rubinstein et al., 2007; Peng and Chao, 2008). The onset of the slip reveals that how and when the external loading triggers tremor. It also holds the information to the background stress conditions under which tremor source starts with. We observe and detect tremor in two regions: Anza and Cholame, along San Jacinto Fault (SJF) and San Andreas Fault (SAF) respectively. These two sections of the faults, relative to general fault zone on which general earthquakes occur, are considered transition zones where slip of slow rates occurs. Slip events including NVT occur on these sections have slower slip rates than that of the general earthquakes (Rubin, 2008; Ide, 2008). In Azna region, we use envelope and waveform cross-correlation to detect tremor. We investigate the stress required to trigger tremor and tremor spectrum using continuous broadband seismograms from 11 stations located near Anza, California. We examine 44 Mw≥7.4 teleseismic events between 2001 and 2011, in addition to one regional earthquake of smaller-magnitude, the 2009 Mw 6.5 Gulf of California earthquake, because it induced extremely high strain at Anza. The result suggests that not only the amplitude of the induced strain, but also the period of the incoming surface wave, may control triggering of tremor near Anza. In addition, we find that the transient-shear stress (17--35 kPa) required to trigger tremor along the SJF at Anza is distinctly higher than what has been reported for the well-studied SAF (Gulihem et al. 2010). We model slip initiation using the analytical solution of rate-and-state friction. We verify the correctness of this method by comparing the results with that from the dynamic model, implemented using the Multi-Dimensional Spectral Boundary Integral Code (MDSBI) written by Eric M. Dunham from Sanford University. We find that the analytical result is consistent with that of the dynamic model. We set up a patch model with which the source stress and frictional conditions best resemble the current estimates of the tremor source. The frictional regime of this patch is rate-weakening. The initial normal and shear stress, and friction parameters are suggested by previous observations of tectonic tremors both in this and other studies (Brown et al., 2005; Shelly et al., 2006; Miyazawa, 2008; Ben-Zion, 2012). Our dynamic loading first consists of simple harmonic stress change with fixed periods, simplifying the transient stress history to resemble teleseismic earthquakes. We tested the period and amplitude of such periodic loading. We find that the period of the transient shear stress is less important relative to the amplitude. The triggering depends mainly on the ratio between amplitude of the shear stress loading and the background normal stress. We define a range of ratio indicative of the occurrence of the triggering. We later test the triggering of the instability using the shear stress history from 44 large teleseismic earthquakes (data equivalent to those used in Chapter 1). With the constraints of these observations, we find that the background normal stress should be in the range of ˜400-700 kPa. The background normal stress suggested agrees with the common hypothesis that the tremor source is under low normal stress. In addition, our results provide a first estimation of the background normal stress with numerical method. We also demonstrate how our model find constrains on the background physical stress or frictional conditions, with several true incidences that transient shear stress triggers or not-triggers tremor. (Abstract shortened by UMI.).
Tectonic tremor activity associated with teleseismic and nearby earthquakes
NASA Astrophysics Data System (ADS)
Chao, K.; Obara, K.; Peng, Z.; Pu, H. C.; Frank, W.; Prieto, G. A.; Wech, A.; Hsu, Y. J.; Yu, C.; Van der Lee, S.; Apley, D. W.
2016-12-01
Tectonic tremor is an extremely stress-sensitive seismic phenomenon located in the brittle-ductile transition section of a fault. To better understand the stress interaction between tremor and earthquake, we conduct the following studies: (1) search for triggered tremor globally, (2) examine ambient tremor activities associated with distant earthquakes, and (3) quantify the temporal variation of ambient tremor activity before and after nearby earthquakes. First, we developed a Matlab toolbox to enhance the searching of triggered tremor globally. We have discovered new tremor sources in the inland faults in Kyushu, Kanto, and Hokkaido in Japan, southern Chile, Ecuador, and central Colombia in South America, and in South Italy. Our findings suggest that tremor is more common than previously believed and indicate the potential existence of ambient tremor in the triggered tremor active regions. Second, we adapt the statistical analysis to examine whether the long-term ambient tremor rate may affect by the dynamic stress of teleseismic earthquakes. We analyzed the data in Nankai, Hokkaido, Cascadia, and Taiwan. Our preliminary results did not show an apparent increase of ambient tremor rate after the passing of surface waves. Third, we quantify temporal changes in ambient tremor activity before and after the occurrence of local earthquakes under the southern Central Range of Taiwan with magnitudes of >=5.5 from 2004 to 2016. For a particular case, we found a temporal variation of tremor rate before and after the 2010/03/04 Mw6.3 earthquake, located about 20 km away from the active tremor source. The long-term increase in the tremor rate after the earthquake could have been caused by an increase in static stress following the mainshock. For comparison, clear evidence from seismic and GPS observations indicate a short-term increase in the tremor rate a few weeks before the mainshock. The increase in the tremor rate before the mainshock could correlate with stress changes in the earthquake rupture zone. Our study provides direct observations to imply that the stress-sensitive tectonic tremor may reflect stress variation during the nucleation process of a nearby earthquake.
Analogue of Caldera Dynamics: the Controlled Salt Cavern Collapse
NASA Astrophysics Data System (ADS)
Jousset, P. G.; Rohmer, J.
2012-12-01
Caldera collapse (or pit-crater) dynamics are inferred from geological observations and laboratory experiments. Here, we present an analogue of caldera collapse at field scale and possible analogy with large scale caldera dynamics. Through an original exploitation technique in sedimentary environment, a salt layer is emptied, leaving a brine-filled cavern, which eventually collapses after overburden falls into the cavern. Such a collapse was monitored in East France by many instruments (including GPS, extensometers, geophones, broadband seismological sensors, tiltmeter, gravity meter, … ), which allowed us to describe mechanisms of the collapse. Micro-seismicity is a good indicator of spatio-temporal evolution of physical properties of rocks prior to catastrophic events like volcanic eruptions or landslides and may be triggered by a number of causes including dynamic characteristics of processes in play or/and external forces. We show evidence of triggered micro-seismicity observed in the vicinity of this underground salt cavern prone to collapse by a remote M~7.2 earthquake, which occurred ~12000 kilometres away. High-dynamic broadband records reveal the strong time-correlation between a dramatic change in the rate of local high-frequency micro-seismicity and the passage of low-frequency seismic waves, including body, Love and Rayleigh surface waves. Pressure was lowered in the cavern by pumping operations of brine out of the cavern. We demonstrate the near critical state of the cavern before the collapse by means of 2D axisymmetric elastic finite-element simulations. Stress oscillations due to the seismic waves may have exceeded the strength required for the rupture of the complex media made of brine and rock triggering micro-earthquakes and leading to damage of the overburden and eventually collapse of the salt cavern. The increment of stress necessary for the failure of a Dolomite layer is of the same order or magnitude as the maximum dynamic stress magnitude observed during the passage of the earthquakes waves. On this basis, we discuss the possible contribution of the Love and Rayleigh low-frequency surfaces waves. This experiment may help us understand mechanisms of caldera formation.
Tidal triggering of earthquakes suggests poroelastic behavior on the San Andreas Fault
Delorey, Andrew A.; van der Elst, Nicholas J.; Johnson, Paul Allan
2016-12-28
Tidal triggering of earthquakes is hypothesized to provide quantitative information regarding the fault's stress state, poroelastic properties, and may be significant for our understanding of seismic hazard. To date, studies of regional or global earthquake catalogs have had only modest successes in identifying tidal triggering. We posit that the smallest events that may provide additional evidence of triggering go unidentified and thus we developed a technique to improve the identification of very small magnitude events. We identify events applying a method known as inter-station seismic coherence where we prioritize detection and discrimination over characterization. Here we show tidal triggering ofmore » earthquakes on the San Andreas Fault. We find the complex interaction of semi-diurnal and fortnightly tidal periods exposes both stress threshold and critical state behavior. Lastly, our findings reveal earthquake nucleation processes and pore pressure conditions – properties of faults that are difficult to measure, yet extremely important for characterizing earthquake physics and seismic hazards.« less
Tidal triggering of earthquakes suggests poroelastic behavior on the San Andreas Fault
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delorey, Andrew A.; van der Elst, Nicholas J.; Johnson, Paul Allan
Tidal triggering of earthquakes is hypothesized to provide quantitative information regarding the fault's stress state, poroelastic properties, and may be significant for our understanding of seismic hazard. To date, studies of regional or global earthquake catalogs have had only modest successes in identifying tidal triggering. We posit that the smallest events that may provide additional evidence of triggering go unidentified and thus we developed a technique to improve the identification of very small magnitude events. We identify events applying a method known as inter-station seismic coherence where we prioritize detection and discrimination over characterization. Here we show tidal triggering ofmore » earthquakes on the San Andreas Fault. We find the complex interaction of semi-diurnal and fortnightly tidal periods exposes both stress threshold and critical state behavior. Lastly, our findings reveal earthquake nucleation processes and pore pressure conditions – properties of faults that are difficult to measure, yet extremely important for characterizing earthquake physics and seismic hazards.« less
Tidal triggering of earthquakes suggests poroelastic behavior on the San Andreas Fault
Delorey, Andrew; Van Der Elst, Nicholas; Johnson, Paul
2017-01-01
Tidal triggering of earthquakes is hypothesized to provide quantitative information regarding the fault's stress state, poroelastic properties, and may be significant for our understanding of seismic hazard. To date, studies of regional or global earthquake catalogs have had only modest successes in identifying tidal triggering. We posit that the smallest events that may provide additional evidence of triggering go unidentified and thus we developed a technique to improve the identification of very small magnitude events. We identify events applying a method known as inter-station seismic coherence where we prioritize detection and discrimination over characterization. Here we show tidal triggering of earthquakes on the San Andreas Fault. We find the complex interaction of semi-diurnal and fortnightly tidal periods exposes both stress threshold and critical state behavior. Our findings reveal earthquake nucleation processes and pore pressure conditions – properties of faults that are difficult to measure, yet extremely important for characterizing earthquake physics and seismic hazards.
NASA Astrophysics Data System (ADS)
Klose, C. D.
2006-12-01
This presentation emphasizes the dualism of natural resources exploitation and economic growth versus geomechanical pollution and risks of human-triggered earthquakes. Large-scale geoengineering activities, e.g., mining, reservoir impoundment, oil/gas production, water exploitation or fluid injection, alter pre-existing lithostatic stress states in the earth's crust and are anticipated to trigger earthquakes. Such processes of in- situ stress alteration are termed geomechanical pollution. Moreover, since the 19th century more than 200 earthquakes have been documented worldwide with a seismic moment magnitude of 4.5
Combining stress transfer and source directivity: the case of the 2012 Emilia seismic sequence
Convertito, Vincenzo; Catalli, Flaminia; Emolo, Antonio
2013-01-01
The Emilia seismic sequence (Northern Italy) started on May 2012 and caused 17 casualties, severe damage to dwellings and forced the closure of several factories. The total number of events recorded in one month was about 2100, with local magnitude ranging between 1.0 and 5.9. We investigate potential mechanisms (static and dynamic triggering) that may describe the evolution of the sequence. We consider rupture directivity in the dynamic strain field and observe that, for each main earthquake, its aftershocks and the subsequent large event occurred in an area characterized by higher dynamic strains and corresponding to the dominant rupture direction. We find that static stress redistribution alone is not capable of explaining the locations of subsequent events. We conclude that dynamic triggering played a significant role in driving the sequence. This triggering was also associated with a variation in permeability and a pore pressure increase in an area characterized by a massive presence of fluids. PMID:24177982
Imaging the distribution of transient viscosity after the 2016 Mw 7.1 Kumamoto earthquake
NASA Astrophysics Data System (ADS)
Moore, James D. P.; Yu, Hang; Tang, Chi-Hsien; Wang, Teng; Barbot, Sylvain; Peng, Dongju; Masuti, Sagar; Dauwels, Justin; Hsu, Ya-Ju; Lambert, Valère; Nanjundiah, Priyamvada; Wei, Shengji; Lindsey, Eric; Feng, Lujia; Shibazaki, Bunichiro
2017-04-01
The deformation of mantle and crustal rocks in response to stress plays a crucial role in the distribution of seismic and volcanic hazards, controlling tectonic processes ranging from continental drift to earthquake triggering. However, the spatial variation of these dynamic properties is poorly understood as they are difficult to measure. We exploited the large stress perturbation incurred by the 2016 earthquake sequence in Kumamoto, Japan, to directly image localized and distributed deformation. The earthquakes illuminated distinct regions of low effective viscosity in the lower crust, notably beneath the Mount Aso and Mount Kuju volcanoes, surrounded by larger-scale variations of viscosity across the back-arc. This study demonstrates a new potential for geodesy to directly probe rock rheology in situ across many spatial and temporal scales.
Global search of triggered non-volcanic tremor
NASA Astrophysics Data System (ADS)
Chao, Tzu-Kai Kevin
Deep non-volcanic tremor is a newly discovered seismic phenomenon with low amplitude, long duration, and no clear P- and S-waves as compared with regular earthquake. Tremor has been observed at many major plate-boundary faults, providing new information about fault slip behaviors below the seismogenic zone. While tremor mostly occurs spontaneously (ambient tremor) or during episodic slow-slip events (SSEs), sometimes tremor can also be triggered during teleseismic waves of distance earthquakes, which is known as "triggered tremor". The primary focus of my Ph.D. work is to understand the physical mechanisms and necessary conditions of triggered tremor by systematic investigations in different tectonic regions. In the first chapter of my dissertation, I conduct a systematic survey of triggered tremor beneath the Central Range (CR) in Taiwan for 45 teleseismic earthquakes from 1998 to 2009 with Mw ≥ 7.5. Triggered tremors are visually identified as bursts of high-frequency (2-8 Hz), non-impulsive, and long-duration seismic energy that are coherent among many seismic stations and modulated by the teleseismic surface waves. A total of 9 teleseismic earthquakes has triggered clear tremor in Taiwan. The peak ground velocity (PGV) of teleseismic surface waves is the most important factor in determining tremor triggering potential, with an apparent threshold of ˜0.1 cm/s, or 7-8 kPa. However, such threshold is partially controlled by the background noise level, preventing triggered tremor with weaker amplitude from being observed. In addition, I find a positive correlation between the PGV and the triggered tremor amplitude, which is consistent with the prediction of the 'clock-advance' model. This suggests that triggered tremor can be considered as a sped-up occurrence of ambient tremor under fast loading from the passing surface waves. Finally, the incident angles of surface waves also play an important rule in controlling the tremor triggering potential. The next chapter focuses on a systematic comparison of triggered tremor around the Calaveras Fault (CF) in northern California (NC), the Parkfield-Cholame section of the San Andreas Fault (SAF) in central California (CC), and the San Jacinto Fault (SJF) in southern California (SC). Out of 42 large (Mw ≥7.5) earthquakes between 2001 and 2010, only the 2002 Mw 7.9 Denali fault earthquake triggered clear tremor in NC and SC. In comparison, abundant triggered and ambient tremor has been observed in CC. Further analysis reveal that the lack of triggered tremor observations in SC and NC is not simply a consequence of their different background noise levels as compared to CC, but rather reflects different background tremor rates in these regions. In the final chapter, I systematically search for triggered tremor following the 2011 Mw9.0 Tohoku-Oki earthquake in the regions where ambient or triggered tremor has been found before. The main purpose is to check whether triggered tremor is observed in regions when certain conditions (e.g., surface wave amplitudes) are met. Triggered tremor is observed in southwest Japan, Taiwan, the Aleutian Arc, south-central Alaska, northern Vancouver Island, the Parkfield-Cholame section of the SAF in CC and the SJF in SC, and the North Island of New Zealand. Such a widespread triggering of tremor is not too surprising because of the large amplitude surface waves (minimum peak value of ˜0.1 cm/s) and the associated dynamic stresses (at least ˜7-8 kPa), which is one of the most important factors in controlling the triggering threshold. The triggered tremor in different region is located close to or nearby the ambient tremor active area. In addition, the amplitudes of triggered tremor have positive correlations with the amplitudes of teleseismic surface waves among many regions. Moreover, both Love and Rayleigh waves participate in triggering tremor in different regions, and their triggering potential is somewhat controlled by the incident angles. In summary, systematically surveys of triggered tremor in different tectonic regions reveal that triggered tremor shares similar physical mechanism (shear failure on the fault interface) as ambient tremor but with different loading conditions. The amplitude of the teleseismic surface wave is one of the most important factors in controlling the tremor triggering threshold. In addition, the frequency contents and incident angles of the triggering waves, and local fault geometry and ambient conditions also play certain roles in determining the triggering potential. On the other hand, the background noise level and seismic network coverage and station quality also could affect the apparent triggering threshold. (Abstract shortened by UMI.).
NASA Astrophysics Data System (ADS)
Allstadt, Kate
The following work is focused on the use of both traditional and novel seismological tools, combined with concepts from other disciplines, to investigate shallow seismic sources and hazards. The study area is the dynamic landscape of the Pacific Northwest and its wide-ranging earthquake, landslide, glacier, and volcano-related hazards. The first chapter focuses on landsliding triggered by earthquakes, with a shallow crustal earthquake in Seattle as a case study. The study demonstrates that utilizing broadband synthetic seismograms and rigorously incorporating 3D basin amplification, 1D site effects, and fault directivity, allows for a more complete assessment of regional seismically induced landslide hazard. The study shows that the hazard is severe for Seattle, and provides a framework for future probabilistic maps and near real-time hazard assessment. The second chapter focuses on landslides that generate seismic waves and how these signals can be harnessed to better understand landslide dynamics. This is demonstrated using two contrasting Pacific Northwest landslides. The 2010 Mount Meager, BC, landslide generated strong long period waves. New full waveform inversion methods reveal the time history of forces the landslide exerted on the earth that is used to quantify event dynamics. Despite having a similar volume (˜107 m3), The 2009 Nile Valley, WA, landslide did not generate observable long period motions because of its smaller accelerations, but pulses of higher frequency waves were valuable in piecing together the complex sequence of events. The final chapter details the difficulties of monitoring glacier-clad volcanoes. The focus is on small, repeating, low-frequency earthquakes at Mount Rainier that resemble volcanic earthquakes. However, based on this investigation, they are actually glacial in origin: most likely stick-slip sliding of glaciers triggered by snow loading. Identification of the source offers a view of basal glacier processes, discriminates against alarming volcanic noises, and has implications for repeating earthquakes in tectonic environments. This body of work demonstrates that by combining methods and concepts from seismology and other disciplines in new ways, we can obtain a better understanding and a fresh perspective of the physics behind the shallow seismic sources and hazards that threaten the Pacific Northwest.
Effect of water content on stability of landslides triggered by earthquakes
NASA Astrophysics Data System (ADS)
Beyabanaki, S.; Bagtzoglou, A. C.; Anagnostou, E. N.
2013-12-01
Earthquake- triggered landslides are one of the most important natural hazards that often result in serious structural damage and loss of life. They are widely studied by several researchers. However, less attention has been focused on soil water content. Although the effect of water content has been widely studied for rainfall- triggered landslides [1], much less attention has been given to it for stability analysis of earthquake- triggered landslides. We developed a combined hydrology and stability model to investigate effect of soil water content on earthquake-triggered landslides. For this purpose, Bishop's method is used to do the slope stability analysis and Richard's equation is employed to model infiltration. Bishop's method is one the most widely methods used for analyzing stability of slopes [2]. Earthquake acceleration coefficient (EAC) is also considered in the model to analyze the effect of earthquake on slope stability. Also, this model is able to automatically determine geometry of the potential landslide. In this study, slopes with different initial water contents are simulated. First, the simulation is performed in the case of earthquake only with different EACs and water contents. As shown in Fig. 1, initial water content has a significant effect on factor of safety (FS). Greater initial water contents lead to less FS. This impact is more significant when EAC is small. Also, when initial water content is high, landslides can happen even with small earthquake accelerations. Moreover, in this study, effect of water content on geometry of landslides is investigated. For this purpose, different cases of landslides triggered by earthquakes only and both rainfall and earthquake for different initial water contents are simulated. The results show that water content has more significant effect on geometry of landslides triggered by rainfall than those triggered by an earthquake. Finally, effect of water content on landslides triggered by earthquakes during rainfall is investigated. In this study, after different durations of rainfall, an earthquake is applied to the model and the elapsed time in which the FS gets less than one obtains by trial and error. The results for different initial water contents and earthquake acceleration coefficients show that landslides can happen after shorter rainfall duration when water content is greater. If water content is high enough, the landslide occurs even without rainfall. References [1] Ray RL, Jacobs JM, de Alba P. Impact of unsaturated zone soil moisture and groundwater table on slope instability. J. Geotech. Geoenviron. Eng., 2010, 136(10):1448-1458. [2] Das B. Principles of Foundation Engineering. Stanford, Cengage Learning, 2011. Fig. 1. Effect of initial water content on FS for different EACs
Triggered earthquakes and the 1811-1812 New Madrid, central United States, earthquake sequence
Hough, S.E.
2001-01-01
The 1811-1812 New Madrid, central United States, earthquake sequence included at least three events with magnitudes estimated at well above M 7.0. I discuss evidence that the sequence also produced at least three substantial triggered events well outside the New Madrid Seismic Zone, most likely in the vicinity of Cincinnati, Ohio. The largest of these events is estimated to have a magnitude in the low to mid M 5 range. Events of this size are large enough to cause damage, especially in regions with low levels of preparedness. Remotely triggered earthquakes have been observed in tectonically active regions in recent years, but not previously in stable continental regions. The results of this study suggest, however, that potentially damaging triggered earthquakes may be common following large mainshocks in stable continental regions. Thus, in areas of low seismic activity such as central/ eastern North America, the hazard associated with localized source zones might be more far reaching than previously recognized. The results also provide additional evidence that intraplate crust is critically stressed, such that small stress changes are especially effective at triggering earthquakes.
Transient triggering of near and distant earthquakes
Gomberg, J.; Blanpied, M.L.; Beeler, N.M.
1997-01-01
We demonstrate qualitatively that frictional instability theory provides a context for understanding how earthquakes may be triggered by transient loads associated with seismic waves from near and distance earthquakes. We assume that earthquake triggering is a stick-slip process and test two hypotheses about the effect of transients on the timing of instabilities using a simple spring-slider model and a rate- and state-dependent friction constitutive law. A critical triggering threshold is implicit in such a model formulation. Our first hypothesis is that transient loads lead to clock advances; i.e., transients hasten the time of earthquakes that would have happened eventually due to constant background loading alone. Modeling results demonstrate that transient loads do lead to clock advances and that the triggered instabilities may occur after the transient has ceased (i.e., triggering may be delayed). These simple "clock-advance" models predict complex relationships between the triggering delay, the clock advance, and the transient characteristics. The triggering delay and the degree of clock advance both depend nonlinearly on when in the earthquake cycle the transient load is applied. This implies that the stress required to bring about failure does not depend linearly on loading time, even when the fault is loaded at a constant rate. The timing of instability also depends nonlinearly on the transient loading rate, faster rates more rapidly hastening instability. This implies that higher-frequency and/or longer-duration seismic waves should increase the amount of clock advance. These modeling results and simple calculations suggest that near (tens of kilometers) small/moderate earthquakes and remote (thousands of kilometers) earthquakes with magnitudes 2 to 3 units larger may be equally effective at triggering seismicity. Our second hypothesis is that some triggered seismicity represents earthquakes that would not have happened without the transient load (i.e., accumulated strain energy would have been relieved via other mechanisms). We test this using two "new-seismicity" models that (1) are inherently unstable but slide at steady-state conditions under the background load and (2) are conditionally stable such that instability occurs only for sufficiently large perturbations. For the new-seismicity models, very small-amplitude transients trigger instability relative to the clock-advance models. The unstable steady-state models predict that the triggering delay depends inversely and nonlinearly on the transient amplitude (as in the clock-advance models). We were unable to generate delayed triggering with conditionally stable models. For both new-seismicity models, the potential for triggering is independent of when the transient load is applied or, equivalently, of the prestress (unlike in the clock-advance models). In these models, a critical triggering threshold appears to be inversely proportional to frequency. Further advancement of our understanding will require more sophisticated, quantitative models and observations that distinguish between our qualitative, yet distinctly different, model predictions.
Seismological mechanism analysis of 2015 Luanxian swarm, Hebei province,China
NASA Astrophysics Data System (ADS)
Tan, Yipei; Liao, Xu; Ma, Hongsheng; Zhou, Longquan; Wang, Xingzhou
2017-04-01
The seismological mechanism of an earthquake swarm, a kind of seismic burst activity, means the physical and dynamic process in earthquakes triggering in the swarm. Here we focus on the seismological mechanism of 2015 Luanxian swarm in Hebei province, China. The process of digital seismic waveform data processing is divided into four steps. (1) Choose the three components waveform of earthquakes in the catalog as templates, and detect missing earthquakes by scanning the continues waveforms with matched filter technique. (2) Recalibrate P and S-wave phase arrival time using waveform cross-correlation phase detection technique to eliminate the artificial error in phase picking in the observation report made by Hebei seismic network, and then we obtain a more complete catalog and a more precise seismic phase report. (3) Relocate the earthquakes in the swarm using hypoDD based on phase arrival time we recalibrated, and analyze the characteristics of swarm epicenter migration based on the earthquake relocation result. (4) Detect whether there are repeating earthquakes activity using both waveform cross-correlation standard and whether rupture areas can overlapped. We finally detect 106 missing earthquakes in the swarm, 66 of them have the magnitude greater than ML0.0, include 2 greater than ML1.0. Relocation result shows that the epicenters of earthquakes in the swarm have a strip distribution in NE-SW direction, which indicates the seismogenic structure may be a NE-SW trending fault. The spatial-temporal distribution variation of epicenters in the swarm shows a kind of two stages linear migration characteristics, in which the first stage has appeared with a higher migration velocity as 1.2 km per day, and the velocity of the second step is 0.0024 km per day. According to the three basic models to explain the seismological mechanism of earthquake swarms: cascade model, slow slip model and fluid diffusion model, repeating earthquakes activity is difficult to explain by previous earthquakes stress triggering, however, it can be explained by continuing stress loading at the same asperity from fault slow slip. The phenomena of linear migration is more fitting slow slip model than the migration characteristics of fluid diffusion which satisfied diffusion equation. Comparing the phenomena we observed and the seismological mechanism models, we find that the Luanxian earthquake swarm may be associated with fault slow slip. Fault slow slip may play a role in Luanxian earthquake swarm triggering and sustained activity.
Listening to data from the 2011 magnitude 9.0 Tohoku-Oki, Japan, earthquake
NASA Astrophysics Data System (ADS)
Peng, Z.; Aiken, C.; Kilb, D. L.; Shelly, D. R.; Enescu, B.
2011-12-01
It is important for seismologists to effectively convey information about catastrophic earthquakes, such as the magnitude 9.0 earthquake in Tohoku-Oki, Japan, to general audience who may not necessarily be well-versed in the language of earthquake seismology. Given recent technological advances, previous approaches of using "snapshot" static images to represent earthquake data is now becoming obsolete, and the favored venue to explain complex wave propagation inside the solid earth and interactions among earthquakes is now visualizations that include auditory information. Here, we convert seismic data into visualizations that include sounds, the latter being a term known as 'audification', or continuous 'sonification'. By combining seismic auditory and visual information, static "snapshots" of earthquake data come to life, allowing pitch and amplitude changes to be heard in sync with viewed frequency changes in the seismograms and associated spectragrams. In addition, these visual and auditory media allow the viewer to relate earthquake generated seismic signals to familiar sounds such as thunder, popcorn popping, rattlesnakes, firecrackers, etc. We present a free software package that uses simple MATLAB tools and Apple Inc's QuickTime Pro to automatically convert seismic data into auditory movies. We focus on examples of seismic data from the 2011 Tohoku-Oki earthquake. These examples range from near-field strong motion recordings that demonstrate the complex source process of the mainshock and early aftershocks, to far-field broadband recordings that capture remotely triggered deep tremor and shallow earthquakes. We envision audification of seismic data, which is geared toward a broad range of audiences, will be increasingly used to convey information about notable earthquakes and research frontiers in earthquake seismology (tremor, dynamic triggering, etc). Our overarching goal is that sharing our new visualization tool will foster an interest in seismology, not just for young scientists but also for people of all ages.
NASA Astrophysics Data System (ADS)
Holtkamp, S. G.; Pritchard, M. E.; Lohman, R. B.; Brudzinski, M. R.
2009-12-01
Recent geodetic analysis indicates earthquake swarms may be associated with slow slip such that earthquakes may only represent a fraction of the moment release. To investigate this potential relationship, we have developed a manual search approach to identify earthquake swarms from a seismicity catalog. Our technique is designed to be insensitive to spatial and temporal scales and the total number of events, as seismicity rates vary in different fault zones. Our first application of this technique on globally recorded earthquakes in South America detects 35 possible swarms of varying spatial scale, with 18 in the megathrust region and 8 along the volcanic arc. Three swarms in the vicinity of the arc appear to be triggered by the Mw=8.5 2001 Peru earthquake, and are examined for possible triggering mechanisms. Coulomb stress modeling suggests that static stress changes due to the earthquake are insufficient to trigger activity, so a dynamic or secondary triggering mechanism is more likely. Volcanic swarms are often associated with ground deformation, either associated with fluid movement (e.g. dike intrusion or chamber inflation or deflation) or fault movement, although these processes are sometimes difficult to differentiate. The only swarm along the arc with sufficient geodetic data that we can process and model is near Ticsani Volcano in Peru. In this case, a swarm of events southeast of the volcano precedes a more typical earthquake sequence beneath the volcano, and evidence for deformation is found in the location of the swarm, but there is no evidence for aseismic slip. Rather, we favor a model where the swarm is associated with deflation of a magma body to the southeast that triggered the earthquake sequence by promoting movement on a fault beneath Ticsani. Since swarms on the subduction interface may indicate aseismic moment release, with a direct impact on hazard, we examine potential relations between swarms and megathrust ruptures. We find evidence that some earthquake swarms show strong interaction with megathrust events where swarms precede the mainshock, swarms show stress interaction with the events, swarms mark the limits of rupture propagation, and swarms occur in areas of long standing seismic gaps. The latter two features also reflect several cases where swarms occur at the subduction of aseismic ridges and trench parallel gravity highs, features often related to megathrust segmentation. Considering that aseismic ridges likely represent material heterogeneity and earthquake swarms typically have low stress drops, we propose that swarms primarily occur in transitional areas of weak coupling that inhibit megathrust seismogenesis and facilitate earthquake swarms. Only 1 swarm in the megathrust area has sufficient geodetic data to investigate slip models, offshore Copiapo, Chile, and while the preferred model suggests aseismic slip, difficulty in modeling an offshore event with onshore data indicates a model without aseismic slip cannot be ruled out. To further examine whether the relationship between swarms and megathrust segmentation is locally derived or more pervasive, we will present results from applying our technique to other major subduction zones.
Remote Triggering of Microseismicity in Antarctica
NASA Astrophysics Data System (ADS)
Ji, M.; Li, C.; Peng, Z.; Walter, J. I.
2017-12-01
It is well known that large distant earthquakes can trigger microearthquakes/tectonic tremors during or immediately following their surface waves. Globally, triggered seismicity is mostly found in active plate boundary regions. Recent studies have shown that icequakes in Antartica can also be triggered by teleseismic events. However, it is still not clear how widespread this phenomenon is and whether there are any connections between large earthquakes and subsequent glacial movements. In this study, we conduct a systematic search for remotely triggered activity in Antarctica following recent large earthquakes, including the 2004 Mw9.1 Sumatra, 2011 Mw9.1 Tohoku, 2012 Mw8.6 Indian Ocean and 2014-2015 Chile earthquakes. We download seismic data recorded at the POLENET (YT) and the Argentina Antarctica Network (AI) from the Incorporated Research Institutions for Seismology (IRIS) Data Management Center (DMC). We apply a 2-8 Hz band-pass-filter to the continuous waveforms and visually identify local events during and immediately after the large amplitude surface waves. Spectrograms are computed as additional tools to identify triggered seismicity and are further confirmed by comparing the signals before and after the distant mainshocks. So far we have identified possible triggered seismicity in both networks' area following the 2010 Chile and 2011 Tohoku earthquakes. Our next step is to apply a waveform matching method to automatically detect possible triggered seismicity and check through all the available networks in Antarctica for the last decades, which should help to better understand the potential interaction between large earthquakes and icequakes in this region.
NASA Astrophysics Data System (ADS)
Wallace, Laura M.; Hreinsdóttir, Sigrún; Ellis, Susan; Hamling, Ian; D'Anastasio, Elisabetta; Denys, Paul
2018-05-01
The 2016 MW7.8 Kaikōura earthquake ruptured a complex sequence of strike-slip and reverse faults in New Zealand's northeastern South Island. In the months following the earthquake, time-dependent inversions of Global Positioning System and interferometric synthetic aperture radar data reveal up to 0.5 m of afterslip on the subduction interface beneath the northern South Island underlying the crustal faults that ruptured in the earthquake. This is clear evidence that the far southern end of the Hikurangi subduction zone accommodates plate motion. The MW7.8 earthquake also triggered widespread slow slip over much of the subduction zone beneath the North Island. The triggered slow slip included immediate triggering of shallow (<15 km), short (2-3 weeks) slow slip events along much of the east coast, and deep (>30 km), long-term (>1 year) slow slip beneath the southern North Island. The southern Hikurangi slow slip was likely triggered by large (0.5-1.0 MPa) static Coulomb stress increases.
Hough, S.E.; Kanamori, H.
2002-01-01
We analyze the source properties of a sequence of triggered earthquakes that occurred near the Salton Sea in southern California in the immediate aftermath of the M 7.1 Hector Mine earthquake of 16 October 1999. The sequence produced a number of early events that were not initially located by the regional network, including two moderate earthquakes: the first within 30 sec of the P-wave arrival and a second approximately 10 minutes after the mainshock. We use available amplitude and waveform data from these events to estimate magnitudes to be approximately 4.7 and 4.4, respectively, and to obtain crude estimates of their locations. The sequence of small events following the initial M 4.7 earthquake is clustered and suggestive of a local aftershock sequence. Using both broadband TriNet data and analog data from the Southern California Seismic Network (SCSN), we also investigate the spectral characteristics of the M 4.4 event and other triggered earthquakes using empirical Green's function (EGF) analysis. We find that the source spectra of the events are consistent with expectations for tectonic (brittle shear failure) earthquakes, and infer stress drop values of 0.1 to 6 MPa for six M 2.1 to M 4.4 events. The estimated stress drop values are within the range observed for tectonic earthquakes elsewhere. They are relatively low compared to typically observed stress drop values, which is consistent with expectations for faulting in an extensional, high heat flow regime. The results therefore suggest that, at least in this case, triggered earthquakes are associated with a brittle shear failure mechanism. This further suggests that triggered earthquakes may tend to occur in geothermal-volcanic regions because shear failure occurs at, and can be triggered by, relatively low stresses in extensional regimes.
Analysing the 1811-1812 New Madrid earthquakes with recent instrumentally recorded aftershocks
Mueller, K.; Hough, S.E.; Bilham, R.
2004-01-01
Although dynamic stress changes associated with the passage of seismic waves are thought to trigger earthquakes at great distances, more than 60 per cent of all aftershocks appear to be triggered by static stress changes within two rupture lengths of a mainshock. The observed distribution of aftershocks may thus be used to infer details of mainshock rupture geometry. Aftershocks following large mid-continental earthquakes, where background stressing rates are low, are known to persist for centuries, and models based on rate-and-state friction laws provide theoretical support for this inference. Most past studies of the New Madrid earthquake sequence have indeed assumed ongoing microseismicity to be a continuing aftershock sequence. Here we use instrumentally recorded aftershock locations and models of elastic stress change to develop a kinematically consistent rupture scenario for three of the four largest earthquakes of the 1811-1812 New Madrid sequence. Our results suggest that these three events occurred on two contiguous faults, producing lobes of increased stress near fault intersections and end points, in areas where present-day microearthquakes have been hitherto interpreted as evidence of primary mainshock rupture. We infer that the remaining New Madrid mainshock may have occurred more than 200 km north of this region in the Wabash Valley of southern Indiana and Illinois-an area that contains abundant modern microseismicity, and where substantial liquefaction was documented by historic accounts. Our results suggest that future large midplate earthquake sequences may extend over a much broader region than previously suspected.
Chapter two: Phenomenology of tsunamis II: scaling, event statistics, and inter-event triggering
Geist, Eric L.
2012-01-01
Observations related to tsunami catalogs are reviewed and described in a phenomenological framework. An examination of scaling relationships between earthquake size (as expressed by scalar seismic moment and mean slip) and tsunami size (as expressed by mean and maximum local run-up and maximum far-field amplitude) indicates that scaling is significant at the 95% confidence level, although there is uncertainty in how well earthquake size can predict tsunami size (R2 ~ 0.4-0.6). In examining tsunami event statistics, current methods used to estimate the size distribution of earthquakes and landslides and the inter-event time distribution of earthquakes are first reviewed. These methods are adapted to estimate the size and inter-event distribution of tsunamis at a particular recording station. Using a modified Pareto size distribution, the best-fit power-law exponents of tsunamis recorded at nine Pacific tide-gauge stations exhibit marked variation, in contrast to the approximately constant power-law exponent for inter-plate thrust earthquakes. With regard to the inter-event time distribution, significant temporal clustering of tsunami sources is demonstrated. For tsunami sources occurring in close proximity to other sources in both space and time, a physical triggering mechanism, such as static stress transfer, is a likely cause for the anomalous clustering. Mechanisms of earthquake-to-earthquake and earthquake-to-landslide triggering are reviewed. Finally, a modification of statistical branching models developed for earthquake triggering is introduced to describe triggering among tsunami sources.
Prospective testing of Coulomb short-term earthquake forecasts
NASA Astrophysics Data System (ADS)
Jackson, D. D.; Kagan, Y. Y.; Schorlemmer, D.; Zechar, J. D.; Wang, Q.; Wong, K.
2009-12-01
Earthquake induced Coulomb stresses, whether static or dynamic, suddenly change the probability of future earthquakes. Models to estimate stress and the resulting seismicity changes could help to illuminate earthquake physics and guide appropriate precautionary response. But do these models have improved forecasting power compared to empirical statistical models? The best answer lies in prospective testing in which a fully specified model, with no subsequent parameter adjustments, is evaluated against future earthquakes. The Center of Study of Earthquake Predictability (CSEP) facilitates such prospective testing of earthquake forecasts, including several short term forecasts. Formulating Coulomb stress models for formal testing involves several practical problems, mostly shared with other short-term models. First, earthquake probabilities must be calculated after each “perpetrator” earthquake but before the triggered earthquakes, or “victims”. The time interval between a perpetrator and its victims may be very short, as characterized by the Omori law for aftershocks. CSEP evaluates short term models daily, and allows daily updates of the models. However, lots can happen in a day. An alternative is to test and update models on the occurrence of each earthquake over a certain magnitude. To make such updates rapidly enough and to qualify as prospective, earthquake focal mechanisms, slip distributions, stress patterns, and earthquake probabilities would have to be made by computer without human intervention. This scheme would be more appropriate for evaluating scientific ideas, but it may be less useful for practical applications than daily updates. Second, triggered earthquakes are imperfectly recorded following larger events because their seismic waves are buried in the coda of the earlier event. To solve this problem, testing methods need to allow for “censoring” of early aftershock data, and a quantitative model for detection threshold as a function of distance, time, and magnitude is needed. Third, earthquake catalogs contain errors in location and magnitude that may be corrected in later editions. One solution is to test models in “pseudo-prospective” mode (after catalog revision but without model adjustment). Again, appropriate for science but not for response. Hopefully, demonstrations of modeling success will stimulate improvements in earthquake detection.
Prediction of earthquake-triggered landslide event sizes
NASA Astrophysics Data System (ADS)
Braun, Anika; Havenith, Hans-Balder; Schlögel, Romy
2016-04-01
Seismically induced landslides are a major environmental effect of earthquakes, which may significantly contribute to related losses. Moreover, in paleoseismology landslide event sizes are an important proxy for the estimation of the intensity and magnitude of past earthquakes and thus allowing us to improve seismic hazard assessment over longer terms. Not only earthquake intensity, but also factors such as the fault characteristics, topography, climatic conditions and the geological environment have a major impact on the intensity and spatial distribution of earthquake induced landslides. We present here a review of factors contributing to earthquake triggered slope failures based on an "event-by-event" classification approach. The objective of this analysis is to enable the short-term prediction of earthquake triggered landslide event sizes in terms of numbers and size of the affected area right after an earthquake event occurred. Five main factors, 'Intensity', 'Fault', 'Topographic energy', 'Climatic conditions' and 'Surface geology' were used to establish a relationship to the number and spatial extend of landslides triggered by an earthquake. The relative weight of these factors was extracted from published data for numerous past earthquakes; topographic inputs were checked in Google Earth and through geographic information systems. Based on well-documented recent earthquakes (e.g. Haiti 2010, Wenchuan 2008) and on older events for which reliable extensive information was available (e.g. Northridge 1994, Loma Prieta 1989, Guatemala 1976, Peru 1970) the combination and relative weight of the factors was calibrated. The calibrated factor combination was then applied to more than 20 earthquake events for which landslide distribution characteristics could be cross-checked. One of our main findings is that the 'Fault' factor, which is based on characteristics of the fault, the surface rupture and its location with respect to mountain areas, has the most important contribution for the prediction of the number (and concentration) of induced landslides. This, for instance, partly explains why the Wenchuan 2008 earthquake triggered far more landslides than the Nepal 2015 earthquake. Moreover, according to our prediction the most severe earthquake-triggered landslide event would have been the Assam 1950 earthquake (India), followed by the 2008 Wenchuan earthquake. Regarding the overall performance of our prediction method it can be seen that the number of landslides is overestimated for a series of earthquakes, while the size of the affected area is often underestimated. Especially for older events the incompleteness of the published catalogues can partly explain the overestimation of the landslide numbers. The underestimation of the affected area however is real and must be attributed to particular remote effects of earthquakes.
NASA Astrophysics Data System (ADS)
Zigone, Dimitri; Rivet, Diane; Radiguet, Mathilde; Campillo, Michel; Voisin, Christophe; Cotte, Nathalie; Walpersdorf, Andrea; Shapiro, Nikolai M.; Cougoulat, Glenn; Roux, Philippe; Kostoglodov, Vladimir; Husker, Allen; Payero, Juan S.
2012-09-01
We investigate the triggering of seismic tremor and slow slip event in Guerrero (Mexico) by the February 27, 2010 Maule earthquake (Mw 8.8). Triggered tremors start with the arrival of S wave generated by the Maule earthquake, and keep occurring during the passing of ScS, SS, Love and Rayleigh waves. The Rayleigh wave dispersion curve footprints the high frequency energy envelope of the triggered tremor, indicating a strong modulation of the source of tremors by the passing surface wave. This correlation and modulation by the passing waves is progressively lost with time over a few hours. The tremor activity continues during the weeks/months after the earthquake. GPS time series suggest that the second sub-event of the 2009-2010 SSE in Guerrero is actually triggered by the Maule earthquake. The southward displacement of the GPS stations starts coincidently with the earthquake and tremors. The long duration of tremors indicate a continuing deformation process at depth, which we propose to be the second sub-event of the 2009-2010 SSE. We show a quasi-systematic correlation between surface displacement rate measured by GPS and tremor activity, suggesting that the NVT are controlled by the variations in the slip history of the SSE. This study shows that two types of tremors emerge: (1) Those directly triggered by the passing waves and (2) those triggered by the stress variations associated with slow slip. This indicates the prominent role of aseismic creep in the Mexican subduction zone response to a large teleseismic earthquake, possibly leading to large-scale stress redistribution.
The 2008 M7.9 Wenchuan earthquake - a human-caused event
NASA Astrophysics Data System (ADS)
Klose, C. D.
2013-12-01
A catalog of global human-caused earthquakes shows statistical evidence that the triggering of earthquakes by large-scale geoengineering activities depends on geological and tectonic constrains (in Klose 2013). Such geoengineering activities also include the filling of water reservoirs. This presentation illuminates mechanical and statistical aspects of the 2008 M7.9 Wenchuan earthquake in light of the hypothesis of being NOT human-caused. However, available data suggest that the Wenchuan earthquake was triggered by the filling of the Zipungpu water reservoir 30 months prior to the mainshock. The reservoir spatially extended parallel and near to the main Beichuan fault zone in a highly stressed reverse fault regime. It is mechanically evident that reverse faults tend to be very trigger-sensitive due to mass shifts (static loads) that occur on the surface of the Earth's crust. These circumstances made a triggering of a seismic event of this magnitude at this location possible (in Klose 2008, 2012). The data show that the Wenchuan earthquake is not an outlier. From a statistical view point, the earthquake falls into the upper range of the family of reverse fault earthquakes that were caused by humans worldwide.
Imaging the distribution of transient viscosity after the 2016 Mw 7.1 Kumamoto earthquake.
Moore, James D P; Yu, Hang; Tang, Chi-Hsien; Wang, Teng; Barbot, Sylvain; Peng, Dongju; Masuti, Sagar; Dauwels, Justin; Hsu, Ya-Ju; Lambert, Valère; Nanjundiah, Priyamvada; Wei, Shengji; Lindsey, Eric; Feng, Lujia; Shibazaki, Bunichiro
2017-04-14
The deformation of mantle and crustal rocks in response to stress plays a crucial role in the distribution of seismic and volcanic hazards, controlling tectonic processes ranging from continental drift to earthquake triggering. However, the spatial variation of these dynamic properties is poorly understood as they are difficult to measure. We exploited the large stress perturbation incurred by the 2016 earthquake sequence in Kumamoto, Japan, to directly image localized and distributed deformation. The earthquakes illuminated distinct regions of low effective viscosity in the lower crust, notably beneath the Mount Aso and Mount Kuju volcanoes, surrounded by larger-scale variations of viscosity across the back-arc. This study demonstrates a new potential for geodesy to directly probe rock rheology in situ across many spatial and temporal scales. Copyright © 2017, American Association for the Advancement of Science.
Preliminary results on earthquake triggered landslides for the Haiti earthquake (January 2010)
NASA Astrophysics Data System (ADS)
van Westen, Cees; Gorum, Tolga
2010-05-01
This study presents the first results on an analysis of the landslides triggered by the Ms 7.0 Haiti earthquake that occurred on January 12, 2010 in the boundary region of the Pacific Plate and the North American plate. The fault is a left lateral strike slip fault with a clear surface expression. According to the USGS earthquake information the Enriquillo-Plantain Garden fault system has not produced any major earthquake in the last 100 years, and historical earthquakes are known from 1860, 1770, 1761, 1751, 1684, 1673, and 1618, though none of these has been confirmed in the field as associated with this fault. We used high resolution satellite imagery available for the pre and post earthquake situations, which were made freely available for the response and rescue operations. We made an interpretation of all co-seismic landslides in the epicentral area. We conclude that the earthquake mainly triggered landslide in the northern slope of the fault-related valley and in a number of isolated area. The earthquake apparently didn't trigger many visible landslides within the slum areas on the slopes in the southern part of Port-au-Prince and Carrefour. We also used ASTER DEM information to relate the landslide occurrences with DEM derivatives.
Meng, Xiaoteng; Peng, Zhigang; Hardebeck, Jeanne L.
2013-01-01
Earthquakes trigger other earthquakes, but the physical mechanism of the triggering is currently debated. Most studies of earthquake triggering rely on earthquakes listed in catalogs, which are known to be incomplete around the origin times of large earthquakes and therefore missing potentially triggered events. Here we apply a waveform matched-filter technique to systematically detect earthquakes along the Parkfield section of the San Andreas Fault from 46 days before to 31 days after the nearby 2003 Mw6.5 San Simeon earthquake. After removing all possible false detections, we identify ~8 times more earthquakes than in the Northern California Seismic Network catalog. The newly identified events along the creeping section of the San Andreas Fault show a statistically significant decrease following the San Simeon main shock, which correlates well with the negative static stress changes (i.e., stress shadow) cast by the main shock. In comparison, the seismicity rate around Parkfield increased moderately where the static stress changes are positive. The seismicity rate changes correlate well with the static shear stress changes induced by the San Simeon main shock, suggesting a low friction in the seismogenic zone along the Parkfield section of the San Andreas Fault.
Wolfe, C.J.; Brooks, B.A.; Foster, J.H.; Okubo, P.G.
2007-01-01
We perform waveform cross correlation and high precision relocation of both background seismicity and seismicity triggered by periodic slow earthquakes at Kilauea Volcano's mobile south flank. We demonstrate that the triggered seismicity dominantly occurs on several preexisting fault zones at the Hilina region. Regardless of the velocity model employed, the relocated earthquake epicenters and triggered seismicity localize onto distinct fault zones that form streaks aligned with the slow earthquake surface displacements determined from GPS. Due to the unknown effects of velocity heterogeneity and nonideal station coverage, our relocation analyses cannot distinguish whether some of these fault zones occur within the volcanic crust at shallow depths or whether all occur on the decollement between the volcano and preexisting oceanic crust at depths of ???8 km. Nonetheless, these Hilina fault zones consistently respond to stress perturbations from nearby slow earthquakes. Copyright 2007 by the American Geophysical Union.
Insignificant solar-terrestrial triggering of earthquakes
Love, Jeffrey J.; Thomas, Jeremy N.
2013-01-01
We examine the claim that solar-terrestrial interaction, as measured by sunspots, solar wind velocity, and geomagnetic activity, might play a role in triggering earthquakes. We count the number of earthquakes having magnitudes that exceed chosen thresholds in calendar years, months, and days, and we order these counts by the corresponding rank of annual, monthly, and daily averages of the solar-terrestrial variables. We measure the statistical significance of the difference between the earthquake-number distributions below and above the median of the solar-terrestrial averages by χ2 and Student's t tests. Across a range of earthquake magnitude thresholds, we find no consistent and statistically significant distributional differences. We also introduce time lags between the solar-terrestrial variables and the number of earthquakes, but again no statistically significant distributional difference is found. We cannot reject the null hypothesis of no solar-terrestrial triggering of earthquakes.
Earthquakes drive focused denudation along a tectonically active mountain front
NASA Astrophysics Data System (ADS)
Li, Gen; West, A. Joshua; Densmore, Alexander L.; Jin, Zhangdong; Zhang, Fei; Wang, Jin; Clark, Marin; Hilton, Robert G.
2017-08-01
Earthquakes cause widespread landslides that can increase erosional fluxes observed over years to decades. However, the impact of earthquakes on denudation over the longer timescales relevant to orogenic evolution remains elusive. Here we assess erosion associated with earthquake-triggered landslides in the Longmen Shan range at the eastern margin of the Tibetan Plateau. We use the Mw 7.9 2008 Wenchuan and Mw 6.6 2013 Lushan earthquakes to evaluate how seismicity contributes to the erosional budget from short timescales (annual to decadal, as recorded by sediment fluxes) to long timescales (kyr to Myr, from cosmogenic nuclides and low temperature thermochronology). Over this wide range of timescales, the highest rates of denudation in the Longmen Shan coincide spatially with the region of most intense landsliding during the Wenchuan earthquake. Across sixteen gauged river catchments, sediment flux-derived denudation rates following the Wenchuan earthquake are closely correlated with seismic ground motion and the associated volume of Wenchuan-triggered landslides (r2 > 0.6), and to a lesser extent with the frequency of high intensity runoff events (r2 = 0.36). To assess whether earthquake-induced landsliding can contribute importantly to denudation over longer timescales, we model the total volume of landslides triggered by earthquakes of various magnitudes over multiple earthquake cycles. We combine models that predict the volumes of landslides triggered by earthquakes, calibrated against the Wenchuan and Lushan events, with an earthquake magnitude-frequency distribution. The long-term, landslide-sustained "seismic erosion rate" is similar in magnitude to regional long-term denudation rates (∼0.5-1 mm yr-1). The similar magnitude and spatial coincidence suggest that earthquake-triggered landslides are a primary mechanism of long-term denudation in the frontal Longmen Shan. We propose that the location and intensity of seismogenic faulting can contribute to focused denudation along a high-relief plateau margin.
Scientific overview and historical context of the 1811-1812 new Madrid earthquake sequence
Hough, S.E.
2004-01-01
aftershock». These values are consistent with other lines of evidence, including scaling relationships. Finally, I show that accounts from the New Madrid sequence reveal evidence for remotely triggered earthquakes well outside the NMSZ. Remotely triggered earthquakes represent a potentially important new wrinkle in historic earthquake research, as their ground motions can sometimes be confused with mainshock ground motions.
NASA Astrophysics Data System (ADS)
St-Onge, Guillaume; Chapron, Emmanuel; Mulsow, Sandor; Salas, Marcos; Viel, Matias; Debret, Maxime; Foucher, Anthony; Mulder, Thierry; Winiarski, Thierry; Desmet, Marc; Costa, Pedro J. M.; Ghaleb, Bassam; Jaouen, Alain; Locat, Jacques
2012-01-01
High-resolution seismic profiles along with physical and sedimentological properties of sediment cores from the Saguenay (Eastern Canada) and Reloncavi (Chile) Fjords allowed the identification of several decimeter to meter-thick turbidites. In both fjords, the turbidites were associated with large magnitude historic and pre-historic earthquakes including the 1663 AD (M > 7) earthquake in the Saguenay Fjord, and the 1960 (M 9.5), 1837 (M ~ 8) and 1575 AD major Chilean subduction earthquakes in the Reloncavi Fjord. In addition, a sand layer with exoscopic characteristics typical of a tsunami deposit was observed immediately above the turbidite associated with the 1575 AD earthquake in the Reloncavi Fjord and supports both the chronology and the large magnitude of that historic earthquake. In the Saguenay Fjord, the earthquake-triggered turbidites are sometimes underlying a hyperpycnite associated with the rapid breaching and draining of a natural dam formed by earthquake-triggered landslides. Similar hyperpycnal floods were also recorded in historical and continental geological archives for the 1960 and 1575 AD Chilean subduction earthquakes, highlighting the risk of such flood events several weeks or months after main earthquake. In both fjords, as well as in other recently recognized earthquake-triggered turbidites, the decimeter-to meter-thick normally-graded turbidites are characterized by a homogeneous, but slightly fining upward tail. Finally, this paper also emphasizes the sensitivity of fjords to record historic and pre-historic seismicity.
A review of the 2005 Kashmir earthquake-induced landslides; from a remote sensing prospective
NASA Astrophysics Data System (ADS)
Shafique, Muhammad; van der Meijde, Mark; Khan, M. Asif
2016-03-01
The 8th October 2005 Kashmir earthquake, in northern Pakistan has triggered thousands of landslides, which was the second major factor in the destruction of the build-up environment, after earthquake-induced ground shaking. Subsequent to the earthquake, several researchers from home and abroad applied a variety of remote sensing techniques, supported with field observations, to develop inventories of the earthquake-triggered landslides, analyzed their spatial distribution and subsequently developed landslide-susceptibility maps. Earthquake causative fault rupture, geology, anthropogenic activities and remote sensing derived topographic attributes were observed to have major influence on the spatial distribution of landslides. These were subsequently used to develop a landslide susceptibility map, thereby demarcating the areas prone to landsliding. Temporal studies monitoring the earthquake-induced landslides shows that the earthquake-induced landslides are stabilized, contrary to earlier belief, directly after the earthquake. The biggest landslide induced dam, as a result of the massive Hattian Bala landslide, is still posing a threat to the surrounding communities. It is observed that remote sensing data is effectively and efficiently used to assess the landslides triggered by the Kashmir earthquake, however, there is still a need of more research to understand the mechanism of intensity and distribution of landslides; and their continuous monitoring using remote sensing data at a regional scale. This paper, provides an overview of remote sensing and GIS applications, for the Kashmir-earthquake triggered landslides, derived outputs and discusses the lessons learnt, advantages, limitations and recommendations for future research.
Analysis of post-earthquake landslide activity and geo-environmental effects
NASA Astrophysics Data System (ADS)
Tang, Chenxiao; van Westen, Cees; Jetten, Victor
2014-05-01
Large earthquakes can cause huge losses to human society, due to ground shaking, fault rupture and due to the high density of co-seismic landslides that can be triggered in mountainous areas. In areas that have been affected by such large earthquakes, the threat of landslides continues also after the earthquake, as the co-seismic landslides may be reactivated by high intensity rainfall events. Earthquakes create Huge amount of landslide materials remain on the slopes, leading to a high frequency of landslides and debris flows after earthquakes which threaten lives and create great difficulties in post-seismic reconstruction in the earthquake-hit regions. Without critical information such as the frequency and magnitude of landslides after a major earthquake, reconstruction planning and hazard mitigation works appear to be difficult. The area hit by Mw 7.9 Wenchuan earthquake in 2008, Sichuan province, China, shows some typical examples of bad reconstruction planning due to lack of information: huge debris flows destroyed several re-constructed settlements. This research aim to analyze the decay in post-seismic landslide activity in areas that have been hit by a major earthquake. The areas hit by the 2008 Wenchuan earthquake will be taken a study area. The study will analyze the factors that control post-earthquake landslide activity through the quantification of the landslide volume changes well as through numerical simulation of their initiation process, to obtain a better understanding of the potential threat of post-earthquake landslide as a basis for mitigation planning. The research will make use of high-resolution stereo satellite images, UAV and Terrestrial Laser Scanning(TLS) to obtain multi-temporal DEM to monitor the change of loose sediments and post-seismic landslide activities. A debris flow initiation model that incorporates the volume of source materials, vegetation re-growth, and intensity-duration of the triggering precipitation, and that evaluates different initiation mechanisms such as erosion and landslide reactivation will be developed. The developed initiation model will be integrated with run-out model to simulate the dynamic process of post-earthquake debris flows in the study area for a future period and make a prediction about the decay of landslide activity in future.
Dynamic Aftershock Triggering Correlated with Cyclic Loading in the Slip Direction
NASA Astrophysics Data System (ADS)
Hardebeck, J.
2014-12-01
Dynamic stress changes have been shown to contribute to aftershock triggering, but the physical triggering mechanisms are not fully understood. Some proposed mechanisms are based on dynamic stress loading of the target fault in a direction that encourages earthquake slip (e.g. dynamic Coulomb stress triggering), while other mechanisms are based on fault weakening due to shaking. If dynamic stress loading in the fault slip direction plays a role in aftershock triggering, we would expect to see a relationship between the dynamic stress orientations and the aftershock focal mechanisms. Alternatively, if dynamic stress change triggering functions only through a fault weakening mechanism that is independent of the slip direction of the target fault, no such relationship is expected. I study aftershock sequences of 4 M≥6.7 mainshocks in southern California, and find a small but significant relationship between modeled dynamic stress direction and aftershock focal mechanisms. The mainshock dynamic stress changes have two observed impacts: changing the focal mechanisms in a given location to favor those aligned with the dynamic stress change, and changing the spatial distribution of seismicity to favor locations where the dynamic stress change aligns with the background stress. The aftershock focal mechanisms are significantly more aligned with the dynamic stress changes than the preshock mechanisms for only the first 0.5-1 year following most mainshocks, although for at least 10 years following Hector Mine. Dynamic stress effects on focal mechanisms are best observed at long periods (30-60 sec). Dynamic stress effects are only observed when using metrics based on repeated stress cycling in the same direction, for example considering the dominant stress orientation over the full time series, and not for the peak dynamic stress. These results imply that dynamic aftershock triggering operates at least in part through cyclic loading in the direction of fault slip, although non-directional fault weakening may be important as well. This suggests that the orientation of the dynamic stresses, as well as their amplitude, should be considered in the development of physics-based aftershock forecasting models.
Global variations of large megathrust earthquake rupture characteristics
Kanamori, Hiroo
2018-01-01
Despite the surge of great earthquakes along subduction zones over the last decade and advances in observations and analysis techniques, it remains unclear whether earthquake complexity is primarily controlled by persistent fault properties or by dynamics of the failure process. We introduce the radiated energy enhancement factor (REEF), given by the ratio of an event’s directly measured radiated energy to the calculated minimum radiated energy for a source with the same seismic moment and duration, to quantify the rupture complexity. The REEF measurements for 119 large [moment magnitude (Mw) 7.0 to 9.2] megathrust earthquakes distributed globally show marked systematic regional patterns, suggesting that the rupture complexity is strongly influenced by persistent geological factors. We characterize this as the existence of smooth and rough rupture patches with varying interpatch separation, along with failure dynamics producing triggering interactions that augment the regional influences on large events. We present an improved asperity scenario incorporating both effects and categorize global subduction zones and great earthquakes based on their REEF values and slip patterns. Giant earthquakes rupturing over several hundred kilometers can occur in regions with low-REEF patches and small interpatch spacing, such as for the 1960 Chile, 1964 Alaska, and 2011 Tohoku earthquakes, or in regions with high-REEF patches and large interpatch spacing as in the case for the 2004 Sumatra and 1906 Ecuador-Colombia earthquakes. Thus, combining seismic magnitude Mw and REEF, we provide a quantitative framework to better represent the span of rupture characteristics of great earthquakes and to understand global seismicity. PMID:29750186
Sevilgen, Volkan; Stein, Ross S.; Pollitz, Fred F.
2012-01-01
The origin and prevalence of triggered seismicity and remote aftershocks are under debate. As a result, they have been excluded from probabilistic seismic hazard assessment and aftershock hazard notices. The 2004 M = 9.2 Sumatra earthquake altered seismicity in the Andaman backarc rift-transform system. Here we show that over a 300-km-long largely transform section of the backarc, M≥4.5 earthquakes stopped for five years, and over a 750-km-long backarc section, the rate of transform events dropped by two-thirds, while the rate of rift events increased eightfold. We compute the propagating dynamic stress wavefield and find the peak dynamic Coulomb stress is similar on the rifts and transforms. Long-period dynamic stress amplitudes, which are thought to promote dynamic failure, are higher on the transforms than on the rifts, opposite to the observations. In contrast to the dynamic stress, we calculate that the mainshock brought the transform segments approximately 0.2 bar (0.02 MPa) farther from static Coulomb failure and the rift segments approximately 0.2 bar closer to static failure, consistent with the seismic observations. This accord means that changes in seismicity rate are sufficiently predictable to be included in post-mainshock hazard evaluations.
Sevilgen, Volkan; Stein, Ross S.; Pollitz, Fred F.
2012-01-01
The origin and prevalence of triggered seismicity and remote aftershocks are under debate. As a result, they have been excluded from probabilistic seismic hazard assessment and aftershock hazard notices. The 2004 M = 9.2 Sumatra earthquake altered seismicity in the Andaman backarc rift-transform system. Here we show that over a 300-km-long largely transform section of the backarc, M ≥ 4.5 earthquakes stopped for five years, and over a 750-km-long backarc section, the rate of transform events dropped by two-thirds, while the rate of rift events increased eightfold. We compute the propagating dynamic stress wavefield and find the peak dynamic Coulomb stress is similar on the rifts and transforms. Long-period dynamic stress amplitudes, which are thought to promote dynamic failure, are higher on the transforms than on the rifts, opposite to the observations. In contrast to the dynamic stress, we calculate that the mainshock brought the transform segments approximately 0.2 bar (0.02 MPa) farther from static Coulomb failure and the rift segments approximately 0.2 bar closer to static failure, consistent with the seismic observations. This accord means that changes in seismicity rate are sufficiently predictable to be included in post-mainshock hazard evaluations.
Remote Triggering of Microearthquakes in the Piton de la Fournaise and Changbaishan Volcanoes
NASA Astrophysics Data System (ADS)
Li, C.; Liu, G.; Peng, Z.; Brenguier, F.; Dufek, J.
2015-12-01
Large earthquakes are capable of triggering seismic, aseismic and hydrological responses at long-range distances. In particular, recent studies have shown that microearthquakes are mostly triggered in volcanic/geothermal regions. However, it is still not clear how widespread the phenomenon is, and whether there are any causal links between large earthquakes and subsequent volcanic unrest/eruptions. In this study we conduct a systematic search for remotely triggered activity at the Piton de la Fournaise (PdlF) and Changbaishan (CBS) volcanoes. The PdlF is a shield volcano located on the east-southern part of the Reunion Island in Indian Ocean. It is one of the most active volcanoes around the world. The CBS volcano is an intraplate stratovolcano on the border between China and North Korea, and it was active with a major eruption around 1100 years ago and has been since dormant from AD 1903, however, it showed signals of unrest recently. We choose these regions because they are well instrumented and spatially close to recent large earthquakes, such as the 2004/12/26 Mw9.1 Sumatra, 2011/03/11 Mw9.0 Tohoku, and the 2012/04/11 Mw8.6 Indian Ocean Earthquakes. By examining continuous waveforms a few hours before and after many earthquakes since 2000, we find many cases of remote triggering around the CBS volcano. In comparison, we only identify a few cases of remotely triggered seismicity around the PdlF volcano, including the 2004 Sumatra earthquake. Notably, the 2012 Indian Ocean earthquake and its M8.2 aftershock did not trigger any clear increase of seismicity, at least during their surface waves. Our next step is to apply a waveform matching method to automatically detect volcano-seismicity in both regions, and then use them to better understand potential interactions between large earthquakes and volcanic activities.
Hill, David P.; Peng, Zhigang; Shelly, David R.; Aiken, Chastity
2013-01-01
The dynamic stresses that are associated with the energetic seismic waves generated by the Mw 9.0 Tohoku earthquake off the northeast coast of Japan triggered bursts of tectonic tremor beneath the Parkfield section of the San Andreas fault (SAF) at an epicentral distance of ∼8200 km. The onset of tremor begins midway through the ∼100‐s‐period S‐wave arrival, with a minor burst coinciding with the SHSH arrival, as recorded on the nearby broadband seismic station PKD. A more pronounced burst coincides with the Love arrival, followed by a series of impulsive tremor bursts apparently modulated by the 20‐ to 30‐s‐period Rayleigh wave. The triggered tremor was located at depths between 20 and 30 km beneath the surface trace of the fault, with the burst coincident with the S wave centered beneath the fault 30 km northwest of Parkfield. Most of the subsequent activity, including the tremor coincident with the SHSH arrival, was concentrated beneath a stretch of the fault extending from 10 to 40 km southeast of Parkfield. The seismic waves from the Tohoku epicenter form a horizontal incidence angle of ∼14°, with respect to the local strike of the SAF. Computed peak dynamic Coulomb stresses on the fault at tremor depths are in the 0.7–10 kPa range. The apparent modulation of tremor bursts by the small, strike‐parallel Rayleigh‐wave stresses (∼0.7 kPa) is likely enabled by pore pressure variations driven by the Rayleigh‐wave dilatational stress. These results are consistent with the strike‐parallel dynamic stresses (δτs) associated with the S, SHSH, and surface‐wave phases triggering small increments of dextral slip on the fault with a low friction (μ∼0.2). The vertical dynamic stresses δτd do not trigger tremor with vertical or oblique slip under this simple Coulomb failure model.
Study of earthquakes using a borehole seismic network at Koyna, India
NASA Astrophysics Data System (ADS)
Gupta, Harsh; Satyanarayana, Hari VS; Shashidhar, Dodla; Mallika, Kothamasu; Ranjan Mahato, Chitta; Shankar Maity, Bhavani
2017-04-01
Koyna, located near the west coast of India, is a classical site of artificial water reservoir triggered earthquakes. Triggered earthquakes started soon after the impoundment of the Koyna Dam in 1962. The activity has continued till now including the largest triggered earthquake of M 6.3 in 1967; 22 earthquakes of M ≥ 5 and several thousands smaller earthquakes. The latest significant earthquake of ML 3.7 occurred on 24th November 2016. In spite of having a network of 23 broad band 3-component seismic stations in the near vicinity of the Koyna earthquake zone, locations of earthquakes had errors of 1 km. The main reason was the presence of 1 km thick very heterogeneous Deccan Traps cover that introduced noise and locations could not be improved. To improve the accuracy of location of earthquakes, a unique network of eight borehole seismic stations surrounding the seismicity was designed. Six of these have been installed at depths varying from 981 m to 1522 m during 2015 and 2016, well below the Deccan Traps cover. During 2016 a total of 2100 earthquakes were located. There has been a significant improvement in the location of earthquakes and the absolute errors of location have come down to ± 300 m. All earthquakes of ML ≥ 0.5 are now located, compared to ML ≥1.0 earlier. Based on seismicity and logistics, a block of 2 km x 2 km area has been chosen for the 3 km deep pilot borehole. The installation of the borehole seismic network has further elucidated the correspondence between rate of water loading/unloading the reservoir and triggered seismicity.
Pollitz, Fred; Burgmann, Roland; Stein, Ross S.; Sevilgen, Volkan
2014-01-01
The 11 April 2012 M 8.6 Indian Ocean earthquake was an unusually large intraoceanic strike‐slip event. For several days, the global M≥4.5 and M≥6.5 seismicity rate at remote distances (i.e., thousands of kilometers from the mainshock) was elevated. The strike‐slip mainshock appears through its Love waves to have triggered a global burst of strike‐slip aftershocks over several days. But the M≥6.5 rate subsequently dropped to zero for the succeeding 95 days, although the M≤6.0 global rate was close to background during this period. Such an extended period without an M≥6.5 event has happened rarely over the past century, and never after a large mainshock. Quiescent periods following previous large (M≥8) mainshocks over the past century are either much shorter or begin so long after a given mainshock that no physical interpretation is warranted. The 2012 mainshock is unique in terms of both the short‐lived global increase and subsequent long quiescent period. We believe that the two components are linked and interpret this pattern as the product of dynamic stressing of a global system of faults. Transient dynamic stresses can encourage short‐term triggering, but, paradoxically, it can also inhibit rupture temporarily until background tectonic loading restores the system to its premainshock stress levels.
NASA Astrophysics Data System (ADS)
Gorum, Tolga; van Westen, Cees J.; Korup, Oliver; van der Meijde, Mark; Fan, Xuanmei; van der Meer, Freek D.
2013-02-01
The 12 January 2010 Mw 7.0 Haiti earthquake occurred in a complex deformation zone at the boundary between the North American and Caribbean plates. Combined geodetic, geological and seismological data posited that surface deformation was driven by rupture on the Léogâne blind thrust fault, while part of the rupture occurred as deep lateral slip on the Enriquillo-Plantain Garden Fault (EPGF). The earthquake triggered > 4490 landslides, mainly shallow, disrupted rock falls, debris-soil falls and slides, and a few lateral spreads, over an area of ~ 2150 km2. The regional distribution of these slope failures defies those of most similar earthquake-triggered landslide episodes reported previously. Most of the coseismic landslides did not proliferate in the hanging wall of the main rupture, but clustered instead at the junction of the blind Léogâne and EPGF ruptures, where topographic relief and hillslope steepness are above average. Also, low-relief areas subjected to high coseismic uplift were prone to lesser hanging wall slope instability than previous studies would suggest. We argue that a combined effect of complex rupture dynamics and topography primarily control this previously rarely documented landslide pattern. Compared to recent thrust fault-earthquakes of similar magnitudes elsewhere, we conclude that lower static stress drop, mean fault displacement, and blind ruptures of the 2010 Haiti earthquake resulted in fewer, smaller, and more symmetrically distributed landslides than previous studies would suggest. Our findings caution against overly relying on across-the-board models of slope stability response to seismic ground shaking.
Induced and triggered earthquakes at The Geysers geothermal reservoir
NASA Astrophysics Data System (ADS)
Johnson, Lane R.; Majer, Ernest L.
2017-05-01
The Geysers geothermal reservoir in northern California is the site of numerous studies of both seismicity induced by injection of fluids and seismicity triggered by other earthquakes. Data from a controlled experiment in the northwest part of The Geysers in the time period 2011 to 2015 are used to study these induced and triggered earthquakes and possible differences between them. Causal solutions to the elastic equations for a porous medium show how fluid injection generates fast elastic and diffusion waves followed by a much slower diffusive wake. Calculations of fluid increment, fluid pressure and elastic stress are used to investigate both when and why seismic failure takes place. Taking into account stress concentrations caused by material heterogeneity leads to the conclusion that fluid injection by itself can cause seismic activity with no need for tectonic forces. Induced events that occur at early times are best explained by changes in stress rate, while those that occur at later times are best explained by changes in stress. While some of the seismic activity is clearly induced by injection of fluids, also present is triggered seismicity that includes aftershock sequences, swarms of seismicity triggered by other earthquakes at The Geysers and clusters of multiple earthquakes. No basic differences are found between the source mechanisms of these different types of earthquakes.
Seismicity Increase in North China After the 2008 Mw7.9 Wenchuan Earthquake.
NASA Astrophysics Data System (ADS)
Goldhagen, G.; Li, C.; Peng, Z.; Wu, J.; Zhao, L.
2016-12-01
A large mainshock is capable of setting off an increase in seismicity in areas thousands of kilometers away. This phenomenon, known as remote triggering, is more likely to occur along active fault lines, aftershock zones, or regions with anthropogenic activities (e.g., mining, reservoirs, and fluid injections). By studying these susceptible areas, we can gain a better understanding of subsurface stress conditions, and long-range earthquake interactions. In this study we conduct a systematic search for remotely triggered seismicity in North China along two linear dense arrays (net code 1A and Z8) deployed by Chinese Academy of Sciences (CAS) following the 2008 Mw7.9 Wenchuan earthquake. A 5 Hz high pass filter is applied to the broadband seismogram recorded at the 1A array, which is more than 2,000 km away from the mainshock, in order to manually pick local events with double peaks. These local events have higher frequencies than earthquakes in the aftershock zone of the Wenchuan earthquake. An STA/LTA method is then employed as a way to automatically detect microseismicity in a section of the array that showed preliminary evidence of remote triggering. We find a clear increase of small earthquakes, right after the surface waves of the Wenchuan mainshock. These events, were recorded at stations close to the north section of the Tanlu fault and aftershock zones of the 1975, Ms7.3 Haicheng earthquake. This result suggests that remote triggering is more likely near active fault zones or other specific regions, as previous studies have proposed. Future work includes applying a waveform matching method to both arrays and automatically detecting micro-earthquakes missed on the catalog, and using them to better confirm the existence (or lack of) remote triggering following the Wenchuan mainshock. Our finding helps to better classify conditions that lead to the occurrence of remotely triggered earthquakes at intraplate regions.
In-situ investigation of relations between slow slip events, repeaters and earthquake nucleation
NASA Astrophysics Data System (ADS)
Marty, S. B.; Schubnel, A.; Gardonio, B.; Bhat, H. S.; Fukuyama, E.
2017-12-01
Recent observations have shown that, in subduction zones, imperceptible slip, known as "slow slip events", could trigger powerful earthquakes and could be link to the onset of swarms of repeaters. In the aim of investigating the relation between repeaters, slow slip events and earthquake nucleation, we have conducted stick-slip experiments on saw-cut Indian Gabbro under upper crustal stress conditions (up to 180 MPa confining pressure). During the past decades, the reproduction of micro-earthquakes in the laboratory enabled a better understanding and to better constrain physical parameters that are the origin of the seismic source. Using a new set of calibrated piezoelectric acoustic emission sensors and high frequency dynamic strain gages, we are now able to measure a large number of physical parameters during stick-slip motion, such as the rupture velocity, the slip velocity, the dynamic stress drop and the absolute magnitudes and sizes of foreshock acoustic emissions. Preliminary observations systemically show quasi-static slip accelerations, onset of repeaters as well as an increase in the acoustic emission rate before failure. In the next future, we will further investigate the links between slow slip events, repeaters, stress build-up and earthquakes, using our high-frequency acoustic and strain recordings and applying template matching analysis.
Slippiń and Slidiń: Capturing the Earth in Motion below the Seafloor
NASA Astrophysics Data System (ADS)
Strasser, M.
2017-12-01
Since the beginning of ocean drilling, sampling and dating seismically imaged tectono-stratigraphic sections and recovering rocks from active faults of marine plate-boundary systems has advanced our understanding of subduction zone structures and evolution. It further evidenced the dynamic nature of deformation, fluid flow and fluxes within such systems. With the advancement in developing borehole observatories, monitoring data is increasingly becoming available to analyze and quantify the dynamic processes, such as those leading to and resulting from earthquakes, slides and tsunamis. Combined with knowledge gained from seismological studies, IODP drilling efforts at Costa Rica, Hikurangi, Japan Trench, Nankai and Sumatra margins contribute invaluable observatory data and core samples, the analyses and derived research results of which are fundamentally changing the way fault slip behavior, seafloor instability and tsunamigenesis are understood. Short instrumental records, however, limit our perspective of maximum magnitude and recurrence of such submarine geohazard processes. Examining past events expressed as sedimentary or geochemical perturbations preserved in the marine record provides IODP the key to address this challenge: Recent efforts included sampling mass-transport deposits to study causes and consequences of submarine slides. For the Nankai accretionary margin, we documented the submarine landslide history spanning ˜2.5 million years. The modes and scales of slides were linked to the different morphotectonic settings in which they occurred. The timing of major slides hints at climate preconditioning for sediment instability and reveals that margin destabilization does not occur systematically during all megathrust earthquakes. However, new observation after recent earthquakes and studies using lakes as model basins discovered a new mode of dynamic earthquake ground motion response for surficial (<5-10 cm) seafloor sediments. This can trigger remobilization of the surficial, mostly fine-grained, young and organic carbon-rich sediments over large areas into terminal basins, where the stratigraphic record of respective mud turbidities provides paleoseismic event records of high continuity and documents event-triggered carbon export the deep sea.
The 1999 Izmit, Turkey, earthquake: A 3D dynamic stress transfer model of intraearthquake triggering
Harris, R.A.; Dolan, J.F.; Hartleb, R.; Day, S.M.
2002-01-01
Before the August 1999 Izmit (Kocaeli), Turkey, earthquake, theoretical studies of earthquake ruptures and geological observations had provided estimates of how far an earthquake might jump to get to a neighboring fault. Both numerical simulations and geological observations suggested that 5 km might be the upper limit if there were no transfer faults. The Izmit earthquake appears to have followed these expectations. It did not jump across any step-over wider than 5 km and was instead stopped by a narrower step-over at its eastern end and possibly by a stress shadow caused by a historic large earthquake at its western end. Our 3D spontaneous rupture simulations of the 1999 Izmit earthquake provide two new insights: (1) the west- to east-striking fault segments of this part of the North Anatolian fault are oriented so as to be low-stress faults and (2) the easternmost segment involved in the August 1999 rupture may be dipping. An interesting feature of the Izmit earthquake is that a 5-km-long gap in surface rupture and an adjacent 25° restraining bend in the fault zone did not stop the earthquake. The latter observation is a warning that significant fault bends in strike-slip faults may not arrest future earthquakes.
Distant, delayed and ancient earthquake-induced landslides
NASA Astrophysics Data System (ADS)
Havenith, Hans-Balder; Torgoev, Almaz; Braun, Anika; Schlögel, Romy; Micu, Mihai
2016-04-01
On the basis of a new classification of seismically induced landslides we outline particular effects related to the delayed and distant triggering of landslides. Those cannot be predicted by state-of-the-art methods. First, for about a dozen events the 'predicted' extension of the affected area is clearly underestimated. The most problematic cases are those for which far-distant triggering of landslides had been reported, such as for the 1988 Saguenay earthquake. In Central Asia reports for such cases are known for areas marked by a thick cover of loess. One possible contributing effect could be a low-frequency resonance of the thick soils induced by distant earthquakes, especially those in the Pamir - Hindu Kush seismic region. Such deep focal and high magnitude (>>7) earthquakes are also found in Europe, first of all in the Vrancea region (Romania). For this area and others in Central Asia we computed landslide event sizes related to scenario earthquakes with M>7.5. The second particular and challenging type of triggering is the one delayed with respect to the main earthquake event: case histories have been reported for the Racha earthquake in 1991 when several larger landslides only started moving 2 or 3 days after the main shock. Similar observations were also made after other earthquake events in the U.S., such as after the 1906 San Francisco, the 1949 Tacoma, the 1959 Hebgen Lake and the 1983 Bora Peak earthquakes. Here, we will present a series of detailed examples of (partly monitored) mass movements in Central Asia that mainly developed after earthquakes, some even several weeks after the main shock: e.g. the Tektonik and Kainama landslides triggered in 1992 and 2004, respectively. We believe that the development of the massive failures is a consequence of the opening of tension cracks during the seismic shaking and their filling up with water during precipitations that followed the earthquakes. The third particular aspect analysed here is the use of large ancient landslides for paleoseismic studies. As Central Asian mountain regions are marked by a relatively high ratio of seismically versus climatically triggered landslides, they represent a prime test area for such studies. This observation is contrasting with known landslide activity in Europe where by far most landslides are triggered by climatic factors, besides for some seismically active regions in the Eastern Alps, around the Mediterranean Sea and in the Carpathians (Vrancea, Romania). We will discuss how we may identify such earthquake-triggered landslides and how we may distinguish them from rainfall-induced slope failures.
NASA Astrophysics Data System (ADS)
Almendros, J.; Carmona, E.; Jiménez, V.; Díaz-Moreno, A.; Lorenzo, F.
2018-05-01
In September 2014 there was a sharp increase in the seismic activity of the Bransfield Strait, Antarctica. More than 9,000 earthquakes with magnitudes up to 4.6 located SE of Livingston Island were detected over a period of 8 months. A few months after the series onset, local seismicity at the nearby (˜35 km) Deception Island volcano increased, displaying enhanced long-period seismicity and several outbursts of volcano-tectonic (VT) earthquakes. Before February 2015, VT earthquakes occurred mainly at 5-20 km SW of Deception Island. In mid-February the numbers and sizes of VT earthquakes escalated, and their locations encompassed the whole volcanic edifice, suggesting a situation of generalized unrest. The activity continued in anomalously high levels at least until May 2015. Given the spatial and temporal coincidence, it is unlikely that the Livingston series and the Deception VT swarm were unrelated. We propose that the Livingston series may have produced a triggering effect on Deception Island volcano. Dynamic stresses associated to the seismic swarm may have induced overpressure in the unstable volcanic system, leading to a magmatic intrusion that may in turn have triggered the VT swarm. Alternatively, both the Livingston earthquakes and the VT swarm could be consequences of a magmatic intrusion at Deception Island. The Livingston series would be an example of precursory distal VT swarm, which seems to be a common feature preceding volcanic eruptions and magma intrusions in long-dormant volcanoes.
Characterize kinematic rupture history of large earthquakes with Multiple Haskell sources
NASA Astrophysics Data System (ADS)
Jia, Z.; Zhan, Z.
2017-12-01
Earthquakes are often regarded as continuous rupture along a single fault, but the occurrence of complex large events involving multiple faults and dynamic triggering challenges this view. Such rupture complexities cause difficulties in existing finite fault inversion algorithms, because they rely on specific parameterizations and regularizations to obtain physically meaningful solutions. Furthermore, it is difficult to assess reliability and uncertainty of obtained rupture models. Here we develop a Multi-Haskell Source (MHS) method to estimate rupture process of large earthquakes as a series of sub-events of varying location, timing and directivity. Each sub-event is characterized by a Haskell rupture model with uniform dislocation and constant unilateral rupture velocity. This flexible yet simple source parameterization allows us to constrain first-order rupture complexity of large earthquakes robustly. Additionally, relatively few parameters in the inverse problem yields improved uncertainty analysis based on Markov chain Monte Carlo sampling in a Bayesian framework. Synthetic tests and application of MHS method on real earthquakes show that our method can capture major features of large earthquake rupture process, and provide information for more detailed rupture history analysis.
Evidence for tidal triggering on the earthquakes of the Hellenic Arc, Greece
NASA Astrophysics Data System (ADS)
Vergos, G.; Arabelos, D. N.; Contadakis, M. E.
2015-12-01
In this paper we investigate the tidal triggering evidence on the earthquakes of the seismic area of the Hellenic Arc using the Hist(ogram)Cum(mulation) method. We analyze the series of the earthquakes occurred in the area which is confined by the longitudes 22° and 28°E and latitudes 34° and 36°N in the time period from 1964 to 2012. In this time period 16,137 shallow and of intermediate depth earthquakes with ML up to 6.0 and 1,482 deep earthquakes with ML up to 6.2 occurred. The result of the this analysis indicate that the monthly variation of the frequencies of earthquake occurrence is in accordance with the period of the tidal lunar monthly variations, and the same happens with the corresponding daily variations of the frequencies of earthquake occurrence with the diurnal luni-solar (K1) and semidiurnal solar (S2) tidal variations. These results are in favor of a tidal triggering process on earthquakes when the stress in the focal area is near the critical level.
NASA Astrophysics Data System (ADS)
D'Onza, F.; Viti, M.; Mantovani, E.; Albarello, D.
2003-04-01
EARTHQUAKE TRIGGERING IN THE PERI-ADRIATIC REGIONS INDUCED BY STRESS DIFFUSION: INSIGHTS FROM NUMERICAL MODELLING F. D’Onza (1), M. Viti (1), E. Mantovani (1) and D. Albarello (1) (1) Dept. of Earth Sciences, University of Siena - Italy (donza@unisi.it/Fax:+39-0577-233820) Significant evidence suggests that major earthquakes in the peri-Adriatic Balkan zones may influence the seismicity pattern in the Italian area. In particular, a seismic correlation has been recognized between major earthquakes in the southern Dinaric belt and those in southern Italy. It is widely recognized that such kind of regularities may be an effect of postseismic relaxation triggered by strong earthquakes. In this note, we describe an attempt to quantitatively investigate, by numerical modelling, the reliability of the above interpretation. In particular, we have explored the possibility to explain the last example of the presumed correlation (triggering event: April, 1979 Montenegro earthquake, MS=6.7; induced event: November, 1980 Irpinia event, MS=6.9) as an effect of postseismic relaxation through the Adriatic plate. The triggering event is modelled by imposing a sudden dislocation in the Montenegro seismic fault, taking into account the fault parameters (length and average slip) recognized from seismological observations. The perturbation induced by the seismic source in the neighbouring lithosphere is obtained by the Elsasser diffusion equation for an elastic lithosphere coupled with a viscous asthenosphere. The results obtained by numerical experiments indicate that the strain regime induced by the Montenegro event in southern Italy is compatible with the tensional strain field observed in this last zone, that the amplitude of the induced strain is significantly higher than that induced by Earth tides and that this amplitude is comparable with the strain perturbation recognized as responsible for earthquake triggering. The time delay between the triggering and the induced earthquakes (roughly 1.5 years) can be explained by assuming that earthquake triggering is most probable when the maximum value of the strain rate reaches southern Italy and a value of 300-400 m2s-1 is assumed for the diffusivity of the model. This result implies that the possibility to explain the observed correlation as a consequence of stress diffusion depends on the reliability of the above choices. A discussion about this problem is reported. The time evolution of postseismic effects suggests that a significant far-field perturbation of velocity may persist for tens of years since the occurrence of the triggering event. For instance, the present velocity induced by the 1979 Montenegro event is comparable with the geodetic velocities observed in southern Italy.
Zhuang, Jiancang; Ogata, Yosihiko
2006-04-01
The space-time epidemic-type aftershock sequence model is a stochastic branching process in which earthquake activity is classified into background and clustering components and each earthquake triggers other earthquakes independently according to certain rules. This paper gives the probability distributions associated with the largest event in a cluster and their properties for all three cases when the process is subcritical, critical, and supercritical. One of the direct uses of these probability distributions is to evaluate the probability of an earthquake to be a foreshock, and magnitude distributions of foreshocks and nonforeshock earthquakes. To verify these theoretical results, the Japan Meteorological Agency earthquake catalog is analyzed. The proportion of events that have 1 or more larger descendants in total events is found to be as high as about 15%. When the differences between background events and triggered event in the behavior of triggering children are considered, a background event has a probability about 8% to be a foreshock. This probability decreases when the magnitude of the background event increases. These results, obtained from a complicated clustering model, where the characteristics of background events and triggered events are different, are consistent with the results obtained in [Ogata, Geophys. J. Int. 127, 17 (1996)] by using the conventional single-linked cluster declustering method.
NASA Astrophysics Data System (ADS)
Schultz, K.; Yoder, M. R.; Heien, E. M.; Rundle, J. B.; Turcotte, D. L.; Parker, J. W.; Donnellan, A.
2015-12-01
We introduce a framework for developing earthquake forecasts using Virtual Quake (VQ), the generalized successor to the perhaps better known Virtual California (VC) earthquake simulator. We discuss the basic merits and mechanics of the simulator, and we present several statistics of interest for earthquake forecasting. We also show that, though the system as a whole (in aggregate) behaves quite randomly, (simulated) earthquake sequences limited to specific fault sections exhibit measurable predictability in the form of increasing seismicity precursory to large m > 7 earthquakes. In order to quantify this, we develop an alert based forecasting metric similar to those presented in Keilis-Borok (2002); Molchan (1997), and show that it exhibits significant information gain compared to random forecasts. We also discuss the long standing question of activation vs quiescent type earthquake triggering. We show that VQ exhibits both behaviors separately for independent fault sections; some fault sections exhibit activation type triggering, while others are better characterized by quiescent type triggering. We discuss these aspects of VQ specifically with respect to faults in the Salton Basin and near the El Mayor-Cucapah region in southern California USA and northern Baja California Norte, Mexico.
Seismo-Electromagnetic Emissions Related to Seismic Waves can Trigger TLEs
NASA Astrophysics Data System (ADS)
Sorokin, Leonid V.
2009-04-01
This paper deals with the rare high intensity electromagnetic pulses associated with earthquakes, whose spectrum signature differs from that of atmospherics produced by lightning discharges. On the basis of actual data records, cases of the generation of anomalous seismo-electromagnetic emissions are described. These natural sub-millisecond electromagnetic pulses were associated with the passage of seismic waves from earthquakes to Moscow, the place where the electromagnetic field observations were made. Space-time coupling has been revealed between exact seismic waves from the earthquakes, lightning triggering and Transient Luminous Events triggering.
NASA Astrophysics Data System (ADS)
St-Onge, Guillaume; Chapron, Emmanuel; Mulsow, Sandor; Salas, Marcos; Debret, Maxime; Foucher, Anthony; Mulder, Thierry; Desmet, Marc; Costa, Pedro; Ghaleb, Bassam; Locat, Jacques
2013-04-01
Fjords are unique archives of climatic and environmental changes, but also of natural hazards. They can preserve thick sedimentary sequences deposited under very high sediment accumulation rates, making them ideally suited to record historical and pre-historical sedimentological events such as major landslides, floods or earthquakes. In fact, by carefully characterizing and dating the sediments and by comparing the basin fill seismic stratigraphy and sedimentary records with historical events, it is possible to "calibrate" recent rapidly deposited layers such as turbidites with a trigger mechanism and extend these observations further back in time by using seismic reflection profiles and longer sediment cores. Here, we will compare earthquake-triggered turbidites in fjords from the Southern and Northern Hemispheres: the Saguenay (Eastern Canada) and Reloncavi fjords (southern Chilean margin). In both settings, we will first look at basin fill geometries and at the sedimentological properties of historical events before extending the records further back in time. In both fjords, several turbidites were associated with large magnitude historic and pre-historic earthquakes including the 1663 AD (M>7) earthquake in the Saguenay Fjord, and the 1960 (M 9.5), 1837 (M~8) and 1575 AD major Chilean subduction earthquakes in the Reloncavi Fjord. In addition, a sand layer with sea urchin fragments and the exoscopic characteristics typical of a tsunami deposit was observed immediately above the turbidite associated with the 1575 AD earthquake in the Reloncavi Fjord and supports both the chronology and the large magnitude of that historic earthquake. In both fjords, as well as in other recently recognized earthquake-triggered turbidites, the decimeter-to meter-thick normally-graded turbidites are characterized by a homogeneous, but slightly fining upward tail. Finally, new radiocarbon results will be presented and indicate that at least 19 earthquake-triggered turbidites were recorded in the Reloncavi Fjord during the last 7500 cal BP.
Classification of Earthquake-triggered Landslide Events - Review of Classical and Particular Cases
NASA Astrophysics Data System (ADS)
Braun, A.; Havenith, H. B.; Schlögel, R.
2016-12-01
Seismically induced landslides often contribute to a significant degree to the losses related to earthquakes. The identification of possible extends of landslide affected areas can help to target emergency measures when an earthquake occurs or improve the resilience of inhabited areas and critical infrastructure in zones of high seismic hazard. Moreover, landslide event sizes are an important proxy for the estimation of the intensity and magnitude of past earthquakes in paleoseismic studies, allowing us to improve seismic hazard assessment over longer terms. Not only earthquake intensity, but also factors such as the fault characteristics, topography, climatic conditions and the geological environment have a major impact on the intensity and spatial distribution of earthquake induced landslides. Inspired by classical reviews of earthquake induced landslides, e.g. by Keefer or Jibson, we present here a review of factors contributing to earthquake triggered slope failures based on an `event-by-event' classification approach. The objective of this analysis is to enable the short-term prediction of earthquake triggered landslide event sizes in terms of numbers and size of the affected area right after an earthquake event occurred. Five main factors, `Intensity', `Fault', `Topographic energy', `Climatic conditions' and `Surface geology' were used to establish a relationship to the number and spatial extend of landslides triggered by an earthquake. Based on well-documented recent earthquakes (e.g. Haiti 2010, Wenchuan 2008) and on older events for which reliable extensive information was available (e.g. Northridge 1994, Loma Prieta 1989, Guatemala 1976, Peru 1970) the combination and relative weight of the factors was calibrated. The calibrated factor combination was then applied to more than 20 earthquake events for which landslide distribution characteristics could be crosschecked. We present cases where our prediction model performs well and discuss particular cases where it does not. These are e.g. cases of far distant, delayed or ancient earthquake induced landslides.
NASA Astrophysics Data System (ADS)
Ishibe, T.; Sakai, S.; Shimazaki, K.; Satake, K.; Tsuruoka, H.; Nakagawa, S.; Hirata, N.
2012-12-01
We examined a relationship between the Coulomb Failure Function (ΔCFF) due to the Tohoku earthquake (March 11, 2011; MJMA 9.0) and the seismicity rate change in Tokyo Metropolitan area following March 2011. Because of large variation in focal mechanism in the Kanto region, the receiver faults for the ΔCFF were assumed to be two nodal planes of small (M ≥ 2.0) earthquakes which occurred before and after the Tohoku earthquake. The seismicity rate changes, particularly the rate increase, are well explained by ΔCFF due to the gigantic thrusting, while some other possible factors (e.g., dynamic stress changes, excess of fluid dehydration) may also contribute the rate changes. Among 30,746 previous events provided by the National Research Institute for Earth Science and Disaster Prevention (M ≥ 2.0, July 1979 - July 2003), we used as receiver faults, almost 16,000 events indicate significant increase in ΔCFF, while about 8,000 events show significant decrease. Positive ΔCFF predicts seismicity rate increase in southwestern Ibaraki and northern Chiba prefectures where intermediate-depth earthquakes occur, and in shallow crust of the Izu-Oshima and Hakone regions. In these regions, seismicity rates significantly increased after the Tohoku earthquake. The seismicity has increased since March 2011 with respect to the Epidemic Type of Aftershock Sequence (ETAS) model (Ogata, 1988), indicating that the rate change was due to the stress increase by the Tohoku earthquake. The activated seismicity in the Izu and Hakone regions rapidly decayed following the Omori-Utsu formula, while the increased rate of seismicity in the southwestern Ibaraki and northern Chiba prefectures is still continuing. We also calculated ΔCFF due to the 2011 Tohoku earthquake for the focal mechanism solutions of earthquakes between April 2008 and October 2011 recorded on the Metropolitan Seismic Observation network (MeSO-net). The ΔCFF values for the earthquakes after March 2011 show more positive values than those before March 2011, supporting a triggering hypothesis that the 2011 Tohoku earthquake triggered the seismicity changes in the Kanto region.
A method for producing digital probabilistic seismic landslide hazard maps
Jibson, R.W.; Harp, E.L.; Michael, J.A.
2000-01-01
The 1994 Northridge, California, earthquake is the first earthquake for which we have all of the data sets needed to conduct a rigorous regional analysis of seismic slope instability. These data sets include: (1) a comprehensive inventory of triggered landslides, (2) about 200 strong-motion records of the mainshock, (3) 1:24 000-scale geologic mapping of the region, (4) extensive data on engineering properties of geologic units, and (5) high-resolution digital elevation models of the topography. All of these data sets have been digitized and rasterized at 10 m grid spacing using ARC/INFO GIS software on a UNIX computer. Combining these data sets in a dynamic model based on Newmark's permanent-deformation (sliding-block) analysis yields estimates of coseismic landslide displacement in each grid cell from the Northridge earthquake. The modeled displacements are then compared with the digital inventory of landslides triggered by the Northridge earthquake to construct a probability curve relating predicted displacement to probability of failure. This probability function can be applied to predict and map the spatial variability in failure probability in any ground-shaking conditions of interest. We anticipate that this mapping procedure will be used to construct seismic landslide hazard maps that will assist in emergency preparedness planning and in making rational decisions regarding development and construction in areas susceptible to seismic slope failure. ?? 2000 Elsevier Science B.V. All rights reserved.
Jibson, Randall W.; Harp, Edwin L.; Michael, John A.
1998-01-01
The 1994 Northridge, California, earthquake is the first earthquake for which we have all of the data sets needed to conduct a rigorous regional analysis of seismic slope instability. These data sets include (1) a comprehensive inventory of triggered landslides, (2) about 200 strong-motion records of the mainshock, (3) 1:24,000-scale geologic mapping of the region, (4) extensive data on engineering properties of geologic units, and (5) high-resolution digital elevation models of the topography. All of these data sets have been digitized and rasterized at 10-m grid spacing in the ARC/INFO GIS platform. Combining these data sets in a dynamic model based on Newmark's permanent-deformation (sliding-block) analysis yields estimates of coseismic landslide displacement in each grid cell from the Northridge earthquake. The modeled displacements are then compared with the digital inventory of landslides triggered by the Northridge earthquake to construct a probability curve relating predicted displacement to probability of failure. This probability function can be applied to predict and map the spatial variability in failure probability in any ground-shaking conditions of interest. We anticipate that this mapping procedure will be used to construct seismic landslide hazard maps that will assist in emergency preparedness planning and in making rational decisions regarding development and construction in areas susceptible to seismic slope failure.
NASA Astrophysics Data System (ADS)
Dahm, Torsten; Cesca, Simone; Hainzl, Sebastian; Braun, Thomas; Krüger, Frank
2015-04-01
Earthquakes occurring close to hydrocarbon fields under production are often under critical view of being induced or triggered. However, clear and testable rules to discriminate the different events have rarely been developed and tested. The unresolved scientific problem may lead to lengthy public disputes with unpredictable impact on the local acceptance of the exploitation and field operations. We propose a quantitative approach to discriminate induced, triggered, and natural earthquakes, which is based on testable input parameters. Maxima of occurrence probabilities are compared for the cases under question, and a single probability of being triggered or induced is reported. The uncertainties of earthquake location and other input parameters are considered in terms of the integration over probability density functions. The probability that events have been human triggered/induced is derived from the modeling of Coulomb stress changes and a rate and state-dependent seismicity model. In our case a 3-D boundary element method has been adapted for the nuclei of strain approach to estimate the stress changes outside the reservoir, which are related to pore pressure changes in the field formation. The predicted rate of natural earthquakes is either derived from the background seismicity or, in case of rare events, from an estimate of the tectonic stress rate. Instrumentally derived seismological information on the event location, source mechanism, and the size of the rupture plane is of advantage for the method. If the rupture plane has been estimated, the discrimination between induced or only triggered events is theoretically possible if probability functions are convolved with a rupture fault filter. We apply the approach to three recent main shock events: (1) the Mw 4.3 Ekofisk 2001, North Sea, earthquake close to the Ekofisk oil field; (2) the Mw 4.4 Rotenburg 2004, Northern Germany, earthquake in the vicinity of the Söhlingen gas field; and (3) the Mw 6.1 Emilia 2012, Northern Italy, earthquake in the vicinity of a hydrocarbon reservoir. The three test cases cover the complete range of possible causes: clearly "human induced," "not even human triggered," and a third case in between both extremes.
Re-evaluating the possible link between the Zipingpu reservoir and 2008 Ww7.9 Wenchuan earthquake
NASA Astrophysics Data System (ADS)
Peng, Z.; Yao, D.; Su, J.; Ruan, X.; Long, F.; Meng, X.
2017-12-01
The 12 May 2008 Mw7.9 Wenchuan earthquake ruptured 300 km unilaterally along the Longmenshan Fault Zone (LMSF), which straddles the Tibetan Plateau to the northwest and Sichuan Basin to the southeast. Currently the possible link between the Wenchuan mainshock and the impoundment of Zipingpu reservoir since September 2005 is still under debate. Many studies have indicated that the initiation hypo-central depth could be the key factor to determine the triggering relationship. We first relocate the mainshock hypocenter by carefully picking the P and S phases recorded by 7 short-period stations within 30km in the Zipingpu Reservoir Seismic Network (ZRSN). We find that the Wenchuan earthquake started as a magnitude 5 event at a depth shallower than 10 km, where the Coulomb stress changes from the Zipingpu reservoir was on the order of several tens of kPa, suggesting a possible triggering relationship [e.g., Ge et al., 2009; Ma et al., 2011; Lei, 2012]. We hypothesize that the reservoir directly induced a M 5 event near Shuimo where intensive earthquake swarms have occurred at shallow depth, which in turn dynamically triggered main rupture along the Yinxiu-Beichuan fault. In addition, we conduct a systematic detection and relocation of the long-term seismic behavior preceding the mainshock. Specifically, We first apply a waveform matching method to detect microseismicity using catalog events and available continuous data from Oct 2004 to Dec 2009 recorded by ZRSN. We further relocate all events to examine spatio-temporal evolution of long-term seismicity and its relation to the water level change. We also identify repeating earthquakes with high waveform cross-correlations and use them to monitor temporal variation of seismic velocity before, during and after the mainshock. We hope to better understand the relationship among the impoundment and subsequent changes in water level of the Zipingpu reservoir, background seismicimity and the Wenchuan mainshock. Updated results will be presented at the meeting.
Rate of Change in Lake Level and its Impact on Reservoir-triggered Seismicity
NASA Astrophysics Data System (ADS)
Simpson, D. W.
2017-12-01
With recent interest in increased seismicity related to fluid injection, it is useful to review cases of reservoir-triggered earthquakes to explore common characteristics and seek ways to mitigate the influence of anthropogenic impacts. Three reservoirs - Koyna, India; Nurek, Tajikistan; and Aswan, Egypt - are well-documented cases of triggered earthquakes with recorded time series of seismicity and water levels that extend for more than 30 years. The geological setting, regional tectonics and modes of reservoir utilization, along with the characteristics of the reservoir-seismicity interaction, are distinctly different in each of these three cases. Similarities and differences between these three cases point to regional and local geological and hydrological structures and the rate of changes in reservoir water level as important factors controlling the presence and timing of triggered seismicity. In a manner similar to the way in which the rate of fluid injection influences injection-related seismicity, the rate of change in reservoir water level is a significant factor in determining whether or not reservoir-triggered seismicity occurs. The high rate of annual water level rise may be important in sustaining the exceptionally long sequence of earthquakes at Koyna. In addition to the rate of filling being a determining factor in whether or not earthquakes are triggered, changes in the rate of filling may influence the time of occurrence of individual earthquakes.
Sevilgen, Volkan; Stein, Ross S.; Pollitz, Fred F.
2012-01-01
The origin and prevalence of triggered seismicity and remote aftershocks are under debate. As a result, they have been excluded from probabilistic seismic hazard assessment and aftershock hazard notices. The 2004 M = 9.2 Sumatra earthquake altered seismicity in the Andaman backarc rift-transform system. Here we show that over a 300-km-long largely transform section of the backarc, M≥4.5 earthquakes stopped for five years, and over a 750-km-long backarc section, the rate of transform events dropped by two-thirds, while the rate of rift events increased eightfold. We compute the propagating dynamic stress wavefield and find the peak dynamic Coulomb stress is similar on the rifts and transforms. Long-period dynamic stress amplitudes, which are thought to promote dynamic failure, are higher on the transforms than on the rifts, opposite to the observations. In contrast to the dynamic stress, we calculate that the mainshock brought the transform segments approximately 0.2 bar (0.02 MPa) farther from static Coulomb failure and the rift segments approximately 0.2 bar closer to static failure, consistent with the seismic observations. This accord means that changes in seismicity rate are sufficiently predictable to be included in post-mainshock hazard evaluations. PMID:22949694
Pulverization provides a mechanism for the nucleation of earthquakes at low stress on strong faults
Felzer, Karen R.
2014-01-01
An earthquake occurs when rock that has been deformed under stress rebounds elastically along a fault plane (Gilbert, 1884; Reid, 1911), radiating seismic waves through the surrounding earth. Rupture along the entire fault surface does not spontaneously occur at the same time, however. Rather the rupture starts in one tiny area, the rupture nucleation zone, and spreads sequentially along the fault. Like a row of dominoes, one bit of rebounding fault triggers the next. This triggering is understood to occur because of the large dynamic stresses at the tip of an active seismic rupture. The importance of these crack tip stresses is a central question in earthquake physics. The crack tip stresses are minimally important, for example, in the time predictable earthquake model (Shimazaki and Nakata, 1980), which holds that prior to rupture stresses are comparable to fault strength in many locations on the future rupture plane, with bits of variation. The stress/strength ratio is highest at some point, which is where the earthquake nucleates. This model does not require any special conditions or processes at the nucleation site; the whole fault is essentially ready for rupture at the same time. The fault tip stresses ensure that the rupture occurs as a single rapid earthquake, but the fact that fault tip stresses are high is not particularly relevant since the stress at most points does not need to be raised by much. Under this model it should technically be possible to forecast earthquakes based on the stress-renewaql concept, or estimates of when the fault as a whole will reach the critical stress level, a practice used in official hazard mapping (Field, 2008). This model also indicates that physical precursors may be present and detectable, since stresses are unusually high over a significant area before a large earthquake.
Did the Zipingpu Reservoir trigger the 2008 Wenchuan earthquake?
Ge, S.; Liu, M.; Lu, N.; Godt, J.W.; Luo, G.
2009-01-01
The devastating May 2008 Wenchuan earthquake (Mw 7.9) resulted from thrust of the Tibet Plateau on the Longmen Shan fault zone, a consequence of the Indo-Asian continental collision. Many have speculated on the role played by the Zipingpu Reservoir, impounded in 2005 near the epicenter, in triggering the earthquake. This study evaluates the stress changes in response to the impoundment of the Zipingpu Reservoir and assesses their impact on the Wenchuan earthquake. We show that the impoundment could have changed the Coulomb stress by -0.01 to 0.05 MPa at locations and depth consistent with reported hypocenter positions. This level of stress change has been shown to be significant in triggering earthquakes on critically stressed faults. Because the loading rate on the Longmen Shan fault is <0.005 MPa/yr, we thus suggest that the Zipingpu Reservoir potentially hastened the occurrence of the Wenchuan earthquake by tens to hundreds of years. Copyright 2009 by the American Geophysical Union.
An open repository of earthquake-triggered ground-failure inventories
Schmitt, Robert G.; Tanyas, Hakan; Nowicki Jessee, M. Anna; Zhu, Jing; Biegel, Katherine M.; Allstadt, Kate E.; Jibson, Randall W.; Thompson, Eric M.; van Westen, Cees J.; Sato, Hiroshi P.; Wald, David J.; Godt, Jonathan W.; Gorum, Tolga; Xu, Chong; Rathje, Ellen M.; Knudsen, Keith L.
2017-12-20
Earthquake-triggered ground failure, such as landsliding and liquefaction, can contribute significantly to losses, but our current ability to accurately include them in earthquake-hazard analyses is limited. The development of robust and widely applicable models requires access to numerous inventories of ground failures triggered by earthquakes that span a broad range of terrains, shaking characteristics, and climates. We present an openly accessible, centralized earthquake-triggered groundfailure inventory repository in the form of a ScienceBase Community to provide open access to these data with the goal of accelerating research progress. The ScienceBase Community hosts digital inventories created by both U.S. Geological Survey (USGS) and non-USGS authors. We present the original digital inventory files (when available) as well as an integrated database with uniform attributes. We also summarize the mapping methodology and level of completeness as reported by the original author(s) for each inventory. This document describes the steps taken to collect, process, and compile the inventories and the process for adding additional ground-failure inventories to the ScienceBase Community in the future.
NASA Astrophysics Data System (ADS)
Ampuero, J. P.; Meng, L.; Hough, S. E.; Martin, S. S.; Asimaki, D.
2015-12-01
Two salient features of the 2015 Gorkha, Nepal, earthquake provide new opportunities to evaluate models of earthquake cycle and dynamic rupture. The Gorkha earthquake broke only partially across the seismogenic depth of the Main Himalayan Thrust: its slip was confined in a narrow depth range near the bottom of the locked zone. As indicated by the belt of background seismicity and decades of geodetic monitoring, this is an area of stress concentration induced by deep fault creep. Previous conceptual models attribute such intermediate-size events to rheological segmentation along-dip, including a fault segment with intermediate rheology in between the stable and unstable slip segments. We will present results from earthquake cycle models that, in contrast, highlight the role of stress loading concentration, rather than frictional segmentation. These models produce "super-cycles" comprising recurrent characteristic events interspersed by deep, smaller non-characteristic events of overall increasing magnitude. Because the non-characteristic events are an intrinsic component of the earthquake super-cycle, the notion of Coulomb triggering or time-advance of the "big one" is ill-defined. The high-frequency (HF) ground motions produced in Kathmandu by the Gorkha earthquake were weaker than expected for such a magnitude and such close distance to the rupture, as attested by strong motion recordings and by macroseismic data. Static slip reached close to Kathmandu but had a long rise time, consistent with control by the along-dip extent of the rupture. Moreover, the HF (1 Hz) radiation sources, imaged by teleseismic back-projection of multiple dense arrays calibrated by aftershock data, was deep and far from Kathmandu. We argue that HF rupture imaging provided a better predictor of shaking intensity than finite source inversion. The deep location of HF radiation can be attributed to rupture over heterogeneous initial stresses left by the background seismic activity. Earthquake cycle and dynamic rupture models containing deep asperities reproduce the slower spectral decay found in teleseismic spectra of the Gorkha earthquake and in subduction events in the deeper edge of the seismogenic zone.
Exploiting broadband seismograms and the mechanism of deep-focus earthquakes
NASA Astrophysics Data System (ADS)
Jiao, Wenjie
1997-09-01
Modern broadband seismic instrumentation has provided enormous opportunities to retrieve the information in almost any frequency band of seismic interest. In this thesis, we have investigated the long period responses of the broadband seismometers and the problem of recovering actual groundmotion. For the first time, we recovered the static offset for an earthquake from dynamic seismograms. The very long period waves of near- and intermediate-field term from 1994 large Bolivian deep earthquake (depth = 630km, Msb{W}=8.2) and 1997 large Argentina deep earthquake (depth = 285km, Msb{W}=7.1) are successfully recovered from the portable broadband recordings by BANJO and APVC networks. These waves provide another dynamic window into the seismic source process and may provide unique information to help constrain the source dynamics of deep earthquakes in the future. We have developed a new method to locate global explosion events based on broadband waveform stacking and simulated annealing. This method utilizes the information provided by the full broadband waveforms. Instead of "picking times", the character of the wavelet is used for locating events. The application of this methodology to a Lop Nor nuclear explosion is very successful, and suggests a procedure for automatic monitoring. We have discussed the problem of deep earthquakes from the viewpoint of rock mechanics and seismology. The rupture propagation of deep earthquakes requires a slip-weakening process unlike that for shallow events. However, this process is not necessarily the same as the process which triggers the rupture. Partial melting due to stress release is developed to account for the slip-weakening process in the deep earthquake rupture. The energy required for partial melting in this model is on the same order of the maximum energy required for the slip-weakening process in the shallow earthquake rupture. However, the verification of this model requires experimental work on the thermodynamic properties of rocks under non-hydrostatic stress. The solution of the deep earthquake problem will require an interdisciplinary study of seismology, high pressure rock mechanics, and mineralogy.
NASA Astrophysics Data System (ADS)
Yoder, Mark R.; Schultz, Kasey W.; Heien, Eric M.; Rundle, John B.; Turcotte, Donald L.; Parker, Jay W.; Donnellan, Andrea
2015-12-01
In this manuscript, we introduce a framework for developing earthquake forecasts using Virtual Quake (VQ), the generalized successor to the perhaps better known Virtual California (VC) earthquake simulator. We discuss the basic merits and mechanics of the simulator, and we present several statistics of interest for earthquake forecasting. We also show that, though the system as a whole (in aggregate) behaves quite randomly, (simulated) earthquake sequences limited to specific fault sections exhibit measurable predictability in the form of increasing seismicity precursory to large m > 7 earthquakes. In order to quantify this, we develop an alert-based forecasting metric, and show that it exhibits significant information gain compared to random forecasts. We also discuss the long-standing question of activation versus quiescent type earthquake triggering. We show that VQ exhibits both behaviours separately for independent fault sections; some fault sections exhibit activation type triggering, while others are better characterized by quiescent type triggering. We discuss these aspects of VQ specifically with respect to faults in the Salton Basin and near the El Mayor-Cucapah region in southern California, USA and northern Baja California Norte, Mexico.
Ground motions at the outermost limits of seismically triggered landslides
Jibson, Randall W.; Harp, Edwin L.
2016-01-01
Over the last few decades, we and our colleagues have conducted field investigations in which we mapped the outermost limits of triggered landslides in four earthquakes: 1987 Whittier Narrows, California (M 5.9), 1987 Superstition Hills, California (M 6.5), 1994 Northridge, California (M 6.7), and 2011 Mineral, Virginia (M 5.8). In an additional two earthquakes, 1976 Guatemala (M 7.5) and 1983 Coalinga, California (M 6.5), we determined limits using high‐resolution aerial‐photographic interpretation in conjunction with more limited ground investigation. Limits in these earthquakes were defined by the locations of the very smallest failures (<1 m3) from the most susceptible slopes that can be identified positively as having been triggered by earthquake shaking. Because we and our colleagues conducted all of these investigations, consistent methodology and criteria were used in determining limits. In the six earthquakes examined, we correlated the outermost landslide limits with peak ground accelerations (PGAs) from ShakeMap models of each earthquake. For the four earthquakes studied by field investigation, the minimum PGA values associated with farthest landslide limits ranged from 0.02g to 0.08g. The range for the two earthquakes investigated using aerial‐photographic interpretations was 0.05–0.11g. Although PGA values at landslide limits depend on several factors, including material strength, topographic amplification, and hydrologic conditions, these values provide an empirically useful lower limiting range of PGA needed to trigger the smallest failures on very susceptible slopes. In a well‐recorded earthquake, this PGA range can be used to identify an outer boundary within which we might expect to find landsliding; in earthquakes that are not well recorded, mapping the outermost landslide limits provides a useful clue about ground‐motion levels at the mapped limits.
Ground motions at the outermost limits of seismically triggered landslides
NASA Astrophysics Data System (ADS)
Jibson, Randall W.; Harp, Edwin L.
2016-04-01
Over the last few decades, we and our colleagues have conducted field investigations in which we mapped the outermost limits of triggered landslides in four earthquakes: 1987 Whittier Narrows, California (M 5.9), 1987 Superstition Hills, California (M 6.5), 1994 Northridge, California (M 6.7), and 2011 Mineral, Virginia (M 5.8). In an additional two earthquakes, 1976 Guatemala (M 7.5) and 1983 Coalinga, California (M 6.5), we determined limits using high-resolution aerial photographic interpretation in conjunction with more limited ground investigation. Limits in these earthquakes were defined by the locations of the very smallest failures (< 1 m^3) from the most susceptible slopes that can be identified positively as having been triggered by earthquake shaking. Because we and our colleagues conducted all of these investigations, consistent methodology and criteria were used in determining limits. In the six earthquakes examined, we correlated the outermost landslide limits with peak ground accelerations (PGA) from ShakeMap models of each earthquake. For the four earthquakes studied by field investigation, the minimum PGA values associated with farthest landslide limits ranged from 0.02-0.08 g. The range for the two earthquakes investigated using aerial photographic interpretations was 0.05-0.11 g. Although PGA values at landslide limits depend on several factors - including material strength, topographic amplification, and hydrologic conditions - these values provide an empirically useful lower limiting range of PGA needed to trigger the smallest failures on very susceptible slopes. In a well-recorded earthquake, this PGA range can be used to identify an outer boundary within which we might expect to find landsliding; in earthquakes that are not well recorded, mapping the outermost landslide limits provides a useful clue about ground-motion levels at the mapped limits.
NASA Astrophysics Data System (ADS)
Sun, W. F.; Chang, W. Y.; Chen, H. Y.
2015-12-01
Taiwan is located at the margin of the Eurasian Plate and the Philippine Sea Plate, which is a subduction zone between these two plates and the fault structures are rather complicated and dense seismicity, especially the Longitudinal Valley (LV) in eastern Taiwan. Non-volcanic tremor (NVT) is a seismic signal with low amplitude and long duration. NVT is often occurred below the seismogenic zone, which is between the lower crust and upper mantle, and the arrival time data of the body wave is difficult to be collected. Therefore, this study aims to investigate the physical mechanisms of NVT in several steps. First, in the investigation of the teleseismic earthquake data from the U.S. Geological Survey in 2005 to 2014, thirty-five potential teleseismic earthquakes are selected. Second, the seismograms are collected from the Broadband Array in Taiwan for Seismology (BATS) and Central Weather Bureau Seismic Network (CWBSN) for these thirty-five potential teleseismic earthquakes. Third, the Seismic Analysis Code is used to select the seismograms from seven possible events which satisfied the conditions of triggering tremor during the passage of the surface wave. Forth, a band-pass filter is applied to retain the frequency with the range of 2-8 HZ of the surface waveform. Finally, visually determination for the tremor signals. The experimental results show that five certainly NVT events and two potential triggered events were found in the LV zone of eastern Taiwan. The locations of the hypocenters were then estimated using HYPO71 for these five certain events. According to the estimated hypocenters, the sources of NVT are possibly beneath the southern region of LV, close to the Chih-Shang fault. Moreover, these estimated hypocenters are within the high Vp/Vs ratio region and in depth of 30-40 km. The further analysis found that the amplitude of the surface wave is one of the key factors that when the peak ground velocity > 0.02cm/s, which equivalents to 2-3kPa dynamic stress, might trigger tremors.
NASA Astrophysics Data System (ADS)
Meng, X.; Peng, Z.; Deng, S.; Castro, R. R.
2015-12-01
The 2010 Mw7.2 El Mayor-Cucapah earthquake occurred southwest of the Pacific-North America plate boundary in north Baja California. It was preceded by an intensive foreshock sequence, and was followed by numerous aftershocks both on and off the mainshock rupture zone, hence providing us a great opportunity to study the physical mechanisms of foreshock and aftershock triggering. In our previously published work (Meng and Peng, GJI, 2014), we focused on the seismicity rate changes around the Salton Sea Geothermal Field (SSGF) and along the San Jacinto Fault (SJF) following the mainshock. Based on a recently developed matched filter technique, we were able to detect up to 20 times more events than listed in the SCSN catalog. We found that the seismicity rate near SSGF and SJF both experienced significant increase immediately following the mainshock. However, the seismicity rate near SSGF, where static Coulomb stress decreased, dropped below the pre-mainshock level after ~50 days. On the other hand, the seismicity rate near SJF, where static Coulomb stress increased, remained high till the end of our detecting time window. Such pattern indicates that both static and dynamic triggering may coexist, but dominate in different time scales. Motivated by this success, we shift our focus to the foreshock and aftershock sequence of the El Mayor-Cucapah event. We utilize available seismic stations immediately north to US-Mexico boarder and a few stations within Mexico to conduct a similar detection ~40 days before to 40 days after the mainshock. We aim to obtain a complete foreshock sequence and investigate its spatio-temporal evolutions before the mainshock. Moreover, we plan to study similar patterns for aftershocks and the corresponding triggering mechanisms. Updated results will be presented at the meeting.
The 2016 Kumamoto earthquake sequence.
Kato, Aitaro; Nakamura, Kouji; Hiyama, Yohei
2016-01-01
Beginning in April 2016, a series of shallow, moderate to large earthquakes with associated strong aftershocks struck the Kumamoto area of Kyushu, SW Japan. An M j 7.3 mainshock occurred on 16 April 2016, close to the epicenter of an M j 6.5 foreshock that occurred about 28 hours earlier. The intense seismicity released the accumulated elastic energy by right-lateral strike slip, mainly along two known, active faults. The mainshock rupture propagated along multiple fault segments with different geometries. The faulting style is reasonably consistent with regional deformation observed on geologic timescales and with the stress field estimated from seismic observations. One striking feature of this sequence is intense seismic activity, including a dynamically triggered earthquake in the Oita region. Following the mainshock rupture, postseismic deformation has been observed, as well as expansion of the seismicity front toward the southwest and northwest.
The 2016 Kumamoto earthquake sequence
KATO, Aitaro; NAKAMURA, Kouji; HIYAMA, Yohei
2016-01-01
Beginning in April 2016, a series of shallow, moderate to large earthquakes with associated strong aftershocks struck the Kumamoto area of Kyushu, SW Japan. An Mj 7.3 mainshock occurred on 16 April 2016, close to the epicenter of an Mj 6.5 foreshock that occurred about 28 hours earlier. The intense seismicity released the accumulated elastic energy by right-lateral strike slip, mainly along two known, active faults. The mainshock rupture propagated along multiple fault segments with different geometries. The faulting style is reasonably consistent with regional deformation observed on geologic timescales and with the stress field estimated from seismic observations. One striking feature of this sequence is intense seismic activity, including a dynamically triggered earthquake in the Oita region. Following the mainshock rupture, postseismic deformation has been observed, as well as expansion of the seismicity front toward the southwest and northwest. PMID:27725474
Statistics of Static Stress Earthquake Triggering
NASA Astrophysics Data System (ADS)
Nandan, S.; Ouillon, G.; Woessner, J.; Sornette, D.; Wiemer, S.
2014-12-01
A likely source of earthquake clustering is static and/or dynamic stresses transferred by individual events. Previous attempts to quantify the role of static stress generally considered only the stress changes caused by large events, and often discarded data uncertainties. We test the static stress change hypothesis empirically by considering all events of magnitude M≥ 2.1 and the uncertainties in location and focal mechanism in the focal mechanism catalog for Southern California between 1981 and 2010 (Yang et al., 2011). We quantify: How the waiting time between earthquakes (1) relates to the Coulomb stress change (2) induced by event Ei at the location of Ej; How significant is the Coulomb Index (CI), fraction of source-receiver pairs with positive ΔCFS interactions, conditioned on time and amplitude of ΔCFS, compared to a mean-field CI derived from the time-independent structure of the fault network. We approximate the waiting time distributions empirically by (3), which respectively consists of triggering and background rate components, tapered by an exponential term to model the finiteness of the catalog. We observe that K/(Bc^p ) (the ratio of the triggering to the background rates at t=0), the exponent p, and the Maxwell time τ all increase with |ΔCFS| and are significantly larger for positive than for negative ΔCFS's. τ varies between ~90 days and ~150 days (approximately 0.3 decades over 6 decades of variation in stress). It defines the time beyond which the memory of stress is overprinted by occurrence of other events. The CI values become significant above a threshold |ΔCFS|. The mean-field CI is 52%, while the maximum observed CI value is ~60%. Correcting for the focal plane ambiguity, those values become respectively ~55% and ~72%. Lastly, the CI values decrease with the waiting time and converge to the mean-field CI value. The increase of p-value and K/(Bc^p ) with |ΔCFS| contradicts the prediction of stress shadow regions where seismicity is suppressed if ΔCFS<0. Our results rather suggest a spatially ubiquitous triggering process compatible with dynamic triggering, modulated by the sign and amplitude of the static stress field. We also conclude that static stress-based forecasts should not be performed over time scales much larger than τ, which is of the order of few hundred days.
Absence of remote earthquake triggering within the Coso and Salton Sea geothermal production fields
NASA Astrophysics Data System (ADS)
Zhang, Qiong; Lin, Guoqing; Zhan, Zhongwen; Chen, Xiaowei; Qin, Yan; Wdowinski, Shimon
2017-01-01
Geothermal areas are long recognized to be susceptible to remote earthquake triggering, probably due to the high seismicity rates and presence of geothermal fluids. However, anthropogenic injection and extraction activity may alter the stress state and fluid flow within the geothermal fields. Here we examine the remote triggering phenomena in the Coso geothermal field and its surrounding areas to assess possible anthropogenic effects. We find that triggered earthquakes are absent within the geothermal field but occur in the surrounding areas. Similar observation is also found in the Salton Sea geothermal field. We hypothesize that continuous geothermal operation has eliminated any significant differential pore pressure between fractures inside the geothermal field through flushing geothermal precipitations and sediments out of clogged fractures. To test this hypothesis, we analyze the pore-pressure-driven earthquake swarms, and they are found to occur outside or on the periphery of the geothermal production field. Therefore, our results suggest that the geothermal operation has changed the subsurface fracture network, and differential pore pressure is the primary controlling factor of remote triggering in geothermal fields.
Rupture history of 2008 May 12 Mw 8.0 Wen-Chuan earthquake: Evidence of slip interaction
NASA Astrophysics Data System (ADS)
Ji, C.; Shao, G.; Lu, Z.; Hudnut, K.; Jiu, J.; Hayes, G.; Zeng, Y.
2008-12-01
We will present the rupture process of the May 12, 2008 Mw 8.0 Wenchuan earthquake using all available data. The current model, using both teleseismic body and surface waves and interferometric LOS displacements, reveals an unprecedented complex rupture process which can not be resolved using either of the datasets individually. Rupture of this earthquake involved both the low angle Pengguan fault and the high angle Beichuan fault, which intersect each other at depth and are separated approximately 5-15 km at the surface. Rupture initiated on the Pengguan fault and triggered rupture on the Beichuan fault 10 sec later. The two faults dynamically interacted and unilaterally ruptured over 270 km with an average rupture velocity of 3.0 km/sec. The total seismic moment is 1.1x1021 Nm (Mw 8.0), roughly equally partitioned between the two faults. However, the spatiotemporal evaluations of the two faults are very different. This study will focus on the evidence for fault interactions and will analyze the corresponding uncertainties, in preparation for future dynamic studies of the same detailed nature.
Stress triggering of the 1994 M = 6.7 Northridge, California, Earthquake by its predecessors
Stein, R.S.; King, G.C.P.; Lin, J.
1994-01-01
A model of stress transfer implies that earthquakes in 1933 and 1952 increased the Coulomb stress toward failure at the site of the 1971 San Fernando earthquake. The 1971 earthquake in turn raised stress and produced aftershocks at the site of the 1987 Whittier Narrows and 1994 Northridge ruptures. The Northridge main shock raised stress in areas where its aftershocks and surface faulting occurred. Together, the earthquakes with moment magnitude M ??? 6 near Los Angeles since 1933 have stressed parts of the Oak Ridge, Sierra Madre, Santa Monica Mountains, Elysian Park, and Newport-Inglewood faults by more than 1 bar. Although too small to cause earthquakes, these stress changes can trigger events if the crust is already near failure or advance future earthquake occurrence if it is not.
Sediment gravity flows triggered by remotely generated earthquake waves
NASA Astrophysics Data System (ADS)
Johnson, H. Paul; Gomberg, Joan S.; Hautala, Susan L.; Salmi, Marie S.
2017-06-01
Recent great earthquakes and tsunamis around the world have heightened awareness of the inevitability of similar events occurring within the Cascadia Subduction Zone of the Pacific Northwest. We analyzed seafloor temperature, pressure, and seismic signals, and video stills of sediment-enveloped instruments recorded during the 2011-2015 Cascadia Initiative experiment, and seafloor morphology. Our results led us to suggest that thick accretionary prism sediments amplified and extended seismic wave durations from the 11 April 2012 Mw8.6 Indian Ocean earthquake, located more than 13,500 km away. These waves triggered a sequence of small slope failures on the Cascadia margin that led to sediment gravity flows culminating in turbidity currents. Previous studies have related the triggering of sediment-laden gravity flows and turbidite deposition to local earthquakes, but this is the first study in which the originating seismic event is extremely distant (> 10,000 km). The possibility of remotely triggered slope failures that generate sediment-laden gravity flows should be considered in inferences of recurrence intervals of past great Cascadia earthquakes from turbidite sequences. Future similar studies may provide new understanding of submarine slope failures and turbidity currents and the hazards they pose to seafloor infrastructure and tsunami generation in regions both with and without local earthquakes.
Sediment gravity flows triggered by remotely generated earthquake waves
Johnson, H. Paul; Gomberg, Joan S.; Hautala, Susan; Salmi, Marie
2017-01-01
Recent great earthquakes and tsunamis around the world have heightened awareness of the inevitability of similar events occurring within the Cascadia Subduction Zone of the Pacific Northwest. We analyzed seafloor temperature, pressure, and seismic signals, and video stills of sediment-enveloped instruments recorded during the 2011–2015 Cascadia Initiative experiment, and seafloor morphology. Our results led us to suggest that thick accretionary prism sediments amplified and extended seismic wave durations from the 11 April 2012 Mw8.6 Indian Ocean earthquake, located more than 13,500 km away. These waves triggered a sequence of small slope failures on the Cascadia margin that led to sediment gravity flows culminating in turbidity currents. Previous studies have related the triggering of sediment-laden gravity flows and turbidite deposition to local earthquakes, but this is the first study in which the originating seismic event is extremely distant (> 10,000 km). The possibility of remotely triggered slope failures that generate sediment-laden gravity flows should be considered in inferences of recurrence intervals of past great Cascadia earthquakes from turbidite sequences. Future similar studies may provide new understanding of submarine slope failures and turbidity currents and the hazards they pose to seafloor infrastructure and tsunami generation in regions both with and without local earthquakes.
Seismic and aseismic slip on the ``uncoupled'' Tonga subduction megathrust
NASA Astrophysics Data System (ADS)
Beavan, R. J.; Wang, X.; Bevis, M. G.; Kautoke, R'
2010-12-01
The Tonga subduction zone has been a type example of a weakly coupled subduction interface since soon after the birth of plate tectonics. Yet in the September 2009 double earthquake, the northern Tonga subduction interface failed in a great Mw 8 earthquake that was probably dynamically triggered by a Mw 8 extensional intraplate earthquake in the outer trench slope region of the incoming Pacific Plate. There are some discrepancies between models of the September 2009 doublet derived from seismic data and those derived from geodetic and DART tsunami data, in particular about which fault plane failed in the intraplate earthquake. In this presentation we explore how well the geodetic and tsunami data can be fit using the alternative fault plane. We also present new GPS data that show the subduction interface is continuing to slip faster than its 1996-2005 “long-term” rate, and we speculate on what this means for the mechanisms by which interplate slip is accommodated at the Tonga subduction zone.
Earthquakes triggered by silent slip events on Kīlauea volcano, Hawaii
Segall, Paul; Desmarais, Emily K.; Shelly, David; Miklius, Asta; Cervelli, Peter F.
2006-01-01
Slow-slip events, or ‘silent earthquakes’, have recently been discovered in a number of subduction zones including the Nankai trough1, 2, 3 in Japan, Cascadia4, 5, and Guerrero6 in Mexico, but the depths of these events have been difficult to determine from surface deformation measurements. Although it is assumed that these silent earthquakes are located along the plate megathrust, this has not been proved. Slow slip in some subduction zones is associated with non-volcanic tremor7, 8, but tremor is difficult to locate and may be distributed over a broad depth range9. Except for some events on the San Andreas fault10, slow-slip events have not yet been associated with high-frequency earthquakes, which are easily located. Here we report on swarms of high-frequency earthquakes that accompany otherwise silent slips on Kīlauea volcano, Hawaii. For the most energetic event, in January 2005, the slow slip began before the increase in seismicity. The temporal evolution of earthquakes is well explained by increased stressing caused by slow slip, implying that the earthquakes are triggered. The earthquakes, located at depths of 7–8 km, constrain the slow slip to be at comparable depths, because they must fall in zones of positive Coulomb stress change. Triggered earthquakes accompanying slow-slip events elsewhere might go undetected if background seismicity rates are low. Detection of such events would help constrain the depth of slow slip, and could lead to a method for quantifying the increased hazard during slow-slip events, because triggered events have the potential to grow into destructive earthquakes.
NASA Astrophysics Data System (ADS)
Cheng, Huihong; Zhang, Huai; Shi, Yaolin
2016-05-01
In 1981, a powerful M L5.7 earthquake occurred 50 km away from the Aswan Reservoir dam. After the statistical analysis on the correlationship between long-term continuous seismicity occurrence and the reservoir water level variation attributed to the impoundment and drainage procedures, researchers believe that this event is a typical reservoir-triggered seismicity (Nature 301(6):14, 1983; Earthquake Activity in the Aswan Region, Egypt. Birkhäuser, Basel, pp. 69-86, 1995), although its triggering mechanism is poorly understood to date. To quantitatively address the triggering mechanism as well as its relationship with the characteristics of local geological settings around the reservoir region, in this paper, a fully coupled three-dimensional poroelastic finite element model of the Aswan reservoir is put forward by taking the consideration of the realistic observation data, for example, the high-resolution topography, water level fluctuation history, flood zone boundary and water depth variation, fault parameters, etc. Meanwhile, the change of Coulomb Failure Stress (ΔCFS) in correspondence to elastic stress and pore pressure variations induced by fluid diffusion is calculated. And the elastic strain energy accumulation in the reservoir region due to the impoundment load is obtained as well. Our primary results indicate that both the pore pressure and the coulomb stress on the seismogenic fault plane gradually increase with the respect of time while the water level rises. The magnitude of ΔCFS at the hypocenter of this major event is around 0.1 MPa, suggesting that the impoundment of the Aswan Reservoir possibly triggered the M L5.7 earthquake. The contribution of the elastic load is less than 3 percent of the total ΔCFS; on the other hand, the dynamic pore pressure change predominantly accounts for the contribution. The accumulative maximum surface deformation beneath the Aswan reservoir is up to 80 cm since its impounding began until the M L5.7 earthquake occurred. Although the total elastic strain energy accumulation caused by the impoundment water load is around 1.0 × 1010J, this energy density still insignificant compared to that of the vast reservoir inundation area, as it is only less than few percent of the total energy released by the major event, which confirms that the sustained regional geological loading controls the occurrence of this large reservoir-induced event. Furthermore, elastic loading and pore fluid pore pressure diffusion due to the impoundment of the Aswan reservoir might accelerate its occurrence.
Statistical physics approach to earthquake occurrence and forecasting
NASA Astrophysics Data System (ADS)
de Arcangelis, Lucilla; Godano, Cataldo; Grasso, Jean Robert; Lippiello, Eugenio
2016-04-01
There is striking evidence that the dynamics of the Earth crust is controlled by a wide variety of mutually dependent mechanisms acting at different spatial and temporal scales. The interplay of these mechanisms produces instabilities in the stress field, leading to abrupt energy releases, i.e., earthquakes. As a consequence, the evolution towards instability before a single event is very difficult to monitor. On the other hand, collective behavior in stress transfer and relaxation within the Earth crust leads to emergent properties described by stable phenomenological laws for a population of many earthquakes in size, time and space domains. This observation has stimulated a statistical mechanics approach to earthquake occurrence, applying ideas and methods as scaling laws, universality, fractal dimension, renormalization group, to characterize the physics of earthquakes. In this review we first present a description of the phenomenological laws of earthquake occurrence which represent the frame of reference for a variety of statistical mechanical models, ranging from the spring-block to more complex fault models. Next, we discuss the problem of seismic forecasting in the general framework of stochastic processes, where seismic occurrence can be described as a branching process implementing space-time-energy correlations between earthquakes. In this context we show how correlations originate from dynamical scaling relations between time and energy, able to account for universality and provide a unifying description for the phenomenological power laws. Then we discuss how branching models can be implemented to forecast the temporal evolution of the earthquake occurrence probability and allow to discriminate among different physical mechanisms responsible for earthquake triggering. In particular, the forecasting problem will be presented in a rigorous mathematical framework, discussing the relevance of the processes acting at different temporal scales for different levels of prediction. In this review we also briefly discuss how the statistical mechanics approach can be applied to non-tectonic earthquakes and to other natural stochastic processes, such as volcanic eruptions and solar flares.
Assessment of Susceptibility to Liquefaction of Saturated Road Embankment Subjected to Dynamic Loads
NASA Astrophysics Data System (ADS)
Borowiec, Anna; Maciejewski, Krzysztof
2014-03-01
Liquefaction has always been intensely studied in parts of the world where earthquakes occur. However, the seismic activity is not the only possible cause of this phenomenon. It may in fact be triggered by some human activities, such as constructing and mining or by rail and road transport. In the paper a road embankment built across a shallow water reservoir is analyzed in terms of susceptibility to liquefaction. Two types of dynamic loadings are considered: first corresponding to an operation of a vibratory roller and second to an earthquake. In order to evaluate a susceptibility of soil to liquefaction, a factor of safety against triggering of liquefaction is used (FSTriggering). It is defined as a ratio of vertical effective stresses to the shear stresses both varying with time. For the structure considered both stresses are obtained using finite element method program, here Plaxis 2D. The plastic behavior of the cohesionless soils is modeled by means of Hardening Soil (HS) constitutive relationship, implemented in Plaxis software. As the stress tensor varies with time during dynamic excitation, the FSTriggering has to be calculated for some particular moment of time when liquefaction is most likely to occur. For the purposes of this paper it is named a critical time and established for reference point at which the pore pressures were traced in time. As a result a factor of safety distribution throughout embankment is generated. For the modeled structure, cyclic point loads (i.e., vibrating roller) present higher risk than earthquake of magnitude 5.4. Explanation why considered structure is less susceptible to earthquake than typical dam could lay in stabilizing and damping influence of water, acting here on both sides of the slope. Analogical procedure is applied to assess liquefaction susceptibility of the road embankment considered but under earthquake excitation. Only the higher water table is considered as it is the most unfavorable. Additionally the modified factor of safety is introduced, where the dynamic shear stress component is obtained at a time step when its magnitude is the highest - not necessarily at the same time step when the pore pressure reaches its peak (i.e., critical time). This procedure provides a greater margin of safety as the computed factors of safety are smaller. Method introduced in the paper presents a clear and easy way to locate liquefied zones and estimate liquefaction susceptibility of the subsoil - not only in the road embankment.
Frequency-Dependent Tidal Triggering of Low Frequency Earthquakes Near Parkfield, California
NASA Astrophysics Data System (ADS)
Xue, L.; Burgmann, R.; Shelly, D. R.
2017-12-01
The effect of small periodic stress perturbations on earthquake generation is not clear, however, the rate of low-frequency earthquakes (LFEs) near Parkfield, California has been found to be strongly correlated with solid earth tides. Laboratory experiments and theoretical analyses show that the period of imposed forcing and source properties affect the sensitivity to triggering and the phase relation of the peak seismicity rate and the periodic stress, but frequency-dependent triggering has not been quantitatively explored in the field. Tidal forcing acts over a wide range of frequencies, therefore the sensitivity to tidal triggering of LFEs provides a good probe to the physical mechanisms affecting earthquake generation. In this study, we consider the tidal triggering of LFEs near Parkfield, California since 2001. We find the LFEs rate is correlated with tidal shear stress, normal stress rate and shear stress rate. The occurrence of LFEs can also be independently modulated by groups of tidal constituents at semi-diurnal, diurnal and fortnightly frequencies. The strength of the response of LFEs to the different tidal constituents varies between LFE families. Each LFE family has an optimal triggering frequency, which does not appear to be depth dependent or systematically related to other known properties. This suggests the period of the applied forcing plays an important role in the triggering process, and the interaction of periods of loading history and source region properties, such as friction, effective normal stress and pore fluid pressure, produces the observed frequency-dependent tidal triggering of LFEs.
NASA Astrophysics Data System (ADS)
Barnhart, William D.; Lohman, Rowena B.; Mellors, Robert J.
2013-10-01
We present a catalog of interferometric synthetic aperture radar (InSAR) constraints on deformation that occurred during earthquake sequences in southern Iran between 1992 and 2011, and explore the implications on the accommodation of large-scale continental convergence between Saudi Arabia and Eurasia within the Zagros Mountains. The Zagros Mountains, a salt-laden fold-and-thrust belt involving ~10 km of sedimentary rocks overlying Precambrian basement rocks, have formed as a result of ongoing continental collision since 10-20 Ma that is currently occurring at a rate of ~3 cm/yr. We first demonstrate that there is a biased misfit in earthquake locations in global catalogs that likely results from neglect of 3-D velocity structure. Previous work involving two M ~ 6 earthquakes with well-recorded aftershocks has shown that the deformation observed with InSAR may represent triggered slip on faults much shallower than the primary earthquake, which likely occurred within the basement rocks (>10 km depth). We explore the hypothesis that most of the deformation observed with InSAR spanning earthquake sequences is also due to shallow, triggered slip above a deeper earthquake, effectively doubling the moment release for each event. We quantify the effects that this extra moment release would have on the discrepancy between seismically and geodetically constrained moment rates in the region, finding that even with the extra triggered fault slip, significant aseismic deformation during the interseismic period is necessary to fully explain the convergence between Eurasia and Saudi Arabia.
NASA Astrophysics Data System (ADS)
Van Daele, Maarten; Araya-Cornejo, Cristian; Pille, Thomas; Meyer, Inka; Kempf, Philipp; Moernaut, Jasper; Cisternas, Marco
2017-04-01
One of the main challenges in seismically active regions is differentiating paleo-earthquakes resulting from different fault systems, such as the megathrust versus intraplate faults in subductions settings. Such differentiation is, however, key for hazard assessments based on paleoseismic records. Laguna Lo Encañado (33.7°S; 70.3°W; 2492 m a.s.l.) is located in the Central Chilean Andes, 50 km east of Santiago de Chile, a metropole with about 7,000,000 inhabitants. During the last century the study area experienced 3 large megathrust earthquakes (1906, 1985 and 2010) and 2 intraplate earthquakes (1945 and 1958) (Lomnitz, 1960). While the megathrust earthquakes cause Modified Mercalli Intensities (MMIs) of VI to VII at the lake (Van Daele et al., 2015), the intraplate earthquakes cause peak MMIs up to IX (Sepúlveda et al., 2008). Here we present a turbidite record of Laguna Lo Encañado going back to 1900 AD. While geophysical data (3.5 kHz subbottom seismic profiles and side-scan sonar data) provides a bathymetry and an overview of the sedimentary environment, we study 15 short cores in order to understand the depositional processes resulting in the encountered lacustrine turbidites. All mentioned earthquakes triggered turbidites in the lake, which are all linked to slumps in proximal areas, and are thus resulting from mass wasting of the subaquatic slopes. However, turbidites linked to the intraplate earthquakes are additionally covered by turbidites of a finer-grained, more clastic nature. We link the latter to post-seismic erosion of onshore landslides, which need higher MMIs to be triggered than subaquatic mass movements (Howarth et al., 2014). While intraplate earthquakes can cause MMIs up to IX and higher, megathrust earthquakes do not cause sufficiently high MMIs at the lake to trigger voluminous onshore landslides. Hence, the presence of these post-seismic turbidites allows to distinguish turbidites triggered by intraplate earthquakes from those triggered by megathrust earthquakes. These findings are an important step forward in the interpretation of lacustrine turbidites in subduction settings, and will eventually improve hazard assessments based on such paleoseismic records in the study area, and in other subduction zones. References Howarth et al., 2014. Lake sediments record high intensity shaking that provides insight into the location and rupture length of large earthquakes on the Alpine Fault, New Zealand. Earth and Planetary Science Letters 403, 340-351. Lomnitz, 1960. A study of the Maipo Valley earthquakes of September 4, 1958, Second World Conference on Earthquake Engineering, Tokyo and Kyoto, Japan, pp. 501-520. Sepulveda et al., 2008. New Findings on the 1958 Las Melosas Earthquake Sequence, Central Chile: Implications for Seismic Hazard Related to Shallow Crustal Earthquakes in Subduction Zones. Journal of Earthquake Engineering 12, 432-455. Van Daele et al., 2015. A comparison of the sedimentary records of the 1960 and 2010 great Chilean earthquakes in 17 lakes: Implications for quantitative lacustrine palaeoseismology. Sedimentology 62, 1466-1496.
Dynamic triggering of volcano drumbeat-like seismicity at the Tatun volcano group in Taiwan
NASA Astrophysics Data System (ADS)
Lin, Cheng-Horng
2017-07-01
Periodical seismicity during eruptions has been observed at several volcanoes, such as Mount St. Helens and Soufrière Hills. Movement of magma is often considered one of the most important factors in its generation. Without any magma movement, drumbeat-like (or heartbeat-like) periodical seismicity was detected twice beneath one of the strongest fumarole sites (Dayoukeng) among the Tatun volcano group in northern Taiwan in 2015. Both incidences of drumbeat-like seismicity were respectively started after felt earthquakes in Taiwan, and then persisted for 1-2 d afterward with repetition intervals of ∼18 min between any two adjacent events. The phenomena suggest both drumbeat-like (heartbeat-like) seismicity sequences were likely triggered by dynamic waves generated by the two felt earthquakes. Thus, rather than any involvement of magma, a simplified pumping system within a degassing conduit is proposed to explain the generation of drumbeat-like seismicity. The collapsed rocks within the conduit act as a piston, which was repeatedly lifted up by ascending gas from a deeper reservoir and dropped down when the ascending gas was escaping later. These phenomena show that the degassing process is still very strong in the Tatun volcano group in Taiwan, even though it has been dormant for about several thousand years.
NASA Astrophysics Data System (ADS)
Victor, Pia; Ewiak, Oktawian; Thomas, Ziegenhagen; Monika, Sobiesiak; Bernd, Schurr; Gabriel, Gonzalez; Onno, Oncken
2016-04-01
The Atacama Fault System (AFS) is an active trench-parallel fault system, located in the forearc of N-Chile directly above the subduction zone interface. Due to its well-exposed position in the hyper arid forearc of N-Chile it is the perfect target to investigate the interaction between the deformation cycle in the overriding forearc and the subduction zone seismic cycle of the underlying megathrust. Although the AFS and large parts of the upper crust are devoid of any noteworthy seismicity, at least three M=7 earthquakes in the past 10 ky have been documented in the paleoseismological record, demonstrating the potential of large events in the future. We apply a two-fold approach to explore fault activation and reactivation patterns through time and to investigate the triggering potential of upper crustal faults. 1) A new methodology using high-resolution topographic data allows us to investigate the number of past earthquakes for any given segment of the fault system as well as the amount of vertical displacement of the last increment. This provides us with a detailed dataset of past earthquake rupture of upper plate faults which is potentially linked to large subduction zone earthquakes. 2) The IPOC Creepmeter array (http://www.ipoc-network.org/index.php/observatory/creepmeter.html) provides us with high-resolution time series of fault displacement accumulation for 11 stations along the 4 most active branches of the AFS. This array monitors the displacement across the fault with 2 samples/min with a resolution of 1μm. Collocated seismometers record the seismicity at two of the creepmeters, whereas the regional seismicity is provided by the IPOC Seismological Networks. Continuous time series of the creepmeter stations since 2009 show that the shallow segments of the fault do not creep permanently. Instead the accumulation of permanent deformation occurs by triggered slip caused by local or remote earthquakes. The 2014 Mw=8.2 Pisagua Earthquake, located close to the creepmeter array, triggered large displacement events on all stations. Another event recorded on all stations was the 2010 Mw=8.8 Maule earthquake located 1500km south of the array. Exploring observations from both datasets, we can clearly state that triggering of upper crustal faults is observed for small-scale displacements. These findings allow us to speculate that the observed larger events in the past are likely being triggered events that require a critically prestressed condition of the target fault that is unclamped by stress changes triggered by large or potentially even small subduction zone earthquakes.
Rymer, M.J.
2000-01-01
The Coachella Valley area was strongly shaken by the 1992 Joshua Tree (23 April) and Landers (28 June) earthquakes, and both events caused triggered slip on active faults within the area. Triggered slip associated with the Joshua Tree earthquake was on a newly recognized fault, the East Wide Canyon fault, near the southwestern edge of the Little San Bernardino Mountains. Slip associated with the Landers earthquake formed along the San Andreas fault in the southeastern Coachella Valley. Surface fractures formed along the East Wide Canyon fault in association with the Joshua Tree earthquake. The fractures extended discontinuously over a 1.5-km stretch of the fault, near its southern end. Sense of slip was consistently right-oblique, west side down, similar to the long-term style of faulting. Measured offset values were small, with right-lateral and vertical components of slip ranging from 1 to 6 mm and 1 to 4 mm, respectively. This is the first documented historic slip on the East Wide Canyon fault, which was first mapped only months before the Joshua Tree earthquake. Surface slip associated with the Joshua Tree earthquake most likely developed as triggered slip given its 5 km distance from the Joshua Tree epicenter and aftershocks. As revealed in a trench investigation, slip formed in an area with only a thin (<3 m thick) veneer of alluvium in contrast to earlier documented triggered slip events in this region, all in the deep basins of the Salton Trough. A paleoseismic trench study in an area of 1992 surface slip revealed evidence of two and possibly three surface faulting events on the East Wide Canyon fault during the late Quaternary, probably latest Pleistocene (first event) and mid- to late Holocene (second two events). About two months after the Joshua Tree earthquake, the Landers earthquake then triggered slip on many faults, including the San Andreas fault in the southeastern Coachella Valley. Surface fractures associated with this event formed discontinuous breaks over a 54-km-long stretch of the fault, from the Indio Hills southeastward to Durmid Hill. Sense of slip was right-lateral; only locally was there a minor (~1 mm) vertical component of slip. Measured dextral displacement values ranged from 1 to 20 mm, with the largest amounts found in the Mecca Hills where large slip values have been measured following past triggered-slip events.
Earthquake triggering, Earth's rotation variations, Meton's cycle and torques acting on the Earth.
NASA Astrophysics Data System (ADS)
Ostrihansky, L.
2012-04-01
In contrast to unsuccessful searching (lasting over 150 years) of correlation of earthquakes with biweekly tides the author found correlation of earthquakes with sidereal 13.66 days Earth's rotation variations expressed as the length of a day (LOD) measured daily by the International Earth's Rotation Service. After short mention about earthquakes Denali Fault Alaska 3rd November 2002, M 7.9, triggered on LOD maximum and Great Sumatra earthquake 26th December 2004 triggered on LOD minimum and the full Moon, the main object of this paper are earthquakes of period 2010-VI. 2011: Haiti M 7.0 Jan. 12, 2010 on LOD minimum, Maule Chile M 8.8 Feb. 12, 2010 on LOD maximum, Sumatra and Andaman Sea region 6 earthquakes revealed from 7 on LOD minimum, New Zealand, Christchurch M 7.1 Sep. 9, 2010 on LOD minimum and Christchurch M 6.3 Feb. 21, 2011 on LOD maximum and Japan Near coast of Honshu M 9.1 March 11, 2011 on LOD minimum. I found that LOD minimums coincide with full or new Moon only twice in a year in solstices and also twice in the year with LOD maximums in equinoxes. To prove that determined coincidences of earthquakes and LOD extremes stated above are not accidental events, histograms were constructed of earthquake occurrence and their position on LOD graph deeply in the past, in some cases from the time the IERS started to measure the Earth's rotation variations in 1962. Evaluation of histograms and the Schuster's test has proven that maxima of earthquakes are triggered always in both Earth's rotation deceleration and acceleration. Backward overview of the past earthquakes revealed that the Great Sumatra earthquake Dec. 26, 2004 had its equivalent in the shape of LOD graph, full Moon position, character of aftershocks, 19 years ago in difference only one day of Dec. 27, 1985 M 6.6, proving that not only sidereal 13.66 days variations but also the 19 years Meton's cycle is the period of the earthquakes occurrence.
NASA Astrophysics Data System (ADS)
Shan, B.; LIU, C.; Xiong, X.
2017-12-01
On 13 November 2016, an earthquake with moment magnitude Mw 7.8 stroke North Canterbury, New Zealand as result of shallow oblique-reverse faulting close to boundary between the Pacific and Australian plates in the South Island, collapsing buildings and resulting in significant economic losses. The distribution of early aftershocks extended about 150 km to the north-northeast of the mainshock, suggesting the potential of earthquake triggering in this complex fault system. Strong aftershocks following major earthquakes present significant challenges for locals' reconstruction and rehabilitation. The regions around the mainshock may also suffer from earthquakes triggered by the Kaikoura earthquake. Therefore, it is significantly important to outline the regions with potential aftershocks and high seismic hazard to mitigate future disasters. Moreover, this earthquake ruptured at least 13 separate faults, and provided an opportunity to test the theory of earthquake stress triggering for a complex fault system. In this study, we calculated the coseismic Coulomb Failure Stress changes (ΔCFS) caused by the Kaikoura earthquake on the hypocenters of both historical earthquakes and aftershocks of this event with focal mechanisms. Our results show that the percentage of earthquake with positive ΔCFS within the aftershocks is higher than that of historical earthquakes. It means that the Kaikoura earthquake effectively influence the seismicity in this region. The aftershocks of Mw 7.8 Kaikoura earthquake are mainly located in the regions with positive ΔCFS. The aftershock distributions can be well explained by the coseismic ΔCFS. Furthermore, earthquake-induced ΔCFS on the surrounding active faults was further discussed. The northeastern Alpine fault, the southwest part of North Canterbury Fault, parts of the Marlborough fault system and the southwest ends of the Kapiti-Manawatu faults are significantly stressed by the Kaikoura earthquake. The earthquake-induced stress increments would raise the probability of earthquake occurrence on these faults.
NASA Astrophysics Data System (ADS)
Clare, Michael
2016-04-01
Large earthquakes and associated tsunamis pose a potential risk to coastal communities. Earthquakes may trigger submarine landslides that mix with surrounding water to produce turbidity currents. Recent studies offshore Algeria have shown that earthquake-triggered turbidity currents can break important communication cables. If large earthquakes reliably trigger landslides and turbidity currents, then their deposits can be used as a long-term record to understand temporal trends in earthquake activity. It is important to understand in which settings this approach can be applied. We provide some suggestions for future Mediterranean palaeoseismic studies, based on learnings from three sites. Two long piston cores from the Balearic Abyssal Plain provide long-term (<150 ka) records of large volume turbidites. The frequency distribution form of turbidite recurrence indicates a constant hazard rate through time and is similar to the Poisson distribution attributed to large earthquake recurrence on a regional basis. Turbidite thickness varies in response to sea level, which is attributed to proximity and availability of sediment. While mean turbidite recurrence is similar to the seismogenic El Asnam fault in Algeria, geochemical analysis reveals not all turbidites were sourced from the Algerian margin. The basin plain record is instead an amalgamation of flows from Algeria, Sardinia, and river fed systems further to the north, many of which were not earthquake-triggered. Thus, such distal basin plain settings are not ideal sites for turbidite palaoeseimology. Boxcores from the eastern Algerian slope reveal a thin silty turbidite dated to ~700 ya. Given its similar appearance across a widespread area and correlative age, the turbidite is inferred to have been earthquake-triggered. More recent earthquakes that have affected the Algerian slope are not recorded, however. Unlike the central and western Algerian slopes, the eastern part lacks canyons and had limited sediment input in the Holocene. This indicates the eastern part is less sensitive to earthquake-triggered slope failures and is less suitable for future palaeoseismology investigations. Landslide events identified from contourite drift and mound sequences in the Tyrrhenian Sea indicate a regular temporal spacing. No landslides are identified over the last 10,000 years, however, and the inferred recurrence between events is in the order of tens to hundreds of thousands of years. The preconditioning agents and triggers for failures are interpreted to be related to oversteepening of depositional mounds, current-related erosion and geotechnical properties of contourite sediments, rather than earthquake effects. Major hiatuses (up to 2 Myr) result in local incompleteness of the depositional record. Therefore this setting is also unlikely to yield useful palaeoseismological records. This is not intended as a pessimistic tale, however, but instead aims to provide guidance for the future. Efforts should focus on sites that ideally feature: sediments that can be dated accurately from proximal to distal sites; near-constant sediment accumulation rates through time, that provide high enough sensitivities to failure; limited modification by bottom-currents; and, known historical earthquake events to correlate with dated deposits from box or multicoring.
NASA Astrophysics Data System (ADS)
Ghouse, N.; Hu, J.; Chang, J. C.
2016-12-01
The Pawnee M5.8 event is the largest earthquake in Oklahoma since instrumented history. How this earthquake affects known seismogenic areas in the state is a key issue for seismic hazard probability studies. In this study, we quantify stress loading and unloading on seismicity-delineated faults from the Oklahoma Geological Survey relocated-earthquake catalog. Our modeling indicates that areas in Noble, Pawnee, and Payne county are more prone to triggered seismicity, while areas in Alfalfa, Grant, Garfield, Logan, Major, Oklahoma, and Woods county are less prone to seismic triggering.
Aftershocks and triggered events of the Great 1906 California earthquake
Meltzner, A.J.; Wald, D.J.
2003-01-01
The San Andreas fault is the longest fault in California and one of the longest strike-slip faults in the world, yet little is known about the aftershocks following the most recent great event on the San Andreas, the Mw 7.8 San Francisco earthquake on 18 April 1906. We conducted a study to locate and to estimate magnitudes for the largest aftershocks and triggered events of this earthquake. We examined existing catalogs and historical documents for the period April 1906 to December 1907, compiling data on the first 20 months of the aftershock sequence. We grouped felt reports temporally and assigned modified Mercalli intensities for the larger events based on the descriptions judged to be the most reliable. For onshore and near-shore events, a grid-search algorithm (derived from empirical analysis of modern earthquakes) was used to find the epicentral location and magnitude most consistent with the assigned intensities. For one event identified as far offshore, the event's intensity distribution was compared with those of modern events, in order to contrain the event's location and magnitude. The largest aftershock within the study period, an M ???6.7 event, occurred ???100 km west of Eureka on 23 April 1906. Although not within our study period, another M ???6.7 aftershock occurred near Cape Mendocino on 28 October 1909. Other significant aftershocks included an M ???5.6 event near San Juan Bautista on 17 May 1906 and an M ???6.3 event near Shelter Cove on 11 August 1907. An M ???4.9 aftershock occurred on the creeping segment of the San Andreas fault (southeast of the mainshock rupture) on 6 July 1906. The 1906 San Francisco earthquake also triggered events in southern California (including separate events in or near the Imperial Valley, the Pomona Valley, and Santa Monica Bay), in western Nevada, in southern central Oregon, and in western Arizona, all within 2 days of the mainshock. Of these trigerred events, the largest were an M ???6.1 earthquake near Brawley and an M ???5.0 event under or near Santa Monica Bay, 11.3 and 31.3 hr after the San Francisco mainshock, respectively. The western Arizona event is inferred to have been triggered dynamically. In general, the largest aftershocks occurred at the ends of the 1906 rupture or away from the rupture entirely; very few significant aftershocks occurred along the mainshock rupture itself. The total number of large aftershocks was less than predicted by a generic model based on typical California mainshock-aftershock statistics, and the 1906 sequence appears to have decayed more slowly than average California sequences. Similarities can be drawn between the 1906 aftershock sequence and that of the 1857 (Mw 7.9) San Andreas fault earthquake.
NASA Astrophysics Data System (ADS)
Zhan, Zhongwen; Shearer, Peter M.; Kanamori, Hiroo
2015-10-01
Zhan et al. (2014a) reported supershear rupture during the Mw 6.7 aftershock of the 2013 Mw 8.3 Sea of Okhotsk deep earthquake, relying heavily on the regional station PET, which played a critical role in constraining the vertical rupture dimension and rupture speed. Here we include five more regional stations and find that the durations of the source time functions derived from these stations are consistent with Zhan et al.'s supershear rupture model. Furthermore, to reduce the nonuniqueness of deconvolution and combine the bandwidths of different stations, we conduct a joint inversion of the six regional stations for a single broadband moment-rate function (MRF). The best fitting MRF, which explains all the regional waveforms well, has a smooth shape without any temporal gaps. The Mw 6.7 Okhotsk deep earthquake is more likely a continuous supershear rupture than a dynamically triggered doublet.
Export Time of Earthquake-Derived Landslides in Active Mountain Ranges
NASA Astrophysics Data System (ADS)
Croissant, T.; Lague, D.; Steer, P.; Davy, P.
2016-12-01
In active mountain ranges, large earthquakes (Mw > 5-6) trigger numerous landslides that impact river dynamics. These landslides bring local and sudden sediment deposits which are eroded and transported along the river network, causing downstream changes in river geometry, transport capacity and erosion efficiency. The progressive removal of landslide materials has implications for downstream hazards management and for landscape dynamics at the timescale of the seismic cycle. Although the export time of suspended sediments from landslides triggered by large-magnitude earthquakes has been extensively studied, the processes and time scales associated to bedload transport remains poorly studied. Here, we study the sediment export of large landslides with the 2D morphodynamic model, Eros. This model combines: (i) an hydrodynamic model, (ii) a sediment transport and deposition model and (iii) a lateral erosion model. Eros is particularly well suited for this issue as it accounts for the complex retro-actions between sediment transport and fluvial geometry for rivers submitted to external forcings such as abrupt sediment supply increase. Using a simplified synthetic topography we systematically study the influence of pulse volume (Vs) and channel transport capacity (QT) on the export time of landslides. The range of simulated river behavior includes landslide vertical incision, its subsequent removal by lateral erosion and the river morphology modifications induced by downstream sediment propagation. The morphodynamic adaptation of the river increases its transport capacity along the channel and tends to accelerate the landslide evacuation. Our results highlight two regimes: (i) the export time is linearly related to Vs/QT when the sediment pulse introduced in the river does not affect significantly the river hydrodynamic (low Vs/QT) and (ii) the export time is a non-linear function of Vs/QT when the pulse undergoes significant morphodynamic modifications during its evacuation (high Vs/QT). By combining our newly derived export time functions with the frequency-magnitude of earthquake intensity and the induced sediment production, we investigate the sediment export of several plausible earthquake scenarii in different mountain ranges (New Zealand, Taiwan, Nepal).
NASA Astrophysics Data System (ADS)
Keranen, Katie M.; Weingarten, Matthew
2018-05-01
The ability of fluid-generated subsurface stress changes to trigger earthquakes has long been recognized. However, the dramatic rise in the rate of human-induced earthquakes in the past decade has created abundant opportunities to study induced earthquakes and triggering processes. This review briefly summarizes early studies but focuses on results from induced earthquakes during the past 10 years related to fluid injection in petroleum fields. Study of these earthquakes has resulted in insights into physical processes and has identified knowledge gaps and future research directions. Induced earthquakes are challenging to identify using seismological methods, and faults and reefs strongly modulate spatial and temporal patterns of induced seismicity. However, the similarity of induced and natural seismicity provides an effective tool for studying earthquake processes. With continuing development of energy resources, increased interest in carbon sequestration, and construction of large dams, induced seismicity will continue to pose a hazard in coming years.
Prediction of the area affected by earthquake-induced landsliding based on seismological parameters
NASA Astrophysics Data System (ADS)
Marc, Odin; Meunier, Patrick; Hovius, Niels
2017-07-01
We present an analytical, seismologically consistent expression for the surface area of the region within which most landslides triggered by an earthquake are located (landslide distribution area). This expression is based on scaling laws relating seismic moment, source depth, and focal mechanism with ground shaking and fault rupture length and assumes a globally constant threshold of acceleration for onset of systematic mass wasting. The seismological assumptions are identical to those recently used to propose a seismologically consistent expression for the total volume and area of landslides triggered by an earthquake. To test the accuracy of the model we gathered geophysical information and estimates of the landslide distribution area for 83 earthquakes. To reduce uncertainties and inconsistencies in the estimation of the landslide distribution area, we propose an objective definition based on the shortest distance from the seismic wave emission line containing 95 % of the total landslide area. Without any empirical calibration the model explains 56 % of the variance in our dataset, and predicts 35 to 49 out of 83 cases within a factor of 2, depending on how we account for uncertainties on the seismic source depth. For most cases with comprehensive landslide inventories we show that our prediction compares well with the smallest region around the fault containing 95 % of the total landslide area. Aspects ignored by the model that could explain the residuals include local variations of the threshold of acceleration and processes modulating the surface ground shaking, such as the distribution of seismic energy release on the fault plane, the dynamic stress drop, and rupture directivity. Nevertheless, its simplicity and first-order accuracy suggest that the model can yield plausible and useful estimates of the landslide distribution area in near-real time, with earthquake parameters issued by standard detection routines.
Gas injection may have triggered earthquakes in the Cogdell oil field, Texas
Gan, Wei; Frohlich, Cliff
2013-01-01
Between 1957 and 1982, water flooding was conducted to improve petroleum production in the Cogdell oil field north of Snyder, TX, and a contemporary analysis concluded this induced earthquakes that occurred between 1975 and 1982. The National Earthquake Information Center detected no further activity between 1983 and 2005, but between 2006 and 2011 reported 18 earthquakes having magnitudes 3 and greater. To investigate these earthquakes, we analyzed data recorded by six temporary seismograph stations deployed by the USArray program, and identified 93 well-recorded earthquakes occurring between March 2009 and December 2010. Relocation with a double-difference method shows that most earthquakes occurred within several northeast–southwest-trending linear clusters, with trends corresponding to nodal planes of regional focal mechanisms, possibly indicating the presence of previously unidentified faults. We have evaluated data concerning injection and extraction of oil, water, and gas in the Cogdell field. Water injection cannot explain the 2006–2011 earthquakes, especially as net volumes (injection minus extraction) are significantly less than in the 1957–1982 period. However, since 2004 significant volumes of gases including supercritical CO2 have been injected into the Cogdell field. The timing of gas injection suggests it may have contributed to triggering the recent seismic activity. If so, this represents an instance where gas injection has triggered earthquakes having magnitudes 3 and larger. Further modeling studies may help evaluate recent assertions suggesting significant risks accompany large-scale carbon capture and storage as a strategy for managing climate change. PMID:24191019
NASA Astrophysics Data System (ADS)
Walter, Jacob I.; Meng, Xiaofeng; Peng, Zhigang; Schwartz, Susan Y.; Newman, Andrew V.; Protti, Marino
2015-12-01
On 5 September 2012, a moment magnitude (MW) 7.6 earthquake occurred directly beneath the Nicoya Peninsula, an area with dense seismic and geodetic network coverage. The mainshock ruptured a portion of a previously identified locked patch that was recognized due to a decade-long effort to delineate the megathrust seismic and aseismic processes in this area. Here we conduct a comprehensive study of the seismicity prior to this event utilizing a matched-filter analysis that allows us to decrease the magnitude of catalog completeness by 1 unit. We observe a statistically significant increase in seismicity rate below the Nicoya Peninsula following the 27 August 2012 (MW 7.3) El Salvador earthquake (about 450 km to the northwest and 9 days prior to the Nicoya earthquake). Additionally, we identify a cluster of small-magnitude (<2.2) earthquakes preceding the mainshock by about 35 min and within 15 km of its hypocenter. The immediate foreshock sequence occurred in the same area as those earthquakes triggered shortly after the El Salvador event; though it is not clear whether the effect of triggering from the El Salvador event persisted until the foreshock sequence given the uncertainties in seismicity rates from a relatively small number of earthquakes. If megathrust earthquakes at such distances can induce significant increases in seismicity during the days before another larger event, this sequence strengthens the need for real-time seismicity monitoring for large earthquake forecasting.
Gas injection may have triggered earthquakes in the Cogdell oil field, Texas.
Gan, Wei; Frohlich, Cliff
2013-11-19
Between 1957 and 1982, water flooding was conducted to improve petroleum production in the Cogdell oil field north of Snyder, TX, and a contemporary analysis concluded this induced earthquakes that occurred between 1975 and 1982. The National Earthquake Information Center detected no further activity between 1983 and 2005, but between 2006 and 2011 reported 18 earthquakes having magnitudes 3 and greater. To investigate these earthquakes, we analyzed data recorded by six temporary seismograph stations deployed by the USArray program, and identified 93 well-recorded earthquakes occurring between March 2009 and December 2010. Relocation with a double-difference method shows that most earthquakes occurred within several northeast-southwest-trending linear clusters, with trends corresponding to nodal planes of regional focal mechanisms, possibly indicating the presence of previously unidentified faults. We have evaluated data concerning injection and extraction of oil, water, and gas in the Cogdell field. Water injection cannot explain the 2006-2011 earthquakes, especially as net volumes (injection minus extraction) are significantly less than in the 1957-1982 period. However, since 2004 significant volumes of gases including supercritical CO2 have been injected into the Cogdell field. The timing of gas injection suggests it may have contributed to triggering the recent seismic activity. If so, this represents an instance where gas injection has triggered earthquakes having magnitudes 3 and larger. Further modeling studies may help evaluate recent assertions suggesting significant risks accompany large-scale carbon capture and storage as a strategy for managing climate change.
Seismic Study of Tremor, Deep Long-Period Earthquakes, and Basin Amplification of Ground Motion
NASA Astrophysics Data System (ADS)
Han, Jiangang
In this thesis, we use seismic data and seismological tools to investigate three topics, (1) triggering between slow slip (tremor as proxy) and nearby small earthquakes, (2) mechanisms of deep-long period earthquakes beneath Mount St. Helens, and (3) ground motion amplification in Seattle Basin. In Chapter 1, we investigate 12-year earthquake and tremor catalogs for southwest Japan, and find nearby small intraslab earthquakes are weakly correlated with tremor. In particular, intraslab earthquakes tend to be followed by tremor more often than expected at random, while the excess number of tremor before earthquakes is not as significant. The underlying triggering mechanism of tremor and inferred slow slip by earthquakes is most likely to be the dynamic stress changes (several to several tens of kPa) rather than the much smaller static stress changes. In Chapter 2, we use the catalog DLPs as templates to search for repeating events at Mount St. Helens (MSH). We have detected 277 DLPs, compared to only 22 events previously in the catalog from 2007 to 2016. Three templates from the catalog are single events, while all other templates produced matches, identifying loci of repeated activity. Overall, the detected DLPs show no significant correlation with either the subduction zone tremor and slow slip (ETS) west of MSH, or the shallow seismicity. Temporal analysis shows an elevated rate of DLPs at time of compressional tidal stress, suggesting their possible association with magmatic and/or fluid activity. We observed variable S wave polarization of the DLPs from the most productive DLP source region, indicating their source mechanisms are not identical. In Chapter 3, we use noise correlation to retrieve the empirical green's functions (EGFs) in Seattle Basin. Consistent amplitudes measured from noise EGFs, teleseismic S wave and numerical simulations all suggest the usefulness of the amplitude of EGFs. For surface wave with period of 5-10 sec propagating from west to east, the ground motion is amplified by a factor of up to 3 within the basin. The bias of EGFs from noise heterogeneity and uncertainties of synthetics due to inaccuracy of velocity model are still to be investigated.
CISN ShakeAlert Earthquake Early Warning System Monitoring Tools
NASA Astrophysics Data System (ADS)
Henson, I. H.; Allen, R. M.; Neuhauser, D. S.
2015-12-01
CISN ShakeAlert is a prototype earthquake early warning system being developed and tested by the California Integrated Seismic Network. The system has recently been expanded to support redundant data processing and communications. It now runs on six machines at three locations with ten Apache ActiveMQ message brokers linking together 18 waveform processors, 12 event association processes and 4 Decision Module alert processes. The system ingests waveform data from about 500 stations and generates many thousands of triggers per day, from which a small portion produce earthquake alerts. We have developed interactive web browser system-monitoring tools that display near real time state-of-health and performance information. This includes station availability, trigger statistics, communication and alert latencies. Connections to regional earthquake catalogs provide a rapid assessment of the Decision Module hypocenter accuracy. Historical performance can be evaluated, including statistics for hypocenter and origin time accuracy and alert time latencies for different time periods, magnitude ranges and geographic regions. For the ElarmS event associator, individual earthquake processing histories can be examined, including details of the transmission and processing latencies associated with individual P-wave triggers. Individual station trigger and latency statistics are available. Detailed information about the ElarmS trigger association process for both alerted events and rejected events is also available. The Google Web Toolkit and Map API have been used to develop interactive web pages that link tabular and geographic information. Statistical analysis is provided by the R-Statistics System linked to a PostgreSQL database.
Proposal for a model to assess the effect of seismic activity on the triggering of debris flows
NASA Astrophysics Data System (ADS)
Vidar Vangelsten, Bjørn; Liu, Zhongqiang; Eidsvig, Unni; Luna, Byron Quan; Nadim, Farrokh
2013-04-01
Landslide triggered by earthquakes is a serious threat for many communities around the world, and in some cases is known to have caused 25-50% of the earthquake fatalities. Seismic shaking can contribute to the triggering of debris flows either during the seismic event or indirectly by increasing the susceptibility of the slope to debris flow during intense rainfall in a period after the seismic event. The paper proposes a model to quantify both these effects. The model is based on an infinite slope formulation where precipitation and earthquakes influence the slope stability as follows: (1) During the shaking, the factor of safety is reduced due to cyclic pore pressure build-up where the cyclic pore pressure is modelled as a function of earthquake duration and intensity (measured as number of equivalent shear stress cycles and cyclic shear stress magnitude) and in-situ soil conditions (measured as average normalised shear stress). The model is calibrated using cyclic triaxial and direct simple shear (DSS) test data on clay and sand. (2) After the shaking, the factor of safety is modified using a combined empirical and analytical model that links observed earthquake induced changes in rainfall thresholds for triggering of debris flow to an equivalent reduction in soil shear strength. The empirical part uses data from past earthquakes to propose a conceptual model linking a site-specific reduction factor for rainfall intensity threshold (needed to trigger debris flows) to earthquake magnitude, distance from the epicentre and time period after the earthquake. The analytical part is a hydrological model for transient rainfall infiltration into an infinite slope in order to translate the change in rainfall intensity threshold into an equivalent reduction in soil shear strength. This is generalised into a functional form giving a site-specific shear strength reduction factor as function of earthquake history and soil conditions. The model is suitable for hazard and risk assessment at local and regional scale for earthquake and rainfall induced landslide. The research leading to these results has received funding from the European Community's Seventh Framework Programme [FP7/2007-2013] under grant agreement No 265138 New Multi-HAzard and MulTi-RIsK Assessment MethodS for Europe (MATRIX).
Dynamic rupture simulations of the 2016 Mw7.8 Kaikōura earthquake: a cascading multi-fault event
NASA Astrophysics Data System (ADS)
Ulrich, T.; Gabriel, A. A.; Ampuero, J. P.; Xu, W.; Feng, G.
2017-12-01
The Mw7.8 Kaikōura earthquake struck the Northern part of New Zealand's South Island roughly one year ago. It ruptured multiple segments of the contractional North Canterbury fault zone and of the Marlborough fault system. Field observations combined with satellite data suggest a rupture path involving partly unmapped faults separated by large stepover distances larger than 5 km, the maximum distance usually considered by the latest seismic hazard assessment methods. This might imply distant rupture transfer mechanisms generally not considered in seismic hazard assessment. We present high-resolution 3D dynamic rupture simulations of the Kaikōura earthquake under physically self-consistent initial stress and strength conditions. Our simulations are based on recent finite-fault slip inversions that constrain fault system geometry and final slip distribution from remote sensing, surface rupture and geodetic data (Xu et al., 2017). We assume a uniform background stress field, without lateral fault stress or strength heterogeneity. We use the open-source software SeisSol (www.seissol.org) which is based on an arbitrary high-order accurate DERivative Discontinuous Galerkin method (ADER-DG). Our method can account for complex fault geometries, high resolution topography and bathymetry, 3D subsurface structure, off-fault plasticity and modern friction laws. It enables the simulation of seismic wave propagation with high-order accuracy in space and time in complex media. We show that a cascading rupture driven by dynamic triggering can break all fault segments that were involved in this earthquake without mechanically requiring an underlying thrust fault. Our prefered fault geometry connects most fault segments: it does not features stepover larger than 2 km. The best scenario matches the main macroscopic characteristics of the earthquake, including its apparently slow rupture propagation caused by zigzag cascading, the moment magnitude and the overall inferred slip distribution. We observe a high sensitivity of cascading dynamics on fault-step over distance and off-fault energy dissipation.
Examining the Use of the Cloud for Seismic Data Centers
NASA Astrophysics Data System (ADS)
Yu, E.; Meisenhelter, S.; Clayton, R. W.
2011-12-01
The Southern California Earthquake Data Center (SCEDC) archives seismic and station sensor metadata related to earthquake activity in southern California. It currently archives nearly 8400 data streams continuously from over 420 stations in near real time at a rate of 584 GB/month to a repository approximately 18 TB in size. Triggered waveform data from an average 12,000 earthquakes/year is also archived. Data are archived on mirrored disk arrays that are maintained and backed-up locally. These data are served over the Internet to scientists and the general public in many countries. The data demand has a steady component, largely needed for ambient noise correlation studies, and an impulsive component that is driven by earthquake activity. Designing a reliable, cost effective, system architecture equipped to handle periods of relatively low steady demand punctuated by unpredictable sharp spikes in demand immediately following a felt earthquake remains a major challenge. To explore an alternative paradigm, we have put one-month of the data in the "cloud" and have developed a user interface with the Google Apps Engine. The purpose is to assess the modifications in data structures that are necessary to make efficient searches. To date we have determined that the database schema must be "denormalized" to take advantage of the dynamic computational capabilities, and that it is likely advantageous to preprocess the waveform data to remove overlaps, gaps, and other artifacts. The final purpose of this study is to compare the cost of the cloud compared to ground-based centers. The major motivations for this study are the security and dynamic load capabilities of the cloud. In the cloud, multiple copies of the data are held in distributed centers thus eliminating the single point of failure associated with one center. The cloud can dynamically increase the level of computational resources during an earthquake, and the major tasks of managing a disk farm are eliminated. The center can also managed from anywhere and is not bound to a particular location.
Goebel, T. H. W.; Weingarten, M.; Chen, X.; ...
2017-05-30
Wastewater disposal in the central U.S. is likely responsible for an unprecedented surge in earthquake activity. Much of this activity is thought to be driven by induced pore pressure changes and slip on pre-stressed faults, which requires a hydraulic connection between faults and injection wells. However, direct pressure effects and hydraulic connectivity are questionable for earthquakes located at large distances and depths from the injectors. Here, we examine triggering mechanisms of induced earthquakes, which occurred at more than 40 km from wastewater disposal wells in the greater Fairview region, northwest Oklahoma, employing numerical and semi-analytical poroelastic models. The region exhibitedmore » few earthquakes before 2013, when background seismicity started to accelerate rapidly, culminating in the Mw5.1 Fairview earthquake in February 2016. Injection rates in the ~2–2.5km deep Arbuckle formation started to increase rapidly in 2012, about two years before the start of seismicity-increase. Most of the injection activity was concentrated toward the northeast of the study region, generating a relatively cohesive zone of pressure perturbations between 0.1 and 1MPa. Much of the near-injection seismicity was likely triggered by pressure effects and fault-assisted pressure diffusion to seismogenic depth. Outside of the high-pressure zone, we observed two remarkably detached, linear seismicity clusters, which occurred at 20 to 50 km distance from the initial seismicity and 10 to 40 km from the nearest, high-rate injector. Semi-analytical models reveal that poroelastically-induced Coulomb-stress-changes surpass pore pressure changes at these distances, providing a plausible triggering mechanism in the far-field of injection wells. These results indicate that both pore-pressures and poroelastic stresses can play a significant role in triggering deep and distant earthquakes by fluid injection and should be considered for seismic hazard assessment beyond the targeted reservoir.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goebel, T. H. W.; Weingarten, M.; Chen, X.
Wastewater disposal in the central U.S. is likely responsible for an unprecedented surge in earthquake activity. Much of this activity is thought to be driven by induced pore pressure changes and slip on pre-stressed faults, which requires a hydraulic connection between faults and injection wells. However, direct pressure effects and hydraulic connectivity are questionable for earthquakes located at large distances and depths from the injectors. Here, we examine triggering mechanisms of induced earthquakes, which occurred at more than 40 km from wastewater disposal wells in the greater Fairview region, northwest Oklahoma, employing numerical and semi-analytical poroelastic models. The region exhibitedmore » few earthquakes before 2013, when background seismicity started to accelerate rapidly, culminating in the Mw5.1 Fairview earthquake in February 2016. Injection rates in the ~2–2.5km deep Arbuckle formation started to increase rapidly in 2012, about two years before the start of seismicity-increase. Most of the injection activity was concentrated toward the northeast of the study region, generating a relatively cohesive zone of pressure perturbations between 0.1 and 1MPa. Much of the near-injection seismicity was likely triggered by pressure effects and fault-assisted pressure diffusion to seismogenic depth. Outside of the high-pressure zone, we observed two remarkably detached, linear seismicity clusters, which occurred at 20 to 50 km distance from the initial seismicity and 10 to 40 km from the nearest, high-rate injector. Semi-analytical models reveal that poroelastically-induced Coulomb-stress-changes surpass pore pressure changes at these distances, providing a plausible triggering mechanism in the far-field of injection wells. These results indicate that both pore-pressures and poroelastic stresses can play a significant role in triggering deep and distant earthquakes by fluid injection and should be considered for seismic hazard assessment beyond the targeted reservoir.« less
NASA Astrophysics Data System (ADS)
Goebel, T. H. W.; Weingarten, M.; Chen, X.; Haffener, J.; Brodsky, E. E.
2017-08-01
Wastewater disposal in the central U.S. is likely responsible for an unprecedented surge in earthquake activity. Much of this activity is thought to be driven by induced pore pressure changes and slip on pre-stressed faults, which requires a hydraulic connection between faults and injection wells. However, direct pressure effects and hydraulic connectivity are questionable for earthquakes located at large distances and depths from the injectors. Here, we examine triggering mechanisms of induced earthquakes, which occurred at more than 40 km from wastewater disposal wells in the greater Fairview region, northwest Oklahoma, employing numerical and semi-analytical poroelastic models. The region exhibited few earthquakes before 2013, when background seismicity started to accelerate rapidly, culminating in the Mw5.1 Fairview earthquake in February 2016. Injection rates in the ∼2-2.5 km deep Arbuckle formation started to increase rapidly in 2012, about two years before the start of seismicity-increase. Most of the injection activity was concentrated toward the northeast of the study region, generating a relatively cohesive zone of pressure perturbations between 0.1 and 1 MPa. Much of the near-injection seismicity was likely triggered by pressure effects and fault-assisted pressure diffusion to seismogenic depth. Outside of the high-pressure zone, we observed two remarkably detached, linear seismicity clusters, which occurred at 20 to 50 km distance from the initial seismicity and 10 to 40 km from the nearest, high-rate injector. Semi-analytical models reveal that poroelastically-induced Coulomb-stress-changes surpass pore pressure changes at these distances, providing a plausible triggering mechanism in the far-field of injection wells. These results indicate that both pore-pressures and poroelastic stresses can play a significant role in triggering deep and distant earthquakes by fluid injection and should be considered for seismic hazard assessment beyond the targeted reservoir.
NASA Astrophysics Data System (ADS)
Wang, J.; Xu, C.; Furlong, K.; Zhong, B.; Xiao, Z.; Yi, L.; Chen, T.
2017-12-01
Although Coulomb stress changes induced by earthquake events have been used to quantify stress transfers and to retrospectively explain stress triggering among earthquake sequences, realistic reliable prospective earthquake forecasting remains scarce. To generate a robust Coulomb stress map for earthquake forecasting, uncertainties in Coulomb stress changes associated with the source fault, receiver fault and friction coefficient and Skempton's coefficient need to be exhaustively considered. In this paper, we specifically explore the uncertainty in slip models of the source fault of the 2011 Mw 9.0 Tohoku-oki earthquake as a case study. This earthquake was chosen because of its wealth of finite-fault slip models. Based on the wealth of those slip models, we compute the coseismic Coulomb stress changes induced by this mainshock. Our results indicate that nearby Coulomb stress changes for each slip model can be quite different, both for the Coulomb stress map at a given depth and on the Pacific subducting slab. The triggering rates for three months of aftershocks of the mainshock, with and without considering the uncertainty in slip models, differ significantly, decreasing from 70% to 18%. Reliable Coulomb stress changes in the three seismogenic zones of Nanki, Tonankai and Tokai are insignificant, approximately only 0.04 bar. By contrast, the portions of the Pacific subducting slab at a depth of 80 km and beneath Tokyo received a positive Coulomb stress change of approximately 0.2 bar. The standard errors of the seismicity rate and earthquake probability based on the Coulomb rate-and-state model (CRS) decay much faster with elapsed time in stress triggering zones than in stress shadows, meaning that the uncertainties in Coulomb stress changes in stress triggering zones would not drastically affect assessments of the seismicity rate and earthquake probability based on the CRS in the intermediate to long term.
Analysis of Landslides Triggered by October 2005, Kashmir Earthquake
Mahmood, Irfan; Qureshi, Shahid Nadeem; Tariq, Shahina; Atique, Luqman; Iqbal, Muhammad Farooq
2015-01-01
Introduction: The October 2005, Kashmir earthquake main event was triggered along the Balakot-Bagh Fault which runs from Bagh to Balakot, and caused more damages in and around these areas. Major landslides were activated during and after the earthquake inflicting large damages in the area, both in terms of infrastructure and casualties. These landslides were mainly attributed to the minimum threshold of the earthquake, geology of the area, climatologic and geomorphologic conditions, mudflows, widening of the roads without stability assessment, and heavy rainfall after the earthquake. These landslides were mainly rock and debris falls. Hattian Bala rock avalanche was largest landslide associated with the earthquake which completely destroyed a village and blocked the valley creating a lake. Discussion: The present study shows that the fault rupture and fault geometry have direct influence on the distribution of landslides and that along the rupture zone a high frequency band of landslides was triggered. There was an increase in number of landslides due to 2005 earthquake and its aftershocks and that most of earthquakes have occurred along faults, rivers and roads. It is observed that the stability of landslide mass is greatly influenced by amplitude, frequency and duration of earthquake induced ground motion. Most of the slope failures along the roads resulted from the alteration of these slopes during widening of the roads, and seepages during the rainy season immediately after the earthquake. Conclusion: Landslides occurred mostly along weakly cemented and indurated rocks, colluvial sand and cemented soils. It is also worth noting that fissures and ground crack which were induced by main and after shock are still present and they pose a major potential threat for future landslides in case of another earthquake activity or under extreme weather conditions. PMID:26366324
Analysis of Landslides Triggered by October 2005, Kashmir Earthquake.
Mahmood, Irfan; Qureshi, Shahid Nadeem; Tariq, Shahina; Atique, Luqman; Iqbal, Muhammad Farooq
2015-08-26
The October 2005, Kashmir earthquake main event was triggered along the Balakot-Bagh Fault which runs from Bagh to Balakot, and caused more damages in and around these areas. Major landslides were activated during and after the earthquake inflicting large damages in the area, both in terms of infrastructure and casualties. These landslides were mainly attributed to the minimum threshold of the earthquake, geology of the area, climatologic and geomorphologic conditions, mudflows, widening of the roads without stability assessment, and heavy rainfall after the earthquake. These landslides were mainly rock and debris falls. Hattian Bala rock avalanche was largest landslide associated with the earthquake which completely destroyed a village and blocked the valley creating a lake. The present study shows that the fault rupture and fault geometry have direct influence on the distribution of landslides and that along the rupture zone a high frequency band of landslides was triggered. There was an increase in number of landslides due to 2005 earthquake and its aftershocks and that most of earthquakes have occurred along faults, rivers and roads. It is observed that the stability of landslide mass is greatly influenced by amplitude, frequency and duration of earthquake induced ground motion. Most of the slope failures along the roads resulted from the alteration of these slopes during widening of the roads, and seepages during the rainy season immediately after the earthquake. Landslides occurred mostly along weakly cemented and indurated rocks, colluvial sand and cemented soils. It is also worth noting that fissures and ground crack which were induced by main and after shock are still present and they pose a major potential threat for future landslides in case of another earthquake activity or under extreme weather conditions.
Lake deposits record evidence of large post-1505 AD earthquakes in western Nepal
NASA Astrophysics Data System (ADS)
Ghazoui, Z.; Bertrand, S.; Vanneste, K.; Yokoyama, Y.; Van Der Beek, P.; Nomade, J.; Gajurel, A.
2016-12-01
According to historical records, the last large earthquake that ruptured the Main Frontal Thrust (MFT) in western Nepal occurred in 1505 AD. Since then, no evidence of other large earthquakes has been found in historical records or geological archives. In view of the catastrophic consequences to millions of inhabitants of Nepal and northern India, intense efforts currently focus on improving our understanding of past earthquake activity and complement the historical data on Himalayan earthquakes. Here we report a new record, based on earthquake-triggered turbidites in lakes. We use lake sediment records from Lake Rara, western Nepal, to reconstruct the occurrence of seismic events. The sediment cores were studied using a multi-proxy approach combining radiocarbon and 210Pb chronologies, physical properties (X-ray computerized axial tomography scan, Geotek multi-sensor core logger), high-resolution grain size, inorganic geochemistry (major elements by ITRAX XRF core scanning) and bulk organic geochemistry (C, N concentrations and stable isotopes). We identified several sequences of dense and layered fine sand mainly composed of mica, which we interpret as earthquake-triggered turbidites. Our results suggest the presence of a synchronous event between the two lake sites correlated with the well-known 1505 AD earthquake. In addition, our sediment records reveal five earthquake-triggered turbidites younger than the 1505 AD event. By comparison with historical archives, we relate one of those to the 1833 AD MFT rupture. The others may reflect successive ruptures of the Western Nepal Fault System. Our study sheds light on events that have not been recorded in historical chronicles. Those five MMI>7 earthquakes permit addressing the problem of missing slip on the MFT in western Nepal and reevaluating the risk of a large earthquake affecting western Nepal and North India.
NASA Astrophysics Data System (ADS)
Castaldini, D.; Genevois, R.; Panizza, M.; Puccinelli, A.; Berti, M.; Simoni, A.
This paper illustrates research addressing the subject of the earthquake-induced surface effects by means of a multidisciplinary approach: tectonics, neotectonics, seismology, geology, hydrogeology, geomorphology, soil/rock mechanics have been considered. The research is aimed to verify in areas affected by earthquake-triggered landslides a methodology for the identification of potentially unstable areas. The research was organized according to regional and local scale studies. In order to better emphasise the complexity of the relationships between all the parameters affecting the stability conditions of rock slopes in static and dynamic conditions a new integrated approach, Rock Engineering Systems (RES), was applied in the Northern Apennines. In the paper, the different phases of the research are described in detail and an example of the application of RES method in a sample area is reported. A significant aspect of the study can be seen in its attempt to overcome the exclusively qualitative aspects of research into the relationship between earthquakes and induced surface effects, and to advance the idea of beginning a process by which this interaction can be quantified.
Impacts of hydrogeological characteristics on groundwater-level changes induced by earthquakes
NASA Astrophysics Data System (ADS)
Liu, Ching-Yi; Chia, Yeeping; Chuang, Po-Yu; Chiu, Yung-Chia; Tseng, Tai-Lin
2018-03-01
Changes in groundwater level during earthquakes have been reported worldwide. In this study, field observations of co-seismic groundwater-level changes in wells under different aquifer conditions and sampling intervals due to near-field earthquake events in Taiwan are presented. Sustained changes, usually observed immediately after earthquakes, are found in the confined aquifer. Oscillatory changes due to the dynamic strain triggered by passing earthquake waves can only be recorded by a high-frequency data logger. While co-seismic changes recover rapidly in an unconfined aquifer, they can sustain for months or longer in a confined aquifer. Three monitoring wells with long-term groundwater-level data were examined to understand the association of co-seismic changes with local hydrogeological conditions. The finite element software ABAQUS is used to simulate the pore-pressure changes induced by the displacements due to fault rupture. The calculated co-seismic change in pore pressure is related to the compressibility of the formation. The recovery rate of the change is rapid in the unconfined aquifer due to the hydrostatic condition at the water table, but slow in the confined aquifer due to the less permeable confining layer. Fracturing of the confining layer during earthquakes may enhance the dissipation of pore pressure and induce the discharge of the confined aquifer. The study results indicated that aquifer characteristics play an important role in determining groundwater-level changes during and after earthquakes.
Atmospheric Science Data Center
2013-04-16
... tsunami triggered by the March 11, 2011, magnitude 8.9 earthquake centered off Japan's northeastern coast about 130 kilometers (82 ... inland from the eastern shoreline is visible in the post-earthquake image. The white sand beaches visible in the pre-earthquake view are ...
Earthquake Simulator Finds Tremor Triggers
Johnson, Paul
2018-01-16
Using a novel device that simulates earthquakes in a laboratory setting, a Los Alamos researcher has found that seismic waves-the sounds radiated from earthquakes-can induce earthquake aftershocks, often long after a quake has subsided. The research provides insight into how earthquakes may be triggered and how they recur. Los Alamos researcher Paul Johnson and colleague Chris Marone at Penn State have discovered how wave energy can be stored in certain types of granular materials-like the type found along certain fault lines across the globe-and how this stored energy can suddenly be released as an earthquake when hit by relatively small seismic waves far beyond the traditional âaftershock zoneâ of a main quake. Perhaps most surprising, researchers have found that the release of energy can occur minutes, hours, or even days after the sound waves pass; the cause of the delay remains a tantalizing mystery.
Earthquake Triggering in the September 2017 Mexican Earthquake Sequence
NASA Astrophysics Data System (ADS)
Fielding, E. J.; Gombert, B.; Duputel, Z.; Huang, M. H.; Liang, C.; Bekaert, D. P.; Moore, A. W.; Liu, Z.; Ampuero, J. P.
2017-12-01
Southern Mexico was struck by four earthquakes with Mw > 6 and numerous smaller earthquakes in September 2017, starting with the 8 September Mw 8.2 Tehuantepec earthquake beneath the Gulf of Tehuantepec offshore Chiapas and Oaxaca. We study whether this M8.2 earthquake triggered the three subsequent large M>6 quakes in southern Mexico to improve understanding of earthquake interactions and time-dependent risk. All four large earthquakes were extensional despite the the subduction of the Cocos plate. The traditional definition of aftershocks: likely an aftershock if it occurs within two rupture lengths of the main shock soon afterwards. Two Mw 6.1 earthquakes, one half an hour after the M8.2 beneath the Tehuantepec gulf and one on 23 September near Ixtepec in Oaxaca, both fit as traditional aftershocks, within 200 km of the main rupture. The 19 September Mw 7.1 Puebla earthquake was 600 km away from the M8.2 shock, outside the standard aftershock zone. Geodetic measurements from interferometric analysis of synthetic aperture radar (InSAR) and time-series analysis of GPS station data constrain finite fault total slip models for the M8.2, M7.1, and M6.1 Ixtepec earthquakes. The early M6.1 aftershock was too close in time and space to the M8.2 to measure with InSAR or GPS. We analyzed InSAR data from Copernicus Sentinel-1A and -1B satellites and JAXA ALOS-2 satellite. Our preliminary geodetic slip model for the M8.2 quake shows significant slip extended > 150 km NW from the hypocenter, longer than slip in the v1 finite-fault model (FFM) from teleseismic waveforms posted by G. Hayes at USGS NEIC. Our slip model for the M7.1 earthquake is similar to the v2 NEIC FFM. Interferograms for the M6.1 Ixtepec quake confirm the shallow depth in the upper-plate crust and show centroid is about 30 km SW of the NEIC epicenter, a significant NEIC location bias, but consistent with cluster relocations (E. Bergman, pers. comm.) and with Mexican SSN location. Coulomb static stress change calculations by Toda et al. (Temblor.net) from NEIC FFM showed significant positive change at epicenter of Ixtepec quake, but very small change for Puebla quake. Our analysis will update these calculations. We are planning to add seismic waveforms to our inversions to estimate kinematic fault slip evolution models that will enable dynamic stress transfer calculations.
Investigating landslides caused by earthquakes - A historical review
Keefer, D.K.
2002-01-01
Post-earthquake field investigations of landslide occurrence have provided a basis for understanding, evaluating, and mapping the hazard and risk associated with earthquake-induced landslides. This paper traces the historical development of knowledge derived from these investigations. Before 1783, historical accounts of the occurrence of landslides in earthquake are typically so incomplete and vague that conclusions based on these accounts are of limited usefulness. For example, the number of landslides triggered by a given event is almost always greatly underestimated. The first formal, scientific post-earthquake investigation that included systematic documentation of the landslides was undertaken in the Calabria region of Italy after the 1783 earthquake swarm. From then until the mid-twentieth century, the best information on earthquake-induced landslides came from a succession of post-earthquake investigations largely carried out by formal commissions that undertook extensive ground-based field studies. Beginning in the mid-twentieth century, when the use of aerial photography became widespread, comprehensive inventories of landslide occurrence have been made for several earthquakes in the United States, Peru, Guatemala, Italy, El Salvador, Japan, and Taiwan. Techniques have also been developed for performing "retrospective" analyses years or decades after an earthquake that attempt to reconstruct the distribution of landslides triggered by the event. The additional use of Geographic Information System (GIS) processing and digital mapping since about 1989 has greatly facilitated the level of analysis that can applied to mapped distributions of landslides. Beginning in 1984, synthesis of worldwide and national data on earthquake-induced landslides have defined their general characteristics and relations between their occurrence and various geologic and seismic parameters. However, the number of comprehensive post-earthquake studies of landslides is still relatively small, and one of the most pressing needs in this area of research is for the complete documentation of landslides triggered by many more earthquakes in a wider variety of environments.
Finite Element Simulations of Kaikoura, NZ Earthquake using DInSAR and High-Resolution DSMs
NASA Astrophysics Data System (ADS)
Barba, M.; Willis, M. J.; Tiampo, K. F.; Glasscoe, M. T.; Clark, M. K.; Zekkos, D.; Stahl, T. A.; Massey, C. I.
2017-12-01
Three-dimensional displacements from the Kaikoura, NZ, earthquake in November 2016 are imaged here using Differential Interferometric Synthetic Aperture Radar (DInSAR) and high-resolution Digital Surface Model (DSM) differencing and optical pixel tracking. Full-resolution co- and post-seismic interferograms of Sentinel-1A/B images are constructed using the JPL ISCE software. The OSU SETSM software is used to produce repeat 0.5 m posting DSMs from commercial satellite imagery, which are supplemented with UAV derived DSMs over the Kaikoura fault rupture on the eastern South Island, NZ. DInSAR provides long-wavelength motions while DSM differencing and optical pixel tracking provides both horizontal and vertical near fault motions, improving the modeling of shallow rupture dynamics. JPL GeoFEST software is used to perform finite element modeling of the fault segments and slip distributions and, in turn, the associated asperity distribution. The asperity profile is then used to simulate event rupture, the spatial distribution of stress drop, and the associated stress changes. Finite element modeling of slope stability is accomplished using the ultra high-resolution UAV derived DSMs to examine the evolution of post-earthquake topography, landslide dynamics and volumes. Results include new insights into shallow dynamics of fault slip and partitioning, estimates of stress change, and improved understanding of its relationship with the associated seismicity, deformation, and triggered cascading hazards.
NASA Astrophysics Data System (ADS)
Belferman, Mariana; Katsman, Regina; Agnon, Amotz; Ben Avraham, Zvi
2016-04-01
Understanding the role of the dynamics of water bodies in triggering deformations in the upper crust and subsequently leading to earthquakes has been attracting considerable attention. We suggest that dynamic changes in the levels of the water bodies occupying tectonic depressions along the Dead Sea Transform (DST) cause significant variations in the shallow crustal stress field and affect local fault systems in a way that eventually leads to earthquakes. This mechanism and its spatial and temporal scales differ from those in tectonically-driven deformations. In this study we present a new thermo-mechanical model, constructed using the finite element method, and extended by including a fluid flow component in the upper crust. The latter is modeled on a basis of two-way poroelastic coupling with the momentum equation. This coupling is essential for capturing fluid flow evolution induced by dynamic water loading in the DST depressions and to resolve porosity changes. All the components of the model, namely elasticity, creep, plasticity, heat transfer, and fluid flow, have been extensively verified and presented in the study. The two-way coupling between localized plastic volumetric deformations and enhanced fluid flow is addressed, as well as the role of variability of the rheological and the hydrological parameters in inducing deformations in specific faulting environments. Correlations with historical and contemporary earthquakes in the region are discussed.
NASA Astrophysics Data System (ADS)
King, Chi-Yu; Chia, Yeeping
2017-12-01
Streamflow recorded by a stream gauge located 4 km from the epicenter of the 1999 M7.6 Chi-Chi earthquake in central Taiwan showed a large and rapid anomalous increase of 124 m3/s starting 4 days before the earthquake. This increase was followed by a comparable co-seismic drop to below the background level for 8 months. In addition, groundwater-levels recorded at a well 1.5 km east of the seismogenic fault showed an anomalous rise 2 days before the earthquake, and then a unique 4-cm drop beginning 3 h before the earthquake. The anomalous streamflow increase is attributed to gravity-driven groundwater discharge into the creek through the openings of existing fractures in the steep creek banks crossed by the upstream Shueilikun fault zone, as a result of pre-earthquake crustal buckling. The continued tectonic movement and buckling, together with the downward flow of water in the crust, may have triggered the occurrence of some shallow slow-slip events in the Shueilikun and other nearby fault zones. When these events propagate down-dip to decollement, where the faults merges with the seismogenic Chelungpu fault, they may have triggered other slow-slip events propagating toward the asperity at the hypocenter and the Chelungpu fault. These events may then have caused the observed groundwater-level anomaly and helped to trigger the earthquake.
Development of a GNSS-Enhanced Tsunami Early Warning System
NASA Astrophysics Data System (ADS)
Bawden, G. W.; Melbourne, T. I.; Bock, Y.; Song, Y. T.; Komjathy, A.
2015-12-01
The past decade has witnessed a terrible loss of life and economic disruption caused by large earthquakes and resultant tsunamis impacting coastal communities and infrastructure across the Indo-Pacific region. NASA has funded the early development of a prototype real-time Global Navigation Satellite System (RT-GNSS) based rapid earthquake and tsunami early warning (GNSS-TEW) system that may be used to enhance seismic tsunami early warning systems for large earthquakes. This prototype GNSS-TEW system geodetically estimates fault parameters (earthquake magnitude, location, strike, dip, and slip magnitude/direction on a gridded fault plane both along strike and at depth) and tsunami source parameters (seafloor displacement, tsunami energy scale, and 3D tsunami initials) within minutes after the mainshock based on dynamic numerical inversions/regressions of the real-time measured displacements within a spatially distributed real-time GNSS network(s) spanning the epicentral region. It is also possible to measure fluctuations in the ionosphere's total electron content (TEC) in the RT-GNSS data caused by the pressure wave from the tsunami. This TEC approach can detect if a tsunami has been triggered by an earthquake, track its waves as they propagate through the oceanic basins, and provide upwards of 45 minutes early warning. These combined real-time geodetic approaches will very quickly address a number of important questions in the immediate minutes following a major earthquake: How big was the earthquake and what are its fault parameters? Could the earthquake have produced a tsunami and was a tsunami generated?
Landslides triggered by the Minxian-Zhangxian, China, Mw 5.9 earthquake of 22 July 2013
NASA Astrophysics Data System (ADS)
Xu, Chong; Xu, Xiwei; Shyu, J. Bruce H.
2014-05-01
On July 22, 2013, an earthquake of Ms 6.6 occurred at the junction area of Minxian and Zhangxian counties, Gansu Province, China. This earthquake triggered many landslides of various types, dominated by small-scale soil falls, slides, and topples on loess scarps. There were also some deep-seated landslides, large-scale soil avalanches, and fissure-developing slopes. In this paper, an inventory of landslides triggered by this event is prepared based on field investigations and visual interpretation of high-resolution satellite images. The spatial distribution of the landslides is then analyzed. The inventory indicates that at least 2,330 landslides were triggered by the earthquake. A correlation statistics of the landslides with topographic, geologic, and earthquake factors is performed based on the GIS platform. The results show that the largest number of landslides and the highest landslide density are at 2,400m-2,600m of absolute elevation, and 200m-300m of relative elevation, respectively. The landslide density does not always increase with slope gradient as previously suggested. The slopes most prone to landslides are in S, SW, W, and NW directions. Concave slopes register higher landslide density and larger number of landslides than convex slopes. The largest number of landslides occurs on topographic position with middle slopes, whereas the highest landslide density corresponds to valleys and lower slopes. The underlying bedrocks consisting of conglomerate and sandstone of Lower Paleogene (Eb) register both the largest number of landslides and the highest landslide density value. There is no clear relationship between PGA and the co-seismic landslides. Correlations of landslide number and landslide density with perpendicular- and along-strike distance from the epicenter show an obvious spatial intensifying character of the co-seismic landslides. The spatial pattern of the co-seismic landslides is strongly controlled by a branch of the Lintan-Dangchang fault, which indicates the effect of seismogenic fault on co-seismic landslides. In addition, the landslide limit area related to the earthquake is compared to the relationship of "landslide limit area vs. earthquake magnitude" constructed based on earthquakes worldwide, and it is shown that the limit area of landslides triggered by the Minxian-Zhangxian earthquake is larger than that of almost all other events with similar magnitudes. This research was supported by the National Science Foundation of China (41202235).
NASA Astrophysics Data System (ADS)
Steer, Philippe; Croissant, Thomas; Lague, Dimitri; Davy, Philippe
2017-04-01
Mass wasting caused by large magnitude earthquakes choke mountain rivers with several cubic kilometers of sediment. The timescale and mechanisms by which rivers evacuate the coarse fraction of small to gigantic landslide deposits are poorly known, but are critical to predict post-seismic hydro-sedimentary hazards, interpret the signature of earthquakes in sedimentary archives and decipher the coupling between erosion and tectonics. Here, we use a new 2D hydro-sedimentary evolution model to demonstrate that river self-organization into a narrower alluvial channel overlying the bedrock valley dramatically increases sediment transport capacity of coarse sediments and reduces export time of gigantic landslides by orders of magnitude compared to existing theory. Predicted export times obey a universal non-linear relationship function of landslide volume and pre-landslide valley transport capacity. Dynamic alluvial channel narrowing is therefore a key, previously unrecognized, mechanism by which mountain rivers rapidly digest extreme events and maintain their capacity to incise uplifted rocks. Upscaling these results to realistic populations of landslides show that removing half of the total sediment volume introduced by large earthquakes in the fluvial network would typically last 5 to 25 years in various tectonically active mountain belts, with little impact of topography and climate. If several studies indicate a strong dependency of total landslide volume to earthquake magnitude, our study show that the sediment export time of a landslide population is not strongly impacted by earthquake magnitude or by the total volume of the landslide population. Building on these new findings, we then investigate the dynamics of mountainous landscapes submitted to a series of earthquakes, following either a Gutenberg-Richter distribution or a single large magnitude event. We infer the temporal and spatial evolution of the number of active landslide deposits, of the sediment load along the fluvial network and of the exported sediment flux throughout several seismic cycles. These results highlight how landscapes and sediment fluxes respond on longer time scales to a succession of earthquakes able to trigger landslides.
The effects of the Yogyakarta earthquake at LUSI mud volcano, Indonesia
NASA Astrophysics Data System (ADS)
Lupi, M.; Saenger, E. H.; Fuchs, F.; Miller, S. A.
2013-12-01
The M6.3 Yogyakarta earthquake shook Central Java on May 27th, 2006. Forty seven hours later, hot mud outburst at the surface near Sidoarjo, approximately 250 km from the earthquake epicentre. The mud eruption continued and originated LUSI, the youngest mud volcanic system on earth. Since the beginning of the eruption, approximately 30,000 people lost their homes and 13 people died due to the mud flooding. The causes that initiated the eruption are still debated and are based on different geological observations. The earthquake-triggering hypothesis is supported by the evidence that at the time of the earthquake ongoing drilling operations experienced a loss of the drilling mud downhole. In addition, the eruption of the mud began only 47 hours after the Yogyakarta earthquake and the mud reached the surface at different locations aligned along the Watukosek fault, a strike-slip fault upon which LUSI resides. Moreover, the Yogyakarta earthquake also affected the volcanic activity of Mt. Semeru, located as far as Lusi from the epicentre of the earthquake. However, the drilling-triggering hypothesis points out that the earthquake was too far from LUSI for inducing relevant stress changes at depth and highlight how upwelling fluids that reached the surface first emerged only 200 m far from the drilling rig that was operative at the time. Hence, was LUSI triggered by the earthquake or by drilling operations? We conducted a seismic wave propagation study on a geological model based on vp, vs, and density values for the different lithologies and seismic profiles of the crust beneath LUSI. Our analysis shows compelling evidence for the effects produced by the passage of seismic waves through the geological formations and highlights the importance of the overall geological structure that focused and reflected incoming seismic energy.
Landslides triggered by the 1994 Northridge, California, earthquake
Harp, E.L.; Jibson, R.W.
1996-01-01
The 17 January 1994 Northridge, California, earthquake (Mw, = 6.7) triggered more than 11,000 landslides over an area of about 10,000 km2. Most of the landslides were concentrated in a 1000-km2 area that included the Santa Susana Mountains and the mountains north of the Santa Clara River valley. We mapped landslides triggered by the earthquake in the field and from 1:60,000-nominal-scale aerial photography provided by the U.S. Air Force and taken the morning of the earthquake; these mapped landslides were subsequently digitized and plotted in a GIS-based format. Most of the triggered landslides were shallow (1- to 5-m thick), highly disrupted falls and slides within weakly cemented Tertiary to Pleistocene clastic sediment. Average volumes of these types of landslides were less than 1000 m3, but many had volumes exceeding 100,000 m3. The larger disrupted slides commonly had runout paths of more than 50 m, and a few traveled as far as 200 m from the bases of steep parent slopes. Deeper (>5-m thick) rotational slumps and block slides numbered in the tens to perhaps hundreds, a few of which exceeded 100,000 m3 in volume. Most of these were reactivations of previously existing landslides. The largest single landslide triggered by the earthquake was a rotational slump/block slide having a volume of 8 ?? 106 m3. Analysis of the mapped landslide distribution with respect to variations in (1) landslide susceptibility and (2) strong shaking recorded by hundreds of instruments will form the basis of a seismic landslide hazard analysis of the Los Angeles area.
Large rock avalanches triggered by the M 7.9 Denali Fault, Alaska, earthquake of 3 November 2002
Jibson, R.W.; Harp, E.L.; Schulz, W.; Keefer, D.K.
2006-01-01
The moment magnitude (M) 7.9 Denali Fault, Alaska, earthquake of 3 November 2002 triggered thousands of landslides, primarily rock falls and rock slides, that ranged in volume from rock falls of a few cubic meters to rock avalanches having volumes as great as 20 ?? 106 m3. The pattern of landsliding was unusual: the number and concentration of triggered slides was much less than expected for an earthquake of this magnitude, and the landslides were concentrated in a narrow zone about 30-km wide that straddled the fault-rupture zone over its entire 300-km length. Despite the overall sparse landslide concentration, the earthquake triggered several large rock avalanches that clustered along the western third of the rupture zone where acceleration levels and ground-shaking frequencies are thought to have been the highest. Inferences about near-field strong-shaking characteristics drawn from interpretation of the landslide distribution are strikingly consistent with results of recent inversion modeling that indicate that high-frequency energy generation was greatest in the western part of the fault-rupture zone and decreased markedly to the east. ?? 2005 Elsevier B.V. All rights reserved.
Sato, H.P.; Harp, E.L.
2009-01-01
The 12 May 2008 M7.9 Wenchuan earthquake in the People's Republic of China represented a unique opportunity for the international community to use commonly available GIS (Geographic Information System) tools, like Google Earth (GE), to rapidly evaluate and assess landslide hazards triggered by the destructive earthquake and its aftershocks. In order to map earthquake-triggered landslides, we provide details on the applicability and limitations of publicly available 3-day-post- and pre-earthquake imagery provided by GE from the FORMOSAT-2 (formerly ROCSAT-2; Republic of China Satellite 2). We interpreted landslides on the 8-m-resolution FORMOSAT-2 image by GE; as a result, 257 large landslides were mapped with the highest concentration along the Beichuan fault. An estimated density of 0.3 landslides/km2 represents a minimum bound on density given the resolution of available imagery; higher resolution data would have identified more landslides. This is a preliminary study, and further study is needed to understand the landslide characteristics in detail. Although it is best to obtain landslide locations and measurements from satellite imagery having high resolution, it was found that GE is an effective and rapid reconnaissance tool. ?? 2009 Springer-Verlag.
Accounting for orphaned aftershocks in the earthquake background rate
Van Der Elst, Nicholas
2017-01-01
Aftershocks often occur within cascades of triggered seismicity in which each generation of aftershocks triggers an additional generation, and so on. The rate of earthquakes in any particular generation follows Omori's law, going approximately as 1/t. This function decays rapidly, but is heavy-tailed, and aftershock sequences may persist for long times at a rate that is difficult to discriminate from background. It is likely that some apparently spontaneous earthquakes in the observational catalogue are orphaned aftershocks of long-past main shocks. To assess the relative proportion of orphaned aftershocks in the apparent background rate, I develop an extension of the ETAS model that explicitly includes the expected contribution of orphaned aftershocks to the apparent background rate. Applying this model to California, I find that the apparent background rate can be almost entirely attributed to orphaned aftershocks, depending on the assumed duration of an aftershock sequence. This implies an earthquake cascade with a branching ratio (the average number of directly triggered aftershocks per main shock) of nearly unity. In physical terms, this implies that very few earthquakes are completely isolated from the perturbing effects of other earthquakes within the fault system. Accounting for orphaned aftershocks in the ETAS model gives more accurate estimates of the true background rate, and more realistic expectations for long-term seismicity patterns.
Accounting for orphaned aftershocks in the earthquake background rate
NASA Astrophysics Data System (ADS)
van der Elst, Nicholas J.
2017-11-01
Aftershocks often occur within cascades of triggered seismicity in which each generation of aftershocks triggers an additional generation, and so on. The rate of earthquakes in any particular generation follows Omori's law, going approximately as 1/t. This function decays rapidly, but is heavy-tailed, and aftershock sequences may persist for long times at a rate that is difficult to discriminate from background. It is likely that some apparently spontaneous earthquakes in the observational catalogue are orphaned aftershocks of long-past main shocks. To assess the relative proportion of orphaned aftershocks in the apparent background rate, I develop an extension of the ETAS model that explicitly includes the expected contribution of orphaned aftershocks to the apparent background rate. Applying this model to California, I find that the apparent background rate can be almost entirely attributed to orphaned aftershocks, depending on the assumed duration of an aftershock sequence. This implies an earthquake cascade with a branching ratio (the average number of directly triggered aftershocks per main shock) of nearly unity. In physical terms, this implies that very few earthquakes are completely isolated from the perturbing effects of other earthquakes within the fault system. Accounting for orphaned aftershocks in the ETAS model gives more accurate estimates of the true background rate, and more realistic expectations for long-term seismicity patterns.
A low-g electrostatically actuated resonant switch
NASA Astrophysics Data System (ADS)
Ramini, A.; Younis, M. I.; Su, Q. T.
2013-02-01
This work investigates a new concept of an electrostatically actuated resonant switch (EARS) for earthquake detection and low-g seismic applications. The resonator is designed to operate close to the instability bands of frequency-response curves, where it is forced to collapse dynamically (pull-in) if operated within these bands. By careful tuning, the resonator can be made to enter the pull-in instability zone upon the detection of the earthquake signal, thereby snapping down as an electric switch. Such a switching action can be functionalized for alarming purposes or can be used to activate a network of sensors for seismic activity recording. The EARS is modeled and its dynamic response is simulated using a nonlinear single-degree-of-freedom model. Experimental investigation is conducted demonstrating the EARS’ capability of being triggered at small levels of acceleration as low as 0.02g. Results for the switching events for several levels of low-g accelerations using both theory and experiments are presented and compared.
Johnson, Paul
2018-01-16
The only thing we know for sure about earthquakes is that one will happen again very soon. Earthquakes pose a vital yet puzzling set of research questions that have confounded scientists for decades, but new ways of looking at seismic information and innovative laboratory experiments are offering tantalizing clues to what triggers earthquakes â and when.
Lawrence, J. F.; Cochran, E.S.; Chung, A.; Kaiser, A.; Christensen, C. M.; Allen, R.; Baker, J.W.; Fry, B.; Heaton, T.; Kilb, Debi; Kohler, M.D.; Taufer, M.
2014-01-01
We test the feasibility of rapidly detecting and characterizing earthquakes with the Quake‐Catcher Network (QCN) that connects low‐cost microelectromechanical systems accelerometers to a network of volunteer‐owned, Internet‐connected computers. Following the 3 September 2010 M 7.2 Darfield, New Zealand, earthquake we installed over 180 QCN sensors in the Christchurch region to record the aftershock sequence. The sensors are monitored continuously by the host computer and send trigger reports to the central server. The central server correlates incoming triggers to detect when an earthquake has occurred. The location and magnitude are then rapidly estimated from a minimal set of received ground‐motion parameters. Full seismic time series are typically not retrieved for tens of minutes or even hours after an event. We benchmark the QCN real‐time detection performance against the GNS Science GeoNet earthquake catalog. Under normal network operations, QCN detects and characterizes earthquakes within 9.1 s of the earthquake rupture and determines the magnitude within 1 magnitude unit of that reported in the GNS catalog for 90% of the detections.
Role of reservoirs in sustained seismicity of Koyna-Warna region—a statistical analysis
NASA Astrophysics Data System (ADS)
Yadav, Amrita; Gahalaut, Kalpna; Purnachandra Rao, N.
2018-03-01
Koyna-Warna region in western India is a globally recognized site of reservoir-triggered seismicity near the Koyna and Warna reservoirs. The region has been reported with several M > 5 earthquakes in the last five decades including M6.3 Koyna earthquake which is considered as the largest triggered earthquake worldwide. In the present study, a detailed statistical analysis has been done for long period earthquake catalogues during 1968-2004 of MERI and 2005-2012 of CSIR-NGRI to find out the spatio-temporal influence of the Koyna and Warna reservoirs impoundment on the seismicity of the region. Depending upon the earthquake clusters, we divided the region into three different zones and performed power spectrum and singular spectrum analysis (SSA) on them. For the time period 1983-1995, the earthquake zone near the Warna reservoir; for 1996-2004, the earthquake zone near the Koyna reservoir; and for 2005-2012, the earthquake zone near the Warna reservoir found to be influenced by the annual water level variations in the reservoirs that confirm the continuous role of both the reservoirs in the seismicity of the Koyna-Warna region.
Swarms of repeating stick-slip glacierquakes triggered by snow loading at Mount Rainier volcano
NASA Astrophysics Data System (ADS)
Allstadt, K.; Malone, S. D.; Shean, D. E.; Fahnestock, M. A.; Vidale, J. E.
2013-12-01
We have detected over 150,000 low-frequency (~1-5 Hz) repeating earthquakes over the past decade at Mount Rainier volcano by scanning continuous seismic data from the permanent seismic network. Most of these were previously undetected due to their small size (M<1), shallow locations, and emergent waveforms. The earthquakes are located high (>3000 m) on the glacier-covered part of the edifice. They occur primarily in week- to month-long swarms of activity that strongly correlate with precipitation, namely snowfall, with a lag of about 1-2 days. Furthermore, there is a linear relationship between inter-event repeat time and the size of the subsequent event - consistent with slip-predictable stick-slip behavior. This pattern suggests that the additional load imparted by the sudden added weight of snow during winter storms triggers a temporary change from smooth aseismic sliding to seismic stick-slip basal sliding in locations where basal conditions are close to frictional instability. This sensitivity is analogous to the triggering of repeating earthquakes due to tiny overall stress changes in more traditional tectonic environments (e.g., tremor modulated by tides, dynamic triggering of repeating earthquakes). Using codawave interferometry on stacks of the repeating waveforms of the families with the most events, we found that the sources move at speeds of ~1 m/day. Using a GAMMA ground based radar interferometer, we collected spatially continuous line-of-sight velocities of several glaciers at Mount Rainier in both summer and late fall. We found that the faster parts of the glaciers also move at ~1 m/day or faster, even in late fall. Movement of the sources of these repeating earthquakes at glacial speeds indicates that the asperities are dirty patches that move with the ice rather than stationary bedrock bumps. The reappearance of some event families up to several years apart suggests that certain areas at the base of certain glaciers are prodigious producers of conditions favorable to this behavior. Stick-slip basal sliding of glaciers is supported over other potential moving shallow source mechanisms such as crevassing, unsteady fluid flow, and calving because the source must be non-destructive, highly repeatable at regular intervals, large enough to be detected on multiple stations, lack strong spectral peaks, and have a potential physical tie to the effects of winter precipitation. Identification of the source of these frequent signals offers a view of basal glacier processes, discriminates against alarming volcanic noises, and documents effects of weather on the cryosphere.
NASA Astrophysics Data System (ADS)
Huang, Da; Song, Yixiang; Cen, Duofeng; Fu, Guoyang
2016-12-01
Discontinuous deformation analysis (DDA) as an efficient technique has been extensively applied in the dynamic simulation of discontinuous rock mass. In the original DDA (ODDA), the Mohr-Coulomb failure criterion is employed as the judgment principle of failure between contact blocks, and the friction coefficient is assumed to be constant in the whole calculation process. However, it has been confirmed by a host of shear tests that the dynamic friction of rock joints degrades. Therefore, the friction coefficient should be gradually reduced during the numerical simulation of an earthquake-induced rockslide. In this paper, based on the experimental results of cyclic shear tests on limestone joints, exponential regression formulas are fitted for dynamic friction degradation, which is a function of the relative velocity, the amplitude of cyclic shear displacement and the number of its cycles between blocks with an edge-to-edge contact. Then, an improved DDA (IDDA) is developed by implementing the fitting regression formulas and a modified removing technique of joint cohesion, in which the cohesion is removed once the `sliding' or `open' state between blocks appears for the first time, into the ODDA. The IDDA is first validated by comparing with the theoretical solutions of the kinematic behaviors of a sliding block on an inclined plane under dynamic loading. Then, the program is applied to model the Donghekou landslide triggered by the 2008 Wenchuan earthquake in China. The simulation results demonstrate that the dynamic friction degradation of joints has great influences on the runout and velocity of sliding mass. Moreover, the friction coefficient possesses higher impact than the cohesion of joints on the kinematic behaviors of the sliding mass.
Segou, Margaret; Parsons, Thomas E.
2016-01-01
When a major earthquake strikes, the resulting devastation can be compounded or even exceeded by the subsequent cascade of triggered seismicity. As the Nepalese recover from the 25 April 2015 shock, knowledge of what comes next is essential. We calculate the redistribution of crustal stresses and implied earthquake probabilities for different periods, from daily to 30 years into the future. An initial forecast was completed before an M 7.3 earthquake struck on 12 May 2015 that enables a preliminary assessment; postforecast seismicity has so far occurred within a zone of fivefold probability gain. Evaluation of the forecast performance, using two months of seismic data, reveals that stress‐based approaches present improved skill in higher‐magnitude triggered seismicity. Our results suggest that considering the total stress field, rather than only the coseismic one, improves the spatial performance of the model based on the estimation of a wide range of potential triggered faults following a mainshock.
On the feedback between forearc morphotectonics and megathrust earthquakes in subduction zones
NASA Astrophysics Data System (ADS)
Rosenau, M.; Oncken, O.
2008-12-01
An increasing number of observations suggest an intrinsic relationship between short- and long-term deformation processes in subduction zones. These include the global correlation between megathrust earthquake slip patterns with morphotectonic forearc features, the historical predominance of giant earthquakes (M > 9) along accretionary margins and the occurrence of (slow and shallow) tsunami earthquakes along erosive margins. To gain insight into the interplay between seismogenesis and tectonics in subduction settings we have developed a new modeling technique which joins analog and elastic dislocation approaches. Using elastoplastic wedges overlying a rate- and state-dependent interface, we demonstrate how analog earthquakes drive permanent wedge deformation consistent with the dynamic Coulomb wedge theory and how wedge deformation in turn controls basal "seismicity". During an experimental run, elastoplastic wedges evolve from those comparable to accretionary margins, characterized by plastic wedge shortening, to those mimicking erosive margins, characterized by minor plastic deformation. Permanent shortening localizes at the periphery of the "seismogenic" zone leading to a "morphotectonic" segmentation of the upper plate. Along with the evolving segmentation of the wedge, the magnitude- frequency relationship and recurrence distribution of analog earthquakes develop towards more periodic events of similar size (i.e. characteristic earthquakes). From the experiments we infer a positive feedback between short- and long-term deformation processes which tends to stabilize the spatiotemporal patterns of elastoplastic deformation in subduction settings. We suggest (1) that forearc anatomy reflects the distribution of seismic and aseismic slip at depth, (2) that morphotectonic segmentation assists the occurrence of more characteristic earthquakes, (3) that postseismic near-trench shortening relaxes coseismic compression by megathrust earthquakes and thus reduces tsunami earthquake risk in accretionary settings and (4) that permanent coastal shortening allows adjacent segments to fail more synchronized thus triggering much greater earthquakes in accretionary settings.
Investigating Landslides Caused by Earthquakes A Historical Review
NASA Astrophysics Data System (ADS)
Keefer, David K.
Post-earthquake field investigations of landslide occurrence have provided a basis for understanding, evaluating, and mapping the hazard and risk associated withearthquake-induced landslides. This paper traces thehistorical development of knowledge derived from these investigations. Before 1783, historical accounts of the occurrence of landslides in earthquakes are typically so incomplete and vague that conclusions based on these accounts are of limited usefulness. For example, the number of landslides triggered by a given event is almost always greatly underestimated. The first formal, scientific post-earthquake investigation that included systematic documentation of the landslides was undertaken in the Calabria region of Italy after the 1783 earthquake swarm. From then until the mid-twentieth century, the best information on earthquake-induced landslides came from a succession ofpost-earthquake investigations largely carried out by formal commissions that undertook extensive ground-based field studies. Beginning in the mid-twentieth century, when the use of aerial photography became widespread, comprehensive inventories of landslide occurrence have been made for several earthquakes in the United States, Peru, Guatemala, Italy, El Salvador, Japan, and Taiwan. Techniques have also been developed for performing ``retrospective'' analyses years or decades after an earthquake that attempt to reconstruct the distribution of landslides triggered by the event. The additional use of Geographic Information System (GIS) processing and digital mapping since about 1989 has greatly facilitated the level of analysis that can applied to mapped distributions of landslides. Beginning in 1984, syntheses of worldwide and national data on earthquake-induced landslides have defined their general characteristics and relations between their occurrence and various geologic and seismic parameters. However, the number of comprehensive post-earthquake studies of landslides is still relatively small, and one of the most pressing needs in this area of research is for the complete documentation of landslides triggered by many more earthquakes in a wider variety of environments.
New Madrid Seismic Zone: a test case for naturally induced seismicity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nava, S.J.
1983-09-01
Induced seismicity caused by man-made events, such as the filling of reservoirs has been well documented. In contrast, naturally induced seismicity has received little attention. It has been shown that a fluctuation of as little as several bars can trigger reservoir induced earthquakes. Naturally occurring phenomena generate similar fluctuations and could trigger earthquakes where the faults in ambient stress field are suitably oriented and close to failure. The New Madrid Seismic Zone (NMSZ) presents an ideal test case for the study of naturally induced seismicity. The ideal data set for a study of triggering effects must contain a statistically significantmore » number of events, a constant accumulated strain, and a limited focal region. New Madrid earthquakes are well documented from 1974 to the present, down to a magnitude approx. 1.8. They lie in a distinct fault pattern and occur as a reaction to the regional stress regime. A statistical correlation was made between the earthquakes and a variety of different types of loads, to see if New Madrid seismicity could be triggered by natural fluctuations. The types of triggers investigated ranged from solid earth tides to variations in barometric pressure, rainfall, and stages of the Mississippi River. This analysis becomes complex because each factor investigated creates individual stresses, as well as having imbedded in it a reaction to other factors.« less
NASA Astrophysics Data System (ADS)
Belferman, Mariana; Katsman, Regina; Agnon, Amotz; Ben-Avraham, Zvi
2017-04-01
Despite the global, social and scientific impact of earthquakes, their triggering mechanisms remain often poorly defined. We suggest that dynamic changes in the levels of the historic water bodies occupying tectonic depressions at the Dead Sea Rift cause significant variations in the shallow crustal stress field and affect local fault systems in a way that may promote or suppress earthquakes. This mechanism and its spatial and temporal scales differ from those in tectonically-driven deformations. We use analytical and numerical poroelastic models to simulate immediate and delayed seismic responses resulting from the observed historic water level changes. The role of variability in the poroelastic and the elastic properties of the rocks composing the upper crust in inducing or retarding deformations under a strike-slip faulting regime is studied. The solution allows estimating a possible reduction in a seismic recurrence interval. Considering the historic water level fluctuation, our preliminary simulations show a promising agreement with paleo-seismic rates identified in the field.
Studies of earthquakes stress drops, seismic scattering, and dynamic triggering in North America
NASA Astrophysics Data System (ADS)
Escudero Ayala, Christian Rene
I use the Relative Source Time Function (RSTF) method to determine the source properties of earthquakes within southeastern Alaska-northwestern Canada in a first part of the project, and earthquakes within the Denali fault in a second part. I deconvolve a small event P-arrival signal from a larger event by the following method: select arrivals with a tapered cosine window, fast fourier transform to obtain the spectrum, apply water level deconvolution technique, and bandpass filter before inverse transforming the result to obtain the RSTF. I compare the source processes of earthquakes within the area to determine stress drop differences to determine their relation with the tectonic setting of the earthquakes location. Results show an consistency with previous results, stress drop independent of moment implying self-similarity, correlation of stress drop with tectonic regime, stress drop independent of depth, stress drop depends of focal mechanism where strike-slip present larger stress drops, and decreasing stress drop as function of time. I determine seismic wave attenuation in the central western United States using coda waves. I select approximately 40 moderate earthquakes (magnitude between 5.5 and 6.5) located alocated along the California-Baja California, California-Nevada, Eastern Idaho, Gulf of California, Hebgen Lake, Montana, Nevada, New Mexico, off coast of Northern California, off coast of Oregon, southern California, southern Illinois, Vancouver Island, Washington, and Wyoming regions. These events were recorded by the EarthScope transportable array (TA) network from 2005 to 2009. We obtain the data from the Incorporated Research Institutions for Seismology (IRIS). In this study we implement a method based on the assumption that coda waves are single backscattered waves from randomly distributed heterogeneities to calculate the coda Q. The frequencies studied lie between 1 and 15 Hz. The scattering attenuation is calculated for frequency bands centered at 1.5, 3, 5, 7.5, 10.5, and 13.5 Hz. Coda Q present a great correlation with tectonic and geology setting, as well as the crustal thickness. I analyze global and Middle American Subduction Zone (MASZ) seismicity from 1998 to 2008 to quantify the transient stresses effects at teleseismic distances. I use the Bulletin of the International Seismological Centre Catalog (ISCCD) published by the Incorporated Research Institutions for Seismology (IRIS). To identify MASZ seismicity changes due to distant, large (Mw ¿ 7) earthquakes, I first identify local earthquakes that occurred before and after the mainshocks. I then group the local earthquakes within a cluster radius between 75 to 200 km. I obtain statistics based on characteristics of both mainshocks and local earthquakes clusters, such as cluster-mainshock azimuth, mainshock focal mechanism, and local earthquakes clusters within the MASZ. Based on the lateral variations of the dip along the subducted oceanic plate, I divide the Mexican subduction zone into four segments. I then apply the Paired Samples Statistical Test (PSST) to the sorted data to identify increment, decrement or either in the local seismicity associated with distant large earthquakes passage of surface waves. I identify dynamic triggering for all MASZ segments produced by large earthquakes emerging from specific azimuths, as well as, a decrease for some cases. I find no dependence of seismicity changes on mainshock focal mechanism.
Generating functions and stability study of multivariate self-excited epidemic processes
NASA Astrophysics Data System (ADS)
Saichev, A. I.; Sornette, D.
2011-09-01
We present a stability study of the class of multivariate self-excited Hawkes point processes, that can model natural and social systems, including earthquakes, epileptic seizures and the dynamics of neuron assemblies, bursts of exchanges in social communities, interactions between Internet bloggers, bank network fragility and cascading of failures, national sovereign default contagion, and so on. We present the general theory of multivariate generating functions to derive the number of events over all generations of various types that are triggered by a mother event of a given type. We obtain the stability domains of various systems, as a function of the topological structure of the mutual excitations across different event types. We find that mutual triggering tends to provide a significant extension of the stability (or subcritical) domain compared with the case where event types are decoupled, that is, when an event of a given type can only trigger events of the same type.
Infrequent triggering of tremor along the San Jacinto Fault near Anza, California
Wang, Tien-Huei; Cochran, Elizabeth S.; Agnew, Duncan Carr; Oglesby, David D.
2013-01-01
We examine the conditions necessary to trigger tremor along the San Jacinto fault (SJF) near Anza, California, where previous studies suggest triggered tremor occurs, but observations are sparse. We investigate the stress required to trigger tremor using continuous broadband seismograms from 11 stations located near Anza, California. We examine 44 Mw≥7.4 teleseismic events between 2001 and 2011; these events occur at a wide range of back azimuths and hypocentral distances. In addition, we included one smaller‐magnitude, regional event, the 2009 Mw 6.5 Gulf of California earthquake, because it induced extremely high strains at Anza. We find the only episode of triggered tremor occurred during the 3 November 2002 Mw 7.8 Denali earthquake. The tremor episode lasted 300 s, was composed of 12 tremor bursts, and was located along SJF at the northwestern edge of the Anza gap at approximately 13 km depth. The tremor episode started at the Love‐wave arrival, when surface‐wave particle motions are primarily in the transverse direction. We find that the Denali earthquake induced the second highest stress (~35 kPa) among the 44 teleseismic events and 1 regional event. The dominant period of the Denali surface wave was 22.8 s, at the lower end of the range observed for all events (20–40 s), similar to periods shown to trigger tremor in other locations. The surface waves from the 2009 Mw 6.5 Gulf of California earthquake had the highest observed strain, yet a much shorter dominant period of 10 s and did not trigger tremor. This result suggests that not only the amplitude of the induced strain, but also the period of the incoming surface wave, may control triggering of tremors near Anza. In addition, we find that the transient‐shear stress (17–35 kPa) required to trigger tremor along the SJF at Anza is distinctly higher than what has been reported for the well‐studied San Andreas fault.
New constraints on mechanisms of remotely triggered seismicity at Long Valley Caldera
Brodsky, E.E.; Prejean, S.G.
2005-01-01
Regional-scale triggering of local earthquakes in the crust by seismic waves from distant main shocks has now been robustly documented for over a decade. Some of the most thoroughly recorded examples of repeated triggering of a single site from multiple, large earthquakes are measured in geothermal fields of the western United States like Long Valley Caldera. As one of the few natural cases where the causality of an earthquake sequence is apparent, triggering provides fundamental constraints on the failure processes in earthquakes. We show here that the observed triggering by seismic waves is inconsistent with any mechanism that depends on cumulative shaking as measured by integrated energy density. We also present evidence for a frequency-dependent triggering threshold. On the basis of the seismic records of 12 regional and teleseismic events recorded at Long Valley Caldera, long-period waves (>30 s) are more effective at generating local seismicity than short-period waves of comparable amplitude. If the properties of the system are stationary over time, the failure threshold for long-period waves is ~0.05 cm/s vertical shaking. Assuming a phase velocity of 3.5 km/s and an elastic modulus of 3.5 x 1010Pa, the threshold in terms of stress is 5 kPa. The frequency dependence is due in part to the attenuation of the surface waves with depth. Fluid flow through a porous medium can produce the rest of the observed frequency dependence of the threshold. If the threshold is not stationary with time, pore pressures that are >99.5% of lithostatic and vary over time by a factor of 4 could explain the observations with no frequency dependence of the triggering threshold. Copyright 2005 by the American Geophysical Union.
Security Implications of Induced Earthquakes
NASA Astrophysics Data System (ADS)
Jha, B.; Rao, A.
2016-12-01
The increase in earthquakes induced or triggered by human activities motivates us to research how a malicious entity could weaponize earthquakes to cause damage. Specifically, we explore the feasibility of controlling the location, timing and magnitude of an earthquake by activating a fault via injection and production of fluids into the subsurface. Here, we investigate the relationship between the magnitude and trigger time of an induced earthquake to the well-to-fault distance. The relationship between magnitude and distance is important to determine the farthest striking distance from which one could intentionally activate a fault to cause certain level of damage. We use our novel computational framework to model the coupled multi-physics processes of fluid flow and fault poromechanics. We use synthetic models representative of the New Madrid Seismic Zone and the San Andreas Fault Zone to assess the risk in the continental US. We fix injection and production flow rates of the wells and vary their locations. We simulate injection-induced Coulomb destabilization of faults and evolution of fault slip under quasi-static deformation. We find that the effect of distance on the magnitude and trigger time is monotonic, nonlinear, and time-dependent. Evolution of the maximum Coulomb stress on the fault provides insights into the effect of the distance on rupture nucleation and propagation. The damage potential of induced earthquakes can be maintained even at longer distances because of the balance between pressure diffusion and poroelastic stress transfer mechanisms. We conclude that computational modeling of induced earthquakes allows us to measure feasibility of weaponzing earthquakes and developing effective defense mechanisms against such attacks.
Rethinking the problem of ionosphere-lithosphere coupling
NASA Astrophysics Data System (ADS)
Ruzhin, Yuri; Novikov, Victor
2014-05-01
An overview of research of possible relations between variations of geomagnetic field and seismicity is presented, including Sq-variations and geomagnetic storms. There are many papers demonstrating positive correlations between geomagnetic field variations and subsequent earthquake occurrence that allows to authors to talk about earthquake triggering impact provided by ionospheric processes on lithosphere. Nevertheless, there is another opinion on negligible impact of geomagnetic disturbances on the earthquake source supported by statistical analysis of correlation between variations of geomagnetic field and global and regional seismicity. Mainly, the both points of view on this problem are based on statistical research without detailed consideration of possible physical mechanisms which may be involved into the supposed earthquake triggering, or very rough estimations of possible increase of stresses in the faults under critical (near to failure) state were made. Recently it was shown that the fluids may play very important role in the electromagnetic earthquake triggering, and the secondary triggering mechanism should be considered when the fluid migrating into the fault under electromagnetic action may provide fault weakening up to earthquake triggering threshold. At the same time, depending on fault orientation, local hydrological structure of the crust around the fault, location of fluid reservoirs, etc. it may be possible that fluid migration from the fault may provide the fault strengthening, and in this case the impact of variation of geomagnetic field may provide an opposite effect. In so doing, it is useless to apply only statistical approach for the problem of ionosphere-lithosphere coupling, and in each case the possible behavior of fluids should be considered under electromagnetic impact on lithosphere. Experimental results supporting this idea and obtained at the spring-block model simulating the seismic cycle (slow accumulation and sharp drop of stresses in the fault gauge), as well as field observations of water level variations in the well during ionospheric disturbances are presented and discussed.
Nucleation process and dynamic inversion of the Mw 6.9 Valparaíso 2017 earthquake in Central Chile
NASA Astrophysics Data System (ADS)
Ruiz, S.; Aden-Antoniow, F.; Baez, J. C., Sr.; Otarola, C., Sr.; Potin, B.; DelCampo, F., Sr.; Poli, P.; Flores, C.; Satriano, C.; Felipe, L., Sr.; Madariaga, R. I.
2017-12-01
The Valparaiso 2017 sequence occurred in mega-thrust Central Chile, an active zone where the last mega-earthquake occurred in 1730. An intense seismicity occurred 2 days before of the Mw 6.9 main-shock. A slow trench ward movement observed in the coastal GPS antennas accompanied the foreshock seismicity. Following the Mw 6.9 earthquake the seismicity migrated 30 Km to South-East. This sequence was well recorded by multi-parametric stations composed by GPS, Broad-Band and Strong Motion instruments. We built a seismic catalogue with 2329 events associated to Valparaiso sequence, with a magnitude completeness of Ml 2.8. We located all the seismicity considering a new 3D velocity model obtained for the Valparaiso zone, and compute the moment tensor for events with magnitude larger than Ml 3.5, and finally studied the presence of repeating earthquakes. The main-shock is studied by performing a dynamic inversion using the strong motion records and an elliptical patch approach to characterize the rupture process. During the two days nucleation stage, we observe a compact zone of repeater events. In the meantime a westward GPS movement was recorded in the coastal GPS stations. The aseismic moment estimated from GPS is larger than the foreshocks cumulative moment, suggesting the presence of a slow slip event, which potentially triggered the 6.9 mainshock. The Mw 6.9 earthquake is associated to rupture of an elliptical asperity of semi-axis of 10 km and 5 km, with a sub-shear rupture, stress drop of 11.71 MPa, yield stress of 17.21 MPa, slip weakening of 0.65 m and kappa value of 1.70. This sequence occurs close to, and with some similar characteristics that 1985 Valparaíso Mw 8.0 earthquake. The rupture of this asperity could stress more the highly locked Central Chile zone where a mega-thrust earthquake like 1730 is expected.
Nonlinear waves in earth crust faults: application to regular and slow earthquakes
NASA Astrophysics Data System (ADS)
Gershenzon, Naum; Bambakidis, Gust
2015-04-01
The genesis, development and cessation of regular earthquakes continue to be major problems of modern geophysics. How are earthquakes initiated? What factors determine the rapture velocity, slip velocity, rise time and geometry of rupture? How do accumulated stresses relax after the main shock? These and other questions still need to be answered. In addition, slow slip events have attracted much attention as an additional source for monitoring fault dynamics. Recently discovered phenomena such as deep non-volcanic tremor (NVT), low frequency earthquakes (LFE), very low frequency earthquakes (VLF), and episodic tremor and slip (ETS) have enhanced and complemented our knowledge of fault dynamic. At the same time, these phenomena give rise to new questions about their genesis, properties and relation to regular earthquakes. We have developed a model of macroscopic dry friction which efficiently describes laboratory frictional experiments [1], basic properties of regular earthquakes including post-seismic stress relaxation [3], the occurrence of ambient and triggered NVT [4], and ETS events [5, 6]. Here we will discuss the basics of the model and its geophysical applications. References [1] Gershenzon N.I. & G. Bambakidis (2013) Tribology International, 61, 11-18, http://dx.doi.org/10.1016/j.triboint.2012.11.025 [2] Gershenzon, N.I., G. Bambakidis and T. Skinner (2014) Lubricants 2014, 2, 1-x manuscripts; doi:10.3390/lubricants20x000x; arXiv:1411.1030v2 [3] Gershenzon N.I., Bykov V. G. and Bambakidis G., (2009) Physical Review E 79, 056601 [4] Gershenzon, N. I, G. Bambakidis, (2014a), Bull. Seismol. Soc. Am., 104, 4, doi: 10.1785/0120130234 [5] Gershenzon, N. I.,G. Bambakidis, E. Hauser, A. Ghosh, and K. C. Creager (2011), Geophys. Res. Lett., 38, L01309, doi:10.1029/2010GL045225. [6] Gershenzon, N.I. and G. Bambakidis (2014) Bull. Seismol. Soc. Am., (in press); arXiv:1411.1020
NASA Astrophysics Data System (ADS)
Su, C. C.; Chen, T. T.; Paull, C. K.; Gwiazda, R.; Chen, Y. H.; Lundsten, E. M.; Caress, D. W.; Hsu, H. H.; Liu, C. S.
2017-12-01
Since Heezen and Ewing's (1952) classic work on the 1929 Grand Banks earthquake, the damage of submarine cables have provided critical information on the nature of seafloor mass movements or sediment density flows. However, the understanding of the local conditions that lead to particular seafloor failures earthquakes trigger is still unclear. The Decemeber 26, 2006 Pingtung earthquake doublet which occurred offshore of Fangliao Township, southwestern Taiwan damaged 14 submarine cables between Gaoping slope to the northern terminus of the Manila Trench. Local fisherman reported disturbed waters at the head of the Fangliao submarine canyon, which lead to conjectures that eruptions of mud volcanoes which are common off the southwestern Taiwan. Geophysical survey were conducted to evaluate this area which revealed a series of faults, liquefied strata, pockmarks and acoustically transparent sediments with doming structures which may relate to the submarine groundwater discharge. Moreover, shipboard multi-beam bathymetric survey which was conducted at the east of Fangliao submarine canyon head shows over 10 km2 area with maximum depth around 40 m of seafloor subsidence after Pingtung earthquake. The north end of the subsidence is connected to the Fangliao submarine canyon where the first cable failed after Pingtung earthquake. The evidences suggests the earthquake triggered widespeard liquefaction and generated debris flows within Fangliao submarine canyon. In May 2017, an IONTU-MBARI Joint Survey Cruise (OR1-1163) was conducted on using MBARI Mapping AUV and miniROV to revisit the area where the cable damaged after Pingtung earthquake. From newly collected ultra-high-resolution (1-m lateral resolution) bathymetry data, the stair-stepped morphology is observed at the edge of canyon. The comet-shaped depressions are located along the main headwall of the seafloor failure. The new detailed bathymetry reveal details which suggest Fangliao submarine canyon head is preconditioned to failure. Submarine groundwater discharge from the Pingtung Plain and the southern tip of the Central Mountains is inferred to generate elevated pore pressures leaving the area susceptible to liquefaction and failure when triggered by earthquakes.
Inventory of landslides triggered by the 1994 Northridge, California earthquake
Harp, Edwin L.; Jibson, Randall W.
1995-01-01
The 17 January 1994 Northridge, California, earthquake (M=6.7) triggered more than 11,000 landslides over an area of about 10,000 km?. Most of the landslides were concentrated in a 1,000-km? area that includes the Santa Susana Mountains and the mountains north of the Santa Clara River valley. We mapped landslides triggered by the earthquake in the field and from 1:60,000-scale aerial photography provided by the U.S. Air Force and taken the morning of the earthquake; these were subsequently digitized and plotted in a GIS-based format, as shown on the accompanying maps (which also are accessible via Internet). Most of the triggered landslides were shallow (1-5 m), highly disrupted falls and slides in weakly cemented Tertiary to Pleistocene clastic sediment. Average volumes of these types of landslides were less than 1,000 m?, but many had volumes exceeding 100,000 m?. Many of the larger disrupted slides traveled more than 50 m, and a few moved as far as 200 m from the bases of steep parent slopes. Deeper ( >5 m) rotational slumps and block slides numbered in the hundreds, a few of which exceeded 100,000 m? in volume. The largest triggered landslide was a block slide having a volume of 8X10E06 m?. Triggered landslides damaged or destroyed dozens of homes, blocked roads, and damaged oil-field infrastructure. Analysis of landslide distribution with respect to variations in (1) landslide susceptibility and (2) strong shaking recorded by hundreds of instruments will form the basis of a seismic landslide hazard analysis of the Los Angeles area.
Jibson, R.W.
2002-01-01
Following the 17 January 1994 Northridge. California earthquake (M = 6.7), Ventura County, California, experienced a major outbreak of coccidioidomycosis (CM), commonly known as valley fever, a respiratory disease contracted by inhaling airborne fungal spores. In the 8 weeks following the earthquake (24 January through 15 March), 203 outbreak-associated cases were reported, which is about an order of magnitude more than the expected number of cases, and three of these cases were fatal. Simi Valley, in easternmost Ventura County, had the highest attack rate in the county, and the attack rate decreased westward across the county. The temporal and spatial distribution of CM cases indicates that the outbreak resulted from inhalation of spore-contaminated dust generated by earthquake-triggered landslides. Canyons North East of Simi Valley produced many highly disrupted, dust-generating landslides during the earthquake and its aftershocks. Winds after the earthquake were from the North East, which transported dust into Simi Valley and beyond to communities to the West. The three fatalities from the CM epidemic accounted for 4 percent of the total earthquake-related fatalities.
NASA Astrophysics Data System (ADS)
Jibson, Randall W.
Following the 17 January 1994 Northridge, California earthquake (M = 6.7), Ventura County, California, experienced a major outbreak ofcoccidioidomycosis (CM), commonly known as valley fever, a respiratory disease contracted byinhaling airborne fungal spores. In the 8 weeks following the earthquake (24 Januarythrough 15 March), 203 outbreak-associated cases were reported, which is about an order of magnitude more than the expected number of cases, and three of these cases were fatal.Simi Valley, in easternmost Ventura County, had the highest attack rate in the county,and the attack rate decreased westward across the county. The temporal and spatial distribution of CM cases indicates that the outbreak resulted from inhalation of spore-contaminated dust generated by earthquake-triggered landslides. Canyons North East of Simi Valleyproduced many highly disrupted, dust-generating landslides during the earthquake andits aftershocks. Winds after the earthquake were from the North East, which transporteddust into Simi Valley and beyond to communities to the West. The three fatalities from the CM epidemic accounted for 4 percent of the total earthquake-related fatalities.
Testing the stress shadow hypothesis
NASA Astrophysics Data System (ADS)
Felzer, Karen R.; Brodsky, Emily E.
2005-05-01
A fundamental question in earthquake physics is whether aftershocks are predominantly triggered by static stress changes (permanent stress changes associated with fault displacement) or dynamic stresses (temporary stress changes associated with earthquake shaking). Both classes of models provide plausible explanations for earthquake triggering of aftershocks, but only the static stress model predicts stress shadows, or regions in which activity is decreased by a nearby earthquake. To test for whether a main shock has produced a stress shadow, we calculate time ratios, defined as the ratio of the time between the main shock and the first earthquake to follow it and the time between the last earthquake to precede the main shock and the first earthquake to follow it. A single value of the time ratio is calculated for each 10 × 10 km bin within 1.5 fault lengths of the main shock epicenter. Large values of the time ratio indicate a long wait for the first earthquake to follow the main shock and thus a potential stress shadow, whereas small values indicate the presence of aftershocks. Simulations indicate that the time ratio test should have sufficient sensitivity to detect stress shadows if they are produced in accordance with the rate and state friction model. We evaluate the 1989 MW 7.0 Loma Prieta, 1992 MW 7.3 Landers, 1994 MW 6.7 Northridge, and 1999 MW 7.1 Hector Mine main shocks. For each main shock, there is a pronounced concentration of small time ratios, indicating the presence of aftershocks, but the number of large time ratios is less than at other times in the catalog. This suggests that stress shadows are not present. By comparing our results to simulations we estimate that we can be at least 98% confident that the Loma Prieta and Landers main shocks did not produce stress shadows and 91% and 84% confident that stress shadows were not generated by the Hector Mine and Northridge main shocks, respectively. We also investigate the long hypothesized existence of a stress shadow following the 1906 San Francisco Bay area earthquake. We find that while Bay Area catalog seismicity rates are lower in the first half of the twentieth century than in the last half of the nineteenth, this seismicity contrast is also true outside of the Bay Area, in regions not expected to contain a stress shadow. This suggests that the rate change is due to a more system wide effect, such as errors in the historical catalog or the decay of aftershocks of the larger 1857 Fort Tejon earthquake.
The near-source strong-motion accelerograms recorded by an experimental array in Tangshan, China
Peng, K.; Xie, Lingtian; Li, S.; Boore, D.M.; Iwan, W.D.; Teng, T.L.
1985-01-01
A joint research project on strong-motion earthquake studies between the People's Republic of China and the United States is in progress. As a part of this project, an experimental strong-motion array, consisting of twelve Kinemetrics PDR-1 Digital Event Recorders, was deployed in the meizoseismal area of the Ms = 7.8 Tangshan earthquake of July 28, 1976. These instruments have automatic gain ranging, a specified dynamic range of 102 dB, a 2.5 s pre-event memory, programmable triggering, and are equipped with TCG-1B Time Code Generators with a stability of 3 parts in 107 over a range of 0-50??C. In 2 y of operation beginning July, 1982 a total of 603 near-source 3-component accelerograms were gathered from 243 earthquakes of magnitude ML = 1.2-5.3. Most of these accelerograms have recorded the initial P-wave. The configuration of the experimental array and a representative set of near-source strong-motion accelerograms are presented in this paper. The set of accelerograms exhibited were obtained during the ML = 5.3 Lulong earthquake of October 19, 1982, when digital event recorders were triggered. The epicentral distances ranged from 4 to 41 km and the corresponding range of peak horizontal accelerations was 0.232g to 0.009g. A preliminary analysis of the data indicates that compared to motions in the western United States, the peak acceleration attenuates much more rapidly in the Tangshan area. The scaling of peak acceleration with magnitude, however, is similar in the two regions. Data at more distant sites are needed to confirm the more rapid attenuation. ?? 1985.
Twitter Seismology: Earthquake Monitoring and Response in a Social World
NASA Astrophysics Data System (ADS)
Bowden, D. C.; Earle, P. S.; Guy, M.; Smoczyk, G.
2011-12-01
The U.S. Geological Survey (USGS) is investigating how the social networking site Twitter, a popular service for sending and receiving short, public, text messages, can augment USGS earthquake response products and the delivery of hazard information. The potential uses of Twitter for earthquake response include broadcasting earthquake alerts, rapidly detecting widely felt events, qualitatively assessing earthquake damage effects, communicating with the public, and participating in post-event collaboration. Several seismic networks and agencies are currently distributing Twitter earthquake alerts including the European-Mediterranean Seismological Centre (@LastQuake), Natural Resources Canada (@CANADAquakes), and the Indonesian meteorological agency (@infogempabmg); the USGS will soon distribute alerts via the @USGSted and @USGSbigquakes Twitter accounts. Beyond broadcasting alerts, the USGS is investigating how to use tweets that originate near the epicenter to detect and characterize shaking events. This is possible because people begin tweeting immediately after feeling an earthquake, and their short narratives and exclamations are available for analysis within 10's of seconds of the origin time. Using five months of tweets that contain the word "earthquake" and its equivalent in other languages, we generate a tweet-frequency time series. The time series clearly shows large peaks correlated with the origin times of widely felt events. To identify possible earthquakes, we use a simple Short-Term-Average / Long-Term-Average algorithm similar to that commonly used to detect seismic phases. As with most auto-detection algorithms, the parameters can be tuned to catch more or less events at the cost of more or less false triggers. When tuned to a moderate sensitivity, the detector found 48 globally-distributed, confirmed seismic events with only 2 false triggers. A space-shuttle landing and "The Great California ShakeOut" caused the false triggers. This number of detections is very small compared to the 5,175 earthquakes in the USGS PDE global earthquake catalog for the same five month time period, and no accurate location or magnitude can be assigned based on Tweet data alone. However, Twitter earthquake detections are not without merit. The detections are generally caused by widely felt events that are of more immediate interest than those with no human impact. The detections are also fast; about 80% occurred within 2 minutes of the origin time. This is considerably faster than seismographic detections in poorly instrumented regions of the world. The tweets triggering the detections also provided (very) short first-impression narratives from people who experienced the shaking. The USGS will continue investigating how to use Twitter and other forms of social media to augment is current suite of seismographically derived products.
Theory of time-dependent rupture in the Earth
NASA Technical Reports Server (NTRS)
Das, S.; Scholz, C. H.
1980-01-01
Fracture mechanics is used to develop a theory of earthquake mechanism which includes the phenomenon of subcritical crack growth. The following phenomena are predicted: slow earthquakes, multiple events, delayed multiple events (doublets), postseismic rupture growth and afterslip, foreshocks, and aftershocks. The theory predicts a nucleation stage prior to an earthquake, and suggests a physical mechanism by which one earthquake may 'trigger' another.
NASA Astrophysics Data System (ADS)
Quigley, Mark C.; Hughes, Matthew W.; Bradley, Brendon A.; van Ballegooy, Sjoerd; Reid, Catherine; Morgenroth, Justin; Horton, Travis; Duffy, Brendan; Pettinga, Jarg R.
2016-03-01
Seismic shaking and tectonic deformation during strong earthquakes can trigger widespread environmental effects. The severity and extent of a given effect relates to the characteristics of the causative earthquake and the intrinsic properties of the affected media. Documentation of earthquake environmental effects in well-instrumented, historical earthquakes can enable seismologic triggering thresholds to be estimated across a spectrum of geologic, topographic and hydrologic site conditions, and implemented into seismic hazard assessments, geotechnical engineering designs, palaeoseismic interpretations, and forecasts of the impacts of future earthquakes. The 2010-2011 Canterbury Earthquake Sequence (CES), including the moment magnitude (Mw) 7.1 Darfield earthquake and Mw 6.2, 6.0, 5.9, and 5.8 aftershocks, occurred on a suite of previously unidentified, primarily blind, active faults in the eastern South Island of New Zealand. The CES is one of Earth's best recorded historical earthquake sequences. The location of the CES proximal to and beneath a major urban centre enabled rapid and detailed collection of vast amounts of field, geospatial, geotechnical, hydrologic, biologic, and seismologic data, and allowed incremental and cumulative environmental responses to seismic forcing to be documented throughout a protracted earthquake sequence. The CES caused multiple instances of tectonic surface deformation (≥ 3 events), surface manifestations of liquefaction (≥ 11 events), lateral spreading (≥ 6 events), rockfall (≥ 6 events), cliff collapse (≥ 3 events), subsidence (≥ 4 events), and hydrological (10s of events) and biological shifts (≥ 3 events). The terrestrial area affected by strong shaking (e.g. peak ground acceleration (PGA) ≥ 0.1-0.3 g), and the maximum distances between earthquake rupture and environmental response (Rrup), both generally increased with increased earthquake Mw, but were also influenced by earthquake location and source characteristics. However, the severity of a given environmental response at any given site related predominantly to ground shaking characteristics (PGA, peak ground velocities) and site conditions (water table depth, soil type, geomorphic and topographic setting) rather than earthquake Mw. In most cases, the most severe liquefaction, rockfall, cliff collapse, subsidence, flooding, tree damage, and biologic habitat changes were triggered by proximal, moderate magnitude (Mw ≤ 6.2) earthquakes on blind faults. CES environmental effects will be incompletely preserved in the geologic record and variably diagnostic of spatial and temporal earthquake clustering. Liquefaction feeder dikes in areas of severe and recurrent liquefaction will provide the best preserved and potentially most diagnostic CES features. Rockfall talus deposits and boulders will be well preserved and potentially diagnostic of the strong intensity of CES shaking, but challenging to decipher in terms of single versus multiple events. Most other phenomena will be transient (e.g., distal groundwater responses), not uniquely diagnostic of earthquakes (e.g., flooding), or more ambiguous (e.g. biologic changes). Preliminary palaeoseismic investigations in the CES region indicate recurrence of liquefaction in susceptible sediments of 100 to 300 yr, recurrence of severe rockfall event(s) of ca. 6000 to 8000 yr, and recurrence of surface rupturing on the largest CES source fault of ca. 20,000 to 30,000 yr. These data highlight the importance of utilising multiple proxy datasets in palaeoearthquake studies. The severity of environmental effects triggered during the strongest CES earthquakes was as great as or equivalent to any historic or prehistoric effects recorded in the geologic record. We suggest that the shaking caused by rupture of local blind faults in the CES comprised a 'worst case' seismic shaking scenario for parts of the Christchurch urban area. Moderate Mw blind fault earthquakes may contribute the highest proportion of seismic hazard, be the most important drivers of landscape evolution, and dominate the palaeoseismic record in some locations on Earth, including locations distal from any identified active faults. A high scientific priority should be placed on improving the spatial extent and quality of 'off-fault' shaking records of strong earthquakes, particularly near major urban centres.
NASA Astrophysics Data System (ADS)
Donnellan, A.; Grant Ludwig, L.; Rundle, J. B.; Parker, J. W.; Granat, R.; Heflin, M. B.; Pierce, M. E.; Wang, J.; Gunson, M.; Lyzenga, G. A.
2017-12-01
The 2010 M7.2 El Mayor - Cucapah earthquake caused extensive triggering of slip on faults proximal to the Salton Trough in southern California. Triggered slip and postseismic motions that have continued for over five years following the earthquake highlight connections between the El Mayor - Cucapah rupture and the network of faults that branch out along the southern Pacific - North American Plate Boundary. Coseismic triggering follows a network of conjugate faults from the northern end of the rupture to the Coachella segment of the southernmost San Andreas fault. Larger aftershocks and postseismic motions favor connections to the San Jacinto and Elsinore faults further west. The 2012 Brawley Swarm can be considered part of the branching on the Imperial Valley or east side of the plate boundary. Cluster analysis of long-term GPS velocities using Lloyds Algorithm, identifies bifurcation of the Pacific - North American plate boundary; The San Jacinto fault joins with the southern San Andreas fault, and the Salton Trough and Coachella segment of the San Andreas fault join with the Eastern California Shear Zone. The clustering analysis does not identify throughgoing deformation connecting the Coachella segment of the San Andreas fault with the rest of the San Andreas fault system through the San Gorgonio Pass. This observation is consistent with triggered slip from both the 1992 Landers and 2010 El Mayor - Cucapah earthquakes that follows the plate boundary bifurcation and with paleoseismic evidence of smaller earthquakes in the San Gorgonio Pass.
NASA Astrophysics Data System (ADS)
Wollherr, Stephanie; Gabriel, Alice-Agnes; Uphoff, Carsten
2018-05-01
The dynamics and potential size of earthquakes depend crucially on rupture transfers between adjacent fault segments. To accurately describe earthquake source dynamics, numerical models can account for realistic fault geometries and rheologies such as nonlinear inelastic processes off the slip interface. We present implementation, verification, and application of off-fault Drucker-Prager plasticity in the open source software SeisSol (www.seissol.org). SeisSol is based on an arbitrary high-order derivative modal Discontinuous Galerkin (ADER-DG) method using unstructured, tetrahedral meshes specifically suited for complex geometries. Two implementation approaches are detailed, modelling plastic failure either employing sub-elemental quadrature points or switching to nodal basis coefficients. At fine fault discretizations the nodal basis approach is up to 6 times more efficient in terms of computational costs while yielding comparable accuracy. Both methods are verified in community benchmark problems and by three dimensional numerical h- and p-refinement studies with heterogeneous initial stresses. We observe no spectral convergence for on-fault quantities with respect to a given reference solution, but rather discuss a limitation to low-order convergence for heterogeneous 3D dynamic rupture problems. For simulations including plasticity, a high fault resolution may be less crucial than commonly assumed, due to the regularization of peak slip rate and an increase of the minimum cohesive zone width. In large-scale dynamic rupture simulations based on the 1992 Landers earthquake, we observe high rupture complexity including reverse slip, direct branching, and dynamic triggering. The spatio-temporal distribution of rupture transfers are altered distinctively by plastic energy absorption, correlated with locations of geometrical fault complexity. Computational cost increases by 7% when accounting for off-fault plasticity in the demonstrating application. Our results imply that the combination of fully 3D dynamic modelling, complex fault geometries, and off-fault plastic yielding is important to realistically capture dynamic rupture transfers in natural fault systems.
NASA Astrophysics Data System (ADS)
Liu, J. Y.; Chen, C. H.; Sun, Y. Y.; Chen, C. H.; Tsai, H. F.; Yen, H. Y.; Chum, J.; Lastovicka, J.; Yang, Q. S.; Chen, W. S.; Wen, S.
2016-02-01
In this paper, concurrent/colocated measurements of seismometers, infrasonic systems, magnetometers, HF-CW (high frequency-continuous wave) Doppler sounding systems, and GPS receivers are employed to detect disturbances triggered by seismic waves of the 11 March 2011 M9.0 Tohoku earthquake. No time delay between colocated infrasonic (i.e., super long acoustic) waves and seismic waves indicates that the triggered acoustic and/or gravity waves in the atmosphere (or seismo-traveling atmospheric disturbances, STADs) near the Earth's surface can be immediately activated by vertical ground motions. The circle method is used to find the origin and compute the observed horizontal traveling speed of the triggered infrasonic waves. The speed of about 3.3 km/s computed from the arrival time versus the epicentral distance suggests that the infrasonic waves (i.e., STADs) are mainly induced by the Rayleigh waves. The agreements in the travel time at various heights between the observation and theoretical calculation suggest that the STADs triggered by the vertical motion of ground surface caused by the Tohoku earthquake traveled vertically from the ground to the ionosphere with speed of the sound in the atmosphere over Taiwan.
Corrigendum: Earthquakes triggered by silent slip events on Kīlauea volcano, Hawaii
Segall, Paul; Desmarais, Emily K.; Shelly, David; Miklius, Asta; Cervelli, Peter
2006-01-01
There was a plotting error in Fig. 1 that inadvertently displays earthquakes for the incorrect time interval. The location of earthquakes during the two-day-long slow-slip event of January 2005 are shown here in the corrected Fig. 1. Because the incorrect locations were also used in the Coulomb stress-change (CSC) calculation, the error could potentially have biased our interpretation of the depth of the slow-slip event, although in fact it did not. Because nearly all of the earthquakes, both background and triggered, are landward of the slow-slip event and at similar depths (6.5–8.5 km), the impact on the CSC calculations is negligible (Fig. 2; compare with Fig. 4 in original paper). The error does not alter our conclusion that the triggered events during the January 2005 slow-slip event were located on a subhorizontal plane at a depth of 7.5 1 km. This is therefore the most likely depth of the slow-slip events. We thank Cecily J. Wolfe for pointing out the error in the original Fig. 1.
Two cases of acute chest discomfort and the Central Italy earthquake.
Pannarale, Giuseppe; Torromeo, Concetta; Acconcia, Maria Cristina; Moretti, Andrea; De Angelis, Valentina; Tanzilli, Alessandra; Paravati, Vincenzo; Barillà, Francesco; Gaudio, Carlo
2017-03-01
We present the cases of two postmenopausal women presenting to our emergency department with acute chest discomfort soon after the Central Italy earthquake. Different diagnoses were made in the two patients. The role of the earthquake as a stressful event triggering diverse chest pain syndromes is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Paul
The only thing we know for sure about earthquakes is that one will happen again very soon. Earthquakes pose a vital yet puzzling set of research questions that have confounded scientists for decades, but new ways of looking at seismic information and innovative laboratory experiments are offering tantalizing clues to what triggers earthquakes — and when.
NASA Astrophysics Data System (ADS)
Yoshida, Keisuke; Hasegawa, Akira
2018-05-01
We investigated the distribution and migration of hypocenters of an earthquake swarm that occurred in Sendai-Okura (NE Japan) 15 days after the 2011 M9.0 Tohoku-Oki earthquake, despite the decrease in shear stress due to the static stress change. Hypocenters of 2476 events listed in the JMA catalogue were relocated based on the JMA unified catalogue data in conjunction with data obtained by waveform cross correlation. Hypocenter relocation was successful in delineating several thin planar structures, although the original hypocenters presented a cloud-like distribution. The hypocenters of this swarm event migrated along several planes from deeper to shallower levels rather than diffusing three-dimensionally. One of the nodal planes of the focal mechanisms was nearly parallel to the planar structure of the hypocenters, supporting the idea that each earthquake occurred by causing slip on parts of the same plane. The overall migration velocity of the hypocenters could be explained by the fluid diffusion model with a typical value of hydraulic diffusivity (0.15 m2/s); however, the occurrence of some burst-like activity with much higher migration velocity suggests the possibility that aseismic slip also contributed to triggering the earthquakes. We suggest that the 2011 Sendai-Okura earthquake swarm was generated as follows. (1) The 2011 Tohoku-Oki earthquake caused WNW-ESE extension in the focal region of the swarm, which accordingly reduced shear stress on the fault planes. However, the WNW-ESE extension allowed fluids to move upward from the S-wave reflectors in the mid-crust immediately beneath the focal region. (2) The fluids rising from the mid-crust intruded into several existing planes, which reduced their frictional strengths and caused the observed earthquake swarm. (3) The fluids, and accordingly, the hypocenters of the triggered earthquakes, migrated upward along the fault planes. It is possible that the fluids also triggered aseismic slip, which caused intermittent burst-like activity.
Modified-Fibonacci-Dual-Lucas method for earthquake prediction
NASA Astrophysics Data System (ADS)
Boucouvalas, A. C.; Gkasios, M.; Tselikas, N. T.; Drakatos, G.
2015-06-01
The FDL method makes use of Fibonacci, Dual and Lucas numbers and has shown considerable success in predicting earthquake events locally as well as globally. Predicting the location of the epicenter of an earthquake is one difficult challenge the other being the timing and magnitude. One technique for predicting the onset of earthquakes is the use of cycles, and the discovery of periodicity. Part of this category is the reported FDL method. The basis of the reported FDL method is the creation of FDL future dates based on the onset date of significant earthquakes. The assumption being that each occurred earthquake discontinuity can be thought of as a generating source of FDL time series The connection between past earthquakes and future earthquakes based on FDL numbers has also been reported with sample earthquakes since 1900. Using clustering methods it has been shown that significant earthquakes (<6.5R) can be predicted with very good accuracy window (+-1 day). In this contribution we present an improvement modification to the FDL method, the MFDL method, which performs better than the FDL. We use the FDL numbers to develop possible earthquakes dates but with the important difference that the starting seed date is a trigger planetary aspect prior to the earthquake. Typical planetary aspects are Moon conjunct Sun, Moon opposite Sun, Moon conjunct or opposite North or South Modes. In order to test improvement of the method we used all +8R earthquakes recorded since 1900, (86 earthquakes from USGS data). We have developed the FDL numbers for each of those seeds, and examined the earthquake hit rates (for a window of 3, i.e. +-1 day of target date) and for <6.5R. The successes are counted for each one of the 86 earthquake seeds and we compare the MFDL method with the FDL method. In every case we find improvement when the starting seed date is on the planetary trigger date prior to the earthquake. We observe no improvement only when a planetary trigger coincided with the earthquake date and in this case the FDL method coincides with the MFDL. Based on the MDFL method we present the prediction method capable of predicting global events or localized earthquakes and we will discuss the accuracy of the method in as far as the prediction and location parts of the method. We show example calendar style predictions for global events as well as for the Greek region using planetary alignment seeds.
Optical methods in fault dynamics
NASA Astrophysics Data System (ADS)
Uenishi, K.; Rossmanith, H. P.
2003-10-01
The Rayleigh pulse interaction with a pre-stressed, partially contacting interface between similar and dissimilar materials is investigated experimentally as well as numerically. This study is intended to obtain an improved understanding of the interface (fault) dynamics during the earthquake rupture process. Using dynamic photoelasticity in conjunction with high-speed cinematography, snapshots of time-dependent isochromatic fringe patterns associated with Rayleigh pulse-interface interaction are experimentally recorded. It is shown that interface slip (instability) can be triggered dynamically by a pulse which propagates along the interface at the Rayleigh wave speed. For the numerical investigation, the finite difference wave simulator SWIFD is used for solving the problem under different combinations of contacting materials. The effect of acoustic impedance ratio of the two contacting materials on the wave patterns is discussed. The results indicate that upon interface rupture, Mach (head) waves, which carry a relatively large amount of energy in a concentrated form, can be generated and propagated from the interface contact region (asperity) into the acoustically softer material. Such Mach waves can cause severe damage onto a particular region inside an adjacent acoustically softer area. This type of damage concentration might be a possible reason for the generation of the "damage belt" in Kobe, Japan, on the occasion of the 1995 Hyogo-ken Nanbu (Kobe) Earthquake.
Constraints on Dynamic Triggering from very Short term Microearthquake Aftershocks at Parkfield
NASA Astrophysics Data System (ADS)
Ampuero, J.; Rubin, A.
2004-12-01
The study of microearthquakes helps bridge the gap between laboratory experiments and data from large earthquakes, the two disparate scales that have contributed so far to our understanding of earthquake physics. Although they are frequent, microearthquakes are difficult to analyse. Applying high precision relocation techniques, Rubin and Gillard (2000) observed a pronounced asymmetry in the spatial distribution of the earliest and nearest aftershocks of microearthquakes along the San Andreas fault (they occur more often to the NW of the mainshock). It was suggested that this could be related to the velocity contrast across the fault. Preferred directivity of dynamic rupture pulses running along a bimaterial interface (to the SE in the case of the SAF) is expected on theoretical grounds. Our numerical simulations of crack-like rupture on such interfaces show a pronounced asymmetry of the stress histories beyond the rupture ends, and suggest two possible mechanisms for the observed asymmetry: First, that it results from an asymmmetry in the static stress field following arrest of the mainshock (closer to failure to the NW), or second, that it is due to a short-duration tensile pulse that propagates to the SE, which could reduce the number of aftershocks to the SE by dynamic triggering of any nucleation site close enough to failure to have otherwise produced an aftershock. To distinguish betwen these mechanisms we need observations of dynamic triggering in microseismicity. For small events triggered at a distance of some mainshock radii, triggering time scales are so short that seismograms of both events overlap. To detect the occurrence of compound events and very short term aftershocks in the HRSN Parkfield archived waveforms we have developed an automated search algorithm based on empirical Green's function (EGF) deconvolution. Optimal EGFs are first selected by the coherency of the cross-component convolution with respect to the target event. Then Landweber deconvolution is applied. The resulting source time functions (STF) are often noisy and corrupted by sidelobes due to finite frequency band of the data. They are scanned for subevents, exploiting the consistency of the occurrence of secondary peaks (outliers among the STF maxima) throughout the 30 network channels. Subevents are picked, in many cases to sub-sample precision, by waveform fitting using all the EGFs available. We have detected a total of 30 such multiple or compound eve nts with inter-event delays of less than one second, in a catalog that spans over 10 years of seismicity in Parkfield (2300 cataloged events in our working box). Most of them are not detectable by visual inspection of the seismograms. In most cases, their timing and relative location are consistent with dynamic triggering. Also, the seismicity rate at very early times (less than 0.1 seconds) seems higher than expected from the longer term aftershock seismicity rate observed in the region. This points to dynamic effects in very short term aftershock decay. Finally, more of these immediate aftershocks occur to the NW, as with the earlier NCSN results, although the number of events analysed so far is small. We will discuss these and ongoing observations from the standpoint of dynamic rupture on bimaterial interfaces, supported by numerical simulations.
NASA Astrophysics Data System (ADS)
Lee, S.-M.
2005-05-01
In just over three months, two large earthquakes (magnitudes Mw = 9.0 and 8.7), separated only by a few hundred kilometers in epicenter distance, shook the fore-arc region of the northern Sumatra. According to preliminary reports released by USGS (http://neic.usgs.gov), the seismic moment tensor solutions of the two events match quite well, suggesting that the movement of fault blocks that triggered them was similar. Yet the two earthquakes had drastically different consequence: the December 2004 earthquake triggered a catastrophic tsunami whereas the March 2005 earthquake did not. This difference raises an important question that the December 2004 tsunami was not actually triggered by the faulting itself but by submarine landslide. Earthquake-triggered submarine landslides can sometimes be overlooked as the direct cause of major tsunamis because their location often coincides with the fault rupture zones, but are known to be an important source especially along the active margins with high sedimentation rate. Scientists suspect that a similar event happened on July 17, 1998, when a magnitude 7.0 earthquake triggered by low-angle thrust fault caused a submarine slumping, which in turn generated the tsunami that devastated the coastal region in NW Papua New Guinea, killing more than 2000 human lives. If this was the case in Sumatra, it explains why a major tsunami did not occur following the March 2005 earthquake. A large amount of the sediment deposited along the continental margin by the erosion of high mountain ranges of Sumatra had already slid down the continental slope during the earthquake on December 26, 2004, and therefore not much volume of sediment was left to slide down and generate another major tsunami. The submarine topography may have also been a factor as the area around the epicenter of March 2005 earthquake has a longer extent of steep down-slope section compared to that of December 2004. In addition, the region around December 2004 earthquake has well-developed fore-arc basin which runs sub-parallel to the coastline. Multi-beam bathymetry HMS Scott immediately following the December 2004 earthquake shows evidence for a wide-spread submarine landslide. However, it is unclear at this stage if the submarine landslide was large enough to explain the far-field tsunami observations. Facilitated by humid tropic condition and steep relief, as in Papua New Guinea, the high mountains of Sumatra produce disproportionately a large amount of sediment which is being transported to the ocean. In a matter of time, the sediment piled up on the continental shelf and slope will find its way to the bottom of the seafloor, which in this case would be near the trench axis, approximately 5 km below the sea level. Thus, the March 2005 earthquake provides us an important insight that the accumulation of sediment as opposed to tectonic stress may have been a key factor in generating the tsunami of December 26, 2004.
Fault Interaction and Stress Accumulation in Chaman Fault System, Balouchistan, Pakistan, Since 1892
NASA Astrophysics Data System (ADS)
Riaz, M. S.; Shan, B.; Xiong, X.; Xie, Z.
2017-12-01
The curved-shaped left-lateral Chaman fault is the Western boundary of the Indian plate, which is approximately 1000 km long. The Chaman fault is an active fault and also locus of many catastrophic earthquakes. Since the inception of strike-slip movement at 20-25Ma along the western collision boundary between Indian and Eurasian plates, the average geologically constrained slip rate of 24 to 35 mm/yr accounts for a total displacement of 460±10 km along the Chaman fault system (Beun et al., 1979; Lawrence et al., 1992). Based on earthquake triggering theory, the change in Coulomb Failure Stress (DCFS) either halted (shadow stress) or advances (positive stress) the occurrence of subsequent earthquakes. Several major earthquakes occurred in Chaman fault system, and this region is poorly studied to understand the earthquake/fault interaction and hazard assessment. In order to do so, we have analyzed the earthquakes catalog and collected significant earthquakes with M ≥6.2 since 1892. We then investigate the evolution of DCFS in the Chaman fault system is computed by integration of coseismic static and postseismic viscoelastic relaxation stress transfer since the 1892, using the codePSGRN/PSCMP (Wang et al., 2006). Moreover, for postseismic stress transfer simulation, we adopted linear Maxwell rheology to calculate the viscoelastic effects in this study. Our results elucidate that three out of four earthquakes are triggered by the preceding earthquakes. The 1892-earthquake with magnitude Mw6.8, which occurred on the North segment of Chaman fault has not influence the 1935-earthquake which occurred on Ghazaband fault, a parallel fault 20km east to Chaman fault. The 1935-earthquake with magnitude Mw7.7 significantly loaded the both ends of rupture with positive stress (CFS ≥0.01 Mpa), which later on triggered the 1975-earthquake with 23% of its rupture length where CFS ≥0.01 Mpa, on Chaman fault, and 1990-earthquke with 58% of its rupture length where CFS ≥0.01 Mpa, on Ghazaband fault. Since the 1935-earthquke significantly increased the stress on both ends of its rupture, the 2013-earthquake with magnitude Mw7.7 occurred on Hoshab fault in the positive stress zone with 26% of its rupture length where CFS ≥0.01 Mpa, Fig 1. Our results revealed the interaction among the earthquakes as well as faults in the study region.
NASA Astrophysics Data System (ADS)
Hreinsdottir, Sigrun
2005-07-01
GPS geodetic measurements are used to study two major earthquakes, the 2001 MW 7.7 El Salvador and 2002 MW 7.9 Denali Fault earthquakes. The 2001 MW 7.7 earthquake was a normal fault event in the subducting Cocos plate offshore El Salvador. Coseismic displacements of up to 15 mm were measured at permanent GPS stations in Central America. The GPS data were used to constrain the location of and slip on the normal fault. One month later a MW 6.6 strike-slip earthquake occurred in the overriding Caribbean plate. Coulomb stress changes estimated from the M W 7.7 earthquake suggest that it triggered the MW 6.6 earthquake. Coseismic displacement from the MW 6.6 earthquake, about 40 mm at a GPS station in El Salvador, indicates that the earthquake triggered additional slip on a fault close to the GPS station. The MW 6.6 earthquake further changed the stress field in the overriding Caribbean plate, with triggered seismic activity occurring west and possibly also to the east of the rupture in the days to months following the earthquake. The MW 7.9 Denali Fault earthquake ruptured three faults in the interior of Alaska. It initiated with a thrust motion on the Susitna Glacier fault but then ruptured the Denali and Totschunda faults with predominantly right-lateral strike-slip motion unilaterally from west to east. GPS data measured in the two weeks following the earthquake suggest a complex coseismic rupture along the faults with two main regions of moment release along the Denali fault. A large amount of additional data were collected in the year following the earthquake which greatly improved the resolution on the fault, revealing more details of the slip distribution. We estimate a total moment release of 6.81 x 1020 Nm in the earthquake with a M W 7.2 thrust subevent on Susitna Glacier fault. The slip on the Denali fault is highly variable, with 4 main pulses of moment release. The largest moment pulse corresponds to a MW 7.5 subevent, about 40 km west of the Denali-Totschunda fault junction. We estimate relatively low and shallow slip on the Totschunda fault.
NASA Astrophysics Data System (ADS)
Gu, C.; Toksoz, M. N.; Marzouk, Y.; Al-Enezi, A.; Al-Jeri, F.; Buyukozturk, O.
2016-12-01
The increasing seismic activity in the regions of oil/gas fields due to fluid injection/extraction and hydraulic fracturing has drawn new attention in both academia and industry. Source mechanism and triggering stress of these induced earthquakes are of great importance for understanding the physics of the seismic processes in reservoirs, and predicting ground motion in the vicinity of oil/gas fields. The induced seismicity data in our study are from Kuwait National Seismic Network (KNSN). Historically, Kuwait has low local seismicity; however, in recent years the KNSN has monitored more and more local earthquakes. Since 1997, the KNSN has recorded more than 1000 earthquakes (Mw < 5). In 2015, two local earthquakes - Mw4.5 in 03/21/2015 and Mw4.1 in 08/18/2015 - have been recorded by both the Incorporated Research Institutions for Seismology (IRIS) and KNSN, and widely felt by people in Kuwait. These earthquakes happen repeatedly in the same locations close to the oil/gas fields in Kuwait (see the uploaded image). The earthquakes are generally small (Mw < 5) and are shallow with focal depths of about 2 to 4 km. Such events are very common in oil/gas reservoirs all over the world, including North America, Europe, and the Middle East. We determined the location and source mechanism of these local earthquakes, with the uncertainties, using a Bayesian inversion method. The triggering stress of these earthquakes was calculated based on the source mechanisms results. In addition, we modeled the ground motion in Kuwait due to these local earthquakes. Our results show that most likely these local earthquakes occurred on pre-existing faults and were triggered by oil field activities. These events are generally smaller than Mw 5; however, these events, occurring in the reservoirs, are very shallow with focal depths less than about 4 km. As a result, in Kuwait, where oil fields are close to populated areas, these induced earthquakes could produce ground accelerations high enough to cause damage to local structures without using seismic design criteria.
NASA Astrophysics Data System (ADS)
Klose, Christian D.
2013-01-01
A global catalog of small- to large-sized earthquakes was systematically analyzed to identify causality and correlatives between human-made mass shifts in the upper Earth's crust and the occurrence of earthquakes. The mass shifts, ranging between 1 kt and 1 Tt, result from large-scale geoengineering operations, including mining, water reservoirs, hydrocarbon production, fluid injection/extractions, deep geothermal energy production and coastal management. This article shows evidence that geomechanical relationships exist with statistical significance between (a) seismic moment magnitudes M of observed earthquakes, (b) lateral distances of the earthquake hypocenters to the geoengineering "operation points" and (c) mass removals or accumulations on the Earth's crust. Statistical findings depend on uncertainties, in particular, of source parameter estimations of seismic events before instrumental recoding. Statistical observations, however, indicate that every second, seismic event tends to occur after a decade. The chance of an earthquake to nucleate after 2 or 20 years near an area with a significant mass shift is 25 or 75 %, respectively. Moreover, causative effects of seismic activities highly depend on the tectonic stress regime in which the operations take place (i.e., extensive, transverse or compressive). Results are summarized as follows: First, seismic moment magnitudes increase the more mass is locally shifted on the Earth's crust. Second, seismic moment magnitudes increase the larger the area in the crust is geomechanically polluted. Third, reverse faults tend to be more trigger-sensitive than normal faults due to a stronger alteration of the minimum vertical principal stress component. Pure strike-slip faults seem to rupture randomly and independently from the magnitude of the mass changes. Finally, mainly due to high estimation uncertainties of source parameters and, in particular, of shallow seismic events (<10 km), it remains still very difficult to discriminate between induced and triggered earthquakes with respect to the data catalog of this study. However, first analyses indicate that small- to medium-sized earthquakes (
Tidal Triggering of Microearthquakes Over an Eruption Cycle at 9°50'N East Pacific Rise
NASA Astrophysics Data System (ADS)
Tan, Yen Joe; Tolstoy, Maya; Waldhauser, Felix; Bohnenstiehl, DelWayne R.
2018-02-01
Studies have found that earthquake timing often correlates with tides at mid-ocean ridges and some terrestrial settings. Studies have also suggested that tidal triggering may preferentially happen when a region is critically stressed, making it a potential tool to forecast earthquakes and volcanic eruptions. We examine tidal triggering of ˜100,000 microearthquakes near 9°50'N East Pacific Rise recorded between October 2003 and January 2007, which encompasses an eruption in January 2006. This allows us to look at how tidal triggering signal varies over an eruption cycle to examine its utility as a forecasting tool. We find that tidal triggering signal is strong but does not vary systematically in the 2+ years leading up to the eruption. However, tidal triggering signal disappears immediately posteruption. Our findings suggest that tidal triggering variation may not be useful for forecasting mid-ocean ridge eruptions over a 2+ year timescale but might be useful over a longer timescale.
NASA Astrophysics Data System (ADS)
West, A. Joshua; Hetzel, Ralf; Li, Gen; Jin, Zhangdong; Zhang, Fei; Hilton, Robert G.; Densmore, Alexander L.
2014-06-01
The concentration of 10Be in detrital quartz (10Beqtz) from river sediments is now widely used to quantify catchment-wide denudation rates but may also be sensitive to inputs from bedrock landslides that deliver sediment with low 10Beqtz. Major landslide-triggering events can provide large amounts of low-concentration material to rivers in mountain catchments, but changes in river sediment 10Beqtz due to such events have not yet been measured directly. Here we examine the impact of widespread landslides triggered by the 2008 Wenchuan earthquake on 10Beqtz in sediment samples from the Min Jiang river basin, in Sichuan, China. Landslide deposit material associated with the Wenchuan earthquake has consistently lower 10Beqtz than in river sediment prior to the earthquake. River sediment 10Beqtz decreased significantly following the earthquake downstream of areas of high coseismic landslide occurrence (i.e., with greater than ∼0.3% of the upstream catchment area affected by landslides), because of input of the 10Be-depleted landslide material, but showed no systematic changes where landslide occurrence was low. Changes in river sediment 10Beqtz concentration were largest in small first-order catchments but were still significant in large river basins with areas of 104-105 km. Spatial and temporal variability in river sediment 10Beqtz has important implications for inferring representative denudation rates in tectonically active, landslide-dominated environments, even in large basins. Although the dilution of 10Beqtz in river sediment by landslide inputs may complicate interpretation of denudation rates, it also may provide a possible opportunity to track the transport of landslide sediment. The associated uncertainties are large, but in the Wenchuan case, calculations based on 10Be mixing proportions suggest that river sediment fluxes in the 2-3 years following the earthquake increased by a similar order of magnitude in the 0.25-1 mm and the <0.25 mm size fractions, as determined from 10Beqtz mixing calculations and hydrological gauging, respectively. Such information could provide new insight into sediment transfer, with implications for secondary sediment-related hazards and for understanding the removal of mass from mountains.
What Can Sounds Tell Us About Earthquake Interactions?
NASA Astrophysics Data System (ADS)
Aiken, C.; Peng, Z.
2012-12-01
It is important not only for seismologists but also for educators to effectively convey information about earthquakes and the influences earthquakes can have on each other. Recent studies using auditory display [e.g. Kilb et al., 2012; Peng et al. 2012] have depicted catastrophic earthquakes and the effects large earthquakes can have on other parts of the world. Auditory display of earthquakes, which combines static images with time-compressed sound of recorded seismic data, is a new approach to disseminating information to a general audience about earthquakes and earthquake interactions. Earthquake interactions are influential to understanding the underlying physics of earthquakes and other seismic phenomena such as tremors in addition to their source characteristics (e.g. frequency contents, amplitudes). Earthquake interactions can include, for example, a large, shallow earthquake followed by increased seismicity around the mainshock rupture (i.e. aftershocks) or even a large earthquake triggering earthquakes or tremors several hundreds to thousands of kilometers away [Hill and Prejean, 2007; Peng and Gomberg, 2010]. We use standard tools like MATLAB, QuickTime Pro, and Python to produce animations that illustrate earthquake interactions. Our efforts are focused on producing animations that depict cross-section (side) views of tremors triggered along the San Andreas Fault by distant earthquakes, as well as map (bird's eye) views of mainshock-aftershock sequences such as the 2011/08/23 Mw5.8 Virginia earthquake sequence. These examples of earthquake interactions include sonifying earthquake and tremor catalogs as musical notes (e.g. piano keys) as well as audifying seismic data using time-compression. Our overall goal is to use auditory display to invigorate a general interest in earthquake seismology that leads to the understanding of how earthquakes occur, how earthquakes influence one another as well as tremors, and what the musical properties of these interactions can tell us about the source characteristics of earthquakes and tremors.
Rupture Dynamics along Thrust Dipping Fault: Inertia Effects due to Free Surface Wave Interactions
NASA Astrophysics Data System (ADS)
Vilotte, J. P.; Scala, A.; Festa, G.
2017-12-01
We numerically investigate the dynamic interaction between free surface and up-dip, in-plane rupture propagation along thrust faults, under linear slip-weakening friction. With reference to shallow along-dip rupture propagation during large subduction earthquakes, we consider here low dip-angle fault configurations with fixed strength excess and depth-increasing initial stress. In this configuration, the rupture undergoes a break of symmetry with slip-induced normal stress perturbations triggered by the interaction with reflected waves from the free surface. We found that both body-waves - behind the crack front - and surface waves - at the crack front - can trigger inertial effects. When waves interact with the rupture before this latter reaches its asymptotic speed, the rupture can accelerate toward the asymptotic speed faster than in the unbounded symmetric case, as a result of these inertial effects. Moreover, wave interaction at the crack front also affects the slip rate generating large ground motion on the hanging wall. Imposing the same initial normal stress, frictional strength and stress drop while varying the static friction coefficient we found that the break of symmetry makes the rupture dynamics dependent on the absolute value of friction. The higher the friction the stronger the inertial effect both in terms of rupture acceleration and slip amount. When the contact condition allows the fault interface to open close to the free surface, the length of the opening zone is shown to depend on the propagation length, the initial normal stress and the static friction coefficient. These new results are shown to agree with analytical results of rupture propagation in bounded media, and open new perspectives for understanding the shallow rupture of large subduction earthquakes and tsunami sources.
A mechanism for sustained groundwater pressure changes induced by distant earthquakes
Brodsky, E.E.; Roeloffs, E.; Woodcock, D.; Gall, I.; Manga, M.
2003-01-01
Large sustained well water level changes (>10 cm) in response to distant (more than hundreds of kilometers) earthquakes have proven enigmatic for over 30 years. Here we use high sampling rates at a well near Grants Pass, Oregon, to perform the first simultaneous analysis of both the dynamic response of water level and sustained changes, or steps. We observe a factor of 40 increase in the ratio of water level amplitude to seismic wave ground velocity during a sudden coseismic step. On the basis of this observation we propose a new model for coseismic pore pressure steps in which a temporary barrier deposited by groundwater flow is entrained and removed by the more rapid flow induced by the seismic waves. In hydrothermal areas, this mechanism could lead to 4 ?? 10-2 MPa pressure changes and triggered seismicity.
Map of landslides triggered by the January 12, 2010, Haiti earthquake
Harp, Edwin L.; Jibson, Randall W.; Schmitt, Robert G.
2016-04-12
The magnitude (M) 7.0 Haiti earthquake of January 12, 2010, triggered landslides throughout much of Haiti on the island of Hispaniola in the Caribbean Sea. The epicenter of the quake was located at 18.44°N., 72.57°W. at a depth of 13 kilometers (km) approximately 25 km southwest of the capital, Port-au-Prince. Although estimates vary widely, the most reliable surveys of casualties indicate that the earthquake caused 158,679 fatalities and more than 300,000 injuries. The U.S. Geological Survey compared publicly available satellite imagery acquired both before and after the earthquake and mapped 23,567 landslides that were triggered by the strong shaking. Our mapping from aerial photography and satellite imagery was augmented by field observations.Most of the landslides triggered by the earthquake were south of the Léogâne fault on the footwall and were fairly shallow falls and slides in weathered limestone (2–5 meters [m] thick) and volcanic rock and soil (generally <1 m thick). Landslides extended from the north to the south coasts of the southwestern peninsula (southwest of Port-au-Prince) and almost 60 km to the east and west of the epicenter. The highest concentration of landslides was on the steep limestone slopes of incised river valleys, but large numbers of landslides also occurred on gentler slopes in weathered volcanic rocks. Although some high landslide concentrations did occur near areas of maximum fault slip, the overall distribution of landslides appears to involve complex interactions between geology, topography, and strong shaking with limited spatial correlation between fault slip and landslides.
Two cases of acute chest discomfort and the Central Italy earthquake
Pannarale, Giuseppe; Torromeo, Concetta; Acconcia, Maria Cristina; Moretti, Andrea; De Angelis, Valentina; Tanzilli, Alessandra; Paravati, Vincenzo; Barillà, Francesco; Gaudio, Carlo
2017-01-01
Abstract We present the cases of two postmenopausal women presenting to our emergency department with acute chest discomfort soon after the Central Italy earthquake. Different diagnoses were made in the two patients. The role of the earthquake as a stressful event triggering diverse chest pain syndromes is discussed. PMID:29744121
Harp, E.L.; Keefer, D.K.; Wilson, R.C.
1980-01-01
The earthquake triggered rockfalls and rockslides from steep road cuts and coastal cliffs. The landslide reconnaissance survey which was carried out is described, with separate comments on each landslide site recorded. The general regional slope response to the earthquake is briefly considered. -R. House
NASA Astrophysics Data System (ADS)
Michas, Georgios; Vallianatos, Filippos; Karakostas, Vassilios; Papadimitriou, Eleftheria; Sammonds, Peter
2014-05-01
Efpalion aftershock sequence occurred in January 2010, when an M=5.5 earthquake was followed four days later by another strong event (M=5.4) and numerous aftershocks (Karakostas et al., 2012). This activity interrupted a 15 years period of low to moderate earthquake occurrence in Corinth rift, where the last major event was the 1995 Aigion earthquake (M=6.2). Coulomb stress analysis performed in previous studies (Karakostas et al., 2012; Sokos et al., 2012; Ganas et al., 2013) indicated that the second major event and most of the aftershocks were triggered due to stress transfer. The aftershocks production rate decays as a power-law with time according to the modified Omori law (Utsu et al., 1995) with an exponent larger than one for the first four days, while after the occurrence of the second strong event the exponent turns to unity. We consider the earthquake sequence as a point process in time and space and study its spatiotemporal evolution considering a Continuous Time Random Walk (CTRW) model with a joint probability density function of inter-event times and jumps between the successive earthquakes (Metzler and Klafter, 2000). Jump length distribution exhibits finite variance, whereas inter-event times scale as a q-generalized gamma distribution (Michas et al., 2013) with a long power-law tail. These properties are indicative of a subdiffusive process in terms of CTRW. Additionally, the mean square displacement of aftershocks is constant with time after the occurrence of the first event, while it changes to a power-law with exponent close to 0.15 after the second major event, illustrating a slow diffusive process. During the first four days aftershocks cluster around the epicentral area of the second major event, while after that and taking as a reference the second event, the aftershock zone is migrating slowly with time to the west near the epicentral area of the first event. This process is much slower from what would be expected from normal diffusion, a result that is in accordance to earthquake triggering in global scale (Huc and Main, 2003) and aftershocks diffusion in California (Helmstetter et al., 2003). While other mechanisms may be plausible, the results indicate that anomalous stress transfer due to the occurrence of the two major events control the migration of the aftershock activity, activating different fault segments and having strong implications for the seismic hazard of the area. Acknowledgments. G. Michas wishes to acknowledge the partial financial support from the Greek State Scholarships Foundation (IKY). This work has been accomplished in the framework of the postgraduate program and co-funded through the action "Program for scholarships provision I.K.Y. through the procedure of personal evaluation for the 2011-2012 academic year" from resources of the educational program "Education and Life Learning" of the European Social Register and NSRF 2007- 2013. References Ganas, A., Chousianitis, K., Batsi, E., Kolligri, M., Agalos, A., Chouliaras, G., Makropoulos, K. (2013). The January 2010 Efpalion earthquakes (Gulf of Corinth, central Greece): Earthquake interactions and blind normal faulting. J. of Seism., 17(2), 465-484. Helmstetter, A., Ouillon, G., Sornette, D. (2003). Are aftershocks of large California earthquakes diffusing? J. of Geophys. Res. B, 108(10), 2483. Huc, M., Main, I. G. (2003). Anomalous stress diffusion in earthquake triggering: Correlation length, time dependence, and directionality. J. of Geophys. Res. B, 108(7), 2324. Karakostas, V., Karagianni, E., Paradisopoulou, P. (2012). Space-time analysis, faulting and triggering of the 2010 earthquake doublet in western Corinth gulf. Nat.Haz., 63(2), 1181-1202. Metzler, R., Klafter, J. (2000). The random walk's guide to anomalous diffusion: a fractional dynamics approach. Physics Reports, 339, 1-77. Michas, G., Vallianatos, F., Sammonds, P. (2013). Non-extensivity and long-range correlations in the earthquake activity at the West Corinth rift (Greece). Nonlin. Processes Geophys., 20, 713-724. Sokos, E., Zahradník, J., Kiratzi, A., Janský, J., Gallovič, F., Novotny, O., Kostelecký, J., Serpetsidaki, A., Tselentis, G.-A. (2012). The January 2010 Efpalio earthquake sequence in the western Corinth gulf (Greece). Tectonophysics, 530-531, 299-309. Utsu, T., Y. Ogata, Matsu'ura R. S. (1995). The centenary of the Omori formula for a decay law of aftershock activity. J. Phys. Earth, 43, 1- 33.
Role of stress triggering in earthquake migration on the North Anatolian fault
Stein, R.S.; Dieterich, J.H.; Barka, A.A.
1996-01-01
Ten M???6.7 earthquakes ruptured 1,000 km of the North Anatolian fault (Turkey) during 1939-92, providing an unsurpassed opportunity to study how one large shock sets up the next. Calculations of the change in Coulomb failure stress reveal that 9 out of 10 ruptures were brought closer to failure by the preceding shocks, typically by 5 bars, equivalent to 20 years of secular stressing. We translate the calculated stress changes into earthquake probabilities using an earthquake-nucleation constitutive relation, which includes both permanent and transient stress effects. For the typical 10-year period between triggering and subsequent rupturing shocks in the Anatolia sequence, the stress changes yield an average three-fold gain in the ensuing earthquake probability. Stress is now calculated to be high at several isolated sites along the fault. During the next 30 years, we estimate a 15% probability of a M???6.7 earthquake east of the major eastern center of Erzincan, and a 12% probability for a large event south of the major western port city of Izmit. Such stress-based probability calculations may thus be useful to assess and update earthquake hazards elsewhere. ?? 1997 Elsevier Science Ltd.
NASA Astrophysics Data System (ADS)
Micu, Mihai; Balteanu, Dan; Ionescu, Constantin; Havenith, Hans; Radulian, Mircea; van Westen, Cees; Damen, Michiel; Jurchescu, Marta
2015-04-01
In seismically-active regions, earthquakes may trigger landslides enhancing the short-to-long term slope denudation and sediment delivery and conditioning the general landscape evolution. Co-seismic slope failures present in general a low frequency - high magnitude pattern which should be addressed accordingly by landslide hazard assessment, with respect to the generally more frequent precipitation-triggered landslides. The Vrancea Seismic Region, corresponding to the curvature sector of the Eastern Romanian Carpathians, represents the most active sub-crustal (focal depth > 50 km) earthquake province of Europe. It represents the main seismic energy source throughout Romania with significant transboundary effects recorded as far as Ukraine and Bulgaria. During the last 300 years, the region featured 14 earthquakes with M>7, among which seven events with magnitude above 7.5 and three between 7.7 and 7.9. Apart from the direct damages, the Vrancea earthquakes are also responsible for causing numerous other geohazards, such as ground fracturing, groundwater level disturbances and possible deep-seated landslide occurrences (rock slumps, rock-block slides, rock falls, rock avalanches). The older deep-seated landslides (assumed to have been) triggered by earthquakes usually affect the entire slope profile. They often formed landslide dams strongly influencing the river morphology and representing potential threats (through flash-floods) in case of lake outburst. Despite the large potential of this research issue, the correlation between the region's seismotectonic context and landslide predisposing factors has not yet been entirely understood. Presently, there is a lack of information provided by the geohazards databases of Vrancea that does not allow us to outline the seismic influence on the triggering of slope failures in this region. We only know that the morphology of numerous large, deep-seated and dormant landslides (which can possibly be reactivated in future) with head scarps near mountain tops and close to faults is similar to the one of large mass movements for which a seismic origin is proved (such as in the Tien Shan, Pamir, Longmenshan, etc.). Thus, correlations between landslide occurrence and combined seismotectonic and climatic factors are needed to support a regional multi-hazard risk assessment. The purpose of this paper is to harmonize for the first time at a regional scale the landslide predisposing factors and seismotectonic triggers and to present a first qualitative insight into the earthquake-induced landslide susceptibility for the Vrancea Seismic Region in terms of a GIS-based analysis of Newmark displacement (ND). In this way, it aims at better defining spatial and temporal distribution patterns of earthquake-triggered landslides. Arias Intensity calculation involved in the assessment considers both regional seismic hazard aspects and singular earthquake scenarios (adjusted by topography amplification factors). The known distribution of landslides mapped through digital stereographic interpretation of high-resolution aerial photos is compared with digital active fault maps and the computed ND maps to statistically outline the seismotectonic influence on slope stability in the study area. The importance of this approach resides in two main outputs. The fist one, of a fundamental nature, by providing the first regional insight into the seismic landslides triggering framework, is allowing us to understand if deep-focus earthquakes may trigger massive slope failures in an area with a relatively smooth relief (compared to the high mountain regions in Central Asia, the Himalayas), considering possible geologic and topographic site effects. The second one, more applied, will allow a better accelerometer instrumentation and monitoring of slopes and also will provide a first correlation of different levels of seismic shaking with precipitation recurrences, an important relationship within a multi-hazard risk preparedness and prevention framework.
Landslides triggered by the 14 November 2016 Mw 7.8 Kaikōura Earthquake, New Zealand
Massey, C.; Townsend, D.; Rathje, Ellen M.; Allstadt, Kate E.; Lukovic, B.; Kaneko, Yoshihiro; Bradley, Brendon A.; Wartman, J.; Jibson, Randall W.; Petley, D. N.; Horspool, Nick; Hamling, I.; Carey, J.; Cox, S.; Davidson, John; Dellow, S.; Godt, Jonathan W.; Holden, Christopher; Jones, Katherine D.; Kaiser, Anna E.; Little, M.; Lyndsell, B.; McColl, S.; Morgenstern, R.; Rengers, Francis K.; Rhoades, D.; Rosser, B.; Strong, D.; Singeisen, C.; Villeneuve, M.
2018-01-01
The 14 November 2016 Mw">MwMw 7.8 Kaikōura earthquake generated more than 10,000 landslides over a total area of about 10,000 km2">10,000 km210,000 km2, with the majority concentrated in a smaller area of about 3600 km2">3600 km23600 km2. The largest landslide triggered by the earthquake had an approximate volume of 20(±2) M m3">20(±2) M m320(±2) M m3, with a runout distance of about 2.7 km, forming a dam on the Hapuku River. In this article, we present version 1.0 of the landslide inventory we have created for this event. We use the inventory presented in this article to identify and discuss some of the controls on the spatial distribution of landslides triggered by the Kaikōura earthquake. Our main findings are (1) the number of medium to large landslides (source area ≥10,000 m2">≥10,000 m2≥10,000 m2) triggered by the Kaikōura earthquake is smaller than for similar‐sized landslides triggered by similar magnitude earthquakes in New Zealand; (2) seven of the largest eight landslides (from 5 to 20 M m3">20 M m320 M m3) occurred on faults that ruptured to the surface during the earthquake; (3) the average landslide density within 200 m of a mapped surface fault rupture is three times that at a distance of 2500 m or more from a mapped surface fault rupture; (4) the “distance to fault” predictor variable, when used as a proxy for ground‐motion intensity, and when combined with slope angle, geology, and elevation variables, has more power in predicting landslide probability than the modeled peak ground acceleration or peak ground velocity; and (5) for the same slope angles, the coastal slopes have landslide point densities that are an order of magnitude greater than those in similar materials on the inland slopes, but their source areas are significantly smaller.
Earthquakes induced by fluid injection and explosion
Healy, J.H.; Hamilton, R.M.; Raleigh, C.B.
1970-01-01
Earthquakes generated by fluid injection near Denver, Colorado, are compared with earthquakes triggered by nuclear explosion at the Nevada Test Site. Spatial distributions of the earthquakes in both cases are compatible with the hypothesis that variation of fluid pressure in preexisting fractures controls the time distribution of the seismic events in an "aftershock" sequence. We suggest that the fluid pressure changes may also control the distribution in time and space of natural aftershock sequences and of earthquakes that have been reported near large reservoirs. ?? 1970.
Geophysical advances triggered by 1964 Great Alaska Earthquake
Haeussler, Peter J.; Leith, William S.; Wald, David J.; Filson, John R.; Wolfe, Cecily; Applegate, David
2014-01-01
A little more than 50 years ago, on 27 March 1964, the Great Alaska earthquake and tsunami struck. At moment magnitude 9.2, this earthquake is notable as the largest in U.S. written history and as the second-largest ever recorded by instruments worldwide. But what resonates today are its impacts on the understanding of plate tectonics, tsunami generation, and earthquake history as well as on the development of national programs to reduce risk from earthquakes and tsunamis.
Subduction zone earthquake probably triggered submarine hydrocarbon seepage offshore Pakistan
NASA Astrophysics Data System (ADS)
Fischer, David; José M., Mogollón; Michael, Strasser; Thomas, Pape; Gerhard, Bohrmann; Noemi, Fekete; Volkhard, Spiess; Sabine, Kasten
2014-05-01
Seepage of methane-dominated hydrocarbons is heterogeneous in space and time, and trigger mechanisms of episodic seep events are not well constrained. It is generally found that free hydrocarbon gas entering the local gas hydrate stability field in marine sediments is sequestered in gas hydrates. In this manner, gas hydrates can act as a buffer for carbon transport from the sediment into the ocean. However, the efficiency of gas hydrate-bearing sediments for retaining hydrocarbons may be corrupted: Hypothesized mechanisms include critical gas/fluid pressures beneath gas hydrate-bearing sediments, implying that these are susceptible to mechanical failure and subsequent gas release. Although gas hydrates often occur in seismically active regions, e.g., subduction zones, the role of earthquakes as potential triggers of hydrocarbon transport through gas hydrate-bearing sediments has hardly been explored. Based on a recent publication (Fischer et al., 2013), we present geochemical and transport/reaction-modelling data suggesting a substantial increase in upward gas flux and hydrocarbon emission into the water column following a major earthquake that occurred near the study sites in 1945. Calculating the formation time of authigenic barite enrichments identified in two sediment cores obtained from an anticlinal structure called "Nascent Ridge", we find they formed 38-91 years before sampling, which corresponds well to the time elapsed since the earthquake (62 years). Furthermore, applying a numerical model, we show that the local sulfate/methane transition zone shifted upward by several meters due to the increased methane flux and simulated sulfate profiles very closely match measured ones in a comparable time frame of 50-70 years. We thus propose a causal relation between the earthquake and the amplified gas flux and present reflection seismic data supporting our hypothesis that co-seismic ground shaking induced mechanical fracturing of gas hydrate-bearing sediments creating pathways for free gas to migrate from a shallow reservoir within the gas hydrate stability zone into the water column. Our results imply that free hydrocarbon gas trapped beneath a local gas hydrate seal was mobilized through earthquake-induced mechanical failure and in that way circumvented carbon sequestration within the sediment. These findings lead to conclude that hydrocarbon seepage triggered by earthquakes can play a role for carbon budgets at other seismically active continental margins. The newly identified process presented in our study is conceivable to help interpret data from similar sites. Reference: Fischer, D., Mogollon, J.M., Strasser, M., Pape, T., Bohrmann, G., Fekete, N., Spieß, V. and Kasten, S., 2013. Subduction zone earthquake as potential trigger of submarine hydrocarbon seepage. Nature Geoscience 6: 647-651.
Foreshock sequences and short-term earthquake predictability on East Pacific Rise transform faults.
McGuire, Jeffrey J; Boettcher, Margaret S; Jordan, Thomas H
2005-03-24
East Pacific Rise transform faults are characterized by high slip rates (more than ten centimetres a year), predominantly aseismic slip and maximum earthquake magnitudes of about 6.5. Using recordings from a hydroacoustic array deployed by the National Oceanic and Atmospheric Administration, we show here that East Pacific Rise transform faults also have a low number of aftershocks and high foreshock rates compared to continental strike-slip faults. The high ratio of foreshocks to aftershocks implies that such transform-fault seismicity cannot be explained by seismic triggering models in which there is no fundamental distinction between foreshocks, mainshocks and aftershocks. The foreshock sequences on East Pacific Rise transform faults can be used to predict (retrospectively) earthquakes of magnitude 5.4 or greater, in narrow spatial and temporal windows and with a high probability gain. The predictability of such transform earthquakes is consistent with a model in which slow slip transients trigger earthquakes, enrich their low-frequency radiation and accommodate much of the aseismic plate motion.
NASA Astrophysics Data System (ADS)
Highland, Lynn
2014-05-01
Landslides frequently occur in connection with other types of hazardous phenomena such as earthquake or volcanic activity and intense rainstorms. Strong shaking, for example, often triggers extensive landslides in mountainous areas, which can then complicate response and compound socio-economic impacts over shaking losses alone. The U.S. Geological Survey (USGS) is exploring different ways to add secondary hazards to its Prompt Assessment of Global Earthquakes for Response (PAGER) system, which has been developed to deliver rapid earthquake impact and loss assessments following significant global earthquakes. The PAGER team found that about 22 percent of earthquakes with fatalities have deaths due to secondary causes, and the percentage of economic losses they incur has not been widely studied, but is probably significant. The current approach for rapid assessment and reporting of the potential and distribution of secondary earthquake-induced landslides involves empirical models that consider ground acceleration, slope, and rock-strength. A complementary situational awareness tool being developed is a region-specific landslide database for the U.S. The latter will be able to define, in a narrative form, the landslide types (debris flows, rock avalanches, shallow versus deep) that generally occur in each area, along with the type of soils, geology and meteorological effects that could have a bearing on soil saturation, and thus susceptibility. When a seismic event occurs in the U.S. and the PAGER system generates web-based earthquake information, these landslide narratives will simultaneously be made available, which will help in the assessment of the nature of landslides in that particular region. This landslide profile database could also be applied to landslide events that are not triggered by earthquake shaking, in conjunction with National Weather Service Alerts and other landslide/debris-flow alerting systems. Currently, prototypes are being developed for both the slope-based and the narrative assessment of landslide susceptibility and hazard.
Pollitz, F.F.; Sacks, I.S.
2002-01-01
The M 7.3 June 28, 1992 Landers and M 7.1 October 16, 1999 Hector Mine earthquakes, California, both right lateral strike-slip events on NNW-trending subvertical faults, occurred in close proximity in space and time in a region where recurrence times for surface-rupturing earthquakes are thousands of years. This suggests a causal role for the Landers earthquake in triggering the Hector Mine earthquake. Previous modeling of the static stress change associated with the Landers earthquake shows that the area of peak Hector Mine slip lies where the Coulomb failure stress promoting right-lateral strike-slip failure was high, but the nucleation point of the Hector Mine rupture was neutrally to weakly promoted, depending on the assumed coefficient of friction. Possible explanations that could account for the 7-year delay between the two ruptures include background tectonic stressing, dissipation of fluid pressure gradients, rate- and state-dependent friction effects, and post-Landers viscoelastic relaxation of the lower crust and upper mantle. By employing a viscoelastic model calibrated by geodetic data collected during the time period between the Landers and Hector Mine events, we calculate that postseismic relaxation produced a transient increase in Coulomb failure stress of about 0.7 bars on the impending Hector Mine rupture surface. The increase is greatest over the broad surface that includes the 1999 nucleation point and the site of peak slip further north. Since stress changes of magnitude greater than or equal to 0.1 bar are associated with documented causal fault interactions elsewhere, viscoelastic relaxation likely contributed to the triggering of the Hector Mine earthquake. This interpretation relies on the assumption that the faults occupying the central Mojave Desert (i.e., both the Landers and Hector Mine rupturing faults) were critically stressed just prior to the Landers earthquake.
NASA Astrophysics Data System (ADS)
Arisa, D.; Heki, K.
2014-12-01
The Izu-Bonin islands lies along the convergent boundary between the subducting Pacific plate (PA) and the overriding Philippine Sea plate (PH) in the western Pacific. Nishimura (2011) found that the back-arc rifting goes on behind the Izu arc by studying the horizontal velocities of GNSS stations on the Izu islands. Here we show that this rifting has accelerated in 2004 using GNSS data at Aogashima, Hachijoujima, and Mikurajima stations. The back-arc rifting behind the Izu islands can be seen as the increasing distance between stations in the Izu-Bonin islands and stations located in the stable part of PH. We found that their movement showed clear acceleration around the third quarter of 2004. Obtaining the Euler vector of the PH is necessary to analyzed the movement of each stations relative to the other stations on the same plate. The analyzing of GPS timeseries leads us to one initial conclusion that some accelerated movement started to occur in the third quarter of 2004. This event was closely related to the earthquake on May 29, 2004 in Nankai Trough and September 5, 2004 earthquake near the triple junction of Sagami Trough. The analyzing process help us to understand that this accelerated movement was not the afterslip of any of these earthquakes, but it was triggering these area to move faster and further than it was. We first rule out the best possible cause by constraining the onset time of the accelerated movement, and correlating it with the earthquakes. May 29, 2004 earthquake (M6.5) at the PA-PH boundary clearly lacked the jump which should mark the onset of the eastward slow movement. Moreover, additional velocity vectors do not converge to the epicenter, and onset time that minimizes the post-fit residual is significantly later than May. We therefore conclude that accelerated movement started in 2004 was not due to the afterslip of interplate earthquake in May 29. On the next step we found that the onset time coincides with the occurrence of September 5, 2004 We found that the accelerated movement vectors of these islands are almost parallel with each other, and perpendicular to the rift axis. We hypothesize that the seismic wave radiated from the epicenter of this earthquake dynamically triggered the acceleration of the back arc opening in the Izu Arc.
Extraordinary distance limits of landslides triggered by the 2011 Mineral, Virginia, earthquake
Jibson, Randall W.; Harp, Edwin L.
2012-01-01
The 23 August 2011 Mineral, Virginia, earthquake (Mw 5.8) was the largest to strike the eastern U.S. since 1897 and was felt over an extraordinarily large area. Although no large landslides occurred, the shaking did trigger many rock and soil falls from steep river banks and natural cliffs in the epicentral area and from steep road cuts along, and northwest of, the Blue Ridge Parkway. We mapped the occurrence of rock falls to determine distance limits that could be compared with those from other documented earthquakes. Studies of previous earthquakes indicated a maximum epicentral distance limit for landsliding of ~60 km for an M 5.8 earthquake; the maximum distance limit for the 2011 earthquake was 245 km, the largest exceedance of the historical limit ever recorded. Likewise, the previous maximum area affected by landslides for this magnitude was 1500 km2; the area affected by landslides in the 2011 earthquake was 33,400 km2. These observations provide physical evidence that attenuation of strong shaking for eastern U.S. earthquakes is significantly lower than for plate‐boundary earthquakes. Also, distance limits parallel to the regional structural trend are greater than those that transect the structure, which suggests anisotropic attenuation related to the regional geologic structure. Peak ground acceleration (PGA) at the landslide distance limits is estimated to have been about 0.02–0.04g.
Seismic signature of active intrusions in mountain chains.
Di Luccio, Francesca; Chiodini, Giovanni; Caliro, Stefano; Cardellini, Carlo; Convertito, Vincenzo; Pino, Nicola Alessandro; Tolomei, Cristiano; Ventura, Guido
2018-01-01
Intrusions are a ubiquitous component of mountain chains and testify to the emplacement of magma at depth. Understanding the emplacement and growth mechanisms of intrusions, such as diapiric or dike-like ascent, is critical to constrain the evolution and structure of the crust. Petrological and geological data allow us to reconstruct magma pathways and long-term magma differentiation and assembly processes. However, our ability to detect and reconstruct the short-term dynamics related to active intrusive episodes in mountain chains is embryonic, lacking recognized geophysical signals. We analyze an anomalously deep seismic sequence (maximum magnitude 5) characterized by low-frequency bursts of earthquakes that occurred in 2013 in the Apennine chain in Italy. We provide seismic evidences of fluid involvement in the earthquake nucleation process and identify a thermal anomaly in aquifers where CO 2 of magmatic origin dissolves. We show that the intrusion of dike-like bodies in mountain chains may trigger earthquakes with magnitudes that may be relevant to seismic hazard assessment. These findings provide a new perspective on the emplacement mechanisms of intrusive bodies and the interpretation of the seismicity in mountain chains.
Seismic signature of active intrusions in mountain chains
Di Luccio, Francesca; Chiodini, Giovanni; Caliro, Stefano; Cardellini, Carlo; Convertito, Vincenzo; Pino, Nicola Alessandro; Tolomei, Cristiano; Ventura, Guido
2018-01-01
Intrusions are a ubiquitous component of mountain chains and testify to the emplacement of magma at depth. Understanding the emplacement and growth mechanisms of intrusions, such as diapiric or dike-like ascent, is critical to constrain the evolution and structure of the crust. Petrological and geological data allow us to reconstruct magma pathways and long-term magma differentiation and assembly processes. However, our ability to detect and reconstruct the short-term dynamics related to active intrusive episodes in mountain chains is embryonic, lacking recognized geophysical signals. We analyze an anomalously deep seismic sequence (maximum magnitude 5) characterized by low-frequency bursts of earthquakes that occurred in 2013 in the Apennine chain in Italy. We provide seismic evidences of fluid involvement in the earthquake nucleation process and identify a thermal anomaly in aquifers where CO2 of magmatic origin dissolves. We show that the intrusion of dike-like bodies in mountain chains may trigger earthquakes with magnitudes that may be relevant to seismic hazard assessment. These findings provide a new perspective on the emplacement mechanisms of intrusive bodies and the interpretation of the seismicity in mountain chains. PMID:29326978
Relating triggering processes in lab experiments with earthquakes.
NASA Astrophysics Data System (ADS)
Baro Urbea, J.; Davidsen, J.; Kwiatek, G.; Charalampidou, E. M.; Goebel, T.; Stanchits, S. A.; Vives, E.; Dresen, G.
2016-12-01
Statistical relations such as Gutenberg-Richter's, Omori-Utsu's and the productivity of aftershocks were first observed in seismology, but are also common to other physical phenomena exhibiting avalanche dynamics such as solar flares, rock fracture, structural phase transitions and even stock market transactions. All these examples exhibit spatio-temporal correlations that can be explained as triggering processes: Instead of being activated as a response to external driving or fluctuations, some events are consequence of previous activity. Although different plausible explanations have been suggested in each system, the ubiquity of such statistical laws remains unknown. However, the case of rock fracture may exhibit a physical connection with seismology. It has been suggested that some features of seismology have a microscopic origin and are reproducible over a vast range of scales. This hypothesis has motivated mechanical experiments to generate artificial catalogues of earthquakes at a laboratory scale -so called labquakes- and under controlled conditions. Microscopic fractures in lab tests release elastic waves that are recorded as ultrasonic (kHz-MHz) acoustic emission (AE) events by means of piezoelectric transducers. Here, we analyse the statistics of labquakes recorded during the failure of small samples of natural rocks and artificial porous materials under different controlled compression regimes. Temporal and spatio-temporal correlations are identified in certain cases. Specifically, we distinguish between the background and triggered events, revealing some differences in the statistical properties. We fit the data to statistical models of seismicity. As a particular case, we explore the branching process approach simplified in the Epidemic Type Aftershock Sequence (ETAS) model. We evaluate the empirical spatio-temporal kernel of the model and investigate the physical origins of triggering. Our analysis of the focal mechanisms implies that the occurrence of the empirical laws extends well beyond purely frictional sliding events, in contrast to what is often assumed.
Earth's rotation variations and earthquakes 2010-2011
NASA Astrophysics Data System (ADS)
Ostřihanský, L.
2012-01-01
In contrast to unsuccessful searching (lasting over 150 years) for correlation of earthquakes with biweekly tides, the author found correlation of earthquakes with sidereal 13.66 days Earth's rotation variations expressed as length of a day (LOD) measured daily by International Earth's Rotation Service. After short mention about earthquakes M 8.8 Denali Fault Alaska 3 November 2002 triggered on LOD maximum and M 9.1 Great Sumatra earthquake 26 December 2004 triggered on LOD minimum and the full Moon, the main object of this paper are earthquakes of period 2010-June 2011: M 7.0 Haiti (12 January 2010 on LOD minimum, M 8.8 Maule Chile 12 February 2010 on LOD maximum, map constructed on the Indian plate revealing 6 earthquakes from 7 on LOD minimum in Sumatra and Andaman Sea region, M 7.1 New Zealand Christchurch 9 September 2010 on LOD minimum and M 6.3 Christchurch 21 February 2011 on LOD maximum, and M 9.1 Japan near coast of Honshu 11 March 2011 on LOD minimum. It was found that LOD minimums coincide with full or new Moon only twice in a year in solstices. To prove that determined coincidences of earthquakes and LOD extremes stated above are not accidental events, histograms were constructed of earthquake occurrences and their position on LOD graph deeply in the past, in some cases from the time the IERS (International Earth's Rotation Service) started to measure the Earth's rotation variations in 1962. Evaluations of histograms and the Schuster's test have proven that majority of earthquakes are triggered in both Earth's rotation deceleration and acceleration. Because during these coincidences evident movements of lithosphere occur, among others measured by GPS, it is concluded that Earth's rotation variations effectively contribute to the lithospheric plates movement. Retrospective overview of past earthquakes revealed that the Great Sumatra earthquake 26 December 2004 had its equivalent in the shape of LOD graph, full Moon position, and character of aftershocks 19 years earlier in difference only one day to 27 December 1985 earthquake, proving that not only sidereal 13.66 days variations but also that the 19 years Metons cycle is the period of the earthquakes occurrence. Histograms show the regular change of earthquake positions on branches of LOD graph and also the shape of histogram and number of earthquakes on LOD branches from the mid-ocean ridge can show which side of the ridge moves quicker.
The 1999 Mw 7.1 Hector Mine, California, earthquake: A test of the stress shadow hypothesis?
Harris, R.A.; Simpson, R.W.
2002-01-01
We test the stress shadow hypothesis for large earthquake interactions by examining the relationship between two large earthquakes that occurred in the Mojave Desert of southern California, the 1992 Mw 7.3 Landers and 1999 Mw 7.1 Hector Mine earthquakes. We want to determine if the 1999 Hector Mine earthquake occurred at a location where the Coulomb stress was increased (earthquake advance, stress trigger) or decreased (earthquake delay, stress shadow) by the previous large earthquake. Using four models of the Landers rupture and a range of possible hypocentral planes for the Hector Mine earthquake, we discover that most scenarios yield a Landers-induced relaxation (stress shadow) on the Hector Mine hypocentral plane. Although this result would seem to weigh against the stress shadow hypothesis, the results become considerably more uncertain when the effects of a nearby Landers aftershock, the 1992 ML 5.4 Pisgah earthquake, are taken into account. We calculate the combined static Coulomb stress changes due to the Landers and Pisgah earthquakes to range from -0.3 to +0.3 MPa (- 3 to +3 bars) at the possible Hector Mine hypocenters, depending on choice of rupture model and hypocenter. These varied results imply that the Hector Mine earthquake does not provide a good test of the stress shadow hypothesis for large earthquake interactions. We use a simple approach, that of static dislocations in an elastic half-space, yet we still obtain a wide range of both negative and positive Coulomb stress changes. Our findings serve as a caution that more complex models purporting to explain the triggering or shadowing relationship between the 1992 Landers and 1999 Hector Mine earthquakes need to also consider the parametric and geometric uncertainties raised here.
Can earthquake fissures predispose hillslopes to landslides? - Evidence from Central and East Asia
NASA Astrophysics Data System (ADS)
Sidle, Roy C.; Gomi, Takashi; Rajapbaev, Muslim; Chyngozhoev, Nurstan
2017-04-01
Factors affecting earthquake-initiated landslides include earthquake magnitude, focal depth, and seismic wave propagation and attenuation. In contrast to rainfall-initiated landslides, earthquake-induced landslides often occur on convex slopes and near ridgelines. Here we present evidence from Fergana Basin, Kyrgyzstan and Kumamoto, Japan on how fissures developed during earthquakes may promote subsequent initiation of rainfall-triggered landslides. More than 1800 recent major landslides in hilly terrain and soft sediments of the Fergana Basin have been largely attributed to accumulation of heavy rainfall and snowmelt. While no large earthquakes have occurred in the Fergana Basin, smaller earthquakes have generated fissures near ridgelines and on convex slopes. The connection of fissures, developed years or decades before slope failure, with preferential transport of rainwater and runoff into the soil has not been previously investigated. Fissures have been observed to expand with time, particularly during subsequent minor earthquakes, further promoting preferential infiltration. Because the soil mantle does not have large contrasts in permeability that would define a slip plane for landslides, it appears that the position and depth of these fissures may control the location and depth of failures. Zones in the soil where surficial inputs of water are preferentially transported, augment natural subsurface accumulation of antecedent rainfall. Many landslides in the eastern Fergana Basin occur after several months of accumulated precipitation and groundwater has been observed emerging on critical hillside locations (near ridgelines and on convex slopes) prior to slope failure. During the 2016 Kumamoto Earthquake (M 7.3), many landslides were triggered in forest and grassland hillslopes near Mount Aso. All of these earthquakes were shallow (focal depths about 10 km), causing high shaking intensity and ground rupturing. Because soils were relatively dry during these earthquakes, occurrence of debris flows was limited. Instead, most landslides travelled limited distances and consisted of ruptured soil blocks. Large, parallel fissures developed along ridgelines and convex slopes, providing opportunities for preferential flow to initiate mass wasting during later heavy rainfalls. The progressive deterioration of ridgelines could change future catchment drainage patterns. Additionally, sediment accumulated in headwater channels from the initial earthquake-triggered landslides may mobilize as devastating debris flows after additional sediment loading during a large storm. As such, cascading effects of prior earthquakes on later mass wasting appear evident in both regions.
NASA Astrophysics Data System (ADS)
Sudmeier-Rieux, K.; Breguet, A.; Dubois, J.; Jaboyedoff, M.
2009-04-01
Several thousand landslides were triggered by the Kashmir earthquake, scarring the hillside with cracks. Monsoon rains continue to trigger landslides, which have increased the exposure of populations because of lost agricultural lands, blocked roads and annual fatalities due to landslides. The great majority of these landslides are shallow and relatively small but greatly impacting the population. In this region, landslides were a factor before the earthquake, mainly due to road construction and gravel excavation, but the several thousand landslides triggered by the earthquake have completely overwhelmed the local population and authorities. In Eastern Nepal, the last large earthquake to hit this region occurred in 1988, also triggering numerous landslides and cracks. Here, landslides can be considered a more common phenomenon, yet coping capacities amount to local observations of landslide movement, subsequent abandonment of houses and land as they become too dangerous. We present a comparative case study from Kashmir, Pakistan and Eastern Nepal, highlighting an interdisciplinary approach to understanding the complex interactions between land use, landslides and vulnerability. Our approach sets out to understand underlying causes of the massive landslides triggered by the 2005 earthquake in Kashmir, Pakistan, and also the increasing number of landslides in Nepal. By approaching the issue of landslides from multiple angles (risk perceptions, land use, local coping capacities, geological assessment, risk mapping) and multiple research techniques (remote sensing, GIS, geological assessment, participatory mapping, focus groups) we are better able to create a more complete picture of the "hazardscape". We find that by combining participatory social science research with hazard mapping, we obtain a more complete understanding of underlying causes, coping strategies and possible mitigation options, placing natural hazards in the context of everyday life. This method is relatively simple, low cost and useful to local authorities or development agencies in planning and managing development projects, which include a hazard management aspect. We discuss some of our successes, some obstacles and ideas for future research.
Harp, Edwin L.; Jibson, Randall W.; Dart, Richard L.; Margottini, Claudio; Canuti, Paolo; Sassa, Kyoji
2013-01-01
The MW 7.0, 12 January 2010, Haiti earthquake triggered more than 7,000 landslides in the mountainous terrain south of Port-au-Prince over an area that extends approximately 50 km to the east and west from the epicenter and to the southern coast. Most of the triggered landslides were rock and soil slides from 25°–65° slopes within heavily fractured limestone and deeply weathered basalt and basaltic breccia. Landslide volumes ranged from tens of cubic meters to several thousand cubic meters. Rock slides in limestone typically were 2–5 m thick; slides within soils and weathered basalt typically were less than 1 m thick. Twenty to thirty larger landslides having volumes greater than 10,000 m3 were triggered by the earthquake; these included block slides and rotational slumps in limestone bedrock. Only a few landslides larger than 5,000 m3 occurred in the weathered basalt. The distribution of landslides is asymmetric with respect to the fault source and epicenter. Relatively few landslides were triggered north of the fault source on the hanging wall. The densest landslide concentrations lie south of the fault source and the Enriquillo-Plantain-Garden fault zone on the footwall. Numerous landslides also occurred along the south coast west of Jacmél. This asymmetric distribution of landsliding with respect to the fault source is unusual given the modeled displacement of the fault source as mainly thrust motion to the south on a plane dipping to the north at approximately 55°; landslide concentrations in other documented thrust earthquakes generally have been greatest on the hanging wall. This apparent inconsistency of the landslide distribution with respect to the fault model remains poorly understood given the lack of any strong-motion instruments within Haiti during the earthquake.
The Viscoelastic Effect of Triggered Earthquakes in Various Tectonic Regions On a Global Scale
NASA Astrophysics Data System (ADS)
Sunbul, F.
2015-12-01
The relation between static stress changes and earthquake triggering has important implications for seismic hazard analysis. Considering long time difference between triggered events, viscoelastic stress transfer plays an important role in stress accumulation along the faults. Developing a better understanding of triggering effects may contribute to improvement of quantification of seismic hazard in tectonically active regions. Parsons (2002) computed the difference between the rate of earthquakes occurring in regions where shear stress increased and those regions where the shear stress decreased on a global scale. He found that 61% of the earthquakes occurred in regions with a shear stress increase, while 39% of events occurred in areas of shear stress decrease. Here, we test whether the inclusion of viscoelastic stress transfer affects the results obtained by Parsons (2002) for static stress transfer. Doing such a systematic analysis, we use Global Centroid Moment Tensor (CMT) catalog selecting 289 Ms>7 main shocks with their ~40.500 aftershocks located in ±2° circles for 5 years periods. For the viscoelastic post seismic calculations, we adapt 12 different published rheological models for 5 different tectonic regions. In order to minimise the uncertainties in this CMT catalog, we use the Frohlich and Davis (1999) statistical approach simultaneously. Our results shows that the 5590 aftershocks are triggered by the 289 Ms>7 earthquakes. 3419 of them are associated with calculated shear stress increase, while 2171 are associated with shear stress decrease. The summation of viscoelastic stress shows that, of the 5840 events, 3530 are associated with shear stress increases, and 2312 with shear stress decrease. This result shows an average 4.5% increase in total, the rate of increase in positive and negative areas are 3.2% and 6.5%, respectively. Therefore, over long time periods viscoelastic relaxation represents a considerable contribution to the total stress on neighbouring faults.
Premonitory slip and tidal triggering of earthquakes
Lockner, D.A.; Beeler, N.M.
1999-01-01
We have conducted a series of laboratory simulations of earthquakes using granite cylinders containing precut bare fault surfaces at 50 MPa confining pressure. Axial shortening rates between 10-4 and 10-6 mm/s were imposed to simulate tectonic loading. Average loading rate was then modulated by the addition of a small-amplitude sine wave to simulate periodic loading due to Earth tides or other sources. The period of the modulating signal ranged from 10 to 10,000 s. For each combination of amplitude and period of the modulating signal, multiple stick-slip events were recorded to determine the degree of correlation between the timing of simulated earthquakes and the imposed periodic loading function. Over the range of parameters studied, the degree of correlation of earthquakes was most sensitive to the amplitude of the periodic loading, with weaker dependence on the period of oscillations and the average loading rate. Accelerating premonitory slip was observed in these experiments and is a controlling factor in determining the conditions under which correlated events occur. In fact, some form of delayed failure is necessary to produce the observed correlations between simulated earthquake timing and characteristics of the periodic loading function. The transition from strongly correlated to weakly correlated model earthquake populations occurred when the amplitude of the periodic loading was approximately 0.05 to 0.1 MPa shear stress (0.03 to 0.06 MPa Coulomb failure function). Lower-amplitude oscillations produced progressively lower correlation levels. Correlations between static stress increases and earthquake aftershocks are found to degrade at similar stress levels. Typical stress variations due to Earth tides are only 0.001 to 0.004 MPa, so that the lack of correlation between Earth tides and earthquakes is also consistent with our findings. A simple extrapolation of our results suggests that approximately 1% of midcrustal earthquakes should be correlated with Earth tides. Triggered seismicity has been reported resulting from the passage of surface waves excited by the Landers earthquake. These transient waves had measured amplitudes in excess of 0.1 MPa at frequencies of 0.05 to 0.2 Hz in regions of notable seismicity increase. Similar stress oscillations in our laboratory experiments produced strongly correlated stick-slip events. We suggest that seemingly inconsistent natural observations of triggered seismicity and absence of tidal triggering indicate that failure is amplitude and frequency dependent. This is the expected result if, as in our laboratory experiments, the rheology of the Earth's crust permits delayed failure.
Earthquakes drive large-scale submarine canyon development and sediment supply to deep-ocean basins.
Mountjoy, Joshu J; Howarth, Jamie D; Orpin, Alan R; Barnes, Philip M; Bowden, David A; Rowden, Ashley A; Schimel, Alexandre C G; Holden, Caroline; Horgan, Huw J; Nodder, Scott D; Patton, Jason R; Lamarche, Geoffroy; Gerstenberger, Matthew; Micallef, Aaron; Pallentin, Arne; Kane, Tim
2018-03-01
Although the global flux of sediment and carbon from land to the coastal ocean is well known, the volume of material that reaches the deep ocean-the ultimate sink-and the mechanisms by which it is transferred are poorly documented. Using a globally unique data set of repeat seafloor measurements and samples, we show that the moment magnitude ( M w ) 7.8 November 2016 Kaikōura earthquake (New Zealand) triggered widespread landslides in a submarine canyon, causing a powerful "canyon flushing" event and turbidity current that traveled >680 km along one of the world's longest deep-sea channels. These observations provide the first quantification of seafloor landscape change and large-scale sediment transport associated with an earthquake-triggered full canyon flushing event. The calculated interevent time of ~140 years indicates a canyon incision rate of 40 mm year -1 , substantially higher than that of most terrestrial rivers, while synchronously transferring large volumes of sediment [850 metric megatons (Mt)] and organic carbon (7 Mt) to the deep ocean. These observations demonstrate that earthquake-triggered canyon flushing is a primary driver of submarine canyon development and material transfer from active continental margins to the deep ocean.
Earthquakes drive large-scale submarine canyon development and sediment supply to deep-ocean basins
Mountjoy, Joshu J.; Howarth, Jamie D.; Orpin, Alan R.; Barnes, Philip M.; Bowden, David A.; Rowden, Ashley A.; Schimel, Alexandre C. G.; Holden, Caroline; Horgan, Huw J.; Nodder, Scott D.; Patton, Jason R.; Lamarche, Geoffroy; Gerstenberger, Matthew; Micallef, Aaron; Pallentin, Arne; Kane, Tim
2018-01-01
Although the global flux of sediment and carbon from land to the coastal ocean is well known, the volume of material that reaches the deep ocean—the ultimate sink—and the mechanisms by which it is transferred are poorly documented. Using a globally unique data set of repeat seafloor measurements and samples, we show that the moment magnitude (Mw) 7.8 November 2016 Kaikōura earthquake (New Zealand) triggered widespread landslides in a submarine canyon, causing a powerful “canyon flushing” event and turbidity current that traveled >680 km along one of the world’s longest deep-sea channels. These observations provide the first quantification of seafloor landscape change and large-scale sediment transport associated with an earthquake-triggered full canyon flushing event. The calculated interevent time of ~140 years indicates a canyon incision rate of 40 mm year−1, substantially higher than that of most terrestrial rivers, while synchronously transferring large volumes of sediment [850 metric megatons (Mt)] and organic carbon (7 Mt) to the deep ocean. These observations demonstrate that earthquake-triggered canyon flushing is a primary driver of submarine canyon development and material transfer from active continental margins to the deep ocean. PMID:29546245
NASA Astrophysics Data System (ADS)
Neves, M. C.; Roque, C.; Luttrell, K. M.; Vázquez, J. T.; Alonso, B.
2016-12-01
Earthquakes and submarine landslides are recurrent and widespread manifestations of fault activity offshore SW Iberia. The present work tests the effects of sea-level rise on offshore fault systems using Coulomb stress change calculations across the Alentejo margin. Large-scale faults capable of generating large earthquakes and tsunamis in the region, especially NE-SW trending thrusts and WNW-ESE trending dextral strike-slip faults imaged at basement depths, are either blocked or unaffected by flexural effects related to sea-level changes. Large-magnitude earthquakes occurring along these structures may, therefore, be less frequent during periods of sea-level rise. In contrast, sea-level rise promotes shallow fault ruptures within the sedimentary sequence along the continental slope and upper rise within distances of <100 km from the coast. The results suggest that the occurrence of continental slope failures may either increase (if triggered by shallow fault ruptures) or decrease (if triggered by deep fault ruptures) as a result of sea-level rise. Moreover, observations of slope failures affecting the area of the Sines contourite drift highlight the role of sediment properties as preconditioning factors in this region.
Landslides triggered by the 8 October 2005 Kashmir earthquake
Owen, L.A.; Kamp, U.; Khattak, G.A.; Harp, E.L.; Keefer, D.K.; Bauer, M.A.
2008-01-01
The 8 October 2005 Kashmir earthquake triggered several thousand landslides. These were mainly rock falls and debris falls, although translational rock and debris slides also occurred. In addition, a sturzstrom (debris avalanche) comprising ??? 80??million m3 buried four villages and blocked streams to create two lakes. Although landsliding occurred throughout the region, covering an area of > 7500??km2, the failures were highly concentrated, associated with six geomorphic-geologic-anthropogenic settings, including natural failures in (1) highly fractured carbonate rocks comprising the lowest beds in the hanging wall of the likely earthquake fault; (2) Tertiary siliciclastic rocks along antecedent drainages that traverse the Hazara-Kashmir Syntaxis; (3) steep (> 50??) slopes comprising Precambrian and Lower Paleozoic rocks; (4) very steep (?? 50??) lower slopes of fluvially undercut Quaternary valley fills; and (5) ridges and spur crests. The sixth setting was associated with road construction. Extensive fissuring in many of the valley slopes together with the freshly mobilized landslide debris constitutes a potential hazard in the coming snowmelt and monsoon seasons. This study supports the view that earthquake-triggered landslides are highly concentrated in specific zones associated with the lithology, structure, geomorphology, topography, and human presence. ?? 2007 Elsevier B.V. All rights reserved.
Aagaard, Brad T.; Anderson, G.; Hudnut, K.W.
2004-01-01
We use three-dimensional dynamic (spontaneous) rupture models to investigate the nearly simultaneous ruptures of the Susitna Glacier thrust fault and the Denali strike-slip fault. With the 1957 Mw 8.3 Gobi-Altay, Mongolia, earthquake as the only other well-documented case of significant, nearly simultaneous rupture of both thrust and strike-slip faults, this feature of the 2002 Denali fault earthquake provides a unique opportunity to investigate the mechanisms responsible for development of these large, complex events. We find that the geometry of the faults and the orientation of the regional stress field caused slip on the Susitna Glacier fault to load the Denali fault. Several different stress orientations with oblique right-lateral motion on the Susitna Glacier fault replicate the triggering of rupture on the Denali fault about 10 sec after the rupture nucleates on the Susitna Glacier fault. However, generating slip directions compatible with measured surface offsets and kinematic source inversions requires perturbing the stress orientation from that determined with focal mechanisms of regional events. Adjusting the vertical component of the principal stress tensor for the regional stress field so that it is more consistent with a mixture of strike-slip and reverse faulting significantly improves the fit of the slip-rake angles to the data. Rotating the maximum horizontal compressive stress direction westward appears to improve the fit even further.
NASA Astrophysics Data System (ADS)
Monsieurs, Elise; Jacobs, Liesbet; Kervyn, François; Kirschbaum, Dalia; d'Oreye, Nicolas; Derauw, Dominique; Kervyn, Matthieu; Nobile, Adriano; Trefois, Philippe; Dewitte, Olivier
2015-04-01
The East African rift valley is a major tectonic feature that shapes Central Africa and defines linear-shaped lowlands between highland ranges due to the action of geologic faults associated to earthquakes and volcanism. The region of interest, covering the Virunga Volcanic Province in eastern DRC, western Rwanda and Burundi, and southwest Uganda, is threatened by a rare combination of several types of geohazards, while it is also one of the most densely populated region of Africa. These geohazards can globally be classified as seismic, volcanic and landslide hazards. Landslides, include a wide range of ground movements, such as rock falls, deep failure of slopes and shallow debris flows. Landslides are possibly the most important geohazard in terms of recurring impact on the populations, causing fatalities every year and resulting in structural and functional damage to infrastructure and private properties, as well as serious disruptions of the organization of societies. Many landslides are observed each year in the whole region, and their occurrence is clearly linked to complex topographic, lithologic and vegetation signatures coupled with heavy rainfall events, which is the main triggering factor. The source mechanisms underlying landslide triggering and dynamics in the region of interest are still poorly understood, even though in recent years, some progress has been made towards appropriate data collection. Taking into account difficulties of field accessibility, we present a methodology to study landslide processes by multi-scale and multi-sensor remote sensing data from very high to low resolution (Pléiades, TRMM, CosmoSkyMed, Sentinel). The research will address the evolution over time of such data combined with other earth observations (seismic ground based networks, catalogues, rain gauge networks, GPS surveying, field observations) to detect and study landslide occurrence, dynamics and evolution. This research aims to get insights into the rainfall thresholds that trigger and control the different types of landslide in this region of the East African Rift. A specific attention will be given to the landslide processes in relation to volcanic activity and earthquakes.
NASA Astrophysics Data System (ADS)
Mendoza, M.; Ghosh, A.; Karplus, M. S.; Nabelek, J.; Sapkota, S. N.; Adhikari, L. B.; Klemperer, S. L.; Velasco, A. A.
2016-12-01
As a result of the 2015 Mw 7.8 Gorkha earthquake, more than 8,000 people were killed from a combination of infrastructure failure and triggered landslides. This earthquake produced 4 m of peak co-seismic slip as the fault ruptured 130 km east under densely populated cities, such as Kathmandu. To understand earthquake dynamics in this part of the Himalayas and help mitigate similar future calamities by the next destructive event, it is imperative to study earthquake activities in detail and improve our understanding of the source and structural complexities. In response to the Gorkha event, multiple institutions developed and deployed a 10-month long dense seismic network called NAMASTE. It blanketed a 27,650 km2 area, mainly covering the rupture area of the Gorkha earthquake, in order to capture the dynamic sequence of aftershock behavior. The network consisted of a mix of 45 broadband, short-period, and strong motion sensors, with an average spacing of 20 km. From the first 6 months of data, starting approximately 1.5 after the mainshock, we develop a robust catalog containing over 3,000 precise earthquake locations, and local magnitudes that range between 0.3 and 4.9. The catalog has a magnitude of completeness of 1.5, and an overall low b-value of 0.78. Using the HypoDD algorithm, we relocate earthquake hypocenters with high precision, and thus illustrate the fault geometry down to depths of 25 km where we infer the location of the gently-dipping Main Frontal Thrust (MFT). Above the MFT, the aftershocks illuminate complex structure produced by relatively steeply dipping faults. Interestingly, we observe sharp along-strike change in the seismicity pattern. The eastern part of the aftershock area is significantly more active than the western part. The change in seismicity may reflect structural and/or frictional lateral heterogeneity in this part of the Himalayan fault system. Such along-strike variations play an important role in rupture complexities and arresting the mainshock from rupturing further east. This catalog serves as a starting point for not only identifying the physical processes controlling the earthquake cycles, but also areas of increased stress, in this segment of the Himalayas.
Field, Edward; Milner, Kevin R.; Hardebeck, Jeanne L.; Page, Morgan T.; van der Elst, Nicholas; Jordan, Thomas H.; Michael, Andrew J.; Shaw, Bruce E.; Werner, Maximillan J.
2017-01-01
We, the ongoing Working Group on California Earthquake Probabilities, present a spatiotemporal clustering model for the Third Uniform California Earthquake Rupture Forecast (UCERF3), with the goal being to represent aftershocks, induced seismicity, and otherwise triggered events as a potential basis for operational earthquake forecasting (OEF). Specifically, we add an epidemic‐type aftershock sequence (ETAS) component to the previously published time‐independent and long‐term time‐dependent forecasts. This combined model, referred to as UCERF3‐ETAS, collectively represents a relaxation of segmentation assumptions, the inclusion of multifault ruptures, an elastic‐rebound model for fault‐based ruptures, and a state‐of‐the‐art spatiotemporal clustering component. It also represents an attempt to merge fault‐based forecasts with statistical seismology models, such that information on fault proximity, activity rate, and time since last event are considered in OEF. We describe several unanticipated challenges that were encountered, including a need for elastic rebound and characteristic magnitude–frequency distributions (MFDs) on faults, both of which are required to get realistic triggering behavior. UCERF3‐ETAS produces synthetic catalogs of M≥2.5 events, conditioned on any prior M≥2.5 events that are input to the model. We evaluate results with respect to both long‐term (1000 year) simulations as well as for 10‐year time periods following a variety of hypothetical scenario mainshocks. Although the results are very plausible, they are not always consistent with the simple notion that triggering probabilities should be greater if a mainshock is located near a fault. Important factors include whether the MFD near faults includes a significant characteristic earthquake component, as well as whether large triggered events can nucleate from within the rupture zone of the mainshock. Because UCERF3‐ETAS has many sources of uncertainty, as will any subsequent version or competing model, potential usefulness needs to be considered in the context of actual applications.
Connecting slow earthquakes to huge earthquakes.
Obara, Kazushige; Kato, Aitaro
2016-07-15
Slow earthquakes are characterized by a wide spectrum of fault slip behaviors and seismic radiation patterns that differ from those of traditional earthquakes. However, slow earthquakes and huge megathrust earthquakes can have common slip mechanisms and are located in neighboring regions of the seismogenic zone. The frequent occurrence of slow earthquakes may help to reveal the physics underlying megathrust events as useful analogs. Slow earthquakes may function as stress meters because of their high sensitivity to stress changes in the seismogenic zone. Episodic stress transfer to megathrust source faults leads to an increased probability of triggering huge earthquakes if the adjacent locked region is critically loaded. Careful and precise monitoring of slow earthquakes may provide new information on the likelihood of impending huge earthquakes. Copyright © 2016, American Association for the Advancement of Science.
Landslides triggered by earthquakes in the central Mississippi Valley, Tennessee and Kentucky
Jibson, Randall W.; Keefer, David K.
1988-01-01
We mapped 221 large (more than 200 ft across) landslides of three morphologically distinct types on the bluffs bordering the Mississippi alluvial plain in western Tennessee and Kentucky Old coherent slides (146 landslides, or 66 percent of the total) include translational block slides and single and multiple-block rotational slumps, all of which are covered by mature vegetation and have eroded features; no active analogs exist in the area. Earth flows (51 landslides, or 23 percent of the total) are also largely revegetated and eroded, though a few active earth flows are present on bluffs that have been cleared of vegetation. Young rotational slumps (24 landslides, or 11 percent of the total) form solely along actively eroding near-river bluffs and are the only active or recently active landslides in the area. Two investigations conducted around 1900 indicate that the old coherent slides, in at least part of the area, formed during the 1811-12 earthquakes. The present investigation uses dendrochronology, geomorphology, historic topographic maps, local historical accounts, and comparisons with landslides triggered by other earthquakes to show that most or all of the old coherent slides and earth flows formed during the 1811-12 New Madrid earthquakes. Evidence clearly indicates that the only large, aseismic landslide activity in the area results from fluvial undercutting of near-river bluffs. This erosion of the base of the bluffs triggers slumps that are morphologically distinct from the old slumps on bluffs away from the river. Our conclusions are consistent with the findings of other recent investigations of the same landslides that indicate extensive seismic triggering of coherent slides and earth flows during the 1811-12 New Madrid earthquakes.
The Tidal Triggering of Earthquakes Under Certain Circumstances
NASA Astrophysics Data System (ADS)
Goodacre, A. K.
2004-05-01
Although it would be lunacy to claim that all earthquakes are triggered by the motions of the Moon and Sun, there are certain circumstances where these celestial bodies might play a role. This would especially be the case where pre-existing, nearly vertical zones of weakness are present and, hence, the solid-earth tidal stresses would have maximum effect. I have investigated two possible areas: i) the Charlevoix seismic region of Québec along the St. Lawrence River and )ii the San Andreas and Calaveras Faults in California. In the Charlevoix region there a few suites of earthquakes, recognized by Maurice Lamontagne and lying mainly beneath or at the edge of the St. Lawrence River, in which the events in each suite occur in a relatively small volume of rock and produce similar waveforms characteristic of the particular location involved. This sort of repeated rupturing suggests the possibility of triggering by solid-earth and/or marine tides. In one sequence of 9 events (2 of which are left out of the analysis because they are aftershocks) it appears that there is only about one chance in ten that this sequence occurred at random. Unfortunately, there are no fault-plane solutions for any events in this particular set of earthquakes and so it is difficult to comment on failure mechanisms. However, in the case of the Calaveras and San Andreas Faults of California where fault-plane solutions are often available, if we restrict our attention to the larger, strike-slip earthquakes, it appears that lunar and solar tides (both solid-earth and marine) do, in fact, play a role in the timing of these events and the triggering mechanism may involve the amount of incremental normal stress acting upon these two faults.
NASA Astrophysics Data System (ADS)
Yeck, William L.; Block, Lisa V.; Wood, Christopher K.; King, Vanessa M.
2015-01-01
The Paradox Valley Unit (PVU), a salinity control project in southwest Colorado, disposes of brine in a single deep injection well. Since the initiation of injection at the PVU in 1991, earthquakes have been repeatedly induced. PVU closely monitors all seismicity in the Paradox Valley region with a dense surface seismic network. A key factor for understanding the seismic hazard from PVU injection is the maximum magnitude earthquake that can be induced. The estimate of maximum magnitude of induced earthquakes is difficult to constrain as, unlike naturally occurring earthquakes, the maximum magnitude of induced earthquakes changes over time and is affected by injection parameters. We investigate temporal variations in maximum magnitudes of induced earthquakes at the PVU using two methods. First, we consider the relationship between the total cumulative injected volume and the history of observed largest earthquakes at the PVU. Second, we explore the relationship between maximum magnitude and the geometry of individual seismicity clusters. Under the assumptions that: (i) elevated pore pressures must be distributed over an entire fault surface to initiate rupture and (ii) the location of induced events delineates volumes of sufficiently high pore-pressure to induce rupture, we calculate the largest allowable vertical penny-shaped faults, and investigate the potential earthquake magnitudes represented by their rupture. Results from both the injection volume and geometrical methods suggest that the PVU has the potential to induce events up to roughly MW 5 in the region directly surrounding the well; however, the largest observed earthquake to date has been about a magnitude unit smaller than this predicted maximum. In the seismicity cluster surrounding the injection well, the maximum potential earthquake size estimated by these methods and the observed maximum magnitudes have remained steady since the mid-2000s. These observations suggest that either these methods overpredict maximum magnitude for this area or that long time delays are required for sufficient pore-pressure diffusion to occur to cause rupture along an entire fault segment. We note that earthquake clusters can initiate and grow rapidly over the course of 1 or 2 yr, thus making it difficult to predict maximum earthquake magnitudes far into the future. The abrupt onset of seismicity with injection indicates that pore-pressure increases near the well have been sufficient to trigger earthquakes under pre-existing tectonic stresses. However, we do not observe remote triggering from large teleseismic earthquakes, which suggests that the stress perturbations generated from those events are too small to trigger rupture, even with the increased pore pressures.
Don't forget about the Christchurch earthquake: Lessons learned from this disaster
Hamburger, Michael W.; Mooney, Walter D.
2011-01-01
In the aftermath of the devastating magnitude-9.0 earthquake and tsunami that struck the Tohoku region of Japan on March 11, attention quickly turned away from a much smaller, but also highly destructive earthquake that struck the city of Christchurch, New Zealand, just a few weeks earlier, on Feb. 22. Both events are stark reminders of human vulnerability to natural disasters and provide a harsh reality check: Even technologically advanced countries with modern building codes are not immune from earthquake disasters. The Christchurch earthquake carried an additional message: Urban devastation can be triggered even by moderate-sized earthquakes.
Gomberg, Joan S.; Agnew, Duncan Carr
1996-01-01
The dynamic strains associated with seismic waves may play a significant role in earthquake triggering, hydrological and magmatic changes, earthquake damage, and ground failure. We determine how accurately dynamic strains may be estimated from seismometer data and elastic-wave theory by comparing such estimated strains with strains measured on a three-component long-base strainmeter system at Pin??on Flat, California. We quantify the uncertainties and errors through cross-spectral analysis of data from three regional earthquakes (the M0 = 4 ?? 1017 N-m St. George, Utah; M0 = 4 ?? 1017 N-m Little Skull Mountain, Nevada; and M0 = 1 ?? 1019 N-m Northridge, California, events at distances of 470, 345, and 206 km, respectively). Our analysis indicates that in most cases the phase of the estimated strain matches that of the observed strain quite well (to within the uncertainties, which are about ?? 0.1 to ?? 0.2 cycles). However, the amplitudes are often systematically off, at levels exceeding the uncertainties (about 20%); in one case, the predicted strain amplitudes are nearly twice those observed. We also observe significant ?????? strains (?? = tangential direction), which should be zero theoretically; in the worst case, the rms ?????? strain exceeds the other nonzero components. These nonzero ?????? strains cannot be caused by deviations of the surface-wave propagation paths from the expected azimuth or by departures from the plane-wave approximation. We believe that distortion of the strain field by topography or material heterogeneities give rise to these complexities.
Huang, C.-C.; Lee, Y.-H.; Liu, Huaibao P.; Keefer, D.K.; Jibson, R.W.
2001-01-01
The 1999 Chi-Chi, Taiwan, earthquake triggered numerous landslides throughout a large area in the Central Range, to the east, southeast, and south of the fault rupture. Among them are two large rock avalanches, at Tsaoling and at Jih-Feng-Erh-Shan. At Jih-Feng-Erh-Shan, the entire thickness (30-50 m) of the Miocene Changhukeng Shale over an area of 1 km2 slid down its bedding plane for a distance of about 1 km. Initial movement of the landslide was nearly purely translational. We investigate the effect of surface-normal acceleration on the initiation of the Jih-Feng-Erh-Shan landslide using a block slide model. We show that this acceleration, currently not considered by dynamic slope-stability analysis methods, significantly influences the initiation of the landslide.
Thermo-mechanical pressurization of experimental faults in cohesive rocks during seismic slip
NASA Astrophysics Data System (ADS)
Violay, M.; Di Toro, G.; Nielsen, S.; Spagnuolo, E.; Burg, J. P.
2015-11-01
Earthquakes occur because fault friction weakens with increasing slip and slip rates. Since the slipping zones of faults are often fluid-saturated, thermo-mechanical pressurization of pore fluids has been invoked as a mechanism responsible for frictional dynamic weakening, but experimental evidence is lacking. We performed friction experiments (normal stress 25 MPa, maximal slip-rate ∼3 ms-1) on cohesive basalt and marble under (1) room-humidity and (2) immersed in liquid water (drained and undrained) conditions. In both rock types and independently of the presence of fluids, up to 80% of frictional weakening was measured in the first 5 cm of slip. Modest pressurization-related weakening appears only at later stages of slip. Thermo-mechanical pressurization weakening of cohesive rocks can be negligible during earthquakes due to the triggering of more efficient fault lubrication mechanisms (flash heating, frictional melting, etc.).
The Hungtsaiping landslide:A kinematic model based on morphology
NASA Astrophysics Data System (ADS)
Huang, W.-K.; Chu, H.-K.; Lo, C.-M.; Lin, M.-L.
2012-04-01
A large and deep-seated landslide at Hungtsaiping was triggered by the 7.3 magnitude 1999 Chi-Chi earthquake. Extensive site investigations of the landslide were conducted including field reconnaissance, geophysical exploration, borehole logs, and laboratory experiments. Thick colluvium was found around the landslide area and indicated the occurrence of a large ancient landslide. This study presents the catastrophic landslide event which occurred during the Chi-Chi earthquake. The mechanism of the 1999 landslide which cannot be revealed by the underground exploration data alone, is clarified. This research include investigations of the landslide kinematic process and the deposition geometry. A 3D discrete element method (program), PFC3D, was used to model the kinematic process that led to the landslide. The proposed procedure enables a rational and efficient way to simulate the landslide dynamic process. Key word: Hungtsaiping catastrophic landslide, kinematic process, deposition geometry, discrete element method
Remotely-triggered Slip in Mexico City Induced by the September 2017 Mw=7.1 Puebla Earthquake.
NASA Astrophysics Data System (ADS)
Solano Rojas, D. E.; Havazli, E.; Cabral-Cano, E.; Wdowinski, S.
2017-12-01
Although the epicenter of the September 19th, 2017 Mw=7.1 Puebla earthquake is located 100 km from Mexico City, the earthquake caused severe destruction in the city, leading to life loss and property damage. Mexico City is built on a thick clay-rich sedimentary sequence and, hence, is susceptible to seismic acceleration during earthquakes. The sediment layer also causes land subsidence, at rates as high as 350 mm/yr, and surface faulting. The earthquake damage in the eastern part of the city, characterized by the collapse of several buildings, can be explained by seismic amplification. However, the damage in the southern part of the city, characterized by the collapse of small houses and surface faulting, requires a different explanation. We present here geodetic observations suggesting that the surface faulting in Mexico City triggered by the Puebla earthquake occurred in areas already experiencing differential displacements. Our study is based on Sentinel-1A satellite data from before and after the earthquake (September 17th and 29th, 2017). We process the data using Interferometric Synthetic Aperture Radar (InSAR) to produce a coseismic interferogram. We also identify phase discontinuities that can be interpreted as surface faulting using the phase gradient technique (Price and Sandwell, 1998). The results of our analysis reveal the locations and patterns of coseismic phase discontinuities, mainly in the piedmont of the Sierra de Santa Catarina, which agree with the location of earthquake's damage reported by official and unofficial sources (GCDMX, 2017; OSM, 2017). The observed phase discontinuities also agree well with the location of preexisting, subsidence-related faults identified during 10 years of field surveys (GCDMX, 2017) and coincide with differential displacements identified using a Fast Fourier Transform residual technique on high-resolution InSAR results from 2012 (Solano-Rojas et. al, 2017). We propose that the seismic energy released by the 2017 Mw=7.1 Puebla earthquake induced fast soil consolidation, which remotely triggered slip on the preexisting subsidence-related faults. The slip observed during this earthquake represents a hazard that needs to be considered in future urban development plans of Mexico City.
Frohlich, Cliff
2012-01-01
Between November 2009 and September 2011, temporary seismographs deployed under the EarthScope USArray program were situated on a 70-km grid covering the Barnett Shale in Texas, recording data that allowed sensing and locating regional earthquakes with magnitudes 1.5 and larger. I analyzed these data and located 67 earthquakes, more than eight times as many as reported by the National Earthquake Information Center. All 24 of the most reliably located epicenters occurred in eight groups within 3.2 km of one or more injection wells. These included wells near Dallas–Fort Worth and Cleburne, Texas, where earthquakes near injection wells were reported by the media in 2008 and 2009, as well as wells in six other locations, including several where no earthquakes have been reported previously. This suggests injection-triggered earthquakes are more common than is generally recognized. All the wells nearest to the earthquake groups reported maximum monthly injection rates exceeding 150,000 barrels of water per month (24,000 m3/mo) since October 2006. However, while 9 of 27 such wells in Johnson County were near earthquakes, elsewhere no earthquakes occurred near wells with similar injection rates. A plausible hypothesis to explain these observations is that injection only triggers earthquakes if injected fluids reach and relieve friction on a suitably oriented, nearby fault that is experiencing regional tectonic stress. Testing this hypothesis would require identifying geographic regions where there is interpreted subsurface structure information available to determine whether there are faults near seismically active and seismically quiescent injection wells. PMID:22869701
NASA Astrophysics Data System (ADS)
Zhang, Huai; Cheng, Huihong; Pang, Yajin; Shi, Yaolin; Yuen, David A.
2016-12-01
On December 16, 2013, right after the Three Gorges Reservoir (TGR) reached its highest annual water level, a powerful M5.1 earthquake occurred in Badong County, China's Hubei Province. The epicenter is 5.5 km away from the upstream boundary and 100 km from the dam. Was this earthquake triggered by the impoundment of the TGR, and what are its subsequences? To answer these questions, we constructed a coupled three-dimensional poroelastic finite element model to examine the ground surface deformation, the Coulomb failure stress change (ΔCFS) due to the variation of elastic stress and pore pressure, and the elastic strain energy potential accumulation in the TGR region upon the occurrence of this event. Our calculated maximum surface deformation values beneath the TGR compare well with GPS observations, which validates our numerical model. At the hypocenter of the earthquake, ΔCFS is around 8.0 ∼ 11.0 kPa, revealing that it may be eventually triggered by the impoundment. We also discovered that the total elastic strain energy potential accumulation due to the impounded water load is around 1.7 × 1012 J, merely equivalent to 0.01% of the total energy released by this event, indicating that this earthquake is predominately controlled by the typical regional tectonic settings as well as the weak fault zones, and the reservoir impoundment might only facilitate its procedure or occurrence. Furthermore, the stress level in this region remains high after this earthquake and the subsequent reservoir-triggered micro-seismicity or even bigger event are highly possible.
NASA Astrophysics Data System (ADS)
Chen, Xiao-li; Liu, Chun-guo; Wang, Ming-ming; Zhou, Qing
2018-06-01
The Mw 6.1 2014 Ludian, Yunnan, China earthquake triggered numerous coseismic landslides that do not appear to be associated with any previously known seismogenic fault. Traditional models of triggering for seismically generated landslides do not provide a reasonable explanation for the landslide pattern observed here. Here the Newmark method is applied to a grid to calculate the minimum accelerations required for slope failures throughout the affected region. The results demonstrate that for much of the study area, the distribution of failure prone slopes is similar to the actual pattern of coseismic landslides, however there are some areas where the model predicts considerably fewer failures than occurred. We suggest that this is a result of the complex source faults that generated the Ludian earthquake, which produced a half-conjugate rupture on nearly EW- and NNW trending faults at depth. The rupture directed much of its seismic moment southeast of the epicenter, increasing ground shaking and the number of resulting landslides.
NASA Astrophysics Data System (ADS)
Pouderoux, H.; Lamarche, G.; Proust, J.-N.
2012-06-01
Two ~20 m-long sedimentary cores collected in two neighbouring mid-slope basins of the Paritu Turbidite System in Poverty Bay, east of New Zealand, show a high concentration of turbidites (5 to 6 turbidites per meter), interlaid with hemipelagites, tephras and a few debrites. Turbidites occur as both stacked and single, and exhibit a range of facies from muddy to sandy turbidites. The age of each turbidite is estimated using the statistical approach developed in the OxCal software from an exceptionally dense set of tephrochronology and radiocarbon ages (~1 age per meter). The age, together with the facies and the petrophysical properties of the sediment (density, magnetic susceptibility and P-wave velocity), allows the correlation of turbidites across the continental slope (1400-2300 m water depth). We identify 73 synchronous turbidites, named basin events, across the two cores between 819 ± 191 and 17 729 ± 701 yr BP. Compositional, foraminiferal and geochemical signatures of the turbidites are used to characterise the source area of the sediment, the origin of the turbidity currents, and their triggering mechanism. Sixty-seven basin events are interpreted as originated from slope failures on the upper continental slope in water depth ranging from 150 to 1200 m. Their earthquake trigger is inferred from the heavily gullied morphology of the source area and the water depth at which slope failures originated. We derive an earthquake mean return time of ~230 yr, with a 90% probability range from 10 to 570 yr. The earthquake chronology indicates cycles of progressive decrease of earthquake return times from ~400 yr to ~150 yr at 0-7 kyr, 8.2-13.5 kyr, 14.7-18 kyr. The two 1.2 kyr-long intervals in between (7-8.2 kyr and 13.5-14.7 kyr) correspond to basin-wide reorganisations with anomalous turbidite deposition (finer deposits and/or non deposition) reflecting the emplacement of two large mass transport deposits much more voluminous than the "classical" earthquake-triggered turbidites. Our results show that the progressive characterisation of a turbidite record from a single sedimentary system can provide a continuous paleo-earthquake history in regions of short historical record and incomplete onland paleo-earthquake evidences. The systematic description of each turbidite enables us to infer the triggering mechanism.
Mass wasting triggered by the 5 March 1987 Ecuador earthquakes
Schuster, R.L.; Nieto, A.S.; O'Rourke, T. D.; Crespo, E.; Plaza-Nieto, G.
1996-01-01
On 5 March 1987, two earthquakes (Ms=6.1 and Ms=6.9) occurred about 25 km north of Reventador Volcano, along the eastern slopes of the Andes Mountains in northeastern Ecuador. Although the shaking damaged structures in towns and villages near the epicentral area, the economic and social losses directly due to earthquake shaking were small compared to the effects of catastrophic earthquake-triggered mass wasting and flooding. About 600 mm of rain fell in the region in the month preceding the earthquakes; thus, the surficial soils had high moisture contents. Slope failures commonly started as thin slides, which rapidly turned into fluid debris avalanches and debris flows. The surficial soils and thick vegetation covering them flowed down the slopes into minor tributaries and then were carried into major rivers. Rock and earth slides, debris avalanches, debris and mud flows, and resulting floods destroyed about 40 km of the Trans-Ecuadorian oil pipeline and the only highway from Quito to Ecuador's northeastern rain forests and oil fields. Estimates of total volume of earthquake-induced mass wastage ranged from 75-110 million m3. Economic losses were about US$ 1 billion. Nearly all of the approximately 1000 deaths from the earthquakes were a consequence of mass wasting and/ or flooding.
Earthquake-induced ground failures in Italy from a reviewed database
NASA Astrophysics Data System (ADS)
Martino, S.; Prestininzi, A.; Romeo, R. W.
2013-05-01
A database (Italian acronym CEDIT) of earthquake-induced ground failures in Italy is presented, and the related content is analysed. The catalogue collects data regarding landslides, liquefaction, ground cracks, surface faulting and ground-level changes triggered by earthquakes of Mercalli intensity 8 or greater that occurred in the last millennium in Italy. As of January 2013, the CEDIT database has been available online for public use (URL: http://www.ceri.uniroma1.it/cn/index.do?id=230&page=55) and is presently hosted by the website of the Research Centre for Geological Risks (CERI) of the "Sapienza" University of Rome. Summary statistics of the database content indicate that 14% of the Italian municipalities have experienced at least one earthquake-induced ground failure and that landslides are the most common ground effects (approximately 45%), followed by ground cracks (32%) and liquefaction (18%). The relationships between ground effects and earthquake parameters such as seismic source energy (earthquake magnitude and epicentral intensity), local conditions (site intensity) and source-to-site distances are also analysed. The analysis indicates that liquefaction, surface faulting and ground-level changes are much more dependent on the earthquake source energy (i.e. magnitude) than landslides and ground cracks. In contrast, the latter effects are triggered at lower site intensities and greater epicentral distances than the other environmental effects.
Impact of the 2008 Wenchuan earthquake on river organic carbon provenance: Insight from biomarkers
NASA Astrophysics Data System (ADS)
Wang, Jin; Feng, Xiaojuan; Hilton, Robert; Jin, Zhangdong; Ma, Tian; Zhang, Fei; Li, Gen; Densmore, Alexander; West, A. Joshua
2017-04-01
Large earthquakes can trigger widespread landslides in active mountain belts, which can mobilize biospheric organic carbon (OC) from the soil and vegetation. Rivers can erode and export biospheric particulate organic carbon (POC), which is an export of ecosystem productivity and may result in a CO2 sink if buried in sedimentary deposits. Our previous work showed that the 2008 Mw 7.9 Wenchuan earthquake increased the discharge of biospheric OC by rivers, due to the increased supply by earthquake triggered landslides (Wang et al., 2016). However, while the OC derived from sedimentary rocks could be accounted for, the source of biospheric OC in rivers before and after the earthquake remains poorly constrained. Here we use suspended sediment samples collected from the Zagunao River before and after the Wenchuan earthquake and measured the specific compounds of OC, including fatty acids, lignin phenols and glycerol dialkyl glycerol tetraether (GDGT) lipids. In combination with the analysis of bulk elemental concentration (C and N) and carbon isotopic ratio, the new data shows differential export patterns for OC components derived from varied terrestrial sources. A high frequency sampling enabled us to explore how the biospheric OC source changes following the earthquake, helping to better understand the link between active tectonics and the carbon cycle. Our results are also important in revealing how sedimentary biomarker records may record past earthquakes.
Vidale, J.E.; Agnew, D.C.; Johnston, M.J.S.; Oppenheimer, D.H.
1998-01-01
Because the rate of stress change from the Earth tides exceeds that from tectonic stress accumulation, tidal triggering of earthquakes would be expected if the final hours of loading of the fault were at the tectonic rate and if rupture began soon after the achievement of a critical stress level. We analyze the tidal stresses and stress rates on the fault planes and at the times of 13,042 earthquakes which are so close to the San Andreas and Calaveras faults in California that we may take the fault plane to be known. We find that the stresses and stress rates from Earth tides at the times of earthquakes are distributed in the same way as tidal stresses and stress rates at random times. While the rate of earthquakes when the tidal stress promotes failure is 2% higher than when the stress does not, this difference in rate is not statistically significant. This lack of tidal triggering implies that preseismic stress rates in the nucleation zones of earthquakes are at least 0.15 bar/h just preceding seismic failure, much above the long-term tectonic stress rate of 10-4 bar/h.
Bodin, Paul; Bilham, Roger; Behr, Jeff; Gomberg, Joan; Hudnut, Kenneth W.
1994-01-01
Five out of six functioning creepmeters on southern California faults recorded slip triggered at the time of some or all of the three largest events of the 1992 Landers earthquake sequence. Digital creep data indicate that dextral slip was triggered within 1 min of each mainshock and that maximum slip velocities occurred 2 to 3 min later. The duration of triggered slip events ranged from a few hours to several weeks. We note that triggered slip occurs commonly on faults that exhibit fault creep. To account for the observation that slip can be triggered repeatedly on a fault, we propose that the amplitude of triggered slip may be proportional to the depth of slip in the creep event and to the available near-surface tectonic strain that would otherwise eventually be released as fault creep. We advance the notion that seismic surface waves, perhaps amplified by sediments, generate transient local conditions that favor the release of tectonic strain to varying depths. Synthetic strain seismograms are presented that suggest increased pore pressure during periods of fault-normal contraction may be responsible for triggered slip, since maximum dextral shear strain transients correspond to times of maximum fault-normal contraction.
NASA Astrophysics Data System (ADS)
Nelson, C. H.; Gutiérrez Pastor, J.; Goldfinger, C.; Escutia, C.
2012-11-01
We summarize the importance of great earthquakes (Mw ≳ 8) for hazards, stratigraphy of basin floors, and turbidite lithology along the active tectonic continental margins of the Cascadia subduction zone and the northern San Andreas Transform Fault by utilizing studies of swath bathymetry visual core descriptions, grain size analysis, X-ray radiographs and physical properties. Recurrence times of Holocene turbidites as proxies for earthquakes on the Cascadia and northern California margins are analyzed using two methods: (1) radiometric dating (14C method), and (2) relative dating, using hemipelagic sediment thickness and sedimentation rates (H method). The H method provides (1) the best estimate of minimum recurrence times, which are the most important for seismic hazards risk analysis, and (2) the most complete dataset of recurrence times, which shows a normal distribution pattern for paleoseismic turbidite frequencies. We observe that, on these tectonically active continental margins, during the sea-level highstand of Holocene time, triggering of turbidity currents is controlled dominantly by earthquakes, and paleoseismic turbidites have an average recurrence time of ~550 yr in northern Cascadia Basin and ~200 yr along northern California margin. The minimum recurrence times for great earthquakes are approximately 300 yr for the Cascadia subduction zone and 130 yr for the northern San Andreas Fault, which indicates both fault systems are in (Cascadia) or very close (San Andreas) to the early window for another great earthquake. On active tectonic margins with great earthquakes, the volumes of mass transport deposits (MTDs) are limited on basin floors along the margins. The maximum run-out distances of MTD sheets across abyssal-basin floors along active margins are an order of magnitude less (~100 km) than on passive margins (~1000 km). The great earthquakes along the Cascadia and northern California margins cause seismic strengthening of the sediment, which results in a margin stratigraphy of minor MTDs compared to the turbidite-system deposits. In contrast, the MTDs and turbidites are equally intermixed on basin floors along passive margins with a mud-rich continental slope, such as the northern Gulf of Mexico. Great earthquakes also result in characteristic seismo-turbidite lithology. Along the Cascadia margin, the number and character of multiple coarse pulses for correlative individual turbidites generally remain constant both upstream and downstream in different channel systems for 600 km along the margin. This suggests that the earthquake shaking or aftershock signature is normally preserved, for the stronger (Mw ≥ 9) Cascadia earthquakes. In contrast, the generally weaker (Mw = or <8) California earthquakes result in upstream simple fining-up turbidites in single tributary canyons and channels; however, downstream mainly stacked turbidites result from synchronously triggered multiple turbidity currents that deposit in channels below confluences of the tributaries. Consequently, both downstream channel confluences and the strongest (Mw ≥ 9) great earthquakes contribute to multi-pulsed and stacked turbidites that are typical for seismo-turbidites generated by a single great earthquake. Earthquake triggering and multi-pulsed or stacked turbidites also become an alternative explanation for amalgamated turbidite beds in active tectonic margins, in addition to other classic explanations. The sedimentologic characteristics of turbidites triggered by great earthquakes along the Cascadia and northern California margins provide criteria to help distinguish seismo-turbidites in other active tectonic margins.
Deep Scientific Drilling at Koyna, India
NASA Astrophysics Data System (ADS)
Gupta, H. K.
2011-12-01
The Stable Continental Region (SCR) earthquakes tend to claim more human lives and inflict heavier financial losses as they occur where not expected and the local and regional preparedness to mitigate such catastrophes is minimal. Artificial water Reservoir Triggered Seismicity (RTS), most prominent in SCR, provides an exceptional window to comprehend genesis of such earthquakes. Since the first scientific reporting of the RTS at the Boulder Dam, USA during 1930s, over 100 cases of RTS have been reported globally. Damaging earthquakes exceeding M 6 have occurred at Hsingfengkiang (China), Kariba (Zambia -Zimbabwe border), Kremasta (Greece) and Koyna (India). It is debated that the 2008 M 7.8 Sichuan earthquake in China, which claimed over 80,000 human lives was triggered by filling of a nearby reservoir. Located close to the west coast of India, Koyna is a classical site of RTS, where triggered earthquakes have been occurring since the impoundment in 1962, including the largest RTS earthquake of M 6.3 on December 10, 1967 which claimed over 200 human lives and destroyed Koyna town. Over the past 49 years 22 earthquakes of M ≥ 5 and several thousand smaller earthquakes have occurred in a restricted area of 20 X 30 sq. km. with no other seismic activity within 50 km of the Koyna Dam. The latest M 5.1 earthquake occurred on December 12, 2009. Although several studies have clearly established the association of continued RTS at Koyna with precipitation driven loading and unloading of the Koyna and Warna reservoirs, the trigger mechanism is little understood. Our knowledge about the physical properties of rocks and fluids in the fault zones and how they affect the build-up of stress for an extended period is limited by the lack of data from the near field region. A deep bore hole of up to 7 km depth at a scientifically and logistically suitable location is under an advance stage of planning. A detailed workshop and field visits involving some 50 scientists from 10 countries were held under the auspices of International Continental Scientific Drilling Program (ICDP) and the Ministry of Earth Sciences (MoES), Government of India, during March 21 through 26, 2011 to discuss all aspects of the proposed scientific drilling at Koyna. In addition to a pilot bore hole of about 2.5 km, 4 other bore holes penetrating the basalt cover of about 1 km thickness, are proposed to be drilled to conduct a suite of geophysical and hydro-geological experiments and measurements. Results of these investigations would be complementary to SAFOD experiment being conducted on the plate boundary.
NASA Astrophysics Data System (ADS)
Serata, S.
2006-12-01
The Serata Stressmeter has been developed to measure and monitor earthquake shear stress build-up along shallow active faults. The development work made in the past 25 years has established the Stressmeter as an automatic stress measurement system to study timing of forthcoming major earthquakes in support of the current earthquake prediction studies based on statistical analysis of seismological observations. In early 1982, a series of major Man-made earthquakes (magnitude 4.5-5.0) suddenly occurred in an area over deep underground potash mine in Saskatchewan, Canada. By measuring underground stress condition of the mine, the direct cause of the earthquake was disclosed. The cause was successfully eliminated by controlling the stress condition of the mine. The Japanese government was interested in this development and the Stressmeter was introduced to the Japanese government research program for earthquake stress studies. In Japan the Stressmeter was first utilized for direct measurement of the intrinsic lateral tectonic stress gradient G. The measurement, conducted at the Mt. Fuji Underground Research Center of the Japanese government, disclosed the constant natural gradients of maximum and minimum lateral stresses in an excellent agreement with the theoretical value, i.e., G = 0.25. All the conventional methods of overcoring, hydrofracturing and deformation, which were introduced to compete with the Serata method, failed demonstrating the fundamental difficulties of the conventional methods. The intrinsic lateral stress gradient determined by the Stressmeter for the Japanese government was found to be the same with all the other measurements made by the Stressmeter in Japan. The stress measurement results obtained by the major international stress measurement work in the Hot Dry Rock Projects conducted in USA, England and Germany are found to be in good agreement with the Stressmeter results obtained in Japan. Based on this broad agreement, a solid geomechanical basis to disclose an acting earthquake shear stress S at top of the tectonic plate is established at the depth of 600-800m (Window). This concept is supported by outcome of the Japanese government stress measurement made at the epicenter of the Kobe earthquake of 1995, where S is found to be less than 5 MPa. At the same time S at the earthquake active Ashio mining district was found to be 36 MPa (90 percent of maximum S) at Window. These findings led to formulation of a quantitative method proposed to monitor earthquake triggering potential in and around any growing earthquake stress nucleus along shallow active faults. For future earthquake time prediction, the Stressmeter can be applied first to survey general distribution of earthquake shear stress S along major active faults. A site with its shear stress greater than 30 MPa may be identified as a site of growing stress nucleus. A Stressmeter must be permanently buried at the site to monitor future stress growth toward a possible triggering by mathematical analysis of the stress excursion dynamics. This is made possible by the automatic stress measurement capability of the Stressmeter at a frequency up to 100 times per day. The significance of this approach is a possibility to save lives by time-prediction of a forthcoming major earthquake with accuracy in hours and minutes.
Tiny intraplate earthquakes triggered by nearby episodic tremor and slip in Cascadia
Vidale, J.E.; Hotovec, A.J.; Ghosh, A.; Creager, K.C.; Gomberg, J.
2011-01-01
Episodic tremor and slip (ETS) has been observed in many subduction zones, but its mechanical underpinnings as well as its potential for triggering damaging earthquakes have proven difficult to assess. Here we use a seismic array in Cascadia of unprecedented density to monitor seismicity around a moderate 16 day ETS episode. In the 4 months of data we examine, we observe five tiny earthquakes within the subducting slab during the episode and only one more in the same area, which was just before and nearby the next ETS burst. These earthquakes concentrate along the sides and updip edge of the ETS region, consistent with greater stress concentration there than near the middle and downdip edge of the tremor area. Most of the seismicity is below the megathrust, with a similar depth extent to the background intraslab seismicity. The pattern of earthquakes that we find suggests slow slip has a more continuous temporal and spatial pattern than the tremor loci, which notoriously appear in bursts, jumps, and streaks. Copyright 2011 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Martínez-Garzón, P.; Zaliapin, I. V.; Ben-Zion, Y.; Kwiatek, G.; Bohnhoff, M.
2017-12-01
We investigate earthquake clustering properties from three geothermal reservoirs to clarify how earthquake patterns respond to hydraulic activities. We process ≈ 9 years from four datasets corresponding to the Geysers (both the entire field and a local subset), Coso and Salton Sea geothermal fields, California. For each, the completeness magnitude, b-value and fractal dimension are calculated and used to identify seismicity clusters using the nearest-neighbor approach of Zaliapin and Ben-Zion [2013a, 2013b]. Estimations of temporal evolution of different clustering properties in relation to hydraulic parameters point to different responses of earthquake dynamics to hydraulic operations in each case study. The clustering at the Geysers at local scale and Salton Sea are most and least affected by hydraulic activities, respectively. The response of the earthquake clustering from different datasets to the hydraulic activities may reflect the regional seismo-tectonic complexity as well as the dimension of the geothermal activities performed (e.g. number of active wells and superposition of injection + production activities).Two clustering properties significantly respond to hydraulic changes across all datasets: the background rates and the proportion of clusters consisting of a single event. Background rates are larger at the Geysers and Coso during high injection-production periods, while the opposite holds for the Salton Sea. This possibly reflects the different physical mechanisms controlling seismicity at each geothermal field. Additionally, a lower proportion of singles is found during time periods with higher injection-production rates. This may reflect decreasing effective stress in areas subjected to higher pore pressure and larger earthquake triggering by stress transfer.
Landslides Triggered by the 12 May 2008, M 7.9 Wenchuan, China Earthquake
NASA Astrophysics Data System (ADS)
Harp, E.; Jibson, R.; Godt, J.
2009-04-01
The 12 May 2008, M 7.9 Wenchuan earthquake in eastern Sichuan Province of China triggered tens of thousands of rock falls, rock slides, rock avalanches, and deep, complex, landslides. Of the approximately 87,000 deaths caused by the earthquake, more than 20,000 have been attributed to landsides. Numerous villages were buried by large landslides. Air-blasts resulting from the rapid failure and movement of landslides were observed and documented from numerous eye-witness accounts. More than 100 landslide-dammed lakes were created by the earthquake, 33 of which were evaluated to determine if spillway construction was necessary to minimize flooding by future breaching of the landslide dams. Spillways were ultimately constructed on at least 16 landslide dams. Preliminary observations in the field and from satellite imagery indicate that the most common types of landslides were rock falls and rock slides that ranged in size from several hundred cubic meters to several hundred thousand cubic meters in volume. There were hundreds to perhaps as many as one thousand landslides exceeding 1 million cubic meters in volume. The largest landslide identified using Jaxa's Alos/Prism satellite imagery (2.5 m resolution) is nearly 1 billion cubic meters in volume and is located approximately 12 km north-northeast of the city of Hanwang. This landslide appears to have resulted from the failure of a 1.5-km section of ridge crest that now occupies most of the adjacent valley to the northeast; its toe spills over the next ridge crest to the northeast. The satellite imagery of 4 June 2008 shows two small lakes dammed by the slide debris. Within the mountainous areas in the near-field zone of shaking, rock slides dammed chains of lakes in many drainages. Sections of streams 2-3 km long have been completely covered by rock debris as of the 4 June imagery The debris from the triggered landslides is being redistributed rapidly by post-earthquake rainfall. A 100-year rainstorm in September 2008 remobilized many earthquake-triggered landslide deposits into debris flows, which resulted in additional fatalities, road closures, and flow restrictions of even large rivers such as the MinJiang River near Yingxiu. Increased sedimentation from the landslide debris triggered by the 12 May earthquake could significantly reduce storage capacities of the numerous reservoirs in the region. To assist with hazard mitigation and reconstruction efforts, the U.S. Geological Survey will collaborate with the China Geological Survey to transfer methods and technology to produce probabilistic landslide hazard maps for hazardous areas in Sichuan Province.
Twitter earthquake detection: Earthquake monitoring in a social world
Earle, Paul S.; Bowden, Daniel C.; Guy, Michelle R.
2011-01-01
The U.S. Geological Survey (USGS) is investigating how the social networking site Twitter, a popular service for sending and receiving short, public text messages, can augment USGS earthquake response products and the delivery of hazard information. Rapid detection and qualitative assessment of shaking events are possible because people begin sending public Twitter messages (tweets) with in tens of seconds after feeling shaking. Here we present and evaluate an earthquake detection procedure that relies solely on Twitter data. A tweet-frequency time series constructed from tweets containing the word "earthquake" clearly shows large peaks correlated with the origin times of widely felt events. To identify possible earthquakes, we use a short-term-average, long-term-average algorithm. When tuned to a moderate sensitivity, the detector finds 48 globally-distributed earthquakes with only two false triggers in five months of data. The number of detections is small compared to the 5,175 earthquakes in the USGS global earthquake catalog for the same five-month time period, and no accurate location or magnitude can be assigned based on tweet data alone. However, Twitter earthquake detections are not without merit. The detections are generally caused by widely felt events that are of more immediate interest than those with no human impact. The detections are also fast; about 75% occur within two minutes of the origin time. This is considerably faster than seismographic detections in poorly instrumented regions of the world. The tweets triggering the detections also provided very short first-impression narratives from people who experienced the shaking.
Hazard Assessment and Early Warning of Tsunamis: Lessons from the 2011 Tohoku earthquake
NASA Astrophysics Data System (ADS)
Satake, K.
2012-12-01
The March 11, 2011 Tohoku earthquake (M 9.0) was the largest earthquake in Japanese history, and was the best recorded subduction-zone earthquakes in the world. In particular, various offshore geophysical observations revealed large horizontal and vertical seafloor movements, and the tsunami was recorded on high-quality, high-sampling gauges. Analysis of such tsunami waveforms shows a temporal and spatial slip distribution during the 2011 Tohoku earthquake. The fault rupture started near the hypocenter and propagated into both deep and shallow parts of the plate interface. Very large, ~25 m, slip off Miyagi on the deep part of plate interface corresponds to an interplate earthquake of M 8.8, the location and size similar to 869 Jogan earthquake model, and was responsible for the large tsunami inundation in Sendai and Ishinomaki plains. Huge slip, more than 50 m, occurred on the shallow part near the trench axis ~3 min after the earthquake origin time. This delayed shallow rupture (M 8.8) was similar to the 1896 "tsunami earthquake," and was responsible for the large tsunami on the northern Sanriku coast, measured at ~100 km north of the largest slip. Thus the Tohoku earthquake can be decomposed into an interplate earthquake and the triggered "tsunami earthquake." The Japan Meteorological Agency issued tsunami warning 3 minutes after the earthquake, and saved many lives. However, their initial estimation of tsunami height was underestimated, because the earthquake magnitude was initially estimated as M 7.9, hence the computed tsunami heights were lower. The JMA attempts to improve the tsunami warning system, including technical developments to estimate the earthquake size in a few minutes by using various and redundant information, to deploy and utilize the offshore tsunami observations, and to issue a warning based on the worst case scenario if a possibility of giant earthquake exists. Predicting a trigger of another large earthquake would still be a challenge. Tsunami hazard assessments or long-term forecast of earthquakes have not considered such a triggering or simultaneous occurrence of different types of earthquakes. The large tsunami at the Fukushima nuclear power station was due to the combination of the deep and shallow slip. Disaster prevention for low-frequency but large-scale hazard must be considered. The Japanese government established a general policy to for two levels: L1 and L2. The L2 tsunamis are the largest possible tsunamis with low frequency of occurrence, but cause devastating disaster once they occur. For such events, saving people's lives is the first priority and soft measures such as tsunami hazard maps, evacuation facilities or disaster education will be prepared. The L1 tsunamis are expected to occur more frequently, typically once in a few decades, for which hard countermeasures such as breakwater must be prepared to protect lives and properties of residents as well as economic and industrial activities.
Earthquake stress triggers, stress shadows, and seismic hazard
Harris, R.A.
2000-01-01
Many aspects of earthquake mechanics remain an enigma at the beginning of the twenty-first century. One potential bright spot is the realization that simple calculations of stress changes may explain some earthquake interactions, just as previous and ongoing studies of stress changes have begun to explain human- induced seismicity. This paper, which is an update of Harris1, reviews many published works and presents a compilation of quantitative earthquake-interaction studies from a stress change perspective. This synthesis supplies some clues about certain aspects of earthquake mechanics. It also demonstrates that much work remains to be done before we have a complete story of how earthquakes work.
NASA Astrophysics Data System (ADS)
Nakano, M.; Kumagai, H.; Toda, S.; Ando, R.; Yamashina, T.; Inoue, H.; Sunarjo
2010-04-01
On 2007 March 6, an earthquake doublet occurred along the Sumatran fault, Indonesia. The epicentres were located near Padang Panjang, central Sumatra, Indonesia. The first earthquake, with a moment magnitude (Mw) of 6.4, occurred at 03:49 UTC and was followed two hours later (05:49 UTC) by an earthquake of similar size (Mw = 6.3). We studied the earthquake doublet by a waveform inversion analysis using data from a broadband seismograph network in Indonesia (JISNET). The focal mechanisms of the two earthquakes indicate almost identical right-lateral strike-slip faults, consistent with the geometry of the Sumatran fault. Both earthquakes nucleated below the northern end of Lake Singkarak, which is in a pull-apart basin between the Sumani and Sianok segments of the Sumatran fault system, but the earthquakes ruptured different fault segments. The first earthquake occurred along the southern Sumani segment and its rupture propagated southeastward, whereas the second one ruptured the northern Sianok segment northwestward. Along these fault segments, earthquake doublets, in which the two adjacent fault segments rupture one after the other, have occurred repeatedly. We investigated the state of stress at a segment boundary of a fault system based on the Coulomb stress changes. The stress on faults increases during interseismic periods and is released by faulting. At a segment boundary, on the other hand, the stress increases both interseismically and coseismically, and may not be released unless new fractures are created. Accordingly, ruptures may tend to initiate at a pull-apart basin. When an earthquake occurs on one of the fault segments, the stress increases coseismically around the basin. The stress changes caused by that earthquake may trigger a rupture on the other segment after a short time interval. We also examined the mechanism of the delayed rupture based on a theory of a fluid-saturated poroelastic medium and dynamic rupture simulations incorporating a rheological velocity hardening effect. These models of the delayed rupture can qualitatively explain the observations, but further studies, especially based on the rheological effect, are required for quantitative studies.
NASA Astrophysics Data System (ADS)
Lomax, A.; Bossu, R.; Mazet-Roux, G.
2015-12-01
Scientific information on disasters such as earthquakes typically comes firstly from official organizations, news reports and interviews with experts, and later from scientific presentations and peer-reviewed articles. With the advent of the Internet and social media, this information is available in real-time from automated systems and within a dynamic, collaborative interaction between scientific experts, responders and the public. After the 2015 M7.8 Nepal earthquake, Twitter Tweets from earth scientists* included information, analysis, commentary and discussion on earthquake parameters (location, size, mechanism, rupture extent, high-frequency radiation, …), earthquake effects (distribution of felt shaking and damage, triggered seismicity, landslides, …), earthquake rumors (e.g. the imminence of a larger event) and other earthquake information and observations (aftershock forecasts, statistics and maps, source and regional tectonics, seismograms, GPS, InSAR, photos/videos, …).In the future (while taking into account security, false or erroneous information and identity verification), collaborative, real-time science on social media after a disaster will give earlier and better scientific understanding and dissemination of public information, and enable improved emergency response and disaster management.* A sample of scientific Tweets after the 2015 Nepal earthquake: In the first minutes: "mb5.9 Mwp7.4 earthquake Nepal 2015.04.25-06:11:25UTC", "Major earthquake shakes Nepal 8 min ago", "Epicenter between Pokhara and Kathmandu", "Major earthquake shakes Nepal 18 min ago. Effects derived from witnesses' reports". In the first hour: "shallow thrust faulting to North under Himalayas", "a very large and shallow event ... Mw7.6-7.7", "aftershocks extend east and south of Kathmandu, so likely ruptured beneath city", "Valley-blocking landslides must be a very real worry". In the first day: "M7.8 earthquake in Nepal 2hr ago: destructive in Kathmandu Valley and widely felt in India", "USGS pager v.3 contains initial fatality & economic loss estimates", "analysis of seismic waves … shows fault rupture lasted 80 sec, shaking longer", "aftershocks suggests rupture zone, directivity and shaking intensity".
Local observations of the onset of a large earthquake: 28 June 1992 Landers, California
Abercrombie, Richael; Mori, Jim
1994-01-01
The Landers earthquake (MW 7.3) of 28 June 1992 had a very emergent onset. The first large amplitude arrivals are delayed by about 3 sec with respect to the origin time, and are preceded by smaller-scale slip. Other large earthquakes have been observed to have similar emergent onsets, but the Landers event is one of the first to be well recorded on nearby stations. We used these recordings to investigate the spatial relationship between the hypocenter and the onset of the large energy release, and to determine the slip function of the 3-sec nucleation process. Relative location of the onset of the large energy release with respect to the initial hypocenter indicates its source was between 1 and 4 km north of the hypocenter and delayed by approximately 2.5 sec. Three-station array analysis of the P wave shows that the large amplitude onset arrives with a faster apparent velocity compared to the first arrivals, indicating that the large amplitude source was several kilometers deeper than the initial onset. An ML 2.8 foreshock, located close to the hypocenter, was used as an empirical Green's function to correct for path and site effects from the first 3 sec of the mainshock seismogram. The resultant deconvolution produced a slip function that showed two subevents preceding the main energy release, an MW4.4 followed by an MW 5.6. These subevents do not appear anomalous in comparison to simple moderate-sized earthquakes, suggesting that they were normal events which just triggered or grew into a much larger earthquake. If small and moderate-sized earthquakes commonly “detonate” much larger events, this implies that the dynamic stresses during earthquake rupture are at least as important as long-term static stresses in causing earthquakes, and the prospects of reliable earthquake prediction from premonitory phenomena are not improved.
NASA Astrophysics Data System (ADS)
Gold, Ryan; Williams, Robert; Jibson, Randall
2014-05-01
Previous research indicates that deep translational and rotational landslides along the bluffs east of the Mississippi River in western Tennessee were triggered by the M7-8 1811-1812 New Madrid earthquake sequence. Analysis of recently acquired airborne LiDAR data suggests the possibility of multiple generations of landslides, possibly triggered by older, similar magnitude earthquake sequences, which paleoliquifaction studies show occurred circa 1450 and about 900 A.D. Using these LiDAR data, we have remapped recent landslides along two sections of the bluffs: a northern section near Reelfoot Lake and a southern section near Meeman-Shelby State Park (20 km north of Memphis, Tennessee). The bare-earth, digital-elevation models derived from these LiDAR data have a resolution of 0.5 m and reveal valuable details of topography given the region's dense forest canopy. Our mapping confirms much of the previous landslide mapping, refutes a few previously mapped landslides, and reveals new, undetected landslides. Importantly, we observe that the landslide deposits in the Reelfoot region are characterized by rotated blocks with sharp uphill-facing scarps and steep headwall scarps, indicating youthful, relatively recent movement. In comparison, landslide deposits near Meeman-Shelby are muted in appearance, with headwall scarps and rotated blocks that are extensively dissected by gullies, indicating they might be an older generation of landslides. Because of these differences in morphology, we hypothesize that the landslides near Reelfoot Lake were triggered by the 1811-1812 earthquake sequence and that landslides near Meeman-Shelby resulted from shaking associated with earlier earthquake sequences. To test this hypothesis, we will evaluate differences in bluff height, local geology, vegetation, and proximity to known seismic sources. Furthermore, planned fieldwork will help evaluate whether the observed landslide displacements occurred in single earthquakes or if they might result from episodic movements associated with a sequence of multiple prehistoric earthquake. This study highlights the value of high-resolution, bare-earth topographic data to investigate the secondary effects of groundshaking in stable continental regions, where primary tectonic deformation associated with large earthquakes is commonly obscure or subtle.
Guillas, Serge; Day, Simon J; McGuire, B
2010-05-28
We present statistical evidence for a temporal link between variations in the El Niño-Southern Oscillation (ENSO) and the occurrence of earthquakes on the East Pacific Rise (EPR). We adopt a zero-inflated Poisson regression model to represent the relationship between the number of earthquakes in the Easter microplate on the EPR and ENSO (expressed using the southern oscillation index (SOI) for east Pacific sea-level pressure anomalies) from February 1973 to February 2009. We also examine the relationship between the numbers of earthquakes and sea levels, as retrieved by Topex/Poseidon from October 1992 to July 2002. We observe a significant (95% confidence level) positive influence of SOI on seismicity: positive SOI values trigger more earthquakes over the following 2 to 6 months than negative SOI values. There is a significant negative influence of absolute sea levels on seismicity (at 6 months lag). We propose that increased seismicity is associated with ENSO-driven sea-surface gradients (rising from east to west) in the equatorial Pacific, leading to a reduction in ocean-bottom pressure over the EPR by a few kilopascal. This relationship is opposite to reservoir-triggered seismicity and suggests that EPR fault activity may be triggered by plate flexure associated with the reduced pressure.
Landslides in the New Madrid seismic zone
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jibson, R.W.; Keefer, D.K.
1985-01-01
During the New Madrid earthquakes of 1811-12, bluffs bordering the Mississippi alluvial plain in the epicentral region underwent large-scale landsliding. Between Cairo, Illinois and Memphis, Tennessee, the authors mapped 221 large landslides of three types: (1) old, eroded, coherent block slides and slumps; (2) old earth flows; and (3) young, fresh slumps that occur only along near-river bluffs and are the only landslides present along such bluffs. Historical accounts and field evidence indicate that most or all old coherent slides and earth flows date to the 1811-12 earthquakes and that the only currently active, large-scale landsliding in the area occursmore » along bluffs bordering the river. Analysis of old coherent slides and earth flows indicates that landslide distribution is most strongly affected by slope height, but that proximity to the hypocenters of the 1811-12 earthquakes also has a significant effect. Slope-stability analyses of an old coherent slide and an earth flow selected as representative of the principal kinds of landslides present indicate that both were stable in aseismic conditions even when water tables were at highest possible levels. However, a dynamic Newmark displacement analysis shows that ground shaking such as that in 1811-12 would cause large displacements leading to catastrophic failure in both slides. These results indicate that in large earthquakes landsliding in much of the study are is likely. Moderate earthquakes may also trigger landslides at some locations.« less
Seismic link at plate boundary
NASA Astrophysics Data System (ADS)
Ramdani, Faical; Kettani, Omar; Tadili, Benaissa
2015-06-01
Seismic triggering at plate boundaries has a very complex nature that includes seismic events at varying distances. The spatial orientation of triggering cannot be reduced to sequences from the main shocks. Seismic waves propagate at all times in all directions, particularly in highly active zones. No direct evidence can be obtained regarding which earthquakes trigger the shocks. The first approach is to determine the potential linked zones where triggering may occur. The second step is to determine the causality between the events and their triggered shocks. The spatial orientation of the links between events is established from pre-ordered networks and the adapted dependence of the spatio-temporal occurrence of earthquakes. Based on a coefficient of synchronous seismic activity to grid couples, we derive a network link by each threshold. The links of high thresholds are tested using the coherence of time series to determine the causality and related orientation. The resulting link orientations at the plate boundary conditions indicate that causal triggering seems to be localized along a major fault, as a stress transfer between two major faults, and parallel to the geothermal area extension.
NASA Astrophysics Data System (ADS)
Uchida, Naoki; Kirby, Stephen H.; Umino, Norihito; Hino, Ryota; Kazakami, Tomoe
2016-09-01
The aftershock distribution of the 1933 Sanriku-oki outer trench earthquake is estimated by using modern relocation methods and a newly developed velocity structure to examine the spatial extent of the source-fault and the possibility of a triggered interplate seismicity. In this study, we first examined the regional data quality of the 1933 earthquake based on smoked-paper records and then relocated the earthquakes by using the 3-D velocity structure and double-difference method. The improvements of hypocentre locations using these methods were confirmed by the examination of recent earthquakes that are accurately located based on ocean bottom seismometer data. The results show that the 1933 aftershocks occurred under both the outer- and inner-trench-slope regions. In the outer-trench-slope region, aftershocks are distributed in a ˜280-km-long area and their depths are shallower than 50 km. Although we could not constrain the fault geometry from the hypocentre distribution, the depth distribution suggests the whole lithosphere is probably not under deviatoric tension at the time of the 1933 earthquake. The occurrence of aftershocks under the inner trench slope was also confirmed by an investigation of waveform frequency difference between outer and inner trench earthquakes as recorded at Mizusawa. The earthquakes under the inner trench slope were shallow (depth ≦30 km) and the waveforms show a low-frequency character similar to the waveforms of recent, precisely located earthquakes in the same area. They are also located where recent activity of interplate thrust earthquakes is high. These suggest that the 1933 outer-trench-slope main shock triggered interplate earthquakes, which is an unusual case in the order of occurrence in contrast with the more common pairing of a large initial interplate shock with subsequent outer-slope earthquakes. The off-trench earthquakes are distributed about 80 km width in the trench perpendicular direction. This wide width cannot be explained from a single high-angle fault confined at a shallow depth (depth ≦50 km). The upward motion of the 1933 tsunami waveform records observed at Sanriku coast also cannot be explained from a single high-angle west-dipping normal fault. If we consider additional fault, involvement of high-angle, east-dipping normal faults can better explain the tsunami first motion and triggering of the aftershock in a wide area under the outer trench slope. Therefore multiple off-trench normal faults may have activated during the 1933 earthquake. We also relocated recent (2001-2012) seismicity by the same method. The results show that the present seismicity in the outer-trench-slope region can be divided into several groups along the trench. Comparison of the 1933 rupture dimensions based on our aftershock relocations with the morphologies of fault scarps in the outer trench slope suggest that the rupture was limited to the region where fault scarps are largely trench parallel and cross cut the seafloor spreading fabric. These findings imply that bending geometry and structural segmentation of the incoming plate largely controls the spatial extent of the 1933 seismogenic faulting. In this shallow rupture model for this largest outer trench earthquake, triggered seismicity in the forearc and structural control of faulting represent an important deformation styles for off-trench and shallow megathrust zones.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aguiar, Ana C.; Chao, Kevin; Beroza, Gregory C.
In this paper, we compare low-frequency earthquakes (LFEs) from triggered and ambient tremor under the southern Central Range, Taiwan. We apply the PageRank algorithm used by Aguiar and Beroza (2014) that exploits the repetitive nature of the LFEs to find repeating LFEs in both ambient and triggered tremor. We use these repeaters to create LFE templates and find that the templates created from both tremor types are very similar. To test their similarity, we use both interchangeably and find that most of both the ambient and triggered tremor match the LFE templates created from either data set, suggesting that LFEsmore » for both events have a common origin. Finally, we locate the LFEs by using local earthquake P wave and S wave information and find that LFEs from triggered and ambient tremor locate to between 20 and 35 km on what we interpret as the deep extension of the Chaochou-Lishan Fault.« less
NASA Astrophysics Data System (ADS)
Dempsey, David; Suckale, Jenny
2016-05-01
Induced seismicity is of increasing concern for oil and gas, geothermal, and carbon sequestration operations, with several M > 5 events triggered in recent years. Modeling plays an important role in understanding the causes of this seismicity and in constraining seismic hazard. Here we study the collective properties of induced earthquake sequences and the physics underpinning them. In this first paper of a two-part series, we focus on the directivity ratio, which quantifies whether fault rupture is dominated by one (unilateral) or two (bilateral) propagating fronts. In a second paper, we focus on the spatiotemporal and magnitude-frequency distributions of induced seismicity. We develop a model that couples a fracture mechanics description of 1-D fault rupture with fractal stress heterogeneity and the evolving pore pressure distribution around an injection well that triggers earthquakes. The extent of fault rupture is calculated from the equations of motion for two tips of an expanding crack centered at the earthquake hypocenter. Under tectonic loading conditions, our model exhibits a preference for unilateral rupture and a normal distribution of hypocenter locations, two features that are consistent with seismological observations. On the other hand, catalogs of induced events when injection occurs directly onto a fault exhibit a bias toward ruptures that propagate toward the injection well. This bias is due to relatively favorable conditions for rupture that exist within the high-pressure plume. The strength of the directivity bias depends on a number of factors including the style of pressure buildup, the proximity of the fault to failure and event magnitude. For injection off a fault that triggers earthquakes, the modeled directivity bias is small and may be too weak for practical detection. For two hypothetical injection scenarios, we estimate the number of earthquake observations required to detect directivity bias.
NASA Astrophysics Data System (ADS)
Cochran, E. S.; Lawrence, J. F.; Christensen, C. M.; Chung, A. I.; Neighbors, C.; Saltzman, J.
2010-12-01
The Quake-Catcher Network (QCN) involves the community in strong motion data collection by utilizing volunteer computing techniques and low-cost MEMS accelerometers. Volunteer computing provides a mechanism to expand strong-motion seismology with minimal infrastructure costs, while promoting community participation in science. Micro-Electro-Mechanical Systems (MEMS) triaxial accelerometers can be attached to a desktop computer via USB and are internal to many laptops. Preliminary shake table tests show the MEMS accelerometers can record high-quality seismic data with instrument response similar to research-grade strong-motion sensors. QCN began distributing sensors and software to K-12 schools and the general public in April 2008 and has grown to roughly 1500 stations worldwide. We also recently tested whether sensors could be quickly deployed as part of a Rapid Aftershock Mobilization Program (RAMP) following the 2010 M8.8 Maule, Chile earthquake. Volunteers are recruited through media reports, web-based sensor request forms, as well as social networking sites. Using data collected to date, we examine whether a distributed sensing network can provide valuable seismic data for earthquake detection and characterization while promoting community participation in earthquake science. We utilize client-side triggering algorithms to determine when significant ground shaking occurs and this metadata is sent to the main QCN server. On average, trigger metadata are received within 1-10 seconds from the observation of a trigger; the larger data latencies are correlated with greater server-station distances. When triggers are detected, we determine if the triggers correlate to others in the network using spatial and temporal clustering of incoming trigger information. If a minimum number of triggers are detected then a QCN-event is declared and an initial earthquake location and magnitude is estimated. Initial analysis suggests that the estimated locations and magnitudes are similar to those reported in regional and global catalogs. As the network expands, it will become increasingly important to provide volunteers access to the data they collect, both to encourage continued participation in the network and to improve community engagement in scientific discourse related to seismic hazard. In the future, we hope to provide access to both images and raw data from seismograms in formats accessible to the general public through existing seismic data archives (e.g. IRIS, SCSN) and/or through the QCN project website. While encouraging community participation in seismic data collection, we can extend the capabilities of existing seismic networks to rapidly detect and characterize strong motion events. In addition, the dense waveform observations may provide high-resolution ground shaking information to improve source imaging and seismic risk assessment.
The blogosphere as an excitable social medium: Richter’s and Omori’s Law in media coverage
NASA Astrophysics Data System (ADS)
Klimek, Peter; Bayer, Werner; Thurner, Stefan
2011-10-01
We study the dynamics of public media attention by monitoring the content of online blogs. Social and media events can be traced by the propagation of word frequencies of related keywords. Media events are classified as exogenous-where blogging activity is triggered by an external news item-or endogenous where word frequencies build up within a blogging community without external influences. We show that word occurrences exhibit statistical similarities to earthquakes. Moreover the size distribution of events scales with a similar exponent as found in the Gutenberg-Richter law. The dynamics of media events before and after the main event can be satisfactorily modeled as a type of process which has been used to understand fore-and aftershock rate distributions in earthquakes-the Omori law. We present empirical evidence that for media events of endogenous origin the overall public reception of the event is correlated with the behavior of word frequencies at the beginning of the event, and is to a certain degree predictable. These results imply that the process of opinion formation in a human society might be related to effects known from excitable media.
Teaching Geophysics with a Vertical-Component Seismometer
NASA Astrophysics Data System (ADS)
van Wijk, Kasper; Channel, Ted; Viskupic, Karen; Smith, Martin L.
2013-12-01
Earthquakes are some of the more dramatic expressions of the dynamics of our planet. The sudden release of stress built up slowly by tectonic or volcanic processes often has far-reaching consequences, and can be measured (in classrooms) around the world. This is one reason why designing and building seismometers has been a popular activity, , 2 and why different versions of "Seismometer in Schools" projects thrive in the United States, Australia, and Europe. We present a cheap, robust, and easy-to-build seismometer—called the TC1 —to measure seismic displacements in the vertical direction. Its components are easy to obtain and assemble, yet the resulting instrument is accurate enough to record earthquakes from around the globe. The parts list and building instructions of the TC1 seismometer are freely available online. Alternatively, a complete kit can be purchased for around US300. Assembling the system naturally introduces students to a number of concepts in physics and engineering, while upon completion seismic recordings trigger discussions about the dynamics and internal structure of the Earth. The discussions are fostered by service learning and shared in the network of TC1s called the Z-NET.
Non-Poissonian Distribution of Tsunami Waiting Times
NASA Astrophysics Data System (ADS)
Geist, E. L.; Parsons, T.
2007-12-01
Analysis of the global tsunami catalog indicates that tsunami waiting times deviate from an exponential distribution one would expect from a Poisson process. Empirical density distributions of tsunami waiting times were determined using both global tsunami origin times and tsunami arrival times at a particular site with a sufficient catalog: Hilo, Hawai'i. Most sources for the tsunamis in the catalog are earthquakes; other sources include landslides and volcanogenic processes. Both datasets indicate an over-abundance of short waiting times in comparison to an exponential distribution. Two types of probability models are investigated to explain this observation. Model (1) is a universal scaling law that describes long-term clustering of sources with a gamma distribution. The shape parameter (γ) for the global tsunami distribution is similar to that of the global earthquake catalog γ=0.63-0.67 [Corral, 2004]. For the Hilo catalog, γ is slightly greater (0.75-0.82) and closer to an exponential distribution. This is explained by the fact that tsunamis from smaller triggered earthquakes or landslides are less likely to be recorded at a far-field station such as Hilo in comparison to the global catalog, which includes a greater proportion of local tsunamis. Model (2) is based on two distributions derived from Omori's law for the temporal decay of triggered sources (aftershocks). The first is the ETAS distribution derived by Saichev and Sornette [2007], which is shown to fit the distribution of observed tsunami waiting times. The second is a simpler two-parameter distribution that is the exponential distribution augmented by a linear decay in aftershocks multiplied by a time constant Ta. Examination of the sources associated with short tsunami waiting times indicate that triggered events include both earthquake and landslide tsunamis that begin in the vicinity of the primary source. Triggered seismogenic tsunamis do not necessarily originate from the same fault zone, however. For example, subduction-thrust and outer-rise earthquake pairs are evident, such as the November 2006 and January 2007 Kuril Islands tsunamigenic pair. Because of variations in tsunami source parameters, such as water depth above the source, triggered tsunami events with short waiting times are not systematically smaller than the primary tsunami.
Earthquake triggering by transient and static deformations
Gomberg, J.; Beeler, N.M.; Blanpied, M.L.; Bodin, P.
1998-01-01
Observational evidence for both static and transient near-field and far-field triggered seismicity are explained in terms of a frictional instability model, based on a single degree of freedom spring-slider system and rate- and state-dependent frictional constitutive equations. In this study a triggered earthquake is one whose failure time has been advanced by ??t (clock advance) due to a stress perturbation. Triggering stress perturbations considered include square-wave transients and step functions, analogous to seismic waves and coseismic static stress changes, respectively. Perturbations are superimposed on a constant background stressing rate which represents the tectonic stressing rate. The normal stress is assumed to be constant. Approximate, closed-form solutions of the rate-and-state equations are derived for these triggering and background loads, building on the work of Dieterich [1992, 1994]. These solutions can be used to simulate the effects of static and transient stresses as a function of amplitude, onset time t0, and in the case of square waves, duration. The accuracies of the approximate closed-form solutions are also evaluated with respect to the full numerical solution and t0. The approximate solutions underpredict the full solutions, although the difference decreases as t0, approaches the end of the earthquake cycle. The relationship between ??t and t0 differs for transient and static loads: a static stress step imposed late in the cycle causes less clock advance than an equal step imposed earlier, whereas a later applied transient causes greater clock advance than an equal one imposed earlier. For equal ??t, transient amplitudes must be greater than static loads by factors of several tens to hundreds depending on t0. We show that the rate-and-state model requires that the total slip at failure is a constant, regardless of the loading history. Thus a static load applied early in the cycle, or a transient applied at any time, reduces the stress at the initiation of failure, whereas static loads that are applied sufficiently late raise it. Rate-and-state friction predictions differ markedly from those based on Coulomb failure stress changes (??CFS) in which ??t equals the amplitude of the static stress change divided by the background stressing rate. The ??CFS model assumes a stress failure threshold, while the rate-and-state equations require a slip failure threshold. The complete rale-and-state equations predict larger ??t than the ??CFS model does for static stress steps at small t0, and smaller ??t than the ??CFS model for stress steps at large t0. The ??CFS model predicts nonzero ??t only for transient loads that raise the stress to failure stress levels during the transient. In contrast, the rate-and-state model predicts nonzero ??t for smaller loads, and triggered failure may occur well after the transient is finished. We consider heuristically the effects of triggering on a population of faults, as these effects might be evident in seismicity data. Triggering is manifest as an initial increase in seismicity rate that may be followed by a quiescence or by a return to the background rate. Available seismicity data are insufficient to discriminate whether triggered earthquakes are "new" or clock advanced. However, if triggering indeed results from advancing the failure time of inevitable earthquakes, then our modeling suggests that a quiescence always follows transient triggering and that the duration of increased seismicity also cannot exceed the duration of a triggering transient load. Quiescence follows static triggering only if the population of available faults is finite.
Hear it, See it, Explore it: Visualizations and Sonifications of Seismic Signals
NASA Astrophysics Data System (ADS)
Fisher, M.; Peng, Z.; Simpson, D. W.; Kilb, D. L.
2010-12-01
Sonification of seismic data is an innovative way to represent seismic data in the audible range (Simpson, 2005). Seismic waves with different frequency and temporal characteristics, such as those from teleseismic earthquakes, deep “non-volcanic” tremor and local earthquakes, can be easily discriminated when time-compressed to the audio range. Hence, sonification is particularly useful for presenting complicated seismic signals with multiple sources, such as aftershocks within the coda of large earthquakes, and remote triggering of earthquakes and tremor by large teleseismic earthquakes. Previous studies mostly focused on converting the seismic data into audible files by simple time compression or frequency modulation (Simpson et al., 2009). Here we generate animations of the seismic data together with the sounds. We first read seismic data in the SAC format into Matlab, and generate a sequence of image files and an associated WAV sound file. Next, we use a third party video editor, such as the QuickTime Pro, to combine the image sequences and the sound file into an animation. We have applied this simple procedure to generate animations of remotely triggered earthquakes, tremor and low-frequency earthquakes in California, and mainshock-aftershock sequences in Japan and California. These animations clearly demonstrate the interactions of earthquake sequences and the richness of the seismic data. The tool developed in this study can be easily adapted for use in other research applications and to create sonification/animation of seismic data for education and outreach purpose.
NASA Astrophysics Data System (ADS)
Kariche, Jughurta; Meghraoui, Mustapha; Ayadi, Abdelhakim; Salah Boughacha, Mohamed
2017-04-01
We study the role and distribution of stress transfer that may trigger destructive earthquakes in the Central Tell Atlas (Algeria). A sequence of historical events reaching Ms 7.3 and related stress tensors with thrust faulting mechanisms allows the modeling of the Coulomb Failure Function (deltaCFF). We explore here the physical parameters for a stress transfer along the Tell thrust-and-fold belt taking into account an eastward trending earthquake migration from 1891 to 2003. The Computation integrated the seismicity rate in the deltaCFF computation, which is in good agreement with the migration seismicity. The stress transfer progression and increase of 0.1 to 0.8 bar are obtained on fault planes at 7-km-depth with a friction coefficient µ' 0.4 showing stress loading lobes on targeted coseismic fault zone and location of stress shadow across other thrust-and-fold regions. The Coulomb modeling suggests a distinction in earthquake triggering between zones with moderate-sized and large earthquake ruptures. Recent InSAR and levelling studies and aftershocks that document postseismic deformation of major earthquakes are integrated into the static stress change calculations. The presence of fluid and related poroelastic deformation can be considered as an open question with regards to their contribution to major earthquakes and their implications in the seismic hazard assessment of northern Algeria.
Progressive failure on the North Anatolian fault since 1939 by earthquake stress triggering
Stein, R.S.; Barka, A.A.; Dieterich, J.H.
1997-01-01
10 M ??? 6.7 earthquakes ruptured 1000 km of the North Anatolian fault (Turkey) during 1939-1992, providing an unsurpassed opportunity to study how one large shock sets up the next. We use the mapped surface slip and fault geometry to infer the transfer of stress throughout the sequence. Calculations of the change in Coulomb failure stress reveal that nine out of 10 ruptures were brought closer to failure by the preceding shocks, typically by 1-10 bar, equivalent to 3-30 years of secular stressing. We translate the calculated stress changes into earthquake probability gains using an earthquake-nucleation constitutive relation, which includes both permanent and transient effects of the sudden stress changes. The transient effects of the stress changes dominate during the mean 10 yr period between triggering and subsequent rupturing shocks in the Anatolia sequence. The stress changes result in an average three-fold gain in the net earthquake probability during the decade after each event. Stress is calculated to be high today at several isolated sites along the fault. During the next 30 years, we estimate a 15 per cent probability of a M ??? 6.7 earthquake east of the major eastern centre of Ercinzan, and a 12 per cent probability for a large event south of the major western port city of Izmit. Such stress-based probability calculations may thus be useful to assess and update earthquake hazards elsewhere.
Earthquake-induced ground failures in Italy from a reviewed database
NASA Astrophysics Data System (ADS)
Martino, S.; Prestininzi, A.; Romeo, R. W.
2014-04-01
A database (Italian acronym CEDIT) of earthquake-induced ground failures in Italy is presented, and the related content is analysed. The catalogue collects data regarding landslides, liquefaction, ground cracks, surface faulting and ground changes triggered by earthquakes of Mercalli epicentral intensity 8 or greater that occurred in the last millennium in Italy. As of January 2013, the CEDIT database has been available online for public use (http://www.ceri.uniroma1.it/cn/gis.jsp ) and is presently hosted by the website of the Research Centre for Geological Risks (CERI) of the Sapienza University of Rome. Summary statistics of the database content indicate that 14% of the Italian municipalities have experienced at least one earthquake-induced ground failure and that landslides are the most common ground effects (approximately 45%), followed by ground cracks (32%) and liquefaction (18%). The relationships between ground effects and earthquake parameters such as seismic source energy (earthquake magnitude and epicentral intensity), local conditions (site intensity) and source-to-site distances are also analysed. The analysis indicates that liquefaction, surface faulting and ground changes are much more dependent on the earthquake source energy (i.e. magnitude) than landslides and ground cracks. In contrast, the latter effects are triggered at lower site intensities and greater epicentral distances than the other environmental effects.
Biogeochemistry and community ecology in a spring-fed urban river following a major earthquake.
Wells, Naomi S; Clough, Tim J; Condron, Leo M; Baisden, W Troy; Harding, Jon S; Dong, Y; Lewis, G D; Lear, Gavin
2013-11-01
In February 2011 a MW 6.3 earthquake in Christchurch, New Zealand inundated urban waterways with sediment from liquefaction and triggered sewage spills. The impacts of, and recovery from, this natural disaster on the stream biogeochemistry and biology were assessed over six months along a longitudinal impact gradient in an urban river. The impact of liquefaction was masked by earthquake triggered sewage spills (~20,000 m(3) day(-1) entering the river for one month). Within 10 days of the earthquake dissolved oxygen in the lowest reaches was <1 mg l(-1), in-stream denitrification accelerated (attenuating 40-80% of sewage nitrogen), microbial biofilm communities changed, and several benthic invertebrate taxa disappeared. Following sewage system repairs, the river recovered in a reverse cascade, and within six months there were no differences in water chemistry, nutrient cycling, or benthic communities between severely and minimally impacted reaches. This study highlights the importance of assessing environmental impact following urban natural disasters. Copyright © 2013 Elsevier Ltd. All rights reserved.
Jibson, R.W.; Harp, E.L.; Schulz, W.; Keefer, D.K.
2004-01-01
The 2002 M7.9 Denali fault, Alaska, earthquake triggered thousands of landslides, primarily rock falls and rock slides, that ranged in volume from rock falls of a few cubic meters to rock avalanches having volumes as great as 15 ?? 106 m3. The pattern of landsliding was unusual; the number of slides was less than expected for an earthquake of this magnitude, and the landslides were concentrated in a narrow zone 30-km wide that straddled the fault rupture over its entire 300-km length. The large rock avalanches all clustered along the western third of the rupture zone where acceleration levels and ground-shaking frequencies are thought to have been the highest. Inferences about near-field strong shaking characteristics drawn from the interpretation of the landslide distribution are consistent with results of recent inversion modeling that indicate high-frequency energy generation was greatest in the western part of the fault rupture zone and decreased markedly to the east. ?? 2004, Earthquake Engineering Research Institute.
NASA Astrophysics Data System (ADS)
Chen, R. F.; Lin, C. W.; Hsu, Y. J.; Zhang, L.; Liang, H. Y.
2017-12-01
The February 6 Meinong Earthquake of 2016 (ML=6.4; at 23.85ºN, 120.81ºE), with a focal depth of 16.7 km, was triggered by an unknown blind thrust in southern Taiwan. The earthquake not only induced coseismic crustal deformation, but also triggered slow-moving landslides nearby the Longchuan active fault. In this study, high-resolution LiDAR derived DEM of 2010 is used to recognize locations of previous slow-moving landslides according to their topographic signatures, such as main escarpment, trench, double ridge, and crown cracks. Within an area of 4.5 km x 1.8 km along Longchuan fault near the ridge of Longchuan mountain, over 50 sites with landslide signatures are recognized, and three of them are over 10 ha. These earthquake-induced landslide deformations are detected from InSAR (synthetic aperture radar interferometry) images using Advanced Land Observing Satellite ALOS2/Phased-array L band and Sentinel 1 C-band SAR (PALSAR) data taken before and after the earthquake; some significant landslide deformation are even overlapped with areas where previous slow moving landslides were identified on the LiDAR DEM. Additionally, field investigation right after the earthquake in the study area also support that these previously identified landslides reactivated in the earthquake. Although these landslides do not cause serious damage due to their minor displacement in the Meinong Earthquake, the study results prove that LiDAR DEM is a powerful tool to identify and continuously monitor slow-motion landslides for preventing catastrophic failures that may be caused by hazardous earthquake or heavy rainfall.
NASA Astrophysics Data System (ADS)
Hreinsdóttir, S.; Freymueller, J. T.
2001-12-01
On the 13th of January 2001, an M {W} 7.7 normal fault earthquake occurred offshore El Salvador. The earthquake occurred in the subducting Cocos plate and was followed by high seismic activity and several earthquakes exceeding magnitude 5. On the 13th of February, an M {W} 6.6 strike slip earthquake occurred in the overriding Caribbean plate, about 75 km NNW from the epicenter of the large January earthquake. Deformation due to these earthquakes was observed at six continuous CORS GPS stations in Central America. In the M {W} 7.7 earthquake about 10 mm displacement was measured at GPS stations in El Salvador and Honduras. A smaller but significant dispacement was also observed at GPS stations in Nicaragua, more then 200 km from the earthquake's epicenter. In the M {W} 6.6 earthquake 41+/- 1 mm displacement in direction N111oE was measured at the GPS station in San Salvador, El Salvador. Other CORS GPS stations were not affected by that earthquake. A postsesmic signal is detectable at the San Salvador GPS station, strongest right after the earthquake and then decays. On average we see 0.3 +/- 0.1 mm/day of SSW motion of the station in the first twenty days following the earthquake. Using seismic and geodetic data, we calculated Coulomb stress changes following the January 13th, M {W} 7.7 earthquake. Of special interest were six 5.4 <= {M} {W}<=5.8 thrust events that presumably occurred on the interface between the Caribean and Cocos plate, and the M {W} 6.6 strike slip earthquake that occurred in the overriding Caribean plate. The location and focal mechanism of these earthquakes correlate with areas of calculated increase in static stress thus indicating stress triggering. The thrust events occurred 2 to 20 days after the M {W} 7.7 earthquake, in increasing distance from the M {W} 7.7 event with time.
Foreshock triggering of the 1 April 2014 Mw 8.2 Iquique, Chile, earthquake
NASA Astrophysics Data System (ADS)
Herman, Matthew W.; Furlong, Kevin P.; Hayes, Gavin P.; Benz, Harley M.
2016-08-01
On April 1st, 2014, a Mw 8.2 (U.S. Geological Survey moment magnitude) earthquake occurred in the subduction zone offshore northern Chile. In the two weeks leading up to the earthquake, a sequence of foreshocks, starting with a Mw 6.7 earthquake on March 16th and including three more Mw 6.0+ events, occurred predominantly south of the April 1st mainshock epicenter and up-dip of the area of significant slip during the mainshock. Using earthquake locations and source parameters derived in a previous study (Hayes et al., 2014) and a Coulomb failure stress change analysis of these events, we assess in detail the hypothesis that the earthquakes occurred as a cascading sequence, each event successively triggering the next, ultimately triggering the rupture of the mainshock. Following the initial Mw 6.7 event, each of the three largest foreshocks (Mw 6.4, 6.2 and 6.3), as well as the hypocenter of the mainshock, occurred in a region of positive Coulomb stress change produced by the preceding events, indicating these events were brought closer to failure by the prior seismicity. In addition, we reexamine the possibility that aseismic slip occurred and what role it may have played in loading the plate boundary. Using horizontal GPS displacements from along the northern Chile coast prior to the mainshock, we find that the foreshock seismicity alone likely does not account for the observed signals. We perform a grid search for the location and magnitude of an aseismic slip patch that can account for the difference between observed signals and foreshock-related displacement, and find that a slow slip region with slip corresponding to a Mw ∼ 6.8 earthquake located coincident with or up-dip of the foreshock seismicity can best explain this discrepancy. Additionally, such a slow slip region positively loads the mainshock hypocentral area, enhancing the positive loading produced by the foreshock seismicity.
Static stress changes and the triggering of earthquakes
King, Geoffrey C.P.; Stein, Ross S.; Lin, Jian
1994-01-01
To understand whether the 1992 M = 7.4 Landers earthquake changed the proximity to failure on the San Andreas fault system, we examine the general problem of how one earthquake might trigger another. The tendency of rocks to fail in a brittle manner is thought to be a function of both shear and confining stresses, commonly formulated as the Coulomb failure criterion. Here we explore how changes in Coulomb conditions associated with one or more earthquakes may trigger subsequent events. We first consider a Coulomb criterion appropriate for the production of aftershocks, where faults most likely to slip are those optimally orientated for failure as a result of the prevailing regional stress field and the stress change caused by the mainshock. We find that the distribution of aftershocks for the Landers earthquake, as well as for several other moderate events in its vicinity, can be explained by the Coulomb criterion as follows: aftershocks are abundant where the Coulomb stress on optimally orientated faults rose by more than one-half bar, and aftershocks are sparse where the Coulomb stress dropped by a similar amount. Further, we find that several moderate shocks raised the stress at the future Landers epicenter and along much of the Landers rupture zone by about a bar, advancing the Landers shock by 1 to 3 centuries. The Landers rupture, in turn, raised the stress at site of the future M = 6.5 Big Bear aftershock site by 3 bars. The Coulomb stress change on a specified fault is independent of regional stress but depends on the fault geometry, sense of slip, and the coefficient of friction. We use this method to resolve stress changes on the San Andreas and San Jacinto faults imposed by the Landers sequence. Together the Landers and Big Bear earthquakes raised the stress along the San Bernardino segment of the southern San Andreas fault by 2 to 6 bars, hastening the next great earthquake there by about a decade.
NASA Astrophysics Data System (ADS)
Zhang, S.; Zhang, L. M.
2017-01-01
The 2008 Wenchuan earthquake triggered the largest number of landslides among the recent strong earthquake events around the world. The loose landslide materials were retained on steep terrains and deep gullies. In the period from 2008 to 2015, numerous debris flows occurred during rainstorms along the Provincial Road 303 (PR303) near the epicentre of the earthquake, causing serious damage to the reconstructed highway. Approximately 5.24 × 106 m3 of debris-flow sediment was deposited shortly after the earthquake. This paper evaluates the evolution of the debris flows that occurred after the Wenchuan earthquake, which helps understand long-term landscape evolution and cascading effects in regions impacted by mega earthquakes. With the aid of a GIS platform combined with field investigations, we continuously tracked movements of the loose deposit materials in all the debris flow gullies along an 18 km reach of PR303 and the characteristics of the regional debris flows during several storms in the past seven years. This paper presents five important aspects of the evolution of debris flows: (1) supply of debris flow materials; (2) triggering rainfall; (3) initiation mechanisms and types of debris flows; (4) runout characteristics; and (5) elevated riverbed due to the deposited materials from the debris flows. The hillslope soil deposits gradually evolved into channel deposits and the solid materials in the channels moved towards the ravine mouth. Accordingly, channelized debris flows became dominant gradually. Due to the decreasing source material volume and changes in debris flow characteristics, the triggering rainfall tends to increase from 30 mm h- 1 in 2008 to 64 mm h- 1 in 2013, and the runout distance tends to decrease over time. The runout materials blocked the river and elevated the riverbed by at least 30 m in parts of the study area. The changes in the post-seismic debris flow activity can be categorized into three stages, i.e., active, unstable, and recession.
Landslides Triggered by the 2015 Gorkha, Nepal Earthquake
NASA Astrophysics Data System (ADS)
Xu, C.
2018-04-01
The 25 April 2015 Gorkha Mw 7.8 earthquake in central Nepal caused a large number of casualties and serious property losses, and also induced numerous landslides. Based on visual interpretation of high-resolution optical satellite images pre- and post-earthquake and field reconnaissance, we delineated 47,200 coseismic landslides with a total distribution extent more than 35,000 km2, which occupy a total area about 110 km2. On the basis of a scale relationship between landslide area (A) and volume (V), V = 1.3147 × A1.2085, the total volume of the coseismic landslides is estimated to be about 9.64 × 108 m3. Calculation yields that the landslide number density, area density, and volume density are 1.32 km-2, 0.31 %, and 0.027 m, respectively. The spatial distribution of these landslides is consistent with that of the mainshock and aftershocks and the inferred causative fault, indicating the effect of the earthquake energy release on the pattern on coseismic landslides. This study provides a new, more detailed and objective inventory of the landslides triggered by the Gorkha earthquake, which would be significant for further study of genesis of coseismic landslides, hazard assessment and the long-term impact of the slope failure on the geological environment in the earthquake-scarred region.
A new type of tri-axial accelerometers with high dynamic range MEMS for earthquake early warning
NASA Astrophysics Data System (ADS)
Peng, Chaoyong; Chen, Yang; Chen, Quansheng; Yang, Jiansi; Wang, Hongti; Zhu, Xiaoyi; Xu, Zhiqiang; Zheng, Yu
2017-03-01
Earthquake Early Warning System (EEWS) has shown its efficiency for earthquake damage mitigation. As the progress of low-cost Micro Electro Mechanical System (MEMS), many types of MEMS-based accelerometers have been developed and widely used in deploying large-scale, dense seismic networks for EEWS. However, the noise performance of these commercially available MEMS is still insufficient for weak seismic signals, leading to the large scatter of early-warning parameters estimation. In this study, we developed a new type of tri-axial accelerometer based on high dynamic range MEMS with low noise level using for EEWS. It is a MEMS-integrated data logger with built-in seismological processing. The device is built on a custom-tailored Linux 2.6.27 operating system and the method for automatic detecting seismic events is STA/LTA algorithms. When a seismic event is detected, peak ground parameters of all data components will be calculated at an interval of 1 s, and τc-Pd values will be evaluated using the initial 3 s of P wave. These values will then be organized as a trigger packet actively sent to the processing center for event combining detection. The output data of all three components are calibrated to sensitivity 500 counts/cm/s2. Several tests and a real field test deployment were performed to obtain the performances of this device. The results show that the dynamic range can reach 98 dB for the vertical component and 99 dB for the horizontal components, and majority of bias temperature coefficients are lower than 200 μg/°C. In addition, the results of event detection and real field deployment have shown its capabilities for EEWS and rapid intensity reporting.
Boosting of Nonvolcanic Tremor by Regional Earthquakes 2011-2012 in Guerrero, Mexico
NASA Astrophysics Data System (ADS)
Real, J. A.; Kostoglodov, V.; Husker, A. L.; Payero, J. S.; G-GAP Research Team
2013-05-01
Sistematic observation of nonvolcanic tremor (NVT) in Guerrero, Mexico started in 2005 after the installation of MASE broadband seismic network. Since 2008 the new "G-GAP" network of 10 seismic mini-arrays provides the data for the NVT detailed studies together with the broadband stations of the Servicio Seimologogico Nacional (SSN). Most of the NVT recorded in the central Guerrero area are of so called ambient type, which in most cases are related with the occurrence of aseismic slow slip events (SSE). While the locations of NVT are estimated relatively well, their depths are not reliable but distributed close to the subduction plate interface. The ambient NVT activity increases periodically every 3-4 months and is strongly modulated by large SSE. Another type of tremor has been observed in Guerrero during and after several large teleseismic events, such as Mw=8.8, 2010 Maule, Chile earthquake. This NVT was triggered by the surface waves when they traveled across the tremor-generating area. Large teleseismic events may also activate a noticeable post-seismic NVT activity. In subduction zones, triggering of the NVT and its post-seismic activation by the regional and local earthquakes have not yet been observed. We tried to detect the NVT triggered or boosting of post-seismic tremor activity by two recent large earthquakes that occurred in Guerrero: December 11, 2011, Mw=6.5 Zumpango, and March 20, 2012, Mw=7.4 Ometepec. The first earthquake was of the intraplate type, with normal focal mechanism, at the depth of 58 km, and the second was the shallow interplate event of the thrust type, at the depth of ~15 km. It is technically difficult to separate the NVT signal in its characteristic 1-10 Hz frequency range from the high frequency input from the regional earthquake. The Zumpango event, which is located closer to the NVT area, produced a noticeable boosting of post-seismic NVT activity to the North of its epicenter. Meanwhile the larger magnitude Ometepec earthquake apparently had no any observable influence on the NVT occurrence, furthermore some NVT activity observed before this event has not persisted after it. Further study should reveal the role of different factors on the NVT triggering and activation such as: the type of the seismic event, its magnitude, depth, and the distance from the NVT zone.
Fluid Induced Earthquakes: From KTB Experiments to Natural Seismicity Swarms.
NASA Astrophysics Data System (ADS)
Shapiro, S. A.
2006-12-01
Experiments with borehole fluid injections are typical for exploration and development of hydrocarbon or geothermal reservoirs (e.g., fluid-injection experiments at Soultz, France and at Fenton-Hill, USA). Microseismicity occurring during such operations has a large potential for understanding physics of the seismogenic process as well as for obtaining detailed information about reservoirs at locations as far as several kilometers from boreholes. The phenomenon of microseismicity triggering by borehole fluid injections is related to the process of the Frenkel-Biot slow wave propagation. In the low-frequency range (hours or days of fluid injection duration) this process reduces to the pore pressure diffusion. Fluid induced seismicity typically shows several diffusion indicating features, which are directly related to the rate of spatial grow, to the geometry of clouds of micro earthquake hypocentres and to their spatial density. Several fluid injection experiments were conducted at the German Continental Deep Drilling Site (KTB) in 1994, 2000 and 2003-2005. Microseismicity occurred at different depth intervals. We analyze this microseismicity in terms of its diffusion-related features. Its relation to the 3-D distribution of the seismic reflectivity has important rock physical and tectonic implications. Starting from such diffusion-typical signatures of man-made earthquakes, we seek analogous patterns for the earthquakes in Vogtland/Bohemia at the German/Czech border region in central Europe. There is strong geophysical evidence that there seismic events are correlated to fluid-related processes in the crust. We test the hypothesis that ascending magmatic fluids trigger earthquakes by the mechanism of pore pressure diffusion. This triggering process is mainly controlled by two physical fields, the hydraulic diffusivity and the seismic criticality (i.e., critical pore pressure value leading to failure; stable locations are characterized by higher critical pressures), both heterogeneously distributed in rocks. The results of the analysis of the most significant and best studied (year 2000) earthquake swarm support this concept. Using a numerical model, where spatially correlated diffusivity and criticalit y patches (where patches with higher diffusivity are assumed to be less stable) are considered, we successfully simulate a general seismicity pattern of the swarms, including the spatio-temporal clustering of events and the migration of seismic activity. Therefore, in some cases spontaneously triggered natural seismicity, like earthquake swarms, also shows diffusion-typical signatures mentioned above. However, it seems that there are also some principle differences. They are emphasized in this presentation.
NASA Astrophysics Data System (ADS)
Xu, C.; Shyu, J. B. H.; Xu, X.
2014-07-01
The 12 January 2010 Port-au-Prince, Haiti, earthquake (Mw= 7.0) triggered tens of thousands of landslides. The purpose of this study is to investigate the correlations of the occurrence of landslides and the thicknesses of their erosion with topographic, geologic, and seismic parameters. A total of 30 828 landslides triggered by the earthquake covered a total area of 15.736 km2, distributed in an area more than 3000 km2, and the volume of landslide accumulation materials is estimated to be about 29 700 000 m3. These landslides are of various types, mostly belonging to shallow disrupted landslides and rock falls, but also include coherent deep-seated landslides and rock slides. These landslides were delineated using pre- and post-earthquake high-resolution satellite images. Spatial distribution maps and contour maps of landslide number density, landslide area percentage, and landslide erosion thickness were constructed in order to analyze the spatial distribution patterns of co-seismic landslides. Statistics of size distribution and morphometric parameters of co-seismic landslides were carried out and were compared with other earthquake events in the world. Four proxies of co-seismic landslide abundance, including landslides centroid number density (LCND), landslide top number density (LTND), landslide area percentage (LAP), and landslide erosion thickness (LET) were used to correlate co-seismic landslides with various environmental parameters. These parameters include elevation, slope angle, slope aspect, slope curvature, topographic position, distance from drainages, lithology, distance from the epicenter, distance from the Enriquillo-Plantain Garden fault, distance along the fault, and peak ground acceleration (PGA). A comparison of these impact parameters on co-seismic landslides shows that slope angle is the strongest impact parameter on co-seismic landslide occurrence. Our co-seismic landslide inventory is much more detailed than other inventories in several previous publications. Therefore, we carried out comparisons of inventories of landslides triggered by the Haiti earthquake with other published results and proposed possible reasons for any differences. We suggest that the empirical functions between earthquake magnitude and co-seismic landslides need to be updated on the basis of the abundant and more complete co-seismic landslide inventories recently available.
NASA Astrophysics Data System (ADS)
Xu, C.; Shyu, J. B. H.; Xu, X.-W.
2014-02-01
The 12 January 2010 Port-au-Prince, Haiti, earthquake (Mw 7.0) triggered tens of thousands of landslides. The purpose of this study is to investigate the correlations of the occurrence of landslides and their erosion thicknesses with topographic factors, seismic parameters, and their distance from roads. A total of 30 828 landslides triggered by the earthquake covered a total area of 15.736 km2, distributed in an area more than 3000 km2, and the volume of landslide accumulation materials is estimated to be about 29 700 000 m3. These landslides are of various types, mostly belonging to shallow disrupted landslides and rock falls, but also include coherent deep-seated landslides and rock slides. These landslides were delineated using pre- and post-earthquake high-resolutions satellite images. Spatial distribution maps and contour maps of landslide number density, landslide area percentage, and landslide erosion thickness were constructed in order to analyze the spatial distribution patterns of co-seismic landslides. Statistics of size distribution and morphometric parameters of co-seismic landslides were carried out and were compared with other earthquake events in the world. Four proxies of co-seismic landslide abundance, including landslides centroid number density (LCND), landslide top number density (LTND), landslide area percentage (LAP), and landslide erosion thickness (LET) were used to correlate co-seismic landslides with various landslide controlling parameters. These controlling parameters include elevation, slope angle, slope aspect, slope curvature, topographic position, distance from drainages, lithology, distance from the epicenter, distance from the Enriquillo-Plantain Garden fault, distance along the fault, and peak ground acceleration (PGA). A comparison of these impact parameters on co-seismic landslides shows that slope angle is the strongest impact parameter on co-seismic landslide occurrence. Our co-seismic landslide inventory is much more detailed than other inventories in several previous publications. Therefore, we carried out comparisons of inventories of landslides triggered by the Haiti earthquake with other published results and proposed possible reasons of any differences. We suggest that the empirical functions between earthquake magnitude and co-seismic landslides need to update on the basis of the abundant and more complete co-seismic landslide inventories recently available.
Landslide inventories: The essential part of seismic landslide hazard analyses
Harp, E.L.; Keefer, D.K.; Sato, H.P.; Yagi, H.
2011-01-01
A detailed and accurate landslide inventory is an essential part of seismic landslide hazard analysis. An ideal inventory would cover the entire area affected by an earthquake and include all of the landslides that are possible to detect down to sizes of 1-5. m in length. The landslides must also be located accurately and mapped as polygons depicting their true shapes. Such mapped landslide distributions can then be used to perform seismic landslide hazard analysis and other quantitative analyses. Detailed inventory maps of landslide triggered by earthquakes began in the early 1960s with the use of aerial photography. In recent years, advances in technology have resulted in the accessibility of satellite imagery with sufficiently high resolution to identify and map all but the smallest of landslides triggered by a seismic event. With this ability to view any area of the globe, we can acquire imagery for any earthquake that triggers significant numbers of landslides. However, a common problem of incomplete coverage of the full distributions of landslides has emerged along with the advent of high resolution satellite imagery. ?? 2010.
MyShake: Building a smartphone seismic network
NASA Astrophysics Data System (ADS)
Kong, Q.; Allen, R. M.; Schreier, L.
2014-12-01
We are in the process of building up a smartphone seismic network. In order to build this network, we did shake table tests to evaluate the performance of the smartphones as seismic recording instruments. We also conducted noise floor test to find the minimum earthquake signal we can record using smartphones. We added phone noises to the strong motion data from past earthquakes, and used these as an analogy dataset to test algorithms and to understand the difference of using the smartphone network and the traditional seismic network. We also built a prototype system to trigger the smartphones from our server to record signals which can be sent back to the server in near real time. The phones can also be triggered by our developed algorithm running locally on the phone, if there's an earthquake occur to trigger the phones, the signal recorded by the phones will be sent back to the server. We expect to turn the prototype system into a real smartphone seismic network to work as a supplementary network to the existing traditional seismic network.
NASA Astrophysics Data System (ADS)
Hosono, Masaki; Mitsui, Yuta; Ishibashi, Hidemi; Kataoka, Jun
2016-12-01
We discuss elastostatic effects on Mt. Fuji, the tallest volcano in Japan, due to historic earthquakes in Japan. The 1707 Hoei eruption, which was the most explosive historic eruption of Mt. Fuji, occurred 49 days after the Hoei earthquake (Mw 8.7) along the Nankai Trough. It was previously suggested that the Hoei earthquake induced compression of a basaltic magma reservoir and unclamping of a dike-intruded region at depth, possibly triggering magma mixing and the subsequent Plinian eruption. Here, we show that the 1707 Hoei earthquake was a special case of induced volumetric strain and normal stress changes around the magma reservoir and pathway of Mt. Fuji. The 2011 Tohoku earthquake (Mw 9), along the Japan Trench, dilated the magma reservoir. It has been proposed that dilation of a magma reservoir drives the ascent of gas bubbles with magma and further depressurization, leading to a volcanic eruption. In fact, seismicity notably increased around Mt. Fuji during the first month after the 2011 Tohoku earthquake, even when we statistically exclude aftershocks, but the small amount of strain change (< 1 μ strain) may have limited the ascent of magma. For many historic earthquakes, the magma reservoir was compressed and the magma pathway was wholly clamped. This type of interaction has little potential to mechanically trigger the deformation of a volcano. Thus, Mt. Fuji may be less susceptible to elastostatic effects because of its location relative to the sources of large tectonic earthquakes. As an exception, a possible local earthquake in the Fujikawa-kako fault zone could induce a large amount of magma reservoir dilation beneath the southern flank of Mt. Fuji.
Mechanical and Statistical Evidence of Human-Caused Earthquakes - A Global Data Analysis
NASA Astrophysics Data System (ADS)
Klose, C. D.
2012-12-01
The causality of large-scale geoengineering activities and the occurrence of earthquakes with magnitudes of up to M=8 is discussed and mechanical and statistical evidence is provided. The earthquakes were caused by artificial water reservoir impoundments, underground and open-pit mining, coastal management, hydrocarbon production and fluid injections/extractions. The presented global earthquake catalog has been recently published in the Journal of Seismology and is available for the public at www.cdklose.com. The data show evidence that geomechanical relationships exist with statistical significance between a) seismic moment magnitudes of observed earthquakes, b) anthropogenic mass shifts on the Earth's crust, and c) lateral distances of the earthquake hypocenters to the locations of the mass shifts. Research findings depend on uncertainties, in particular, of source parameter estimations of seismic events before instrumental recoding. First analyses, however, indicate that that small- to medium size earthquakes (
NASA Astrophysics Data System (ADS)
Esposito, Eliana; Violante, Crescenzo; Giunta, Giuseppe; Ángel Hernández, Miguel
2016-04-01
Two strong earthquakes and a number of smaller aftershocks struck El Salvador in the year 2001. The January 13 2001 earthquake, Mw 7.7, occurred along the Cocos plate, 40 km off El Salvador southern coast. It resulted in about 1300 deaths and widespread damage, mainly due to massive landsliding. Two of the largest earthquake-induced landslides, Las Barioleras and Las Colinas (about 2x105 m3) produced major damage to buildings and infrastructures and 500 fatalities. A neighborhood in Santa Tecla, west of San Salvador, was destroyed. The February 13 2001 earthquake, Mw 6.5, occurred 40 km east-southeast of San Salvador. This earthquake caused over 300 fatalities and triggered several landslides over an area of 2,500 km2 mostly in poorly consolidated volcaniclastic deposits. The La Leona landslide (5-7x105 m3) caused 12 fatalities and extensive damage to the Panamerican Highway. Two very large landslides of 1.5 km3 and 12 km3 produced hazardous barrier lakes at Rio El Desague and Rio Jiboa, respectively. More than 16.000 landslides occurred throughout the country after both quakes; most of them occurred in pyroclastic deposits, with a volume less than 1x103m3. The present work aims to define the relationship between the above described earthquake intensity, size and areal distribution of induced landslides, as well as to refine the earthquake intensity in sparsely populated zones by using landslide effects. Landslides triggered by the 2001 seismic sequences provided useful indication for a realistic seismic hazard assessment, providing a basis for understanding, evaluating, and mapping the hazard and risk associated with earthquake-induced landslides.
NASA Astrophysics Data System (ADS)
Vessia, Giovanna; Parise, Mario
2013-04-01
Landslide susceptibility and hazard are commonly developed by means of GIS (Geographic Information Systems) tools. Many products such as DTM (Digital Terrain Models), and geological, morphological and lithological layers (often, to be downloaded for free and integrated within GIS) are nowadays available on the web and ready to be used for urban planning purposes. The multiple sources of public information enable the local authorities to use these products for predicting hazards within urban territories by limited investments on technological infrastructures. On the contrary, the necessary expertise required for conducting pertinent hazard analyses is high, and rarely available at the level of the local authorities. In this respect, taking into account the production of seismically-induced landslide hazard maps at regional scale drawn by GIS tool, these can be performed according to the permanent displacement approach derived by Newmark's sliding block method (Newmark, 1965). Some simplified assumptions are considered for occurrence of a seismic mass movement, listed as follows: (1) the Mohr-Coulomb criterion is used for the plastic displacement of the rigid block; (2) only downward movements are accounted for; (3) a translative sliding mechanism is assumed. Under such conditions, several expressions have been proposed for predicting permanent displacements of slopes during seismic events (Ambresys and Menu, 1988; Luzi and Pergalani 2000; Romeo 2000; Jibson 2007, among the others). These formulations have been provided by researchers for different ranges of seismic magnitudes, and for indexes describing the seismic action, such as peak ground acceleration, peak ground velocity, Arias Intensity, and damage potential. With respect to the resistant properties of the rock units, the critical acceleration is the relevant strength variable in every expressions; it is a function of local slope, groundwater level, unit weight shear resistance of the surficial sediments, and the assumed depth of the sliding surface. Thus, it is of paramount relevance to correctly understand and describe the dynamic behavior of the lithologies affected by the earthquake. Accordingly, we put here in evidence some critical points in the application of the permanent displacement formulations by considering the case study of Santa Susana Mountains (California, USA) shaken by the Northridge earthquake in 1994. During this earthquake, a high number of registrations has been collected, whilst soon after a careful inventory of the mass movements triggered by the shaking has been produced, together with analysis of the related failure mechanisms. Hence, these data allow to perform a back analysis in order to verify the reliability of some numerical expressions, such as those proposed by Ambraseys and Menu (1988), Romeo (2000), and Jibson (2007), with respect to the possible dynamic behavior of the lithologies affected by landslides. In this sector of California, the following lithologies crop out, that were involved in shallow landslides: (1) Quaternay deposits; (2) Saugus Formation; (3) Towsley Formation; (4) Pico Formation; (5) Topanga Formation; (6) Modelo Formation; (7) Simi Conglomerate; (8) Santa Susana Formation; (9) Llajas and Chatsworth Formations. The surveys carried out after the Northridge earthquake (Harp and Jibson, 1995), and the analysis of landslide distribution (Parise and Jibson 2000) pointed out that the strongest formations with slopes higher than 50° mainly suffered toppling or fall failures: thus, our hazard maps based on permanent displacements did not take into account such range of slopes. Further, areas with slopes lower than 10° were not affected by relevant mass movements. Thus, a limited range of slopes (between 10° and 45°) was considered in the analyses, with depth of the sliding surface varying between 1 and 3 m, and using the resistance parameters of involved lithologies obtained from in situ and laboratory tests performed by local practitioners. Seismically-induced landslide hazard maps have been drawn using the aforementioned three expressions. The preliminary results show Quaternary deposits (including alluvium deposits, slope wash, and terrace deposits) as the lithologies most affected by permanent displacement. Moreover, Towsley and Modelo formations, that are stiffer than the previous rock units, and consist mostly of shales, siltstones and subordinate sandstones, show high hazard value where the slopes increase. The relevant role of local slope in permanent displacement extent is evident where lithologies are characterized by both cohesive and frictional resistance components. Finally, a comparison among the maps produced by using the three expressions for permanent displacements is discussed. References Ambraseys N.N. and Menu J.M. (1988) Earthquake-induced ground displacements. Earthquake Engineering and Structural Dynamics, 16: 985-1006. Harp E.L. and Jibson R.W. (1995) Inventory of landslides triggered by the 1994 Northridge, California earthquake. US Geol. Surv. Open-File Rep. 95-213 17 pp. Jibson R. (2007) Regression models for estimating coseismic landslide displacement. Engineering Geology, 91: 209-218. Luzi L. and Pergalani F. (2000) A correlation between slope failures and accelerometric parameters: the 26 September 1997 earthquake (Umbria-Marche, Italy). Soil Dynamics and Earthquake Engineering, 20: 301-313. Newmark N.M. (1965) Effects of earthquakes on dams and embankments. Geotechnique 965, 15(2): 139-160. Parise M. and Jibson R.W. (2000) A seismic landslide susceptibility rating of geologic units based on analysis of characteristics of landslides triggered by the 17 January, 1994 Northridge, California earthquake. Engineering Geology, 58: 251-270. Romeo R. (2000) Seismically induced landslide displacements: a predictive model. Engineering Geology, 58: 337-351.
Lin, J.; Stein, R.S.
2004-01-01
We argue that key features of thrust earthquake triggering, inhibition, and clustering can be explained by Coulomb stress changes, which we illustrate by a suite of representative models and by detailed examples. Whereas slip on surface-cutting thrust faults drops the stress in most of the adjacent crust, slip on blind thrust faults increases the stress on some nearby zones, particularly above the source fault. Blind thrusts can thus trigger slip on secondary faults at shallow depth and typically produce broadly distributed aftershocks. Short thrust ruptures are particularly efficient at triggering earthquakes of similar size on adjacent thrust faults. We calculate that during a progressive thrust sequence in central California the 1983 Mw = 6.7 Coalinga earthquake brought the subsequent 1983 Mw = 6.0 Nunez and 1985 Mw = 6.0 Kettleman Hills ruptures 10 bars and 1 bar closer to Coulomb failure. The idealized stress change calculations also reconcile the distribution of seismicity accompanying large subduction events, in agreement with findings of prior investigations. Subduction zone ruptures are calculated to promote normal faulting events in the outer rise and to promote thrust-faulting events on the periphery of the seismic rupture and its downdip extension. These features are evident in aftershocks of the 1957 Mw = 9.1 Aleutian and other large subduction earthquakes. We further examine stress changes on the rupture surface imparted by the 1960 Mw = 9.5 and 1995 Mw = 8.1 Chile earthquakes, for which detailed slip models are available. Calculated Coulomb stress increases of 2-20 bars correspond closely to sites of aftershocks and postseismic slip, whereas aftershocks are absent where the stress drops by more than 10 bars. We also argue that slip on major strike-slip systems modulates the stress acting on nearby thrust and strike-slip faults. We calculate that the 1857 Mw = 7.9 Fort Tejon earthquake on the San Andreas fault and subsequent interseismic slip brought the Coalinga fault ???1 bar closer to failure but inhibited failure elsewhere on the Coast Ranges thrust faults. The 1857 earthquake also promoted failure on the White Wolf reverse fault by 8 bars, which ruptured in the 1952 Mw = 7.3 Kern County shock but inhibited slip on the left-lateral Garlock fault, which has not ruptured since 1857. We thus contend that stress transfer exerts a control on the seismicity of thrust faults across a broad spectrum of spatial and temporal scales. Copyright 2004 by the American Geophysical Union.
Suppression of friction by mechanical vibrations.
Capozza, Rosario; Vanossi, Andrea; Vezzani, Alessandro; Zapperi, Stefano
2009-08-21
Mechanical vibrations are known to affect frictional sliding and the associated stick-slip patterns causing sometimes a drastic reduction of the friction force. This issue is relevant for applications in nanotribology and to understand earthquake triggering by small dynamic perturbations. We study the dynamics of repulsive particles confined between a horizontally driven top plate and a vertically oscillating bottom plate. Our numerical results show a suppression of the high dissipative stick-slip regime in a well-defined range of frequencies that depends on the vibrating amplitude, the normal applied load, the system inertia and the damping constant. We propose a theoretical explanation of the numerical results and derive a phase diagram indicating the region of parameter space where friction is suppressed. Our results allow to define better strategies for the mechanical control of friction.
NASA Astrophysics Data System (ADS)
Uenishi, Koji
2016-04-01
This contribution outlines our experimental observations of seismicity-related fast fracture (rupture) propagation in solids utilising high-speed analog and digital photography (maximum frame rate 1,000,000 frames per second) over the last two decades. Dynamic fracture may be triggered or initiated in the monolithic or layered seismic models by detonation of micro explosives, a projectile launched by a gun, laser pulses and electric discharge impulses, etc. First, we have investigated strike-slip rupture along planes of weakness in transparent photoelastic (birefringent) materials at a laboratory scale and shown (at that time) extraordinarily fast rupture propagation in a bi-material system and its possible effect on the generation of large strong motion in the limited narrow areas in the Kobe region on the occasion of the 1995 Hyogo-ken Nanbu, Japan, earthquake (Uenishi Ph.D. thesis 1997, Uenishi et al. BSSA 1999). In this series of experiments, we have also modelled shallow dip-slip earthquakes and indicated a possible origin of the asymmetric ground motion in the hanging and foot-walls. In the photoelastic photographs, we have found the unique dynamic wave interaction and generation of specific shear and interface waves numerically predicted by Uenishi and Madariaga (Eos 2005), and considered as a case study the seismic motion associated with the 2014 Nagano-ken Hokubu (Kamishiro Fault), Japan, dip-slip earthquake (Uenishi EFA 2015). Second, we have experimentally shown that even in a monolithic material, rupture speed may exceed the local shear wave speed if we employ hyperelasically behaving materials like natural rubber (balloons) (Uenishi Eos 2006, Uenishi ICF 2009, Uenishi Trans. JSME A 2012) but fracture in typical monolithic thin fluid films (e.g. soap bubbles, which may be treated as a solid material) propagates at an ordinary subsonic (sub-Rayleigh) speed (Uenishi et al. SSJ 2006). More recent investigation handling three-dimensional rupture propagation in monolithic brittle materials (e.g. ice spheres, concrete blocks in the field) has repeatedly indicated some specific (rather simple and smooth) fracture patterns even without the existence of distinct planes of weakness, which may help in understanding how the dynamic fracture propagation is controlled in three-dimensional brittle solids like Earth's crust (Uenishi et al. Con. Buld. Mat. 2010, 2014, JSME 2013).
NASA Astrophysics Data System (ADS)
Batac, Rene C.; Paguirigan, Antonino A., Jr.; Tarun, Anjali B.; Longjas, Anthony G.
2017-04-01
We propose a cellular automata model for earthquake occurrences patterned after the sandpile model of self-organized criticality (SOC). By incorporating a single parameter describing the probability to target the most susceptible site, the model successfully reproduces the statistical signatures of seismicity. The energy distributions closely follow power-law probability density functions (PDFs) with a scaling exponent of around -1. 6, consistent with the expectations of the Gutenberg-Richter (GR) law, for a wide range of the targeted triggering probability values. Additionally, for targeted triggering probabilities within the range 0.004-0.007, we observe spatiotemporal distributions that show bimodal behavior, which is not observed previously for the original sandpile. For this critical range of values for the probability, model statistics show remarkable comparison with long-period empirical data from earthquakes from different seismogenic regions. The proposed model has key advantages, the foremost of which is the fact that it simultaneously captures the energy, space, and time statistics of earthquakes by just introducing a single parameter, while introducing minimal parameters in the simple rules of the sandpile. We believe that the critical targeting probability parameterizes the memory that is inherently present in earthquake-generating regions.
Delayed seismicity rate changes controlled by static stress transfer
Kroll, Kayla A.; Richards-Dinger, Keith B.; Dieterich, James H.; Cochran, Elizabeth S.
2017-01-01
On 15 June 2010, a Mw5.7 earthquake occurred near Ocotillo, California, in the Yuha Desert. This event was the largest aftershock of the 4 April 2010 Mw7.2 El Mayor-Cucapah (EMC) earthquake in this region. The EMC mainshock and subsequent Ocotillo aftershock provide an opportunity to test the Coulomb failure hypothesis (CFS). We explore the spatiotemporal correlation between seismicity rate changes and regions of positive and negative CFS change imparted by the Ocotillo event. Based on simple CFS calculations we divide the Yuha Desert into three subregions, one triggering zone and two stress shadow zones. We find the nominal triggering zone displays immediate triggering, one stress shadowed region experiences immediate quiescence, and the other nominal stress shadow undergoes an immediate rate increase followed by a delayed shutdown. We quantitatively model the spatiotemporal variation of earthquake rates by combining calculations of CFS change with the rate-state earthquake rate formulation of Dieterich (1994), assuming that each subregion contains a mixture of nucleation sources that experienced a CFS change of differing signs. Our modeling reproduces the observations, including the observed delay in the stress shadow effect in the third region following the Ocotillo aftershock. The delayed shadow effect occurs because of intrinsic differences in the amplitude of the rate response to positive and negative stress changes and the time constants for return to background rates for the two populations. We find that rate-state models of time-dependent earthquake rates are in good agreement with the observed rates and thus explain the complex spatiotemporal patterns of seismicity.
Delayed Seismicity Rate Changes Controlled by Static Stress Transfer
NASA Astrophysics Data System (ADS)
Kroll, Kayla A.; Richards-Dinger, Keith B.; Dieterich, James H.; Cochran, Elizabeth S.
2017-10-01
On 15 June 2010, a Mw5.7 earthquake occurred near Ocotillo, California, in the Yuha Desert. This event was the largest aftershock of the 4 April 2010 Mw7.2 El Mayor-Cucapah (EMC) earthquake in this region. The EMC mainshock and subsequent Ocotillo aftershock provide an opportunity to test the Coulomb failure hypothesis (CFS). We explore the spatiotemporal correlation between seismicity rate changes and regions of positive and negative CFS change imparted by the Ocotillo event. Based on simple CFS calculations we divide the Yuha Desert into three subregions, one triggering zone and two stress shadow zones. We find the nominal triggering zone displays immediate triggering, one stress shadowed region experiences immediate quiescence, and the other nominal stress shadow undergoes an immediate rate increase followed by a delayed shutdown. We quantitatively model the spatiotemporal variation of earthquake rates by combining calculations of CFS change with the rate-state earthquake rate formulation of Dieterich (1994), assuming that each subregion contains a mixture of nucleation sources that experienced a CFS change of differing signs. Our modeling reproduces the observations, including the observed delay in the stress shadow effect in the third region following the Ocotillo aftershock. The delayed shadow effect occurs because of intrinsic differences in the amplitude of the rate response to positive and negative stress changes and the time constants for return to background rates for the two populations. We find that rate-state models of time-dependent earthquake rates are in good agreement with the observed rates and thus explain the complex spatiotemporal patterns of seismicity.
Pore Pressure Pulse Drove the 2012 Emilia (Italy) Series of Earthquakes
NASA Astrophysics Data System (ADS)
Pezzo, Giuseppe; De Gori, Pasquale; Lucente, Francesco Pio; Chiarabba, Claudio
2018-01-01
The 2012 Emilia earthquakes sequence is the first debated case in Italy of destructive event possibly induced by anthropic activity. During this sequence, two main earthquakes occurred separated by 9 days on contiguous thrust faults. Scientific commissions engaged by the Italian government reported complementary scenarios on the potential trigger mechanism ascribable to exploitation of a nearby oil field. In this study, we combine a refined geodetic source model constrained by precise aftershock locations and an improved tomographic model of the area to define the geometrical relation between the activated faults and investigate possible triggering mechanisms. An aftershock decay rate that deviates from the classical Omori-like pattern and
Fault activation by hydraulic fracturing in western Canada.
Bao, Xuewei; Eaton, David W
2016-12-16
Hydraulic fracturing has been inferred to trigger the majority of injection-induced earthquakes in western Canada, in contrast to the Midwestern United States, where massive saltwater disposal is the dominant triggering mechanism. A template-based earthquake catalog from a seismically active Canadian shale play, combined with comprehensive injection data during a 4-month interval, shows that earthquakes are tightly clustered in space and time near hydraulic fracturing sites. The largest event [moment magnitude (M W ) 3.9] occurred several weeks after injection along a fault that appears to extend from the injection zone into crystalline basement. Patterns of seismicity indicate that stress changes during operations can activate fault slip to an offset distance of >1 km, whereas pressurization by hydraulic fracturing into a fault yields episodic seismicity that can persist for months. Copyright © 2016, American Association for the Advancement of Science.
The 2002 Denali fault earthquake, Alaska: A large magnitude, slip-partitioned event
Eberhart-Phillips, D.; Haeussler, Peter J.; Freymueller, J.T.; Frankel, A.D.; Rubin, C.M.; Craw, P.; Ratchkovski, N.A.; Anderson, G.; Carver, G.A.; Crone, A.J.; Dawson, T.E.; Fletcher, H.; Hansen, R.; Harp, E.L.; Harris, R.A.; Hill, D.P.; Hreinsdottir, S.; Jibson, R.W.; Jones, L.M.; Kayen, R.; Keefer, D.K.; Larsen, C.F.; Moran, S.C.; Personius, S.F.; Plafker, G.; Sherrod, B.; Sieh, K.; Sitar, N.; Wallace, W.K.
2003-01-01
The MW (moment magnitude) 7.9 Denali fault earthquake on 3 November 2002 was associated with 340 kilometers of surface rupture and was the largest strike-slip earthquake in North America in almost 150 years. It illuminates earthquake mechanics and hazards of large strike-slip faults. It began with thrusting on the previously unrecognized Susitna Glacier fault, continued with right-slip on the Denali fault, then took a right step and continued with right-slip on the Totschunda fault. There is good correlation between geologically observed and geophysically inferred moment release. The earthquake produced unusually strong distal effects in the rupture propagation direction, including triggered seismicity.
Coastal land loss and gain as potential earthquake trigger mechanism in SCRs
NASA Astrophysics Data System (ADS)
Klose, C. D.
2007-12-01
In stable continental regions (SCRs), historic data show earthquakes can be triggered by natural tectonic sources in the interior of the crust and also by sources stemming from the Earth's sub/surface. Building off of this framework, the following abstract will discuss both as potential sources that might have triggered the 2007 ML4.2 Folkestone earthquake in Kent, England. Folkestone, located along the Southeast coast of Kent in England, is a mature aseismic region. However, a shallow earthquake with a local magnitude of ML = 4.2 occurred on April 28 2007 at 07:18 UTC about 1 km East of Folkestone (51.008° N, 1.206° E) between Dover and New Romney. The epicentral error is about ±5 km. While coastal land loss has major effects towards the Southwest and the Northeast of Folkestone, research observations suggest that erosion and landsliding do not exist in the immediate Folkestone city area (<1km). Furthermore, erosion removes rock material from the surface. This mass reduction decreases the gravitational stress component and would bring a fault away from failure, given a tectonic normal and strike-slip fault regime. In contrast, land gain by geoengineering (e.g., shingle accumulation) in the harbor of Folkestone dates back to 1806. The accumulated mass of sand and gravel accounted for a 2.8·109 kg (2.8 Mt) in 2007. This concentrated mass change less than 1 km away from the epicenter of the mainshock was able to change the tectonic stress in the strike-slip/normal stress regime. Since 1806, shear and normal stresses increased at most on oblique faults dipping 60±10°. The stresses reached values ranging between 1.0 KPa and 30.0 KPa in up to 2 km depth, which are critical for triggering earthquakes. Furthermore, the ratio between holding and driving forces continuously decreased for 200 years. In conclusion, coastal engineering at the surface most likely dominates as potential trigger mechanism for the 2007 ML4.2 Folkestone earthquake. It can be anticipated that the mainshock nucleated at shallower depth (<500 m) near the Paleozoic surface a) where differential stresses are generally maximum and b) because earthquakes in aseismic regions are generally overestimated by 88% due to sparse instrumental coverage. The latter was suggested by recent research on shallow seismicitiy (<10 km) in SCRs in northeastern USA and eastern Canada. Data of the focal mechanism provided by the British Geological Survey (BGS) confirm fault zone orientations of 326°/74° (strike-slip fault component) and 71°/48° (normal fault component).
Fault Weakening due to Erosion by Fluids: A Possible Origin of Intraplate Earthquake Swarms
NASA Astrophysics Data System (ADS)
Vavrycuk, V.; Hrubcova, P.
2016-12-01
The occurrence and specific properties of earthquake swarms in geothermal areas are usually attributed to a highly fractured rock and/or heterogeneous stress within the rock mass being triggered by magmatic or hydrothermal fluid intrusion. The increase of fluid pressure destabilizes fractures and causes their opening and subsequent shear-tensile rupture. The spreading and evolution of the seismic activity is controlled by fluid flow due to diffusion in a permeable rock and/or by the redistribution of Coulomb stress. The `fluid-injection model', however, is not valid universally. We provide evidence that this model is inconsistent with observations of earthquake swarms in West Bohemia, Czech Republic. Full seismic moment tensors of micro-earthquakes in the 1997 and 2008 swarms in West Bohemia indicate that fracturing at the starting phase of the swarm was not associated with fault openings caused by pressurized fluids but rather with fault compactions. This can physically be explained by a `fluid-erosion model', when the essential role in the swarm triggering is attributed to chemical and hydrothermal fluid-rock interactions in the focal zone. Since the rock is exposed to circulating hydrothermal, CO2-saturated fluids, the walls of fractures are weakened by dissolving and altering various minerals. If fault strength lowers to a critical value, the seismicity is triggered. The fractures are compacted during failure, the fault strength recovers and a new cycle begins.
Seismic Triggers of Lacustrine Subaqueous Landslides in Lake Champlain, USA
NASA Astrophysics Data System (ADS)
Manley, P.; Manley, T.; Ghosh, S. J.; Rosales-Underbrink, P.; Silverhart, P.
2017-12-01
Lacustrine slumps and debris flows (landslides) have been identified in Lake Champlain via Multibeam and CHIRP (compressed high intensity radar pulse) seismic profile data. Numerous large landslides studied by Ghosh (2012), Rosales-Underbrink (2015), and Silverhart (2016) have shown that many of these landslides are coeval. All landslides failed on a specific interface between marine Champlain Sea and modern lacustrine Lake Champlain sediments. Utilizing radionuclide dating on sediment from the unfailed slopes or undisturbed sediment above failed deposits, sedimentation rates were determined and used to calculate the approximate failure ages for each of the landslides studied. The northernmost failure, south of the Bouquet River, occurred about 950-1200 cal yr BP and is the first mass wasting event of this age to be recorded on Lake Champlain. The remaining landslides failed about 4500-5200 cal yr BP and agree with nearby Western Quebec Seismic Zone (WQSZ) with clusters of terrestrial landslides occurring at 1000 and 5000 cal yr BP triggered by large earthquakes (Brooks, 2015) along the same interface. The 5000 cal yr BP event has been attributed to a M 6.4 or greater earthquake within the WQSZ. The coeval landslides observed in Lake Champlain were likely triggered by this same earthquake. Lake tsunami models show that these simultaneous landslide failures can generate surface waves wave that can impact the Lake Champlain shoreline within 3-10 minutes after the earthquake.
Electromagnetic earthquake triggering phenomena: State-of-the-art research and future developments
NASA Astrophysics Data System (ADS)
Zeigarnik, Vladimir; Novikov, Victor
2014-05-01
Developed in the 70s of the last century in Russia unique pulsed power systems based on solid propellant magneto-hydrodynamic (MHD) generators with an output of 10-500 MW and operation duration of 10 to 15 s were applied for an active electromagnetic monitoring of the Earth's crust to explore its deep structure, oil and gas electrical prospecting, and geophysical studies for earthquake prediction due to their high specific power parameters, portability, and a capability of operation under harsh climatic conditions. The most interesting and promising results were obtained during geophysical experiments at the test sites located at Pamir and Northern Tien Shan mountains, when after 1.5-2.5 kA electric current injection into the Earth crust through an 4 km-length emitting dipole the regional seismicity variations were observed (increase of number of weak earthquakes within a week). Laboratory experiments performed by different teams of the Institute of Physics of the Earth, Joint Institute for High Temperatures, and Research Station of Russian Academy of Sciences on observation of acoustic emission behavior of stressed rock samples during their processing by electric pulses demonstrated similar patterns - a burst of acoustic emission (formation of cracks) after application of current pulse to the sample. Based on the field and laboratory studies it was supposed that a new kind of earthquake triggering - electromagnetic initiation of weak seismic events has been observed, which may be used for the man-made electromagnetic safe release of accumulated tectonic stresses and, consequently, for earthquake hazard mitigation. For verification of this hypothesis some additional field experiments were carried out at the Bishkek geodynamic proving ground with application of pulsed ERGU-600 facility, which provides 600 A electric current in the emitting dipole. An analysis of spatio-temporal redistribution of weak regional seismicity after ERGU-600 pulses, as well as a response of geoacoustic emission recorded in the wells at a distance of 7-12 km from the emitting dipole to the ERGU-600 pulses confirmed the effects of an influence of electromagnetic field on the deformation processes in the Earth crust and the real existence of electromagnetic triggering phenomena. For verification of results of field observations laboratory studies of behavior of rock samples under critical stress-strain state and external electric actions were carried out at the spring and lever presses, as well as at the stick-slip models simulated the seismic cycle (stress accumulation and discharge) in the seismogenic geological fault. Various possible mechanisms of weak electrical stimulation (electric current density 10-7-10-8 mA/cm2 at a depth of earthquake epicenters of 5 to10 km) of deformation processes in the Earth crust, including increased fluid pore pressure, electrokinetic phenomena, magnetostriction, electrical stimulation of fluid migration into the fault area are considered. However, the mechanism of electromagnetic earthquake triggering phenomena is still open. Based on the field observations of electromagnetic triggering of weak seismicity resulting in a partial safe release of stresses in the Earth crust a possibility of control of seismic process is considered for risk reduction of catastrophic earthquakes. The results obtained from field and laboratory experiments on electromagnetic initiation of seismic events allow to consider a problem of lithosphere-ionosphere relations from another point of view. Keeping in mind that the current density generated in the Earth crust by artificial electric source is comparable with the density of telluric currents induced during severe ionospheric disturbances (e.g., magnetic storms) it may be possible under certain favorable conditions in lithosphere to initiate earthquakes by electromagnetic disturbances in ionosphere. A possibility of application of these triggering phenomena for short-term earthquake prediction is discussed.
Numerical Modelling of Seismic Slope Stability
NASA Astrophysics Data System (ADS)
Bourdeau, Céline; Havenith, Hans-Balder; Fleurisson, Jean-Alain; Grandjean, Gilles
Earthquake ground-motions recorded worldwide have shown that many morphological and geological structures (topography, sedimentary basin) are prone to amplify the seismic shaking (San Fernando, 1971 [Davis and West 1973] Irpinia, 1980 [Del Pezzo et al. 1983]). This phenomenon, called site effects, was again recently observed in El Salvador when, on the 13th of January 2001, the country was struck by a M = 7.6 earthquake. Indeed, while horizontal accelerations on a rock site at Berlin, 80 km from the epicentre, did not exceed 0.23 g, they reached 0.6 g at Armenia, 110 km from the epicentre. Armenia is located on a small hill underlaid by a few meters thick pyroclastic deposits. Both the local topography and the presence of surface layers are likely to have caused the observed amplification effects, which are supposed to have contributed to the triggering of some of the hundreds of landslides related to this seismic event (Murphy et al. 2002). In order to better characterize the way site effects may influence the triggering of landslides along slopes, 2D numerical elastic and elasto-plastic models were developed. Various geometrical, geological and seismic conditions were analysed and the dynamic behaviour of the slope under these con- ditions was studied in terms of creation and location of a sliding surface. Preliminary results suggest that the size of modelled slope failures is dependent on site effects.
NASA Astrophysics Data System (ADS)
Stallone, A.; Marzocchi, W.
2017-12-01
Earthquake occurrence may be approximated by a multidimensional Poisson clustering process, where each point of the Poisson process is replaced by a cluster of points, the latter corresponding to the well-known aftershock sequence (triggered events). Earthquake clusters and their parents are assumed to occur according to a Poisson process at a constant temporal rate proportional to the tectonic strain rate, while events within a cluster are modeled as generations of dependent events reproduced by a branching process. Although the occurrence of such space-time clusters is a general feature in different tectonic settings, seismic sequences seem to have marked differences from region to region: one example, among many others, is that seismic sequences of moderate magnitude in Italian Apennines seem to last longer than similar seismic sequences in California. In this work we investigate on the existence of possible differences in the earthquake clustering process in these two areas. At first, we separate the triggered and background components of seismicity in the Italian and Southern California seismic catalog. Then we study the space-time domain of the triggered earthquakes with the aim to identify possible variations in the triggering properties across the two regions. In the second part of the work we focus our attention on the characteristics of the background seismicity in both seismic catalogs. The assumption of time stationarity of the background seismicity (which includes both cluster parents and isolated events) is still under debate. Some authors suggest that the independent component of seismicity could undergo transient perturbations at various time scales due to different physical mechanisms, such as, for example, viscoelastic relaxation, presence of fluids, non-stationary plate motion, etc, whose impact may depend on the tectonic setting. Here we test if the background seismicity in the two regions can be satisfactorily described by the time-homogeneous Poisson process, and, in case, we characterize quantitatively possible discrepancies with this reference process, and the differences between the two regions.
On relating apparent stress to the stress causing earthquake fault slip
McGarr, A.
1999-01-01
Apparent stress ??a is defined as ??a = ??????, where ???? is the average shear stress loading the fault plane to cause slip and ?? is the seismic efficiency, defined as Ea/W, where Ea is the energy radiated seismically and W is the total energy released by the earthquake. The results of a recent study in which apparent stresses of mining-induced earthquakes were compared to those measured for laboratory stick-slip friction events led to the hypothesis that ??a/???? ??? 0.06. This hypothesis is tested here against a substantially augmented data set of earthquakes for which ???? can be estimated, mostly from in situ stress measurements, for comparison with ??a. The expanded data set, which includes earthquakes artificially triggered at a depth of 9 km in the German Kontinentales Tiefbohrprogramm der Bundesrepublik Deutschland (KTB) borehole and natural tectonic earthquakes, covers a broad range of hypocentral depths, rock types, pore pressures, and tectonic settings. Nonetheless, over ???14 orders of magnitude in seismic moment, apparent stresses exhibit distinct upper bounds defined by a maximum seismic efficiency of ???0.06, consistent with the hypothesis proposed before. This behavior of ??a and ?? can be expressed in terms of two parameters measured for stick-slip friction events in the laboratory: the ratio of the static to the dynamic coefficient of friction and the fault slip overshoot. Typical values for these two parameters yield seismic efficiencies of ???0.06. In contrast to efficiencies for laboratory events for which ?? is always near 0.06, those for earthquakes tend to be less than this bounding value because Ea for earthquakes is usually underestimated due to factors such as band-limited recording. Thus upper bounds on ??a/???? appear to be controlled by just a few fundamental aspects of frictional stick-slip behavior that are common to shallow earthquakes everywhere. Estimates of ???? from measurements of ??a for suites of earthquakes, using ??a/???? ??? 0.06, are found to be comparable in magnitude to estimates of shear stress on the basis of extrapolating in situ stress data to seismogenic depths.
Hughes, K.L.H.; Masterlark, Timothy; Mooney, W.D.
2010-01-01
The M9.2 Sumatra-Andaman earthquake (SAE) occurred three months prior to the M8.7 Nias earthquake (NE). We propose that the NE was mechanically triggered by the SAE, and that poroelastic effects were a major component of this triggering. This study uses 3D finite element models (FEMs) of the Sumatra-Andaman subduction zone (SASZ) to predict the deformation, stress, and pore pressure fields of the SAE. The coseismic slip distribution for the SAE is calibrated to near-field GPS data using FEM-generated Green's Functions and linear inverse methods. The calibrated FEM is then used to predict the postseismic poroelastic contribution to stress-triggering along the rupture surface of the NE, which is adjacent to the southern margin of the SAE. The coseismic deformation of the SAE, combined with the rheologic configuration of the SASZ produces two transient fluid flow regimes having separate time constants. SAE coseismic pore pressures in the relatively shallow forearc and volcanic arc regions (within a few km depth) dissipate within one month after the SAE. However, pore pressures in the oceanic crust of the down-going slab persist several months after the SAE. Predictions suggest that the SAE initially induced MPa-scale negative pore pressure near the hypocenter of the NE. This pore pressure slowly recovered (increased) during the three-month interval separating the SAE and NE due to lateral migration of pore fluids, driven by coseismic pressure gradients, within the subducting oceanic crust. Because pore pressure is a fundamental component of Coulomb stress, the MPa-scale increase in pore pressure significantly decreased stability of the NE fault during the three-month interval after the SAE and prior to rupture of the NE. A complete analysis of stress-triggering due to the SAE must include a poroelastic component. Failure to include poroelastic mechanics will lead to an incomplete model that cannot account for the time interval between the SAE and NE. Our transient poroelastic model explains both the spatial and temporal characteristics of triggering of the NE by the SAE. ?? 2010 Elsevier B.V.
The Ust'-Kamchatsk "Tsunami Earthquake" of 13 April 1923: A Slow Event and a Probable Landslide
NASA Astrophysics Data System (ADS)
Salaree, A.; Okal, E.
2016-12-01
Among the "tsunami earthquakes" having generated a larger tsunami than expected from their seismic magnitudes, the large aftershock of the great Kamchatka earthquake of 1923 remains an intriguing puzzle since waves reaching 11 m were reported by Troshin & Diagilev (1926), in the vicinity of the mouth of the Kamchatka River near the coastal settlement of Ust'-Kamchatsk. Our relocation attempts based on ISS-listed travel times would put the earthquake epicenter in Ozernoye Bay, North of the Kamchatka Peninsula, suggesting that it was triggered by stress transfer beyond the plate junction at the Kamchatka corner. Mantle magnitudes obtained from Golitsyn records at De Bilt suggest a long-period moment of 2-3 times 1027 dyn*cm, with a strong increase of moment with period, suggestive of a slow source. However, tsunami simulations based on resulting models of the earthquake source, both North and South of the Kamchatka Peninsula, fail to account for the reported run-up values. On the other hand, the model of an underwater landslide, which would have been triggered by the earthquake, can explain the general amplitude and distribution of reported run-up. This model is supported by the presence of steep bathymetry offshore of Ust'-Kamchatsk, near the area of discharge of the Kamchatka River, and the abundance of subaerial landslides along the nearby coasts of the Kamchatka Peninsula. While the scarcity of scientific data for this ancient earthquake, and of historical reports in a sparsely populated area, keep this interpretation tentative, this study contributes to improving our knowledge of the challenging family of "tsunami earthquakes".
Was the Mw 7.5 1952 Kern County, California, earthquake induced (or triggered)?
NASA Astrophysics Data System (ADS)
Hough, Susan E.; Tsai, Victor C.; Walker, Robert; Aminzadeh, Fred
2017-11-01
Several recent studies have presented evidence that significant induced earthquakes occurred in a number of oil-producing regions during the early and mid-twentieth century related to either production or wastewater injection. We consider whether the 21 July 1952 Mw 7.5 Kern County earthquake might have been induced by production in the Wheeler Ridge oil field. The mainshock, which was not preceded by any significant foreshocks, occurred 98 days after the initial production of oil in Eocene strata at depths reaching 3 km, within 1 km of the White Wolf fault (WWF). Based on this spatial and temporal proximity, we explore a potential causal relationship between the earthquake and oil production. While production would have normally be expected to have reduced pore pressure, inhibiting failure on the WWF, we present an analytical model based on industry stratigraphic data and best estimates of parameters whereby an impermeable splay fault adjacent to the main WWF could plausibly have blocked direct pore pressure effects, allowing the poroelastic stress change associated with production to destabilize the WWF, promoting initial failure. This proof-of-concept model can also account for the 98-day delay between the onset of production and the earthquake. While the earthquake clearly released stored tectonic stress, any initial perturbation on or near a major fault system can trigger a larger rupture. Our proposed mechanism provides an explanation for why significant earthquakes are not commonly induced by production in proximity to major faults.
Was the Mw 7.5 1952 Kern County, California, earthquake induced (or triggered)?
Hough, Susan E.; Tsai, Victor C.; Walker, Robert; Aminzadeh, Fred
2017-01-01
Several recent studies have presented evidence that significant induced earthquakes occurred in a number of oil-producing regions during the early and mid-twentieth century related to either production or wastewater injection. We consider whether the 21 July 1952 Mw 7.5 Kern County earthquake might have been induced by production in the Wheeler Ridge oil field. The mainshock, which was not preceded by any significant foreshocks, occurred 98 days after the initial production of oil in Eocene strata at depths reaching 3 km, within ~1 km of the White Wolf fault (WWF). Based on this spatial and temporal proximity, we explore a potential causal relationship between the earthquake and oil production. While production would have normally be expected to have reduced pore pressure, inhibiting failure on the WWF, we present an analytical model based on industry stratigraphic data and best estimates of parameters whereby an impermeable splay fault adjacent to the main WWF could plausibly have blocked direct pore pressure effects, allowing the poroelastic stress change associated with production to destabilize the WWF, promoting initial failure. This proof-of-concept model can also account for the 98-day delay between the onset of production and the earthquake. While the earthquake clearly released stored tectonic stress, any initial perturbation on or near a major fault system can trigger a larger rupture. Our proposed mechanism provides an explanation for why significant earthquakes are not commonly induced by production in proximity to major faults.
Open Source Tools for Seismicity Analysis
NASA Astrophysics Data System (ADS)
Powers, P.
2010-12-01
The spatio-temporal analysis of seismicity plays an important role in earthquake forecasting and is integral to research on earthquake interactions and triggering. For instance, the third version of the Uniform California Earthquake Rupture Forecast (UCERF), currently under development, will use Epidemic Type Aftershock Sequences (ETAS) as a model for earthquake triggering. UCERF will be a "living" model and therefore requires robust, tested, and well-documented ETAS algorithms to ensure transparency and reproducibility. Likewise, as earthquake aftershock sequences unfold, real-time access to high quality hypocenter data makes it possible to monitor the temporal variability of statistical properties such as the parameters of the Omori Law and the Gutenberg Richter b-value. Such statistical properties are valuable as they provide a measure of how much a particular sequence deviates from expected behavior and can be used when assigning probabilities of aftershock occurrence. To address these demands and provide public access to standard methods employed in statistical seismology, we present well-documented, open-source JavaScript and Java software libraries for the on- and off-line analysis of seismicity. The Javascript classes facilitate web-based asynchronous access to earthquake catalog data and provide a framework for in-browser display, analysis, and manipulation of catalog statistics; implementations of this framework will be made available on the USGS Earthquake Hazards website. The Java classes, in addition to providing tools for seismicity analysis, provide tools for modeling seismicity and generating synthetic catalogs. These tools are extensible and will be released as part of the open-source OpenSHA Commons library.
NASA Astrophysics Data System (ADS)
Parameswaran, Revathy M.; Rajendran, Kusala
2017-04-01
The Great Himalayan earthquakes are believed to originate on the Main Himalayan Thrust, and their ruptures lead to deformation along the Main Frontal Thrust (MFT). The rupture of the April 25, 2015 (Mw 7.8), earthquake was east-directed, with no part relayed to the MFT. The aftershock distribution, coseismic elevation change of 1 m inferred from the InSAR image, and the spatial correspondence of the subtle surface deformations with PT2, a previously mapped out-of-sequence thrust, lead us to explore the role of structural heterogeneities in constraining the rupture progression. We used teleseismic moment inversion of P- and SH-waves, and Coulomb static stress changes to map the slip distribution, and growth of aftershock area, to understand their relation to the thrust systems. Most of the aftershocks were sourced outside the stress shadows (slip >1.65 m) of the April 25 earthquake. The May 12 (Mw 7.3) earthquake that sourced on a contiguous patch coincides with regions of increased stress change and therefore is the first known post-instrumentation example of a late, distant, and large triggered aftershock associated with any large earthquake in the Nepal Himalaya. The present study relates the slip, aftershock productivity, and triggering of unbroken stress barriers, to potential out-of-sequence thrusts, and suggests the role of stress transfer in generating large/great earthquakes.
Dehydration of subducting slow-spread oceanic lithosphere in the Lesser Antilles.
Paulatto, Michele; Laigle, Mireille; Galve, Audrey; Charvis, Philippe; Sapin, Martine; Bayrakci, Gaye; Evain, Mikael; Kopp, Heidrun
2017-07-10
Subducting slabs carry water into the mantle and are a major gateway in the global geochemical water cycle. Fluid transport and release can be constrained with seismological data. Here we use joint active-source/local-earthquake seismic tomography to derive unprecedented constraints on multi-stage fluid release from subducting slow-spread oceanic lithosphere. We image the low P-wave velocity crustal layer on the slab top and show that it disappears beneath 60-100 km depth, marking the depth of dehydration metamorphism and eclogitization. Clustering of seismicity at 120-160 km depth suggests that the slab's mantle dehydrates beneath the volcanic arc, and may be the main source of fluids triggering arc magma generation. Lateral variations in seismic properties on the slab surface suggest that serpentinized peridotite exhumed in tectonized slow-spread crust near fracture zones may increase water transport to sub-arc depths. This results in heterogeneous water release and directly impacts earthquakes generation and mantle wedge dynamics.
Dehydration of subducting slow-spread oceanic lithosphere in the Lesser Antilles
Paulatto, Michele; Laigle, Mireille; Galve, Audrey; Charvis, Philippe; Sapin, Martine; Bayrakci, Gaye; Evain, Mikael; Kopp, Heidrun
2017-01-01
Subducting slabs carry water into the mantle and are a major gateway in the global geochemical water cycle. Fluid transport and release can be constrained with seismological data. Here we use joint active-source/local-earthquake seismic tomography to derive unprecedented constraints on multi-stage fluid release from subducting slow-spread oceanic lithosphere. We image the low P-wave velocity crustal layer on the slab top and show that it disappears beneath 60–100 km depth, marking the depth of dehydration metamorphism and eclogitization. Clustering of seismicity at 120–160 km depth suggests that the slab’s mantle dehydrates beneath the volcanic arc, and may be the main source of fluids triggering arc magma generation. Lateral variations in seismic properties on the slab surface suggest that serpentinized peridotite exhumed in tectonized slow-spread crust near fracture zones may increase water transport to sub-arc depths. This results in heterogeneous water release and directly impacts earthquakes generation and mantle wedge dynamics. PMID:28691714
NASA Astrophysics Data System (ADS)
Khoshmanesh, M.; Shirzaei, M.
2017-12-01
Recent seismic and geodetic observations indicate that interseismic creep rate varies in both time and space. The spatial extent of creep determines the earthquake potential, while its temporal evolution, known as slow slip events (SSE), may trigger earthquakes. Although the conditions promoting fault creep are well-established, the mechanism for initiating self-sustaining and sometimes cyclic creep events is enigmatic. Here we investigate a time series of 19 years of surface deformation measured by radar interferometry between 1992 and 2011 along the Central San Andreas Fault (CSAF) to constrain the temporal evolution of creep. We show that the creep rate along the CSAF has a sporadic behavior, quantified with a Gumbel-like probability distribution characterized by longer tail toward the extreme positive rates, which is signature of burst-like creep dynamics. Defining creep avalanches as clusters of isolated creep with rates exceeding the shearing rate of tectonic plates, we investigate the statistical properties of their size and length. We show that, similar to the frequency-magnitude distribution of seismic events, the distribution of potency estimated for creep avalanches along the CSAF follows a power law, dictated by the distribution of their along-strike lengths. We further show that an ensemble of concurrent creep avalanches which aseismically rupture isolated fault compartments form the semi-periodic SSEs observed along the CSAF. Using a rate and state friction model, we show that normal stress is temporally variable on the fault, and support this using seismic observations. We propose that, through a self-sustaining fault-valve behavior, compaction induced elevation of pore pressure within hydraulically isolated fault compartments, and subsequent frictional dilation is the cause for the observed episodic SSEs. We further suggest that the 2004 Parkfield Mw6 earthquake may have been triggered by the SSE on adjacent creeping segment, which increased Coulomb failure stress up to 0.45 bar/yr. While creeping segments are suggested to act as barriers and arrest rupture, our study implies that SSEs on these zones may trigger seismic events on adjacent locked parts.
A fluid-driven earthquake swarm on the margin of the Yellowstone caldera
Shelly, David R.; Hill, David P.; Massin, Frederick; Farrell, Jamie; Smith, Robert B.; Taira, Taka'aki
2013-01-01
Over the past several decades, the Yellowstone caldera has experienced frequent earthquake swarms and repeated cycles of uplift and subsidence, reflecting dynamic volcanic and tectonic processes. Here, we examine the detailed spatial-temporal evolution of the 2010 Madison Plateau swarm, which occurred near the northwest boundary of the Yellowstone caldera. To fully explore the evolution of the swarm, we integrated procedures for seismic waveform-based earthquake detection with precise double-difference relative relocation. Using cross-correlation of continuous seismic data and waveform templates constructed from cataloged events, we detected and precisely located 8710 earthquakes during the three-week swarm, nearly four times the number of events included in the standard catalog. This high-resolution analysis reveals distinct migration of earthquake activity over the course of the swarm. The swarm initiated abruptly on January 17, 2010 at about 10 km depth and expanded dramatically outward (both shallower and deeper) over time, primarily along a NNW-striking, ~55º ENE-dipping structure. To explain these characteristics, we hypothesize that the swarm was triggered by the rupture of a zone of confined high-pressure aqueous fluids into a pre-existing crustal fault system, prompting release of accumulated stress. The high-pressure fluid injection may have been accommodated by hybrid shear and dilatational failure, as is commonly observed in exhumed hydrothermally affected fault zones. This process has likely occurred repeatedly in Yellowstone as aqueous fluids exsolved from magma migrate into the brittle crust, and it may be a key element in the observed cycles of caldera uplift and subsidence.
Triggered MEQ Events on LBNL Permanent Seismic Array, Brady's EGS, March 2016
Michelle Robertson
2016-06-01
List of triggered events recorded on LBNL's permanent EGS seismic array at Brady's geothermal field. This submission also includes links to the NCEDC EGS Earthquake Catalog Search page and to the metadata for the seismic array installed at Brady's Geothermal Field.
Tectonic tremor and LFEs on a reverse fault in Taiwan
Aguiar, Ana C.; Chao, Kevin; Beroza, Gregory C.
2017-06-16
In this paper, we compare low-frequency earthquakes (LFEs) from triggered and ambient tremor under the southern Central Range, Taiwan. We apply the PageRank algorithm used by Aguiar and Beroza (2014) that exploits the repetitive nature of the LFEs to find repeating LFEs in both ambient and triggered tremor. We use these repeaters to create LFE templates and find that the templates created from both tremor types are very similar. To test their similarity, we use both interchangeably and find that most of both the ambient and triggered tremor match the LFE templates created from either data set, suggesting that LFEsmore » for both events have a common origin. Finally, we locate the LFEs by using local earthquake P wave and S wave information and find that LFEs from triggered and ambient tremor locate to between 20 and 35 km on what we interpret as the deep extension of the Chaochou-Lishan Fault.« less
Optimized volume models of earthquake-triggered landslides
Xu, Chong; Xu, Xiwei; Shen, Lingling; Yao, Qi; Tan, Xibin; Kang, Wenjun; Ma, Siyuan; Wu, Xiyan; Cai, Juntao; Gao, Mingxing; Li, Kang
2016-01-01
In this study, we proposed three optimized models for calculating the total volume of landslides triggered by the 2008 Wenchuan, China Mw 7.9 earthquake. First, we calculated the volume of each deposit of 1,415 landslides triggered by the quake based on pre- and post-quake DEMs in 20 m resolution. The samples were used to fit the conventional landslide “volume-area” power law relationship and the 3 optimized models we proposed, respectively. Two data fitting methods, i.e. log-transformed-based linear and original data-based nonlinear least square, were employed to the 4 models. Results show that original data-based nonlinear least square combining with an optimized model considering length, width, height, lithology, slope, peak ground acceleration, and slope aspect shows the best performance. This model was subsequently applied to the database of landslides triggered by the quake except for two largest ones with known volumes. It indicates that the total volume of the 196,007 landslides is about 1.2 × 1010 m3 in deposit materials and 1 × 1010 m3 in source areas, respectively. The result from the relationship of quake magnitude and entire landslide volume related to individual earthquake is much less than that from this study, which reminds us the necessity to update the power-law relationship. PMID:27404212
Optimized volume models of earthquake-triggered landslides.
Xu, Chong; Xu, Xiwei; Shen, Lingling; Yao, Qi; Tan, Xibin; Kang, Wenjun; Ma, Siyuan; Wu, Xiyan; Cai, Juntao; Gao, Mingxing; Li, Kang
2016-07-12
In this study, we proposed three optimized models for calculating the total volume of landslides triggered by the 2008 Wenchuan, China Mw 7.9 earthquake. First, we calculated the volume of each deposit of 1,415 landslides triggered by the quake based on pre- and post-quake DEMs in 20 m resolution. The samples were used to fit the conventional landslide "volume-area" power law relationship and the 3 optimized models we proposed, respectively. Two data fitting methods, i.e. log-transformed-based linear and original data-based nonlinear least square, were employed to the 4 models. Results show that original data-based nonlinear least square combining with an optimized model considering length, width, height, lithology, slope, peak ground acceleration, and slope aspect shows the best performance. This model was subsequently applied to the database of landslides triggered by the quake except for two largest ones with known volumes. It indicates that the total volume of the 196,007 landslides is about 1.2 × 10(10) m(3) in deposit materials and 1 × 10(10) m(3) in source areas, respectively. The result from the relationship of quake magnitude and entire landslide volume related to individual earthquake is much less than that from this study, which reminds us the necessity to update the power-law relationship.
Rymer, M.J.; Boatwright, J.; Seekins, L.C.; Yule, J.D.; Liu, J.
2002-01-01
Surface fracturing occurred along the southern San Andreas, Superstition Hills, and Imperial faults in association with the 16 October 1999 (Mw 7.1) Hector Mine earthquake, making this at least the eighth time in the past 31 years that a regional earthquake has triggered slip along faults in the Salton Trough. Fractures associated with the event formed discontinuous breaks over a 39-km-long stretch of the San Andreas fault, from the Mecca Hills southeastward to Salt Creek and Durmid Hill, a distance from the epicenter of 107 to 139 km. Sense of slip was right lateral; only locally was there a minor (~1 mm) vertical component of slip. Dextral slip ranged from 1 to 13 mm. Maximum slip values in 1999 and earlier triggered slips are most common in the central Mecca Hills. Field evidence indicates a transient opening as the Hector Mine seismic waves passed the southern San Andreas fault. Comparison of nearby strong-motion records indicates several periods of relative opening with passage of the Hector Mine seismic wave-a similar process may have contributed to the field evidence of a transient opening. Slip on the Superstition Hills fault extended at least 9 km, at a distance from the Hector Mine epicenter of about 188 to 196 km. This length of slip is a minimum value, because we saw fresh surface breakage extending farther northwest than our measurement sites. Sense of slip was right lateral; locally there was a minor (~1 mm) vertical component of slip. Dextral slip ranged from 1 to 18 mm, with the largest amounts found distributed (or skewed) away from the Hector Mine earthquake source. Slip triggered on the Superstition Hills fault commonly is skewed away from the earthquake source, most notably in 1968, 1979, and 1999. Surface slip on the Imperial fault and within the Imperial Valley extended about 22 km, representing a distance from the Hector Mine epicenter of about 204 to 226 km. Sense of slip dominantly was right lateral; the right-lateral component of slip ranged from 1 to 19 mm. Locally there was a minor (~1-2 mm) vertical component of slip; larger proportions of vertical slip (up to 10 mm) occurred in Mesquite basin, where scarps indicate long-term oblique-slip motion for this part of the Imperial fault. Slip triggered on the Imperial fault appears randomly distributed relative to location along the fault and source direction. Multiple surface slips, both primary and triggered slip, indicate that slip repeatedly is small at locations of structural complexity.
Triggering of frequent turbidity currents in Monterey Canyon and the role of antecedent conditioning
NASA Astrophysics Data System (ADS)
Clare, M. A.; Rosenberger, K. J.; Talling, P.; Barry, J.; Maier, K. L.; Parsons, D. R.; Simmons, S.; Gales, J. A.; Gwiazda, R.; McGann, M.; Paull, C. K.
2017-12-01
Turbidity currents pose a hazard to seafloor infrastructure, deliver organic carbon and nutrients to deep-sea communities, and form economically important deposits. Thus, determining the tempo of turbidity current activity and whether different triggers result in different flow modes is important. Identification of specific triggers is challenging, however, because most studies of turbidity currents are based on their deposits. New direct monitoring of flows and environmental conditions provides the necessary temporal constraints to identify triggering mechanisms. The Coordinated Canyon Experiment (CCE) in Monterey Canyon, offshore California is the most ambitious attempt yet to measure turbidity flows and their triggers. The CCE provides precise constraint on flow timing, initiation, and potential triggers based on measurements at 7 different instrumented moorings and 2 metocean buoys. Fifteen turbidity flows were measured in 18 months; with recorded velocities >8 m/s and run-outs of up to 50 km. Presence of live estuarine foraminifera within moored sediment traps suggests that that flows originated in water depths of <10 m, but it is unclear specifically how these flows were triggered. Turbidity currents are thought to be triggered by processes including earthquakes, river floods and storm waves. Here we analyse seismicity, local river discharge, internal tides, wave height, direction and period data. We identify no clear control of any of these individual variables on flow timing. None of the recorded earthquakes (
Wei, Shengji; Helmberger, Don; Zhan, Zhongwen; Graves, Robert
2013-01-01
We derive a finite slip model for the 2013 Mw 8.3 Sea of Okhotsk Earthquake (Z = 610 km) by inverting calibrated teleseismic P waveforms. The inversion shows that the earthquake ruptured on a 10° dipping rectangular fault zone (140 km × 50 km) and evolved into a sequence of four large sub-events (E1–E4) with an average rupture speed of 4.0 km/s. The rupture process can be divided into two main stages. The first propagated south, rupturing sub-events E1, E2, and E4. The second stage (E3) originated near E2 with a delay of 12 s and ruptured northward, filling the slip gap between E1 and E2. This kinematic process produces an overall slip pattern similar to that observed in shallow swarms, except it occurs over a compressed time span of about 30 s and without many aftershocks, suggesting that sub-event triggering for deep events is significantly more efficient than for shallow events.
INDUCED SEISMICITY. Seismicity triggered by fluid injection-induced aseismic slip.
Guglielmi, Yves; Cappa, Frédéric; Avouac, Jean-Philippe; Henry, Pierre; Elsworth, Derek
2015-06-12
Anthropogenic fluid injections are known to induce earthquakes. The mechanisms involved are poorly understood, and our ability to assess the seismic hazard associated with geothermal energy or unconventional hydrocarbon production remains limited. We directly measure fault slip and seismicity induced by fluid injection into a natural fault. We observe highly dilatant and slow [~4 micrometers per second (μm/s)] aseismic slip associated with a 20-fold increase of permeability, which transitions to faster slip (~10 μm/s) associated with reduced dilatancy and micro-earthquakes. Most aseismic slip occurs within the fluid-pressurized zone and obeys a rate-strengthening friction law μ = 0.67 + 0.045ln(v/v₀) with v₀ = 0.1 μm/s. Fluid injection primarily triggers aseismic slip in this experiment, with micro-earthquakes being an indirect effect mediated by aseismic creep. Copyright © 2015, American Association for the Advancement of Science.
Simulation of rockfalls triggered by earthquakes
Kobayashi, Y.; Harp, E.L.; Kagawa, T.
1990-01-01
A computer program to simulate the downslope movement of boulders in rolling or bouncing modes has been developed and applied to actual rockfalls triggered by the Mammoth Lakes, California, earthquake sequence in 1980 and the Central Idaho earthquake in 1983. In order to reproduce a movement mode where bouncing predominated, we introduced an artificial unevenness to the slope surface by adding a small random number to the interpolated value of the mid-points between the adjacent surveyed points. Three hundred simulations were computed for each site by changing the random number series, which determined distances and bouncing intervals. The movement of the boulders was, in general, rather erratic depending on the random numbers employed, and the results could not be seen as deterministic but stochastic. The closest agreement between calculated and actual movements was obtained at the site with the most detailed and accurate topographic measurements. ?? 1990 Springer-Verlag.
The threat of silent earthquakes
Cervelli, Peter
2004-01-01
Not all earthquakes shake the ground. The so-called silent types are forcing scientists to rethink their understanding of the way quake-prone faults behave. In rare instances, silent earthquakes that occur along the flakes of seaside volcanoes may cascade into monstrous landslides that crash into the sea and trigger towering tsunamis. Silent earthquakes that take place within fault zones created by one tectonic plate diving under another may increase the chance of ground-shaking shocks. In other locations, however, silent slip may decrease the likelihood of destructive quakes, because they release stress along faults that might otherwise seem ready to snap.
Possible seasonality in large deep-focus earthquakes
NASA Astrophysics Data System (ADS)
Zhan, Zhongwen; Shearer, Peter M.
2015-09-01
Large deep-focus earthquakes (magnitude > 7.0, depth > 500 km) have exhibited strong seasonality in their occurrence times since the beginning of global earthquake catalogs. Of 60 such events from 1900 to the present, 42 have occurred in the middle half of each year. The seasonality appears strongest in the northwest Pacific subduction zones and weakest in the Tonga region. Taken at face value, the surplus of northern hemisphere summer events is statistically significant, but due to the ex post facto hypothesis testing, the absence of seasonality in smaller deep earthquakes, and the lack of a known physical triggering mechanism, we cannot rule out that the observed seasonality is just random chance. However, we can make a testable prediction of seasonality in future large deep-focus earthquakes, which, given likely earthquake occurrence rates, should be verified or falsified within a few decades. If confirmed, deep earthquake seasonality would challenge our current understanding of deep earthquakes.
Quasi-dynamic earthquake fault systems with rheological heterogeneity
NASA Astrophysics Data System (ADS)
Brietzke, G. B.; Hainzl, S.; Zoeller, G.; Holschneider, M.
2009-12-01
Seismic risk and hazard estimates mostly use pure empirical, stochastic models of earthquake fault systems tuned specifically to the vulnerable areas of interest. Although such models allow for reasonable risk estimates, such models cannot allow for physical statements of the described seismicity. In contrary such empirical stochastic models, physics based earthquake fault systems models allow for a physical reasoning and interpretation of the produced seismicity and system dynamics. Recently different fault system earthquake simulators based on frictional stick-slip behavior have been used to study effects of stress heterogeneity, rheological heterogeneity, or geometrical complexity on earthquake occurrence, spatial and temporal clustering of earthquakes, and system dynamics. Here we present a comparison of characteristics of synthetic earthquake catalogs produced by two different formulations of quasi-dynamic fault system earthquake simulators. Both models are based on discretized frictional faults embedded in an elastic half-space. While one (1) is governed by rate- and state-dependent friction with allowing three evolutionary stages of independent fault patches, the other (2) is governed by instantaneous frictional weakening with scheduled (and therefore causal) stress transfer. We analyze spatial and temporal clustering of events and characteristics of system dynamics by means of physical parameters of the two approaches.
NASA Astrophysics Data System (ADS)
McSaveney, M. J.; Massey, C. I.; Wang, G.
2012-12-01
Parts of the city of Christchurch NZ were severely damaged when a series of shallow aftershocks from the Mw 7.1 Darfield earthquake of 4 Sept. 2010 occurred beneath the city. Hillside suburbs are on the flanks of an extinct and deeply dissected Miocene basalt volcano which is widely mantled by Pleistocene loess. Portions of the lower flanks of the volcano have been cliffed by late Holocene marine erosion. Highly prized cliff-top homes overlook the city with a backdrop of the Southern Alps, or a seascape of the south Pacific Ocean. Here we discuss how various hillslope materials responded in different ways to the unusually high ground accelerations in the hillside suburbs. Most ground damage occurred in two major aftershocks: the Mw 6.2 Christchurch earthquake of 22 Feb. 2011, in which 184 people died, and a Mw 6.2 aftershock of 13 June 2011. Ground accelerations in these earthquakes were recorded locally in excess of 2 g. Significant ground damage occurred in 3 other strong aftershocks, although minor rockfalls were observed in many smaller aftershocks of which there were thousands. In the highest ground accelerations, many loose hillside objects were thrown into the air. More than 5000 loose basalt boulders were thrown or toppled from steep slopes to roll through residential properties on the slopes below. In addition, cliff tops and faces crumbled into debris avalanches. In the 13 June earthquake a geotechnical witness on a cliff top described ground cracks opening and closing around him as he scrambled off the collapsing cliff edge during the strong cyclic shaking. Loess landslides were a relative minor but damaging component. Dynamic ring-shear testing showed that the loess fails during amplified strong ground shaking, but shear displacement stops soon after, so that the earthquake-triggered loess landslides move only during strong earthquakes. Detected minor lateral movement in strongly weathered basaltic tuff and basaltic lava breccia is a cause of concern because deep weathering has left a rock composed largely of plagioclase, goethite, and pore space, with minor clay minerals. Dynamic ring-shear testing revealed some alarming properties. A remolded sample was initially unresponsive to amplified strong earthquake loading, but failed catastrophically (shear strain continuing long after the end of strong shaking) on the third seismic challenge. Shear resistance was strongly rate dependent, with shear resistance reducing with increasing strain rate. No catastrophic landslides of these weathered materials have occurred in the brief historic period, but the potential for them to occur gives new emphasis to their further investigation.
Aftereffects of Subduction-Zone Earthquakes: Potential Tsunami Hazards along the Japan Sea Coast.
Minoura, Koji; Sugawara, Daisuke; Yamanoi, Tohru; Yamada, Tsutomu
2015-10-01
The 2011 Tohoku-Oki Earthquake is a typical subduction-zone earthquake and is the 4th largest earthquake after the beginning of instrumental observation of earthquakes in the 19th century. In fact, the 2011 Tohoku-Oki Earthquake displaced the northeast Japan island arc horizontally and vertically. The displacement largely changed the tectonic situation of the arc from compressive to tensile. The 9th century in Japan was a period of natural hazards caused by frequent large-scale earthquakes. The aseismic tsunamis that inflicted damage on the Japan Sea coast in the 11th century were related to the occurrence of massive earthquakes that represented the final stage of a period of high seismic activity. Anti-compressive tectonics triggered by the subduction-zone earthquakes induced gravitational instability, which resulted in the generation of tsunamis caused by slope failing at the arc-back-arc boundary. The crustal displacement after the 2011 earthquake infers an increased risk of unexpected local tsunami flooding in the Japan Sea coastal areas.
Dilational processes accompanying earthquakes in the Long Valley Caldera
Dreger, Douglas S.; Tkalcic, Hrvoje; Johnston, M.
2000-01-01
Regional distance seismic moment tensor determinations and broadband waveforms of moment magnitude 4.6 to 4.9 earthquakes from a November 1997 Long Valley Caldera swarm, during an inflation episode, display evidence of anomalous seismic radiation characterized by non-double couple (NDC) moment tensors with significant volumetric components. Observed coseismic dilation suggests that hydrothermal or magmatic processes are directly triggering some of the seismicity in the region. Similarity in the NDC solutions implies a common source process, and the anomalous events may have been triggered by net fault-normal stress reduction due to high-pressure fluid injection or pressurization of fluid-saturated faults due to magmatic heating.
NASA Astrophysics Data System (ADS)
Guo, Changbao; Zhang, Yongshuang; Montgomery, David R.; Du, Yuben; Zhang, Guangze; Wang, Shifeng
2016-04-01
In the Tibetan Plateau, active tectonic deformation triggers frequent earthquakes, and giant landslides associated with active faults produce serious consequences. A study of the characteristics and mechanism of a historical long-runout landslide in Luanshibao (LSB), Tibetan Plateau, China, finds a maximum sliding distance (L) of 3.83 km with an elevation drop (H) of 820 m. The landslide volume (V) was ~ 0.64-0.94 × 108 m3, and it produced a long-runout (H/L = 0.21). Recent surface offset along the sinistral strike-slip Litang-Dewu fault passes through the middle part of the landslide, which initiated on the hanging wall of the fault. Geological mapping, geophysical prospecting, trenching, and 14C dating together indicate that the LSB landslide occurred in jointed granite ca. 1980 ± 30 YBP, probably triggered by a large earthquake. Compilation of volume and runout distance data for this landslide and other previously published data for volcanic and nonvolcanic long-runout landslides yields a composite runout length-volume relation (L = 12.52V0.37) that closely predicts runout of the LSB landslide, although substantial variation is noted in runout length around the central tendency.
NASA Astrophysics Data System (ADS)
Ausilia Paparo, Maria; Armigliato, Alberto; Pagnoni, Gianluca; Zaniboni, Filippo; Gallotti, Glauco; Tinti, Stefano
2017-04-01
The Eastern Tyrrhenian margin offshore western Calabria (Italy) has experienced several mass movements involving varying volumes and shapes, as revealed by several geological surveys identifying slide scars and massive deposits. The hypothesis that at least some of these mass movements was tsunamigenic sounds perfectly reasonable. In this study, we focus on the continental edge offshore the Santa Eufemia Gulf and the Paola Basin, because the area experienced several strong earthquakes (Mw up to 7), some of them in the last centuries (see, for example, the 1905 earthquake and the late shocks of the 1783 sequence). Our aim is to study the seismic load as the trigger mechanism of mass failures: not all earthquakes generate tsunamis, but the conjunction of definite factors as seafloor shaking and pore water pressure could temporarily reduce soil shear stress, inducing failures and submarine tsunamigenic landslides. We have selected several sections of the Calabrian margin with different gradients and studied their slope stability by using the Minimum Lithostatic Deviation (MLD) method. We have applied typical Peak Ground Accelerations (PGAs) obtained from local historical earthquakes by means of regression laws, determining the potentially unstable sectors, as well as the volumes of the material that can be set in motion. This in turn can be used as input for future tsunami modelling and hazard assessment. This work is a contribution to assess local hazard and risk in western Calabrian coast where earthquakes can trigger tsunamigenic submarine mass movements: the impact and the effects of such phenomena could be disastrous for coastal infrastructures and populations without the proper mitigation measures. This work was carried out in the frame of the EU Project called ASTARTE - Assessment, STrategy And Risk Reduction for Tsunamis in Europe (Grant 603839, 7th FP, ENV.2013.6.4-3).
NASA Astrophysics Data System (ADS)
Ausilia Paparo, Maria; Armigliato, Alberto; Pagnoni, Gianluca; Zaniboni, Filippo; Tinti, Stefano
2017-02-01
Eastern Sicily is affected by earthquakes and tsunamis of local and remote origin, which is known through numerous historical chronicles. Recent studies have put emphasis on the role of submarine landslides as the direct cause of the main local tsunamis, envisaging that earthquakes (in 1693 and 1908) did produce a tsunami, but also that they triggered mass failures that were able to generate an even larger tsunami. The debate is still open, and though no general consensus has been found among scientists so far, this research had the merit to attract attention on possible generation of tsunamis by landslides off Sicily. In this paper we investigate the tsunami potential of mass failures along one sector of the Hyblean-Malta Escarpment (HME). facing Augusta. The HME is the main offshore geological structure of the region running almost parallel to the coast, off eastern Sicily. Here, bottom morphology and slope steepness favour soil failures. In our work we study slope stability under seismic load along a number of HME transects by using the Minimun Lithostatic Deviation (MLD) method, which is based on the limit-equilibrium theory. The main goal is to identify sectors of the HME that could be unstable under the effect of realistic earthquakes. We estimate the possible landslide volume and use it as input for numerical codes to simulate the landslide motion and the consequent tsunami. This is an important step for the assessment of the tsunami hazard in eastern Sicily and for local tsunami mitigation policies. It is also important in view of tsunami warning system since it can help to identify the minimum earthquake magnitude capable of triggering destructive tsunamis induced by landslides, and therefore to set up appropriate knowledge-based criteria to launch alert to the population.
NASA Astrophysics Data System (ADS)
Arai, H.; Ando, R.; Aoki, Y.
2017-12-01
The 2016 Kumamoto earthquake sequence hit the SW Japan, from April 14th to 16th and its sequence includes two M6-class foreshocks and the main shock (Mw 7.0). Importantly, the detailed surface displacement caused solely by the two foreshocks could be captured by a SAR observation isolated from the mainshock deformation. The foreshocks ruptured the previously mapped Hinagu fault and their hypocentral locations and the aftershock distribution indicates the involvement of two different subparallel faults. Therefore we assumed that the 1st and the 2nd foreshocks respectively ruptured each of the subparallel faults (faults A and B). One of the interesting points of this earthquake is that the two major foreshocks had a temporal gap of 2.5 hours even though the fault A and B are quite close by each other. This suggests that the stress perturbation due to the 1st foreshock is not large enough to trigger the 2nd one right away but that it's large enough to bring about the following earthquake after a delay time.We aim to reproduce the foreshock sequence such as rupture jumping over the subparallel faults by using dynamic rupture simulations. We employed a spatiotemporal-boundary integral equation method accelerated by the Fast Domain Partitioning Method (Ando, 2016, GJI) since this method allows us to construct a complex fault geometry in 3D media. Our model has two faults and a free ground surface. We conducted rupture simulation with various sets of parameters to identify the optimal condition describing the observation.Our simulation results are roughly categorized into 3 cases with regard to the criticality for the rupture jumping. The case 1 (supercritical case) shows the fault A and B ruptured consecutively without any temporal gap. In the case 2 (nearly critical), the rupture on the fault B started with a temporal gap after the fault A finished rupturing, which is what we expected as a reproduction. In the case 3 (subcritical), only the fault A ruptured and its rupture did not transfer to the fault B. We succeed in reproducing rupture jumping over two faults with a temporal gap due to the nucleation by taking account of a velocity strengthening (direct) effect. With a detailed analysis of the case 2, we can constrain ranges of parameters strictly, and this gives us deeper insights into the physics underlying the delayed foreshock activity.
NASA Astrophysics Data System (ADS)
Croissant, Thomas; Lague, Dimitri; Davy, Philippe; Steer, Philippe
2016-04-01
In active mountain ranges, large earthquakes (Mw > 5-6) trigger numerous landslides that impact river dynamics. These landslides bring local and sudden sediment piles that will be eroded and transported along the river network causing downstream changes in river geometry, transport capacity and erosion efficiency. The progressive removal of landslide materials has implications for downstream hazards management and also for understanding landscape dynamics at the timescale of the seismic cycle. The export time of landslide-derived sediments after large-magnitude earthquakes has been studied from suspended load measurements but a full understanding of the total process, including the coupling between sediment transfer and channel geometry change, still remains an issue. Note that the transport of small sediment pulses has been studied in the context of river restoration, but the magnitude of sediment pulses generated by landslides may make the problem different. Here, we study the export of large volumes (>106 m3) of sediments with the 2D hydro-morphodynamic model, Eros. This model uses a new hydrodynamic module that resolves a reduced form of the Saint-Venant equations with a particle method. It is coupled with a sediment transport and lateral and vertical erosion model. Eros accounts for the complex retroactions between sediment transport and fluvial geometry, with a stochastic description of the floods experienced by the river. Moreover, it is able to reproduce several features deemed necessary to study the evacuation of large sediment pulses, such as river regime modification (single-thread to multi-thread), river avulsion and aggradation, floods and bank erosion. Using a synthetic and simple topography we first present how granulometry, landslide volume and geometry, channel slope and flood frequency influence 1) the dominance of pulse advection vs. diffusion during its evacuation, 2) the pulse export time and 3) the remaining volume of sediment in the catchment. The model is then applied to a high resolution (5-10 m) digital elevation model of the Poerua catchment in New Zealand which has been impacted by the effect of a large landslide during the last 15 years. We investigate several plausible Alpine Faults earthquake scenarios to study the propagation of the sediment along a complex river network. We characterize and quantify the sediment pulse export time and mechanism for this river configuration and show its impact on the alluvial plain evolution. Our findings have strong implications for the understanding of aggradation rates and the temporal persistence of induced hazards in the alluvial plain as well as of sediment transfers in active mountain belts.
NASA Astrophysics Data System (ADS)
Bellwald, B.; Hjelstuen, B. O.; Sejrup, H. P.; Kuvås, J.; Stokowy, T.
2016-12-01
The sensitivity of fjord sediments to seismic shaking makes fjord systems appropriate study sites when extending regional earthquake catalogs back in time and when estimating recurrence rates of prehistoric earthquakes in intraplate settings. In this study we compiled evidence of 140 postglacial mass movement events and their associated mass transport deposits (MTDs) from previously analyzed and new sediment cores and high-resolution seismic profiles from 22 fjord systems and six lakes in Western Norway. Evaluation of trigger mechanisms make us infer that most of these mass movement events were initiated by regional earthquakes, and that both climate-related processes and tsunamis most likely can be excluded as trigger mechanism for most of the events. A total of 33 individual earthquakes has been identified, which most likely outbalance the historically recorded events in magnitude, thus indicating magnitudes >6. Frequency plots of MTDs suggest high seismic activity in the early Holocene (11000-9700 cal. yrs BP), followed by seismic quiescence in the mid-Holocene before a seismic reactivation took place at 4000 cal. yrs BP. Coevally-triggered MTDs at 8100 cal. yrs BP are identified in all the archives, and are correlating with the age of the offshore Storegga slide. We estimate earthquake recurrence rates of 1/80 years directly after the last deglaciation of Western Norway (12800-11600 ca. yrs BP), 1/200 years for the early Holocene and 1/300 years for the last 4000 years. Our compilation suggests that the mid-Holocene is characterized by low seismic activity, suggesting recurrence rates of 1/1300 years. Comparisons of the Western Norwegian dataset with paleoseimologic studies of other previously glaciated intraplate settings indicate that both Scandinavia and the Alps show similar trends as Western Norway, whereas Eastern Canada is not correlating with the paleoseismologic trend of this study, which could be explained by different deglaciation histories.
Landslides triggered by the January 12, 2010 Port-au-Prince, Haiti Mw 7.0 earthquake
NASA Astrophysics Data System (ADS)
Xu, Chong
2014-05-01
The January 12, 2010 Port-au-Prince, Haiti earthquake (Mw 7.0) triggered tens of thousands of landslides. The purpose of this study is to investigate correlations of the occurrence of landslides and its erosion thickness with topographic factors, seismic parameters, and distance from roads. A total of 30,828 landslides triggered by the earthquake cover a total area of 15.736 km2, and the volume of landslide accumulation materials is estimated to be about 30,000,000 m3, and throughout an area more than 3,000 km2. These landslides are of various types, mainly in shallow disrupted landslides and rock falls, and also including coherent deep-seated landslides, shallow disrupted landslides, rock falls, and rock slides. These landslides were delineated using pre- and post-earthquake high-resolutions satellite images. Spatial distribution maps and contour maps of landslide number density, landslide area percentage, and landslide erosion thickness were respectively constructed in order to more intuitive to discover the spatial distribution patterns of the co-seismic landslides. Statistics of size distribution and morphometric parameters of the co-seismic landslides were carried out and were compared with other earthquake events. Four proxies of co-seismic landslides abundances, including landslides centroid number density (LCND), landslide top number density (LTND), landslide area percentage (LAP), and landslide erosion thickness (LET) were used to correlate the co-seismic landslides with various landslide controlling parameters. These controlling parameters include elevation, slope angle, slope aspect, slope curvature, topographic position, distance from drainages, stratum/lithology, distance from the epicenter, distance from the Enriquillo-Plantain Garden fault, distance along the fault, and peak ground acceleration (PGA). Comparing of controls of impact parameters on co-seismic landslides show that slope angle is the strongest impact parameter on co-seismic landslides occurrence. In addition, it should be noted that the co-seismic landslides of our inventories is much more detailed than other inventories in several previous publications. Therefore, comparisons of inventories of landslides triggered by the Haiti earthquake with other published results were carried out and the reasons of such differences were presented. We suggest it should not be limited by past empirical functions between earthquake magnitude and co-seismic landslides or it is necessary to update the past empirical functions based on more and more latest and complete co-seismic landslide inventories. This research was supported by the National Science Foundation of China (41202235)
NASA Astrophysics Data System (ADS)
Toni, Mostafa; Barth, Andreas; Ali, Sherif M.; Wenzel, Friedemann
2016-09-01
On 22 January 2013 an earthquake with local magnitude ML 4.1 occurred in the central part of the Gulf of Suez. Six months later on 1 June 2013 another earthquake with local magnitude ML 5.1 took place at the same epicenter and different depths. These two perceptible events were recorded and localized by the Egyptian National Seismological Network (ENSN) and additional networks in the region. The purpose of this study is to determine focal mechanisms and source parameters of both earthquakes to analyze their tectonic relation. We determine the focal mechanisms by applying moment tensor inversion and first motion analysis of P- and S-waves. Both sources reveal oblique focal mechanisms with normal faulting and strike-slip components on differently oriented faults. The source mechanism of the larger event on 1 June in combination with the location of aftershock sequence indicates a left-lateral slip on N-S striking fault structure in 21 km depth that is in conformity with the NE-SW extensional Shmin (orientation of minimum horizontal compressional stress) and the local fault pattern. On the other hand, the smaller earthquake on 22 January with a shallower hypocenter in 16 km depth seems to have happened on a NE-SW striking fault plane sub-parallel to Shmin. Thus, here an energy release on a transfer fault connecting dominant rift-parallel structures might have resulted in a stress transfer, triggering the later ML 5.1 earthquake. Following Brune's model and using displacement spectra, we calculate the dynamic source parameters for the two events. The estimated source parameters for the 22 January 2013 and 1 June 2013 earthquakes are fault length (470 and 830 m), stress drop (1.40 and 2.13 MPa), and seismic moment (5.47E+21 and 6.30E+22 dyn cm) corresponding to moment magnitudes of MW 3.8 and 4.6, respectively.
NASA Astrophysics Data System (ADS)
Fielding, E. J.; Huang, M. H.; Liang, C.; Yue, H.; Agram, P. S.; Simons, M.; Fattahi, H.; Tung, H.; Hu, J. C.; Huang, C.
2016-12-01
We map complex fault ruptures of the February 2016 MeiNong earthquake in Taiwan and the April 2016 Kumamoto earthquake sequence in Japan by analysis of Synthetic Aperture Radar (SAR) data from the Copernicus Sentinel-1A (S1A) satellite operated by the European Space Agency and the Advanced Land Observation Satellite-2 (ALOS-2) satellite operated by the Japanese Aerospace Exploration Agency (JAXA). Our analysis shows that the MeiNong main rupture at lower crustal depth triggered slip on another fault at upper crustal depth and shallow slip on several faults in the upper few km. The Kumamoto earthquake sequence ruptured two major fault systems over two days and triggered shallow slip on a large number of shallow faults. We combine less precise analysis of large scale displacements from the SAR images of the two satellites by pixel offset tracking or sub-pixel correlation, including the along-track component of surface motion, with the more precise SAR interferometry (InSAR) measurements in the radar line-of-sight direction to estimate all three components of the surface displacement for the events. Data was processed with customized workflows based on modules in the InSAR Scientific Computing Environment (ISCE). Joint inversion of S1A and ALOS-2 InSAR, GPS, and strong motion seismograms for the Mw6.4 MeiNong earthquake shows that the main thrust rupture with N61°W strike and 15° dip at 15-20 km depth explains nearly all of the seismic waveforms but leaves a substantial uplift residual in the InSAR and GPS offsets estimated 4 hours after the earthquake. We model this residual with slip on a N8°E-trending thrust fault dipping 30° at depths between 5-10 km. This fault strike is parallel to surface faults and we interpret it as fault slip within a mid-crustal duplex that was triggered by the main rupture within 4 hours of the mainshock. In addition, InSAR shows sharp discontinuities at many locations that are likely due to shallow triggered slip, but the timing of these is uncertain. The Kumamoto earthquake sequence in Japan started with Mw 6.2 and 6.0 earthquakes on 14 April (UTC) followed on 15 April by the Mw 7.0 mainshock. JAXA acquired one ALOS-2 scene between the foreshocks and mainshock that enables some separation of the surface deformation. InSAR shows M6 foreshocks were deeper, while M7 mainshock ruptured surface in many places.
Interactions and triggering in a 3D rate and state asperity model
NASA Astrophysics Data System (ADS)
Dublanchet, P.; Bernard, P.
2012-12-01
Precise relocation of micro-seismicity and careful analysis of seismic source parameters have progressively imposed the concept of seismic asperities embedded in a creeping fault segment as being one of the most important aspect that should appear in a realistic representation of micro-seismic sources. Another important issue concerning micro-seismic activity is the existence of robust empirical laws describing the temporal and magnitude distribution of earthquakes, such as the Omori law, the distribution of inter-event time and the Gutenberg-Richter law. In this framework, this study aims at understanding statistical properties of earthquakes, by generating synthetic catalogs with a 3D, quasi-dynamic continuous rate and state asperity model, that takes into account a realistic geometry of asperities. Our approach contrasts with ETAS models (Kagan and Knopoff, 1981) usually implemented to produce earthquake catalogs, in the sense that the non linearity observed in rock friction experiments (Dieterich, 1979) is fully taken into account by the use of rate and state friction law. Furthermore, our model differs from discrete models of faults (Ziv and Cochard, 2006) because the continuity allows us to define realistic geometries and distributions of asperities by the assembling of sub-critical computational cells that always fail in a single event. Moreover, this model allows us to adress the question of the influence of barriers and distribution of asperities on the event statistics. After recalling the main observations of asperities in the specific case of Parkfield segment of San-Andreas Fault, we analyse earthquake statistical properties computed for this area. Then, we present synthetic statistics obtained by our model that allow us to discuss the role of barriers on clustering and triggering phenomena among a population of sources. It appears that an effective size of barrier, that depends on its frictional strength, controls the presence or the absence, in the synthetic catalog, of statistical laws that are similar to what is observed for real earthquakes. As an application, we attempt to draw a comparison between synthetic statistics and the observed statistics of Parkfield in order to characterize what could be a realistic frictional model of Parkfield area. More generally, we obtained synthetic statistical properties that are in agreement with power-law decays characterized by exponents that match the observations at a global scale, showing that our mechanical model is able to provide new insights into the understanding of earthquake interaction processes in general.
NASA Astrophysics Data System (ADS)
Wong-Ortega, V.; Castro, R. R.; Gonzalez-Huizar, H.; Velasco, A. A.
2013-05-01
We analyze possible variations of seismicity in the northern Baja California due to the passage of seismic waves from the 2011, M9.0, Tohoku-Oki, Japan earthquake. The northwestern area of Baja California is characterized by a mountain range composed of crystalline rocks. These Peninsular Ranges of Baja California exhibits high microseismic activity and moderate size earthquakes. In the eastern region of Baja California shearing between the Pacific and the North American plates takes place and the Imperial and Cerro-Prieto faults generate most of the seismicity. The seismicity in these regions is monitored by the seismic network RESNOM operated by the Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE). This network consists of 13 three-component seismic stations. We use the seismic catalog of RESNOM to search for changes in local seismic rates occurred after the passing of surface waves generated by the Tohoku-Oki, Japan earthquake. When we compare one month of seismicity before and after the M9.0 earthquake, the preliminary analysis shows absence of triggered seismicity in the northern Peninsular Ranges and an increase of seismicity south of the Mexicali valley where the Imperial fault jumps southwest and the Cerro Prieto fault continues.
Toda, S.; Stein, R.S.
2000-01-01
The 1998 Antarctic plate earthquake produced clusters of aftershocks (MW ??? 6.4) up to 80 km from the fault rupture and up to 100 km beyond the end of the rupture. Because the mainshock occurred far from the nearest plate boundary and the nearest recorded earthquake, it is unusually isolated from the stress perturbations caused by other earthquakes, making it a good candidate for stress transfer analysis despite the absence of near-field observations. We tested whether the off-fault aftershocks lie in regions brought closer to Coulomb failure by the main rupture. We evaluated four published source models for the main rupture. In fourteen tests using different aftershocks sets and allowing the rupture sources to be shifted within their uncertainties, 6 were significant at ??? 99% confidence, 3 at > 95% confidence, and 5 were not significant (< 95% level). For the 9 successful tests, the stress at the site of the aftershocks was typically increased by 1-2 bars (0.1-0.2 MPa). Thus the Antarctic plate event, together with the 1992 MW=7.3 Landers and its MW=6.5 Big Bear aftershock 40 km from the main fault, supply evidence that small stress changes might indeed trigger large earthquakes far from the main fault rupture.
Induced Earthquakes Are Not All Alike: Examples from Texas Since 2008 (Invited)
NASA Astrophysics Data System (ADS)
Frohlich, C.
2013-12-01
The EarthScope Transportable Array passed through Texas between 2008 and 2011, providing an opportunity to identify and accurately locate earthquakes near and/or within oil/gas fields and injection waste disposal operations. In five widely separated geographical locations, the results suggest seismic activity may be induced/triggered. However, the different regions exhibit different relationships between injection/production operations and seismic activity: In the Barnett Shale of northeast Texas, small earthquakes occurred only near higher-volume (volume rate > 150,000 BWPM) injection disposal wells. These included widely reported earthquakes occurring near Dallas-Fort Worth and Cleburne in 2008 and 2009. Near Alice in south Texas, M3.9 earthquakes occurred in 1997 and 2010 on the boundary of the Stratton Field, which had been highly productive for both oil and gas since the 1950's. Both earthquakes occurred during an era of net declining production, but their focal depths and location at the field boundary suggest an association with production activity. In the Eagle Ford of south central Texas, earthquakes occurred near wells following significant increases in extraction (water+produced oil) volumes as well as injection. The largest earthquake, the M4.8 Fashing earthquake of 20 October 2011, occurred after significant increases in extraction. In the Cogdell Field near Snyder (west Texas), a sequence of earthquakes beginning in 2006 followed significant increases in the injection of CO2 at nearby wells. The largest with M4.4 occurred on 11 September 2011. This is the largest known earthquake possibly attributable to CO2 injection. Near Timpson in east Texas a sequence of earthquakes beginning in 2008, including an M4.8 earthquake on 17 May 2012, occurred within three km of two high-volume injection disposal wells that had begun operation in 2007. These were the first known earthquakes at this location. In summary, the observations find possible induced/triggered earthquakes associated with recent increases in injection, recent increases in extraction, with CO2 injection, and with declining production. In all areas, during the 2008-2011 period there were no earthquakes occurring near vast majority of extraction/production wells; thus, the principal puzzle is why these activities sometimes induce seismicity and sometimes do not.
NASA Astrophysics Data System (ADS)
Zobin, Vyacheslav M.
2018-05-01
Understanding volcanic paroxysmal explosive activity requires the knowledge of many associated processes. An overview of the dynamics of paroxysmal explosive eruptions (PEEs) at andesitic and dacitic volcanoes occurring between 1960 and 2010 is presented here. This overview is based mainly on a description of the pre-eruptive and eruptive events, as well as on the related seismic measurements. The selected eruptions are grouped according to their Volcanic Explosivity Index (VEI). A first group includes three eruptions of VEI 5-6 (Mount St. Helens, 1980; El Chichón, 1982, and Pinatubo, 1991) and a second group includes three eruptions of VEI 3 (Usu volcano, 1977; Soufriere Hills Volcano (SHV), 1996, and Volcán de Colima, 2005). The PEEs of the first group have similarity in their developments that allows to propose a 5-stage scheme of their dynamics process. Between these stages are: long (more than 120 years) period of quiescence (stage 1), preliminary volcano-tectonic (VT) earthquake swarm (stage 2), period of phreatic explosions (stage 3) and then, PEE appearance (stage 4). It was shown also that the PEEs of this group during their Plinian stage "triggered" the earthquake sequences beneath the volcanic structures with the maximum magnitude of earthquakes proportional to the volume of ejecta of PEEs (stage 5). Three discussed PEEs of the second group with lower VEI developed in more individual styles, not keeping within any general scheme. Among these, one PEE (SHV) may be considered as partly following in development to the PEEs of the first group, having stages 1, 3 and 4. The PEEs of Usu volcano and of Volcán de Colima had no preliminary long-term stages of quiescence. The PEE at Usu volcano came just at the end of the preceding short swarm of VT earthquakes. At Volcán de Colima, no preceding swarm of VT occurred. This absence of any regularity in development of lower VEI eruptions may refer, among other reasons, to different conditions of opening of the magmatic conduit during these eruptions.
Geomodels of coseismic landslides environments in Central Chile.
NASA Astrophysics Data System (ADS)
Serey, A.; Sepulveda, S. A.; Murphy, W.; Petley, D. N.
2017-12-01
Landslides are a major source of fatalities and damage during strong earthquakes in mountain areas. Detailed geomodels of coseismic landslides environments are essential parts of seismic landslide hazard analyses. The development of a site specific geological model is required, based on consideration of the regional and local geological and geomorphological history and the current ground surface conditions. An engineering geological model is any approximation of the geological conditions, at varying scales, created for the purpose of solving an engineering problem. In our case, the objective is the development of a methodology for earthquake-induced landslide hazard assessment applicable to urban/territorial planning and disaster prevention strategies assessment at a regional scale adapted for the Chilean tectonic conditions. We have developed the only 2 complete inventories of landslides triggered by earthquakes in Chile. The first from the Mw 6.2, shallow crustal Aysén earthquake in 2007. Second one from the Mw 8.8, megathrust subduction Maule earthquake in 2010. From the comparison of these 2 inventories with others from abroad, as well as analysis of large, prehistoric landslide inventories proposed as likely induced by seismic activity we have determined topographic, geomorphological, geological and seismic controlling factors in the occurrence of earthquake-triggered landslides. With the information collected we have defined different environments for generation of coseismic landslides based on the construction of geomodels. As a result we have built several geomodels in the Santiago Cordillera in central Chile (33°S), based upon the San Ramón Fault, a west-vergent reverse fault that outcrops at the edge of Santiago basin recently found to be active and a likely source of seismic activity in the future, with potential of triggering landslides in the Santiago mountain front as well as inland into the Mapocho and Maipo Cordilleran valleys. In conclusion these geomodels are a powerful tool for earthquake-induced landslide hazard assessment. As an implication we can identify landslide-prone areas, distinguish different seismic scenarios and describe related potential hazards, including burial and river damming by large rock slides and rock avalanches.
Rescaled Range analysis of Induced Seismicity: rapid classification of clusters in seismic crisis
NASA Astrophysics Data System (ADS)
Bejar-Pizarro, M.; Perez Lopez, R.; Benito-Parejo, M.; Guardiola-Albert, C.; Herraiz, M.
2017-12-01
Different underground fluid operations, mainly gas storing, fracking and water pumping, can trigger Induced Seismicity (IS). This seismicity is normally featured by small-sized earthquakes (M<2.5), although particular cases reach magnitude as great as 5. It has been up for debate whether earthquakes greater than 5 can be triggered by IS or this level of magnitude only corresponds to tectonic earthquakes caused by stress change. Whatever the case, the characterization of IS for seismic clusters and seismic series recorded close but not into the gas storage, is still under discussion. Time-series of earthquakes obey non-linear patterns where the Hurst exponent describes the persistency or anti-persistency of the sequence. Natural seismic sequences have an H-exponent close to 0.7, which combined with the b-value time evolution during the time clusters, give us valuable information about the stationarity of the phenomena. Tectonic earthquakes consist in a main shock with a decay of time-occurrence of seismic shocks obeying the Omori's empirical law. On the contrary, IS does not exhibit a main shock and the time occurrence depends on the injection operations instead of on the tectonic energy released. In this context, the H-exponent can give information about the origin of the sequence. In 2013, a seismic crisis was declared from the Castor underground gas storing located off-shore in the Mediterranean Sea, close to the Northeastern Spanish cost. The greatest induced earthquake was 3.7. However, a 4.2 earthquake, probably of tectonic origin, occurred few days after the operations stopped. In this work, we have compared the H-exponent and the b-value time evolution according to the timeline of gas injection. Moreover, we have divided the seismic sequence into two groups: (1) Induced Seismicity and (2) Triggered Seismicity. The rescaled range analysis allows the differentiation between natural and induced seismicity and gives information about the persistency and long-term memory of the seismic crisis. These results are a part of the Spanish project SISMOSIMA (CGL2013-47412-C2-2P).
The SCEC/USGS dynamic earthquake rupture code verification exercise
Harris, R.A.; Barall, M.; Archuleta, R.; Dunham, E.; Aagaard, Brad T.; Ampuero, J.-P.; Bhat, H.; Cruz-Atienza, Victor M.; Dalguer, L.; Dawson, P.; Day, S.; Duan, B.; Ely, G.; Kaneko, Y.; Kase, Y.; Lapusta, N.; Liu, Yajing; Ma, S.; Oglesby, D.; Olsen, K.; Pitarka, A.; Song, S.; Templeton, E.
2009-01-01
Numerical simulations of earthquake rupture dynamics are now common, yet it has been difficult to test the validity of these simulations because there have been few field observations and no analytic solutions with which to compare the results. This paper describes the Southern California Earthquake Center/U.S. Geological Survey (SCEC/USGS) Dynamic Earthquake Rupture Code Verification Exercise, where codes that simulate spontaneous rupture dynamics in three dimensions are evaluated and the results produced by these codes are compared using Web-based tools. This is the first time that a broad and rigorous examination of numerous spontaneous rupture codes has been performed—a significant advance in this science. The automated process developed to attain this achievement provides for a future where testing of codes is easily accomplished.Scientists who use computer simulations to understand earthquakes utilize a range of techniques. Most of these assume that earthquakes are caused by slip at depth on faults in the Earth, but hereafter the strategies vary. Among the methods used in earthquake mechanics studies are kinematic approaches and dynamic approaches.The kinematic approach uses a computer code that prescribes the spatial and temporal evolution of slip on the causative fault (or faults). These types of simulations are very helpful, especially since they can be used in seismic data inversions to relate the ground motions recorded in the field to slip on the fault(s) at depth. However, these kinematic solutions generally provide no insight into the physics driving the fault slip or information about why the involved fault(s) slipped that much (or that little). In other words, these kinematic solutions may lack information about the physical dynamics of earthquake rupture that will be most helpful in forecasting future events.To help address this issue, some researchers use computer codes to numerically simulate earthquakes and construct dynamic, spontaneous rupture (hereafter called “spontaneous rupture”) solutions. For these types of numerical simulations, rather than prescribing the slip function at each location on the fault(s), just the friction constitutive properties and initial stress conditions are prescribed. The subsequent stresses and fault slip spontaneously evolve over time as part of the elasto-dynamic solution. Therefore, spontaneous rupture computer simulations of earthquakes allow us to include everything that we know, or think that we know, about earthquake dynamics and to test these ideas against earthquake observations.
NASA Astrophysics Data System (ADS)
Meng, Haoran; Ben-Zion, Yehuda
2018-01-01
We present a technique to detect small earthquakes not included in standard catalogues using data from a dense seismic array. The technique is illustrated with continuous waveforms recorded in a test day by 1108 vertical geophones in a tight array on the San Jacinto fault zone. Waveforms are first stacked without time-shift in nine non-overlapping subarrays to increase the signal-to-noise ratio. The nine envelope functions of the stacked records are then multiplied with each other to suppress signals associated with sources affecting only some of the nine subarrays. Running a short-term moving average/long-term moving average (STA/LTA) detection algorithm on the product leads to 723 triggers in the test day. Using a local P-wave velocity model derived for the surface layer from Betsy gunshot data, 5 s long waveforms of all sensors around each STA/LTA trigger are beamformed for various incident directions. Of the 723 triggers, 220 are found to have localized energy sources and 103 of these are confirmed as earthquakes by verifying their observation at 4 or more stations of the regional seismic network. This demonstrates the general validity of the method and allows processing further the validated events using standard techniques. The number of validated events in the test day is >5 times larger than that in the standard catalogue. Using these events as templates can lead to additional detections of many more earthquakes.
GIS-based landslide susceptibility mapping for the 2005 Kashmir earthquake region
NASA Astrophysics Data System (ADS)
Kamp, Ulrich; Growley, Benjamin J.; Khattak, Ghazanfar A.; Owen, Lewis A.
2008-11-01
The Mw 7.6 October 8, 2005 Kashmir earthquake triggered several thousand landslides throughout the Himalaya of northern Pakistan and India. These were concentrated in six different geomorphic-geologic-anthropogenic settings. A spatial database, which included 2252 landslides, was developed and analyzed using ASTER satellite imagery and geographical information system (GIS) technology. A multi-criterion evaluation was applied to determine the significance of event-controlling parameters in triggering the landslides. The parameters included lithology, faults, slope gradient, slope aspect, elevation, land cover, rivers and roads. The results showed four classes of landslide susceptibility. Furthermore, they indicated that lithology had the strongest influence on landsliding, particularly when the rock is highly fractured, such as in shale, slate, clastic sediments, and limestone and dolomite. Moreover, the proximity of the landslides to faults, rivers, and roads was also an important factor in helping to initiate failures. In addition, landslides occurred particularly in moderate elevations on south facing slopes. Shrub land, grassland, and also agricultural land were highly susceptible to failures, while forested slopes had few landslides. One-third of the study area was highly or very highly susceptible to future landsliding and requires immediate mitigation action. The rest of the region had a low or moderate susceptibility to landsliding and remains relatively stable. This study supports the view that (1) earthquake-triggered landslides are concentrated in specific zones associated with event-controlling parameters; and (2) in the western Himalaya deforestation and road construction contributed significantly to landsliding during and shortly after earthquakes.
INL Seismic Monitoring Annual Report: January 1, 2006 - December 31, 2006
DOE Office of Scientific and Technical Information (OSTI.GOV)
S. J. Payne; N. S. Carpenter; J. M. Hodges
During 2006, the Idaho National Laboratory (INL) recorded 1998 independent triggers from earthquakes both within the region and from around the world. Fifteen small to moderate size earthquakes ranging in magnitude from 3.0 to 4.5 occurred within and outside the 161-km (100-mile) radius of INL. There were 357 earthquakes with magnitudes up to 4.5 that occurred within the 161-km radius of the INL. The majority of earthquakes occurred in the Basin and Range Province surrounding the eastern Snake River Plain (ESRP). The largest of these earthquakes had a body-wave magnitude (mb) 4.5 and occurred on February 5, 2006. It wasmore » located northeast of Spencer, Idaho near the east-west trending Centennial fault along the Idaho-Montana border. The earthquake did not trigger SMAs located within INL buildings. Three earthquakes occurred within the ESRP, two of which occurred within the INL boundaries. One earthquake of coda magnitude (Mc) 1.7 occurred on October 18, 2006 and was located southeast of Pocatello, Idaho. The two earthquakes within the INL boundaries included the local magnitude (ML) 2.0 on July 31, 2006 located near the southern termination of the Lemhi fault and the Mc 0.4 on August 6, 2006 located near the center of INL. The ML 2.0 earthquake was well recorded by most of the INL seismic stations and had a focal depth of 8.98 km. First motions were used to compute a focal mechanism, which indicated normal faulting along one of two possible fault planes that may strike N76ºW and dip 70±3ºSW or strike N55ºW and dip 20±13ºNE. Slip along a normal fault that strikes N76ºW and dips 70±3ºSW is consistent with slip along a possible segment of the NW-trending Lemhi normal fault.« less
NASA Astrophysics Data System (ADS)
Apatu, E. J. I.; Gregg, C. E.; Lindell, M. K.; Sorensen, J.; Hillhouse, J.; Sorensen, B.
2012-04-01
In 2009, the islands of Samoa, American Samoa, and Tonga were struck by an 8.1 magnitude earthquake that triggered a tsunami. The latter claimed an estimated 149, 34, and nine lives, respectively. Preparing persons to take protective action during an earthquake and tsunami is important to help save lives, but evacuation behavior is a dynamic process, which involves many factors such as recognition and interpretation of environmental cues, characteristics of the receiver, characteristics of official and informal warnings and a person's social context during the event. Compared to individualistic cultures like that in the USA, little is known about what factors affect household evacuation behavior in collectivist cultures. The Protective Action Decision Model (PADM) of Lindell and Perry (2004) is a theoretical framework that purports to explain human response to natural hazards. This broad behavioral hazard model has been tested in several settings in the United States. However, to date, the PADM has never been tested in a collectivist culture. Thus, this study will summarize interview findings from 300 American Samoan survivors to understand household evacuation behavior in response to the 2009 tsunami and earthquake that hit American Samoa. In addition, an investigation of how well the PADM explains evacuation action behavior will be reported. Findings from this study will be useful for public health emergency professionals in planning efforts for local tsunamis in coastal communities in the Pacific and around the world.
NASA Astrophysics Data System (ADS)
Amireghbali, A.; Coker, D.
2018-01-01
Burridge and Knopoff proposed a mass-spring model to explore interface dynamics along a fault during an earthquake. The Burridge and Knopoff (BK) model is composed of a series of blocks of equal mass connected to each other by springs of same stiffness. The blocks also are attached to a rigid driver via another set of springs that pulls them at a constant velocity against a rigid substrate. They studied dynamics of interface for an especial case with ten blocks and a specific set of fault properties. In our study effects of Coulomb and rate-state dependent friction laws on the dynamics of a single block BK model is investigated. The model dynamics is formulated as a system of coupled nonlinear ordinary differential equations in state-space form which lends itself to numerical integration methods, e.g. Runge-Kutta procedure for solution. The results show that the rate and state dependent friction law has the potential of triggering dynamic patterns that are different from those under Coulomb law.
NASA Astrophysics Data System (ADS)
Zhuang, J.; Vere-Jones, D.; Ogata, Y.; Christophersen, A.; Savage, M. K.; Jackson, D. D.
2008-12-01
In this study we investigate the foreshock probabilities calculated from earthquake catalogs from Japan, Southern California and New Zealand. Unlike conventional studies on foreshocks, we use a probability-based declustering method to separate each catalog into stochastic versions of family trees, such that each event is classified as either having been triggered by a preceding event, or being a spontaneous event. The probabilities are determined from parameters that provide the best fit of the real catalogue using a space- time epidemic-type aftershock sequence (ETAS) model. The model assumes that background and triggered earthquakes have the same magnitude dependent triggering capability. A foreshock here is defined as a spontaneous event that has one or more larger descendants, and a triggered foreshock is a triggered event that has one or more larger descendants. The proportion of foreshocks in spontaneous events of each catalog is found to be lower than the proportion of triggered foreshocks in triggered events. One possibility is that this is due to different triggering productivity in spontaneous versus triggered events, i.e., a triggered event triggers more children than a spontaneous events of the same magnitude. To understand what causes the above differences between spontaneous and triggered events, we apply the same procedures to several synthetic catalogs simulated by using different models. The first simulation is done by using the ETAS model with parameters and spontaneous rate fitted from the JMA catalog. The second synthetic catalog is simulated by using an adjusted ETAS model that takes into account the triggering effect from events lower than the magnitude. That is, we simulated the catalog with a low magnitude threshold with the original ETAS model, and then we remove the events smaller than a higher magnitude threshold. The third model for simulation assumes that different triggering behaviors exist between spontaneous event and triggered events. We repeat the fitting and reconstruction procedures to all those simulated catalogs. The reconstruction results for the first synthetic catalog do not show the difference between spontaneous events and triggered event or the differences in foreshock probabilities. On the other hand, results from the synthetic catalogs simulated with the second and the third models clearly reconstruct such differences. In summary our results implies that one of the causes of such differences may be neglecting the triggering effort from events smaller than the cut-off magnitude or magnitude errors. For the objective of forecasting seismicity, we can use a clustering model in which spontaneous events trigger child events in a different way from triggered events to avoid over-predicting earthquake risks with foreshocks. To understand the physical implication of this study, we need further careful studies to compare the real seismicity and the adjusted ETAS model, which takes the triggering effect from events below the cut-off magnitude into account.
NASA Astrophysics Data System (ADS)
Witter, Robert C.; Zhang, Yinglong; Wang, Kelin; Goldfinger, Chris; Priest, George R.; Allan, Jonathan C.
2012-10-01
We test hypothetical tsunami scenarios against a 4,600-year record of sandy deposits in a southern Oregon coastal lake that offer minimum inundation limits for prehistoric Cascadia tsunamis. Tsunami simulations constrain coseismic slip estimates for the southern Cascadia megathrust and contrast with slip deficits implied by earthquake recurrence intervals from turbidite paleoseismology. We model the tsunamigenic seafloor deformation using a three-dimensional elastic dislocation model and test three Cascadia earthquake rupture scenarios: slip partitioned to a splay fault; slip distributed symmetrically on the megathrust; and slip skewed seaward. Numerical tsunami simulations use the hydrodynamic finite element model, SELFE, that solves nonlinear shallow-water wave equations on unstructured grids. Our simulations of the 1700 Cascadia tsunami require >12-13 m of peak slip on the southern Cascadia megathrust offshore southern Oregon. The simulations account for tidal and shoreline variability and must crest the ˜6-m-high lake outlet to satisfy geological evidence of inundation. Accumulating this slip deficit requires ≥360-400 years at the plate convergence rate, exceeding the 330-year span of two earthquake cycles preceding 1700. Predecessors of the 1700 earthquake likely involved >8-9 m of coseismic slip accrued over >260 years. Simple slip budgets constrained by tsunami simulations allow an average of 5.2 m of slip per event for 11 additional earthquakes inferred from the southern Cascadia turbidite record. By comparison, slip deficits inferred from time intervals separating earthquake-triggered turbidites are poor predictors of coseismic slip because they meet geological constraints for only 4 out of 12 (˜33%) Cascadia tsunamis.