ERIC Educational Resources Information Center
Brusco, Michael J.; Stahl, Stephanie
2005-01-01
There are two well-known methods for obtaining a guaranteed globally optimal solution to the problem of least-squares unidimensional scaling of a symmetric dissimilarity matrix: (a) dynamic programming, and (b) branch-and-bound. Dynamic programming is generally more efficient than branch-and-bound, but the former is limited to matrices with…
ERIC Educational Resources Information Center
Bergner, Yoav; Droschler, Stefan; Kortemeyer, Gerd; Rayyan, Saif; Seaton, Daniel; Pritchard, David E.
2012-01-01
We apply collaborative filtering (CF) to dichotomously scored student response data (right, wrong, or no interaction), finding optimal parameters for each student and item based on cross-validated prediction accuracy. The approach is naturally suited to comparing different models, both unidimensional and multidimensional in ability, including a…
Multidimensional student skills with collaborative filtering
NASA Astrophysics Data System (ADS)
Bergner, Yoav; Rayyan, Saif; Seaton, Daniel; Pritchard, David E.
2013-01-01
Despite the fact that a physics course typically culminates in one final grade for the student, many instructors and researchers believe that there are multiple skills that students acquire to achieve mastery. Assessment validation and data analysis in general may thus benefit from extension to multidimensional ability. This paper introduces an approach for model determination and dimensionality analysis using collaborative filtering (CF), which is related to factor analysis and item response theory (IRT). Model selection is guided by machine learning perspectives, seeking to maximize the accuracy in predicting which students will answer which items correctly. We apply the CF to response data for the Mechanics Baseline Test and combine the results with prior analysis using unidimensional IRT.
An Interactive Multiobjective Programming Approach to Combinatorial Data Analysis.
ERIC Educational Resources Information Center
Brusco, Michael J.; Stahl, Stephanie
2001-01-01
Describes an interactive procedure for multiobjective asymmetric unidimensional seriation problems that uses a dynamic-programming algorithm to generate partially the efficient set of sequences for small to medium-sized problems and a multioperational heuristic to estimate the efficient set for larger problems. Applies the procedure to an…
Sandra, Koen; Moshir, Mahan; D'hondt, Filip; Verleysen, Katleen; Kas, Koen; Sandra, Pat
2008-04-15
Sample complexity and dynamic range constitute enormous challenges in proteome analysis. The back-end technology in typical proteomics platforms, namely mass spectrometry (MS), can only tolerate a certain complexity, has a limited dynamic range per spectrum and is very sensitive towards ion suppression. Therefore, component overlap has to be minimized for successful mass spectrometric analysis and subsequent protein identification and quantification. The present review describes the advances that have been made in liquid-based separation techniques with focus on the recent developments to boost the resolving power. The review is divided in two parts; the first part deals with unidimensional liquid chromatography and the second part with bi- and multidimensional liquid-based separation techniques. Part 1 mainly focuses on reversed-phase HPLC due to the fact that it is and will, in the near future, remain the technique of choice to be hyphenated with MS. The impact of increasing the column length, decreasing the particle diameter, replacing the traditional packed beds by monolithics, amongst others, is described. The review is complemented with data obtained in the laboratories of the authors.
ERIC Educational Resources Information Center
Lau, Che-Ming Allen; And Others
This study focused on the robustness of unidimensional item response theory (UIRT) models in computerized classification testing against violation of the unidimensionality assumption. The study addressed whether UIRT models remain acceptable under various testing conditions and dimensionality strengths. Monte Carlo simulation techniques were used…
ERIC Educational Resources Information Center
Kroopnick, Marc Howard
2010-01-01
When Item Response Theory (IRT) is operationally applied for large scale assessments, unidimensionality is typically assumed. This assumption requires that the test measures a single latent trait. Furthermore, when tests are vertically scaled using IRT, the assumption of unidimensionality would require that the battery of tests across grades…
ERIC Educational Resources Information Center
Zhang, Jinming
2004-01-01
It is common to assume during statistical analysis of a multiscale assessment that the assessment has simple structure or that it is composed of several unidimensional subtests. Under this assumption, both the unidimensional and multidimensional approaches can be used to estimate item parameters. This paper theoretically demonstrates that these…
ERIC Educational Resources Information Center
Anderson, Daniel; Kahn, Joshua D.; Tindal, Gerald
2017-01-01
Unidimensionality and local independence are two common assumptions of item response theory. The former implies that all items measure a common latent trait, while the latter implies that responses are independent, conditional on respondents' location on the latent trait. Yet, few tests are truly unidimensional. Unmodeled dimensions may result in…
ERIC Educational Resources Information Center
Ajeigbe, Taiwo Oluwafemi; Afolabi, Eyitayo Rufus Ifedayo
2017-01-01
This study assessed unidimensionality and occurrence of Differential Item Functioning (DIF) in Mathematics and English Language items of Osun State Qualifying Examination. The study made use of secondary data. The results showed that OSQ Mathematics (-0.094 = r = 0.236) and English Language items (-0.095 = r = 0.228) were unidimensional. Also,…
An introduction to multidimensional measurement using Rasch models.
Briggs, Derek C; Wilson, Mark
2003-01-01
The act of constructing a measure requires a number of important assumptions. Principle among these assumptions is that the construct is unidimensional. In practice there are many instances when the assumption of unidimensionality does not hold, and where the application of a multidimensional measurement model is both technically appropriate and substantively advantageous. In this paper we illustrate the usefulness of a multidimensional approach to measurement with the Multidimensional Random Coefficient Multinomial Logit (MRCML) model, an extension of the unidimensional Rasch model. An empirical example is taken from a collection of embedded assessments administered to 541 students enrolled in middle school science classes with a hands-on science curriculum. Student achievement on these assessments are multidimensional in nature, but can also be treated as consecutive unidimensional estimates, or as is most common, as a composite unidimensional estimate. Structural parameters are estimated for each model using ConQuest, and model fit is compared. Student achievement in science is also compared across models. The multidimensional approach has the best fit to the data, and provides more reliable estimates of student achievement than under the consecutive unidimensional approach. Finally, at an interpretational level, the multidimensional approach may well provide richer information to the classroom teacher about the nature of student achievement.
The Puzzling Unidimensionality of DSM-5 Substance Use Disorder Diagnoses
MacCoun, Robert J.
2013-01-01
There is a perennial expert debate about the criteria to be included or excluded for the DSM diagnoses of substance use dependence. Yet analysts routinely report evidence for the unidimensionality of the resulting checklist. If in fact the checklist is unidimensional, the experts are wrong that the criteria are distinct, so either the experts are mistaken or the reported unidimensionality is spurious. I argue for the latter position, and suggest that the traditional reflexive measurement model is inappropriate for the DSM; a formative measurement model would be a more accurate characterization of the institutional process by which the checklist is created, and a network or causal model would be a more appropriate foundation for a scientifically grounded diagnostic system. PMID:24324446
2016-06-01
UNCLASSIFIED Development of GPS Receiver Kalman Filter Algorithms for Stationary, Low-Dynamics, and High-Dynamics Applications Peter W. Sarunic 1 1...determine instantaneous estimates of receiver position and then goes on to develop three Kalman filter based estimators, which use stationary receiver...used in actual GPS receivers, and cover a wide range of applications. While the standard form of the Kalman filter , of which the three filters just
2017-01-01
The selectivity filter of the KcsA K+ channel has two typical conformations—the conductive and the collapsed conformations, respectively. The transition from the conductive to the collapsed filter conformation can represent the process of inactivation that depends on many environmental factors. Water molecules permeating behind the filter can influence the collapsed filter stability. Here we perform the molecular dynamics simulations to study the stability of the collapsed filter of the KcsA K+ channel under the different water patterns. We find that the water patterns are dynamic behind the collapsed filter and the filter stability increases with the increasing number of water molecules. In addition, the stability increases significantly when water molecules distribute uniformly behind the four monomeric filter chains, and the stability is compromised if water molecules only cluster behind one or two adjacent filter chains. The altered filter stabilities thus suggest that the collapsed filter can inactivate gradually under the dynamic water patterns. We also demonstrate how the different water patterns affect the filter recovery from the collapsed conformation. PMID:29049423
Wu, Di
2017-01-01
The selectivity filter of the KcsA K+ channel has two typical conformations-the conductive and the collapsed conformations, respectively. The transition from the conductive to the collapsed filter conformation can represent the process of inactivation that depends on many environmental factors. Water molecules permeating behind the filter can influence the collapsed filter stability. Here we perform the molecular dynamics simulations to study the stability of the collapsed filter of the KcsA K+ channel under the different water patterns. We find that the water patterns are dynamic behind the collapsed filter and the filter stability increases with the increasing number of water molecules. In addition, the stability increases significantly when water molecules distribute uniformly behind the four monomeric filter chains, and the stability is compromised if water molecules only cluster behind one or two adjacent filter chains. The altered filter stabilities thus suggest that the collapsed filter can inactivate gradually under the dynamic water patterns. We also demonstrate how the different water patterns affect the filter recovery from the collapsed conformation.
Unidimensional and Bidimensional Approaches to Measuring Acculturation.
Shin, Cha-Nam; Todd, Michael; An, Kyungeh; Kim, Wonsun Sunny
2017-08-01
Researchers easily overlook the complexity of acculturation measurement in research. This study is to elaborate the shortcomings of unidimensional approaches to conceptualizing acculturation and highlight the importance of using bidimensional approaches in health research. We conducted a secondary data analysis on acculturation measures and eating habits obtained from 261 Korean American adults in a Midwestern city. Bidimensional approaches better conceptualized acculturation and explained more of the variance in eating habits than did unidimensional approaches. Bidimensional acculturation measures combined with appropriate analytical methods, such as a cluster analysis, are recommended in health research because they provide a more comprehensive understanding of acculturation and its association with health behaviors than do other methods.
NASA Astrophysics Data System (ADS)
Floberg, J. M.; Holden, J. E.
2013-02-01
We introduce a method for denoising dynamic PET data, spatio-temporal expectation-maximization (STEM) filtering, that combines four-dimensional Gaussian filtering with EM deconvolution. The initial Gaussian filter suppresses noise at a broad range of spatial and temporal frequencies and EM deconvolution quickly restores the frequencies most important to the signal. We aim to demonstrate that STEM filtering can improve variance in both individual time frames and in parametric images without introducing significant bias. We evaluate STEM filtering with a dynamic phantom study, and with simulated and human dynamic PET studies of a tracer with reversible binding behaviour, [C-11]raclopride, and a tracer with irreversible binding behaviour, [F-18]FDOPA. STEM filtering is compared to a number of established three and four-dimensional denoising methods. STEM filtering provides substantial improvements in variance in both individual time frames and in parametric images generated with a number of kinetic analysis techniques while introducing little bias. STEM filtering does bias early frames, but this does not affect quantitative parameter estimates. STEM filtering is shown to be superior to the other simple denoising methods studied. STEM filtering is a simple and effective denoising method that could be valuable for a wide range of dynamic PET applications.
Beneciuk, Jason M.; Robinson, Michael E.; George, Steven Z.
2014-01-01
Early screening for psychological distress has been suggested to improve patient management for individuals experiencing low back pain. This study compared two approaches to psychological screening (i.e., multidimensional and unidimensional) so that preliminary recommendations on which approach may be appropriate for use in clinical settings other than primary care could be provided. Specifically, this study investigated STarT Back Screening Tool (SBT): 1) discriminant validity by evaluating its relationship with unidimensional psychological measures and 2) construct validity by evaluating how SBT risk categories compared to empirically derived subgroups using unidimensional psychological and disability measures. Patients (n = 146) receiving physical therapy for LBP were administered the SBT and a battery of unidimensional psychological measures at initial evaluation. Clinical measures consisted of pain intensity and self-reported disability. Several SBT risk dependent relationships (i.e., SBT low < medium < high risk) were identified for unidimensional psychological measure scores with depressive symptom scores associated with the strongest influence on SBT risk categorization. Empirically derived subgroups indicated that there was no evidence of distinctive patterns amongst psychological or disability measures other than high or low profiles, therefore two groups may provide a more clear representation of the level of pain associated psychological distress, maladaptive coping and disability in this setting, as compared to three groups which have been suggested when using the SBT in primary care settings. PMID:25451622
Delimiting Coefficient a from Internal Consistency and Unidimensionality
ERIC Educational Resources Information Center
Sijtsma, Klaas
2015-01-01
I discuss the contribution by Davenport, Davison, Liou, & Love (2015) in which they relate reliability represented by coefficient a to formal definitions of internal consistency and unidimensionality, both proposed by Cronbach (1951). I argue that coefficient a is a lower bound to reliability and that concepts of internal consistency and…
Bayesian Estimation of Multi-Unidimensional Graded Response IRT Models
ERIC Educational Resources Information Center
Kuo, Tzu-Chun
2015-01-01
Item response theory (IRT) has gained an increasing popularity in large-scale educational and psychological testing situations because of its theoretical advantages over classical test theory. Unidimensional graded response models (GRMs) are useful when polytomous response items are designed to measure a unified latent trait. They are limited in…
Unidimensional Interpretations for Multidimensional Test Items
ERIC Educational Resources Information Center
Kahraman, Nilufer
2013-01-01
This article considers potential problems that can arise in estimating a unidimensional item response theory (IRT) model when some test items are multidimensional (i.e., show a complex factorial structure). More specifically, this study examines (1) the consequences of model misfit on IRT item parameter estimates due to unintended minor item-level…
Projective Item Response Model for Test-Independent Measurement
ERIC Educational Resources Information Center
Ip, Edward Hak-Sing; Chen, Shyh-Huei
2012-01-01
The problem of fitting unidimensional item-response models to potentially multidimensional data has been extensively studied. The focus of this article is on response data that contains a major dimension of interest but that may also contain minor nuisance dimensions. Because fitting a unidimensional model to multidimensional data results in…
Unidimensional factor models imply weaker partial correlations than zero-order correlations.
van Bork, Riet; Grasman, Raoul P P P; Waldorp, Lourens J
2018-06-01
In this paper we present a new implication of the unidimensional factor model. We prove that the partial correlation between two observed variables that load on one factor given any subset of other observed variables that load on this factor lies between zero and the zero-order correlation between these two observed variables. We implement this result in an empirical bootstrap test that rejects the unidimensional factor model when partial correlations are identified that are either stronger than the zero-order correlation or have a different sign than the zero-order correlation. We demonstrate the use of the test in an empirical data example with data consisting of fourteen items that measure extraversion.
Perhaps Unidimensional Is Not Unidimensional
ERIC Educational Resources Information Center
Dodds, Pennie; Rae, Babette; Brown, Scott
2012-01-01
Miller (1956) identified his famous limit of 7 plus or minus 2 items based in part on absolute identification--the ability to identify stimuli that differ on a single physical dimension, such as lines of different length. An important aspect of this limit is its independence from perceptual effects and its application across all stimulus types.…
Performance of DIMTEST-and NOHARM-Based Statistics for Testing Unidimensionality
ERIC Educational Resources Information Center
Finch, Holmes; Habing, Brian
2007-01-01
This Monte Carlo study compares the ability of the parametric bootstrap version of DIMTEST with three goodness-of-fit tests calculated from a fitted NOHARM model to detect violations of the assumption of unidimensionality in testing data. The effectiveness of the procedures was evaluated for different numbers of items, numbers of examinees,…
Developing an Essentially Unidimensional Test with Cognitively Designed Items
ERIC Educational Resources Information Center
Bryant, Damon U.; Wooten, William
2006-01-01
The purpose of this study was to demonstrate how cognitive and measurement principles can be integrated to create an essentially unidimensional test. Two studies were conducted. In Study 1, test questions were created by using the feature integration theory of attention to develop a cognitive model of performance and then manipulating complexity…
Development and Validation of a Unidimensional Maltreatment Scale in the Add Health Data Set
ERIC Educational Resources Information Center
Marszalek, Jacob M.; Hamilton, Jessica L.
2012-01-01
Four maltreatment items were examined from Wave III (N = 13,516) of the National Longitudinal Study of Adolescent Health. Item analysis, confirmatory factor analysis, cross-validation, reliability estimates, and convergent validity coefficients strongly supported the validity of using the four items as a unidimensional composite. Implications for…
ERIC Educational Resources Information Center
Sinharay, Sandip
2015-01-01
The maximum likelihood estimate (MLE) of the ability parameter of an item response theory model with known item parameters was proved to be asymptotically normally distributed under a set of regularity conditions for tests involving dichotomous items and a unidimensional ability parameter (Klauer, 1990; Lord, 1983). This article first considers…
Least Squares Metric, Unidimensional Scaling of Multivariate Linear Models.
ERIC Educational Resources Information Center
Poole, Keith T.
1990-01-01
A general approach to least-squares unidimensional scaling is presented. Ordering information contained in the parameters is used to transform the standard squared error loss function into a discrete rather than continuous form. Monte Carlo tests with 38,094 ratings of 261 senators, and 1,258 representatives demonstrate the procedure's…
Calibration of Response Data Using MIRT Models with Simple and Mixed Structures
ERIC Educational Resources Information Center
Zhang, Jinming
2012-01-01
It is common to assume during a statistical analysis of a multiscale assessment that the assessment is composed of several unidimensional subtests or that it has simple structure. Under this assumption, the unidimensional and multidimensional approaches can be used to estimate item parameters. These two approaches are equivalent in parameter…
Simultaneous Estimation of Overall and Domain Abilities: A Higher-Order IRT Model Approach
ERIC Educational Resources Information Center
de la Torre, Jimmy; Song, Hao
2009-01-01
Assessments consisting of different domains (e.g., content areas, objectives) are typically multidimensional in nature but are commonly assumed to be unidimensional for estimation purposes. The different domains of these assessments are further treated as multi-unidimensional tests for the purpose of obtaining diagnostic information. However, when…
Park, Yoon Soo; Lee, Young-Sun; Xing, Kuan
2016-01-01
This study investigates the impact of item parameter drift (IPD) on parameter and ability estimation when the underlying measurement model fits a mixture distribution, thereby violating the item invariance property of unidimensional item response theory (IRT) models. An empirical study was conducted to demonstrate the occurrence of both IPD and an underlying mixture distribution using real-world data. Twenty-one trended anchor items from the 1999, 2003, and 2007 administrations of Trends in International Mathematics and Science Study (TIMSS) were analyzed using unidimensional and mixture IRT models. TIMSS treats trended anchor items as invariant over testing administrations and uses pre-calibrated item parameters based on unidimensional IRT. However, empirical results showed evidence of two latent subgroups with IPD. Results also showed changes in the distribution of examinee ability between latent classes over the three administrations. A simulation study was conducted to examine the impact of IPD on the estimation of ability and item parameters, when data have underlying mixture distributions. Simulations used data generated from a mixture IRT model and estimated using unidimensional IRT. Results showed that data reflecting IPD using mixture IRT model led to IPD in the unidimensional IRT model. Changes in the distribution of examinee ability also affected item parameters. Moreover, drift with respect to item discrimination and distribution of examinee ability affected estimates of examinee ability. These findings demonstrate the need to caution and evaluate IPD using a mixture IRT framework to understand its effects on item parameters and examinee ability.
Park, Yoon Soo; Lee, Young-Sun; Xing, Kuan
2016-01-01
This study investigates the impact of item parameter drift (IPD) on parameter and ability estimation when the underlying measurement model fits a mixture distribution, thereby violating the item invariance property of unidimensional item response theory (IRT) models. An empirical study was conducted to demonstrate the occurrence of both IPD and an underlying mixture distribution using real-world data. Twenty-one trended anchor items from the 1999, 2003, and 2007 administrations of Trends in International Mathematics and Science Study (TIMSS) were analyzed using unidimensional and mixture IRT models. TIMSS treats trended anchor items as invariant over testing administrations and uses pre-calibrated item parameters based on unidimensional IRT. However, empirical results showed evidence of two latent subgroups with IPD. Results also showed changes in the distribution of examinee ability between latent classes over the three administrations. A simulation study was conducted to examine the impact of IPD on the estimation of ability and item parameters, when data have underlying mixture distributions. Simulations used data generated from a mixture IRT model and estimated using unidimensional IRT. Results showed that data reflecting IPD using mixture IRT model led to IPD in the unidimensional IRT model. Changes in the distribution of examinee ability also affected item parameters. Moreover, drift with respect to item discrimination and distribution of examinee ability affected estimates of examinee ability. These findings demonstrate the need to caution and evaluate IPD using a mixture IRT framework to understand its effects on item parameters and examinee ability. PMID:26941699
A biased filter for linear discrete dynamic systems.
NASA Technical Reports Server (NTRS)
Chang, J. W.; Hoerl, A. E.; Leathrum, J. F.
1972-01-01
A recursive estimator, the ridge filter, was developed for the linear discrete dynamic estimation problem. Theorems were established to show that the ridge filter can be, on the average, closer to the expected value of the system state than the Kalman filter. On the other hand, Kalman filter, on the average, is closer to the instantaneous system state than the ridge filter. The ridge filter has been formulated in such a way that the computational features of the Kalman filter are preserved.
ERIC Educational Resources Information Center
Topczewski, Anna Marie
2013-01-01
Developmental score scales represent the performance of students along a continuum, where as students learn more they move higher along that continuum. Unidimensional item response theory (UIRT) vertical scaling has become a commonly used method to create developmental score scales. Research has shown that UIRT vertical scaling methods can be…
Parallel Analysis with Unidimensional Binary Data
ERIC Educational Resources Information Center
Weng, Li-Jen; Cheng, Chung-Ping
2005-01-01
The present simulation investigated the performance of parallel analysis for unidimensional binary data. Single-factor models with 8 and 20 indicators were examined, and sample size (50, 100, 200, 500, and 1,000), factor loading (.45, .70, and .90), response ratio on two categories (50/50, 60/40, 70/30, 80/20, and 90/10), and types of correlation…
Circular Unidimensional Scaling: A New Look at Group Differences in Interest Structure
ERIC Educational Resources Information Center
Armstrong, Patrick Ian; Hubert, Lawrence; Rounds, James
2003-01-01
The fit of J. L. Holland's (1959, 1997) RIASEC model to U.S. racial-ethnic groups was assessed using circular unidimensional scaling. Samples of African American, Asian American, Caucasian American and Hispanic American high school students and employed adults who completed either the UNIACT Interest Inventory (K. B. Swaney, 1995) or the Strong…
ERIC Educational Resources Information Center
Andrich, David
2016-01-01
This article reproduces correspondence between Georg Rasch of The University of Copenhagen and Benjamin Wright of The University of Chicago in the period from January 1966 to July 1967. This correspondence reveals their struggle to operationalize a unidimensional measurement model with sufficient statistics for responses in a set of ordered…
A Confirmatory Factor Analysis of Reilly's Role Overload Scale
ERIC Educational Resources Information Center
Thiagarajan, Palaniappan; Chakrabarty, Subhra; Taylor, Ronald D.
2006-01-01
In 1982, Reilly developed a 13-item scale to measure role overload. This scale has been widely used, but most studies did not assess the unidimensionality of the scale. Given the significance of unidimensionality in scale development, the current study reports a confirmatory factor analysis of the 13-item scale in two samples. Based on the…
Rasch Analysis of the General Self-Efficacy Scale in Workers with Traumatic Limb Injuries.
Wu, Tzu-Yi; Yu, Wan-Hui; Huang, Chien-Yu; Hou, Wen-Hsuan; Hsieh, Ching-Lin
2016-09-01
Purpose The purpose of this study was to apply Rasch analysis to examine the unidimensionality and reliability of the General Self-Efficacy Scale (GSE) in workers with traumatic limb injuries. Furthermore, if the items of the GSE fitted the Rasch model's assumptions, we transformed the raw sum ordinal scores of the GSE into Rasch interval scores. Methods A total of 1076 participants completed the GSE at 1 month post injury. Rasch analysis was used to examine the unidimensionality and person reliability of the GSE. The unidimensionality of the GSE was verified by determining whether the items fit the Rasch model's assumptions: (1) item fit indices: infit and outfit mean square (MNSQ) ranged from 0.6 to 1.4; and (2) the eigenvalue of the first factor extracted from principal component analysis (PCA) for residuals was <2. Person reliability was calculated. Results The unidimensionality of the 10-item GSE was supported in terms of good item fit statistics (infit and outfit MNSQ ranging from 0.92 to 1.32) and acceptable eigenvalues (1.6) of the first factor of the PCA, with person reliability = 0.89. Consequently, the raw sum scores of the GSE were transformed into Rasch scores. Conclusions The results indicated that the items of GSE are unidimensional and have acceptable person reliability in workers with traumatic limb injuries. Additionally, the raw sum scores of the GSE can be transformed into Rasch interval scores for prospective users to quantify workers' levels of self-efficacy and to conduct further statistical analyses.
Factor Structure of the Quality of Life Scale for Mental Disorders in Patients With Schizophrenia.
Chiu, En-Chi; Lee, Shu-Chun
2018-06-01
The Quality of Life for Mental Disorders (QOLMD) scale was designed to measure health-related quality of life (HRQOL) in patients with mental illness, especially schizophrenia. The QOLMD contains 45 items, which are divided into eight domains. However, the factor structure of the QOLMD has not been evaluated, which restricts the interpretations of the results of this scale. The purpose of this study was to evaluate the factor structures (i.e., unidimensionality, eight-factor structure, and second-order model) of the QOLMD in patients with schizophrenia. Two hundred thirty-eight outpatients with schizophrenia participated. We first conducted confirmatory factor analysis to evaluate the unidimensionality of each domain. After the unidimensionality of the eight individual domains was supported, we examined the eight-factor structure and second-order model. The results of unidimensionality showed sufficient model fit in all of the domains with the exception of the autonomy domain. A good model fit was confirmed for the autonomy domain after deleting two of the original items. The eight-factor structure for the 43-item QOLMD showed an acceptable model fit, although the second-order model showed poor model fit. Our results supported the unidimensionality and eight-factor structure of the 43-item QOLMD. The sum score for each of the domains may be used to reflect its domain-specific function. We recommend using the 43-item QOLMD to capture the multiple domains of HRQOL. However, the second-order model showed an unsatisfactory model fit. Furthermore, caution is advised when interpreting overall HRQOL using the total score for the eight domains.
Unnatural selection: talent identification and development in sport.
Abbott, Angela; Button, Chris; Pepping, Gert-Jan; Collins, Dave
2005-01-01
The early identification of talented individuals has become increasingly important across many performance domains. Current talent identification (TI) schemes in sport typically select on the basis of discrete, unidimensional measures at unstable periods in the athlete's development. In this article, the concept of talent is revised as a complex, dynamical system in which future behaviors emerge from an interaction of key performance determinants such as psychological behaviors, motor abilities, and physical characteristics. Key nonlinear dynamics concepts are related to TI approaches such as sensitivity to initial conditions, transitions, and exponential behavioral distributions. It is concluded that many TI models place an overemphasis on early identification rather than the development of potentially talented performers. A generic model of talent identification and development is proposed that addresses these issues and provides direction for future research.
ERIC Educational Resources Information Center
Dibble, Jayson L.; Levine, Timothy R.; Park, Hee Sun
2012-01-01
A fundamental dimension along which all social and personal relationships vary is closeness. The Unidimensional Relationship Closeness Scale (URCS) is a 12-item self-report scale measuring the closeness of social and personal relationships. The reliability and validity of the URCS were assessed with college dating couples (N = 192), female friends…
Unidimensional Vertical Scaling in Multidimensional Space. Research Report. ETS RR-17-29
ERIC Educational Resources Information Center
Carlson, James E.
2017-01-01
In this paper, I consider a set of test items that are located in a multidimensional space, S[subscript M], but are located along a curved line in S[subscript M] and can be scaled unidimensionally. Furthermore, I am demonstrating a case in which the test items are administered across 6 levels, such as occurs in K-12 assessment across 6 grade…
Assessing Model Data Fit of Unidimensional Item Response Theory Models in Simulated Data
ERIC Educational Resources Information Center
Kose, Ibrahim Alper
2014-01-01
The purpose of this paper is to give an example of how to assess the model-data fit of unidimensional IRT models in simulated data. Also, the present research aims to explain the importance of fit and the consequences of misfit by using simulated data sets. Responses of 1000 examinees to a dichotomously scoring 20 item test were simulated with 25…
Spatial filtering velocimetry of objective speckles for measuring out-of-plane motion.
Jakobsen, M L; Yura, H T; Hanson, S G
2012-03-20
This paper analyzes the dynamics of objective laser speckles as the distance between the object and the observation plane continuously changes. With the purpose of applying optical spatial filtering velocimetry to the speckle dynamics, in order to measure out-of-plane motion in real time, a rotational symmetric spatial filter is designed. The spatial filter converts the speckle dynamics into a photocurrent with a quasi-sinusoidal response to the out-of-plane motion. The spatial filter is here emulated with a CCD camera, and is tested on speckles arising from a real application. The analysis discusses the selectivity of the spatial filter, the nonlinear response between speckle motion and observation distance, and the influence of the distance-dependent speckle size. Experiments with the emulated filters illustrate performance and potential applications of the technology. © 2012 Optical Society of America
Blended particle filters for large-dimensional chaotic dynamical systems
Majda, Andrew J.; Qi, Di; Sapsis, Themistoklis P.
2014-01-01
A major challenge in contemporary data science is the development of statistically accurate particle filters to capture non-Gaussian features in large-dimensional chaotic dynamical systems. Blended particle filters that capture non-Gaussian features in an adaptively evolving low-dimensional subspace through particles interacting with evolving Gaussian statistics on the remaining portion of phase space are introduced here. These blended particle filters are constructed in this paper through a mathematical formalism involving conditional Gaussian mixtures combined with statistically nonlinear forecast models compatible with this structure developed recently with high skill for uncertainty quantification. Stringent test cases for filtering involving the 40-dimensional Lorenz 96 model with a 5-dimensional adaptive subspace for nonlinear blended filtering in various turbulent regimes with at least nine positive Lyapunov exponents are used here. These cases demonstrate the high skill of the blended particle filter algorithms in capturing both highly non-Gaussian dynamical features as well as crucial nonlinear statistics for accurate filtering in extreme filtering regimes with sparse infrequent high-quality observations. The formalism developed here is also useful for multiscale filtering of turbulent systems and a simple application is sketched below. PMID:24825886
Correlation of Spatially Filtered Dynamic Speckles in Distance Measurement Application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Semenov, Dmitry V.; Nippolainen, Ervin; Kamshilin, Alexei A.
2008-04-15
In this paper statistical properties of spatially filtered dynamic speckles are considered. This phenomenon was not sufficiently studied yet while spatial filtering is an important instrument for speckles velocity measurements. In case of spatial filtering speckle velocity information is derived from the modulation frequency of filtered light power which is measured by photodetector. Typical photodetector output is represented by a narrow-band random noise signal which includes non-informative intervals. Therefore more or less precious frequency measurement requires averaging. In its turn averaging implies uncorrelated samples. However, conducting research we found that correlation is typical property not only of dynamic speckle patternsmore » but also of spatially filtered speckles. Using spatial filtering the correlation is observed as a response of measurements provided to the same part of the object surface or in case of simultaneously using several adjacent photodetectors. Found correlations can not be explained using just properties of unfiltered dynamic speckles. As we demonstrate the subject of this paper is important not only from pure theoretical point but also from the point of applied speckle metrology. E.g. using single spatial filter and an array of photodetector can greatly improve accuracy of speckle velocity measurements.« less
Dynamical noise filter and conditional entropy analysis in chaos synchronization.
Wang, Jiao; Lai, C-H
2006-06-01
It is shown that, in a chaotic synchronization system whose driving signal is exposed to channel noise, the estimation of the drive system states can be greatly improved by applying the dynamical noise filtering to the response system states. If the noise is bounded in a certain range, the estimation errors, i.e., the difference between the filtered responding states and the driving states, can be made arbitrarily small. This property can be used in designing an alternative digital communication scheme. An analysis based on the conditional entropy justifies the application of dynamical noise filtering in generating quality synchronization.
Modeling the system dynamics for nutrient removal in an innovative septic tank media filter.
Xuan, Zhemin; Chang, Ni-Bin; Wanielista, Martin
2012-05-01
A next generation septic tank media filter to replace or enhance the current on-site wastewater treatment drainfields was proposed in this study. Unit operation with known treatment efficiencies, flow pattern identification, and system dynamics modeling was cohesively concatenated in order to prove the concept of a newly developed media filter. A multicompartmental model addressing system dynamics and feedbacks based on our assumed microbiological processes accounting for aerobic, anoxic, and anaerobic conditions in the media filter was constructed and calibrated with the aid of in situ measurements and the understanding of the flow patterns. Such a calibrated system dynamics model was then applied for a sensitivity analysis under changing inflow conditions based on the rates of nitrification and denitrification characterized through the field-scale testing. This advancement may contribute to design such a drainfield media filter in household septic tank systems in the future.
Toward Simplification of Dynamic Subgrid-Scale Models
NASA Technical Reports Server (NTRS)
Pruett, C. David
1997-01-01
We examine the relationship between the filter and the subgrid-scale (SGS) model for large-eddy simulations, in general, and for those with dynamic SGS models, in particular. From a review of the literature, it would appear that many practitioners of LES consider the link between the filter and the model more or less as a formality of little practical effect. In contrast, we will show that the filter and the model are intimately linked, that the Smagorinsky SGS model is appropriate only for filters of first- or second-order, and that the Smagorinsky model is inconsistent with spectral filters. Moreover, the Germano identity is shown to be both problematic and unnecessary for the development of dynamic SGS models. Its use obscures the following fundamental realization: For a suitably chosen filter, the computible resolved turbulent stresses, property scaled, closely approximate the SGS stresses.
Andrews, Arthur R.; Bridges, Ana J.; Gomez, Debbie
2014-01-01
Purpose The aims of the study were to evaluate the orthogonality of acculturation for Latinos. Design Regression analyses were used to examine acculturation in two Latino samples (N = 77; N = 40). In a third study (N = 673), confirmatory factor analyses compared unidimensional and bidimensional models. Method Acculturation was assessed with the ARSMA-II (Studies 1 and 2), and language proficiency items from the Children of Immigrants Longitudinal Study (Study 3). Results In Studies 1 and 2, the bidimensional model accounted for slightly more variance (R2Study 1 = .11; R2Study 2 = .21) than the unidimensional model (R2Study 1 = .10; R2Study 2 = .19). In Study 3, the bidimensional model evidenced better fit (Akaike information criterion = 167.36) than the unidimensional model (Akaike information criterion = 1204.92). Discussion/Conclusions Acculturation is multidimensional. Implications for Practice Care providers should examine acculturation as a bidimensional construct. PMID:23361579
Nonlinear Bayesian filtering and learning: a neuronal dynamics for perception.
Kutschireiter, Anna; Surace, Simone Carlo; Sprekeler, Henning; Pfister, Jean-Pascal
2017-08-18
The robust estimation of dynamical hidden features, such as the position of prey, based on sensory inputs is one of the hallmarks of perception. This dynamical estimation can be rigorously formulated by nonlinear Bayesian filtering theory. Recent experimental and behavioral studies have shown that animals' performance in many tasks is consistent with such a Bayesian statistical interpretation. However, it is presently unclear how a nonlinear Bayesian filter can be efficiently implemented in a network of neurons that satisfies some minimum constraints of biological plausibility. Here, we propose the Neural Particle Filter (NPF), a sampling-based nonlinear Bayesian filter, which does not rely on importance weights. We show that this filter can be interpreted as the neuronal dynamics of a recurrently connected rate-based neural network receiving feed-forward input from sensory neurons. Further, it captures properties of temporal and multi-sensory integration that are crucial for perception, and it allows for online parameter learning with a maximum likelihood approach. The NPF holds the promise to avoid the 'curse of dimensionality', and we demonstrate numerically its capability to outperform weighted particle filters in higher dimensions and when the number of particles is limited.
GAO, L.; HAGEN, N.; TKACZYK, T.S.
2012-01-01
Summary We implement a filterless illumination scheme on a hyperspectral fluorescence microscope to achieve full-range spectral imaging. The microscope employs polarisation filtering, spatial filtering and spectral unmixing filtering to replace the role of traditional filters. Quantitative comparisons between full-spectrum and filter-based microscopy are provided in the context of signal dynamic range and accuracy of measured fluorophores’ emission spectra. To show potential applications, a five-colour cell immunofluorescence imaging experiment is theoretically simulated. Simulation results indicate that the use of proposed full-spectrum imaging technique may result in three times improvement in signal dynamic range compared to that can be achieved in the filter-based imaging. PMID:22356127
Jia, Xingyu; Liu, Zhigang; Tao, Long; Deng, Zhongwen
2017-10-16
Frequency scanning interferometry (FSI) with a single external cavity diode laser (ECDL) and time-invariant Kalman filtering is an effective technique for measuring the distance of a dynamic target. However, due to the hysteresis of the piezoelectric ceramic transducer (PZT) actuator in the ECDL, the optical frequency sweeps of the ECDL exhibit different behaviors, depending on whether the frequency is increasing or decreasing. Consequently, the model parameters of Kalman filter appear time varying in each iteration, which produces state estimation errors with time-invariant filtering. To address this, in this paper, a time-varying Kalman filter is proposed to model the instantaneous movement of a target relative to the different optical frequency tuning durations of the ECDL. The combination of the FSI method with the time-varying Kalman filter was theoretically analyzed, and the simulation and experimental results show the proposed method greatly improves the performance of dynamic FSI measurements.
Highway traffic estimation of improved precision using the derivative-free nonlinear Kalman Filter
NASA Astrophysics Data System (ADS)
Rigatos, Gerasimos; Siano, Pierluigi; Zervos, Nikolaos; Melkikh, Alexey
2015-12-01
The paper proves that the PDE dynamic model of the highway traffic is a differentially flat one and by applying spatial discretization its shows that the model's transformation into an equivalent linear canonical state-space form is possible. For the latter representation of the traffic's dynamics, state estimation is performed with the use of the Derivative-free nonlinear Kalman Filter. The proposed filter consists of the Kalman Filter recursion applied on the transformed state-space model of the highway traffic. Moreover, it makes use of an inverse transformation, based again on differential flatness theory which enables to obtain estimates of the state variables of the initial nonlinear PDE model. By avoiding approximate linearizations and the truncation of nonlinear terms from the PDE model of the traffic's dynamics the proposed filtering methods outperforms, in terms of accuracy, other nonlinear estimators such as the Extended Kalman Filter. The article's theoretical findings are confirmed through simulation experiments.
Factor structure and dimensionality of the two depression scales in STAR*D using level 1 datasets.
Bech, P; Fava, M; Trivedi, M H; Wisniewski, S R; Rush, A J
2011-08-01
The factor structure and dimensionality of the HAM-D(17) and the IDS-C(30) are as yet uncertain, because psychometric analyses of these scales have been performed without a clear separation between factor structure profile and dimensionality (total scores being a sufficient statistic). The first treatment step (Level 1) in the STAR*D study provided a dataset of 4041 outpatients with DSM-IV nonpsychotic major depression. The HAM-D(17) and IDS-C(30) were evaluated by principal component analysis (PCA) without rotation. Mokken analysis tested the unidimensionality of the IDS-C(6), which corresponds to the unidimensional HAM-D(6.) For both the HAM-D(17) and IDS-C(30), PCA identified a bi-directional factor contrasting the depressive symptoms versus the neurovegetative symptoms. The HAM-D(6) and the corresponding IDS-C(6) symptoms all emerged in the depression factor. Both the HAM-D(6) and IDS-C(6) were found to be unidimensional scales, i.e., their total scores are each a sufficient statistic for the measurement of depressive states. STAR*D used only one medication in Level 1. The unidimensional HAM-D(6) and IDS-C(6) should be used when evaluating the pure clinical effect of antidepressive treatment, whereas the multidimensional HAM-D(17) and IDS-C(30) should be considered when selecting antidepressant treatment. Copyright © 2011 Elsevier B.V. All rights reserved.
The role of model dynamics in ensemble Kalman filter performance for chaotic systems
Ng, G.-H.C.; McLaughlin, D.; Entekhabi, D.; Ahanin, A.
2011-01-01
The ensemble Kalman filter (EnKF) is susceptible to losing track of observations, or 'diverging', when applied to large chaotic systems such as atmospheric and ocean models. Past studies have demonstrated the adverse impact of sampling error during the filter's update step. We examine how system dynamics affect EnKF performance, and whether the absence of certain dynamic features in the ensemble may lead to divergence. The EnKF is applied to a simple chaotic model, and ensembles are checked against singular vectors of the tangent linear model, corresponding to short-term growth and Lyapunov vectors, corresponding to long-term growth. Results show that the ensemble strongly aligns itself with the subspace spanned by unstable Lyapunov vectors. Furthermore, the filter avoids divergence only if the full linearized long-term unstable subspace is spanned. However, short-term dynamics also become important as non-linearity in the system increases. Non-linear movement prevents errors in the long-term stable subspace from decaying indefinitely. If these errors then undergo linear intermittent growth, a small ensemble may fail to properly represent all important modes, causing filter divergence. A combination of long and short-term growth dynamics are thus critical to EnKF performance. These findings can help in developing practical robust filters based on model dynamics. ?? 2011 The Authors Tellus A ?? 2011 John Wiley & Sons A/S.
Behavior of Filters and Smoothers for Strongly Nonlinear Dynamics
NASA Technical Reports Server (NTRS)
Zhu, Yanqui; Cohn, Stephen E.; Todling, Ricardo
1999-01-01
The Kalman filter is the optimal filter in the presence of known gaussian error statistics and linear dynamics. Filter extension to nonlinear dynamics is non trivial in the sense of appropriately representing high order moments of the statistics. Monte Carlo, ensemble-based, methods have been advocated as the methodology for representing high order moments without any questionable closure assumptions. Investigation along these lines has been conducted for highly idealized dynamics such as the strongly nonlinear Lorenz model as well as more realistic models of the means and atmosphere. A few relevant issues in this context are related to the necessary number of ensemble members to properly represent the error statistics and, the necessary modifications in the usual filter situations to allow for correct update of the ensemble members. The ensemble technique has also been applied to the problem of smoothing for which similar questions apply. Ensemble smoother examples, however, seem to be quite puzzling in that results state estimates are worse than for their filter analogue. In this study, we use concepts in probability theory to revisit the ensemble methodology for filtering and smoothing in data assimilation. We use the Lorenz model to test and compare the behavior of a variety of implementations of ensemble filters. We also implement ensemble smoothers that are able to perform better than their filter counterparts. A discussion of feasibility of these techniques to large data assimilation problems will be given at the time of the conference.
A Dynamic Compressive Gammachirp Auditory Filterbank
Irino, Toshio; Patterson, Roy D.
2008-01-01
It is now common to use knowledge about human auditory processing in the development of audio signal processors. Until recently, however, such systems were limited by their linearity. The auditory filter system is known to be level-dependent as evidenced by psychophysical data on masking, compression, and two-tone suppression. However, there were no analysis/synthesis schemes with nonlinear filterbanks. This paper describe18300060s such a scheme based on the compressive gammachirp (cGC) auditory filter. It was developed to extend the gammatone filter concept to accommodate the changes in psychophysical filter shape that are observed to occur with changes in stimulus level in simultaneous, tone-in-noise masking. In models of simultaneous noise masking, the temporal dynamics of the filtering can be ignored. Analysis/synthesis systems, however, are intended for use with speech sounds where the glottal cycle can be long with respect to auditory time constants, and so they require specification of the temporal dynamics of auditory filter. In this paper, we describe a fast-acting level control circuit for the cGC filter and show how psychophysical data involving two-tone suppression and compression can be used to estimate the parameter values for this dynamic version of the cGC filter (referred to as the “dcGC” filter). One important advantage of analysis/synthesis systems with a dcGC filterbank is that they can inherit previously refined signal processing algorithms developed with conventional short-time Fourier transforms (STFTs) and linear filterbanks. PMID:19330044
Helmreich, Isabella; Wagner, Stefanie; Mergl, Roland; Allgaier, Antje-Kathrin; Hautzinger, Martin; Henkel, Verena; Hegerl, Ulrich; Tadić, André
2012-06-01
In the efficacy evaluation of antidepressant treatments, the total score of the Hamilton Depression Rating Scale (HAMD) is still regarded as the 'gold standard'. We previously had shown that the Inventory of Depressive Symptomatology (IDS) was more sensitive to detect depressive symptom changes than the HAMD17 (Helmreich et al. 2011). Furthermore, studies suggest that the unidimensional subscales of the HAMD, which capture the core depressive symptoms, outperform the full HAMD regarding the detection of antidepressant treatment effects. The aim of the present study was to compare several unidimensional subscales of the HAMD and the IDS regarding their sensitivity to changes in depression symptoms in a sample of patients with mild major, minor or subsyndromal depression (MIND). Biweekly IDS-C28 and HAMD17 data from 287 patients of a 10-week randomised, placebo-controlled trial comparing the effectiveness of sertraline and cognitive-behavioural group therapy in patients with MIND were converted to subscale scores and analysed during the antidepressant treatment course. We investigated sensitivity to depressive change for all scales from assessment-to-assessment, in relation to depression severity level and placebo-verum differences. The subscales performed similarly during the treatment course, with slight advantages for some subscales in detecting treatment effects depending on the treatment modality and on the items included. Most changes in depressive symptomatology were detected by the IDS short scale, but regarding the effect sizes, it performed worse than most subscales. Unidimensional subscales are a time- and cost-saving option in judging drug therapy outcomes, especially in antidepressant treatment efficacy studies. However, subscales do not cover all facets of depression (e.g. atypical symptoms, sleep disturbances), which might be important for comprehensively understanding the nature of the disease depression. Therefore, the cost-to-benefit ratio must be carefully assessed in the decision for using unidimensional subscales.
Likelihood Methods for Adaptive Filtering and Smoothing. Technical Report #455.
ERIC Educational Resources Information Center
Butler, Ronald W.
The dynamic linear model or Kalman filtering model provides a useful methodology for predicting the past, present, and future states of a dynamic system, such as an object in motion or an economic or social indicator that is changing systematically with time. Recursive likelihood methods for adaptive Kalman filtering and smoothing are developed.…
Robust failure detection filters. M.S. Thesis
NASA Technical Reports Server (NTRS)
Sanmartin, A. M.
1985-01-01
The robustness of detection filters applied to the detection of actuator failures on a free-free beam is analyzed. This analysis is based on computer simulation tests of the detection filters in the presence of different types of model mismatch, and on frequency response functions of the transfers corresponding to the model mismatch. The robustness of detection filters based on a model of the beam containing a large number of structural modes varied dramatically with the placement of some of the filter poles. The dynamics of these filters were very hard to analyze. The design of detection filters with a number of modes equal to the number of sensors was trivial. They can be configured to detect any number of actuator failure events. The dynamics of these filters were very easy to analyze and their robustness properties were much improved. A change of the output transformation allowed the filter to perform satisfactorily with realistic levels of model mismatch.
Estimating Power System Dynamic States Using Extended Kalman Filter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Zhenyu; Schneider, Kevin P.; Nieplocha, Jaroslaw
2014-10-31
Abstract—The state estimation tools which are currently deployed in power system control rooms are based on a steady state assumption. As a result, the suite of operational tools that rely on state estimation results as inputs do not have dynamic information available and their accuracy is compromised. This paper investigates the application of Extended Kalman Filtering techniques for estimating dynamic states in the state estimation process. The new formulated “dynamic state estimation” includes true system dynamics reflected in differential equations, not like previously proposed “dynamic state estimation” which only considers the time-variant snapshots based on steady state modeling. This newmore » dynamic state estimation using Extended Kalman Filter has been successfully tested on a multi-machine system. Sensitivity studies with respect to noise levels, sampling rates, model errors, and parameter errors are presented as well to illustrate the robust performance of the developed dynamic state estimation process.« less
Concrete ensemble Kalman filters with rigorous catastrophic filter divergence
Kelly, David; Majda, Andrew J.; Tong, Xin T.
2015-01-01
The ensemble Kalman filter and ensemble square root filters are data assimilation methods used to combine high-dimensional, nonlinear dynamical models with observed data. Ensemble methods are indispensable tools in science and engineering and have enjoyed great success in geophysical sciences, because they allow for computationally cheap low-ensemble-state approximation for extremely high-dimensional turbulent forecast models. From a theoretical perspective, the dynamical properties of these methods are poorly understood. One of the central mysteries is the numerical phenomenon known as catastrophic filter divergence, whereby ensemble-state estimates explode to machine infinity, despite the true state remaining in a bounded region. In this article we provide a breakthrough insight into the phenomenon, by introducing a simple and natural forecast model that transparently exhibits catastrophic filter divergence under all ensemble methods and a large set of initializations. For this model, catastrophic filter divergence is not an artifact of numerical instability, but rather a true dynamical property of the filter. The divergence is not only validated numerically but also proven rigorously. The model cleanly illustrates mechanisms that give rise to catastrophic divergence and confirms intuitive accounts of the phenomena given in past literature. PMID:26261335
Concrete ensemble Kalman filters with rigorous catastrophic filter divergence.
Kelly, David; Majda, Andrew J; Tong, Xin T
2015-08-25
The ensemble Kalman filter and ensemble square root filters are data assimilation methods used to combine high-dimensional, nonlinear dynamical models with observed data. Ensemble methods are indispensable tools in science and engineering and have enjoyed great success in geophysical sciences, because they allow for computationally cheap low-ensemble-state approximation for extremely high-dimensional turbulent forecast models. From a theoretical perspective, the dynamical properties of these methods are poorly understood. One of the central mysteries is the numerical phenomenon known as catastrophic filter divergence, whereby ensemble-state estimates explode to machine infinity, despite the true state remaining in a bounded region. In this article we provide a breakthrough insight into the phenomenon, by introducing a simple and natural forecast model that transparently exhibits catastrophic filter divergence under all ensemble methods and a large set of initializations. For this model, catastrophic filter divergence is not an artifact of numerical instability, but rather a true dynamical property of the filter. The divergence is not only validated numerically but also proven rigorously. The model cleanly illustrates mechanisms that give rise to catastrophic divergence and confirms intuitive accounts of the phenomena given in past literature.
Ng, Vincent; Cao, Mengyang; Marsh, Herbert W; Tay, Louis; Seligman, Martin E P
2017-08-01
The factor structure of the Values in Action Inventory of Strengths (VIA-IS; Peterson & Seligman, 2004) has not been well established as a result of methodological challenges primarily attributable to a global positivity factor, item cross-loading across character strengths, and questions concerning the unidimensionality of the scales assessing character strengths. We sought to overcome these methodological challenges by applying exploratory structural equation modeling (ESEM) at the item level using a bifactor analytic approach to a large sample of 447,573 participants who completed the VIA-IS with all 240 character strengths items and a reduced set of 107 unidimensional character strength items. It was found that a 6-factor bifactor structure generally held for the reduced set of unidimensional character strength items; these dimensions were justice, temperance, courage, wisdom, transcendence, humanity, and an overarching general factor that is best described as dispositional positivity. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
The Rosenberg Self-Esteem Scale: a bifactor answer to a two-factor question?
McKay, Michael T; Boduszek, Daniel; Harvey, Séamus A
2014-01-01
Despite its long-standing and widespread use, disagreement remains regarding the structure of the Rosenberg Self-Esteem Scale (RSES). In particular, concern remains regarding the degree to which the scale assesses self-esteem as a unidimensional or multidimensional (positive and negative self-esteem) construct. Using a sample of 3,862 high school students in the United Kingdom, 4 models were tested: (a) a unidimensional model, (b) a correlated 2-factor model in which the 2 latent variables are represented by positive and negative self-esteem, (c) a hierarchical model, and (d) a bifactor model. The totality of results including item loadings, goodness-of-fit indexes, reliability estimates, and correlations with self-efficacy measures all supported the bifactor model, suggesting that the 2 hypothesized factors are better understood as "grouping" factors rather than as representative of latent constructs. Accordingly, this study supports the unidimensionality of the RSES and the scoring of all 10 items to produce a global self-esteem score.
Haberman, Shelby J; Sinharay, Sandip; Chon, Kyong Hee
2013-07-01
Residual analysis (e.g. Hambleton & Swaminathan, Item response theory: principles and applications, Kluwer Academic, Boston, 1985; Hambleton, Swaminathan, & Rogers, Fundamentals of item response theory, Sage, Newbury Park, 1991) is a popular method to assess fit of item response theory (IRT) models. We suggest a form of residual analysis that may be applied to assess item fit for unidimensional IRT models. The residual analysis consists of a comparison of the maximum-likelihood estimate of the item characteristic curve with an alternative ratio estimate of the item characteristic curve. The large sample distribution of the residual is proved to be standardized normal when the IRT model fits the data. We compare the performance of our suggested residual to the standardized residual of Hambleton et al. (Fundamentals of item response theory, Sage, Newbury Park, 1991) in a detailed simulation study. We then calculate our suggested residuals using data from an operational test. The residuals appear to be useful in assessing the item fit for unidimensional IRT models.
The use of the bi-factor model to test the uni-dimensionality of a battery of reasoning tests.
Primi, Ricardo; Rocha da Silva, Marjorie Cristina; Rodrigues, Priscila; Muniz, Monalisa; Almeida, Leandro S
2013-02-01
The Battery of Reasoning Tests 5 (BPR-5) aims to assess the reasoning ability of individuals, using sub-tests with different formats and contents that require basic processes of inductive and deductive reasoning for their resolution. The BPR has three sequential forms: BPR-5i (for children from first to fifth grade), BPR-5 - Form A (for children from sixth to eighth grade) and BPR-5 - form B (for high school and undergraduate students). The present study analysed 412 questionnaires concerning BPR-5i, 603 questionnaires concerning BPR-5 - Form A and 1748 questionnaires concerning BPR-5 - Form B. The main goal was to test the uni-dimensionality of the battery and its tests in relation to items using the bi-factor model. Results suggest that the g factor loadings (extracted by the uni-dimensional model) do not change when the data is adjusted for a more flexible multi-factor model (bi-factor model). A general reasoning factor underlying different contents items is supported.
NASA Astrophysics Data System (ADS)
Ding, Yu; Chung, Yiu-Cho; Raman, Subha V.; Simonetti, Orlando P.
2009-06-01
Real-time dynamic magnetic resonance imaging (MRI) typically sacrifices the signal-to-noise ratio (SNR) to achieve higher spatial and temporal resolution. Spatial and/or temporal filtering (e.g., low-pass filtering or averaging) of dynamic images improves the SNR at the expense of edge sharpness. We describe the application of a temporal filter for dynamic MR image series based on the Karhunen-Loeve transform (KLT) to remove random noise without blurring stationary or moving edges and requiring no training data. In this paper, we present several properties of this filter and their effects on filter performance, and propose an automatic way to find the filter cutoff based on the autocorrelation of the eigenimages. Numerical simulation and in vivo real-time cardiac cine MR image series spanning multiple cardiac cycles acquired using multi-channel sensitivity-encoded MRI, i.e., parallel imaging, are used to validate and demonstrate these properties. We found that in this application, the noise standard deviation was reduced to 42% of the original with no apparent image blurring by using the proposed filter cutoff. Greater noise reduction can be achieved by increasing the length of the image series. This advantage of KLT filtering provides flexibility in the form of another scan parameter to trade for SNR.
Kalman filter techniques for accelerated Cartesian dynamic cardiac imaging.
Feng, Xue; Salerno, Michael; Kramer, Christopher M; Meyer, Craig H
2013-05-01
In dynamic MRI, spatial and temporal parallel imaging can be exploited to reduce scan time. Real-time reconstruction enables immediate visualization during the scan. Commonly used view-sharing techniques suffer from limited temporal resolution, and many of the more advanced reconstruction methods are either retrospective, time-consuming, or both. A Kalman filter model capable of real-time reconstruction can be used to increase the spatial and temporal resolution in dynamic MRI reconstruction. The original study describing the use of the Kalman filter in dynamic MRI was limited to non-Cartesian trajectories because of a limitation intrinsic to the dynamic model used in that study. Here the limitation is overcome, and the model is applied to the more commonly used Cartesian trajectory with fast reconstruction. Furthermore, a combination of the Kalman filter model with Cartesian parallel imaging is presented to further increase the spatial and temporal resolution and signal-to-noise ratio. Simulations and experiments were conducted to demonstrate that the Kalman filter model can increase the temporal resolution of the image series compared with view-sharing techniques and decrease the spatial aliasing compared with TGRAPPA. The method requires relatively little computation, and thus is suitable for real-time reconstruction. Copyright © 2012 Wiley Periodicals, Inc.
Kalman Filter Techniques for Accelerated Cartesian Dynamic Cardiac Imaging
Feng, Xue; Salerno, Michael; Kramer, Christopher M.; Meyer, Craig H.
2012-01-01
In dynamic MRI, spatial and temporal parallel imaging can be exploited to reduce scan time. Real-time reconstruction enables immediate visualization during the scan. Commonly used view-sharing techniques suffer from limited temporal resolution, and many of the more advanced reconstruction methods are either retrospective, time-consuming, or both. A Kalman filter model capable of real-time reconstruction can be used to increase the spatial and temporal resolution in dynamic MRI reconstruction. The original study describing the use of the Kalman filter in dynamic MRI was limited to non-Cartesian trajectories, because of a limitation intrinsic to the dynamic model used in that study. Here the limitation is overcome and the model is applied to the more commonly used Cartesian trajectory with fast reconstruction. Furthermore, a combination of the Kalman filter model with Cartesian parallel imaging is presented to further increase the spatial and temporal resolution and SNR. Simulations and experiments were conducted to demonstrate that the Kalman filter model can increase the temporal resolution of the image series compared with view sharing techniques and decrease the spatial aliasing compared with TGRAPPA. The method requires relatively little computation, and thus is suitable for real-time reconstruction. PMID:22926804
Deterministic chaos in an ytterbium-doped mode-locked fiber laser
NASA Astrophysics Data System (ADS)
Mélo, Lucas B. A.; Palacios, Guillermo F. R.; Carelli, Pedro V.; Acioli, Lúcio H.; Rios Leite, José R.; de Miranda, Marcio H. G.
2018-05-01
We experimentally study the nonlinear dynamics of a femtosecond ytterbium doped mode-locked fiber laser. With the laser operating in the pulsed regime a route to chaos is presented, starting from stable mode-locking, period two, period four, chaos and period three regimes. Return maps and bifurcation diagrams were extracted from time series for each regime. The analysis of the time series with the laser operating in the quasi mode-locked regime presents deterministic chaos described by an unidimensional Rossler map. A positive Lyapunov exponent $\\lambda = 0.14$ confirms the deterministic chaos of the system. We suggest an explanation about the observed map by relating gain saturation and intra-cavity loss.
The Behavior of Filters and Smoothers for Strongly Nonlinear Dynamics
NASA Technical Reports Server (NTRS)
Zhu, Yanqiu; Cohn, Stephen E.; Todling, Ricardo
1999-01-01
The Kalman filter is the optimal filter in the presence of known Gaussian error statistics and linear dynamics. Filter extension to nonlinear dynamics is non trivial in the sense of appropriately representing high order moments of the statistics. Monte Carlo, ensemble-based, methods have been advocated as the methodology for representing high order moments without any questionable closure assumptions (e.g., Miller 1994). Investigation along these lines has been conducted for highly idealized dynamics such as the strongly nonlinear Lorenz (1963) model as well as more realistic models of the oceans (Evensen and van Leeuwen 1996) and atmosphere (Houtekamer and Mitchell 1998). A few relevant issues in this context are related to the necessary number of ensemble members to properly represent the error statistics and, the necessary modifications in the usual filter equations to allow for correct update of the ensemble members (Burgers 1998). The ensemble technique has also been applied to the problem of smoothing for which similar questions apply. Ensemble smoother examples, however, seem to quite puzzling in that results of state estimate are worse than for their filter analogue (Evensen 1997). In this study, we use concepts in probability theory to revisit the ensemble methodology for filtering and smoothing in data assimilation. We use Lorenz (1963) model to test and compare the behavior of a variety implementations of ensemble filters. We also implement ensemble smoothers that are able to perform better than their filter counterparts. A discussion of feasibility of these techniques to large data assimilation problems will be given at the time of the conference.
Method and system for training dynamic nonlinear adaptive filters which have embedded memory
NASA Technical Reports Server (NTRS)
Rabinowitz, Matthew (Inventor)
2002-01-01
Described herein is a method and system for training nonlinear adaptive filters (or neural networks) which have embedded memory. Such memory can arise in a multi-layer finite impulse response (FIR) architecture, or an infinite impulse response (IIR) architecture. We focus on filter architectures with separate linear dynamic components and static nonlinear components. Such filters can be structured so as to restrict their degrees of computational freedom based on a priori knowledge about the dynamic operation to be emulated. The method is detailed for an FIR architecture which consists of linear FIR filters together with nonlinear generalized single layer subnets. For the IIR case, we extend the methodology to a general nonlinear architecture which uses feedback. For these dynamic architectures, we describe how one can apply optimization techniques which make updates closer to the Newton direction than those of a steepest descent method, such as backpropagation. We detail a novel adaptive modified Gauss-Newton optimization technique, which uses an adaptive learning rate to determine both the magnitude and direction of update steps. For a wide range of adaptive filtering applications, the new training algorithm converges faster and to a smaller value of cost than both steepest-descent methods such as backpropagation-through-time, and standard quasi-Newton methods. We apply the algorithm to modeling the inverse of a nonlinear dynamic tracking system 5, as well as a nonlinear amplifier 6.
Navigation of a Satellite Cluster with Realistic Dynamics
1991-12-01
20 2.2.1 Dynamics ( Clohessy - Wiltshire Equations) ............ 21 2.2.2 Iterated, Extended Kalman Filter.................26 iv I1l...8 Figure 4. Point mass and Clohessy - Wiltshire orbits (10 orbits) .......... 16 Figure 5. Real dynamics and Clohessy - Wiltshire orbits (10...filter ..... 31 Figure 8. Comparison of the Clohessy - Wiltshire and truth model solutions
Analysis of Video-Based Microscopic Particle Trajectories Using Kalman Filtering
Wu, Pei-Hsun; Agarwal, Ashutosh; Hess, Henry; Khargonekar, Pramod P.; Tseng, Yiider
2010-01-01
Abstract The fidelity of the trajectories obtained from video-based particle tracking determines the success of a variety of biophysical techniques, including in situ single cell particle tracking and in vitro motility assays. However, the image acquisition process is complicated by system noise, which causes positioning error in the trajectories derived from image analysis. Here, we explore the possibility of reducing the positioning error by the application of a Kalman filter, a powerful algorithm to estimate the state of a linear dynamic system from noisy measurements. We show that the optimal Kalman filter parameters can be determined in an appropriate experimental setting, and that the Kalman filter can markedly reduce the positioning error while retaining the intrinsic fluctuations of the dynamic process. We believe the Kalman filter can potentially serve as a powerful tool to infer a trajectory of ultra-high fidelity from noisy images, revealing the details of dynamic cellular processes. PMID:20550894
Teeka, Chat; Jalil, Muhammad Arif; Yupapin, Preecha P; Ali, Jalil
2010-12-01
We propose a novel system of the dynamic optical tweezers generated by a dark soliton in the fiber optic loop. A dark soliton known as an optical tweezer is amplified and tuned within the microring resonator system. The required tunable tweezers with different widths and powers can be controlled. The analysis of dark-bright soliton conversion using a dark soliton pulse propagating within a microring resonator system is analyzed. The dynamic behaviors of soliton conversion in add/drop filter is also analyzed. The control dark soliton is input into the system via the add port of the add/drop filter. The dynamic behavior of the dark-bright soliton conversion is observed. The required stable signal is obtained via a drop and throughput ports of the add/drop filter with some suitable parameters. In application, the trapped light/atom and transportation can be realized by using the proposed system.
Explicit filtering in large eddy simulation using a discontinuous Galerkin method
NASA Astrophysics Data System (ADS)
Brazell, Matthew J.
The discontinuous Galerkin (DG) method is a formulation of the finite element method (FEM). DG provides the ability for a high order of accuracy in complex geometries, and allows for highly efficient parallelization algorithms. These attributes make the DG method attractive for solving the Navier-Stokes equations for large eddy simulation (LES). The main goal of this work is to investigate the feasibility of adopting an explicit filter in the numerical solution of the Navier-Stokes equations with DG. Explicit filtering has been shown to increase the numerical stability of under-resolved simulations and is needed for LES with dynamic sub-grid scale (SGS) models. The explicit filter takes advantage of DG's framework where the solution is approximated using a polyno- mial basis where the higher modes of the solution correspond to a higher order polynomial basis. By removing high order modes, the filtered solution contains low order frequency content much like an explicit low pass filter. The explicit filter implementation is tested on a simple 1-D solver with an initial condi- tion that has some similarity to turbulent flows. The explicit filter does restrict the resolution as well as remove accumulated energy in the higher modes from aliasing. However, the ex- plicit filter is unable to remove numerical errors causing numerical dissipation. A second test case solves the 3-D Navier-Stokes equations of the Taylor-Green vortex flow (TGV). The TGV is useful for SGS model testing because it is initially laminar and transitions into a fully turbulent flow. The SGS models investigated include the constant coefficient Smagorinsky model, dynamic Smagorinsky model, and dynamic Heinz model. The constant coefficient Smagorinsky model is over dissipative, this is generally not desirable however it does add stability. The dynamic Smagorinsky model generally performs better, especially during the laminar-turbulent transition region as expected. The dynamic Heinz model which is based on an improved model, handles the laminar-turbulent transition region well while also showing additional robustness.
NASA Technical Reports Server (NTRS)
Broussard, John R.
1987-01-01
Relationships between observers, Kalman Filters and dynamic compensators using feedforward control theory are investigated. In particular, the relationship, if any, between the dynamic compensator state and linear functions of a discrete plane state are investigated. It is shown that, in steady state, a dynamic compensator driven by the plant output can be expressed as the sum of two terms. The first term is a linear combination of the plant state. The second term depends on plant and measurement noise, and the plant control. Thus, the state of the dynamic compensator can be expressed as an estimator of the first term with additive error given by the second term. Conditions under which a dynamic compensator is a Kalman filter are presented, and reduced-order optimal estimaters are investigated.
Implementing a Bayes Filter in a Neural Circuit: The Case of Unknown Stimulus Dynamics.
Sokoloski, Sacha
2017-09-01
In order to interact intelligently with objects in the world, animals must first transform neural population responses into estimates of the dynamic, unknown stimuli that caused them. The Bayesian solution to this problem is known as a Bayes filter, which applies Bayes' rule to combine population responses with the predictions of an internal model. The internal model of the Bayes filter is based on the true stimulus dynamics, and in this note, we present a method for training a theoretical neural circuit to approximately implement a Bayes filter when the stimulus dynamics are unknown. To do this we use the inferential properties of linear probabilistic population codes to compute Bayes' rule and train a neural network to compute approximate predictions by the method of maximum likelihood. In particular, we perform stochastic gradient descent on the negative log-likelihood of the neural network parameters with a novel approximation of the gradient. We demonstrate our methods on a finite-state, a linear, and a nonlinear filtering problem and show how the hidden layer of the neural network develops tuning curves consistent with findings in experimental neuroscience.
NASA Technical Reports Server (NTRS)
Lisano, Michael E.
2007-01-01
Recent literature in applied estimation theory reflects growing interest in the sigma-point (also called unscented ) formulation for optimal sequential state estimation, often describing performance comparisons with extended Kalman filters as applied to specific dynamical problems [c.f. 1, 2, 3]. Favorable attributes of sigma-point filters are described as including a lower expected error for nonlinear even non-differentiable dynamical systems, and a straightforward formulation not requiring derivation or implementation of any partial derivative Jacobian matrices. These attributes are particularly attractive, e.g. in terms of enabling simplified code architecture and streamlined testing, in the formulation of estimators for nonlinear spaceflight mechanics systems, such as filter software onboard deep-space robotic spacecraft. As presented in [4], the Sigma-Point Consider Filter (SPCF) algorithm extends the sigma-point filter algorithm to the problem of consider covariance analysis. Considering parameters in a dynamical system, while estimating its state, provides an upper bound on the estimated state covariance, which is viewed as a conservative approach to designing estimators for problems of general guidance, navigation and control. This is because, whether a parameter in the system model is observable or not, error in the knowledge of the value of a non-estimated parameter will increase the actual uncertainty of the estimated state of the system beyond the level formally indicated by the covariance of an estimator that neglects errors or uncertainty in that parameter. The equations for SPCF covariance evolution are obtained in a fashion similar to the derivation approach taken with standard (i.e. linearized or extended) consider parameterized Kalman filters (c.f. [5]). While in [4] the SPCF and linear-theory consider filter (LTCF) were applied to an illustrative linear dynamics/linear measurement problem, in the present work examines the SPCF as applied to nonlinear sequential consider covariance analysis, i.e. in the presence of nonlinear dynamics and nonlinear measurements. A simple SPCF for orbit determination, exemplifying an algorithm hosted in the guidance, navigation and control (GN&C) computer processor of a hypothetical robotic spacecraft, was implemented, and compared with an identically-parameterized (standard) extended, consider-parameterized Kalman filter. The onboard filtering scenario examined is a hypothetical spacecraft orbit about a small natural body with imperfectly-known mass. The formulations, relative complexities, and performances of the filters are compared and discussed.
Classifying EEG for Brain-Computer Interface: Learning Optimal Filters for Dynamical System Features
Song, Le; Epps, Julien
2007-01-01
Classification of multichannel EEG recordings during motor imagination has been exploited successfully for brain-computer interfaces (BCI). In this paper, we consider EEG signals as the outputs of a networked dynamical system (the cortex), and exploit synchronization features from the dynamical system for classification. Herein, we also propose a new framework for learning optimal filters automatically from the data, by employing a Fisher ratio criterion. Experimental evaluations comparing the proposed dynamical system features with the CSP and the AR features reveal their competitive performance during classification. Results also show the benefits of employing the spatial and the temporal filters optimized using the proposed learning approach. PMID:18364986
Spacecraft Dynamics Should be Considered in Kalman Filter Attitude Estimation
NASA Technical Reports Server (NTRS)
Yang, Yaguang; Zhou, Zhiqiang
2016-01-01
Kalman filter based spacecraft attitude estimation has been used in some high-profile missions and has been widely discussed in literature. While some models in spacecraft attitude estimation include spacecraft dynamics, most do not. To our best knowledge, there is no comparison on which model is a better choice. In this paper, we discuss the reasons why spacecraft dynamics should be considered in the Kalman filter based spacecraft attitude estimation problem. We also propose a reduced quaternion spacecraft dynamics model which admits additive noise. Geometry of the reduced quaternion model and the additive noise are discussed. This treatment is more elegant in mathematics and easier in computation. We use some simulation example to verify our claims.
Position Estimation for Projectiles Using Low-cost Sensors and Flight Dynamics
2012-04-01
GPS/INS Loose-coupling Parameter Estimation ............................................................6 2.6 Extended Kalman Filter ...environment using low-cost measurement devices and projectile flight dynamics. An extended Kalman filter (EKF) was developed to blend accelerometer...kGPSIbias B GPSIkGPSIbias B GPSIGPSIbias B aρaρa ,,1,,, 1 (15) 7 2.6 Extended Kalman Filter A sequential EKF was used to combine
Rigatos, Gerasimos G; Rigatou, Efthymia G; Djida, Jean Daniel
2015-10-01
A method for early diagnosis of parametric changes in intracellular protein synthesis models (e.g. the p53 protein - mdm2 inhibitor model) is developed with the use of a nonlinear Kalman Filtering approach (Derivative-free nonlinear Kalman Filter) and of statistical change detection methods. The intracellular protein synthesis dynamic model is described by a set of coupled nonlinear differential equations. It is shown that such a dynamical system satisfies differential flatness properties and this allows to transform it, through a change of variables (diffeomorphism), to the so-called linear canonical form. For the linearized equivalent of the dynamical system, state estimation can be performed using the Kalman Filter recursion. Moreover, by applying an inverse transformation based on the previous diffeomorphism it becomes also possible to obtain estimates of the state variables of the initial nonlinear model. By comparing the output of the Kalman Filter (which is assumed to correspond to the undistorted dynamical model) with measurements obtained from the monitored protein synthesis system, a sequence of differences (residuals) is obtained. The statistical processing of the residuals with the use of x2 change detection tests, can provide indication within specific confidence intervals about parametric changes in the considered biological system and consequently indications about the appearance of specific diseases (e.g. malignancies).
Mills, Sarah D; Fox, Rina S; Malcarne, Vanessa L; Roesch, Scott C; Champagne, Brian R; Sadler, Georgia Robins
2014-07-01
The Generalized Anxiety Disorder-7 scale (GAD-7) is a self-report questionnaire that is widely used to screen for anxiety. The GAD-7 has been translated into numerous languages, including Spanish. Previous studies evaluating the structural validity of the English and Spanish versions indicate a unidimensional factor structure in both languages. However, the psychometric properties of the Spanish language version have yet to be evaluated in samples outside of Spain, and the measure has not been tested for use among Hispanic Americans. This study evaluated the reliability, structural validity, and convergent validity of the English and Spanish language versions of the GAD-7 for Hispanic Americans in the United States. A community sample of 436 Hispanic Americans with an English (n = 210) or Spanish (n = 226) language preference completed the GAD-7. Multiple-group confirmatory factor analysis (CFA) was used to examine the goodness-of-fit of the unidimensional factor structure of the GAD-7 across language-preference groups. Results from the multiple-group CFA indicated a similar unidimensional factor structure with equivalent response patterns and item intercepts, but different variances, across language-preference groups. Internal consistency was good for both English and Spanish language-preference groups. The GAD-7 also evidenced good convergent validity as demonstrated by significant correlations in expected directions with the Perceived Stress Scale, the Patient Health Questionnaire-9, and the Physical Health domain of the World Health Organization Quality of Life-BREF assessment. The unidimensional GAD-7 is suitable for use among Hispanic Americans with an English or Spanish language preference.
Satellite Angular Rate Estimation From Vector Measurements
NASA Technical Reports Server (NTRS)
Azor, Ruth; Bar-Itzhack, Itzhack Y.; Harman, Richard R.
1996-01-01
This paper presents an algorithm for estimating the angular rate vector of a satellite which is based on the time derivatives of vector measurements expressed in a reference and body coordinate. The computed derivatives are fed into a spacial Kalman filter which yields an estimate of the spacecraft angular velocity. The filter, named Extended Interlaced Kalman Filter (EIKF), is an extension of the Kalman filter which, although being linear, estimates the state of a nonlinear dynamic system. It consists of two or three parallel Kalman filters whose individual estimates are fed to one another and are considered as known inputs by the other parallel filter(s). The nonlinear dynamics stem from the nonlinear differential equation that describes the rotation of a three dimensional body. Initial results, using simulated data, and real Rossi X ray Timing Explorer (RXTE) data indicate that the algorithm is efficient and robust.
Polarization-tuned Dynamic Color Filters Incorporating a Dielectric-loaded Aluminum Nanowire Array
Raj Shrestha, Vivek; Lee, Sang-Shin; Kim, Eun-Soo; Choi, Duk-Yong
2015-01-01
Nanostructured spectral filters enabling dynamic color-tuning are saliently attractive for implementing ultra-compact color displays and imaging devices. Realization of polarization-induced dynamic color-tuning via one-dimensional periodic nanostructures is highly challenging due to the absence of plasmonic resonances for transverse-electric polarization. Here we demonstrate highly efficient dynamic subtractive color filters incorporating a dielectric-loaded aluminum nanowire array, providing a continuum of customized color according to the incident polarization. Dynamic color filtering was realized relying on selective suppression in transmission spectra via plasmonic resonance at a metal-dielectric interface and guided-mode resonance for a metal-clad dielectric waveguide, each occurring at their characteristic wavelengths for transverse-magnetic and electric polarizations, respectively. A broad palette of colors, including cyan, magenta, and yellow, has been attained with high transmission beyond 80%, by tailoring the period of the nanowire array and the incident polarization. Thanks to low cost, high durability, and mass producibility of the aluminum adopted for the proposed devices, they are anticipated to be diversely applied to color displays, holographic imaging, information encoding, and anti-counterfeiting. PMID:26211625
NASA Astrophysics Data System (ADS)
Boz, Utku; Basdogan, Ipek
2015-12-01
Structural vibrations is a major cause for noise problems, discomfort and mechanical failures in aerospace, automotive and marine systems, which are mainly composed of plate-like structures. In order to reduce structural vibrations on these structures, active vibration control (AVC) is an effective approach. Adaptive filtering methodologies are preferred in AVC due to their ability to adjust themselves for varying dynamics of the structure during the operation. The filtered-X LMS (FXLMS) algorithm is a simple adaptive filtering algorithm widely implemented in active control applications. Proper implementation of FXLMS requires availability of a reference signal to mimic the disturbance and model of the dynamics between the control actuator and the error sensor, namely the secondary path. However, the controller output could interfere with the reference signal and the secondary path dynamics may change during the operation. This interference problem can be resolved by using an infinite impulse response (IIR) filter which considers feedback of the one or more previous control signals to the controller output and the changing secondary path dynamics can be updated using an online modeling technique. In this paper, IIR filtering based filtered-U LMS (FULMS) controller is combined with online secondary path modeling algorithm to suppress the vibrations of a plate-like structure. The results are validated through numerical and experimental studies. The results show that the FULMS with online secondary path modeling approach has more vibration rejection capabilities with higher convergence rate than the FXLMS counterpart.
Dynamics of nonlinear feedback control.
Snippe, H P; van Hateren, J H
2007-05-01
Feedback control in neural systems is ubiquitous. Here we study the mathematics of nonlinear feedback control. We compare models in which the input is multiplied by a dynamic gain (multiplicative control) with models in which the input is divided by a dynamic attenuation (divisive control). The gain signal (resp. the attenuation signal) is obtained through a concatenation of an instantaneous nonlinearity and a linear low-pass filter operating on the output of the feedback loop. For input steps, the dynamics of gain and attenuation can be very different, depending on the mathematical form of the nonlinearity and the ordering of the nonlinearity and the filtering in the feedback loop. Further, the dynamics of feedback control can be strongly asymmetrical for increment versus decrement steps of the input. Nevertheless, for each of the models studied, the nonlinearity in the feedback loop can be chosen such that immediately after an input step, the dynamics of feedback control is symmetric with respect to increments versus decrements. Finally, we study the dynamics of the output of the control loops and find conditions under which overshoots and undershoots of the output relative to the steady-state output occur when the models are stimulated with low-pass filtered steps. For small steps at the input, overshoots and undershoots of the output do not occur when the filtering in the control path is faster than the low-pass filtering at the input. For large steps at the input, however, results depend on the model, and for some of the models, multiple overshoots and undershoots can occur even with a fast control path.
Dynamics of the EAG1 K+ channel selectivity filter assessed by molecular dynamics simulations.
Bernsteiner, Harald; Bründl, Michael; Stary-Weinzinger, Anna
2017-02-26
EAG1 channels belong to the KCNH family of voltage gated potassium channels. They are expressed in several brain regions and increased expression is linked to certain cancer types. Recent cryo-EM structure determination finally revealed the structure of these channels in atomic detail, allowing computational investigations. In this study, we performed molecular dynamics simulations to investigate the ion binding sites and the dynamical behavior of the selectivity filter. Our simulations suggest that sites S2 and S4 form stable ion binding sites, while ions placed at sites S1 and S3 rapidly switched to sites S2 and S4. Further, ions tended to dissociate away from S0 within less than 20 ns, due to increased filter flexibility. This was followed by water influx from the extracellular side, leading to a widening of the filter in this region, and likely non-conductive filter configurations. Simulations with the inactivation-enhancing mutant Y464A or Na + ions lead to trapped water molecules behind the SF, suggesting that these simulations captured early conformational changes linked to C-type inactivation. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Low temperature properties of spin filter NbN/GdN/NbN Josephson junctions
NASA Astrophysics Data System (ADS)
Massarotti, D.; Caruso, R.; Pal, A.; Rotoli, G.; Longobardi, L.; Pepe, G. P.; Blamire, M. G.; Tafuri, F.
2017-02-01
A ferromagnetic Josephson junction (JJ) represents a special class of hybrid system where different ordered phases meet and generate novel physics. In this work we report on the transport measurements of underdamped ferromagnetic NbN/GdN/NbN JJs at low temperatures. In these junctions the ferromagnetic insulator gadolinium nitride barrier generates spin-filtering properties and a dominant second harmonic component in the current-phase relation. These features make spin filter junctions quite interesting also in terms of fundamental studies on phase dynamics and dissipation. We discuss the fingerprints of spin filter JJs, through complementary transport measurements, and their implications on the phase dynamics, through standard measurements of switching current distributions. NbN/GdN/NbN JJs, where spin filter properties can be controllably tuned along with the critical current density (Jc), turn to be a very relevant term of reference to understand phase dynamics and dissipation in an enlarged class of JJs, not necessarily falling in the standard tunnel limit characterized by low Jc values.
Dynamic spin filtering at the Co/Alq3 interface mediated by weakly coupled second layer molecules.
Droghetti, Andrea; Thielen, Philip; Rungger, Ivan; Haag, Norman; Großmann, Nicolas; Stöckl, Johannes; Stadtmüller, Benjamin; Aeschlimann, Martin; Sanvito, Stefano; Cinchetti, Mirko
2016-08-31
Spin filtering at organic-metal interfaces is often determined by the details of the interaction between the organic molecules and the inorganic magnets used as electrodes. Here we demonstrate a spin-filtering mechanism based on the dynamical spin relaxation of the long-living interface states formed by the magnet and weakly physisorbed molecules. We investigate the case of Alq3 on Co and, by combining two-photon photoemission experiments with electronic structure theory, show that the observed long-time spin-dependent electron dynamics is driven by molecules in the second organic layer. The interface states formed by physisorbed molecules are not spin-split, but acquire a spin-dependent lifetime, that is the result of dynamical spin-relaxation driven by the interaction with the Co substrate. Such spin-filtering mechanism has an important role in the injection of spin-polarized carriers across the interface and their successive hopping diffusion into successive molecular layers of molecular spintronics devices.
Dynamic spin filtering at the Co/Alq3 interface mediated by weakly coupled second layer molecules
Droghetti, Andrea; Thielen, Philip; Rungger, Ivan; Haag, Norman; Großmann, Nicolas; Stöckl, Johannes; Stadtmüller, Benjamin; Aeschlimann, Martin; Sanvito, Stefano; Cinchetti, Mirko
2016-01-01
Spin filtering at organic-metal interfaces is often determined by the details of the interaction between the organic molecules and the inorganic magnets used as electrodes. Here we demonstrate a spin-filtering mechanism based on the dynamical spin relaxation of the long-living interface states formed by the magnet and weakly physisorbed molecules. We investigate the case of Alq3 on Co and, by combining two-photon photoemission experiments with electronic structure theory, show that the observed long-time spin-dependent electron dynamics is driven by molecules in the second organic layer. The interface states formed by physisorbed molecules are not spin-split, but acquire a spin-dependent lifetime, that is the result of dynamical spin-relaxation driven by the interaction with the Co substrate. Such spin-filtering mechanism has an important role in the injection of spin-polarized carriers across the interface and their successive hopping diffusion into successive molecular layers of molecular spintronics devices. PMID:27578395
Dynamic spin filtering at the Co/Alq3 interface mediated by weakly coupled second layer molecules
NASA Astrophysics Data System (ADS)
Droghetti, Andrea; Thielen, Philip; Rungger, Ivan; Haag, Norman; Großmann, Nicolas; Stöckl, Johannes; Stadtmüller, Benjamin; Aeschlimann, Martin; Sanvito, Stefano; Cinchetti, Mirko
2016-08-01
Spin filtering at organic-metal interfaces is often determined by the details of the interaction between the organic molecules and the inorganic magnets used as electrodes. Here we demonstrate a spin-filtering mechanism based on the dynamical spin relaxation of the long-living interface states formed by the magnet and weakly physisorbed molecules. We investigate the case of Alq3 on Co and, by combining two-photon photoemission experiments with electronic structure theory, show that the observed long-time spin-dependent electron dynamics is driven by molecules in the second organic layer. The interface states formed by physisorbed molecules are not spin-split, but acquire a spin-dependent lifetime, that is the result of dynamical spin-relaxation driven by the interaction with the Co substrate. Such spin-filtering mechanism has an important role in the injection of spin-polarized carriers across the interface and their successive hopping diffusion into successive molecular layers of molecular spintronics devices.
Shaper-Based Filters for the compensation of the load cell response in dynamic mass measurement
NASA Astrophysics Data System (ADS)
Richiedei, Dario; Trevisani, Alberto
2018-01-01
This paper proposes a novel model-based signal filtering technique for dynamic mass measurement through load cells. Load cells are sensors with an underdamped oscillatory response which usually imposes a long settling time. Real-time filtering is therefore necessary to compensate for such a dynamics and to quickly retrieve the mass of the measurand (which is the steady state value of the load cell response) before the measured signal actually settles. This problem has a big impact on the throughput of industrial weighing machines. In this paper a novel solution to this problem is developed: a model-based filtering technique is proposed to ensure accurate, robust and rapid estimation of the mass of the measurand. The digital filters proposed are referred to as Shaper-Based Filters (SBFs) and are based on the convolution of the load cell output signal with a sequence of few impulses (typically, between 2 and 5). The amplitudes and the instants of application of such impulses are computed through the analytical development of the load cell step response, by imposing the admissible residual oscillation in the steady-state filtered signal and by requiring the desired sensitivity of the filter. The inclusion of robustness specifications tackles effectively the unavoidable uncertainty and variability in the load cell frequency and damping. The effectiveness of the proposed filters is proved experimentally through an industrial set up: the load-cell-instrumented weigh bucket of a multihead weighing machine for packaging. A performance comparison with other benchmark filters is provided and discussed too.
High-dynamic-range scene compression in humans
NASA Astrophysics Data System (ADS)
McCann, John J.
2006-02-01
Single pixel dynamic-range compression alters a particular input value to a unique output value - a look-up table. It is used in chemical and most digital photographic systems having S-shaped transforms to render high-range scenes onto low-range media. Post-receptor neural processing is spatial, as shown by the physiological experiments of Dowling, Barlow, Kuffler, and Hubel & Wiesel. Human vision does not render a particular receptor-quanta catch as a unique response. Instead, because of spatial processing, the response to a particular quanta catch can be any color. Visual response is scene dependent. Stockham proposed an approach to model human range compression using low-spatial frequency filters. Campbell, Ginsberg, Wilson, Watson, Daly and many others have developed spatial-frequency channel models. This paper describes experiments measuring the properties of desirable spatial-frequency filters for a variety of scenes. Given the radiances of each pixel in the scene and the observed appearances of objects in the image, one can calculate the visual mask for that individual image. Here, visual mask is the spatial pattern of changes made by the visual system in processing the input image. It is the spatial signature of human vision. Low-dynamic range images with many white areas need no spatial filtering. High-dynamic-range images with many blacks, or deep shadows, require strong spatial filtering. Sun on the right and shade on the left requires directional filters. These experiments show that variable scene- scenedependent filters are necessary to mimic human vision. Although spatial-frequency filters can model human dependent appearances, the problem still remains that an analysis of the scene is still needed to calculate the scene-dependent strengths of each of the filters for each frequency.
Chaos without nonlinear dynamics.
Corron, Ned J; Hayes, Scott T; Pethel, Shawn D; Blakely, Jonathan N
2006-07-14
A linear, second-order filter driven by randomly polarized pulses is shown to generate a waveform that is chaotic under time reversal. That is, the filter output exhibits determinism and a positive Lyapunov exponent when viewed backward in time. The filter is demonstrated experimentally using a passive electronic circuit, and the resulting waveform exhibits a Lorenz-like butterfly structure. This phenomenon suggests that chaos may be connected to physical theories whose underlying framework is not that of a traditional deterministic nonlinear dynamical system.
Testing particle filters on convective scale dynamics
NASA Astrophysics Data System (ADS)
Haslehner, Mylene; Craig, George. C.; Janjic, Tijana
2014-05-01
Particle filters have been developed in recent years to deal with highly nonlinear dynamics and non Gaussian error statistics that also characterize data assimilation on convective scales. In this work we explore the use of the efficient particle filter (P.v. Leeuwen, 2011) for convective scale data assimilation application. The method is tested in idealized setting, on two stochastic models. The models were designed to reproduce some of the properties of convection, for example the rapid development and decay of convective clouds. The first model is a simple one-dimensional, discrete state birth-death model of clouds (Craig and Würsch, 2012). For this model, the efficient particle filter that includes nudging the variables shows significant improvement compared to Ensemble Kalman Filter and Sequential Importance Resampling (SIR) particle filter. The success of the combination of nudging and resampling, measured as RMS error with respect to the 'true state', is proportional to the nudging intensity. Significantly, even a very weak nudging intensity brings notable improvement over SIR. The second model is a modified version of a stochastic shallow water model (Würsch and Craig 2013), which contains more realistic dynamical characteristics of convective scale phenomena. Using the efficient particle filter and different combination of observations of the three field variables (wind, water 'height' and rain) allows the particle filter to be evaluated in comparison to a regime where only nudging is used. Sensitivity to the properties of the model error covariance is also considered. Finally, criteria are identified under which the efficient particle filter outperforms nudging alone. References: Craig, G. C. and M. Würsch, 2012: The impact of localization and observation averaging for convective-scale data assimilation in a simple stochastic model. Q. J. R. Meteorol. Soc.,139, 515-523. Van Leeuwen, P. J., 2011: Efficient non-linear data assimilation in geophysical fluid dynamics. - Computers and Fluids, doi:10,1016/j.compfluid.2010.11.011, 1096 2011. Würsch, M. and G. C. Craig, 2013: A simple dynamical model of cumulus convection for data assimilation research, submitted to Met. Zeitschrift.
Tail dependence and information flow: Evidence from international equity markets
NASA Astrophysics Data System (ADS)
Al Rahahleh, Naseem; Bhatti, M. Ishaq; Adeinat, Iman
2017-05-01
Bhatti and Nguyen (2012) used the copula approach to measure the tail dependence between a number of international markets. They observed that some country pairs exhibit only left-tail dependence whereas others show only right-tail. However, the flow of information from uni-dimensional (one-tail) to bi-dimensional (two-tails) between various markets was not accounted for. In this study, we address the flow of information of this nature by using the dynamic conditional correlation (DCC-GARCH) model. More specifically, we use various versions of the DCC models to explain the nexus between the information flow of international equity and to explain the stochastic forward vs. backward dynamics of financial markets based on data for a 15-year period comprising 3,782 observations. We observed that the information flow between the US and Hong Kong markets and between the US and Australian markets are bi-directional. We also observed that the DCC model captures a wider co-movement structure and inter-connectedness compared to the symmetric Joe-Clayton copula.
A nonlinear Kalman filtering approach to embedded control of turbocharged diesel engines
NASA Astrophysics Data System (ADS)
Rigatos, Gerasimos; Siano, Pierluigi; Arsie, Ivan
2014-10-01
The development of efficient embedded control for turbocharged Diesel engines, requires the programming of elaborated nonlinear control and filtering methods. To this end, in this paper nonlinear control for turbocharged Diesel engines is developed with the use of Differential flatness theory and the Derivative-free nonlinear Kalman Filter. It is shown that the dynamic model of the turbocharged Diesel engine is differentially flat and admits dynamic feedback linearization. It is also shown that the dynamic model can be written in the linear Brunovsky canonical form for which a state feedback controller can be easily designed. To compensate for modeling errors and external disturbances the Derivative-free nonlinear Kalman Filter is used and redesigned as a disturbance observer. The filter consists of the Kalman Filter recursion on the linearized equivalent of the Diesel engine model and of an inverse transformation based on differential flatness theory which enables to obtain estimates for the state variables of the initial nonlinear model. Once the disturbances variables are identified it is possible to compensate them by including an additional control term in the feedback loop. The efficiency of the proposed control method is tested through simulation experiments.
Ballard, Elizabeth D; Yarrington, Julia S; Farmer, Cristan A; Lener, Marc S; Kadriu, Bashkim; Lally, Níall; Williams, Deonte; Machado-Vieira, Rodrigo; Niciu, Mark J; Park, Lawrence; Zarate, Carlos A
2018-04-15
Due to the heterogeneity of depressive symptoms-which can include depressed mood, anhedonia, negative cognitive biases, and altered activity levels-researchers often use a combination of depression rating scales to assess symptoms. This study sought to identify unidimensional constructs measured across rating scales for depression and to evaluate these constructs across clinical trials of a rapid-acting antidepressant (ketamine). Exploratory factor analysis (EFA) was conducted on baseline ratings from the Beck Depression Inventory (BDI), the Hamilton Depression Rating Scale (HAM-D), the Montgomery-Asberg Depression Rating Scale (MADRS), and the Snaith-Hamilton Pleasure Rating Scale (SHAPS). Inpatients with major depressive disorder (n = 76) or bipolar depression (n = 43) were participating in clinical ketamine trials. The trajectories of the resulting unidimensional scores were evaluated in 41 subjects with bipolar depression who participated in clinical ketamine trials. The best solution, which exhibited excellent fit to the data, comprised eight factors: Depressed Mood, Tension, Negative Cognition, Impaired Sleep, Suicidal Thoughts, Reduced Appetite, Anhedonia, and Amotivation. Various response patterns were observed across the clinical trial data, both in treatment effect (ketamine versus placebo) and in degree of placebo response, suggesting that use of these unidimensional constructs may reveal patterns not observed with traditional scoring of individual instruments. Limitations include: 1) small sample (and related inability to confirm measurement invariance); 2) absence of an independent sample for confirmation of factor structure; and 3) the treatment-resistant nature of the population, which may limit generalizability. The empirical identification of unidimensional constructs creates more refined scores that may elucidate the connection between specific symptoms and underlying pathophysiology. Published by Elsevier B.V.
Mills, Sarah D.; Fox, Rina S.; Malcarne, Vanessa L.; Roesch, Scott C.; Champagne, Brian R.; Sadler, Georgia Robins
2014-01-01
The Generalized Anxiety Disorder-7 scale (GAD-7) is a self-report questionnaire that is widely used to screen for anxiety. The GAD-7 has been translated into numerous languages, including Spanish. Previous studies evaluating the structural validity of the English and Spanish versions indicate a uni-dimensional factor structure in both languages. However, the psychometric properties of the Spanish language version have yet to be evaluated in samples outside of Spain, and the measure has not been tested for use among Hispanic Americans. This study evaluated the reliability, structural validity, and convergent validity of the English and Spanish language versions of the GAD-7 for Hispanic Americans in the United States. A community sample of 436 Hispanic Americans with an English (n = 210) or Spanish (n = 226) language preference completed the GAD-7. Multiple-group confirmatory factor analysis (CFA) was used to examine the goodness of fit of the uni-dimensional factor structure of the GAD-7 across language-preference groups. Results from the multiple-group CFA indicated a similar unidimensional factor structure with equivalent response patterns and item intercepts, but different variances, across language-preference groups. Internal consistency was good for both English and Spanish language-preference groups. The GAD-7 also evidenced good convergent validity as demonstrated by significant correlations in expected directions with the Perceived Stress Scale, the Patient Health Questionnaire-9, and the Physical health domain of the World Health Organization Quality of Life-BREF assessment. The uni-dimensional GAD-7 is suitable for use among Hispanic Americans with an English or Spanish language preference. PMID:25045957
The discrete-time compensated Kalman filter
NASA Technical Reports Server (NTRS)
Lee, W. H.; Athans, M.
1978-01-01
A suboptimal dynamic compensator to be used in conjunction with the ordinary discrete time Kalman filter was derived. The resultant compensated Kalman Filter has the property that steady state bias estimation errors, resulting from modelling errors, were eliminated.
A general transfer-function approach to noise filtering in open-loop quantum control
NASA Astrophysics Data System (ADS)
Viola, Lorenza
2015-03-01
Hamiltonian engineering via unitary open-loop quantum control provides a versatile and experimentally validated framework for manipulating a broad class of non-Markovian open quantum systems of interest, with applications ranging from dynamical decoupling and dynamically corrected quantum gates, to noise spectroscopy and quantum simulation. In this context, transfer-function techniques directly motivated by control engineering have proved invaluable for obtaining a transparent picture of the controlled dynamics in the frequency domain and for quantitatively analyzing performance. In this talk, I will show how to identify a computationally tractable set of ``fundamental filter functions,'' out of which arbitrary filter functions may be assembled up to arbitrary high order in principle. Besides avoiding the infinite recursive hierarchy of filter functions that arises in general control scenarios, this fundamental set suffices to characterize the error suppression capabilities of the control protocol in both the time and frequency domain. I will show, in particular, how the resulting notion of ``filtering order'' reveals conceptually distinct, albeit complementary, features of the controlled dynamics as compared to the ``cancellation order,'' traditionally defined in the Magnus sense. Implications for current quantum control experiments will be discussed. Work supported by the U.S. Army Research Office under Contract No. W911NF-14-1-0682.
Principal Component Analysis in the Spectral Analysis of the Dynamic Laser Speckle Patterns
NASA Astrophysics Data System (ADS)
Ribeiro, K. M.; Braga, R. A., Jr.; Horgan, G. W.; Ferreira, D. D.; Safadi, T.
2014-02-01
Dynamic laser speckle is a phenomenon that interprets an optical patterns formed by illuminating a surface under changes with coherent light. Therefore, the dynamic change of the speckle patterns caused by biological material is known as biospeckle. Usually, these patterns of optical interference evolving in time are analyzed by graphical or numerical methods, and the analysis in frequency domain has also been an option, however involving large computational requirements which demands new approaches to filter the images in time. Principal component analysis (PCA) works with the statistical decorrelation of data and it can be used as a data filtering. In this context, the present work evaluated the PCA technique to filter in time the data from the biospeckle images aiming the reduction of time computer consuming and improving the robustness of the filtering. It was used 64 images of biospeckle in time observed in a maize seed. The images were arranged in a data matrix and statistically uncorrelated by PCA technique, and the reconstructed signals were analyzed using the routine graphical and numerical methods to analyze the biospeckle. Results showed the potential of the PCA tool in filtering the dynamic laser speckle data, with the definition of markers of principal components related to the biological phenomena and with the advantage of fast computational processing.
Generic Kalman Filter Software
NASA Technical Reports Server (NTRS)
Lisano, Michael E., II; Crues, Edwin Z.
2005-01-01
The Generic Kalman Filter (GKF) software provides a standard basis for the development of application-specific Kalman-filter programs. Historically, Kalman filters have been implemented by customized programs that must be written, coded, and debugged anew for each unique application, then tested and tuned with simulated or actual measurement data. Total development times for typical Kalman-filter application programs have ranged from months to weeks. The GKF software can simplify the development process and reduce the development time by eliminating the need to re-create the fundamental implementation of the Kalman filter for each new application. The GKF software is written in the ANSI C programming language. It contains a generic Kalman-filter-development directory that, in turn, contains a code for a generic Kalman filter function; more specifically, it contains a generically designed and generically coded implementation of linear, linearized, and extended Kalman filtering algorithms, including algorithms for state- and covariance-update and -propagation functions. The mathematical theory that underlies the algorithms is well known and has been reported extensively in the open technical literature. Also contained in the directory are a header file that defines generic Kalman-filter data structures and prototype functions and template versions of application-specific subfunction and calling navigation/estimation routine code and headers. Once the user has provided a calling routine and the required application-specific subfunctions, the application-specific Kalman-filter software can be compiled and executed immediately. During execution, the generic Kalman-filter function is called from a higher-level navigation or estimation routine that preprocesses measurement data and post-processes output data. The generic Kalman-filter function uses the aforementioned data structures and five implementation- specific subfunctions, which have been developed by the user on the basis of the aforementioned templates. The GKF software can be used to develop many different types of unfactorized Kalman filters. A developer can choose to implement either a linearized or an extended Kalman filter algorithm, without having to modify the GKF software. Control dynamics can be taken into account or neglected in the filter-dynamics model. Filter programs developed by use of the GKF software can be made to propagate equations of motion for linear or nonlinear dynamical systems that are deterministic or stochastic. In addition, filter programs can be made to operate in user-selectable "covariance analysis" and "propagation-only" modes that are useful in design and development stages.
NASA Astrophysics Data System (ADS)
Zhang, Baocheng; Liu, Teng; Yuan, Yunbin
2017-11-01
The integer ambiguity resolution enabled precise point positioning (PPP-RTK) has been proven advantageous in a wide range of applications. The realization of PPP-RTK concerns the isolation of satellite phase biases (SPBs) and other corrections from a network of Global Positioning System (GPS) reference receivers. This is generally based on Kalman filter in order to achieve real-time capability, in which proper modeling of the dynamics of various types of unknowns remains crucial. This paper seeks to gain insight into how to reasonably deal with the dynamic behavior of the estimable receiver phase biases (RPBs). Using dual-frequency GPS data collected at six colocated receivers over days 50-120 of 2015, we analyze the 30-s epoch-by-epoch estimates of L1 and wide-lane (WL) RPBs for each receiver pair. The dynamics observed in these estimates are a combined effect of three factors, namely the random measurement noise, the multipath and the ambient temperature. The first factor can be overcome by turning to a real-time filter and the second by considering the use of a sidereal filtering. The third factor has an effect only on the WL, and this effect appears to be linear. After accounting for these three factors, the low-pass-filtered, sidereal-filtered, epoch-by-epoch estimates of L1 RPBs follow a random walk process, whereas those of WL RPBs are constant over time. Properly modeling the dynamics of RPBs is vital, as it ensures the best convergence of the Kalman-filtered, between-satellite single-differenced SPB estimates to their correct values and, in turn, shortens the time-to-first-fix at user side.
NASA Astrophysics Data System (ADS)
Zhang, Baocheng; Liu, Teng; Yuan, Yunbin
2018-06-01
The integer ambiguity resolution enabled precise point positioning (PPP-RTK) has been proven advantageous in a wide range of applications. The realization of PPP-RTK concerns the isolation of satellite phase biases (SPBs) and other corrections from a network of Global Positioning System (GPS) reference receivers. This is generally based on Kalman filter in order to achieve real-time capability, in which proper modeling of the dynamics of various types of unknowns remains crucial. This paper seeks to gain insight into how to reasonably deal with the dynamic behavior of the estimable receiver phase biases (RPBs). Using dual-frequency GPS data collected at six colocated receivers over days 50-120 of 2015, we analyze the 30-s epoch-by-epoch estimates of L1 and wide-lane (WL) RPBs for each receiver pair. The dynamics observed in these estimates are a combined effect of three factors, namely the random measurement noise, the multipath and the ambient temperature. The first factor can be overcome by turning to a real-time filter and the second by considering the use of a sidereal filtering. The third factor has an effect only on the WL, and this effect appears to be linear. After accounting for these three factors, the low-pass-filtered, sidereal-filtered, epoch-by-epoch estimates of L1 RPBs follow a random walk process, whereas those of WL RPBs are constant over time. Properly modeling the dynamics of RPBs is vital, as it ensures the best convergence of the Kalman-filtered, between-satellite single-differenced SPB estimates to their correct values and, in turn, shortens the time-to-first-fix at user side.
Assessment of Daily and Weekly Fatigue among African American Cancer Survivors
Sobel, Rina M.; McSorley, Anna-Michelle M.; Roesch, Scott C.; Malcarne, Vanessa L.; Hawes, Starlyn M.; Sadler, Georgia Robins
2013-01-01
This investigation evaluates two common measures of cancer-related fatigue, one multidimensional/retrospective and one unidimensional/same-day. Fifty-two African American survivors of diverse cancers completed fatigue visual analogue scales once daily, and the Multidimensional Fatigue Symptom Inventory (MFSI) once weekly, for four weeks. Zero-order correlations showed retrospectivefatigue was significantly related to average, peak, and most recent same-dayfatigue. Multilevel random coefficient modeling showed unidimensional fatigue shared the most variance with the MFSI’s General subscale for three weeks, and with the Vigor subscale for one week. Researchers and clinicians may wish to prioritize multidimensional measures when assessing cancer-related fatigue, if appropriate. PMID:23844922
Emery, D W
1997-01-01
In many circles, managed care and capitation have become synonymous; unfortunately, the assumptions informing capitation are based on a flawed unidimensional model of risk. PEHP of Utah has rejected the unidimensional model and has therefore embraced a multidimensional model of risk that suggests that global fees are the optimal purchasing modality. A globally priced episode of care forms a natural unit of analysis that enhances purchasing clarity, allows providers to more efficiently focus on the Marginal Rate of Technical Substitution, and conforms to the multidimensional reality of risk. Most importantly, global fees simultaneously maximize patient choice and provider cost consciousness.
Wills, A J; Lea, Stephen E G; Leaver, Lisa A; Osthaus, Britta; Ryan, Catriona M E; Suret, Mark B; Bryant, Catherine M L; Chapman, Sue J A; Millar, Louise
2009-11-01
Pigeons (Columba livia), gray squirrels (Sciurus carolinensis), and undergraduates (Homo sapiens) learned discrimination tasks involving multiple mutually redundant dimensions. First, pigeons and undergraduates learned conditional discriminations between stimuli composed of three spatially separated dimensions, after first learning to discriminate the individual elements of the stimuli. When subsequently tested with stimuli in which one of the dimensions took an anomalous value, the majority of both species categorized test stimuli by their overall similarity to training stimuli. However some individuals of both species categorized them according to a single dimension. In a second set of experiments, squirrels, pigeons, and undergraduates learned go/no-go discriminations using multiple simultaneous presentations of stimuli composed of three spatially integrated, highly salient dimensions. The tendency to categorize test stimuli including anomalous dimension values unidimensionally was higher than in the first set of experiments and did not differ significantly between species. The authors conclude that unidimensional categorization of multidimensional stimuli is not diagnostic for analytic cognitive processing, and that any differences between human's and pigeons' behavior in such tasks are not due to special features of avian visual cognition.
Brenninkmeijer, V; VanYperen, N
2003-01-01
When conducting research on burnout, it may be difficult to decide whether one should report results separately for each burnout dimension or whether one should combine the dimensions. Although the multidimensionality of the burnout concept is widely acknowledged, for research purposes it is sometimes convenient to regard burnout as a unidimensional construct. This article deals with the question of whether and when it may be appropriate to treat burnout as a unidimensional variable, and presents a decision rule to distinguish between people high and low in burnout. To develop a guideline for obtaining a dichotomous measure of burnout, the scores on the Utrecht Burnout Scale (UBOS) of 44 well functioning individuals were compared with the scores of 29 individuals diagnosed as suffering from burnout. Based on these data, the authors recommend the "exhaustion + 1" criterion for research in non-clinical populations. Following this criterion, individuals can be considered as burnt out when they report, compared to a norm group, high emotional exhaustion, in combination with high depersonalisation or low personal accomplishment. The criterion may be used to estimate the percentage in a sample of individuals in a state of burnout. PMID:12782742
Perry, Matthew D.; Ng, Chai Ann; Vandenberg, Jamie I.
2013-01-01
Proteins that form ion-selective pores in the membrane of cells are integral to many rapid signaling processes, including regulating the rhythm of the heartbeat. In potassium channels, the selectivity filter is critical for both endowing an exquisite selectivity for potassium ions, as well as for controlling the flow of ions through the pore. Subtle rearrangements in the complex hydrogen-bond network that link the selectivity filter to the surrounding pore helices differentiate conducting (open) from nonconducting (inactivated) conformations of the channel. Recent studies suggest that beyond the selectivity filter, inactivation involves widespread rearrangements of the channel protein. Here, we use rate equilibrium free energy relationship analysis to probe the structural changes that occur during selectivity filter gating in Kv11.1 channels, at near atomic resolution. We show that the pore helix plays a crucial dynamic role as a bidirectional interface during selectivity filter gating. We also define the molecular bases of the energetic coupling between the pore helix and outer helix of the pore domain that occurs early in the transition from open to inactivated states, as well as the coupling between the pore helix and inner helix late in the transition. Our data demonstrate that the pore helices are more than just static structural elements supporting the integrity of the selectivity filter; instead they play a crucial dynamic role during selectivity filter gating. PMID:23471968
Control of AUVs using differential flatness theory and the derivative-free nonlinear Kalman Filter
NASA Astrophysics Data System (ADS)
Rigatos, Gerasimos; Raffo, Guilerme
2015-12-01
The paper proposes nonlinear control and filtering for Autonomous Underwater Vessels (AUVs) based on differential flatness theory and on the use of the Derivative-free nonlinear Kalman Filter. First, it is shown that the 6-DOF dynamic model of the AUV is a differentially flat one. This enables its transformation into the linear canonical (Brunovsky) form and facilitates the design of a state feedback controller. A problem that has to be dealt with is the uncertainty about the parameters of the AUV's dynamic model, as well the external perturbations which affect its motion. To cope with this, it is proposed to use a disturbance observer which is based on the Derivative-free nonlinear Kalman Filter. The considered filtering method consists of the standard Kalman Filter recursion applied on the linearized model of the vessel and of an inverse transformation based on differential flatness theory, which enables to obtain estimates of the state variables of the initial nonlinear model of the vessel. The Kalman Filter-based disturbance observer performs simultaneous estimation of the non-measurable state variables of the AUV and of the perturbation terms that affect its dynamics. By estimating such disturbances, their compensation is also succeeded through suitable modification of the feedback control input. The efficiency of the proposed AUV control and estimation scheme is confirmed through simulation experiments.
A class of optimum digital phase locked loops
NASA Technical Reports Server (NTRS)
Kumar, R.; Hurd, W. J.
1986-01-01
This paper presents a class of optimum digital filters for digital phase locked loops, for the important case in which the maximum update rate of the loop filter and numerically controlled oscillator (NCO) is limited. This case is typical when the loop filter is implemented in a microprocessor. In these situations, pure delay is encountered in the loop transfer function and thus the stability and gain margin of the loop are of crucial interest. The optimum filters designed for such situations are evaluated in terms of their gain margin for stability, dynamic error, and steady-state error performance. For situations involving considerably high phase dynamics an adaptive and programmable implementation is also proposed to obtain an overall optimum strategy.
High Dynamic Range Spectral Imaging Pipeline For Multispectral Filter Array Cameras.
Lapray, Pierre-Jean; Thomas, Jean-Baptiste; Gouton, Pierre
2017-06-03
Spectral filter arrays imaging exhibits a strong similarity with color filter arrays. This permits us to embed this technology in practical vision systems with little adaptation of the existing solutions. In this communication, we define an imaging pipeline that permits high dynamic range (HDR)-spectral imaging, which is extended from color filter arrays. We propose an implementation of this pipeline on a prototype sensor and evaluate the quality of our implementation results on real data with objective metrics and visual examples. We demonstrate that we reduce noise, and, in particular we solve the problem of noise generated by the lack of energy balance. Data are provided to the community in an image database for further research.
NASA Astrophysics Data System (ADS)
Juchem Neto, J. P.; Claeyssen, J. C. R.; Pôrto Júnior, S. S.
2018-03-01
In this paper we introduce capital transport cost in a unidimensional spatial Solow-Swan model of economic growth with capital-induced labor migration, considered in an unbounded domain. Proceeding with a stability analysis, we show that there is a critical value for the capital transport cost where the dynamic behavior of the economy changes, provided that the intensity of capital-induced labor migration is strong enough. On the one hand, if the capital transport cost is higher than this critical value, the spatially homogeneous equilibrium of coexistence of the model is stable, and the economy converges to this spatially homogeneous state in the long run; on the other hand, if transport cost is lower than this critical value, the equilibrium is unstable, and the economy may develop different spatio-temporal dynamics, including the formation of stable economic agglomerations and spatio-temporal economic cycles, depending on the other parameters in the model. Finally, numerical simulations support the results of the stability analysis, and illustrate the spatio-temporal dynamics generated by the model, suggesting that the economy as a whole benefits from the formation of economic agglomerations and cycles, with a higher capital transport cost reducing this gain.
Adaptive identification and control of structural dynamics systems using recursive lattice filters
NASA Technical Reports Server (NTRS)
Sundararajan, N.; Montgomery, R. C.; Williams, J. P.
1985-01-01
A new approach for adaptive identification and control of structural dynamic systems by using least squares lattice filters thar are widely used in the signal processing area is presented. Testing procedures for interfacing the lattice filter identification methods and modal control method for stable closed loop adaptive control are presented. The methods are illustrated for a free-free beam and for a complex flexible grid, with the basic control objective being vibration suppression. The approach is validated by using both simulations and experimental facilities available at the Langley Research Center.
Jacobson, Robert B.; Parsley, Michael J.; Annis, Mandy L.; Colvin, Michael E.; Welker, Timothy L.; James, Daniel A.
2016-01-20
The initial set of candidate hypotheses provides a useful starting point for quantitative modeling and adaptive management of the river and species. We anticipate that hypotheses will change from the set of working management hypotheses as adaptive management progresses. More importantly, hypotheses that have been filtered out of our multistep process are still being considered. These filtered hypotheses are archived and if existing hypotheses are determined to be inadequate to explain observed population dynamics, new hypotheses can be created or filtered hypotheses can be reinstated.
An Unscented Kalman Filter Approach to the Estimation of Nonlinear Dynamical Systems Models
ERIC Educational Resources Information Center
Chow, Sy-Miin; Ferrer, Emilio; Nesselroade, John R.
2007-01-01
In the past several decades, methodologies used to estimate nonlinear relationships among latent variables have been developed almost exclusively to fit cross-sectional models. We present a relatively new estimation approach, the unscented Kalman filter (UKF), and illustrate its potential as a tool for fitting nonlinear dynamic models in two ways:…
Haffert, S Y
2016-08-22
Current wavefront sensors for high resolution imaging have either a large dynamic range or a high sensitivity. A new kind of wavefront sensor is developed which can have both: the Generalised Optical Differentiation wavefront sensor. This new wavefront sensor is based on the principles of optical differentiation by amplitude filters. We have extended the theory behind linear optical differentiation and generalised it to nonlinear filters. We used numerical simulations and laboratory experiments to investigate the properties of the generalised wavefront sensor. With this we created a new filter that can decouple the dynamic range from the sensitivity. These properties make it suitable for adaptive optic systems where a large range of phase aberrations have to be measured with high precision.
High-Order Model and Dynamic Filtering for Frame Rate Up-Conversion.
Bao, Wenbo; Zhang, Xiaoyun; Chen, Li; Ding, Lianghui; Gao, Zhiyong
2018-08-01
This paper proposes a novel frame rate up-conversion method through high-order model and dynamic filtering (HOMDF) for video pixels. Unlike the constant brightness and linear motion assumptions in traditional methods, the intensity and position of the video pixels are both modeled with high-order polynomials in terms of time. Then, the key problem of our method is to estimate the polynomial coefficients that represent the pixel's intensity variation, velocity, and acceleration. We propose to solve it with two energy objectives: one minimizes the auto-regressive prediction error of intensity variation by its past samples, and the other minimizes video frame's reconstruction error along the motion trajectory. To efficiently address the optimization problem for these coefficients, we propose the dynamic filtering solution inspired by video's temporal coherence. The optimal estimation of these coefficients is reformulated into a dynamic fusion of the prior estimate from pixel's temporal predecessor and the maximum likelihood estimate from current new observation. Finally, frame rate up-conversion is implemented using motion-compensated interpolation by pixel-wise intensity variation and motion trajectory. Benefited from the advanced model and dynamic filtering, the interpolated frame has much better visual quality. Extensive experiments on the natural and synthesized videos demonstrate the superiority of HOMDF over the state-of-the-art methods in both subjective and objective comparisons.
NASA Astrophysics Data System (ADS)
Leyva, R.; Artillan, P.; Cabal, C.; Estibals, B.; Alonso, C.
2011-04-01
The article studies the dynamic performance of a family of maximum power point tracking circuits used for photovoltaic generation. It revisits the sinusoidal extremum seeking control (ESC) technique which can be considered as a particular subgroup of the Perturb and Observe algorithms. The sinusoidal ESC technique consists of adding a small sinusoidal disturbance to the input and processing the perturbed output to drive the operating point at its maximum. The output processing involves a synchronous multiplication and a filtering stage. The filter instance determines the dynamic performance of the MPPT based on sinusoidal ESC principle. The approach uses the well-known root-locus method to give insight about damping degree and settlement time of maximum-seeking waveforms. This article shows the transient waveforms in three different filter instances to illustrate the approach. Finally, an experimental prototype corroborates the dynamic analysis.
An efficient incremental learning mechanism for tracking concept drift in spam filtering
Sheu, Jyh-Jian; Chu, Ko-Tsung; Li, Nien-Feng; Lee, Cheng-Chi
2017-01-01
This research manages in-depth analysis on the knowledge about spams and expects to propose an efficient spam filtering method with the ability of adapting to the dynamic environment. We focus on the analysis of email’s header and apply decision tree data mining technique to look for the association rules about spams. Then, we propose an efficient systematic filtering method based on these association rules. Our systematic method has the following major advantages: (1) Checking only the header sections of emails, which is different from those spam filtering methods at present that have to analyze fully the email’s content. Meanwhile, the email filtering accuracy is expected to be enhanced. (2) Regarding the solution to the problem of concept drift, we propose a window-based technique to estimate for the condition of concept drift for each unknown email, which will help our filtering method in recognizing the occurrence of spam. (3) We propose an incremental learning mechanism for our filtering method to strengthen the ability of adapting to the dynamic environment. PMID:28182691
NASA Astrophysics Data System (ADS)
Olivares, A.; Górriz, J. M.; Ramírez, J.; Olivares, G.
2011-02-01
Inertial sensors are widely used in human body motion monitoring systems since they permit us to determine the position of the subject's limbs. Limb angle measurement is carried out through the integration of the angular velocity measured by a rate sensor and the decomposition of the components of static gravity acceleration measured by an accelerometer. Different factors derived from the sensors' nature, such as the angle random walk and dynamic bias, lead to erroneous measurements. Dynamic bias effects can be reduced through the use of adaptive filtering based on sensor fusion concepts. Most existing published works use a Kalman filtering sensor fusion approach. Our aim is to perform a comparative study among different adaptive filters. Several least mean squares (LMS), recursive least squares (RLS) and Kalman filtering variations are tested for the purpose of finding the best method leading to a more accurate and robust limb angle measurement. A new angle wander compensation sensor fusion approach based on LMS and RLS filters has been developed.
Computational Fluid Dynamics of Choanoflagellate Filter-Feeding
NASA Astrophysics Data System (ADS)
Asadzadeh, Seyed Saeed; Walther, Jens; Nielsen, Lasse Tore; Kiorboe, Thomas; Dolger, Julia; Andersen, Anders
2017-11-01
Choanoflagellates are unicellular aquatic organisms with a single flagellum that drives a feeding current through a funnel-shaped collar filter on which bacteria-sized prey are caught. Using computational fluid dynamics (CFD) we model the beating flagellum and the complex filter flow of the choanoflagellate Diaphanoeca grandis. Our CFD simulations based on the current understanding of the morphology underestimate the experimentally observed clearance rate by more than an order of magnitude: The beating flagellum is simply unable to draw enough water through the fine filter. Our observations motivate us to suggest a radically different filtration mechanism that requires a flagellar vane (sheet), and addition of a wide vane in our CFD model allows us to correctly predict the observed clearance rate.
Quantum demolition filtering and optimal control of unstable systems.
Belavkin, V P
2012-11-28
A brief account of the quantum information dynamics and dynamical programming methods for optimal control of quantum unstable systems is given to both open loop and feedback control schemes corresponding respectively to deterministic and stochastic semi-Markov dynamics of stable or unstable systems. For the quantum feedback control scheme, we exploit the separation theorem of filtering and control aspects as in the usual case of quantum stable systems with non-demolition observation. This allows us to start with the Belavkin quantum filtering equation generalized to demolition observations and derive the generalized Hamilton-Jacobi-Bellman equation using standard arguments of classical control theory. This is equivalent to a Hamilton-Jacobi equation with an extra linear dissipative term if the control is restricted to Hamiltonian terms in the filtering equation. An unstable controlled qubit is considered as an example throughout the development of the formalism. Finally, we discuss optimum observation strategies to obtain a pure quantum qubit state from a mixed one.
Temporal processing and adaptation in the songbird auditory forebrain.
Nagel, Katherine I; Doupe, Allison J
2006-09-21
Songbird auditory neurons must encode the dynamics of natural sounds at many volumes. We investigated how neural coding depends on the distribution of stimulus intensities. Using reverse-correlation, we modeled responses to amplitude-modulated sounds as the output of a linear filter and a nonlinear gain function, then asked how filters and nonlinearities depend on the stimulus mean and variance. Filter shape depended strongly on mean amplitude (volume): at low mean, most neurons integrated sound over many milliseconds, while at high mean, neurons responded more to local changes in amplitude. Increasing the variance (contrast) of amplitude modulations had less effect on filter shape but decreased the gain of firing in most cells. Both filter and gain changes occurred rapidly after a change in statistics, suggesting that they represent nonlinearities in processing. These changes may permit neurons to signal effectively over a wider dynamic range and are reminiscent of findings in other sensory systems.
Filtering of non-linear instabilities. [from finite difference solution of fluid dynamics equations
NASA Technical Reports Server (NTRS)
Khosla, P. K.; Rubin, S. G.
1979-01-01
For Courant numbers larger than one and cell Reynolds numbers larger than two, oscillations and in some cases instabilities are typically found with implicit numerical solutions of the fluid dynamics equations. This behavior has sometimes been associated with the loss of diagonal dominance of the coefficient matrix. It is shown here that these problems can in fact be related to the choice of the spatial differences, with the resulting instability related to aliasing or nonlinear interaction. Appropriate 'filtering' can reduce the intensity of these oscillations and in some cases possibly eliminate the instability. These filtering procedures are equivalent to a weighted average of conservation and non-conservation differencing. The entire spectrum of filtered equations retains a three-point character as well as second-order spatial accuracy. Burgers equation has been considered as a model. Several filters are examined in detail, and smooth solutions have been obtained for extremely large cell Reynolds numbers.
Sliding mode control based on Kalman filter dynamic estimation of battery SOC
NASA Astrophysics Data System (ADS)
He, Dongmeia; Hou, Enguang; Qiao, Xin; Liu, Guangmin
2018-06-01
Lithium-ion battery charge state of the accurate and rapid estimation of battery management system is the key technology. In this paper, an exponentially reaching law sliding-mode variable structure control algorithm based on Kalman filter is proposed to estimate the state of charge of Li-ion battery for the dynamic nonlinear system. The RC equivalent circuit model is established, and the model equation with specific structure is given. The proposed Kalman filter sliding mode structure is used to estimate the state of charge of the battery in the battery model, and the jitter effect can be avoided and the estimation performance can be improved. The simulation results show that the proposed Kalman filter sliding mode control has good accuracy in estimating the state of charge of the battery compared with the ordinary Kalman filter, and the error range is within 3%.
Static and Dynamic Characteristics of DC-DC Converter Using a Digital Filter
NASA Astrophysics Data System (ADS)
Kurokawa, Fujio; Okamatsu, Masashi
This paper presents the regulation and dynamic characteristics of the dc-dc converter with digital PID control, the minimum phase FIR filter or the IIR filter, and then the design criterion to improve the dynamic characteristics is discussed. As a result, it is clarified that the DC-DC converter using the IIR filter method has superior performance characteristics. The regulation range is within 1.3%, the undershoot against the step change of the load is less than 2% and the transient time is less than 0.4ms with the IIR filter method. In this case, the switching frequency is 100kHz and the step change of the load R is from 50 Ω to 10 Ω. Further, the superior characteristics are obtained when the first gain, the second gain and the second cut-off frequency are relatively large, and the first cut-off frequency and the passing frequency are relatively low. Moreover, it is important that the gain strongly decreases at the second cut-off frequency because the upper band pass frequency range must be always less than half of the sampling frequency based on the sampling theory.
A fractional-order accumulative regularization filter for force reconstruction
NASA Astrophysics Data System (ADS)
Wensong, Jiang; Zhongyu, Wang; Jing, Lv
2018-02-01
The ill-posed inverse problem of the force reconstruction comes from the influence of noise to measured responses and results in an inaccurate or non-unique solution. To overcome this ill-posedness, in this paper, the transfer function of the reconstruction model is redefined by a Fractional order Accumulative Regularization Filter (FARF). First, the measured responses with noise are refined by a fractional-order accumulation filter based on a dynamic data refresh strategy. Second, a transfer function, generated by the filtering results of the measured responses, is manipulated by an iterative Tikhonov regularization with a serious of iterative Landweber filter factors. Third, the regularization parameter is optimized by the Generalized Cross-Validation (GCV) to improve the ill-posedness of the force reconstruction model. A Dynamic Force Measurement System (DFMS) for the force reconstruction is designed to illustrate the application advantages of our suggested FARF method. The experimental result shows that the FARF method with r = 0.1 and α = 20, has a PRE of 0.36% and an RE of 2.45%, is superior to other cases of the FARF method and the traditional regularization methods when it comes to the dynamic force reconstruction.
New quests for better attitudes
NASA Technical Reports Server (NTRS)
Shuster, Malcolm D.
1991-01-01
During the past few years considerable insight was gained into the QUEST algorithm both as a maximum likelihood estimator and as a Kalman filter/smoother for systems devoid of dynamical noise. The new algorithms and software are described and analytical comparisons are made with the more conventional attitude Kalman filter. It is also described how they may be accommodated to noisy dynamical systems.
High speed high dynamic range high accuracy measurement system
Deibele, Craig E.; Curry, Douglas E.; Dickson, Richard W.; Xie, Zaipeng
2016-11-29
A measuring system includes an input that emulates a bandpass filter with no signal reflections. A directional coupler connected to the input passes the filtered input to electrically isolated measuring circuits. Each of the measuring circuits includes an amplifier that amplifies the signal through logarithmic functions. The output of the measuring system is an accurate high dynamic range measurement.
Dynamic state estimation assisted power system monitoring and protection
NASA Astrophysics Data System (ADS)
Cui, Yinan
The advent of phasor measurement units (PMUs) has unlocked several novel methods to monitor, control, and protect bulk electric power systems. This thesis introduces the concept of "Dynamic State Estimation" (DSE), aided by PMUs, for wide-area monitoring and protection of power systems. Unlike traditional State Estimation where algebraic variables are estimated from system measurements, DSE refers to a process to estimate the dynamic states associated with synchronous generators. This thesis first establishes the viability of using particle filtering as a technique to perform DSE in power systems. The utility of DSE for protection and wide-area monitoring are then shown as potential novel applications. The work is presented as a collection of several journal and conference papers. In the first paper, we present a particle filtering approach to dynamically estimate the states of a synchronous generator in a multi-machine setting considering the excitation and prime mover control systems. The second paper proposes an improved out-of-step detection method for generators by means of angular difference. The generator's rotor angle is estimated with a particle filter-based dynamic state estimator and the angular separation is then calculated by combining the raw local phasor measurements with this estimate. The third paper introduces a particle filter-based dual estimation method for tracking the dynamic states of a synchronous generator. It considers the situation where the field voltage measurements are not readily available. The particle filter is modified to treat the field voltage as an unknown input which is sequentially estimated along with the other dynamic states. The fourth paper proposes a novel framework for event detection based on energy functions. The key idea is that any event in the system will leave a signature in WAMS data-sets. It is shown that signatures for four broad classes of disturbance events are buried in the components that constitute the energy function for the system. This establishes a direct correspondence (or mapping) between an event and certain component(s) of the energy function. The last paper considers the dynamic latency effect when the measurements and estimated dynamics are transmitted from remote ends to a centralized location through the networks.
NASA Astrophysics Data System (ADS)
Cao, Lu; Chen, Xiaoqian; Misra, Arun K.
2015-07-01
This paper presents a novel sigma-point unscented predictive filter (UPF) for relative position and attitude estimation of satellite formation taking into account the influence of J2. A coupled relative translational dynamics model is formulated to represent orbital motion of arbitrary feature points on the deputy spacecraft, and the relative attitude motion is formulated by considering a rotational dynamics for a satellite without gyros. Based on the proposed coupled dynamic model, the UPF is developed based on unscented transformation technique, extending the capability of a traditional predictive filter (PF). The algorithm flow of the UPF is described first. Then it is demonstrated that the estimation accuracy of the model error and system state for UPF is higher than that of the traditional PF. In addition, the unscented Kalman filter (UKF) is also employed in order to compare the performance of the proposed UPF with that of the UKF. Several different scenarios are simulated to validate the effectiveness of the coupled dynamics model and the performance of the proposed UPF. Through comparisons, the proposed UPF is shown to yield highly accurate estimation of relative position and attitude during satellite formation flying.
Taking the Missing Propensity Into Account When Estimating Competence Scores
Pohl, Steffi; Carstensen, Claus H.
2014-01-01
When competence tests are administered, subjects frequently omit items. These missing responses pose a threat to correctly estimating the proficiency level. Newer model-based approaches aim to take nonignorable missing data processes into account by incorporating a latent missing propensity into the measurement model. Two assumptions are typically made when using these models: (1) The missing propensity is unidimensional and (2) the missing propensity and the ability are bivariate normally distributed. These assumptions may, however, be violated in real data sets and could, thus, pose a threat to the validity of this approach. The present study focuses on modeling competencies in various domains, using data from a school sample (N = 15,396) and an adult sample (N = 7,256) from the National Educational Panel Study. Our interest was to investigate whether violations of unidimensionality and the normal distribution assumption severely affect the performance of the model-based approach in terms of differences in ability estimates. We propose a model with a competence dimension, a unidimensional missing propensity and a distributional assumption more flexible than a multivariate normal. Using this model for ability estimation results in different ability estimates compared with a model ignoring missing responses. Implications for ability estimation in large-scale assessments are discussed. PMID:29795844
Vrotsou, Kalliopi; Cuéllar, Ricardo; Silió, Félix; Rodriguez, Miguel Ángel; Garay, Daniel; Busto, Gorka; Trancho, Ziortza; Escobar, Antonio
2016-10-18
The aim of the current study was to validate the self-report section of the American Shoulder and Elbow Surgeons questionnaire (ASES-p) into Spanish. Shoulder pathology patients were recruited and followed up to 6 months post treatment. The ASES-p, Constant, SF-36 and Barthel scales were filled-in pre and post treatment. Reliability was tested with Cronbach's alpha, convergent validity with Spearman's correlations coefficients. Confirmatory factor analysis (CFA) and the Rasch model were implemented for assessing structural validity and unidimensionality of the scale. Models with and without the pain item were considered. Responsiveness to change was explored via standardised effect sizes. Results were acceptable for both tested models. Cronbach's alpha was 0.91, total scale correlations with Constant and physical SF-36 dimensions were >0.50. Factor loadings for CFA were >0.40. The Rasch model confirmed unidimensionality of the scale, even though item 10 "do usual sport" was suggested as non-informative. Finally, patients with improved post treatment shoulder function and those receiving surgery had higher standardised effect sizes. The adapted Spanish ASES-p version is a valid and reliable tool for shoulder evaluation and its unidimensionality is supported by the data.
NASA Astrophysics Data System (ADS)
Curà, F.; Curti, G.; Mantovani, M.
1996-03-01
The subject of this paper is an experimental and analytical study of a structural-acoustical coupling problem. To simplify the issue, the analytical model considered here consists of a uni-dimensional acoustic cavity coupled to a one-degree-of-freedom system (mass, spring and damper). An harmonic excitation force is applied to the mass of the oscillator. In the theoretical analysis, the uni-dimensional cavity is subjected, in correspondence of its end sections, to boundary conditions, which are either the usual ones (closed or open ended) or those deriving from the coupling with the oscillator. This simple model proved to be very useful to investigate the influence of the variation of both the geometrical parameters (i.e., the length of the cavity) and the physical parameters (i.e., mass, damping coefficient and stiffness of the oscillator). The analytical results are compared to those obtained experimentally on a real coupled system, consisting of a cavity enclosed by an acoustically rigid steel cylinder, closed at one end by a movable, acoustically rigid piston and at the other end by a flexible plate, clamped around its edge by the cylinder. Thus the length of the cavity can be varied by simply moving the rigid piston.
Development of a New Arterial-Line Filter Design Using Computational Fluid Dynamics Analysis
Herbst, Daniel P.; Najm, Hani K.
2012-01-01
Abstract: Arterial-line filters used during extracorporeal circulation continue to rely on the physical properties of a wetted micropore and reductions in blood flow velocity to affect air separation from the circulating blood volume. Although problems associated with air embolism during cardiac surgery persist, a number of investigators have concluded that further improvements in filtration are needed to enhance air removal during cardiopulmonary bypass procedures. This article reviews theoretical principles of micropore filter technology and outlines the development of a new arterial-line filter concept using computational fluid dynamics analysis. Manufacturer-supplied data of a micropore screen and experimental results taken from an ex vivo test circuit were used to define the inputs needed for numerical modeling of a new filter design. Flow patterns, pressure distributions, and velocity profiles predicted with computational fluid dynamics softwarewere used to inform decisions on model refinements and how to achieve initial design goals of ≤225 mL prime volume and ≤500 cm2 of screen surface area. Predictions for optimal model geometry included a screen angle of 56° from the horizontal plane with a total surface area of 293.9 cm2 and a priming volume of 192.4 mL. This article describes in brief the developmental process used to advance a new filter design and supports the value of numerical modeling in this undertaking. PMID:23198394
Development of a new arterial-line filter design using computational fluid dynamics analysis.
Herbst, Daniel P; Najm, Hani K
2012-09-01
Arterial-line filters used during extracorporeal circulation continue to rely on the physical properties of a wetted micropore and reductions in blood flow velocity to affect air separation from the circulating blood volume. Although problems associated with air embolism during cardiac surgery persist, a number of investigators have concluded that further improvements in filtration are needed to enhance air removal during cardiopulmonary bypass procedures. This article reviews theoretical principles of micropore filter technology and outlines the development of a new arterial-line filter concept using computational fluid dynamics analysis. Manufacturer-supplied data of a micropore screen and experimental results taken from an ex vivo test circuit were used to define the inputs needed for numerical modeling of a new filter design. Flow patterns, pressure distributions, and velocity profiles predicted with computational fluid dynamics software were used to inform decisions on model refinements and how to achieve initial design goals of < or = 225 mL prime volume and < or = 500 cm2 of screen surface area. Predictions for optimal model geometry included a screen angle of 56 degrees from the horizontal plane with a total surface area of 293.9 cm2 and a priming volume of 192.4 mL. This article describes in brief the developmental process used to advance a new filter design and supports the value of numerical modeling in this undertaking.
State estimation and prediction using clustered particle filters.
Lee, Yoonsang; Majda, Andrew J
2016-12-20
Particle filtering is an essential tool to improve uncertain model predictions by incorporating noisy observational data from complex systems including non-Gaussian features. A class of particle filters, clustered particle filters, is introduced for high-dimensional nonlinear systems, which uses relatively few particles compared with the standard particle filter. The clustered particle filter captures non-Gaussian features of the true signal, which are typical in complex nonlinear dynamical systems such as geophysical systems. The method is also robust in the difficult regime of high-quality sparse and infrequent observations. The key features of the clustered particle filtering are coarse-grained localization through the clustering of the state variables and particle adjustment to stabilize the method; each observation affects only neighbor state variables through clustering and particles are adjusted to prevent particle collapse due to high-quality observations. The clustered particle filter is tested for the 40-dimensional Lorenz 96 model with several dynamical regimes including strongly non-Gaussian statistics. The clustered particle filter shows robust skill in both achieving accurate filter results and capturing non-Gaussian statistics of the true signal. It is further extended to multiscale data assimilation, which provides the large-scale estimation by combining a cheap reduced-order forecast model and mixed observations of the large- and small-scale variables. This approach enables the use of a larger number of particles due to the computational savings in the forecast model. The multiscale clustered particle filter is tested for one-dimensional dispersive wave turbulence using a forecast model with model errors.
State estimation and prediction using clustered particle filters
Lee, Yoonsang; Majda, Andrew J.
2016-01-01
Particle filtering is an essential tool to improve uncertain model predictions by incorporating noisy observational data from complex systems including non-Gaussian features. A class of particle filters, clustered particle filters, is introduced for high-dimensional nonlinear systems, which uses relatively few particles compared with the standard particle filter. The clustered particle filter captures non-Gaussian features of the true signal, which are typical in complex nonlinear dynamical systems such as geophysical systems. The method is also robust in the difficult regime of high-quality sparse and infrequent observations. The key features of the clustered particle filtering are coarse-grained localization through the clustering of the state variables and particle adjustment to stabilize the method; each observation affects only neighbor state variables through clustering and particles are adjusted to prevent particle collapse due to high-quality observations. The clustered particle filter is tested for the 40-dimensional Lorenz 96 model with several dynamical regimes including strongly non-Gaussian statistics. The clustered particle filter shows robust skill in both achieving accurate filter results and capturing non-Gaussian statistics of the true signal. It is further extended to multiscale data assimilation, which provides the large-scale estimation by combining a cheap reduced-order forecast model and mixed observations of the large- and small-scale variables. This approach enables the use of a larger number of particles due to the computational savings in the forecast model. The multiscale clustered particle filter is tested for one-dimensional dispersive wave turbulence using a forecast model with model errors. PMID:27930332
Interdecadal variability in pan-Pacific and global SST, revisited
NASA Astrophysics Data System (ADS)
Tung, Ka-Kit; Chen, Xianyao; Zhou, Jiansong; Li, King-Fai
2018-05-01
Interest in the "Interdecadal Pacific Oscillation (IPO)" in the global SST has surged recently on suggestions that the Pacific may be the source of prominent interdecadal variations observed in the global-mean surface temperature possibly through the mechanism of low-frequency modulation of the interannual El Nino-Southern Oscillation (ENSO) phenomenon. IPO was defined by performing empirical orthogonal function (EOF) analysis of low-pass filtered SST. The low-pass filtering creates its unique set of mathematical problems—in particular, mode mixing—and has led to some questions, many unanswered. To understand what these EOFs are, we express them first in terms of the recently developed pairwise rotated EOFs of the unfiltered SST, which can largely separate the high and low frequency bands without resorting to filtering. As reported elsewhere, the leading rotated dynamical modes (after the global warming trend) of the unfiltered global SST are: ENSO, Pacific Decadal Oscillation (PDO), and Atlantic Multidecadal Oscillation (AMO). IPO is not among them. The leading principal component (PC) of the low-pass filtered global SST is usually defined as IPO and it is seen to comprise of ENSO, PDO and AMO in various proportions depending on the filter threshold. With decadal filtering, the contribution of the interannual ENSO is understandably negligible. The leading dynamical mode of the filtered global SST is mostly AMO, and therefore should not have been called the Interdecadal "Pacific" Oscillation. The leading dynamical mode of the filtered pan-Pacific SST is mostly PDO. This and other low-frequency variability that have the action center in the Pacific, from either the pan-Pacific or global SST, have near zero global mean.
Attitude determination using an adaptive multiple model filtering Scheme
NASA Technical Reports Server (NTRS)
Lam, Quang; Ray, Surendra N.
1995-01-01
Attitude determination has been considered as a permanent topic of active research and perhaps remaining as a forever-lasting interest for spacecraft system designers. Its role is to provide a reference for controls such as pointing the directional antennas or solar panels, stabilizing the spacecraft or maneuvering the spacecraft to a new orbit. Least Square Estimation (LSE) technique was utilized to provide attitude determination for the Nimbus 6 and G. Despite its poor performance (estimation accuracy consideration), LSE was considered as an effective and practical approach to meet the urgent need and requirement back in the 70's. One reason for this poor performance associated with the LSE scheme is the lack of dynamic filtering or 'compensation'. In other words, the scheme is based totally on the measurements and no attempts were made to model the dynamic equations of motion of the spacecraft. We propose an adaptive filtering approach which employs a bank of Kalman filters to perform robust attitude estimation. The proposed approach, whose architecture is depicted, is essentially based on the latest proof on the interactive multiple model design framework to handle the unknown of the system noise characteristics or statistics. The concept fundamentally employs a bank of Kalman filter or submodel, instead of using fixed values for the system noise statistics for each submodel (per operating condition) as the traditional multiple model approach does, we use an on-line dynamic system noise identifier to 'identify' the system noise level (statistics) and update the filter noise statistics using 'live' information from the sensor model. The advanced noise identifier, whose architecture is also shown, is implemented using an advanced system identifier. To insure the robust performance for the proposed advanced system identifier, it is also further reinforced by a learning system which is implemented (in the outer loop) using neural networks to identify other unknown quantities such as spacecraft dynamics parameters, gyro biases, dynamic disturbances, or environment variations.
Attitude determination using an adaptive multiple model filtering Scheme
NASA Astrophysics Data System (ADS)
Lam, Quang; Ray, Surendra N.
1995-05-01
Attitude determination has been considered as a permanent topic of active research and perhaps remaining as a forever-lasting interest for spacecraft system designers. Its role is to provide a reference for controls such as pointing the directional antennas or solar panels, stabilizing the spacecraft or maneuvering the spacecraft to a new orbit. Least Square Estimation (LSE) technique was utilized to provide attitude determination for the Nimbus 6 and G. Despite its poor performance (estimation accuracy consideration), LSE was considered as an effective and practical approach to meet the urgent need and requirement back in the 70's. One reason for this poor performance associated with the LSE scheme is the lack of dynamic filtering or 'compensation'. In other words, the scheme is based totally on the measurements and no attempts were made to model the dynamic equations of motion of the spacecraft. We propose an adaptive filtering approach which employs a bank of Kalman filters to perform robust attitude estimation. The proposed approach, whose architecture is depicted, is essentially based on the latest proof on the interactive multiple model design framework to handle the unknown of the system noise characteristics or statistics. The concept fundamentally employs a bank of Kalman filter or submodel, instead of using fixed values for the system noise statistics for each submodel (per operating condition) as the traditional multiple model approach does, we use an on-line dynamic system noise identifier to 'identify' the system noise level (statistics) and update the filter noise statistics using 'live' information from the sensor model. The advanced noise identifier, whose architecture is also shown, is implemented using an advanced system identifier. To insure the robust performance for the proposed advanced system identifier, it is also further reinforced by a learning system which is implemented (in the outer loop) using neural networks to identify other unknown quantities such as spacecraft dynamics parameters, gyro biases, dynamic disturbances, or environment variations.
2011-01-01
Background Knowledge in natural sciences generally predicts study performance in the first two years of the medical curriculum. In order to reduce delay and dropout in the preclinical years, Hamburg Medical School decided to develop a natural science test (HAM-Nat) for student selection. In the present study, two different approaches to scale construction are presented: a unidimensional scale and a scale composed of three subject specific dimensions. Their psychometric properties and relations to academic success are compared. Methods 334 first year medical students of the 2006 cohort responded to 52 multiple choice items from biology, physics, and chemistry. For the construction of scales we generated two random subsamples, one for development and one for validation. In the development sample, unidimensional item sets were extracted from the item pool by means of weighted least squares (WLS) factor analysis, and subsequently fitted to the Rasch model. In the validation sample, the scales were subjected to confirmatory factor analysis and, again, Rasch modelling. The outcome measure was academic success after two years. Results Although the correlational structure within the item set is weak, a unidimensional scale could be fitted to the Rasch model. However, psychometric properties of this scale deteriorated in the validation sample. A model with three highly correlated subject specific factors performed better. All summary scales predicted academic success with an odds ratio of about 2.0. Prediction was independent of high school grades and there was a slight tendency for prediction to be better in females than in males. Conclusions A model separating biology, physics, and chemistry into different Rasch scales seems to be more suitable for item bank development than a unidimensional model, even when these scales are highly correlated and enter into a global score. When such a combination scale is used to select the upper quartile of applicants, the proportion of successful completion of the curriculum after two years is expected to rise substantially. PMID:21999767
Dragesund, Tove; Strand, Liv Inger; Grotle, Margreth
2018-02-01
The Body Awareness Rating Questionnaire (BARQ) is a self-report questionnaire aimed at capturing how people with long-lasting musculoskeletal pain reflect on their own body awareness. Methods based on classical test theory were applied to the development of the instrument and resulted in 4 subscales. However, the scales were not correlated, and construct validity might be questioned. The primary purpose of this study was to explore the possibility of developing a unidimensional scale from items initially collected for the BARQ using Rasch analysis. A secondary purpose was to investigate the test-retest reliability of a revised version of the BARQ. This was a methodological study. Rasch and reliability analyses were performed for 3 samples of participants with long-lasting musculoskeletal pain. The first Rasch analysis was carried out on 66 items generated for the original BARQ and scored by 300 participants. The items supported by the first analysis were scored by a new group of 127 participants and analyzed in a second Rasch analysis. For the test-retest reliability analysis, 48 participants scored the revised BARQ items twice within 1 week. The 2-step Rasch analysis resulted in a unidimensional 12-item revised version of the BARQ with a 4-point response scale (scores from 0 to 36). It showed a good fit to the Rasch model, with acceptable internal consistency, satisfactory fit residuals, and no disordered thresholds. Test-retest reliability was high, with an intraclass correlation coefficient of .83 (95% CI = .71-.89) and a smallest detectable change of 6.3 points. The small sample size in the second Rasch analysis was a study limitation. The revised BARQ is a unidimensional and feasible measurement of body awareness, recommended for use in the context of body-mind physical therapy approaches for musculoskeletal conditions. © 2017 American Physical Therapy Association
Hissbach, Johanna C; Klusmann, Dietrich; Hampe, Wolfgang
2011-10-14
Knowledge in natural sciences generally predicts study performance in the first two years of the medical curriculum. In order to reduce delay and dropout in the preclinical years, Hamburg Medical School decided to develop a natural science test (HAM-Nat) for student selection. In the present study, two different approaches to scale construction are presented: a unidimensional scale and a scale composed of three subject specific dimensions. Their psychometric properties and relations to academic success are compared. 334 first year medical students of the 2006 cohort responded to 52 multiple choice items from biology, physics, and chemistry. For the construction of scales we generated two random subsamples, one for development and one for validation. In the development sample, unidimensional item sets were extracted from the item pool by means of weighted least squares (WLS) factor analysis, and subsequently fitted to the Rasch model. In the validation sample, the scales were subjected to confirmatory factor analysis and, again, Rasch modelling. The outcome measure was academic success after two years. Although the correlational structure within the item set is weak, a unidimensional scale could be fitted to the Rasch model. However, psychometric properties of this scale deteriorated in the validation sample. A model with three highly correlated subject specific factors performed better. All summary scales predicted academic success with an odds ratio of about 2.0. Prediction was independent of high school grades and there was a slight tendency for prediction to be better in females than in males. A model separating biology, physics, and chemistry into different Rasch scales seems to be more suitable for item bank development than a unidimensional model, even when these scales are highly correlated and enter into a global score. When such a combination scale is used to select the upper quartile of applicants, the proportion of successful completion of the curriculum after two years is expected to rise substantially.
Hill, Bridget; Pallant, Julie; Williams, Gavin; Olver, John; Ferris, Scott; Bialocerkowski, Andrea
2016-12-01
To evaluate the internal construct validity and dimensionality of a new patient-reported outcome measure for people with traumatic brachial plexus injury (BPI) based on the International Classification of Functioning, Disability and Health definition of activity. Cross-sectional study. Outpatient clinics. Adults (age range, 18-82y) with a traumatic BPI (N=106). There were 106 people with BPI who completed a 51-item 5-response questionnaire. Responses were analyzed in 4 phases (missing responses, item correlations, exploratory factor analysis, and Rasch analysis) to evaluate the properties of fit to the Rasch model, threshold response, local dependency, dimensionality, differential item functioning, and targeting. Not applicable, as this study addresses the development of an outcome measure. Six items were deleted for missing responses, and 10 were deleted for high interitem correlations >.81. The remaining 35 items, while demonstrating fit to the Rasch model, showed evidence of local dependency and multidimensionality. Items were divided into 3 subscales: dressing and grooming (8 items), arm and hand (17 items), and no hand (6 items). All 3 subscales demonstrated fit to the model with no local dependency, minimal disordered thresholds, no unidimensionality or differential item functioning for age, time postinjury, or self-selected dominance. Subscales were combined into 3 subtests and demonstrated fit to the model, no misfit, and unidimensionality, allowing calculation of a summary score. This preliminary analysis supports the internal construct validity of the Brachial Assessment Tool, a unidimensional targeted 4-response patient-reported outcome measure designed to solely assess activity after traumatic BPI regardless of level of injury, age at recruitment, premorbid limb dominance, and time postinjury. Further examination is required to determine test-retest reliability and responsiveness. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Reliability and validity of the de Morton Mobility Index in individuals with sub-acute stroke.
Braun, Tobias; Marks, Detlef; Thiel, Christian; Grüneberg, Christian
2018-02-04
To establish the validity and reliability of the de Morton Mobility Index (DEMMI) in patients with sub-acute stroke. This cross-sectional study was performed in a neurological rehabilitation hospital. We assessed unidimensionality, construct validity, internal consistency reliability, inter-rater reliability, minimal detectable change and possible floor and ceiling effects of the DEMMI in adult patients with sub-acute stroke. The study included a total sample of 121 patients with sub-acute stroke. We analysed validity (n = 109) and reliability (n = 51) in two sub-samples. Rasch analysis indicated unidimensionality with an overall fit to the model (chi-square = 12.37, p = 0.577). All hypotheses on construct validity were confirmed. Internal consistency reliability (Cronbach's alpha = 0.94) and inter-rater reliability (intraclass correlation coefficient = 0.95; 95% confidence interval: 0.92-0.97) were excellent. The minimal detectable change with 90% confidence was 13 points. No floor or ceiling effects were evident. These results indicate unidimensionality, sufficient internal consistency reliability, inter-rater reliability, and construct validity of the DEMMI in patients with a sub-acute stroke. Advantages of the DEMMI in clinical application are the short administration time, no need for special equipment and interval level data. The de Morton Mobility Index, therefore, may be a useful performance-based bedside test to measure mobility in individuals with a sub-acute stroke across the whole mobility spectrum. Implications for Rehabilitation The de Morton Mobility Index (DEMMI) is an unidimensional measurement instrument of mobility in individuals with sub-acute stroke. The DEMMI has excellent internal consistency and inter-rater reliability, and sufficient construct validity. The minimal detectable change of the DEMMI with 90% confidence in stroke rehabilitation is 13 points. The lack of any floor or ceiling effects on hospital admission indicates applicability across the whole mobility spectrum of patients with sub-acute stroke.
Rasch analysis of the Chedoke-McMaster Attitudes towards Children with Handicaps scale.
Armstrong, Megan; Morris, Christopher; Tarrant, Mark; Abraham, Charles; Horton, Mike C
2017-02-01
Aim To assess whether the Chedoke-McMaster Attitudes towards Children with Handicaps (CATCH) 36-item total scale and subscales fit the unidimensional Rasch model. Method The CATCH was administered to 1881 children, aged 7-16 years in a cross-sectional survey. Data were used from a random sample of 416 for the initial Rasch analysis. The analysis was performed on the 36-item scale and then separately for each subscale. The analysis explored fit to the Rasch model in terms of overall scale fit, individual item fit, item response categories, and unidimensionality. Item bias for gender and school level was also assessed. Revised scales were then tested on an independent second random sample of 415 children. Results Analyses indicated that the 36-item overall scale was not unidimensional and did not fit the Rasch model. Two scales of affective attitudes and behavioural intention were retained after four items were removed from each due to misfit to the Rasch model. Additionally, the scaling was improved when the two most negative response categories were aggregated. There was no item bias by gender or school level on the revised scales. Items assessing cognitive attitudes did not fit the Rasch model and had low internal consistency as a scale. Conclusion Affective attitudes and behavioural intention CATCH sub-scales should be treated separately. Caution should be exercised when using the cognitive subscale. Implications for Rehabilitation The 36-item Chedoke-McMaster Attitudes towards Children with Handicaps (CATCH) scale as a whole did not fit the Rasch model; thus indicating a multi-dimensional scale. Researchers should use two revised eight-item subscales of affective attitudes and behavioural intentions when exploring interventions aiming to improve children's attitudes towards disabled people or factors associated with those attitudes. Researchers should use the cognitive subscale with caution, as it did not create a unidimensional and internally consistent scale. Therefore, conclusions drawn from this scale may not accurately reflect children's attitudes.
Dynamic modeling of neuronal responses in fMRI using cubature Kalman filtering
Havlicek, Martin; Friston, Karl J.; Jan, Jiri; Brazdil, Milan; Calhoun, Vince D.
2011-01-01
This paper presents a new approach to inverting (fitting) models of coupled dynamical systems based on state-of-the-art (cubature) Kalman filtering. Crucially, this inversion furnishes posterior estimates of both the hidden states and parameters of a system, including any unknown exogenous input. Because the underlying generative model is formulated in continuous time (with a discrete observation process) it can be applied to a wide variety of models specified with either ordinary or stochastic differential equations. These are an important class of models that are particularly appropriate for biological time-series, where the underlying system is specified in terms of kinetics or dynamics (i.e., dynamic causal models). We provide comparative evaluations with generalized Bayesian filtering (dynamic expectation maximization) and demonstrate marked improvements in accuracy and computational efficiency. We compare the schemes using a series of difficult (nonlinear) toy examples and conclude with a special focus on hemodynamic models of evoked brain responses in fMRI. Our scheme promises to provide a significant advance in characterizing the functional architectures of distributed neuronal systems, even in the absence of known exogenous (experimental) input; e.g., resting state fMRI studies and spontaneous fluctuations in electrophysiological studies. Importantly, unlike current Bayesian filters (e.g. DEM), our scheme provides estimates of time-varying parameters, which we will exploit in future work on the adaptation and enabling of connections in the brain. PMID:21396454
Filtering in Hybrid Dynamic Bayesian Networks
NASA Technical Reports Server (NTRS)
Andersen, Morten Nonboe; Andersen, Rasmus Orum; Wheeler, Kevin
2000-01-01
We implement a 2-time slice dynamic Bayesian network (2T-DBN) framework and make a 1-D state estimation simulation, an extension of the experiment in (v.d. Merwe et al., 2000) and compare different filtering techniques. Furthermore, we demonstrate experimentally that inference in a complex hybrid DBN is possible by simulating fault detection in a watertank system, an extension of the experiment in (Koller & Lerner, 2000) using a hybrid 2T-DBN. In both experiments, we perform approximate inference using standard filtering techniques, Monte Carlo methods and combinations of these. In the watertank simulation, we also demonstrate the use of 'non-strict' Rao-Blackwellisation. We show that the unscented Kalman filter (UKF) and UKF in a particle filtering framework outperform the generic particle filter, the extended Kalman filter (EKF) and EKF in a particle filtering framework with respect to accuracy in terms of estimation RMSE and sensitivity with respect to choice of network structure. Especially we demonstrate the superiority of UKF in a PF framework when our beliefs of how data was generated are wrong. Furthermore, we investigate the influence of data noise in the watertank simulation using UKF and PFUKD and show that the algorithms are more sensitive to changes in the measurement noise level that the process noise level. Theory and implementation is based on (v.d. Merwe et al., 2000).
Enhanced orbit determination filter: Inclusion of ground system errors as filter parameters
NASA Technical Reports Server (NTRS)
Masters, W. C.; Scheeres, D. J.; Thurman, S. W.
1994-01-01
The theoretical aspects of an orbit determination filter that incorporates ground-system error sources as model parameters for use in interplanetary navigation are presented in this article. This filter, which is derived from sequential filtering theory, allows a systematic treatment of errors in calibrations of transmission media, station locations, and earth orientation models associated with ground-based radio metric data, in addition to the modeling of the spacecraft dynamics. The discussion includes a mathematical description of the filter and an analytical comparison of its characteristics with more traditional filtering techniques used in this application. The analysis in this article shows that this filter has the potential to generate navigation products of substantially greater accuracy than more traditional filtering procedures.
The Effects of Filter Cutoff Frequency on Musculoskeletal Simulations of High-Impact Movements.
Tomescu, Sebastian; Bakker, Ryan; Beach, Tyson A C; Chandrashekar, Naveen
2018-02-12
Estimation of muscle forces through musculoskeletal simulation is important in understanding human movement and injury. Unmatched filter frequencies used to low-pass filter marker and force platform data can create artifacts during inverse dynamics analysis, but their effects on muscle force calculations are unknown. The objective of this study was to determine the effects of filter cutoff frequency on simulation parameters and magnitudes of lower extremity muscle and resultant joint contact forces during a high-impact maneuver. Eight participants performed a single leg jump-landing. Kinematics were captured with a 3D motion capture system and ground reaction forces were recorded with a force platform. The marker and force platform data were filtered using two matched filter frequencies (10-10Hz, 15-15Hz) and two unmatched frequencies (10-50Hz, 15-50Hz). Musculoskeletal simulations using Computed Muscle Control were performed in OpenSim. The results revealed significantly higher peak quadriceps (13%), hamstrings (48%), and gastrocnemius forces (69%) in the unmatched (10-50Hz, 15-50Hz) conditions than in the matched (10-10Hz, 15-15Hz) conditions (p<0.05). Resultant joint contact forces and reserve (non-physiologic) moments were similarly larger in the unmatched filter categories (p<0.05). This study demonstrated that artifacts created from filtering with unmatched filter cutoffs result in altered muscle forces and dynamics which are not physiologic.
Identifying Bearing Rotodynamic Coefficients Using an Extended Kalman Filter
NASA Technical Reports Server (NTRS)
Miller, Brad A.; Howard, Samuel A.
2008-01-01
An Extended Kalman Filter is developed to estimate the linearized direct and indirect stiffness and damping force coefficients for bearings in rotor dynamic applications from noisy measurements of the shaft displacement in response to imbalance and impact excitation. The bearing properties are modeled as stochastic random variables using a Gauss-Markov model. Noise terms are introduced into the system model to account for all of the estimation error, including modeling errors and uncertainties and the propagation of measurement errors into the parameter estimates. The system model contains two user-defined parameters that can be tuned to improve the filter's performance; these parameters correspond to the covariance of the system and measurement noise variables. The filter is also strongly influenced by the initial values of the states and the error covariance matrix. The filter is demonstrated using numerically simulated data for a rotor bearing system with two identical bearings, which reduces the number of unknown linear dynamic coefficients to eight. The filter estimates for the direct damping coefficients and all four stiffness coefficients correlated well with actual values, whereas the estimates for the cross-coupled damping coefficients were the least accurate.
A moving hum filter to suppress rotor noise in high-resolution airborne magnetic data
Xia, J.; Doll, W.E.; Miller, R.D.; Gamey, T.J.; Emond, A.M.
2005-01-01
A unique filtering approach is developed to eliminate helicopter rotor noise. It is designed to suppress harmonic noise from a rotor that varies slightly in amplitude, phase, and frequency and that contaminates aero-magnetic data. The filter provides a powerful harmonic noise-suppression tool for data acquired with modern large-dynamic-range recording systems. This three-step approach - polynomial fitting, bandpass filtering, and rotor-noise synthesis - significantly reduces rotor noise without altering the spectra of signals of interest. Two steps before hum filtering - polynomial fitting and bandpass filtering - are critical to accurately model the weak rotor noise. During rotor-noise synthesis, amplitude, phase, and frequency are determined. Data are processed segment by segment so that there is no limit on the length of data. The segment length changes dynamically along a line based on modeling results. Modeling the rotor noise is stable and efficient. Real-world data examples demonstrate that this method can suppress rotor noise by more than 95% when implemented in an aeromagnetic data-processing flow. ?? 2005 Society of Exploration Geophysicists. All rights reserved.
Shaper design in CMOS for high dynamic range
De Geronimo, Gianluigi; Li, Shaorui
2015-06-30
An analog filter is presented that comprises a chain of filter stages, a feedback resistor for providing a negative feedback, and a feedback capacitor for providing a positive feedback. Each filter stage has an input node and an output node. The output node of a filter stage is connected to the input node of an immediately succeeding filter stage through a resistor. The feedback resistor has a first end connected to the output node of the last filter stage along the chain of filter stages, and a second end connected to the input node of a first preceding filter stage. The feedback capacitor has a first end connected to the output node of one of the chain of filter stages, and a second end connected to the input node of a second preceding filter stage.
Predictive accuracy of particle filtering in dynamic models supporting outbreak projections.
Safarishahrbijari, Anahita; Teyhouee, Aydin; Waldner, Cheryl; Liu, Juxin; Osgood, Nathaniel D
2017-09-26
While a new generation of computational statistics algorithms and availability of data streams raises the potential for recurrently regrounding dynamic models with incoming observations, the effectiveness of such arrangements can be highly subject to specifics of the configuration (e.g., frequency of sampling and representation of behaviour change), and there has been little attempt to identify effective configurations. Combining dynamic models with particle filtering, we explored a solution focusing on creating quickly formulated models regrounded automatically and recurrently as new data becomes available. Given a latent underlying case count, we assumed that observed incident case counts followed a negative binomial distribution. In accordance with the condensation algorithm, each such observation led to updating of particle weights. We evaluated the effectiveness of various particle filtering configurations against each other and against an approach without particle filtering according to the accuracy of the model in predicting future prevalence, given data to a certain point and a norm-based discrepancy metric. We examined the effectiveness of particle filtering under varying times between observations, negative binomial dispersion parameters, and rates with which the contact rate could evolve. We observed that more frequent observations of empirical data yielded super-linearly improved accuracy in model predictions. We further found that for the data studied here, the most favourable assumptions to make regarding the parameters associated with the negative binomial distribution and changes in contact rate were robust across observation frequency and the observation point in the outbreak. Combining dynamic models with particle filtering can perform well in projecting future evolution of an outbreak. Most importantly, the remarkable improvements in predictive accuracy resulting from more frequent sampling suggest that investments to achieve efficient reporting mechanisms may be more than paid back by improved planning capacity. The robustness of the results on particle filter configuration in this case study suggests that it may be possible to formulate effective standard guidelines and regularized approaches for such techniques in particular epidemiological contexts. Most importantly, the work tentatively suggests potential for health decision makers to secure strong guidance when anticipating outbreak evolution for emerging infectious diseases by combining even very rough models with particle filtering method.
Temperature control in a solar collector field using Filtered Dynamic Matrix Control.
Lima, Daniel Martins; Normey-Rico, Julio Elias; Santos, Tito Luís Maia
2016-05-01
This paper presents the output temperature control of a solar collector field of a desalinization plant using the Filtered Dynamic Matrix Control (FDMC). The FDMC is a modified controller based on the Dynamic Matrix Control (DMC), a predictive control strategy widely used in industry. In the FDMC, a filter is used in the prediction error, which allows the modification of the robustness and disturbance rejection characteristics of the original algorithm. The implementation and tuning of the FDMC are simple and maintain the advantages of DMC. Several simulation results using a validated model of the solar plant are presented considering different scenarios. The results are also compared to nonlinear control techniques, showing that FDMC, if properly tuned, can yield similar results to more complex control algorithms. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Abe-Kim, J; Okazaki, S; Goto, S G
2001-08-01
This study used generational status and the Suinn-Lew Asian Self-Identity Acculturation scale to examine unidimensional versus multidimensional approaches to the conceptualization and measurement of acculturation and their relationships to relevant cultural indicator variables, including measures of Individualism-Collectivism, Independent-Interdependent Self-Construal, Loss of Face, and Impression Management. Multivariate analyses of covariance and partial correlations were used to examine the relationship between the acculturation models and each set of cultural indicator variables while controlling for socioeconomic status. Given that acculturation differences are often cited as evidence for a culture effect between groups, the present findings of an uneven nature of these relationships as a function of the particular acculturation measurement strategy have important implications for research on Asian Americans.
Lin, Chung-Ying; Yang, Szu-Chun; Lai, Wu-Wei; Su, Wu-Chou; Wang, Jung-Der
2017-03-01
The study examined whether the items of the World Health Organization Quality of Life-Brief questionnaire can assess its four underlying domains (Physical, Psychological, Social, and Environment) in a sample of lung cancer patients. All patients ( n = 1150) were recruited from a medical center in Tainan, and each participant completed the World Health Organization Quality of Life-Brief. Several Rasch rating scale models were used to examine the data-model fit, and Rasch analyses corroborated that each domain of the World Health Organization Quality of Life-Brief could be unidimensional. Although three items were found to have a poor fit, all the other items fit the unidimensionality with ordered thresholds.
Petriwskyj, Andrea; Gibson, Alexandra; Webby, Glenys
2015-04-01
With increasing focus on client control and active client roles in aged care service provision, client engagement is highlighted as fundamental to contemporary care practice. Client engagement itself, however, is complex and is impacted by a range of issues including the relationships and power dynamics inherent in the care context. These dynamics do not simply reflect the roles that are available to or taken up by clients; just as important are the roles and positions that staff of aged care services are offered, and take up, in client engagement. This paper presents the findings of a study that explored client engagement practice within a large Australian service provider. Analysis of interview and focus group discussions addressed the ways in which staff were positioned - by both themselves and by clients - in terms of the roles that they hold within engagement practice and the power relations inherent within these. Analysis of power from the dominant policy perspective of choice and control, and the alternative perspective of an ethic of care suggests that power relations within the care context are dynamic, complex and involve on-going negotiation and regulation by clients and staff members in aged care. The use of these two contrasting perspectives reveals a more dynamic and complex understanding of power in care practice than dominant uni-dimensional approaches to critique suggest. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Halyo, N.
1976-01-01
A digital automatic control law to capture a steep glideslope and track the glideslope to a specified altitude is developed for the longitudinal/vertical dynamics of a CTOL aircraft using modern estimation and control techniques. The control law uses a constant gain Kalman filter to process guidance information from the microwave landing system, and acceleration from body mounted accelerometer data. The filter outputs navigation data and wind velocity estimates which are used in controlling the aircraft. Results from a digital simulation of the aircraft dynamics and the control law are presented for various wind conditions.
On-line implementation of nonlinear parameter estimation for the Space Shuttle main engine
NASA Technical Reports Server (NTRS)
Buckland, Julia H.; Musgrave, Jeffrey L.; Walker, Bruce K.
1992-01-01
We investigate the performance of a nonlinear estimation scheme applied to the estimation of several parameters in a performance model of the Space Shuttle Main Engine. The nonlinear estimator is based upon the extended Kalman filter which has been augmented to provide estimates of several key performance variables. The estimated parameters are directly related to the efficiency of both the low pressure and high pressure fuel turbopumps. Decreases in the parameter estimates may be interpreted as degradations in turbine and/or pump efficiencies which can be useful measures for an online health monitoring algorithm. This paper extends previous work which has focused on off-line parameter estimation by investigating the filter's on-line potential from a computational standpoint. ln addition, we examine the robustness of the algorithm to unmodeled dynamics. The filter uses a reduced-order model of the engine that includes only fuel-side dynamics. The on-line results produced during this study are comparable to off-line results generated previously. The results show that the parameter estimates are sensitive to dynamics not included in the filter model. Off-line results using an extended Kalman filter with a full order engine model to address the robustness problems of the reduced-order model are also presented.
NASA Technical Reports Server (NTRS)
Wasynczuk, O.; Krause, P. C.; Biess, J. J.; Kapustka, R.
1990-01-01
A detailed computer simulation was used to illustrate the steady-state and dynamic operating characteristics of a 20-kHz resonant spacecraft power system. The simulated system consists of a parallel-connected set of DC-inductor resonant inverters (drivers), a 440-V cable, a node transformer, a 220-V cable, and a transformer-rectifier-filter (TRF) AC-to-DC receiver load. Also included in the system are a 1-kW 0.8-pf RL load and a double-LC filter connected at the receiving end of the 20-kHz AC system. The detailed computer simulation was used to illustrate the normal steady-state operating characteristics and the dynamic system performance following, for example, TRF startup. It is shown that without any filtering the given system exhibits harmonic resonances due to an interaction between the switching of the source and/or load converters and the AC system. However, the double-LC filter at the receiving-end of the AC system and harmonic traps connected in series with each of the drivers significantly reduce the harmonic distortion of the 20-kHz bus voltage. Significant additional improvement in the waveform quality can be achieved by including a double-LC filter with each driver.
A Two-Stage Kalman Filter Approach for Robust and Real-Time Power System State Estimation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jinghe; Welch, Greg; Bishop, Gary
2014-04-01
As electricity demand continues to grow and renewable energy increases its penetration in the power grid, realtime state estimation becomes essential for system monitoring and control. Recent development in phasor technology makes it possible with high-speed time-synchronized data provided by Phasor Measurement Units (PMU). In this paper we present a two-stage Kalman filter approach to estimate the static state of voltage magnitudes and phase angles, as well as the dynamic state of generator rotor angles and speeds. Kalman filters achieve optimal performance only when the system noise characteristics have known statistical properties (zero-mean, Gaussian, and spectrally white). However in practicemore » the process and measurement noise models are usually difficult to obtain. Thus we have developed the Adaptive Kalman Filter with Inflatable Noise Variances (AKF with InNoVa), an algorithm that can efficiently identify and reduce the impact of incorrect system modeling and/or erroneous measurements. In stage one, we estimate the static state from raw PMU measurements using the AKF with InNoVa; then in stage two, the estimated static state is fed into an extended Kalman filter to estimate the dynamic state. Simulations demonstrate its robustness to sudden changes of system dynamics and erroneous measurements.« less
A Tentative Application Of Morphological Filters To Time-Varying Images
NASA Astrophysics Data System (ADS)
Billard, D.; Poquillon, B.
1989-03-01
In this paper, morphological filters, which are commonly used to process either 2D or multidimensional static images, are generalized to the analysis of time-varying image sequence. The introduction of the time dimension induces then interesting prop-erties when designing such spatio-temporal morphological filters. In particular, the specification of spatio-temporal structuring ele-ments (equivalent to time-varying spatial structuring elements) can be adjusted according to the temporal variations of the image sequences to be processed : this allows to derive specific morphological transforms to perform noise filtering or moving objects discrimination on dynamic images viewed by a non-stationary sensor. First, a brief introduction to the basic principles underlying morphological filters will be given. Then, a straightforward gener-alization of these principles to time-varying images will be pro-posed. This will lead us to define spatio-temporal opening and closing and to introduce some of their possible applications to process dynamic images. At last, preliminary results obtained us-ing a natural forward looking infrared (FUR) image sequence are presented.
Upper Atmosphere Research Satellite (UARS) onboard attitude determination using a Kalman filter
NASA Technical Reports Server (NTRS)
Garrick, Joseph
1993-01-01
The Upper Atmospheric Research Satellite (UARS) requires a highly accurate knowledge of its attitude to accomplish its mission. Propagation of the attitude state using gyro measurements is not sufficient to meet the accuracy requirements, and must be supplemented by a observer/compensation process to correct for dynamics and observation anomalies. The process of amending the attitude state utilizes a well known method, the discrete Kalman Filter. This study is a sensitivity analysis of the discrete Kalman Filter as implemented in the UARS Onboard Computer (OBC). The stability of the Kalman Filter used in the normal on-orbit control mode within the OBC, is investigated for the effects of corrupted observations and nonlinear errors. Also, a statistical analysis on the residuals of the Kalman Filter is performed. These analysis is based on simulations using the UARS Dynamics Simulator (UARSDSIM) and compared against attitude requirements as defined by General Electric (GE). An independent verification of expected accuracies is performed using the Attitude Determination Error Analysis System (ADEAS).
Analysis of piezoelectric energy harvester under modulated and filtered white Gaussian noise
NASA Astrophysics Data System (ADS)
Quaranta, Giuseppe; Trentadue, Francesco; Maruccio, Claudio; Marano, Giuseppe C.
2018-05-01
This paper proposes a comprehensive method for the electromechanical probabilistic analysis of piezoelectric energy harvesters subjected to modulated and filtered white Gaussian noise (WGN) at the base. Specifically, the dynamic excitation is simulated by means of an amplitude-modulated WGN, which is filtered through the Clough-Penzien filter. The considered piezoelectric harvester is a cantilever bimorph modeled as Euler-Bernoulli beam with a concentrated mass at the free-end, and its global behavior is approximated by the fundamental vibration mode (which is tuned with the dominant frequency of the dynamic input). A resistive electrical load is considered in the circuit. Once the Lyapunov equation of the coupled electromechanical problem has been formulated, an original and efficient semi-analytical procedure is proposed to estimate mean and standard deviation of the electrical energy extracted from the piezoelectric layers.
Dynamic modeling of neuronal responses in fMRI using cubature Kalman filtering.
Havlicek, Martin; Friston, Karl J; Jan, Jiri; Brazdil, Milan; Calhoun, Vince D
2011-06-15
This paper presents a new approach to inverting (fitting) models of coupled dynamical systems based on state-of-the-art (cubature) Kalman filtering. Crucially, this inversion furnishes posterior estimates of both the hidden states and parameters of a system, including any unknown exogenous input. Because the underlying generative model is formulated in continuous time (with a discrete observation process) it can be applied to a wide variety of models specified with either ordinary or stochastic differential equations. These are an important class of models that are particularly appropriate for biological time-series, where the underlying system is specified in terms of kinetics or dynamics (i.e., dynamic causal models). We provide comparative evaluations with generalized Bayesian filtering (dynamic expectation maximization) and demonstrate marked improvements in accuracy and computational efficiency. We compare the schemes using a series of difficult (nonlinear) toy examples and conclude with a special focus on hemodynamic models of evoked brain responses in fMRI. Our scheme promises to provide a significant advance in characterizing the functional architectures of distributed neuronal systems, even in the absence of known exogenous (experimental) input; e.g., resting state fMRI studies and spontaneous fluctuations in electrophysiological studies. Importantly, unlike current Bayesian filters (e.g. DEM), our scheme provides estimates of time-varying parameters, which we will exploit in future work on the adaptation and enabling of connections in the brain. Copyright © 2011 Elsevier Inc. All rights reserved.
Naeem, S.; Prager, Case; Weeks, Brian; Varga, Alex; Flynn, Dan F. B.; Griffin, Kevin; Muscarella, Robert; Palmer, Matthew; Wood, Stephen; Schuster, William
2016-01-01
Biodiversity is inherently multidimensional, encompassing taxonomic, functional, phylogenetic, genetic, landscape and many other elements of variability of life on the Earth. However, this fundamental principle of multidimensionality is rarely applied in research aimed at understanding biodiversity's value to ecosystem functions and the services they provide. This oversight means that our current understanding of the ecological and environmental consequences of biodiversity loss is limited primarily to what unidimensional studies have revealed. To address this issue, we review the literature, develop a conceptual framework for multidimensional biodiversity research based on this review and provide a case study to explore the framework. Our case study specifically examines how herbivory by whitetail deer (Odocoileus virginianus) alters the multidimensional influence of biodiversity on understory plant cover at Black Rock Forest, New York. Using three biodiversity dimensions (taxonomic, functional and phylogenetic diversity) to explore our framework, we found that herbivory alters biodiversity's multidimensional influence on plant cover; an effect not observable through a unidimensional approach. Although our review, framework and case study illustrate the advantages of multidimensional over unidimensional approaches, they also illustrate the statistical and empirical challenges such work entails. Meeting these challenges, however, where data and resources permit, will be important if we are to better understand and manage the consequences we face as biodiversity continues to decline in the foreseeable future. PMID:27928041
Naeem, S; Prager, Case; Weeks, Brian; Varga, Alex; Flynn, Dan F B; Griffin, Kevin; Muscarella, Robert; Palmer, Matthew; Wood, Stephen; Schuster, William
2016-12-14
Biodiversity is inherently multidimensional, encompassing taxonomic, functional, phylogenetic, genetic, landscape and many other elements of variability of life on the Earth. However, this fundamental principle of multidimensionality is rarely applied in research aimed at understanding biodiversity's value to ecosystem functions and the services they provide. This oversight means that our current understanding of the ecological and environmental consequences of biodiversity loss is limited primarily to what unidimensional studies have revealed. To address this issue, we review the literature, develop a conceptual framework for multidimensional biodiversity research based on this review and provide a case study to explore the framework. Our case study specifically examines how herbivory by whitetail deer (Odocoileus virginianus) alters the multidimensional influence of biodiversity on understory plant cover at Black Rock Forest, New York. Using three biodiversity dimensions (taxonomic, functional and phylogenetic diversity) to explore our framework, we found that herbivory alters biodiversity's multidimensional influence on plant cover; an effect not observable through a unidimensional approach. Although our review, framework and case study illustrate the advantages of multidimensional over unidimensional approaches, they also illustrate the statistical and empirical challenges such work entails. Meeting these challenges, however, where data and resources permit, will be important if we are to better understand and manage the consequences we face as biodiversity continues to decline in the foreseeable future. © 2016 The Authors.
Gothwal, Vijaya K; Srinivas, Marmamula; Rao, Gullapalli N
2013-05-01
To examine the psychometric characteristics of the World Health Organization quality of life instrument-modified Indian version (modified WHOQOL) and its subscales in adults with visual impairment (VI) using Rasch analysis. Cross-sectional data were of people aged ≥40 years with VI (n = 1,333) who responded to the modified WHOQOL in the Andhra Pradesh Eye Disease Study, India. Rasch analysis was used to explore the instrument and its subscales for key indices such as measurement precision by person separation reliability, PSR (i.e., discrimination between strata of participants' health-related QOL [HRQOL], recommended minimum value 0.8), unidimensionality (i.e., measurement of a single construct), and targeting (i.e., matching of item difficulty to participants' HRQOL). Rasch-guided iterative approach including category re-organization to enable threshold ordering and item deletion to overcome multidimensionality resulted in a unidimensional 9-item WHOQOL and a 6-item level of independence (LOI) subscale with adequate PSR (0.81 and 0.82, respectively). Targeting was sub-optimal for both (-1.58 logits for WHOQOL and -2.55 logits for the subscale). Remaining subscales were dysfunctional. The WHOQOL and LOI subscale can be improved and shortened, and the Rasch-revised versions are likely to assess the HROQL of VI patients best because of their brevity, reliability, and unidimensionality.
Ares-I Bending Filter Design using a Constrained Optimization Approach
NASA Technical Reports Server (NTRS)
Hall, Charles; Jang, Jiann-Woei; Hall, Robert; Bedrossian, Nazareth
2008-01-01
The Ares-I launch vehicle represents a challenging flex-body structural environment for control system design. Software filtering of the inertial sensor output is required to ensure adequate stable response to guidance commands while minimizing trajectory deviations. This paper presents a design methodology employing numerical optimization to develop the Ares-I bending filters. The design objectives include attitude tracking accuracy and robust stability with respect to rigid body dynamics, propellant slosh, and flex. Under the assumption that the Ares-I time-varying dynamics and control system can be frozen over a short period of time, the bending filters are designed to stabilize all the selected frozen-time launch control systems in the presence of parameter uncertainty. To ensure adequate response to guidance command, step response specifications are introduced as constraints in the optimization problem. Imposing these constrains minimizes performance degradation caused by the addition of the bending filters. The first stage bending filter design achieves stability by adding lag to the first structural frequency to phase stabilize the first flex mode while gain stabilizing the higher modes. The upper stage bending filter design gain stabilizes all the flex bending modes. The bending filter designs provided here have been demonstrated to provide stable first and second stage control systems in both Draper Ares Stability Analysis Tool (ASAT) and the MSFC MAVERIC 6DOF nonlinear time domain simulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qi, Junjian; Sun, Kai; Wang, Jianhui
In this paper, in order to enhance the numerical stability of the unscented Kalman filter (UKF) used for power system dynamic state estimation, a new UKF with guaranteed positive semidifinite estimation error covariance (UKFGPS) is proposed and compared with five existing approaches, including UKFschol, UKF-kappa, UKFmodified, UKF-Delta Q, and the squareroot UKF (SRUKF). These methods and the extended Kalman filter (EKF) are tested by performing dynamic state estimation on WSCC 3-machine 9-bus system and NPCC 48-machine 140-bus system. For WSCC system, all methods obtain good estimates. However, for NPCC system, both EKF and the classic UKF fail. It is foundmore » that UKFschol, UKF-kappa, and UKF-Delta Q do not work well in some estimations while UKFGPS works well in most cases. UKFmodified and SRUKF can always work well, indicating their better scalability mainly due to the enhanced numerical stability.« less
GARCH modelling of covariance in dynamical estimation of inverse solutions
NASA Astrophysics Data System (ADS)
Galka, Andreas; Yamashita, Okito; Ozaki, Tohru
2004-12-01
The problem of estimating unobserved states of spatially extended dynamical systems poses an inverse problem, which can be solved approximately by a recently developed variant of Kalman filtering; in order to provide the model of the dynamics with more flexibility with respect to space and time, we suggest to combine the concept of GARCH modelling of covariance, well known in econometrics, with Kalman filtering. We formulate this algorithm for spatiotemporal systems governed by stochastic diffusion equations and demonstrate its feasibility by presenting a numerical simulation designed to imitate the situation of the generation of electroencephalographic recordings by the human cortex.
NASA Astrophysics Data System (ADS)
Corbetta, Matteo; Sbarufatti, Claudio; Giglio, Marco; Todd, Michael D.
2018-05-01
The present work critically analyzes the probabilistic definition of dynamic state-space models subject to Bayesian filters used for monitoring and predicting monotonic degradation processes. The study focuses on the selection of the random process, often called process noise, which is a key perturbation source in the evolution equation of particle filtering. Despite the large number of applications of particle filtering predicting structural degradation, the adequacy of the picked process noise has not been investigated. This paper reviews existing process noise models that are typically embedded in particle filters dedicated to monitoring and predicting structural damage caused by fatigue, which is monotonic in nature. The analysis emphasizes that existing formulations of the process noise can jeopardize the performance of the filter in terms of state estimation and remaining life prediction (i.e., damage prognosis). This paper subsequently proposes an optimal and unbiased process noise model and a list of requirements that the stochastic model must satisfy to guarantee high prognostic performance. These requirements are useful for future and further implementations of particle filtering for monotonic system dynamics. The validity of the new process noise formulation is assessed against experimental fatigue crack growth data from a full-scale aeronautical structure using dedicated performance metrics.
Electroencephalographic compression based on modulated filter banks and wavelet transform.
Bazán-Prieto, Carlos; Cárdenas-Barrera, Julián; Blanco-Velasco, Manuel; Cruz-Roldán, Fernando
2011-01-01
Due to the large volume of information generated in an electroencephalographic (EEG) study, compression is needed for storage, processing or transmission for analysis. In this paper we evaluate and compare two lossy compression techniques applied to EEG signals. It compares the performance of compression schemes with decomposition by filter banks or wavelet Packets transformation, seeking the best value for compression, best quality and more efficient real time implementation. Due to specific properties of EEG signals, we propose a quantization stage adapted to the dynamic range of each band, looking for higher quality. The results show that the compressor with filter bank performs better than transform methods. Quantization adapted to the dynamic range significantly enhances the quality.
A comparison of washout filters using a human dynamic orientation model. M.S. Thesis
NASA Technical Reports Server (NTRS)
Riedel, S. A.
1977-01-01
The Ormsby model of human dynamic orientation, a discrete time computer program, was used to provide a vestibular explanation for observed differences between two washout schemes. These washout schemes, a linear washout and a nonlinear washout, were subjectively evaluated. It was found that the linear washout presented false rate cues, causing pilots to rate the simulation fidelity of the linear scheme much lower than the nonlinear scheme. By inputting these motion histories into the Ormsby model, it was shown that the linear filter causes discontinuities in the pilot's perceived angular velocity, resulting in the sensation of an anomalous rate cue. This phenomenon does not occur with the use of the nonlinear filter.
Lee, Carson O; Boe-Hansen, Rasmus; Musovic, Sanin; Smets, Barth; Albrechtsen, Hans-Jørgen; Binning, Philip
2014-11-01
Biological rapid sand filters are often used to remove ammonium from groundwater for drinking water supply. They often operate under dynamic substrate and hydraulic loading conditions, which can lead to increased levels of ammonium and nitrite in the effluent. To determine the maximum nitrification rates and safe operating windows of rapid sand filters, a pilot scale rapid sand filter was used to test short-term increased ammonium loads, set by varying either influent ammonium concentrations or hydraulic loading rates. Ammonium and iron (flock) removal were consistent between the pilot and the full-scale filter. Nitrification rates and ammonia-oxidizing bacteria and archaea were quantified throughout the depth of the filter. The ammonium removal capacity of the filter was determined to be 3.4 g NH4-N m(-3) h(-1), which was 5 times greater than the average ammonium loading rate under reference operating conditions. The ammonium removal rate of the filter was determined by the ammonium loading rate, but was independent of both the flow and influent ammonium concentration individually. Ammonia-oxidizing bacteria and archaea were almost equally abundant in the filter. Both ammonium removal and ammonia-oxidizing bacteria density were strongly stratified, with the highest removal and ammonia-oxidizing bacteria densities at the top of the filter. Cell specific ammonium oxidation rates were on average 0.6 × 10(2) ± 0.2 × 10(2) fg NH4-N h(-1) cell(-1). Our findings indicate that these rapid sand filters can safely remove both nitrite and ammonium over a larger range of loading rates than previously assumed. Copyright © 2014 Elsevier Ltd. All rights reserved.
Control, Filtering and Prediction for Phased Arrays in Directed Energy Systems
2016-04-30
adaptive optics. 15. SUBJECT TERMS control, filtering, prediction, system identification, adaptive optics, laser beam pointing, target tracking, phase... laser beam control; furthermore, wavefront sensors are plagued by the difficulty of maintaining the required alignment and focusing in dynamic mission...developed new methods for filtering, prediction and system identification in adaptive optics for high energy laser systems including phased arrays. The
Identifying Bearing Rotordynamic Coefficients using an Extended Kalman Filter
NASA Technical Reports Server (NTRS)
Miller, Brad A.; Howard, Samuel A.
2008-01-01
An Extended Kalman Filter is developed to estimate the linearized direct and indirect stiffness and damping force coefficients for bearings in rotor-dynamic applications from noisy measurements of the shaft displacement in response to imbalance and impact excitation. The bearing properties are modeled as stochastic random variables using a Gauss-Markov model. Noise terms are introduced into the system model to account for all of the estimation error, including modeling errors and uncertainties and the propagation of measurement errors into the parameter estimates. The system model contains two user-defined parameters that can be tuned to improve the filter s performance; these parameters correspond to the covariance of the system and measurement noise variables. The filter is also strongly influenced by the initial values of the states and the error covariance matrix. The filter is demonstrated using numerically simulated data for a rotor-bearing system with two identical bearings, which reduces the number of unknown linear dynamic coefficients to eight. The filter estimates for the direct damping coefficients and all four stiffness coefficients correlated well with actual values, whereas the estimates for the cross-coupled damping coefficients were the least accurate.
External modes in quantum dot light emitting diode with filtered optical feedback
NASA Astrophysics Data System (ADS)
Al Husseini, Hussein B.; Al Naimee, Kais A.; Al-Khursan, Amin H.; Khedir, Ali. H.
2016-06-01
This research reports a theoretical investigation on the role of filtered optical feedback (FOF) in the quantum dot light emitting diode (QD-LED). The underlying dynamics is affected by a sidle node, which returns to an elliptical shape when the wetting layer (WL) is neglected. Both filter width and time delay change the appearance of different dynamics (chaotic and mixed mode oscillations, MMOs). The results agree with the experimental observations. Here, the fixed point analysis for QDs was done for the first time. For QD-LED with FOF, the system transits from the coherence collapse case in conventional optical feedback to a coherent case with a filtered mode in FOF. It was found that the WL washes out the modes which is an unexpected result. This may attributed to the longer capture time of WL compared with that between QD states. Thus, WL reduces the chaotic behavior.
Lattice Boltzmann simulations for wall-flow dynamics in porous ceramic diesel particulate filters
NASA Astrophysics Data System (ADS)
Lee, Da Young; Lee, Gi Wook; Yoon, Kyu; Chun, Byoungjin; Jung, Hyun Wook
2018-01-01
Flows through porous filter walls of wall-flow diesel particulate filter are investigated using the lattice Boltzmann method (LBM). The microscopic model of the realistic filter wall is represented by randomly overlapped arrays of solid spheres. The LB simulation results are first validated by comparison to those from previous hydrodynamic theories and constitutive models for flows in porous media with simple regular and random solid-wall configurations. We demonstrate that the newly designed randomly overlapped array structures of porous walls allow reliable and accurate simulations for the porous wall-flow dynamics in a wide range of solid volume fractions from 0.01 to about 0.8, which is beyond the maximum random packing limit of 0.625. The permeable performance of porous media is scrutinized by changing the solid volume fraction and particle Reynolds number using Darcy's law and Forchheimer's extension in the laminar flow region.
Thermally controlled femtosecond pulse shaping using metasurface based optical filters
NASA Astrophysics Data System (ADS)
Rahimi, Eesa; Şendur, Kürşat
2018-02-01
Shaping of the temporal distribution of the ultrashort pulses, compensation of pulse deformations due to phase shift in transmission and amplification are of interest in various optical applications. To address these problems, in this study, we have demonstrated an ultra-thin reconfigurable localized surface plasmon (LSP) band-stop optical filter driven by insulator-metal phase transition of vanadium dioxide. A Joule heating mechanism is proposed to control the thermal phase transition of the material. The resulting permittivity variation of vanadium dioxide tailors spectral response of the transmitted pulse from the stack. Depending on how the pulse's spectrum is located with respect to the resonance of the band-stop filter, the thin film stack can dynamically compress/expand the output pulse span up to 20% or shift its phase up to 360°. Multi-stacked filters have shown the ability to dynamically compensate input carrier frequency shifts and pulse span variations besides their higher span expansion rates.
External modes in quantum dot light emitting diode with filtered optical feedback
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al Husseini, Hussein B.; Department of Physics, College of Science, University of Baghdad, Al Jadiriyah, Baghdad; Al Naimee, Kais A.
2016-06-14
This research reports a theoretical investigation on the role of filtered optical feedback (FOF) in the quantum dot light emitting diode (QD-LED). The underlying dynamics is affected by a sidle node, which returns to an elliptical shape when the wetting layer (WL) is neglected. Both filter width and time delay change the appearance of different dynamics (chaotic and mixed mode oscillations, MMOs). The results agree with the experimental observations. Here, the fixed point analysis for QDs was done for the first time. For QD-LED with FOF, the system transits from the coherence collapse case in conventional optical feedback to amore » coherent case with a filtered mode in FOF. It was found that the WL washes out the modes which is an unexpected result. This may attributed to the longer capture time of WL compared with that between QD states. Thus, WL reduces the chaotic behavior.« less
A neighbor pixel communication filtering structure for Dynamic Vision Sensors
NASA Astrophysics Data System (ADS)
Xu, Yuan; Liu, Shiqi; Lu, Hehui; Zhang, Zilong
2017-02-01
For Dynamic Vision Sensors (DVS), thermal noise and junction leakage current induced Background Activity (BA) is the major cause of the deterioration of images quality. Inspired by the smoothing filtering principle of horizontal cells in vertebrate retina, A DVS pixel with Neighbor Pixel Communication (NPC) filtering structure is proposed to solve this issue. The NPC structure is designed to judge the validity of pixel's activity through the communication between its 4 adjacent pixels. The pixel's outputs will be suppressed if its activities are determined not real. The proposed pixel's area is 23.76×24.71μm2 and only 3ns output latency is introduced. In order to validate the effectiveness of the structure, a 5×5 pixel array has been implemented in SMIC 0.13μm CIS process. 3 test cases of array's behavioral model show that the NPC-DVS have an ability of filtering the BA.
Parameter estimation for stiff deterministic dynamical systems via ensemble Kalman filter
NASA Astrophysics Data System (ADS)
Arnold, Andrea; Calvetti, Daniela; Somersalo, Erkki
2014-10-01
A commonly encountered problem in numerous areas of applications is to estimate the unknown coefficients of a dynamical system from direct or indirect observations at discrete times of some of the components of the state vector. A related problem is to estimate unobserved components of the state. An egregious example of such a problem is provided by metabolic models, in which the numerous model parameters and the concentrations of the metabolites in tissue are to be estimated from concentration data in the blood. A popular method for addressing similar questions in stochastic and turbulent dynamics is the ensemble Kalman filter (EnKF), a particle-based filtering method that generalizes classical Kalman filtering. In this work, we adapt the EnKF algorithm for deterministic systems in which the numerical approximation error is interpreted as a stochastic drift with variance based on classical error estimates of numerical integrators. This approach, which is particularly suitable for stiff systems where the stiffness may depend on the parameters, allows us to effectively exploit the parallel nature of particle methods. Moreover, we demonstrate how spatial prior information about the state vector, which helps the stability of the computed solution, can be incorporated into the filter. The viability of the approach is shown by computed examples, including a metabolic system modeling an ischemic episode in skeletal muscle, with a high number of unknown parameters.
LLSURE: local linear SURE-based edge-preserving image filtering.
Qiu, Tianshuang; Wang, Aiqi; Yu, Nannan; Song, Aimin
2013-01-01
In this paper, we propose a novel approach for performing high-quality edge-preserving image filtering. Based on a local linear model and using the principle of Stein's unbiased risk estimate as an estimator for the mean squared error from the noisy image only, we derive a simple explicit image filter which can filter out noise while preserving edges and fine-scale details. Moreover, this filter has a fast and exact linear-time algorithm whose computational complexity is independent of the filtering kernel size; thus, it can be applied to real time image processing tasks. The experimental results demonstrate the effectiveness of the new filter for various computer vision applications, including noise reduction, detail smoothing and enhancement, high dynamic range compression, and flash/no-flash denoising.
A survey of design methods for failure detection in dynamic systems
NASA Technical Reports Server (NTRS)
Willsky, A. S.
1975-01-01
A number of methods for detecting abrupt changes (such as failures) in stochastic dynamical systems are surveyed. The class of linear systems is concentrated on but the basic concepts, if not the detailed analyses, carry over to other classes of systems. The methods surveyed range from the design of specific failure-sensitive filters, to the use of statistical tests on filter innovations, to the development of jump process formulations. Tradeoffs in complexity versus performance are discussed.
NASA Technical Reports Server (NTRS)
Gullbrand, Jessica
2003-01-01
In this paper, turbulence-closure models are evaluated using the 'true' LES approach in turbulent channel flow. The study is an extension of the work presented by Gullbrand (2001), where fourth-order commutative filter functions are applied in three dimensions in a fourth-order finite-difference code. The true LES solution is the grid-independent solution to the filtered governing equations. The solution is obtained by keeping the filter width constant while the computational grid is refined. As the grid is refined, the solution converges towards the true LES solution. The true LES solution will depend on the filter width used, but will be independent of the grid resolution. In traditional LES, because the filter is implicit and directly connected to the grid spacing, the solution converges towards a direct numerical simulation (DNS) as the grid is refined, and not towards the solution of the filtered Navier-Stokes equations. The effect of turbulence-closure models is therefore difficult to determine in traditional LES because, as the grid is refined, more turbulence length scales are resolved and less influence from the models is expected. In contrast, in the true LES formulation, the explicit filter eliminates all scales that are smaller than the filter cutoff, regardless of the grid resolution. This ensures that the resolved length-scales do not vary as the grid resolution is changed. In true LES, the cell size must be smaller than or equal to the cutoff length scale of the filter function. The turbulence-closure models investigated are the dynamic Smagorinsky model (DSM), the dynamic mixed model (DMM), and the dynamic reconstruction model (DRM). These turbulence models were previously studied using two-dimensional explicit filtering in turbulent channel flow by Gullbrand & Chow (2002). The DSM by Germano et al. (1991) is used as the USFS model in all the simulations. This enables evaluation of different reconstruction models for the RSFS stresses. The DMM consists of the scale-similarity model (SSM) by Bardina et al. (1983), which is an RSFS model, in linear combination with the DSM. In the DRM, the RSFS stresses are modeled by using an estimate of the unfiltered velocity in the unclosed term, while the USFS stresses are modeled by the DSM. The DSM and the DMM are two commonly used turbulence-closure models, while the DRM is a more recent model.
Tunable Bragg filters with a phase transition material defect layer
Wang, Xi; Gong, Zilun; Dong, Kaichen; ...
2016-01-01
We propose an all-solid-state tunable Bragg filter with a phase transition material as the defect layer. Bragg filters based on a vanadium dioxide defect layer sandwiched between silicon dioxide/titanium dioxide Bragg gratings are experimentally demonstrated. Temperature dependent reflection spectroscopy shows the dynamic tunability and hysteresis properties of the Bragg filter. Temperature dependent Raman spectroscopy reveals the connection between the tunability and the phase transition of the vanadium dioxide defect layer. This work paves a new avenue in tunable Bragg filter designs and promises more applications by combining phase transition materials and optical cavities.
Tunable Bragg filters with a phase transition material defect layer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xi; Gong, Zilun; Dong, Kaichen
We propose an all-solid-state tunable Bragg filter with a phase transition material as the defect layer. Bragg filters based on a vanadium dioxide defect layer sandwiched between silicon dioxide/titanium dioxide Bragg gratings are experimentally demonstrated. Temperature dependent reflection spectroscopy shows the dynamic tunability and hysteresis properties of the Bragg filter. Temperature dependent Raman spectroscopy reveals the connection between the tunability and the phase transition of the vanadium dioxide defect layer. This work paves a new avenue in tunable Bragg filter designs and promises more applications by combining phase transition materials and optical cavities.
Sadaghzadeh N, Nargess; Poshtan, Javad; Wagner, Achim; Nordheimer, Eugen; Badreddin, Essameddin
2014-03-01
Based on a cascaded Kalman-Particle Filtering, gyroscope drift and robot attitude estimation method is proposed in this paper. Due to noisy and erroneous measurements of MEMS gyroscope, it is combined with Photogrammetry based vision navigation scenario. Quaternions kinematics and robot angular velocity dynamics with augmented drift dynamics of gyroscope are employed as system state space model. Nonlinear attitude kinematics, drift and robot angular movement dynamics each in 3 dimensions result in a nonlinear high dimensional system. To reduce the complexity, we propose a decomposition of system to cascaded subsystems and then design separate cascaded observers. This design leads to an easier tuning and more precise debugging from the perspective of programming and such a setting is well suited for a cooperative modular system with noticeably reduced computation time. Kalman Filtering (KF) is employed for the linear and Gaussian subsystem consisting of angular velocity and drift dynamics together with gyroscope measurement. The estimated angular velocity is utilized as input of the second Particle Filtering (PF) based observer in two scenarios of stochastic and deterministic inputs. Simulation results are provided to show the efficiency of the proposed method. Moreover, the experimental results based on data from a 3D MEMS IMU and a 3D camera system are used to demonstrate the efficiency of the method. © 2013 ISA Published by ISA All rights reserved.
Towards denoising XMCD movies of fast magnetization dynamics using extended Kalman filter.
Kopp, M; Harmeling, S; Schütz, G; Schölkopf, B; Fähnle, M
2015-01-01
The Kalman filter is a well-established approach to get information on the time-dependent state of a system from noisy observations. It was developed in the context of the Apollo project to see the deviation of the true trajectory of a rocket from the desired trajectory. Afterwards it was applied to many different systems with small numbers of components of the respective state vector (typically about 10). In all cases the equation of motion for the state vector was known exactly. The fast dissipative magnetization dynamics is often investigated by x-ray magnetic circular dichroism movies (XMCD movies), which are often very noisy. In this situation the number of components of the state vector is extremely large (about 10(5)), and the equation of motion for the dissipative magnetization dynamics (especially the values of the material parameters of this equation) is not well known. In the present paper it is shown by theoretical considerations that - nevertheless - there is no principle problem for the use of the Kalman filter to denoise XMCD movies of fast dissipative magnetization dynamics. Copyright © 2014 Elsevier B.V. All rights reserved.
Advanced Kalman Filter for Real-Time Responsiveness in Complex Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Welch, Gregory Francis; Zhang, Jinghe
2014-06-10
Complex engineering systems pose fundamental challenges in real-time operations and control because they are highly dynamic systems consisting of a large number of elements with severe nonlinearities and discontinuities. Today’s tools for real-time complex system operations are mostly based on steady state models, unable to capture the dynamic nature and too slow to prevent system failures. We developed advanced Kalman filtering techniques and the formulation of dynamic state estimation using Kalman filtering techniques to capture complex system dynamics in aiding real-time operations and control. In this work, we looked at complex system issues including severe nonlinearity of system equations, discontinuitiesmore » caused by system controls and network switches, sparse measurements in space and time, and real-time requirements of power grid operations. We sought to bridge the disciplinary boundaries between Computer Science and Power Systems Engineering, by introducing methods that leverage both existing and new techniques. While our methods were developed in the context of electrical power systems, they should generalize to other large-scale scientific and engineering applications.« less
Towards Quantum Cybernetics:. Optimal Feedback Control in Quantum Bio Informatics
NASA Astrophysics Data System (ADS)
Belavkin, V. P.
2009-02-01
A brief account of the quantum information dynamics and dynamical programming methods for the purpose of optimal control in quantum cybernetics with convex constraints and cońcave cost and bequest functions of the quantum state is given. Consideration is given to both open loop and feedback control schemes corresponding respectively to deterministic and stochastic semi-Markov dynamics of stable or unstable systems. For the quantum feedback control scheme with continuous observations we exploit the separation theorem of filtering and control aspects for quantum stochastic micro-dynamics of the total system. This allows to start with the Belavkin quantum filtering equation and derive the generalized Hamilton-Jacobi-Bellman equation using standard arguments of classical control theory. This is equivalent to a Hamilton-Jacobi equation with an extra linear dissipative term if the control is restricted to only Hamiltonian terms in the filtering equation. A controlled qubit is considered as an example throughout the development of the formalism. Finally, we discuss optimum observation strategies to obtain a pure quantum qubit state from a mixed one.
A Novel Kalman Filter for Human Motion Tracking With an Inertial-Based Dynamic Inclinometer.
Ligorio, Gabriele; Sabatini, Angelo M
2015-08-01
Design and development of a linear Kalman filter to create an inertial-based inclinometer targeted to dynamic conditions of motion. The estimation of the body attitude (i.e., the inclination with respect to the vertical) was treated as a source separation problem to discriminate the gravity and the body acceleration from the specific force measured by a triaxial accelerometer. The sensor fusion between triaxial gyroscope and triaxial accelerometer data was performed using a linear Kalman filter. Wrist-worn inertial measurement unit data from ten participants were acquired while performing two dynamic tasks: 60-s sequence of seven manual activities and 90 s of walking at natural speed. Stereophotogrammetric data were used as a reference. A statistical analysis was performed to assess the significance of the accuracy improvement over state-of-the-art approaches. The proposed method achieved, on an average, a root mean square attitude error of 3.6° and 1.8° in manual activities and locomotion tasks (respectively). The statistical analysis showed that, when compared to few competing methods, the proposed method improved the attitude estimation accuracy. A novel Kalman filter for inertial-based attitude estimation was presented in this study. A significant accuracy improvement was achieved over state-of-the-art approaches, due to a filter design that better matched the basic optimality assumptions of Kalman filtering. Human motion tracking is the main application field of the proposed method. Accurately discriminating the two components present in the triaxial accelerometer signal is well suited for studying both the rotational and the linear body kinematics.
Predicting 2D target velocity cannot help 2D motion integration for smooth pursuit initiation.
Montagnini, Anna; Spering, Miriam; Masson, Guillaume S
2006-12-01
Smooth pursuit eye movements reflect the temporal dynamics of bidimensional (2D) visual motion integration. When tracking a single, tilted line, initial pursuit direction is biased toward unidimensional (1D) edge motion signals, which are orthogonal to the line orientation. Over 200 ms, tracking direction is slowly corrected to finally match the 2D object motion during steady-state pursuit. We now show that repetition of line orientation and/or motion direction does not eliminate the transient tracking direction error nor change the time course of pursuit correction. Nonetheless, multiple successive presentations of a single orientation/direction condition elicit robust anticipatory pursuit eye movements that always go in the 2D object motion direction not the 1D edge motion direction. These results demonstrate that predictive signals about target motion cannot be used for an efficient integration of ambiguous velocity signals at pursuit initiation.
Page-Reeves, Janet; Niforatos, Joshua; Mishra, Shiraz; Regino, Lidia; Gingrich, Andrew; Bulten, Robert
2013-01-01
Diabetes is a national health problem, and the burden of the disease and its consequences particularly affect Hispanics. While social determinants of health models have improved our conceptualization of how certain contexts and environments influence an individual's ability to make healthy choices, a structural violence framework transcends traditional uni-dimensional analysis. Thus, a structural violence approach is capable of revealing dynamics of social practices that operate across multiple dimensions of people's lives in ways that may not immediately appear related to health. Working with a Hispanic immigrant community in Albuquerque, New Mexico, we demonstrate how structural forces simultaneously directly inhibit access to appropriate healthcare services and create fear among immigrants, acting to further undermine health and nurture disparity. Although fear is not normally directly associated with diabetes health outcomes, in the community where we conducted this study participant narratives discussed fear and health as interconnected. PMID:24052924
Assessment of dynamic closure for premixed combustion large eddy simulation
NASA Astrophysics Data System (ADS)
Langella, Ivan; Swaminathan, Nedunchezhian; Gao, Yuan; Chakraborty, Nilanjan
2015-09-01
Turbulent piloted Bunsen flames of stoichiometric methane-air mixtures are computed using the large eddy simulation (LES) paradigm involving an algebraic closure for the filtered reaction rate. This closure involves the filtered scalar dissipation rate of a reaction progress variable. The model for this dissipation rate involves a parameter βc representing the flame front curvature effects induced by turbulence, chemical reactions, molecular dissipation, and their interactions at the sub-grid level, suggesting that this parameter may vary with filter width or be a scale-dependent. Thus, it would be ideal to evaluate this parameter dynamically by LES. A procedure for this evaluation is discussed and assessed using direct numerical simulation (DNS) data and LES calculations. The probability density functions of βc obtained from the DNS and LES calculations are very similar when the turbulent Reynolds number is sufficiently large and when the filter width normalised by the laminar flame thermal thickness is larger than unity. Results obtained using a constant (static) value for this parameter are also used for comparative evaluation. Detailed discussion presented in this paper suggests that the dynamic procedure works well and physical insights and reasonings are provided to explain the observed behaviour.
A method for reducing sampling jitter in digital control systems
NASA Technical Reports Server (NTRS)
Anderson, T. O.; HURBD W. J.; Hurd, W. J.
1969-01-01
Digital phase lock loop system is designed by smoothing the proportional control with a low pass filter. This method does not significantly affect the loop dynamics when the smoothing filter bandwidth is wide compared to loop bandwidth.
Gossip and Distributed Kalman Filtering: Weak Consensus Under Weak Detectability
NASA Astrophysics Data System (ADS)
Kar, Soummya; Moura, José M. F.
2011-04-01
The paper presents the gossip interactive Kalman filter (GIKF) for distributed Kalman filtering for networked systems and sensor networks, where inter-sensor communication and observations occur at the same time-scale. The communication among sensors is random; each sensor occasionally exchanges its filtering state information with a neighbor depending on the availability of the appropriate network link. We show that under a weak distributed detectability condition: 1. the GIKF error process remains stochastically bounded, irrespective of the instability properties of the random process dynamics; and 2. the network achieves \\emph{weak consensus}, i.e., the conditional estimation error covariance at a (uniformly) randomly selected sensor converges in distribution to a unique invariant measure on the space of positive semi-definite matrices (independent of the initial state.) To prove these results, we interpret the filtered states (estimates and error covariances) at each node in the GIKF as stochastic particles with local interactions. We analyze the asymptotic properties of the error process by studying as a random dynamical system the associated switched (random) Riccati equation, the switching being dictated by a non-stationary Markov chain on the network graph.
Application of Consider Covariance to the Extended Kalman Filter
NASA Technical Reports Server (NTRS)
Lundberg, John B.
1996-01-01
The extended Kalman filter (EKF) is the basis for many applications of filtering theory to real-time problems where estimates of the state of a dynamical system are to be computed based upon some set of observations. The form of the EKF may vary somewhat from one application to another, but the fundamental principles are typically unchanged among these various applications. As is the case in many filtering applications, models of the dynamical system (differential equations describing the state variables) and models of the relationship between the observations and the state variables are created. These models typically employ a set of constants whose values are established my means of theory or experimental procedure. Since the estimates of the state are formed assuming that the models are perfect, any modeling errors will affect the accuracy of the computed estimates. Note that the modeling errors may be errors of commission (errors in terms included in the model) or omission (errors in terms excluded from the model). Consequently, it becomes imperative when evaluating the performance of real-time filters to evaluate the effect of modeling errors on the estimates of the state.
An Energy Saving Green Plug Device for Nonlinear Loads
NASA Astrophysics Data System (ADS)
Bloul, Albe; Sharaf, Adel; El-Hawary, Mohamed
2018-03-01
The paper presents a low cost a FACTS Based flexible fuzzy logic based modulated/switched tuned arm filter and Green Plug compensation (SFC-GP) scheme for single-phase nonlinear loads ensuring both voltage stabilization and efficient energy utilization. The new Green Plug-Switched filter compensator SFC modulated LC-Filter PWM Switched Capacitive Compensation Devices is controlled using a fuzzy logic regulator to enhance power quality, improve power factor at the source and reduce switching transients and inrush current conditions as well harmonic contents in source current. The FACTS based SFC-GP Device is a member of family of Green Plug/Filters/Compensation Schemes used for efficient energy utilization, power quality enhancement and voltage/inrush current/soft starting control using a dynamic error driven fuzzy logic controller (FLC). The device with fuzzy logic controller is validated using the Matlab / Simulink Software Environment for enhanced power quality (PQ), improved power factor and reduced inrush currents. This is achieved using modulated PWM Switching of the Filter-Capacitive compensation scheme to cope with dynamic type nonlinear and inrush cyclical loads..
Adaptive texture filtering for defect inspection in ultrasound images
NASA Astrophysics Data System (ADS)
Zmola, Carl; Segal, Andrew C.; Lovewell, Brian; Nash, Charles
1993-05-01
The use of ultrasonic imaging to analyze defects and characterize materials is critical in the development of non-destructive testing and non-destructive evaluation (NDT/NDE) tools for manufacturing. To develop better quality control and reliability in the manufacturing environment advanced image processing techniques are useful. For example, through the use of texture filtering on ultrasound images, we have been able to filter characteristic textures from highly-textured C-scan images of materials. The materials have highly regular characteristic textures which are of the same resolution and dynamic range as other important features within the image. By applying texture filters and adaptively modifying their filter response, we have examined a family of filters for removing these textures.
On pads and filters: Processing strong-motion data
Boore, D.M.
2005-01-01
Processing of strong-motion data in many cases can be as straightforward as filtering the acceleration time series and integrating to obtain velocity and displacement. To avoid the introduction of spurious low-frequency noise in quantities derived from the filtered accelerations, however, care must be taken to append zero pads of adequate length to the beginning and end of the segment of recorded data. These padded sections of the filtered acceleration need to be retained when deriving velocities, displacements, Fourier spectra, and response spectra. In addition, these padded and filtered sections should also be included in the time series used in the dynamic analysis of structures and soils to ensure compatibility with the filtered accelerations.
Observations of vector magnetic fields with a magneto-optic filter
NASA Technical Reports Server (NTRS)
Cacciani, Alessandro; Varsik, John; Zirin, Harold
1990-01-01
The use of the magnetooptic filter to observe solar magnetic fields in the potassium line at 7699 A is described. The filter has been used in the Big Bear videomagnetograph since October 23. It gives a high sensitivity and dynamic range for longitudnal magnetic fields and enables measurement of transverse magnetic fields using the sigma component. Examples of the observations are presented.
The Principle of Energetic Consistency
NASA Technical Reports Server (NTRS)
Cohn, Stephen E.
2009-01-01
A basic result in estimation theory is that the minimum variance estimate of the dynamical state, given the observations, is the conditional mean estimate. This result holds independently of the specifics of any dynamical or observation nonlinearity or stochasticity, requiring only that the probability density function of the state, conditioned on the observations, has two moments. For nonlinear dynamics that conserve a total energy, this general result implies the principle of energetic consistency: if the dynamical variables are taken to be the natural energy variables, then the sum of the total energy of the conditional mean and the trace of the conditional covariance matrix (the total variance) is constant between observations. Ensemble Kalman filtering methods are designed to approximate the evolution of the conditional mean and covariance matrix. For them the principle of energetic consistency holds independently of ensemble size, even with covariance localization. However, full Kalman filter experiments with advection dynamics have shown that a small amount of numerical dissipation can cause a large, state-dependent loss of total variance, to the detriment of filter performance. The principle of energetic consistency offers a simple way to test whether this spurious loss of variance limits ensemble filter performance in full-blown applications. The classical second-moment closure (third-moment discard) equations also satisfy the principle of energetic consistency, independently of the rank of the conditional covariance matrix. Low-rank approximation of these equations offers an energetically consistent, computationally viable alternative to ensemble filtering. Current formulations of long-window, weak-constraint, four-dimensional variational methods are designed to approximate the conditional mode rather than the conditional mean. Thus they neglect the nonlinear bias term in the second-moment closure equation for the conditional mean. The principle of energetic consistency implies that, to precisely the extent that growing modes are important in data assimilation, this term is also important.
Operational Modal Analysis of Bridge Structures with Data from GNSS/Accelerometer Measurements.
Xiong, Chunbao; Lu, Huali; Zhu, Jinsong
2017-02-23
Real-time dynamic displacement and acceleration responses of the main span section of the Tianjin Fumin Bridge in China under ambient excitation were tested using a Global Navigation Satellite System (GNSS) dynamic deformation monitoring system and an acceleration sensor vibration test system. Considering the close relationship between the GNSS multipath errors and measurement environment in combination with the noise reduction characteristics of different filtering algorithms, the researchers proposed an AFEC mixed filtering algorithm, which is an combination of autocorrelation function-based empirical mode decomposition (EMD) and Chebyshev mixed filtering to extract the real vibration displacement of the bridge structure after system error correction and filtering de-noising of signals collected by the GNSS. The proposed AFEC mixed filtering algorithm had high accuracy (1 mm) of real displacement at the elevation direction. Next, the traditional random decrement technique (used mainly for stationary random processes) was expanded to non-stationary random processes. Combining the expanded random decrement technique (RDT) and autoregressive moving average model (ARMA), the modal frequency of the bridge structural system was extracted using an expanded ARMA_RDT modal identification method, which was compared with the power spectrum analysis results of the acceleration signal and finite element analysis results. Identification results demonstrated that the proposed algorithm is applicable to analyze the dynamic displacement monitoring data of real bridge structures under ambient excitation and could identify the first five orders of the inherent frequencies of the structural system accurately. The identification error of the inherent frequency was smaller than 6%, indicating the high identification accuracy of the proposed algorithm. Furthermore, the GNSS dynamic deformation monitoring method can be used to monitor dynamic displacement and identify the modal parameters of bridge structures. The GNSS can monitor the working state of bridges effectively and accurately. Research results can provide references to evaluate the bearing capacity, safety performance, and durability of bridge structures during operation.
Operational Modal Analysis of Bridge Structures with Data from GNSS/Accelerometer Measurements
Xiong, Chunbao; Lu, Huali; Zhu, Jinsong
2017-01-01
Real-time dynamic displacement and acceleration responses of the main span section of the Tianjin Fumin Bridge in China under ambient excitation were tested using a Global Navigation Satellite System (GNSS) dynamic deformation monitoring system and an acceleration sensor vibration test system. Considering the close relationship between the GNSS multipath errors and measurement environment in combination with the noise reduction characteristics of different filtering algorithms, the researchers proposed an AFEC mixed filtering algorithm, which is an combination of autocorrelation function-based empirical mode decomposition (EMD) and Chebyshev mixed filtering to extract the real vibration displacement of the bridge structure after system error correction and filtering de-noising of signals collected by the GNSS. The proposed AFEC mixed filtering algorithm had high accuracy (1 mm) of real displacement at the elevation direction. Next, the traditional random decrement technique (used mainly for stationary random processes) was expanded to non-stationary random processes. Combining the expanded random decrement technique (RDT) and autoregressive moving average model (ARMA), the modal frequency of the bridge structural system was extracted using an expanded ARMA_RDT modal identification method, which was compared with the power spectrum analysis results of the acceleration signal and finite element analysis results. Identification results demonstrated that the proposed algorithm is applicable to analyze the dynamic displacement monitoring data of real bridge structures under ambient excitation and could identify the first five orders of the inherent frequencies of the structural system accurately. The identification error of the inherent frequency was smaller than 6%, indicating the high identification accuracy of the proposed algorithm. Furthermore, the GNSS dynamic deformation monitoring method can be used to monitor dynamic displacement and identify the modal parameters of bridge structures. The GNSS can monitor the working state of bridges effectively and accurately. Research results can provide references to evaluate the bearing capacity, safety performance, and durability of bridge structures during operation. PMID:28241472
NASA Technical Reports Server (NTRS)
Mendoza, John Cadiz
1995-01-01
The computational fluid dynamics code, PARC3D, is tested to see if its use of non-physical artificial dissipation affects the accuracy of its results. This is accomplished by simulating a shock-laminar boundary layer interaction and several hypersonic flight conditions of the Pegasus(TM) launch vehicle using full artificial dissipation, low artificial dissipation, and the Engquist filter. Before the filter is applied to the PARC3D code, it is validated in one-dimensional and two-dimensional form in a MacCormack scheme against the Riemann and convergent duct problem. For this explicit scheme, the filter shows great improvements in accuracy and computational time as opposed to the nonfiltered solutions. However, for the implicit PARC3D code it is found that the best estimate of the Pegasus experimental heat fluxes and surface pressures is the simulation utilizing low artificial dissipation and no filter. The filter does improve accuracy over the artificially dissipative case but at a computational expense greater than that achieved by the low artificial dissipation case which has no computational time penalty and shows better results. For the shock-boundary layer simulation, the filter does well in terms of accuracy for a strong impingement shock but not as well for weaker shock strengths. Furthermore, for the latter problem the filter reduces the required computational time to convergence by 18.7 percent.
An accurate nonlinear stochastic model for MEMS-based inertial sensor error with wavelet networks
NASA Astrophysics Data System (ADS)
El-Diasty, Mohammed; El-Rabbany, Ahmed; Pagiatakis, Spiros
2007-12-01
The integration of Global Positioning System (GPS) with Inertial Navigation System (INS) has been widely used in many applications for positioning and orientation purposes. Traditionally, random walk (RW), Gauss-Markov (GM), and autoregressive (AR) processes have been used to develop the stochastic model in classical Kalman filters. The main disadvantage of classical Kalman filter is the potentially unstable linearization of the nonlinear dynamic system. Consequently, a nonlinear stochastic model is not optimal in derivative-based filters due to the expected linearization error. With a derivativeless-based filter such as the unscented Kalman filter or the divided difference filter, the filtering process of a complicated highly nonlinear dynamic system is possible without linearization error. This paper develops a novel nonlinear stochastic model for inertial sensor error using a wavelet network (WN). A wavelet network is a highly nonlinear model, which has recently been introduced as a powerful tool for modelling and prediction. Static and kinematic data sets are collected using a MEMS-based IMU (DQI-100) to develop the stochastic model in the static mode and then implement it in the kinematic mode. The derivativeless-based filtering method using GM, AR, and the proposed WN-based processes are used to validate the new model. It is shown that the first-order WN-based nonlinear stochastic model gives superior positioning results to the first-order GM and AR models with an overall improvement of 30% when 30 and 60 seconds GPS outages are introduced.
A New Adaptive H-Infinity Filtering Algorithm for the GPS/INS Integrated Navigation
Jiang, Chen; Zhang, Shu-Bi; Zhang, Qiu-Zhao
2016-01-01
The Kalman filter is an optimal estimator with numerous applications in technology, especially in systems with Gaussian distributed noise. Moreover, the adaptive Kalman filtering algorithms, based on the Kalman filter, can control the influence of dynamic model errors. In contrast to the adaptive Kalman filtering algorithms, the H-infinity filter is able to address the interference of the stochastic model by minimization of the worst-case estimation error. In this paper, a novel adaptive H-infinity filtering algorithm, which integrates the adaptive Kalman filter and the H-infinity filter in order to perform a comprehensive filtering algorithm, is presented. In the proposed algorithm, a robust estimation method is employed to control the influence of outliers. In order to verify the proposed algorithm, experiments with real data of the Global Positioning System (GPS) and Inertial Navigation System (INS) integrated navigation, were conducted. The experimental results have shown that the proposed algorithm has multiple advantages compared to the other filtering algorithms. PMID:27999361
A New Adaptive H-Infinity Filtering Algorithm for the GPS/INS Integrated Navigation.
Jiang, Chen; Zhang, Shu-Bi; Zhang, Qiu-Zhao
2016-12-19
The Kalman filter is an optimal estimator with numerous applications in technology, especially in systems with Gaussian distributed noise. Moreover, the adaptive Kalman filtering algorithms, based on the Kalman filter, can control the influence of dynamic model errors. In contrast to the adaptive Kalman filtering algorithms, the H-infinity filter is able to address the interference of the stochastic model by minimization of the worst-case estimation error. In this paper, a novel adaptive H-infinity filtering algorithm, which integrates the adaptive Kalman filter and the H-infinity filter in order to perform a comprehensive filtering algorithm, is presented. In the proposed algorithm, a robust estimation method is employed to control the influence of outliers. In order to verify the proposed algorithm, experiments with real data of the Global Positioning System (GPS) and Inertial Navigation System (INS) integrated navigation, were conducted. The experimental results have shown that the proposed algorithm has multiple advantages compared to the other filtering algorithms.
Adaptive filtering with the self-organizing map: a performance comparison.
Barreto, Guilherme A; Souza, Luís Gustavo M
2006-01-01
In this paper we provide an in-depth evaluation of the SOM as a feasible tool for nonlinear adaptive filtering. A comprehensive survey of existing SOM-based and related architectures for learning input-output mappings is carried out and the application of these architectures to nonlinear adaptive filtering is formulated. Then, we introduce two simple procedures for building RBF-based nonlinear filters using the Vector-Quantized Temporal Associative Memory (VQTAM), a recently proposed method for learning dynamical input-output mappings using the SOM. The aforementioned SOM-based adaptive filters are compared with standard FIR/LMS and FIR/LMS-Newton linear transversal filters, as well as with powerful MLP-based filters in nonlinear channel equalization and inverse modeling tasks. The obtained results in both tasks indicate that SOM-based filters can consistently outperform powerful MLP-based ones.
A survey of design methods for failure detection in dynamic systems
NASA Technical Reports Server (NTRS)
Willsky, A. S.
1975-01-01
A number of methods for the detection of abrupt changes (such as failures) in stochastic dynamical systems were surveyed. The class of linear systems were emphasized, but the basic concepts, if not the detailed analyses, carry over to other classes of systems. The methods surveyed range from the design of specific failure-sensitive filters, to the use of statistical tests on filter innovations, to the development of jump process formulations. Tradeoffs in complexity versus performance are discussed.
Application of Ensemble Kalman Filter in Power System State Tracking and Sensitivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yulan; Huang, Zhenyu; Zhou, Ning
2012-05-01
Ensemble Kalman Filter (EnKF) is proposed to track dynamic states of generators. The algorithm of EnKF and its application to generator state tracking are presented in detail. The accuracy and sensitivity of the method are analyzed with respect to initial state errors, measurement noise, unknown fault locations, time steps and parameter errors. It is demonstrated through simulation studies that even with some errors in the parameters, the developed EnKF can effectively track generator dynamic states using disturbance data.
Symbolic dynamic filtering and language measure for behavior identification of mobile robots.
Mallapragada, Goutham; Ray, Asok; Jin, Xin
2012-06-01
This paper presents a procedure for behavior identification of mobile robots, which requires limited or no domain knowledge of the underlying process. While the features of robot behavior are extracted by symbolic dynamic filtering of the observed time series, the behavior patterns are classified based on language measure theory. The behavior identification procedure has been experimentally validated on a networked robotic test bed by comparison with commonly used tools, namely, principal component analysis for feature extraction and Bayesian risk analysis for pattern classification.
Dynamic data filtering system and method
Bickford, Randall L; Palnitkar, Rahul M
2014-04-29
A computer-implemented dynamic data filtering system and method for selectively choosing operating data of a monitored asset that modifies or expands a learned scope of an empirical model of normal operation of the monitored asset while simultaneously rejecting operating data of the monitored asset that is indicative of excessive degradation or impending failure of the monitored asset, and utilizing the selectively chosen data for adaptively recalibrating the empirical model to more accurately monitor asset aging changes or operating condition changes of the monitored asset.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, T; Lin, H; Gao, Y
Purpose: Dynamic bowtie filter is an innovative design capable of modulating the X-ray and balancing the flux in the detectors, and it introduces a new way of patient-specific CT scan optimizations. This study demonstrates the feasibility of performing fast Monte Carlo dose calculation for a type of dynamic bowtie filter for cone-beam CT (Liu et al. 2014 9(7) PloS one) using MIC coprocessors. Methods: The dynamic bowtie filter in question consists of a highly attenuating bowtie component (HB) and a weakly attenuating bowtie (WB). The HB is filled with CeCl3 solution and its surface is defined by a transcendental equation.more » The WB is an elliptical cylinder filled with air and immersed in the HB. As the scanner rotates, the orientation of WB remains the same with the static patient. In our Monte Carlo simulation, the HB was approximated by 576 boxes. The phantom was a voxelized elliptical cylinder composed of PMMA and surrounded by air (44cm×44cm×40cm, 1000×1000×1 voxels). The dose to the PMMA phantom was tallied with 0.15% statistical uncertainty under 100 kVp source. Two Monte Carlo codes ARCHER and MCNP-6.1 were compared. Both used double-precision. Compiler flags that may trade accuracy for speed were avoided. Results: The wall time of the simulation was 25.4 seconds by ARCHER on a 5110P MIC, 40 seconds on a X5650 CPU, and 523 seconds by the multithreaded MCNP on the same CPU. The high performance of ARCHER is attributed to the parameterized geometry and vectorization of the program hotspots. Conclusion: The dynamic bowtie filter modeled in this study is able to effectively reduce the dynamic range of the detected signals for the photon-counting detectors. With appropriate software optimization methods, the accelerator-based (MIC and GPU) Monte Carlo dose engines have shown good performance and can contribute to patient-specific CT scan optimizations.« less
An Improved Strong Tracking Cubature Kalman Filter for GPS/INS Integrated Navigation Systems.
Feng, Kaiqiang; Li, Jie; Zhang, Xi; Zhang, Xiaoming; Shen, Chong; Cao, Huiliang; Yang, Yanyu; Liu, Jun
2018-06-12
The cubature Kalman filter (CKF) is widely used in the application of GPS/INS integrated navigation systems. However, its performance may decline in accuracy and even diverge in the presence of process uncertainties. To solve the problem, a new algorithm named improved strong tracking seventh-degree spherical simplex-radial cubature Kalman filter (IST-7thSSRCKF) is proposed in this paper. In the proposed algorithm, the effect of process uncertainty is mitigated by using the improved strong tracking Kalman filter technique, in which the hypothesis testing method is adopted to identify the process uncertainty and the prior state estimate covariance in the CKF is further modified online according to the change in vehicle dynamics. In addition, a new seventh-degree spherical simplex-radial rule is employed to further improve the estimation accuracy of the strong tracking cubature Kalman filter. In this way, the proposed comprehensive algorithm integrates the advantage of 7thSSRCKF’s high accuracy and strong tracking filter’s strong robustness against process uncertainties. The GPS/INS integrated navigation problem with significant dynamic model errors is utilized to validate the performance of proposed IST-7thSSRCKF. Results demonstrate that the improved strong tracking cubature Kalman filter can achieve higher accuracy than the existing CKF and ST-CKF, and is more robust for the GPS/INS integrated navigation system.
Gerrity, Daniel; Arnold, Mayara; Dickenson, Eric; Moser, Duane; Sackett, Joshua D; Wert, Eric C
2018-05-15
Microbial community structure in the ozone-biofiltration systems of two drinking water and two wastewater treatment facilities was characterized using 16S rRNA gene sequencing. Collectively, these datasets enabled comparisons by facility, water type (drinking water, wastewater), pre-oxidation (ozonation, chlorination), media type (anthracite, activated carbon), media depth, and backwash dynamics. Proteobacteria was the most abundant phylum in drinking water filters, whereas Bacteroidetes, Chloroflexi, Firmicutes, and Planctomycetes were differentially abundant in wastewater filters. A positive correlation was observed between media depth and relative abundance of Cyanobacteria in drinking water filters, but there was only a slight increase in one alpha diversity metric with depth in the wastewater filters. Media type had a significant effect on beta but not alpha diversity in drinking water and wastewater filters. Pre-ozonation caused a significant decrease in alpha diversity in the wastewater filters, but the effect on beta diversity was not statistically significant. An evaluation of backwash dynamics resulted in two notable observations: (1) endosymbionts such as Neochlamydia and Legionella increased in relative abundance following backwashing and (2) nitrogen-fixing Bradyrhizobium dominated the microbial community in wastewater filters operated with infrequent backwashing. Bradyrhizobium is known to generate extracellular polymeric substances (EPS), which may adversely impact biofilter performance and effluent water quality. These findings have important implications for public health and the operation and resiliency of biofiltration systems. Copyright © 2018 Elsevier Ltd. All rights reserved.
Psychometric Properties of the Perceived Wellness Culture and Environment Support Scale.
Melnyk, Bernadette Mazurek; Szalacha, Laura A; Amaya, Megan
2018-05-01
This study reports on the psychometric properties of the 11-item Perceived Wellness Culture and Environment Support Scale (PWCESS) and its relationship with employee healthy lifestyle beliefs and behaviors. Faculty and staff (N = 3959) at a large public university in the United States mid-west completed the PWCESS along with healthy lifestyle beliefs and behaviors scales. Data were randomly split into 2 halves to explore the PWCESS' validity and reliability and the second half to confirm findings. Principal components analysis indicated a unidimensional construct. The PWCESS was positively related to healthy lifestyle beliefs and behaviors supporting the scale's validity. Confirmatory factor analysis supported the unidimensional construct (Cronbach's α = .92). Strong evidence supports the validity and reliability of the PWCESS. Future use of this scale could guide workplace intervention strategies to improve organizational wellness culture and employee health outcomes.
Unidimensional games, propitious environments, and maximum diversity
NASA Astrophysics Data System (ADS)
Sales, Tasso R. M.
1993-10-01
Cellular automata have been extensively used in the modeling of complexity. In biological phenomena complexity is directly related to the intuitive concept of diversity, which manifests itself in several forms. Particularly, the game Life [E. R. Berlekamp, J. H. Conway, and R. K. Guy, Winning Ways for Your Mathematical Plays (Academic, New York, 1982), Vol. 2] may be viewed as a picture of nonlinear open biological systems acting cooperatively. However, it has been shown that, in Life, diversity (defined in terms of different clusters) decreases with time. We derive an alternative game introducing the concept of a propitious environment which confers longevity to live sites in time evolution. It is shown that the game self-organizes in a configuration of maximum diversity exhibiting a high geometrical complexity. This game is considered in one dimension and has some connections with the unidimensional Life.
Saha, Tulshi D; Compton, Wilson M; Chou, S Patricia; Smith, Sharon; Ruan, W June; Huang, Boji; Pickering, Roger P; Grant, Bridget F
2012-04-01
Prior research has demonstrated the dimensionality of alcohol, nicotine and cannabis use disorders criteria. The purpose of this study was to examine the unidimensionality of DSM-IV cocaine, amphetamine and prescription drug abuse and dependence criteria and to determine the impact of elimination of the legal problems criterion on the information value of the aggregate criteria. Factor analyses and Item Response Theory (IRT) analyses were used to explore the unidimensionality and psychometric properties of the illicit drug use criteria using a large representative sample of the U.S. population. All illicit drug abuse and dependence criteria formed unidimensional latent traits. For amphetamines, cocaine, sedatives, tranquilizers and opioids, IRT models fit better for models without legal problems criterion than models with legal problems criterion and there were no differences in the information value of the IRT models with and without the legal problems criterion, supporting the elimination of that criterion. Consistent with findings for alcohol, nicotine and cannabis, amphetamine, cocaine, sedative, tranquilizer and opioid abuse and dependence criteria reflect underlying unitary dimensions of severity. The legal problems criterion associated with each of these substance use disorders can be eliminated with no loss in informational value and an advantage of parsimony. Taken together, these findings support the changes to substance use disorder diagnoses recommended by the American Psychiatric Association's DSM-5 Substance and Related Disorders Workgroup. Published by Elsevier Ireland Ltd.
Sousa, Renata M; Dewey, Michael E; Acosta, Daisy; Jotheeswaran, AT; Castro-Costa, Erico; Ferri, Cleusa P; Guerra, Mariella; Huang, Yueqin; Jacob, KS; Pichardo, Juana Guillermina Rodriguez; Ramírez, Nayeli Garcia; Rodriguez, Juan Llibre; Rodriguez, Marina Calvo; Salas, Aquiles; Sosa, Ana Luisa; Williams, Joseph; Prince, Martin J
2010-01-01
We evaluated the psychometric properties of the 12-item interviewer-administered screener version of the World Health Organization Disability Assessment Schedule – version II (WHODAS II) among older people living in seven low- and middle-income countries. Principal component analysis (PCA), confirmatory factor analysis (CFA) and Mokken analyses were carried out to test for unidimensionality, hierarchical structure, and measurement invariance across 10/66 Dementia Research Group sites. PCA generated a one-factor solution in most sites. In CFA, the two-factor solution generated in Dominican Republic fitted better for all sites other than rural China. The two factors were not easily interpretable, and may have been an artefact of differing item difficulties. Strong internal consistency and high factor loadings for the one-factor solution supported unidimensionality. Furthermore, the WHODAS II was found to be a ‘strong’ Mokken scale. Measurement invariance was supported by the similarity of factor loadings across sites, and by the high between-site correlations in item difficulties. The Mokken results strongly support that the WHODAS II 12-item screener is a unidimensional and hierarchical scale confirming to item response theory (IRT) principles, at least at the monotone homogeneity model level. More work is needed to assess the generalizability of our findings to different populations. Copyright © 2010 John Wiley & Sons, Ltd. PMID:20104493
Tulsky, David S.; Jette, Alan; Kisala, Pamela A.; Kalpakjian, Claire; Dijkers, Marcel P.; Whiteneck, Gale; Ni, Pengsheng; Kirshblum, Steven; Charlifue, Susan; Heinemann, Allen W.; Forchheimer, Martin; Slavin, Mary; Houlihan, Bethlyn; Tate, Denise; Dyson-Hudson, Trevor; Fyffe, Denise; Williams, Steve; Zanca, Jeanne
2012-01-01
Objective To develop a comprehensive set of patient reported items to assess multiple aspects of physical functioning relevant to the lives of people with spinal cord injury (SCI) and to evaluate the underlying structure of physical functioning. Design Cross-sectional Setting Inpatient and community Participants Item pools of physical functioning were developed, refined and field tested in a large sample of 855 individuals with traumatic spinal cord injury stratified by diagnosis, severity, and time since injury Interventions None Main Outcome Measure SCI-FI measurement system Results Confirmatory factor analysis (CFA) indicated that a 5-factor model, including basic mobility, ambulation, wheelchair mobility, self care, and fine motor, had the best model fit and was most closely aligned conceptually with feedback received from individuals with SCI and SCI clinicians. When just the items making up basic mobility were tested in CFA, the fit statistics indicate strong support for a unidimensional model. Similar results were demonstrated for each of the other four factors indicating unidimensional models. Conclusions Though unidimensional or 2-factor (mobility and upper extremity) models of physical functioning make up outcomes measures in the general population, the underlying structure of physical function in SCI is more complex. A 5-factor solution allows for comprehensive assessment of key domain areas of physical functioning. These results informed the structure and development of the SCI-FI measurement system of physical functioning. PMID:22609299
A Dynamic Recommender System for Improved Web Usage Mining and CRM Using Swarm Intelligence.
Alphy, Anna; Prabakaran, S
2015-01-01
In modern days, to enrich e-business, the websites are personalized for each user by understanding their interests and behavior. The main challenges of online usage data are information overload and their dynamic nature. In this paper, to address these issues, a WebBluegillRecom-annealing dynamic recommender system that uses web usage mining techniques in tandem with software agents developed for providing dynamic recommendations to users that can be used for customizing a website is proposed. The proposed WebBluegillRecom-annealing dynamic recommender uses swarm intelligence from the foraging behavior of a bluegill fish. It overcomes the information overload by handling dynamic behaviors of users. Our dynamic recommender system was compared against traditional collaborative filtering systems. The results show that the proposed system has higher precision, coverage, F1 measure, and scalability than the traditional collaborative filtering systems. Moreover, the recommendations given by our system overcome the overspecialization problem by including variety in recommendations.
A Dynamic Recommender System for Improved Web Usage Mining and CRM Using Swarm Intelligence
Alphy, Anna; Prabakaran, S.
2015-01-01
In modern days, to enrich e-business, the websites are personalized for each user by understanding their interests and behavior. The main challenges of online usage data are information overload and their dynamic nature. In this paper, to address these issues, a WebBluegillRecom-annealing dynamic recommender system that uses web usage mining techniques in tandem with software agents developed for providing dynamic recommendations to users that can be used for customizing a website is proposed. The proposed WebBluegillRecom-annealing dynamic recommender uses swarm intelligence from the foraging behavior of a bluegill fish. It overcomes the information overload by handling dynamic behaviors of users. Our dynamic recommender system was compared against traditional collaborative filtering systems. The results show that the proposed system has higher precision, coverage, F1 measure, and scalability than the traditional collaborative filtering systems. Moreover, the recommendations given by our system overcome the overspecialization problem by including variety in recommendations. PMID:26229978
A Minimum Fuel Based Estimator for Maneuver and Natrual Dynamics Reconstruction
NASA Astrophysics Data System (ADS)
Lubey, D.; Scheeres, D.
2013-09-01
The vast and growing population of objects in Earth orbit (active and defunct spacecraft, orbital debris, etc.) offers many unique challenges when it comes to tracking these objects and associating the resulting observations. Complicating these challenges are the inaccurate natural dynamical models of these objects, the active maneuvers of spacecraft that deviate them from their ballistic trajectories, and the fact that spacecraft are tracked and operated by separate agencies. Maneuver detection and reconstruction algorithms can help with each of these issues by estimating mismodeled and unmodeled dynamics through indirect observation of spacecraft. It also helps to verify the associations made by an object correlation algorithm or aid in making those associations, which is essential when tracking objects in orbit. The algorithm developed in this study applies an Optimal Control Problem (OCP) Distance Metric approach to the problems of Maneuver Reconstruction and Dynamics Estimation. This was first developed by Holzinger, Scheeres, and Alfriend (2011), with a subsequent study by Singh, Horwood, and Poore (2012). This method estimates the minimum fuel control policy rather than the state as a typical Kalman Filter would. This difference ensures that the states are connected through a given dynamical model and allows for automatic covariance manipulation, which can help to prevent filter saturation. Using a string of measurements (either verified or hypothesized to correlate with one another), the algorithm outputs a corresponding string of adjoint and state estimates with associated noise. Post-processing techniques are implemented, which when applied to the adjoint estimates can remove noise and expose unmodeled maneuvers and mismodeled natural dynamics. Specifically, the estimated controls are used to determine spacecraft dependent accelerations (atmospheric drag and solar radiation pressure) using an adapted form of the Optimal Control based natural dynamics estimation scheme developed by Lubey and Scheeres (2012). In order to allow for direct comparison, the estimator developed here was modeled after a typical Kalman Filter. The estimator forces the terminal state to lie on a manifold that satisfies the least squares with a priori information cost function, thus establishing a link with a typical Kalman filter. Terms are collected into a pseudo-Kalman Gain, which creates an equivalent form in the state estimates and covariances between the two estimators. While the two estimators share common roots, the inclusion of control in the Minimum Fuel Estimator gives it special properties. For instance, the inclusion of adjoint noise can help to automatically prevent filter saturation in a manner similar to a State Noise Compensation Algorithm. This property is quite important when considering dynamics mismodeling as filter saturation will cause estimate divergence for mismodeled systems. Additional properties and alternative forms of the estimator are also explored in this study. Several implementations of this estimator are given in this paper. It is applied to LEO, GEO, and GTO orbits with drag and SRP mismodeling. The inclusion of unmodeled maneuvers is also considered. These numerical simulations verify the mathematical properties of this estimator, and demonstrate the advantages that this estimator has over typical Kalman Filters.
The research of radar target tracking observed information linear filter method
NASA Astrophysics Data System (ADS)
Chen, Zheng; Zhao, Xuanzhi; Zhang, Wen
2018-05-01
Aiming at the problems of low precision or even precision divergent is caused by nonlinear observation equation in radar target tracking, a new filtering algorithm is proposed in this paper. In this algorithm, local linearization is carried out on the observed data of the distance and angle respectively. Then the kalman filter is performed on the linearized data. After getting filtered data, a mapping operation will provide the posteriori estimation of target state. A large number of simulation results show that this algorithm can solve above problems effectively, and performance is better than the traditional filtering algorithm for nonlinear dynamic systems.
The Estimation Theory Framework of Data Assimilation
NASA Technical Reports Server (NTRS)
Cohn, S.; Atlas, Robert (Technical Monitor)
2002-01-01
Lecture 1. The Estimation Theory Framework of Data Assimilation: 1. The basic framework: dynamical and observation models; 2. Assumptions and approximations; 3. The filtering, smoothing, and prediction problems; 4. Discrete Kalman filter and smoother algorithms; and 5. Example: A retrospective data assimilation system
Orbit Determination Using Vinti’s Solution
2016-09-15
Surveillance Network STK Systems Tool Kit TBP Two Body Problem TLE Two-line Element Set xv Acronym Definition UKF Unscented Kalman Filter WPAFB Wright...simplicity, stability, and speed. On the other hand, Kalman filters would be best suited for sequential estimation of stochastic or random components of a...be likened to how an Unscented Kalman Filter samples a system’s nonlinearities directly, avoiding linearizing the dynamics in the partials matrices
Attitude Determination Using a MEMS-Based Flight Information Measurement Unit
Ma, Der-Ming; Shiau, Jaw-Kuen; Wang, I.-Chiang; Lin, Yu-Heng
2012-01-01
Obtaining precise attitude information is essential for aircraft navigation and control. This paper presents the results of the attitude determination using an in-house designed low-cost MEMS-based flight information measurement unit. This study proposes a quaternion-based extended Kalman filter to integrate the traditional quaternion and gravitational force decomposition methods for attitude determination algorithm. The proposed extended Kalman filter utilizes the evolution of the four elements in the quaternion method for attitude determination as the dynamic model, with the four elements as the states of the filter. The attitude angles obtained from the gravity computations and from the electronic magnetic sensors are regarded as the measurement of the filter. The immeasurable gravity accelerations are deduced from the outputs of the three axes accelerometers, the relative accelerations, and the accelerations due to body rotation. The constraint of the four elements of the quaternion method is treated as a perfect measurement and is integrated into the filter computation. Approximations of the time-varying noise variances of the measured signals are discussed and presented with details through Taylor series expansions. The algorithm is intuitive, easy to implement, and reliable for long-term high dynamic maneuvers. Moreover, a set of flight test data is utilized to demonstrate the success and practicality of the proposed algorithm and the filter design. PMID:22368455
Attitude determination using a MEMS-based flight information measurement unit.
Ma, Der-Ming; Shiau, Jaw-Kuen; Wang, I-Chiang; Lin, Yu-Heng
2012-01-01
Obtaining precise attitude information is essential for aircraft navigation and control. This paper presents the results of the attitude determination using an in-house designed low-cost MEMS-based flight information measurement unit. This study proposes a quaternion-based extended Kalman filter to integrate the traditional quaternion and gravitational force decomposition methods for attitude determination algorithm. The proposed extended Kalman filter utilizes the evolution of the four elements in the quaternion method for attitude determination as the dynamic model, with the four elements as the states of the filter. The attitude angles obtained from the gravity computations and from the electronic magnetic sensors are regarded as the measurement of the filter. The immeasurable gravity accelerations are deduced from the outputs of the three axes accelerometers, the relative accelerations, and the accelerations due to body rotation. The constraint of the four elements of the quaternion method is treated as a perfect measurement and is integrated into the filter computation. Approximations of the time-varying noise variances of the measured signals are discussed and presented with details through Taylor series expansions. The algorithm is intuitive, easy to implement, and reliable for long-term high dynamic maneuvers. Moreover, a set of flight test data is utilized to demonstrate the success and practicality of the proposed algorithm and the filter design.
Communication Policies in Knowledge Networks
NASA Astrophysics Data System (ADS)
Ioannidis, Evangelos; Varsakelis, Nikos; Antoniou, Ioannis
2018-02-01
Faster knowledge attainment within organizations leads to improved innovation, and therefore competitive advantage. Interventions on the organizational network may be risky or costly or time-demanding. We investigate several communication policies in knowledge networks, which reduce the knowledge attainment time without interventions. We examine the resulting knowledge dynamics for real organizational networks, as well as for artificial networks. More specifically, we investigate the dependence of knowledge dynamics on: (1) the Selection Rule of agents for knowledge acquisition, and (2) the Order of implementation of "Selection" and "Filtering". Significant decrease of the knowledge attainment time (up to -74%) can be achieved by: (1) selecting agents of both high knowledge level and high knowledge transfer efficiency, and (2) implementing "Selection" after "Filtering" in contrast to the converse, implicitly assumed, conventional prioritization. The Non-Commutativity of "Selection" and "Filtering", reveals a Non-Boolean Logic of the Network Operations. The results demonstrate that significant improvement of knowledge dynamics can be achieved by implementing "fruitful" communication policies, by raising the awareness of agents, without any intervention on the network structure.
Method and system for determining induction motor speed
Parlos, Alexander G.; Bharadwaj, Raj M.
2004-03-30
A non-linear, semi-parametric neural network-based adaptive filter is utilized to determine the dynamic speed of a rotating rotor within an induction motor, without the explicit use of a speed sensor, such as a tachometer, is disclosed. The neural network-based filter is developed using actual motor current measurements, voltage measurements, and nameplate information. The neural network-based adaptive filter is trained using an estimated speed calculator derived from the actual current and voltage measurements. The neural network-based adaptive filter uses voltage and current measurements to determine the instantaneous speed of a rotating rotor. The neural network-based adaptive filter also includes an on-line adaptation scheme that permits the filter to be readily adapted for new operating conditions during operations.
NASA Technical Reports Server (NTRS)
Chen, R. T. N.; Hindson, W. S.
1985-01-01
The increasing use of highly augmented digital flight-control systems in modern military helicopters prompted an examination of the influence of rotor dynamics and other high-order dynamics on control-system performance. A study was conducted at NASA Ames Research Center to correlate theoretical predictions of feedback gain limits in the roll axis with experimental test data obtained from a variable-stability research helicopter. Feedback gains, the break frequency of the presampling sensor filter, and the computational frame time of the flight computer were systematically varied. The results, which showed excellent theoretical and experimental correlation, indicate that the rotor-dynamics, sensor-filter, and digital-data processing delays can severely limit the usable values of the roll-rate and roll-attitude feedback gains.
Constrained Kalman Filtering Via Density Function Truncation for Turbofan Engine Health Estimation
NASA Technical Reports Server (NTRS)
Simon, Dan; Simon, Donald L.
2006-01-01
Kalman filters are often used to estimate the state variables of a dynamic system. However, in the application of Kalman filters some known signal information is often either ignored or dealt with heuristically. For instance, state variable constraints (which may be based on physical considerations) are often neglected because they do not fit easily into the structure of the Kalman filter. This paper develops an analytic method of incorporating state variable inequality constraints in the Kalman filter. The resultant filter truncates the PDF (probability density function) of the Kalman filter estimate at the known constraints and then computes the constrained filter estimate as the mean of the truncated PDF. The incorporation of state variable constraints increases the computational effort of the filter but significantly improves its estimation accuracy. The improvement is demonstrated via simulation results obtained from a turbofan engine model. The turbofan engine model contains 3 state variables, 11 measurements, and 10 component health parameters. It is also shown that the truncated Kalman filter may be a more accurate way of incorporating inequality constraints than other constrained filters (e.g., the projection approach to constrained filtering).
Kalman and particle filtering methods for full vehicle and tyre identification
NASA Astrophysics Data System (ADS)
Bogdanski, Karol; Best, Matthew C.
2018-05-01
This paper considers identification of all significant vehicle handling dynamics of a test vehicle, including identification of a combined-slip tyre model, using only those sensors currently available on most vehicle controller area network buses. Using an appropriately simple but efficient model structure, all of the independent parameters are found from test vehicle data, with the resulting model accuracy demonstrated on independent validation data. The paper extends previous work on augmented Kalman Filter state estimators to concentrate wholly on parameter identification. It also serves as a review of three alternative filtering methods; identifying forms of the unscented Kalman filter, extended Kalman filter and particle filter are proposed and compared for effectiveness, complexity and computational efficiency. All three filters are suited to applications of system identification and the Kalman Filters can also operate in real-time in on-line model predictive controllers or estimators.
Soft brain-machine interfaces for assistive robotics: A novel control approach.
Schiatti, Lucia; Tessadori, Jacopo; Barresi, Giacinto; Mattos, Leonardo S; Ajoudani, Arash
2017-07-01
Robotic systems offer the possibility of improving the life quality of people with severe motor disabilities, enhancing the individual's degree of independence and interaction with the external environment. In this direction, the operator's residual functions must be exploited for the control of the robot movements and the underlying dynamic interaction through intuitive and effective human-robot interfaces. Towards this end, this work aims at exploring the potential of a novel Soft Brain-Machine Interface (BMI), suitable for dynamic execution of remote manipulation tasks for a wide range of patients. The interface is composed of an eye-tracking system, for an intuitive and reliable control of a robotic arm system's trajectories, and a Brain-Computer Interface (BCI) unit, for the control of the robot Cartesian stiffness, which determines the interaction forces between the robot and environment. The latter control is achieved by estimating in real-time a unidimensional index from user's electroencephalographic (EEG) signals, which provides the probability of a neutral or active state. This estimated state is then translated into a stiffness value for the robotic arm, allowing a reliable modulation of the robot's impedance. A preliminary evaluation of this hybrid interface concept provided evidence on the effective execution of tasks with dynamic uncertainties, demonstrating the great potential of this control method in BMI applications for self-service and clinical care.
Online Kinematic and Dynamic-State Estimation for Constrained Multibody Systems Based on IMUs
Torres-Moreno, José Luis; Blanco-Claraco, José Luis; Giménez-Fernández, Antonio; Sanjurjo, Emilio; Naya, Miguel Ángel
2016-01-01
This article addresses the problems of online estimations of kinematic and dynamic states of a mechanism from a sequence of noisy measurements. In particular, we focus on a planar four-bar linkage equipped with inertial measurement units (IMUs). Firstly, we describe how the position, velocity, and acceleration of all parts of the mechanism can be derived from IMU signals by means of multibody kinematics. Next, we propose the novel idea of integrating the generic multibody dynamic equations into two variants of Kalman filtering, i.e., the extended Kalman filter (EKF) and the unscented Kalman filter (UKF), in a way that enables us to handle closed-loop, constrained mechanisms, whose state space variables are not independent and would normally prevent the direct use of such estimators. The proposal in this work is to apply those estimators over the manifolds of allowed positions and velocities, by means of estimating a subset of independent coordinates only. The proposed techniques are experimentally validated on a testbed equipped with encoders as a means of establishing the ground-truth. Estimators are run online in real-time, a feature not matched by any previous procedure of those reported in the literature on multibody dynamics. PMID:26959027
An innovations approach to decoupling of multibody dynamics and control
NASA Technical Reports Server (NTRS)
Rodriguez, G.
1989-01-01
The problem of hinged multibody dynamics is solved using an extension of the innovations approach of linear filtering and prediction theory to the problem of mechanical system modeling and control. This approach has been used quite effectively to diagonalize the equations for filtering and prediction for linear state space systems. It has similar advantages in the study of dynamics and control of multibody systems. The innovations approach advanced here consists of expressing the equations of motion in terms of two closely related processes: (1) the innovations process e, a sequence of moments, obtained from the applied moments T by means of a spatially recursive Kalman filter that goes from the tip of the manipulator to its base; (2) a residual process, a sequence of velocities, obtained from the joint-angle velocities by means of an outward smoothing operations. The innovations e and the applied moments T are related by means of the relationships e = (I - L)T and T = (I + K)e. The operation (I - L) is a causal lower triangular matrix which is generated by a spatially recursive Kalman filter and the corresponding discrete-step Riccati equation. Hence, the innovations and the applied moments can be obtained from each other by means of a causal operation which is itself casually invertible.
Handling target obscuration through Markov chain observations
NASA Astrophysics Data System (ADS)
Kouritzin, Michael A.; Wu, Biao
2008-04-01
Target Obscuration, including foliage or building obscuration of ground targets and landscape or horizon obscuration of airborne targets, plagues many real world filtering problems. In particular, ground moving target identification Doppler radar, mounted on a surveillance aircraft or unattended airborne vehicle, is used to detect motion consistent with targets of interest. However, these targets try to obscure themselves (at least partially) by, for example, traveling along the edge of a forest or around buildings. This has the effect of creating random blockages in the Doppler radar image that move dynamically and somewhat randomly through this image. Herein, we address tracking problems with target obscuration by building memory into the observations, eschewing the usual corrupted, distorted partial measurement assumptions of filtering in favor of dynamic Markov chain assumptions. In particular, we assume the observations are a Markov chain whose transition probabilities depend upon the signal. The state of the observation Markov chain attempts to depict the current obscuration and the Markov chain dynamics are used to handle the evolution of the partially obscured radar image. Modifications of the classical filtering equations that allow observation memory (in the form of a Markov chain) are given. We use particle filters to estimate the position of the moving targets. Moreover, positive proof-of-concept simulations are included.
Applying a particle filtering technique for canola crop growth stage estimation in Canada
NASA Astrophysics Data System (ADS)
Sinha, Abhijit; Tan, Weikai; Li, Yifeng; McNairn, Heather; Jiao, Xianfeng; Hosseini, Mehdi
2017-10-01
Accurate crop growth stage estimation is important in precision agriculture as it facilitates improved crop management, pest and disease mitigation and resource planning. Earth observation imagery, specifically Synthetic Aperture Radar (SAR) data, can provide field level growth estimates while covering regional scales. In this paper, RADARSAT-2 quad polarization and TerraSAR-X dual polarization SAR data and ground truth growth stage data are used to model the influence of canola growth stages on SAR imagery extracted parameters. The details of the growth stage modeling work are provided, including a) the development of a new crop growth stage indicator that is continuous and suitable as the state variable in the dynamic estimation procedure; b) a selection procedure for SAR polarimetric parameters that is sensitive to both linear and nonlinear dependency between variables; and c) procedures for compensation of SAR polarimetric parameters for different beam modes. The data was collected over three crop growth seasons in Manitoba, Canada, and the growth model provides the foundation of a novel dynamic filtering framework for real-time estimation of canola growth stages using the multi-sensor and multi-mode SAR data. A description of the dynamic filtering framework that uses particle filter as the estimator is also provided in this paper.
Analysis of wavelet-filtered tonic-clonic electroencephalogram recordings.
Rosso, O A; Figliola, A; Creso, J; Serrano, E
2004-07-01
EEG signals obtained during tonic-clonic epileptic seizures can be severely contaminated by muscle and physiological noise. Heavily contaminated EEG signals are hard to analyse quantitatively and also are usually rejected for visual inspection by physicians, resulting in a considerable loss of collected information. The aim of this work was to develop a computer-based method of time series analysis for such EEGs. A method is presented for filtering those frequencies associated with muscle activity using a wavelet transform. One of the advantages of this method over traditional filtering is that wavelet filtering of some frequency bands does not modify the pattern of the remaining ones. In consequence, the dynamics associated with them do not change. After generation of a 'noise free' signal by removal of the muscle artifacts using wavelets, a dynamic analysis was performed using non-linear dynamics metric tools. The characteristic parameters evaluated (correlation dimension D2 and largest Lyapunov exponent lambda1) were compatible with those obtained in previous works. The average values obtained were: D2=4.25 and lambda1=3.27 for the pre-ictal stage; D2=4.03 and lambda1=2.68 for the tonic seizure stage; D2=4.11 and lambda1=2.46 for the clonic seizure stage.
Rodriguez-Donate, Carlos; Morales-Velazquez, Luis; Osornio-Rios, Roque Alfredo; Herrera-Ruiz, Gilberto; de Jesus Romero-Troncoso, Rene
2010-01-01
Intelligent robotics demands the integration of smart sensors that allow the controller to efficiently measure physical quantities. Industrial manipulator robots require a constant monitoring of several parameters such as motion dynamics, inclination, and vibration. This work presents a novel smart sensor to estimate motion dynamics, inclination, and vibration parameters on industrial manipulator robot links based on two primary sensors: an encoder and a triaxial accelerometer. The proposed smart sensor implements a new methodology based on an oversampling technique, averaging decimation filters, FIR filters, finite differences and linear interpolation to estimate the interest parameters, which are computed online utilizing digital hardware signal processing based on field programmable gate arrays (FPGA).
Rodriguez-Donate, Carlos; Morales-Velazquez, Luis; Osornio-Rios, Roque Alfredo; Herrera-Ruiz, Gilberto; de Jesus Romero-Troncoso, Rene
2010-01-01
Intelligent robotics demands the integration of smart sensors that allow the controller to efficiently measure physical quantities. Industrial manipulator robots require a constant monitoring of several parameters such as motion dynamics, inclination, and vibration. This work presents a novel smart sensor to estimate motion dynamics, inclination, and vibration parameters on industrial manipulator robot links based on two primary sensors: an encoder and a triaxial accelerometer. The proposed smart sensor implements a new methodology based on an oversampling technique, averaging decimation filters, FIR filters, finite differences and linear interpolation to estimate the interest parameters, which are computed online utilizing digital hardware signal processing based on field programmable gate arrays (FPGA). PMID:22319345
Chen, Shaoqiang; Yoshita, Masahiro; Sato, Aya; Ito, Takashi; Akiyama, Hidefumi; Yokoyama, Hiroyuki
2013-05-06
Picosecond-pulse-generation dynamics and pulse-width limiting factors via spectral filtering from intensely pulse-excited gain-switched 1.55-μm distributed-feedback laser diodes were studied. The spectral and temporal characteristics of the spectrally filtered pulses indicated that the short-wavelength component stems from the initial part of the gain-switched main pulse and has a nearly linear down-chirp of 5.2 ps/nm, whereas long-wavelength components include chirped pulse-lasing components and steady-state-lasing components. Rate-equation calculations with a model of linear change in refractive index with carrier density explained the major features of the experimental results. The analysis of the expected pulse widths with optimum spectral widths was also consistent with the experimental data.
Design of high pressure oxygen filter for extravehicular activity life support system, volume 1
NASA Technical Reports Server (NTRS)
Wilson, B. A.
1977-01-01
The experience of the National Aeronautics and Space Administration (NASA) with extravehicular activity life support emergency oxygen supply subsystems has shown a large number of problems associated with particulate contamination. These problems have resulted in failures of high pressure oxygen component sealing surfaces. A high pressure oxygen filter was designed which would (a) control the particulate contamination level in the oxygen system to a five-micron glass bead rating, ten-micron absolute condition (b) withstand the dynamic shock condition resulting from the sudden opening of 8000 psi oxygen system shutoff valve. Results of the following program tasks are reported: (1) contaminant source identification tests, (2) dynamic system tests, (3) high pressure oxygen filter concept evaluation, (4) design, (5) fabrication, (6) test, and (7) application demonstration.
Zhang, Hao; Niu, Yanxiong; Lu, Jiazhen; Zhang, He
2016-11-20
Angular velocity information is a requisite for a spacecraft guidance, navigation, and control system. In this paper, an approach for angular velocity estimation based merely on star vector measurement with an improved current statistical model Kalman filter is proposed. High-precision angular velocity estimation can be achieved under dynamic conditions. The amount of calculation is also reduced compared to a Kalman filter. Different trajectories are simulated to test this approach, and experiments with real starry sky observation are implemented for further confirmation. The estimation accuracy is proved to be better than 10-4 rad/s under various conditions. Both the simulation and the experiment demonstrate that the described approach is effective and shows an excellent performance under both static and dynamic conditions.
Kalman filter control of a model of spatiotemporal cortical dynamics
Schiff, Steven J; Sauer, Tim
2007-01-01
Recent advances in Kalman filtering to estimate system state and parameters in nonlinear systems have offered the potential to apply such approaches to spatiotemporal nonlinear systems. We here adapt the nonlinear method of unscented Kalman filtering to observe the state and estimate parameters in a computational spatiotemporal excitable system that serves as a model for cerebral cortex. We demonstrate the ability to track spiral wave dynamics, and to use an observer system to calculate control signals delivered through applied electrical fields. We demonstrate how this strategy can control the frequency of such a system, or quench the wave patterns, while minimizing the energy required for such results. These findings are readily testable in experimental applications, and have the potential to be applied to the treatment of human disease. PMID:18310806
A class of optimum digital phase locked loops for the DSN advanced receiver
NASA Technical Reports Server (NTRS)
Hurd, W. J.; Kumar, R.
1985-01-01
A class of optimum digital filters for digital phase locked loop of the deep space network advanced receiver is discussed. The filter minimizes a weighted combination of the variance of the random component of the phase error and the sum square of the deterministic dynamic component of phase error at the output of the numerically controlled oscillator (NCO). By varying the weighting coefficient over a suitable range of values, a wide set of filters are obtained such that, for any specified value of the equivalent loop-noise bandwidth, there corresponds a unique filter in this class. This filter thus has the property of having the best transient response over all possible filters of the same bandwidth and type. The optimum filters are also evaluated in terms of their gain margin for stability and their steady-state error performance.
NASA Technical Reports Server (NTRS)
Bundick, W. T.
1985-01-01
The application of the failure detection filter to the detection and identification of aircraft control element failures was evaluated in a linear digital simulation of the longitudinal dynamics of a B-737 Aircraft. Simulation results show that with a simple correlator and threshold detector used to process the filter residuals, the failure detection performance is seriously degraded by the effects of turbulence.
Implementation of a Parallel Kalman Filter for Stratospheric Chemical Tracer Assimilation
NASA Technical Reports Server (NTRS)
Chang, Lang-Ping; Lyster, Peter M.; Menard, R.; Cohn, S. E.
1998-01-01
A Kalman filter for the assimilation of long-lived atmospheric chemical constituents has been developed for two-dimensional transport models on isentropic surfaces over the globe. An important attribute of the Kalman filter is that it calculates error covariances of the constituent fields using the tracer dynamics. Consequently, the current Kalman-filter assimilation is a five-dimensional problem (coordinates of two points and time), and it can only be handled on computers with large memory and high floating point speed. In this paper, an implementation of the Kalman filter for distributed-memory, message-passing parallel computers is discussed. Two approaches were studied: an operator decomposition and a covariance decomposition. The latter was found to be more scalable than the former, and it possesses the property that the dynamical model does not need to be parallelized, which is of considerable practical advantage. This code is currently used to assimilate constituent data retrieved by limb sounders on the Upper Atmosphere Research Satellite. Tests of the code examined the variance transport and observability properties. Aspects of the parallel implementation, some timing results, and a brief discussion of the physical results will be presented.
Li, Miao; Li, Jun; Zhou, Yiyu
2015-12-08
The problem of jointly detecting and tracking multiple targets from the raw observations of an infrared focal plane array is a challenging task, especially for the case with uncertain target dynamics. In this paper a multi-model labeled multi-Bernoulli (MM-LMB) track-before-detect method is proposed within the labeled random finite sets (RFS) framework. The proposed track-before-detect method consists of two parts-MM-LMB filter and MM-LMB smoother. For the MM-LMB filter, original LMB filter is applied to track-before-detect based on target and measurement models, and is integrated with the interacting multiple models (IMM) approach to accommodate the uncertainty of target dynamics. For the MM-LMB smoother, taking advantage of the track labels and posterior model transition probability, the single-model single-target smoother is extended to a multi-model multi-target smoother. A Sequential Monte Carlo approach is also presented to implement the proposed method. Simulation results show the proposed method can effectively achieve tracking continuity for multiple maneuvering targets. In addition, compared with the forward filtering alone, our method is more robust due to its combination of forward filtering and backward smoothing.
Li, Miao; Li, Jun; Zhou, Yiyu
2015-01-01
The problem of jointly detecting and tracking multiple targets from the raw observations of an infrared focal plane array is a challenging task, especially for the case with uncertain target dynamics. In this paper a multi-model labeled multi-Bernoulli (MM-LMB) track-before-detect method is proposed within the labeled random finite sets (RFS) framework. The proposed track-before-detect method consists of two parts—MM-LMB filter and MM-LMB smoother. For the MM-LMB filter, original LMB filter is applied to track-before-detect based on target and measurement models, and is integrated with the interacting multiple models (IMM) approach to accommodate the uncertainty of target dynamics. For the MM-LMB smoother, taking advantage of the track labels and posterior model transition probability, the single-model single-target smoother is extended to a multi-model multi-target smoother. A Sequential Monte Carlo approach is also presented to implement the proposed method. Simulation results show the proposed method can effectively achieve tracking continuity for multiple maneuvering targets. In addition, compared with the forward filtering alone, our method is more robust due to its combination of forward filtering and backward smoothing. PMID:26670234
Kalman Filter Constraint Tuning for Turbofan Engine Health Estimation
NASA Technical Reports Server (NTRS)
Simon, Dan; Simon, Donald L.
2005-01-01
Kalman filters are often used to estimate the state variables of a dynamic system. However, in the application of Kalman filters some known signal information is often either ignored or dealt with heuristically. For instance, state variable constraints are often neglected because they do not fit easily into the structure of the Kalman filter. Recently published work has shown a new method for incorporating state variable inequality constraints in the Kalman filter, which has been shown to generally improve the filter s estimation accuracy. However, the incorporation of inequality constraints poses some risk to the estimation accuracy as the Kalman filter is theoretically optimal. This paper proposes a way to tune the filter constraints so that the state estimates follow the unconstrained (theoretically optimal) filter when the confidence in the unconstrained filter is high. When confidence in the unconstrained filter is not so high, then we use our heuristic knowledge to constrain the state estimates. The confidence measure is based on the agreement of measurement residuals with their theoretical values. The algorithm is demonstrated on a linearized simulation of a turbofan engine to estimate engine health.
State and parameter estimation of the heat shock response system using Kalman and particle filters.
Liu, Xin; Niranjan, Mahesan
2012-06-01
Traditional models of systems biology describe dynamic biological phenomena as solutions to ordinary differential equations, which, when parameters in them are set to correct values, faithfully mimic observations. Often parameter values are tweaked by hand until desired results are achieved, or computed from biochemical experiments carried out in vitro. Of interest in this article, is the use of probabilistic modelling tools with which parameters and unobserved variables, modelled as hidden states, can be estimated from limited noisy observations of parts of a dynamical system. Here we focus on sequential filtering methods and take a detailed look at the capabilities of three members of this family: (i) extended Kalman filter (EKF), (ii) unscented Kalman filter (UKF) and (iii) the particle filter, in estimating parameters and unobserved states of cellular response to sudden temperature elevation of the bacterium Escherichia coli. While previous literature has studied this system with the EKF, we show that parameter estimation is only possible with this method when the initial guesses are sufficiently close to the true values. The same turns out to be true for the UKF. In this thorough empirical exploration, we show that the non-parametric method of particle filtering is able to reliably estimate parameters and states, converging from initial distributions relatively far away from the underlying true values. Software implementation of the three filters on this problem can be freely downloaded from http://users.ecs.soton.ac.uk/mn/HeatShock
Robotic fish tracking method based on suboptimal interval Kalman filter
NASA Astrophysics Data System (ADS)
Tong, Xiaohong; Tang, Chao
2017-11-01
Autonomous Underwater Vehicle (AUV) research focused on tracking and positioning, precise guidance and return to dock and other fields. The robotic fish of AUV has become a hot application in intelligent education, civil and military etc. In nonlinear tracking analysis of robotic fish, which was found that the interval Kalman filter algorithm contains all possible filter results, but the range is wide, relatively conservative, and the interval data vector is uncertain before implementation. This paper proposes a ptimization algorithm of suboptimal interval Kalman filter. Suboptimal interval Kalman filter scheme used the interval inverse matrix with its worst inverse instead, is more approximate nonlinear state equation and measurement equation than the standard interval Kalman filter, increases the accuracy of the nominal dynamic system model, improves the speed and precision of tracking system. Monte-Carlo simulation results show that the optimal trajectory of sub optimal interval Kalman filter algorithm is better than that of the interval Kalman filter method and the standard method of the filter.
Aircraft Turbofan Engine Health Estimation Using Constrained Kalman Filtering
NASA Technical Reports Server (NTRS)
Simon, Dan; Simon, Donald L.
2003-01-01
Kalman filters are often used to estimate the state variables of a dynamic system. However, in the application of Kalman filters some known signal information is often either ignored or dealt with heuristically. For instance, state variable constraints (which may be based on physical considerations) are often neglected because they do not fit easily into the structure of the Kalman filter. This paper develops an analytic method of incorporating state variable inequality constraints in the Kalman filter. The resultant filter is a combination of a standard Kalman filter and a quadratic programming problem. The incorporation of state variable constraints increases the computational effort of the filter but significantly improves its estimation accuracy. The improvement is proven theoretically and shown via simulation results obtained from application to a turbofan engine model. This model contains 16 state variables, 12 measurements, and 8 component health parameters. It is shown that the new algorithms provide improved performance in this example over unconstrained Kalman filtering.
2017-04-01
dimensional canard and computational domain ..........................4 Fig. 3 Prescribed dynamic ramp motion for the 2-D airfoil at k2 = 0.5 (a) and...airfoil as a function of equivalent mean angle of attack, unfiltered (a, c) and filtered (b, d), for reduced frequency of oscillation of k2 = 0.5 (a–b...filtered (b, d), for reduced frequency of oscillation of k2 = 0.5 (a–b) and 1.0 (c–d), M∞ = 0.5 .....10 Fig. 6 Lift coefficient of dynamic canard
Multiple estimation channel decoupling and optimization method based on inverse system
NASA Astrophysics Data System (ADS)
Wu, Peng; Mu, Rongjun; Zhang, Xin; Deng, Yanpeng
2018-03-01
This paper addressed the intelligent autonomous navigation request of intelligent deformation missile, based on the intelligent deformation missile dynamics and kinematics modeling, navigation subsystem solution method and error modeling, and then focuses on the corresponding data fusion and decision fusion technology, decouples the sensitive channel of the filter input through the inverse system of design dynamics to reduce the influence of sudden change of the measurement information on the filter input. Then carrying out a series of simulation experiments, which verified the feasibility of the inverse system decoupling algorithm effectiveness.
NASA Astrophysics Data System (ADS)
Samson, A. M.; Kotomtseva, L. A.; Grigor'eva, E. V.
1989-02-01
A theoretical study of the dynamics of a laser with a bleachable filter revealed chaotic lasing regimes and ranges of bistable states of parameters close to those found in reality. It is shown how a transition to chaos occurs as a result of period-doubling bifurcation. A study is reported of the degree of chaos and of the structure of the resultant strange attractor by calculation of its fractal dimensionality and of the Lyapunov indices.
Optimal post-experiment estimation of poorly modeled dynamic systems
NASA Technical Reports Server (NTRS)
Mook, D. Joseph
1988-01-01
Recently, a novel strategy for post-experiment state estimation of discretely-measured dynamic systems has been developed. The method accounts for errors in the system dynamic model equations in a more general and rigorous manner than do filter-smoother algorithms. The dynamic model error terms do not require the usual process noise assumptions of zero-mean, symmetrically distributed random disturbances. Instead, the model error terms require no prior assumptions other than piecewise continuity. The resulting state estimates are more accurate than filters for applications in which the dynamic model error clearly violates the typical process noise assumptions, and the available measurements are sparse and/or noisy. Estimates of the dynamic model error, in addition to the states, are obtained as part of the solution of a two-point boundary value problem, and may be exploited for numerous reasons. In this paper, the basic technique is explained, and several example applications are given. Included among the examples are both state estimation and exploitation of the model error estimates.
Konrad, Christopher P.
2014-01-01
Marine bivalves such as clams, mussels, and oysters are an important component of the food web, which influence nutrient dynamics and water quality in many estuaries. The role of bivalves in nutrient dynamics and, particularly, the contribution of commercial shellfish activities, are not well understood in Puget Sound, Washington. Numerous approaches have been used in other estuaries to quantify the effects of bivalves on nutrient dynamics, ranging from simple nutrient budgeting to sophisticated numerical models that account for tidal circulation, bioenergetic fluxes through food webs, and biochemical transformations in the water column and sediment. For nutrient management in Puget Sound, it might be possible to integrate basic biophysical indicators (residence time, phytoplankton growth rates, and clearance rates of filter feeders) as a screening tool to identify places where nutrient dynamics and water quality are likely to be sensitive to shellfish density and, then, apply more sophisticated methods involving in-situ measurements and simulation models to quantify those dynamics.
SPONGY (SPam ONtoloGY): Email Classification Using Two-Level Dynamic Ontology
2014-01-01
Email is one of common communication methods between people on the Internet. However, the increase of email misuse/abuse has resulted in an increasing volume of spam emails over recent years. An experimental system has been designed and implemented with the hypothesis that this method would outperform existing techniques, and the experimental results showed that indeed the proposed ontology-based approach improves spam filtering accuracy significantly. In this paper, two levels of ontology spam filters were implemented: a first level global ontology filter and a second level user-customized ontology filter. The use of the global ontology filter showed about 91% of spam filtered, which is comparable with other methods. The user-customized ontology filter was created based on the specific user's background as well as the filtering mechanism used in the global ontology filter creation. The main contributions of the paper are (1) to introduce an ontology-based multilevel filtering technique that uses both a global ontology and an individual filter for each user to increase spam filtering accuracy and (2) to create a spam filter in the form of ontology, which is user-customized, scalable, and modularized, so that it can be embedded to many other systems for better performance. PMID:25254240
SPONGY (SPam ONtoloGY): email classification using two-level dynamic ontology.
Youn, Seongwook
2014-01-01
Email is one of common communication methods between people on the Internet. However, the increase of email misuse/abuse has resulted in an increasing volume of spam emails over recent years. An experimental system has been designed and implemented with the hypothesis that this method would outperform existing techniques, and the experimental results showed that indeed the proposed ontology-based approach improves spam filtering accuracy significantly. In this paper, two levels of ontology spam filters were implemented: a first level global ontology filter and a second level user-customized ontology filter. The use of the global ontology filter showed about 91% of spam filtered, which is comparable with other methods. The user-customized ontology filter was created based on the specific user's background as well as the filtering mechanism used in the global ontology filter creation. The main contributions of the paper are (1) to introduce an ontology-based multilevel filtering technique that uses both a global ontology and an individual filter for each user to increase spam filtering accuracy and (2) to create a spam filter in the form of ontology, which is user-customized, scalable, and modularized, so that it can be embedded to many other systems for better performance.
Low loss jammed-array wideband sawtooth filter based on a finite reflection virtually imaged array
NASA Astrophysics Data System (ADS)
Tan, Zhongwei; Cao, Dandan; Ding, Zhichao
2018-03-01
An edge filter is a potential technology in the fiber Bragg grating interrogation that has the advantages of fast response speed and suitability for dynamic measurement. To build a low loss, wideband jammed-array wideband sawtooth (JAWS) filter, a finite reflection virtually imaged array (FRVIA) is proposed and demonstrated. FRVIA is different from the virtually imaged phased array in that it has a low reflective front end. This change will lead to many differences in the device's performance in output optical intensity distribution, spectral resolution, output aperture, and tolerance of the manufacture errors. A low loss, wideband JAWS filter based on an FRVIA can provide an edge filter for each channel, respectively.
Material characterization and defect inspection in ultrasound images
NASA Astrophysics Data System (ADS)
Zmola, Carl; Segal, Andrew C.; Lovewell, Brian; Mahdavieh, Jacob; Ross, Joseph; Nash, Charles
1992-08-01
The use of ultrasonic imaging to analyze defects and characterize materials is critical in the development of non-destructive testing and non-destructive evaluation (NDT/NDE) tools for manufacturing. To develop better quality control and reliability in the manufacturing environment advanced image processing techniques are useful. For example, through the use of texture filtering on ultrasound images, we have been able to filter characteristic textures from highly textured C-scan images of materials. The materials have highly regular characteristic textures which are of the same resolution and dynamic range as other important features within the image. By applying texture filters and adaptively modifying their filter response, we have examined a family of filters for removing these textures.
Suppression of Biodynamic Interference by Adaptive Filtering
NASA Technical Reports Server (NTRS)
Velger, M.; Merhav, S. J.; Grunwald, A. J.
1984-01-01
Preliminary experimental results obtained in moving base simulator tests are presented. Both for pursuit and compensatory tracking tasks, a strong deterioration in tracking performance due to biodynamic interference is found. The use of adaptive filtering is shown to substantially alleviate these effects, resulting in a markedly improved tracking performance and reduction in task difficulty. The effect of simulator motion and of adaptive filtering on human operator describing functions is investigated. Adaptive filtering is found to substantially increase pilot gain and cross-over frequency, implying a more tight tracking behavior. The adaptive filter is found to be effective in particular for high-gain proportional dynamics, low display forcing function power and for pursuit tracking task configurations.
Discrete filtering techniques applied to sequential GPS range measurements
NASA Technical Reports Server (NTRS)
Vangraas, Frank
1987-01-01
The basic navigation solution is described for position and velocity based on range and delta range (Doppler) measurements from NAVSTAR Global Positioning System satellites. The application of discrete filtering techniques is examined to reduce the white noise distortions on the sequential range measurements. A second order (position and velocity states) Kalman filter is implemented to obtain smoothed estimates of range by filtering the dynamics of the signal from each satellite separately. Test results using a simulated GPS receiver show a steady-state noise reduction, the input noise variance divided by the output noise variance, of a factor of four. Recommendations for further noise reduction based on higher order Kalman filters or additional delta range measurements are included.
Filter methods to preserve local contrast and to avoid artifacts in gamut mapping
NASA Astrophysics Data System (ADS)
Meili, Marcel; Küpper, Dennis; Barańczuk, Zofia; Caluori, Ursina; Simon, Klaus
2010-01-01
Contrary to high dynamic range imaging, the preservation of details and the avoidance of artifacts is not explicitly considered in popular color management systems. An effective way to overcome these difficulties is image filtering. In this paper we investigate several image filter concepts for detail preservation as part of a practical gamut mapping strategy. In particular we define four concepts including various image filters and check their performance with a psycho-visual test. Additionally, we compare our performance evaluation to two image quality measures with emphasis on local contrast. Surprisingly, the most simple filter concept performs highly efficient and achieves an image quality which is comparable to the more established but slower methods.
McKay, Michael T; Morgan, Grant B; van Exel, N Job; Worrell, Frank C
2015-01-01
Despite its widespread use, disagreement remains regarding the structure of the Consideration of Future Consequences Scale (CFCS). In particular there is disagreement regarding whether the scale assesses future orientation as a unidimensional or multidimensional (immediate and future) construct. Using 2 samples of high school students in the United Kingdom, 4 models were tested. The totality of results including item loadings, goodness-of-fit indexes, and reliability estimates all supported the bifactor model, suggesting that the 2 hypothesized factors are better understood as grouping or method factors rather than as representative of latent constructs. Accordingly this study supports the unidimensionality of the CFCS and the scoring of all 12 items to produce a global future orientation score. Researchers intending to use the CFCS, and those with existing data, are encouraged to examine a bifactor solution for the scale.
Harrell-Williams, Leigh; Wolfe, Edward W
2014-01-01
Previous research has investigated the influence of sample size, model misspecification, test length, ability distribution offset, and generating model on the likelihood ratio difference test in applications of item response models. This study extended that research to the evaluation of dimensionality using the multidimensional random coefficients multinomial logit model (MRCMLM). Logistic regression analysis of simulated data reveal that sample size and test length have a large effect on the capacity of the LR difference test to correctly identify unidimensionality, with shorter tests and smaller sample sizes leading to smaller Type I error rates. Higher levels of simulated misfit resulted in fewer incorrect decisions than data with no or little misfit. However, Type I error rates indicate that the likelihood ratio difference test is not suitable under any of the simulated conditions for evaluating dimensionality in applications of the MRCMLM.
Self-ordering of InAs nanostructures on (631)A/B GaAs substrates
NASA Astrophysics Data System (ADS)
Eugenio-López, Eric; Alejandro Mercado-Ornelas, Christian; Kisan Patil, Pallavi; Cortes-Mestizo, Irving Eduardo; Ángel Espinoza-Figueroa, José; Gorbatchev, Andrei Yu; Shimomura, Satoshi; Ithsmel Espinosa-Vega, Leticia; Méndez-García, Víctor Hugo
2018-02-01
The high order self-organization of quantum dots is demonstrated in the growth of InAs on a GaAs(631)-oriented crystallographic plane. The unidimensional ordering of the quantum dots (QDs) strongly depends on the As flux beam equivalent pressure (P As) and the cation/anion terminated surface, i.e., A- or B-type GaAs(631). The self-organization of QDs occurs for both surface types along [\\bar{1}13], while the QD shape and size distribution were found to be different for the self-assembly on the A- and B-type surfaces. In addition, the experiments showed that any misorientation from the (631) plane, which results from the buffer layer waviness, does not allow a high order of unidimensional arrangements of QDs. The optical properties were studied by photoluminescence spectroscopy, where good correspondence was obtained between the energy transitions and the size of the QDs.
Factor structure of the Body Appreciation Scale among Malaysian women.
Swami, Viren; Chamorro-Premuzic, Tomas
2008-12-01
The present study examined the factor structure of a Malay version of the Body Appreciation Scale (BAS), a recently developed scale for the assessment of positive body image that has been shown to have a unidimensional structure in Western settings. Results of exploratory and confirmatory factor analyses based on data from community sample of 591 women in Kuala Lumpur, Malaysia, failed to support a unidimensional structure for the Malay BAS. Results of a confirmatory factor analysis suggested two stable factors, which were labelled 'General Body Appreciation' and 'Body Image Investment'. Multi-group analysis showed that the two-factor structure was invariant for both Malaysian Malay and Chinese women, and that there were no significant ethnic differences on either factor. Results also showed that General Body Appreciation was significant negatively correlated with participants' body mass index. These results are discussed in relation to possible cross-cultural differences in positive body image.
Experimental study on all-fiber-based unidimensional continuous-variable quantum key distribution
NASA Astrophysics Data System (ADS)
Wang, Xuyang; Liu, Wenyuan; Wang, Pu; Li, Yongmin
2017-06-01
We experimentally demonstrated an all-fiber-based unidimensional continuous-variable quantum key distribution (CV QKD) protocol and analyzed its security under collective attack in realistic conditions. A pulsed balanced homodyne detector, which could not be accessed by eavesdroppers, with phase-insensitive efficiency and electronic noise, was considered. Furthermore, a modulation method and an improved relative phase-locking technique with one amplitude modulator and one phase modulator were designed. The relative phase could be locked precisely with a standard deviation of 0.5° and a mean of almost zero. Secret key bit rates of 5.4 kbps and 700 bps were achieved for transmission fiber lengths of 30 and 50 km, respectively. The protocol, which simplified the CV QKD system and reduced the cost, displayed a performance comparable to that of a symmetrical counterpart under realistic conditions. It is expected that the developed protocol can facilitate the practical application of the CV QKD.
Testing the multidimensionality of the inventory of school motivation in a Dutch student sample.
Korpershoek, Hanke; Xu, Kun; Mok, Magdalena Mo Ching; McInerney, Dennis M; van der Werf, Greetje
2015-01-01
A factor analytic and a Rasch measurement approach were applied to evaluate the multidimensional nature of the school motivation construct among more than 7,000 Dutch secondary school students. The Inventory of School Motivation (McInerney and Ali, 2006) was used, which intends to measure four motivation dimensions (mastery, performance, social, and extrinsic motivation), each comprising of two first-order factors. One unidimensional model and three multidimensional models (4-factor, 8-factor, higher order) were fit to the data. Results of both approaches showed that the multidimensional models validly represented the school motivation among Dutch secondary school pupils, whereas model fit of the unidimensional model was poor. The differences in model fit between the three multidimensional models were small, although a different model was favoured by the two approaches. The need for improvement of some of the items and the need to increase measurement precision of several first-order factors are discussed.
A Dynamic Attitude Measurement System Based on LINS
Li, Hanzhou; Pan, Quan; Wang, Xiaoxu; Zhang, Juanni; Li, Jiang; Jiang, Xiangjun
2014-01-01
A dynamic attitude measurement system (DAMS) is developed based on a laser inertial navigation system (LINS). Three factors of the dynamic attitude measurement error using LINS are analyzed: dynamic error, time synchronization and phase lag. An optimal coning errors compensation algorithm is used to reduce coning errors, and two-axis wobbling verification experiments are presented in the paper. The tests indicate that the attitude accuracy is improved 2-fold by the algorithm. In order to decrease coning errors further, the attitude updating frequency is improved from 200 Hz to 2000 Hz. At the same time, a novel finite impulse response (FIR) filter with three notches is designed to filter the dither frequency of the ring laser gyro (RLG). The comparison tests suggest that the new filter is five times more effective than the old one. The paper indicates that phase-frequency characteristics of FIR filter and first-order holder of navigation computer constitute the main sources of phase lag in LINS. A formula to calculate the LINS attitude phase lag is introduced in the paper. The expressions of dynamic attitude errors induced by phase lag are derived. The paper proposes a novel synchronization mechanism that is able to simultaneously solve the problems of dynamic test synchronization and phase compensation. A single-axis turntable and a laser interferometer are applied to verify the synchronization mechanism. The experiments results show that the theoretically calculated values of phase lag and attitude error induced by phase lag can both match perfectly with testing data. The block diagram of DAMS and physical photos are presented in the paper. The final experiments demonstrate that the real-time attitude measurement accuracy of DAMS can reach up to 20″ (1σ) and the synchronization error is less than 0.2 ms on the condition of three axes wobbling for 10 min. PMID:25177802
Gain-Scheduled Complementary Filter Design for a MEMS Based Attitude and Heading Reference System
Yoo, Tae Suk; Hong, Sung Kyung; Yoon, Hyok Min; Park, Sungsu
2011-01-01
This paper describes a robust and simple algorithm for an attitude and heading reference system (AHRS) based on low-cost MEMS inertial and magnetic sensors. The proposed approach relies on a gain-scheduled complementary filter, augmented by an acceleration-based switching architecture to yield robust performance, even when the vehicle is subject to strong accelerations. Experimental results are provided for a road captive test during which the vehicle dynamics are in high-acceleration mode and the performance of the proposed filter is evaluated against the output from a conventional linear complementary filter. PMID:22163824
Attitude Representations for Kalman Filtering
NASA Technical Reports Server (NTRS)
Markley, F. Landis; Bauer, Frank H. (Technical Monitor)
2001-01-01
The four-component quaternion has the lowest dimensionality possible for a globally nonsingular attitude representation, it represents the attitude matrix as a homogeneous quadratic function, and its dynamic propagation equation is bilinear in the quaternion and the angular velocity. The quaternion is required to obey a unit norm constraint, though, so Kalman filters often employ a quaternion for the global attitude estimate and a three-component representation for small errors about the estimate. We consider these mixed attitude representations for both a first-order Extended Kalman filter and a second-order filter, as well for quaternion-norm-preserving attitude propagation.
Zero Gyro Kalman Filtering in the presence of a Reaction Wheel Failure
NASA Technical Reports Server (NTRS)
Hur-Diaz, Sun; Wirzburger, John; Smith, Dan; Myslinski, Mike
2007-01-01
Typical implementation of Kalman filters for spacecraft attitude estimation involves the use of gyros for three-axis rate measurements. When there are less than three axes of information available, the accuracy of the Kalman filter depends highly on the accuracy of the dynamics model. This is particularly significant during the transient period when a reaction wheel with a high momentum fails, is taken off-line, and spins down. This paper looks at how a reaction wheel failure can affect the zero-gyro Kalman filter performance for the Hubble Space Telescope and what steps are taken to minimize its impact.
Zero Gyro Kalman Filtering in the Presence of a Reaction Wheel Failure
NASA Technical Reports Server (NTRS)
Hur-Diaz, Sun; Wirzburger, John; Smith, Dan; Myslinski, Mike
2007-01-01
Typical implementation of Kalman filters for spacecraft attitude estimation involves the use of gyros for three-axis rate measurements. When there are less than three axes of information available, the accuracy of the Kalman filter depends highly on the accuracy of the dynamics model. This is particularly significant during the transient period when a reaction wheel with a high momentum fails, is taken off-line, and spins down. This paper looks at how a reaction wheel failure can affect the zero-gyro Kalman filter performance for the Hubble Space Telescope and what steps are taken to minimize its impact.
Spacecraft Formation Control and Estimation Via Improved Relative Motion Dynamics
2017-03-30
statistical (e.g. batch least-squares or Extended Kalman Filter ) estimator. In addition, the IROD approach can be applied to classical (ground-based...covariance Test the viability of IROD solutions by injecting them into precise orbit determination schemes (e.g. various strains of Kalman filters
A-law/Mu-law Dynamic Range Compression Deconvolution (Preprint)
2008-02-04
noise filtering via the spectrum proportionality filter, and second the signal deblurring via the inverse filter. In this process for regions when...is the joint image of motion impulse response and the noisy blurred image with signal to noise ratio 5, 6(A’) is the gray level recovered image...joint image of motion impulse response and the noisy blurred image with signal to noise ratio 5, (A’) the gray level recovered image using the A-law
NASA Technical Reports Server (NTRS)
Bailey, R. E.; Smith, R. E.
1982-01-01
An investigation of pilot-induced oscillation suppression (PIOS) filters was performed using the USAF/Flight Dynamics Laboratory variable stability NT-33 aircraft, modified and operated by Calspan. This program examined the effects of PIOS filtering on the longitudinal flying qualities of fighter aircraft during the visual approach and landing task. Forty evaluations were flown to test the effects of different PIOS filters. Although detailed analyses were not undertaken, the results indicate that PIOS filtering can improve the flying qualities of an otherwise unacceptable aircraft configuration (Level 3 flying qualities). However, the ability of the filters to suppress pilot-induced oscillations appears to be dependent upon the aircraft configuration characteristics. Further, the data show that the filters can adversely affect landing flying qualities if improperly designed. The data provide an excellent foundation from which detail analyses can be performed.
Lundgren-Nilsson, Asa; Dencker, Anna; Jakobsson, Sofie; Taft, Charles; Tennant, Alan
2014-06-01
Fatigue is a common and distressing symptom in cancer patients due to both the disease and its treatments. The concept of fatigue is multidimensional and includes both physical and mental components. The 22-item Revised Piper Fatigue Scale (RPFS) is a multidimensional instrument developed to assess cancer-related fatigue. This study reports on the construct validity of the Swedish version of the RPFS from the perspective of Rasch measurement. The Swedish version of the RPFS was answered by 196 cancer patients fatigued after 4 to 5 weeks of curative radiation therapy. Data from the scale were fitted to the Rasch measurement model. This involved testing a series of assumptions, including the stochastic ordering of items, local response dependency, and unidimensionality. A series of fit statistics were computed, differential item functioning (DIF) was tested, and local response dependency was accommodated through testlets. The Behavioral, Affective and Sensory domains all satisfied the Rasch model expectations. No DIF was observed, and all domains were found to be unidimensional. The Mood/Cognitive scale failed to fit the model, and substantial multidimensionality was found. Splitting the scale between Mood and Cognitive items resolved fit to the Rasch model, and new domains were unidimensional without DIF. The current Rasch analyses add to the evidence of measurement properties of the scale and show that the RPFS has good psychometric properties and works well to measure fatigue. The original four-factor structure, however, was not supported. Copyright © 2014 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.
Rasch Analysis of the 9-Item Shared Decision Making Questionnaire in Women With Breast Cancer.
Wu, Tzu-Yi; Chen, Cheng-Te; Huang, Yi-Jing; Hou, Wen-Hsuan; Wang, Jung-Der; Hsieh, Ching-Lin
2018-04-19
Shared decision making (SDM) is a best practice to help patients make optimal decisions by a process of healthcare, especially for women diagnosed with breast cancer and having heavy burden in long-term treatments. To promote successful SDM, it is crucial to assess the level of perceived involvement in SDM in women with breast cancer. The aims of this study were to apply Rasch analysis to examine the construct validity and person reliability of the 9-item Shared Decision Making Questionnaire (SDM-Q-9) in women with breast cancer. The construct validity of SDM-Q-9 was confirmed when the items fit the Rasch model's assumptions of unidimensionality: (1) infit and outfit mean square ranged from 0.6 to 1.4; (2) the unexplained variance of the first dimension of the principal component analysis was less than 20%. Person reliability was calculated. A total of 212 participants were recruited in this study. Item 1 did not fit the model's assumptions and was deleted. The unidimensionality of the remaining 8 items (SDM-Q-8) was supported with good item fit (infit and outfit mean square ranging from 0.6 to 1.3) and very low unexplained variance of the first dimension (5.3%) of the principal component analysis. The person reliability of the SDM-Q-8 was 0.90. The SDM-Q-8 was unidimensional and had good person reliability in women with breast cancer. The SDM-Q-8 has shown its potential for assessing the level of perceived involvement in SDM in women with breast cancer for both research and clinical purposes.
The stroke impairment assessment set: its internal consistency and predictive validity.
Tsuji, T; Liu, M; Sonoda, S; Domen, K; Chino, N
2000-07-01
To study the scale quality and predictive validity of the Stroke Impairment Assessment Set (SIAS) developed for stroke outcome research. Rasch analysis of the SIAS; stepwise multiple regression analysis to predict discharge functional independence measure (FIM) raw scores from demographic data, the SIAS scores, and the admission FIM scores; cross-validation of the prediction rule. Tertiary rehabilitation center in Japan. One hundred ninety stroke inpatients for the study of the scale quality and the predictive validity; a second sample of 116 stroke inpatients for the cross-validation study. Mean square fit statistics to study the degree of fit to the unidimensional model; logits to express item difficulties; discharge FIM scores for the study of predictive validity. The degree of misfit was acceptable except for the shoulder range of motion (ROM), pain, visuospatial function, and speech items; and the SIAS items could be arranged on a common unidimensional scale. The difficulty patterns were identical at admission and at discharge except for the deep tendon reflexes, ROM, and pain items. They were also similar for the right- and left-sided brain lesion groups except for the speech and visuospatial items. For the prediction of the discharge FIM scores, the independent variables selected were age, the SIAS total scores, and the admission FIM scores; and the adjusted R2 was .64 (p < .0001). Stability of the predictive equation was confirmed in the cross-validation sample (R2 = .68, p < .001). The unidimensionality of the SIAS was confirmed, and the SIAS total scores proved useful for stroke outcome prediction.
Lyu, Weiwei; Cheng, Xianghong
2017-11-28
Transfer alignment is always a key technology in a strapdown inertial navigation system (SINS) because of its rapidity and accuracy. In this paper a transfer alignment model is established, which contains the SINS error model and the measurement model. The time delay in the process of transfer alignment is analyzed, and an H∞ filtering method with delay compensation is presented. Then the H∞ filtering theory and the robust mechanism of H∞ filter are deduced and analyzed in detail. In order to improve the transfer alignment accuracy in SINS with time delay, an adaptive H∞ filtering method with delay compensation is proposed. Since the robustness factor plays an important role in the filtering process and has effect on the filtering accuracy, the adaptive H∞ filter with delay compensation can adjust the value of robustness factor adaptively according to the dynamic external environment. The vehicle transfer alignment experiment indicates that by using the adaptive H∞ filtering method with delay compensation, the transfer alignment accuracy and the pure inertial navigation accuracy can be dramatically improved, which demonstrates the superiority of the proposed filtering method.
Nonlinear estimation theory applied to orbit determination
NASA Technical Reports Server (NTRS)
Choe, C. Y.
1972-01-01
The development of an approximate nonlinear filter using the Martingale theory and appropriate smoothing properties is considered. Both the first order and the second order moments were estimated. The filter developed can be classified as a modified Gaussian second order filter. Its performance was evaluated in a simulated study of the problem of estimating the state of an interplanetary space vehicle during both a simulated Jupiter flyby and a simulated Jupiter orbiter mission. In addition to the modified Gaussian second order filter, the modified truncated second order filter was also evaluated in the simulated study. Results obtained with each of these filters were compared with numerical results obtained with the extended Kalman filter and the performance of each filter is determined by comparison with the actual estimation errors. The simulations were designed to determine the effects of the second order terms in the dynamic state relations, the observation state relations, and the Kalman gain compensation term. It is shown that the Kalman gain-compensated filter which includes only the Kalman gain compensation term is superior to all of the other filters.
Restricted Complexity Framework for Nonlinear Adaptive Control in Complex Systems
NASA Astrophysics Data System (ADS)
Williams, Rube B.
2004-02-01
Control law adaptation that includes implicit or explicit adaptive state estimation, can be a fundamental underpinning for the success of intelligent control in complex systems, particularly during subsystem failures, where vital system states and parameters can be impractical or impossible to measure directly. A practical algorithm is proposed for adaptive state filtering and control in nonlinear dynamic systems when the state equations are unknown or are too complex to model analytically. The state equations and inverse plant model are approximated by using neural networks. A framework for a neural network based nonlinear dynamic inversion control law is proposed, as an extrapolation of prior developed restricted complexity methodology used to formulate the adaptive state filter. Examples of adaptive filter performance are presented for an SSME simulation with high pressure turbine failure to support extrapolations to adaptive control problems.
Yau, David T W; Wong, May C M; Lam, K F; McGrath, Colman
2015-08-19
Four-factor structure of the two 8-item short forms of Child Perceptions Questionnaire CPQ11-14 (RSF:8 and ISF:8) has been confirmed. However, the sum scores are typically reported in practice as a proxy of Oral health-related Quality of Life (OHRQoL), which implied a unidimensional structure. This study first assessed the unidimensionality of 8-item short forms of CPQ11-14. Item response theory (IRT) was employed to offer an alternative and complementary approach of validation and to overcome the limitations of classical test theory assumptions. A random sample of 649 12-year-old school children in Hong Kong was analyzed. Unidimensionality of the scale was tested by confirmatory factor analysis (CFA), principle component analysis (PCA) and local dependency (LD) statistic. Graded response model was fitted to the data. Contribution of each item to the scale was assessed by item information function (IIF). Reliability of the scale was assessed by test information function (TIF). Differential item functioning (DIF) across gender was identified by Wald test and expected score functions. Both CPQ11-14 RSF:8 and ISF:8 did not deviate much from the unidimensionality assumption. Results from CFA indicated acceptable fit of the one-factor model. PCA indicated that the first principle component explained >30 % of the total variation with high factor loadings for both RSF:8 and ISF:8. Almost all LD statistic <10 indicated the absence of local dependency. Flat and low IIFs were observed in the oral symptoms items suggesting little contribution of information to the scale and item removal caused little practical impact. Comparing the TIFs, RSF:8 showed slightly better information than ISF:8. In addition to oral symptoms items, the item "Concerned with what other people think" demonstrated a uniform DIF (p < 0.001). The expected score functions were not much different between boys and girls. Items related to oral symptoms were not informative to OHRQoL and deletion of these items is suggested. The impact of DIF across gender on the overall score was minimal. CPQ11-14 RSF:8 performed slightly better than ISF:8 in measurement precision. The 6-item short forms suggested by IRT validation should be further investigated to ensure their robustness, responsiveness and discriminative performance.
Time delays in flight simulator visual displays
NASA Technical Reports Server (NTRS)
Crane, D. F.
1980-01-01
It is pointed out that the effects of delays of less than 100 msec in visual displays on pilot dynamic response and system performance are of particular interest at this time because improvements in the latest computer-generated imagery (CGI) systems are expected to reduce CGI displays delays to this range. Attention is given to data which quantify the effects of display delays in the range of 0-100 msec on system stability and performance, and pilot dynamic response for a particular choice of aircraft dynamics, display, controller, and task. The conventional control system design methods are reviewed, the pilot response data presented, and data for long delays, all suggest lead filter compensation of display delay. Pilot-aircraft system crossover frequency information guides compensation filter specification.
Kitjaruwankul, Sunan; Wapeesittipan, Pattama; Boonamnaj, Panisak; Sompornpisut, Pornthep
2016-01-28
Structural data of CorA Mg(2+) channels show that the five Gly-Met-Asn (GMN) motifs at the periplasmic loop of the pentamer structure form a molecular scaffold serving as a selectivity filter. Unfortunately, knowledge about the cation selectivity of Mg(2+) channels remains limited. Since Mg(2+) in aqueous solution has a strong first hydration shell and apparent second hydration sphere, the coordination structure of Mg(2+) in a CorA selectivity filter is expected to be different from that in bulk water. Hence, this study investigated the hydration structure and ligand coordination of Mg(2+) in a selectivity filter of CorA using molecular dynamics (MD) simulations. The simulations reveal that the inner-shell structure of Mg(2+) in the filter is not significantly different from that in aqueous solution. The major difference is the characteristic structural features of the outer shell. The GMN residues engage indirectly in the interactions with the metal ion as ligands in the second shell of Mg(2+). Loss of hydrogen bonds between inner- and outer-shell waters observed from Mg(2+) in bulk water is mostly compensated by interactions between waters in the first solvation shell and the GMN motif. Some water molecules in the second shell remain in the selectivity filter and become less mobile to support the metal binding. Removal of Mg(2+) from the divalent cation sensor sites of the protein had an impact on the structure and metal binding of the filter. From the results, it can be concluded that the GMN motif enhances the affinity of the metal binding site in the CorA selectivity filter by acting as an outer coordination ligand.
Elenchezhiyan, M; Prakash, J
2015-09-01
In this work, state estimation schemes for non-linear hybrid dynamic systems subjected to stochastic state disturbances and random errors in measurements using interacting multiple-model (IMM) algorithms are formulated. In order to compute both discrete modes and continuous state estimates of a hybrid dynamic system either an IMM extended Kalman filter (IMM-EKF) or an IMM based derivative-free Kalman filters is proposed in this study. The efficacy of the proposed IMM based state estimation schemes is demonstrated by conducting Monte-Carlo simulation studies on the two-tank hybrid system and switched non-isothermal continuous stirred tank reactor system. Extensive simulation studies reveal that the proposed IMM based state estimation schemes are able to generate fairly accurate continuous state estimates and discrete modes. In the presence and absence of sensor bias, the simulation studies reveal that the proposed IMM unscented Kalman filter (IMM-UKF) based simultaneous state and parameter estimation scheme outperforms multiple-model UKF (MM-UKF) based simultaneous state and parameter estimation scheme. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Adaptive Identification and Control of Flow-Induced Cavity Oscillations
NASA Technical Reports Server (NTRS)
Kegerise, M. A.; Cattafesta, L. N.; Ha, C.
2002-01-01
Progress towards an adaptive self-tuning regulator (STR) for the cavity tone problem is discussed in this paper. Adaptive system identification algorithms were applied to an experimental cavity-flow tested as a prerequisite to control. In addition, a simple digital controller and a piezoelectric bimorph actuator were used to demonstrate multiple tone suppression. The control tests at Mach numbers of 0.275, 0.40, and 0.60 indicated approx. = 7dB tone reductions at multiple frequencies. Several different adaptive system identification algorithms were applied at a single freestream Mach number of 0.275. Adaptive finite-impulse response (FIR) filters of orders up to N = 100 were found to be unsuitable for modeling the cavity flow dynamics. Adaptive infinite-impulse response (IIR) filters of comparable order better captured the system dynamics. Two recursive algorithms, the least-mean square (LMS) and the recursive-least square (RLS), were utilized to update the adaptive filter coefficients. Given the sample-time requirements imposed by the cavity flow dynamics, the computational simplicity of the least mean squares (LMS) algorithm is advantageous for real-time control.
Inference of Spatio-Temporal Functions Over Graphs via Multikernel Kriged Kalman Filtering
NASA Astrophysics Data System (ADS)
Ioannidis, Vassilis N.; Romero, Daniel; Giannakis, Georgios B.
2018-06-01
Inference of space-time varying signals on graphs emerges naturally in a plethora of network science related applications. A frequently encountered challenge pertains to reconstructing such dynamic processes, given their values over a subset of vertices and time instants. The present paper develops a graph-aware kernel-based kriged Kalman filter that accounts for the spatio-temporal variations, and offers efficient online reconstruction, even for dynamically evolving network topologies. The kernel-based learning framework bypasses the need for statistical information by capitalizing on the smoothness that graph signals exhibit with respect to the underlying graph. To address the challenge of selecting the appropriate kernel, the proposed filter is combined with a multi-kernel selection module. Such a data-driven method selects a kernel attuned to the signal dynamics on-the-fly within the linear span of a pre-selected dictionary. The novel multi-kernel learning algorithm exploits the eigenstructure of Laplacian kernel matrices to reduce computational complexity. Numerical tests with synthetic and real data demonstrate the superior reconstruction performance of the novel approach relative to state-of-the-art alternatives.
Harish, Achar V; Varghese, Bibin; Rao, Babu; Balasubramaniam, Krishnan; Srinivasan, Balaji
2015-07-01
Use of in-fiber Fabry-Perot (FP) filters based on fiber Bragg gratings as both sensor as well as an interrogator for enhancing the detection limit of elastic wave sensing is investigated in this paper. The sensitivity of such a demodulation scheme depends on the spectral discrimination of the sensor and interrogator gratings. Simulations have shown that the use of in-fiber FP filters with high finesse provide better performance in terms of sensitivity compared to the demodulation using fiber Bragg gratings. Based on these results, a dynamic interrogator capable of sensing acoustic waves with amplitude of less than 1 micro-strain over frequencies of 10 kHz to several 100 kHz has been implemented. Frequency response of the fiber Bragg gratings in the given experimental setup has been compared to that of the conventional piezo sensors demonstrating that fiber Bragg gratings can be used over a relatively broad frequency range. Dynamic interrogator has been packaged in a compact box without any degradation in its performance. Copyright © 2015 Elsevier B.V. All rights reserved.
Torres-González, Arturo; Martinez-de Dios, Jose Ramiro; Ollero, Anibal
2014-01-01
This work is motivated by robot-sensor network cooperation techniques where sensor nodes (beacons) are used as landmarks for range-only (RO) simultaneous localization and mapping (SLAM). This paper presents a RO-SLAM scheme that actuates over the measurement gathering process using mechanisms that dynamically modify the rate and variety of measurements that are integrated in the SLAM filter. It includes a measurement gathering module that can be configured to collect direct robot-beacon and inter-beacon measurements with different inter-beacon depth levels and at different rates. It also includes a supervision module that monitors the SLAM performance and dynamically selects the measurement gathering configuration balancing SLAM accuracy and resource consumption. The proposed scheme has been applied to an extended Kalman filter SLAM with auxiliary particle filters for beacon initialization (PF-EKF SLAM) and validated with experiments performed in the CONET Integrated Testbed. It achieved lower map and robot errors (34% and 14%, respectively) than traditional methods with a lower computational burden (16%) and similar beacon energy consumption. PMID:24776938
Torres-González, Arturo; Martinez-de Dios, Jose Ramiro; Ollero, Anibal
2014-04-25
This work is motivated by robot-sensor network cooperation techniques where sensor nodes (beacons) are used as landmarks for range-only (RO) simultaneous localization and mapping (SLAM). This paper presents a RO-SLAM scheme that actuates over the measurement gathering process using mechanisms that dynamically modify the rate and variety of measurements that are integrated in the SLAM filter. It includes a measurement gathering module that can be configured to collect direct robot-beacon and inter-beacon measurements with different inter-beacon depth levels and at different rates. It also includes a supervision module that monitors the SLAM performance and dynamically selects the measurement gathering configuration balancing SLAM accuracy and resource consumption. The proposed scheme has been applied to an extended Kalman filter SLAM with auxiliary particle filters for beacon initialization (PF-EKF SLAM) and validated with experiments performed in the CONET Integrated Testbed. It achieved lower map and robot errors (34% and 14%, respectively) than traditional methods with a lower computational burden (16%) and similar beacon energy consumption.
Laser designator protection filter for see-spot thermal imaging systems
NASA Astrophysics Data System (ADS)
Donval, Ariela; Fisher, Tali; Lipman, Ofir; Oron, Moshe
2012-06-01
In some cases the FLIR has an open window in the 1.06 micrometer wavelength range; this capability is called 'see spot' and allows seeing a laser designator spot using the FLIR. A problem arises when the returned laser energy is too high for the camera sensitivity, and therefore can cause damage to the sensor. We propose a non-linear, solid-state dynamic filter solution protecting from damage in a passive way. Our filter blocks the transmission, only if the power exceeds a certain threshold as opposed to spectral filters that block a certain wavelength permanently. In this paper we introduce the Wideband Laser Protection Filter (WPF) solution for thermal imaging systems possessing the ability to see the laser spot.
Optimization of internet content filtering-Combined with KNN and OCAT algorithms
NASA Astrophysics Data System (ADS)
Guo, Tianze; Wu, Lingjing; Liu, Jiaming
2018-04-01
The face of the status quo that rampant illegal content in the Internet, the result of traditional way to filter information, keyword recognition and manual screening, is getting worse. Based on this, this paper uses OCAT algorithm nested by KNN classification algorithm to construct a corpus training library that can dynamically learn and update, which can be improved on the filter corpus for constantly updated illegal content of the network, including text and pictures, and thus can better filter and investigate illegal content and its source. After that, the research direction will focus on the simplified updating of recognition and comparison algorithms and the optimization of the corpus learning ability in order to improve the efficiency of filtering, save time and resources.
Tunable filters for multispectral imaging of aeronomical features
NASA Astrophysics Data System (ADS)
Goenka, C.; Semeter, J. L.; Noto, J.; Dahlgren, H.; Marshall, R.; Baumgardner, J.; Riccobono, J.; Migliozzi, M.
2013-10-01
Multispectral imaging of optical emissions in the Earth's upper atmosphere unravels vital information about dynamic phenomena in the Earth-space environment. Wavelength tunable filters allow us to accomplish this without using filter wheels or multiple imaging setups, but with identifiable caveats and trade-offs. We evaluate one such filter, a liquid crystal Fabry-Perot etalon, as a potential candidate for the next generation of imagers for aeronomy. The tunability of such a filter can be exploited in imaging features such as the 6300-6364 Å oxygen emission doublet, or studying the rotational temperature of N2+ in the 4200-4300 Å range, observations which typically require multiple instruments. We further discuss the use of this filter in an optical instrument, called the Liquid Crystal Hyperspectral Imager (LiCHI), which will be developed to make simultaneous measurements in various wavelength ranges.
Adaptive filter design using recurrent cerebellar model articulation controller.
Lin, Chih-Min; Chen, Li-Yang; Yeung, Daniel S
2010-07-01
A novel adaptive filter is proposed using a recurrent cerebellar-model-articulation-controller (CMAC). The proposed locally recurrent globally feedforward recurrent CMAC (RCMAC) has favorable properties of small size, good generalization, rapid learning, and dynamic response, thus it is more suitable for high-speed signal processing. To provide fast training, an efficient parameter learning algorithm based on the normalized gradient descent method is presented, in which the learning rates are on-line adapted. Then the Lyapunov function is utilized to derive the conditions of the adaptive learning rates, so the stability of the filtering error can be guaranteed. To demonstrate the performance of the proposed adaptive RCMAC filter, it is applied to a nonlinear channel equalization system and an adaptive noise cancelation system. The advantages of the proposed filter over other adaptive filters are verified through simulations.
Extended Kalman filter for attitude estimation of the earth radiation budget satellite
NASA Technical Reports Server (NTRS)
Deutschmann, Julie; Bar-Itzhack, Itzhack Y.
1989-01-01
The design and testing of an Extended Kalman Filter (EKF) for ground attitude determination, misalignment estimation and sensor calibration of the Earth Radiation Budget Satellite (ERBS) are described. Attitude is represented by the quaternion of rotation and the attitude estimation error is defined as an additive error. Quaternion normalization is used for increasing the convergence rate and for minimizing the need for filter tuning. The development of the filter dynamic model, the gyro error model and the measurement models of the Sun sensors, the IR horizon scanner and the magnetometers which are used to generate vector measurements are also presented. The filter is applied to real data transmitted by ERBS sensors. Results are presented and analyzed and the EKF advantages as well as sensitivities are discussed. On the whole the filter meets the expected synergism, accuracy and robustness.
NASA Astrophysics Data System (ADS)
Chapelier, Jean-Baptiste; Wasistho, Bono; Scalo, Carlo
2017-11-01
A new approach to Large-Eddy Simulation (LES) is introduced, where subgrid-scale (SGS) dissipation is applied proportionally to the degree of local spectral broadening, hence mitigated in regions dominated by large-scale vortical motion. The proposed CvP-LES methodology is based on the evaluation of the ratio of the test-filtered to resolved (or grid-filtered) enstrophy: σ = ξ ∧ / ξ . Values of σ = 1 indicate low sub-test-filter turbulent activity, justifying local deactivation of any subgrid-scale model. Values of σ < 1 span conditions ranging from incipient spectral broadening σ <= 1 , to equilibrium turbulence σ =σeq < 1 , where σeq is solely as a function of the test-to-grid filter-width ratio Δ ∧ / Δ , derived assuming a Kolmogorov's spectrum. Eddy viscosity is fully restored for σ <=σeq . The proposed approach removes unnecessary SGS dissipation, can be applied to any eddy-viscosity model, is algorithmically simple and computationally inexpensive. A CvP-LES of a pair of unstable helical vortices, representative of rotor-blade wake dynamics, show the ability of the method to sort the coherent motion from the small-scale dynamics. This work is funded by subcontract KSC-17-001 between Purdue University and Kord Technologies, Inc (Huntsville), under the US Navy Contract N68335-17-C-0159 STTR-Phase II, Purdue Proposal No. 00065007, Topic N15A-T002.
Improved methods of performing coherent optical correlation
NASA Technical Reports Server (NTRS)
Husain-Abidi, A. S.
1972-01-01
Coherent optical correlators are described in which complex spatial filters are recorded by a quasi-Fourier transform method. The high-pass spatial filtering effects (due to the dynamic range of photographic films) normally encountered in Vander Lugt type complex filters are not present in this system. Experimental results for both transmittive as well as reflective objects are presented. Experiments are also performed by illuminating the object with diffused light. A correlator using paraboloidal mirror segments as the Fourier-transforming element is also described.
Pulse shaping in mode-locked fiber lasers by in-cavity spectral filter.
Boscolo, Sonia; Finot, Christophe; Karakuzu, Huseyin; Petropoulos, Periklis
2014-02-01
We numerically show the possibility of pulse shaping in a passively mode-locked fiber laser by inclusion of a spectral filter into the laser cavity. Depending on the amplitude transfer function of the filter, we are able to achieve various regimes of advanced temporal waveform generation, including ones featuring bright and dark parabolic-, flat-top-, triangular- and saw-tooth-profiled pulses. The results demonstrate the strong potential of an in-cavity spectral pulse shaper for controlling the dynamics of mode-locked fiber lasers.
NASA Technical Reports Server (NTRS)
Pototzky, Anthony S.; Zeiler, Thomas A.; Perry, Boyd, III
1989-01-01
This paper describes and illustrates two ways of performing time-correlated gust-load calculations. The first is based on Matched Filter Theory; the second on Random Process Theory. Both approaches yield theoretically identical results and represent novel applications of the theories, are computationally fast, and may be applied to other dynamic-response problems. A theoretical development and example calculations using both Matched Filter Theory and Random Process Theory approaches are presented.
NASA Technical Reports Server (NTRS)
Pototzky, Anthony S.; Zeiler, Thomas A.; Perry, Boyd, III
1989-01-01
Two ways of performing time-correlated gust-load calculations are described and illustrated. The first is based on Matched Filter Theory; the second on Random Process Theory. Both approaches yield theoretically identical results and represent novel applications of the theories, are computationally fast, and may be applied to other dynamic-response problems. A theoretical development and example calculations using both Matched Filter Theory and Random Process Theory approaches are presented.
Adaptive Estimation of Multiple Fading Factors for GPS/INS Integrated Navigation Systems.
Jiang, Chen; Zhang, Shu-Bi; Zhang, Qiu-Zhao
2017-06-01
The Kalman filter has been widely applied in the field of dynamic navigation and positioning. However, its performance will be degraded in the presence of significant model errors and uncertain interferences. In the literature, the fading filter was proposed to control the influences of the model errors, and the H-infinity filter can be adopted to address the uncertainties by minimizing the estimation error in the worst case. In this paper, a new multiple fading factor, suitable for the Global Positioning System (GPS) and the Inertial Navigation System (INS) integrated navigation system, is proposed based on the optimization of the filter, and a comprehensive filtering algorithm is constructed by integrating the advantages of the H-infinity filter and the proposed multiple fading filter. Measurement data of the GPS/INS integrated navigation system are collected under actual conditions. Stability and robustness of the proposed filtering algorithm are tested with various experiments and contrastive analysis are performed with the measurement data. Results demonstrate that both the filter divergence and the influences of outliers are restrained effectively with the proposed filtering algorithm, and precision of the filtering results are improved simultaneously.
Detecting an atomic clock frequency anomaly using an adaptive Kalman filter algorithm
NASA Astrophysics Data System (ADS)
Song, Huijie; Dong, Shaowu; Wu, Wenjun; Jiang, Meng; Wang, Weixiong
2018-06-01
The abnormal frequencies of an atomic clock mainly include frequency jump and frequency drift jump. Atomic clock frequency anomaly detection is a key technique in time-keeping. The Kalman filter algorithm, as a linear optimal algorithm, has been widely used in real-time detection for abnormal frequency. In order to obtain an optimal state estimation, the observation model and dynamic model of the Kalman filter algorithm should satisfy Gaussian white noise conditions. The detection performance is degraded if anomalies affect the observation model or dynamic model. The idea of the adaptive Kalman filter algorithm, applied to clock frequency anomaly detection, uses the residuals given by the prediction for building ‘an adaptive factor’ the prediction state covariance matrix is real-time corrected by the adaptive factor. The results show that the model error is reduced and the detection performance is improved. The effectiveness of the algorithm is verified by the frequency jump simulation, the frequency drift jump simulation and the measured data of the atomic clock by using the chi-square test.
A Reconceptualization of Adolescent Peer Susceptibility.
ERIC Educational Resources Information Center
Kosten, Paul A.; Scheier, Lawrence M.
Conceptual and methodological limitations have hampered researchers' ability to establish valid, substantively meaningful, and theoretically driven self-report assessments of peer susceptibility. As a result, many assessments of peer susceptibility have been conceptualized as unidimensional and void of any theoretical underpinnings. This study…
Maintaining Cultural Coherence in the Midst of Cultural Diversity.
ERIC Educational Resources Information Center
Raeff, Catherine
1997-01-01
Clarifies a reconceptualization of constructs of individualism, collectivism, independence, and interdependence which represents a departure from traditional conceptualization and a move away from understanding these constructs in dichotomous, stereotypical, and unidimensional terms. Discusses implications of this perspective for stereotyping…
Sequential estimation and satellite data assimilation in meteorology and oceanography
NASA Technical Reports Server (NTRS)
Ghil, M.
1986-01-01
The central theme of this review article is the role that dynamics plays in estimating the state of the atmosphere and of the ocean from incomplete and noisy data. Objective analysis and inverse methods represent an attempt at relying mostly on the data and minimizing the role of dynamics in the estimation. Four-dimensional data assimilation tries to balance properly the roles of dynamical and observational information. Sequential estimation is presented as the proper framework for understanding this balance, and the Kalman filter as the ideal, optimal procedure for data assimilation. The optimal filter computes forecast error covariances of a given atmospheric or oceanic model exactly, and hence data assimilation should be closely connected with predictability studies. This connection is described, and consequences drawn for currently active areas of the atmospheric and oceanic sciences, namely, mesoscale meteorology, medium and long-range forecasting, and upper-ocean dynamics.
Dynamic Bus Travel Time Prediction Models on Road with Multiple Bus Routes
Bai, Cong; Peng, Zhong-Ren; Lu, Qing-Chang; Sun, Jian
2015-01-01
Accurate and real-time travel time information for buses can help passengers better plan their trips and minimize waiting times. A dynamic travel time prediction model for buses addressing the cases on road with multiple bus routes is proposed in this paper, based on support vector machines (SVMs) and Kalman filtering-based algorithm. In the proposed model, the well-trained SVM model predicts the baseline bus travel times from the historical bus trip data; the Kalman filtering-based dynamic algorithm can adjust bus travel times with the latest bus operation information and the estimated baseline travel times. The performance of the proposed dynamic model is validated with the real-world data on road with multiple bus routes in Shenzhen, China. The results show that the proposed dynamic model is feasible and applicable for bus travel time prediction and has the best prediction performance among all the five models proposed in the study in terms of prediction accuracy on road with multiple bus routes. PMID:26294903
Dynamic Bus Travel Time Prediction Models on Road with Multiple Bus Routes.
Bai, Cong; Peng, Zhong-Ren; Lu, Qing-Chang; Sun, Jian
2015-01-01
Accurate and real-time travel time information for buses can help passengers better plan their trips and minimize waiting times. A dynamic travel time prediction model for buses addressing the cases on road with multiple bus routes is proposed in this paper, based on support vector machines (SVMs) and Kalman filtering-based algorithm. In the proposed model, the well-trained SVM model predicts the baseline bus travel times from the historical bus trip data; the Kalman filtering-based dynamic algorithm can adjust bus travel times with the latest bus operation information and the estimated baseline travel times. The performance of the proposed dynamic model is validated with the real-world data on road with multiple bus routes in Shenzhen, China. The results show that the proposed dynamic model is feasible and applicable for bus travel time prediction and has the best prediction performance among all the five models proposed in the study in terms of prediction accuracy on road with multiple bus routes.
NASA Astrophysics Data System (ADS)
Xu, Zheyao; Qi, Naiming; Chen, Yukun
2015-12-01
Spacecraft simulators are widely used to study the dynamics, guidance, navigation, and control of a spacecraft on the ground. A spacecraft simulator can have three rotational degrees of freedom by using a spherical air-bearing to simulate a frictionless and micro-gravity space environment. The moment of inertia and center of mass are essential for control system design of ground-based three-axis spacecraft simulators. Unfortunately, they cannot be known precisely. This paper presents two approaches, i.e. a recursive least-squares (RLS) approach with tracking differentiator (TD) and Extended Kalman Filter (EKF) method, to estimate inertia parameters. The tracking differentiator (TD) filter the noise coupled with the measured signals and generate derivate of the measured signals. Combination of two TD filters in series obtains the angular accelerations that are required in RLS (TD-TD-RLS). Another method that does not need to estimate the angular accelerations is using the integrated form of dynamics equation. An extended TD (ETD) filter which can also generate the integration of the function of signals is presented for RLS (denoted as ETD-RLS). States and inertia parameters are estimated simultaneously using EKF. The observability is analyzed. All proposed methods are illustrated by simulations and experiments.
Belavkin filter for mixture of quadrature and photon counting process with some control techniques
NASA Astrophysics Data System (ADS)
Garg, Naman; Parthasarathy, Harish; Upadhyay, D. K.
2018-03-01
The Belavkin filter for the H-P Schrödinger equation is derived when the measurement process consists of a mixture of quantum Brownian motions and conservation/Poisson process. Higher-order powers of the measurement noise differentials appear in the Belavkin dynamics. For simulation, we use a second-order truncation. Control of the Belavkin filtered state by infinitesimal unitary operators is achieved in order to reduce the noise effects in the Belavkin filter equation. This is carried out along the lines of Luc Bouten. Various optimization criteria for control are described like state tracking and Lindblad noise removal.
Bounding filter - A simple solution to lack of exact a priori statistics.
NASA Technical Reports Server (NTRS)
Nahi, N. E.; Weiss, I. M.
1972-01-01
Wiener and Kalman-Bucy estimation problems assume that models describing the signal and noise stochastic processes are exactly known. When this modeling information, i.e., the signal and noise spectral densities for Wiener filter and the signal and noise dynamic system and disturbing noise representations for Kalman-Bucy filtering, is inexactly known, then the filter's performance is suboptimal and may even exhibit apparent divergence. In this paper a system is designed whereby the actual estimation error covariance is bounded by the covariance calculated by the estimator. Therefore, the estimator obtains a bound on the actual error covariance which is not available, and also prevents its apparent divergence.
Pisana, Francesco; Henzler, Thomas; Schönberg, Stefan; Klotz, Ernst; Schmidt, Bernhard; Kachelrieß, Marc
2017-07-01
Dynamic CT perfusion (CTP) consists in repeated acquisitions of the same volume in different time steps, slightly before, during and slightly afterwards the injection of contrast media. Important functional information can be derived for each voxel, which reflect the local hemodynamic properties and hence the metabolism of the tissue. Different approaches are being investigated to exploit data redundancy and prior knowledge for noise reduction of such datasets, ranging from iterative reconstruction schemes to high dimensional filters. We propose a new spatial bilateral filter which makes use of the k-means clustering algorithm and of an optimal calculated guiding image. We named the proposed filter as k-means clustering guided bilateral filter (KMGB). In this study, the KMGB filter is compared with the partial temporal non-local means filter (PATEN), with the time-intensity profile similarity (TIPS) filter, and with a new version derived from it, by introducing the guiding image (GB-TIPS). All the filters were tested on a digital in-house developed brain CTP phantom, were noise was added to simulate 80 kV and 200 mAs (default scanning parameters), 100 mAs and 30 mAs. Moreover, the filters performances were tested on 7 noisy clinical datasets with different pathologies in different body regions. The original contribution of our work is two-fold: first we propose an efficient algorithm to calculate a guiding image to improve the results of the TIPS filter, secondly we propose the introduction of the k-means clustering step and demonstrate how this can potentially replace the TIPS part of the filter obtaining better results at lower computational efforts. As expected, in the GB-TIPS, the introduction of the guiding image limits the over-smoothing of the TIPS filter, improving spatial resolution by more than 50%. Furthermore, replacing the time-intensity profile similarity calculation with a fuzzy k-means clustering strategy (KMGB) allows to control the edge preserving features of the filter, resulting in improved spatial resolution and CNR both for CT images and for functional maps. In the phantom study, the PATEN filter showed overall the poorest results, while the other filters showed comparable performances in terms of perfusion values preservation, with the KMGB filter having overall the best image quality. In conclusion, the KMGB filter leads to superior results for CT images and functional maps quality improvement, in significantly shorter computational times compared to the other filters. Our results suggest that the KMGB filter might be a more robust solution for halved-dose CTP datasets. For all the filters investigated, some artifacts start to appear on the BF maps if one sixth of the dose is simulated, suggesting that no one of the filters investigated in this study might be optimal for such a drastic dose reduction scenario. © 2017 American Association of Physicists in Medicine.
Doutsi, Effrosyni; Fillatre, Lionel; Antonini, Marc; Gaulmin, Julien
2018-07-01
This paper introduces a novel filter, which is inspired by the human retina. The human retina consists of three different layers: the Outer Plexiform Layer (OPL), the inner plexiform layer, and the ganglionic layer. Our inspiration is the linear transform which takes place in the OPL and has been mathematically described by the neuroscientific model "virtual retina." This model is the cornerstone to derive the non-separable spatio-temporal OPL retina-inspired filter, briefly renamed retina-inspired filter, studied in this paper. This filter is connected to the dynamic behavior of the retina, which enables the retina to increase the sharpness of the visual stimulus during filtering before its transmission to the brain. We establish that this retina-inspired transform forms a group of spatio-temporal Weighted Difference of Gaussian (WDoG) filters when it is applied to a still image visible for a given time. We analyze the spatial frequency bandwidth of the retina-inspired filter with respect to time. It is shown that the WDoG spectrum varies from a lowpass filter to a bandpass filter. Therefore, while time increases, the retina-inspired filter enables to extract different kinds of information from the input image. Finally, we discuss the benefits of using the retina-inspired filter in image processing applications such as edge detection and compression.
PARTICLE FILTERING WITH SEQUENTIAL PARAMETER LEARNING FOR NONLINEAR BOLD fMRI SIGNALS.
Xia, Jing; Wang, Michelle Yongmei
Analyzing the blood oxygenation level dependent (BOLD) effect in the functional magnetic resonance imaging (fMRI) is typically based on recent ground-breaking time series analysis techniques. This work represents a significant improvement over existing approaches to system identification using nonlinear hemodynamic models. It is important for three reasons. First, instead of using linearized approximations of the dynamics, we present a nonlinear filtering based on the sequential Monte Carlo method to capture the inherent nonlinearities in the physiological system. Second, we simultaneously estimate the hidden physiological states and the system parameters through particle filtering with sequential parameter learning to fully take advantage of the dynamic information of the BOLD signals. Third, during the unknown static parameter learning, we employ the low-dimensional sufficient statistics for efficiency and avoiding potential degeneration of the parameters. The performance of the proposed method is validated using both the simulated data and real BOLD fMRI data.
Assessment of zero-equation SGS models for simulating indoor environment
NASA Astrophysics Data System (ADS)
Taghinia, Javad; Rahman, Md Mizanur; Tse, Tim K. T.
2016-12-01
The understanding of air-flow in enclosed spaces plays a key role to designing ventilation systems and indoor environment. The computational fluid dynamics aspects dictate that the large eddy simulation (LES) offers a subtle means to analyze complex flows with recirculation and streamline curvature effects, providing more robust and accurate details than those of Reynolds-averaged Navier-Stokes simulations. This work assesses the performance of two zero-equation sub-grid scale models: the Rahman-Agarwal-Siikonen-Taghinia (RAST) model with a single grid-filter and the dynamic Smagorinsky model with grid-filter and test-filter scales. This in turn allows a cross-comparison of the effect of two different LES methods in simulating indoor air-flows with forced and mixed (natural + forced) convection. A better performance against experiments is indicated with the RAST model in wall-bounded non-equilibrium indoor air-flows; this is due to its sensitivity toward both the shear and vorticity parameters.
In-flight alignment using H ∞ filter for strapdown INS on aircraft.
Pei, Fu-Jun; Liu, Xuan; Zhu, Li
2014-01-01
In-flight alignment is an effective way to improve the accuracy and speed of initial alignment for strapdown inertial navigation system (INS). During the aircraft flight, strapdown INS alignment was disturbed by lineal and angular movements of the aircraft. To deal with the disturbances in dynamic initial alignment, a novel alignment method for SINS is investigated in this paper. In this method, an initial alignment error model of SINS in the inertial frame is established. The observability of the system is discussed by piece-wise constant system (PWCS) theory and observable degree is computed by the singular value decomposition (SVD) theory. It is demonstrated that the system is completely observable, and all the system state parameters can be estimated by optimal filter. Then a H ∞ filter was designed to resolve the uncertainty of measurement noise. The simulation results demonstrate that the proposed algorithm can reach a better accuracy under the dynamic disturbance condition.
Design of distributed FBG vibration measuring system based on Fabry-Perot tunable filter
NASA Astrophysics Data System (ADS)
Zhang, Cheng; Miao, Changyun; Li, Hongqiang; Gao, Hua; Gan, Jingmeng
2011-11-01
A distributed optical fiber grating wavelength interrogator based on fiber Fabry Perot tunable filter(FFP-TF) was proposed, which could measure dynamic strain or vibration of multi-sensing fiber gratings in one optical fiber by time division way. The wavelength demodulated mathematical model was built, the formulas of system output voltage and sensitivity were deduced and the method of finding static operating point was determined. The wavelength drifting characteristic of FFP-TF was discussed when the center wavelength of FFP-TF was set on the static operating point. A wavelength locking method was proposed by introducing a high-frequency driving voltage signal. A demodulated system was established based on Labview and its demodulated wavelength dynamic range is 290pm in theory. In experiment, by digital filtering applied to the system output data, 100Hz and 250Hz vibration signals were measured. The experiment results proved the feasibility of the demodulated method.
Don't Fear Optimality: Sampling for Probabilistic-Logic Sequence Models
NASA Astrophysics Data System (ADS)
Thon, Ingo
One of the current challenges in artificial intelligence is modeling dynamic environments that change due to the actions or activities undertaken by people or agents. The task of inferring hidden states, e.g. the activities or intentions of people, based on observations is called filtering. Standard probabilistic models such as Dynamic Bayesian Networks are able to solve this task efficiently using approximative methods such as particle filters. However, these models do not support logical or relational representations. The key contribution of this paper is the upgrade of a particle filter algorithm for use with a probabilistic logical representation through the definition of a proposal distribution. The performance of the algorithm depends largely on how well this distribution fits the target distribution. We adopt the idea of logical compilation into Binary Decision Diagrams for sampling. This allows us to use the optimal proposal distribution which is normally prohibitively slow.
Kalman filtering applied to real-time monitoring of apogee maneuvers
NASA Technical Reports Server (NTRS)
Deboer, Frederic; Barbier, Christian
1993-01-01
Part of the Space Mathematics Division in CNES, the Flight Dynamics Center provides attitude and orbit determinations and maneuvers during the Launch and Early Operation Phase (LEOP) of geostationary satellites. Orbit determination is based on a Kalman filter method; when the 2 GHz CNES/NASA network is used, Doppler measurements are available and allow orbit determination during the apogee maneuvers. This method was used for TELE-X and TDF 2 LEOP (3-axis controlled satellites) and also for TELECOM 2 and HISPASAT (spun satellites): it enables us to follow the evolution of the maneuver and gives out a quite accurate estimation of the reached orbit. In this paper, we briefly describe the dynamic models of the orbit evolution in both cases, '3-axis' and 'inertial' thrust. Then, we present the results obtained for each case. Afterwards, we present some cases to show the robustness of the filter.
eTACTS: a method for dynamically filtering clinical trial search results.
Miotto, Riccardo; Jiang, Silis; Weng, Chunhua
2013-12-01
Information overload is a significant problem facing online clinical trial searchers. We present eTACTS, a novel interactive retrieval framework using common eligibility tags to dynamically filter clinical trial search results. eTACTS mines frequent eligibility tags from free-text clinical trial eligibility criteria and uses these tags for trial indexing. After an initial search, eTACTS presents to the user a tag cloud representing the current results. When the user selects a tag, eTACTS retains only those trials containing that tag in their eligibility criteria and generates a new cloud based on tag frequency and co-occurrences in the remaining trials. The user can then select a new tag or unselect a previous tag. The process iterates until a manageable number of trials is returned. We evaluated eTACTS in terms of filtering efficiency, diversity of the search results, and user eligibility to the filtered trials using both qualitative and quantitative methods. eTACTS (1) rapidly reduced search results from over a thousand trials to ten; (2) highlighted trials that are generally not top-ranked by conventional search engines; and (3) retrieved a greater number of suitable trials than existing search engines. eTACTS enables intuitive clinical trial searches by indexing eligibility criteria with effective tags. User evaluation was limited to one case study and a small group of evaluators due to the long duration of the experiment. Although a larger-scale evaluation could be conducted, this feasibility study demonstrated significant advantages of eTACTS over existing clinical trial search engines. A dynamic eligibility tag cloud can potentially enhance state-of-the-art clinical trial search engines by allowing intuitive and efficient filtering of the search result space. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
eTACTS: A Method for Dynamically Filtering Clinical Trial Search Results
Miotto, Riccardo; Jiang, Silis; Weng, Chunhua
2013-01-01
Objective Information overload is a significant problem facing online clinical trial searchers. We present eTACTS, a novel interactive retrieval framework using common eligibility tags to dynamically filter clinical trial search results. Materials and Methods eTACTS mines frequent eligibility tags from free-text clinical trial eligibility criteria and uses these tags for trial indexing. After an initial search, eTACTS presents to the user a tag cloud representing the current results. When the user selects a tag, eTACTS retains only those trials containing that tag in their eligibility criteria and generates a new cloud based on tag frequency and co-occurrences in the remaining trials. The user can then select a new tag or unselect a previous tag. The process iterates until a manageable number of trials is returned. We evaluated eTACTS in terms of filtering efficiency, diversity of the search results, and user eligibility to the filtered trials using both qualitative and quantitative methods. Results eTACTS (1) rapidly reduced search results from over a thousand trials to ten; (2) highlighted trials that are generally not top-ranked by conventional search engines; and (3) retrieved a greater number of suitable trials than existing search engines. Discussion eTACTS enables intuitive clinical trial searches by indexing eligibility criteria with effective tags. User evaluation was limited to one case study and a small group of evaluators due to the long duration of the experiment. Although a larger-scale evaluation could be conducted, this feasibility study demonstrated significant advantages of eTACTS over existing clinical trial search engines. Conclusion A dynamic eligibility tag cloud can potentially enhance state-of-the-art clinical trial search engines by allowing intuitive and efficient filtering of the search result space. PMID:23916863
NASA Astrophysics Data System (ADS)
Khoder, Mulham; Van der Sande, Guy; Danckaert, Jan; Verschaffelt, Guy
2016-05-01
It is well known that the performance of semiconductor lasers is very sensitive to external optical feedback. This feedback can lead to changes in lasing characteristics and a variety of dynamical effects including chaos and coherence collapse. One way to avoid this external feedback is by using optical isolation, but these isolators and their packaging will increase the cost of the total system. Semiconductor ring lasers nowadays are promising sources in photonic integrated circuits because they do not require cleaved facets or mirrors to form a laser cavity. Recently, some of us proposed to combine semiconductor ring lasers with on chip filtered optical feedback to achieve tunable lasers. The feedback is realized by employing two arrayed waveguide gratings to split/recombine light into different wavelength channels. Semiconductor optical amplifier gates are used to control the feedback strength. In this work, we investigate how such lasers with filtered feedback are influenced by an external conventional optical feedback. The experimental results show intensity fluctuations in the time traces in both the clockwise and counterclockwise directions due to the conventional feedback. We quantify the strength of the conventional feedback induced dynamics be extracting the standard deviation of the intensity fluctuations in the time traces. By using filtered feedback, we can shift the onset of the conventional feedback induced dynamics to larger values of the feedback rate [ Khoder et al, IEEE Photon. Technol. Lett. DOI: 10.1109/LPT.2016.2522184]. The on-chip filtered optical feedback thus makes the semiconductor ring laser less senstive to the effect of (long) conventional optical feedback. We think these conclusions can be extended to other types of lasers.
NASA Technical Reports Server (NTRS)
Park, Young W.; Montez, Moises N.
1994-01-01
A candidate onboard space navigation filter demonstrated excellent performance (less than 8 meter level RMS semi-major axis accuracy) in performing orbit determination of a low-Earth orbit Explorer satellite using single-frequency real GPS data. This performance is significantly better than predicted by other simulation studies using dual-frequency GPS data. The study results revealed the significance of two new modeling approaches evaluated in the work. One approach introduces a single-frequency ionospheric correction through pseudo-range and phase range averaging implementation. The other approach demonstrates a precise axis-dependent characterization of dynamic sample space uncertainty to compute a more accurate Kalman filter gain. Additionally, this navigation filter demonstrates a flexibility to accommodate both perturbational dynamic and observational biases required for multi-flight phase and inhomogeneous application environments. This paper reviews the potential application of these methods and the filter structure to terrestrial vehicle and positioning applications. Both the single-frequency ionospheric correction method and the axis-dependent state noise modeling approach offer valuable contributions in cost and accuracy improvements for terrestrial GPS receivers. With a modular design approach to either 'plug-in' or 'unplug' various force models, this multi-flight phase navigation filter design structure also provides a versatile GPS navigation software engine for both atmospheric and exo-atmospheric navigation or positioning use, thereby streamlining the flight phase or application-dependent software requirements. Thus, a standardized GPS navigation software engine that can reduce the development and maintenance cost of commercial GPS receivers is now possible.
Signal Processing for Determining Water Height in Steam Pipes with Dynamic Surface Conditions
NASA Technical Reports Server (NTRS)
Lih, Shyh-Shiuh; Lee, Hyeong Jae; Bar-Cohen, Yoseph
2015-01-01
An enhanced signal processing method based on the filtered Hilbert envelope of the auto-correlation function of the wave signal has been developed to monitor the height of condensed water through the steel wall of steam pipes with dynamic surface conditions. The developed signal processing algorithm can also be used to estimate the thickness of the pipe to determine the cut-off frequency for the low pass filter frequency of the Hilbert Envelope. Testing and analysis results by using the developed technique for dynamic surface conditions are presented. A multiple array of transducers setup and methodology are proposed for both the pulse-echo and pitch-catch signals to monitor the fluctuation of the water height due to disturbance, water flow, and other anomaly conditions.
Lyu, Weiwei
2017-01-01
Transfer alignment is always a key technology in a strapdown inertial navigation system (SINS) because of its rapidity and accuracy. In this paper a transfer alignment model is established, which contains the SINS error model and the measurement model. The time delay in the process of transfer alignment is analyzed, and an H∞ filtering method with delay compensation is presented. Then the H∞ filtering theory and the robust mechanism of H∞ filter are deduced and analyzed in detail. In order to improve the transfer alignment accuracy in SINS with time delay, an adaptive H∞ filtering method with delay compensation is proposed. Since the robustness factor plays an important role in the filtering process and has effect on the filtering accuracy, the adaptive H∞ filter with delay compensation can adjust the value of robustness factor adaptively according to the dynamic external environment. The vehicle transfer alignment experiment indicates that by using the adaptive H∞ filtering method with delay compensation, the transfer alignment accuracy and the pure inertial navigation accuracy can be dramatically improved, which demonstrates the superiority of the proposed filtering method. PMID:29182592
Wave-filter-based approach for generation of a quiet space in a rectangular cavity
NASA Astrophysics Data System (ADS)
Iwamoto, Hiroyuki; Tanaka, Nobuo; Sanada, Akira
2018-02-01
This paper is concerned with the generation of a quiet space in a rectangular cavity using active wave control methodology. It is the purpose of this paper to present the wave filtering method for a rectangular cavity using multiple microphones and its application to an adaptive feedforward control system. Firstly, the transfer matrix method is introduced for describing the wave dynamics of the sound field, and then feedforward control laws for eliminating transmitted waves is derived. Furthermore, some numerical simulations are conducted that show the best possible result of active wave control. This is followed by the derivation of the wave filtering equations that indicates the structure of the wave filter. It is clarified that the wave filter consists of three portions; modal group filter, rearrangement filter and wave decomposition filter. Next, from a numerical point of view, the accuracy of the wave decomposition filter which is expressed as a function of frequency is investigated using condition numbers. Finally, an experiment on the adaptive feedforward control system using the wave filter is carried out, demonstrating that a quiet space is generated in the target space by the proposed method.
A dynamic regularized gradient model of the subgrid-scale stress tensor for large-eddy simulation
NASA Astrophysics Data System (ADS)
Vollant, A.; Balarac, G.; Corre, C.
2016-02-01
Large-eddy simulation (LES) solves only the large scales part of turbulent flows by using a scales separation based on a filtering operation. The solution of the filtered Navier-Stokes equations requires then to model the subgrid-scale (SGS) stress tensor to take into account the effect of scales smaller than the filter size. In this work, a new model is proposed for the SGS stress model. The model formulation is based on a regularization procedure of the gradient model to correct its unstable behavior. The model is developed based on a priori tests to improve the accuracy of the modeling for both structural and functional performances, i.e., the model ability to locally approximate the SGS unknown term and to reproduce enough global SGS dissipation, respectively. LES is then performed for a posteriori validation. This work is an extension to the SGS stress tensor of the regularization procedure proposed by Balarac et al. ["A dynamic regularized gradient model of the subgrid-scale scalar flux for large eddy simulations," Phys. Fluids 25(7), 075107 (2013)] to model the SGS scalar flux. A set of dynamic regularized gradient (DRG) models is thus made available for both the momentum and the scalar equations. The second objective of this work is to compare this new set of DRG models with direct numerical simulations (DNS), filtered DNS in the case of classic flows simulated with a pseudo-spectral solver and with the standard set of models based on the dynamic Smagorinsky model. Various flow configurations are considered: decaying homogeneous isotropic turbulence, turbulent plane jet, and turbulent channel flows. These tests demonstrate the stable behavior provided by the regularization procedure, along with substantial improvement for velocity and scalar statistics predictions.
Filtering as a reasoning-control strategy: An experimental assessment
NASA Technical Reports Server (NTRS)
Pollack, Martha E.
1994-01-01
In dynamic environments, optimal deliberation about what actions to perform is impossible. Instead, it is sometimes necessary to trade potential decision quality for decision timeliness. One approach to achieving this trade-off is to endow intelligent agents with meta-level strategies that provide them guidance about when to reason (and what to reason about) and when to act. We describe our investigations of a particular meta-level reasoning strategy, filtering, in which an agent commits to the goals it has already adopted, and then filters from consideration new options that would conflict with the successful completion of existing goals. To investigate the utility of filtering, a series of experiments was conducted using the Tileworld testbed. Previous experiments conducted by Kinny and Georgeff used an earlier version of the Tileworld to demonstrate the feasibility of filtering. Results are presented that replicate and extend those of Kinny and Georgeff and demonstrate some significant environmental influences on the value of filtering.
Ding, Tingting; Zheng, Yuanlin; Chen, Xianfeng
2018-04-30
Configurable narrow bandwidth filters are indispensable components in optical communication networks. Here, we present an easily-integrated compact tunable filtering based on polarization-coupling process in a thin periodically poled lithium niobate (PPLN) in a reflective geometry via the transverse electro-optic (EO) effect. The structure, composed of an in-line polarizer and a thinned PPLN chip, forms a phase-shift Solc-type filter with similar mechanism to defected Bragg gratings. The filtering effect can be dynamically switched on and off by a transverse electric filed. Analogy of electromagnetically induced transparency (EIT) transmission spectrum and electrically controllable group delay is experimentally observed. The mechanism features tunable center wavelength in a wide range with respect to temperature and tunable optical delay to the applied voltage, which may offer another way for optical tunable filters or delay lines.
Study on UKF based federal integrated navigation for high dynamic aviation
NASA Astrophysics Data System (ADS)
Zhao, Gang; Shao, Wei; Chen, Kai; Yan, Jie
2011-08-01
High dynamic aircraft is a very attractive new generation vehicles, in which provides near space aviation with large flight envelope both speed and altitude, for example the hypersonic vehicles. The complex flight environments for high dynamic vehicles require high accuracy and stability navigation scheme. Since the conventional Strapdown Inertial Navigation System (SINS) and Global Position System (GPS) federal integrated scheme based on EKF (Extended Kalman Filter) is invalidation in GPS single blackout situation because of high speed flight, a new high precision and stability integrated navigation approach is presented in this paper, in which the SINS, GPS and Celestial Navigation System (CNS) is combined as a federal information fusion configuration based on nonlinear Unscented Kalman Filter (UKF) algorithm. Firstly, the new integrated system state error is modeled. According to this error model, the SINS system is used as the navigation solution mathematic platform. The SINS combine with GPS constitute one error estimation filter subsystem based on UKF to obtain local optimal estimation, and the SINS combine with CNS constitute another error estimation subsystem. A non-reset federated configuration filter based on partial information is proposed to fuse two local optimal estimations to get global optimal error estimation, and the global optimal estimation is used to correct the SINS navigation solution. The χ 2 fault detection method is used to detect the subsystem fault, and the fault subsystem is isolation through fault interval to protect system away from the divergence. The integrated system takes advantages of SINS, GPS and CNS to an immense improvement for high accuracy and reliably high dynamic navigation application. Simulation result shows that federated fusion of using GPS and CNS to revise SINS solution is reasonable and availably with good estimation performance, which are satisfied with the demands of high dynamic flight navigation. The UKF is superior than EKF based integrated scheme, in which has smaller estimation error and quickly convergence rate.
A Maximum Entropy Method for Particle Filtering
NASA Astrophysics Data System (ADS)
Eyink, Gregory L.; Kim, Sangil
2006-06-01
Standard ensemble or particle filtering schemes do not properly represent states of low priori probability when the number of available samples is too small, as is often the case in practical applications. We introduce here a set of parametric resampling methods to solve this problem. Motivated by a general H-theorem for relative entropy, we construct parametric models for the filter distributions as maximum-entropy/minimum-information models consistent with moments of the particle ensemble. When the prior distributions are modeled as mixtures of Gaussians, our method naturally generalizes the ensemble Kalman filter to systems with highly non-Gaussian statistics. We apply the new particle filters presented here to two simple test cases: a one-dimensional diffusion process in a double-well potential and the three-dimensional chaotic dynamical system of Lorenz.
Narrow-band far-infrared interference filters with high-T c, superconducting reflectors
NASA Astrophysics Data System (ADS)
Schönberger, R.; Prückl, A.; Pechen, E. V.; Anzin, V. B.; Brunner, B.; Renk, K. F.
1994-10-01
We report on experiments showing that high-T c, superconductors are well suitable for constructing of high-quality far-infrared Fabry-Perot interference filters in the terahertz frequency range. In an interference filter we use two plane-parallel MgO plates with YBa 2 Cu 3 O 7 thin films as partly transparent reflectors on adjacent surfaces. For the first-order main resonances adjusted to frequencies around 2 THz a quality factor of ≅200 and a peak-transmissivity of 0˜.5 have been reached. Study of the filters with YBa 2 Cu 3 O 7 films of different thickness indicate the possibility of reaching still higher selectivity. An analysis of the filter characteristics delivered the dynamical conductivity of the high-T c films.
Worst error performance of continuous Kalman filters. [for deep space navigation and maneuvers
NASA Technical Reports Server (NTRS)
Nishimura, T.
1975-01-01
The worst error performance of estimation filters is investigated for continuous systems in this paper. The pathological performance study, without assuming any dynamical model such as Markov processes for perturbations, except for its bounded amplitude, will give practical and dependable criteria in establishing the navigation and maneuver strategy in deep space missions.
Terluin, Berend; Brouwers, Evelien P M; Marchand, Miquelle A G; de Vet, Henrica C W
2018-05-01
Many paper-and-pencil (P&P) questionnaires have been migrated to electronic platforms. Differential item and test functioning (DIF and DTF) analysis constitutes a superior research design to assess measurement equivalence across modes of administration. The purpose of this study was to demonstrate an item response theory (IRT)-based DIF and DTF analysis to assess the measurement equivalence of a Web-based version and the original P&P format of the Four-Dimensional Symptom Questionnaire (4DSQ), measuring distress, depression, anxiety, and somatization. The P&P group (n = 2031) and the Web group (n = 958) consisted of primary care psychology clients. Unidimensionality and local independence of the 4DSQ scales were examined using IRT and Yen's Q3. Bifactor modeling was used to assess the scales' essential unidimensionality. Measurement equivalence was assessed using IRT-based DIF analysis using a 3-stage approach: linking on the latent mean and variance, selection of anchor items, and DIF testing using the Wald test. DTF was evaluated by comparing expected scale scores as a function of the latent trait. The 4DSQ scales proved to be essentially unidimensional in both modalities. Five items, belonging to the distress and somatization scales, displayed small amounts of DIF. DTF analysis revealed that the impact of DIF on the scale level was negligible. IRT-based DIF and DTF analysis is demonstrated as a way to assess the equivalence of Web-based and P&P questionnaire modalities. Data obtained with the Web-based 4DSQ are equivalent to data obtained with the P&P version.
Bourion-Bédès, Stéphanie; Schwan, Raymund; Epstein, Jonathan; Laprevote, Vincent; Bédès, Alex; Bonnet, Jean-Louis; Baumann, Cédric
2015-02-01
The study aimed to examine the construct validity and reliability of the Quality of Life Enjoyment and Satisfaction Questionnaire-Short Form (Q-LES-Q-SF) according to both classical test and item response theories. The psychometric properties of the French version of this instrument were investigated in a cross-sectional, multicenter study. A total of 124 outpatients with a substance dependence diagnosis participated in the study. Psychometric evaluation included descriptive analysis, internal consistency, test-retest reliability, and validity. The dimensionality of the instrument was explored using a combination of the classical test, confirmatory factor analysis (CFA), and an item response theory analysis, the Person Separation Index (PSI), in a complementary manner. The results of the Q-LES-Q-SF revealed that the questionnaire was easy to administer and the acceptability was good. The internal consistency and the test-retest reliability were 0.9 and 0.88, respectively. All items were significantly correlated with the total score and the SF-12 used in the study. The CFA with one factor model was good, and for the unidimensional construct, the PSI was found to be 0.902. The French version of the Q-LES-Q-SF yielded valid and reliable clinical assessments of the quality of life for future research and clinical practice involving French substance abusers. In response to recent questioning regarding the unidimensionality or bidimensionality of the instrument and according to the underlying theoretical unidimensional construct used for its development, this study suggests the Q-LES-Q-SF as a one-dimension questionnaire in French QoL studies.
Morris, Scott; Bass, Mike; Lee, Mirinae; Neapolitan, Richard E
2017-09-01
The Patient Reported Outcomes Measurement Information System (PROMIS) initiative developed an array of patient reported outcome (PRO) measures. To reduce the number of questions administered, PROMIS utilizes unidimensional item response theory and unidimensional computer adaptive testing (UCAT), which means a separate set of questions is administered for each measured trait. Multidimensional item response theory (MIRT) and multidimensional computer adaptive testing (MCAT) simultaneously assess correlated traits. The objective was to investigate the extent to which MCAT reduces patient burden relative to UCAT in the case of PROs. One MIRT and 3 unidimensional item response theory models were developed using the related traits anxiety, depression, and anger. Using these models, MCAT and UCAT performance was compared with simulated individuals. Surprisingly, the root mean squared error for both methods increased with the number of items. These results were driven by large errors for individuals with low trait levels. A second analysis focused on individuals aligned with item content. For these individuals, both MCAT and UCAT accuracies improved with additional items. Furthermore, MCAT reduced the test length by 50%. For the PROMIS Emotional Distress banks, neither UCAT nor MCAT provided accurate estimates for individuals at low trait levels. Because the items in these banks were designed to detect clinical levels of distress, there is little information for individuals with low trait values. However, trait estimates for individuals targeted by the banks were accurate and MCAT asked substantially fewer questions. By reducing the number of items administered, MCAT can allow clinicians and researchers to assess a wider range of PROs with less patient burden. © The Author 2017. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Sierakowska, Matylda; Sierakowski, Stanisław; Sierakowska, Justyna; Horton, Mike; Ndosi, Mwidimi
2015-03-01
To undertake cross-cultural adaptation and validation of the educational needs assessment tool (ENAT) for use with people with rheumatoid arthritis (RA) and systemic sclerosis (SSc) in Poland. The study involved two main phases: (1) cross-cultural adaptation of the ENAT from English into Polish and (2) Cross-cultural validation of Polish Educational Needs Assessment Tool (Pol-ENAT). The first phase followed an established process of cross-cultural adaptation of self-report measures. The second phase involved completion of the Pol-ENAT by patients and subjecting the data to Rasch analysis to assess the construct validity, unidimensionality, internal consistency and cross-cultural invariance. An adequate conceptual equivalence was achieved following the adaptation process. The dataset for validation comprised a total of 278 patients, 237 (85.3 %) of which were female. In each disease group (145, RA and 133, SSc), the 7 domains of the Pol-ENAT were found to fit the Rasch model, X (2)(df) = 16.953(14), p = 0.259 and 8.132(14), p = 0.882 for RA and SSc, respectively. Internal consistency of the Pol-ENAT was high (patient separation index = 0.85 and 0.89 for SSc and RA, respectively), and unidimensionality was confirmed. Cross-cultural differential item functioning (DIF) was detected in some subscales, and DIF-adjusted conversion tables were calibrated to enable cross-cultural comparison of data between Poland and the UK. Using a standard process in cross-cultural adaptation, conceptual equivalence was achieved between the original (UK) ENAT and the adapted Pol-ENAT. Fit to the Rasch model, confirmed that the construct validity, unidimensionality and internal consistency of the ENAT have been preserved.
Escobar, Antonio; Trujillo-Martín, Maria del Mar; Rueda, Antonio; Pérez-Ruiz, Elisabeth; Avis, Nancy E; Bilbao, Amaia
2015-11-16
The aim of this study was to validate the Quality of Life in Adult Cancer Survivors (QLACS) in short-term Spanish cancer survivor's patients. Patients with breast, colorectal or prostate cancer that had finished their initial cancer treatment 3 years before the beginning of this study completed QLACS, WHOQOL, Short Form-36, Hospital Anxiety and Depression Scale, EORTC-QLQ-BR23 and EQ-5D. Cultural adaptation was made based on established guidelines. Reliability was evaluated using internal consistency and test-retest. Convergent validity was studied by mean of Pearson's correlation coefficient. Structural validity was determined by a second-order confirmatory factor analysis (CFA) and Rasch analysis was used to assess the unidimensionality of the Generic and Cancer-specific scales. Cronbach's alpha were above 0.7 in all domains and summary scales. Test-retest coefficients were 0.88 for Generic and 0.82 for Cancer-specific summary scales. QLACS generic summary scale was correlated with other generic criterion measures, SF-36 MCS (r = - 0.74) and EQ-VAS (r = - 0.63). QLACS cancer-specific scale had lower values with the same constructs. CFA provided satisfactory fit indices in all cases. The RMSEA value was 0.061 and CFI and TLI values were 0.929 and 0.925, respectively. All factor loadings were higher than 0.40 and statistically significant (P < 0.001). Generic summary scale had eight misfitting items. In the remaining 20 items, the unidimensionality was supported. Cancer Specific summary scale showed four misfitting items, the remaining showed unidimensionality. The findings support the validity and reliability of QLACS questionnaire to be used in short-term cancer survivors.
Ashley, Laura; Smith, Adam B; Keding, Ada; Jones, Helen; Velikova, Galina; Wright, Penny
2013-12-01
To provide new insights into the psychometrics of the revised Illness Perception Questionnaire (IPQ-R) in cancer patients. To undertake, for the first time using data from breast, colorectal and prostate cancer patients, a confirmatory factor analysis (CFA) to assess the validity of the IPQ-R's core seven-factor structure. Also, for the first time in any illness group, to undertake Rasch analysis to explore the extent to which the IPQ-R factors form unidimensional scales, with linear measurement properties and no Differential Item Functioning (DIF). Patients with potentially curable breast, colorectal or prostate cancer, within 6months post-diagnosis, completed the IPQ-R online (N=531). CFA was conducted, including multi-sample analysis, and for each IPQ-R factor fit to the Rasch model was assessed by examining, amongst other things, item fit, DIF and unidimensionality. The CFA showed a moderate fit of the data to the IPQ-R model, and stability across diagnosis, although fit was significantly improved following the removal of selected items. All seven factors achieved fit to the Rasch model, and exhibited unidimensionality and minimal DIF, although in most cases this was after some item rescoring and/or deletion. In both analyses, IPQ-R items 12, 18 and 24 were indicated as misfitting and removed. Given the rigorous standard of Rasch measurement, and the generic nature of the IPQ-R, it stood up well to the demands of the Rasch model in this study. Importantly, the results show that with some relatively minor, pragmatic modifications the IPQ-R could possess Rasch-standard measurement in cancer patients. © 2013.
Llamas-Ramos, Inés; Llamas-Ramos, Rocío; Buz, José; Cortés-Rodríguez, María; Martín-Nogueras, Ana María
2018-06-01
The Memorial Symptom Assessment Scale (MSAS) is a self-rating instrument for the assessment of symptom distress in cancer patients. The Spanish version of the MSAS has recently been validated. However, we lack evidence of the internal construct validity of the shorter versions (short form [MSAS-SF] and condensed form [CMSAS]). In addition, rigorous testing of these scales with modern psychometric methods is needed. The aim of this study was to evaluate the internal construct validity and reliability of the Spanish versions of the MSAS-SF and CMSAS in oncology outpatients using Rasch analysis. Data from a convenience sample of oncology outpatients receiving chemotherapy (n = 306; mean age 60 years; 63% women) at a university hospital were analyzed. The Rasch unidimensional measurement model was used to examine response category functioning, item hierarchy, targeting, unidimensionality, reliability, and differential item functioning by age, gender, and marital status. The response category structure of the symptom distress items was improved by collapsing two categories. The scales were adequately targeted to the study patients, showed overall Rasch model fit (mean Infit MnSq ranged from 0.98 to 1.05), met criteria for unidimensionality, and the reliability of scores was good (person reliability > 0.80), except for the CMSAS prevalence scale. Only four items showed differential item functioning. The present study demonstrated that the Spanish versions of the MSAS-SF and CMSAS have adequate psychometric properties to evaluate symptom distress in oncology outpatients. Additional studies of the CMSAS are recommended. Copyright © 2018 American Academy of Hospice and Palliative Medicine. Published by Elsevier Inc. All rights reserved.
de Oliveira, Flávia Augusta; Luna, Stelio Pacca Loureiro; do Amaral, Jackson Barros; Rodrigues, Karoline Alves; Sant'Anna, Aline Cristina; Daolio, Milena; Brondani, Juliana Tabarelli
2014-09-06
The recognition and measurement of pain in cattle are important in determining the necessity for and efficacy of analgesic intervention. The aim of this study was to record behaviour and determine the validity and reliability of an instrument to assess acute pain in 40 cattle subjected to orchiectomy after sedation with xylazine and local anaesthesia. The animals were filmed before and after orchiectomy to record behaviour. The pain scale was based on previous studies, on a pilot study and on analysis of the camera footage. Three blinded observers and a local observer assessed the edited films obtained during the preoperative and postoperative periods, before and after rescue analgesia and 24 hours after surgery. Re-evaluation was performed one month after the first analysis. Criterion validity (agreement) and item-total correlation using Spearman's coefficient were employed to refine the scale. Based on factor analysis, a unidimensional scale was adopted. The internal consistency of the data was excellent after refinement (Cronbach's α coefficient = 0.866). There was a high correlation (p < 0.001) between the proposed scale and the visual analogue, simple descriptive and numerical rating scales. The construct validity and responsiveness were confirmed by the increase and decrease in pain scores after surgery and rescue analgesia, respectively (p < 0.001). Inter- and intra-observer reliability ranged from moderate to very good. The optimal cut-off point for rescue analgesia was > 4, and analysis of the area under the curve (AUC = 0.963) showed excellent discriminatory ability. The UNESP-Botucatu unidimensional pain scale for assessing acute postoperative pain in cattle is a valid, reliable and responsive instrument with excellent internal consistency and discriminatory ability. The cut-off point for rescue analgesia provides an additional tool for guiding analgesic therapy.
McEvoy, Peter M; Hyett, Matthew P; Ehring, Thomas; Johnson, Sheri L; Samtani, Suraj; Anderson, Rebecca; Moulds, Michelle L
2018-05-01
Repetitive negative thinking (RNT) is a cognitive process that is repetitive, passive, relatively uncontrollable, and focused on negative content, and is elevated in emotional disorders including depression and anxiety disorders. Repetitive positive thinking is associated with bipolar disorder symptoms. The unique contributions of positive versus negative repetitive thinking to emotional symptoms are unknown. The first aim of this study was to use confirmatory factor analyses to evaluate the psychometrics of two transdiagnostic measures of RNT, the Repetitive Thinking Questionnaire (RTQ-10) and Perseverative Thinking Questionnaire (PTQ), and a measure of repetitive positive thinking, the Responses to Positive Affect (RPA) Questionnaire. The second aim was to determine incremental predictive utility of these measures. All measures were administered to a sample of 2088 undergraduate students from the Netherlands (n = 992), Australia (n = 698), and America (n = 398). Unidimensional, bifactor, and three-factor models were supported for the RTQ-10, PTQ, and RPA, respectively. A common factor measured by all PTQ items explained most variance in PTQ scores suggesting that this measure is essentially unidimensional. The RNT factor of the RTQ-10 demonstrated the strongest predictive utility, although the PTQ was also uniquely although weakly associated with anxiety, depression, and mania symptoms. The RPA dampening factor uniquely predicted anxiety and depression symptoms, suggesting that this scale is a separable process to RNT as measured by the RTQ-10 and PTQ. Findings were cross-sectional and need to be replicated in clinical samples. Transdiagnostic measures of RNT are essentially unidimensional, whereas RPA is multidimensional. RNT and RPA have unique predictive utility. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Tamboli, Prakash Kumar; Duttagupta, Siddhartha P.; Roy, Kallol
2015-08-01
The paper deals with dynamic compensation of delayed Self Powered Flux Detectors (SPFDs) using discrete time H∞ filtering method for improving the response of SPFDs with significant delayed components such as Platinum and Vanadium SPFD. We also present a comparative study between the Linear Matrix Inequality (LMI) based H∞ filtering and Algebraic Riccati Equation (ARE) based Kalman filtering methods with respect to their delay compensation capabilities. Finally an improved recursive H∞ filter based on the adaptive fading memory technique is proposed which provides an improved performance over existing methods. The existing delay compensation algorithms do not account for the rate of change in the signal for determining the filter gain and therefore add significant noise during the delay compensation process. The proposed adaptive fading memory H∞ filter minimizes the overall noise very effectively at the same time keeps the response time at minimum values. The recursive algorithm is easy to implement in real time as compared to the LMI (or ARE) based solutions.
Sun, Xiaodian; Jin, Li; Xiong, Momiao
2008-01-01
It is system dynamics that determines the function of cells, tissues and organisms. To develop mathematical models and estimate their parameters are an essential issue for studying dynamic behaviors of biological systems which include metabolic networks, genetic regulatory networks and signal transduction pathways, under perturbation of external stimuli. In general, biological dynamic systems are partially observed. Therefore, a natural way to model dynamic biological systems is to employ nonlinear state-space equations. Although statistical methods for parameter estimation of linear models in biological dynamic systems have been developed intensively in the recent years, the estimation of both states and parameters of nonlinear dynamic systems remains a challenging task. In this report, we apply extended Kalman Filter (EKF) to the estimation of both states and parameters of nonlinear state-space models. To evaluate the performance of the EKF for parameter estimation, we apply the EKF to a simulation dataset and two real datasets: JAK-STAT signal transduction pathway and Ras/Raf/MEK/ERK signaling transduction pathways datasets. The preliminary results show that EKF can accurately estimate the parameters and predict states in nonlinear state-space equations for modeling dynamic biochemical networks. PMID:19018286
NASA Technical Reports Server (NTRS)
Oliver, D. S.; Aldrich, R. E.; Krol, F. T.
1972-01-01
An electrically addressed liquid crystal Fourier plane filter capable of real time optical image processing is described. The filter consists of two parts: a wedge filter having forty 9 deg segments and a ring filter having twenty concentric rings in a one inch diameter active area. Transmission of the filter in the off (transparent) state exceeds fifty percent. By using polarizing optics, contrast as high as 10,000:1 can be achieved at voltages compatible with FET switching technology. A phenomenological model for the dynamic scattering is presented for this special case. The filter is designed to be operated from a computer and is addressed by a seven bit binary word which includes an on or off command and selects any one of the twenty rings or twenty wedge pairs. The overall system uses addressable latches so that once an element is in a specified state, it will remain there until a change of state command is received. The drive for the liquid crystal filter is ? 30 V peak at 30 Hz to 70 Hz. These parameters give a rise time for the scattering of 20 msec and a decay time of 80 to 100 msec.
A Novel Attitude Determination Algorithm for Spinning Spacecraft
NASA Technical Reports Server (NTRS)
Bar-Itzhack, Itzhack Y.; Harman, Richard R.
2007-01-01
This paper presents a single frame algorithm for the spin-axis orientation-determination of spinning spacecraft that encounters no ambiguity problems, as well as a simple Kalman filter for continuously estimating the full attitude of a spinning spacecraft. The later algorithm is comprised of two low order decoupled Kalman filters; one estimates the spin axis orientation, and the other estimates the spin rate and the spin (phase) angle. The filters are ambiguity free and do not rely on the spacecraft dynamics. They were successfully tested using data obtained from one of the ST5 satellites.
Causality and Information Dynamics in Networked Systems with Many Agents
2017-05-11
representation, the LSI filter given by A(τ) must be invertible, and a sufficient condition for this invertibility is that there is some c > 0 such that the...linear shift-invariant (LSI) filter B̃ij(z) = ∑p τ=1Bij(τ)z −τ whose coefficients are arranged into a column vector B̃ij = (Bij(1), . . . , Bij(p)). In...to the adjacency matrix of the underlying graph, so that looking “depth-wise” at location ij gives the coefficients B̃ij ∈ IRp of the LSI filter from
High Order Filter Methods for the Non-ideal Compressible MHD Equations
NASA Technical Reports Server (NTRS)
Yee, H. C.; Sjoegreen, Bjoern
2003-01-01
The generalization of a class of low-dissipative high order filter finite difference methods for long time wave propagation of shock/turbulence/combustion compressible viscous gas dynamic flows to compressible MHD equations for structured curvilinear grids has been achieved. The new scheme is shown to provide a natural and efficient way for the minimization of the divergence of the magnetic field numerical error. Standard divergence cleaning is not required by the present filter approach. For certain non-ideal MHD test cases, divergence free preservation of the magnetic fields has been achieved.
A parallel VLSI architecture for a digital filter using a number theoretic transform
NASA Technical Reports Server (NTRS)
Truong, T. K.; Reed, I. S.; Yeh, C. S.; Shao, H. M.
1983-01-01
The advantages of a very large scalee integration (VLSI) architecture for implementing a digital filter using fermat number transforms (FNT) are the following: It requires no multiplication. Only additions and bit rotations are needed. It alleviates the usual dynamic range limitation for long sequence FNT's. It utilizes the FNT and inverse FNT circuits 100% of the time. The lengths of the input data and filter sequences can be arbitraty and different. It is regular, simple, and expandable, and as a consequence suitable for VLSI implementation.
Divergence Free High Order Filter Methods for the Compressible MHD Equations
NASA Technical Reports Server (NTRS)
Yea, H. C.; Sjoegreen, Bjoern
2003-01-01
The generalization of a class of low-dissipative high order filter finite difference methods for long time wave propagation of shock/turbulence/combustion compressible viscous gas dynamic flows to compressible MHD equations for structured curvilinear grids has been achieved. The new scheme is shown to provide a natural and efficient way for the minimization of the divergence of the magnetic field numerical error. Standard diver- gence cleaning is not required by the present filter approach. For certain MHD test cases, divergence free preservation of the magnetic fields has been achieved.
Sequential Dependencies in Categorical Judgments of Radiographic Images
ERIC Educational Resources Information Center
Beckstead, Jason W.; Boutis, Kathy; Pecaric, Martin; Pusic, Martin V.
2017-01-01
Sequential context effects, the psychological interactions occurring between the events of successive trials when a sequence of similar stimuli are judged, have interested psychologists for decades. It has been well established that individuals exhibit sequential context effects in psychophysical experiments involving unidimensional stimuli.…
Examination of the validity and reliability of the French version of the Brief Self-Control Scale
Brevers, Damien; Foucart, Jennifer; Verbanck, Paul; Turel, Ofir
2017-01-01
This study aims to develop and to validate a French version of the Brief Self-Control Scale (BSCS; Tangney et al., 2004). This instrument is usually applied as a unidimensional self-report measure for assessing trait self-control, which captures one’s dispositional ability to resist short-term temptation in order to reach more valuable long-term goals. Data were collected from two independent samples of French-speaking individuals (n1 = 287; n2 = 160). Results indicated that the French version of the BSCS can be treated as unidimensional, like the original questionnaire. Data also showed consistent acceptable reliability and reasonable test-retest stability. Acceptable external validity of constructs was supported by relationships with self-reported measures of impulsivity (UPPS), including urgency, lack of premeditation, and lack of perseverance. Overall, the findings suggest that the average score of the French version of the BSCS is a viable option for assessing trait self-control in French speaking populations. PMID:29200467
Exploring visitor acceptability for hardening trails to sustain visitation and minimize impacts
Cahill, K.L.; Marion, J.L.; Lawson, S.R.
2008-01-01
Protected natural area managers are challenged to provide high quality recreation opportunities and ensure the protection of resources from impacts associated with visitation. Development of visitor use facilities and application of site hardening practices are commonly applied tools for achieving these competing management objectives. This study applies stated choice analysis to examine visitor opinions on acceptability when they are asked to make tradeoffs among competing social, resource and management attributes in backcountry and frontcountry settings of Acadia National Park. This study demonstrates that asking visitors about recreation setting attributes uni-dimensionally, a common approach, can yield less informative responses. Analyses that considered direct tradeoffs revealed more divergent opinions on acceptability for setting attributes than a unidimensional approach. Findings revealed that visitors to an accessible and popular attraction feature supported trail development options to protect resource conditions with unrestricted visitor access. In contrast, visitors to a remote undeveloped island expressed stronger support for no or limited trail development and access restrictions to protect resource conditions.
NASA Astrophysics Data System (ADS)
Jo, Vinna; Woo Lee, Dong; Koo, Hyun-Joo; Ok, Kang Min
2011-04-01
Three new uni-dimensional alkali metal titanium fluoride materials, A2TiF 5· nH 2O ( A=K, Rb, or Cs; n=0 or 1) have been synthesized by hydrothermal reactions. The structures of A2TiF 5· nH 2O have been determined by single-crystal X-ray diffraction. The Ti 4+ cations have been reduced to Ti 3+ during the synthesis reactions. All three A2TiF 5· nH 2O materials contain novel 1-D chain structures that are composed of the slightly distorted Ti 3+F 6 corner-sharing octahedra attributable to the Jahn-Teller distortion. The coordination environment of the alkali metal cations plays an important role to determine the degree of turning in the chain structures. Complete structural analyses, Infrared and UV-vis diffuse reflectance spectra, and thermal analyses are presented, as are electronic structure calculations.
Development of CRIS: Measure of community reintegration of injured service members
Resnik, Linda; Plow, Matthew; Jette, Alan
2012-01-01
Identification and prevention of community reintegration problems of veterans is an important public health mandate. However, no veteran-specific measure exists. Study purposes were to (1) develop the Community Reintegration for Service Members (CRIS) measure and (2) test the validity and reliability of the measure. Formative research identified challenges in community reintegration postdeployment. The World Health Organization’s International Classification of Functioning, Disability and Health participation domain guided item-bank development. Items were refined through cognitive interviews and clinician consultation. Pilot studies with 126 veterans examined unidimensionality, internal consistency, reliability, and construct validity. Three unidimensional CRIS scales were developed. Working subjects had better CRIS scores then unemployed subjects. Subjects with posttraumatic stress disorder, substance abuse, or mental health problems had worse scores than subjects without these conditions. The correlations between the CRIS and the 36-Item Short Form Health Survey scales of role physical, role emotional, and social functioning were 0.44–0.80. CRIS has strong reliability, conceptual integrity, and construct validity. PMID:19882482
Lúcio, Patrícia Silva; Cogo-Moreira, Hugo; Puglisi, Marina; Polanczyk, Guilherme Vanoni; Little, Todd D
2017-11-01
The present study investigated the psychometric properties of the Raven's Colored Progressive Matrices (CPM) test in a sample of preschoolers from Brazil ( n = 582; age: mean = 57 months, SD = 7 months; 46% female). We investigated the plausibility of unidimensionality of the items (confirmatory factor analysis) and differential item functioning (DIF) for sex and age (multiple indicators multiple causes method). We tested four unidimensional models and the one with the best-fit index was a reduced form of the Raven's CPM. The DIF analysis was carried out with the reduced form of the test. A few items presented DIF (two for sex and one for age), confirming that the Raven's CPM items are mostly measurement invariant. There was no effect of sex on the general factor, but increasing age was associated with higher values of the g factor. Future research should indicate if the reduced form is suitable for evaluating the general ability of preschoolers.
Examination of the validity and reliability of the French version of the Brief Self-Control Scale.
Brevers, Damien; Foucart, Jennifer; Verbanck, Paul; Turel, Ofir
2017-10-01
This study aims to develop and to validate a French version of the Brief Self-Control Scale (BSCS; Tangney et al., 2004). This instrument is usually applied as a unidimensional self-report measure for assessing trait self-control, which captures one's dispositional ability to resist short-term temptation in order to reach more valuable long-term goals. Data were collected from two independent samples of French-speaking individuals ( n 1 = 287; n 2 = 160). Results indicated that the French version of the BSCS can be treated as unidimensional, like the original questionnaire. Data also showed consistent acceptable reliability and reasonable test-retest stability. Acceptable external validity of constructs was supported by relationships with self-reported measures of impulsivity (UPPS), including urgency, lack of premeditation, and lack of perseverance. Overall, the findings suggest that the average score of the French version of the BSCS is a viable option for assessing trait self-control in French speaking populations.
Noise removal in extended depth of field microscope images through nonlinear signal processing.
Zahreddine, Ramzi N; Cormack, Robert H; Cogswell, Carol J
2013-04-01
Extended depth of field (EDF) microscopy, achieved through computational optics, allows for real-time 3D imaging of live cell dynamics. EDF is achieved through a combination of point spread function engineering and digital image processing. A linear Wiener filter has been conventionally used to deconvolve the image, but it suffers from high frequency noise amplification and processing artifacts. A nonlinear processing scheme is proposed which extends the depth of field while minimizing background noise. The nonlinear filter is generated via a training algorithm and an iterative optimizer. Biological microscope images processed with the nonlinear filter show a significant improvement in image quality and signal-to-noise ratio over the conventional linear filter.
Optimal nonlinear filtering using the finite-volume method
NASA Astrophysics Data System (ADS)
Fox, Colin; Morrison, Malcolm E. K.; Norton, Richard A.; Molteno, Timothy C. A.
2018-01-01
Optimal sequential inference, or filtering, for the state of a deterministic dynamical system requires simulation of the Frobenius-Perron operator, that can be formulated as the solution of a continuity equation. For low-dimensional, smooth systems, the finite-volume numerical method provides a solution that conserves probability and gives estimates that converge to the optimal continuous-time values, while a Courant-Friedrichs-Lewy-type condition assures that intermediate discretized solutions remain positive density functions. This method is demonstrated in an example of nonlinear filtering for the state of a simple pendulum, with comparison to results using the unscented Kalman filter, and for a case where rank-deficient observations lead to multimodal probability distributions.
Analytically solvable chaotic oscillator based on a first-order filter.
Corron, Ned J; Cooper, Roy M; Blakely, Jonathan N
2016-02-01
A chaotic hybrid dynamical system is introduced and its analytic solution is derived. The system is described as an unstable first order filter subject to occasional switching of a set point according to a feedback rule. The system qualitatively differs from other recently studied solvable chaotic hybrid systems in that the timing of the switching is regulated by an external clock. The chaotic analytic solution is an optimal waveform for communications in noise when a resistor-capacitor-integrate-and-dump filter is used as a receiver. As such, these results provide evidence in support of a recent conjecture that the optimal communication waveform for any stable infinite-impulse response filter is chaotic.
Analytically solvable chaotic oscillator based on a first-order filter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corron, Ned J.; Cooper, Roy M.; Blakely, Jonathan N.
2016-02-15
A chaotic hybrid dynamical system is introduced and its analytic solution is derived. The system is described as an unstable first order filter subject to occasional switching of a set point according to a feedback rule. The system qualitatively differs from other recently studied solvable chaotic hybrid systems in that the timing of the switching is regulated by an external clock. The chaotic analytic solution is an optimal waveform for communications in noise when a resistor-capacitor-integrate-and-dump filter is used as a receiver. As such, these results provide evidence in support of a recent conjecture that the optimal communication waveform formore » any stable infinite-impulse response filter is chaotic.« less
An ultra-low-power filtering technique for biomedical applications.
Zhang, Tan-Tan; Mak, Pui-In; Vai, Mang-I; Mak, Peng-Un; Wan, Feng; Martins, R P
2011-01-01
This paper describes an ultra-low-power filtering technique for biomedical applications designated as T-wave sensing in heart-activities detection systems. The topology is based on a source-follower-based Biquad operating in the sub-threshold region. With the intrinsic advantages of simplicity and high linearity of the source-follower, ultra-low-cutoff filtering can be achieved, simultaneously with ultra low power and good linearity. An 8(th)-order 2.4-Hz lowpass filter design example optimized in a 0.35-μm CMOS process was designed achieving over 85-dB dynamic range, 74-dB stopband attenuation and consuming only 0.36 nW at a 3-V supply.
MacNeilage, Paul R.; Ganesan, Narayan; Angelaki, Dora E.
2008-01-01
Spatial orientation is the sense of body orientation and self-motion relative to the stationary environment, fundamental to normal waking behavior and control of everyday motor actions including eye movements, postural control, and locomotion. The brain achieves spatial orientation by integrating visual, vestibular, and somatosensory signals. Over the past years, considerable progress has been made toward understanding how these signals are processed by the brain using multiple computational approaches that include frequency domain analysis, the concept of internal models, observer theory, Bayesian theory, and Kalman filtering. Here we put these approaches in context by examining the specific questions that can be addressed by each technique and some of the scientific insights that have resulted. We conclude with a recent application of particle filtering, a probabilistic simulation technique that aims to generate the most likely state estimates by incorporating internal models of sensor dynamics and physical laws and noise associated with sensory processing as well as prior knowledge or experience. In this framework, priors for low angular velocity and linear acceleration can explain the phenomena of velocity storage and frequency segregation, both of which have been modeled previously using arbitrary low-pass filtering. How Kalman and particle filters may be implemented by the brain is an emerging field. Unlike past neurophysiological research that has aimed to characterize mean responses of single neurons, investigations of dynamic Bayesian inference should attempt to characterize population activities that constitute probabilistic representations of sensory and prior information. PMID:18842952
Direct characterization of quantum dynamics with noisy ancilla
Dumitrescu, Eugene F.; Humble, Travis S.
2015-11-23
We present methods for the direct characterization of quantum dynamics (DCQD) in which both the principal and ancilla systems undergo noisy processes. Using a concatenated error detection code, we discriminate between located and unlocated errors on the principal system in what amounts to filtering of ancilla noise. The example of composite noise involving amplitude damping and depolarizing channels is used to demonstrate the method, while we find the rate of noise filtering is more generally dependent on code distance. Furthermore our results indicate the accuracy of quantum process characterization can be greatly improved while remaining within reach of current experimentalmore » capabilities.« less
NASA Astrophysics Data System (ADS)
Rachmawati, Vimala; Khusnul Arif, Didik; Adzkiya, Dieky
2018-03-01
The systems contained in the universe often have a large order. Thus, the mathematical model has many state variables that affect the computation time. In addition, generally not all variables are known, so estimations are needed to measure the magnitude of the system that cannot be measured directly. In this paper, we discuss the model reduction and estimation of state variables in the river system to measure the water level. The model reduction of a system is an approximation method of a system with a lower order without significant errors but has a dynamic behaviour that is similar to the original system. The Singular Perturbation Approximation method is one of the model reduction methods where all state variables of the equilibrium system are partitioned into fast and slow modes. Then, The Kalman filter algorithm is used to estimate state variables of stochastic dynamic systems where estimations are computed by predicting state variables based on system dynamics and measurement data. Kalman filters are used to estimate state variables in the original system and reduced system. Then, we compare the estimation results of the state and computational time between the original and reduced system.
LQG control of a deformable mirror adaptive optics system with time-delayed measurements
NASA Astrophysics Data System (ADS)
Anderson, David J.
1991-12-01
This thesis proposes a linear quadratic Gaussian (LQG) control law for a ground-based deformable mirror adaptive optics system. The incoming image wavefront is distorted, primarily in phase, due to the turbulent effects of the earth's atmosphere. The adaptive optics system attempts to compensate for the distortion with a deformable mirror. A Hartman wavefront sensor measures the degree of distortion in the image wavefront. The measurements are input to a Kalman filter which estimates the system states. The state estimates are processed by a linear quadratic regulator which generates the appropriate control voltages to apply to the deformable mirror actuators. The dynamics model for the atmospheric phase distortion consists of 14 Zernike coefficient states; each modeled as a first-order linear time-invariant shaping filter driven by zero-mean white Gaussian noise. The dynamics of the deformable mirror are also model as 14 Zernike coefficients with first-order deterministic dynamics. A significant reduction in total wavefront phase distortion is achieved in the presence of time-delayed measurements. Wavefront sensor sampling rate is the major factor limiting system performance. The Multimode Simulation for Optimal Filter Evaluation (MSOFE) software is the performance evaluation tool of choice for this research.
NASA Astrophysics Data System (ADS)
Abhinav, S.; Manohar, C. S.
2018-03-01
The problem of combined state and parameter estimation in nonlinear state space models, based on Bayesian filtering methods, is considered. A novel approach, which combines Rao-Blackwellized particle filters for state estimation with Markov chain Monte Carlo (MCMC) simulations for parameter identification, is proposed. In order to ensure successful performance of the MCMC samplers, in situations involving large amount of dynamic measurement data and (or) low measurement noise, the study employs a modified measurement model combined with an importance sampling based correction. The parameters of the process noise covariance matrix are also included as quantities to be identified. The study employs the Rao-Blackwellization step at two stages: one, associated with the state estimation problem in the particle filtering step, and, secondly, in the evaluation of the ratio of likelihoods in the MCMC run. The satisfactory performance of the proposed method is illustrated on three dynamical systems: (a) a computational model of a nonlinear beam-moving oscillator system, (b) a laboratory scale beam traversed by a loaded trolley, and (c) an earthquake shake table study on a bending-torsion coupled nonlinear frame subjected to uniaxial support motion.
Comparison of Virtual Oscillator and Droop Control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Brian B; Rodriguez, Miguel; Sinha, Mohit
Virtual oscillator control (VOC) and droop control are distinct methods to ensure synchronization and power sharing of parallel inverters in islanded systems. VOC is a control strategy where the dynamics of a nonlinear oscillator are used to derive control states to modulate the switch terminals of an inverter. Since VOC is a time-domain controller that reacts to instantaneous measurements with no additional filters or computations, it provides a rapid response during transients and stabilizes volatile dynamics. In contrast, droop control regulates the inverter voltage in response to the measured average real and reactive power output. Given that real and reactivemore » power are phasor quantities that are not well-defined in real time, droop controllers typically use multiplicative operations in conjunction with low-pass filters on the current and voltage measurements to calculate such quantities. Since these filters must suppress low frequency ac harmonics, they typically have low cutoff frequencies that ultimately impede droop controller bandwidth. Although VOC and droop control can be engineered to produce similar steady-state characteristics, their dynamic performance can differ markedly. This paper presents an analytical framework to characterize and compare the dynamic response of VOC and droop control. The analysis is experimentally validated with three 120 V inverters rated at 1kW, demonstrating that for the same design specifications VOC is roughly 8 times faster and presents almost no overshoot after a transient.« less
Dynamic CT perfusion imaging of the myocardium: a technical note on improvement of image quality.
Muenzel, Daniela; Kabus, Sven; Gramer, Bettina; Leber, Vivian; Vembar, Mani; Schmitt, Holger; Wildgruber, Moritz; Fingerle, Alexander A; Rummeny, Ernst J; Huber, Armin; Noël, Peter B
2013-01-01
To improve image and diagnostic quality in dynamic CT myocardial perfusion imaging (MPI) by using motion compensation and a spatio-temporal filter. Dynamic CT MPI was performed using a 256-slice multidetector computed tomography scanner (MDCT). Data from two different patients-with and without myocardial perfusion defects-were evaluated to illustrate potential improvements for MPI (institutional review board approved). Three datasets for each patient were generated: (i) original data (ii) motion compensated data and (iii) motion compensated data with spatio-temporal filtering performed. In addition to the visual assessment of the tomographic slices, noise and contrast-to-noise-ratio (CNR) were measured for all data. Perfusion analysis was performed using time-density curves with regions-of-interest (ROI) placed in normal and hypoperfused myocardium. Precision in definition of normal and hypoperfused areas was determined in corresponding coloured perfusion maps. The use of motion compensation followed by spatio-temporal filtering resulted in better alignment of the cardiac volumes over time leading to a more consistent perfusion quantification and improved detection of the extend of perfusion defects. Additionally image noise was reduced by 78.5%, with CNR improvements by a factor of 4.7. The average effective radiation dose estimate was 7.1±1.1 mSv. The use of motion compensation and spatio-temporal smoothing will result in improved quantification of dynamic CT MPI using a latest generation CT scanner.
Evolution of the cerebellum as a neuronal machine for Bayesian state estimation
NASA Astrophysics Data System (ADS)
Paulin, M. G.
2005-09-01
The cerebellum evolved in association with the electric sense and vestibular sense of the earliest vertebrates. Accurate information provided by these sensory systems would have been essential for precise control of orienting behavior in predation. A simple model shows that individual spikes in electrosensory primary afferent neurons can be interpreted as measurements of prey location. Using this result, I construct a computational neural model in which the spatial distribution of spikes in a secondary electrosensory map forms a Monte Carlo approximation to the Bayesian posterior distribution of prey locations given the sense data. The neural circuit that emerges naturally to perform this task resembles the cerebellar-like hindbrain electrosensory filtering circuitry of sharks and other electrosensory vertebrates. The optimal filtering mechanism can be extended to handle dynamical targets observed from a dynamical platform; that is, to construct an optimal dynamical state estimator using spiking neurons. This may provide a generic model of cerebellar computation. Vertebrate motion-sensing neurons have specific fractional-order dynamical characteristics that allow Bayesian state estimators to be implemented elegantly and efficiently, using simple operations with asynchronous pulses, i.e. spikes. The computational neural models described in this paper represent a novel kind of particle filter, using spikes as particles. The models are specific and make testable predictions about computational mechanisms in cerebellar circuitry, while providing a plausible explanation of cerebellar contributions to aspects of motor control, perception and cognition.
Qian, Fuping; Wang, Haigang
2010-04-15
The gas-solid two-phase flows in the plain wave fabric filter were simulated by computational fluid dynamics (CFD) technology, and the warps and wefts of the fabric filter were made of filaments with different dimensions. The numerical solutions were carried out using commercial computational fluid dynamics (CFD) code Fluent 6.1. The filtration performances of the plain wave fabric filter with different geometry parameters and operating condition, including the horizontal distance, the vertical distance and the face velocity were calculated. The effects of geometry parameters and operating condition on filtration efficiency and pressure drop were studied using response surface methodology (RSM) by means of the statistical software (Minitab V14), and two second-order polynomial models were obtained with regard to the effect of the three factors as stated above. Moreover, the models were modified by dismissing the insignificant terms. The results show that the horizontal distance, vertical distance and the face velocity all play an important role in influencing the filtration efficiency and pressure drop of the plane wave fabric filters. The horizontal distance of 3.8 times the fiber diameter, the vertical distance of 4.0 times the fiber diameter and Reynolds number of 0.98 are found to be the optimal conditions to achieve the highest filtration efficiency at the same face velocity, while maintaining an acceptable pressure drop. 2009 Elsevier B.V. All rights reserved.
Raymond L. Czaplewski
2015-01-01
Wall-to-wall remotely sensed data are increasingly available to monitor landscape dynamics over large geographic areas. However, statistical monitoring programs that use post-stratification cannot fully utilize those sensor data. The Kalman filter (KF) is an alternative statistical estimator. I develop a new KF algorithm that is numerically robust with large numbers of...
Recursive inverse kinematics for robot arms via Kalman filtering and Bryson-Frazier smoothing
NASA Technical Reports Server (NTRS)
Rodriguez, G.; Scheid, R. E., Jr.
1987-01-01
This paper applies linear filtering and smoothing theory to solve recursively the inverse kinematics problem for serial multilink manipulators. This problem is to find a set of joint angles that achieve a prescribed tip position and/or orientation. A widely applicable numerical search solution is presented. The approach finds the minimum of a generalized distance between the desired and the actual manipulator tip position and/or orientation. Both a first-order steepest-descent gradient search and a second-order Newton-Raphson search are developed. The optimal relaxation factor required for the steepest descent method is computed recursively using an outward/inward procedure similar to those used typically for recursive inverse dynamics calculations. The second-order search requires evaluation of a gradient and an approximate Hessian. A Gauss-Markov approach is used to approximate the Hessian matrix in terms of products of first-order derivatives. This matrix is inverted recursively using a two-stage process of inward Kalman filtering followed by outward smoothing. This two-stage process is analogous to that recently developed by the author to solve by means of spatial filtering and smoothing the forward dynamics problem for serial manipulators.
Collaborative Filtering Recommendation on Users' Interest Sequences.
Cheng, Weijie; Yin, Guisheng; Dong, Yuxin; Dong, Hongbin; Zhang, Wansong
2016-01-01
As an important factor for improving recommendations, time information has been introduced to model users' dynamic preferences in many papers. However, the sequence of users' behaviour is rarely studied in recommender systems. Due to the users' unique behavior evolution patterns and personalized interest transitions among items, users' similarity in sequential dimension should be introduced to further distinguish users' preferences and interests. In this paper, we propose a new collaborative filtering recommendation method based on users' interest sequences (IS) that rank users' ratings or other online behaviors according to the timestamps when they occurred. This method extracts the semantics hidden in the interest sequences by the length of users' longest common sub-IS (LCSIS) and the count of users' total common sub-IS (ACSIS). Then, these semantics are utilized to obtain users' IS-based similarities and, further, to refine the similarities acquired from traditional collaborative filtering approaches. With these updated similarities, transition characteristics and dynamic evolution patterns of users' preferences are considered. Our new proposed method was compared with state-of-the-art time-aware collaborative filtering algorithms on datasets MovieLens, Flixster and Ciao. The experimental results validate that the proposed recommendation method is effective and outperforms several existing algorithms in the accuracy of rating prediction.
Collaborative Filtering Recommendation on Users’ Interest Sequences
Cheng, Weijie; Yin, Guisheng; Dong, Yuxin; Dong, Hongbin; Zhang, Wansong
2016-01-01
As an important factor for improving recommendations, time information has been introduced to model users’ dynamic preferences in many papers. However, the sequence of users’ behaviour is rarely studied in recommender systems. Due to the users’ unique behavior evolution patterns and personalized interest transitions among items, users’ similarity in sequential dimension should be introduced to further distinguish users’ preferences and interests. In this paper, we propose a new collaborative filtering recommendation method based on users’ interest sequences (IS) that rank users’ ratings or other online behaviors according to the timestamps when they occurred. This method extracts the semantics hidden in the interest sequences by the length of users’ longest common sub-IS (LCSIS) and the count of users’ total common sub-IS (ACSIS). Then, these semantics are utilized to obtain users’ IS-based similarities and, further, to refine the similarities acquired from traditional collaborative filtering approaches. With these updated similarities, transition characteristics and dynamic evolution patterns of users’ preferences are considered. Our new proposed method was compared with state-of-the-art time-aware collaborative filtering algorithms on datasets MovieLens, Flixster and Ciao. The experimental results validate that the proposed recommendation method is effective and outperforms several existing algorithms in the accuracy of rating prediction. PMID:27195787
Optimal causal inference: estimating stored information and approximating causal architecture.
Still, Susanne; Crutchfield, James P; Ellison, Christopher J
2010-09-01
We introduce an approach to inferring the causal architecture of stochastic dynamical systems that extends rate-distortion theory to use causal shielding--a natural principle of learning. We study two distinct cases of causal inference: optimal causal filtering and optimal causal estimation. Filtering corresponds to the ideal case in which the probability distribution of measurement sequences is known, giving a principled method to approximate a system's causal structure at a desired level of representation. We show that in the limit in which a model-complexity constraint is relaxed, filtering finds the exact causal architecture of a stochastic dynamical system, known as the causal-state partition. From this, one can estimate the amount of historical information the process stores. More generally, causal filtering finds a graded model-complexity hierarchy of approximations to the causal architecture. Abrupt changes in the hierarchy, as a function of approximation, capture distinct scales of structural organization. For nonideal cases with finite data, we show how the correct number of the underlying causal states can be found by optimal causal estimation. A previously derived model-complexity control term allows us to correct for the effect of statistical fluctuations in probability estimates and thereby avoid overfitting.
On sequential data assimilation for scalar macroscopic traffic flow models
NASA Astrophysics Data System (ADS)
Blandin, Sébastien; Couque, Adrien; Bayen, Alexandre; Work, Daniel
2012-09-01
We consider the problem of sequential data assimilation for transportation networks using optimal filtering with a scalar macroscopic traffic flow model. Properties of the distribution of the uncertainty on the true state related to the specific nonlinearity and non-differentiability inherent to macroscopic traffic flow models are investigated, derived analytically and analyzed. We show that nonlinear dynamics, by creating discontinuities in the traffic state, affect the performances of classical filters and in particular that the distribution of the uncertainty on the traffic state at shock waves is a mixture distribution. The non-differentiability of traffic dynamics around stationary shock waves is also proved and the resulting optimality loss of the estimates is quantified numerically. The properties of the estimates are explicitly studied for the Godunov scheme (and thus the Cell-Transmission Model), leading to specific conclusions about their use in the context of filtering, which is a significant contribution of this article. Analytical proofs and numerical tests are introduced to support the results presented. A Java implementation of the classical filters used in this work is available on-line at http://traffic.berkeley.edu for facilitating further efforts on this topic and fostering reproducible research.
A micromechanical analogue mixer with dynamic displacement amplification
NASA Astrophysics Data System (ADS)
Erismis, M. A.
2018-06-01
A new micromechanical device is proposed which is capable of modulation, demodulation and filtering operations. The device uses a patented 3-mass coupled micromechanical resonator which dynamically amplifies the displacement within a frequency range of interest. Modulation can be obtained by exciting different masses of the resonator with the data and the carrier signals. Demodulation can be obtained similarly by exciting the actuator with the input and carrier signals at the same time. With the help of dynamic motion amplification, filtering and signal amplification can be achieved simultaneously. A generic design approach is introduced which can be applied from kHz to MHz regime frequencies of interest. A sample mixer design for an silicon on insulator-based process is provided. A SPICE (Simulation Program with Integrated Circuit Emphasis)-based electro-mechanical co-simulation platform is also developed and the proposed mixer is simulated.
NASA Technical Reports Server (NTRS)
Whitmore, S. A.
1985-01-01
The dynamics model and data sources used to perform air-data reconstruction are discussed, as well as the Kalman filter. The need for adaptive determination of the noise statistics of the process is indicated. The filter innovations are presented as a means of developing the adaptive criterion, which is based on the true mean and covariance of the filter innovations. A method for the numerical approximation of the mean and covariance of the filter innovations is presented. The algorithm as developed is applied to air-data reconstruction for the space shuttle, and data obtained from the third landing are presented. To verify the performance of the adaptive algorithm, the reconstruction is also performed using a constant covariance Kalman filter. The results of the reconstructions are compared, and the adaptive algorithm exhibits better performance.
Functional Near Infrared Spectroscopy: Watching the Brain in Flight
NASA Technical Reports Server (NTRS)
Harrivel, Angela; Hearn, Tristan
2012-01-01
Functional Near Infrared Spectroscopy (fNIRS) is an emerging neurological sensing technique applicable to optimizing human performance in transportation operations, such as commercial aviation. Cognitive state can be determined via pattern classification of functional activations measured with fNIRS. Operational application calls for further development of algorithms and filters for dynamic artifact removal. The concept of using the frequency domain phase shift signal to tune a Kalman filter is introduced to improve the quality of fNIRS signals in realtime. Hemoglobin concentration and phase shift traces were simulated for four different types of motion artifact to demonstrate the filter. Unwanted signal was reduced by at least 43%, and the contrast of the filtered oxygenated hemoglobin signal was increased by more than 100% overall. This filtering method is a good candidate for qualifying fNIRS signals in real time without auxiliary sensors
Geometrically tunable Fabry-Perot filters based on reflection phase shift of high contrast gratings
NASA Astrophysics Data System (ADS)
Fang, Liang; Shi, Zhendong; Cheng, Xin; Peng, Xiang; Zhang, Hui
2016-03-01
We propose tunable Fabry-Perot filters constituted by double high contrast gratings (HCGs) arrays with different periods acting as reflectors separated by a fixed short cavity, based on high reflectivity and the variety reflection phase shift of HCG array which realize dynamic regulation of the filtering condition. Single optimized HCG obtains the reflectivity of higher than 99% in a grating period ranging from 0.68μm to 0.8μm across a bandwidth of 30nm near the 1.55μm wavelength. The filters can achieve the full width at half maximum (FWHM) of spectral line of less than 0.15nm, and the linear relationship of peak wavelengths and grating periods is established. The simulation results indicate a potential new approach to design a tunable narrowband transmission filter.
NASA Astrophysics Data System (ADS)
Bu, Xianye; Dong, Hongli; Han, Fei; Li, Gongfa
2018-07-01
This paper is concerned with the distributed filtering problem for a class of time-varying systems subject to deception attacks and event-triggering protocols. Due to the bandwidth limitation, an event-triggered communication strategy is adopted to alleviate the data transmission pressure in the algorithm implementation process. The partial nodes-based filtering problem is considered, where only a partial of nodes can measure the information of the plant. Meanwhile, the measurement information possibly suffers the deception attacks in the transmission process. Sufficient conditions can be established such that the error dynamics satisfies the prescribed average ? performance constraints. The parameters of designed filters can be calculated by solving a series of recursive linear matrix inequalities. A simulation example is presented to demonstrate the effectiveness of the proposed filtering method in this paper.
Functional Near Infrared Spectroscopy: Watching the Brain in Flight
NASA Technical Reports Server (NTRS)
Harrivel, Angela; Hearn, Tristan A.
2012-01-01
Functional Near Infrared Spectroscopy (fNIRS) is an emerging neurological sensing technique applicable to optimizing human performance in transportation operations, such as commercial aviation. Cognitive state can be determined via pattern classification of functional activations measured with fNIRS. Operational application calls for further development of algorithms and filters for dynamic artifact removal. The concept of using the frequency domain phase shift signal to tune a Kalman filter is introduced to improve the quality of fNIRS signals in real-time. Hemoglobin concentration and phase shift traces were simulated for four different types of motion artifact to demonstrate the filter. Unwanted signal was reduced by at least 43%, and the contrast of the filtered oxygenated hemoglobin signal was increased by more than 100% overall. This filtering method is a good candidate for qualifying fNIRS signals in real time without auxiliary sensors.
NASA Technical Reports Server (NTRS)
Harman, Richard R.
2006-01-01
The advantages of inducing a constant spin rate on a spacecraft are well known. A variety of science missions have used this technique as a relatively low cost method for conducting science. Starting in the late 1970s, NASA focused on building spacecraft using 3-axis control as opposed to the single-axis control mentioned above. Considerable effort was expended toward sensor and control system development, as well as the development of ground systems to independently process the data. As a result, spinning spacecraft development and their resulting ground system development stagnated. In the 1990s, shrinking budgets made spinning spacecraft an attractive option for science. The attitude requirements for recent spinning spacecraft are more stringent and the ground systems must be enhanced in order to provide the necessary attitude estimation accuracy. Since spinning spacecraft (SC) typically have no gyroscopes for measuring attitude rate, any new estimator would need to rely on the spacecraft dynamics equations. One estimation technique that utilized the SC dynamics and has been used successfully in 3-axis gyro-less spacecraft ground systems is the pseudo-linear Kalman filter algorithm. Consequently, a pseudo-linear Kalman filter has been developed which directly estimates the spacecraft attitude quaternion and rate for a spinning SC. Recently, a filter using Markley variables was developed specifically for spinning spacecraft. The pseudo-linear Kalman filter has the advantage of being easier to implement but estimates the quaternion which, due to the relatively high spinning rate, changes rapidly for a spinning spacecraft. The Markley variable filter is more complicated to implement but, being based on the SC angular momentum, estimates parameters which vary slowly. This paper presents a comparison of the performance of these two filters. Monte-Carlo simulation runs will be presented which demonstrate the advantages and disadvantages of both filters.
Some Better Practices for Measuring Racial and Ethnic Identity Constructs
ERIC Educational Resources Information Center
Helms, Janet E.
2007-01-01
Racial and ethnic identity (REI) measures are in danger of becoming conceptually meaningless because of evaluators' insistence that they conform to measurement models intended to assess unidimensional constructs, rather than the multidimensional constructs necessary to capture the complexity of internalized racial or cultural socialization. Some…
Implications of Contemporary Intelligence Theories to Marketing Education
ERIC Educational Resources Information Center
Muncy, James A.
2006-01-01
In recent years, prominent psychologists have redefined intelligence to refer to one's ability to successfully perform within a sociocultural context. They have also questioned the historical unidimensional conceptualization of intelligence. In this article, the author briefly reviews the history of intelligence research to this point then…
The Multivariate Nature of Professional Job Satisfaction.
ERIC Educational Resources Information Center
Wood, Donald A.; LeBold, William K.
Discussed are two theories of professional job satisfaction--(1) unidimensional and (2) multidimensional with special reference to Herzberg's two factor theory. A national sample of over 3,000 engineering graduates responded to a questionnaire and satisfaction index. Analysis of results revealed that job satisfaction is multidimensional. Job…
A Test of the Dimensionality Assumptions of Rotter's Internal-External Scale
ERIC Educational Resources Information Center
Klockars, Alan J.; Varnum, Susan W.
1975-01-01
Examined two assumptions about the dimensionality of Rotters' Internal-External (I-E) scale: First, the bipolarity of the two statements within each item pair; second, the unidimensionality of the overall construct. Both assumptions regarding Rotters' I-E Scale were found untenable. (Author/BJG)
Comparing Three Estimation Methods for the Three-Parameter Logistic IRT Model
ERIC Educational Resources Information Center
Lamsal, Sunil
2015-01-01
Different estimation procedures have been developed for the unidimensional three-parameter item response theory (IRT) model. These techniques include the marginal maximum likelihood estimation, the fully Bayesian estimation using Markov chain Monte Carlo simulation techniques, and the Metropolis-Hastings Robbin-Monro estimation. With each…
Numerical study of canister filters with alternatives filter cap configurations
NASA Astrophysics Data System (ADS)
Mohammed, A. N.; Daud, A. R.; Abdullah, K.; Seri, S. M.; Razali, M. A.; Hushim, M. F.; Khalid, A.
2017-09-01
Air filtration system and filter play an important role in getting a good quality air into turbo machinery such as gas turbine. The filtration system and filter has improved the quality of air and protect the gas turbine part from contaminants which could bring damage. During separation of contaminants from the air, pressure drop cannot be avoided but it can be minimized thus helps to reduce the intake losses of the engine [1]. This study is focused on the configuration of the filter in order to obtain the minimal pressure drop along the filter. The configuration used is the basic filter geometry provided by Salutary Avenue Manufacturing Sdn Bhd. and two modified canister filter cap which is designed based on the basic filter model. The geometries of the filter are generated by using SOLIDWORKS software and Computational Fluid Dynamics (CFD) software is used to analyse and simulates the flow through the filter. In this study, the parameters of the inlet velocity are 0.032 m/s, 0.063 m/s, 0.094 m/s and 0.126 m/s. The total pressure drop produce by basic, modified filter 1 and 2 is 292.3 Pa, 251.11 Pa and 274.7 Pa. The pressure drop reduction for the modified filter 1 is 41.19 Pa and 14.1% lower compared to basic filter and the pressure drop reduction for modified filter 2 is 17.6 Pa and 6.02% lower compared to the basic filter. The pressure drops for the basic filter are slightly different with the Salutary Avenue filter due to limited data and experiment details. CFD software are very reliable in running a simulation rather than produces the prototypes and conduct the experiment thus reducing overall time and cost in this study.
Zhang, Shengzhi; Yu, Shuai; Liu, Chaojun; Yuan, Xuebing; Liu, Sheng
2016-02-20
To provide a long-time reliable orientation, sensor fusion technologies are widely used to integrate available inertial sensors for the low-cost orientation estimation. In this paper, a novel dual-linear Kalman filter was designed for a multi-sensor system integrating MEMS gyros, an accelerometer, and a magnetometer. The proposed filter precludes the impacts of magnetic disturbances on the pitch and roll which the heading is subjected to. The filter can achieve robust orientation estimation for different statistical models of the sensors. The root mean square errors (RMSE) of the estimated attitude angles are reduced by 30.6% under magnetic disturbances. Owing to the reduction of system complexity achieved by smaller matrix operations, the mean total time consumption is reduced by 23.8%. Meanwhile, the separated filter offers greater flexibility for the system configuration, as it is possible to switch on or off the second stage filter to include or exclude the magnetometer compensation for the heading. Online experiments were performed on the homemade miniature orientation determination system (MODS) with the turntable. The average RMSE of estimated orientation are less than 0.4° and 1° during the static and low-dynamic tests, respectively. More realistic tests on two-wheel self-balancing vehicle driving and indoor pedestrian walking were carried out to evaluate the performance of the designed MODS when high accelerations and angular rates were introduced. Test results demonstrate that the MODS is applicable for the orientation estimation under various dynamic conditions. This paper provides a feasible alternative for low-cost orientation determination.
Zhang, Shengzhi; Yu, Shuai; Liu, Chaojun; Yuan, Xuebing; Liu, Sheng
2016-01-01
To provide a long-time reliable orientation, sensor fusion technologies are widely used to integrate available inertial sensors for the low-cost orientation estimation. In this paper, a novel dual-linear Kalman filter was designed for a multi-sensor system integrating MEMS gyros, an accelerometer, and a magnetometer. The proposed filter precludes the impacts of magnetic disturbances on the pitch and roll which the heading is subjected to. The filter can achieve robust orientation estimation for different statistical models of the sensors. The root mean square errors (RMSE) of the estimated attitude angles are reduced by 30.6% under magnetic disturbances. Owing to the reduction of system complexity achieved by smaller matrix operations, the mean total time consumption is reduced by 23.8%. Meanwhile, the separated filter offers greater flexibility for the system configuration, as it is possible to switch on or off the second stage filter to include or exclude the magnetometer compensation for the heading. Online experiments were performed on the homemade miniature orientation determination system (MODS) with the turntable. The average RMSE of estimated orientation are less than 0.4° and 1° during the static and low-dynamic tests, respectively. More realistic tests on two-wheel self-balancing vehicle driving and indoor pedestrian walking were carried out to evaluate the performance of the designed MODS when high accelerations and angular rates were introduced. Test results demonstrate that the MODS is applicable for the orientation estimation under various dynamic conditions. This paper provides a feasible alternative for low-cost orientation determination. PMID:26907294
Liu, Zhiyuan; Yu, Shuili; Park, Heedeung; Liu, Guicai; Yuan, Qingbin
2016-06-01
Given the increasing discoveries related to the eco-toxicity of titanium dioxide (TiO2) nanoparticles (NPs) in different ecosystems and with respect to public health, it is important to understand their potential effects in drinking water treatment (DWT). The effects of TiO2 NPs on ammonia reduction, ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in biological activated carbon (BAC) filters for drinking water were investigated in static and dynamic states. In the static state, both the nitrification potential and AOB were significantly inhibited by 100 μg L(-1) TiO2 NPs after 12 h (p < 0.05), and the threshold decreased to 10 μg L(-1) with prolonged exposure (36 h, p < 0.05). However, AOA were not considerably affected in any of the tested conditions (p > 0.05). In the dynamic state, different amounts of TiO2 NP pulses were injected into three pilot-scale BAC filters. The decay of TiO2 NPs in the BAC filters was very slow. Both titanium quantification and scanning electron microscope analysis confirmed the retention of TiO2 NPs in the BAC filters after 134 days of operation. Furthermore, the TiO2 NP pulses considerably reduced the performance of ammonia reduction. This study identified the retention of TiO2 NPs in BAC filters and the negative effect on the ammonia reduction, suggesting a potential threat to DWT by TiO2 NPs.
Evolutionary Dynamic Multiobjective Optimization Via Kalman Filter Prediction.
Muruganantham, Arrchana; Tan, Kay Chen; Vadakkepat, Prahlad
2016-12-01
Evolutionary algorithms are effective in solving static multiobjective optimization problems resulting in the emergence of a number of state-of-the-art multiobjective evolutionary algorithms (MOEAs). Nevertheless, the interest in applying them to solve dynamic multiobjective optimization problems has only been tepid. Benchmark problems, appropriate performance metrics, as well as efficient algorithms are required to further the research in this field. One or more objectives may change with time in dynamic optimization problems. The optimization algorithm must be able to track the moving optima efficiently. A prediction model can learn the patterns from past experience and predict future changes. In this paper, a new dynamic MOEA using Kalman filter (KF) predictions in decision space is proposed to solve the aforementioned problems. The predictions help to guide the search toward the changed optima, thereby accelerating convergence. A scoring scheme is devised to hybridize the KF prediction with a random reinitialization method. Experimental results and performance comparisons with other state-of-the-art algorithms demonstrate that the proposed algorithm is capable of significantly improving the dynamic optimization performance.
NASA Astrophysics Data System (ADS)
Vora, A. P.; Rami, J. B.; Hait, A. K.; Dewan, C. P.; Subrahmanyam, D.; Kirankumar, A. S.
2017-11-01
Next generation Indian Meteorological Satellite will carry Sounder instrument having subsystem of filter wheel measuring Ø260mm and carrying 18 filters arranged in three concentric rings. These filters made from Germanium, are used to separate spectral channels in IR band. Filter wheel is required to be cooled to 214K and rotated at 600 rpm. This Paper discusses the challenges faced in mechanical design of the filter wheel, mainly filter mount design to protect brittle germanium filters from failure under stresses due to very low temperature, compactness of the wheel and casings for improved thermal efficiency, survival under vibration loads and material selection to keep it lighter in weight. Properties of Titanium, Kovar, Invar and Aluminium materials are considered for design. The mount has been designed to accommodate both thermal and dynamic loadings without introducing significant aberrations into the optics or incurring permanent alignment shifts. Detailed finite element analysis of mounts was carried out for stress verification. Results of the qualification tests are discussed for given temperature range of 100K and vibration loads of 12g in Sine and 11.8grms in Random at mount level. Results of the filter wheel qualification as mounted in Electro Optics Module (EOM) are also presented.
Effective Filtering of Query Results on Updated User Behavioral Profiles in Web Mining
Sadesh, S.; Suganthe, R. C.
2015-01-01
Web with tremendous volume of information retrieves result for user related queries. With the rapid growth of web page recommendation, results retrieved based on data mining techniques did not offer higher performance filtering rate because relationships between user profile and queries were not analyzed in an extensive manner. At the same time, existing user profile based prediction in web data mining is not exhaustive in producing personalized result rate. To improve the query result rate on dynamics of user behavior over time, Hamilton Filtered Regime Switching User Query Probability (HFRS-UQP) framework is proposed. HFRS-UQP framework is split into two processes, where filtering and switching are carried out. The data mining based filtering in our research work uses the Hamilton Filtering framework to filter user result based on personalized information on automatic updated profiles through search engine. Maximized result is fetched, that is, filtered out with respect to user behavior profiles. The switching performs accurate filtering updated profiles using regime switching. The updating in profile change (i.e., switches) regime in HFRS-UQP framework identifies the second- and higher-order association of query result on the updated profiles. Experiment is conducted on factors such as personalized information search retrieval rate, filtering efficiency, and precision ratio. PMID:26221626
AMA- and RWE- Based Adaptive Kalman Filter for Denoising Fiber Optic Gyroscope Drift Signal
Yang, Gongliu; Liu, Yuanyuan; Li, Ming; Song, Shunguang
2015-01-01
An improved double-factor adaptive Kalman filter called AMA-RWE-DFAKF is proposed to denoise fiber optic gyroscope (FOG) drift signal in both static and dynamic conditions. The first factor is Kalman gain updated by random weighting estimation (RWE) of the covariance matrix of innovation sequence at any time to ensure the lowest noise level of output, but the inertia of KF response increases in dynamic condition. To decrease the inertia, the second factor is the covariance matrix of predicted state vector adjusted by RWE only when discontinuities are detected by adaptive moving average (AMA).The AMA-RWE-DFAKF is applied for denoising FOG static and dynamic signals, its performance is compared with conventional KF (CKF), RWE-based adaptive KF with gain correction (RWE-AKFG), AMA- and RWE- based dual mode adaptive KF (AMA-RWE-DMAKF). Results of Allan variance on static signal and root mean square error (RMSE) on dynamic signal show that this proposed algorithm outperforms all the considered methods in denoising FOG signal. PMID:26512665
AMA- and RWE- Based Adaptive Kalman Filter for Denoising Fiber Optic Gyroscope Drift Signal.
Yang, Gongliu; Liu, Yuanyuan; Li, Ming; Song, Shunguang
2015-10-23
An improved double-factor adaptive Kalman filter called AMA-RWE-DFAKF is proposed to denoise fiber optic gyroscope (FOG) drift signal in both static and dynamic conditions. The first factor is Kalman gain updated by random weighting estimation (RWE) of the covariance matrix of innovation sequence at any time to ensure the lowest noise level of output, but the inertia of KF response increases in dynamic condition. To decrease the inertia, the second factor is the covariance matrix of predicted state vector adjusted by RWE only when discontinuities are detected by adaptive moving average (AMA).The AMA-RWE-DFAKF is applied for denoising FOG static and dynamic signals, its performance is compared with conventional KF (CKF), RWE-based adaptive KF with gain correction (RWE-AKFG), AMA- and RWE- based dual mode adaptive KF (AMA-RWE-DMAKF). Results of Allan variance on static signal and root mean square error (RMSE) on dynamic signal show that this proposed algorithm outperforms all the considered methods in denoising FOG signal.
NASA Astrophysics Data System (ADS)
Petersen, Ø. W.; Øiseth, O.; Nord, T. S.; Lourens, E.
2018-07-01
Numerical predictions of the dynamic response of complex structures are often uncertain due to uncertainties inherited from the assumed load effects. Inverse methods can estimate the true dynamic response of a structure through system inversion, combining measured acceleration data with a system model. This article presents a case study of full-field dynamic response estimation of a long-span floating bridge: the Bergøysund Bridge in Norway. This bridge is instrumented with a network of 14 triaxial accelerometers. The system model consists of 27 vibration modes with natural frequencies below 2 Hz, obtained from a tuned finite element model that takes the fluid-structure interaction with the surrounding water into account. Two methods, a joint input-state estimation algorithm and a dual Kalman filter, are applied to estimate the full-field response of the bridge. The results demonstrate that the displacements and the accelerations can be estimated at unmeasured locations with reasonable accuracy when the wave loads are the dominant source of excitation.
Window Glasses: State and Prospects
NASA Astrophysics Data System (ADS)
Maiorov, V. A.
2018-04-01
Analysis and generalization of the results of investigations devoted to the improvement of optical properties have been carried out, and descriptions of a structure and a reaction mechanism of available and promising window glasses with solar radiation are presented. All devices are divided into groups with static constant and dynamic regulated spectral characteristics. The group of static glasses includes heat-protective and spectrally selective glasses with low-emissivity coatings and infrared filters with dispersed plasmonic nanoparticles. Electrochromic glasses, nanostructured dynamic infrared filters, and glasses with separated regulation of the transmission of visible-light and near-infrared radiation are dynamic devices. It is noted that the use of mesoporous films made of plasmonic nanoparticles open up especially wide possibilities. Their application allows one to realize a dynamic separated regulation of the transmission of visible light and nearinfrared radiation in which, under the gradual increase in the electric potential on the glass, mechanisms of plasmon and polaron reduction of solar radiation gradually change the glass' condition from light warm to light cold and then to dark cold consecutively.
NASA Astrophysics Data System (ADS)
Jouybari, A.; Ardalan, A. A.; Rezvani, M.-H.
2017-09-01
The accurate measurement of platform orientation plays a critical role in a range of applications including marine, aerospace, robotics, navigation, human motion analysis, and machine interaction. We used Mahoney filter, Complementary filter and Xsens Kalman filter for achieving Euler angle of a dynamic platform by integration of gyroscope, accelerometer, and magnetometer measurements. The field test has been performed in Kish Island using an IMU sensor (Xsens MTi-G-700) that installed onboard a buoy so as to provide raw data of gyroscopes, accelerometers, magnetometer measurements about 25 minutes. These raw data were used to calculate the Euler angles by Mahoney filter and Complementary filter, while the Euler angles collected by XSense IMU sensor become the reference of the Euler angle estimations. We then compared Euler angles which calculated by Mahoney Filter and Complementary Filter with reference to the Euler angles recorded by the XSense IMU sensor. The standard deviations of the differences between the Mahoney Filter, Complementary Filter Euler angles and XSense IMU sensor Euler angles were about 0.5644, 0.3872, 0.4990 degrees and 0.6349, 0.2621, 2.3778 degrees for roll, pitch, and heading, respectively, so the numerical result assert that Mahoney filter is precise for roll and heading angles determination and Complementary filter is precise only for pitch determination, it should be noted that heading angle determination by Complementary filter has more error than Mahoney filter.
Fritz, Jonathan B; Elhilali, Mounya; David, Stephen V; Shamma, Shihab A
2007-07-01
Acoustic filter properties of A1 neurons can dynamically adapt to stimulus statistics, classical conditioning, instrumental learning and the changing auditory attentional focus. We have recently developed an experimental paradigm that allows us to view cortical receptive field plasticity on-line as the animal meets different behavioral challenges by attending to salient acoustic cues and changing its cortical filters to enhance performance. We propose that attention is the key trigger that initiates a cascade of events leading to the dynamic receptive field changes that we observe. In our paradigm, ferrets were initially trained, using conditioned avoidance training techniques, to discriminate between background noise stimuli (temporally orthogonal ripple combinations) and foreground tonal target stimuli. They learned to generalize the task for a wide variety of distinct background and foreground target stimuli. We recorded cortical activity in the awake behaving animal and computed on-line spectrotemporal receptive fields (STRFs) of single neurons in A1. We observed clear, predictable task-related changes in STRF shape while the animal performed spectral tasks (including single tone and multi-tone detection, and two-tone discrimination) with different tonal targets. A different set of task-related changes occurred when the animal performed temporal tasks (including gap detection and click-rate discrimination). Distinctive cortical STRF changes may constitute a "task-specific signature". These spectral and temporal changes in cortical filters occur quite rapidly, within 2min of task onset, and fade just as quickly after task completion, or in some cases, persisted for hours. The same cell could multiplex by differentially changing its receptive field in different task conditions. On-line dynamic task-related changes, as well as persistent plastic changes, were observed at a single-unit, multi-unit and population level. Auditory attention is likely to be pivotal in mediating these task-related changes since the magnitude of STRF changes correlated with behavioral performance on tasks with novel targets. Overall, these results suggest the presence of an attention-triggered plasticity algorithm in A1 that can swiftly change STRF shape by transforming receptive fields to enhance figure/ground separation, by using a contrast matched filter to filter out the background, while simultaneously enhancing the salient acoustic target in the foreground. These results favor the view of a nimble, dynamic, attentive and adaptive brain that can quickly reshape its sensory filter properties and sensori-motor links on a moment-to-moment basis, depending upon the current challenges the animal faces. In this review, we summarize our results in the context of a broader survey of the field of auditory attention, and then consider neuronal networks that could give rise to this phenomenon of attention-driven receptive field plasticity in A1.
Counteracting structural errors in ensemble forecast of influenza outbreaks.
Pei, Sen; Shaman, Jeffrey
2017-10-13
For influenza forecasts generated using dynamical models, forecast inaccuracy is partly attributable to the nonlinear growth of error. As a consequence, quantification of the nonlinear error structure in current forecast models is needed so that this growth can be corrected and forecast skill improved. Here, we inspect the error growth of a compartmental influenza model and find that a robust error structure arises naturally from the nonlinear model dynamics. By counteracting these structural errors, diagnosed using error breeding, we develop a new forecast approach that combines dynamical error correction and statistical filtering techniques. In retrospective forecasts of historical influenza outbreaks for 95 US cities from 2003 to 2014, overall forecast accuracy for outbreak peak timing, peak intensity and attack rate, are substantially improved for predicted lead times up to 10 weeks. This error growth correction method can be generalized to improve the forecast accuracy of other infectious disease dynamical models.Inaccuracy of influenza forecasts based on dynamical models is partly due to nonlinear error growth. Here the authors address the error structure of a compartmental influenza model, and develop a new improved forecast approach combining dynamical error correction and statistical filtering techniques.
Gong, Jian; Viswanathan, Sandeep; Rothamer, David A; Foster, David E; Rutland, Christopher J
2017-10-03
Motivated by high filtration efficiency (mass- and number-based) and low pressure drop requirements for gasoline particulate filters (GPFs), a previously developed heterogeneous multiscale filtration (HMF) model is extended to simulate dynamic filtration characteristics of GPFs. This dynamic HMF model is based on a probability density function (PDF) description of the pore size distribution and classical filtration theory. The microstructure of the porous substrate in a GPF is resolved and included in the model. Fundamental particulate filtration experiments were conducted using an exhaust filtration analysis (EFA) system for model validation. The particulate in the filtration experiments was sampled from a spark-ignition direct-injection (SIDI) gasoline engine. With the dynamic HMF model, evolution of the microscopic characteristics of the substrate (pore size distribution, porosity, permeability, and deposited particulate inside the porous substrate) during filtration can be probed. Also, predicted macroscopic filtration characteristics including particle number concentration and normalized pressure drop show good agreement with the experimental data. The resulting dynamic HMF model can be used to study the dynamic particulate filtration process in GPFs with distinct microstructures, serving as a powerful tool for GPF design and optimization.
Filtering of non-linear instabilities
NASA Technical Reports Server (NTRS)
Khosla, P. K.; Rubin, S. G.
1978-01-01
For Courant numbers larger than one and cell Reynolds numbers larger than two, oscillations and in some cases instabilities are typically found with implicit numerical solutions of the fluid dynamics equations. This behavior has sometimes been associated with the loss of diagonal dominance of the coefficient matrix. It is shown that these problems can be related to the choice of the spatial differences, with the resulting instability related to aliasing or nonlinear interaction. Appropriate filtering can reduce the intensity of these oscillations and possibly eliminate the instability. These filtering procedures are equivalent to a weighted average of conservation and nonconservation differencing. The entire spectrum of filtered equations retains a three point character as well as second order spatial accuracy. Burgers equation was considered as a model.
NASA Technical Reports Server (NTRS)
Galante, Joseph M.; Van Eepoel, John; D'Souza, Chris; Patrick, Bryan
2016-01-01
The Raven ISS Hosted Payload will feature several pose measurement sensors on a pan/tilt gimbal which will be used to autonomously track resupply vehicles as they approach and depart the International Space Station. This paper discusses the derivation of a Relative Navigation Filter (RNF) to fuse measurements from the different pose measurement sensors to produce relative position and attitude estimates. The RNF relies on relative translation and orientation kinematics and careful pose sensor modeling to eliminate dependence on orbital position information and associated orbital dynamics models. The filter state is augmented with sensor biases to provide a mechanism for the filter to estimate and mitigate the offset between the measurements from different pose sensors
NASA Technical Reports Server (NTRS)
Galante, Joseph M.; Van Eepoel, John; D' Souza, Chris; Patrick, Bryan
2016-01-01
The Raven ISS Hosted Payload will feature several pose measurement sensors on a pan/tilt gimbal which will be used to autonomously track resupply vehicles as they approach and depart the International Space Station. This paper discusses the derivation of a Relative Navigation Filter (RNF) to fuse measurements from the different pose measurement sensors to produce relative position and attitude estimates. The RNF relies on relative translation and orientation kinematics and careful pose sensor modeling to eliminate dependence on orbital position information and associated orbital dynamics models. The filter state is augmented with sensor biases to provide a mechanism for the filter to estimate and mitigate the offset between the measurements from different pose sensors.
Individualism and the Emerging "Modern" Ideology of Death.
ERIC Educational Resources Information Center
Kearl, Michael C.; Harris, Richard
1981-01-01
Begins with a theoretical elaboration of individualism. Argues its development is associated with an emergent death ideology emphasizing personal control. In two national samples attitudes toward suicide, abortion and the right to die scaled unidimensionally. Results indicated indices of individualism were the best predictors of position on this…
Development and Psychometric Evaluation of the Personal Growth Initiative Scale-II
ERIC Educational Resources Information Center
Robitschek, Christine; Ashton, Matthew W.; Spering, Cynthia C.; Geiger, Nathaniel; Byers, Danielle; Schotts, G. Christian; Thoen, Megan A.
2012-01-01
The original Personal Growth Initiative Scale (PGIS; Robitschek, 1998) was unidimensional, despite theory identifying multiple components (e.g., cognition and behavior) of personal growth initiative (PGI). The present research developed a multidimensional measure of the complex process of PGI, while retaining the brief and psychometrically sound…
Using Necessary Information to Identify Item Dependence in Passage-Based Reading Comprehension Tests
ERIC Educational Resources Information Center
Baldonado, Angela Argo; Svetina, Dubravka; Gorin, Joanna
2015-01-01
Applications of traditional unidimensional item response theory models to passage-based reading comprehension assessment data have been criticized based on potential violations of local independence. However, simple rules for determining dependency, such as including all items associated with a particular passage, may overestimate the dependency…
How to Use Chromatography as a Science Teaching Aid.
ERIC Educational Resources Information Center
Ganis, Frank M.
Presented are five procedures which permit the effective teaching of chromatography with equipment which is readily available, economical, and simple in design. The first procedure involves a study of solute partition in two immiscible solvents and of countercurrent distribution. The second illustrates the use of unidimensional ascending paper…
Identifying Country-Specific Cultures of Physics Education: A Differential Item Functioning Approach
ERIC Educational Resources Information Center
Mesic, Vanes
2012-01-01
In international large-scale assessments of educational outcomes, student achievement is often represented by unidimensional constructs. This approach allows for drawing general conclusions about country rankings with respect to the given achievement measure, but it typically does not provide specific diagnostic information which is necessary for…
An Analysis of the Dimensionality of the Pupil Control Ideology Scale.
ERIC Educational Resources Information Center
Graham, Steve; And Others
1985-01-01
The present study replicated an earlier investigation using the Pupil Control Ideology (PCI). The findings were congruent with earlier results. Consequently, it was recommended that the PCI should be refined and that the 10 item, unidimensional scale should be used in future investigations. (Author/LMO)
Some Statistics for Assessing Person-Fit Based on Continuous-Response Models
ERIC Educational Resources Information Center
Ferrando, Pere Joan
2010-01-01
This article proposes several statistics for assessing individual fit based on two unidimensional models for continuous responses: linear factor analysis and Samejima's continuous response model. Both models are approached using a common framework based on underlying response variables and are formulated at the individual level as fixed regression…
Chemistry Education: Ten Facets to Shape Us
ERIC Educational Resources Information Center
Talanquer, Vicente
2013-01-01
The chemistry knowledge that we want our students to develop is rich, complex, and multifaceted. However, some teachers and instructors at the secondary school and college levels approach it in rather rigid and unidimensional ways. The central goal of this contribution is to describe and discuss 10 different complementary perspectives or…
Analysis of Letter Name Knowledge Using Rasch Measurement
ERIC Educational Resources Information Center
Bowles, Ryan P.; Skibbe, Lori E.; Justice, Laura M.
2011-01-01
Letter name knowledge (LNK) is a key predictor of later reading ability and has been emphasized strongly in recent educational policy. Studies of LNK have implicitly treated it as a unidimensional construct with all letters equally relevant to its measurement. However, some empirical research suggests that contextual factors can affect the…
Psychometric Properties of Measures of Team Diversity with Likert Data
ERIC Educational Resources Information Center
Deng, Lifang; Marcoulides, George A.; Yuan, Ke-Hai
2015-01-01
Certain diversity among team members is beneficial to the growth of an organization. Multiple measures have been proposed to quantify diversity, although little is known about their psychometric properties. This article proposes several methods to evaluate the unidimensionality and reliability of three measures of diversity. To approximate the…
Best Design for Multidimensional Computerized Adaptive Testing with the Bifactor Model
ERIC Educational Resources Information Center
Seo, Dong Gi; Weiss, David J.
2015-01-01
Most computerized adaptive tests (CATs) have been studied using the framework of unidimensional item response theory. However, many psychological variables are multidimensional and might benefit from using a multidimensional approach to CATs. This study investigated the accuracy, fidelity, and efficiency of a fully multidimensional CAT algorithm…
Cueing Strategies and Basic Skills in Early Reading.
ERIC Educational Resources Information Center
Beebe, Mona J.; Bulcock, Jeffrey W.
The extent to which cuing strategies and basic skills explanations of early reading constitute complementary approaches was examined in a study involving 94 fourth grade students. Basic skills--a unidimensional component based on measures of vocabulary development, language skills, and work-study skills--proved to be a powerful variable mediating…
Cognitive Correlates of Math Skills in Third-Grade Students
ERIC Educational Resources Information Center
Mannamaa, Mairi; Kikas, Eve; Peets, Katlin; Palu, Anu
2012-01-01
Math achievement is not a unidimensional construct but includes different skills that require different cognitive abilities. The focus of this study was to examine associations between a number of cognitive abilities and three domains of math skills (knowing, applying and problem solving) simultaneously in a multivariate framework. Participants…
Measurement Invariance versus Selection Invariance: Is Fair Selection Possible?
ERIC Educational Resources Information Center
Borsman, Denny; Romeijn, Jan-Willem; Wicherts, Jelte M.
2008-01-01
This article shows that measurement invariance (defined in terms of an invariant measurement model in different groups) is generally inconsistent with selection invariance (defined in terms of equal sensitivity and specificity across groups). In particular, when a unidimensional measurement instrument is used and group differences are present in…
An Instrument to Measure Anomia.
ERIC Educational Resources Information Center
Moore, Allen B.
1980-01-01
Four hundred and eighty-six disadvantaged adults from North Carolina were the subjects in a study that factor-analyzed three instruments designed to measure anomia, yielding a 12-item unidimensional scale. (The refined combination scale is presented as of potential usefulness for research on the effects of educational intervention on anomia.) (LRA)
Androgyny Versus Gender Schema: A Comment on Bem's Gender Schema Theory.
ERIC Educational Resources Information Center
Spence, Janet T.; Helmreich, Robert L.
1981-01-01
A logical contradiction in Bem's (1981) theory is outlined. The Bem Sex Role Inventory cannot measure a unidimensional construct, gender schema, and two independent constructs--masculinity and femininity. Such instruments measure self-images of instrumental and expressive personality traits which show little relationship to the constructs…
Application of the Bifactor Model to Computerized Adaptive Testing
ERIC Educational Resources Information Center
Seo, Dong Gi
2011-01-01
Most computerized adaptive tests (CAT) have been studied under the framework of unidimensional item response theory. However, many psychological variables are multidimensional and might benefit from using a multidimensional approach to CAT. In addition, a number of psychological variables (e.g., quality of life, depression) can be conceptualized…
A Principal Components Analysis of the Rathus Assertiveness Schedule.
ERIC Educational Resources Information Center
Law, H. G.; And Others
1979-01-01
Investigated the adequacy of the Rathus Assertiveness Schedule (RAS) as a global measure of assertiveness. Analysis indicated that the RAS does not provide a unidimensional index of assertiveness, but rather measures a number of factors including situation-specific assertive behavior, aggressiveness, and a more general assertiveness. (Author)
Development of a Scale to Measure Attitudes toward Inclusive Education.
ERIC Educational Resources Information Center
Wilczenski, Felicia L.
1995-01-01
The Attitudes toward Inclusive Education Scale (ATIES) is a measure of positive and negative attitudes toward integrating children with disabilities into regular classes. Results with 445 teachers show that the ATIES defines a unidimensional attitudinal variable and yields interval measures of attitudes toward inclusive education. (SLD)
Dimensions, Patterns, and Personality Correlates of Drug Abuse in an Offender Population.
ERIC Educational Resources Information Center
Holland, Terrill R.
1978-01-01
Drug abuse scores from prisoners resulted in two factors describing lifetime use of cannabis versus opiates. Analysis of Minnesota Multiphasic Personality Inventory (MMPI) profiles versus drug abuse patterns indicated moderate, unidimensional relationship between variables. MMPI profiles of opiate users were similar to those identified in research…
Robustness of Hierarchical Modeling of Skill Association in Cognitive Diagnosis Models
ERIC Educational Resources Information Center
Templin, Jonathan L.; Henson, Robert A.; Templin, Sara E.; Roussos, Louis
2008-01-01
Several types of parameterizations of attribute correlations in cognitive diagnosis models use the reduced reparameterized unified model. The general approach presumes an unconstrained correlation matrix with K(K - 1)/2 parameters, whereas the higher order approach postulates K parameters, imposing a unidimensional structure on the correlation…
Order-Constrained Bayes Inference for Dichotomous Models of Unidimensional Nonparametric IRT
ERIC Educational Resources Information Center
Karabatsos, George; Sheu, Ching-Fan
2004-01-01
This study introduces an order-constrained Bayes inference framework useful for analyzing data containing dichotomous scored item responses, under the assumptions of either the monotone homogeneity model or the double monotonicity model of nonparametric item response theory (NIRT). The framework involves the implementation of Gibbs sampling to…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fath, L., E-mail: lukas.fath@kit.edu; Hochbruck, M., E-mail: marlis.hochbruck@kit.edu; Singh, C.V., E-mail: chandraveer.singh@utoronto.ca
Classical integration methods for molecular dynamics are inherently limited due to resonance phenomena occurring at certain time-step sizes. The mollified impulse method can partially avoid this problem by using appropriate filters based on averaging or projection techniques. However, existing filters are computationally expensive and tedious in implementation since they require either analytical Hessians or they need to solve nonlinear systems from constraints. In this work we follow a different approach based on corotation for the construction of a new filter for (flexible) biomolecular simulations. The main advantages of the proposed filter are its excellent stability properties and ease of implementationmore » in standard softwares without Hessians or solving constraint systems. By simulating multiple realistic examples such as peptide, protein, ice equilibrium and ice–ice friction, the new filter is shown to speed up the computations of long-range interactions by approximately 20%. The proposed filtered integrators allow step sizes as large as 10 fs while keeping the energy drift less than 1% on a 50 ps simulation.« less
NASA Technical Reports Server (NTRS)
Snow, Frank; Harman, Richard; Garrick, Joseph
1988-01-01
The Gamma Ray Observatory (GRO) spacecraft needs a highly accurate attitude knowledge to achieve its mission objectives. Utilizing the fixed-head star trackers (FHSTs) for observations and gyroscopes for attitude propagation, the discrete Kalman Filter processes the attitude data to obtain an onboard accuracy of 86 arc seconds (3 sigma). A combination of linear analysis and simulations using the GRO Software Simulator (GROSS) are employed to investigate the Kalman filter for stability and the effects of corrupted observations (misalignment, noise), incomplete dynamic modeling, and nonlinear errors on Kalman filter. In the simulations, on-board attitude is compared with true attitude, the sensitivity of attitude error to model errors is graphed, and a statistical analysis is performed on the residuals of the Kalman Filter. In this paper, the modeling and sensor errors that degrade the Kalman filter solution beyond mission requirements are studied, and methods are offered to identify the source of these errors.
Hypersonic entry vehicle state estimation using nonlinearity-based adaptive cubature Kalman filters
NASA Astrophysics Data System (ADS)
Sun, Tao; Xin, Ming
2017-05-01
Guidance, navigation, and control of a hypersonic vehicle landing on the Mars rely on precise state feedback information, which is obtained from state estimation. The high uncertainty and nonlinearity of the entry dynamics make the estimation a very challenging problem. In this paper, a new adaptive cubature Kalman filter is proposed for state trajectory estimation of a hypersonic entry vehicle. This new adaptive estimation strategy is based on the measure of nonlinearity of the stochastic system. According to the severity of nonlinearity along the trajectory, the high degree cubature rule or the conventional third degree cubature rule is adaptively used in the cubature Kalman filter. This strategy has the benefit of attaining higher estimation accuracy only when necessary without causing excessive computation load. The simulation results demonstrate that the proposed adaptive filter exhibits better performance than the conventional third-degree cubature Kalman filter while maintaining the same performance as the uniform high degree cubature Kalman filter but with lower computation complexity.
Complementary filter implementation in the dynamic language Lua
NASA Astrophysics Data System (ADS)
Sadowski, Damian; Sawicki, Aleksander; Lukšys, Donatas; Slanina, Zdenek
2017-08-01
The article presents the complementary filter implementation, that is used for the estimation of the pitch angle, in Lua script language. Inertial sensors as accelerometer and gyroscope were used in the study. Methods of angles estimation using acceleration and angular velocity sensors were presented in the theoretical part of the article. The operating principle of complementary filter has been presented. The prototype of Butterworth's analogue filter and its digital equivalent have been designed. Practical implementation of the issue was performed with the use of PC and DISCOVERY evaluation board equipped with STM32F01 processor, L3GD20 gyroscope and LS303DLHC accelerometer. Measurement data was transmitted by UART serial interface, then processed with the use of Lua software and luaRS232 programming library. Practical implementation was divided into two stages. In the first part, measurement data has been recorded and then processed with help of a complementary filter. In the second step, coroutines mechanism was used to filter data in real time.
Hybrid context aware recommender systems
NASA Astrophysics Data System (ADS)
Jain, Rajshree; Tyagi, Jaya; Singh, Sandeep Kumar; Alam, Taj
2017-10-01
Recommender systems and context awareness is currently a vital field of research. Most hybrid recommendation systems implement content based and collaborative filtering techniques whereas this work combines context and collaborative filtering. The paper presents a hybrid context aware recommender system for books and movies that gives recommendations based on the user context as well as user or item similarity. It also addresses the issue of dimensionality reduction using weighted pre filtering based on dynamically entered user context and preference of context. This unique step helps to reduce the size of dataset for collaborative filtering. Bias subtracted collaborative filtering is used so as to consider the relative rating of a particular user and not the absolute values. Cosine similarity is used as a metric to determine the similarity between users or items. The unknown ratings are calculated and evaluated using MSE (Mean Squared Error) in test and train datasets. The overall process of recommendation has helped to personalize recommendations and give more accurate results with reduced complexity in collaborative filtering.
Feng, Kaiqiang; Li, Jie; Zhang, Xiaoming; Shen, Chong; Bi, Yu; Zheng, Tao; Liu, Jun
2017-09-19
In order to reduce the computational complexity, and improve the pitch/roll estimation accuracy of the low-cost attitude heading reference system (AHRS) under conditions of magnetic-distortion, a novel linear Kalman filter, suitable for nonlinear attitude estimation, is proposed in this paper. The new algorithm is the combination of two-step geometrically-intuitive correction (TGIC) and the Kalman filter. In the proposed algorithm, the sequential two-step geometrically-intuitive correction scheme is used to make the current estimation of pitch/roll immune to magnetic distortion. Meanwhile, the TGIC produces a computed quaternion input for the Kalman filter, which avoids the linearization error of measurement equations and reduces the computational complexity. Several experiments have been carried out to validate the performance of the filter design. The results demonstrate that the mean time consumption and the root mean square error (RMSE) of pitch/roll estimation under magnetic disturbances are reduced by 45.9% and 33.8%, respectively, when compared with a standard filter. In addition, the proposed filter is applicable for attitude estimation under various dynamic conditions.
Feng, Kaiqiang; Li, Jie; Zhang, Xiaoming; Shen, Chong; Bi, Yu; Zheng, Tao; Liu, Jun
2017-01-01
In order to reduce the computational complexity, and improve the pitch/roll estimation accuracy of the low-cost attitude heading reference system (AHRS) under conditions of magnetic-distortion, a novel linear Kalman filter, suitable for nonlinear attitude estimation, is proposed in this paper. The new algorithm is the combination of two-step geometrically-intuitive correction (TGIC) and the Kalman filter. In the proposed algorithm, the sequential two-step geometrically-intuitive correction scheme is used to make the current estimation of pitch/roll immune to magnetic distortion. Meanwhile, the TGIC produces a computed quaternion input for the Kalman filter, which avoids the linearization error of measurement equations and reduces the computational complexity. Several experiments have been carried out to validate the performance of the filter design. The results demonstrate that the mean time consumption and the root mean square error (RMSE) of pitch/roll estimation under magnetic disturbances are reduced by 45.9% and 33.8%, respectively, when compared with a standard filter. In addition, the proposed filter is applicable for attitude estimation under various dynamic conditions. PMID:28925979
Workplace Exposure to Titanium Dioxide Nanopowder Released from a Bag Filter System
Ji, Jun Ho; Kim, Jong Bum; Lee, Gwangjae; Noh, Jung-Hun; Yook, Se-Jin; Cho, So-Hye; Bae, Gwi-Nam
2015-01-01
Many researchers who use laboratory-scale synthesis systems to manufacture nanomaterials could be easily exposed to airborne nanomaterials during the research and development stage. This study used various real-time aerosol detectors to investigate the presence of nanoaerosols in a laboratory used to manufacture titanium dioxide (TiO2). The TiO2 nanopowders were produced via flame synthesis and collected by a bag filter system for subsequent harvesting. Highly concentrated nanopowders were released from the outlet of the bag filter system into the laboratory. The fractional particle collection efficiency of the bag filter system was only 20% at particle diameter of 100 nm, which is much lower than the performance of a high-efficiency particulate air (HEPA) filter. Furthermore, the laboratory hood system was inadequate to fully exhaust the air discharged from the bag filter system. Unbalanced air flow rates between bag filter and laboratory hood systems could result in high exposure to nanopowder in laboratory settings. Finally, we simulated behavior of nanopowders released in the laboratory using computational fluid dynamics (CFD). PMID:26125024
A fast ellipse extended target PHD filter using box-particle implementation
NASA Astrophysics Data System (ADS)
Zhang, Yongquan; Ji, Hongbing; Hu, Qi
2018-01-01
This paper presents a box-particle implementation of the ellipse extended target probability hypothesis density (ET-PHD) filter, called the ellipse extended target box particle PHD (EET-BP-PHD) filter, where the extended targets are described as a Poisson model developed by Gilholm et al. and the term "box" is here equivalent to the term "interval" used in interval analysis. The proposed EET-BP-PHD filter is capable of dynamically tracking multiple ellipse extended targets and estimating the target states and the number of targets, in the presence of clutter measurements, false alarms and missed detections. To derive the PHD recursion of the EET-BP-PHD filter, a suitable measurement likelihood is defined for a given partitioning cell, and the main implementation steps are presented along with the necessary box approximations and manipulations. The limitations and capabilities of the proposed EET-BP-PHD filter are illustrated by simulation examples. The simulation results show that a box-particle implementation of the ET-PHD filter can avoid the high number of particles and reduce computational burden, compared to a particle implementation of that for extended target tracking.
NASA Astrophysics Data System (ADS)
Aycock, Kenneth; Sastry, Shankar; Kim, Jibum; Shontz, Suzanne; Campbell, Robert; Manning, Keefe; Lynch, Frank; Craven, Brent
2013-11-01
A computational methodology for simulating inferior vena cava (IVC) filter placement and IVC hemodynamics was developed and tested on two patient-specific IVC geometries: a left-sided IVC, and an IVC with a retroaortic left renal vein. Virtual IVC filter placement was performed with finite element analysis (FEA) using non-linear material models and contact modeling, yielding maximum vein displacements of approximately 10% of the IVC diameters. Blood flow was then simulated using computational fluid dynamics (CFD) with four cases for each patient IVC: 1) an IVC only, 2) an IVC with a placed filter, 3) an IVC with a placed filter and a model embolus, all at resting flow conditions, and 4) an IVC with a placed filter and a model embolus at exercise flow conditions. Significant hemodynamic differences were observed between the two patient IVCs, with the development of a right-sided jet (all cases) and a larger stagnation region (cases 3-4) in the left-sided IVC. These results support further investigation of the effects of IVC filter placement on a patient-specific basis.
A quantum extended Kalman filter
NASA Astrophysics Data System (ADS)
Emzir, Muhammad F.; Woolley, Matthew J.; Petersen, Ian R.
2017-06-01
In quantum physics, a stochastic master equation (SME) estimates the state (density operator) of a quantum system in the Schrödinger picture based on a record of measurements made on the system. In the Heisenberg picture, the SME is a quantum filter. For a linear quantum system subject to linear measurements and Gaussian noise, the dynamics may be described by quantum stochastic differential equations (QSDEs), also known as quantum Langevin equations, and the quantum filter reduces to a so-called quantum Kalman filter. In this article, we introduce a quantum extended Kalman filter (quantum EKF), which applies a commutative approximation and a time-varying linearization to systems of nonlinear QSDEs. We will show that there are conditions under which a filter similar to a classical EKF can be implemented for quantum systems. The boundedness of estimation errors and the filtering problem with ‘state-dependent’ covariances for process and measurement noises are also discussed. We demonstrate the effectiveness of the quantum EKF by applying it to systems that involve multiple modes, nonlinear Hamiltonians, and simultaneous jump-diffusive measurements.
Hydraulics of sprinkler and microirrigation systems
USDA-ARS?s Scientific Manuscript database
The fluid dynamics of sprinkler and microirrigation systems are complex. Water moves dynamically from the water source through the pump into the pipe network. Water often goes through a series of screens and filters depending on the source and type of irrigation system. From the pipe network, water ...
In-Flight Alignment Using H ∞ Filter for Strapdown INS on Aircraft
Pei, Fu-Jun; Liu, Xuan; Zhu, Li
2014-01-01
In-flight alignment is an effective way to improve the accuracy and speed of initial alignment for strapdown inertial navigation system (INS). During the aircraft flight, strapdown INS alignment was disturbed by lineal and angular movements of the aircraft. To deal with the disturbances in dynamic initial alignment, a novel alignment method for SINS is investigated in this paper. In this method, an initial alignment error model of SINS in the inertial frame is established. The observability of the system is discussed by piece-wise constant system (PWCS) theory and observable degree is computed by the singular value decomposition (SVD) theory. It is demonstrated that the system is completely observable, and all the system state parameters can be estimated by optimal filter. Then a H ∞ filter was designed to resolve the uncertainty of measurement noise. The simulation results demonstrate that the proposed algorithm can reach a better accuracy under the dynamic disturbance condition. PMID:24511300
Tuning the Solar Dynamics Observatory Onboard Kalman Filter
NASA Technical Reports Server (NTRS)
Halverson, Julie Kay; Harman, Rick; Carpenter, Russell; Poland, Devin
2017-01-01
The Solar Dynamics Observatory (SDO) was launched in 2010. SDO is a sun pointing semi-autonomous spacecraft in a geosynchronous orbit that allows nearly continuous observations of the sun. SDO is equipped with coarse sun sensors, two star trackers, a digital sun sensor, and three two-axis inertial reference units (IRU). The IRUs are temperature sensitive and were designed to operate in a stable thermal environment. Due to battery degradation concerns the IRU heaters were not used on SDO and the onboard filter was tuned to accommodate the noisier IRU data. Since launch currents have increased on two IRUs, one had to eventually be powered off. Recent ground tests on a battery similar to SDO indicated the heaters would have negligible impact on battery degradation, so in 2016 a decision was made to turn the heaters on. This paper presents the analysis and results of updating the filter tuning parameters onboard SDO with the IRUs now operating in their intended thermal environment.
Plasmonic- and dielectric-based structural coloring: from fundamentals to practical applications
NASA Astrophysics Data System (ADS)
Lee, Taejun; Jang, Jaehyuck; Jeong, Heonyeong; Rho, Junsuk
2018-01-01
Structural coloring is production of color by surfaces that have microstructure fine enough to interfere with visible light; this phenomenon provides a novel paradigm for color printing. Plasmonic color is an emergent property of the interaction between light and metallic surfaces. This phenomenon can surpass the diffraction limit and achieve near unlimited lifetime. We categorize plasmonic color filters according to their designs (hole, rod, metal-insulator-metal, grating), and also describe structures supported by Mie resonance. We discuss the principles, and the merits and demerits of each color filter. We also discuss a new concept of color filters with tunability and reconfigurability, which enable printing of structural color to yield dynamic coloring at will. Approaches for dynamic coloring are classified as liquid crystal, chemical transition and mechanical deformation. At the end of review, we highlight a scale-up of fabrication methods, including nanoimprinting, self-assembly and laser-induced process that may enable real-world application of structural coloring.
Command Filtering-Based Fuzzy Control for Nonlinear Systems With Saturation Input.
Yu, Jinpeng; Shi, Peng; Dong, Wenjie; Lin, Chong
2017-09-01
In this paper, command filtering-based fuzzy control is designed for uncertain multi-input multioutput (MIMO) nonlinear systems with saturation nonlinearity input. First, the command filtering method is employed to deal with the explosion of complexity caused by the derivative of virtual controllers. Then, fuzzy logic systems are utilized to approximate the nonlinear functions of MIMO systems. Furthermore, error compensation mechanism is introduced to overcome the drawback of the dynamics surface approach. The developed method will guarantee all signals of the systems are bounded. The effectiveness and advantages of the theoretic result are obtained by a simulation example.
Anti-dazzling protection for Air Force pilots
NASA Astrophysics Data System (ADS)
Donval, Ariela; Fisher, Tali; Lipman, Ofir; Oron, Moshe
2012-06-01
Under certain conditions, laser directed at aircraft can be a hazard. The most likely scenario is when a bright visible laser causes distraction or temporary flash blindness to a pilot, during a critical phase of flight such as landing or takeoff. It is also possible, that a visible or invisible beam could cause permanent harm to a pilot's eyes. We present a non-linear, solid-state dynamic filter solutions protecting from dazzling and damage in a passive way. Our filters limit the transmission, only if the power exceeds a certain threshold as opposed to spectral filters that block a certain wavelength permanently.
A decentralized square root information filter/smoother
NASA Technical Reports Server (NTRS)
Bierman, G. J.; Belzer, M. R.
1985-01-01
A number of developments has recently led to a considerable interest in the decentralization of linear least squares estimators. The developments are partly related to the impending emergence of VLSI technology, the realization of parallel processing, and the need for algorithmic ways to speed the solution of dynamically decoupled, high dimensional estimation problems. A new method is presented for combining Square Root Information Filters (SRIF) estimates obtained from independent data sets. The new method involves an orthogonal transformation, and an information matrix filter 'homework' problem discussed by Schweppe (1973) is generalized. The employed SRIF orthogonal transformation methodology has been described by Bierman (1977).
Correlation Filtering of Modal Dynamics using the Laplace Wavelet
NASA Technical Reports Server (NTRS)
Freudinger, Lawrence C.; Lind, Rick; Brenner, Martin J.
1997-01-01
Wavelet analysis allows processing of transient response data commonly encountered in vibration health monitoring tasks such as aircraft flutter testing. The Laplace wavelet is formulated as an impulse response of a single mode system to be similar to data features commonly encountered in these health monitoring tasks. A correlation filtering approach is introduced using the Laplace wavelet to decompose a signal into impulse responses of single mode subsystems. Applications using responses from flutter testing of aeroelastic systems demonstrate modal parameters and stability estimates can be estimated by correlation filtering free decay data with a set of Laplace wavelets.
Optoelectronic simulation of GaAs solar cells with angularly selective filters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kraus, Tobias, E-mail: tobias.kraus@ise.fraunhofer.de; Höhn, Oliver; Hauser, Hubert
We discuss the influence of angularly selective filters on thin film gallium arsenide solar cells. For this reason, the detailed balance model was refined to fit our needs with respect to Auger recombination, reflection, transmission, and realistic absorption. For calculating real systems, an approach was made to include optical effects of angularly selective filters into electron-hole dynamic equations implemented in PC1D, a one dimensional solar cell calculation tool. With this approach, we find a relative V{sub oc} increase of 5% for an idealized 100 nm GaAs cell, including Auger recombination.
NASA Technical Reports Server (NTRS)
Park, K. C.; Belvin, W. Keith
1990-01-01
A general form for the first-order representation of the continuous second-order linear structural-dynamics equations is introduced to derive a corresponding form of first-order continuous Kalman filtering equations. Time integration of the resulting equations is carried out via a set of linear multistep integration formulas. It is shown that a judicious combined selection of computational paths and the undetermined matrices introduced in the general form of the first-order linear structural systems leads to a class of second-order discrete Kalman filtering equations involving only symmetric sparse N x N solution matrices.
Dynamic Filtering Improves Attentional State Prediction with fNIRS
NASA Technical Reports Server (NTRS)
Harrivel, Angela R.; Weissman, Daniel H.; Noll, Douglas C.; Huppert, Theodore; Peltier, Scott J.
2016-01-01
Brain activity can predict a person's level of engagement in an attentional task. However, estimates of brain activity are often confounded by measurement artifacts and systemic physiological noise. The optimal method for filtering this noise - thereby increasing such state prediction accuracy - remains unclear. To investigate this, we asked study participants to perform an attentional task while we monitored their brain activity with functional near infrared spectroscopy (fNIRS). We observed higher state prediction accuracy when noise in the fNIRS hemoglobin [Hb] signals was filtered with a non-stationary (adaptive) model as compared to static regression (84% +/- 6% versus 72% +/- 15%).
A detail enhancement and dynamic range adjustment algorithm for high dynamic range images
NASA Astrophysics Data System (ADS)
Xu, Bo; Wang, Huachuang; Liang, Mingtao; Yu, Cong; Hu, Jinlong; Cheng, Hua
2014-08-01
Although high dynamic range (HDR) images contain large amounts of information, they have weak texture and low contrast. What's more, these images are difficult to be reproduced on low dynamic range displaying mediums. If much more information is to be acquired when these images are displayed on PCs, some specific transforms, such as compressing the dynamic range, enhancing the portions of little difference in original contrast and highlighting the texture details on the premise of keeping the parts of large contrast, are needed. To this ends, a multi-scale guided filter enhancement algorithm which derives from the single-scale guided filter based on the analysis of non-physical model is proposed in this paper. Firstly, this algorithm decomposes the original HDR images into base image and detail images of different scales, and then it adaptively selects a transform function which acts on the enhanced detail images and original images. By comparing the treatment effects of HDR images and low dynamic range (LDR) images of different scene features, it proves that this algorithm, on the basis of maintaining the hierarchy and texture details of images, not only improves the contrast and enhances the details of images, but also adjusts the dynamic range well. Thus, it is much suitable for human observation or analytical processing of machines.
Symmetrical and overloaded effect of diffusion in information filtering
NASA Astrophysics Data System (ADS)
Zhu, Xuzhen; Tian, Hui; Chen, Guilin; Cai, Shimin
2017-10-01
In physical dynamics, mass diffusion theory has been applied to design effective information filtering models on bipartite network. In previous works, researchers unilaterally believe objects' similarities are determined by single directional mass diffusion from the collected object to the uncollected, meanwhile, inadvertently ignore adverse influence of diffusion overload. It in some extent veils the essence of diffusion in physical dynamics and hurts the recommendation accuracy and diversity. After delicate investigation, we argue that symmetrical diffusion effectively discloses essence of mass diffusion, and high diffusion overload should be published. Accordingly, in this paper, we propose an symmetrical and overload penalized diffusion based model (SOPD), which shows excellent performances in extensive experiments on benchmark datasets Movielens and Netflix.
On the use of orientation filters for 3D reconstruction in event-driven stereo vision
Camuñas-Mesa, Luis A.; Serrano-Gotarredona, Teresa; Ieng, Sio H.; Benosman, Ryad B.; Linares-Barranco, Bernabe
2014-01-01
The recently developed Dynamic Vision Sensors (DVS) sense visual information asynchronously and code it into trains of events with sub-micro second temporal resolution. This high temporal precision makes the output of these sensors especially suited for dynamic 3D visual reconstruction, by matching corresponding events generated by two different sensors in a stereo setup. This paper explores the use of Gabor filters to extract information about the orientation of the object edges that produce the events, therefore increasing the number of constraints applied to the matching algorithm. This strategy provides more reliably matched pairs of events, improving the final 3D reconstruction. PMID:24744694
NASA Astrophysics Data System (ADS)
Cui, Jia; Hong, Bei; Jiang, Xuepeng; Chen, Qinghua
2017-05-01
With the purpose of reinforcing correlation analysis of risk assessment threat factors, a dynamic assessment method of safety risks based on particle filtering is proposed, which takes threat analysis as the core. Based on the risk assessment standards, the method selects threat indicates, applies a particle filtering algorithm to calculate influencing weight of threat indications, and confirms information system risk levels by combining with state estimation theory. In order to improve the calculating efficiency of the particle filtering algorithm, the k-means cluster algorithm is introduced to the particle filtering algorithm. By clustering all particles, the author regards centroid as the representative to operate, so as to reduce calculated amount. The empirical experience indicates that the method can embody the relation of mutual dependence and influence in risk elements reasonably. Under the circumstance of limited information, it provides the scientific basis on fabricating a risk management control strategy.
Online attitude determination of a passively magnetically stabilized spacecraft
NASA Astrophysics Data System (ADS)
Burton, R.; Rock, S.; Springmann, J.; Cutler, J.
2017-04-01
An online attitude determination filter is developed for a nano satellite that has no onboard attitude sensors or gyros. Specifically, the attitude of NASA Ames Research Center's O/OREOS, a passively magnetically stabilized 3U CubeSat, is determined using only an estimate of the solar vector obtained from solar panel currents. The filter is based upon the existing multiplicative extended Kalman filter (MEKF) but instead of relying on gyros to drive the motion model, the filter instead incorporates a model of the spacecraft's attitude dynamics in the motion model. An attitude determination accuracy of five degrees is demonstrated, a performance verified using flight data from the University of Michigan's RAX-1. Although the filter was designed for the specific problem of a satellite without gyros or attitude determination it could also be used to provide smoothing of noisy gyro signals or to provide a backup in the event of gyro failures.
A Kalman filter for a two-dimensional shallow-water model
NASA Technical Reports Server (NTRS)
Parrish, D. F.; Cohn, S. E.
1985-01-01
A two-dimensional Kalman filter is described for data assimilation for making weather forecasts. The filter is regarded as superior to the optimal interpolation method because the filter determines the forecast error covariance matrix exactly instead of using an approximation. A generalized time step is defined which includes expressions for one time step of the forecast model, the error covariance matrix, the gain matrix, and the evolution of the covariance matrix. Subsequent time steps are achieved by quantifying the forecast variables or employing a linear extrapolation from a current variable set, assuming the forecast dynamics are linear. Calculations for the evolution of the error covariance matrix are banded, i.e., are performed only with the elements significantly different from zero. Experimental results are provided from an application of the filter to a shallow-water simulation covering a 6000 x 6000 km grid.
NASA Astrophysics Data System (ADS)
Dhakshnamoorthy, Balasundaresan; Rohaim, Ahmed; Rui, Huan; Blachowicz, Lydia; Roux, Benoît
2016-09-01
The selectivity filter is an essential functional element of K+ channels that is highly conserved both in terms of its primary sequence and its three-dimensional structure. Here, we investigate the properties of an ion channel from the Gram-positive bacterium Tsukamurella paurometabola with a selectivity filter formed by an uncommon proline-rich sequence. Electrophysiological recordings show that it is a non-selective cation channel and that its activity depends on Ca2+ concentration. In the crystal structure, the selectivity filter adopts a novel conformation with Ca2+ ions bound within the filter near the pore helix where they are coordinated by backbone oxygen atoms, a recurrent motif found in multiple proteins. The binding of Ca2+ ion in the selectivity filter controls the widening of the pore as shown in crystal structures and in molecular dynamics simulations. The structural, functional and computational data provide a characterization of this calcium-gated cationic channel.
Fish mouths as engineering structures for vortical cross-step filtration
NASA Astrophysics Data System (ADS)
Sanderson, S. Laurie; Roberts, Erin; Lineburg, Jillian; Brooks, Hannah
2016-03-01
Suspension-feeding fishes such as goldfish and whale sharks retain prey without clogging their oral filters, whereas clogging is a major expense in industrial crossflow filtration of beer, dairy foods and biotechnology products. Fishes' abilities to retain particles that are smaller than the pore size of the gill-raker filter, including extraction of particles despite large holes in the filter, also remain unexplained. Here we show that unexplored combinations of engineering structures (backward-facing steps forming d-type ribs on the porous surface of a cone) cause fluid dynamic phenomena distinct from current biological and industrial filter operations. This vortical cross-step filtration model prevents clogging and explains the transport of tiny concentrated particles to the oesophagus using a hydrodynamic tongue. Mass transfer caused by vortices along d-type ribs in crossflow is applicable to filter-feeding duck beak lamellae and whale baleen plates, as well as the fluid mechanics of ventilation at fish gill filaments.
NASA Technical Reports Server (NTRS)
Calhoun, Philip C.; Sedlak, Joseph E.; Superfin, Emil
2011-01-01
Precision attitude determination for recent and planned space missions typically includes quaternion star trackers (ST) and a three-axis inertial reference unit (IRU). Sensor selection is based on estimates of knowledge accuracy attainable from a Kalman filter (KF), which provides the optimal solution for the case of linear dynamics with measurement and process errors characterized by random Gaussian noise with white spectrum. Non-Gaussian systematic errors in quaternion STs are often quite large and have an unpredictable time-varying nature, particularly when used in non-inertial pointing applications. Two filtering methods are proposed to reduce the attitude estimation error resulting from ST systematic errors, 1) extended Kalman filter (EKF) augmented with Markov states, 2) Unscented Kalman filter (UKF) with a periodic measurement model. Realistic assessments of the attitude estimation performance gains are demonstrated with both simulation and flight telemetry data from the Lunar Reconnaissance Orbiter.
Wiener Chaos and Nonlinear Filtering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lototsky, S.V.
2006-11-15
The paper discusses two algorithms for solving the Zakai equation in the time-homogeneous diffusion filtering model with possible correlation between the state process and the observation noise. Both algorithms rely on the Cameron-Martin version of the Wiener chaos expansion, so that the approximate filter is a finite linear combination of the chaos elements generated by the observation process. The coefficients in the expansion depend only on the deterministic dynamics of the state and observation processes. For real-time applications, computing the coefficients in advance improves the performance of the algorithms in comparison with most other existing methods of nonlinear filtering. Themore » paper summarizes the main existing results about these Wiener chaos algorithms and resolves some open questions concerning the convergence of the algorithms in the noise-correlated setting. The presentation includes the necessary background on the Wiener chaos and optimal nonlinear filtering.« less
Towards the computation of time-periodic inertial range dynamics
NASA Astrophysics Data System (ADS)
van Veen, L.; Vela-Martín, A.; Kawahara, G.
2018-04-01
We explore the possibility of computing simple invariant solutions, like travelling waves or periodic orbits, in Large Eddy Simulation (LES) on a periodic domain with constant external forcing. The absence of material boundaries and the simple forcing mechanism make this system a comparatively simple target for the study of turbulent dynamics through invariant solutions. We show, that in spite of the application of eddy viscosity the computations are still rather challenging and must be performed on GPU cards rather than conventional coupled CPUs. We investigate the onset of turbulence in this system by means of bifurcation analysis, and present a long-period, large-amplitude unstable periodic orbit that is filtered from a turbulent time series. Although this orbit is computed on a coarse grid, with only a small separation between the integral scale and the LES filter length, the periodic dynamics seem to capture a regeneration process of the large-scale vortices.
Schenk, Emily R; Nau, Frederic; Fernandez-Lima, Francisco
2015-06-01
The ability to correlate experimental ion mobility data with candidate structures from theoretical modeling provides a powerful analytical and structural tool for the characterization of biomolecules. In the present paper, a theoretical workflow is described to generate and assign candidate structures for experimental trapped ion mobility and H/D exchange (HDX-TIMS-MS) data following molecular dynamics simulations and statistical filtering. The applicability of the theoretical predictor is illustrated for a peptide and protein example with multiple conformations and kinetic intermediates. The described methodology yields a low computational cost and a simple workflow by incorporating statistical filtering and molecular dynamics simulations. The workflow can be adapted to different IMS scenarios and CCS calculators for a more accurate description of the IMS experimental conditions. For the case of the HDX-TIMS-MS experiments, molecular dynamics in the "TIMS box" accounts for a better sampling of the molecular intermediates and local energy minima.
Dynamic State Estimation and Parameter Calibration of DFIG based on Ensemble Kalman Filter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan, Rui; Huang, Zhenyu; Wang, Shaobu
2015-07-30
With the growing interest in the application of wind energy, doubly fed induction generator (DFIG) plays an essential role in the industry nowadays. To deal with the increasing stochastic variations introduced by intermittent wind resource and responsive loads, dynamic state estimation (DSE) are introduced in any power system associated with DFIGs. However, sometimes this dynamic analysis canould not work because the parameters of DFIGs are not accurate enough. To solve the problem, an ensemble Kalman filter (EnKF) method is proposed for the state estimation and parameter calibration tasks. In this paper, a DFIG is modeled and implemented with the EnKFmore » method. Sensitivity analysis is demonstrated regarding the measurement noise, initial state errors and parameter errors. The results indicate this EnKF method has a robust performance on the state estimation and parameter calibration of DFIGs.« less
A simple dynamic subgrid-scale model for LES of particle-laden turbulence
NASA Astrophysics Data System (ADS)
Park, George Ilhwan; Bassenne, Maxime; Urzay, Javier; Moin, Parviz
2017-04-01
In this study, a dynamic model for large-eddy simulations is proposed in order to describe the motion of small inertial particles in turbulent flows. The model is simple, involves no significant computational overhead, contains no adjustable parameters, and is flexible enough to be deployed in any type of flow solvers and grids, including unstructured setups. The approach is based on the use of elliptic differential filters to model the subgrid-scale velocity. The only model parameter, which is related to the nominal filter width, is determined dynamically by imposing consistency constraints on the estimated subgrid energetics. The performance of the model is tested in large-eddy simulations of homogeneous-isotropic turbulence laden with particles, where improved agreement with direct numerical simulation results is observed in the dispersed-phase statistics, including particle acceleration, local carrier-phase velocity, and preferential-concentration metrics.
Remote sensing of Gulf Stream using GEOS-3 radar altimeter
NASA Technical Reports Server (NTRS)
Leitao, C. D.; Huang, N. E.; Parra, C. G.
1978-01-01
Radar altimeter measurements from the GEOS-3 satellite to the ocean surface indicated the presence of expected geostrophic height differences across the the Gulf Stream. Dynamic sea surface heights were found by both editing and filtering the raw sea surface heights and then referencing these processed data to a 5 minute x 5 minute geoid. Any trend between the processed data and the geoid was removed by subtracting out a linear fit to the residuals in the open ocean. The mean current velocity of 107 + or - 29 cm/sec calculated from the dynamic heights for all orbits corresponded with velocities obtained from hydrographic methods. Also, dynamic topographic maps were produced for August, September, and October 1975. Results pointed out limitations in the accuracy of the geoid, height anomaly deteriorations due to filtering, and lack of dense time and space distribution of measurements.
Directional bilateral filters for smoothing fluorescence microscopy images
NASA Astrophysics Data System (ADS)
Venkatesh, Manasij; Mohan, Kavya; Seelamantula, Chandra Sekhar
2015-08-01
Images obtained through fluorescence microscopy at low numerical aperture (NA) are noisy and have poor resolution. Images of specimens such as F-actin filaments obtained using confocal or widefield fluorescence microscopes contain directional information and it is important that an image smoothing or filtering technique preserve the directionality. F-actin filaments are widely studied in pathology because the abnormalities in actin dynamics play a key role in diagnosis of cancer, cardiac diseases, vascular diseases, myofibrillar myopathies, neurological disorders, etc. We develop the directional bilateral filter as a means of filtering out the noise in the image without significantly altering the directionality of the F-actin filaments. The bilateral filter is anisotropic to start with, but we add an additional degree of anisotropy by employing an oriented domain kernel for smoothing. The orientation is locally adapted using a structure tensor and the parameters of the bilateral filter are optimized for within the framework of statistical risk minimization. We show that the directional bilateral filter has better denoising performance than the traditional Gaussian bilateral filter and other denoising techniques such as SURE-LET, non-local means, and guided image filtering at various noise levels in terms of peak signal-to-noise ratio (PSNR). We also show quantitative improvements in low NA images of F-actin filaments.
Experiments with explicit filtering for LES using a finite-difference method
NASA Technical Reports Server (NTRS)
Lund, T. S.; Kaltenbach, H. J.
1995-01-01
The equations for large-eddy simulation (LES) are derived formally by applying a spatial filter to the Navier-Stokes equations. The filter width as well as the details of the filter shape are free parameters in LES, and these can be used both to control the effective resolution of the simulation and to establish the relative importance of different portions of the resolved spectrum. An analogous, but less well justified, approach to filtering is more or less universally used in conjunction with LES using finite-difference methods. In this approach, the finite support provided by the computational mesh as well as the wavenumber-dependent truncation errors associated with the finite-difference operators are assumed to define the filter operation. This approach has the advantage that it is also 'automatic' in the sense that no explicit filtering: operations need to be performed. While it is certainly convenient to avoid the explicit filtering operation, there are some practical considerations associated with finite-difference methods that favor the use of an explicit filter. Foremost among these considerations is the issue of truncation error. All finite-difference approximations have an associated truncation error that increases with increasing wavenumber. These errors can be quite severe for the smallest resolved scales, and these errors will interfere with the dynamics of the small eddies if no corrective action is taken. Years of experience at CTR with a second-order finite-difference scheme for high Reynolds number LES has repeatedly indicated that truncation errors must be minimized in order to obtain acceptable simulation results. While the potential advantages of explicit filtering are rather clear, there is a significant cost associated with its implementation. In particular, explicit filtering reduces the effective resolution of the simulation compared with that afforded by the mesh. The resolution requirements for LES are usually set by the need to capture most of the energy-containing eddies, and if explicit filtering is used, the mesh must be enlarged so that these motions are passed by the filter. Given the high cost of explicit filtering, the following interesting question arises. Since the mesh must be expanded in order to perform the explicit filter, might it be better to take advantage of the increased resolution and simply perform an unfiltered simulation on the larger mesh? The cost of the two approaches is roughly the same, but the philosophy is rather different. In the filtered simulation, resolution is sacrificed in order to minimize the various forms of numerical error. In the unfiltered simulation, the errors are left intact, but they are concentrated at very small scales that could be dynamically unimportant from a LES perspective. Very little is known about this tradeoff and the objective of this work is to study this relationship in high Reynolds number channel flow simulations using a second-order finite-difference method.
Bowtie filters for dedicated breast CT: Analysis of bowtie filter material selection.
Kontson, Kimberly; Jennings, Robert J
2015-09-01
For a given bowtie filter design, both the selection of material and the physical design control the energy fluence, and consequently the dose distribution, in the object. Using three previously described bowtie filter designs, the goal of this work is to demonstrate the effect that different materials have on the bowtie filter performance measures. Three bowtie filter designs that compensate for one or more aspects of the beam-modifying effects due to the differences in path length in a projection have been designed. The nature of the designs allows for their realization using a variety of materials. The designs were based on a phantom, 14 cm in diameter, composed of 40% fibroglandular and 60% adipose tissue. Bowtie design #1 is based on single material spectral matching and produces nearly uniform spectral shape for radiation incident upon the detector. Bowtie design #2 uses the idea of basis-material decomposition to produce the same spectral shape and intensity at the detector, using two different materials. With bowtie design #3, it is possible to eliminate the beam hardening effect in the reconstructed image by adjusting the bowtie filter thickness so that the effective attenuation coefficient for every ray is the same. Seven different materials were chosen to represent a range of chemical compositions and densities. After calculation of construction parameters for each bowtie filter design, a bowtie filter was created using each of these materials (assuming reasonable construction parameters were obtained), resulting in a total of 26 bowtie filters modeled analytically and in the penelope Monte Carlo simulation environment. Using the analytical model of each bowtie filter, design profiles were obtained and energy fluence as a function of fan-angle was calculated. Projection images with and without each bowtie filter design were also generated using penelope and reconstructed using FBP. Parameters such as dose distribution, noise uniformity, and scatter were investigated. Analytical calculations with and without each bowtie filter show that some materials for a given design produce bowtie filters that are too large for implementation in breast CT scanners or too small to accurately manufacture. Results also demonstrate the ability to manipulate the energy fluence distribution (dynamic range) by using different materials, or different combinations of materials, for a given bowtie filter design. This feature is especially advantageous when using photon counting detector technology. Monte Carlo simulation results from penelope show that all studied material choices for bowtie design #2 achieve nearly uniform dose distribution, noise uniformity index less than 5%, and nearly uniform scatter-to-primary ratio. These same features can also be obtained using certain materials with bowtie designs #1 and #3. With the three bowtie filter designs used in this work, the selection of material is an important design consideration. An appropriate material choice can improve image quality, dose uniformity, and dynamic range.
Bowtie filters for dedicated breast CT: Analysis of bowtie filter material selection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kontson, Kimberly, E-mail: Kimberly.Kontson@fda.hhs.gov; Jennings, Robert J.
Purpose: For a given bowtie filter design, both the selection of material and the physical design control the energy fluence, and consequently the dose distribution, in the object. Using three previously described bowtie filter designs, the goal of this work is to demonstrate the effect that different materials have on the bowtie filter performance measures. Methods: Three bowtie filter designs that compensate for one or more aspects of the beam-modifying effects due to the differences in path length in a projection have been designed. The nature of the designs allows for their realization using a variety of materials. The designsmore » were based on a phantom, 14 cm in diameter, composed of 40% fibroglandular and 60% adipose tissue. Bowtie design #1 is based on single material spectral matching and produces nearly uniform spectral shape for radiation incident upon the detector. Bowtie design #2 uses the idea of basis-material decomposition to produce the same spectral shape and intensity at the detector, using two different materials. With bowtie design #3, it is possible to eliminate the beam hardening effect in the reconstructed image by adjusting the bowtie filter thickness so that the effective attenuation coefficient for every ray is the same. Seven different materials were chosen to represent a range of chemical compositions and densities. After calculation of construction parameters for each bowtie filter design, a bowtie filter was created using each of these materials (assuming reasonable construction parameters were obtained), resulting in a total of 26 bowtie filters modeled analytically and in the PENELOPE Monte Carlo simulation environment. Using the analytical model of each bowtie filter, design profiles were obtained and energy fluence as a function of fan-angle was calculated. Projection images with and without each bowtie filter design were also generated using PENELOPE and reconstructed using FBP. Parameters such as dose distribution, noise uniformity, and scatter were investigated. Results: Analytical calculations with and without each bowtie filter show that some materials for a given design produce bowtie filters that are too large for implementation in breast CT scanners or too small to accurately manufacture. Results also demonstrate the ability to manipulate the energy fluence distribution (dynamic range) by using different materials, or different combinations of materials, for a given bowtie filter design. This feature is especially advantageous when using photon counting detector technology. Monte Carlo simulation results from PENELOPE show that all studied material choices for bowtie design #2 achieve nearly uniform dose distribution, noise uniformity index less than 5%, and nearly uniform scatter-to-primary ratio. These same features can also be obtained using certain materials with bowtie designs #1 and #3. Conclusions: With the three bowtie filter designs used in this work, the selection of material is an important design consideration. An appropriate material choice can improve image quality, dose uniformity, and dynamic range.« less
Mcclenny, Levi D; Imani, Mahdi; Braga-Neto, Ulisses M
2017-11-25
Gene regulatory networks govern the function of key cellular processes, such as control of the cell cycle, response to stress, DNA repair mechanisms, and more. Boolean networks have been used successfully in modeling gene regulatory networks. In the Boolean network model, the transcriptional state of each gene is represented by 0 (inactive) or 1 (active), and the relationship among genes is represented by logical gates updated at discrete time points. However, the Boolean gene states are never observed directly, but only indirectly and incompletely through noisy measurements based on expression technologies such as cDNA microarrays, RNA-Seq, and cell imaging-based assays. The Partially-Observed Boolean Dynamical System (POBDS) signal model is distinct from other deterministic and stochastic Boolean network models in removing the requirement of a directly observable Boolean state vector and allowing uncertainty in the measurement process, addressing the scenario encountered in practice in transcriptomic analysis. BoolFilter is an R package that implements the POBDS model and associated algorithms for state and parameter estimation. It allows the user to estimate the Boolean states, network topology, and measurement parameters from time series of transcriptomic data using exact and approximated (particle) filters, as well as simulate the transcriptomic data for a given Boolean network model. Some of its infrastructure, such as the network interface, is the same as in the previously published R package for Boolean Networks BoolNet, which enhances compatibility and user accessibility to the new package. We introduce the R package BoolFilter for Partially-Observed Boolean Dynamical Systems (POBDS). The BoolFilter package provides a useful toolbox for the bioinformatics community, with state-of-the-art algorithms for simulation of time series transcriptomic data as well as the inverse process of system identification from data obtained with various expression technologies such as cDNA microarrays, RNA-Seq, and cell imaging-based assays.
A Kalman Filtering Perspective for Multiatlas Segmentation*
Gao, Yi; Zhu, Liangjia; Cates, Joshua; MacLeod, Rob S.; Bouix, Sylvain; Tannenbaum, Allen
2016-01-01
In multiatlas segmentation, one typically registers several atlases to the novel image, and their respective segmented label images are transformed and fused to form the final segmentation. In this work, we provide a new dynamical system perspective for multiatlas segmentation, inspired by the following fact: The transformation that aligns the current atlas to the novel image can be not only computed by direct registration but also inferred from the transformation that aligns the previous atlas to the image together with the transformation between the two atlases. This process is similar to the global positioning system on a vehicle, which gets position by inquiring from the satellite and by employing the previous location and velocity—neither answer in isolation being perfect. To solve this problem, a dynamical system scheme is crucial to combine the two pieces of information; for example, a Kalman filtering scheme is used. Accordingly, in this work, a Kalman multiatlas segmentation is proposed to stabilize the global/affine registration step. The contributions of this work are twofold. First, it provides a new dynamical systematic perspective for standard independent multiatlas registrations, and it is solved by Kalman filtering. Second, with very little extra computation, it can be combined with most existing multiatlas segmentation schemes for better registration/segmentation accuracy. PMID:26807162
Angular-Rate Estimation Using Delayed Quaternion Measurements
NASA Technical Reports Server (NTRS)
Azor, R.; Bar-Itzhack, I. Y.; Harman, R. R.
1999-01-01
This paper presents algorithms for estimating the angular-rate vector of satellites using quaternion measurements. Two approaches are compared one that uses differentiated quaternion measurements to yield coarse rate measurements, which are then fed into two different estimators. In the other approach the raw quaternion measurements themselves are fed directly into the two estimators. The two estimators rely on the ability to decompose the non-linear part of the rotas rotational dynamics equation of a body into a product of an angular-rate dependent matrix and the angular-rate vector itself. This non unique decomposition, enables the treatment of the nonlinear spacecraft (SC) dynamics model as a linear one and, thus, the application of a PseudoLinear Kalman Filter (PSELIKA). It also enables the application of a special Kalman filter which is based on the use of the solution of the State Dependent Algebraic Riccati Equation (SDARE) in order to compute the gain matrix and thus eliminates the need to compute recursively the filter covariance matrix. The replacement of the rotational dynamics by a simple Markov model is also examined. In this paper special consideration is given to the problem of delayed quaternion measurements. Two solutions to this problem are suggested and tested. Real Rossi X-Ray Timing Explorer (RXTE) data is used to test these algorithms, and results are presented.
Gong, Jian; Stewart, Mark L.; Zelenyuk, Alla; ...
2018-01-03
The state-of-the-art multiscale modeling of gasoline particulate filter (GPF) including channel scale, wall scale, and pore scale is described. The microstructures of two GPFs were experimentally characterized. The pore size distributions of the GPFs were determined by mercury porosimetry. The porosity was measured by X-ray computed tomography (CT) and found to be inhomogeneous across the substrate wall. The significance of pore size distribution with respect to filtration performance was analyzed. The predictions of filtration efficiency were improved by including the pore size distribution in the filtration model. A dynamic heterogeneous multiscale filtration (HMF) model was utilized to simulate particulate filtrationmore » on a single channel particulate filter with realistic particulate emissions from a spark-ignition direct-injection (SIDI) gasoline engine. The dynamic evolution of filter’s microstructure and macroscopic filtration characteristics including mass- and number-based filtration efficiencies and pressure drop were predicted and discussed. In conclusion, the microstructure of the GPF substrate including inhomogeneous porosity and pore size distribution is found to significantly influence local particulate deposition inside the substrate and macroscopic filtration performance and is recommended to be resolved in the filtration model to simulate and evaluate the filtration performance of GPFs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gong, Jian; Stewart, Mark L.; Zelenyuk, Alla
The state-of-the-art multiscale modeling of gasoline particulate filter (GPF) including channel scale, wall scale, and pore scale is described. The microstructures of two GPFs were experimentally characterized. The pore size distributions of the GPFs were determined by mercury porosimetry. The porosity was measured by X-ray computed tomography (CT) and found to be inhomogeneous across the substrate wall. The significance of pore size distribution with respect to filtration performance was analyzed. The predictions of filtration efficiency were improved by including the pore size distribution in the filtration model. A dynamic heterogeneous multiscale filtration (HMF) model was utilized to simulate particulate filtrationmore » on a single channel particulate filter with realistic particulate emissions from a spark-ignition direct-injection (SIDI) gasoline engine. The dynamic evolution of filter’s microstructure and macroscopic filtration characteristics including mass- and number-based filtration efficiencies and pressure drop were predicted and discussed. In conclusion, the microstructure of the GPF substrate including inhomogeneous porosity and pore size distribution is found to significantly influence local particulate deposition inside the substrate and macroscopic filtration performance and is recommended to be resolved in the filtration model to simulate and evaluate the filtration performance of GPFs.« less
A distributed, dynamic, parallel computational model: the role of noise in velocity storage
Merfeld, Daniel M.
2012-01-01
Networks of neurons perform complex calculations using distributed, parallel computation, including dynamic “real-time” calculations required for motion control. The brain must combine sensory signals to estimate the motion of body parts using imperfect information from noisy neurons. Models and experiments suggest that the brain sometimes optimally minimizes the influence of noise, although it remains unclear when and precisely how neurons perform such optimal computations. To investigate, we created a model of velocity storage based on a relatively new technique–“particle filtering”–that is both distributed and parallel. It extends existing observer and Kalman filter models of vestibular processing by simulating the observer model many times in parallel with noise added. During simulation, the variance of the particles defining the estimator state is used to compute the particle filter gain. We applied our model to estimate one-dimensional angular velocity during yaw rotation, which yielded estimates for the velocity storage time constant, afferent noise, and perceptual noise that matched experimental data. We also found that the velocity storage time constant was Bayesian optimal by comparing the estimate of our particle filter with the estimate of the Kalman filter, which is optimal. The particle filter demonstrated a reduced velocity storage time constant when afferent noise increased, which mimics what is known about aminoglycoside ablation of semicircular canal hair cells. This model helps bridge the gap between parallel distributed neural computation and systems-level behavioral responses like the vestibuloocular response and perception. PMID:22514288
Forecasting Geomagnetic Activity Using Kalman Filters
NASA Astrophysics Data System (ADS)
Veeramani, T.; Sharma, A.
2006-05-01
The coupling of energy from the solar wind to the magnetosphere leads to the geomagnetic activity in the form of storms and substorms and are characterized by indices such as AL, Dst and Kp. The geomagnetic activity has been predicted near-real time using local linear filter models of the system dynamics wherein the time series of the input solar wind and the output magnetospheric response were used to reconstruct the phase space of the system by a time-delay embedding technique. Recently, the radiation belt dynamics have been studied using a adaptive linear state space model [Rigler et al. 2004]. This was achieved by assuming a linear autoregressive equation for the underlying process and an adaptive identification of the model parameters using a Kalman filter approach. We use such a model for predicting the geomagnetic activity. In the case of substorms, the Bargatze et al [1985] data set yields persistence like behaviour when a time resolution of 2.5 minutes was used to test the model for the prediction of the AL index. Unlike the local linear filters, which are driven by the solar wind input without feedback from the observations, the Kalman filter makes use of the observations as and when available to optimally update the model parameters. The update procedure requires the prediction intervals to be long enough so that the forecasts can be used in practice. The time resolution of the data suitable for such forecasting is studied by taking averages over different durations.
Separation of electrocardiographic from electromyographic signals using dynamic filtration.
Christov, Ivaylo; Raikova, Rositsa; Angelova, Silvija
2018-07-01
Trunk muscle electromyographic (EMG) signals are often contaminated by the electrical activity of the heart. During low or moderate muscle force, these electrocardiographic (ECG) signals disturb the estimation of muscle activity. Butterworth high-pass filters with cut-off frequency of up to 60 Hz are often used to suppress the ECG signal. Such filters disturb the EMG signal in both frequency and time domain. A new method based on the dynamic application of Savitzky-Golay filter is proposed. EMG signals of three left trunk muscles and pure ECG signal were recorded during different motor tasks. The efficiency of the method was tested and verified both with the experimental EMG signals and with modeled signals obtained by summing the pure ECG signal with EMG signals at different levels of signal-to-noise ratio. The results were compared with those obtained by application of high-pass, 4th order Butterworth filter with cut-off frequency of 30 Hz. The suggested method is separating the EMG signal from the ECG signal without EMG signal distortion across its entire frequency range regardless of amplitudes. Butterworth filter suppresses the signals in the 0-30 Hz range thus preventing the low-frequency analysis of the EMG signal. An additional disadvantage is that it passes high-frequency ECG signal components which is apparent at equal and higher amplitudes of the ECG signal as compared to the EMG signal. The new method was also successfully verified with abnormal ECG signals. Copyright © 2018. Published by Elsevier Ltd.
Madi, Mahmoud K; Karameh, Fadi N
2017-01-01
Kalman filtering methods have long been regarded as efficient adaptive Bayesian techniques for estimating hidden states in models of linear dynamical systems under Gaussian uncertainty. Recent advents of the Cubature Kalman filter (CKF) have extended this efficient estimation property to nonlinear systems, and also to hybrid nonlinear problems where by the processes are continuous and the observations are discrete (continuous-discrete CD-CKF). Employing CKF techniques, therefore, carries high promise for modeling many biological phenomena where the underlying processes exhibit inherently nonlinear, continuous, and noisy dynamics and the associated measurements are uncertain and time-sampled. This paper investigates the performance of cubature filtering (CKF and CD-CKF) in two flagship problems arising in the field of neuroscience upon relating brain functionality to aggregate neurophysiological recordings: (i) estimation of the firing dynamics and the neural circuit model parameters from electric potentials (EP) observations, and (ii) estimation of the hemodynamic model parameters and the underlying neural drive from BOLD (fMRI) signals. First, in simulated neural circuit models, estimation accuracy was investigated under varying levels of observation noise (SNR), process noise structures, and observation sampling intervals (dt). When compared to the CKF, the CD-CKF consistently exhibited better accuracy for a given SNR, sharp accuracy increase with higher SNR, and persistent error reduction with smaller dt. Remarkably, CD-CKF accuracy shows only a mild deterioration for non-Gaussian process noise, specifically with Poisson noise, a commonly assumed form of background fluctuations in neuronal systems. Second, in simulated hemodynamic models, parametric estimates were consistently improved under CD-CKF. Critically, time-localization of the underlying neural drive, a determinant factor in fMRI-based functional connectivity studies, was significantly more accurate under CD-CKF. In conclusion, and with the CKF recently benchmarked against other advanced Bayesian techniques, the CD-CKF framework could provide significant gains in robustness and accuracy when estimating a variety of biological phenomena models where the underlying process dynamics unfold at time scales faster than those seen in collected measurements.
2017-01-01
Kalman filtering methods have long been regarded as efficient adaptive Bayesian techniques for estimating hidden states in models of linear dynamical systems under Gaussian uncertainty. Recent advents of the Cubature Kalman filter (CKF) have extended this efficient estimation property to nonlinear systems, and also to hybrid nonlinear problems where by the processes are continuous and the observations are discrete (continuous-discrete CD-CKF). Employing CKF techniques, therefore, carries high promise for modeling many biological phenomena where the underlying processes exhibit inherently nonlinear, continuous, and noisy dynamics and the associated measurements are uncertain and time-sampled. This paper investigates the performance of cubature filtering (CKF and CD-CKF) in two flagship problems arising in the field of neuroscience upon relating brain functionality to aggregate neurophysiological recordings: (i) estimation of the firing dynamics and the neural circuit model parameters from electric potentials (EP) observations, and (ii) estimation of the hemodynamic model parameters and the underlying neural drive from BOLD (fMRI) signals. First, in simulated neural circuit models, estimation accuracy was investigated under varying levels of observation noise (SNR), process noise structures, and observation sampling intervals (dt). When compared to the CKF, the CD-CKF consistently exhibited better accuracy for a given SNR, sharp accuracy increase with higher SNR, and persistent error reduction with smaller dt. Remarkably, CD-CKF accuracy shows only a mild deterioration for non-Gaussian process noise, specifically with Poisson noise, a commonly assumed form of background fluctuations in neuronal systems. Second, in simulated hemodynamic models, parametric estimates were consistently improved under CD-CKF. Critically, time-localization of the underlying neural drive, a determinant factor in fMRI-based functional connectivity studies, was significantly more accurate under CD-CKF. In conclusion, and with the CKF recently benchmarked against other advanced Bayesian techniques, the CD-CKF framework could provide significant gains in robustness and accuracy when estimating a variety of biological phenomena models where the underlying process dynamics unfold at time scales faster than those seen in collected measurements. PMID:28727850
NASA Astrophysics Data System (ADS)
Gupta, Vaibhav; Wieman, Seth; Didkovsky, Leonid; Haiges, Ralf; Yao, Yuhan; Wu, Wei; Gruntman, Mike; Erwin, Dan
2015-09-01
Thin-film aluminum filters degrade in space with significant reduction of their Extreme Ultraviolet (EUV) transmission. This degradation was observed on the EUV Spectrophotometer (ESP) onboard the Solar Dynamics Observatory's EUV Variability Experiment and the Solar EUV Monitor (SEM) onboard the Solar and Heliospheric Observatory. One of the possible causes for deterioration of such filters over time is contamination of their surfaces from plumes coming from periodic firing of their satellite's Monomethylhydrazine (MMH) - Nitrogen Tetroxide (NTO) thrusters. When adsorbed by the filters, the contaminant molecules are exposed to solar irradiance and could lead to two possible compositions. First, they could get polymerized leading to a permanent hydrocarbon layer buildup on the filter's surface. Second, they could accelerate and increase the depth of oxidation into filter's bulk aluminum material. To study the phenomena we experimentally replicate contamination of such filters in a simulated environment by MMH-NTO plumes. We apply, Scanning Electron Microscopy and X-Ray photoelectron spectroscopy to characterize the physical and the chemical changes on these contaminated sample filter surfaces. In addition, we present our first analysis of the effects of additional protective layer coatings based on self-assembled carbon monolayers for aluminum filters. This coverage is expected to significantly decrease their susceptibility to contamination and reduce the overall degradation of filter-based EUV instruments over their mission life.
Hydrodynamics of microbial filter feeding
Asadzadeh, Seyed Saeed; Dölger, Julia; Walther, Jens H.; Andersen, Anders
2017-01-01
Microbial filter feeders are an important group of grazers, significant to the microbial loop, aquatic food webs, and biogeochemical cycling. Our understanding of microbial filter feeding is poor, and, importantly, it is unknown what force microbial filter feeders must generate to process adequate amounts of water. Also, the trade-off in the filter spacing remains unexplored, despite its simple formulation: A filter too coarse will allow suitably sized prey to pass unintercepted, whereas a filter too fine will cause strong flow resistance. We quantify the feeding flow of the filter-feeding choanoflagellate Diaphanoeca grandis using particle tracking, and demonstrate that the current understanding of microbial filter feeding is inconsistent with computational fluid dynamics (CFD) and analytical estimates. Both approaches underestimate observed filtration rates by more than an order of magnitude; the beating flagellum is simply unable to draw enough water through the fine filter. We find similar discrepancies for other choanoflagellate species, highlighting an apparent paradox. Our observations motivate us to suggest a radically different filtration mechanism that requires a flagellar vane (sheet), something notoriously difficult to visualize but sporadically observed in the related choanocytes (sponges). A CFD model with a flagellar vane correctly predicts the filtration rate of D. grandis, and using a simple model we can account for the filtration rates of other microbial filter feeders. We finally predict how optimum filter mesh size increases with cell size in microbial filter feeders, a prediction that accords very well with observations. We expect our results to be of significance for small-scale biophysics and trait-based ecological modeling. PMID:28808016
Hydrodynamics of microbial filter feeding.
Nielsen, Lasse Tor; Asadzadeh, Seyed Saeed; Dölger, Julia; Walther, Jens H; Kiørboe, Thomas; Andersen, Anders
2017-08-29
Microbial filter feeders are an important group of grazers, significant to the microbial loop, aquatic food webs, and biogeochemical cycling. Our understanding of microbial filter feeding is poor, and, importantly, it is unknown what force microbial filter feeders must generate to process adequate amounts of water. Also, the trade-off in the filter spacing remains unexplored, despite its simple formulation: A filter too coarse will allow suitably sized prey to pass unintercepted, whereas a filter too fine will cause strong flow resistance. We quantify the feeding flow of the filter-feeding choanoflagellate Diaphanoeca grandis using particle tracking, and demonstrate that the current understanding of microbial filter feeding is inconsistent with computational fluid dynamics (CFD) and analytical estimates. Both approaches underestimate observed filtration rates by more than an order of magnitude; the beating flagellum is simply unable to draw enough water through the fine filter. We find similar discrepancies for other choanoflagellate species, highlighting an apparent paradox. Our observations motivate us to suggest a radically different filtration mechanism that requires a flagellar vane (sheet), something notoriously difficult to visualize but sporadically observed in the related choanocytes (sponges). A CFD model with a flagellar vane correctly predicts the filtration rate of D. grandis , and using a simple model we can account for the filtration rates of other microbial filter feeders. We finally predict how optimum filter mesh size increases with cell size in microbial filter feeders, a prediction that accords very well with observations. We expect our results to be of significance for small-scale biophysics and trait-based ecological modeling.