Science.gov

Sample records for dynamic galactic mass

  1. Masses, luminosities and dynamics of galactic molecular clouds

    NASA Technical Reports Server (NTRS)

    Solomon, P. M.; Rivolo, A. R.; Mooney, T. J.; Barrett, J. W.; Sage, L. J.

    1987-01-01

    Star formation in galaxies takes place in molecular clouds and the Milky Way is the only galaxy in which it is possible to resolve and study the physical properties and star formation activity of individual clouds. The masses, luminosities, dynamics, and distribution of molecular clouds, primarily giant molecular clouds in the Milky Way are described and analyzed. The observational data sets are the Massachusetts-Stony Brook CO Galactic Plane Survey and the IRAS far IR images. The molecular mass and infrared luminosities of glactic clouds are then compared with the molecular mass and infrared luminosities of external galaxies.

  2. Impact Crises, Mass Extinctions, and Galactic Dynamics: A Unified Theory

    NASA Technical Reports Server (NTRS)

    Rampino, M.R.

    1997-01-01

    A general hypothesis linking mass extinctions of life with impacts of large asteroids and comets is based on astronomical data, impact dynamics, and geological information. The waiting times of large-body impacts on the Earth, derived from the flux of Earth-crossing asteroids and comets, and the estimated size of impacts capable of causing large-scale environmental disasters predict that impacts of objects (sup 3)5 km in diameter ((sup 3)10(exp 7) Mt TNT equivalent) could be sufficient to explain the record of about 25 extinction pulses in the last 540 m.y., with the five recorded major mass extinctions related to the impacts of the largest objects of (sup 3)10 km in diameter ( (sup 3)10(exp 8) Mt events). Smaller impacts (about 10(exp 6)-10(exp 7) Mt), with significant regional and even global environmental effects, could be responsible for the lesser boundaries in the geologic record. Tests of the "kill curve" relationship for impact-induced extinctions based on new data on extinction intensities and several well-dated large impact craters suggest that major mass extinctions require large impacts, and that a step in the kill curve may exist at impacts that produce craters of -100 km diameter, with smaller impacts capable of only relatively weak extinction pulses. Single impact craters < about 60 km in diameter should not be associated with global extinction pulses detectable in the Sepkoski database (although they may explain stage and zone boundaries marked by lesser faunal turnover), but multiple impacts in that size range may produce significant stepped extinction pulses. Statistical tests of the last occurrences of species at mass-extinction boundaries are generally consistent with predictions for abrupt or stepped extinctions, and several boundaries are known to show "catastrophic" signatures of environmental disasters and biomass crash, impoverished postextinction fauna and flora dominated by stress-tolerant and opportunistic species, and gradual ecological

  3. On the mass of ultra-light bosonic dark matter from galactic dynamics

    SciTech Connect

    Lora, V.; Grebel, E.K.; Magaña, Juan; Sánchez-Salcedo, F.J.; Bernal, Argelia E-mail: jmagana@astroscu.unam.mx E-mail: jsanchez@astroscu.unam.mx

    2012-02-01

    We consider the hypothesis that galactic dark matter is composed of ultra-light scalar particles and use internal properties of dwarf spheroidal galaxies to establish a preferred range for the mass m{sub φ} of these bosonic particles. We re-investigate the problem of the longevity of the cold clump in Ursa Minor and the problem of the rapid orbital decay of the globular clusters in Fornax and dwarf ellipticals. Treating the scalar field halo as a rigid background gravitational potential and using N-body simulations, we have explored how the dissolution timescale of the cold clump in Ursa Minor depends on m{sub φ}. It is demonstrated that for masses in the range 0.3 × 10{sup −22} eV < m{sub φ} < 1 × 10{sup −22} eV, scalar field dark halos without self-interaction would have cores large enough to explain the longevity of the cold clump in Ursa Minor and the wide distribution of globular clusters in Fornax, but small enough to make the mass of the dark halos compatible with dynamical limits. It is encouraging to see that this interval of m{sub φ} is consistent with that needed to suppress the overproduction of substructure in galactic halos and is compatible with the acoustic peaks of cosmic microwave radiation. On the other hand, for self-interacting scalar fields with coupling constant λ, values of m{sub φ}{sup 4}/λ∼<0.55 × 10{sup 3} eV{sup 4} are required to account for the properties of the dark halos of these dwarf spheroidal galaxies.

  4. Masses for Galactic Beat Cepheids

    NASA Astrophysics Data System (ADS)

    D'Cruz, Noella L.; Morgan, Siobahn M.; Böhm-Vitense, Erika

    2000-08-01

    Accurate mass determinations for Cepheids may be used to determine the degree of excess mixing in the interiors of their main-sequence progenitors: the larger the excess mixing, the larger the luminosity of the Cepheid of a given mass, or the smaller the mass of a Cepheid with given luminosity. Dynamical masses determined recently for a few Cepheid binaries indicate excess mixing somewhat stronger than that corresponding to the convective overshoot models by Schaller et al. Beat Cepheids can be used similarly to test main-sequence mixing in stellar interiors. The period ratios for beat Cepheids depend on luminosity, Teff, heavy element abundance, and mass. By comparing pulsational models and the observationally derived luminosity, Teff, metallicities, and period ratios it is possible to obtain masses for these stars, the so-called beat masses. With the old opacities masses much smaller than the evolutionary masses were obtained. With the new OPAL opacities a beat mass close to the dynamical mass was obtained for the binary beat Cepheid Y Carinae, showing that it is now possible to obtain reliable beat masses. In this paper, we determine beat masses for seven Galactic beat Cepheids for which photometric and spectroscopic data are available. We find an average mass around 4.2+/-0.3 Msolar for these stars, though the actual error limits for each star may be larger mainly because of uncertainties in E(B-V) and the heavy element abundances. (As derived spectroscopically, beat Cepheids are in general metal-poor, with -0.4<~[Fe/H]<~0.0). The relation between the derived beat masses and the luminosities again indicates excess mixing that is somewhat larger than that corresponding to the models by Schaller et al.

  5. CONNECTING ANGULAR MOMENTUM AND GALACTIC DYNAMICS: THE COMPLEX INTERPLAY BETWEEN SPIN, MASS, AND MORPHOLOGY

    SciTech Connect

    Teklu, Adelheid F.; Remus, Rhea-Silvia; Dolag, Klaus; Beck, Alexander M.; Burkert, Andreas; Schulze, Felix; Steinborn, Lisa K.; Schmidt, Andreas S.

    2015-10-10

    The evolution and distribution of the angular momentum of dark matter (DM) halos have been discussed in several studies over the past decades. In particular, the idea arose that angular momentum conservation should allow us to infer the total angular momentum of the entire DM halo from measuring the angular momentum of the baryonic component, which is populating the center of the halo, especially for disk galaxies. To test this idea and to understand the connection between the angular momentum of the DM halo and its galaxy, we use a state-of-the-art, hydrodynamical cosmological simulation taken from the set of Magneticum Pathfinder simulations. Thanks to the inclusion of the relevant physical processes, the improved underlying numerical methods, and high spatial resolution, we successfully produce populations of spheroidal and disk galaxies self-consistently. Thus, we are able to study the dependence of galactic properties on their morphology. We find that (1) the specific angular momentum of stars in disk and spheroidal galaxies as a function of their stellar mass compares well with observational results; (2) the specific angular momentum of the stars in disk galaxies is slightly smaller compared to the specific angular momentum of the cold gas, in good agreement with observations; (3) simulations including the baryonic component show a dichotomy in the specific stellar angular momentum distribution when splitting the galaxies according to their morphological type (this dichotomy can also be seen in the spin parameter, where disk galaxies populate halos with slightly larger spin compared to spheroidal galaxies); (4) disk galaxies preferentially populate halos in which the angular momentum vector of the DM component in the central part shows a better alignment to the angular momentum vector of the entire halo; and (5) the specific angular momentum of the cold gas in disk galaxies is approximately 40% smaller than the specific angular momentum of the total DM halo

  6. Connecting Angular Momentum and Galactic Dynamics: The Complex Interplay between Spin, Mass, and Morphology

    NASA Astrophysics Data System (ADS)

    Teklu, Adelheid F.; Remus, Rhea-Silvia; Dolag, Klaus; Beck, Alexander M.; Burkert, Andreas; Schmidt, Andreas S.; Schulze, Felix; Steinborn, Lisa K.

    2015-10-01

    The evolution and distribution of the angular momentum of dark matter (DM) halos have been discussed in several studies over the past decades. In particular, the idea arose that angular momentum conservation should allow us to infer the total angular momentum of the entire DM halo from measuring the angular momentum of the baryonic component, which is populating the center of the halo, especially for disk galaxies. To test this idea and to understand the connection between the angular momentum of the DM halo and its galaxy, we use a state-of-the-art, hydrodynamical cosmological simulation taken from the set of Magneticum Pathfinder simulations. Thanks to the inclusion of the relevant physical processes, the improved underlying numerical methods, and high spatial resolution, we successfully produce populations of spheroidal and disk galaxies self-consistently. Thus, we are able to study the dependence of galactic properties on their morphology. We find that (1) the specific angular momentum of stars in disk and spheroidal galaxies as a function of their stellar mass compares well with observational results; (2) the specific angular momentum of the stars in disk galaxies is slightly smaller compared to the specific angular momentum of the cold gas, in good agreement with observations; (3) simulations including the baryonic component show a dichotomy in the specific stellar angular momentum distribution when splitting the galaxies according to their morphological type (this dichotomy can also be seen in the spin parameter, where disk galaxies populate halos with slightly larger spin compared to spheroidal galaxies); (4) disk galaxies preferentially populate halos in which the angular momentum vector of the DM component in the central part shows a better alignment to the angular momentum vector of the entire halo; and (5) the specific angular momentum of the cold gas in disk galaxies is approximately 40% smaller than the specific angular momentum of the total DM halo

  7. Hubble Space Telescope Proper Motion (HSTPROMO) Catalogs of Galactic Globular Clusters. III. Dynamical Distances and Mass-to-Light Ratios

    NASA Astrophysics Data System (ADS)

    Watkins, Laura L.; van der Marel, Roeland P.; Bellini, Andrea; Anderson, Jay

    2015-10-01

    We present dynamical distance estimates for 15 Galactic globular clusters (GCs) and use these to check the consistency of dynamical and photometric distance estimates. For most of the clusters, this is the first dynamical distance estimate ever determined. We extract proper-motion (PM) dispersion profiles using cleaned samples of bright stars from the Hubble Space Telescope PM catalogs recently presented in Bellini et al. and compile a set of line of sight (LOS) velocity-dispersion profiles from a variety of literature sources. Distances are then estimated by fitting spherical, non-rotating, isotropic, constant mass-to-light ratio (M/L) dynamical models to the PM and LOS dispersion profiles together. We compare our dynamical distance estimates with literature photometric estimates from the Harris GC catalog and find that the mean fractional difference between the two types is consistent with zero at just -1.9 ± 1.7%. This indicates that there are no significant biases in either estimation method and provides an important validation of the stellar-evolution theory that underlies photometric distance estimates. The analysis also estimates dynamical M/Ls for our clusters; on average, the dynamically inferred M/Ls agree with existing stellar-population-based M/Ls that assume a Chabrier initial mass function (IMF) to within -8.8 ± 6.4%, implying that such an IMF is consistent with our data. Our results are also consistent with a Kroupa IMF, but strongly rule out a Salpeter IMF. We detect no correlation between our M/L offsets from literature values and our distance offsets from literature values, strongly indicating that our methods are reliable and our results are robust. Based on proprietary and archival observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555.

  8. Special Features of Galactic Dynamics

    NASA Astrophysics Data System (ADS)

    Efthymiopoulos, Christos; Voglis, Nikos; Kalapotharakos, Constantinos

    This is an introductory article to some basic notions and currently open problems of galactic dynamics. The focus is on topics mostly relevant to the so-called `new methods' of celestial mechanics or Hamiltonian dynamics, as applied to the ellipsoidal components of galaxies, i.e., to the elliptical galaxies and to the dark halos and bulges of disk galaxies. Traditional topics such as Jeans theorem, the role of a `third integral' of motion, Nekhoroshev theory, violent relaxation, and the statistical mechanics of collisionless stellar systems are first discussed. The emphasis is on modern extrapolations of these old topics. Recent results from orbital and global dynamical studies of galaxies are then shortly reviewed. The role of various families of orbits in supporting self-consistency, as well as the role of chaos in galaxies, are stressed. A description is then given of the main numerical techniques of integration of the N-body problem in the framework of stellar dynamics and of the results obtained via N-Body experiments. A final topic is the secular evolution and self-organization of galactic systems.

  9. On some fundamental concepts of galactic dynamics

    NASA Astrophysics Data System (ADS)

    Ossipkov, L. P.

    2013-10-01

    We discuss the following fundamental concepts of galactic dynamics: (a) regular (smoothed) and irregular (random) forces, (b) truncation of the impact parameter, (c) the invariance of the Maxwellian velocity distribution, and (d) the Jeans theorem. Dedicated to Felix Alexandrovich Tsitsin (1931-2005)

  10. Galactic Dynamics and Evolution: Mergers and Infall

    NASA Astrophysics Data System (ADS)

    Weil, Melinda Loving

    1995-01-01

    Collisions and mergers are cited as culprits in the production of a large range of morphological phenomena observed in galaxies. Galactic interactions may generate faint structures, such as arcs and rings, or create an entirely different type of galaxy, depending on the types of galaxies involved and their orbital geometry. I develop detailed merger and infall models which are compared with observations in order to elucidate the dynamical processes which govern galactic formation and evolution. In a first project, the effect of including gas is studied in encounters between low-mass companions and elliptical galaxies which produce sharp-edged features called "shells." Ellipticals accrete gas, which may be important in constraining their evolution. Numerical simulations of tidal disruption of dwarf galaxies containing both gas and stars were performed. The stellar and gaseous components rapidly segregate to produce very different structures. Gaseous remnants are dense, concentrated structures that form when gas flows into the center of the galaxy. Star formation is expected in the nucleus, localized and distinctly separate from the stellar remnant. In a second project, the formation of a peculiar ring galaxy is modeled. The Cartwheel galaxy, in addition to an outer and inner ring, has several spokes which connect the two. In an attempt to reproduce the spokes, a fully self-consistent model is constructed in which a companion collides head-on with a primary consisting of a live halo and a disk containing both stars and gas. Stars and gas react to passage of the companion through the disk by producing a morphology similar to that of the Cartwheel. The region between the inner and outer rings contains several spokes with a clumpy, interrupted structure. Finally, models of both pairs and small groups of bulge-disk-halo galaxies are merged to form remnants that evince properties similar to elliptical galaxies. I analyze the spatial and kinematic characteristics of

  11. Galactic civilizations - Population dynamics and interstellar diffusion

    NASA Technical Reports Server (NTRS)

    Newman, W. I.; Sagan, C.

    1981-01-01

    A model is developed of the interstellar diffusion of galactic civilizations which takes into account the population dynamics of such civilizations. The problem is formulated in terms of potential theory, with a family of nonlinear partial differential and difference equations specifying population growth and diffusion for an organism with advantageous genes that undergoes random dispersal while increasing in population locally, and a population at zero population growth. In the case of nonlinear diffusion with growth and saturation, it is found that the colonization wavefront from the nearest independently arisen galactic civilization can have reached the earth only if its lifetime exceeds 2.6 million years, or 20 million years if discretization can be neglected. For zero population growth, the corresponding lifetime is 13 billion years. It is concluded that the earth is uncolonized not because interstellar spacefaring civilizations are rare, but because there are too many worlds to be colonized in the plausible colonization lifetime of nearby civilizations, and that there exist no very old galactic civilizations with a consistent policy of the conquest of inhabited worlds.

  12. Mass Distributions Implying Flat Galactic Rotation Curves

    ERIC Educational Resources Information Center

    Keeports, David

    2010-01-01

    The rotational speeds of stars in the disc of a spiral galaxy are virtually independent of the distances of the stars from the centre of the galaxy. In common parlance, the stellar speed versus distance plot known as a galactic rotation curve is by observation typically nearly flat. This observation provides strong evidence that most galactic…

  13. An Effective Initial Mass Function for Galactic Disks

    NASA Technical Reports Server (NTRS)

    Hollenbach, David

    2004-01-01

    We derive a semi-empirical effective galactic initial mass function (IMF), which represents the IMF averaged over the age of the galactic disk, from observational constraints. We assume that the star formation rate in a galaxy can be expressed as the product of the IMF,psi(m), which is a smooth function of mass m (in units of solar mass), and a time and space dependent rate zeta(sub *1). The mass dependence of the proposed IMF is determined by four parameters: the low-mass slope gamma, the high-mass slope -Gamma, the characteristic mass m(sub ch) at which the IMF turns over, and the upper limit on the mass, m(sub u).

  14. galpy: A python LIBRARY FOR GALACTIC DYNAMICS

    SciTech Connect

    Bovy, Jo

    2015-02-01

    I describe the design, implementation, and usage of galpy, a python package for galactic-dynamics calculations. At its core, galpy consists of a general framework for representing galactic potentials both in python and in C (for accelerated computations); galpy functions, objects, and methods can generally take arbitrary combinations of these as arguments. Numerical orbit integration is supported with a variety of Runge-Kutta-type and symplectic integrators. For planar orbits, integration of the phase-space volume is also possible. galpy supports the calculation of action-angle coordinates and orbital frequencies for a given phase-space point for general spherical potentials, using state-of-the-art numerical approximations for axisymmetric potentials, and making use of a recent general approximation for any static potential. A number of different distribution functions (DFs) are also included in the current release; currently, these consist of two-dimensional axisymmetric and non-axisymmetric disk DFs, a three-dimensional disk DF, and a DF framework for tidal streams. I provide several examples to illustrate the use of the code. I present a simple model for the Milky Way's gravitational potential consistent with the latest observations. I also numerically calculate the Oort functions for different tracer populations of stars and compare them to a new analytical approximation. Additionally, I characterize the response of a kinematically warm disk to an elliptical m = 2 perturbation in detail. Overall, galpy consists of about 54,000 lines, including 23,000 lines of code in the module, 11,000 lines of test code, and about 20,000 lines of documentation. The test suite covers 99.6% of the code. galpy is available at http://github.com/jobovy/galpy with extensive documentation available at http://galpy.readthedocs.org/en/latest.

  15. galpy: A python Library for Galactic Dynamics

    NASA Astrophysics Data System (ADS)

    Bovy, Jo

    2015-02-01

    I describe the design, implementation, and usage of galpy, a python package for galactic-dynamics calculations. At its core, galpy consists of a general framework for representing galactic potentials both in python and in C (for accelerated computations); galpy functions, objects, and methods can generally take arbitrary combinations of these as arguments. Numerical orbit integration is supported with a variety of Runge-Kutta-type and symplectic integrators. For planar orbits, integration of the phase-space volume is also possible. galpy supports the calculation of action-angle coordinates and orbital frequencies for a given phase-space point for general spherical potentials, using state-of-the-art numerical approximations for axisymmetric potentials, and making use of a recent general approximation for any static potential. A number of different distribution functions (DFs) are also included in the current release; currently, these consist of two-dimensional axisymmetric and non-axisymmetric disk DFs, a three-dimensional disk DF, and a DF framework for tidal streams. I provide several examples to illustrate the use of the code. I present a simple model for the Milky Way's gravitational potential consistent with the latest observations. I also numerically calculate the Oort functions for different tracer populations of stars and compare them to a new analytical approximation. Additionally, I characterize the response of a kinematically warm disk to an elliptical m = 2 perturbation in detail. Overall, galpy consists of about 54,000 lines, including 23,000 lines of code in the module, 11,000 lines of test code, and about 20,000 lines of documentation. The test suite covers 99.6% of the code. galpy is available at http://github.com/jobovy/galpy with extensive documentation available at http://galpy.readthedocs.org/en/latest.

  16. Dynamical Simulations of Molecular Clouds in the Galactic Center

    NASA Astrophysics Data System (ADS)

    Salas, Jesus; Morris, Mark

    2016-06-01

    The formation of the central massive cluster of young stars orbiting the Galactic black hole, Sgr A*, has been modeled by several groups by invoking an almost radially infalling molecular cloud that interacts with the black hole and creates a dense, gaseous disk in which stars can then form. However, the dynamical origin of such a cloud remains an open question. We present simulations of the central 30-100 pc of the Milky Way, starting from a population of molecular clouds located in a disk with scale height of ~30 pc, using the N-body/smoothed-particle hydrodynamics code, Gadget2. We followed the dynamical evolution of clouds in a galactic potential that includes a bar to explore whether cloud collisions or a succession of cloud scatterings can remove sufficient angular momentum from a massive cloud to endow it with a predominantly radial orbit. Initial results illustrate the importance of tidal shear; while dense cloud cores remain identifiable for extended periods of time, much of the molecular mass ends up in tidal streams, so cannot be deflected onto low angular momentum orbits by their mutual interactions. At the completion of our ongoing computations, we will report on whether the cloud cores can undergo sufficient scattering to achieve low-angular-momentum orbits.

  17. New Insights on the Galactic Bulge Initial Mass Function

    NASA Astrophysics Data System (ADS)

    Calamida, A.; Sahu, K. C.; Casertano, S.; Anderson, J.; Cassisi, S.; Gennaro, M.; Cignoni, M.; Brown, T. M.; Kains, N.; Ferguson, H.; Livio, M.; Bond, H. E.; Buonanno, R.; Clarkson, W.; Ferraro, I.; Pietrinferni, A.; Salaris, M.; Valenti, J.

    2015-09-01

    We have derived the Galactic bulge initial mass function (IMF) of the Sagittarius Window Eclipsing Extrasolar Planet Search field in the mass range 0.15 \\lt M/{M}⊙ 1.0, using deep photometry collected with the Advanced Camera for Surveys on the Hubble Space Telescope. Observations at several epochs, spread over 9 years, allowed us to separate the disk and bulge stars down to very faint magnitudes, F814W ≈ 26 mag, with a proper-motion accuracy better than 0.5 mas yr-1 (20 km s-1). This allowed us to determine the IMF of the pure bulge component uncontaminated by disk stars for this low-reddening field in the Sagittarius window. In deriving the mass function, we took into account the presence of unresolved binaries, errors in photometry, distance modulus and reddening, as well as the metallicity dispersion and the uncertainties caused by adopting different theoretical color-temperature relations. We found that the Galactic bulge IMF can be fitted with two power laws with a break at M˜ 0.56 {M}⊙ , the slope being steeper (α =-2.41+/- 0.50) for the higher masses, and shallower (α =-1.25+/- 0.20) for the lower masses. In the high-mass range, our derived mass function agrees well with the mass function derived for other regions of the bulge. In the low-mass range however, our mass function is slightly shallower, which suggests that separating the disk and bulge components is particularly important in the low-mass range. The slope of the bulge mass function is also similar to the slope of the mass function derived for the disk in the high-mass regime, but the bulge mass function is slightly steeper in the low-mass regime. We used our new mass function to derive stellar mass-to-light values for the Galactic bulge and we obtained 2.1 \\lt M/{L}F814W \\lt 2.4 and 3.1 \\lt M/{L}F606W \\lt 3.6 according to different assumptions on the slope of the IMF for masses larger than 1{M}⊙ . Based on observations made with the NASA/ESA Hubble Space Telescope, obtained by the

  18. On the temporal evolution of the stellar mass function of Galactic clusters

    NASA Astrophysics Data System (ADS)

    De Marchi, Guido; Paresce, Francesco; Portegies Zwart, Simon

    2010-01-01

    We show that we can obtain a good fit to the present-day stellar-mass functions of a large sample of young and old Galactic clusters with a tapered Salpeter power-law distribution function with an exponential truncation of the form dN/dm ∝ mα [1 - exp(-m/mc)β]. The average value of the power-law index α is ~-2.2, very close to the Salpeter value of -2.3, while the characteristic mass, mc, is in the range 0.1-0.6M⊙ and does not seem to vary in any systematic way with the present cluster parameters such as metal abundance, total cluster mass or central concentration. However, the characteristic mass shows a remarkable correlation with the dynamical age of the cluster, namely mc/M⊙ ≃ 0.15 + 0.5 × t3/4dyn, where tdyn is the dynamical time, taken as the ratio of cluster age and dissolution time. The small scatter around this correlation is likely due to uncertainties on the estimated value of tdyn. We attribute the observed trend to the onset of mass segregation through two-body relaxation in a tidal environment, causing preferential loss of low-mass stars from the cluster and hence a drift of the characteristic mass towards higher values. If dynamical evolution is indeed at the origin of the observed trend, it seems plausible that globular clusters, now with mc ≃ 0.35M⊙, were born with a stellar mass function very similar to that measured today in the youngest Galactic clusters and with a value of mc around 0.15 M⊙. This is consistent with the absence of a turn-over in the mass function of the Galactic bulge down to the observational limit at ~0.2M⊙ and argues for the universality of the initial mass function of Population I and II stars.

  19. Dusty Mass Loss from Galactic Asymptotic Giant Branch Stars

    NASA Astrophysics Data System (ADS)

    Sargent, Benjamin A.; Srinivasan, Sundar; Meixner, Margaret; Kastner, Joel H.

    2016-06-01

    We are probing how mass loss from Asymptotic Giant Branch (AGB) stars depends upon their metallicity. Asymptotic giant branch (AGB) stars are evolved stars that eject large parts of their mass in outflows of dust and gas in the final stages of their lives. Our previous studies focused on mass loss from AGB stars in lower metallicity galaxies: the Large Magellanic Cloud (LMC) and the Small Magellanic Cloud (SMC). In our present study, we analyze AGB star mass loss in the Galaxy, with special attention to the Bulge, to investigate how mass loss differs in an overall higher metallicity environment. We construct radiative transfer models of the spectral energy distributions (SEDs) of stars in the Galaxy identified as AGB stars from infrared and optical surveys. Our Magellanic Cloud studies found that the AGB stars with the highest mass loss rates tended to have outflows with carbon-rich dust, and that overall more carbon-rich (C-rich) dust than oxygen-rich (O-rich) was produced by AGB stars in both LMC and SMC. Our radiative transfer models have enabled us to determine reliably the dust chemistry of the AGB star from the best-fit model. For our Galactic sample, we are investigating both the dust chemistries of the AGB stars and their mass-loss rates, to compare the balance of C-rich dust to O-rich dust between the Galactic bulge and the Magellanic Clouds. We are also constructing detailed dust opacity models of AGB stars in the Galaxy for which we have infrared spectra; e.g., from the Spitzer Space Telescope Infrared Spectrograph (IRS). This detailed dust modeling of spectra informs our choice of dust properties to use in radiative transfer modeling of SEDs of Galactic AGB stars. BAS acknowledges funding from NASA ADAP grant NNX15AF15G.

  20. Density wave theory. [interstellar gas dynamics and galactic shock waves

    NASA Technical Reports Server (NTRS)

    Roberts, W. W., Jr.

    1977-01-01

    The prospect that density waves and galactic shock waves are present on the large scale in disk shaped galaxies has received support in recent years from both theoretical and observational studies. Large-scale galactic shock waves in the interstellar gas are suggested to play an important governing role in star formation, molecule formation, and the degree of development of spiral structure. Through the dynamics of the interstellar gas and the galactic shock-wave phenomenon, a new insight into the physical basis underlying the morphological classification system of galaxies is suggested.

  1. The central mass and mass-to-light profile of the Galactic globular cluster M15

    NASA Astrophysics Data System (ADS)

    den Brok, Mark; van de Ven, Glenn; van den Bosch, Remco; Watkins, Laura

    2014-02-01

    We analyse line-of-sight velocity and proper motion data of stars in the Galactic globular cluster M15 using a new method to fit dynamical models to discrete kinematic data. Our fitting method maximizes the likelihood for individual stars and, as such, does not suffer the same loss of spatial and velocity information incurred when spatially binning data or measuring velocity moments. In this paper, we show that the radial variation in M15 of the mass-to-light ratio is consistent with previous estimates and theoretical predictions, which verifies our method. Our best-fitting axisymmetric Jeans models do include a central dark mass of ˜2 ± 1 × 103 M⊙, which can be explained by a high concentration of stellar remnants at the cluster centre. This paper shows that, from a technical point of view and with current computing power, spatial binning of data is no longer necessary. This not only leads to more accurate fits, but also avoids biased mass estimates due to the loss of resolution. Furthermore, we find that the mass concentration in M15 is significantly higher than previously measured, and is in close agreement with theoretical predictions for core-collapsed globular clusters without a central intermediate-mass black hole.

  2. Not enough stellar mass Machos in the Galactic halo

    NASA Astrophysics Data System (ADS)

    Lasserre, T.; Afonso, C.; Albert, J. N.; Andersen, J.; Ansari, R.; Aubourg, É.; Bareyre, P.; Bauer, F.; Beaulieu, J. P.; Blanc, G.; Bouquet, A.; Char, S.; Charlot, X.; Couchot, F.; Coutures, C.; Derue, F.; Ferlet, R.; Glicenstein, J. F.; Goldman, B.; Gould, A.; Graff, D.; Gros, M.; Haissinski, J.; Hamilton, J. C.; Hardin, D.; de Kat, J.; Kim, A.; Lesquoy, É.; Loup, C.; Magneville, C.; Mansoux, B.; Marquette, J. B.; Maurice, É.; Milsztajn, A.; Moniez, M.; Palanque-Delabrouille, N.; Perdereau, O.; Prévot, L.; Regnault, N.; Rich, J.; Spiro, M.; Vidal-Madjar, A.; Vigroux, L.; Zylberajch, S.; EROS Collaboration

    2000-03-01

    We combine new results from the search for microlensing towards the Large Magellanic Cloud (lmc) by eros2 (Expérience de Recherche d'Objets Sombres) with limits previously reported by eros1 and eros2 towards both Magellanic Clouds. The derived upper limit on the abundance of stellar mass macho s rules out such objects as an important component of the Galactic halo if their mass is smaller than 1 Msun. Based on observations made at the European Southern Observatory, La Silla, Chile.

  3. The chemical evolution of Dwarf Galaxies with galactic winds - the role of mass and gas distribution

    NASA Astrophysics Data System (ADS)

    Hensler, Gerhard; Recchi, Simone

    2015-08-01

    Energetic feedback from Supernovae and stellar winds can drive galactic winds. Dwarf galaxies (DGs), due to their shallower potential wells, are assumed to be more vulnera-ble to these energetic processes. Metal loss through galactic winds is also commonly invoked to explain the low metal content of DGs.Our main aim in this presentation is to show that galactic mass cannot be the only pa-rameter determining the fraction of metals lost by a galaxy. In particular, the distribution of gas must play an equally important role. We perform 2-D chemo-dynamical simula-tions of galaxies characterized by different gas distributions, masses and gas fractions. The gas distribution can change the fraction of lost metals through galactic winds by up to one order of magnitude. In particular, disk-like galaxies tend to lose metals more easily than roundish ones. Consequently, also the final element abundances attained by models with the same mass but with different gas distributions can vary by up to one dex. Confirming previous studies, we also show that the fate of gas and freshly pro-duced metals strongly depends on the mass of the galaxy. Smaller galaxies (with shal-lower potential wells) more easily develop large-scale outflows; therefore, the fraction of lost metals tends to be higher.Another important issue is that the invoked mechanism to transform central cusps to cored dark-matter distributions by baryon loss due to strong galactic winds cannot work in general, must be critically tested, and should be clearly discernible by the chemical evolution of DGs.

  4. Galactic evolution. I - Single-zone models. [encompassing stellar evolution and gas-star dynamic theories

    NASA Technical Reports Server (NTRS)

    Thuan, T. X.; Hart, M. H.; Ostriker, J. P.

    1975-01-01

    The two basic approaches of physical theory required to calculate the evolution of a galactic system are considered, taking into account stellar evolution theory and the dynamics of a gas-star system. Attention is given to intrinsic (stellar) physics, extrinsic (dynamical) physics, and computations concerning the fractionation of an initial mass of gas into stars. The characteristics of a 'standard' model and its variants are discussed along with the results obtained with the aid of these models.

  5. Multiscale mass transport in z ˜6 galactic discs: fuelling black holes

    NASA Astrophysics Data System (ADS)

    Prieto, Joaquin; Escala, Andrés

    2016-08-01

    By using Adaptive Mesh Refinement cosmological hydrodynamic N-body zoom-in simulations, with the RAMSES code, we studied the mass transport processes on to galactic nuclei from high redshift up to z ˜6. Due to the large dynamical range of the simulations, we were able to study the mass accretion process on scales from ˜50 kpc to ˜few 1 pc. We studied the black hole (BH) growth on to the Galactic Centre in relation with the mass transport processes associated to both the Reynolds stress and the gravitational stress on the disc. Such methodology allowed us to identify the main mass transport process as a function of the scales of the problem. We found that in simulations that include radiative cooling and supernovae feedback, the supermassive black hole (SMBH) grows at the Eddington limit for some periods of time presenting ≈ 0.5 throughout its evolution. The α parameter is dominated by the Reynolds term, αR, with αR ≫ 1. The gravitational part of the α parameter, αG, has an increasing trend towards the Galactic Centre at higher redshifts, with values αG ˜1 at radii ≲ few 101 pc contributing to the BH fuelling. In terms of torques, we also found that gravity has an increasing contribution towards the Galactic Centre at earlier epochs with a mixed contribution above ˜100 pc. This complementary work between pressure gradients and gravitational potential gradients allows an efficient mass transport on the disc with average mass accretion rates of the order of ˜few 1 M⊙ yr-1. These levels of SMBH accretion rates found in our cosmological simulations are needed in all models of SMBH growth that attempt to explain the formation of redshift 6-7 quasars.

  6. SAS-2 gamma-ray results from the galactic plane and their implications for galactic structure and galactic cosmic-ray dynamics

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.; Kniffen, D. A.; Thompson, D. J.

    1977-01-01

    The final SAS-2 results related to high energy galactic gamma-ray emission show a strong correlation with galactic structural features seen at other wavelenghts, when the known gamma-ray sources are subtracted. Theoretical considerations and analysis of the gamma-ray data suggest that the galactic cosmic rays are dynamically coupled to the interstellar matter through the magnetic fields, and hence the cosmic ray density is enhanced where the matter density is greatest on the scale of the galactic arms. This concept has been explored in a galactic model that assumes: (1) cosmic rays are galactic and not universal; (2)on the scale of the galactic arms, the cosmic ray column (surface) density is proportional to the total interstellar gas column density; (3)the cosmic ray scale height is significantly larger than the scale height to the matter; and (4) ours is a spiral galaxy characterized by an arm to interarm density ratio of over 2:1.

  7. The Modified Dynamics is Conducive to Galactic Warp Formation.

    PubMed

    Brada; Milgrom

    2000-03-01

    There is an effect in the modified dynamics that is conducive to the formation of warps. Because of the nonlinearity of the theory, the internal dynamics of a galaxy is affected by a perturber over and above possible tidal effects. For example, a relatively distant and light companion or the mean influence of a parent cluster, with negligible tidal effects, could still produce a significant warp in the outer part of a galactic disk. We present results of numerical calculations for simplified models that show, for instance, that a satellite with the (baryonic) mass and distance of the Magellanic Clouds can distort the axisymmetric field of the Milky Way enough to produce a warp of the magnitude (and position) observed. Details of the warp geometry remain to be explained; we use a static configuration that can produce only warps with a straight line of nodes. In more realistic simulations, one must reckon with the motion of the perturbing body, which sometimes occurs on timescales not much longer than the response time of the disk.

  8. The IMF at intermediate masses from Galactic Cepheids

    NASA Astrophysics Data System (ADS)

    Mor, R.; Robin, A. C.; Figueras, F.; Lemasle, B.

    2014-07-01

    Aims: To constrain the Initial Mass Function (IMF) of the Galactic young (<1 Gyr) thin Disc population using Cepheids. Methods: We have optimized the flexibility of the new Besançon Galaxy Model (Czekaj 2014) to simulate magnitude and distance complete samples of young intermediate mass stars assuming different IMFs and Star Formation Histories (SFH). Comparing the simulated synthetic catalogues with the observational data we studied which IMF reproduces better the observational number of Cepheids in the Galactic thin Disc. We analysed three different IMF: (1) Salpeter, (2) Kroupa-Haywood and (3) Haywood-Robin IMFs with a decreasing SFH from Aumer & Binney (2009). Results: For the first time the Besançon Galaxy Model is used to characterize the galactic Cepheids. We found that for most of the cases the Salpeter IMF overestimates the number of observed Cepheids and Haywood-Robin IMF underestimates it. The Kroupa-Haywood IMF, with a slope α = 3.2, is the one that best reproduces the observed Cepheids. From the comparison of the predicted and observed number of Cepheids up to V = 12, we point that the model might underestimate the scale height of the young population. Conclusions: In agreement with Kroupa & Weidner (2003) our study shows that the Salpeter IMF (α = 2.35) overestimates the star counts in the range 4 ≤ M/M⊙≤ 10 and supports the idea that the slope of the intermediate and massive stars IMF is steeper than the Salpeter IMF. The poster can be found online at: https://gaia.ub.edu/Twiki/pub/GREATITNFC/ProgramFinalconference/Poster_R._Mor_Great.pdf.

  9. Galactic civilizations: Population dynamics and interstellar diffusion

    NASA Technical Reports Server (NTRS)

    Newman, W. I.; Sagan, C.

    1978-01-01

    The interstellar diffusion of galactic civilizations is reexamined by potential theory; both numerical and analytical solutions are derived for the nonlinear partial differential equations which specify a range of relevant models, drawn from blast wave physics, soil science, and, especially, population biology. An essential feature of these models is that, for all civilizations, population growth must be limited by the carrying capacity of the environment. Dispersal is fundamentally a diffusion process; a density-dependent diffusivity describes interstellar emigration. Two models are considered: the first describing zero population growth (ZPG), and the second which also includes local growth and saturation of a planetary population, and for which an asymptotic traveling wave solution is found.

  10. Not enough stellar mass Machos in the Galactic halo

    NASA Astrophysics Data System (ADS)

    Milsztajn, A.; Lasserre, T.

    We present an update of results from the search for microlensing towards the Large Magellanic Cloud (lmc) by eros (Expérience de Recherche d'Objets Sombres). We have now monitored 25 million stars over three years. Because of the small number of observed microlensing candidates (four), our results are best presented as upper limits on the amount of dark compact objects in the halo of our Galaxy. We discuss critically the candidates and the possible location of the lenses, halo or lmc. We compare our results to those of the macho group. Finally, we combine these new results with those from our search towards the Small Magellanic Cloud as well as earlier ones from the eros1 phase of our survey. The combined data is sensitive to compact objects in the broad mass range 10-7 - 10 Msolar. The derived upper limit on the abundance of stellar mass machos rules out such objects as the dominant component of the Galactic halo if their mass is smaller than 2Msolar.

  11. Merging of unequal mass binary black holes in non-axisymmetric galactic nuclei

    NASA Astrophysics Data System (ADS)

    Berczik, Peter; Wang, Long; Nitadori, Keigo; Spurzem, Rainer

    2016-02-01

    In this work we study the stellar-dynamical hardening of unequal mass massive black hole (MBH) binaries in the central regions of galactic nuclei. We present a comprehensive set of direct N-body simulations of the problem, varying both the total mass and the mass ratio of the MBH binary. Our initial model starts as an axisymmetric, rotating galactic nucleus, to describe the situation right after the galaxies have merged, but the black holes are still unbound to each other. We confirm that results presented in earlier works (Berczik et al. 2006; Khan et al. 2013; Wang et al. 2014) about the solution of the ``last parsec problem'' (sufficiently fast black hole coalescence for black hole growth in cosmological context) are robust for both for the case of unequal black hole masses and large particle numbers. The MBH binary hardening rate depends on the reduced mass ratio through a single parameter function, which quantitatively quite well agrees with standard 3 body scattering theory (see e.g., Hills 1983). Based on our results we conclude that MBH binaries at high redshifts are expected to merge with a factor of ~ 2 more efficiently, which is important to determine the possible overall gravitational wave signals. However, we have not yet fully covered all the possible parameter space, in particular with respect to the preceding of the galaxy mergers, which may lead to a wider variety of initial models, such as initially more oblate and / or even significantly triaxial galactic nuclei. Our N-body simulations were carried out on a new special supercomputers using the hardware acceleration with graphic processing units (GPUs).

  12. ON THE TEMPORAL EVOLUTION OF THE STELLAR MASS FUNCTION IN GALACTIC CLUSTERS

    SciTech Connect

    De Marchi, Guido; Paresce, Francesco; Portegies Zwart, Simon E-mail: paresce@iasfbo.inaf.i

    2010-07-20

    We show that we can obtain a good fit to the present-day stellar mass functions (MFs) of a large sample of young and old Galactic clusters in the range 0.1-10 M{sub sun} with a tapered power-law distribution function with an exponential truncation of the form dN/dm{proportional_to}m{sup {alpha}} [1 -e{sup -}(m/m{sub c}){sup {beta}}]. The average value of the power-law index {alpha} is {approx}-2, that of {beta} is {approx}2.5, whereas the characteristic mass m{sub c} is in the range 0.1-0.8 M {sub sun} and does not seem to vary in any systematic way with the present cluster parameters such as metal abundance, total cluster mass, or central concentration. However, m{sub c} shows a remarkable correlation with the dynamical age of the cluster, namely, m{sub c} /M {sub sun} {approx_equal} 0.15 + 0.5 x {tau}{sup 3/4}{sub dyn}, where {tau}{sub dyn} is the dynamical age taken as the ratio of cluster age and dissolution time. The small scatter seen around this correlation is consistent with the uncertainties in the estimated value of {tau}{sub dyn}. We attribute the observed trend to the onset of mass segregation via two-body relaxation in a tidal environment, causing the preferential loss of low-mass stars from the cluster and hence a drift of the characteristic mass m{sub c} toward higher values. If dynamical evolution is indeed at the origin of the observed trend, it would seem plausible that high-concentration globular clusters, now with median m{sub c} {approx_equal} 0.33 M{sub sun}, were born with a stellar MF very similar to that measured today in the youngest Galactic clusters and with a value of m{sub c} {approx_equal} 0.15 M{sub sun}. This hypothesis is consistent with the absence of a turnover in the MF of the Galactic bulge down to the observational limit at {approx}0.2 M{sub sun} and, if correct, it would carry the implication that the characteristic mass is not set by the thermal Jeans mass of the cloud.

  13. The ACS Survey of Galactic Globular Clusters. VIII. Effects of Environment on Globular Cluster Global Mass Functions

    NASA Astrophysics Data System (ADS)

    Paust, Nathaniel E. Q.; Reid, I. Neill; Piotto, Giampaolo; Aparicio, Antonio; Anderson, Jay; Sarajedini, Ata; Bedin, Luigi R.; Chaboyer, Brian; Dotter, Aaron; Hempel, Maren; Majewski, Steven; Marín-Franch, A.; Milone, Antonino; Rosenberg, Alfred; Siegel, Michael

    2010-02-01

    We have used observations obtained as part of the Hubble Space Telescope/ACS Survey of Galactic Globular Clusters to construct global present-day mass functions for 17 globular clusters utilizing multi-mass King models to extrapolate from our observations to the global cluster behavior. The global present-day mass functions for these clusters are well matched by power laws from the turnoff, ≈0.8 M sun, to 0.2-0.3 M sun on the lower main sequence. The slopes of those power-law fits, α, have been correlated with an extensive set of intrinsic and extrinsic cluster properties to investigate which parameters may influence the form of the present-day mass function. We do not confirm previous suggestions of correlations between α and either metallicity or Galactic location. However, we do find a strong statistical correlation with the related parameters central surface brightness, μ V , and inferred central density, ρ0. The correlation is such that clusters with denser cores (stronger binding energy) tend to have steeper mass functions (a higher proportion of low-mass stars), suggesting that dynamical evolution due to external interactions may have played a key role in determining α. Thus, the present-day mass function may owe more to nurture than to nature. Detailed modeling of external dynamical effects is therefore a requisite for determining the initial mass function for Galactic globular clusters.

  14. THE ACS SURVEY OF GALACTIC GLOBULAR CLUSTERS. VIII. EFFECTS OF ENVIRONMENT ON GLOBULAR CLUSTER GLOBAL MASS FUNCTIONS

    SciTech Connect

    Paust, Nathaniel E. Q.; Reid, I. Neill; Anderson, Jay E-mail: inr@stsci.edu

    2010-02-15

    We have used observations obtained as part of the Hubble Space Telescope/ACS Survey of Galactic Globular Clusters to construct global present-day mass functions for 17 globular clusters utilizing multi-mass King models to extrapolate from our observations to the global cluster behavior. The global present-day mass functions for these clusters are well matched by power laws from the turnoff, {approx}0.8 M {sub sun}, to 0.2-0.3 M {sub sun} on the lower main sequence. The slopes of those power-law fits, {alpha}, have been correlated with an extensive set of intrinsic and extrinsic cluster properties to investigate which parameters may influence the form of the present-day mass function. We do not confirm previous suggestions of correlations between {alpha} and either metallicity or Galactic location. However, we do find a strong statistical correlation with the related parameters central surface brightness, {mu} {sub V}, and inferred central density, {rho}{sub 0}. The correlation is such that clusters with denser cores (stronger binding energy) tend to have steeper mass functions (a higher proportion of low-mass stars), suggesting that dynamical evolution due to external interactions may have played a key role in determining {alpha}. Thus, the present-day mass function may owe more to nurture than to nature. Detailed modeling of external dynamical effects is therefore a requisite for determining the initial mass function for Galactic globular clusters.

  15. Galactic dynamics in the times of Gaia

    NASA Astrophysics Data System (ADS)

    Aguilar, L. A.

    2016-08-01

    We present a brief description of the Gaia astrometric mission and its current status. We discuss the importance of creating realistic ``mock catalogues'' to compare models and data in the space of Gaia observables, rather than mapping observables into spaces of theoretical parameters. We talk about some important lessons we have learnt in the process and end up describing some projects of interest for the dynamics and structure of our Galaxy that we have studied in the space of Gaia observables.

  16. Cloud-particle galactic gas dynamics and star formation

    NASA Technical Reports Server (NTRS)

    Roberts, W. W., Jr.

    1983-01-01

    Galactic gas dynamics, spiral structure, and star formation are discussed in relation to N-body computational studies based on a cloud-particle model of the interstellar medium. On the small scale, the interstellar medium is seen as cloud-dominated and supernova-perturbed. It is noted that the cloud-particle model simulates cloud-cloud collisions, the formation of stellar associations, and supernova explosions as dominant local processes. On the large scale, in response to a spiral galactic gravitational field, global density waves and galactic shocks develop having large-scale characteristics similar to those found in continuum gas dynamical studies. Both the system of gas clouds and the system of young stellar associations forming from the clouds figure in the global spiral structure. However, with the attributes of neither assuming a continuum of gas (as in continuum gas dynamical studies) or requiring a prescribed equation of state (such as the isothermal condition), the cloud-particle picture retains much of the detail lost in earlier work. By detail is meant the small-scale features and structures so important in understanding the local, turbulent state of the interstellar medium as well as the degree of raggedness often seen to be superposed on the global spiral structure.

  17. A Galactic Plane relative extinction map from 2MASS

    NASA Astrophysics Data System (ADS)

    Froebrich, D.; Ray, T. P.; Murphy, G. C.; Scholz, A.

    2005-03-01

    We present three 14 400 square degree relative extinction maps of the Galactic Plane (|b| < 20°) obtained from 2MASS using accumulative star counts (Wolf diagrams). This method is independent of the colour of the stars and the variation of extinction with wavelength. Stars were counted in 3.5 × 3.5 boxes, every 20.1° × 1° surrounding fields were chosen for reference, hence the maps represent local extinction enhancements and ignore any contribution from the ISM or very large clouds. Data reduction was performed on a Beowulf-type cluster (in approximately 120 hours). Such a cluster is ideal for this type of work as areas of the sky can be independently processed in parallel. We studied how extinction depends on wavelength in all of the high extinction regions detected and within selected dark clouds. On average a power law opacity index (β) of 1.0 to 1.8 in the NIR was deduced. The index however differed significantly from region to region and even within individual dark clouds. That said, generally it was found to be constant, or to increase, with wavelength within a particular region.

  18. Galactic models; Proceedings of the 4th Florida Workshop on Nonlinear Dynamics, University of Florida, Gainesville, Mar. 1, 2, 1989

    NASA Astrophysics Data System (ADS)

    Buchler, J. Robert; Gottesman, S. T.; Hunter, J. H., Jr.

    1990-06-01

    Various papers on galactic models are presented. Individual topics addressed include: observations relating to galactic mass distributions; the structure of the Galaxy; mass distribution in spiral galaxies; rotation curves of spiral galaxies in clusters; grand design, multiple arm, and flocculent spiral galaxies; observations of barred spirals; ringed galaxies; elliptical galaxies; the modal approach to models of galaxies; self-consistent models of spiral galaxies; dynamical models of spiral galaxies; N-body models. Also discussed are: two-component models of galaxies; simulations of cloudy, gaseous galactic disks; numerical experiments on the stability of hot stellar systems; instabilities of slowly rotating galaxies; spiral structure as a recurrent instability; model gas flows in selected barred spiral galaxies; bar shapes and orbital stochasticity; three-dimensional models; polar ring galaxies; dynamical models of polar rings.

  19. Dynamical Mass Generation

    SciTech Connect

    Bashir, A.; Raya, A.

    2006-09-25

    Understanding the origin of mass, in particular that of the fermions, is one of the most uncanny problems which lie at the very frontiers of particle physics. Although the celebrated Standard Model accommodates these masses in a gauge invariant fashion, it fails to predict their values. Moreover, the mass thus generated accounts for only a very small percentage of the mass which permeates the visible universe. Most of the observed mass is accounted for by the strong interactions which bind quarks into protons and neutrons. How does that exactly happen in its quantitative details is still an unsolved mystery. Lattice formulation of quantum chromodynamics (QCD) or continuum studies of its Schwinger-Dyson equations (SDEs) are two of the non-perturbative means to try to unravel how quarks, starting from negligible current masses can acquire enormously large constituent masses to account for the observed proton and neutron masses. Analytical studies of SDEs in this context are extremely hard as one has to resort to truncation schemes whose quantitative reliability can be established only after a very careful analysis. Let alone the far more complicated realm of QCD, arriving at reliable truncation schemes in simpler scenarios such as quantum electrodynamics (QED) has also proved to be a hard nut to crack. In the last years, there has been an increasing group of physicists in Mexico which is taking up the challenge of understanding how the dynamical generation of mass can be understood in a reliable way through SDEs of gauge theories in various contexts such as (i) in arbitrary space-time dimensions d as well as d {<=} 4 (ii) finite temperatures and (ii) in the presence of magnetic fields. In this article, we summarise some of this work.

  20. Active galactic nucleus black hole mass estimates in the era of time domain astronomy

    SciTech Connect

    Kelly, Brandon C.; Treu, Tommaso; Pancoast, Anna; Malkan, Matthew; Woo, Jong-Hak

    2013-12-20

    We investigate the dependence of the normalization of the high-frequency part of the X-ray and optical power spectral densities (PSDs) on black hole mass for a sample of 39 active galactic nuclei (AGNs) with black hole masses estimated from reverberation mapping or dynamical modeling. We obtained new Swift observations of PG 1426+015, which has the largest estimated black hole mass of the AGNs in our sample. We develop a novel statistical method to estimate the PSD from a light curve of photon counts with arbitrary sampling, eliminating the need to bin a light curve to achieve Gaussian statistics, and we use this technique to estimate the X-ray variability parameters for the faint AGNs in our sample. We find that the normalization of the high-frequency X-ray PSD is inversely proportional to black hole mass. We discuss how to use this scaling relationship to obtain black hole mass estimates from the short timescale X-ray variability amplitude with precision ∼0.38 dex. The amplitude of optical variability on timescales of days is also anticorrelated with black hole mass, but with larger scatter. Instead, the optical variability amplitude exhibits the strongest anticorrelation with luminosity. We conclude with a discussion of the implications of our results for estimating black hole mass from the amplitude of AGN variability.

  1. The Observed Galactic Annihilation Line: Possible Signature of Accreting Small Mass Black Holes in the Galactic Center

    NASA Technical Reports Server (NTRS)

    Titarchuk, Lev; Chardonnet, Pascal

    2006-01-01

    Various balloon and satellite observatories have revealed what appears to be an extended source of 0.511 MeV annihilation radiation with flux of approx. 10(exp -3) photons/sq cm/s centered on the Galactic Center. Positrons from radioactive products of stellar explosions can account for a significant fraction of the emission. We discuss an additional source for this emission: namely e(+)e(-) pairs produced when X-rays generated from the approx. 2.6 x 10(exp 6) solar mass Galactic Center Black Hole interact with approx. 10 MeV temperature blackbody emission from 10(exp 17) g black holes within 10(exp 14-l5) cm of the center. The number of such Small Mass Black Holes (SMMBHs) can account for the production of the 10(exp 42) e(+)/s that produces the observed annihilation in the inner Galaxy when transport effects are taken into account. We consider the possibility for confirming the presence of these SMMBHs in the Galactic Center region with future generations of gamma-ray instruments if a blackbody like emission of approx. 10 MeV temperature would be detected by them. Small Mass Black Hole can be a potential candidate for dark (invisible) matter hal

  2. Division H Commission 33: Structure & Dynamics of the Galactic System

    NASA Astrophysics Data System (ADS)

    Nordström, Birgitta; Bland-Hawthorn, Joss; Wyse, Rosemary; Athanassoula, Lia; Feltzing, Sofia; Jog, Chanda; Lockman, Jay; Minniti, Dante; Robin, Annie

    2016-04-01

    Research on the structure and dynamics of the Galactic System covers a large field of research, from formation scenarios to long-term evolution and secular processes. Today we speak of near-field cosmology where the oldest parts of the Galaxy are used to probe back to early times, e.g. studying the chemical signatures of the oldest star clusters and dwarf galaxies to learn about the byproducts of the first stars. Some of the most detailed work relates to the structure of the dark matter and baryons in order to compare with expectation from N-body models. Secular processes have been identified (e.g. stellar migration) where material within the Galaxy is being reorganized by dynamical resonances and feedback processes.

  3. A self-consistent field method for galactic dynamics

    NASA Technical Reports Server (NTRS)

    Hernquist, Lars; Ostriker, Jeremiah P.

    1992-01-01

    The present study describes an algorithm for evolving collisionless stellar systems in order to investigate the evolution of systems with density profiles like the R exp 1/4 law, using only a few terms in the expansions. A good fit is obtained for a truncated isothermal distribution, which renders the method appropriate for galaxies with flat rotation curves. Calculations employing N of about 10 exp 6-7 are straightforward on existing supercomputers, making possible simulations having significantly smoother fields than with direct methods such as tree-codes. Orbits are found in a given static or time-dependent gravitational field; the potential, phi(r, t) is revised from the resultant density, rho(r, t). Possible scientific uses of this technique are discussed, including tidal perturbations of dwarf galaxies, the adiabatic growth of central masses in spheroidal galaxies, instabilities in realistic galaxy models, and secular processes in galactic evolution.

  4. Neutrino mass and the origin of galactic magnetic fields

    SciTech Connect

    Enqvist, K. ); Semikoz, V. IZMIRAN, Academy of Sciences, Troitsk 142092 ); Shukurov, A. Computing Center, Moscow University, Moscow 119899 ); Sokoloff, D. Isaac Newton Institute, Cambridge University, Cambridge CB3 0EH )

    1993-11-15

    We compare two constraints on the strength of the cosmological primordial magnetic field: the one following from the restrictions on the Dirac neutrino spin flip in the early Universe, and another one based on the galactic dynamo theory for the Milky Way (presuming that the seed magnetic field has a relic origin). Since the magnetic field facilitates transitions between left- and right-handed neutrino states, thereby affecting [sup 4]He production at primordial nucleosynthesis, we can obtain a guaranteed [ital upper] limit on the strength of the relic magnetic field in the protogalaxy, [ital B][sub [ital c

  5. Masses of Black Holes in Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Peterson, Bradley M.

    2003-01-01

    We present a progress report on a project whose goal is to improve both the precision and accuracy of reverberation-based black-hole masses. Reverberation masses appear to be accurate to a factor of about three, and the black-hole mass/bulge velocity dispersion (M-sigma) relationship appears to be the same in active and quiescent galaxies.

  6. Dynamics of massive black holes as a possible candidate of Galactic dark matter

    NASA Technical Reports Server (NTRS)

    Xu, Guohong; Ostriker, Jeremiah P.

    1994-01-01

    If the dark halo of the Galaxy is comprised of massive black holes (MBHs), then those within approximately 1 kpc will spiral to the center, where they will interact with one another, forming binaries which contract, owing to further dynamical friction, and then possibly merge to become more massive objects by emission of gravitational radiation. If successive mergers would invariably lead, as has been proposed by various authors, to the formation of a very massive nucleus of 10(exp 8) solar mass, then the idea of MBHs as a dark matter candidate could be excluded on observational grounds, since the observed limit (or value) for a Galactic central black hole is approximately 10(exp 6.5) solar mass. But, if successive mergers are delayed or prevented by other processes, such as the gravitational slingshot or rocket effect of gravitational radiation, then a large mass accumulation will not occur. In order to resolve this issue, we perform detailed N-body simulations using a modfied Aarseth code to explore the dynamical behavior of the MBHs, and we find that for a 'best estimate' model of the Galaxy a runaway does not occur. The code treates the MBHs as subject to the primary gravitational forces of one another and to the smooth stellar distribution, as well as the secondary perturbations in their orbits due to another and to the smooth stellar distribution, as well as the secondary perturbations in their orbits due to dynamical friction and gravitational radiation. Instead of a runaway, three-body interactions between hard binaries and single MBHs eject massive objects before accumulation of more than a few units, so that typically the center will contain zero, one, or two MBHs. We study how the situation depends in detail on the mass per MBH, the rotation of the halo, the mass distribution within the Galaxy, and other parameters. A runaway will most sensitively depend on the ratio of initial (spheroid/halo) central mass densities and secondarily on the typical values

  7. Variation of galactic cold gas reservoirs with stellar mass

    NASA Astrophysics Data System (ADS)

    Maddox, Natasha; Hess, Kelley M.; Obreschkow, Danail; Jarvis, M. J.; Blyth, S.-L.

    2015-02-01

    The stellar and neutral hydrogen (H I) mass functions at z ˜ 0 are fundamental benchmarks for current models of galaxy evolution. A natural extension of these benchmarks is the two-dimensional distribution of galaxies in the plane spanned by stellar and H I mass, which provides a more stringent test of simulations, as it requires the H I to be located in galaxies of the correct stellar mass. Combining H I data from the Arecibo Legacy Fast ALFA survey, with optical data from Sloan Digital Sky Survey, we find a distinct envelope in the H I-to-stellar mass distribution, corresponding to an upper limit in the H I fraction that varies monotonically over five orders of magnitude in stellar mass. This upper envelope in H I fraction does not favour the existence of a significant population of dark galaxies with large amounts of gas but no corresponding stellar population. The envelope shows a break at a stellar mass of ˜109 M⊙, which is not reproduced by modern models of galaxy populations tracing both stellar and gas masses. The discrepancy between observations and models suggests a mass dependence in gas storage and consumption missing in current galaxy evolution prescriptions. The break coincides with the transition from galaxies with predominantly irregular morphology at low masses to regular discs at high masses, as well as the transition from cold to hot accretion of gas in simulations.

  8. A Galactic Weigh-in: Mass Models of SINGS Galaxies Using Chemo-spectrophotometric Galactic Evolution Models

    NASA Astrophysics Data System (ADS)

    de Denus-Baillargeon, M.-M.; Hernandez, O.; Boissier, S.; Amram, P.; Carignan, C.

    2013-08-01

    The baryonic mass-to-light ratio (Upsilonsstarf) used to perform the photometry-to-mass conversion has a tremendous influence on the measurement of the baryonic content and distribution as well as on the determination of the dark halo parameters. Since numerous clues hint at an inside-out formation process for galaxies, a radius-dependant Upsilonsstarf is needed to physically represent the radially varying stellar population. In this article, we use chemo-spectrophotometric galactic evolution (CSPE) models to determine Upsilonsstarf for a wide range of masses and sizes in the scenario of an inside-out formation process by gas accretion. We apply our method to a SINGS subsample of 10 spiral and dwarf galaxies with photometric coverage ranging from the UV to the mid-IR. The CSPE models prove to be a good tool for weighting the different photometric bands in order to obtain consistent stellar disk masses regardless of the spectral band used. On the other hand, we show that the color index versus Upsilonsstarf relation is an imperfect tool for assigning masses to young stellar populations because of the degeneracy affecting Upsilonsstarf in all bands at low color index. The disks resulting from our analysis are compatible with the maximum disk hypothesis provided that an adequate bulge/disk decomposition is performed and that the correction for the presence of a bar is not neglected since bars disturb the internal disk kinematics. Disk-mass models including Upsilonsstarf as a free parameter as well as models using our physically motivated, radially varying Upsilonsstarf are presented and discussed for each galaxy.

  9. A GALACTIC WEIGH-IN: MASS MODELS OF SINGS GALAXIES USING CHEMO-SPECTROPHOTOMETRIC GALACTIC EVOLUTION MODELS

    SciTech Connect

    De Denus-Baillargeon, M.-M.; Hernandez, O.; Carignan, C.; Boissier, S.; Amram, P.

    2013-08-20

    The baryonic mass-to-light ratio (Y{sub *}) used to perform the photometry-to-mass conversion has a tremendous influence on the measurement of the baryonic content and distribution as well as on the determination of the dark halo parameters. Since numerous clues hint at an inside-out formation process for galaxies, a radius-dependant Y{sub *} is needed to physically represent the radially varying stellar population. In this article, we use chemo-spectrophotometric galactic evolution (CSPE) models to determine Y{sub *} for a wide range of masses and sizes in the scenario of an inside-out formation process by gas accretion. We apply our method to a SINGS subsample of 10 spiral and dwarf galaxies with photometric coverage ranging from the UV to the mid-IR. The CSPE models prove to be a good tool for weighting the different photometric bands in order to obtain consistent stellar disk masses regardless of the spectral band used. On the other hand, we show that the color index versus Y{sub *} relation is an imperfect tool for assigning masses to young stellar populations because of the degeneracy affecting Y{sub *} in all bands at low color index. The disks resulting from our analysis are compatible with the maximum disk hypothesis provided that an adequate bulge/disk decomposition is performed and that the correction for the presence of a bar is not neglected since bars disturb the internal disk kinematics. Disk-mass models including Y{sub *} as a free parameter as well as models using our physically motivated, radially varying Y{sub *} are presented and discussed for each galaxy.

  10. Dynamics of Tidally Captured Planets in the Galactic Center

    NASA Astrophysics Data System (ADS)

    Trani, Alessandro A.; Mapelli, Michela; Spera, Mario; Bressan, Alessandro

    2016-11-01

    Recent observations suggest ongoing planet formation in the innermost parsec of the Galactic center. The supermassive black hole (SMBH) might strip planets or planetary embryos from their parent star, bringing them close enough to be tidally disrupted. Photoevaporation by the ultraviolet field of young stars, combined with ongoing tidal disruption, could enhance the near-infrared luminosity of such starless planets, making their detection possible even with current facilities. In this paper, we investigate the chance of planet tidal captures by means of high-accuracy N-body simulations exploiting Mikkola's algorithmic regularization. We consider both planets lying in the clockwise (CW) disk and planets initially bound to the S-stars. We show that tidally captured planets remain on orbits close to those of their parent star. Moreover, the semimajor axis of the planetary orbit can be predicted by simple analytic assumptions in the case of prograde orbits. We find that starless planets that were initially bound to CW disk stars have mild eccentricities and tend to remain in the CW disk. However, we speculate that angular momentum diffusion and scattering by other young stars in the CW disk might bring starless planets into orbits with low angular momentum. In contrast, planets initially bound to S-stars are captured by the SMBH on highly eccentric orbits, matching the orbital properties of the clouds G1 and G2. Our predictions apply not only to planets but also to low-mass stars initially bound to the S-stars and tidally captured by the SMBH.

  11. The relationship between the galactic matter distribution, cosmic ray dynamics, and gamma ray production

    NASA Technical Reports Server (NTRS)

    Kniffen, D. A.; Fichtel, C. E.; Thompson, D. J.

    1976-01-01

    Theoretical considerations and analysis of the results of gamma ray astronomy suggest that the galactic cosmic rays are dynamically coupled to the interstellar matter through the magnetic fields, and hence the cosmic ray density should be enhanced where the matter density is greatest on the scale of galactic arms. This concept has been explored in a galactic model using recent 21 cm radio observations of the neutral hydrogen and 2.6 mm observations of carbon monoxide, which is considered to be a tracer of molecular hydrogen. The model assumes: (1) cosmic rays are galactic and not universal; (2) on the scale of galactic arms, the cosmic ray column (surface) density is proportional to the total interstellar gas column density; (3) the cosmic ray scale height is significantly larger than the scale height of the matter; and (4) ours is a spiral galaxy characterized by an arm to interarm density ratio of about 3:1.

  12. Dynamics with a Nonstandard Inertia-Acceleration Relation: An Alternative to Dark Matter in Galactic Systems

    NASA Astrophysics Data System (ADS)

    Milgrom, M.

    1994-02-01

    We investigate particle dynamics that is governed by a nonstandard kinetic action of a special form. We are guided by a phenomenological scheme-the modified dynamics (MOND)-that imputes the mass discrepancy, observed in galactic systems, not to the presence of dark matter, but to a departure from Newtonian dynamics below a certain scale of accelerations, a0. The particle's equation of motion in a potential φ is derived from an action, S, of the form S ~ Sk[r(t), a0] - ∫ φ dt. The limit a0 --> 0 corresponds to Newtonian dynamics, and there the kinetic action Sk must take the standard form. In the opposite limit, a0 --> ∞ we require Sk --> 0-and more specifically, for circular orbits Sk ~ a-10-in order to attain the phenomenological success of MOND. Galilei-invariant such theories must be strongly nonlocal. This is a blessing, as such theories need not suffer from the illnesses that are endemic to higher-derivative theories. We comment on the possibility that such a modified law of motion is an effective theory resulting from the elimination of degrees of freedom pertaining to the universe at large (the near equality a0 ≍ cH0 being a trace of that connection). We derive a general virial relation for bounded trajectories. Exact solutions are obtained for circular orbits, which pertain to rotation curves of disk galaxies. We also explore, in passing, theories that depart from the conventional Newtonian dynamics for very low frequencies.

  13. Assembling the Largest, Most Distant Sample of Halo Wide Binaries for Galactic Structure and Dynamics

    NASA Astrophysics Data System (ADS)

    Coronado, J.; Chanamé, J.

    2015-10-01

    Samples of wide binaries (agtrsim \\ 100\\ AU) are a gold mine for Galactic studies. They have been used on a large list of applications in a diversity of fields. In the dynamical arena, wide binaries provided the first meaningful constraints on the mass and nature of disk dark matter and, more recently, they were used to close the remaining parameter space of MACHO-like halo dark matter not accessible to the micro-lensing campaigns. All these applications were possible when samples of these objects became large enough to not be dominated by random, chance alignments of two unrelated stars projected on the sky. Nevertheless, still today the largest available sample of the particularly valuable halo wide binaries free from selection biases, contains not much more than 100 systems, and conclusions on dark matter are very sensitive to this fact.

  14. AGE AND MASS SEGREGATION OF MULTIPLE STELLAR POPULATIONS IN GALACTIC NUCLEI AND THEIR OBSERVATIONAL SIGNATURES

    SciTech Connect

    Perets, Hagai B.; Mastrobuono-Battisti, Alessandra

    2014-04-01

    Nuclear stellar clusters (NSCs) are known to exist around massive black holes in galactic nuclei. They are thought to have formed through in situ star formation following gas inflow to the nucleus of the galaxy and/or through the infall of multiple stellar clusters. Here we study the latter, and explore the composite structure of the NSC and its relation to the various stellar populations originating from its progenitor infalling clusters. We use N-body simulations of cluster infalls and show that this scenario may produce observational signatures in the form of age segregation: the distribution of the stellar properties (e.g., stellar age and/or metallicity) in the NSCs reflects the infall history of the different clusters. The stellar populations of clusters, infalling at different times (dynamical ages), are differentially segregated in the NSC and are not fully mixed even after a few gigayears of evolution. Moreover, the radial properties of stellar populations in the progenitor cluster are mapped to their radial distribution in the final NSC, potentially leading to efficient mass segregation in NSCs, even those where relaxation times are longer than a Hubble time. Finally, the overall structures of the stellar populations present non-spherical configurations and show significant cluster to cluster population differences.

  15. Constraining absolute neutrino masses via detection of galactic supernova neutrinos at JUNO

    SciTech Connect

    Lu, Jia-Shu; Cao, Jun; Li, Yu-Feng; Zhou, Shun

    2015-05-26

    A high-statistics measurement of the neutrinos from a galactic core-collapse supernova is extremely important for understanding the explosion mechanism, and studying the intrinsic properties of neutrinos themselves. In this paper, we explore the possibility to constrain the absolute scale of neutrino masses m{sub ν} via the detection of galactic supernova neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO) with a 20 kiloton liquid-scintillator detector. In assumption of a nearly-degenerate neutrino mass spectrum and a normal mass ordering, the upper bound on the absolute neutrino mass is found to be m{sub ν}<(0.83±0.24) eV at the 95% confidence level for a typical galactic supernova at a distance of 10 kpc, where the mean value and standard deviation are shown to account for statistical fluctuations. For comparison, we find that the bound in the Super-Kamiokande experiment is m{sub ν}<(0.94±0.28) eV at the same confidence level. However, the upper bound will be relaxed when the model parameters characterizing the time structure of supernova neutrino fluxes are not exactly known, and when the neutrino mass ordering is inverted.

  16. Constraining absolute neutrino masses via detection of galactic supernova neutrinos at JUNO

    SciTech Connect

    Lu, Jia-Shu; Cao, Jun; Li, Yu-Feng; Zhou, Shun E-mail: caoj@ihep.ac.cn E-mail: zhoush@ihep.ac.cn

    2015-05-01

    A high-statistics measurement of the neutrinos from a galactic core-collapse supernova is extremely important for understanding the explosion mechanism, and studying the intrinsic properties of neutrinos themselves. In this paper, we explore the possibility to constrain the absolute scale of neutrino masses m{sub ν} via the detection of galactic supernova neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO) with a 20 kiloton liquid-scintillator detector. In assumption of a nearly-degenerate neutrino mass spectrum and a normal mass ordering, the upper bound on the absolute neutrino mass is found to be m{sub ν} < (0.83 ± 0.24) eV at the 95% confidence level for a typical galactic supernova at a distance of 10 kpc, where the mean value and standard deviation are shown to account for statistical fluctuations. For comparison, we find that the bound in the Super-Kamiokande experiment is m{sub ν} < (0.94 ± 0.28) eV at the same confidence level. However, the upper bound will be relaxed when the model parameters characterizing the time structure of supernova neutrino fluxes are not exactly known, and when the neutrino mass ordering is inverted.

  17. The Origin of Black Hole Spin in Galactic Low-mass X-Ray Binaries

    NASA Astrophysics Data System (ADS)

    Fragos, T.; McClintock, J. E.

    2015-02-01

    Galactic field black hole (BH) low-mass X-ray binaries (LMXBs) are believed to form in situ via the evolution of isolated binaries. In the standard formation channel, these systems survived a common envelope phase, after which the remaining helium core of the primary star and the subsequently formed BH are not expected to be highly spinning. However, the measured spins of BHs in LMXBs cover the whole range of spin parameters. We propose here that the BH spin in LMXBs is acquired through accretion onto the BH after its formation. In order to test this hypothesis, we calculated extensive grids of detailed binary mass-transfer sequences. For each sequence, we examined whether, at any point in time, the calculated binary properties are in agreement with their observationally inferred counterparts of 16 Galactic LMXBs. The "successful" sequences give estimates of the mass that the BH has accreted since the onset of Roche-Lobe overflow. We find that in all Galactic LMXBs with measured BH spin, the origin of the spin can be accounted for by the accreted matter, and we make predictions about the maximum BH spin in LMXBs where no measurement is yet available. Furthermore, we derive limits on the maximum spin that any BH can have depending on current properties of the binary it resides in. Finally we discuss the implication that our findings have on the BH birth-mass distribution, which is shifted by ~1.5 M ⊙ toward lower masses, compared to the currently observed one.

  18. The universal relation of galactic chemical evolution: the origin of the mass-metallicity relation

    SciTech Connect

    Zahid, H. Jabran; Dima, Gabriel I.; Kudritzki, Rolf-Peter; Kewley, Lisa J.; Geller, Margaret J.; Hwang, Ho Seong; Silverman, John D.; Kashino, Daichi

    2014-08-20

    We examine the mass-metallicity relation for z ≲ 1.6. The mass-metallicity relation follows a steep slope with a turnover, or 'knee', at stellar masses around 10{sup 10} M {sub ☉}. At stellar masses higher than the characteristic turnover mass, the mass-metallicity relation flattens as metallicities begin to saturate. We show that the redshift evolution of the mass-metallicity relation depends only on the evolution of the characteristic turnover mass. The relationship between metallicity and the stellar mass normalized to the characteristic turnover mass is independent of redshift. We find that the redshift-independent slope of the mass-metallicity relation is set by the slope of the relationship between gas mass and stellar mass. The turnover in the mass-metallicity relation occurs when the gas-phase oxygen abundance is high enough that the amount of oxygen locked up in low-mass stars is an appreciable fraction of the amount of oxygen produced by massive stars. The characteristic turnover mass is the stellar mass, where the stellar-to-gas mass ratio is unity. Numerical modeling suggests that the relationship between metallicity and the stellar-to-gas mass ratio is a redshift-independent, universal relationship followed by all galaxies as they evolve. The mass-metallicity relation originates from this more fundamental universal relationship between metallicity and the stellar-to-gas mass ratio. We test the validity of this universal metallicity relation in local galaxies where stellar mass, metallicity, and gas mass measurements are available. The data are consistent with a universal metallicity relation. We derive an equation for estimating the hydrogen gas mass from measurements of stellar mass and metallicity valid for z ≲ 1.6 and predict the cosmological evolution of galactic gas masses.

  19. Dynamics of Variable Mass Systems

    NASA Technical Reports Server (NTRS)

    Eke, Fidelis O.

    1998-01-01

    This report presents the results of an investigation of the effects of mass loss on the attitude behavior of spinning bodies in flight. The principal goal is to determine whether there are circumstances under which the motion of variable mass systems can become unstable in the sense that their transverse angular velocities become unbounded. Obviously, results from a study of this kind would find immediate application in the aerospace field. The first part of this study features a complete and mathematically rigorous derivation of a set of equations that govern both the translational and rotational motions of general variable mass systems. The remainder of the study is then devoted to the application of the equations obtained to a systematic investigation of the effect of various mass loss scenarios on the dynamics of increasingly complex models of variable mass systems. It is found that mass loss can have a major impact on the dynamics of mechanical systems, including a possible change in the systems stability picture. Factors such as nozzle geometry, combustion chamber geometry, propellant's initial shape, size and relative mass, and propellant location can all have important influences on the system's dynamic behavior. The relative importance of these parameters on-system motion are quantified in a way that is useful for design purposes.

  20. Clockwise Stellar Disk and the Dark Mass in the Galactic Center

    NASA Astrophysics Data System (ADS)

    Beloborodov, Andrei M.; Levin, Yuri; Eisenhauer, Frank; Genzel, Reinhard; Paumard, Thibaut; Gillessen, Stefan; Ott, Thomas

    2006-09-01

    Two disks of young stars have recently been discovered in the Galactic center. The disks are rotating in the gravitational field of the central black hole at radii r~0.1-0.3 pc and thus open a new opportunity to measure the central mass. We find that the observed motion of stars in the clockwise disk implies the mass within -0.1 pc M=(4.3+/-0.5)×106 Msolar for the fiducial distance to the Galactic center R0=8 kpc, and we derive the scaling of M with R0. As a tool for our estimate we use orbital roulette, a recently developed method. The method reconstructs the three-dimensional orbits of the disk stars and checks the randomness of their orbital phases. We also estimate the three-dimensional positions and orbital eccentricities of the clockwise-disk stars.

  1. Exposing Sgr tidal debris behind the Galactic disc with M giants selected in WISE∩2MASS

    NASA Astrophysics Data System (ADS)

    Koposov, S. E.; Belokurov, V.; Zucker, D. B.; Lewis, G. F.; Ibata, R. A.; Olszewski, E. W.; López-Sánchez, Á. R.; Hyde, E. A.

    2015-01-01

    We show that a combination of infrared photometry from WISE and 2MASS surveys can yield highly pure samples of M giant stars. We take advantage of the new WISE∩2MASS M giant selection to trace the Sagittarius (Sgr) trailing tail behind the Galactic disc in the direction of the anticentre. The M giant candidates selected via broad-band photometry are confirmed spectroscopically using AAOmega on the Anglo-Australian Telescope in three fields around the extremity of the Sgr trailing tail in the Southern Galactic hemisphere. We demonstrate that at the Sgr longitude tilde{Λ }_{{⊙}} = 204°, the line-of-sight velocities of the trailing tail starts to deviate from the track of the Law & Majewski model, confirming the prediction of Belokurov et al. This discovery serves to substantiate the measurement of low differential orbital precession of the Sgr stream which in turn may imply diminished dark matter content within 100 kpc.

  2. Dense Molecular Gas in the First Galactic Quadrant: A New Distance Estimation Technique and the Molecular Cloud Clump Mass Function, Physical Properties, and Galactic Distribution from the Bolocam Galactic Plane Survey

    NASA Astrophysics Data System (ADS)

    Glenn, Jason; Ellsworth-Bowers, Timothy; Bolocam Galactic Plane Survey

    2015-01-01

    Large submillimeter and millimeter Galactic dust continuum surveys of the Milky Way, such as the Bolocam Galactic Plane Survey (BGPS), Hi-GAL, ATLAS-GAL, and JCMT-JPS cumulatively have discovered 105 cores, clumps, and other structures in Galactic molecular clouds. Robust distance measurements to these structures are needed to enable the large range of quantitative astrophysics that these surveys promise, such as physical properties of clumps, the clump mass function, and the three-dimensional distribution of dense gas and star formation in the Milky Way. We have developed a technique for deriving distances to continuum-identified molecular cloud clumps employing kinematic distances and a suite of distance estimators for breaking kinematic distance ambiguities. Application to the BGPS has yielded 3,700 distance probability density functions (DPDFs) and 1,800 well-constrained distances (typical σdist ≈ 0.5 kpc). These have been used to determine sizes and masses of molecular cloud clumps, derive the clump mass function, and map the three-dimensional distribution of dense gas in the first Galactic quadrant. Among the interesting results are a mass function intermediate between molecular clouds and the stellar initial mass function and inter-arm star formation. Next, we plan to apply the technique to Hi-GAL, which covers the entire Galactic plane and whose submilllimeter maps provide for temperature and bolometric luminosity measurements of cloud structures.

  3. Binary systems, star clusters and the Galactic-field population. Applied stellar dynamics

    NASA Astrophysics Data System (ADS)

    Kroupa, Pavel

    2002-01-01

    This book contains the results of recent theoretical work on the evolution of primordial binary systems in young star clusters, their effect on the evolution of their host clusters, implications for the distribution of young stars in the Milky Way, and the formation of bound star clusters. This work shows that if the Galactic-field binary population is a dynamically evolved version of the Taurus-Auriga pre-main sequence population, then most stars form in clusters with typically a few hundred binaries within a radius of about 0.5-1 pc. The results also suggest that the population I primordial binary-star orbital-parameter distribution functions may be universal, much like the initial mass function. Most solar-like planetary systems can survive in such clusters. The work presented here also establishes that most observed triple and quadruple systems must be primordial, but that α Cen A/B-Proxima Cen-like systems can form in clusters through dynamical capture. Precise N-body calculations using Aarseth's N-body codes of clusters containing up to 104 stars are used to create an extensive young-cluster library. These data demonstrate that the primordial binary systems are disrupted on a crossing-time scale, and that the truncation of the surviving period distribution measures the maximum concentration the cluster ever experienced. The N-body calculations demonstrate that Galactic star clusters form readily as nuclei of expanding OB associations despite a star-formation efficiency of typically 30 per cent and gas-expulsion over a time-span shorter than the cluster crossing time.

  4. The origin of Black-Hole Spin in Galactic Low-Mass X-ray Binaries

    NASA Astrophysics Data System (ADS)

    Fragos, Tassos; McClintock, Jeffrey

    2015-08-01

    Galactic field low-mass X-ray binaries (LMXBs), like the ones for which black hole (BH) spin measurements are available, are believed to form in situ via the evolution of isolated binaries. In the standard formation channel, these systems survived a common envelope phase, after which the remaining helium core of the primary star and the subsequently formed BH are not expected to be highly spinning. However, the measured spins of BHs in LMXBs cover the whole range of spin parameters from a*~0 to a*1. In this talk I propose that the BH spin in LMXBs is acquired through accretion onto the BH during its long stable accretion phase. In order to test this hypothesis, I calculated extensive grids of binary evolutionary sequences in which a BH accretes matter from a close companion. For each evolutionary sequence, I examined whether, at any point in time, the calculated binary properties are in agreement with their observationally inferred counterparts of observed Galactic LMXBs with BH spin measurements. Mass-transfer sequences that simultaneously satisfy all observational constraints represent possible progenitors of the considered LMXBs and thus give estimates of the amount of matter that the BH has accreted since the onset of Roche-Lobe overflow. I find that in all Galactic LMXBs with measured BH spin, the origin of the spin can be accounted by the accreted matter. Furthermore, based on this hypothesis, I derive limits on the maximum spin that a BH can have depending on the orbital period of the binary it resides in, and give predictions on the maximum possible BH spin of Galactic LMXBs where a BH spin measurement is not yet available. Finally I will discuss the implication that our findings have on the birth black hole mass distribution.

  5. The Origin of Black-Hole Spin in Galactic Low-Mass X-ray Binaries

    NASA Astrophysics Data System (ADS)

    Fragos, Tassos; McClintock, Jeffrey E.; Narayan, Ramesh

    2014-08-01

    Galactic field low-mass X-ray binaries (LMXBs), like the ones for which black hole (BH) spin measurements are available, are believed to form in situ via the evolution of isolated binaries. In the standard formation channel, these systems survived a common envelope phase, after which the remaining helium core of the primary star and the subsequently formed BH are not expected to be highly spinning. However, the measured spins of BHs in LMXBs cover the whole range of spin parameters from a 0 to a*1. In this talk I propose that the BH spin in LMXBs is acquired through accretion onto the BH during its long stable accretion phase. In order to test this hypothesis, I calculated extensive grids of binary evolutionary sequences in which a BH accretes matter from a close companion. For each evolutionary sequence, I examined whether, at any point in time, the calculated binary properties are in agreement with their observationally inferred counterparts of observed Galactic LMXBs with BH spin measurements. Mass-transfer sequences that simultaneously satisfy all observational constraints represent possible progenitors of the considered LMXBs and thus give estimates of the amount of matter that the BH has accreted since the onset of Roche-Lobe overflow. I find that in all Galactic LMXBs with measured BH spin, the origin of the spin can be accounted by the accreted matter. Furthermore, based on this hypothesis, I derive limits on the maximum spin that a BH can have depending on the orbital period of the binary it resides in, and give predictions on the maximum possible BH spin of Galactic LMXBs where a BH spin measurement is not yet available. Finally I will discuss the implication that our findings have on the birth black hole mass distribution.

  6. Surveying the Galactic Halo with 2MASS-Selected Horizontal Branch Candidates

    NASA Astrophysics Data System (ADS)

    Brown, W. R.; Geller, M. J.; Kenyon, S. J.; Beers, T. C.; Kurtz, M. J.; Roll, J. B.

    2003-12-01

    We use 2MASS photometry to select blue horizontal branch (BHB) candidates covering the sky |b| > 15o. A 12.5 < J0 < 15.5 sample of BHB stars traces the thick disk and inner halo to d⊙ ≃ 9 kpc, with a density 3-5 times that of M giant stars. We base our sample selection strategy on the Century Survey Galactic Halo Project, a survey that provides a complete, spectroscopically-identified sample of blue stars to a similar depth as the 2MASS catalog. We show that a -0.20 < (J-H)0 < 0.10, -0.10 < (H-K)0 < 0.10 color-selected sample of stars is 65% complete for BHB stars, and is composed of 47% BHB stars. We apply this photometric selection to the full 2MASS catalog, and see no spatial overdensities of BHB candidates at high Galactic latitude |b| > 50o. We insert simulated star streams into the data and conclude that the high Galactic latitude BHB candidates are consistent with having no ˜ 5o wide star stream with density greater than 0.33 objects deg-2 at the 95% confidence level. The absence of structure suggests there have been no major accretion events in the inner halo in the last few Gyr. However, at low Galactic latitudes a two-point angular correlation analysis reveals structure on angular scales θ ≲ 1o. This structure is apparently associated with stars in the thick disk, and has a physical scale of 10-100 pc. One possible explanation for this structure is provided by cosmological simulations that predict the majority of the thick disk may arise from accretion and disruption of satellite mergers.

  7. Massive Black Hole Binary Mergers in Dynamical Galactic Environments

    NASA Astrophysics Data System (ADS)

    Kelley, Luke Zoltan; Blecha, Laura; Hernquist, Lars

    2016-10-01

    Gravitational Waves (GW) have now been detected from stellar-mass black hole binaries, and the first observations of GW from Massive Black Hole (MBH) Binaries are expected within the next decade. Pulsar Timing Arrays (PTA), which can measure the years long periods of GW from MBHB, have excluded many standard predictions for the amplitude of a stochastic GW Background (GWB). We use coevolved populations of MBH and galaxies from hydrodynamic, cosmological simulations ('Illustris') to calculate a predicted GWB. The most advanced predictions so far have included binary hardening mechanisms from individual environmental processes. We present the first calculation including all of the environmental mechanisms expected to be involved: dynamical friction, stellar `loss-cone' scattering, and viscous drag from a circumbinary disk. We find that MBH binary lifetimes are generally multiple gigayears, and only a fraction coalesce by redshift zero. For a variety of parameters, we find all GWB amplitudes to be below the most stringent PTA upper limit of A_yr^{-1} ≈ 10^{-15}. Our fairly conservative fiducial model predicts an amplitude of A_yr^{-1} ≈ 0.4× 10^{-15}. At lower frequencies, we find A_{0.1 yr^{-1} ≈ 1.5× 10^{-15} with spectral indices between -0.4 and -0.6-significantly flatter than the canonical value of -2/3 due to purely GW-driven evolution. Typical MBHB driving the GWB signal come from redshifts around 0.3, with total masses of a few times 109 M⊙, and in host galaxies with very large stellar masses. Even without GWB detections, our results can be connected to observations of dual AGN to constrain binary evolution.

  8. Galactic Star Cluster mass evolution. High performance star by star simulations. Observations vs. modeling.

    NASA Astrophysics Data System (ADS)

    Berczik, Peter; Just, Andreas; Ernst, Andreas; Spurzem, Rainer

    2015-08-01

    We carry out the large set of Galactic Star Cluster simulations (from 1e2 up to 5e5 Msol initial masses) using our high performance parallel direct N-body code phi-GRAPE+GPU with the maximum possible numerical resolution (one particle one star) on the largest astrophysical GPU clusters (in Germany and China). Our main goal was to investigate the cluster initial volume "filling" factor to the process of the cluster mass loss as well us the cluster whole lifetime. We also investigate the evolution of the present day Cluster Mass Function in solar cylinder depending on the initial parameters of the star formation, Initial Cluster Mass Function and the star clusters masses and initial "filling" factors.

  9. THE ORIGIN OF BLACK HOLE SPIN IN GALACTIC LOW-MASS X-RAY BINARIES

    SciTech Connect

    Fragos, T.; McClintock, J. E.

    2015-02-10

    Galactic field black hole (BH) low-mass X-ray binaries (LMXBs) are believed to form in situ via the evolution of isolated binaries. In the standard formation channel, these systems survived a common envelope phase, after which the remaining helium core of the primary star and the subsequently formed BH are not expected to be highly spinning. However, the measured spins of BHs in LMXBs cover the whole range of spin parameters. We propose here that the BH spin in LMXBs is acquired through accretion onto the BH after its formation. In order to test this hypothesis, we calculated extensive grids of detailed binary mass-transfer sequences. For each sequence, we examined whether, at any point in time, the calculated binary properties are in agreement with their observationally inferred counterparts of 16 Galactic LMXBs. The ''successful'' sequences give estimates of the mass that the BH has accreted since the onset of Roche-Lobe overflow. We find that in all Galactic LMXBs with measured BH spin, the origin of the spin can be accounted for by the accreted matter, and we make predictions about the maximum BH spin in LMXBs where no measurement is yet available. Furthermore, we derive limits on the maximum spin that any BH can have depending on current properties of the binary it resides in. Finally we discuss the implication that our findings have on the BH birth-mass distribution, which is shifted by ∼1.5 M {sub ☉} toward lower masses, compared to the currently observed one.

  10. THE STELLAR INITIAL MASS FUNCTION OF ULTRA-FAINT DWARF GALAXIES: EVIDENCE FOR IMF VARIATIONS WITH GALACTIC ENVIRONMENT

    SciTech Connect

    Geha, Marla; Brown, Thomas M.; Tumlinson, Jason; Kalirai, Jason S.; Avila, Roberto J.; Ferguson, Henry C.; Simon, Joshua D.; Kirby, Evan N.; VandenBerg, Don A.; Munoz, Ricardo R.; Guhathakurta, Puragra E-mail: tbrown@stsci.edu

    2013-07-01

    We present constraints on the stellar initial mass function (IMF) in two ultra-faint dwarf (UFD) galaxies, Hercules and Leo IV, based on deep Hubble Space Telescope Advanced Camera for Surveys imaging. The Hercules and Leo IV galaxies are extremely low luminosity (M{sub V} = -6.2, -5.5), metal-poor (([Fe/H]) = -2.4, -2.5) systems that have old stellar populations (>11 Gyr). Because they have long relaxation times, we can directly measure the low-mass stellar IMF by counting stars below the main-sequence turnoff without correcting for dynamical evolution. Over the stellar mass range probed by our data, 0.52-0.77 M{sub Sun }, the IMF is best fit by a power-law slope of {alpha}= 1.2{sub -0.5}{sup +0.4} for Hercules and {alpha} = 1.3 {+-} 0.8 for Leo IV. For Hercules, the IMF slope is more shallow than a Salpeter ({alpha} = 2.35) IMF at the 5.8{sigma} level, and a Kroupa ({alpha} = 2.3 above 0.5 M{sub Sun }) IMF slope at 5.4{sigma} level. We simultaneously fit for the binary fraction, f{sub binary}, finding f{sub binary}= 0.47{sup +0.16}{sub -0.14} for Hercules, and 0.47{sup +0.37}{sub -0.17} for Leo IV. The UFD binary fractions are consistent with that inferred for Milky Way stars in the same mass range, despite very different metallicities. In contrast, the IMF slopes in the UFDs are shallower than other galactic environments. In the mass range 0.5-0.8 M{sub Sun }, we see a trend across the handful of galaxies with directly measured IMFs such that the power-law slopes become shallower (more bottom-light) with decreasing galactic velocity dispersion and metallicity. This trend is qualitatively consistent with results in elliptical galaxies inferred via indirect methods and is direct evidence for IMF variations with galactic environment.

  11. The Masses of the B Stars in the High Galactic Latitude Eclipsing Binary IT Librae

    NASA Astrophysics Data System (ADS)

    Martin, John C.

    2003-01-01

    A number of blue stars that appear to be similar to Population I B stars in the star-forming regions of the Galactic disk are found more than 1 kpc from the Galactic plane. Uncertainties about the true distances and masses of these high-latitude B stars have fueled a debate as to their origin and evolutionary status. The eclipsing binary IT Lib is composed of two B stars, is approximately 1 kpc above the Galactic plane, and is moving back toward the plane. Observations of the light and velocity curves presented here lead to the conclusion that the B stars in this system are massive young main-sequence stars. While there are several possible explanations, it appears most plausible that the IT Lib system formed in the disk about 30 million years ago and was ejected on a trajectory taking it to its present position. Based on observations made at the 2.1 m Otto Struve Telescope of McDonald Observatory operated by the University of Texas at Austin and also at the 2.1 m telescope at Kitt Peak National Observatory, National Optical Astronomy Observatory, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc., under cooperative agreement with the National Science Foundation.

  12. Bridging the gap: A Spitzer Census of Intermediate-Mass Star Forming Regions from Galactic Surveys.

    NASA Astrophysics Data System (ADS)

    Kerton, Charles; Kobulnicky, Chip

    2008-03-01

    High-mass star formation (M>10 Msun) appears to proceed through different channels than low-mass star formation (M<2 Msun). The differences between these two regimes are thought to include not only the timescales and masses involved but also the initial conditions and operative physics within the parent molecular clouds. We propose an archival analysis of ~50 *intermediate-mass* star formation (SF) regions that straddle the boundary between these two regimes---regions forming stars up to 4-8 Msun. These, relatively unknown and unstudied IR sources are selected by their IRAS colors and lie within the Spitzer GLIMPSE+MIPSGAL legacy survey fields. Compared to their more famous high-mass SF cousins (e.g., the Westerhout 'W' HII objects), these regions are radio-quiet, relatively nearby, and structurally less complex. We will use complementary public-domain 13CO, 21-cm, and radio continuum Galactic surveys to 1) confirm the intermediate-mass SF nature of these objects, 2) compile a catalog and an atlas of mid-IR morphologies, 3) estimate distances, 4) calculate total luminosities and gas masses of affiliated molecular and atomic material, and 5) identify associated young stellar objects using IRAC+[24] colors. This work will provide a benchmark useful for contrasting the star formation process in both lower-mass and higher-mass SF environments.

  13. A SCALING RELATION BETWEEN MEGAMASER DISK RADIUS AND BLACK HOLE MASS IN ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Wardle, Mark; Yusef-Zadeh, Farhad E-mail: zadeh@northwestern.edu

    2012-05-10

    Several thin, Keplerian, sub-parsec megamaser disks have been discovered in the nuclei of active galaxies and used to precisely determine the mass of their host black holes. We show that there is an empirical linear correlation between the disk radius and the black hole mass. We demonstrate that such disks are naturally formed by the partial capture of molecular clouds passing through the galactic nucleus and temporarily engulfing the central supermassive black hole. Imperfect cancellation of the angular momenta of the cloud material colliding after passing on opposite sides of the hole leads to the formation of a compact disk. The radial extent of the disk is determined by the efficiency of this process and the Bondi-Hoyle capture radius of the black hole, and naturally produces the empirical linear correlation of the radial extent of the maser distribution with black hole mass. The disk has sufficient column density to allow X-ray irradiation from the central source to generate physical and chemical conditions conducive to the formation of 22 GHz H{sub 2}O masers. For initial cloud column densities {approx}< 10{sup 23.5} cm{sup -2} the disk is non-self-gravitating, consistent with the ordered kinematics of the edge-on megamaser disks; for higher cloud columns the disk would fragment and produce a compact stellar disk similar to that observed around Sgr A* at the galactic center.

  14. DUST PRODUCTION AND MASS LOSS IN THE GALACTIC GLOBULAR CLUSTER 47 TUCANAE

    SciTech Connect

    McDonald, I.; Zijlstra, A. A.; Boyer, M. L.; Van Loon, J. Th.

    2011-04-01

    Dust production among post-main-sequence stars is investigated in the Galactic globular cluster 47 Tucanae (NGC 104) based on infrared photometry and spectroscopy. We identify metallic iron grains as the probable dominant opacity source in these winds. Typical evolutionary timescales of asymptotic giant branch stars suggest the mass-loss rates we report are too high. We suggest that this is because the iron grains are small or elongated and/or that iron condenses more efficiently than at solar metallicity. Comparison to other works suggests metallic iron is observed to be more prevalent toward lower metallicities. The reasons for this are explored, but remain unclear. Meanwhile, the luminosity at which dusty mass loss begins is largely invariant with metallicity, but its presence correlates strongly with long-period variability. This suggests that the winds of low-mass stars have a significant driver that is not radiation pressure, but may be acoustic driving by pulsations.

  15. A polarimetric method for measuring black hole masses in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Piotrovich, M. Yu.; Gnedin, Yu. N.; Silant'ev, N. A.; Natsvlishvili, T. M.; Buliga, S. D.

    2015-11-01

    The structure of the broad emission line region (BLR) in active galactic nuclei (AGN) remains unclear. We test in this paper a flattened configuration model for BLR. The virial theorem, by taking into account the disc shape of BLR, allows us to get a direct connection between the mass of a supermassive black hole (SMBH) and the inclination angle of the accretion flow. The inclination angle itself is derived from the spectropolarimetric data on broad emission lines using the theory for the generation of polarized radiation developed by Sobolev and Chandrasekhar. As the result, the new estimates of SMBH masses in AGN with measured polarization of BLR are presented. It is crucial that the polarimetric data allow also to determine the value of the virial coefficient that is essential for determining SMBH masses.

  16. An Initial Mass Function for Individual Stars in Galactic Disks. I. Constraining the Shape of the Initial Mass Function

    NASA Astrophysics Data System (ADS)

    Parravano, Antonio; McKee, Christopher F.; Hollenbach, David J.

    2011-01-01

    We derive a semi-empirical galactic initial mass function (IMF) from observational constraints. We assume that the IMF, ψ(m), is a smooth function of the stellar mass m. The mass dependence of the proposed IMF is determined by five parameters: the low-mass slope γ, the high-mass slope -Γ (taken to be -1.35), the characteristic mass m ch (~ the peak mass of the IMF), and the lower and upper limits on the mass, m ell and mu (taken to be 0.004 and 120 M sun, respectively): ψ(m)dln m vprop m -Γ{1 - exp [ - (m/m ch)γ+Γ]}dln m. The values of γ and m ch are derived from two integral constraints: (1) the ratio of the number density of stars in the range m = 0.1-0.6 M sun to that in the range m = 0.6-0.8 M sun as inferred from the mass distribution of field stars in the local neighborhood and (2) the ratio of the number of stars in the range m = 0.08-1 M sun to the number of brown dwarfs in the range m = 0.03-0.08 M sun in young clusters. The IMF satisfying the above constraints is characterized by the parameters γ = 0.51 and m ch = 0.35 M sun (which corresponds to a peak mass of 0.27 M sun ). This IMF agrees quite well with the Chabrier IMF for the entire mass range over which we have compared with data, but predicts significantly more stars with masses <0.03 M sun; we also compare with other IMFs in current use and give a number of important parameters implied by the IMFs.

  17. MOA-2011-BLG-028Lb: A Neptune-mass Microlensing Planet in the Galactic Bulge

    NASA Astrophysics Data System (ADS)

    Skowron, J.; Udalski, A.; Poleski, R.; Kozłowski, S.; Szymański, M. K.; Wyrzykowski, Ł.; Ulaczyk, K.; Pietrukowicz, P.; Pietrzyński, G.; Soszyński, I.; OGLE Collaboration; Abe, F.; Bennett, D. P.; Bhattacharya, A.; Bond, I. A.; Freeman, M.; Fukui, A.; Hirao, Y.; Itow, Y.; Koshimoto, N.; Ling, C. H.; Masuda, K.; Matsubara, Y.; Muraki, Y.; Nagakane, M.; Ohnishi, K.; Rattenbury, N.; Saito, To.; Sullivan, D. J.; Sumi, T.; Suzuki, D.; Tristram, P. J.; Yonehara, A.; The MOA Collaboration; Dominik, M.; Jørgensen, U. G.; Bozza, V.; Harpsøe, K.; Hundertmark, M.; Skottfelt, J.; The MiNDSTEp Collaboration

    2016-03-01

    We present the discovery of a Neptune-mass planet orbiting a 0.8+/- 0.3{M}⊙ star in the Galactic bulge. The planet manifested itself during the microlensing event MOA-2011-BLG-028/OGLE-2011-BLG-0203 as a low-mass companion to the lens star. The analysis of the light curve provides the measurement of the mass ratio (1.2+/- 0.2)× {10}-4, which indicates that the mass of the planet is 12-60 Earth masses. The lensing system is located at 7.3 ± 0.7 kpc away from the Earth near the direction of Baade’s Window. The projected separation of the planet at the time of the microlensing event was 3.1-5.2 au. Although the microlens parallax effect is not detected in the light curve of this event, preventing the actual mass measurement, the uncertainties of mass and distance estimation are narrowed by the measurement of the source star proper motion on the OGLE-III images spanning eight years, and by the low amount of blended light seen, proving that the host star cannot be too bright and massive. We also discuss the inclusion of undetected parallax and orbital motion effects into the models and their influence onto the final physical parameters estimates. Based on observations obtained with the 1.3 m Warsaw telescope at the Las Campanas Observatory operated by the Carnegie Institution of Washington.

  18. Galactic globular clusters as a test for very-low-mass stellar models

    NASA Astrophysics Data System (ADS)

    Cassisi, S.; Castellani, V.; Ciarcelluti, P.; Piotto, G.; Zoccali, M.

    2000-07-01

    We make use of the `Next Generation' model atmospheres of Allard et al. and Hauschildt, Allard & Baron to compute theoretical models for low- and very-low-mass stars for selected metallicities in the range Z=0.0002 to 0.002. On this basis, we present theoretical predictions covering the sequence of H-burning stars as observed in Galactic globulars from the faint end of the main sequence up to, and beyond, the cluster turn-off. The role played by the new model atmospheres is discussed, showing that present models appear in excellent agreement with models by Baraffe et al. as computed on a quite similar physical basis. One finds that the theoretical mass-luminosity relations based on this updated set of models are in good agreement with the empirical data provided by Henry & McCarthy. Comparison with HST observation discloses that the location on the colour-magnitude diagram of the lower main sequence in Galactic globular clusters appears again in good agreement with the predicted sensitive dependence of these sequences on the cluster metallicity.

  19. Assesssing Variability of Dusty Galactic and Magellanic WRs and Seeking MIR Mass-Loss Nebulae

    NASA Astrophysics Data System (ADS)

    Cohen, Martin

    Wolf-Rayet (WR) stars are rare high-mass stars with potent winds which disturb and chemically enrich their surroundings, often creating optical nebulae as their ejecta sweep up the local interstellar medium. The intriguing dusty late-type carbon WRs) have generated thick circumstellar shells. Many WCs often have variable dust production, some periodic, others random. Only by studying all these highly energetic stars in depth will we decipher the nature of the dust condensation process and the pathway to grains in these hydrogen-poor atmospheres. This promises an accurate assessment of the quantitative contribution of WRs to the cosmic carbon budget. Such stars are few in number, but play a key role in generating the chemical elements and recycling stellar material. In 2001 we knew 227 Galactic WRs and 99% of the WC9s were dusty. Today we list close to 400 WR including the the WN and WO types. But only 56% of the WC9s are known to be dusty, dominated by those with persistent dust. Those for which we have determined both the existence of dust variability and know its temporal character is still of order 10. Much work remains to characterize the nature and variability of IR emission for many newly discovered WCs which have only optical classifications. Every new IR survey of the Galactic plane has the potential to offer crucial data on dusty WR stars, by finding new examples or providing another epoch of photometry for previously known WCs, to compare with earlier IR data to study the individual mass loss history for each. This is the method by which these variable stars were found to undergo episodes of dust making and it maximizes the value of old data sets, particularly when the effort is made to maintain a consistent absolute calibration for new missions. It is not enough merely to uncover new WCs, nor even to assign spectral classes to them. It is also essential to archive their spectral energy distributions (SEDs) as fiducial references for the future. Spitzer

  20. A review of action estimation methods for galactic dynamics

    NASA Astrophysics Data System (ADS)

    Sanders, Jason L.; Binney, James

    2016-04-01

    We review the available methods for estimating actions, angles and frequencies of orbits in both axisymmetric and triaxial potentials. The methods are separated into two classes. Unless an orbit has been trapped by a resonance, convergent, or iterative, methods are able to recover the actions to arbitrarily high accuracy given sufficient computing time. Faster non-convergent methods rely on the potential being sufficiently close to a separable potential, and the accuracy of the action estimate cannot be improved through further computation. We critically compare the accuracy of the methods and the required computation time for a range of orbits in an axisymmetric multicomponent Galactic potential. We introduce a new method for estimating actions that builds on the adiabatic approximation of Schönrich & Binney and discuss the accuracy required for the actions, angles and frequencies using suitable distribution functions for the thin and thick discs, the stellar halo and a star stream. We conclude that for studies of the disc and smooth halo component of the Milky Way, the most suitable compromise between speed and accuracy is the Stäckel Fudge, whilst when studying streams the non-convergent methods do not offer sufficient accuracy and the most suitable method is computing the actions from an orbit integration via a generating function. All the software used in this study can be downloaded from https://github.com/jls713/tact.

  1. Spin and Mass of the Supermassive Black Hole in the Galactic Center

    NASA Astrophysics Data System (ADS)

    Dokuchaev, V. I.

    2015-03-01

    The promising observational signatures for the measurement of black hole mass and spin are the azimuthal and latitudinal oscillation frequencies of the bright spots in the accretion flow and also the frequency of black hole event horizon rotation. Interpretation of the known quasi-periodic oscillations data by dint of a signal modulation from the hot spots in the accreting plasma reveals the Kerr metric rotation parameter, a = 0.65 ± 0.05, and mass, M = (4.2 ± 0.2)106M⊙, of the supermassive black hole in the Galactic center. The observed first 11.5 min quasi-periodic oscillation period is identified with a period of the black hole event horizon rotation, and, respectively, the second 19 min period is identified with a latitudinal oscillation period of hot spots in the accretion flow.

  2. Spin and mass of the supermassive black hole at the Galactic center

    NASA Astrophysics Data System (ADS)

    Dokuchaev, V. I.

    The promising observational signatures for the measurement of black hole mass and spin are the azimuthal and latitudinal oscillation frequencies of the bright spots in the accretion flow and also the frequency of black hole event horizon rotation. Interpretation of the known quasi-periodic oscillations data by dint of a signal modulation from the hot spots in the accreting plasma reveals the Kerr metric rotation parameter, a = 0.65±0.05, and mass, M = (4.2±0.2)106M⊙, of the supermassive black hole in the Galactic center. The observed first 11.5 min quasi-periodic oscillation period is identified with a period of the black hole event horizon rotation, and, respectively, the second 19 min period is identified with a latitudinal oscillation period of hot spots in the accretion flow.

  3. The effect of active galactic nuclei feedback on the halo mass function

    NASA Astrophysics Data System (ADS)

    Cui, Weiguang; Borgani, Stefano; Murante, Giuseppe

    2014-06-01

    We investigate baryon effects on the halo mass function (HMF), with emphasis on the role played by active galactic nuclei (AGN) feedback. Haloes are identified with both friends-of-friends (FoF) and spherical overdensity (SO) algorithms. We embed the standard SO algorithm into a memory-controlled frame program and present the Python spherIcAl Overdensity code - PIAO (Chinese character: ). For both FoF and SO haloes, the effect of AGN feedback is that of suppressing the HMFs to a level even below that of dark matter (DM) simulations. The ratio between the HMFs in the AGN and in the DM simulations is ˜0.8 at overdensity Δc = 500, a difference that increases at higher overdensity Δc = 2500, with no significant redshift and mass dependence. A decrease of the halo masses ratio with respect to the DM case induces the decrease of the HMF in the AGN simulation. The shallower inner density profiles of haloes in the AGN simulation witnesses that mass reduction is induced by the sudden displacement of gas induced by thermal AGN feedback. We provide fitting functions to describe halo mass variations at different overdensities, which can recover the HMFs with a residual random scatter ≲5 per cent for halo masses larger than 1013 h-1 M⊙.

  4. Formation of Galactic Black Hole Low-Mass X-ray Binaries

    NASA Astrophysics Data System (ADS)

    Li, Xiangdong

    2016-07-01

    Most of the Galactic black hole (BH) X-ray binary systems are low-mass X-ray binaries (LMXBs). Although the formation of these systems has been extensively investigated, some crucial issues remain unresolved. The most noticeable one is that, the low-mass companion has difficulties in ejecting the tightly bound envelope of the massive primary during the spiral-in process. While initially intermediate-mass binaries are more likely to survive the common envelope (CE) evolution, the resultant BH LMXBs mismatch the observations. Here we use both stellar evolution and binary population synthesis to study the evolutionary history of BH LMXBs. We test various assumptions and prescriptions for the supernova mechanisms that produce BHs, the binding energy parameter, the CE efficiency, and the initial mass distributions of the companion stars. We obtain the birthrate and the distributions of the donor mass, effective temperature and orbital period for the BH LMXBs in each case. By comparing the calculated results with the observations, we put useful constraints on the aforementioned parameters. In particular, we show that it is possible to form BH LMXBs with the standard CE scenario if most BHs are born through failed supernovae.

  5. Mass and Metallicity Requirement in Stellar Models for Galactic Chemical Evolution Applications

    NASA Astrophysics Data System (ADS)

    Côté, Benoit; West, Christopher; Heger, Alexander; Ritter, Christian; O'Shea, Brian W.; Herwig, Falk; Travaglio, Claudia; Bisterzo, Sara

    2016-09-01

    We used a one-zone chemical evolution model to address the question of how many masses and metallicities are required in grids of massive stellar models in order to ensure reliable galactic chemical evolution predictions. We used a set of yields that includes seven masses between 13 and 30 M⊙, 15 metallicities between 0 and 0.03 in mass fraction, and two different remnant mass prescriptions. We ran several simulations where we sampled subsets of stellar models to explore the impact of different grid resolutions. Stellar yields from low- and intermediate-mass stars and from Type Ia supernovae have been included in our simulations, but with a fixed grid resolution. We compared our results with the stellar abundances observed in the Milky Way for O, Na, Mg, Si, Ca, Ti, and Mn. Our results suggest that the range of metallicity considered is more important than the number of metallicities within that range, which only affects our numerical predictions by about 0.1 dex. We found that our predictions at [Fe/H] ≲ -2 are very sensitive to the metallicity range and the mass sampling used for the lowest metallicity included in the set of yields. Variations between results can be as high as 0.8 dex. At higher [Fe/H], we found that the required number of masses depends on the element of interest and on the remnant mass prescription. With a monotonic remnant mass prescription where every model explodes as a core-collapse supernova, the mass resolution induces variations of 0.2 dex on average. But with a remnant mass prescription that includes islands of non-explodability, the mass resolution can cause variations of about 0.2 to 0.7 dex depending on the choice of the lower limit of the metallicity range. With such a remnant mass prescription, explosive or non-explosive models can be missed if not enough masses are selected, resulting in over- or under-estimations of the mass ejected by massive stars.

  6. Is There a Maximum Mass for Black Holes in Galactic Nuclei?

    NASA Astrophysics Data System (ADS)

    Inayoshi, Kohei; Haiman, Zoltán

    2016-09-01

    The largest observed supermassive black holes (SMBHs) have a mass of {M}{{BH}}≃ {10}10 {\\text{}}{M}⊙ , nearly independent of redshift, from the local (z≃ 0) to the early (z\\gt 6) universe. We suggest that the growth of SMBHs above a few × {10}10 {\\text{}}{M}⊙ is prevented by small-scale accretion physics, independent of the properties of their host galaxies or of cosmology. Growing more massive BHs requires a gas supply rate from galactic scales onto a nuclear region as high as ≳ {10}3 {M}⊙ {{{yr}}}-1. At such a high accretion rate, most of the gas converts to stars at large radii (˜10-100 pc), well before reaching the BH. We adopt a simple model for a star-forming accretion disk and find that the accretion rate in the subparsec nuclear region is reduced to the smaller value of at most a few × {M}⊙ {{{yr}}}-1. This prevents SMBHs from growing above ≃ {10}11 {\\text{}}{M}⊙ in the age of the universe. Furthermore, once an SMBH reaches a sufficiently high mass, this rate falls below the critical value at which the accretion flow becomes advection dominated. Once this transition occurs, BH feeding can be suppressed by strong outflows and jets from hot gas near the BH. We find that the maximum SMBH mass, given by this transition, is between {M}{{BH,max}}≃ (1{--}6)× {10}10 {\\text{}}{M}⊙ , depending primarily on the efficiency of angular momentum transfer inside the galactic disk, and not on other properties of the host galaxy.

  7. Mass extinctions, galactic orbits in the solar neighborhood and the Sun: a connection?

    NASA Astrophysics Data System (ADS)

    Porto de Mello, G. F.; Dias, W. S.; Lépine, J. R. D.; Lorenzo-Oliveira, D.; Siqueira, R. K.

    2014-10-01

    The orbits of the stars in the disk of the Galaxy, and their passages through the Galactic spiral arms, are a rarely mentioned factor of biosphere stability which might be important for long-term planetary climate evolution, with a possible bearing on mass extinctions. The Sun lies very near the co-rotation radius, where stars revolve around the Galaxy in the same period as the density wave perturbations of the spiral arms. Conventional wisdom generally considers that this status makes for few passages through the spiral arms. Controversy still surrounds whether time spent inside or around spiral arms is dangerous to biospheres and conducive to mass extinctions. Possible threats include giant molecular clouds disturbing the Oort comet cloud and provoking heavy bombardment; a higher exposure to cosmic rays near star forming regions triggering increased cloudiness in Earth's atmosphere and ice ages; and the destruction of Earth's ozone layer posed by supernova explosions. We present detailed calculations of the history of spiral arm passages for all 212 solar-type stars nearer than 20 parsecs, including the total time spent inside the spiral arms in the last 500 Myr, when the spiral arm position can be traced with good accuracy. We found that there is a large diversity of stellar orbits in the solar neighborhood, and the time fraction spent inside spiral arms can vary from a few percent to nearly half the time. The Sun, despite its proximity to the galactic co-rotation radius, has exceptionally low eccentricity and a low vertical velocity component, and therefore spends 30% of its lifetime crossing the spiral arms, more than most nearby stars. We discuss the possible implications of this fact to the long-term habitability of the Earth, and possible correlations of the Sun's passage through the spiral arms with the five great mass extinctions of the Earth's biosphere from the Late Ordovician to the Cretaceous-Tertiary.

  8. RADIAL VELOCITY OFFSETS DUE TO MASS OUTFLOWS AND EXTINCTION IN ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Crenshaw, D. M.; Schmitt, H. R.; Kraemer, S. B.; Mushotzky, R. F.

    2010-01-01

    We present a study of the radial velocity offsets between narrow emission lines and host galaxy lines (stellar absorption and H I 21 cm emission) in Seyfert galaxies with observed redshifts less than 0.043. We find that 35% of the Seyferts in the sample show [O III] emission lines with blueshifts with respect to their host galaxies exceeding 50 km s{sup -1}, whereas only 6% show redshifts this large, in qualitative agreement with most previous studies. We also find that a greater percentage of Seyfert 1 galaxies show blueshifts than Seyfert 2 galaxies. Using Hubble Spce Talescope/Space Telescope Imaging Spectrograph spatially resolved spectra of the Seyfert 2 galaxy NGC 1068 and the Seyfert 1 galaxy NGC 4151, we generate geometric models of their narrow-line regions (NLRs) and inner galactic disks, and show how these models can explain the blueshifted [O III] emission lines in collapsed STIS spectra of these two Seyferts. We conclude that the combination of mass outflow of ionized gas in the NLR and extinction by dust in the inner disk (primarily in the form of dust spirals) is primarily responsible for the velocity offsets in Seyfert galaxies. More exotic explanations are not needed. We discuss the implications of this result for the velocity offsets found in higher redshift active galactic nuclei.

  9. No Evidence for Multiple Stellar Populations in the Low-mass Galactic Globular Cluster E 3

    NASA Astrophysics Data System (ADS)

    Salinas, Ricardo; Strader, Jay

    2015-08-01

    Multiple stellar populations are a widespread phenomenon among Galactic globular clusters. Even though the origin of the enriched material from which new generations of stars are produced remains unclear, it is likely that self-enrichment will be feasible only in clusters massive enough to retain this enriched material. We searched for multiple populations in the low mass (M˜ 1.4× {10}4 {M}⊙ ) globular cluster E3, analyzing SOAR/Goodman multi-object spectroscopy centered on the blue cyanogen (CN) absorption features of 23 red giant branch stars. We find that the CN abundance does not present the typical bimodal behavior seen in clusters hosting multistellar populations, but rather a unimodal distribution that indicates the presence of a genuine single stellar population, or a level of enrichment much lower than in clusters that show evidence for two populations from high-resolution spectroscopy. E3 would be the first bona fide Galactic old globular cluster where no sign of self-enrichment is found. Based on observations obtained at the Southern Astrophysical Research (SOAR) Telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the US National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU).

  10. DUST PRODUCTION AND MASS LOSS IN THE GALACTIC GLOBULAR CLUSTER NGC 362

    SciTech Connect

    Boyer, Martha L.; Gordon, Karl D.; Meixner, Margaret; Sewilo, Marta; Shiao, Bernie; Whitney, Barbara; McDonald, Iain; Van Loon, Jacco Th.; Oliveira, Joana M.; Babler, Brian; Bracker, Steve; Meade, Marilyn; Block, Miwa; Engelbracht, Charles; Misselt, Karl; Hora, Joe; Indebetouw, Remy

    2009-11-01

    We investigate dust production and stellar mass loss in the Galactic globular cluster NGC 362. Due to its close proximity to the Small Magellanic Cloud (SMC), NGC 362 was imaged with the Infrared Array Camera and Multiband Imaging Photometer cameras onboard the Spitzer Space Telescope as part of the Surveying the Agents of Galaxy Evolution (SAGE-SMC) Spitzer Legacy program. We detect several cluster members near the tip of the red giant branch (RGB) that exhibit infrared excesses indicative of circumstellar dust and find that dust is not present in measurable quantities in stars below the tip of the RGB. We modeled the spectral energy distribution (SED) of the stars with the strongest IR excess and find a total cluster dust mass-loss rate of 3.0{sup +2.0}{sub -1.2} x 10{sup -9} M{sub sun} yr{sup -1}, corresponding to a gas mass-loss rate of 8.6{sup +5.6}{sub -3.4} x 10{sup -6} M{sub sun} yr{sup -1}, assuming [Fe/H] =-1.16. This mass loss is in addition to any dustless mass loss that is certainly occurring within the cluster. The two most extreme stars, variables V2 and V16, contribute up to 45% of the total cluster dust-traced mass loss. The SEDs of the more moderate stars indicate the presence of silicate dust, as expected for low-mass, low-metallicity stars. Surprisingly, the SED shapes of the stars with the strongest mass-loss rates appear to require the presence of amorphous carbon dust, possibly in combination with silicate dust, despite their oxygen-rich nature. These results corroborate our previous findings in omega Centauri.

  11. A New Black Hole Mass Estimate for Obscured Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Minezaki, Takeo; Matsushita, Kyoko

    2015-04-01

    We propose a new method for estimating the mass of a supermassive black hole, applicable to obscured active galactic nuclei (AGNs). This method estimates the black hole mass using the width of the narrow core of the neutral FeKα emission line in X-rays and the distance of its emitting region from the black hole based on the isotropic luminosity indicator via the luminosity scaling relation. Assuming the virial relation between the locations and the velocity widths of the neutral FeKα line core and the broad Hβ emission line, the luminosity scaling relation of the neutral FeKα line core emitting region is estimated. We find that the velocity width of the neutral FeKα line core falls between that of the broad Balmer emission lines and the corresponding value at the dust reverberation radius for most of the target AGNs. The black hole mass {{M}BH,FeKα } estimated with this method is then compared with other black hole mass estimates, such as the broad emission-line reverberation mass {{M}BH,rev} for type 1 AGNs, the mass {{M}BH,{{H2}O}} based on the H2O maser, and the single-epoch mass estimate {{M}BH,pol} based on the polarized broad Balmer lines for type 2 AGNs. We find that {{M}BH,FeKα } is consistent with {{M}BH,rev} and {{M}BH,pol}, and find that {{M}BH,FeKα } correlates well with {{M}BH,{{H2}O}}. These results suggest that {{M}BH,FeKα } is a potential indicator of the black hole mass for obscured AGNs. In contrast, {{M}BH,FeKα } is systematically larger than {{M}BH,{{H2}O}} by about a factor of 5, and the possible origins are discussed.

  12. The origins of active galactic nuclei obscuration: the 'torus' as a dynamical, unstable driver of accretion

    NASA Astrophysics Data System (ADS)

    Hopkins, Philip F.; Hayward, Christopher C.; Narayanan, Desika; Hernquist, Lars

    2012-02-01

    Recent multiscale simulations have made it possible to follow gas inflows responsible for high-Eddington ratio accretion on to massive black holes (BHs) from galactic scales to the BH accretion disc. When sufficient gas is driven towards a BH, gravitational instabilities generically form lopsided, eccentric discs that propagate inwards from larger radii. The lopsided stellar disc exerts a strong torque on the gas, driving inflows that fuel the growth of the BH. Here, we investigate the possibility that the same disc, in its gas-rich phase, is the putative 'torus' invoked to explain obscured active galactic nuclei (AGN) and the cosmic X-ray background. The disc is generically thick and has characteristic ˜1-10 pc sizes and masses resembling those required of the torus. Interestingly, the scale heights and obscured fractions of the predicted torii are substantial even in the absence of strong stellar feedback providing the vertical support. Rather, they can be maintained by strong bending modes and warps/twists excited by the inflow-generating instabilities. A number of other observed properties commonly attributed to 'feedback' processes may in fact be explained entirely by dynamical, gravitational effects: the lack of alignment between torus and host galaxy, correlations between local star formation rate (SFR) and turbulent gas velocities and the dependence of obscured fractions on AGN luminosity or SFR. We compare the predicted torus properties with observations of gas surface density profiles, kinematics, scale heights and SFR densities in AGN, and find that they are consistent in all cases. We argue that it is not possible to reproduce these observations and the observed column density distribution without a clumpy gas distribution, but allowing for simple clumping on small scales the predicted column density distribution is in good agreement with observations from NH˜ 1020-1027 cm-2. We examine how the NH distribution scales with galaxy and AGN properties

  13. AN INITIAL MASS FUNCTION FOR INDIVIDUAL STARS IN GALACTIC DISKS. I. CONSTRAINING THE SHAPE OF THE INITIAL MASS FUNCTION

    SciTech Connect

    Parravano, Antonio; McKee, Christopher F.; Hollenbach, David J.

    2011-01-01

    We derive a semi-empirical galactic initial mass function (IMF) from observational constraints. We assume that the IMF, {psi}(m), is a smooth function of the stellar mass m. The mass dependence of the proposed IMF is determined by five parameters: the low-mass slope {gamma}, the high-mass slope -{Gamma} (taken to be -1.35), the characteristic mass m{sub ch} ({approx} the peak mass of the IMF), and the lower and upper limits on the mass, m{sub l} and m{sub u} (taken to be 0.004 and 120 M{sub sun}, respectively): {psi}(m)dln m {proportional_to} m{sup -}{Gamma}{l_brace}1 - exp [- (m/m{sub ch}){sup {gamma}}+{Gamma}]{r_brace}dln m. The values of {gamma} and m{sub ch} are derived from two integral constraints: (1) the ratio of the number density of stars in the range m = 0.1-0.6 M{sub sun} to that in the range m = 0.6-0.8 M{sub sun} as inferred from the mass distribution of field stars in the local neighborhood and (2) the ratio of the number of stars in the range m = 0.08-1 M{sub sun} to the number of brown dwarfs in the range m = 0.03-0.08 M{sub sun} in young clusters. The IMF satisfying the above constraints is characterized by the parameters {gamma} = 0.51 and m{sub ch} = 0.35 M{sub sun} (which corresponds to a peak mass of 0.27 M{sub sun} ). This IMF agrees quite well with the Chabrier IMF for the entire mass range over which we have compared with data, but predicts significantly more stars with masses <0.03 M{sub sun}; we also compare with other IMFs in current use and give a number of important parameters implied by the IMFs.

  14. The mass function of IC 4665 revisited by the UKIDSS Galactic Clusters Survey

    NASA Astrophysics Data System (ADS)

    Lodieu, N.; de Wit, W.-J.; Carraro, G.; Moraux, E.; Bouvier, J.; Hambly, N. C.

    2011-08-01

    Context. Knowledge of the mass function in open clusters constitutes one way to constrain the formation of low-mass stars and brown dwarfs as does the knowledge of the frequency of multiple systems and the properties of disks. Aims: The aim of the project is to determine the shape of the mass function in the low-mass and substellar regimes in the pre-main sequence (27 Myr) cluster IC 4665, which is located at 350 pc from the Sun. Methods: We have cross-matched the near-infrared photometric data from the Eighth Data Release (DR8) of the UKIRT Infrared Deep Sky Survey (UKIDSS) Galactic Clusters Survey (GCS) with previous optical data obtained with the Canada-France-Hawaii (CFH) wide-field camera to improve the determination of the luminosity and mass functions in the low-mass and substellar regimes. Results: The availability of i and z photometry taken with the CFH12K camera on the Canada France Hawaii Telescope added strong constraints to the UKIDSS photometric selection in this cluster, which is located in a dense region of our Galaxy. We have derived the luminosity and mass functions of the cluster down to J = 18.5 mag, corresponding to masses of ~0.025 M⊙ at the distance and age of IC 4665 according to theoretical models. In addition, we have extracted new candidate members down to ~20 Jupiter masses in a previously unstudied region of the cluster. Conclusions: We have derived the mass function over the 0.6-0.04 M⊙ mass range and found that it is best represented by a log-normal function with a peak at 0.25-0.16 M⊙, consistent with the determination in the Pleiades. This work is based in part on data obtained as part of the UKIRT Infrared Deep Sky Survey. The United Kingdom Infrared Telescope is operated by the Joint Astronomy Centre on behalf of the Science and Technology Facilities Council of the UK.This work is partly based on observations obtained at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council of Canada

  15. X-Ray Emission from Active Galactic Nuclei with Intermediate-Mass Black Holes

    NASA Astrophysics Data System (ADS)

    Dewangan, G. C.; Mathur, S.; Griffiths, R. E.; Rao, A. R.

    2008-12-01

    We present a systematic X-ray study of eight active galactic nuclei (AGNs) with intermediate-mass black holes (MBH ~ 8-95 × 104 M⊙) based on 12 XMM-Newton observations. The sample includes the two prototype AGNs in this class—NGC 4395 and POX 52 and six other AGNs discovered with the Sloan Digitized Sky Survey. These AGNs show some of the strongest X-ray variability, with the normalized excess variances being the largest and the power density break timescales being the shortest observed among radio-quiet AGNs. The excess-variance-luminosity correlation appears to depend on both the BH mass and the Eddington luminosity ratio. The break timescale-black hole mass relations for AGN with IMBHs are consistent with that observed for massive AGNs. We find that the FWHM of the Hβ/Hα line is uncorrelated with the BH mass, but shows strong anticorrelation with the Eddington luminosity ratio. Four AGNs show clear evidence for soft X-ray excess emission (kTin ~ 150-200 eV). X-ray spectra of three other AGNs are consistent with the presence of the soft excess emission. NGC 4395 with lowest L/LEdd lacks the soft excess emission. Evidently small black mass is not the primary driver of strong soft X-ray excess emission from AGNs. The X-ray spectral properties and optical-to-X-ray spectral energy distributions of these AGNs are similar to those of Seyfert 1 galaxies. The observed X-ray/UV properties of AGNs with IMBHs are consistent with these AGNs being low-mass extensions of more massive AGNs, those with high Eddington luminosity ratio looking more like narrow-line Seyfert 1 s and those with low L/LEdd looking more like broad-line Seyfert 1 galaxies.

  16. The Realm of the Galactic Globular Clusters and the Mass of Their Primordial Clouds

    NASA Astrophysics Data System (ADS)

    Tenorio-Tagle, Guillermo; Muñoz-Tuñón, Casiana; Cassisi, Santi; Silich, Sergiy

    2016-07-01

    By adopting the empirical constraints related to the estimates of helium enhancement ({{Δ }}Y), the present mass ratio between first and second stellar generations ({M}1{{G}}/{M}2{{G}}), and the actual mass of Galactic globular clusters (M GC), we envisage a possible scenario for the formation of these stellar systems. Our approach allows for the possible loss of stars through evaporation or tidal interactions and different star-formation efficiencies. In our approach, the star-formation efficiency of the first generation (ɛ 1G) is the central factor that links the stellar generations because it not only defines both the mass in stars of the first generation and the remaining mass available for further star formation, but it also fixes the amount of matter required to contaminate the second stellar generation. In this way, ɛ 1G is fully defined by the He enhancement between successive generations in a GC. We also show that globular clusters fit well within a ΔY versus {M}1{{G}}/{M}2{{G}} diagram that indicates three different evolutionary paths. The central one is for clusters that have not lost stars through tidal interactions from either of their stellar generations, and thus their present M GC value is identical to the amount of low-mass stars (M * ≤ 1 M ⊙) that resulted from both stellar generations. Other possible evolutions imply either the loss of first-generation stars or the combination of a low star-formation efficiency in the second stellar generation and a loss of stars from the second generation. From these considerations, we derive a lower limit to the mass (M tot) of the individual primordial clouds that gave origin to globular clusters.

  17. The dynamical fate of binary star clusters in the Galactic tidal field

    NASA Astrophysics Data System (ADS)

    Priyatikanto, R.; Kouwenhoven, M. B. N.; Arifyanto, M. I.; Wulandari, H. R. T.; Siregar, S.

    2016-04-01

    Fragmentation and fission of giant molecular clouds occasionally results in a pair of gravitationally bound star clusters that orbit their mutual centre of mass for some time, under the influence of internal and external perturbations. We investigate the evolution of binary star clusters with different orbital configurations, with a particular focus on the Galactic tidal field. We carry out N-body simulations of evolving binary star clusters and compare our results with estimates from our semi-analytic model. The latter accounts for mass-loss due to stellar evolution and two-body relaxation, and for evolution due to external tides. Using the semi-analytic model, we predict the long-term evolution for a wide range of initial conditions. It accurately describes the global evolution of such systems, until the moment when a cluster merger is imminent. N-body simulations are used to test our semi-analytic model and also to study additional features of evolving binary clusters, such as the kinematics of stars, global cluster rotation, evaporation rates, and the cluster merger process. We find that the initial orientation of a binary star cluster with respect to the Galactic field, and also the initial orbital phase, is crucial for its fate. Depending on these properties, the binaries may experience orbital reversal, spiral-in, or vertical oscillation about the Galactic plane before they actually merge at t ≈ 100 Myr, and produce rotating star clusters with slightly higher evaporation rates. The merger process of a binary cluster induces an outburst that ejects ˜10 per cent of the stellar members into the Galactic field.

  18. Shaping the relation between the mass of supermassive black holes and the velocity dispersion of galactic bulges

    NASA Astrophysics Data System (ADS)

    Chan, M. H.

    2013-05-01

    I use the fact that the radiation emitted by the accretion disk of supermassive black hole can heat up the surrounding gas in the protogalaxy to achieve hydrostatic equilibrium during the galaxy formation. The correlation between the black hole mass M BH and velocity dispersion σ thus naturally arises. The result generally agrees with empirical fittings from observational data, even with M BH ≤106 M ⊙. This model provides a clear picture on how the properties of the galactic supermassive black holes are connected with the kinetic properties of the galactic bulges.

  19. Spin and mass of the supermassive black hole in the Galactic Center

    SciTech Connect

    Dokuchaev, V. I.

    2015-12-15

    A new method for exact determination of the masses and spins of black holes from the observations of quasi-periodic oscillations is discussed. The detected signal from the hot clumps in the accretion plasma must contain modulations with two characteristic frequencies: the frequency of rotation of the black hole event horizon and the frequency of the latitudinal precession of the clump’s orbit. Application of the method of two characteristic frequencies for interpretation of the observed quasi-periodic oscillations from the supermassive black hole in the Galactic center in the X-rays and in the near IR region yields the most exact, for the present, values of the mass and the spin (Kerr parameter) of the Sgr A* black hole: M = (4.2 ± 0.2) × 10{sup 6}M{sub ⊙} and a = 0.65 ± 0.05. The observed quasi-periodic oscillations with a period of about 11.5 min are identified as the black hole event horizon rotation period and those with a period of about 19 min are identified as the latitudinal oscillation period of the hot spot orbits in the accretion disk.

  20. Spin and mass of the supermassive black hole in the Galactic Center

    NASA Astrophysics Data System (ADS)

    Dokuchaev, V. I.

    2015-12-01

    A new method for exact determination of the masses and spins of black holes from the observations of quasi-periodic oscillations is discussed. The detected signal from the hot clumps in the accretion plasma must contain modulations with two characteristic frequencies: the frequency of rotation of the black hole event horizon and the frequency of the latitudinal precession of the clump's orbit. Application of the method of two characteristic frequencies for interpretation of the observed quasi-periodic oscillations from the supermassive black hole in the Galactic center in the X-rays and in the near IR region yields the most exact, for the present, values of the mass and the spin (Kerr parameter) of the Sgr A* black hole: M = (4.2 ± 0.2) × 106 M ⊙ and a = 0.65 ± 0.05. The observed quasi-periodic oscillations with a period of about 11.5 min are identified as the black hole event horizon rotation period and those with a period of about 19 min are identified as the latitudinal oscillation period of the hot spot orbits in the accretion disk.

  1. The dynamical evolution of molecular clouds near the Galactic Centre - I. Orbital structure and evolutionary timeline

    NASA Astrophysics Data System (ADS)

    Kruijssen, J. M. Diederik; Dale, James E.; Longmore, Steven N.

    2015-02-01

    We recently proposed that the star-forming potential of dense molecular clouds in the Central Molecular Zone (CMZ, i.e. the central few 100 pc) of the Milky Way is intimately linked to their orbital dynamics, potentially giving rise to an absolute-time sequence of star-forming clouds. In this paper, we present an orbital model for the gas stream(s) observed in the CMZ. The model is obtained by integrating orbits in the empirically constrained gravitational potential and represents a good fit (χ _red^2=2.0) to the observed position-velocity distribution of dense (n > several 103 cm-3) gas, reproducing all of its key properties. The orbit is also consistent with observational constraints not included in the fitting process, such as the 3D space velocities of Sgr B2 and the Arches and Quintuplet clusters. It differs from previous, parametric models in several respects: (1) the orbit is open rather than closed due to the extended mass distribution in the CMZ, (2) its orbital velocity (100-200 km s-1) is twice as high as in previous models, and (3) Sgr A* coincides with the focus of the (eccentric) orbit rather than being offset. Our orbital solution supports the recently proposed scenario in which the dust ridge between G0.253+0.016 (`the Brick') and Sgr B2 represents an absolute-time sequence of star-forming clouds, of which the condensation was triggered by the tidal compression during their most recent pericentre passage. We position the clouds on a common timeline and find that their pericentre passages occurred 0.30-0.74 Myr ago. Given their short free-fall times (tff ˜ 0.34 Myr), the quiescent cloud G0.253+0.016 and the vigorously star-forming complex Sgr B2 are separated by a single free-fall time of evolution, implying that star formation proceeds rapidly once collapse has been initiated. We provide the complete orbital solution, as well as several quantitative predictions of our model (e.g. proper motions and the positions of star formation `hotspots'). The

  2. Hubble Space Telescope Proper Motion (HSTPROMO) Catalogs of Galactic Globular Clusters. IV. Kinematic Profiles and Average Masses of Blue Straggler Stars

    NASA Astrophysics Data System (ADS)

    Baldwin, A. T.; Watkins, L. L.; van der Marel, R. P.; Bianchini, P.; Bellini, A.; Anderson, J.

    2016-08-01

    We make use of the Hubble Space Telescope proper-motion catalogs derived by Bellini et al. to produce the first radial velocity dispersion profiles σ (R) for blue straggler stars (BSSs) in Galactic globular clusters (GCs), as well as the first dynamical estimates for the average mass of the entire BSS population. We show that BSSs typically have lower velocity dispersions than stars with mass equal to the main-sequence turnoff mass, as one would expect for a more massive population of stars. Since GCs are expected to experience some degree of energy equipartition, we use the relation σ \\propto {M}-η , where η is related to the degree of energy equipartition, along with our velocity dispersion profiles to estimate BSS masses. We estimate η as a function of cluster relaxation from recent Monte Carlo cluster simulations by Bianchini et al. and then derive an average mass ratio {M}{BSS}/{M}{MSTO}=1.50+/- 0.14 and an average mass {M}{BSS}=1.22+/- 0.12 M ⊙ from 598 BSSs across 19 GCs. The final error bars include any systematic errors that are random between different clusters, but not any potential biases inherent to our methodology. Our results are in good agreement with the average mass of {M}{BSS}=1.22+/- 0.06 M ⊙ for the 35 BSSs in Galactic GCs in the literature with properties that have allowed individual mass determination. Based on proprietary and archival observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555.

  3. A DIRECT MEASUREMENT OF THE BARYONIC MASS FUNCTION OF GALAXIES AND IMPLICATIONS FOR THE GALACTIC BARYON FRACTION

    SciTech Connect

    Papastergis, Emmanouil; Huang, Shan; Giovanelli, Riccardo; Haynes, Martha P.; Cattaneo, Andrea E-mail: shan@astro.cornell.edu E-mail: haynes@astro.cornell.edu

    2012-11-10

    We use both an H I-selected and an optically selected galaxy sample to directly measure the abundance of galaxies as a function of their 'baryonic' mass (stars + atomic gas). Stellar masses are calculated based on optical data from the Sloan Digital Sky Survey and atomic gas masses are calculated using atomic hydrogen (H I) emission line data from the Arecibo Legacy Fast ALFA survey. By using the technique of abundance matching, we combine the measured baryonic function of galaxies with the dark matter halo mass function in a {Lambda}CDM universe, in order to determine the galactic baryon fraction as a function of host halo mass. We find that the baryon fraction of low-mass halos is much smaller than the cosmic value, even when atomic gas is taken into account. We find that the galactic baryon deficit increases monotonically with decreasing halo mass, in contrast with previous studies which suggested an approximately constant baryon fraction at the low-mass end. We argue that the observed baryon fractions of low-mass halos cannot be explained by reionization heating alone, and that additional feedback mechanisms (e.g., supernova blowout) must be invoked. However, the outflow rates needed to reproduce our result are not easily accommodated in the standard picture of galaxy formation in a {Lambda}CDM universe.

  4. CCD Observing and Dynamical Time Series Analysis of Active Galactic Nuclei.

    NASA Astrophysics Data System (ADS)

    Nair, Achotham Damodaran

    1995-01-01

    The properties, working and operations procedure of the Charge Coupled Device (CCD) at the 30" telescope at Rosemary Hill Observatory (RHO) are discussed together with the details of data reduction. Several nonlinear techniques of time series analysis, based on the behavior of the nearest neighbors, have been used to analyze the time series of the quasar 3C 345. A technique using Artificial Neural Networks based on prediction of the time series is used to study the dynamical properties of 3C 345. Finally, a heuristic model for variability of Active Galactic Nuclei is discussed.

  5. HIGH-PRECISION DYNAMICAL MASSES OF VERY LOW MASS BINARIES

    SciTech Connect

    Konopacky, Q. M.; Ghez, A. M.; McLean, I. S.; Barman, T. S.; Rice, E. L.; Bailey, J. I.; White, R. J.; Duchene, G. E-mail: ghez@astro.ucla.ed E-mail: barman@lowell.ed E-mail: white@chara.gsu.ed

    2010-03-10

    We present the results of a three year monitoring program of a sample of very low mass (VLM) field binaries using both astrometric and spectroscopic data obtained in conjunction with the laser guide star adaptive optics system on the W. M. Keck II 10 m telescope. Among the 24 systems studied, 15 have undergone sufficient orbital motion, allowing us to derive their relative orbital parameters and hence their total system mass. These measurements more than double the number of mass measurements for VLM objects, and include the most precise mass measurement to date (<2%). Among the 11 systems with both astrometric and spectroscopic measurements, six have sufficient radial velocity variations to allow us to obtain individual component masses. This is the first derivation of the component masses for five of these systems. Altogether, the orbital solutions of these low mass systems show a correlation between eccentricity and orbital period, consistent with their higher mass counterparts. In our primary analysis, we find that there are systematic discrepancies between our dynamical mass measurements and the predictions of theoretical evolutionary models (TUCSON and LYON) with both models either underpredicting or overpredicting the most precisely determined dynamical masses. These discrepancies are a function of spectral type, with late-M through mid-L systems tending to have their masses underpredicted, while one T-type system has its mass overpredicted. These discrepancies imply that either the temperatures predicted by evolutionary and atmosphere models are inconsistent for an object of a given mass, or the mass-radius relationship or cooling timescales predicted by the evolutionary models are incorrect. If these spectral-type trends are correct and hold into the planetary mass regime, the implication is that the masses of directly imaged extrasolar planets are overpredicted by the evolutionary models.

  6. WISE detection of the galactic low-mass X-ray binaries

    SciTech Connect

    Wang, Xuebing; Wang, Zhongxiang

    2014-06-20

    We report on the results from our search for the Wide-field Infrared Survey Explorer (WISE) detection of the Galactic low-mass X-ray binaries (LMXBs). Among 187 binaries cataloged in Liu et al., we find 13 counterparts and 2 candidate counterparts. For the 13 counterparts, 2 (4U 0614+091 and GX 339–4) have already been confirmed by previous studies to have a jet and 1 (GRS 1915+105) to have a candidate circumbinary disk, from which the detected infrared emission arose. Having collected the broadband optical and near-infrared data in the literature and constructed flux density spectra for the other 10 binaries, we identify that 3 (A0620–00, XTE J1118+480, and GX 1+4) are candidate circumbinary disk systems, 4 (Cen X-4, 4U 1700+24, 3A 1954+319, and Cyg X-2) had thermal emission from their companion stars, and 3 (Sco X-1, Her X-1, and Swift J1753.5–0127) are peculiar systems with the origin of their infrared emission rather uncertain. We discuss the results and WISE counterparts' brightness distribution among the known LMXBs, and suggest that more than half of the LMXBs would have a jet, a circumbinary disk, or both.

  7. The effects of baryon physics, black holes and active galactic nucleus feedback on the mass distribution in clusters of galaxies

    NASA Astrophysics Data System (ADS)

    Martizzi, Davide; Teyssier, Romain; Moore, Ben; Wentz, Tina

    2012-06-01

    The spatial distribution of matter in clusters of galaxies is mainly determined by the dominant dark matter component; however, physical processes involving baryonic matter are able to modify it significantly. We analyse a set of 500 pc resolution cosmological simulations of a cluster of galaxies with mass comparable to Virgo, performed with the AMR code RAMSES. We compare the mass density profiles of the dark, stellar and gaseous matter components of the cluster that result from different assumptions for the subgrid baryonic physics and galaxy formation processes. First, the prediction of a gravity-only N-body simulation is compared to that of a hydrodynamical simulation with standard galaxy formation recipes, and then all results are compared to a hydrodynamical simulation which includes thermal active galactic nucleus (AGN) feedback from supermassive black holes (SMBHs). We find the usual effects of overcooling and adiabatic contraction in the run with standard galaxy formation physics, but very different results are found when implementing SMBHs and AGN feedback. Star formation is strongly quenched, producing lower stellar densities throughout the cluster, and much less cold gas is available for star formation at low redshifts. At redshift z= 0 we find a flat density core of radius 10 kpc in both the dark and stellar matter density profiles. We speculate on the possible formation mechanisms able to produce such cores and we conclude that they can be produced through the coupling of different processes: (I) dynamical friction from the decay of black hole orbits during galaxy mergers; (II) AGN-driven gas outflows producing fluctuations of the gravitational potential causing the removal of collisionless matter from the central region of the cluster; (III) adiabatic expansion in response to the slow expulsion of gas from the central region of the cluster during the quiescent mode of AGN activity.

  8. Synthetic extinction maps around intermediate-mass black holes in Galactic globular clusters

    NASA Astrophysics Data System (ADS)

    Pepe, C.; Pellizza, L. J.

    2016-08-01

    During the last decades, much effort has been devoted to explain the discrepancy between the amount of intracluster medium (ICM) estimated from stellar evolution theories and that emerging from observations in globular clusters (GCs). One possible scenario is the accretion of this medium by an intermediate-mass black hole (IMBH) at the centre of the cluster. In this work, we aim at modelling the cluster colour-excess profile as a tracer of the ICM density, both with and without an IMBH. Comparing the profiles with observations allows us to test the existence of IMBHs and their possible role in the cleansing of the ICM. We derive the intracluster density profiles from hydrodynamical models of accretion on to a central IMBH in a GC and we determine the corresponding dust density. This model is applied to a list of 25 Galactic GCs. We find that central IMBHs decrease the ICM by several orders of magnitude. In a subset of nine clusters, the absence of the black hole combined with a low-ICM temperature would be at odds with present gas mass content estimations. As a result, we conclude that IMBHs are an effective cleansing mechanism of the ICM of GCs. We construct synthetic extinction maps for M 62 and ωCen, two clusters in the small subset of nine with observed 2D extinction maps. We find that under reasonable assumptions regarding the model parameters, if the gas temperature in M 62 is close to 8000 K, an IMBH needs to be invoked. Further ICM observations regarding both the gas and dust in GCs could help to settle this issue.

  9. Virtual mass effect in dynamic micromechanical mass sensing in liquids

    NASA Astrophysics Data System (ADS)

    Peiker, P.; Oesterschulze, E.

    2016-06-01

    Weighing individual micro- or nanoscale particles in solution using dynamic micromechanical sensors is quite challenging: viscous losses dramatically degrade the sensor's performance by both broadening the resonance peak and increasing the effective total mass of the resonator by the dragged liquid. While the virtual mass of the resonator was discussed frequently, little attention has been paid to the virtual mass of particles attached to the resonator's surface and its impact on the accuracy of mass sensing. By means of the in situ detection of a polystyrene microbead in water using a bridge-based microresonator, we demonstrate that the virtual mass of the bead significantly affects the observed frequency shift. In fact, 55 % of the frequency shift was caused by the virtual mass of the adsorbed bead, predicted by Stoke's theory. Based on the observed shift in the resonator's quality factor during particle adsorption, we confirm this significant effect of the virtual mass. Thus, a quantitative analysis of the mass of a single adsorbed particle is strongly diminished if dynamic micromechanical sensors are operated in a liquid environment.

  10. Quark mass effect on axial charge dynamics

    NASA Astrophysics Data System (ADS)

    Guo, Er-dong; Lin, Shu

    2016-05-01

    We studied the effect of finite quark mass on the dynamics of the axial charge using the D3/D7 model in holography. The mass term in the axial anomaly equation affects both the fluctuation (generation) and dissipation of the axial charge. We studied the dependence of the effect on quark mass and an external magnetic field. For axial charge generation, we calculated the mass diffusion rate, which characterizes the helicity flipping rate. The rate is a nonmonotonous function of mass and can be significantly enhanced by the magnetic field. The diffusive behavior is also related to a divergent susceptibility of the axial charge. For axial charge dissipation, we found that in the long time limit, the mass term dissipates all the charge effectively generated by parallel electric and magnetic fields. The result is consistent with a relaxation time approximation. The rate of dissipation through mass term is a monotonous increasing function of both quark mass and a magnetic field.

  11. Dynamics and X-ray emission of a galactic superwind interacting with disk and halo gas

    NASA Technical Reports Server (NTRS)

    Suchkov, Anatoly A.; Balsara, Dinshaw S.; Heckman, Timothy M.; Leitherner, Claus

    1994-01-01

    There is a general agreement that the conspicuous extranuclear X-ray, optical-line, and radio-contiuum emission of starbursts is associated with powerful galactic superwinds blowing from their centers. However, despite the significant advances in observational studies of superwinds, there is no consensus on the nature of the emitting material and even on the emission mechanisms themselves. This is to a great extent a consequence of a poor understanding of dynamical processes in the starburst superwind regions. To address this issue, we have conducted two-dimensional hydrodynamical simulations of galactic superwinds. While previous similar studies have used a single (disk) component to represent the ISM of the starburst galaxy, we analyze the interaction of the wind with a two-component disk-halo ambient interstellar medium and argue that this two-component representation is crucial for adequate modeling of starbursts. The emphasis of this study is on the geometry and structure of the wind region and the X-ray emission arising in the wind material and the shocked gas in the disk and the halo of the galaxy. The simulation results have shown that a clear-cut bipolar wind can easily develop under a range of very different conditions. On the other hand, a complex 'filamentary' structure associated with the entrained dense disk material is found to arise within the hot bubble blown out by the wind. The flow pattern within the bubble is dominated equally by the central biconic outflow and a system of whirling motions r elated to the origin and development of the 'filaments'. The filament parameters make them a good candidate for optical-emission-line filamentary gas observed in starburst halos. We find that the history of mass and energy deposition in the starburst region of the galaxy is crucial for wind dynamics. A 'mild' early wind, which arises as a result of the cumulative effect of stellar winds from massive stars, produces a bipolar vertical cavity in the disk and

  12. Self-consistent dynamical and radiative models of low-luminosity active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Dolence, Joshua Cody

    Supermassive black holes are found in nearly all major galaxies and most are in a slowly accreting or quiescent state. The physical characteristics of these low-luminosity active galactic nuclei (LLAGN) allow a unique opportunity to build and test nearly ab initio models of black hole accretion. To that end, I describe numerical techniques we have developed to build self-consistent dynamical and radiative models of LLAGN and their application to modeling the galactic center source Sgr A*. Sgr A* is an extremely low luminosity LLAGN and is a particularly attractive target for modeling black hole accretion flows for a variety of reasons. First, its proximity has enabled excellent measurements of its mass and distance through long term monitoring of stellar orbits. Next, Sgr A* has been the target of extensive multiwavelength observing campaigns for decades, providing a wealth of information on its mean and fluctuating broadband spectrum. In the last few years, millimeter wavelength very long baseline interferometry has begun to resolve structure on the scale of the event horizon, providing constraints on the structure of the inner accretion flow. From a theoretical perspective, Sgr A* is an attractive target because its low luminosity implies that the dynamical and radiative problems are decoupled, greatly simplifying the construction of self-consistent models. I first describe grmonty, a fully relativistic Monte Carlo code for radiation transport that treats angle-dependent thermal synchrotron emission and absorption and Compton scattering essentially without approximation. One limitation of grmonty is that it assumes the background emitting plasma (which is provided by, e.g., a simulation) is time-independent which we refer to as the "fast-light" approximation. I then describe the generalization of grmonty to include light travel time effects in arbitrary time-dependent background flows and introduce a new technique for producing images based on time-dependent ray

  13. Dynamical mass estimates in M13

    SciTech Connect

    Leonard, P.J.T. ); Richer, H.B.; Fahlman, G.G. )

    1992-01-01

    We have used the proper motion data of Cudworth Monet to make mass estimates in the globular cluster M13 by solving the spherical Jeans equation. We find a mass inside a spherical shell centered on the cluster with a radius corresponding to 390 arcsec on the sky of 5.5 or 7.6 {times} 10{sup 5} M{circle dot}, depending on the adopted cluster distance. This large dynamical mass estimate together with the observed fact that the mass function of M13 is rising steeply at the low-mass end suggest that much of the cluster mass may be in the form of low-mass stars and brown dwarfs.

  14. Dynamical mass estimates in M13

    SciTech Connect

    Leonard, P.J.T.; Richer, H.B.; Fahlman, G.G.

    1992-09-01

    We have used the proper motion data of Cudworth Monet to make mass estimates in the globular cluster M13 by solving the spherical Jeans equation. We find a mass inside a spherical shell centered on the cluster with a radius corresponding to 390 arcsec on the sky of 5.5 or 7.6 {times} 10{sup 5} M{circle_dot}, depending on the adopted cluster distance. This large dynamical mass estimate together with the observed fact that the mass function of M13 is rising steeply at the low-mass end suggest that much of the cluster mass may be in the form of low-mass stars and brown dwarfs.

  15. Tracing the Galactic Halo: Obtaining Bayesian mass estimates of the Galaxy in the presence of incomplete data

    NASA Astrophysics Data System (ADS)

    Eadie, Gwendolyn; Harris, William; Widrow, Lawrence; Springford, Aaron

    2016-08-01

    The mass and cumulative mass profile of the Galaxy are its most fundamental properties. Estimating these properties, however, is not a trivial problem. We rely on the kinematic information from Galactic satellites such as globular clusters and dwarf galaxies, and this data is incomplete and subject to measurement uncertainty. In particular, the complete 3D velocity vectors of objects are sometimes unavailable, and there may be selection biases due to both the distribution of objects around the Galaxy and our measurement position. On the other hand, the uncertainties of these data are fairly well understood. Thus, we would like to incorporate these uncertainties and the incomplete data into our estimate of the Milky Way's mass. The Bayesian paradigm offers a way to deal with both the missing kinematic data and measurement errors using a hierarchical model. An application of this method to the Milky Way halo mass profile, using the kinematic data for globular clusters and dwarf satellites, is shown.

  16. Logarithmic Spiral Arm Pitch Angle of Spiral Galaxies: Measurement and Relationship to Galactic Structure and Nuclear Supermassive Black Hole Mass

    NASA Astrophysics Data System (ADS)

    Davis, Benjamin

    In this dissertation, I explore the geometric structure of spiral galaxies and how the visible structure can provide information about the central mass of a galaxy, the density of its galactic disk, and the hidden mass of the supermassive black hole in its nucleus. In order to quantitatively measure the logarithmic spiral pitch angle (a measurement of tightness of the winding) of galactic spiral arms, I led an effort in our research group (the Arkansas Galaxy Evolution Survey) to modify existing two-dimensional fast Fourier transform software to increase its efficacy and accuracy. Using this software, I was able to lead an effort to calculate a black hole mass function (BHMF) for spiral galaxies in our local Universe. This work effectively provides us with a census of local black holes and establishes an endpoint on the evolutionary history of the BHMF for spiral galaxies. Furthermore, my work has indicated a novel fundamental relationship between the pitch angle of a galaxy's spiral arms, the maximum density of neutral atomic hydrogen in its disk, and the stellar mass of its bulge. This result provides strong support for the density wave theory of spiral structure in disk galaxies and poses a critical question of the validity of rival theories for the genesis of spiral structure in disk galaxies.

  17. Galactic oscillator symmetry

    NASA Technical Reports Server (NTRS)

    Rosensteel, George

    1995-01-01

    Riemann ellipsoids model rotating galaxies when the galactic velocity field is a linear function of the Cartesian coordinates of the galactic masses. In nuclear physics, the kinetic energy in the linear velocity field approximation is known as the collective kinetic energy. But, the linear approximation neglects intrinsic degrees of freedom associated with nonlinear velocity fields. To remove this limitation, the theory of symplectic dynamical symmetry is developed for classical systems. A classical phase space for a self-gravitating symplectic system is a co-adjoint orbit of the noncompact group SP(3,R). The degenerate co-adjoint orbit is the 12 dimensional homogeneous space Sp(3,R)/U(3), where the maximal compact subgroup U(3) is the symmetry group of the harmonic oscillator. The Hamiltonian equations of motion on each orbit form a Lax system X = (X,F), where X and F are elements of the symplectic Lie algebra. The elements of the matrix X are the generators of the symplectic Lie algebra, viz., the one-body collective quadratic functions of the positions and momenta of the galactic masses. The matrix F is composed from the self-gravitating potential energy, the angular velocity, and the hydostatic pressure. Solutions to the hamiltonian dynamical system on Sp(3,R)/U(3) are given by symplectic isospectral deformations. The Casimirs of Sp(3,R), equal to the traces of powers of X, are conserved quantities.

  18. A MULTIWAVELENGTH VIEW OF A MASS OUTFLOW FROM THE GALACTIC CENTER

    SciTech Connect

    Law, C. J.

    2010-01-01

    The Galactic center (GC) lobe is a degree-tall shell of gas that spans the central degree of our Galaxy. It has been cited as evidence for a mass outflow from our GC region, which has inspired diverse models for its origin. However, most work has focused on the morphology of the GC lobe, which has made it difficult to draw strong conclusions about its nature. Here, I present a coherent, multiwavelength analysis of new and archival observations of the GC lobe. New radio continuum observations show that the entire structure has a similar spectral index, indicating that it has a common origin. The radio continuum emission shows that the GC lobe has a magnetized layer with a diameter of 110 pc and an equipartition field strength ranging from 40 to 100 muG. I show that optical and radio recombination line emission are associated with the GC lobe and are consistent with being located in the GC region. The recombination line emission traces an ionized shell nested within the radio continuum with diameter of 80 pc and height 165 pc. Mid-infrared maps at 8 and 15 mum show that the GC lobe has a third layer of warm dust and polycyclic aromatic hydrocarbon-emission that surrounds the radio continuum shell with a diameter of 130 pc. Assuming adiabatic expansion of the gas in the GC lobe, its formation required an energy input of about 5 x 10{sup 52} ergs. I compare the physical conditions of the GC lobe to several models and find best agreement with the canonical starburst outflow model. The formation of the GC lobe is consistent with the currently observed pressure and star formation rate in the central tens of parsecs of our Galaxy. Outflows of this scale are more typical of dwarf galaxies and would not be easily detected in nearby spiral galaxies. Thus, the existence of such an outflow in our own Galaxy may indicate that it is a relatively common phenomenon in the nuclei of spiral galaxies.

  19. Near-infrared photometry and spectroscopy of the low Galactic latitude globular cluster 2MASS-GC 03

    NASA Astrophysics Data System (ADS)

    Carballo-Bello, Julio A.; Ramírez Alegría, S.; Borissova, J.; Smith, L. C.; Kurtev, R.; Lucas, P. W.; Moni Bidin, Ch.; Alonso-García, J.; Minniti, D.; Palma, T.; Dékány, I.; Medina, N.; Moyano, M.; Villanueva, V.; Kuhn, M. A.

    2016-10-01

    We present deep near-infrared photometry and spectroscopy of the globular cluster 2MASS-GC 03 projected in the Galactic disc using MMT and Magellan Infrared Spectrograph on the Clay Telescope (Las Campanas Observatory) and VISTA Variables in the Via Lactea Survey data. Most probable cluster member candidates were identified from near-infrared photometry. Out of 10 candidates that were followed-up spectroscopically, 5 have properties of cluster members, from which we calculate <[Fe/H]>= - 0.9 ± 0.2 and a radial velocity of = - 78 ± 12 km s-1. A distance of 10.8 kpc is estimated from three likely RR Lyrae members. Given that the cluster is currently at a distance of 4.2 kpc from the Galactic Centre, the cluster's long survival time of an estimated 11.3 ± 1.2 Gyr strengthens the case for its globular-cluster nature. The cluster has a hint of elongation in the direction of the Galactic Centre.

  20. A preliminary systematic search for red-clump stars in Galactic open clusters based on 2mass data

    NASA Astrophysics Data System (ADS)

    Zhang, Xi; Chen, Li; Li, Zhongmu

    2013-02-01

    Red-clump (RC) giants are intermediate-age, core-helium-burning stars. The RC can be used as a standard candle. In particular, the small variance of the RC's K-band intrinsic luminosity and its weak dependence on chemical composition and age make it an extremely useful distance indicator. In this paper, we use 2mass data to search for RC stars in a sample of 60 Galactic open clusters with known reddening, ages, and distances, and obtain an average value for the RC's absolute K s-band magnitude, M K s = -1.72 +/- 0.17 mag.

  1. Upper limits to surface-force disturbances on LISA proof masses and the possibility of observing galactic binaries

    SciTech Connect

    Carbone, Ludovico; Ciani, Giacomo; Dolesi, Rita; Hueller, Mauro; Tombolato, David; Vitale, Stefano; Weber, William Joseph; Cavalleri, Antonella

    2007-02-15

    We have measured surface-force noise on a hollow replica of a LISA proof mass surrounded by its capacitive motion sensor. Forces are detected through the torque exerted on the proof mass by means of a torsion pendulum in the 0.1-30 mHz range. The sensor and electronics have the same design as for the flight hardware, including 4 mm gaps around the proof mass. The measured upper limit for forces would allow detection of a number of galactic binaries signals with signal-to-noise ratio up to {approx_equal}40 for 1 yr integration. We also discuss how LISA Pathfinder will substantially improve this limit, approaching the LISA performance.

  2. Galactic Winds

    NASA Astrophysics Data System (ADS)

    Veilleux, Sylvain

    Galactic winds have become arguably one of the hottest topics in extragalactic astronomy. This enthusiasm for galactic winds is due in part to the detection of winds in many, if not most, high-redshift galaxies. Galactic winds have also been invoked by theorists to (1) suppress the number of visible dwarf galaxies and avoid the "cooling catastrophe" at high redshift that results in the overproduction of massive luminous galaxies, (2) remove material with low specific angular momentum early on and help enlarge gas disks in CDM + baryons simulations, (3) reduce the dark mass concentrations in galaxies, (4) explain the mass-metallicity relation of galaxies from selective loss of metal-enriched gas from smaller galaxies, (5) enrich and "preheat" the ICM, (6) enrich the IGM without disturbing the Lyαforest significantly, and (7) inhibit cooling flows in galaxy clusters with active cD galaxies. The present paper highlights a few key aspects of galactic winds taken from a recent ARAA review by Veilleux, Cecil, &Bland-Hawthorn (2005; herafter VCBH). Readers interested in a more detailed discussion of this topic are encouraged to refer to the original ARAA article.

  3. MHD SIMULATIONS OF ACTIVE GALACTIC NUCLEUS JETS IN A DYNAMIC GALAXY CLUSTER MEDIUM

    SciTech Connect

    Mendygral, P. J.; Jones, T. W.; Dolag, K.

    2012-05-10

    We present a pair of three-dimensional magnetohydrodynamical simulations of intermittent jets from a central active galactic nucleus (AGN) in a galaxy cluster extracted from a high-resolution cosmological simulation. The selected cluster was chosen as an apparently relatively relaxed system, not having undergone a major merger in almost 7 Gyr. Despite this characterization and history, the intracluster medium (ICM) contains quite active 'weather'. We explore the effects of this ICM weather on the morphological evolution of the AGN jets and lobes. The orientation of the jets is different in the two simulations so that they probe different aspects of the ICM structure and dynamics. We find that even for this cluster, which can be characterized as relaxed by an observational standard, the large-scale, bulk ICM motions can significantly distort the jets and lobes. Synthetic X-ray observations of the simulations show that the jets produce complex cavity systems, while synthetic radio observations reveal bending of the jets and lobes similar to wide-angle tail radio sources. The jets are cycled on and off with a 26 Myr period using a 50% duty cycle. This leads to morphological features similar to those in 'double-double' radio galaxies. While the jet and ICM magnetic fields are generally too weak in the simulations to play a major role in the dynamics, Maxwell stresses can still become locally significant.

  4. Dynamical equation of the effective gluon mass

    SciTech Connect

    Aguilar, A. C.; Binosi, D.; Papavassiliou, J.

    2011-10-15

    In this article, we derive the integral equation that controls the momentum dependence of the effective gluon mass in the Landau gauge. This is accomplished by means of a well-defined separation of the corresponding ''one-loop dressed'' Schwinger-Dyson equation into two distinct contributions, one associated with the mass and one with the standard kinetic part of the gluon. The entire construction relies on the existence of a longitudinally coupled vertex of nonperturbative origin, which enforces gauge invariance in the presence of a dynamical mass. The specific structure of the resulting mass equation, supplemented by the additional requirement of a positive-definite gluon mass, imposes a rather stringent constraint on the derivative of the gluonic dressing function, which is comfortably satisfied by the large-volume lattice data for the gluon propagator, both for SU(2) and SU(3). The numerical treatment of the mass equation, under some simplifying assumptions, is presented for the aforementioned gauge groups, giving rise to a gluon mass that is a nonmonotonic function of the momentum. Various theoretical improvements and possible future directions are briefly discussed.

  5. Dynamic Method for Identifying Collected Sample Mass

    NASA Technical Reports Server (NTRS)

    Carson, John

    2008-01-01

    G-Sample is designed for sample collection missions to identify the presence and quantity of sample material gathered by spacecraft equipped with end effectors. The software method uses a maximum-likelihood estimator to identify the collected sample's mass based on onboard force-sensor measurements, thruster firings, and a dynamics model of the spacecraft. This makes sample mass identification a computation rather than a process requiring additional hardware. Simulation examples of G-Sample are provided for spacecraft model configurations with a sample collection device mounted on the end of an extended boom. In the absence of thrust knowledge errors, the results indicate that G-Sample can identify the amount of collected sample mass to within 10 grams (with 95-percent confidence) by using a force sensor with a noise and quantization floor of 50 micrometers. These results hold even in the presence of realistic parametric uncertainty in actual spacecraft inertia, center-of-mass offset, and first flexibility modes. Thrust profile knowledge is shown to be a dominant sensitivity for G-Sample, entering in a nearly one-to-one relationship with the final mass estimation error. This means thrust profiles should be well characterized with onboard accelerometers prior to sample collection. An overall sample-mass estimation error budget has been developed to approximate the effect of model uncertainty, sensor noise, data rate, and thrust profile error on the expected estimate of collected sample mass.

  6. The dynamical mass of a classical Cepheid variable star in an eclipsing binary system.

    PubMed

    Pietrzyński, G; Thompson, I B; Gieren, W; Graczyk, D; Bono, G; Udalski, A; Soszyński, I; Minniti, D; Pilecki, B

    2010-11-25

    Stellar pulsation theory provides a means of determining the masses of pulsating classical Cepheid supergiants-it is the pulsation that causes their luminosity to vary. Such pulsational masses are found to be smaller than the masses derived from stellar evolution theory: this is the Cepheid mass discrepancy problem, for which a solution is missing. An independent, accurate dynamical mass determination for a classical Cepheid variable star (as opposed to type-II Cepheids, low-mass stars with a very different evolutionary history) in a binary system is needed in order to determine which is correct. The accuracy of previous efforts to establish a dynamical Cepheid mass from Galactic single-lined non-eclipsing binaries was typically about 15-30% (refs 6, 7), which is not good enough to resolve the mass discrepancy problem. In spite of many observational efforts, no firm detection of a classical Cepheid in an eclipsing double-lined binary has hitherto been reported. Here we report the discovery of a classical Cepheid in a well detached, double-lined eclipsing binary in the Large Magellanic Cloud. We determine the mass to a precision of 1% and show that it agrees with its pulsation mass, providing strong evidence that pulsation theory correctly and precisely predicts the masses of classical Cepheids.

  7. The dynamical mass of a classical Cepheid variable star in an eclipsing binary system.

    PubMed

    Pietrzyński, G; Thompson, I B; Gieren, W; Graczyk, D; Bono, G; Udalski, A; Soszyński, I; Minniti, D; Pilecki, B

    2010-11-25

    Stellar pulsation theory provides a means of determining the masses of pulsating classical Cepheid supergiants-it is the pulsation that causes their luminosity to vary. Such pulsational masses are found to be smaller than the masses derived from stellar evolution theory: this is the Cepheid mass discrepancy problem, for which a solution is missing. An independent, accurate dynamical mass determination for a classical Cepheid variable star (as opposed to type-II Cepheids, low-mass stars with a very different evolutionary history) in a binary system is needed in order to determine which is correct. The accuracy of previous efforts to establish a dynamical Cepheid mass from Galactic single-lined non-eclipsing binaries was typically about 15-30% (refs 6, 7), which is not good enough to resolve the mass discrepancy problem. In spite of many observational efforts, no firm detection of a classical Cepheid in an eclipsing double-lined binary has hitherto been reported. Here we report the discovery of a classical Cepheid in a well detached, double-lined eclipsing binary in the Large Magellanic Cloud. We determine the mass to a precision of 1% and show that it agrees with its pulsation mass, providing strong evidence that pulsation theory correctly and precisely predicts the masses of classical Cepheids. PMID:21107425

  8. On the Contribution of Gamma Ray Bursts to the Galactic Inventory of Some Intermediate Mass Nuclei

    SciTech Connect

    Pruet, J; Surman, R; McLaughlin, G C

    2004-01-23

    Light curves from a growing number of Gamma Ray Bursts (GRBs) indicate that GRBs copiously produce radioactive Ni moving outward at fractions of the speed of light. We calculate nuclear abundances of elements accompanying the outflowing Ni under the assumption that this Ni originates from a wind blown off of a viscous accretion disk. We also show that GRB's likely contribute appreciably to the galactic inventory of {sup 42}Ca, {sup 45}Sc, {sup 46}Ti, {sup 49}Ti, {sup 63}Cu, and may be an important site for the production of {sup 64}Zn.

  9. THERMAL AND DYNAMICAL PROPERTIES OF GAS ACCRETING ONTO A SUPERMASSIVE BLACK HOLE IN AN ACTIVE GALACTIC NUCLEUS

    SciTech Connect

    Moscibrodzka, M.; Proga, D.

    2013-04-20

    We study stability of gas accretion in active galactic nuclei (AGNs). Our grid-based simulations cover a radial range from 0.1 to 200 pc, which may enable linking the galactic/cosmological simulations with small-scale black hole (BH) accretion models within a few hundreds of Schwarzschild radii. Here, as in previous studies by our group, we include gas radiative cooling as well as heating by a sub-Eddington X-ray source near the central supermassive BH of 10{sup 8} M{sub Sun }. Our theoretical estimates and simulations show that for the X-ray luminosity, L{sub X} {approx} 0.008 L{sub Edd}, the gas is thermally and convectively unstable within the computational domain. In the simulations, we observe that very tiny fluctuations in an initially smooth, spherically symmetric, accretion flow, grow first linearly and then nonlinearly. Consequently, an initially one-phase flow relatively quickly transitions into a two-phase/cold-hot accretion flow. For L{sub X} = 0.015 L{sub Edd} or higher, the cold clouds continue to accrete but in some regions of the hot phase, the gas starts to move outward. For L{sub X} < 0.015 L{sub Edd}, the cold phase contribution to the total mass accretion rate only moderately dominates over the hot phase contribution. This result might have some consequences for cosmological simulations of the so-called AGN feedback problem. Our simulations confirm the previous results of Barai et al. who used smoothed particle hydrodynamic (SPH) simulations to tackle the same problem. Here, however, because we use a grid-based code to solve equations in one dimension and two dimensions, we are able to follow the gas dynamics at much higher spacial resolution and for longer time compared with the three-dimensional SPH simulations. One of the new features revealed by our simulations is that the cold condensations in the accretion flow initially form long filaments, but at the later times, those filaments may break into smaller clouds advected outward within the

  10. Another path for the emergence of modified galactic dynamics from dark matter superfluidity

    NASA Astrophysics Data System (ADS)

    Khoury, Justin

    2016-05-01

    In recent work we proposed a novel theory of dark matter (DM) superfluidity that matches the successes of the Λ CDM model on cosmological scales while simultaneously reproducing modified Newtonian dynamics (MOND) phenomenology on galactic scales. The agents responsible for mediating the MONDian force law are superfluid phonons that couple to ordinary (baryonic) matter. In this paper we propose an alternative way for the MOND phenomenon to emerge from DM superfluidity. The central idea is to use higher-gradient corrections in the superfluid effective theory. These next-to-leading order terms involve gradients of the gravitational potential, and therefore effectively modify the gravitational force law. In the process we discover a novel mechanism for generating the nonrelativistic MOND action, starting from a theory that is fully analytic in all field variables. The idea, inspired by the symmetron mechanism, uses the spontaneous breaking of a discrete symmetry. For large acceleration, the symmetry is unbroken and the action reduces to Einstein gravity. For small acceleration, the symmetry is spontaneously broken and the action reduces to MONDian gravity. Cosmologically, however, the Universe is always in the Einstein-gravity, symmetry-restoring phase. The expansion history and linear growth of density perturbations are therefore indistinguishable from Λ CDM cosmology.

  11. Dissecting SUMO Dynamics by Mass Spectrometry.

    PubMed

    Drabikowski, Krzysztof; Dadlez, Michał

    2016-01-01

    Protein modification by SUMO proteins is one of the key posttranslational modifications in eukaryotes. Here, we describe a workflow to analyze SUMO dynamics in response to different stimuli, purify SUMO conjugates, and analyze the changes in SUMOylation level in organisms, tissues, or cell culture. We present a protocol for lysis in denaturing conditions that is compatible with downstream IMAC and antibody affinity purification, followed by mass spectrometry and data analysis. PMID:27613044

  12. Single-epoch black hole mass estimators for broad-line active galactic nuclei: recalibrating Hβ with a new approach

    SciTech Connect

    Feng, Hua; Li, Hong; Shen, Yue

    2014-10-10

    Based on an updated Hβ reverberation mapping (RM) sample of 44 nearby active galactic nuclei (AGNs), we propose a novel approach for black hole (BH) mass estimation using two filtered luminosities computed from single-epoch (SE) AGN spectra around the Hβ region. We found that the two optimal-filter luminosities extract virial information (size and virial velocity of the broad-line region, BLR) from the spectra, justifying their usage in this empirical BH mass estimator. The major advantages of this new recipe over traditional SE BH mass estimators utilizing continuum luminosity and broad-line width are (1) it has a smaller intrinsic scatter of 0.28 dex calibrated against RM masses, (2) it is extremely simple to use in practice, without any need to decompose the spectrum, and (3) it produces unambiguous and highly repeatable results even with low signal-to-noise spectra. The combination of the two luminosities can also cancel out, to some extent, systematic luminosity errors potentially introduced by uncertainties in distance or flux calibration. In addition, we recalibrated the traditional SE mass estimators using broad Hβ FWHM and monochromatic continuum luminosity at 5100 Å (L {sub 5100}). We found that using the best-fit slopes on FWHM and L {sub 5100} (derived from fitting the BLR radius-luminosity relation and the correlation between rms line dispersion and SE FWHM, respectively) rather than simple assumptions (e.g., 0.5 for L {sub 5100} and 2 for FWHM) leads to more precise SE mass estimates, improving the intrinsic scatter from 0.41 dex to 0.36 dex with respect to the RM masses. We compared different estimators and discussed their applications to the Sloan Digital Sky Survey quasar sample. Due to the limitations of the current RM sample, application of any SE recipe calibrated against RM masses to distant quasars should be treated with caution.

  13. THE BLACK HOLE-BULGE MASS RELATION OF ACTIVE GALACTIC NUCLEI IN THE EXTENDED CHANDRA DEEP FIELD-SOUTH SURVEY

    SciTech Connect

    Schramm, Malte; Silverman, John D.

    2013-04-10

    We present results from a study to determine whether relations-established in the local universe-between the mass of supermassive black holes (SMBHs) and their host galaxies are in place at higher redshifts. We identify a well-constructed sample of 18 X-ray-selected, broad-line active galactic nuclei (AGNs) in the Extended Chandra Deep Field-South Survey with 0.5 < z < 1.2. This redshift range is chosen to ensure that Hubble Space Telescope (HST) imaging is available with at least two filters that bracket the 4000 A break, thus providing reliable stellar mass estimates of the host galaxy by accounting for both young and old stellar populations. We compute single-epoch, virial black hole (BH) masses from optical spectra using the broad Mg II emission line. For essentially all galaxies in our sample, their total stellar mass content agrees remarkably well, given their BH masses, with local relations of inactive galaxies and active SMBHs. We further decompose the total stellar mass into bulge and disk components separately with full knowledge of the HST point-spread function. We find that {approx}80% of the sample is consistent with the local M{sub BH}-M{sub *,{sub Bulge}} relation even with 72% of the host galaxies showing the presence of a disk. In particular, bulge-dominated hosts are more aligned with the local relation than those with prominent disks. We further discuss the possible physical mechanisms that are capable of building up the stellar mass of the bulge from an extended disk of stars over the subsequent 8 Gyr.

  14. RELIABLE IDENTIFICATIONS OF ACTIVE GALACTIC NUCLEI FROM THE WISE, 2MASS, AND ROSAT ALL-SKY SURVEYS

    SciTech Connect

    Edelson, R.; Malkan, M.

    2012-05-20

    We have developed the ''S{sub IX}'' statistic to identify bright, highly likely active galactic nucleus (AGN) candidates solely on the basis of Wide-field Infrared Survey Explorer (WISE), Two Micron All-Sky Survey (2MASS), and ROSAT all-sky survey (RASS) data. This statistic was optimized with data from the preliminary WISE survey and the Sloan Digital Sky Survey, and tested with Lick 3 m Kast spectroscopy. We find that sources with S{sub IX} < 0 have a {approx}>95% likelihood of being an AGN (defined in this paper as a Seyfert 1, quasar, or blazar). This statistic was then applied to the full WISE/2MASS/RASS dataset, including the final WISE data release, to yield the ''W2R'' sample of 4316 sources with S{sub IX} < 0. Only 2209 of these sources are currently in the Veron-Cetty and Veron (VCV) catalog of spectroscopically confirmed AGNs, indicating that the W2R sample contains nearly 2000 new, relatively bright (J {approx}< 16) AGNs. We utilize the W2R sample to quantify biases and incompleteness in the VCV catalog. We find that it is highly complete for bright (J < 14), northern AGNs, but the completeness drops below 50% for fainter, southern samples and for sources near the Galactic plane. This approach also led to the spectroscopic identification of 10 new AGNs in the Kepler field, more than doubling the number of AGNs being monitored by Kepler. The W2R sample contains better than 1 bright AGN every 10 deg{sup 2}, permitting construction of AGN samples in any sufficiently large region of sky.

  15. The VMC Survey. XVIII. Radial Dependence of the Low-mass, 0.55--0.82 M Stellar Mass Function in the Galactic Globular Cluster 47 Tucanae

    NASA Astrophysics Data System (ADS)

    Zhang, Chaoli; Li, Chengyuan; de Grijs, Richard; Bekki, Kenji; Deng, Licai; Zaggia, Simone; Rubele, Stefano; Piatti, Andrés E.; Cioni, Maria-Rosa L.; Emerson, Jim; For, Bi-Qing; Ripepi, Vincenzo; Marconi, Marcella; Ivanov, Valentin D.; Chen, Li

    2015-12-01

    We use near-infrared observations obtained as part of the Visible and Infrared Survey Telescope for Astronomy (VISTA) Survey of the Magellanic Clouds (VMC), as well as two complementary Hubble Space Telescope (HST) data sets, to study the luminosity and mass functions (MFs) as a function of clustercentric radius of the main-sequence stars in the Galactic globular cluster 47 Tucanae. The HST observations indicate a relative deficit in the numbers of faint stars in the central region of the cluster compared with its periphery, for 18.75 ≤ mF606W ≤ 20.9 mag (corresponding to a stellar mass range of 0.55 < m*/M⊙ < 0.73). The stellar number counts at 6.‧7 from the cluster core show a deficit for 17.62 ≤ mF606W ≤ 19.7 mag (i.e., 0.65 < m*/M⊙ < 0.82), which is consistent with expectations from mass segregation. The VMC-based stellar MFs exhibit power-law shapes for masses in the range 0.55 < m*/M⊙ < 0.82. These power laws are characterized by an almost constant slope, α. The radial distribution of the power-law slopes α thus shows evidence of the importance of both mass segregation and tidal stripping, for both the first- and second-generation stars in 47 Tuc.

  16. Dynamical generation of the top quark mass

    NASA Astrophysics Data System (ADS)

    Popovic, Marko Berislav

    2002-09-01

    I study new physics theories in which the observed mass of the heaviest elementary particle, the top quark, is a result of a dynamical mechanism at the subatomic level. The same mechanism needs to explain the transition of the effective physical description at the largest space-time scales to that at smaller scales. This large-scale description is characterized by non-zero masses for most of the elementary particles and the existence of the familiar electromagnetic interactions. The description at smaller space-time scales is characterized by the presence of a richer set of fundamental interactions, including weak and hypercharge interactions, as well as no masses for the particles. As a minimal consequence of this transition, particle theories commonly predict the existence of a still unobserved particle, called the Higgs, at the largest scales. New physics considered in this thesis includes the following: (1) Models with new fundamental interactions that select the top quark and give an exclusive role to its dynamical mass generation mechanism. I propose one such model, discuss current experimental constraints, and suggest future tests of this idea. (2) Models with new spin one-half particles, not sensitive to the weak interactions, that mix with ordinary particles, including the top quark. I discuss the phenomenology, i.e., analyze data from particle colliders, and set limits on the parameters of the models. (3) Models with new spin one-half particles, sensitive to the weak interactions, that mix with ordinary particles. I propose the model structure, discuss some of its phenomenology, and suggest further tests of this idea at linear particle accelerators. Finally, I analyze the connection between the Higgs mass (m H) and the space-time scale at which the above-mentioned transition occurs. Without introducing new physics at the smallest scales, I show that due to the very large top mass, the standard description with the Higgs particle fails at small scales

  17. ULTRAVIOLET EMISSION-LINE CORRELATIONS IN HST/COS SPECTRA OF ACTIVE GALACTIC NUCLEI: SINGLE-EPOCH BLACK HOLE MASSES

    SciTech Connect

    Tilton, Evan M.; Shull, J. Michael E-mail: michael.shull@colorado.edu

    2013-09-01

    Effective methods of measuring supermassive black hole masses in active galactic nuclei (AGNs) are of critical importance to studies of galaxy evolution. While there has been much success in obtaining masses through reverberation mapping, the extensive observing time required by this method has limited the practicality of applying it to large samples at a variety of redshifts. This limitation highlights the need to estimate these masses using single-epoch spectroscopy of ultraviolet (UV) emission lines. We use UV spectra of 44 AGNs from HST/COS, the International Ultraviolet Explorer, and the Far Ultraviolet Spectroscopic Explorer of the C IV {lambda}1549, O VI {lambda}1035, O III] {lambda}1664, He II {lambda}1640, C II {lambda}1335, and Mg II {lambda}2800 emission lines and explore their potential as tracers of the broad-line region and supermassive black hole mass. The higher signal-to-noise ratio and better spectral resolution of the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope (HST) resolve AGN intrinsic absorption and produce more accurate line widths. From these, we test the viability of mass-scaling relationships based on line widths and luminosities and carry out a principal component analysis based on line luminosities, widths, skewness, and kurtosis. At L{sub 1450} {<=} 10{sup 45} erg s{sup -1}, the UV line luminosities correlate well with H{beta}, as does the 1450 A continuum luminosity. We find that C IV, O VI, and Mg II can be used as reasonably accurate estimators of AGN black hole masses, while He II and C II are uncorrelated.

  18. Aero-Thermo-Dynamic Mass Analysis

    NASA Astrophysics Data System (ADS)

    Shiba, Kota; Yoshikawa, Genki

    2016-07-01

    Each gas molecule has its own molecular weight, while such a microscopic characteristic is generally inaccessible, and thus, it is measured indirectly through e.g. ionization in conventional mass analysis. Here, we present a novel approach to the direct measurement of molecular weight through a nanoarchitectonic combination of aerodynamics, thermodynamics, and mechanics, transducing microscopic events into macroscopic phenomena. It is confirmed that this approach can provide molecular weight of virtually any gas or vaporizable liquid sample in real-time without ionization. Demonstrations through analytical calculations, numerical simulations, and experiments verify the validity and versatility of the novel mass analysis realized by a simple setup with a flexible object (e.g. with a bare cantilever and even with a business card) placed in a laminar jet. Owing to its unique and simple working principle, this aero-thermo-dynamic mass analysis (AMA) can be integrated into various analytical devices, production lines, and consumer mobile platforms, opening new chapters in aerodynamics, thermodynamics, mechanics, and mass analysis.

  19. Aero-Thermo-Dynamic Mass Analysis.

    PubMed

    Shiba, Kota; Yoshikawa, Genki

    2016-07-14

    Each gas molecule has its own molecular weight, while such a microscopic characteristic is generally inaccessible, and thus, it is measured indirectly through e.g. ionization in conventional mass analysis. Here, we present a novel approach to the direct measurement of molecular weight through a nanoarchitectonic combination of aerodynamics, thermodynamics, and mechanics, transducing microscopic events into macroscopic phenomena. It is confirmed that this approach can provide molecular weight of virtually any gas or vaporizable liquid sample in real-time without ionization. Demonstrations through analytical calculations, numerical simulations, and experiments verify the validity and versatility of the novel mass analysis realized by a simple setup with a flexible object (e.g. with a bare cantilever and even with a business card) placed in a laminar jet. Owing to its unique and simple working principle, this aero-thermo-dynamic mass analysis (AMA) can be integrated into various analytical devices, production lines, and consumer mobile platforms, opening new chapters in aerodynamics, thermodynamics, mechanics, and mass analysis.

  20. Aero-Thermo-Dynamic Mass Analysis.

    PubMed

    Shiba, Kota; Yoshikawa, Genki

    2016-01-01

    Each gas molecule has its own molecular weight, while such a microscopic characteristic is generally inaccessible, and thus, it is measured indirectly through e.g. ionization in conventional mass analysis. Here, we present a novel approach to the direct measurement of molecular weight through a nanoarchitectonic combination of aerodynamics, thermodynamics, and mechanics, transducing microscopic events into macroscopic phenomena. It is confirmed that this approach can provide molecular weight of virtually any gas or vaporizable liquid sample in real-time without ionization. Demonstrations through analytical calculations, numerical simulations, and experiments verify the validity and versatility of the novel mass analysis realized by a simple setup with a flexible object (e.g. with a bare cantilever and even with a business card) placed in a laminar jet. Owing to its unique and simple working principle, this aero-thermo-dynamic mass analysis (AMA) can be integrated into various analytical devices, production lines, and consumer mobile platforms, opening new chapters in aerodynamics, thermodynamics, mechanics, and mass analysis. PMID:27412335

  1. Aero-Thermo-Dynamic Mass Analysis

    PubMed Central

    Shiba, Kota; Yoshikawa, Genki

    2016-01-01

    Each gas molecule has its own molecular weight, while such a microscopic characteristic is generally inaccessible, and thus, it is measured indirectly through e.g. ionization in conventional mass analysis. Here, we present a novel approach to the direct measurement of molecular weight through a nanoarchitectonic combination of aerodynamics, thermodynamics, and mechanics, transducing microscopic events into macroscopic phenomena. It is confirmed that this approach can provide molecular weight of virtually any gas or vaporizable liquid sample in real-time without ionization. Demonstrations through analytical calculations, numerical simulations, and experiments verify the validity and versatility of the novel mass analysis realized by a simple setup with a flexible object (e.g. with a bare cantilever and even with a business card) placed in a laminar jet. Owing to its unique and simple working principle, this aero-thermo-dynamic mass analysis (AMA) can be integrated into various analytical devices, production lines, and consumer mobile platforms, opening new chapters in aerodynamics, thermodynamics, mechanics, and mass analysis. PMID:27412335

  2. FUNDAMENTAL PARAMETERS, INTEGRATED RED GIANT BRANCH MASS LOSS, AND DUST PRODUCTION IN THE GALACTIC GLOBULAR CLUSTER 47 TUCANAE

    SciTech Connect

    McDonald, I.; Zijlstra, A. A.; Boyer, M. L.; Gordon, K.; Meixner, M.; Sewilo, M.; Shiao, B.; Whitney, B.; Van Loon, J. Th.; Hora, J. L.; Robitaille, T.; Babler, B.; Meade, M.; Block, M.; Misselt, K.

    2011-04-01

    Fundamental parameters and time evolution of mass loss are investigated for post-main-sequence stars in the Galactic globular cluster 47 Tucanae (NGC 104). This is accomplished by fitting spectral energy distributions (SEDs) to existing optical and infrared photometry and spectroscopy, to produce a true Hertzsprung-Russell diagram. We confirm the cluster's distance as d = 4611{sup +213}{sub -200} pc and age as 12 {+-} 1 Gyr. Horizontal branch models appear to confirm that no more red giant branch mass loss occurs in 47 Tuc than in the more metal-poor {omega} Centauri, though difficulties arise due to inconsistencies between the models. Using our SEDs, we identify those stars that exhibit infrared excess, finding excess only among the brightest giants: dusty mass loss begins at a luminosity of {approx}1000 L{sub sun}, becoming ubiquitous above L = 2000 L{sub sun}. Recent claims of dust production around lower-luminosity giants cannot be reproduced, despite using the same archival Spitzer imagery.

  3. A COMPARATIVE ANALYSIS OF VIRIAL BLACK HOLE MASS ESTIMATES OF MODERATE-LUMINOSITY ACTIVE GALACTIC NUCLEI USING SUBARU/FMOS

    SciTech Connect

    Matsuoka, K.; Silverman, J. D.; Schramm, M.; Steinhardt, C. L.; Nagao, T.; Kartaltepe, J.; Sanders, D. B.; Hasinger, G.; Treister, E.; Akiyama, M.; Ohta, K.; Ueda, Y.; Bongiorno, A.; Brandt, W. N.; Brusa, M.; Capak, P.; Comastri, A.; Lilly, S. J.; and others

    2013-07-01

    We present an analysis of broad emission lines observed in moderate-luminosity active galactic nuclei (AGNs), typical of those found in X-ray surveys of deep fields, with the goal of testing the validity of single-epoch virial black hole mass estimates. We have acquired near-infrared spectra of AGNs up to z {approx} 1.8 in the COSMOS and Extended Chandra Deep Field-South Survey, with the Fiber Multi-Object Spectrograph mounted on the Subaru telescope. These near-infrared spectra provide a significant detection of the broad H{alpha} line, shown to be a reliable probe of black hole mass at low redshift. Our sample has existing optical spectroscopy that provides a detection of Mg II, typically used for black hole mass estimation at z {approx}> 1. We carry out a spectral-line fitting procedure using both H{alpha} and Mg II to determine the virial velocity of gas in the broad-line region, the continuum luminosity at 3000 A, and the total H{alpha} line luminosity. With a sample of 43 AGNs spanning a range of two decades in luminosity, we find a tight correlation between the ultraviolet and emission-line luminosity. There is also a close one-to-one relationship between the full width at half-maximum of H{alpha} and Mg II. Both of these then lead to there being very good agreement between H{alpha}- and Mg II-based masses over a wide range in black hole mass, i.e., M{sub BH} {approx} 10{sup 7-9} M{sub Sun }. In general, these results demonstrate that local scaling relations, using Mg II or H{alpha}, are applicable for AGNs at moderate luminosities and up to z {approx} 2.

  4. A PANCHROMATIC STUDY OF BLAST COUNTERPARTS: TOTAL STAR FORMATION RATE, MORPHOLOGY, ACTIVE GALACTIC NUCLEUS FRACTION, AND STELLAR MASS

    SciTech Connect

    Moncelsi, Lorenzo; Ade, Peter A. R.; Cortese, Luca; Dye, Simon; Eales, Stephen; Griffin, Matthew; Hargrave, Peter C.; Mauskopf, Philip; Pascale, Enzo; Tucker, Carole; Chapin, Edward L.; Halpern, Mark; Marsden, Gaelen; Scott, Douglas; Wiebe, Donald V.; Devlin, Mark J.; Truch, Matthew D. P.; Netterfield, Calvin B.; Viero, Marco P.

    2011-02-01

    We carry out a multi-wavelength study of individual galaxies detected by the Balloon-borne Large Aperture Submillimeter Telescope (BLAST) and identified at other wavelengths, using data spanning the radio to the ultraviolet (UV). We develop a Monte Carlo method to account for flux boosting, source blending, and correlations among bands, which we use to derive deboosted far-infrared (FIR) luminosities for our sample. We estimate total star-formation rates (SFRs) for BLAST counterparts with z {<=} 0.9 by combining their FIR and UV luminosities. Star formation is heavily obscured at L{sub FIR} {approx}> 10{sup 11} L{sub sun}, z {approx}> 0.5, but the contribution from unobscured starlight cannot be neglected at L{sub FIR} {approx}< 10{sup 11} L{sub sun}, z {approx}< 0.25. We assess that about 20% of the galaxies in our sample show indication of a type 1 active galactic nucleus, but their submillimeter emission is mainly due to star formation in the host galaxy. We compute stellar masses for a subset of 92 BLAST counterparts; these are relatively massive objects, with a median mass of {approx}10{sup 11} M{sub sun}, which seem to link the 24 {mu}m and Submillimetre Common-User Bolometer Array (SCUBA) populations, in terms of both stellar mass and star formation activity. The bulk of the BLAST counterparts at z {approx}< 1 appears to be run-of-the-mill star-forming galaxies, typically spiral in shape, with intermediate stellar masses and practically constant specific SFRs. On the other hand, the high-z tail of the BLAST counterparts significantly overlaps with the SCUBA population, in terms of both SFRs and stellar masses, with observed trends of specific SFR that support strong evolution and downsizing.

  5. BLAST: THE MASS FUNCTION, LIFETIMES, AND PROPERTIES OF INTERMEDIATE MASS CORES FROM A 50 deg{sup 2} SUBMILLIMETER GALACTIC SURVEY IN VELA (l approx 265{sup 0})

    SciTech Connect

    Netterfield, Calvin B.; Martin, Peter G.; Roy, Arabindo; Ade, Peter A. R.; Griffin, Matthew; Hargrave, Peter C.; Mauskopf, Phillip; Pascale, Enzo; Bock, James J.; Chapin, Edward L.; Halpern, Mark; Marsden, Gaelen; Scott, Douglas; Devlin, Mark J.; Klein, Jeff; Rex, Marie; Gundersen, Joshua O.; Hughes, David H.; Olmi, Luca; Patanchon, Guillaume

    2009-12-20

    We present first results from an unbiased 50 deg{sup 2} submillimeter Galactic survey at 250, 350, and 500 mum from the 2006 flight of the Balloon-borne Large Aperture Submillimeter Telescope. The map has resolution ranging from 36'' to 60'' in the three submillimeter bands spanning the thermal emission peak of cold starless cores. We determine the temperature, luminosity, and mass of more than 1000 compact sources in a range of evolutionary stages and an unbiased statistical characterization of the population. From comparison with C{sup 18}O data, we find the dust opacity per gas mass, kappar= 0.16 cm{sup 2} g{sup -1} at 250 mum, for cold clumps. We find that 2% of the mass of the molecular gas over this diverse region is in cores colder than 14 K, and that the mass function for these cold cores is consistent with a power law with index alpha = -3.22 +- 0.14 over the mass range 14 M{sub sun} < M < 80 M{sub sun}. Additionally, we infer a mass-dependent cold core lifetime of t{sub c} (M) = 4 x 10{sup 6}(M/20 M{sub sun}){sup -0.9} yr-longer than what has been found in previous surveys of either low or high-mass cores, and significantly longer than free fall or likely turbulent decay times. This implies some form of non-thermal support for cold cores during this early stage of star formation.

  6. A dynamical study of Galactic globular clusters under different relaxation conditions

    NASA Astrophysics Data System (ADS)

    Zocchi, A.; Bertin, G.; Varri, A. L.

    2012-03-01

    Aims: We perform a systematic combined photometric and kinematic analysis of a sample of globular clusters under different relaxation conditions, based on their core relaxation time (as listed in available catalogs), by means of two well-known families of spherical stellar dynamical models. Systems characterized by shorter relaxation time scales are expected to be better described by isotropic King models, while less relaxed systems might be interpreted by means of non-truncated, radially-biased anisotropic f(ν) models, originally designed to represent stellar systems produced by a violent relaxation formation process and applied here for the first time to the study of globular clusters. Methods: The comparison between dynamical models and observations is performed by fitting simultaneously surface brightness and velocity dispersion profiles. For each globular cluster, the best-fit model in each family is identified, along with a full error analysis on the relevant parameters. Detailed structural properties and mass-to-light ratios are also explicitly derived. Results: We find that King models usually offer a good representation of the observed photometric profiles, but often lead to less satisfactory fits to the kinematic profiles, independently of the relaxation condition of the systems. For some less relaxed clusters, f(ν) models provide a good description of both observed profiles. Some derived structural characteristics, such as the total mass or the half-mass radius, turn out to be significantly model-dependent. The analysis confirms that, to answer some important dynamical questions that bear on the formation and evolution of globular clusters, it would be highly desirable to acquire larger numbers of accurate kinematic data-points, well distributed over the cluster field. Appendices are available in electronic form at http://www.aanda.org

  7. Intermediate-mass black holes from Population III remnants in the first galactic nuclei

    NASA Astrophysics Data System (ADS)

    Ryu, Taeho; Tanaka, Takamitsu L.; Perna, Rosalba; Haiman, Zoltán

    2016-08-01

    We report the formation of intermediate-mass black holes (IMBHs) in suites of numerical N-body simulations of Population III remnant black holes (BHs) embedded in gas-rich protogalaxies at redshifts z ≳ 10. We model the effects of gas drag on the BHs' orbits, and allow BHs to grow via gas accretion, including a mode of hyper-Eddington accretion in which photon trapping and rapid gas inflow suppress any negative radiative feedback. Most initial BH configurations lead to the formation of one (but never more than one) IMBH in the centre of the protogalaxy, reaching a mass of 103-5 M⊙ through hyper-Eddington growth. Our results suggest a viable pathway to forming the earliest massive BHs in the centres of early galaxies. We also find that the nuclear IMBH typically captures a stellar-mass BH companion, making these systems observable in gravitational waves as extreme mass-ratio inspirals with eLISA.

  8. THE MASS-INDEPENDENCE OF SPECIFIC STAR FORMATION RATES IN GALACTIC DISKS

    SciTech Connect

    Abramson, Louis E.; Gladders, Michael D.; Kelson, Daniel D.; Dressler, Alan; Oemler, Augustus Jr.; Poggianti, Bianca; Vulcani, Benedetta

    2014-04-20

    The slope of the star formation rate/stellar mass relation (the SFR {sup M}ain Sequence{sup ;} SFR-M {sub *}) is not quite unity: specific star formation rates (SFR/M {sub *}) are weakly but significantly anti-correlated with M {sub *}. Here we demonstrate that this trend may simply reflect the well-known increase in bulge mass-fractions—portions of a galaxy not forming stars—with M {sub *}. Using a large set of bulge/disk decompositions and SFR estimates derived from the Sloan Digital Sky Survey, we show that re-normalizing SFR by disk stellar mass (sSFR{sub disk} ≡ SFR/M {sub *,} {sub disk}) reduces the M {sub *} dependence of SF efficiency by ∼0.25 dex per dex, erasing it entirely in some subsamples. Quantitatively, we find log sSFR{sub disk}-log M {sub *} to have a slope β{sub disk} in [ – 0.20, 0.00] ± 0.02 (depending on the SFR estimator and Main Sequence definition) for star-forming galaxies with M {sub *} ≥ 10{sup 10} M {sub ☉} and bulge mass-fractions B/T ≲ 0.6, generally consistent with a pure-disk control sample (β{sub control} = –0.05 ± 0.04). That (SFR/M {sub *,} {sub disk}) is (largely) independent of host mass for star-forming disks has strong implications for aspects of galaxy evolution inferred from any SFR-M {sub *} relation, including manifestations of ''mass quenching'' (bulge growth), factors shaping the star-forming stellar mass function (uniform dlog M {sub *}/dt for low-mass, disk-dominated galaxies), and diversity in star formation histories (dispersion in SFR(M {sub *}, t)). Our results emphasize the need to treat galaxies as composite systems—not integrated masses—in observational and theoretical work.

  9. The Mass-independence of Specific Star Formation Rates in Galactic Disks

    NASA Astrophysics Data System (ADS)

    Abramson, Louis E.; Kelson, Daniel D.; Dressler, Alan; Poggianti, Bianca; Gladders, Michael D.; Oemler, Augustus, Jr.; Vulcani, Benedetta

    2014-04-01

    The slope of the star formation rate/stellar mass relation (the SFR "Main Sequence"; SFR-M *) is not quite unity: specific star formation rates (SFR/M *) are weakly but significantly anti-correlated with M *. Here we demonstrate that this trend may simply reflect the well-known increase in bulge mass-fractions—portions of a galaxy not forming stars—with M *. Using a large set of bulge/disk decompositions and SFR estimates derived from the Sloan Digital Sky Survey, we show that re-normalizing SFR by disk stellar mass (sSFRdisk ≡ SFR/M *, disk) reduces the M * dependence of SF efficiency by ~0.25 dex per dex, erasing it entirely in some subsamples. Quantitatively, we find log sSFRdisk-log M * to have a slope βdisk in [ - 0.20, 0.00] ± 0.02 (depending on the SFR estimator and Main Sequence definition) for star-forming galaxies with M * >= 1010 M ⊙ and bulge mass-fractions B/T <~ 0.6, generally consistent with a pure-disk control sample (βcontrol = -0.05 ± 0.04). That langSFR/M *, diskrang is (largely) independent of host mass for star-forming disks has strong implications for aspects of galaxy evolution inferred from any SFR-M * relation, including manifestations of "mass quenching" (bulge growth), factors shaping the star-forming stellar mass function (uniform dlog M */dt for low-mass, disk-dominated galaxies), and diversity in star formation histories (dispersion in SFR(M *, t)). Our results emphasize the need to treat galaxies as composite systems—not integrated masses—in observational and theoretical work.

  10. APOGEE Chemical Tagging Constraint on the Maximum Star Cluster Mass in the Alpha-enhanced Galactic Disk

    NASA Astrophysics Data System (ADS)

    Ting, Yuan-Sen; Conroy, Charlie; Rix, Hans-Walter

    2016-01-01

    Stars born from the same molecular cloud should be nearly homogeneous in their element abundances. The concept of chemical tagging is to identify members of disrupted clusters by their clustering in element abundance space. Chemical tagging requires large samples of stars with precise abundances for many individual elements. With uncertainties of {σ }[X/{{Fe}]} and {σ }[{Fe/{{H}}]}≃ 0.05 for 10 elements measured for \\gt {10}4 stars, the APOGEE DR12 spectra may be the first well-suited data set to put this idea into practice. We find that even APOGEE data offer only ∼500 independent volume elements in the 10-dimensional abundance space, when we focus on the α-enhanced Galactic disk. We develop and apply a new algorithm to search for chemically homogeneous sets of stars against a dominant background. By injecting star clusters into the APOGEE data set, we show that chemically homogeneous clusters with masses ≳ 3× {10}7 {M}ȯ would be easily detectable and yet no such signal is seen in the data. By generalizing this approach, we put a first abundance-based constraint on the cluster mass function for the old disk stars in the Milky Way.

  11. Active galactic nuclei at z ˜ 1.5 - II. Black hole mass estimation by means of broad emission lines

    NASA Astrophysics Data System (ADS)

    Mejía-Restrepo, J. E.; Trakhtenbrot, B.; Lira, P.; Netzer, H.; Capellupo, D. M.

    2016-07-01

    This is the second in a series of papers aiming to test how the mass (MBH), accretion rate (Ṁ) and spin (a*) of supermassive black holes (SMBHs) determine the observed properties of type I active galactic nuclei (AGN). Our project utilizes a sample of 39 unobscured AGN at z ≃ 1.55 observed by Very Large Telescope/X-Shooter, selected to map a large range in MBH and L/LEdd and covers the most prominent UV-optical (broad) emission lines, including Hα, Hβ, Mg II λ2798 and C IV λ1549. This paper focuses on single-epoch, `virial' MBH determinations from broad emission lines and examines the implications of different continuum modelling approaches in line width measurements. We find that using a local power-law continuum instead of a physically motivated thin disc continuum leads to only slight underestimation of the full width at half-maximum (FWHM) of the lines and the associated MBH(FWHM). However, the line dispersion σline and associated MBH(σline) are strongly affected by the continuum placement and provides less reliable mass estimates than FWHM-based methods. Our analysis shows that Hα, Hβ and Mg II can be safely used for virial MBH estimation. The C IV line, on the other hand, is not reliable in the majority of the cases; this may indicate that the gas emitting this line is not virialized. While Hα and Hβ show very similar line widths, the mean FWHM(Mg II) is about 30 per cent narrower than FWHM(Hβ). We confirm several recent suggestions to improve the accuracy in C IV-based mass estimates, relying on other UV emission lines. Such improvements do not reduce the scatter between C IV-based and Balmer-line-based mass estimates.

  12. Chandra and MMT observations of low-mass black hole active galactic nuclei accreting at low rates in dwarf galaxies

    SciTech Connect

    Yuan, W.; Zhou, H.; Dou, L.; Dong, X.-B.; Wang, T.-G.; Fan, X.

    2014-02-10

    We report on Chandra X-ray observations of four candidate low-mass black hole (M {sub bh} ≲ 10{sup 6} M {sub ☉}) active galactic nuclei (AGNs) that have the estimated Eddington ratios among the lowest (∼10{sup –2}) found for this class. The aims are to validate the nature of their AGNs and to confirm the low Eddington ratios that are derived from the broad Hα line, and to explore this poorly studied regime in the AGN parameter space. Among them, two objects with the lowest significance of the broad lines are also observed with the Multi-Mirror Telescope, and the high-quality optical spectra taken confirm them as Seyfert 1 AGNs and as having small black hole masses. X-ray emission is detected from the nuclei of two of the galaxies, which is variable on timescales of ∼10{sup 3} s, whereas no significant (or only marginal at best) detection is found for the remaining two. The X-ray luminosities are on the order of 10{sup 41} erg s{sup –1} or even lower, on the order of 10{sup 40} erg s{sup –1} for non-detections, which are among the lowest regimes ever probed for Seyfert galaxies. The low X-ray luminosities, compared to their black hole masses derived from Hα, confirm their low accretion rates assuming typical bolometric corrections. Our results hint at the existence of a possibly large population of under-luminous low-mass black holes in the local universe. An off-nucleus ultra-luminous X-ray source in one of the dwarf galaxies is detected serendipitously, with a luminosity (6-9)× 10{sup 39} erg s{sup –1} in 2-10 keV.

  13. THE GALACTIC CENTER CLOUD G2-A YOUNG LOW-MASS STAR WITH A STELLAR WIND

    SciTech Connect

    Scoville, N.; Burkert, A.

    2013-05-10

    We explore the possibility that the G2 gas cloud falling in toward SgrA* is the mass-loss envelope of a young T Tauri star. As the star plunges to smaller radius at 1000-6000 km s{sup -1}, a strong bow shock forms where the stellar wind is impacted by the hot X-ray emitting gas in the vicinity of SgrA*. For a stellar mass-loss rate of 4 Multiplication-Sign 10{sup -8} M{sub Sun} yr{sup -1} and wind velocity 100 km s{sup -1}, the bow shock will have an emission measure (EM = n {sup 2} vol) at a distance {approx}10{sup 16} cm, similar to that inferred from the IR emission lines. The ionization of the dense bow shock gas is potentially provided by collisional ionization at the shock front and cooling radiation (X-ray and UV) from the post shock gas. The former would predict a constant line flux as a function of distance from SgrA*, while the latter will have increasing emission at lesser distances. In this model, the star and its mass-loss wind should survive pericenter passage since the wind is likely launched at 0.2 AU and this is much less than the Roche radius at pericenter ({approx}3 AU for a stellar mass of 2 M{sub Sun }). In this model, the emission cloud will probably survive pericenter passage, discriminating this scenario from others.

  14. Non-thermal insights on mass and energy flows through the Galactic Centre and into the Fermi bubbles

    NASA Astrophysics Data System (ADS)

    Crocker, R. M.

    2012-07-01

    We construct a simple model of the star-formation- (and resultant supernova-) driven mass and energy flows through the inner ˜200 pc (in diameter) of the Galaxy. Our modelling is constrained, in particular, by the non-thermal radio continuum and γ-ray signals detected from the region. The modelling points to a current star formation rate of 0.04-0.12 M⊙ yr-1 at 2σ confidence within the region with best-fitting value in the range 0.08-0.12 M⊙ yr-1 which - if sustained over 10 Gyr - would fill out the ˜109 M⊙ stellar population of the nuclear bulge. Mass is being accreted on to the Galactic Centre (GC) region at a rate ? yr-1. The region's star formation activity drives an outflow of plasma, cosmic rays and entrained, cooler gas. Neither the plasma nor the entrained gas reaches the gravitational escape speed, however, and all this material fountains back on to the inner Galaxy. The system we model can naturally account for the recently observed ≳106 M⊙'halo' of molecular gas surrounding the Central Molecular Zone out to 100-200 pc heights. The injection of cooler, high-metallicity material into the Galactic halo above the GC may catalyze the subsequent cooling and condensation of hot plasma out of this region and explain the presence of relatively pristine, nuclear-unprocessed gas in the GC. This process may also be an important ingredient in understanding the long-term stability of the GC star formation rate. The plasma outflow from the GC reaches a height of a few kpc and is compellingly related to the recently discovered Fermi bubbles by a number of pieces of evidence. These include that the outflow advects precisely (i) the power in cosmic rays required to sustain the bubbles'γ-ray luminosity in saturation; (ii) the hot gas required to compensate for gas cooling and drop-out from the bubbles and (iii) the magnetic field required to stabilize the walls of these structures. Our modelling demonstrates that ˜109 M⊙ of hot gas is processed through

  15. A Robust Measurement of the Mass Outflow Rate of the Galactic Outflow from NGC 6090

    NASA Astrophysics Data System (ADS)

    Chisholm, John; Tremonti, Christy A.; Leitherer, Claus; Chen, Yanmei

    2016-08-01

    To evaluate the impact of stellar feedback, it is critical to estimate the mass outflow rates of galaxies. Past estimates have been plagued by uncertain assumptions about the outflow geometry, metallicity, and ionization fraction. Here we use Hubble Space Telescope ultraviolet spectroscopic observations of the nearby starburst NGC 6090 to demonstrate that many of these quantities can be constrained by the data. We use the Si IV absorption lines to calculate the scaling of velocity (v), covering fraction (Cf), and density with distance from the starburst (r), assuming the Sobolev optical depth and a velocity law of the form: v~∝(1 - Ri/r)β (where Ri is the inner outflow radius). We find that the velocity (β=0.43) is consistent with an outflow driven by an r-2 force with the outflow radially accelerated, while the scaling of the covering fraction (Cf∝r-0.82) suggests that cool clouds in the outflow are in pressure equilibrium with an adiabatically expanding medium. We use the column densities of four weak metal lines and CLOUDY photoionization models to determine the outflow metallicity, the ionization correction, and the initial density of the outflow. Combining these values with the profile fitting, we find Ri = 63 pc, with most of the mass within 300 pc of the starburst. Finally, we find that the maximum mass outflow rate is 2.3 M⊙ yr-1 and the mass loading factor (outflow divided by the star formation rate) is 0.09, a factor of 10 lower than the value calculated using common assumptions for the geometry, metallicity and ionization structure of the outflow.

  16. AN EXTREMELY TOP-HEAVY INITIAL MASS FUNCTION IN THE GALACTIC CENTER STELLAR DISKS

    SciTech Connect

    Bartko, H.; Martins, F.; Fritz, T. K.; Genzel, R.; Ott, T.; Eisenhauer, F.; Gillessen, S.; Dodds-Eden, K.; Gerhard, O.; Mascetti, L.; Pfuhl, O.; Trippe, S.; Paumard, T.; Perrin, G.; Rouan, D.; Alexander, T.; Perets, H. B.; Levin, Y.; Nayakshin, S.; Reid, M. J. E-mail: fabrice.martins@graal.univ-montp2.f

    2010-01-01

    We present new observations of the nuclear star cluster in the central parsec of the Galaxy with the adaptive optics assisted, integral field spectrograph SINFONI on the ESO/VLT. Our work allows the spectroscopic detection of early- and late-type stars to m{sub K} >= 16, more than 2 mag deeper than our previous data sets. Our observations result in a total sample of 177 bona fide early-type stars. We find that most of these Wolf Rayet (WR), O-, and B-stars reside in two strongly warped disks between 0.''8 and 12'' from Sgr A*, as well as a central compact concentration (the S-star cluster) centered on Sgr A*. The later type B-stars (m{sub K} >15) in the radial interval between 0.''8 and 12'' seem to be in a more isotropic distribution outside the disks. The observed dearth of late-type stars in the central few arcseconds is puzzling, even when allowing for stellar collisions. The stellar mass function of the disk stars is extremely top heavy with a best-fit power law of dN/dm propor to m {sup -0.45+}-{sup 0.3}. WR/O-stars were formed in situ in a single star formation event approx6 Myr ago, this mass function probably reflects the initial mass function (IMF). The mass functions of the S-stars inside 0.''8 and of the early-type stars at distances beyond 12'' are compatible with a standard Salpeter/Kroupa IMF (best-fit power law of dN/dm propor to m {sup -2.15+}-{sup 0.3}).

  17. A robust measurement of the mass outflow rate of the galactic outflow from NGC 6090

    NASA Astrophysics Data System (ADS)

    Chisholm, John; Tremonti Christy, A.; Leitherer, Claus; Chen, Yanmei

    2016-11-01

    To evaluate the impact of stellar feedback, it is critical to estimate the mass outflow rates of galaxies. Past estimates have been plagued by uncertain assumptions about the outflow geometry, metallicity, and ionization fraction. Here we use Hubble Space Telescope ultraviolet spectroscopic observations of the nearby starburst NGC 6090 to demonstrate that many of these quantities can be constrained by the data. We use the Si IV absorption lines to calculate the scaling of velocity (v), covering fraction (Cf), and density with distance from the starburst (r), assuming the Sobolev optical depth and a velocity law of the form: v ∝ (1 - Ri/r)β (where Ri is the inner outflow radius). We find that the velocity (β = 0.43) is consistent with an outflow driven by an r-2 force with the outflow radially accelerated, while the scaling of the covering fraction (Cf ∝ r-0.82) suggests that cool clouds in the outflow are in pressure equilibrium with an adiabatically expanding medium. We use the column densities of four weak metal lines and CLOUDY photoionization models to determine the outflow metallicity, the ionization correction, and the initial density of the outflow. Combining these values with the profile fitting, we find Ri = 63 pc, with most of the mass within 300 pc of the starburst. Finally, we find that the maximum mass outflow rate is 2.3 M⊙ yr-1 and the mass-loading factor (outflow divided by the star formation rate) is 0.09, a factor of 10 lower than the value calculated using common assumptions for the geometry, metallicity, and ionization structure of the outflow.

  18. Dependency of Dynamical Ejections of O Stars on the Masses of Very Young Star Clusters

    NASA Astrophysics Data System (ADS)

    Oh, Seungkyung; Kroupa, Pavel; Pflamm-Altenburg, Jan

    2015-06-01

    Massive stars can be efficiently ejected from their birth star clusters through encounters with other massive stars. We study how the dynamical ejection fraction of O star systems varies with the masses of very young star clusters, {{M}ecl}, by means of direct N-body calculations. We include diverse initial conditions by varying the half-mass radius, initial mass segregation, initial binary fraction, and orbital parameters of the massive binaries. The results show robustly that the ejection fraction of O star systems exhibits a maximum at a cluster mass of {{10}3.5} {{M}⊙ } for all models, even though the number of ejected systems increases with cluster mass. We show that lower mass clusters ({{M}ecl}≈ 400 {{M}⊙ }) are the dominant sources for populating the Galactic field with O stars by dynamical ejections, considering the mass function of embedded clusters. About 15% (up to ≈38%, depending on the cluster models) of O stars of which a significant fraction are binaries, and which would have formed in a ≈10 Myr epoch of star formation in a distribution of embedded clusters, will be dynamically ejected to the field. Individual clusters may eject 100% of their original O star content. A large fraction of such O stars have velocities up to only 10 km s-1. Synthesising a young star cluster mass function, it follows, given the stellar-dynamical results presented here, that the observed fractions of field and runaway O stars, and the binary fractions among them, can be well understood theoretically if all O stars form in embedded clusters.

  19. Limits on intermediate-mass black holes in six Galactic globular clusters with integral-field spectroscopy

    NASA Astrophysics Data System (ADS)

    Lützgendorf, N.; Kissler-Patig, M.; Gebhardt, K.; Baumgardt, H.; Noyola, E.; de Zeeuw, P. T.; Neumayer, N.; Jalali, B.; Feldmeier, A.

    2013-04-01

    Context. The formation of supermassive black holes at high redshift still remains a puzzle to astronomers. No accretion mechanism can explain the fast growth from a stellar mass black hole to several billion solar masses in less than one Gyr. The growth of supermassive black holes becomes reasonable only when starting from a massive seed black hole with mass on the order of 102-105 M⊙. Intermediate-mass black holes are therefore an important field of research. Especially the possibility of finding them in the centers of globular clusters has recently drawn attention. Searching for kinematic signatures of a dark mass in the centers of globular clusters provides a unique test for the existence of intermediate-mass black holes and will shed light on the process of black-hole formation and cluster evolution. Aims: We are investigating six galactic globular clusters for the presence of an intermediate-mass black hole at their centers. Based on their kinematic and photometric properties, we selected the globular clusters NGC 1851, NGC 1904 (M 79), NGC 5694, NGC 5824, NGC 6093 (M 80), and NGC 6266 (M 62). Methods: We used integral field spectroscopy to obtain the central velocity-dispersion profile of each cluster. In addition we completed these profiles with outer kinematic points from previous measurements for the clusters NGC 1851, NGC 1094, NGC 5824, and NGC 6093. We also computed the cluster photometric center and the surface brightness profile using HST data. After combining these datasets we compared them to analytic Jeans models. We used varying M/LV profiles for clusters with enough data points in order to reproduce their kinematic profiles in an optimal way. Finally, we varried the mass of the central black hole and tested whether the cluster is better fitted with or without an intermediate-mass black hole. Results: We present the statistical significance, including upper limits, of the black-hole mass for each cluster. NGC 1904 and NGC 6266 provide the

  20. ENVIRONMENTAL DEPENDENCE OF THE STAR FORMATION RATE, SPECIFIC STAR FORMATION RATE, AND THE PRESENCE OF ACTIVE GALACTIC NUCLEI FOR HIGH STELLAR MASS AND LOW STELLAR MASS GALAXIES

    SciTech Connect

    Deng Xinfa; Song Jun; Chen Yiqing; Jiang Peng; Ding Yingping

    2012-07-10

    Using two volume-limited main galaxy samples of the Sloan Digital Sky Survey Data Release 8 (SDSS DR8), we explore the environmental dependence of the star formation rate (SFR), specific star formation rate (SSFR), and the presence of active galactic nuclei (AGNs) for high stellar mass (HSM) and low stellar mass (LSM) galaxies. It is found that the environmental dependence of the SFR and SSFR for luminous HSM galaxies and faint LSM ones remains very strong: galaxies in the lowest density regime preferentially have higher SFR and SSFR than galaxies in the densest regime, while the environmental dependence of the SFR and SSFR for luminous LSM galaxies is substantially reduced. Our result also shows that the fraction of AGNs in HSM galaxies decreases as a function of density, while the one in LSM galaxies depends very little on local density. In the faint LSM galaxy sample, the SFR and SSFR of galaxies strongly decrease with increasing density, but the fraction of AGNs depends very little on local density. Such a result can rule out that AGNs are fueled by the cold gas in the disk component of galaxies that is also driving the star formation of those galaxies.

  1. Galactic Cosmic Ray Intensity Response to Interplanetary Coronal Mass Ejections/Magnetic Clouds in 1995-2009

    NASA Technical Reports Server (NTRS)

    Richardson, I. G.; Cane, H. V.

    2011-01-01

    We summarize the response of the galactic cosmic ray (CGR) intensity to the passage of the more than 300 interplanetary coronal mass ejections (ICMEs) and their associated shocks that passed the Earth during 1995-2009, a period that encompasses the whole of Solar Cycle 23. In approx.80% of cases, the GCR intensity decreased during the passage of these structures, i.e., a "Forbush decrease" occurred, while in approx.10% there was no significant change. In the remaining cases, the GCR intensity increased. Where there was an intensity decrease, minimum intensity was observed inside the ICME in approx.90% of these events. The observations confirm the role of both post-shock regions and ICMEs in the generation of these decreases, consistent with many previous studies, but contrary to the conclusion of Reames, Kahler, and Tylka (Astrophys. 1. Lett. 700, L199, 2009) who, from examining a subset of ICMEs with flux-rope-like magnetic fields (magnetic clouds) argued that these are "open structures" that allow free access of particles including GCRs to their interior. In fact, we find that magnetic clouds are more likely to participate in the deepest GCR decreases than ICMEs that are not magnetic clouds.

  2. The effects of coronal mass ejection on galactic cosmic rays in the high latitude heliosphere: Observations from Ulysses` first orbit

    SciTech Connect

    Bothmer, V.; Heber, B.; Kunow, H.; Mueller-Mellin, R.; Wibberenz, G.; Gosling, J.T.; Balogh, A.; Raviart, A.; Paizis, C.

    1997-10-01

    During its first solar orbit the Ulysses spacecraft detected several coronal mass ejections (CMEs) at high heliographic latitudes. The authors present first observations on the effects of these high latitude CMEs on galactic cosmic rays (GCRs) using measurements from the Kiel Electron Telescope (KET) which is part of the Cosmic Ray and Solar Particle Investigation (COSPIN) experiment, the Los Alamos SWOOPS (Solar Wind Observations Over the Poles of the Sun) experiment and the magnetic field experiments. They find the passage of these CMEs over the spacecraft to be associated with short term decreases of GCR intensities The relatively weak shocks in these events, driven by the CMEs` over-expansion, had no strong influence on the GCRs. The intensity minimums of GCRs occurred on closed magnetic field lines inside the CMEs themselves as indicated by bidirectional fluxes of suprathermal electrons. Short episodes of intensity increases of GCRs inside CMEs at times when the bidirectional fluxes of suprathermal electrons disappeared, can be interpreted as evidence that GCRs can easily access the interior of those CMEs in which open magnetic field lines are embedded.

  3. An empirical mass-loss law for Population II giants from the Spitzer-IRAC survey of Galactic globular clusters

    NASA Astrophysics Data System (ADS)

    Origlia, L.; Ferraro, F. R.; Fabbri, S.; Fusi Pecci, F.; Dalessandro, E.; Rich, R. M.; Valenti, E.

    2014-04-01

    Aims: The main aim of the present work is to derive an empirical mass-loss (ML) law for Population II stars in first and second ascent red giant branches. Methods: We used the Spitzer InfraRed Array Camera (IRAC) photometry obtained in the 3.6-8 μm range of a carefully chosen sample of 15 Galactic globular clusters spanning the entire metallicity range and sampling the vast zoology of horizontal branch (HB) morphologies. We complemented the IRAC photometry with near-infrared data to build suitable color-magnitude and color-color diagrams and identify mass-losing giant stars. Results: We find that while the majority of stars show colors typical of cool giants, some stars show an excess of mid-infrared light that is larger than expected from their photospheric emission and that is plausibly due to dust formation in mass flowing from them. For these stars, we estimate dust and total (gas + dust) ML rates and timescales. We finally calibrate an empirical ML law for Population II red and asymptotic giant branch stars with varying metallicity. We find that at a given red giant branch luminosity only a fraction of the stars are losing mass. From this, we conclude that ML is episodic and is active only a fraction of the time, which we define as the duty cycle. The fraction of mass-losing stars increases by increasing the stellar luminosity and metallicity. The ML rate, as estimated from reasonable assumptions for the gas-to-dust ratio and expansion velocity, depends on metallicity and slowly increases with decreasing metallicity. In contrast, the duty cycle increases with increasing metallicity, with the net result that total ML increases moderately with increasing metallicity, about 0.1 M⊙ every dex in [Fe/H]. For Population II asymptotic giant branch stars, we estimate a total ML of ≤0.1 M⊙, nearly constant with varying metallicity. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory

  4. The dynamics and star-forming potential of the massive Galactic centre cloud G0.253+0.016

    NASA Astrophysics Data System (ADS)

    Johnston, K. G.; Beuther, H.; Linz, H.; Schmiedeke, A.; Ragan, S. E.; Henning, Th.

    2014-08-01

    Context. The massive infrared dark cloud G0.253+0.016 projected ~45 pc from the Galactic centre contains ~105 M⊙ of dense gas whilst being mostly devoid of observed star-formation tracers. Aims: Our goals are therefore to scrutinise the physical properties, dynamics and structure of this cloud with reference to its star-forming potential. Methods: We have carried out a concerted SMA and IRAM 30 m study of this enigmatic cloud in dust continuum, CO isotopologues, several shock tracing molecules, as well as H2CO to trace the gas temperature. In addition, we include ancillary far-IR and sub-mm Herschel and SCUBA data in our analysis. Results: We detect and characterise a total of 36 dust cores within G0.253+0.016 at 1.3 mm and 1.37 mm, with masses between 25 and approximately 250 M⊙, and find that the kinetic temperature of the gas traced by H2CO ratios is >320 K on size-scales of ~0.15 pc. Analysis of the position-velocity diagrams of our observed lines shows broad linewidths and strong shock emission in the south of the cloud, indicating that G0.253+0.016 is colliding with another cloud at vLSR ~ 70 km s-1. We confirm via an analysis of the observed dynamics in the Central Molecular Zone that it is an elongated structure, orientated with Sgr B2 closer to the Sun than Sgr A*, however our results suggest that the actual geometry may be more complex than an elliptical ring. We find that the column density probability distribution function of G0.253+0.016 derived from SMA and SCUBA dust continuum emission is log-normal with no discernible power-law tail, consistent with little star formation, and that its width can be explained in the framework of theory predicting the density structure of clouds created by supersonic, magnetised turbulence. We also present the Δ-variance spectrum of this region, a proxy for the density power spectrum of the cloud, and show it is consistent with that expected for clouds with no current star formation. Finally, we show that even

  5. CHARACTERIZATION OF A SAMPLE OF INTERMEDIATE-TYPE ACTIVE GALACTIC NUCLEI. II. HOST BULGE PROPERTIES AND BLACK HOLE MASS ESTIMATES

    SciTech Connect

    Benitez, Erika; Cruz-Gonzalez, Irene; Martinez, Benoni; Jimenez-Bailon, Elena; Mendez-Abreu, Jairo; Lopez-Martin, Luis; Fuentes-Carrera, Isaura; Chavushyan, Vahram; Leon-Tavares, Jonathan

    2013-02-15

    We present a study of the host bulge properties and their relations with the black hole mass for a sample of 10 intermediate-type active galactic nuclei (AGNs). Our sample consists mainly of early-type spirals, four of them hosting a bar. For 70{sup +10} {sub -17}% of the galaxies, we have been able to determine the type of the bulge, and find that these objects probably harbor a pseudobulge or a combination of classical bulge/pseudobulge, suggesting that pseudobulges might be frequent in intermediate-type AGNs. In our sample, 50% {+-} 14% of the objects show double-peaked emission lines. Therefore, narrow double-peaked emission lines seem to be frequent in galaxies harboring a pseudobulge or a combination of classical bulge/pseudobulge. Depending on the bulge type, we estimated the black hole mass using the corresponding M {sub BH}-{sigma}* relation and found them within a range of 5.69 {+-} 0.21 < log M {sup {sigma}}*{sub BH} < 8.09 {+-} 0.24. Comparing these M {sup {sigma}}*{sub BH} values with masses derived from the FWHM of H{beta} and the continuum luminosity at 5100 A from their SDSS-DR7 spectra (M {sub BH}), we find that 8 out of 10 (80{sup +7} {sub -17}%) galaxies have black hole masses that are compatible within a factor of 3. This result would support that M {sub BH} and M {sup {sigma}}*{sub BH} are the same for intermediate-type AGNs, as has been found for type 1 AGNs. However, when the type of the bulge is taken into account, only three out of the seven (43{sup +18} {sub -15}%) objects of the sample have their M {sup {sigma}}*{sub BH} and M {sub BH} compatible within 3{sigma} errors. We also find that estimations based on the M {sub BH}-{sigma}* relation for pseudobulges are not compatible in 50% {+-} 20% of the objects.

  6. DYNAMICAL MASS OF THE M8+M8 BINARY 2MASS J22062280 - 2047058AB {sup ,} {sup ,} {sup ,}

    SciTech Connect

    Dupuy, Trent J.; Bowler, Brendan P.; Liu, Michael C.

    2009-11-20

    We present Keck laser guide star adaptive optics imaging of the M8+M8 binary 2MASS J2206 - 2047AB. Together with archival Hubble Space Telescope, Gemini-North, and Very Large Telescope data, our observations span 8.3 yr of the binary's 35{sup +6}{sub -5} yr orbital period, and we determine a total dynamical mass of 0.15{sup +0.05} {sub -0.03} M{sub sun}, with the uncertainty dominated by the parallax error. Using the measured total mass and individual luminosities, the Tucson and Lyon evolutionary models both give an age for the system of 0.4{sup +9.6}{sub -0.2} Gyr, which is consistent with its thin disk space motion derived from the Besancon Galactic structure model. Our mass measurement combined with the Tucson (Lyon) evolutionary models also yields precise effective temperatures, giving 2660{sup +90}{sub -100} K and 2640{sup +90}{sub -100} K (2550{sup +90}{sub -100} K and 2530{sup +90}{sub -100} K) for components A and B, respectively. These temperatures are in good agreement with estimates for other M8 dwarfs (from the infrared flux method and the M8 mass benchmark LHS 2397aA), but atmospheric model fitting of the integrated-light spectrum gives hotter temperatures of 2800 +- 100 K for both components. This modest discrepancy can be explained by systematic errors in the atmospheric models or by a slight underestimation of the distance (and thus, mass and age) of the system. We also find that the observed near-infrared colors and magnitudes do not agree with those predicted by the Lyon Dusty models, given the known mass of the system.

  7. The local mass density

    NASA Technical Reports Server (NTRS)

    Veeder, G. J.

    1974-01-01

    An improved mass-luminosity relation for faint main-sequence stars derived from recently revised masses for some faint double stars is presented. The total local mass density is increased to nearly 0.2 solar masses per cu pc. This estimate is as large as the mass density required by Oort's (1965) dynamical analysis of stellar motions perpendicular to the galactic plane if the mass is concentrated in a narrow layer.

  8. Dynamically Extreme Stellar and Galactic Populations in the Via Lactea II Cosmological Simulation and Their Observable Counterparts

    NASA Astrophysics Data System (ADS)

    Teyssier, Maureen

    2013-01-01

    We describe dynamically unusual populations with observable counterparts (backsplash galaxies, wandering stars and high velocity stars) in the environment in and outside of a Milky Way-like object. Analysis of VLII halo histories and z=0 distribution allows us to distinguish which Local Group field galaxies may have passed through the virial volume of the Milky Way. We find it likely that Tucana, Cetus, NGC3109, SextansA, SextansB, Antlia, NGC6822, Phoenix, LeoT, and NGC185 have passed through the Milky Way. Several of these galaxies contain signatures in their morphology, star formation history, and/or gas content, that are indicative of evolution seen in simulations of satellite/parent galactic interactions. We use the histories of VLII particles that are far outside Rvir at z=0 to estimate the likelihood of observing inter-galactic supernovae in current and near-future large-scale time-domain surveys. Finally, we ask whether a merger history similar to what is seen in VLII should lead to a significant population of old high-velocity stars associated with dark matter flows.

  9. On the virialization of disk winds: Implications for the black hole mass estimates in active galactic nuclei

    SciTech Connect

    Kashi, Amit; Proga, Daniel; Nagamine, Kentaro; Greene, Jenny; Barth, Aaron J.

    2013-11-20

    Estimating the mass of a supermassive black hole in an active galactic nucleus usually relies on the assumption that the broad line region (BLR) is virialized. However, this assumption seems to be invalid in BLR models that consist of an accretion disk and its wind. The disk is likely Keplerian and therefore virialized. However, beyond a certain point, the wind material must be dominated by an outward force that is stronger than gravity. Here, we analyze hydrodynamic simulations of four different disk winds: an isothermal wind, a thermal wind from an X-ray-heated disk, and two line-driven winds, one with and the other without X-ray heating and cooling. For each model, we determine whether gravity governs the flow properties by computing and analyzing the volume-integrated quantities that appear in the virial theorem: internal, kinetic, and gravitational energies. We find that in the first two models, the winds are non-virialized, whereas the two line-driven disk winds are virialized up to a relatively large distance. The line-driven winds are virialized because they accelerate slowly so that the rotational velocity is dominant and the wind base is very dense. For the two virialized winds, the so-called projected virial factor scales with inclination angle as 1/sin {sup 2} i. Finally, we demonstrate that an outflow from a Keplerian disk becomes unvirialized more slowly when it conserves the gas specific angular momentum, as in the models considered here, than when it conserves the angular velocity, as in the so-called magneto-centrifugal winds.

  10. Simultaneous radio and X-ray observations of Galactic Centre low-mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Berendsen, Stephan G. H.; Fender, Robert; Kuulkers, Erik; Heise, J.; van der Klis, M.

    2000-10-01

    We have performed simultaneous X-ray and radio observations of 13 Galactic Centre low-mass X-ray binaries in 1998 April using the Wide Field Cameras on board BeppoSAX and the Australia Telescope Compact Array, the latter simultaneously at 4.8 and 8.64GHz. We detect two Z sources, GX 17+2 and GX 5-1, and the unusual `hybrid' source GX 13+1. Upper limits, which are significantly deeper than previous non-detections, are placed on the radio emission from two more Z sources and seven atoll sources. Hardness-intensity diagrams constructed from the Wide Field Camera data reveal GX 17+2 and GX 5-1 to have been on the lower part of the horizontal branch and/or the upper part of the normal branch at the time of the observations, and the two non-detected Z sources, GX 340+0 and GX 349+2, to have been on the lower part of the normal branch. This is consistent with the previous empirically determined relation between radio and X-ray emission from Z sources, in which radio emission is strongest on the horizontal branch and weakest on the flaring branch. For the first time we have information on the X-ray state of atoll sources, which are clearly radio-quiet relative to the Z sources, during periods of observed radio upper limits. We place limits on the linear polarization from the three detected sources, and use accurate radio astrometry of GX 17+2 to confirm that it is probably not associated with the optical star NP Ser. Additionally we place strong upper limits on the radio emission from the X-ray binary 2S 0921-630, disagreeing with suggestions that it is a Z-source viewed edge-on.

  11. Quantitative chemical tagging, stellar ages and the chemo-dynamical evolution of the Galactic disc

    NASA Astrophysics Data System (ADS)

    Mitschang, A. W.; De Silva, G.; Zucker, D. B.; Anguiano, B.; Bensby, T.; Feltzing, S.

    2014-03-01

    The early science results from the new generation of high-resolution stellar spectroscopic surveys, such as Galactic Archaeology with HERMES (GALAH) and the Gaia European Southern Observatory survey (Gaia-ESO), will represent major milestones in the quest to chemically tag the Galaxy. Yet this technique to reconstruct dispersed coeval stellar groups has remained largely untested until recently. We build on previous work that developed an empirical chemical tagging probability function, which describes the likelihood that two field stars are conatal, that is, they were formed in the same cluster environment. In this work, we perform the first ever blind chemical tagging experiment, i.e. tagging stars with no known or otherwise discernible associations, on a sample of 714 disc field stars with a number of high-quality high-resolution homogeneous metal abundance measurements. We present evidence that chemical tagging of field stars does identify coeval groups of stars, yet these groups may not represent distinct formation sites, e.g. as in dissolved open clusters, as previously thought. Our results point to several important conclusions, among them that group finding will be limited strictly to chemical abundance space, e.g. stellar ages, kinematics, colours, temperature and surface gravity do not enhance the detectability of groups. We also demonstrate that in addition to its role in probing the chemical enrichment and kinematic history of the Galactic disc, chemical tagging represents a powerful new stellar age determination technique.

  12. Besançon Galactic model analysis of MOA-II microlensing: evidence for a mass deficit in the inner bulge

    NASA Astrophysics Data System (ADS)

    Awiphan, S.; Kerins, E.; Robin, A. C.

    2016-02-01

    Galactic bulge microlensing surveys provide a probe of Galactic structure. We present the first field-by-field comparison between microlensing observations and the Besançon population synthesis Galactic model. Using an updated version of the model we provide maps of optical depth, average event duration and event rate for resolved source populations and for difference imaging analysis (DIA) events. We also compare the predicted event time-scale distribution to that observed. The simulation follows the selection criteria of the MOA-II survey. We modify the Besançon model to include M dwarfs and brown dwarfs. Our best-fitting model requires a brown dwarf mass function slope of -0.4. The model provides good agreement with the observed average duration, and respectable consistency with the shape of the time-scale distribution (reduced χ2 ≃ 2.2). The DIA and resolved source limiting yields bracket the observed number of events by MOA-II (2.17 × and 0.83 × the number observed, respectively). We perform a two-dimensional fit to the event spatial distribution to predict the optical depth and event rate across the Galactic bulge. The most serious difficulty for the model is that it provides only ˜50 per cent of the measured optical depth and event rate per star at low Galactic latitude around the inner bulge (|b| < 3°). This discrepancy most likely is associated with known underestimated extinction and star counts in the innermost regions and therefore provides additional support for a missing inner stellar population.

  13. CHARACTERIZING THE BROWN DWARF FORMATION CHANNELS FROM THE INITIAL MASS FUNCTION AND BINARY-STAR DYNAMICS

    SciTech Connect

    Thies, Ingo; Pflamm-Altenburg, Jan; Kroupa, Pavel; Marks, Michael

    2015-02-10

    The stellar initial mass function (IMF) is a key property of stellar populations. There is growing evidence that the classical star-formation mechanism by the direct cloud fragmentation process has difficulties reproducing the observed abundance and binary properties of brown dwarfs and very-low-mass stars. In particular, recent analytical derivations of the stellar IMF exhibit a deficit of brown dwarfs compared to observational data. Here we derive the residual mass function of brown dwarfs as an empirical measure of the brown dwarf deficiency in recent star-formation models with respect to observations and show that it is compatible with the substellar part of the Thies-Kroupa IMF and the mass function obtained by numerical simulations. We conclude that the existing models may be further improved by including a substellar correction term that accounts for additional formation channels like disk or filament fragmentation. The term ''peripheral fragmentation'' is introduced here for such additional formation channels. In addition, we present an updated analytical model of stellar and substellar binarity. The resulting binary fraction and the dynamically evolved companion mass-ratio distribution are in good agreement with observational data on stellar and very-low-mass binaries in the Galactic field, in clusters, and in dynamically unprocessed groups of stars if all stars form as binaries with stellar companions. Cautionary notes are given on the proper analysis of mass functions and the companion mass-ratio distribution and the interpretation of the results. The existence of accretion disks around young brown dwarfs does not imply that these form just like stars in direct fragmentation.

  14. THREE-DIMENSIONAL STELLAR KINEMATICS AT THE GALACTIC CENTER: MEASURING THE NUCLEAR STAR CLUSTER SPATIAL DENSITY PROFILE, BLACK HOLE MASS, AND DISTANCE

    SciTech Connect

    Do, T.; Martinez, G. D.; Bullock, J.; Kaplinghat, M.; Peter, A. H. G.; Yelda, S.; Ghez, A.; Phifer, K.; Lu, J. R.

    2013-12-10

    We present three-dimensional (3D) kinematic observations of stars within the central 0.5 pc of the Milky Way (MW) nuclear star cluster (NSC) using adaptive optics imaging and spectroscopy from the Keck telescopes. Recent observations have shown that the cluster has a shallower surface density profile than expected for a dynamically relaxed cusp, leading to important implications for its formation and evolution. However, the true 3D profile of the cluster is unknown due to the difficulty in de-projecting the stellar number counts. Here, we use spherical Jeans modeling of individual proper motions and radial velocities to constrain, for the first time, the de-projected spatial density profile, cluster velocity anisotropy, black hole mass (M {sub BH}), and distance to the Galactic center (R {sub 0}) simultaneously. We find that the inner stellar density profile of the late-type stars, ρ(r)∝r {sup –γ}, have a power law slope γ=0.05{sub −0.60}{sup +0.29}, much more shallow than the frequently assumed Bahcall-Wolf slope of γ = 7/4. The measured slope will significantly affect dynamical predictions involving the cluster, such as the dynamical friction time scale. The cluster core must be larger than 0.5 pc, which disfavors some scenarios for its origin. Our measurement of M{sub BH}=5.76{sub −1.26}{sup +1.76}×10{sup 6} M {sub ☉} and R{sub 0}=8.92{sub −0.55}{sup +0.58} kpc is consistent with that derived from stellar orbits within 1'' of Sgr A*. When combined with the orbit of S0-2, the uncertainty on R {sub 0} is reduced by 30% (8.46{sub −0.38}{sup +0.42} kpc). We suggest that the MW NSC can be used in the future in combination with stellar orbits to significantly improve constraints on R {sub 0}.

  15. The search for low-luminosity high-mass X-ray binaries and the study of X-ray populations in the Galactic disk

    NASA Astrophysics Data System (ADS)

    Fornasini, Francesca; Tomsick, John; Bodaghee, Arash; Rahoui, Farid; Krivonos, Roman; Corral-Santana, Jesus; An, Hongjun; Bauer, Franz E.; Gotthelf, Eric V.; Stern, Daniel; NuSTAR Galactic Plane Survey Team

    2016-01-01

    High-mass X-ray binaries (HMXBs), which consist of a neutron star (NS) or black hole (BH) accreting material from a massive stellar companion, provide valuable insights into the evolution of massive stars and the merger rates of NS/NS, NS/BH, and BH/BH binaries whose gravitational wave signatures will soon be detectable by facilities such as Advanced-LIGO. INTEGRAL discoveries of new classes of lower-luminosity HMXBs, some highly obscured and some showing extreme transient activity, as well as the recent discovery of the very quiescent and only known Be-BH binary, have considerably changed our understanding of clumping in massive stellar winds and the relative importance of different binary evolutionary channels. In order to better characterize the low-luminosity HMXB population, we have performed a survey of a square degree region in the direction of the Norma spiral arm with Chandra and NuSTAR. These surveys, combined with optical and infrared spectroscopic follow-up of the counterparts of hard X-ray sources, have yielded three HMXB candidates to date. Future radial-velocity follow-up of these candidates, as well as other Be HMXB candidates from the NuSTAR serendipitous survey, will help determine whether these sources truly are HMXBs and, if so, constrain the mass of the compact object in these systems. If confirmed, these HMXB candidates could extend our measurement of the HMXB luminosity function by about two orders of magnitude and provide important constraints on massive binary evolutionary models. In addition, the colliding wind binaries and pulsar wind nebulae discovered in the Norma X-ray survey will help shed light on other aspects of massive stellar evolution and massive stellar remnants. Finally, these surveys provide the opportunity to compare the hard X-ray populations in the Galactic disk and the Galactic Center. While the dominant hard X-ray populations in both of these Galactic regions appear to be cataclysmic variables (CVs), those in the Norma

  16. COMPARING X-RAY AND DYNAMICAL MASS PROFILES IN THE EARLY-TYPE GALAXY NGC 4636

    SciTech Connect

    Johnson, Ria; Raychaudhury, Somak; Chakrabarty, Dalia; O'Sullivan, Ewan E-mail: D.Chakrabarty@warwick.ac.u

    2009-12-01

    We present the results of an X-ray mass analysis of the early-type galaxy NGC 4636, using Chandra data. We have compared the X-ray mass density profile with that derived from a dynamical analysis of the system's globular clusters (GCs). Given the observed interaction between the central active galactic nucleus and the X-ray emitting gas in NGC 4636, we would expect to see a discrepancy in the masses recovered by the two methods. Such a discrepancy exists within the central approx10 kpc, which we interpret as the result of non-thermal pressure support or a local inflow. However, over the radial range approx10-30 kpc, the mass profiles agree within the 1sigma errors, indicating that even in this highly disturbed system, agreement can be sought at an acceptable level of significance over intermediate radii, with both methods also indicating the need for a dark matter halo. However, at radii larger than 30 kpc, the X-ray mass exceeds the dynamical mass, by a factor of 4-5 at the largest disagreement. A Fully Bayesian Significance Test finds no statistical reason to reject our assumption of velocity isotropy, and an analysis of X-ray mass profiles in different directions from the galaxy center suggests that local disturbances at large radius are not the cause of the discrepancy. We instead attribute the discrepancy to the paucity of GC kinematics at large radius, coupled with not knowing the overall state of the gas at the radius where we are reaching the group regime (>30 kpc), or a combination of the two.

  17. Limits on the spatial variations of the electron-to-proton mass ratio in the Galactic plane

    NASA Astrophysics Data System (ADS)

    Levshakov, S. A.; Reimers, D.; Henkel, C.; Winkel, B.; Mignano, A.; Centurión, M.; Molaro, P.

    2013-11-01

    Aims: We aim to validate the Einstein equivalence principle (local position invariance) by limiting the fractional changes in the electron-to-proton mass ratio, μ = me/mp, measured in Galactic plane objects. Methods: High-resolution spectral observations of dark clouds in the inversion line of NH3(1, 1) and pure rotational lines of other molecules (the so-called ammonia method) were performed at the Medicina 32-m and the Effelsberg 100-m radio telescopes to measure the radial velocity offsets, ΔRV = Vrot - Vinv, between the rotational and inversion transitions, which have different sensitivities to the value of μ. Results: In our previous observations (2008-2010), a mean offset of ⟨ΔRV⟩ = 0.027 ± 0.010 km s-1 (3σ confidence level (C.L.)) was measured. To test for possible hidden errors, we carried out additional observations of a sample of molecular cores in 2010-2013. As a result, a systematic error with an amplitude ~0.02 km s-1 in the radial velocities was revealed. The averaged offset between the radial velocities of the rotational transitions of HC3N(2-1), HC5N(9-8), HC7N(16-15), HC7N(21-20), and HC7N(23-22), and the inversion transition of NH3(1, 1) is ⟨ΔRV⟩ = 0.003 ± 0.018 km s-1 (3σ C.L.). This value, when interpreted in terms of Δμ/μ = (μobs - μlab)/μlab, constraints the μ-variation at the level of Δμ/μ < 2 × 10-8 (3σ C.L.), which is the most stringent limit on the fractional changes in μ based on astronomical observations. Based on observations obtained with the Effelsberg 100-m telescope operated by the Max-Planck Institut für Radioastronomie on behalf of the Max-Planck-Gesellschaft (Germany), and with the Medicina 32-m telescope operated by INAF (Italy).

  18. Densities of Galactic Center Clouds

    NASA Astrophysics Data System (ADS)

    Barnes, Jonathan; Mills, Elisabeth A. C.; Morris, Mark R.

    2015-04-01

    The central 300 parsecs of the Galaxy is full of giant molecular clouds containing 107 solar masses worth of gas. However, our Galactic center is not forming as many stars as we think it can, based on the amount of molecular gas in this region. By studying the densities of the Galactic center clouds we hope to better understand why there is not much star formation occurring. Using data from the Green Bank and MOPRA telescopes we have observed multiple rotation transitions of HC3N and its 13C isotopologues. By measuring the integrated intensity of the HC3 N we are able to calculate the densities of these giant molecular clouds. The measured intensities are used with a radiative transfer code called RADEX, to determine volume densities. Our initial results suggest that there may be either less dense or cooler gas in these clouds that previously thought. If there is a significant quantity of gas less dense than 104 molecules/cm3 , this could explain the lack of ongoing star formation in these clouds, and might also suggest a shorter timescale for dynamical disruption of theses clouds. In the future, we plan to improve these results by observing additional HC3N transitions, allowing us better to constrain the relative contributions of multiple temperature and density components in Galactic center clouds.

  19. Galactic cannibalism. IV. The evidence-correlations between dynamical time scales and Bautz-Morgan type

    SciTech Connect

    McGlynn, T.A.; Ostriker, J.P.

    1980-11-01

    If the luminosity of supergiant cD galaxies in particular, and the Bautz-Morgan sequence of galaxy types in general, is produced by dynamical evolutionary processes, then one expects to find a correlation between dynamical times and ..delta..M/sub 12/, the magnitude difference between first and second brightest cluster members.

  20. Dynamics Behind the Quark Mass Hierarchy and Electroweak Symmetry breaking

    SciTech Connect

    Miransky, Vladimir A.

    2011-05-24

    I review the dynamics in a new class of models describing the quark mass hierarchy, suggested recently by Michio Hashimoto and the author. In this class, the dynamics primarily responsible for electroweak symmetry breaking (EWSB) leads to the mass spectrum of quarks with no (or weak) isospin violation. Moreover, the values of these masses are of the order of the observed masses of the down-type quarks. Then, strong (although subcritical) horizontal diagonal interactions for the t quark plus horizontal flavor-changing neutral interactions between different families lead (with no fine tuning) to a realistic quark mass spectrum. In this scenario, many composite Higgs bosons occur. A concrete model with the dynamical EWSB with the fourth family is described in detail.

  1. Dynamics Behind the Quark Mass Hierarchy and Electroweak Symmetry breaking

    NASA Astrophysics Data System (ADS)

    Miransky, Vladimir A.

    2011-05-01

    I review the dynamics in a new class of models describing the quark mass hierarchy, suggested recently by Michio Hashimoto and the author. In this class, the dynamics primarily responsible for electroweak symmetry breaking (EWSB) leads to the mass spectrum of quarks with no (or weak) isospin violation. Moreover, the values of these masses are of the order of the observed masses of the down-type quarks. Then, strong (although subcritical) horizontal diagonal interactions for the t quark plus horizontal flavor-changing neutral interactions between different families lead (with no fine tuning) to a realistic quark mass spectrum. In this scenario, many composite Higgs bosons occur. A concrete model with the dynamical EWSB with the fourth family is described in detail.

  2. On the estimation of dynamic mass density of random composites.

    PubMed

    Jin, Congrui

    2012-08-01

    The dynamic effective mass density and bulk modulus of an inhomogeneous medium at low frequency limit are discussed. Random configurations in a variety of two-dimensional physical contexts are considered. In each case, effective dynamic mass density and bulk modulus are calculated based on eigenmode matching theory. The results agree with those provided by Martin et al. [J. Acoust. Soc. Am. 128, 571-577 (2010)] obtained from effective wavenumber method. PMID:22894183

  3. Galactic structure from the spacelab infrared telescope. III - A dynamical model for the Milky Way bulge

    NASA Technical Reports Server (NTRS)

    Kent, S. M.

    1992-01-01

    The Milky Way bulge is modeled as an oblate isotropic rotator with constant M/L ratio. A model with M/L sub 2.2 micron = 1 successfully reproduces a variety of stellar velocity dispersion measurements for R between 2 and 1200 pc. An observed increase in the stellar velocity dispersion inside 2 pc requires either that there be an additional central mass of order 3 x 10 exp 6 solar mass or that the stellar motions become anisotropic there. The model has insufficient mass to reproduce the observed peak in the H I and CO rotation curve of 250 km/s at 300 pc; it is argued that the peak arises from noncircular gas motions and does not reflect the true mass of the bulge.

  4. Dynamical evidence for causality between galactic cosmic rays and interannual variation in global temperature.

    PubMed

    Tsonis, Anastasios A; Deyle, Ethan R; May, Robert M; Sugihara, George; Swanson, Kyle; Verbeten, Joshua D; Wang, Geli

    2015-03-17

    As early as 1959, it was hypothesized that an indirect link between solar activity and climate could be mediated by mechanisms controlling the flux of galactic cosmic rays (CR) [Ney ER (1959) Nature 183:451-452]. Although the connection between CR and climate remains controversial, a significant body of laboratory evidence has emerged at the European Organization for Nuclear Research [Duplissy J, et al. (2010) Atmos Chem Phys 10:1635-1647; Kirkby J, et al. (2011) Nature 476(7361):429-433] and elsewhere [Svensmark H, Pedersen JOP, Marsh ND, Enghoff MB, Uggerhøj UI (2007) Proc R Soc A 463:385-396; Enghoff MB, Pedersen JOP, Uggerhoj UI, Paling SM, Svensmark H (2011) Geophys Res Lett 38:L09805], demonstrating the theoretical mechanism of this link. In this article, we present an analysis based on convergent cross mapping, which uses observational time series data to directly examine the causal link between CR and year-to-year changes in global temperature. Despite a gross correlation, we find no measurable evidence of a causal effect linking CR to the overall 20th-century warming trend. However, on short interannual timescales, we find a significant, although modest, causal effect between CR and short-term, year-to-year variability in global temperature that is consistent with the presence of nonlinearities internal to the system. Thus, although CR do not contribute measurably to the 20th-century global warming trend, they do appear as a nontraditional forcing in the climate system on short interannual timescales.

  5. Star formation across cosmic time and its influence on galactic dynamics

    NASA Astrophysics Data System (ADS)

    Freundlich, Jonathan

    2015-12-01

    Observations show that ten billion years ago, galaxies formed their stars at rates up to twenty times higher than now. As stars are formed from cold molecular gas, a high star formation rate means a significant gas supply, and galaxies near the peak epoch of star formation are indeed much more gas-rich than nearby galaxies. Is the decline of the star formation rate mostly driven by the diminishing cold gas reservoir, or are the star formation processes also qualitatively different earlier in the history of the Universe? Ten billion years ago, young galaxies were clumpy and prone to violent gravitational instabilities, which may have contributed to their high star formation rate. Stars indeed form within giant, gravitationally-bound molecular clouds. But the earliest phases of star formation are still poorly understood. Some scenarii suggest the importance of interstellar filamentary structures as a first step towards core and star formation. How would their filamentary geometry affect pre-stellar cores? Feedback mechanisms related to stellar evolution also play an important role in regulating star formation, for example through powerful stellar winds and supernovae explosions which expel some of the gas and can even disturb the dark matter distribution in which each galaxy is assumed to be embedded. This PhD work focuses on three perspectives: (i) star formation near the peak epoch of star formation as seen from observations at sub-galactic scales; (ii) the formation of pre-stellar cores within the filamentary structures of the interstellar medium; and (iii) the effect of feedback processes resulting from star formation and evolution on the dark matter distribution.

  6. Dynamical evidence for causality between galactic cosmic rays and interannual variation in global temperature.

    PubMed

    Tsonis, Anastasios A; Deyle, Ethan R; May, Robert M; Sugihara, George; Swanson, Kyle; Verbeten, Joshua D; Wang, Geli

    2015-03-17

    As early as 1959, it was hypothesized that an indirect link between solar activity and climate could be mediated by mechanisms controlling the flux of galactic cosmic rays (CR) [Ney ER (1959) Nature 183:451-452]. Although the connection between CR and climate remains controversial, a significant body of laboratory evidence has emerged at the European Organization for Nuclear Research [Duplissy J, et al. (2010) Atmos Chem Phys 10:1635-1647; Kirkby J, et al. (2011) Nature 476(7361):429-433] and elsewhere [Svensmark H, Pedersen JOP, Marsh ND, Enghoff MB, Uggerhøj UI (2007) Proc R Soc A 463:385-396; Enghoff MB, Pedersen JOP, Uggerhoj UI, Paling SM, Svensmark H (2011) Geophys Res Lett 38:L09805], demonstrating the theoretical mechanism of this link. In this article, we present an analysis based on convergent cross mapping, which uses observational time series data to directly examine the causal link between CR and year-to-year changes in global temperature. Despite a gross correlation, we find no measurable evidence of a causal effect linking CR to the overall 20th-century warming trend. However, on short interannual timescales, we find a significant, although modest, causal effect between CR and short-term, year-to-year variability in global temperature that is consistent with the presence of nonlinearities internal to the system. Thus, although CR do not contribute measurably to the 20th-century global warming trend, they do appear as a nontraditional forcing in the climate system on short interannual timescales. PMID:25733877

  7. Highlight talk by a young astronomer: The Origin of Black Hole Spin in Galactic Low-mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Fragos, A.

    2013-09-01

    Galactic field low-mass X-ray binaries (LMXBs), like the ones for which black hole (BH) spinmeasurements are available, are believed to form in situ via the evolution of isolated binaries. In the standard formation channel these systems survived a common envelope phase that resulted in a binary system with an unevolved low mass main sequence star orbiting around the core of the massive star in a tight orbit. The massive BH progenitor, before the onset of the common envelope phase, had expanded to of ~1000 solar radii. Up to that moment and at solar metallicity, the expansion of the star and the stellar wind mass loss most probably carried away any significant initial angular momentum that the primary star had. During the common envelope phase itself, while the orbit is shrinking significantly, the short timescale (common envelope is expected to last only up to ~1 thermal timescale) and the break of co-rotation of the binary will not allow any significant transfer of angular momentum from the orbit to the core of the primary star. Hence, the remaining helium core of the primary star is not expected to be highly spinning. In the detached orbital evolution that follows until the BH formation, the angular momentum losses due to the strong stellar stellar winds will dominate the evolution of the primary over the weaker, due to the low mass of the companion, tidal forces which tend to synchronize the spin of the BH progenitor with the orbit. As a consequence, the BHs formed in these systems are expected to have low birth spin. However, the measured spins of BHs in LMXBs cover the whole range of spin parameters (a*) from a* = 0 to almost a* = 1. If the assumptions above are even approximately valid, then this implies that the BH spin in LMXBs is determined by the matter that the BH has accreted during the long stable accretion phase of the system. In order to test the hypothesis that the origin of BH spin in Galactic LMXBs is the accretion of matter onto the BH during the

  8. Dynamics and rheology of high molar mass polyethylene oxide solutions

    NASA Astrophysics Data System (ADS)

    Shetty, Abhishek; Solomon, Michael

    2009-03-01

    We report dynamic light scattering (DLS), bulk rheology and turbulent drag reduction (TDR) measurements that investigate the structure and dynamics of high molar mass PEO solutions. Steady shear rheology of high molar mass PEO solutions, when modeled by the FENE-P constitutive equation, was consistent with viscoelastic relaxation times much larger than predicted by single polymer, dilute solution theory. DLS of dilute PEO solutions showed a single relaxation mode in the decay time distribution, which scales as q-3 rather than the q-2 scaling expected of diffusive dynamics. We interpret this result as consistent with the internal dynamics of large multichain domains, clusters or aggregates in the high molar mass PEO solutions. By means of DLS, we also show that the aggregation state of dilute solutions of high molar mass PEO can be manipulated by addition of the chaotropic salt guanidine sulfate or the divalent salt magnesium sulfate. Addition of these salts shifts the power law scaling of the relaxation time from q-3 to q-2. This shift of relaxation time scaling from one indicative of aggregate dynamics (q-3) to one characteristic of polymer center-of-mass diffusion (q-2) shows that these salts are effective de-aggregation agents for PEO. We discuss the results in light of the potential connection between aggregation behavior and polymer TDR of high molar mass PEO.

  9. Secular dynamics in hierarchical three-body systems with mass loss and mass transfer

    SciTech Connect

    Michaely, Erez; Perets, Hagai B.

    2014-10-20

    Recent studies have shown that secular evolution of triple systems can play a major role in the evolution and interaction of their inner binaries. Very few studies explored the stellar evolution of triple systems, and in particular the mass-loss phase of the evolving stellar components. Here we study the dynamical secular evolution of hierarchical triple systems undergoing mass loss. We use the secular evolution equations and include the effects of mass loss and mass transfer, as well as general relativistic effects. We present various evolutionary channels taking place in such evolving triples, and discuss both the effects of mass loss and mass transfer in the inner binary system, as well as the effects of mass loss/transfer from an outer third companion. We discuss several distinct types/regimes of triple secular evolution, where the specific behavior of a triple system can sensitively depend on its hierarchy and the relative importance of classical and general relativistic effects. We show that the orbital changes due to mass-loss and/or mass-transfer processes can effectively transfer a triple system from one dynamical regime to another. In particular, mass loss/transfer can both induce and quench high-amplitude (Lidov-Kozai) variations in the eccentricity and inclination of the inner binaries of evolving triples. They can also change the system dynamics from an orderly periodic behavior to a chaotic one, and vice versa.

  10. The Dynamics of Snow and Ice Masses

    NASA Astrophysics Data System (ADS)

    Wettlaufer, J. S.

    On Earth today we enjoy a relatively comfortable climate, which is a fortunate consequence of the present extent of the global ice cover. Although more than two-thirds of the surface of Earth is covered by water, it is the water to ice conversion, and vice versa, that makes an important fraction of the globe habitable today. Hence, changes in the global scale dynamics of the ice cover capture scientific and public interest principally because of their role in global warming and ice-age events. It is in this sense that ice is the ultimate geomorphological fluid mechanic.

  11. Dynamics of Orbital Masses in an Unbalanced Rotor

    NASA Technical Reports Server (NTRS)

    Gallardo, Vicente; Lawrence, Charles

    2006-01-01

    Historically, orbital masses have been used as automatic balancers in rotating machines. However, in these applications, the masses are free to move and rotate with the rotor from zero to operating speeds. For gas turbine applications it is desirable for the orbital masses to be fixed and unmoving, until their release from a sudden unbalance at the operating speed, such as occurs from a blade-out event. The objective of this work is to develop the dynamical equations of motion for orbital masses on a rotating shaft. In subsequent work these equations will be incorporated into a rotor structural dynamics computer code and the feasibility of attenuating rotor unbalance response with orbital masses will be investigated.

  12. Infrared divergences, mass shell singularities and gauge dependence of the dynamical fermion mass

    NASA Astrophysics Data System (ADS)

    Das, Ashok K.; Frenkel, J.; Schubert, C.

    2013-03-01

    We study the behavior of the dynamical fermion mass when infrared divergences and mass shell singularities are present in a gauge theory. In particular, in the massive Schwinger model in covariant gauges we find that the pole of the fermion propagator is divergent and gauge dependent at one loop, but the leading singularities cancel in the quenched rainbow approximation. On the other hand, in physical gauges, we find that the dynamical fermion mass is finite and gauge independent at least up to one loop.

  13. Large mass hierarchies from strongly-coupled dynamics

    NASA Astrophysics Data System (ADS)

    Athenodorou, Andreas; Bennett, Ed; Bergner, Georg; Elander, Daniel; Lin, C.-J. David; Lucini, Biagio; Piai, Maurizio

    2016-06-01

    Besides the Higgs particle discovered in 2012, with mass 125 GeV, recent LHC data show tentative signals for new resonances in diboson as well as diphoton searches at high center-of-mass energies (2 TeV and 750 GeV, respectively). If these signals are confirmed (or other new resonances are discovered at the TeV scale), the large hierarchies between masses of new bosons require a dynamical explanation. Motivated by these tentative signals of new physics, we investigate the theoretical possibility that large hierarchies in the masses of glueballs could arise dynamically in new strongly-coupled gauge theories extending the standard model of particle physics. We study lattice data on non-Abelian gauge theories in the (near-)conformal regime as well as a simple toy model in the context of gauge/gravity dualities. We focus our attention on the ratio R between the mass of the lightest spin-2 and spin-0 resonances, that for technical reasons is a particularly convenient and clean observable to study. For models in which (non-perturbative) large anomalous dimensions arise dynamically, we show indications that this mass ratio can be large, with R>5. Moreover,our results suggest that R might be related to universal properties of the IR fixed point. Our findings provide an interesting step towards understanding large mass ratios in the non-perturbative regime of quantum field theories with (near) IR conformal behaviour.

  14. Probing Ultracool Atmospheres and Substellar Interiors with Dynamical Masses

    NASA Astrophysics Data System (ADS)

    Dupuy, Trent

    2010-09-01

    After years of patient orbital monitoring, there is now a large sample of very low-mass stars and brown dwarfs with precise { 5%} dynamical masses. These binaries represent the gold standard for testing substellar theoretical models. Work to date has identified problems with the model-predicted broad-band colors, effective temperatures, and possibly even luminosity evolution with age. However, our ability to test models is currently limited by how well the individual components of these highly prized binaries are characterized. To solve this problem, we propose to use NICMOS and STIS to characterize this first large sample of ultracool binaries with well-determined dynamical masses. We will use NICMOS multi-band photometry to measure the SEDs of the binary components and thereby precisely estimate their spectral types and effective temperatures. We will use STIS to obtain resolved spectroscopy of the Li I doublet at 6708 A for a subset of three binaries whose masses lie very near the theoretical mass limit for lithium burning. The STIS data will provide the first ever resolved lithium measurements for brown dwarfs of known mass, enabling a direct probe of substellar interiors. Our proposed HST observations to characterize the components of these binaries is much less daunting in comparison to the years of orbital monitoring needed to yield dynamical masses, but these HST data are equally vital for robust tests of theory.

  15. Dynamic simulation of coronal mass ejections

    NASA Technical Reports Server (NTRS)

    Steinolfson, R. S.; Wu, S. T.

    1980-01-01

    A model is developed for the formation and propagation through the lower corona of the loop-like coronal transients in which mass is ejected from near the solar surface to the outer corona. It is assumed that the initial state for the transient is a coronal streamer. The initial state for the streamer is a polytropic, hydrodynamic solution to the steady-state radial equation of motion coupled with a force-free dipole magnetic field. The numerical solution of the complete time-dependent equations then gradually approaches a stationary coronal streamer configuration. The streamer configuration becomes the initial state for the coronal transient. The streamer and transient simulations are performed completely independent of each other. The transient is created by a sudden increase in the pressure at the base of the closed-field region in the streamer configuration. Both coronal streamers and coronal transients are calculated for values of the plasma beta (the ratio of thermal to magnetic pressure) varying from 0.1 to 100.

  16. Method for increasing the dynamic range of mass spectrometers

    DOEpatents

    Belov, Mikhail; Smith, Richard D.; Udseth, Harold R.

    2004-09-07

    A method for enhancing the dynamic range of a mass spectrometer by first passing a sample of ions through the mass spectrometer having a quadrupole ion filter, whereupon the intensities of the mass spectrum of the sample are measured. From the mass spectrum, ions within this sample are then identified for subsequent ejection. As further sampling introduces more ions into the mass spectrometer, the appropriate rf voltages are applied to a quadrupole ion filter, thereby selectively ejecting the undesired ions previously identified. In this manner, the desired ions may be collected for longer periods of time in an ion trap, thus allowing better collection and subsequent analysis of the desired ions. The ion trap used for accumulation may be the same ion trap used for mass analysis, in which case the mass analysis is performed directly, or it may be an intermediate trap. In the case where collection is an intermediate trap, the desired ions are accumulated in the intermediate trap, and then transferred to a separate mass analyzer. The present invention finds particular utility where the mass analysis is performed in an ion trap mass spectrometer or a Fourier transform ion cyclotron resonance mass spectrometer.

  17. RAPID DYNAMICAL MASS SEGREGATION AND PROPERTIES OF FRACTAL STAR CLUSTERS

    SciTech Connect

    Yu Jincheng; Chen Li; De Grijs, Richard

    2011-05-01

    We investigate the evolution of young star clusters using N-body simulations. We confirm that subvirial and fractal-structured clusters will dynamically mass segregate on a short timescale (within 0.5 Myr). We adopt a modified minimum-spanning-tree method to measure the degree of mass segregation, demonstrating that the stars escaping from a cluster's potential are important for the temporal dependence of mass segregation in the cluster. The form of the initial velocity distribution will also affect the degree of mass segregation. If it depends on radius, the outer parts of the cluster would expand without undergoing collapse. In velocity space, we find 'inverse mass segregation', which indicates that massive stars have higher velocity dispersions than their lower-mass counterparts.

  18. Star formation in Galactic flows

    NASA Astrophysics Data System (ADS)

    Smilgys, Romas; Bonnell, Ian A.

    2016-06-01

    We investigate the triggering of star formation in clouds that form in Galactic scale flows as the interstellar medium passes through spiral shocks. We use the Lagrangian nature of smoothed particle hydrodynamics simulations to trace how the star-forming gas is gathered into self-gravitating cores that collapse to form stars. Large-scale flows that arise due to Galactic dynamics create shocks of the order of 30 km s-1 that compress the gas and form dense clouds (n > several × 102 cm-3) in which self-gravity becomes relevant. These large-scale flows are necessary for creating the dense physical conditions for gravitational collapse and star formation. Local gravitational collapse requires densities in excess of n > 103 cm-3 which occur on size scales of ≈1 pc for low-mass star-forming regions (M < 100 M⊙), and up to sizes approaching 10 pc for higher mass regions (M > 103 M⊙). Star formation in the 250 pc region lasts throughout the 5 Myr time-scale of the simulation with a star formation rate of ≈10-1 M⊙ yr-1 kpc-2. In the absence of feedback, the efficiency of the star formation per free-fall time varies from our assumed 100 per cent at our sink accretion radius to values of <10-3 at low densities.

  19. Lumped mass modelling for the dynamic analysis of aircraft structures

    NASA Technical Reports Server (NTRS)

    Abu-Saba, Elias G.; Shen, Ji Yao; Mcginley, William M.; Montgomery, Raymond C.

    1992-01-01

    Aircraft structures may be modelled by lumping the masses at particular strategic points and the flexibility or stiffness of the structure is obtained with reference to these points. Equivalent moments of inertia for the section at these positions are determined. The lumped masses are calculated based on the assumption that each point will represent the mass spread on one half of the space on each side. Then these parameters are used in the differential equation of motion and the eigen characteristics are determined. A comparison is made with results obtained by other established methods. The lumped mass approach in the dynamic analysis of complicated structures provides an easier means of predicting the dynamic characteristics of these structures. It involves less computer time and avoids computational errors that are inherent in the numerical solution of complicated systems.

  20. The 2PPI Expansion:. Dynamical Mass Generation and Vacuum Energy

    NASA Astrophysics Data System (ADS)

    Dudal, D.; Verschelde, H.; Browne, R. E.; Gracey, J. A.

    2004-04-01

    We discuss the 2PPI expansion, a summation of the bubble graphs up to all orders, by means of the 2D Gross-Neveu toy model, whose exact mass gap and vacuum energy are known. Then we use the expansion to give analytical evidence that a dimension two gluon condensate exists for pure Yang-Mills in the Landau gauge. This < {Aμ a Aμ a } ; > condensate consequently gives rise to a dynamical gluon mass.

  1. Microlensing by the galactic bar

    NASA Technical Reports Server (NTRS)

    Zhao, Hongsheng; Spergel, David N.; Rich, R. Michael

    1995-01-01

    We compute the optical depth and duration distribution of microlensing events towrd Baade's window in a model composed of a Galactic disk and a bar. The bar model is a self-consistent dynamical model built out of individual orbits that has been populated to be consistent with the COBE maps of the Galaxy and kinematic observations of the Galactic bulge. We find that most of the lenses are in the bulge with a line-of-sight distance 6.25 kpc (adopting R(sub 0) = 8 kpc). The microlensing optical depth of a 2 x 10(exp 10) solar mass bar plus a truncated disk is (2.2 +/- 0.45) x 10(exp -6), consistent with the large optical depth (3.2 +/- 1.2) x 10(exp -6) found by Udalski et al. (1994). This model optical depth is enhanced over the predictions of axisymmetric models by Kiraga & Paczynski (1994) by slightly more than a factor of 2, since the bar is elongated along the line of sight. The large Einstein radius and small transverse velocity dispersion also predict a longer event duration in the self-consistent bar model than in the Kiraga-Paczynski model. The event rate and duration distribution also depend on the lower mass cutoff of the lens mass function. With a 0.1 solar mass cutoff, five to seven events (depending on the contribution of disk lenses) with a logarithmic mean duration of 20 days are expected for the Optical Gravitational Lensing Experiment (OGLE) according to our model, while Udalski et al. (1994) observed nine events with durations from 8 to 62 days. On the other hand, if most of the lenses are brown dwarfs, our model predicts too many short-duration events. A Kolmogorov-Smirnov test finds only 7% probability for the model with 0.01 solar mass cutoff to be consistent with current data.

  2. Photometric Surveys of the Galactic Bulge and Long Bar

    NASA Astrophysics Data System (ADS)

    Gerhard, O.; Wegg, C.; Portail, M.

    The Galactic bar and box/peanut bulge can be studied in an unrivaled manner, star-by-star, with detailed chemical information and full 3D kinematics. Because of intervening dust this is greatly facilitated by the availability of wide field deep NIR photometric surveys. Here we summarize recent results on the three-dimensional structure of the bulge and the long bar region, based on 2MASS, UKIDSS, and particularly the ongoing VVV survey. We also summarize results from dynamical models for the Galactic bulge constructed with the Made-to-Measure method.

  3. Chaotic dynamics in charged-particle beams: Possible analogs of galactic evolution

    SciTech Connect

    Bohn, Courtlandt L.; /Northern Illinois U. /Fermilab

    2004-12-01

    During the last couple of years of his life, Henry Kandrup became intensely interested in using charged-particle beams as a tool for exploring the dynamics of evolving galaxies. He and I recognized that both galaxies and charged-particle beams can exhibit collisionless relaxation on surprisingly short time scales, and that this circumstance can be attributed to phase mixing of chaotic orbits. The chaos is often triggered by resonances caused by time dependence in the bulk potential, which acts almost identically for attractive gravitational forces as for repulsive electrostatic forces superposed on external focusing forces. Together we published several papers concerning evolving beams and galaxies, papers that relate to diverse topics such as the physics of chaotic mixing, the applicability of the Vlasov-Poisson formalism, and the production of diffuse halos. We also teamed with people from the University of Maryland to begin designing controlled experiments to be done at the University of Maryland Electron Ring. This paper highlights our collaborative findings as well as plans for future investigations that the findings have motivated.

  4. Starburst clusters in the Galactic center

    NASA Astrophysics Data System (ADS)

    Habibi, Maryam

    2014-09-01

    The central region of the Galaxy is the most active site of star formation in the Milky Way, where massive stars have formed very recently and are still forming today. The rich population of massive stars in the Galactic center provide a unique opportunity to study massive stars in their birth environment and probe their initial mass function, which is the spectrum of stellar masses at their birth. The Arches cluster is the youngest among the three massive clusters in the Galactic center, providing a collection of high-mass stars and a very dense core which makes this cluster an excellent site to address questions about massive star formation, the stellar mass function and the dynamical evolution of massive clusters in the Galactic center. In this thesis, I perform an observational study of the Arches cluster using K_{s}-band imaging obtained with NAOS/CONICA at the VLT combined with Subaru/Cisco J-band data to gain a full understanding of the cluster mass distribution out to its tidal radius for the first time. Since the light from the Galactic center reaches us through the Galactic disc, the extinction correction is crucial when studying this region. I use a Bayesian method to construct a realistic extinction map of the cluster. It is shown in this study that the determination of the mass of the most massive star in the Arches cluster, which had been used in previous studies to establish an upper mass limit for the star formation process in the Milky Way, strongly depends on the assumed slope of the extinction law. Assuming the two regimes of widely used infrared extinction laws, I show that the difference can reach up to 30% for individually derived stellar masses and Δ A_{Ks}˜ 1 magnitude in acquired K_{s}-band extinction, while the present-day mass function slope changes by ˜ 0.17 dex. The present-day mass function slope derived assuming the more recent extinction law, which suggests a steeper wavelength dependence for the infrared extinction law, reveals

  5. Identifying Dynamically Induced Variability in Glacier Mass-Balance Records

    NASA Astrophysics Data System (ADS)

    Christian, J. E.; Siler, N.; Koutnik, M. R.; Roe, G.

    2015-12-01

    Glacier mass-balance (i.e., accumulation vs. ablation) provides a direct indicator of a glacier's relationship with climate. However, mass-balance records contain noise due to internal climate variability (i.e., from stochastic fluctuations in large-scale atmospheric circulation), which can obscure or bias trends in these relatively short timeseries. This presents a challenge in correctly identifying the signature of anthropogenic change. "Dynamical adjustment" is a technique that identifies patterns of variance shared between a climate timeseries of interest (e.g., mass-balance) and independent "predictor" variables associated with large-scale circulation (e.g., Sea Level Pressure, SLP, or Sea Surface Temperature, SST). Extracting the component of variance due to internal variability leaves a residual timeseries for which trends can more confidently be attributed to external forcing. We apply dynamical adjustments based on Partial Least Squares Regression to mass-balance records from South Cascade Glacier in Washington State and Wolverine and Gulkana Glaciers in Alaska, independently analyzing seasonal balance records to assess the dynamical influences on winter accumulation and summer ablation. Seasonally averaged North Pacific SLP and SST fields perform comparably as predictor variables, explaining 50-60% of the variance in winter balance and 30-40% of variance in summer balance for South Cascade and Wolverine Glaciers. Gulkana glacier, located further inland than the other two glaciers, is less closely linked to North Pacific climate variability, with the predictors explaining roughly one-third of variance in its winter and summer balance. We analyze the significance of linear trends in the raw and adjusted mass-balance records, and find that for all three glaciers, a) summer balance shows a statistically significant downward trend that is not substantially altered when dynamically induced variability is removed, and b) winter balance shows no statistically

  6. The Dynamical Evolution of Stellar-Mass Black Holes in Dense Star Clusters

    NASA Astrophysics Data System (ADS)

    Morscher, Maggie

    Solar masses. Birth kicks from supernova explosions may eject some black holes from their birth clusters, but most should be retained initially. Using our Monte Carlo code, we have investigated the long-term dynamical evolution of globular clusters containing large numbers of stellar black holes. Our study is the first to explore in detail the dynamics of BHs in clusters through a large number of realistic simulations covering a wide range of initial conditions (cluster masses from 105 -- 106 Solar masses, as well as variation in other key parameters, such as the virial radius, central concentration, and metallicity), that also includes all the required physics. In almost all of our models we find that significant numbers of black holes (up to about a 1000) are retained all the way to the present. This is in contrast to previous theoretical expectations that most black holes should be ejected dynamically within a few Gyr. The main reason for this difference is that core collapse driven by black holes (through the Spitzer "mass segregation instability'') is easily reverted through three-body processes, and involves only a small number of the most massive black holes, while lower-mass black holes remain well-mixed with ordinary stars far from the central cusp. Thus the rapid segregation of stellar black holes does not lead to a long-term physical separation of most black holes into a dynamically decoupled inner core, as often assumed previously; this is one of the most important results of this dissertation. Combined with the recent detections of several black hole X-ray binary candidates in Galactic globular clusters, our results suggest that stellar black holes could still be present in large numbers in many globular clusters today, and that they may play a significant role in shaping the long-term dynamical evolution and the present-day dynamical structure of many clusters.

  7. Depleted galaxy cores and dynamical black hole masses

    SciTech Connect

    Rusli, S. P.; Erwin, P.; Saglia, R. P.; Thomas, J.; Fabricius, M.; Bender, R.; Nowak, N.

    2013-12-01

    Shallow cores in bright, massive galaxies are commonly thought to be the result of scouring of stars by mergers of binary supermassive black holes. Past investigations have suggested correlations between the central black hole mass and the stellar light or mass deficit in the core, using proxy measurements of M {sub BH} or stellar mass-to-light ratios (Y). Drawing on a wealth of dynamical models which provide both M {sub BH} and Y, we identify cores in 23 galaxies, of which 20 have direct, reliable measurements of M {sub BH} and dynamical stellar mass-to-light ratios (Y{sub *,dyn}). These cores are identified and measured using Core-Sérsic model fits to surface brightness profiles which extend out to large radii (typically more than the effective radius of the galaxy); for approximately one-fourth of the galaxies, the best fit includes an outer (Sérsic) envelope component. We find that the core radius is most strongly correlated with the black hole mass and that it correlates better with total galaxy luminosity than it does with velocity dispersion. The strong core-size-M {sub BH} correlation enables estimation of black hole masses (in core galaxies) with an accuracy comparable to the M {sub BH}-σ relation (rms scatter of 0.30 dex in log M {sub BH}), without the need for spectroscopy. The light and mass deficits correlate more strongly with galaxy velocity dispersion than they do with black hole mass. Stellar mass deficits span a range of 0.2-39 M {sub BH}, with almost all (87%) being <10 M {sub BH}; the median value is 2.2 M {sub BH}.

  8. The Circum-Galactic Medium of MASsive Spirals (CGM-MASS) I: Introduction to the XMM-Newton Large Project and a Case Study of NGC 5908

    NASA Astrophysics Data System (ADS)

    Li, Jiang-Tao; Bregman, Joel N.; Wang, Daniel; Crain, Robert A.; Anderson, Michael E.

    2016-04-01

    The Circum-Galactic Medium of MASsive Spirals (CGM-MASS) is a project studying the overall content, physical and chemical properties, and spatial distributions of the multi-phase circum-galactic medium (CGM) around a small sample of the most massive (M*>2×1011M⊙, vrot>300km/s) isolated spiral galaxies in the local Universe. In this talk, we will briefly introduce the sample and the science goals and present the first detailed case study of the XMM-Newton observation of the hot gas halo of NGC5908. After careful data calibration, point source removal, and background analysis, we find the diffuse soft X-ray emission of NGC 5908 is significantly more extended than the stellar light in the vertical direction. The 0.5-1.25keV radial intensity profile tracing hot gas emission can be detected above the background out to ~2’, or ~30kpc from the nucleus. The radial intensity distribution of hot gas can be characterized with a β-model with a core radius of rcore~8.8kpc and the β-index of β~0.8. The spectra extracted from the inner halo indicates an extremely low metallicity of Z<0.1Z⊙ and a temperature of kT~0.5keV. The cooling radius is rcool~27kpc or ~0.065r200, within which the hot gas could cool radiatively within the cosmic time. Using the best-fit models of the spectra and the radial intensity profile, we further estimate some physical parameters of the hot gas and extrapolate them to larger radii. Adding the mass of cold atomic and molecular gases, hot gas, and stars, the total baryon fraction fb within r200 is ~0.07, significantly below the cosmic baryon fraction of ~0.17. Therefore, ~60% of the baryons in the halo of NGC5908 is still “missing”. The hot gas accounts for ~56% of the total baryon content in the whole halo, but only ~2% within the cooling radius. By comparing NGC5908 to other galaxies or groups/clusters of galaxies, we find that it could be slightly X-ray brighter at a given stellar mass, when compared to lower-mass galaxies. NGC5908 also

  9. Emergent Newtonian dynamics and the geometric origin of mass

    SciTech Connect

    D’Alessio, Luca; Polkovnikov, Anatoli

    2014-06-15

    We consider a set of macroscopic (classical) degrees of freedom coupled to an arbitrary many-particle Hamiltonian system, quantum or classical. These degrees of freedom can represent positions of objects in space, their angles, shape distortions, magnetization, currents and so on. Expanding their dynamics near the adiabatic limit we find the emergent Newton’s second law (force is equal to the mass times acceleration) with an extra dissipative term. In systems with broken time reversal symmetry there is an additional Coriolis type force proportional to the Berry curvature. We give the microscopic definition of the mass tensor. The mass tensor is related to the non-equal time correlation functions in equilibrium and describes the dressing of the slow degree of freedom by virtual excitations in the system. In the classical (high-temperature) limit the mass tensor is given by the product of the inverse temperature and the Fubini–Study metric tensor determining the natural distance between the eigenstates of the Hamiltonian. For free particles this result reduces to the conventional definition of mass. This finding shows that any mass, at least in the classical limit, emerges from the distortions of the Hilbert space highlighting deep connections between any motion (not necessarily in space) and geometry. We illustrate our findings with four simple examples. -- Highlights: •Derive the macroscopic Newton’s equation from the microscopic many-particle Schrödinger’s equation. •Deep connection between geometry and dynamics. •Geometrical interpretation of the mass of macroscopic object as deformation of Hilbert space. •Microscopic expression for mass and friction tensors.

  10. Dynamical Mass Measurements of Contaminated Galaxy Clusters Using Machine Learning

    NASA Astrophysics Data System (ADS)

    Ntampaka, Michelle; Trac, Hy; Sutherland, Dougal; Fromenteau, Sebastien; Poczos, Barnabas; Schneider, Jeff

    2016-01-01

    Galaxy clusters are a rich source of information for examining fundamental astrophysical processes and cosmological parameters, however, employing clusters as cosmological probes requires accurate mass measurements derived from cluster observables. We study dynamical mass measurements of galaxy clusters contaminated by interlopers, and show that a modern machine learning (ML) algorithm can predict masses by better than a factor of two compared to a standard scaling relation approach. We create a mock catalog from Multidark's publicly-available N-body MDPL1 simulation where a simple cylindrical cut around the cluster center allows interlopers to contaminate the clusters. In the standard approach, we use a power law scaling relation to infer cluster mass from galaxy line of sight (LOS) velocity dispersion. The presence of interlopers in the catalog produces a wide, flat fractional mass error distribution, with width = 2.13. We employ the Support Distribution Machine (SDM) class of algorithms to learn from distributions of data to predict single values. Applied to distributions of galaxy observables such as LOS velocity and projected distance from the cluster center, SDM yields better than a factor-of-two improvement (width = 0.67). Remarkably, SDM applied to contaminated clusters is better able to recover masses than even a scaling relation approach applied to uncontaminated clusters. We show that the SDM method more accurately reproduces the cluster mass function, making it a valuable tool for employing cluster observations to evaluate cosmological models.

  11. A retarding ion mass spectrometer for the Dynamics Explorer-1

    NASA Technical Reports Server (NTRS)

    Wright, W.

    1985-01-01

    The Retarding Ion Mass Spectrometer (RIMS) for Dynamics Explorer-1 is an instrument designed to measure the details of the thermal plasma distribution. It combines the ion temperature determining capability of the retarding potential analyzer with the compositional capabilities of the mass spectrometer and adds multiple sensor heads to sample all directions relative to the spacecraft ram direction. This manual provides a functional description of the RIMS, the instrument calibration, and a description of the commands which can be stored in the instrument logic to control its operation.

  12. MASSIVE CLUSTERS IN THE INNER REGIONS OF NGC 1365: CLUSTER FORMATION AND GAS DYNAMICS IN GALACTIC BARS

    SciTech Connect

    Elmegreen, Bruce G.; Galliano, Emmanuel; Alloin, Danielle E-mail: egallian@on.b

    2009-10-01

    Cluster formation and gas dynamics in the central regions of barred galaxies are not well understood. This paper reviews the environment of three 10{sup 7} M {sub sun} clusters near the inner Lindblad resonance (ILR) of the barred spiral NGC 1365. The morphology, mass, and flow of H I and CO gas in the spiral and barred regions are examined for evidence of the location and mechanism of cluster formation. The accretion rate is compared with the star formation rate to infer the lifetime of the starburst. The gas appears to move from inside corotation in the spiral region to looping filaments in the interbar region at a rate of approx6 M {sub sun} yr{sup -1} before impacting the bar dustlane somewhere along its length. The gas in this dustlane moves inward, growing in flux as a result of the accretion to approx40 M {sub sun} yr{sup -1} near the ILR. This inner rate exceeds the current nuclear star formation rate by a factor of 4, suggesting continued buildup of nuclear mass for another approx0.5 Gyr. The bar may be only 1-2 Gyr old. Extrapolating the bar flow back in time, we infer that the clusters formed in the bar dustlane outside the central dust ring at a position where an interbar filament currently impacts the lane. The ram pressure from this impact is comparable to the pressure in the bar dustlane, and both are comparable to the pressure in the massive clusters. Impact triggering is suggested. The isothermal assumption in numerical simulations seems inappropriate for the rarefaction parts of spiral and bar gas flows. The clusters have enough lower-mass counterparts to suggest they are part of a normal power-law mass distribution. Gas trapping in the most massive clusters could explain their [Ne II] emission, which is not evident from the lower-mass clusters nearby.

  13. THREE-DIMENSIONAL {integral} FIELD OBSERVATIONS OF 10 GALACTIC WINDS. I. EXTENDED PHASE ({approx}>10 Myr) OF MASS/ENERGY INJECTION BEFORE THE WIND BLOWS

    SciTech Connect

    Sharp, R. G.; Bland-Hawthorn, J. E-mail: jbh@physics.usyd.edu.a

    2010-03-10

    In recent years, we have come to recognize the widespread importance of large-scale winds in the life cycle of galaxies. The onset and evolution of a galactic wind is a highly complex process which must be understood if we are to understand how energy and metals are recycled throughout the galaxy and beyond. Here we present three-dimensional spectroscopic observations of a sample of 10 nearby galaxies with the AAOmega-SPIRAL {integral}-field spectrograph on the 3.9 m Anglo-Australian Telescope, the largest survey of its kind to date. The double-beam spectrograph provides spatial maps in a range of spectral diagnostics: [O III]5007, Hbeta, Mg b, Na D, [O I]6300, Halpha, [N II]6583, [S II]6717, 6731. We demonstrate that these flows can often separate into highly ordered structures through the use of ionization diagnostics and kinematics. All of the objects in our survey show extensive wind-driven filamentation along the minor axis, in addition to large-scale disk rotation. Our sample can be divided into either starburst galaxies or active galactic nuclei (AGNs), although some objects appear to be a combination of these. The total ionizing photon budget available to both classes of galaxies is sufficient to ionize all of the wind-blown filamentation out to large radius. We find, however, that while AGN photoionization always dominates in the wind filaments, this is not the case in starburst galaxies where shock ionization dominates. This clearly indicates that after the onset of star formation, there is a substantial delay ({approx}>10 Myr) before a starburst wind develops. We show why this behavior is expected by deriving 'ionization' and dynamical timescales for both AGNs and starbursts. We establish a sequence of events that lead to the onset of a galactic wind. The clear signature provided by the ionization timescale is arguably the strongest evidence yet that the starburst phenomenon is an impulsive event. A well-defined ionization timescale is not expected in

  14. Star Formation Across Galactic Environments

    NASA Astrophysics Data System (ADS)

    Young, Jason

    2013-01-01

    I present here parallel investigations of star formation in AGN-free and quasar host galaxies. These environments are both insightful; quasars are among the most violent objects known, reshaping their host galaxies, while my sample of AGN-free star-forming galaxies ranges from systems larger than the Milky Way to dwarf star-forming galaxies. The AGN-free galaxies are drawn from the KPNO International Spectroscopic Survey, an Hα-selected, volume-limited survey was designed to avoid continuum luminosity bias. This work studies the KISS galaxies in mid- and far-IR using Spitzer IRAC and MIPS photometry. These IR bands are interesting because the UV light from young stars is reprocessed into thermal emission in the far-IR (24μm MIPS) by dust and into vibrational transition features in the mid-IR (8.0μm IRAC) by polycyclic aromatic hydrocarbons (PAHs). This work examines the efficiencies of PAH and dust emission as tracers of star-formation. I find that the efficiency of PAH as a star-formation tracer varies with galactic stellar mass, while thermal dust has no systematic dependance on galactic mass. My study of quasar host galaxies utilizes images of eight PG quasars from the WFPC2 and NICMOS instruments aboard HST. I use narrow-band images centered on the Hβ, [OII]λ3727, [OIII]λ5007, and Paα emission lines to construct extinction and star formation maps. Additionally, I use line-ratio maps to distinguish AGN-powered line emission from star formation powered line emission. I find star formation, albeit at rates are lower than expected, suggesting that quasar host galaxies are dynamically more advanced than suspected. Seven of the galaxies have higher mass-specific star-formation rates. Additionally, I see evidence of shocked gas, supporting the hypotheses from earlier works that AGN activity quenches star formation in host galaxies by disrupting gas reservoirs.

  15. Schwinger-Dyson Equations and Dynamical gluon mass generation

    SciTech Connect

    Aguilar, A.C.; Natale, A.A.

    2004-12-02

    We obtain a solution for the gluon propagador in Landau gauge within two distinct approximations for the Schwinger-Dyson equations (SDE). The first, named Mandelstam's approximation, consist in neglecting all contributions that come from fermions and ghosts fields while in the second, the ghosts fields are taken into account leading to a coupled system of integral equations. In both cases we show that a dynamical mass for the gluon propagator can arise as a solution.

  16. ALMA Observations of the Galactic Center: SiO Outflows and High Mass Star Formation Near Sgr A

    NASA Technical Reports Server (NTRS)

    Yusef-Zadeh, F.; Royster, M.; Wardle, M.; Arendt, R.; Bushouse, H.; Gillessen, S.; Lis, D.; Pound, M. W.; Roberts, D. A.; Whitney, B.; Wooten, A.

    2013-01-01

    Using ALMA observations of the Galactic center with a spatial resolution of 2.61" x 0.97 ", we detected 11 SiO (5-4) clumps of molecular gas in the within 0.6pc (15") of Sgr A*, interior of the 2-pc circumnuclear molecular ring. Three SiO (5-4) clumps closest to Sgr A* show the largest central velocities of approximately 150 kilometers per second and broadest asymmetric linewidths with total linewidths FWZI approximately 110-147 kilometers per second. Other clumps are distributed mainly to the NE of the ionized minispiral with narrow linewidths of FWHM approximately 11-27 kilometers per second. Using CARMA data, LVG modeling of the broad velocity clumps, the SiO (5-4) and (2-1) line ratios constrain the column density N(SiO) approximately 10(exp 14) per square centimeter, and the H2 gas density n(sub H2) = (3-9) x 10(exp 5) per cubic centimeter for an assumed kinetic temperature 100-200K. The SiO (5-4) clumps with broad and narrow linewidths are interpreted as highly embedded protostellar outflows, signifying an early stage of massive star formation near Sgr A* in the last 104 years. Additional support for the presence of YSO outflows is that the luminosities and velocity widths lie in the range detected from protostellar outflows in star forming regions in the Galaxy. Furthermore, SED modeling of stellar sources along the N arm show two YSO candidates near SiO clumps supporting in-situ star formation near Sgr A*. We discuss the nature of star formation where the gravitational potential of the black hole dominates. In particular, we suggest that external radiative pressure exerted on self-shielded molecular clouds enhance the gas density, before the gas cloud become gravitationally unstable near Sgr A*.

  17. Dynamical Mass Measurements of Contaminated Galaxy Clusters Using Machine Learning

    NASA Astrophysics Data System (ADS)

    Ntampaka, M.; Trac, H.; Sutherland, D. J.; Fromenteau, S.; Póczos, B.; Schneider, J.

    2016-11-01

    We study dynamical mass measurements of galaxy clusters contaminated by interlopers and show that a modern machine learning algorithm can predict masses by better than a factor of two compared to a standard scaling relation approach. We create two mock catalogs from Multidark’s publicly available N-body MDPL1 simulation, one with perfect galaxy cluster membership information and the other where a simple cylindrical cut around the cluster center allows interlopers to contaminate the clusters. In the standard approach, we use a power-law scaling relation to infer cluster mass from galaxy line-of-sight (LOS) velocity dispersion. Assuming perfect membership knowledge, this unrealistic case produces a wide fractional mass error distribution, with a width of {{Δ }}ε ≈ 0.87. Interlopers introduce additional scatter, significantly widening the error distribution further ({{Δ }}ε ≈ 2.13). We employ the support distribution machine (SDM) class of algorithms to learn from distributions of data to predict single values. Applied to distributions of galaxy observables such as LOS velocity and projected distance from the cluster center, SDM yields better than a factor-of-two improvement ({{Δ }}ε ≈ 0.67) for the contaminated case. Remarkably, SDM applied to contaminated clusters is better able to recover masses than even the scaling relation approach applied to uncontaminated clusters. We show that the SDM method more accurately reproduces the cluster mass function, making it a valuable tool for employing cluster observations to evaluate cosmological models.

  18. Emergent Newtonian dynamics and the geometric origin of mass

    NASA Astrophysics Data System (ADS)

    D'Alessio, Luca; Polkovnikov, Anatoli

    2014-06-01

    We consider a set of macroscopic (classical) degrees of freedom coupled to an arbitrary many-particle Hamiltonian system, quantum or classical. These degrees of freedom can represent positions of objects in space, their angles, shape distortions, magnetization, currents and so on. Expanding their dynamics near the adiabatic limit we find the emergent Newton's second law (force is equal to the mass times acceleration) with an extra dissipative term. In systems with broken time reversal symmetry there is an additional Coriolis type force proportional to the Berry curvature. We give the microscopic definition of the mass tensor. The mass tensor is related to the non-equal time correlation functions in equilibrium and describes the dressing of the slow degree of freedom by virtual excitations in the system. In the classical (high-temperature) limit the mass tensor is given by the product of the inverse temperature and the Fubini-Study metric tensor determining the natural distance between the eigenstates of the Hamiltonian. For free particles this result reduces to the conventional definition of mass. This finding shows that any mass, at least in the classical limit, emerges from the distortions of the Hilbert space highlighting deep connections between any motion (not necessarily in space) and geometry. We illustrate our findings with four simple examples.

  19. The nuclear X-ray source in NGC 3628: A strange active galactic nucleus or the most luminous high-mass X-ray binary known?

    NASA Technical Reports Server (NTRS)

    Dahlem, Michael; Heckman, Timothy M.; Fabbiano, Giuseppina

    1995-01-01

    After 12 years, during which its unabsorbed soft X-ray flux in the 0.1-2.0 keV band was almost constant at about f(sub x) approximately 10(exp -12) ergs/s/sq cm, the compact nuclear source in NGC 3628 was not detected in one of our ROSAT observations, with a limiting sensitivity of f(sub x) approximately 5 x 10(exp -14) ergs/s/sq cm. Our data can be explained in two ways. The source is either the most massive X-ray binary known so far, with a greater than and approximately equal to 75 solar mass black hole, or an unusual low-luminosity Active Galactic Nuclei (AGN). The X-ray spectrum is typical of a high-mass X-ray binary, while the luminosity of the source of L(sub x) is approximately equal to 10(exp 40) ergs/s is more similar to those of low-luminosity AGNs. If it is an AGN, variable obscuration might explain the observed light curve.

  20. THE AKARI 2.5-5.0 μm SPECTRAL ATLAS OF TYPE-1 ACTIVE GALACTIC NUCLEI: BLACK HOLE MASS ESTIMATOR, LINE RATIO, AND HOT DUST TEMPERATURE

    SciTech Connect

    Kim, Dohyeong; Im, Myungshin; Kim, Ji Hoon; Jun, Hyunsung David; Lee, Seong-Kook; Woo, Jong-Hak; Lee, Hyung Mok; Lee, Myung Gyoon; Nakagawa, Takao; Matsuhara, Hideo; Wada, Takehiko; Takagi, Toshinobu; Oyabu, Shinki; Ohyama, Youichi E-mail: mim@astro.snu.ac.kr

    2015-01-01

    We present 2.5-5.0 μm spectra of 83 nearby (0.002 < z < 0.48) and bright (K < 14 mag) type-1 active galactic nuclei (AGNs) taken with the Infrared Camera on board AKARI. The 2.5-5.0 μm spectral region contains emission lines such as Brβ (2.63 μm), Brα (4.05 μm), and polycyclic aromatic hydrocarbons (3.3 μm), which can be used for studying the black hole (BH) masses and star formation activity in the host galaxies of AGNs. The spectral region also suffers less dust extinction than in the ultra violet (UV) or optical wavelengths, which may provide an unobscured view of dusty AGNs. Our sample is selected from bright quasar surveys of Palomar-Green and SNUQSO, and AGNs with reverberation-mapped BH masses from Peterson et al. Using 11 AGNs with reliable detection of Brackett lines, we derive the Brackett-line-based BH mass estimators. We also find that the observed Brackett line ratios can be explained with the commonly adopted physical conditions of the broad line region. Moreover, we fit the hot and warm dust components of the dust torus by adding photometric data of SDSS, 2MASS, WISE, and ISO to the AKARI spectra, finding hot and warm dust temperatures of ∼1100 K and ∼220 K, respectively, rather than the commonly cited hot dust temperature of 1500 K.

  1. THE OPTICAL COMPANION TO THE INTERMEDIATE-MASS MILLISECOND PULSAR J1439-5501 IN THE GALACTIC FIELD

    SciTech Connect

    Pallanca, C.; Lanzoni, B.; Dalessandro, E.; Ferraro, F. R.; Salaris, M.

    2013-08-20

    We present the identification of the companion star to the intermediate-mass binary pulsar (PSR) J1439-5501 obtained by means of ground-based deep images in the B, V, and I bands, acquired with FORS2 mounted at the European Southern Observatory (ESO)-Very Large Telescope (VLT). The companion is a massive white dwarf (WD) with B = 23.57 {+-} 0.02, V = 23.21 {+-} 0.01, and I = 22.96 {+-} 0.01, located at only {approx}0.''05 from the pulsar radio position. Comparing the WD location in the (B, B-V) and (V, V-I) color-magnitude diagrams with theoretical cooling sequences, we derived a range of plausible combinations of companion masses (1 M{sub Sun} {approx}< M{sub COM} {approx}< 1.3 M{sub Sun }), distances (d {approx}< 1200 pc), radii ({approx}< 7.810{sup -3} R{sub Sun }), and temperatures (T=31350{sup +21500}{sub -7400}). From the PSR mass function and the estimated mass range we also constrained the inclination angle i {approx}> 55 Degree-Sign and the pulsar mass (M{sub PSR} {approx}< 2.2 M{sub Sun }). The comparison between the WD cooling age and the spin-down age suggests that the latter is overestimated by a factor of about 10.

  2. ALMA OBSERVATIONS OF THE GALACTIC CENTER: SiO OUTFLOWS AND HIGH-MASS STAR FORMATION NEAR Sgr A*

    SciTech Connect

    Yusef-Zadeh, F.; Royster, M.; Roberts, D. A.; Wardle, M.; Arendt, R.; Lis, D. C.; Pound, M. W.; Whitney, B.; Wootten, A.

    2013-04-20

    ALMA observations of the Galactic center with a spatial resolution of 2.''61 Multiplication-Sign 0.''97 resulted in the detection of 11 SiO (5-4) clumps of molecular gas within 0.6 pc (15'') of Sgr A*, interior to the 2 pc circumnuclear molecular ring. The three SiO (5-4) clumps closest to Sgr A* show the largest central velocities, {approx}150 km s{sup -1}, and the broadest asymmetric line widths with full width zero intensity (FWZI) {approx}110-147 km s{sup -1}. The remaining clumps, distributed mainly to the NE of the ionized mini-spiral, have narrow FWZI ({approx}18-56 km s{sup -1}). Using CARMA SiO (2-1) data, Large Velocity Gradient modeling of the SiO line ratios for the broad velocity clumps constrains the column density N(SiO) {approx}10{sup 14} cm{sup -2}, and the H{sub 2} gas density n{sub H{sub 2}} = (3-9) x 10{sup 5} cm{sup -3} for an assumed kinetic temperature 100-200 K. The SiO clumps are interpreted as highly embedded protostellar outflows, signifying an early stage of massive star formation near Sgr A* in the last 10{sup 4}-10{sup 5} yr. Support for this interpretation is provided by the SiO (5-4) line luminosities and velocity widths which lie in the range measured for protostellar outflows in star-forming regions in the Galaxy. Furthermore, spectral energy distribution modeling of stellar sources shows two young stellar object candidates near SiO clumps, supporting in situ star formation near Sgr A*. We discuss the nature of star formation where the gravitational potential of the black hole dominates. In particular, we suggest that external radiative pressure exerted on self-shielded molecular clouds enhances the gas density, before the gas cloud becomes gravitationally unstable near Sgr A*. Alternatively, collisions between clumps in the ring may trigger gravitational collapse.

  3. Galaxy dynamics and the mass density of the universe.

    PubMed Central

    Rubin, V C

    1993-01-01

    Dynamical evidence accumulated over the past 20 years has convinced astronomers that luminous matter in a spiral galaxy constitutes no more than 10% of the mass of a galaxy. An additional 90% is inferred by its gravitational effect on luminous material. Here I review recent observations concerning the distribution of luminous and nonluminous matter in the Milky Way, in galaxies, and in galaxy clusters. Observations of neutral hydrogen disks, some extending in radius several times the optical disk, confirm that a massive dark halo is a major component of virtually every spiral. A recent surprise has been the discovery that stellar and gas motions in ellipticals are enormously complex. To date, only for a few spheroidal galaxies do the velocities extend far enough to probe the outer mass distribution. But the diverse kinematics of inner cores, peripheral to deducing the overall mass distribution, offer additional evidence that ellipticals have acquired gas-rich systems after initial formation. Dynamical results are consistent with a low-density universe, in which the required dark matter could be baryonic. On smallest scales of galaxies [10 kiloparsec (kpc); Ho = 50 km.sec-1.megaparsec-1] the luminous matter constitutes only 1% of the closure density. On scales greater than binary galaxies (i.e., >/=100 kpc) all systems indicate a density approximately 10% of the closure density, a density consistent with the low baryon density in the universe. If large-scale motions in the universe require a higher mass density, these motions would constitute the first dynamical evidence for nonbaryonic matter in a universe of higher density. Images Fig. 3 Fig. 5 PMID:11607393

  4. Galaxy dynamics and the mass density of the universe.

    PubMed

    Rubin, V C

    1993-06-01

    Dynamical evidence accumulated over the past 20 years has convinced astronomers that luminous matter in a spiral galaxy constitutes no more than 10% of the mass of a galaxy. An additional 90% is inferred by its gravitational effect on luminous material. Here I review recent observations concerning the distribution of luminous and nonluminous matter in the Milky Way, in galaxies, and in galaxy clusters. Observations of neutral hydrogen disks, some extending in radius several times the optical disk, confirm that a massive dark halo is a major component of virtually every spiral. A recent surprise has been the discovery that stellar and gas motions in ellipticals are enormously complex. To date, only for a few spheroidal galaxies do the velocities extend far enough to probe the outer mass distribution. But the diverse kinematics of inner cores, peripheral to deducing the overall mass distribution, offer additional evidence that ellipticals have acquired gas-rich systems after initial formation. Dynamical results are consistent with a low-density universe, in which the required dark matter could be baryonic. On smallest scales of galaxies [10 kiloparsec (kpc); Ho = 50 km.sec-1.megaparsec-1] the luminous matter constitutes only 1% of the closure density. On scales greater than binary galaxies (i.e., >/=100 kpc) all systems indicate a density approximately 10% of the closure density, a density consistent with the low baryon density in the universe. If large-scale motions in the universe require a higher mass density, these motions would constitute the first dynamical evidence for nonbaryonic matter in a universe of higher density.

  5. Emergent Newtonian dynamics and the geometric origin of mass

    NASA Astrophysics Data System (ADS)

    D'Alessio, Luca; Polkovnikov, Anatoli

    2014-03-01

    We consider an arbitrary many-body system with possibly infinitely many degrees of freedom interacting with few macroscopic parameters which are allowed to slowly change in time. These degrees of freedom can represent positions of objects in space, their angles, shape distortions, magnetization, currents and so on. By extending the Kubo linear response theory to such setups we derive the dynamics of the macroscopic d.o.f. which takes the form of the emergent Newton's second law (force is equal to the mass times acceleration) with an extra dissipative term. We find the microscopic expression for the mass tensor relating it to the non-equal time correlation functions in equilibrium. In the classical (high-temperature) limit the mass tensor is given by the product of the inverse temperature and the Fubini-Study metric tensor determining the natural distance between the eigenstates of the Hamiltonian. For free particles this result reduces to the conventional definition of mass. This finding shows that any mass, at least in the classical limit, emerges from the distortions of the Hilbert space highlighting deep connections between any motion and geometry. This work was partially supported by BSF 2010318, NSF DMR- 0907039, AFOSR FA9550-10- 1-0110

  6. The Galactic Census of High- and Medium-mass Protostars. II. Luminosities and Evolutionary States of a Complete Sample of Dense Gas Clumps

    NASA Astrophysics Data System (ADS)

    Ma, Bo; Tan, Jonathan C.; Barnes, Peter J.

    2013-12-01

    The Census of High- and Medium-mass Protostars (CHaMP) is the first large-scale (280° < l < 300°, -4° < b < 2°), unbiased, subparsec resolution survey of Galactic molecular clumps and their embedded stars. Barnes et al. presented the source catalog of ~300 clumps based on HCO+(1-0) emission, used to estimate masses M. Here we use archival midinfrared-to-millimeter continuum data to construct spectral energy distributions. Fitting two-temperature gray-body models, we derive bolometric luminosities, L. We find that the clumps have 10 <~ L/L ⊙ <~ 106.5 and 0.1 <~ L/M/[L ⊙/M ⊙] <~ 103, consistent with a clump population spanning a range of instantaneous star-formation efficiencies from 0 to ~50%. We thus expect L/M to be a useful, strongly varying indicator of clump evolution during the star cluster formation process. We find correlations of the ratio of warm-to-cold component fluxes and of cold component temperature with L/M. We also find a near-linear relation between L/M and Spitzer-IRAC specific intensity (surface brightness); thus, this relation may also be useful as a star-formation efficiency indicator. The lower bound of the clump L/M distribution suggests that the star-formation efficiency per free-fall time is epsilonff < 0.2. We do not find strong correlations of L/M with mass surface density, velocity dispersion, or virial parameter. We find a linear relation between L and L_HCO^+(1{--0)}, although with large scatter for any given individual clump. Fitting together with extragalactic systems, the linear relation still holds, extending over 10 orders of magnitude in luminosity. The complete nature of the CHaMP survey over a several kiloparsec-scale region allows us to derive a measurement at an intermediate scale, bridging those of individual clumps and whole galaxies.

  7. The Potential for Cubesats to Determine Black Holes Masses in Nearby Active Galactic Nuclei and Contribute to Other Time Domain Science

    NASA Astrophysics Data System (ADS)

    Gorjian, Varoujan; Ardila, David R.; Barth, Aaron J.; Janson, Siegfried; Kochanek, Christopher S.; Malkan, Matthew Arnold; Peterson, Bradley M.; Rowen, Darren; Seager, Sara; Shkolnik, Evgenya L.

    2016-01-01

    A 3U (30cmx10cmx10cm) CubeSat with a 9cm diameter aperture telescope can deliver unprecedented time domain coverage in the ultraviolet (UV) for the purposes of Active Galactic Nucleus (AGN) reverberation mapping to determine supermassive black hole (SMBH) masses. SMBH's reside at the centers of most, if not all, massive galaxies and accretion onto those black holes generates a great deal of emission peaking in the UV. These accretion disks are also surrounded by a nearby, fast moving gas region called the Broad Line Region (BLR). As light pulses generated near the black hole spread out, they first illuminate the accretion disk, and then the BLR. For a sample of bright AGN, a dedicated cubesat can follow these changes in brightness on a daily basis for up to 100 days from low Earth orbit. With such monitoring of changes in the accretion disk and then the BLR, an accurate distance between the two regions can be determined. Combining this UV coverage with optical emission-line spectroscopy from the ground allows for a direct measurement of the mass of the central black hole. This exchange of time resolution for spatial resolution can also be used to determine the structure of the central region of the AGN. Ground-based photometric and spectroscopic measurements will complement the UV by tracing the optically emitting and hence cooler regions of the AGN to provide one of the best measurements of supermassive black hole masses.In addition to the primary science mission, the long observing campaigns and the large field of view required to get comparison stars for relative photometry allow for other competitive science. We have identified UV activity in M dwarfs as ancillary science that can be addressed with such a cubesat. This activity will have a strong impact on the habitability of any possible planet around the star.

  8. Low-mass right-handed sneutrino dark matter: SuperCDMS and LUX constraints and the Galactic Centre gamma-ray excess

    SciTech Connect

    Cerdeño, D.G.; Peiró, M.; Robles, S. E-mail: miguel.peiro@uam.es

    2014-08-01

    Recent results from direct and indirect searches for dark matter (DM) have motivated the study of particle physics models that can provide weakly interacting massive particles (WIMPs) in the mass range 1–50 GeV. Viable candidates for light WIMP DM must fulfil stringent constraints. On the one hand, the observation at the LHC of a Higgs boson with Standard Model properties set an upper bound on the coupling of light DM particles to the Higgs, thereby making it difficult to reproduce the correct relic abundance. On the other hand, the recent results from direct searches in the CDMSlite, SuperCDMS and LUX experiments have set upper constraints on the DM scattering cross section. In this paper, we investigate the viability of light right-handed sneutrino DM in the Next-to-Minimal Supersymmetric Model (NMSSM) in the light of these constraints. To this aim, we have carried out a scan in the NMSSM parameter space, imposing experimental bounds on the Higgs sector and low-energy observables, such as the muon anomalous magnetic moment and branching ratios of rare decays. We demonstrate that the enlarged Higgs sector of the NMSSM, together with the flexibility provided by the RH sneutrino parameters, make it possible to obtain viable RH sneutrino DM with a mass as light as 2 GeV. We have also considered the upper bounds on the annihilation cross section from Fermi LAT data on dwarf spheroidal galaxies, and extracted specific examples with mass in the range 8–50 GeV that could account for the apparent low-energy excess in the gamma-ray emission at the Galactic Centre. Then, we have computed the theoretical predictions for the elastic scattering cross-section of RH sneutrinos. Finally, after imposing the recent bounds from SuperCDMS and LUX, we have found a wide area of the parameter space that could be probed by future low-threshold direct detection experiments.

  9. DYNAMICAL EVOLUTION OF THE YOUNG STARS IN THE GALACTIC CENTER: N-BODY SIMULATIONS OF THE S-STARS

    SciTech Connect

    Perets, Hagai B.; Kupi, Gabor; Alexander, Tal; Gualandris, Alessia; Merritt, David

    2009-09-10

    We use Newtonian N-body simulations to study the evolution of the orbital eccentricities of stars deposited near ({approx}<0.05 pc) the Milky Way massive black hole (MBH), starting from initial conditions motivated by two competing models for their origin: formation in a disk followed by inward migration and exchange interactions involving a binary star. The first model predicts modest eccentricities, lower than those observed in the S-star cluster, while the second model predicts higher eccentricities than observed. The Newtonian N-body simulations include a dense cluster of 10 M{sub sun} stellar-mass black holes (SBHs), expected to accumulate near the MBH by mass segregation. Perturbations from the SBHs tend to randomize the stellar orbits, partially erasing the dynamical signatures of their origin. The eccentricities of the initially highly eccentric stars evolve, in 20 Myr (the S-star lifespan), to a distribution that is consistent with the observed eccentricity distribution. In contrast, the eccentricities of the initially more circular orbits fail to evolve to the observed values in 20 Myr, arguing against the disk migration scenario. We find that 20%-30% of the S-stars are tidally disrupted by the MBH over their lifetimes, and that the S-stars are not likely to be ejected as hypervelocity stars outside the central 0.05 pc by close encounters with SBHs.

  10. Fermion flavor mixing in models with dynamical mass generation

    SciTech Connect

    Benes, Petr

    2010-03-15

    We present a model-independent method of dealing with fermion flavor mixing in the case when instead of constant, momentum-independent mass matrices one has rather momentum-dependent self-energies. This situation is typical for strongly coupled models of dynamical fermion mass generation. We demonstrate our approach on the example of quark mixing. We show that quark self-energies with a generic momentum dependence lead to an effective Cabibbo-Kobayashi-Maskawa matrix, which turns out to be in general nonunitary, in accordance with previous claims of other authors, and to nontrivial flavor changing electromagnetic and neutral currents. We also discuss some conceptual consequences of the momentum-dependent self-energies and show that in such a case the interaction basis and the mass basis are not related by a unitary transformation. In fact, we argue that the latter is merely an effective concept, in a specified sense. While focusing mainly on the fermionic self-energies, we also study the effects of momentum-dependent radiative corrections to the gauge bosons and to the proper vertices. Our approach is based on an application of the Lehmann-Symanzik-Zimmermann reduction formula and for the special case of constant self-energies it gives the same results as the standard approach based on the diagonalization of mass matrices.

  11. Room-temperature ultrasensitive mass spectrometer via dynamical decoupling

    NASA Astrophysics Data System (ADS)

    Zhao, Nan; Yin, Zhang-qi

    2014-10-01

    We propose an ultrasensitive mass spectrometer based on a coupled quantum-bit-oscillator system. Under dynamical decoupling control of the quantum bit (qubit), the qubit coherence exhibits a comb structure in the time domain. The time-comb structure enables high-precision measurements of oscillator frequency, which can be used as an ultrasensitive mass spectrometer. We show that, in the ideal case, the sensitivity η of the proposed mass spectrometer has better performance at higher temperature and scales with the temperature T as η ˜T-1 /2 . While taking into account qubit and oscillator decay, the optimal sensitivity reaches a universal value independent of environmental temperature T . The measurement sensitivity η also shows an improved dependence on the control-pulse number N as η ˜N-3 /2 , in comparison with the N-1 /2 scaling in previous magnetometry studies. With the present technology on solid-state spin qubit and high-quality optomechanical system, our proposal is feasible to realize an ultrasensitive room-temperature mass spectrometer.

  12. The Retarding Ion Mass Spectrometer on Dynamics Explorer-A

    NASA Technical Reports Server (NTRS)

    Chappell, C. R.; Fields, S. A.; Baugher, C. R.; Hoffman, J. H.; Hanson, W. B.; Wright, W. W.; Hammack, H. D.; Carignan, G. R.; Nagy, A. F.

    1981-01-01

    The thermal component of the magnetospheric plasma plays a key role in magnetosphere-ionosphere coupling processes, acting as a strong influence on ionospheric structure at low altitudes and as a source and modifier of the hotter plasma population at high altitudes. The Retarding Ion Mass Spectrometer (RIMS) instrument on Dynamics Explorer-A is designed to measure this important thermal plasma component. Using a combination of retarding potential analysis and magnetic ion mass spectrometer techniques, the RIMS instrument will measure the bulk plasma parameters of ion density (0.1 to 1,000,000 ions/cu cm), temperature (0-45 eV), and bulk flow (greater than 0.5 km/sec) in the inner plasmasphere and ionosphere, and the specific ion pitch angle and energy spectral characteristics in the outer plasmasphere and plasma trough for a mass range of 1-32 amu. The energy and mass spectral step sequences, as well as the multiplexing of the resultant data, can be tailored to accomplish a variety of thermal ion measurements throughout the inner magnetosphere.

  13. Active galactic nuclei as scaled-up Galactic black holes.

    PubMed

    McHardy, I M; Koerding, E; Knigge, C; Uttley, P; Fender, R P

    2006-12-01

    A long-standing question is whether active galactic nuclei (AGN) vary like Galactic black hole systems when appropriately scaled up by mass. If so, we can then determine how AGN should behave on cosmological timescales by studying the brighter and much faster varying Galactic systems. As X-ray emission is produced very close to the black holes, it provides one of the best diagnostics of their behaviour. A characteristic timescale--which potentially could tell us about the mass of the black hole--is found in the X-ray variations from both AGN and Galactic black holes, but whether it is physically meaningful to compare the two has been questioned. Here we report that, after correcting for variations in the accretion rate, the timescales can be physically linked, revealing that the accretion process is exactly the same for small and large black holes. Strong support for this linkage comes, perhaps surprisingly, from the permitted optical emission lines in AGN whose widths (in both broad-line AGN and narrow-emission-line Seyfert 1 galaxies) correlate strongly with the characteristic X-ray timescale, exactly as expected from the AGN black hole masses and accretion rates. So AGN really are just scaled-up Galactic black holes.

  14. Active galactic nuclei as scaled-up Galactic black holes.

    PubMed

    McHardy, I M; Koerding, E; Knigge, C; Uttley, P; Fender, R P

    2006-12-01

    A long-standing question is whether active galactic nuclei (AGN) vary like Galactic black hole systems when appropriately scaled up by mass. If so, we can then determine how AGN should behave on cosmological timescales by studying the brighter and much faster varying Galactic systems. As X-ray emission is produced very close to the black holes, it provides one of the best diagnostics of their behaviour. A characteristic timescale--which potentially could tell us about the mass of the black hole--is found in the X-ray variations from both AGN and Galactic black holes, but whether it is physically meaningful to compare the two has been questioned. Here we report that, after correcting for variations in the accretion rate, the timescales can be physically linked, revealing that the accretion process is exactly the same for small and large black holes. Strong support for this linkage comes, perhaps surprisingly, from the permitted optical emission lines in AGN whose widths (in both broad-line AGN and narrow-emission-line Seyfert 1 galaxies) correlate strongly with the characteristic X-ray timescale, exactly as expected from the AGN black hole masses and accretion rates. So AGN really are just scaled-up Galactic black holes. PMID:17151661

  15. The Milky Way's rotation curve out to 100 kpc and its constraint on the Galactic mass distribution

    NASA Astrophysics Data System (ADS)

    Huang, Y.; Liu, X.-W.; Yuan, H.-B.; Xiang, M.-S.; Zhang, H.-W.; Chen, B.-Q.; Ren, J.-J.; Wang, C.; Zhang, Y.; Hou, Y.-H.; Wang, Y.-F.; Cao, Z.-H.

    2016-08-01

    The rotation curve (RC) of the Milky Way out to ˜ 100 kpc has been constructed using ˜ 16,000 primary red clump giants (PRCGs) in the outer disk selected from the LSS-GAC and the SDSS-III/APOGEE survey, combined with ˜ 5700 halo K giants (HKGs) selected from the SDSS/SEGUE survey. To derive the RC, the PRCG sample of the warm disc population and the HKG sample of halo stellar population are respectively analyzed using a kinematical model allowing for the asymmetric drift corrections and re-analyzed using the spherical Jeans equation along with measurements of the anisotropic parameter β currently available. The typical uncertainties of RC derived from the PRCG and HKG samples are respectively 5-7 km s-1 and several tens km s-1. We determine a circular velocity at the solar position, Vc(R0) = 240 ± 6 km s-1 and an azimuthal peculiar speed of the Sun, V⊙ = 12.1 ± 7.6 km s-1, both in good agreement with the previous determinations. The newly constructed RC has a generally flat value of 240 km s-1 within a Galactocentric distance r of 25 kpc and then decreases steadily to 150 km s-1 at r ˜ 100 kpc. On top of this overall trend, the RC exhibits two prominent localized dips, one at r ˜ 11 kpc and another at r ˜ 19 kpc. From the newly constructed RC, combined with other constraints, we have built a parametrized mass model for the Galaxy, yielding a virial mass of the Milky Way's dark matter halo of 0.90^{+0.07}_{-0.08} × 10^{12} M⊙ and a local dark matter density, ρ _{odot , dm} = 0.32^{+0.02}_{-0.02} GeV cm-3.

  16. Monsters at the Dawn of the Thermal Era: Probing the extremes of galactic mass at z>2.5

    NASA Astrophysics Data System (ADS)

    Williams, Rik

    2012-10-01

    There can now be little doubt that a significant population of massive early-type galaxies exists at z 2. Revealed by a combination of wide-field, deep near-IR photometric surveys and medium-resolution near-IR spectroscopy, they look like nothing in the local universe: despite having stellar masses comparable to nearby ellipticals, their average effective radii are 5 times smaller, implying enormous stellar densities. Their formation remains a mystery, as all their stellar mass must have been assembled within the first 1-2 Gyr after the Big Bang. Using new ultradeep, wide-field near-IR imaging, we have now uncovered a population of rare and extremely massive {log M/Msun>11.2} quiescent galaxies at even higher redshifts {2.52.5 sample to determine their sizes and structural parameters. By combining targeted near-IR imaging of these rare objects with robust sizes of less-massive galaxies from the complementary CANDELS MCT program, we will place the first strong constraints on the structural evolution of the extreme tail of the galaxy population at z 2.7.

  17. Active galactic nuclei emission line diagnostics and the mass-metallicity relation up to redshift z ∼ 2: The impact of selection effects and evolution

    SciTech Connect

    Juneau, Stéphanie; Bournaud, Frédéric; Daddi, Emanuele; Elbaz, David; Duc, Pierre-Alain; Gobat, Raphael; Jean-Baptiste, Ingrid; Le Floc'h, Émeric; Pannella, Maurilio; Schreiber, Corentin; Trump, Jonathan R.; Dickinson, Mark

    2014-06-10

    Emission line diagnostic diagrams probing the ionization sources in galaxies, such as the Baldwin-Phillips-Terlevich (BPT) diagram, have been used extensively to distinguish active galactic nuclei (AGN) from purely star-forming galaxies. However, they remain poorly understood at higher redshifts. We shed light on this issue with an empirical approach based on a z ∼ 0 reference sample built from ∼300,000 Sloan Digital Sky Survey galaxies, from which we mimic selection effects due to typical emission line detection limits at higher redshift. We combine this low-redshift reference sample with a simple prescription for luminosity evolution of the global galaxy population to predict the loci of high-redshift galaxies on the BPT and Mass-Excitation (MEx) diagnostic diagrams. The predicted bivariate distributions agree remarkably well with direct observations of galaxies out to z ∼ 1.5, including the observed stellar mass-metallicity (MZ) relation evolution. As a result, we infer that high-redshift star-forming galaxies are consistent with having normal interstellar medium (ISM) properties out to z ∼ 1.5, after accounting for selection effects and line luminosity evolution. Namely, their optical line ratios and gas-phase metallicities are comparable to that of low-redshift galaxies with equivalent emission-line luminosities. In contrast, AGN narrow-line regions may show a shift toward lower metallicities at higher redshift. While a physical evolution of the ISM conditions is not ruled out for purely star-forming galaxies and may be more important starting at z ≳ 2, we find that reliably quantifying this evolution is hindered by selections effects. The recipes provided here may serve as a basis for future studies toward this goal. Code to predict the loci of galaxies on the BPT and MEx diagnostic diagrams and the MZ relation as a function of emission line luminosity limits is made publicly available.

  18. Active Galactic Nuclei Emission Line Diagnostics and the Mass-Metallicity Relation up to Redshift z ~ 2: The Impact of Selection Effects and Evolution

    NASA Astrophysics Data System (ADS)

    Juneau, Stéphanie; Bournaud, Frédéric; Charlot, Stéphane; Daddi, Emanuele; Elbaz, David; Trump, Jonathan R.; Brinchmann, Jarle; Dickinson, Mark; Duc, Pierre-Alain; Gobat, Raphael; Jean-Baptiste, Ingrid; Le Floc'h, Émeric; Lehnert, M. D.; Pacifici, Camilla; Pannella, Maurilio; Schreiber, Corentin

    2014-06-01

    Emission line diagnostic diagrams probing the ionization sources in galaxies, such as the Baldwin-Phillips-Terlevich (BPT) diagram, have been used extensively to distinguish active galactic nuclei (AGN) from purely star-forming galaxies. However, they remain poorly understood at higher redshifts. We shed light on this issue with an empirical approach based on a z ~ 0 reference sample built from ~300,000 Sloan Digital Sky Survey galaxies, from which we mimic selection effects due to typical emission line detection limits at higher redshift. We combine this low-redshift reference sample with a simple prescription for luminosity evolution of the global galaxy population to predict the loci of high-redshift galaxies on the BPT and Mass-Excitation (MEx) diagnostic diagrams. The predicted bivariate distributions agree remarkably well with direct observations of galaxies out to z ~ 1.5, including the observed stellar mass-metallicity (MZ) relation evolution. As a result, we infer that high-redshift star-forming galaxies are consistent with having normal interstellar medium (ISM) properties out to z ~ 1.5, after accounting for selection effects and line luminosity evolution. Namely, their optical line ratios and gas-phase metallicities are comparable to that of low-redshift galaxies with equivalent emission-line luminosities. In contrast, AGN narrow-line regions may show a shift toward lower metallicities at higher redshift. While a physical evolution of the ISM conditions is not ruled out for purely star-forming galaxies and may be more important starting at z >~ 2, we find that reliably quantifying this evolution is hindered by selections effects. The recipes provided here may serve as a basis for future studies toward this goal. Code to predict the loci of galaxies on the BPT and MEx diagnostic diagrams and the MZ relation as a function of emission line luminosity limits is made publicly available.

  19. Star formation across galactic environments

    NASA Astrophysics Data System (ADS)

    Young, Jason

    I present here parallel investigations of star formation in typical and extreme galaxies. The typical galaxies are selected to be free of active galactic nuclei (AGN), while the extreme galaxies host quasars (the most luminous class of AGN). These two environments are each insightful in their own way; quasars are among the most violent objects in the universe, literally reshaping their host galaxies, while my sample of AGN-free star-forming galaxies ranges from systems larger than the Milky Way to small galaxies which are forming stars at unsustainably high rates. The current paradigm of galaxy formation and evolution suggests that extreme circumstances are key stepping stones in the assembly of galaxies like our Milky Way. To test this paradigm and fully explore its ramifications, this dual approach is needed. My sample of AGN-free galaxies is drawn from the KPNO International Spectroscopic Survey. This Halpha-selected, volume-limited survey was designed to detect star-forming galaxies without a bias toward continuum luminosity. This type of selection ensures that this sample is not biased toward galaxies that are large or nearby. My work studies the KISS galaxies in the mid- and far-infrared using photometry from the IRAC and MIPS instruments aboard the Spitzer Space Telescope. These infrared bands are particularly interesting for star formation studies because the ultraviolet light from young stars is reprocessed into thermal emission in the far-infrared (24mum MIPS) by dust and into vibrational transitions features in the mid-infrared (8.0mum IRAC) by polycyclic aromatic hydrocarbons (PAHs). The work I present here examines the efficiencies of PAH and thermal dust emission as tracers of star-formation rates over a wide range of galactic stellar masses. I find that the efficiency of PAH as a star-formation tracer varies with galactic stellar mass, while thermal dust has a highly variable efficiency that does not systematically depend on galactic stellar mass

  20. A Speeding Binary in the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-04-01

    cool (4,800 K) companion star in a wide orbit, likely separated by several AU.An Unknown Past and FutureWhy are these new observations of J1211 such a big deal? Because all the acceleration scenarios for a star originating in the Galactic disk fail in the case of J1211. The authors find by modeling J1211s motion that the system cant have originated in the Galactic center, so interactions with the supermassive black hole are out. And supernova explosions or dynamical interactions would tear the wide binary apart in the process of accelerating it. Nmeth and collaborators suggest instead that J1211 was either born in the halo population or accreted later from the debris of a destroyed satellite galaxy.J1211s speed is so extreme that its orbit could be either bound or unbound. Interestingly, when the authors model the binarys orbit, they find that the assumed mass of the Milky Ways dark-matter halo determines whether J1211s orbit is bound. This means that future observations of J1211 may provide a new way to probe the Galactic potential and determine the mass of the dark matter halo, in addition to revealing unexpected origins of high-velocity halo stars.CitationPter Nmeth et al 2016 ApJ 821 L13. doi:10.3847/2041-8205/821/1/L13

  1. The galactic globular cluster system

    NASA Technical Reports Server (NTRS)

    Djorgovski, S.; Meylan, G.

    1994-01-01

    We explore correlations between various properties of Galactic globular clusters, using a database on 143 objects. Our goal is identify correlations and trends which can be used to test and constrain theoretical models of cluster formation and evolution. We use a set of 13 cluster parameters, 9 of which are independently measured. Several arguments suggest that the number of clusters still missing in the obscured regions of the Galaxy is of the order of 10, and thus the selection effects are probably not severe for our sample. Known clusters follow a power-law density distribution with a slope approximately -3.5 to -4, and an apparent core with a core radius approximately 1 kpc. Clusters show a large dynamical range in many of their properties, more so for the core parameters (which are presumably more affected by dynamical evolution) than for the half-light parameters. There are no good correlations with luminosity, although more luminous clusters tend to be more concentrated. When data are binned in luminosity, several trends emerge: more luminous clusters tend to have smaller and denser cores. We interpret this as a differential survival effect, with more massive clusters surviving longer and reaching more evolved dynamical states. Cluster core parameters and concentrations also correlate with the position in the Galaxy, with clusters closer to the Galactic center or plane being more concentrated and having smaller and denser cores. These trends are more pronounced for the fainter (less massive) clusters. This is in agreement with a picture where tidal shocks form disk or bulge passages accelerate dynamical evolution of clusters. Cluster metallicities do not correlate with any other parameter, including luminosity and velocity dispersion; the only detectable trend is with the position in the Galaxy, probably reflecting Zinn's disk-halo dichotomy. This suggests that globular clusters were not self-enriched systems. Velocity dispersions show excellent correlations

  2. Earth Structure, Ice Mass Changes, and the Local Dynamic Geoid

    NASA Astrophysics Data System (ADS)

    Harig, C.; Simons, F. J.

    2014-12-01

    Spherical Slepian localization functions are a useful method for studying regional mass changes observed by satellite gravimetry. By projecting data onto a sparse basis set, the local field can be estimated more easily than with the full spherical harmonic basis. We have used this method previously to estimate the ice mass change in Greenland from GRACE data, and it can also be applied to other planetary problems such as global magnetic fields. Earth's static geoid, in contrast to the time-variable field, is in large part related to the internal density and rheological structure of the Earth. Past studies have used dynamic geoid kernels to relate this density structure and the internal deformation it induces to the surface geopotential at large scales. These now classical studies of the eighties and nineties were able to estimate the mantle's radial rheological profile, placing constraints on the ratio between upper and lower mantle viscosity. By combining these two methods, spherical Slepian localization and dynamic geoid kernels, we have created local dynamic geoid kernels which are sensitive only to density variations within an area of interest. With these kernels we can estimate the approximate local radial rheological structure that best explains the locally observed geoid on a regional basis. First-order differences of the regional mantle viscosity structure are accessible to this technique. In this contribution we present our latest, as yet unpublished results on the geographical and temporal pattern of ice mass changes in Antarctica over the past decade, and we introduce a new approach to extract regional information about the internal structure of the Earth from the static global gravity field. Both sets of results are linked in terms of the relevant physics, but also in being developed from the marriage of Slepian functions and geoid kernels. We make predictions on the utility of our approach to derive fully three-dimensional rheological Earth models, to

  3. Evidence for powerful AGN winds at high redshift: dynamics of galactic outflows in radio galaxies during the ``Quasar Era''

    NASA Astrophysics Data System (ADS)

    Nesvadba, N. P. H.; Lehnert, M. D.; De Breuck, C.; Gilbert, A. M.; van Breugel, W.

    2008-11-01

    AGN feedback now appears as an attractive mechanism to resolve some of the outstanding problems with the “standard” cosmological models, in particular those related to massive galaxies. At low redshift, evidence is growing that gas cooling and star formation may be efficiently suppressed by mechanical energy input from radio sources. To directly constrain how this may influence the formation of massive galaxies near the peak in the redshift distribution of powerful quasars, z˜ 2, we present an analysis of the emission-line kinematics of 3 powerful radio galaxies at z˜ 2-3 (HzRGs) based on rest-frame optical integral-field spectroscopy obtained with SINFONI on the VLT. The host galaxies of powerful radio-loud AGN are among the most massive galaxies, and thus AGN feedback may have a particularly clear signature in these galaxies. We find evidence for bipolar outflows in all HzRGs, with kinetic energies that are equivalent to 0.2% of the rest-mass of the supermassive black hole. Observed total velocity offsets in the outflows are ~800-1000 km s-1 between the blueshifted and redshifted line emission, and FWHMs ~ 1000 km s-1 suggest strong turbulence. Line ratios allow to measure electron temperatures, ~104 K from [OIII]λλλ4363, 4959, 5007 at z˜ 2, electron densities (~500 cm-3) and extinction (A_V˜ 1-4 mag). Ionized gas masses estimated from the Hα luminosity are of order 1010~M⊙, similar to the molecular gas content of HzRGs, underlining that these outflows may indicate a significant phase in the evolution of the host galaxy. The total energy release of ~1060 erg during a dynamical time of ~107 yrs corresponds to about the binding energy of a massive galaxy, similar to the prescriptions adopted in galaxy evolution models. Geometry, timescales and energy injection rates of order 10% of the kinetic energy flux of the jet suggest that the outflows are most likely driven by the radio source. The global energy density release of ~1057 erg s-1 Mpc-3 may also

  4. THE VMC SURVEY. XVIII. RADIAL DEPENDENCE OF THE LOW-MASS, 0.55–0.82 M{sub ⊙} STELLAR MASS FUNCTION IN THE GALACTIC GLOBULAR CLUSTER 47 TUCANAE

    SciTech Connect

    Zhang, Chaoli; Li, Chengyuan; De Grijs, Richard; Bekki, Kenji; Deng, Licai; For, Bi-Qing; Zaggia, Simone; Rubele, Stefano; Piatti, Andrés E.; Cioni, Maria-Rosa L.; Ripepi, Vincenzo; Marconi, Marcella; Ivanov, Valentin D.; Chen, Li E-mail: grijs@pku.edu.cn

    2015-12-20

    We use near-infrared observations obtained as part of the Visible and Infrared Survey Telescope for Astronomy (VISTA) Survey of the Magellanic Clouds (VMC), as well as two complementary Hubble Space Telescope (HST) data sets, to study the luminosity and mass functions (MFs) as a function of clustercentric radius of the main-sequence stars in the Galactic globular cluster 47 Tucanae. The HST observations indicate a relative deficit in the numbers of faint stars in the central region of the cluster compared with its periphery, for 18.75 ≤ m{sub F606W} ≤ 20.9 mag (corresponding to a stellar mass range of 0.55 < m{sub *}/M{sub ⊙} < 0.73). The stellar number counts at 6.′7 from the cluster core show a deficit for 17.62 ≤ m{sub F606W} ≤ 19.7 mag (i.e., 0.65 < m{sub *}/M{sub ⊙} < 0.82), which is consistent with expectations from mass segregation. The VMC-based stellar MFs exhibit power-law shapes for masses in the range 0.55 < m{sub *}/M{sub ⊙} < 0.82. These power laws are characterized by an almost constant slope, α. The radial distribution of the power-law slopes α thus shows evidence of the importance of both mass segregation and tidal stripping, for both the first- and second-generation stars in 47 Tuc.

  5. A spiral galaxy's mass distribution uncovered through lensing and dynamics

    NASA Astrophysics Data System (ADS)

    Trick, Wilma H.; van de Ven, Glenn; Dutton, Aaron A.

    2016-09-01

    We investigate the matter distribution of a spiral galaxy with a counter-rotating stellar core, SDSS J1331+3628 (J1331), independently with gravitational lensing and stellar dynamical modelling. By fitting a gravitational potential model to a quadruplet of lensing images around J1331's bulge, we tightly constrain the mass inside the Einstein radius Rein = (0.91 ± 0.02)″( ≃ 1.83 ± 0.04~kpc) to within 4%: Mein = (7.8 ± 0.3) × 1010M⊙. We model observed long-slit major axis stellar kinematics in J1331's central regions by finding Multi-Gaussian Expansion (MGE) models for the stellar and dark matter distribution that solve the axisymmetric Jeans equations. The lens and dynamical model are independently derived, but in very good agreement with each other around ˜Rein. We find that J1331's center requires a steep total mass-to-light ratio gradient. A dynamical model including a NFW halo (with virial velocity v200 ≃ 240 ± 40~kms-1 and concentration c200 ≃ 8 ± 2) and moderate tangential velocity anisotropy (βz ≃ -0.4 ± 0.1) can reproduce the signatures of J1331's counter-rotating core and predict the stellar and gas rotation curve at larger radii. However, our models do not agree with the observed velocity dispersion at large radii. We speculate that the reason could be a non-trivial change in structure and kinematics due to a possible merger event in J1331's recent past.

  6. Dynamically Multiplexed Ion Mobility Time-of-Flight Mass Spectrometry

    SciTech Connect

    Belov, Mikhail E.; Clowers, Brian H.; Prior, David C.; Danielson, William F.; Liyu, Andrei V.; Petritis, Brianne O.; Smith, Richard D.

    2008-08-01

    Ion Mobility Spectrometry–Time-of-Flight Mass Spectrometry (IMS-TOFMS) has been increasingly used in analysis of complex biological samples. A major challenge is to transform IMS-TOFMS to a high-sensitivity high-throughput platform for e.g. proteomics applications. In this work, we have developed and integrated three advanced technologies, enabling (1) efficient ion accumulation in the ion funnel trap prior to IMS separation, (2) multiplexing (MP) of ion packet introduction into the IMS drift tube and (3) signal detection with an analog-to-digital converter (ADC), into the IMS-TOFMS system for the high-throughput analysis of highly complex proteolytic digests of e.g. blood plasma. To better address variable sample complexity, we have additionally developed and rigorously evaluated a new dynamic MP approach that ensures correlation of the analyzer performance with an ion source function, and provides the improved dynamic range and sensitivity. The MP IMS-TOF MS instrument has been shown to reliably detect peptides at a concentration of 1 nM in a highly complex matrix, as well as to provide a four orders of magnitude dynamic range and a mass measurement accuracy of better than 5 ppm. When matched against human blood plasma database, the detected IMS-TOF features yielded ~ 700 unique peptide identifications at a false discovery rate (FDR) of ~ 7.5 %. Accounting for IMS information gave rise to a projected FDR of ~ 4 %. Signal reproducibility was found to be greater than 80 %, while the variations in the number of unique peptide identifications were < 15 %. A single sample analysis was completed in 15 min, corresponding to approximately an order of magnitude improvement compared to a more conventional LC-MS approach.

  7. SYSTEMATICS OF DYNAMICAL MASS EJECTION, NUCLEOSYNTHESIS, AND RADIOACTIVELY POWERED ELECTROMAGNETIC SIGNALS FROM NEUTRON-STAR MERGERS

    SciTech Connect

    Bauswein, A.; Janka, H.-T.; Goriely, S.

    2013-08-10

    We investigate systematically the dynamical mass ejection, r-process nucleosynthesis, and properties of electromagnetic counterparts of neutron-star (NS) mergers in dependence on the uncertain properties of the nuclear equation of state (EOS) by employing 40 representative, microphysical high-density EOSs in relativistic, hydrodynamical simulations. The crucial parameter determining the ejecta mass is the radius R{sub 1.35} of a 1.35 M{sub Sun} NS. NSs with smaller R{sub 1.35} (''soft'' EOS) eject systematically higher masses. These range from {approx}10{sup -3} M{sub Sun} to {approx}10{sup -2} M{sub Sun} for 1.35-1.35 M{sub Sun} binaries and from {approx}5 Multiplication-Sign 10{sup -3} M{sub Sun} to {approx}2 Multiplication-Sign 10{sup -2} M{sub Sun} for 1.2-1.5 M{sub Sun} systems (with kinetic energies between {approx}5 Multiplication-Sign 10{sup 49} erg and 10{sup 51} erg). Correspondingly, the bolometric peak luminosities of the optical transients of symmetric (asymmetric) mergers vary between 3 Multiplication-Sign 10{sup 41} erg s{sup -1} and 14 Multiplication-Sign 10{sup 41} erg s{sup -1} (9 Multiplication-Sign 10{sup 41} erg s{sup -1} and 14.5 Multiplication-Sign 10{sup 41} erg s{sup -1}) on timescales between {approx}2 hr and {approx}12 hr. If these signals with absolute bolometric magnitudes from -15.0 to -16.7 are measured, the tight correlation of their properties with those of the merging NSs might provide valuable constraints on the high-density EOS. The r-process nucleosynthesis exhibits a remarkable robustness independent of the EOS, producing a nearly solar abundance pattern above mass number 130. By the r-process content of the Galaxy and the average production per event the Galactic merger rate is limited to 4 Multiplication-Sign 10{sup -5} yr{sup -1} (4 Multiplication-Sign 10{sup -4} yr{sup -1}) for a soft (stiff) NS EOS, if NS mergers are the main source of heavy r-nuclei. The production ratio of radioactive {sup 232}Th to {sup 238}U attains a

  8. INITIAL SIZE DISTRIBUTION OF THE GALACTIC GLOBULAR CLUSTER SYSTEM

    SciTech Connect

    Shin, Jihye; Kim, Sungsoo S.; Yoon, Suk-Jin; Kim, Juhan

    2013-01-10

    Despite the importance of their size evolution in understanding the dynamical evolution of globular clusters (GCs) of the Milky Way, studies that focus specifically on this issue are rare. Based on the advanced, realistic Fokker-Planck (FP) approach, we theoretically predict the initial size distribution (SD) of the Galactic GCs along with their initial mass function and radial distribution. Over one thousand FP calculations in a wide parameter space have pinpointed the best-fit initial conditions for the SD, mass function, and radial distribution. Our best-fit model shows that the initial SD of the Galactic GCs is of larger dispersion than today's SD, and that the typical projected half-light radius of the initial GCs is {approx}4.6 pc, which is 1.8 times larger than that of the present-day GCs ({approx}2.5 pc). Their large size signifies greater susceptibility to the Galactic tides: the total mass of destroyed GCs reaches 3-5 Multiplication-Sign 10{sup 8} M {sub Sun }, several times larger than previous estimates. Our result challenges a recent view that the Milky Way GCs were born compact on the sub-pc scale, and rather implies that (1) the initial GCs were generally larger than the typical size of the present-day GCs, (2) the initially large GCs mostly shrank and/or disrupted as a result of the galactic tides, and (3) the initially small GCs expanded by two-body relaxation, and later shrank by the galactic tides.

  9. On the Dynamical Evolution of H II Regions: An Investigation of the Ionized Component of W4, a Galactic Chimney Candidate. I. Kinematics and Dynamics in the Latitude Range 0° <= b <= 3°

    NASA Astrophysics Data System (ADS)

    Lagrois, Dominic; Joncas, Gilles

    2009-02-01

    Fabry-Perot interferometry was used to obtain an Hα survey of the most emissive part of W4, a giant superbubble/H II region located in the Perseus arm. Presented by Normandeau and colleagues as an H I cavity aiming away from the Galactic plane, the void has been morphologically interpreted as a Galactic chimney candidate in interaction with the Galactic corona. We present the kinematical results of nearly five million Hα spectra obtained in the southern portion of the nebula (0° <= b <= 3°). Many small-scale radial velocity gradients are detected in the embedded ionized component and are attributed to the photoionization of dense, mostly molecular, fragments found either in or at the periphery of the expanding supershell. The mean local standard of rest radial velocity associated with our Hα survey is found at -42.565 ± 5.204 (1σ) km s-1, redshifted by roughly 5 km s-1 from the molecular material found in the vicinity of the large superbubble. Investigation of the Hα line-width measurements has shown W4-south to fall in a transient regime between low velocity dispersions characteristic of small-size Galactic H II regions and supersonic line widths associated with supergiant extragalactic structures. The overall kinematics of W4-south is best explained with the Champagne model for the dynamical evolution of H II regions where at least 10 independent gas flows crisscross the nebula. For the first time, a Champagne flow is seen coming to an end within a nebula, mingling with the surrounding ionized gas. The nature (molecular versus atomic) of the neutral material, prone to erosion, is critical as it leads to much different kinematical interpretations. W4-south appears as a text book example of the last stage in the life of a giant molecular cloud complex.

  10. Galactic Evolution

    NASA Astrophysics Data System (ADS)

    Brekke, Stewart

    2013-04-01

    All galaxies began as spiral galaxies. The early universe began with sets of two or more pre-galactic arms orbiting each other. As gravitational attraction between the arms took effect, the fore-sections of the arms tangentially collided forming spiral galaxies when they attached with the orbital motion of the arms being converted to the rotational motion of the newly formed spiral galaxies or (Iφ)arm1+ (Iφ)arm2+ ...+ (Iφ)armn= (Iφ)galaxy. If the centripetal force on the arms is more than the gravitational force on the arms, the spiral galaxy remains a spiral galaxy i.e. mv^2/r>=Gmarmmgalaxy/r^2. If the galaxy is slowly rotating, the spiral arms collapse into the body of the galaxy because the gravitational force is greater than the centripetal force on the arms and an elliptical galaxy is formed i.e. mv^2/r < Gmarmsmgalaxy/r^2.

  11. Dynamical Models to Infer the Core Mass Fraction of Venus

    NASA Astrophysics Data System (ADS)

    Quintana, Elisa V.; Barclay, Thomas

    2016-10-01

    The uncompressed density of Venus is just a few percent lower than Earth's, however the nature of the interior core structure of Venus remains unclear. Employing state-of-the-art dynamical formation models that allow both accretion and collisional fragmentation, we perform hundreds of simulations of terrestrial planet growth around the Sun in the presence of the giant planets. For both Earth and Venus analogs, we quantify the iron-silicate ratios, water/volatile abundances and specific impact energies of all collisions that lead to their formation. Preliminary results suggest that the distributions of core mass fraction and water content are comparable among the Earth and Venus analogs, suggesting that Earth and Venus may indeed have formed with similar structures and compositions.

  12. Multi-phase Nature of a Radiation-driven Fountain with Nuclear Starburst in a Low-mass Active Galactic Nucleus

    NASA Astrophysics Data System (ADS)

    Wada, Keiichi; Schartmann, Marc; Meijerink, Rowin

    2016-09-01

    The structures and dynamics of molecular, atomic, and ionized gases are studied around a low-luminosity active galactic nucleus (AGN) with a small (2× {10}6{M}ȯ ) black hole using three-dimensional (3D) radiation–hydrodynamic simulations. We studied, for the first time, the non-equilibrium chemistry for the X-ray-dominated region in the “radiation-driven fountain” with supernova feedback. A double hollow cone structure is naturally formed without postulating a thick “torus” around a central source. The cone is occupied with an inhomogeneous, diffuse ionized gas and surrounded by a geometrically thick (h/r≳ 1) atomic gas. Dense molecular gases are distributed near the equatorial plane, and energy feedback from supernovae enhances their scale height. Molecular hydrogen exists in a hot phase (>1000 K) as well as in a cold (\\lt 100 {{K}}), dense (\\gt {10}3 {{cm}}-3) phase. The velocity dispersion of H2 in the vertical direction is comparable to the rotational velocity, which is consistent with near-infrared observations of nearby Seyfert galaxies. Using 3D radiation transfer calculations for the dust emission, we find polar emission in the mid-infrared band (12 μm), which is associated with bipolar outflows, as suggested in recent interferometric observations of nearby AGNs. If the viewing angle for the nucleus is larger than 75°, the spectral energy distribution is consistent with that of the Circinus galaxy. The multi-phase interstellar medium observed in optical/infrared and X-ray observations is also discussed.

  13. Multi-phase Nature of a Radiation-driven Fountain with Nuclear Starburst in a Low-mass Active Galactic Nucleus

    NASA Astrophysics Data System (ADS)

    Wada, Keiichi; Schartmann, Marc; Meijerink, Rowin

    2016-09-01

    The structures and dynamics of molecular, atomic, and ionized gases are studied around a low-luminosity active galactic nucleus (AGN) with a small (2× {10}6{M}⊙ ) black hole using three-dimensional (3D) radiation-hydrodynamic simulations. We studied, for the first time, the non-equilibrium chemistry for the X-ray-dominated region in the “radiation-driven fountain” with supernova feedback. A double hollow cone structure is naturally formed without postulating a thick “torus” around a central source. The cone is occupied with an inhomogeneous, diffuse ionized gas and surrounded by a geometrically thick (h/r≳ 1) atomic gas. Dense molecular gases are distributed near the equatorial plane, and energy feedback from supernovae enhances their scale height. Molecular hydrogen exists in a hot phase (>1000 K) as well as in a cold (\\lt 100 {{K}}), dense (\\gt {10}3 {{cm}}-3) phase. The velocity dispersion of H2 in the vertical direction is comparable to the rotational velocity, which is consistent with near-infrared observations of nearby Seyfert galaxies. Using 3D radiation transfer calculations for the dust emission, we find polar emission in the mid-infrared band (12 μm), which is associated with bipolar outflows, as suggested in recent interferometric observations of nearby AGNs. If the viewing angle for the nucleus is larger than 75°, the spectral energy distribution is consistent with that of the Circinus galaxy. The multi-phase interstellar medium observed in optical/infrared and X-ray observations is also discussed.

  14. Dynamical mass ejection from binary neutron star mergers

    NASA Astrophysics Data System (ADS)

    Radice, David; Galeazzi, Filippo; Lippuner, Jonas; Roberts, Luke F.; Ott, Christian D.; Rezzolla, Luciano

    2016-08-01

    We present fully general-relativistic simulations of binary neutron star mergers with a temperature and composition dependent nuclear equation of state. We study the dynamical mass ejection from both quasi-circular and dynamical-capture eccentric mergers. We systematically vary the level of our treatment of the microphysics to isolate the effects of neutrino cooling and heating and we compute the nucleosynthetic yields of the ejecta. We find that eccentric binaries can eject significantly more material than quasi-circular binaries and generate bright infrared and radio emission. In all our simulations the outflow is composed of a combination of tidally- and shock-driven ejecta, mostly distributed over a broad ˜60° angle from the orbital plane, and, to a lesser extent, by thermally driven winds at high latitudes. Ejecta from eccentric mergers are typically more neutron rich than those of quasi-circular mergers. We find neutrino cooling and heating to affect, quantitatively and qualitatively, composition, morphology, and total mass of the outflows. This is also reflected in the infrared and radio signatures of the binary. The final nucleosynthetic yields of the ejecta are robust and insensitive to input physics or merger type in the regions of the second and third r-process peaks. The yields for elements on the first peak vary between our simulations, but none of our models is able to explain the Solar abundances of first-peak elements without invoking additional first-peak contributions from either neutrino and viscously-driven winds operating on longer time-scales after the mergers, or from core-collapse supernovae.

  15. Coral population dynamics across consecutive mass mortality events.

    PubMed

    Riegl, Bernhard; Purkis, Sam

    2015-11-01

    Annual coral mortality events due to increased atmospheric heat may occur regularly from the middle of the century and are considered apocalyptic for coral reefs. In the Arabian/Persian Gulf, this situation has already occurred and population dynamics of four widespread corals (Acropora downingi, Porites harrisoni, Dipsastrea pallida, Cyphastrea micropthalma) were examined across the first-ever occurrence of four back-to-back mass mortality events (2009-2012). Mortality was driven by diseases in 2009, bleaching and subsequent diseases in 2010/2011/2012. 2009 reduced P. harrisoni cover and size, the other events increasingly reduced overall cover (2009: -10%; 2010: -20%; 2011: -20%; 2012: -15%) and affected all examined species. Regeneration was only observed after the first disturbance. P. harrisoni and A. downingi severely declined from 2010 due to bleaching and subsequent white syndromes, while D. pallida and P. daedalea declined from 2011 due to bleaching and black-band disease. C. microphthalma cover was not affected. In all species, most large corals were lost while fission due to partial tissue mortality bolstered small size classes. This general shrinkage led to a decrease of coral cover and a dramatic reduction of fecundity. Transition matrices for disturbed and undisturbed conditions were evaluated as Life Table Response Experiment and showed that C. microphthalma changed the least in size-class dynamics and fecundity, suggesting they were 'winners'. In an ordered 'degradation cascade', impacts decreased from the most common to the least common species, leading to step-wise removal of previously dominant species. A potentially permanent shift from high- to low-coral cover with different coral community and size structure can be expected due to the demographic dynamics resultant from the disturbances. Similarities to degradation of other Caribbean and Pacific reefs are discussed. As comparable environmental conditions and mortality patterns must be

  16. Dynamical evolution of massive black holes in galactic-scale N-body simulations - introducing the regularized tree code `rVINE'

    NASA Astrophysics Data System (ADS)

    Karl, Simon J.; Aarseth, Sverre J.; Naab, Thorsten; Haehnelt, Martin G.; Spurzem, Rainer

    2015-09-01

    We present a hybrid code combining the OpenMP-parallel tree code VINE with an algorithmic chain regularization scheme. The new code, called `rVINE', aims to significantly improve the accuracy of close encounters of massive bodies with supermassive black holes (SMBHs) in galaxy-scale numerical simulations. We demonstrate the capabilities of the code by studying two test problems, the sinking of a single massive black hole to the centre of a gas-free galaxy due to dynamical friction and the hardening of an SMBH binary due to close stellar encounters. We show that results obtained with rVINE compare well with NBODY7 for problems with particle numbers that can be simulated with NBODY7. In particular, in both NBODY7 and rVINE we find a clear N-dependence of the binary hardening rate, a low binary eccentricity and moderate eccentricity evolution, as well as the conversion of the galaxy's inner density profile from a cusp to a core via the ejection of stars at high velocity. The much larger number of particles that can be handled by rVINE will open up exciting opportunities to model stellar dynamics close to SMBHs much more accurately in a realistic galactic context. This will help to remedy the inherent limitations of commonly used tree solvers to follow the correct dynamical evolution of black holes in galaxy-scale simulations.

  17. Molecular Lines of 13 Galactic Infrared Bubble Regions

    NASA Astrophysics Data System (ADS)

    Yan, Qing-zeng; Xu, Ye; Zhang, Bo; Lu, Deng-rong; Chen, Xi; Tang, Zheng-hong

    2016-11-01

    We investigated the physical properties of molecular clouds and star formation (SF) processes around infrared bubbles, which are essentially expanding H ii regions. We performed observations of 13 galactic infrared bubble fields containing 18 bubbles. We observed five molecular lines—12CO (J=1\\to 0), 13CO (J=1\\to 0), C18O (J=1\\to 0), HCN (J=1\\to 0), and HCO+ (J=1\\to 0)—and several publicly available surveys were used for comparison: Galactic Legacy Infrared Mid-Plane Survey Extraordinaire, Multiband Imaging Photometer for Spitzer Galactic Plane Survey, APEX Telescope Large Area Survey of the Galaxy, Bolocam Galactic Plane Survey, Very Large Array (VLA) Galactic Plane Survey, Multi-Array Galactic Plane Imaging Survey, and NRAO VLA Sky Survey. We find that these bubbles are generally connected with molecular clouds, most of which are giant. Several bubble regions display velocity gradients and broad-shifted profiles, which could be due to the expansion of bubbles. The masses of molecular clouds within bubbles range from 100 to 19,000 M ⊙, and their dynamic ages are about 0.3–3.7 Myr, which takes into account the internal turbulence pressure of surrounding molecular clouds. Clumps are found in the vicinity of all 18 bubbles, and molecular clouds near four of these bubbles with larger angular sizes show shell-like morphologies, indicating that either collect-and-collapse or radiation-driven implosion processes may have occurred. Due to the contamination of adjacent molecular clouds, only six bubble regions are appropriate to search for outflows, and we find that four have outflow activities. Three bubbles display ultra-compact H ii regions at their borders, and one is probably responsible for its outflow. In total, only six bubbles show SF activities in the vicinity, and we suggest that SF processes might have been triggered.

  18. Dynamic Reactive Ionization with Cluster Secondary Ion Mass Spectrometry.

    PubMed

    Tian, Hua; Wucher, Andreas; Winograd, Nicholas

    2016-02-01

    Gas cluster ion beams (GCIB) have been tuned to enhance secondary ion yields by doping small gas molecules such as CH4, CO2, and O2 into an Ar cluster projectile, Arn  + (n = 1000–10,000) to form a mixed cluster. The ‘tailored beam’ has the potential to expand the application of secondary ion mass spectrometry for two- and three-dimensional molecular specific imaging. Here, we examine the possibility of further enhancing the ionization by doping HCl into the Ar cluster. Water deposited on the target surface facilitates the dissociation of HCl. This concerted effect, occurring only at the impact site of the cluster, arises since the HCl is chemically induced to ionize to H+ and Cl– , allowing improved protonation of neutral molecular species. This hypothesis is confirmed by depth profiling through a trehalose thin film exposed to D2O vapor, resulting in ~20-fold increase in protonated molecules. The results show that it is possible to dynamically maintain optimum ionization conditions during depth profiling by proper adjustment of the water vapor pressure. H–D exchange in the trehalose molecule M was monitored upon deposition of D2O on the target surface, leading to the observation of [Mn* + H]+ or [Mn* + D]+ ions, where n = 1–8 hydrogen atoms in the trehalose molecule M have been replaced by deuterium. In general, we discuss the role of surface chemistry and dynamic reactive ionization of organic molecules in increasing the secondary ion yield.

  19. Variation in body mass dynamics among sites in Black Brant Branta bernicla nigricans supports adaptivity of mass loss during moult

    USGS Publications Warehouse

    Fondell, Thomas F.; Flint, Paul L.; Schmutz, Joel A.; Schamber, Jason L.; Nicolai, Christopher A.

    2013-01-01

    Birds employ varying strategies to accommodate the energetic demands of moult, one important example being changes in body mass. To understand better their physiological and ecological significance, we tested three hypotheses concerning body mass dynamics during moult. We studied Black Brant in 2006 and 2007 moulting at three sites in Alaska which varied in food availability, breeding status and whether geese undertook a moult migration. First we predicted that if mass loss during moult were simply the result of inadequate food resources then mass loss would be highest where food was least available. Secondly, we predicted that if mass loss during moult were adaptive, allowing birds to reduce activity during moult, then birds would gain mass prior to moult where feeding conditions allowed and mass loss would be positively related to mass at moult initiation. Thirdly, we predicted that if mass loss during moult were adaptive, allowing birds to regain flight sooner, then across sites and groups, mass at the end of the flightless period would converge on a theoretical optimum, i.e. the mass that permits the earliest possible return to flight. Mass loss was greatest where food was most available and thus our results did not support the prediction that mass loss resulted from inadequate food availability. Mass at moult initiation was positively related to both food availability and mass loss. In addition, among sites and years, variation in mass was high at moult initiation but greatly reduced at the end of the flightless period, appearing to converge. Thus, our results supported multiple predictions that mass loss during moult was adaptive and that the optimal moulting strategy was to gain mass prior to the flightless period, then through behavioural modifications use these body reserves to reduce activity and in so doing also reduce wing loading. Geese that undertook a moult migration initiated moult at the highest mass, indicating that they were more than able to

  20. Coral population dynamics across consecutive mass mortality events.

    PubMed

    Riegl, Bernhard; Purkis, Sam

    2015-11-01

    Annual coral mortality events due to increased atmospheric heat may occur regularly from the middle of the century and are considered apocalyptic for coral reefs. In the Arabian/Persian Gulf, this situation has already occurred and population dynamics of four widespread corals (Acropora downingi, Porites harrisoni, Dipsastrea pallida, Cyphastrea micropthalma) were examined across the first-ever occurrence of four back-to-back mass mortality events (2009-2012). Mortality was driven by diseases in 2009, bleaching and subsequent diseases in 2010/2011/2012. 2009 reduced P. harrisoni cover and size, the other events increasingly reduced overall cover (2009: -10%; 2010: -20%; 2011: -20%; 2012: -15%) and affected all examined species. Regeneration was only observed after the first disturbance. P. harrisoni and A. downingi severely declined from 2010 due to bleaching and subsequent white syndromes, while D. pallida and P. daedalea declined from 2011 due to bleaching and black-band disease. C. microphthalma cover was not affected. In all species, most large corals were lost while fission due to partial tissue mortality bolstered small size classes. This general shrinkage led to a decrease of coral cover and a dramatic reduction of fecundity. Transition matrices for disturbed and undisturbed conditions were evaluated as Life Table Response Experiment and showed that C. microphthalma changed the least in size-class dynamics and fecundity, suggesting they were 'winners'. In an ordered 'degradation cascade', impacts decreased from the most common to the least common species, leading to step-wise removal of previously dominant species. A potentially permanent shift from high- to low-coral cover with different coral community and size structure can be expected due to the demographic dynamics resultant from the disturbances. Similarities to degradation of other Caribbean and Pacific reefs are discussed. As comparable environmental conditions and mortality patterns must be

  1. A dynamical calibration of the mass-luminosity relation at very low stellar masses and young ages.

    PubMed

    Close, Laird M; Lenzen, Rainer; Guirado, Jose C; Nielsen, Eric L; Mamajek, Eric E; Brandner, Wolfgang; Hartung, Markus; Lidman, Chris; Biller, Beth

    2005-01-20

    Mass is the most fundamental parameter of a star, yet it is also one of the most difficult to measure directly. In general, astronomers estimate stellar masses by determining the luminosity and using the 'mass-luminosity' relationship, but this relationship has never been accurately calibrated for young, low-mass stars and brown dwarfs. Masses for these low-mass objects are therefore constrained only by theoretical models. A new high-contrast adaptive optics camera enabled the discovery of a young (50 million years) companion only 0.156 arcseconds (2.3 au) from the more luminous (> 120 times brighter) star AB Doradus A. Here we report a dynamical determination of the mass of the newly resolved low-mass companion AB Dor C, whose mass is 0.090 +/- 0.005 solar masses. Given its measured 1-2-micrometre luminosity, we have found that the standard mass-luminosity relations overestimate the near-infrared luminosity of such objects by about a factor of approximately 2.5 at young ages. The young, cool objects hitherto thought to be substellar in mass are therefore about twice as massive, which means that the frequency of brown dwarfs and planetary mass objects in young stellar clusters has been overestimated.

  2. Co-evolution of galactic nuclei and globular cluster systems

    SciTech Connect

    Gnedin, Oleg Y.; Ostriker, Jeremiah P.; Tremaine, Scott

    2014-04-10

    We revisit the hypothesis that dense galactic nuclei are formed from inspiraling globular clusters. Recent advances in the understanding of the continuous formation of globular clusters over cosmic time and the concurrent evolution of the galaxy stellar distribution allow us to construct a simple model that matches the observed spatial and mass distributions of clusters in the Galaxy and the giant elliptical galaxy M87. In order to compare with observations, we model the effects of dynamical friction and dynamical evolution, including stellar mass loss, tidal stripping of stars, and tidal disruption of clusters by the growing galactic nucleus. We find that inspiraling globular clusters form a dense central structure, with mass and radius comparable to the typical values in observed nuclear star clusters (NSCs) in late-type and low-mass early-type galaxies. The density contrast associated with the NSC is less pronounced in giant elliptical galaxies. Our results indicate that the NSC mass as a fraction of mass of the galaxy stellar spheroid scales as M{sub NSC}/M{sub ∗}≈0.0025 M{sub ∗,11}{sup −0.5}. Thus disrupted globular clusters could contribute most of the mass of NSCs in galaxies with stellar mass below 10{sup 11} M {sub ☉}. The inner part of the accumulated cluster may seed the growth of a central black hole via stellar dynamical core collapse, thereby relieving the problem of how to form luminous quasars at high redshift. The seed black hole may reach ∼10{sup 5} M {sub ☉} within ≲ 1 Gyr of the beginning of globular cluster formation.

  3. Echo Mapping of Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Peterson, B. M.; Horne, K.

    2004-01-01

    Echo mapping makes use of the intrinsic variability of the continuum source in active galactic nuclei to map out the distribution and kinematics of line-emitting gas from its light travel time-delayed response to continuum changes. Echo mapping experiments have yielded sizes for the broad line-emitting region in about three dozen AGNs. The dynamics of the line-emitting gas seem to be dominated by the gravity of the central black hole, enabling measurement of the black-hole masses in AGNs. We discuss requirements for future echo-mapping experiments that will yield the high quality velocity-delay maps of the broad-line region that are needed to determine its physical nature.

  4. Clouds Dominate the Galactic Halo

    NASA Astrophysics Data System (ADS)

    2003-01-01

    yet," he said. Earlier this year, data taken with the newly commissioned GBT demonstrated that rather than a diffuse mist or other ill-defined feature - as many astronomers had speculated - the halo was in fact made up of well-defined clouds. "The discovery of these clouds, each containing 50-to-100 solar masses of hydrogen and averaging about 100 light-years in diameter, challenged many of the prevailing theories about the structure and dynamics of the halo," said Lockman. The clouds were discovered about 25,000 light-years from Earth toward the center of our Galaxy. The latest findings show the clouds extend at least 5,000 light-years above and below the Galactic plane. Though the initial studies by Lockman revealed the presence of these clouds, the data were insufficient to conclusively show that they were present throughout the entire halo. These latest results provide valuable evidence that the earlier results were truly representative of the entire halo. "The richness and variety of this phenomenon continues to astound me," remarked Lockman. Lockman's new studies also confirm that these clouds travel along with the rest of the Galaxy, rotating about its center. These studies clearly rule out the possibility that so-called "high-velocity clouds" were responsible for what was detected initially. High-velocity clouds are vagabond clumps of intergalactic gas, possibly left over from the formation of the Milky Way and other nearby galaxies. "One thing that is for certain is that these are not high-velocity clouds, this is an entirely separate phenomenon," said Lockman. According to the researcher, the ubiquitous nature and dynamics of these newly discovered clouds support the theory that they are condensing out of the hot gas that is lifted into the halo through supernova explosions. When a massive star dies, it produces a burst of cosmic rays and an enormous expanding bubble of gas at a temperature of several million degrees Celsius. Over time, this hot gas will

  5. Dynamics and stellar population of the Galactic Center (French Title: Étude de la cinématique et de la population stellaire du Centre Galactique)

    NASA Astrophysics Data System (ADS)

    Paumard, Thibaut

    2003-09-01

    The central parsec of the Galaxy has been observed using BEAR spectroimagery at high spectral resolution (up to 21 km/s) and medium spatial resolution (0.5"), in Bracket gamma (2.16 microns) and He I (2.06 microns), and high resolution imaging. These data were used to study the young, massive stars of the central parsec, and the structure and dynamics of ionized gas in Sgr A West. The stellar population has been separated into two groups: the IRS 16 complex of 6 LBVs, and at least 20 Wolf-Rayets. The IRS 13E complex has been identified as a cluster of at least 6 massive stars. All this is consistent with the young stars being born in a massive cluster a few tens of parsecs from the Galactic Centre. Providing a deep insight into the morphology of Sgr A West, our data allowed us to derive a kinematic model for the Northern Arm. Our results are in agreement with the idea that the Minispiral is made of ionisation fronts of wider neutral clouds, gravitationally stretched, coming from the CND.

  6. Constraints on galactic wind models

    NASA Astrophysics Data System (ADS)

    Meiksin, Avery

    2016-09-01

    Observational implications are derived for two standard models of supernovae-driven galactic winds: a freely expanding steady-state wind and a wind sourced by a self-similarly expanding superbubble including thermal heat conduction. It is shown that, for the steady-state wind, matching the measured correlation between the soft X-ray luminosity and star formation rate of starburst galaxies is equivalent to producing a scaled wind mass-loading factor relative to the star formation rate of 0.5-3, in agreement with the amount inferred from metal absorption line measurements. The match requires the asymptotic wind velocity v∞ to scale with the star formation rate dot{M}_{ast } (in M⊙ yr-1) approximately as v_∞ ≃ (700-1000) {{km s^{-1}}} {dot{M}_{ast }}^{1/6}. The implied mass injection rate is close to the amount naturally provided by thermal evaporation from the wall of a superbubble in a galactic disc, suggesting that thermal evaporation may be a major source of mass loading. The predicted mass-loading factors from thermal evaporation within the galactic disc alone, however, are somewhat smaller, 0.2-2, so that a further contribution from cloud ablation or evaporation within the wind may be required. Both models may account for the 1.4 GHz luminosity of unresolved radio sources within starburst galaxies for plausible parameters describing the distribution of relativistic electrons. Further observational tests to distinguish the models are suggested.

  7. Explicit versus Dynamical Chiral Symmetry Breaking and Mass Matrix of Quarks and Leptons

    NASA Astrophysics Data System (ADS)

    Handa, O.; Ishida, S.; Sekiguchi, M.

    1992-02-01

    By recourse to an analogy between strong and weak interactions, quark mass-matrices consisting of the two parts are proposed, which represent, respectively, dynamical chiral symmetry breaking and explicit one due to small preon mass. The sum rules among quark masses and mixing-matrix elements derived from it seem consistent with present experiments.

  8. The Galactic Center

    NASA Astrophysics Data System (ADS)

    Genzel, Reinhard; Karas, Vladimír

    2007-04-01

    In the past decade high resolution measurements in the infrared employing adaptive optics imaging on 10m telescopes have allowed determining the three dimensional orbits stars within ten light hours of the compact radio source SgrA* at the Center of the Milky Way. These observations show that SgrA* is a three million solar mass black hole, beyond any reasonable doubt. The Galactic Center thus constitutes the best astrophysical evidence for the existence of black holes which have long been postulated, and is also an ideal 'lab' for studying the physics in the vicinity of such an object. Remarkably, young massive stars are present there and probably have formed in the innermost stellar cusp. Variable infrared and X-ray emission from SgrA* are a new probe of the physics and space time just outside the event horizon.

  9. TESTING PHOTOMETRIC DIAGNOSTICS FOR THE DYNAMICAL STATE AND POSSIBLE INTERMEDIATE-MASS BLACK HOLE PRESENCE IN GLOBULAR CLUSTERS

    SciTech Connect

    Noyola, Eva; Baumgardt, Holger E-mail: h.baumgardt@uq.edu.au

    2011-12-10

    Surface photometry is a necessary tool to establish the dynamical state of star clusters. We produce realistic HST-like images from N-body models of star clusters with and without central intermediate-mass black holes (IMBHs) in order to measure their surface brightness profiles. The models contain {approx}600,000 individual stars, black holes of various masses between 0% and 2% of the total mass, and are evolved for Hubble time. We measure surface brightness and star count profiles for every constructed image in order to test the effect of IMBHs on the central logarithmic slope, the core radius, and the half-light radius. We use these quantities to test diagnostic tools for the presence of central black holes using photometry. We find that the only models that show central shallow cusps with logarithmic slopes between -0.1 and -0.4 are those containing central black holes. Thus, the central logarithmic slope seems to be a good way to choose clusters suspected of containing IMBHs. Clusters with steep central cusps can definitely be ruled out to host an IMBH. The measured r{sub c} /r{sub h} ratio has similar values for clusters that have not undergone core-collapse and those containing a central black hole. We note that observed Galactic globular clusters have a larger span of values for central slope and r{sub c} /r{sub h} than our modeled clusters, and suggest possible reasons that could account for this and contribute to improved future models.

  10. Galactic gamma-ray observations and galactic structure

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1975-01-01

    Recent observations of gamma-rays originating in the galactic disk together with radio observations, support an emerging picture of the overall structure of our galaxy with higher interstellar gas densities and star formation rates in a region which corresponds to that of the inner arms. The emerging picture is one where molecular clouds make up the dominant constituent of the interstellar gas in the inner galaxy and play a key role in accounting for the gamma-rays and phenomena associated with the production of young stars and other population 1 objects. In this picture, cosmic rays are associated with supernovae and are primarily of galactic origin. These newly observed phenomena can be understood as consequences of the density wave theories of spiral structure. Based on these new developments, the suggestion is made that a new galactic population class, Population O, be added to the standard Populations 1 and 2 in order to recognize important differences in dynamics and distribution between diffuse galactic H1 and interstellar molecular clouds.

  11. Dynamic Diversity: Toward a Contextual Understanding of Critical Mass

    ERIC Educational Resources Information Center

    Garces, Liliana M.; Jayakumar, Uma M.

    2014-01-01

    Through an analysis of relevant social science evidence, this article provides a deeper understanding of critical mass, a concept that has become central in litigation efforts related to affirmative action admissions policies that seek to further the educational benefits of diversity. We demonstrate that the concept of critical mass requires an…

  12. The Formation of Galactic Bulges

    NASA Astrophysics Data System (ADS)

    Carollo, C. Marcella; Ferguson, Henry C.; Wyse, Rosemary F. G.

    2000-03-01

    Part I. Introduction: What are galactic bulges?; Part II. The Epoch of Bulge Formation: Origin of bulges; Deep sub-mm surveys: High-z ULIRGs and the formation of spheroids; Ages and metallicities for stars in the galactic bulge; Integrated stellar populations of bulges: First results; HST-NICMOS observations of galactic bulges: Ages and dust; Inside-out bulge formation and the origin of the Hubble sequence; Part III. The Timescales of Bulge Formation: Constraints on the bulge formation timescale from stellar populations; Bulge building with mergers and winds; Role of winds, starbursts, and activity in bulge formation; Dynamical timescales of bulge formation; Part IV. Physical Processes in Bulge Formation: the role of bars for secular bulge formation; Bars and boxy/peanut-shaped bulges: an observational point of view; Boxy- and peanut-shaped bulges; A new class of bulges; The role of secondary bars in bulge formation; Radial transport of molecular gas to the nuclei of spiral galaxies; Dynamical evolution of bulge shapes; Two-component stellar systems: Phase-space constraints; Central NGC 2146 - a firehose-type bending instability?; Bulge formation: the role of the multi-phase ISM; Global evolution of a self-gravitating multi-phase ISM in the central kpc region of galaxies; Part V. Bulge Phenomenology: Bulge-disk decomposition of spiral galaxies in the near-infrared; The triaxial bulge of NGC 1371; The bulge-disk orthogonal decoupling in galaxies: NGC 4698 and NGC 4672; The kinematics and the origin of the ionized gas in NGC 4036; Optically thin thermal plasma in the galactic bulge; X-ray properties of bulges; The host galaxies of radio-loud AGN; The centers of radio-loud early-type galaxies with HST; Central UV spikes in two galactic spheroids; Conference summary: where do we stand?

  13. The Evolution of Gas Clouds Falling in the Magnetic Galactic Halo

    NASA Astrophysics Data System (ADS)

    Kwak, Kyujin; Shelton, R. L.

    2007-12-01

    In the Galactic fountain scenario, supernovae and/or super bubbles propel material into the Galactic halo. As the material cools, it condenses into clouds. By using the 3-D magneto-hydrodynamic simulations, we modeled and studied the dynamical evolution of these gas clouds. In our simulations, we assume that the gas clouds have already formed in the process of the Galactic fountain and start to fall from the stationary state. We considered various magnetic field configurations of the Galactic halo given the current uncertainties. We also investigated how the evolution of the gas clouds is affected by the different initial masses of the gas clouds. A gas cloud is more likely to reach close to the Galactic plane and maintain its original shape if the cloud's initial density is high and if the component of the magnetic field that is parallel to the cloud's motion is strong while the component that is perpendicular is weak. With more realistic magnetic field configurations (combinations of parallel and perpendicular magnetic fields, and nonuniform magnetic field strength), the gas cloud falls down along the magnetic field lines with the morphology as a result of the combined effect of the parallel and perpendicular magnetic field lines. Among the various morphologies that developed during the dynamical evolution, a worm or filament shaped cloud is formed when the perpendicular component of the magnetic field is strong and dominant. Comparing the cloud morphologies and column densities from our simulations with those of observations (such as high and intermediate velocity clouds, HVCs and IVCs) would provide better information about the magnetic field of the Galactic halo together with the mass of the cloud.

  14. An Assessment of Dynamical Mass Constraints on Pre-Main-Sequence Evolutionary Tracks

    NASA Astrophysics Data System (ADS)

    Hillenbrand, Lynne A.; White, Russel J.

    2004-04-01

    We have assembled a database of stars having both masses determined from measured orbital dynamics and sufficient spectral and photometric information for their placement on a theoretical H-R diagram. Our sample consists of 115 low-mass (M<2.0 Msolar) stars, 27 pre-main-sequence and 88 main-sequence. We use a variety of available pre-main-sequence evolutionary calculations to test the consistency of predicted stellar masses with dynamically determined masses. Despite substantial improvements in model physics over the past decade, large systematic discrepancies still exist between empirical and theoretically derived masses. For main-sequence stars, all models considered predict masses consistent with dynamical values above 1.2 Msolar and some models predict consistent masses at solar or slightly lower masses, but no models predict consistent masses below 0.5 Msolar, with all models systematically underpredicting such low masses by 5%-20%. The failure at low masses stems from the poor match of most models to the empirical main sequence below temperatures of 3800 K, at which molecules become the dominant source of opacity and convection is the dominant mode of energy transport. For the pre-main-sequence sample we find similar trends. There is generally good agreement between predicted and dynamical masses above 1.2 Msolar for all models. Below 1.2 Msolar and down to 0.3 Msolar (the lowest mass testable), most evolutionary models systematically underpredict the dynamically determined masses by 10%-30%, on average, with the Lyon group models predicting marginally consistent masses in the mean, although with large scatter. Over all mass ranges, the usefulness of dynamical mass constraints for pre-main-sequence stars is in many cases limited by the random errors caused by poorly determined luminosities and especially temperatures of young stars. Adopting a warmer-than-dwarf temperature scale would help reconcile the systematic pre-main-sequence offset at the lowest masses

  15. The central dynamics of M3, M13, and M92: stringent limits on the masses of intermediate-mass black holes

    NASA Astrophysics Data System (ADS)

    Kamann, S.; Wisotzki, L.; Roth, M. M.; Gerssen, J.; Husser, T.-O.; Sandin, C.; Weilbacher, P.

    2014-06-01

    We used the PMAS integral field spectrograph to obtain large sets of radial velocities in the central regions of three northern Galactic globular clusters: M3, M13, and M92. By applying the novel technique of crowded field 3D spectroscopy, we measured radial velocities for about 80 stars within the central ~10″ of each cluster. These are by far the largest spectroscopic datasets obtained in the innermost parts of these clusters up to now. To obtain kinematical data across the whole extent of the clusters, we complement our data with measurements available in the literature. We combine our velocity measurements with surface brightness profiles to analyse the internal dynamics of each cluster using spherical Jeans models, and investigate whether our data provide evidence for an intermediate-mass black hole in any of the clusters. The surface brightness profiles reveal that all three clusters are consistent with a core profile, although shallow cusps cannot be excluded. We find that spherical Jeans models with a constant mass-to-light ratio provide a good overall representation of the kinematical data. A massive black hole is required in none of the three clusters to explain the observed kinematics. Our 1σ (3σ) upper limits are 5300 M⊙ (12 000 M⊙) for M3, 8600 M⊙ (13 000 M⊙) for M13, and 980 M⊙ (2700 M⊙) for M92. A puzzling circumstance is the existence of several potential high velocity stars in M3 and M13, as their presence can account for the majority of the discrepancies that we find in our mass limits compared to M92. Based on observations collected at the Centro Astronómico Hispano-Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC).Appendices are available in electronic form at http://www.aanda.orgTables D.1 to D.6 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc

  16. Measurement of collective dynamical mass of Dirac fermions in graphene.

    PubMed

    Yoon, Hosang; Forsythe, Carlos; Wang, Lei; Tombros, Nikolaos; Watanabe, Kenji; Taniguchi, Takashi; Hone, James; Kim, Philip; Ham, Donhee

    2014-08-01

    Individual electrons in graphene behave as massless quasiparticles. Unexpectedly, it is inferred from plasmonic investigations that electrons in graphene must exhibit a non-zero mass when collectively excited. The inertial acceleration of the electron collective mass is essential to explain the behaviour of plasmons in this material, and may be directly measured by accelerating it with a time-varying voltage and quantifying the phase delay of the resulting current. This voltage-current phase relation would manifest as a kinetic inductance, representing the reluctance of the collective mass to accelerate. However, at optical (infrared) frequencies, phase measurements of current are generally difficult, and, at microwave frequencies, the inertial phase delay has been buried under electron scattering. Therefore, to date, the collective mass in graphene has defied unequivocal measurement. Here, we directly and precisely measure the kinetic inductance, and therefore the collective mass, by combining device engineering that reduces electron scattering and sensitive microwave phase measurements. Specifically, the encapsulation of graphene between hexagonal boron nitride layers, one-dimensional edge contacts and a proximate top gate configured as microwave ground together enable the inertial phase delay to be resolved from the electron scattering. Beside its fundamental importance, the kinetic inductance is found to be orders of magnitude larger than the magnetic inductance, which may be utilized to miniaturize radiofrequency integrated circuits. Moreover, its bias dependency heralds a solid-state voltage-controlled inductor to complement the prevalent voltage-controlled capacitor.

  17. Dynamics and swing control of double-pendulum bridge cranes with distributed-mass beams

    NASA Astrophysics Data System (ADS)

    Huang, Jie; Liang, Zan; Zang, Qiang

    2015-03-01

    Motion-induced oscillations of crane payloads seriously degrade their effectiveness and safety. Significant progress has been achieved with reducing payload oscillations on a single-pendulum crane with a point-mass payload attached to the end of the cable. However, large payloads and the actual configuration of the hoisting mechanism may transform the crane to a double-pendulum system with a distributed-mass payload. The manipulation task can be more challenging because of the complicated dynamics. The dynamics of bridge cranes transporting distributed-mass beams are derived. A command-smoothing scheme is presented to suppress the complex payload oscillations. Simulations of a large range of motions are used to analyze the dynamic behavior of the cranes and the robustness of the method. Experimental results obtained from a small-scale double-pendulum bridge crane transporting a distributed-mass beam validate the simulated dynamic behavior and the effectiveness of the method.

  18. Linking body mass and group dynamics in an obligate cooperative breeder.

    PubMed

    Ozgul, Arpat; Bateman, Andrew W; English, Sinead; Coulson, Tim; Clutton-Brock, Tim H

    2014-11-01

    Social and environmental factors influence key life-history processes and population dynamics by affecting fitness-related phenotypic traits such as body mass. The role of body mass is particularly pronounced in cooperative breeders due to variation in social status and consequent variation in access to resources. Investigating the mechanisms underlying variation in body mass and its demographic consequences can help elucidate how social and environmental factors affect the dynamics of cooperatively breeding populations. In this study, we present an analysis of the effect of individual variation in body mass on the temporal dynamics of group size and structure of a cooperatively breeding mongoose, the Kalahari meerkat, Suricata suricatta. First, we investigate how body mass interacts with social (dominance status and number of helpers) and environmental (rainfall and season) factors to influence key life-history processes (survival, growth, emigration and reproduction) in female meerkats. Next, using an individual-based population model, we show that the models explicitly including individual variation in body mass predict group dynamics better than those ignoring this morphological trait. Body mass influences group dynamics mainly through its effects on helper emigration and dominant reproduction. Rainfall has a trait-mediated, destabilizing effect on group dynamics, whereas the number of helpers has a direct and stabilizing effect. Counteracting effects of number of helpers on different demographic rates, despite generating temporal fluctuations, stabilizes group dynamics in the long term. Our study demonstrates that social and environmental factors interact to produce individual variation in body mass and accounting for this variation helps to explain group dynamics in this cooperatively breeding population.

  19. Linking body mass and group dynamics in an obligate cooperative breeder.

    PubMed

    Ozgul, Arpat; Bateman, Andrew W; English, Sinead; Coulson, Tim; Clutton-Brock, Tim H

    2014-11-01

    Social and environmental factors influence key life-history processes and population dynamics by affecting fitness-related phenotypic traits such as body mass. The role of body mass is particularly pronounced in cooperative breeders due to variation in social status and consequent variation in access to resources. Investigating the mechanisms underlying variation in body mass and its demographic consequences can help elucidate how social and environmental factors affect the dynamics of cooperatively breeding populations. In this study, we present an analysis of the effect of individual variation in body mass on the temporal dynamics of group size and structure of a cooperatively breeding mongoose, the Kalahari meerkat, Suricata suricatta. First, we investigate how body mass interacts with social (dominance status and number of helpers) and environmental (rainfall and season) factors to influence key life-history processes (survival, growth, emigration and reproduction) in female meerkats. Next, using an individual-based population model, we show that the models explicitly including individual variation in body mass predict group dynamics better than those ignoring this morphological trait. Body mass influences group dynamics mainly through its effects on helper emigration and dominant reproduction. Rainfall has a trait-mediated, destabilizing effect on group dynamics, whereas the number of helpers has a direct and stabilizing effect. Counteracting effects of number of helpers on different demographic rates, despite generating temporal fluctuations, stabilizes group dynamics in the long term. Our study demonstrates that social and environmental factors interact to produce individual variation in body mass and accounting for this variation helps to explain group dynamics in this cooperatively breeding population. PMID:24749732

  20. The dynamical masses, densities, and star formation scaling relations of Lyα galaxies

    SciTech Connect

    Rhoads, James E.; Malhotra, Sangeeta; Richardson, Mark L. A.; McLinden, Emily M.; Finkelstein, Steven L.; Fynbo, Johan P. U.; Tilvi, Vithal S.

    2014-01-01

    We present the first dynamical mass measurements for Lyα galaxies at high redshift, based on velocity dispersion measurements from rest-frame optical emission lines and size measurements from Hubble Space Telescope imaging, for nine galaxies drawn from four surveys. We use these measurements to study Lyα galaxies in the context of galaxy scaling relations. The resulting dynamical masses range from 10{sup 9} to 10{sup 10} M {sub ☉}. We also fit stellar population models to our sample and use them to place the Lyα sample on a stellar mass versus line width relation. The Lyα galaxies generally follow the same scaling relation as star-forming galaxies at lower redshift, although, lower stellar mass fits are also acceptable in ∼1/3 of the Lyα galaxies. Using the dynamical masses as an upper limit on gas mass, we show that Lyα galaxies have unusually active star formation for their gas mass surface density. This behavior is consistent with what is observed in starburst galaxies, despite the typically smaller masses and sizes of the Lyα galaxy population. Finally, we examine the mass densities of these galaxies and show that their future evolution likely requires dissipational ('wet') merging. In short, we find that Lyα galaxies are low-mass cousins of larger starbursts.

  1. INTERACTION OF RECOILING SUPERMASSIVE BLACK HOLES WITH STARS IN GALACTIC NUCLEI

    SciTech Connect

    Li Shuo; Liu, F. K.; Berczik, Peter; Spurzem, Rainer; Chen Xian E-mail: fkliu@bac.pku.edu.cn

    2012-03-20

    Supermassive black hole binaries (SMBHBs) are the products of frequent galaxy mergers. The coalescence of the SMBHBs is a distinct source of gravitational wave (GW) radiation. The detections of the strong GW radiation and their possible electromagnetic counterparts are essential. Numerical relativity suggests that the post-merger supermassive black hole (SMBH) gets a kick velocity up to 4000 km s{sup -1} due to the anisotropic GW radiations. Here, we investigate the dynamical coevolution and interaction of the recoiling SMBHs and their galactic stellar environments with one million direct N-body simulations including the stellar tidal disruption by the recoiling SMBHs. Our results show that the accretion of disrupted stars does not significantly affect the SMBH dynamical evolution. We investigate the stellar tidal disruption rates as a function of the dynamical evolution of oscillating SMBHs in the galactic nuclei. Our simulations show that most stellar tidal disruptions are contributed by the unbound stars and occur when the oscillating SMBHs pass through the galactic center. The averaged disruption rate is {approx}10{sup -6} M{sub Sun} yr{sup -1}, which is about an order of magnitude lower than that by a stationary SMBH at similar galactic nuclei. Our results also show that a bound star cluster is around the oscillating SMBH of about {approx}0.7% the black hole mass. In addition, we discover a massive cloud of unbound stars following the oscillating SMBH. We also investigate the dependence of the results on the SMBH masses and density slopes of the galactic nuclei.

  2. Update on onium masses with three flavors of dynamical quarks

    SciTech Connect

    Gottlieb, Steven A.; Levkova, L.; Di Pierro, Massimo; El-Khadra, Aida Xenia; Kronfeld, Andreas Samuel; Mackenzie, Paul B.; Simone, James N.; /Fermilab

    2006-01-01

    We update results presented at Lattice 2005 on charmonium masses. New ensembles of gauge configurations with 2+1 flavors of improved staggered quarks have been analyzed. Statistics have been increased for other ensembles. New results are also available for P-wave mesons and for bottomonium on selected ensembles.

  3. CLUSTERED CEPHEID VARIABLES 90 KILOPARSECS FROM THE GALACTIC CENTER

    SciTech Connect

    Chakrabarti, Sukanya; Saito, Roberto; Gran, Felipe; Klein, Christopher; Blitz, Leo

    2015-03-20

    Distant regions close to the plane of our Galaxy are largely unexplored by optical surveys as they are hidden by dust. We have used near-infrared data (which minimizes dust obscuration) from the ESO Public survey VISTA Variables of the Via Lactea to search for distant stars at low latitudes. We have discovered four Cepheid variables within an angular extent of 1° centered at a Galactic longitude of l = −27.°4 and a Galactic latitude of b = −1.°08. We use the tightly constrained period–luminosity relationship that these pulsating stars obey to derive distances. We infer an average distance to these Cepheid variables of 90 kpc. The Cepheid variables are highly clustered in angle (within 1°) and in distance (the standard deviation of the distances is 12 kpc). These young (∼100 Myr old), pulsating stars are unexpected at such large distances from the Galactic disk, which terminates at ∼15 kpc. The highly clustered nature in distance and angle of the Cepheid variables suggests that the stars may be associated with a dwarf galaxy; its location and mass were earlier predicted by a dynamical analysis. The Cepheids are at an average distance of ∼2 kpc from the plane and their maximum projected separation is ∼1 kpc.

  4. Nuclear mass dependence of chaotic dynamics in the Ginocchio model

    SciTech Connect

    Yoshinaga, N. ); Yoshida, N. , Wako-shi, Saitama 351-01 ); Shigehara, T. ); Cheon, T. )

    1993-08-01

    The chaotic dynamics in nuclear collective motion is studied in the framework of a schematic shell model which has only monopole and quadrupole degrees of freedom. The model is shown to reproduce the experimentally observed global trend toward less chaotic motion in heavier nuclei. The relation between the current approach and the earlier studies with bosonic models is discussed.

  5. INTEGRAL Galactic bulge monitoring program

    NASA Astrophysics Data System (ADS)

    Kuulkers, E.; Kouveliotou, C.; van der Horst, A. J.; Belloni, T.; Chenevez, J.; Ibarra, A.; Munoz-Darias, T.; Bazzano, A.; Cadolle Bel, M.; De Cesare, G.; Diaz Trigo, M.; Jourdain, E.; Lubinski, P.; Natalucci, L.; Ness, J. U.; Parmar, A.; Pollock, A. M. T.; Rodriguez, J.; Roques, J. P.; Sanchez-Fernandez; C.; Ubertini, P.; Winkler, C.

    2010-12-01

    The central region of our Galaxy, the Galactic bulge, is a rich host of variable high-energy X-ray and gamma-ray point sources. These sources include bright and relatively faint X-ray transients, X-ray bursters, persistent neutron star and black-hole candidate binaries, high-mass X-ray binaries, etc.. We have a program to monitor the Galactic bulge region regularly and frequently with the gamma-ray observatory INTEGRAL, whenever it is observable. As a service to the scientific community the high-energy light curves of sources present, as well as the images of the region are made available through the WWW at http://integral.esac.esa.int/BULGE/ as soon as possible after the observations have been performed. We show the ongoing results of this exciting program.

  6. Dynamic Stability of a #D Tensegrity Structure Carrying a Top Mass: Simulations and Experiments

    NASA Astrophysics Data System (ADS)

    Michielsen, Joris; Fey, Rob H. B.; Nijmeijer, Henk

    2012-07-01

    The static and dynamic stability of a 3D tensegrity structure carrying a top mass is investigated both theoretically and experimentally by studying static and linear dynamic responses, (nonlinear) frequency-amplitude plots, and Poincaré maps. A good correspondence between numerical and experimental results is obtained for the eigenfrequencies, FRFs, and frequency-amplitude plots.

  7. Examining the equivalence of Bakamjian-Thomas mass operators in different forms of dynamics

    SciTech Connect

    Polyzou, W. N.

    2010-12-15

    We discus the proof of the equivalence of relativistic quantum mechanical models based on the generalized Bakamjian-Thomas construction in all of Dirac's forms of dynamics. Explicit representations of the equivalent mass operators are given in all three of Dirac's forms of dynamics.

  8. The Galactic Center Seen Through the Precise, Multiplexed Eye of JWST

    NASA Astrophysics Data System (ADS)

    Lu, Jessica R.

    2013-01-01

    The Galactic center harbors the closest supermassive black hole and contains warm, turbulent molecular clouds, dense stellar populations, and some of the most active star forming regions in the Milky Way. These unique conditions make the Galactic Center a compelling target for understanding how star formation varies with environment, how nuclear star clusters in galaxies evolve, and how supermassive black holes influence their surroundings. Detailed studies of the Galactic center have previously been conducted with ground-based telescopes equipped with adaptive optics in pencil-beam studies. However, Galactic center studies can be dramatically expanded with JWST's combination of large fields-of-view (FOV) and high spatial resolution in the infrared. Of particular relevance for the Galactic Center are NIRCam's suite of narrow-band imaging filters and NIRSpec's IFU spectrograph. The narrow-band imaging should provide precise astrometry, rough spectral types, and emission line maps for ~50,000 stars within a 2' x 2' FOV, while follow up IFU spectroscopy will give precise types and radial velocities for the most interesting subsets of stars. Potential results include: (1) counting the intermediate age red and yellow supergiants that will give information about the recent star formation history; (2) measuring the initial mass function below 1 Msun and studying young stellar objects in known and new young star clusters; (3) using 3D dynamics to model the kinematic evolution of the entire nuclear cluster, find hypervelocity stars, and trace the orbits of gas features and clusters in the region. Galactic Center observations with JWST will give us a more complete picture of the gas, stars, black hole, and their interactions in this dynamic region.

  9. Supernovae and AGN Driven Galactic Outflows

    NASA Astrophysics Data System (ADS)

    Sharma, Mahavir; Nath, Biman B.

    2013-01-01

    We present analytical solutions for winds from galaxies with a Navarro-Frank-White (NFW) dark matter halo. We consider winds driven by energy and mass injection from multiple supernovae (SNe), as well as momentum injection due to radiation from a central black hole. We find that the wind dynamics depends on three velocity scales: (1) v_\\star ˜ (\\dot{E} / 2 \\dot{M})^{1/2} describes the effect of starburst activity, with \\dot{E} and \\dot{M} as energy and mass injection rate in a central region of radius R; (2) v • ~ (GM •/2R)1/2 for the effect of a central black hole of mass M • on gas at distance R; and (3) v_{s} =(GM_h / 2 {C}r_s)^{1/2}, which is closely related to the circular speed (vc ) for an NFW halo, where rs is the halo scale radius and {C} is a function of the halo concentration parameter. Our generalized formalism, in which we treat both energy and momentum injection from starbursts and radiation from the central active galactic nucleus (AGN), allows us to estimate the wind terminal speed to be (4v 2 sstarf + 6(Γ - 1)v • 2 - 4v 2 s )1/2, where Γ is the ratio of force due to radiation pressure to gravity of the central black hole. Our dynamical model also predicts the following: (1) winds from quiescent star-forming galaxies cannot escape from 1011.5 M ⊙ <= Mh <= 1012.5 M ⊙ galaxies; (2) circumgalactic gas at large distances from galaxies should be present for galaxies in this mass range; (3) for an escaping wind, the wind speed in low- to intermediate-mass galaxies is ~400-1000 km s-1, consistent with observed X-ray temperatures; and (4) winds from massive galaxies with AGNs at Eddington limit have speeds >~ 1000 km s-1. We also find that the ratio [2v 2 sstarf - (1 - Γ)v • 2]/v 2 c dictates the amount of gas lost through winds. Used in conjunction with an appropriate relation between M • and Mh and an appropriate opacity of dust grains in infrared (K band), this ratio has the attractive property of being minimum at a certain halo

  10. Surface pump-probe femtosecond-laser mass spectrometry: Time-, mass-, and velocity-resolved detection of surface reaction dynamics

    SciTech Connect

    Vaida, Mihai E.; Bernhardt, Thorsten M.

    2010-10-15

    A detailed account of the experimental methodology of surface pump-probe femtosecond-laser mass spectrometry is presented. This recently introduced technique enables the direct time-resolved investigation of surface reaction dynamics by monitoring the mass and the relative velocity of intermediates and products of a photoinduced surface reaction via multiphoton ionization. As a model system, the photodissociation dynamics of methyl iodide adsorbed at submonolayer coverage on magnesia ultrathin films is investigated. The magnesia surface preparation and characterization as well as the pulsed deposition of methyl iodide are described. The femtosecond-laser excitation (pump) and, in particular, the resonant multiphoton ionization surface detection (probe) schemas are discussed in detail. Results of pump-probe time-resolved methyl and iodine atom detection experiments are presented and the potential of this method for velocity-resolved photofragment analysis is evaluated.

  11. Young Massive Clusters in the Galactic Center

    NASA Astrophysics Data System (ADS)

    Figer, D. F.

    2004-12-01

    The three young clusters in the Galactic Center represent the closest examples of massive starbursts and they define the upper mass limit of the Galactic cluster mass functions. In this review, I describe the characteristics and content of the Arches, Quintuplet, and Central clusters. They each are more massive than any other cluster in the Galaxy, and the Arches cluster, in particular, has a mass and age that make it ideal for studies of massive stellar evolution and dense stellar systems. A preliminary measurement indicates that the initial mass function in the Galactic center is top-heavy, suggesting an environmental effect that has otherwise been absent in similar observations for Galactic clusters. Given the relatively more evolved nature of the Quintuplet and Central clusters, these clusters contain stars in a wide range of evolutionary states, including Luminous Blue Variables and Wolf-Rayet stars. The Quintuplet cluster provides a particularly interesting view of the most massive stars that are known, the Pistol Star and FMM362. An analysis of the mass spectrum in the Arches cluster suggests an upper mass cutoff of ˜150-200 M⊙.

  12. Contributions of climate and dynamics to mass wastage and accumulation zone thinning of Eklutna Glacier, Alaska

    NASA Astrophysics Data System (ADS)

    Sass, L. C.; O'Neel, S.; Loso, M. G.; MacGregor, J. A.; Catania, G. A.; Larsen, C. F.

    2009-12-01

    Although the role of ice dynamics in rapid changes on ice sheets and large tidewater glaciers is the topic of much current research, ice dynamics on smaller alpine glaciers are commonly overlooked. We investigate the role of ice dynamics in observed mass loss at Eklutna Glacier, a small alpine glacier in the western Chugach Mountains, Alaska. Meltwater from Eklutna Glacier is the primary input to a reservoir that supplies 80% of the drinking water and 10% of the power used by Anchorage, Alaska’s largest city. Airborne laser profiling by University of Alaska Fairbanks shows that the glacier has thinned by an average of 42 m since it was mapped in 1957 and that much of the volume loss occurred in a broad basin near the top of the glacier. We investigate the relative importance of changes in mass-balance distribution and changes in ice dynamics to resolve the cause of rapid mass loss on the upper glacier. Our efforts include supplementing an ongoing mass balance monitoring program with ice thickness and motion measurements. We used 5-MHz radar to measure ice thickness and found a maximum thickness of 430m located in the upper basin, and a bedrock sill separating it from the lower glacier. Summer surface velocities, measured with GPS, vary from 7 to 20 cm/day and generally increase down glacier. Mass-balance measurements from 2008-2009 cannot explain the observed thinning without a dynamic component of mass loss.

  13. An improved technique for the reconstruction of former glacier mass-balance and dynamics

    NASA Astrophysics Data System (ADS)

    Carr, Simon; Coleman, Christopher

    2007-11-01

    The recognition of past glacier extent and dynamics is a fundamental aspect of investigations of the climatic sensitivity of glaciers, especially when examining short-lived climate events such as the Younger Dryas or Little Ice Age. Existing approaches to the reconstruction of glacier form and dynamics depend on speculative reasoning of key glacier dynamic parameters, including the role of basal slip and subglacial deformation in glacier mass-transfer. This study reviews approaches to glacier reconstruction, derivation of former glacier equilibrium line altitudes (ELA's) and estimation of mass-balance and dynamics, concluding that most reconstructions of glacier mass-balance are compromised by a lack of glaciological considerations. An alternative approach to glacier reconstruction is presented, demonstrated and discussed, by which an empirical relationship between ablation gradient and mass loss at the ELA is used to derive mass-balance, mass-flux through the ELA and average balance velocity at the ELA. This 'glaciological' approach is applied to four reconstructed glaciers to test previous interpretations that each reflects Younger Dryas glaciation in the UK. The study concludes that this approach provides a more robust technique for reconstructing former glacier dynamics, and may be applied to test geomorphological interpretations of former mountain glaciation.

  14. High-speed multiple-mode mass-sensing resolves dynamic nanoscale mass distributions

    PubMed Central

    Olcum, Selim; Cermak, Nathan; Wasserman, Steven C.; Manalis, Scott R.

    2015-01-01

    Simultaneously measuring multiple eigenmode frequencies of nanomechanical resonators can determine the position and mass of surface-adsorbed proteins, and could ultimately reveal the mass tomography of nanoscale analytes. However, existing measurement techniques are slow (<1 Hz bandwidth), limiting throughput and preventing use with resonators generating fast transient signals. Here we develop a general platform for independently and simultaneously oscillating multiple modes of mechanical resonators, enabling frequency measurements that can precisely track fast transient signals within a user-defined bandwidth that exceeds 500 Hz. We use this enhanced bandwidth to resolve signals from multiple nanoparticles flowing simultaneously through a suspended nanochannel resonator and show that four resonant modes are sufficient for determining their individual position and mass with an accuracy near 150 nm and 40 attograms throughout their 150-ms transit. We envision that our method can be readily extended to other systems to increase bandwidth, number of modes, or number of resonators. PMID:25963304

  15. MK Classification and Dynamical Masses for Late-Type Visual Binaries

    NASA Astrophysics Data System (ADS)

    Tamazian, Vakhtang S.; Docobo, José A.; Melikian, Norair D.; Karapetian, Arthur A.

    2006-06-01

    On the basis of slit spectra obtained with the SCORPIO spectral camera attached to the 2.6 m telescope of the V. Ambartsumian Byurakan Astrophysical Observatory (Armenia), MK classifications for 30 visual binaries comprising mostly late K and M type stars are presented. Comparison with other determinations shows that this configuration provides a reliable MK classification. Dynamical masses for 25 systems are computed. Using standard mass-luminosity calibrations, individual mass sums for 11 pairs consisting of virtually single, nonvariable dwarfs are calculated, showing a good agreement with corresponding dynamical masses. The dynamical parallax of HIP 112354 is closer to the trigonometric parallax given in the Yale General Catalogue of Trigonometric Stellar Parallaxes (van Altena et al.) than to the Hipparcos parallax.

  16. Dynamic analysis of CO₂ labeling and cell respiration using membrane-inlet mass spectrometry.

    PubMed

    Yang, Tae Hoon

    2014-01-01

    Here, we introduce a mass spectrometry-based analytical method and relevant technical details for dynamic cell respiration and CO2 labeling analysis. Such measurements can be utilized as additional information and constraints for model-based (13)C metabolic flux analysis. Dissolved dynamics of oxygen consumption and CO2 mass isotopomer evolution from (13)C-labeled tracer substrates through different cellular processes can be precisely measured on-line using a miniaturized reactor system equipped with a membrane-inlet mass spectrometer. The corresponding specific rates of physiologically relevant gases and CO2 mass isotopomers can be quantified within a short-term range based on the liquid-phase dynamics of dissolved fermentation gases.

  17. Tidewater glacier dynamics and the mass budget of the Northwest Greenland ice sheet

    NASA Astrophysics Data System (ADS)

    Morris, R. A.; Luckman, A. J.; Murray, T.; Hanna, E.

    2014-12-01

    The rate of mass loss from the Greenland ice sheet continues to increase in response to increased surface melt and the retreat, acceleration and thinning of marine-terminating outlet glaciers. Marginal thinning is concentrated on the southeastern and western coasts; areas drained by numerous large, fast-flowing marine-terminating glaciers. Considerable temporal variability exists in the timing of regional mass loss, with an emerging picture of a clockwise progression of mass loss spreading from the southeast to the west of the ice sheet. The partitioning of regional mass loss into surface mass balance and glacier dynamic driven components is a question of considerable scientific interest. We present a mass budget for the Northwest Greenland ice sheet, along with long term, high temporal resolution records of glacier flow velocity and calving front position. We feature track optical and Synthetic Aperture Radar (SAR) imagery from Landsat-5 TM, Landsat-7 ETM+ (slc-on), Landsat-8 OLI, ERS-1 SAR, ERS-2 SAR and Envisat ASAR data covering the period 1985-2014. It has been suggested that some Northwest Greenland glaciers have undergone two periods of dynamic mass loss over this time period. Our records span 1985-2014 for these glaciers and 2000-2014 for other large outlets. Velocity records were converted into ice discharge estimates using bedrock and surface Digital Elevation Models and assumptions about depth integrated velocity and ice density. Surface Mass Balance (SMB) model output was used to complete the mass budget. The 30 year observational record shows that the 21st century period of glacier dynamic change in Northwest Greenland is exceptional and ongoing. Our results do not support the assertion of an earlier period of dynamic mass loss in the late 1980s and early 1990s. However, many of the observed dynamic changes initiated substantially prior to the gravimetric observation of increased regional mass loss from summer 2005 onwards. Modelled SMB exhibits a

  18. Galactic Habitable Orbits

    NASA Astrophysics Data System (ADS)

    Rahimi, A.; Mao, S.; Kawata, D.

    2014-03-01

    The fossil record shows that the Earth has experienced several mass extinctions over the past 500 million years1, and it has been suggested that there is a periodicity in extinction events on timescales of tens1 and/or hundreds of millions of years. Various hypotheses have been proposed to explain the cause of the mass extinctions, including the suggestion that the Earth's ozone layer may have been destroyed by intense radiation from a nearby supernovae2- 3, exposing the Earth's surface to damaging UV radiation. Recent observations of cores taken from the ocean floor revealed atoms of a very rare isotope of iron (60Fe) believed to have arrived on Earth around 2 million years ago as fallout from a nearby supernovae4. Astronomical evidence for that past supernovae was recently found in the debris of a young cluster of massive stars5, by tracing its past orbit, putting it at the right place at the right time to explain the mild extinction event. Here we report new high-resolution (both in space and time) N-body chemodynamical simulations (carried out with our novel code GCD+6) of the evolution of a model Milky Way Galaxy, tracing the orbit of èsun-like' stars over a 500 million year period, checking the proximity to supernovae throughout the history of the orbit and comparing the times when this occurs with past mass extinctions on Earth. We additionally explain the important effects of the spiral arm pattern, radial migration of stars and Galactic chemistry on habitability.

  19. Mass-Transfer-Controlled Dynamic Interfacial Tension in Microfluidic Emulsification Processes.

    PubMed

    Wang, Kai; Zhang, Liming; Zhang, Wanlu; Luo, Guangsheng

    2016-04-01

    Varied interfacial tension caused by the unsaturated adsorption of surfactants on dripping droplet surfaces is experimentally studied. The mass transfer and adsorption of surfactants, as well as the generation of fresh interfaces, are considered the main factors dominating the surfactant adsorption ratio on droplet surfaces. The diffusion and convective mass transfer of the surfactants are first distinguished by comparing the adsorption depth and the mass flux boundary layer thickness. A characterized mass transfer time is then calculated by introducing an effective diffusion coefficient. A time ratio is furthermore defined by dividing the droplet generation time by the characteristic mass transfer time, t/tm, in order to compare the rates of surfactant mass transfer and droplet generation. Different control mechanisms for different surfactants are analyzed based on the range of t/t(m), and a criterion time ratio using a simplified characteristic mass transfer time, t(m)*, is finally proposed for predicting the appearance of dynamic interfacial tension.

  20. Dynamical Masses Demonstrate the Discordant Model Ages for Upper Scorpius

    NASA Astrophysics Data System (ADS)

    Rizzuto, Aaron C.; Ireland, Michael; Kraus, Adam L.; Dupuy, Trent J.

    2016-01-01

    We present the results of a long term orbit monitoring program, using sparse aperture masking observations taken with NIRC2 on the Keck-II telescope, of seven G to M-type members of the Upper Scorpius subgroup of the Sco-Cen OB association. We present astrometry and derived orbital elements of the binary systems we have monitored, and also determine the age, component masses, distance and reddening for each system using the orbital solutions and multi-band photometry, including Hubble Space Telescope photometry, and a Bayesian fitting procedure. We find that the models can be forced into agreement with any individual system by assuming an age, but that ageis not consistent across the mass range of our sample. The G-type binary systems in our sample have model ages of ~11.5 Myr, which is consistent with the latest age estimates for Upper Scorpius, while the M-type binary systems have significantly younger model ages of ~7 Myr. Based on our fits to the data, this age discrepancy in the models corresponds to a luminosity under-prediction of 0.8-0.15 dex, or equivalently an effective temperature over-prediction of 100-300 K for M-type stars at a given premain-sequence age.

  1. Active galactic nuclei

    PubMed Central

    Fabian, Andrew C.

    1999-01-01

    Active galactic nuclei are the most powerful, long-lived objects in the Universe. Recent data confirm the theoretical idea that the power source is accretion into a massive black hole. The common occurrence of obscuration and outflows probably means that the contribution of active galactic nuclei to the power density of the Universe has been generally underestimated. PMID:10220363

  2. FIRE simulations: galactic outflows and their consequences

    NASA Astrophysics Data System (ADS)

    Keres, Dusan; FIRE team

    2016-06-01

    We study gaseous outflows and their consequences in high-resolution galaxy formation simulations with explicit stellar feedback from the Feedback in Realistic Environments project. Collective, galaxy scale, effect of stellar feedback results in episodic ejections of large amount of gas and heavy elements into the circum-galactic medium. Gas ejection episodes follow strong bursts of star formation. Properties of galactic star formation and ejection episodes depend on galaxy mass and redshift and, together with gas infall and recycling, shape the evolution of the circum-galactic medium and galaxies. As a consequence, our simulated galaxies have masses, star formation histories and heavy element content in good agreement with the observed population of galaxies.

  3. Constraints on First-Stars Models From Observations of Local Low-Mass Dwarf Galaxies and Galactic Metal-Poor Halo Stars

    NASA Astrophysics Data System (ADS)

    Yung, Long Yan; Venkatesan, A.

    2014-01-01

    The first metal-free stars in the universe had hard ionizing photon spectra and unique element yields from their supernovae, leaving signatures in the reionization of the intergalactic medium and in the metal enrichment of gas in the early universe. Here, we examine the metal abundances in a variety of systems in the local universe, from very metal-poor Galactic halo stars to ultra-faint dwarf spheroidal galaxies, and compare them with the latest theoretical models of massive stars with and without rotation. We confirm the similar abundance patterns found in the ultra-faint dwarfs and metal-poor halo stars by recent studies, and find new trends of interest in a variety of individual elements spanning metallicity values of [Fe/H] from about -2 to -5. We also compare our results with the abundances found in the very metal-deficient nearby dwarf irregular galaxy Leo P, which was recently discovered in the Arecibo ALFALFA survey. We comment on the similarities and differences between abundance trends in gas-rich dwarf galaxy systems like Leo P versus gas-poor ones like the ultra-faint dwarf spheroidals, and on the possibility of such systems hosting populations of the first stars. This work has been supported by NSF grant AST-1211005 and by Research Corporation through the Cottrell College Science Award.

  4. The Evolution of Gas Clouds Falling in the Magnetized Galactic Halo: High-Velocity Clouds (HVCs) Originated in the Galactic Fountain

    NASA Astrophysics Data System (ADS)

    Kwak, Kyujin; Shelton, Robin L.; Raley, Elizabeth A.

    2009-07-01

    In the Galactic fountain scenario, supernovae and/or stellar winds propel material into the Galactic halo. As the material cools, it condenses into clouds. By using FLASH three-dimensional magnetohydrodynamic simulations, we model and study the dynamical evolution of these gas clouds after they form and begin to fall toward the Galactic plane. In our simulations, we assume that the gas clouds form at a height of z = 5 kpc above the Galactic midplane, then begin to fall from rest. We investigate how the cloud's evolution, dynamics, and interaction with the interstellar medium (ISM) are affected by the initial mass of the cloud. We find that clouds with sufficiently large initial densities (n >= 0.1 H atoms cm-3) accelerate sufficiently and maintain sufficiently large column densities as to be observed and identified as high-velocity clouds (HVCs) even if the ISM is weakly magnetized (1.3 μG). However, the ISM can provide noticeable resistance to the motion of a low-density cloud (n <= 0.01 H atoms cm-3) thus making it more probable that a low-density cloud will attain the speed of an intermediate-velocity cloud rather than the speed of an HVC. We also investigate the effects of various possible magnetic field configurations. As expected, the ISM's resistance is greatest when the magnetic field is strong and perpendicular to the motion of the cloud. The trajectory of the cloud is guided by the magnetic field lines in cases where the magnetic field is oriented diagonal to the Galactic plane. The model cloud simulations show that the interactions between the cloud and the ISM can be understood via analogy to the shock tube problem which involves shock and rarefaction waves. We also discuss accelerated ambient gas, streamers of material ablated from the clouds, and the cloud's evolution from a sphere-shaped to a disk- or cigar-shaped object.

  5. A Lagrangian dynamical theory for the mass function of cosmic structures - II. Statistics

    NASA Astrophysics Data System (ADS)

    Monaco, Pierluigi

    1997-09-01

    The statistical tools needed to obtain a mass function from realistic collapse-time estimates are presented. Collapse dynamics has been dealt with in Paper I of this series by means of the powerful Lagrangian perturbation theory and the simple ellipsoidal collapse model. The basic quantity considered here is the inverse collapse time F; it is a non-linear functional of the initial potential, with a non-Gaussian distribution. In the case of sharp k-space smoothing, it is demonstrated that the fraction of collapsed mass can be determined by extending to the F process the diffusion formalism introduced by Bond et al. The problem is then reduced to that of a random walk with a moving absorbing barrier, and numerically solved; an accurate analytical fit, valid for small and moderate resolutions, is found. For Gaussian smoothing, the F trajectories are strongly correlated in resolution. In this case, an approximation proposed by Peacock & Heavens can be used to determine the mass functions. Gaussian smoothing is preferred, as it optimizes the performances of dynamical predictions and stabilizes the F trajectories. The relation between resolution and mass is treated at a heuristic level, and the consequences of this approximation are discussed. The resulting mass functions, compared with the classical Press & Schechter one, are shifted toward large masses (confirming the findings of Monaco), and tend to give more intermediate-mass objects at the expense of small-mass objects. However, the small-mass part of the mass function, which depends on uncertain dynamics and is likely to be affected by uncertainties in the resolution-mass relation, is not considered a robust prediction of this theory.

  6. Dynamic Universe Model predicts frequency shifting in electromagnetic radiation near gravitating masses

    NASA Astrophysics Data System (ADS)

    Naga Parameswara Gupta, Satyavarapu

    2016-07-01

    In this paper, Dynamic Universe Model studies the light rays and other electromagnetic radiation passing grazingly near any gravitating mass. This change in frequency will depend on relative direction of movement between mass and radiation. Change in frequency depends on relative direction between ray and the Gravitating mass. Here in this paper we will mathematically derive the results and show these predictions. Dynamic Universe Model uses a new type of Tensor. There are no differential or integral equations here. No singularities and body to body collisions in this model. Many papers were published in USA and CANADA. See Dynamic Universe Model Blog for further details and papers Dynamic Universe Model never reduces to General relativity on any condition. It uses a different type of mathematics based on Newtonian physics. This mathematics used here is simple and straightforward. As there are no differential equations present in Dynamic Universe Model, the set of equations give single solution in x y z Cartesian coordinates for every point mass for every time step Keywords: Dynamic Universe Model, Hubble Space telescope (HST), SITA simulations , singularity-free cosmology,

  7. Resolving Emissions Dynamics via Mass Spectrometry: Time Resolved Measurements of Emission Transients by Mass Spectrometry

    SciTech Connect

    Partridge, William P.

    2000-08-20

    Transient emissions occur throughout normal engine operation and can significantly contribute to overall system emissions. Such transient emissions may originate from various sources including cold start, varying load and exhaust-gas recirculation (EGR) rates; all of which are dynamic processes in the majority of engine operation applications (1). Alternatively, there are systems which are inherently dynamic even at steady-state engine-operation conditions. Such systems include catalytic exhaust-emissions treatment devices with self-initiated and sustained oscillations (2) and NOX adsorber systems (3,4,5). High-speed diagnostics, capable of temporally resolving such emissions transients, are required to characterize the process, verify calculated system inputs, and optimize the system.

  8. Added mass matrix estimation of beams partially immersed in water using measured dynamic responses

    NASA Astrophysics Data System (ADS)

    Liu, Fushun; Li, Huajun; Qin, Hongde; Liang, Bingchen

    2014-09-01

    An added mass matrix estimation method for beams partially immersed in water is proposed that employs dynamic responses, which are measured when the structure is in water and in air. Discrepancies such as mass and stiffness matrices between the finite element model (FEM) and real structure could be separated from the added mass of water by a series of correction factors, which means that the mass and stiffness of the FEM and the added mass of water could be estimated simultaneously. Compared with traditional methods, the estimated added mass correction factors of our approach will not be limited to be constant when FEM or the environment of the structure changed, meaning that the proposed method could reflect the influence of changes such as water depth, current, and so on. The greatest improvement is that the proposed method could estimate added mass of water without involving any water-related assumptions because all water influences are reflected in measured dynamic responses of the structure in water. A five degrees-of-freedom (dofs) mass-spring system is used to study the performance of the proposed scheme. The numerical results indicate that mass, stiffness, and added mass correction factors could be estimated accurately when noise-free measurements are used. Even when the first two modes are measured under the 5 percent corruption level, the added mass could be estimated properly. A steel cantilever beam with a rectangular section in a water tank at Ocean University of China was also employed to study the added mass influence on modal parameter identification and to investigate the performance of the proposed method. The experimental results demonstrated that the first two modal frequencies and mode shapes of the updated model match well with the measured values by combining the estimated added mass in the initial FEM.

  9. Holocene dynamics of North Atlantic Deep Water Masses

    NASA Astrophysics Data System (ADS)

    Hoogakker, B.; Chapman, M.; McCave, I. N.; Hillaire-Marcel, C.

    2012-12-01

    The Atlantic Meridional Overturning Circulation (AMOC) is a key component in latitudinal heat and salt transport, comprising northward flow of salty warm near-surface waters in the North Atlantic Current, and its compensating cool return flow at depth. During the early Holocene high summer insolation and strong inflow of North Atlantic surface waters into the Nordic Seas and the Arctic Ocean may have contributed to increased deep-water formation. To assess the effect of increased deep-water formation in the Nordic Seas and the Arctic Ocean on AMOC we reconstructed and assessed bottom flow vigour (using the mean grain size of the sortable silt) and hydrographic properties (using benthic foraminiferal isotopes) at key locations in the deep North Atlantic. The core sites of MD99-2251 and ODP 980 are currently influenced by North East Atlantic Deep Water (NEADW-origin Iceland Scotland Overflow Water), whilst that of MD95-2024 is under the influence of North West Atlantic Bottom Water (NWABW-currently densest North Atlantic Deep Water mass, origin Denmark Strait Overflow). When exiting the Labrador Sea, NEADW and NWABW mix to make up Lower North Atlantic Deep Water. Our results show that NEADW at Gardar Drift in the northeast Atlantic was considerably enhanced and denser (comparable to NWABW) during the early Holocene, until ~6.5 ka. The density increase is attributed to NEADW mainly consisting of Iceland Scotland Overflow Water, lacking significant contributions of Labrador Sea Water or Lower Deep Water (LDW-origin Antarctic Bottom Water) that it contains at present. This implies there was no density gradient between these two deep-water masses during the early Holocene, contrary to today. A subsequent weakening of NEADW accompanied with a reduction in its density after 6.5 ka allowed a shoaling of LDW and deeper eastward advection of Labrador Sea Water into the northeast Atlantic basin. The density gradient observed between current NEADW and NWABW might have been

  10. A dynamical mass estimator for high z galaxies based on spectroastrometry

    NASA Astrophysics Data System (ADS)

    Gnerucci, A.; Marconi, A.; Cresci, G.; Maiolino, R.; Mannucci, F.; Schreiber, N. M. F.; Davies, R.; Shapiro, K.; Hicks, E. K. S.

    2011-09-01

    Galaxy dynamical masses are important physical quantities to constrain galaxy evolutionary models, especially at high redshifts. However, at z ≳ 2 the limited signal to noise ratio and spatial resolution of the data usually do not allow spatially resolved kinematical modeling and very often only virial masses can be estimated from line widths. But even such estimates require a good knowledge of galaxy size, which may be smaller than the spatial resolution. Spectroastrometry is a technique which combines spatial and spectral resolution to probe spatial scales significantly smaller than the spatial resolution of the observations. Here we apply it to the case of high-z galaxies and present a method based on spectroastrometry to estimate dynamical masses of high z galaxies, which overcomes the problem of size determination with poor spatial resolution. We construct and calibrate a "spectroastrometric" virial mass estimator, modifying the "classical" virial mass formula. We apply our method to the [O III] or Hα emission line detected in z ~ 2-3 galaxies from AMAZE, LSD and SINS samples and we compare the spectroastrometric estimator with dynamical mass values resulting from full spatially resolved kinematical modeling. The spectroastrometric estimator is found to be a good approximation of dynamical masses, presenting a linear relation with a residual dispersion of only 0.15 dex. This is a big improvement compared to the "classical" virial mass estimator which has a non linear relation and much larger dispersion (0.47 dex) compared to dynamical masses. By applying our calibrated estimator to 16 galaxies from the AMAZE and LSD samples, we obtain masses in the ~107-1010 M⊙ range extending the mass range attainable with dynamical modeling. Based on observations collected with European Southern Observatory/Very Large Telescope (ESO/VLT) (proposals 075.A-0300, 076.A-0711 and 178.B-0838), with the Italian TNG, operated by FGG (INAF) at the Spanish Observatorio del Roque

  11. Angular momenta, dynamical masses, and mergers of brightest cluster galaxies

    SciTech Connect

    Jimmy; Tran, Kim-Vy; Brough, Sarah; Gebhardt, Karl; Von der Linden, Anja; Couch, Warrick J.; Sharp, Rob

    2013-12-01

    Using the VIMOS integral field unit (IFU) spectrograph on the Very Large Telescope, we have spatially mapped the kinematic properties of 10 nearby brightest cluster galaxies (BCGs) and 4 BCG companion galaxies located within a redshift of z = 0.1. In the hierarchical formation model, these massive galaxies (10{sup 10.5} M {sub ☉} < M {sub dyn} < 10{sup 11.9} M {sub ☉}) are expected to undergo more mergers than lower mass galaxies, and simulations show that dry minor mergers can remove angular momentum. We test whether BCGs have low angular momenta by using the λ {sub Re} parameter developed by the SAURON and ATLAS{sup 3D} teams and combine our kinematics with Sloan Digital Sky Survey photometry to analyze the BCGs' merger status. We find that 30% (3/10) of the BCGs and 100% of the companion galaxies (4/4) are fast rotators as defined by the ATLAS{sup 3D} criteria. Our fastest rotating BCG has a λ {sub Re} = 0.35 ± 0.05. We increase the number of BCGs analyzed from 1 in the combined SAURON and ATLAS{sup 3D} surveys to 11 BCGs total and find that above M {sub dyn} ∼ 11.5 M {sub ☉}, virtually all galaxies, regardless of environment, are slow rotators. To search for signs of recent merging, we analyze the photometry of each system and use the G – M {sub 20} selection criteria to identify mergers. We find that 40% ± 20% of our BCGs are currently undergoing or have recently undergone a merger (within 0.2 Gyr). Surprisingly, we find no correlation between galaxies with high angular momentum and morphological signatures of merging.

  12. Angular Momenta, Dynamical Masses, and Mergers of Brightest Cluster Galaxies

    NASA Astrophysics Data System (ADS)

    Jimmy; Tran, Kim-Vy; Brough, Sarah; Gebhardt, Karl; von der Linden, Anja; Couch, Warrick J.; Sharp, Rob

    2013-12-01

    Using the VIMOS integral field unit (IFU) spectrograph on the Very Large Telescope, we have spatially mapped the kinematic properties of 10 nearby brightest cluster galaxies (BCGs) and 4 BCG companion galaxies located within a redshift of z = 0.1. In the hierarchical formation model, these massive galaxies (1010.5 M ⊙ < M dyn < 1011.9 M ⊙) are expected to undergo more mergers than lower mass galaxies, and simulations show that dry minor mergers can remove angular momentum. We test whether BCGs have low angular momenta by using the λ Re parameter developed by the SAURON and ATLAS3D teams and combine our kinematics with Sloan Digital Sky Survey photometry to analyze the BCGs' merger status. We find that 30% (3/10) of the BCGs and 100% of the companion galaxies (4/4) are fast rotators as defined by the ATLAS3D criteria. Our fastest rotating BCG has a λ Re = 0.35 ± 0.05. We increase the number of BCGs analyzed from 1 in the combined SAURON and ATLAS3D surveys to 11 BCGs total and find that above M dyn ~ 11.5 M ⊙, virtually all galaxies, regardless of environment, are slow rotators. To search for signs of recent merging, we analyze the photometry of each system and use the G - M 20 selection criteria to identify mergers. We find that 40% ± 20% of our BCGs are currently undergoing or have recently undergone a merger (within 0.2 Gyr). Surprisingly, we find no correlation between galaxies with high angular momentum and morphological signatures of merging. Based on Very Large Telescope (VLT) service mode observations (Programs 381.B-0728 and 087.B-0366) gathered at the European Southern Observatory, Chile.

  13. Theory of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Shields, G. A.

    1986-01-01

    The involvement of accretion disks around supermassive black holes in the theory of active galactic nuclei (AGN) is discussed. The physics of thin and thick accretion disks is discussed and the partition between thermal and nonthermal energy production in supermassive disks is seen as uncertain. The thermal limit cycle may operate in supermassive disks (Shields, 1985), with accumulation of gas in the disk for periods of 10 to the 4th to 10 to the 7th years, punctuated by briefer outbursts during which the mass is rapidly transferred to smaller radii. An extended X-ray source in AGN is consistent with observations (Tennant and Mushotsky, 1983), and a large wind mass loss rate exceeding the central accretion rate means that only a fraction of the mass entering the disk will reach the central object; the rest being lost to the wind. Controversy in the relationship between the broad lines and the disk is also discussed.

  14. Galactic planar tides on the comets of Oort Cloud and analogs in different reference systems. I.

    NASA Astrophysics Data System (ADS)

    De Biasi, A.; Secco, L.; Masi, M.; Casotto, S.

    2015-02-01

    A comet cloud analog of Oort Cloud, is probably a common feature around extra solar planetary systems spread out across the Galaxy. Several external perturbations are able to change the comet orbits. The most important of them is the Galactic tide which may re-inject the comets towards the inner part of the planetary system, producing a cometary flux with possible impacts on it. To identify the major factors that influence the comet injection process we organized the work into three papers. Paper I is devoted only to Galactic tide due to mass contribution of bulge, disk and dark matter halo, for different values of parameters for central star and comets. In the present work only planar tides are preliminarly taken into account in order to focus on this component, usually disregarded, that may become no longer negligible in presence of spiral arms perturbation. To check how much the tidal outputs are system independent, their description has been done in three different reference systems: the Galactic one and two heliocentric systems with and without Hill's approximation developed for an axisymmetric potential in 3D-dimensions. The general consistency among the three reference systems is verified and the conditions leading to some relevant discrepancy are highlighted. The contributions from: bulge, disk and dark matter halo are separately considered and their contribution to the total Galactic tide is evaluated. In the other two of the trilogy we will treat the migration of the Sun and the dynamics of Oort Cloud comets due to the total tide and to spiral arms of the Galaxy. One of the main result reached in this paper is that the Hill's approximation turns out to be powerful in predicting the relative importance among the Galactic components producing the tidal perturbation on the Oort Cloud and analogs around new extra solar planetary systems. The main relevance is due to the contribution to the central star circular velocity on the disk due to each Galactic

  15. Galactic bulge feedback and its impact on galaxy evolution

    NASA Astrophysics Data System (ADS)

    Tang, Shikui

    Galactic bulges of early-type spirals and elliptical galaxies comprise primarily old stars, which account for more than half of the total stellar mass in the local Universe. These stars collectively generate a long-lasting feedback via stellar mass loss and Type Ia supernovae. According to the empirical stellar mass loss and supernova rates, the stellar ejecta can be heated to more than 10 7 K, forming a very hot, diffuse, and iron-rich interstellar medium. Conventionally a strong galactic wind is expected, especially in low- and intermediate-mass early-type galaxies which have a relatively shallow potential well. X-ray observations, however, have revealed that both the temperature and iron abundance of the interstellar medium in such galaxies are unexpectedly low, leading to the so-called "missing feedback" and "missing metal" problems. As an effort to address the above outstanding issues, we have carried out a series of hydrodynamic simulations of galactic bulge feedback on various scales. On galactic halo scales, we demonstrate that the feedback from galactic bulges can play an essential role in the halo gas dynamics and the evolution of their host galaxies. We approximately divide the bulge stellar feedback into two phases: (1) a starbusrt-induced blastwave from the formation of the bulge built up through frequent major mergers at high redshifts; and (2) a gradual feedback from long-lived low mass stars. The combination of the two can heat the surrounding gas beyond the virial radius and stop further gas accretion, which naturally produces a baryon deficit around Milky Way-like galaxies and explains the lack of large-scale X-ray halos. On galactic bulge scales, we study the collective 3-dimensional effects of supernovae with their blastwaves resolved. We find that the sporadic explosions of supernovae can produce a wealth of substructures in the diffuse hot gas and significantly affect the spectroscopic properties of the X-ray-emitting gas. The differential

  16. Nuclear Gas Dynamics of NGC2110: A Black Hole Offset from the Host Galaxy Mass Center?

    NASA Technical Reports Server (NTRS)

    Mundell, C. G.; Ferruit, P.; Nagar, N.; Wilson, A. S.

    2004-01-01

    It has been suggested that the central regions of many galaxies are unlikely to be in a static steady state, with instabilities caused by sinking satellites, the influence of a supermassive black hole or residuals of galaxy formation, resulting in the nuclear black hole orbiting the galaxy center. The observational signature of such an orbiting black hole is an offset of the active nucleus (AGN) from the kinematic center defined by the galaxy rotation curve. This orbital motion may provide fuel for the AGN, as the hole 'grazes' on the ISM, and bent radio jets, due to the motion of their source. The early type (E/SO) Seyfert galaxy, NGC2210, with its striking twin, 'S'-shaped radio jets, is a unique and valuable test case for the offset-nucleus phenomenon since, despite its remarkably normal rotation curve, its kinematically-measured mass center is displaced both spatially (260 pc) and kinematically (170 km/s) from the active nucleus located in optical and radio studies. However, the central kinematics, where the rotation curve rises most steeply, have been inaccessible with ground-based resolutions. We present new, high resolution WFPC2 imaging and long-slit STIS spectroscopy of the central 300 pc of NGC2110. We discuss the structure and kinematics of gas moving in the galactic potential on subarcsecond scales and the reality of the offset between the black hole and the galaxy mass center.

  17. Mass extinction in a dynamical system of evolution with variable dimension.

    PubMed

    Tokita, K; Yasutomi, A

    1999-07-01

    Introducing the effect of extinction into the so-called replicator equations in mathematical biology, we construct a general model where the diversity of species, i.e., the dimension of the equation, is a time-dependent variable. The system shows very different behavior from the original replicator equation, and leads to mass extinction when the system initially has high diversity. The present theory can serve as a mathematical foundation for the paleontologic theory for mass extinction. This extinction dynamics is a prototype of dynamical systems where the variable dimension is inevitable.

  18. Discrete and continuous dynamics modeling of a mass moving on a flexible structure

    NASA Technical Reports Server (NTRS)

    Herman, Deborah Ann

    1992-01-01

    A general discrete methodology for modeling the dynamics of a mass that moves on the surface of a flexible structure is developed. This problem was motivated by the Space Station/Mobile Transporter system. A model reduction approach is developed to make the methodology applicable to large structural systems. To validate the discrete methodology, continuous formulations are also developed. Three different systems are examined: (1) simply-supported beam, (2) free-free beam, and (3) free-free beam with two points of contact between the mass and the flexible beam. In addition to validating the methodology, parametric studies were performed to examine how the system's physical properties affect its dynamics.

  19. Dynamic Modeling Accuracy Dependence on Errors in Sensor Measurements, Mass Properties, and Aircraft Geometry

    NASA Technical Reports Server (NTRS)

    Grauer, Jared A.; Morelli, Eugene A.

    2013-01-01

    A nonlinear simulation of the NASA Generic Transport Model was used to investigate the effects of errors in sensor measurements, mass properties, and aircraft geometry on the accuracy of dynamic models identified from flight data. Measurements from a typical system identification maneuver were systematically and progressively deteriorated and then used to estimate stability and control derivatives within a Monte Carlo analysis. Based on the results, recommendations were provided for maximum allowable errors in sensor measurements, mass properties, and aircraft geometry to achieve desired levels of dynamic modeling accuracy. Results using other flight conditions, parameter estimation methods, and a full-scale F-16 nonlinear aircraft simulation were compared with these recommendations.

  20. The dynamical properties of E-ring particles derived from CDA impact mass spectra

    NASA Astrophysics Data System (ADS)

    Namikis, R.; Horanyi, M.; Postberg, F.; Srama, R.; Kempf, S.

    2014-12-01

    The Cosmic Dust Analyser (CDA) on the Cassini spacecraft has the unique capability to obtain mass spectra of individual ring particles hitting the detector. There is empirical evidence that the spectral signatures of Saturnian water ice particles are indicative of their impact speed. Based on a detailed analysis of mass spectra recorded by CDA at the same E ring location, but at different spacecraft speeds, we devised a technique to accurately determine the speeds of E ring particles hitting CDA. This will allow us for the first time to characterize the dynamical properties of the E ring particles, which is the prerequisite for an in-depth understanding of the ring dynamics.

  1. Mass transport properties of Pu/DT mixtures from orbital free molecular dynamics simulations

    SciTech Connect

    Kress, Joel David; Ticknor, Christopher; Collins, Lee A.

    2015-09-16

    Mass transport properties (shear viscosity and diffusion coefficients) for Pu/DT mixtures were calculated with Orbital Free Molecular Dynamics (OFMD). The results were fitted to simple functions of mass density (for ρ=10.4 to 62.4 g/cm3) and temperature (for T=100 up to 3,000 eV) for Pu/DT mixtures consisting of 100/0, 25/75, 50/50, and 75/25 by number.

  2. Modeling the evolution of galactic magnetic fields

    SciTech Connect

    Yar-Mukhamedov, D.

    2015-04-15

    An analytic model for evolution of galactic magnetic fields in hierarchical galaxy formation frameworks is introduced. Its major innovative components include explicit and detailed treatment of the physics of merger events, mass gains and losses, gravitational energy sources and delays associated with formation of large-scale magnetic fields. This paper describes the model, its implementation, and core results obtained by its means.

  3. Testing the Consistency of Stellar and Gas Dynamical Black Hole Mass Measurements in AGNs

    NASA Astrophysics Data System (ADS)

    Walsh, Jonelle; Barth, A. J.; van den Bosch, R. C. E.; Sarzi, M.; Shields, J. C.

    2011-01-01

    NGC 3998 and NGC 4203 are two nearby S0 galaxies with LINER nuclei. The mass of the black hole in NGC 3998 has been measured previously through gas dynamical modeling of the emission-line disk using HST/STIS observations, while a gas dynamical measurement of the black hole mass in NGC 4203 is currently in progress. As both objects are also good targets for stellar dynamical modeling, they provide an excellent opportunity for the direct comparison of black hole mass measurements via the stellar and gas dynamical techniques. This necessary consistency check has so far only been attempted on a few galaxies with limited results. We will present laser guide star adaptive optics observations of NGC 3998 and NGC 4203 with the integral field spectrograph OSIRIS on the Keck II telescope. We measure high resolution stellar kinematics from the K-band CO bandheads, resolving the black hole sphere of influence. Additional large-scale observations of the stellar kinematics were taken at multiple slit positions with LRIS on the Keck I telescope and with the integral field spectrograph VIRUS-P on the 2.7m telescope at the McDonald Observatory. We will present preliminary results from the stellar dynamical modeling and constraints on the black hole masses.

  4. GRAVITATIONAL CONUNDRUM? DYNAMICAL MASS SEGREGATION VERSUS DISRUPTION OF BINARY STARS IN DENSE STELLAR SYSTEMS

    SciTech Connect

    De Grijs, Richard; Li, Chengyuan; Zheng, Yong; Kouwenhoven, M. B. N.; Deng, Licai; Hu, Yi; Wicker, James E.

    2013-03-01

    Upon their formation, dynamically cool (collapsing) star clusters will, within only a few million years, achieve stellar mass segregation for stars down to a few solar masses, simply because of gravitational two-body encounters. Since binary systems are, on average, more massive than single stars, one would expect them to also rapidly mass segregate dynamically. Contrary to these expectations and based on high-resolution Hubble Space Telescope observations, we show that the compact, 15-30 Myr old Large Magellanic Cloud cluster NGC 1818 exhibits tantalizing hints at the {approx}> 2{sigma} level of significance (>3{sigma} if we assume a power-law secondary-to-primary mass-ratio distribution) of an increasing fraction of F-star binary systems (with combined masses of 1.3-1.6 M {sub Sun }) with increasing distance from the cluster center, specifically between the inner 10''-20'' (approximately equivalent to the cluster's core and half-mass radii) and the outer 60''-80''. If confirmed, then this will offer support for the theoretically predicted but thus far unobserved dynamical disruption processes of the significant population of 'soft' binary systems-with relatively low binding energies compared to the kinetic energy of their stellar members-in star clusters, which we have access to here by virtue of the cluster's unique combination of youth and high stellar density.

  5. Confirmation of Small Dynamical and Stellar Masses for Extreme Emission Line Galaxies at z Approx. 2

    NASA Technical Reports Server (NTRS)

    Maseda, Michael V.; van Der Wel, Arjen; da Cunha, Elisabete; Rix, Hans-Walter; Pacifici, Camilla; Momcheva, Ivelina; Brammer, Gabriel B.; Franx, Marijn; van Dokkum, Pieter; Bell, Eric F.; Fumagalli, Mattia; Grogin, Norman A.; Kocevski, Dale D.; Koekemoer, Anton M.; Lundgren, Britt F.; Marchesini, Danilo; Nelson, Eric J.; Patel, Shannon G.; Skelton, Rosalind E.; Straughn, Amber N.; Trump. Jonathan R.; Weiner, Benjamin J.; Whitaker, Katherine E.; Wuyts, Stijn

    2013-01-01

    Spectroscopic observations from the Large Binocular Telescope and the Very Large Telescope reveal kinematically narrow lines (approx. 50 km/s) for a sample of 14 extreme emission line galaxies at redshifts 1.4 < z < 2.3. These measurements imply that the total dynamical masses of these systems are low (< or approx. 3 × 10(exp 9) M). Their large [O III] (lambda)5007 equivalent widths (500-1100 Angstroms) and faint blue continuum emission imply young ages of 10-100 Myr and stellar masses of 10(exp 8)-10(exp 9)M, confirming the presence of a violent starburst. The dynamical masses represent the first such determinations for low-mass galaxies at z > 1. The stellar mass formed in this vigorous starburst phase represents a large fraction of the total (dynamical) mass, without a significantly massive underlying population of older stars. The occurrence of such intense events in shallow potentials strongly suggests that supernova-driven winds must be of critical importance in the subsequent evolution of these systems.

  6. Galactic disks, infall, and the global value of Omega

    NASA Technical Reports Server (NTRS)

    Toth, G.; Ostriker, J. P.

    1992-01-01

    Stringent limits on the current rate of infall of satellite systems onto spiral galaxies are set on the basis of the thinness and coldness of Galactic disks. For infalling satellites on isotropically oriented circular orbits, it is shown that, due to scattering, the thermal energy gain of the disk exceeds the satellite energy loss from dynamical friction by a factor of 1.6, with 25 percent deposited in z motion and 75 percent in planar motions. It is found that no more than 4 percent of the Galactic mass inside the solar radius can have accreted within the last 5 billion years, or else its scale and its Toomre Q-parameter would exceed observed values. In standard cold-dark-matter-dominated models for the growth of structure with Omega sub tot of 1, the mass accreted in dark matter lumps rises faster than t exp 2/3 and would exceed 28 percent in the last 5 Gyr. It is proposed that heating from satellite infall accounts for a substantial fraction of the increase of velocity dispersion and scale height with age that is observed in the Galaxy.

  7. Shape parameters of Galactic open clusters

    NASA Astrophysics Data System (ADS)

    Kharchenko, N. V.; Berczik, P.; Petrov, M. I.; Piskunov, A. E.; Röser, S.; Schilbach, E.; Scholz, R.-D.

    2009-03-01

    Context: Ellipticities have been determined for only a few tens of open clusters. Aims: We derive the observed and modelled shape parameters (apparent ellipticity and orientation of the ellipse) of 650 Galactic open clusters identified in the ASCC-2.5 catalogue. Methods: We compute the observed shape parameters of Galactic open clusters with a multi-component analysis. For the vast majority of clusters, these parameters are determined for the first time. High resolution (“star by star”) N-body simulations are carried out with a specially developed φGRAPE code providing models of clusters of different initial masses, Galactocentric distances, and rotation velocities. Results: By comparing models and observations for about 150 clusters, we find that the ellipticities of observed clusters are too low (0.2 vs. 0.3), and take a first step in identifying the main reason for this discrepancy. After ≈50 Myr, the models predict that clusters exhibit an oblate shape with an axis ratio of 1.65{:}1.35{:}1, and a major axis tilt by an angle of qXY ≈ 30° with respect to the Galactocentric radius due to the differential rotation of the Galaxy. Conclusions: Unbiased estimates of cluster shape parameters require reliable membership determination in large cluster areas out to 2-3 tidal radii, where the density of cluster stars is considerably lower than the background. Although dynamically bound stars beyond the tidal radius contribute insignificantly to the cluster mass, knowledge of their distribution is essential for a correct determination of cluster shape parameters. In contrast, a restricted mass range of cluster stars does not play such a dramatic role, although deep surveys allow us to identify more cluster members and, therefore, to increase the accuracy of the observed shape parameters. The determined shape parameters for 650 clusters are listed in a table that is available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or

  8. MOA-2011-BLG-262Lb: A sub-Earth-mass moon orbiting a gas giant primary or a high velocity planetary system in the galactic Bulge

    SciTech Connect

    Bennett, D. P.; Batista, V.; Bond, I. A.; Ling, C. H.; Bennett, C. S.; Suzuki, D.; Koshimoto, N.; Beaulieu, J.-P.; Udalski, A.; Donatowicz, J.; Bozza, V.; Abe, F.; Fukunaga, D.; Itow, Y.; Masuda, K.; Matsubara, Y.; Muraki, Y.; Botzler, C. S.; Freeman, M.; Fukui, A.; Collaboration: MOA Collaboration; PLANET Collaboration; μFUN Collaboration; OGLE Collaboration; RoboNet Collaboration; and others

    2014-04-20

    We present the first microlensing candidate for a free-floating exoplanet-exomoon system, MOA-2011-BLG-262, with a primary lens mass of M {sub host} ∼ 4 Jupiter masses hosting a sub-Earth mass moon. The argument for an exomoon hinges on the system being relatively close to the Sun. The data constrain the product M{sub L} π{sub rel} where M{sub L} is the lens system mass and π{sub rel} is the lens-source relative parallax. If the lens system is nearby (large π{sub rel}), then M{sub L} is small (a few Jupiter masses) and the companion is a sub-Earth-mass exomoon. The best-fit solution has a large lens-source relative proper motion, μ{sub rel} = 19.6 ± 1.6 mas yr{sup –1}, which would rule out a distant lens system unless the source star has an unusually high proper motion. However, data from the OGLE collaboration nearly rule out a high source proper motion, so the exoplanet+exomoon model is the favored interpretation for the best fit model. However, there is an alternate solution that has a lower proper motion and fits the data almost as well. This solution is compatible with a distant (so stellar) host. A Bayesian analysis does not favor the exoplanet+exomoon interpretation, so Occam's razor favors a lens system in the bulge with host and companion masses of M{sub host}=0.12{sub −0.06}{sup +0.19} M{sub ⊙} and m{sub comp}=18{sub −10}{sup +28} M{sub ⊕}, at a projected separation of a{sub ⊥}=0.84{sub −0.14}{sup +0.25} AU. The existence of this degeneracy is an unlucky accident, so current microlensing experiments are in principle sensitive to exomoons. In some circumstances, it will be possible to definitively establish the mass of such lens systems through the microlensing parallax effect. Future experiments will be sensitive to less extreme exomoons.

  9. Fermi Galactic Center Zoom

    NASA Video Gallery

    This animation zooms into an image of the Milky Way, shown in visible light, and superimposes a gamma-ray map of the galactic center from NASA's Fermi. Raw data transitions to a view with all known...

  10. HYDROSTATIC GAS CONSTRAINTS ON SUPERMASSIVE BLACK HOLE MASSES: IMPLICATIONS FOR HYDROSTATIC EQUILIBRIUM AND DYNAMICAL MODELING IN A SAMPLE OF EARLY-TYPE GALAXIES

    SciTech Connect

    Humphrey, Philip J.; Buote, David A.; Brighenti, Fabrizio; Gebhardt, Karl; Mathews, William G.

    2009-10-01

    We present new mass measurements for the supermassive black holes (SMBHs) in the centers of three early-type galaxies. The gas pressure in the surrounding, hot interstellar medium (ISM) is measured through spatially resolved spectroscopy with the Chandra X-ray Observatory, allowing the SMBH mass (M {sub BH}) to be inferred directly under the hydrostatic approximation. This technique does not require calibration against other SMBH measurement methods and its accuracy depends only on the ISM being close to hydrostatic, which is supported by the smooth X-ray isophotes of the galaxies. Combined with results from our recent study of the elliptical galaxy NGC 4649, this brings the number of galaxies with SMBHs measured in this way to four. Of these, three already have mass determinations from the kinematics of either the stars or a central gas disk, and hence join only a handful of galaxies with M {sub BH} measured by more than one technique. We find good agreement between the different methods, providing support for the assumptions implicit in both the hydrostatic and the dynamical models. The stellar mass-to-light ratios for each galaxy inferred by our technique are in agreement with the predictions of stellar population synthesis models assuming a Kroupa initial mass function (IMF). This concurrence implies that no more than {approx}10%-20% of the ISM pressure is nonthermal, unless there is a conspiracy between the shape of the IMF and nonthermal pressure. Finally, we compute Bondi accretion rates (M-dot{sub bondi}), finding that the two galaxies with the highest M-dot{sub bondi} exhibit little evidence of X-ray cavities, suggesting that the correlation with the active galactic nuclei jet power takes time to be established.

  11. Galactic cosmic ray composition

    NASA Technical Reports Server (NTRS)

    Meyer, J. P.

    1986-01-01

    An assessment is given of the galactic cosmic ray source (GCRS) elemental composition and its correlation with first ionization potential. The isotopic composition of heavy nuclei; spallation cross sections; energy spectra of primary nuclei; electrons; positrons; local galactic reference abundances; comparison of solar energetic particles and solar coronal compositions; the hydrogen; lead; nitrogen; helium; and germanium deficiency problems; and the excess of elements are among the topics covered.

  12. Relativity and the Galactic-center stars

    NASA Astrophysics Data System (ADS)

    Saha, Prasenjit; Angélil, R.

    2011-05-01

    Galactic-center stars such as S2 reach speeds of a few percent of light at closest approach to the black hole. Hence relativistic effects are potentially observable. The redshift of a star during pericenter passage is especially sensitive to relativity. The same applies to pulsar timing, if a pulsar in that region is discovered. In this work we explain how the equivalence principle, space curvature and frame dragging in principle reveal themselves through the redshift, and discuss possible strategies for disentangling these from the Newtonian perturbations of other mass in the Galactic-center region.

  13. Diagnostic Accuracy of Dynamic Contrast Enhanced Magnetic Resonance Imaging in Characterizing Lung Masses

    PubMed Central

    Inan, Nagihan; Arslan, Arzu; Donmez, Muhammed; Sarisoy, Hasan Tahsin

    2016-01-01

    Background Imaging plays a critical role not only in the detection, but also in the characterization of lung masses as benign or malignant. Objectives To determine the diagnostic accuracy of dynamic magnetic resonance imaging (MRI) in the differential diagnosis of benign and malignant lung masses. Patients and Methods Ninety-four masses were included in this prospective study. Five dynamic series of T1-weighted spoiled gradient echo (FFE) images were obtained, followed by a T1-weighted FFE sequence in the late phase (5th minutes). Contrast enhancement patterns in the early (25th second) and late (5th minute) phase images were evaluated. For the quantitative evaluation, signal intensity (SI)-time curves were obtained and the maximum relative enhancement, wash-in rate, and time-to-peak enhancement of masses in both groups were calculated. Results The early phase contrast enhancement patterns were homogeneous in 78.2% of the benign masses, while heterogeneous in 74.4% of the malignant tumors. On the late phase images, 70.8% of the benign masses showed homogeneous enhancement, while most of the malignant masses showed heterogeneous enhancement (82.4%). During the first pass, the maximum relative enhancement and wash-in rate values of malignant masses were significantly higher than those of the benign masses (P = 0.03 and 0.04, respectively). The cutoff value at 15% yielded a sensitivity of 85.4%, specificity of 61.2%, and positive predictive value of 68.7% for the maximum relative enhancement. Conclusion Contrast enhancement patterns and SI-time curve analysis of MRI are helpful in the differential diagnosis of benign and malignant lung masses. PMID:27703654

  14. The Evolution of the Globular Cluster System in a Triaxial Galaxy: Can a Galactic Nucleus Form by Globular Cluster Capture?

    NASA Astrophysics Data System (ADS)

    Capuzzo-Dolcetta, Roberto

    1993-10-01

    Among the possible phenomena inducing evolution of the globular cluster system in an elliptical galaxy, dynamical friction due to field stars and tidal disruption caused by a central nucleus is of crucial importance. The aim of this paper is the study of the evolution of the globular cluster system in a triaxial galaxy in the presence of these phenomena. In particular, the possibility is examined that some galactic nuclei have been formed by frictionally decayed globular clusters moving in a triaxial potential. We find that the initial rapid growth of the nucleus, due mainly to massive clusters on box orbits falling in a short time scale into the galactic center, is later slowed by tidal disruption induced by the nucleus itself on less massive clusters in the way described by Ostriker, Binney, and Saha. The efficiency of dynamical friction is such to carry to the center of the galaxy enough globular cluster mass available to form a compact nucleus, but the actual modes and results of cluster-cluster encounters in the central potential well are complicated phenomena which remains to be investigated. The mass of the resulting nucleus is determined by the mutual feedback of the described processes, together with the initial spatial, velocity, and mass distributions of the globular cluster family. The effect on the system mass function is studied, showing the development of a low- and high-mass turnover even with an initially flat mass function. Moreover, in this paper is discussed the possibility that the globular cluster fall to the galactic center has been a cause of primordial violent galactic activity. An application of the model to M31 is presented.

  15. KMOS3D: Dynamical Constraints on the Mass Budget in Early Star-forming Disks

    NASA Astrophysics Data System (ADS)

    Wuyts, Stijn; Förster Schreiber, Natascha M.; Wisnioski, Emily; Genzel, Reinhard; Burkert, Andreas; Bandara, Kaushala; Beifiori, Alessandra; Belli, Sirio; Bender, Ralf; Brammer, Gabriel B.; Chan, Jeffrey; Davies, Ric; Fossati, Matteo; Galametz, Audrey; Kulkarni, Sandesh K.; Lang, Philipp; Lutz, Dieter; Mendel, J. Trevor; Momcheva, Ivelina G.; Naab, Thorsten; Nelson, Erica J.; Saglia, Roberto P.; Seitz, Stella; Tacconi, Linda J.; Tadaki, Ken-ichi; Übler, Hannah; van Dokkum, Pieter G.; Wilman, David J.; Wuyts, Eva

    2016-11-01

    We exploit deep integral-field spectroscopic observations with KMOS/Very Large Telescope of 240 star-forming disks at 0.6\\lt z\\lt 2.6 to dynamically constrain their mass budget. Our sample consists of massive (≳ {10}9.8 {M}ȯ ) galaxies with sizes {R}e≳ 2 {kpc}. By contrasting the observed velocity and dispersion profiles with dynamical models, we find that on average the stellar content contributes {32}-7+8 % of the total dynamical mass, with a significant spread among galaxies (68th percentile range {f}{star}∼ 18 % {--}62 % ). Including molecular gas as inferred from CO- and dust-based scaling relations, the estimated baryonic mass adds up to {56}-12+17 % of the total for the typical galaxy in our sample, reaching ∼ 90 % at z\\gt 2. We conclude that baryons make up most of the mass within the disk regions of high-redshift star-forming disk galaxies, with typical disks at z\\gt 2 being strongly baryon-dominated within R e . Substantial object-to-object variations in both stellar and baryonic mass fractions are observed among the galaxies in our sample, larger than what can be accounted for by the formal uncertainties in their respective measurements. In both cases, the mass fractions correlate most strongly with measures of surface density. High-{{{Σ }}}{star} galaxies feature stellar mass fractions closer to unity, and systems with high inferred gas or baryonic surface densities leave less room for additional mass components other than stars and molecular gas. Our findings can be interpreted as more extended disks probing further (and more compact disks probing less far) into the dark matter halos that host them. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programs 092.A-0091, 093.A-0079, 094.A-0217, 095.A-0047, and 096.A-0025.

  16. Combined Dynamic Arrays for Storing and Searching Semi-Ordered Tandem Mass Spectrometry Data

    Technology Transfer Automated Retrieval System (TEKTRAN)

    When performing bioinformatics analysis on tandem mass spectrometry data, there is a computational need to efficiently store and sort these semi-ordered data sets. To solve this problem, a new data structure based on dynamic arrays was designed and implemented in an algorithm that parses semi-order...

  17. A deep VLA search for OH (1612 MHz) maser sources in the galactic plane

    NASA Astrophysics Data System (ADS)

    Blommaert, J. A. D. L.; van Langevelde, H. J.; Michiels, W. F. P.

    1994-07-01

    The results of a Very Large Array (VLA) OH (1612 MHz) search for OH/IR stars in 7 fields along the galactic plane are presented. Forty-four sources were detected of which 35 were not previously known. It is shown that 'blind' radio interferometric observ- ations (such as with the VLA) are capable of filling up the gap in the IRAS based OH surveys near the galactic plane. This is important for the dynamical modeling of the disc and bulge of our Galaxy. It is also demonstrated that the high resolution of a synthesis telescope is needed to avoid confusion in the galactic plane. Most detected sources are likely to be young (approximately less than 1 Gyr) and massive (Mms greater than 2-3 solar masses) evolved stars and have high expansion velocities (vexp greater than 14.5 km/s) and small deviations (less than 10 km/s) from galactic rotation. Like Baud et al. (1981) we find a peak in the number of sources around l = 25 deg, a region associated with active star formation and a low number of stars at l = 5 deg and 10 deg.

  18. A Disk-based Dynamical Mass Estimate for the Young Binary AK Sco

    NASA Astrophysics Data System (ADS)

    Czekala, I.; Andrews, S. M.; Jensen, E. L. N.; Stassun, K. G.; Torres, G.; Wilner, D. J.

    2015-06-01

    We present spatially and spectrally resolved Atacama Large Millimeter/submillimeter Array (ALMA) observations of gas and dust in the disk orbiting the pre-main sequence (pre-MS) binary AK Sco. By forward-modeling the disk velocity field traced by CO J = 2-1 line emission, we infer the mass of the central binary, {M}*=2.49+/- 0.10 {M}⊙ , a new dynamical measurement that is independent of stellar evolutionary models. Assuming the disk and binary are co-planar within ˜2°, this disk-based binary mass measurement is in excellent agreement with constraints from radial velocity monitoring of the combined stellar spectra. These ALMA results are also compared with the standard approach of estimating masses from the location of the binary in the Hertzsprung-Russell diagram, using several common pre-MS model grids. These models predict stellar masses that are marginally consistent with our dynamical measurement (at ˜2σ), but are systematically high (by ˜10%). These same models consistently predict an age of 18 ± 1 Myr for AK Sco, in line with its membership in the Upper Centaurus-Lupus association but surprisingly old for it to still host a gas-rich disk. As ALMA accumulates comparable data for large samples of pre-MS stars, the methodology employed here to extract a dynamical mass from the disk rotation curve should prove extraordinarily useful for efforts to characterize the fundamental parameters of early stellar evolution.

  19. Galactic Halos of Hydrogen

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This image shows two companion galaxies, NGC 4625 (top) and NGC 4618 (bottom), and their surrounding cocoons of cool hydrogen gas (purple). The huge set of spiral arms on NGC 4625 (blue) was discovered by the ultraviolet eyes of NASA's Galaxy Evolution Explorer. Though these arms are nearly invisible when viewed in optical light, they glow brightly in ultraviolet. This is because they are bustling with hot, newborn stars that radiate primarily ultraviolet light.

    The vibrant spiral arms are also quite lengthy, stretching out to a distance four times the size of the galaxy's core. They are part of the largest ultraviolet galactic disk discovered so far.

    Astronomers do not know why NGC 4625 grew arms while NGC 4618 did not. The purple nebulosity shown here illustrates that hydrogen gas - an ingredient of star formation - is diffusely distributed around both galaxies. This means that other unknown factors led to the development of the arms of NGC 4625.

    Located 31 million light-years away in the constellation Canes Venatici, NGC 4625 is the closest galaxy ever seen with such a young halo of arms. It is slightly smaller than our Milky Way, both in size and mass. However, the fact that this galaxy's disk is forming stars very actively suggests that it might evolve into a more massive and mature galaxy resembling our own.

    The image is composed of ultraviolet, visible-light and radio data, from the Galaxy Evolution Explorer, the California Institute of Technology's Digitized Sky Survey, and the Westerbork Synthesis Radio Telescope, the Netherlands, respectively. Near-ultraviolet light is colored green; far-ultraviolet light is colored blue; and optical light is colored red. Radio emissions are colored purple.

  20. Galactic constraints on supernova progenitor models

    NASA Astrophysics Data System (ADS)

    Acharova, I. A.; Gibson, B. K.; Mishurov, Yu. N.; Kovtyukh, V. V.

    2013-09-01

    Aims: To estimate the mean masses of oxygen and iron ejected per each type of supernovae (SNe) event from observations of the elemental abundance patterns in the Galactic disk and constrain the relevant SNe progenitor models. Methods: We undertake a statistical analysis of the radial abundance distributions in the Galactic disk within a theoretical framework for Galactic chemical evolution which incorporates the influence of spiral arms. This framework has been shown to recover the non-linear behaviour in radial gradients, the mean masses of oxygen and iron ejected during SNe explosions to be estimated, and constraints to be placed on SNe progenitor models. Results: (i) The mean mass of oxygen ejected per core-collapse SNe (CC SNe) event (which are concentrated within spiral arms) is ~0.27 M⊙; (ii) the mean mass of iron ejected by tardy Type Ia SNe (SNeIa, whose progenitors are older/longer-lived stars with ages ≳100 Myr and up to several Gyr, which do not concentrate within spiral arms) is ~0.58 M⊙; (iii) the upper mass of iron ejected by prompt SNeIa (SNe whose progenitors are younger/shorter-lived stars with ages ≲100 Myr, which are concentrated within spiral arms) is ≤0.23 M⊙ per event; (iv) the corresponding mean mass of iron produced by CC SNe is ≤0.04 M⊙ per event; (v) short-lived SNe (core-collapse or prompt SNeIa) supply ~85% of the Galactic disk's iron. Conclusions: The inferred low mean mass of oxygen ejected per CC SNe event implies a low upper mass limit for the corresponding progenitors of ~23 M⊙, otherwise the Galactic disk would be overabundant in oxygen. This inference is the consequence of the non-linear dependence between the upper limit of the progenitor initial mass and the mean mass of oxygen ejected per CC SNe explosion. The low mean mass of iron ejected by prompt SNeIa, relative to the mass produced by tardy SNeIa (~2.5 times lower), prejudices the idea that both sub-populations of SNeIa have the same physical nature. We

  1. The Galactic Census of High- and Medium-mass Protostars. III. 12CO Maps and Physical Properties of Dense Clump Envelopes and Their Embedding GMCs

    NASA Astrophysics Data System (ADS)

    Barnes, Peter J.; Hernandez, Audra K.; O’Dougherty, Stefan N.; Schap, William J., III; Muller, Erik

    2016-11-01

    We report the second complete molecular line data release from the Census of High- and Medium-mass Protostars (CHaMP), a large-scale, unbiased, uniform mapping survey at sub-parsec resolution, of millimeter-wave line emission from 303 massive, dense molecular clumps in the Milky Way. This release is for all 12CO J = 1 \\to 0 emission associated with the dense gas, the first from Phase II of the survey, which includes 12CO, 13CO, and C18O. The observed clump emission traced by both 12CO and HCO+ (from Phase I) shows very similar morphology, indicating that, for dense molecular clouds and complexes of all sizes, parsec-scale clumps contain Ξ ∼ 75% of the mass, while only 25% of the mass lies in extended (≳10 pc) or “low density” components in these same areas. The mass fraction of all gas above a density of 109 m‑3 is {ξ }9 ≳ 50%. This suggests that parsec-scale clumps may be the basic building blocks of the molecular interstellar medium, rather than the standard GMC concept. Using 12CO emission, we derive physical properties of these clumps in their entirety, and compare them to properties from HCO+, tracing their denser interiors. We compare the standard X-factor converting {I}{12{CO}} to {N}{{{H}}2} with alternative conversions, and show that only the latter give whole-clump properties that are physically consistent with those of their interiors. We infer that the clump population is systematically closer to virial equilibrium than when considering only their interiors, with perhaps half being long-lived (10s of Myr), pressure-confined entities that only terminally engage in vigorous massive star formation, supporting other evidence along these lines that was previously published.

  2. GCN: a gaseous Galactic halo stream?

    NASA Astrophysics Data System (ADS)

    Jin, Shoko

    2010-10-01

    We show that a string of HI clouds that form part of the high-velocity cloud complex known as GCN is a probable gaseous stream extending over more than 50° in the Galactic halo. The radial velocity gradient along the stream is used to deduce transverse velocities as a function of distance, enabling a family of orbits to be computed. We find that a direction of motion towards the Galactic disc coupled with a mid-stream distance of ~20kpc provides a good match to the observed sky positions and radial velocities of the HI clouds comprising the stream. With an estimated mass of 105Msolar, its progenitor is likely to be a dwarf galaxy. However, no stellar counterpart has been found amongst the currently known Galactic dwarf spheroidal galaxies or stellar streams and the exact origin of the stream is therefore currently unknown.

  3. The distances of the Galactic Novae

    NASA Astrophysics Data System (ADS)

    Ozdonmez, Aykut; Guver, Tolga; Cabrera-Lavers, Antonio; Ak, Tansel

    2016-07-01

    Using location of the RC stars on the CMDs obtained from the UKIDSS, VISTA and 2MASS photometry, we have derived the reddening-distance relations towards each Galactic nova for which at least one independent reddening measurement exists. We were able to determine the distances of 72 Galactic novae and set lower limits on the distances of 45 systems. The reddening curves of the systems are presented. These curves can be also used to estimate reddening or the distance of any source, whose location is close to the position of the nova in our sample. The distance measurement method in our study can be easily applicable to any source, especially for ones that concentrated along the Galactic plane.

  4. SPOON-FEEDING GIANT STARS TO SUPERMASSIVE BLACK HOLES: EPISODIC MASS TRANSFER FROM EVOLVING STARS AND THEIR CONTRIBUTION TO THE QUIESCENT ACTIVITY OF GALACTIC NUCLEI

    SciTech Connect

    MacLeod, Morgan; Ramirez-Ruiz, Enrico; Grady, Sean; Guillochon, James

    2013-11-10

    Stars may be tidally disrupted if, in a single orbit, they are scattered too close to a supermassive black hole (SMBH). Tidal disruption events are thought to power luminous but short-lived accretion episodes that can light up otherwise quiescent SMBHs in transient flares. Here we explore a more gradual process of tidal stripping where stars approach the tidal disruption radius by stellar evolution while in an eccentric orbit. After the onset of mass transfer, these stars episodically transfer mass to the SMBH every pericenter passage, giving rise to low-level flares that repeat on the orbital timescale. Giant stars, in particular, will exhibit a runaway response to mass loss and 'spoon-feed' material to the black hole for tens to hundreds of orbital periods. In contrast to full tidal disruption events, the duty cycle of this feeding mode is of order unity for black holes M{sub bh} ∼> 10{sup 7} M{sub ☉}. This mode of quasi-steady SMBH feeding is competitive with indirect SMBH feeding through stellar winds, and spoon-fed giant stars may play a role in determining the quiescent luminosity of local SMBHs.

  5. Dependence of Dynamic Modeling Accuracy on Sensor Measurements, Mass Properties, and Aircraft Geometry

    NASA Technical Reports Server (NTRS)

    Grauer, Jared A.; Morelli, Eugene A.

    2013-01-01

    The NASA Generic Transport Model (GTM) nonlinear simulation was used to investigate the effects of errors in sensor measurements, mass properties, and aircraft geometry on the accuracy of identified parameters in mathematical models describing the flight dynamics and determined from flight data. Measurements from a typical flight condition and system identification maneuver were systematically and progressively deteriorated by introducing noise, resolution errors, and bias errors. The data were then used to estimate nondimensional stability and control derivatives within a Monte Carlo simulation. Based on these results, recommendations are provided for maximum allowable errors in sensor measurements, mass properties, and aircraft geometry to achieve desired levels of dynamic modeling accuracy. Results using additional flight conditions and parameter estimation methods, as well as a nonlinear flight simulation of the General Dynamics F-16 aircraft, were compared with these recommendations

  6. Mass media and heterogeneous bounds of confidence in continuous opinion dynamics

    NASA Astrophysics Data System (ADS)

    Pineda, M.; Buendía, G. M.

    2015-02-01

    This work focuses on the effects of an external mass media on continuous opinion dynamics with heterogeneous bounds of confidence. We modified the original Deffuant et al. and Hegselmann and Krause models to incorporate both, an external mass media and a heterogeneous distribution of confidence levels. We analysed two cases, one where only two bounds of confidence are taken into account, and other where each individual of the system has her/his own characteristic level of confidence. We found that, in the absence of mass media, diversity of bounds of confidence can improve the capacity of the systems to reach consensus. We show that the persuasion capacity of the external message is optimal for intermediate levels of heterogeneity. Our simulations also show the existence, for certain parameter values, of a counter-intuitive effect in which the persuasion capacity of the mass media decreases if the mass media intensity is too large. We discuss similarities and differences between the two heterogeneous versions of these continuous opinion dynamic models under the influence of mass media.

  7. DYNAMICAL MASS CONSTRAINTS ON THE ULTRALUMINOUS X-RAY SOURCE NGC 1313 X-2

    SciTech Connect

    Liu Jifeng; Orosz, Jerome; Bregman, Joel N.

    2012-01-20

    Dynamical mass measurements hold the key to answering whether ultraluminous X-ray sources (ULXs) are intermediate-mass black holes (IMBHs) or stellar-mass black holes with special radiation mechanisms. NGC 1313 X-2 is so far the only ULX with Hubble Space Telescope light curves, the orbital period, and the black hole's radial velocity amplitude based on the He II {lambda}4686 disk emission line shift of {approx}200 km s{sup -1}. We constrain its black hole mass and other parameters by fitting observations to a binary light curve code with accommodations for X-ray heating of the accretion disk and the secondary. Given the dynamical constraints from the observed light curves and the black hole radial motion and the observed stellar environment age, the only acceptable models are those with 40-50 Myr old intermediate-mass secondaries in their helium core and hydrogen shell burning phase filling 40%-80% of their Roche lobes. The black hole can be a massive black hole of a few tens of M{sub Sun} that can be produced from stellar evolution of low-metallicity stars, or an IMBH of a few hundred to above 1000 M{sub Sun} if its true radial velocity 2K' < 40 km s{sup -1}. Further observations are required to better measure the black hole radial motion and the light curves in order to determine whether NGC 1313 X-2 is a stellar-mass black hole or an IMBH.

  8. The FLAMINGOS-2 Galactic Center Survey

    NASA Astrophysics Data System (ADS)

    Raines, Steven N.; Flamingos-2 Galactic Center Survey Team

    2010-03-01

    The FLAMINGOS-2 instrument achieved high-quality first-light observations on the Gemini South telescope in September 2009 and is undergoing further testing and scientific commissioning into early 2010. Based on the results so far, FLAMINGOS-2 (F2) on the Gemini 8-meter telescope is an extremely powerful wide-field near-infrared imager and multi-object spectrograph. In order to take best advantage of the strengths of F2 early in its life cycle, we propose to use 21 nights of Gemini guaranteed time in 3 surveys - the FLAMINGOS-2 Early Science Surveys (F2ESS). The F2ESS will encompass 3 corresponding scientific themes - the Galactic Center, extragalactic astronomy, and star formation. In particular, the Galactic Center Survey will identify the IR couterparts to several hundred new X-ray binaries in the Galactic Center. This will allow us to identify the nature of the mysterious Chandra source population in the Galactic Center and provide tremendous opportunities for multi-wavelength follow-up observations. In addition, the "by-catch" of this survey will be a catalog of several thousand red giant branch stars with accurate spectroscopy -- these can be used to measure the star formation history of the Galactic Center and thus constrain the mass evolution history of the supermassive black hole in Sgr A*. In this poster, I review the plans for carrying out this survey with F2, data analysis plans and software, and the expected scientific impact from this powerful new observational tool.

  9. Mass

    SciTech Connect

    Quigg, Chris

    2007-12-05

    In the classical physics we inherited from Isaac Newton, mass does not arise, it simply is. The mass of a classical object is the sum of the masses of its parts. Albert Einstein showed that the mass of a body is a measure of its energy content, inviting us to consider the origins of mass. The protons we accelerate at Fermilab are prime examples of Einsteinian matter: nearly all of their mass arises from stored energy. Missing mass led to the discovery of the noble gases, and a new form of missing mass leads us to the notion of dark matter. Starting with a brief guided tour of the meanings of mass, the colloquium will explore the multiple origins of mass. We will see how far we have come toward understanding mass, and survey the issues that guide our research today.

  10. Where Galactic Snakes Live

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This infrared image from NASA's Spitzer Space Telescope shows what astronomers are referring to as a 'snake' (upper left) and its surrounding stormy environment. The sinuous object is actually the core of a thick, sooty cloud large enough to swallow dozens of solar systems. In fact, astronomers say the 'snake's belly' may be harboring beastly stars in the process of forming.

    The galactic creepy crawler to the right of the snake is another thick cloud core, in which additional burgeoning massive stars might be lurking. The colorful regions below the two cloud cores are less dense cloud material, in which dust has been heated by starlight and glows with infrared light. Yellow and orange dots throughout the image are monstrous developing stars; the red star on the 'belly' of the snake is 20 to 50 times as massive as our sun. The blue dots are foreground stars.

    The red ball at the bottom left is a 'supernova remnant,' the remains of massive star that died in a fiery blast. Astronomers speculate that radiation and winds from the star before it died, in addition to a shock wave created when it exploded, might have played a role in creating the snake.

    Spitzer was able to spot the two black cloud cores using its heat-seeking infrared vision. The objects are hiding in the dusty plane of our Milky Way galaxy, invisible to optical telescopes. Because their heat, or infrared light, can sneak through the dust, they first showed up in infrared images from past missions. The cloud cores are so thick with dust that if you were to somehow transport yourself into the middle of them, you would see nothing but black, not even a star in the sky. Now, that's spooky!

    Spitzer's new view of the region provides the best look yet at the massive embryonic stars hiding inside the snake. Astronomers say these observations will ultimately help them better understand how massive stars form. By studying the clustering and range of masses of the stellar embryos, they hope

  11. Fluid-dynamic and mass-transfer behavior of static mixers and regular packings

    SciTech Connect

    Cavatorta, O.N.; Boehm, U.; Chiappori de del Giorgio, A.M.

    1999-05-01

    The fluid dynamics and liquid-to-wall mass transfer for spaced and stacked regular packings were studied for forced convection and fluidized beds. The behavior of these configurations in bubble columns and under natural convection conditions is also presented. Flow parameters characterizing structured packings, presented in the literature, were used in the evaluation of results. General equations to predict pressure drop and mass transfer are discussed, as well as the relationship between energy dissipation and mass transfer. In the presence of fluidized particles, single-phase flow or natural convection conditions, the mass-transfer behavior of a packing element stacked between other packs or separated from the neighboring elements by liquid layers is almost the same, but differs in bubble columns.

  12. Attitude dynamics and control of a spacecraft using shifting mass distribution

    NASA Astrophysics Data System (ADS)

    Ahn, Young Tae

    Spacecraft need specific attitude control methods that depend on the mission type or special tasks. The dynamics and the attitude control of a spacecraft with a shifting mass distribution within the system are examined. The behavior and use of conventional attitude control actuators are widely developed and performing at the present time. However, the advantage of a shifting mass distribution concept can complement spacecraft attitude control, save mass, and extend a satellite's life. This can be adopted in practice by moving mass from one tank to another, similar to what an airplane does to balance weight. Using this shifting mass distribution concept, in conjunction with other attitude control devices, can augment the three-axis attitude control process. Shifting mass involves changing the center-of-mass of the system, and/or changing the moments of inertia of the system, which then ultimately can change the attitude behavior of the system. This dissertation consists of two parts. First, the equations of motion for the shifting mass concept (also known as morphing) are developed. They are tested for their effects on attitude control by showing how shifting the mass changes the spacecraft's attitude behavior. Second, a method for optimal mass redistribution is shown using a combinatorial optimization theory under constraints. It closes with a simple example demonstrating an optimal reconfiguration. The procedure of optimal reconfiguration from one mass distribution to another to accomplish attitude control has been demonstrated for several simple examples. Mass shifting could work as an attitude controller for fine-tuning attitude behavior in small satellites. Various constraints can be applied for different situations, such as no mass shift between two tanks connected by a failed pipe or total amount of shifted mass per pipe being set for the time optimum solution. Euler angle changes influenced by the mass reconfiguration are accomplished while stability

  13. Dynamical Estimate of Post-main-sequence Stellar Masses in 47 Tucanae

    NASA Astrophysics Data System (ADS)

    Parada, Javiera; Richer, Harvey; Heyl, Jeremy; Kalirai, Jason; Goldsbury, Ryan

    2016-07-01

    We use the effects of mass segregation on the radial distribution of different stellar populations in the core of 47 Tucanae to find estimates for the masses of stars at different post-main-sequence evolutionary stages. We take samples of main-sequence (MS) stars from the core of 47 Tucanae, at different magnitudes (i.e., different masses), and use the effects of this dynamical process to develop a relation between the radial distance (RD) at which the cumulative distribution reaches the 20th and 50th percentile and stellar mass. From these relations we estimate the masses of different post-MS populations. We find that mass remains constant for stars going through the evolutionary stages from the upper MS up to the horizontal branch (HB). By comparing RDs of the HB stars with stars of lower masses, we can exclude a mass loss greater than 0.09 {M}⊙ during the red giant branch (RGB) stage at nearly the 3σ level. The slightly higher mass estimates for the asymptotic giant branch (AGB) are consistent with the AGB having evolved from somewhat more massive stars. The AGB also exhibits evidence of contamination by more massive stars, possibly blue straggler stars (BSSs), going through the RGB phase. We do not include the BSSs in this paper due to the complexity of these objects; instead, the complete analysis of this population is left for a companion paper. The process to estimate the masses described in this paper is exclusive to the core of 47 Tuc.

  14. New distances for a selected set of visual binaries with inconsistent dynamical masses

    NASA Astrophysics Data System (ADS)

    Tamazian, V. S.; Malkov, O. Y.; Docobo, J. A.; Chulkov, D. A.; Campo, P. P.

    2016-03-01

    We have selected a set of 17 visual binaries that demonstrate great inconsistency between the systemic mass obtained through Kepler's Third Law as compared to that calculated through standard mass-luminosity and mass-spectrum relationships. A careful inspection of orbital data and parallaxes showed that the current orbits of nine binaries (WDS 00155-1608, WDS 00174+0853, WDS 05017+2050, WDS 06410+0954, WDS 16212-2536, WDS 17336-3706, WDS 19217-1557, WDS 20312+1116, and WDS 21118+5959) do not need to be improved, instead we recommend different parallax (distance) value for them. On the other hand, we considered that eight orbits (WDS 02366+1227, WDS 02434-6643, WDS 03244-1539, WDS 08507+1800, WDS 09128-6055, WDS 11532-1540, WDS 17375+2419, and WDS 22408-0333) had to be improved. Due to various reasons mentioned in this paper, their distances should most likely be corrected unless better orbital solutions and/or more precise parallaxes are reported. To obtain consistent mass values, the use of the dynamical parallax is still recommended for 5 out of the 8 improved orbits. For WDS 02434-6643, WDS 09128-6055, and WDS 11532-1540, the improvement itself yields reasonable mass sums while maintaining π_{Hip} within a 1-2σ margin. New distance estimates for 16 stars (mainly based on the obtained dynamical parallaxes) and individual comments for all objects are presented and discussed.

  15. VERITAS Galactic Observations

    NASA Astrophysics Data System (ADS)

    Hughes, Gareth

    2013-06-01

    We report on recent Galactic results and discoveries made by the VERITAS collaboration. The Very Energetic Radiation Imaging Telescope Array System (VERITAS) is a ground-based gamma-ray observatory, located in southern Arizona, able to detect gamma rays of energies from 100 GeV up to 30 TeV. VERITAS has been fully operational since 2007 and its current sensitivity enables the detection of a 1% Crab Nebula flux at 5 sigma in under 30 hours. The observatory is well placed to view large parts of the galactic plane including its center, resulting in a strong galactic program. Objects routinely observed include Pulsars, Pulsar Wind Nebula, X-ray binaries and sources with unidentified counterparts in other wavelengths.

  16. Dynamics of variable mass systems with application to the star 48 solid rocket motor

    NASA Technical Reports Server (NTRS)

    Eke, F. O.

    1984-01-01

    Existing methods for the derivation of equations of motion of variable mass systems are reviewed and compared, the end product being a system of general dynamical equations for variable mass systems. These equations are used to study the lateral stability problem associated with the Star 48 solid rocket engine. It is shown that the shape of the combustion chamber could have a significant effect on the lateral stability of the rocket; specifically, a short and wide combustion chamber is destabilizing, while a long and narrow chamber is stabilizing.

  17. Instrument manual for the retarding ion mass spectrometer on Dynamics Explorer-1

    NASA Technical Reports Server (NTRS)

    Fields, S. A.; Baugher, C. R.; Chappell, C. R.; Reasoner, D. L.; Hammack, H. D.; Wright, W. W.; Hoffman, J. H.

    1982-01-01

    The retarding ion mass spectrometer (RIMS) for Dynamics Explorer-1 is an instrument designed to measure the details of the thermal plasma distribution. It combines the ion temperature determining capability of the retarding potential analyzer with the compositional capabilities of the mass spectrometer and adds multiple sensor heads to sample all directions relative to the spacecraft ram direction. This manual provides a functional description of the RIMS, the instrument calibration, and a description of the commands which can be stored in the instrument logic to control its operation.

  18. Mass Spectrometry: an Approach Come-of-Age for Structural and Dynamical Biology

    PubMed Central

    Benesch, Justin L.P.; Ruotolo, Brandon T.

    2011-01-01

    Over the past two decades, mass spectrometry (MS) has emerged as a bone fide approach for structural biology. MS can inform on all levels of protein organization, and enables quantitative assessments of their intrinsic dynamics. The key advantages of MS are that it is a sensitive, high-resolution separation technique with wide applicability, and thereby allows the interrogation of transient protein assemblies in the context of complex mixtures. Here we describe how molecular-level information is derived from MS experiments, and how it can be combined with spatial and dynamical restraints obtained from other structural biology approaches to allow hybrid studies of protein architecture and movements. PMID:21880480

  19. Black Hole Formation in Galactic X-Ray Binaries

    NASA Astrophysics Data System (ADS)

    Willems, Bart; Fragos, T.; Kalogera, V.

    2006-12-01

    In recent years, an increasing number of proper motions have been measured for Galactic black hole X-ray binaries. When supplemented with accurate determinations of other system parameters, these kinematical constraints harbor a wealth of information on compact object formation, such as wether or not black holes receive kicks at birth. In this presentation, we present constraints on the formation of the black hole X-ray binaries GRO J1655-40 and XTE J1118+480. We particularly explore the origin of the compact objects in these X-ray binaries by modeling the ongoing mass transfer phase, tracing the motion in the Galaxy back to the birth site of the black hole, and examining the dynamics of core-collapses of the black hole progenitor.

  20. Overview of Ice-Sheet Mass Balance and Dynamics from ICESat Measurements

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay

    2010-01-01

    The primary purpose of the ICESat mission was to determine the present-day mass balance of the Greenland and Antarctic ice sheets, identify changes that may be occurring in the surface-mass flux and ice dynamics, and estimate their contributions to global sea-level rise. Although ICESat's three lasers were planned to make continuous measurements for 3 to 5 years, the mission was re-planned to operate in 33-day campaigns 2 to 3 times each year following failure of the first laser after 36 days. Seventeen campaigns were conducted with the last one in the Fall of 2009. Mass balance maps derived from measured ice-sheet elevation changes show that the mass loss from Greenland has increased significantly to about 170 Gt/yr for 2003 to 2007 from a state of near balance in the 1990's. Increased losses (189 Gt/yr) from melting and dynamic thinning are over seven times larger'than increased gains (25 gt/yr) from precipitation. Parts of the West Antarctic ice sheet and the Antarctic Peninsula are losing mass at an increasing rate, but other parts of West Antarctica and the East Antarctic ice sheet are gaining mass at an increasing rate. Increased losses of 35 Gt/yr in Pine Island, Thwaites-Smith, and Marie-Bryd.Coast are more than balanced by gains in base of Peninsula and ice stream C, D, & E systems. From the 1992-2002 to 2003-2007 period, the overall mass balance for Antarctica changed from a loss of about 60 Gt/yr to near balance or slightly positive.

  1. Dynamical mass generation in unquenched QED using the Dyson-Schwinger equations

    SciTech Connect

    Kızılersü, Ayse; Sizer, Tom; Pennington, Michael R.; Williams, Anthony G.; Williams, Richard

    2015-03-13

    We present a comprehensive numerical study of dynamical mass generation for unquenched QED in four dimensions, in the absence of four-fermion interactions, using the Dyson-Schwinger approach. We begin with an overview of previous investigations of criticality in the quenched approximation. To this we add an analysis using a new fermion-antifermion-boson interaction ansatz, the Kizilersu-Pennington (KP) vertex, developed for an unquenched treatment. After surveying criticality in previous unquenched studies, we investigate the performance of the KP vertex in dynamical mass generation using a renormalized fully unquenched system of equations. This we compare with the results for two hybrid vertices incorporating the Curtis-Pennington vertex in the fermion equation. We conclude that the KP vertex is as yet incomplete, and its relative gauge-variance is due to its lack of massive transverse components in its design.

  2. Dynamical mass generation in unquenched QED using the Dyson-Schwinger equations

    DOE PAGESBeta

    Kızılersü, Ayse; Sizer, Tom; Pennington, Michael R.; Williams, Anthony G.; Williams, Richard

    2015-03-13

    We present a comprehensive numerical study of dynamical mass generation for unquenched QED in four dimensions, in the absence of four-fermion interactions, using the Dyson-Schwinger approach. We begin with an overview of previous investigations of criticality in the quenched approximation. To this we add an analysis using a new fermion-antifermion-boson interaction ansatz, the Kizilersu-Pennington (KP) vertex, developed for an unquenched treatment. After surveying criticality in previous unquenched studies, we investigate the performance of the KP vertex in dynamical mass generation using a renormalized fully unquenched system of equations. This we compare with the results for two hybrid vertices incorporating themore » Curtis-Pennington vertex in the fermion equation. We conclude that the KP vertex is as yet incomplete, and its relative gauge-variance is due to its lack of massive transverse components in its design.« less

  3. THE M87 BLACK HOLE MASS FROM GAS-DYNAMICAL MODELS OF SPACE TELESCOPE IMAGING SPECTROGRAPH OBSERVATIONS

    SciTech Connect

    Walsh, Jonelle L.; Barth, Aaron J.; Ho, Luis C.; Sarzi, Marc

    2013-06-20

    The supermassive black hole of M87 is one of the most massive black holes known and has been the subject of several stellar and gas-dynamical mass measurements; however, the most recent revision to the stellar-dynamical black hole mass measurement is a factor of about two larger than the previous gas-dynamical determinations. Here, we apply comprehensive gas-dynamical models that include the propagation of emission-line profiles through the telescope and spectrograph optics to new Space Telescope Imaging Spectrograph observations from the Hubble Space Telescope. Unlike the previous gas-dynamical studies of M87, we map out the complete kinematic structure of the emission-line disk within {approx}40 pc from the nucleus, and find that a small amount of velocity dispersion internal to the gas disk is required to match the observed line widths. We examine a scenario in which the intrinsic velocity dispersion provides dynamical support to the disk, and determine that the inferred black hole mass increases by only 6%. Incorporating this effect into the error budget, we ultimately measure a mass of M{sub BH}= (3.5{sup +0.9}{sub -0.7}) Multiplication-Sign 10{sup 9} M{sub sun} (68% confidence). Our gas-dynamical black hole mass continues to differ from the most recent stellar-dynamical mass by a factor of two, underscoring the need for carrying out more cross-checks between the two main black hole mass measurement methods.

  4. [The effect of anthropometric factors on human cerebellar mass and its age dynamics].

    PubMed

    Stepanenko, A Iu

    2014-01-01

    The purpose of this work was to examine the dependence of human cerebellar mass and its age dynamics on the body length and body-build type. The study was carried out on 295 objects--the corpses of the individuals of both sexes (173 males and 122 females) who died at the age of 20-99 years. The length of the body, the transverse diameter of the chest and the cerebellar mass were measured. Somatotype was determined by the Rees-Eysenck index. It was found that human cerebellar mass ranged from 103 to 197 g (with the average of 144 ± 1.0 g) and was significantly greater in men than in women (150.5 ± 1.3 g vs. 133.9 ± 1.2 g, P < 0.001). Age affected cerebellar mass in men (R = -0.46) more, than in women (R = -0.43). In men, a period of relative stability of the cerebellar mass lasted up to about 50 years and then was followed by a period of its decrease. In women, the stable period was observed until approximately 70 years. The cerebellar mass was related to the body length (R = 0.35 for men and R = 0.36 for women). The dependence of the cerebellar mass on the body length was greater in men (1.0 g/cm) greater than in women (0.5 g/cm): with the increase of the body length the difference in the values of the cerebellar mass between men and women was found to grow. The cerebellar mass in the individuals with various body-build types was not significantly different PMID:25552081

  5. A Disturbed Galactic Duo

    NASA Astrophysics Data System (ADS)

    2011-04-01

    variety, classified as a Type Ia, is thought to occur when a dense, hot star called a white dwarf - a remnant of medium-sized stars like our Sun - gravitationally sucks gas away from a nearby companion star. This added fuel eventually causes the whole star to explode in a runaway fusion reaction. The new image presented here of a remarkable galactic dynamic duo is based on data selected by Igor Chekalin for ESO's Hidden Treasures 2010 astrophotography competition. Chekalin won the first overall prize and this image received the second highest ranking of the nearly 100 contest entries [2]. Notes [1] Other much more noticeable points of light, such as the one toward the left end of the spiral arm running underneath of NGC 3169's core, are stars within the Milky Way that happen to fall by chance very close to the line of sight between our telescopes and the galaxies. [2] ESO's Hidden Treasures 2010 competition gave amateur astronomers the opportunity to search through ESO's vast archives of astronomical data, hoping to find a well-hidden gem that needed polishing by the entrants. To find out more about Hidden Treasures, visit http://www.eso.org/public/outreach/hiddentreasures/. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 15 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large

  6. A Disturbed Galactic Duo

    NASA Astrophysics Data System (ADS)

    2011-04-01

    variety, classified as a Type Ia, is thought to occur when a dense, hot star called a white dwarf - a remnant of medium-sized stars like our Sun - gravitationally sucks gas away from a nearby companion star. This added fuel eventually causes the whole star to explode in a runaway fusion reaction. The new image presented here of a remarkable galactic dynamic duo is based on data selected by Igor Chekalin for ESO's Hidden Treasures 2010 astrophotography competition. Chekalin won the first overall prize and this image received the second highest ranking of the nearly 100 contest entries [2]. Notes [1] Other much more noticeable points of light, such as the one toward the left end of the spiral arm running underneath of NGC 3169's core, are stars within the Milky Way that happen to fall by chance very close to the line of sight between our telescopes and the galaxies. [2] ESO's Hidden Treasures 2010 competition gave amateur astronomers the opportunity to search through ESO's vast archives of astronomical data, hoping to find a well-hidden gem that needed polishing by the entrants. To find out more about Hidden Treasures, visit http://www.eso.org/public/outreach/hiddentreasures/. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 15 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large

  7. On the physical origin of galactic conformity

    NASA Astrophysics Data System (ADS)

    Hearin, Andrew P.; Behroozi, Peter S.; van den Bosch, Frank C.

    2016-09-01

    Correlations between the star formation rates (SFRs) of nearby galaxies (so-called galactic conformity) have been observed for projected separations up to 4 Mpc, an effect not predicted by current semi-analytic models. We investigate correlations between the mass accretion rates (dMvir/dt) of nearby haloes as a potential physical origin for this effect. We find that pairs of host haloes `know about' each others' assembly histories even when their present-day separation is greater than thirty times the virial radius of either halo. These distances are far too large for direct interaction between the haloes to explain the correlation in their dMvir/dt. Instead, halo pairs at these distances reside in the same large-scale tidal environment, which regulates dMvir/dt for both haloes. Larger haloes are less affected by external forces, which naturally gives rise to a mass dependence of the halo conformity signal. SDSS measurements of galactic conformity exhibit a qualitatively similar dependence on stellar mass, including how the signal varies with distance. Based on the expectation that halo accretion and galaxy SFR are correlated, we predict the scale-, mass- and redshift-dependence of large-scale galactic conformity, finding that the signal should drop to undetectable levels by z ≳ 1. These predictions are testable with current surveys to z ˜ 1; confirmation would establish a strong correlation between dark matter halo accretion rate and central galaxy SFR.

  8. Effect of mass variation on the dynamics of receiver aircraft during aerial refueling

    NASA Astrophysics Data System (ADS)

    Mao, Weixin

    This dissertation presents the results of a study of the dynamic behavior of two aircraft that are flying in formation while one of them (the receiver) is being refueled by the other (the tanker) in mid-flight. The current procedure for aerial refueling requires that the receiver aircraft fly below, behind, and in relatively close proximity of the tanker for refueling to be possible. This means that the receiver aircraft is subjected to the full impact of the tanker wake turbulence; and this can clearly have a major impact on the motion of the receiver craft. Another important fact about aerial refueling is that large quantity of fuel is transferred from one vehicle to the other in a relatively short time. The resulting change in mass and the attendant change in aircraft inertia properties can also affect the dynamics of the aircraft system during fuel transfer. The principal goal of this project is to investigate the importance of this latter effect. This work accomplishes two main objectives. First, it shows how mass variation can be effectively factored into an analytical study of in-flight refueling; and it does this while keeping the analyses involved manageable. In addition, a numerical study of the equations of motion is utilized to extract useful information on how mass variation and some changes in receiver aircraft parameters can affect the motion of the receiver relative to the tanker. Results obtained indicate that mass variation due to fuel transfer compounds the difficulties created by tanker wake turbulence. In order to keep the receiver aircraft at a fixed position relative to the tanker during aerial refueling, appreciable adjustments must be made to the receiver's angle of attack, throttle setting and elevator deflection. A larger refueling rate demands even larger adjustments. Changes in certain other parameters related to aerial refueling can also amplify the effects of mass variation on the receiver motion, or influence the system's dynamics in

  9. Effects of dynamical masses of gluons and quarks on hadronic B decays

    SciTech Connect

    Zanetti, C. M.; Natale, A. A.

    2010-11-12

    We study hadronic annihilation decays of B mesons within the perturbative QCD at collinear approximation. The regulation of endpoint divergences is performed with the help of an infrared finite gluon propagator characterized by a non-perturbative dynamical gluon mass. The divergences at twist-3 are regulated by a dynamical quark mass. Our results fit quite well the existent data of B{sup 0}{yields}D{sub s}{sup -}K{sup +} and B{sup 0}{yields}D{sub s}{sup -*}K{sup +} for the expected range of dynamical gluon masses. We also make predictions for the rare decays B{sup 0}{yields}K{sup -}K{sup +}, B{sub s}{sup 0}{yields}{pi}{sup -}{pi}{sup +}, {pi}{sup 0}{pi}{sup 0}, B{sup +}{yields}D{sub s}{sup (*)+}K-bar{sup 0}, B{sup 0}{yields}D{sub s}{sup {+-}(*)}K{sup {+-}} and B{sub s}{sup 0}{yields}D{sup {+-}(*)}{pi}{sup {+-}}, D{sup 0}{pi}{sup 0}.

  10. Structures induced by companions in galactic discs

    NASA Astrophysics Data System (ADS)

    Kyziropoulos, P. E.; Efthymiopoulos, C.; Gravvanis, G. A.; Patsis, P. A.

    2016-09-01

    Using N-body simulations we study the structures induced on a galactic disc by repeated flybys of a companion in decaying eccentric orbit around the disc. Our system is composed by a stellar disc, bulge and live dark matter halo, and we study the system's dynamical response to a sequence of a companion's flybys, when we vary i) the disc's temperature (parameterized by Toomre's Q-parameter) and ii) the companion's mass and initial orbit. We use a new 3D Cartesian grid code: MAIN (Mesh-adaptive Approximate Inverse N-body solver). The main features of MAIN are reviewed, with emphasis on the use of a new Symmetric Factored Approximate Sparse Inverse (SFASI) matrix in conjunction with the multigrid method that allows the efficient solution of Poisson's equation in three space variables. We find that: i) companions need to be assigned initial masses in a rather narrow window of values in order to produce significant and more long-standing non-axisymmetric structures (bars and spirals) in the main galaxy's disc by the repeated flyby mechanism. ii) a crucial phenomenon is the antagonism between companion-excited and self-excited modes on the disc. Values of Q > 1.5 are needed in order to allow for the growth of the companion-excited modes to prevail over the the growth of the disc's self-excited modes. iii) We give evidence that the companion-induced spiral structure is best represented by a density wave with pattern speed nearly constant in a region extending from the ILR to a radius close to, but inside, corotation.

  11. Influence of fluid dynamic conditions on enzymatic hydrolysis of lignocellulosic biomass: Effect of mass transfer rate.

    PubMed

    Wojtusik, Mateusz; Zurita, Mauricio; Villar, Juan C; Ladero, Miguel; Garcia-Ochoa, Felix

    2016-09-01

    The effect of fluid dynamic conditions on enzymatic hydrolysis of acid pretreated corn stover (PCS) has been assessed. Runs were performed in stirred tanks at several stirrer speed values, under typical conditions of temperature (50°C), pH (4.8) and solid charge (20% w/w). A complex mixture of cellulases, xylanases and mannanases was employed for PCS saccharification. At low stirring speeds (<150rpm), estimated mass transfer coefficients and rates, when compared to chemical hydrolysis rates, lead to results that clearly show low mass transfer rates, being this phenomenon the controlling step of the overall process rate. However, for stirrer speed from 300rpm upwards, the overall process rate is controlled by hydrolysis reactions. The ratio between mass transfer and overall chemical reaction rates changes with time depending on the conditions of each run.

  12. Influence of fluid dynamic conditions on enzymatic hydrolysis of lignocellulosic biomass: Effect of mass transfer rate.

    PubMed

    Wojtusik, Mateusz; Zurita, Mauricio; Villar, Juan C; Ladero, Miguel; Garcia-Ochoa, Felix

    2016-09-01

    The effect of fluid dynamic conditions on enzymatic hydrolysis of acid pretreated corn stover (PCS) has been assessed. Runs were performed in stirred tanks at several stirrer speed values, under typical conditions of temperature (50°C), pH (4.8) and solid charge (20% w/w). A complex mixture of cellulases, xylanases and mannanases was employed for PCS saccharification. At low stirring speeds (<150rpm), estimated mass transfer coefficients and rates, when compared to chemical hydrolysis rates, lead to results that clearly show low mass transfer rates, being this phenomenon the controlling step of the overall process rate. However, for stirrer speed from 300rpm upwards, the overall process rate is controlled by hydrolysis reactions. The ratio between mass transfer and overall chemical reaction rates changes with time depending on the conditions of each run. PMID:27233094

  13. Research on Galactic Dark Matter Implied by Gravitational Microlensing

    NASA Astrophysics Data System (ADS)

    Palanque, Nathalie Katya

    1998-07-01

    One of the most compelling pieces of evidence for dark matter comes from the observation of the rotation curves of spiral galaxies. The dynamical mass implied exceeds that in visible components by about a factor of three. We will place this problem in the general context of dark matter in the Universe and see that galactic halos could be composed of compact baryonic objects. Using the effect of gravitational microlensing, the French experiment EROS (Experience de Recherche d'Objets Sombres) monitored stars in the Magellanic clouds for four years to search for dark halo objects. It excluded that objects in the mass range 5e-7 to 0.02 solar mass made up more than 20% of a standard halo. With a new set-up, EROS2 probes the high mass range, where a different line-of-sight is investigated: the Small Magellanic Cloud. The EROS2 scientific objectives, set-up and data acquisition pipeline are explained. We present a new stellar detection algorithm which increases the number of stars we are able to monitor. The analysis of the first year SMC data (5 million light curves) is described in detail, and one event compatible with microlensing is identified. Assuming a standard halo, a likelihood analysis allows the estimate of its most probable mass to about 1.7 solar masses. One of the main sources of systematics in crowded fields, blending, is studied thoroughly with the help of simulated images, and its impact on the efficiency quantified. Finally, a variety of realistic Galactic models are presented. For each of them, the optical depth and event rate are calculated and compared to the values derived from the detection of one candidate. The lack of statistics (and temporal baseline) calls for a second year of data, but we are already sensitive to objects in the mass range 0.01 to 1 solar mass. Because they probe different regions of the halo, the comparison of the LMC and SMC results will soon allow us to better constrain the shape and nature of our Halo.

  14. Brown dwarfs as dark galactic halos

    NASA Technical Reports Server (NTRS)

    Adams, Fred C.; Walker, Terry P.

    1990-01-01

    The possibility that the dark matter in galactic halos can consist of brown dwarf stars is considered. The radiative signature for such halos consisting solely of brown dwarfs is calculated, and the allowed range of brown dwarf masses, the initial mass function (IMF), the stellar properties, and the density distribution of the galactic halo are discussed. The prediction emission from the halo is compared with existing observations. It is found that, for any IMF of brown dwarfs below the deuterium burning limit, brown dwarf halos are consistent with observations. Brown dwarf halos cannot, however, explain the recently observed near-IR background. It is shown that future satellite missions will either detect brown dwarf halos or place tight constraints on the allowed range of the IMF.

  15. Dynamics of disk galaxies under eccentric perturbations and the effect of radiative thermal exchange on the rotation of lower mass protostars

    NASA Astrophysics Data System (ADS)

    Zhang, Linchu

    2000-09-01

    In the first part of this dissertation, the dynamics of disk galaxies are treated using a representation in a number of circular rings*. The rings are assumed to be rigid and oscillate in a plane. Motion of matter within each ring is taken into account. Eccentric perturbations are studied. First the axisymmetric equilibrium configuration of the galaxy is discussed. After that eccentric perturbations are described. The ring representation is then applied and relevant equations of motion derived. Various formulas involving coefficients of terms in the equations of motion are derived. Angular momentum transport is then discussed with the results of numerical solutions of the equations of motion. Besides the disk, two other components: the galactic bulge, and the dark matter halo are also included, but only as passive sources of gravity. The central region of the disk is handled separately; it may contain a black hole. The second part of this dissertation treats protostars. It is shown that radiative thermal exchange can significantly reduce the angular momentum of a rapidly spinning protostar. The mechanism is especially important for high temperature and large surface area. Also, it is expected that the mechanism is most relevant to lower mass protostars, since they may be embedded inside H II regions which have high temperatures. *This first part of the dissertation is related to [15] (Lovelace, R. V. E., Zhang, L., Kornreich, D. A., & Haynes, M. P. 1999, THE ASTROPHYSICAL JOURNAL, 524, 634, published by the University of Chicago Press,© 1999.The American Astronomical Society. All rights reserved).

  16. Dynamic behavior and deformation analysis of the fish cage system using mass-spring model

    NASA Astrophysics Data System (ADS)

    Lee, Chun Woo; Lee, Jihoon; Park, Subong

    2015-06-01

    Fish cage systems are influenced by various oceanic conditions, and the movements and deformation of the system by the external forces can affect the safety of the system itself, as well as the species of fish being cultivated. Structural durability of the system against environmental factors has been major concern for the marine aquaculture system. In this research, a mathematical model and a simulation method were presented for analyzing the performance of the large-scale fish cage system influenced by current and waves. The cage system consisted of netting, mooring ropes, floats, sinkers and floating collar. All the elements were modeled by use of the mass-spring model. The structures were divided into finite elements and mass points were placed at the mid-point of each element, and mass points were connected by springs without mass. Each mass point was applied to external and internal forces, and total force was calculated in every integration step. The computation method was applied to the dynamic simulation of the actual fish cage systems rigged with synthetic fiber and copper wire simultaneously influenced by current and waves. Here, we also tried to find a relevant ratio between buoyancy and sinking force of the fish cages. The simulation results provide improved understanding of the behavior of the structure and valuable information concerning optimum ratio of the buoyancy to sinking force according to current speeds.

  17. MODIFIED GRAVITY SPINS UP GALACTIC HALOS

    SciTech Connect

    Lee, Jounghun; Zhao, Gong-Bo; Li, Baojiu; Koyama, Kazuya

    2013-01-20

    We investigate the effect of modified gravity on the specific angular momentum of galactic halos by analyzing the halo catalogs at z = 0 from high-resolution N-body simulations for a f(R) gravity model that meets the solar-system constraint. It is shown that the galactic halos in the f(R) gravity model tend to acquire significantly higher specific angular momentum than those in the standard {Lambda}CDM model. The largest difference in the specific angular momentum distribution between these two models occurs for the case of isolated galactic halos with mass less than 10{sup 11} h {sup -1} M {sub Sun }, which are likely least shielded by the chameleon screening mechanism. As the specific angular momentum of galactic halos is rather insensitive to other cosmological parameters, it can in principle be an independent discriminator of modified gravity. We speculate a possibility of using the relative abundance of low surface brightness galaxies (LSBGs) as a test of general relativity given that the formation of the LSBGs occurs in fast spinning dark halos.

  18. The European Galactic Plane Surveys: EGAPS

    NASA Astrophysics Data System (ADS)

    Groot, P. J.; Drew, J.; Greimel, R.; Gaensicke, B.; Knigge, C.; Irwin, M.; Mampaso, A.; Augusteijn, T.; Morales-Rueda, L.; Barlow, M.; Iphas Collaboration; Uvex Collaboration; Vphas+ Collaboration

    2006-08-01

    Introduction: The European Galactic Plane Surveys (EGAPS) will for the first time ever map the complete galactic plane (10x360 degrees) down to 21st magnitude in u', g', r', i' and H-alpha and partly in He I 5875. It will complete a database of ~1 billion objects. The aim of EGAPS is to study populations of short-lived stellar and binary phases in our Galaxy and combine these population studies with stellar and binary evolutionary codes to vastly improve our understanding of crucial phases of stellar evolution. Target populations include Wolf-Rayet stars, planetary nebulae, white dwarfs (in binaries), cataclysmic variables and other mass-transferring binaries. Methods: EGAPS is using the INT+WFC on La Palma for the Northern Hemisphere and will use the VST+Omegacam in the Southern Hemisphere. Results: The Northern red survey (IPHAS, using r', i', and Halpha) has started in 2003 and is currently 70% complete. The northern blue survey (UVEX; u',g',r' and HeI) has started in June 2006. Results include the detection of a number of rare planetary nebulae, cataclysmic variables, red-dwarf white dwarf binaries in clusters, a possible AM CVn candidate, and a deep photometric and spectroscopic investigation of the Cyg X region. Discussion: EGAPS will revolutionize the field of galactic stellar astrophysics by completing the first ever digital, multicolour survey of the Galactic Plane.

  19. Structure and dynamics of protein waters revealed by radiolysis and mass spectrometry

    PubMed Central

    Gupta, Sayan; D’Mello, Rhijuta; Chance, Mark R.

    2012-01-01

    Water is critical for the structure, stability, and functions of macromolecules. Diffraction and NMR studies have revealed structure and dynamics of bound waters at atomic resolution. However, localizing the sites and measuring the dynamics of bound waters, particularly on timescales relevant to catalysis and macromolecular assembly, is quite challenging. Here we demonstrate two techniques: first, temperature-dependent radiolytic hydroxyl radical labeling with a mass spectrometry (MS)-based readout to identify sites of bulk and bound water interactions with surface and internal residue side chains, and second, H218O radiolytic exchange coupled MS to measure the millisecond dynamics of bound water interactions with various internal residue side chains. Through an application of the methods to cytochrome c and ubiquitin, we identify sites of water binding and measure the millisecond dynamics of bound waters in protein crevices. As these MS-based techniques are very sensitive and not protein size limited, they promise to provide unique insights into protein–water interactions and water dynamics for both small and large proteins and their complexes. PMID:22927377

  20. Compression dynamics of quasi-spherical wire arrays with different linear mass profiles

    NASA Astrophysics Data System (ADS)

    Mitrofanov, K. N.; Aleksandrov, V. V.; Gritsuk, A. N.; Grabovski, E. V.; Frolov, I. N.; Laukhin, Ya. N.; Oleinik, G. M.; Ol'khovskaya, O. G.

    2016-09-01

    Results of experimental studies of the implosion of quasi-spherical wire (or metalized fiber) arrays are presented. The goal of the experiments was to achieve synchronous three-dimensional compression of the plasma produced in different regions of a quasi-spherical array into its geometrical center. To search for optimal synchronization conditions, quasi-spherical arrays with different initial profiles of the linear mass were used. The following dependences of the linear mass on the poloidal angle were used: m l (θ) ∝ sin-1θ and m l (θ) ∝ sin-2θ. The compression dynamics of such arrays was compared with that of quasi-spherical arrays without linear mass profiling, m l (θ) = const. To verify the experimental data, the spatiotemporal dynamics of plasma compression in quasi-spherical arrays was studied using various diagnostics. The experiments on three-dimensional implosion of quasi-spherical arrays made it possible to study how the frozen-in magnetic field of the discharge current penetrates into the array. By measuring the magnetic field in the plasma of a quasi-spherical array, information is obtained on the processes of plasma production and formation of plasma flows from the wire/fiber regions with and without an additionally deposited mass. It is found that penetration of the magnetic flux depends on the initial linear mass profile m l (θ) of the quasi-spherical array. From space-resolved spectral measurements and frame imaging of plasma X-ray emission, information is obtained on the dimensions and shape of the X-ray source formed during the implosion of a quasi-spherical array. The intensity of this source is estimated and compared with that of the Z-pinch formed during the implosion of a cylindrical array.

  1. Climatic and Dynamic Influences on Geodetic Mass Malance Estimate of Svalbard

    NASA Astrophysics Data System (ADS)

    Nuth, C.; Moholdt, G.; Kohler, J.; Hagen, J. O.

    2008-12-01

    We estimate glacier volume change for 27,000 km2 of the glaciated area of the Svalbard archipelago by comparing 4 years of ICESat elevation data (2003-2007) to older maps and DEMs (1961-1990). We observe significant thinning at glacier fronts (-1 to -3 m a-1), and slight thinning or thickening at higher altitudes (-0.3 to 0.3 m a-1). Exceptions occur within surge-type basins. Marine terminating glaciers experience more extreme thinning than land terminating glaciers, due to calving front retreat. We obtain volume changes over different spatial scales, from drainage basin to regional scale. Thickness change by altitude relationships are integrated over glacier hypsometry to yield a net volume change. Dividing volume change by glacier area and time yields mean geodetic mass balance rates when converted into water equivalents. At the individual glacier scale, dynamical effects such as surges have a major impact on this estimate. For example, two adjacent basins, Hinlopenbreen and Negribreen, have different geodetic mass balances, which can be accounted for by the fact that the former surged in the observation period (extremely negative mass balance) while the latter was in a quiescent phase build up period (almost positive mass balance), respectively. At the regional scale, however, this dynamic influence averages out to permit regional-scale volume change estimation which is more directly tied to climate. We estimate that for the period 1965 to ~2005, Svalbard glaciers (excluding Austfonna) have lost 9.6 ± 1.8 km3 of ice per year, for an average geodetic mass balance of -0.36 ± 0.07 m a-1 w. eq. This amounts to ~0.0278 mm of sea level rise per year, 5% of the total contribution from global glaciers.

  2. Ice flow dynamics and mass loss of Totten Glacier, East Antarctica, from 1989 to 2015

    NASA Astrophysics Data System (ADS)

    Li, Xin; Rignot, Eric; Mouginot, Jeremie; Scheuchl, Bernd

    2016-06-01

    Totten Glacier has the largest ice discharge in East Antarctica and a basin grounded mostly below sea level. Satellite altimetry data have revealed ice thinning in areas of fast flow. Here we present a time series of ice velocity measurements spanning from 1989 to 2015 using Landsat and interferometric synthetic-aperture radar data, combined with ice thickness from Operation IceBridge, and surface mass balance from Regional Atmospheric Climate Model. We find that the glacier speed exceeded its balance speed in 1989-1996, slowed down by 11 ± 12% in 2000 to bring its ice flux in balance with accumulation (65 ± 4 Gt/yr), then accelerated by 18 ± 3% until 2007, and remained constant thereafter. The average ice mass loss (7 ± 2 Gt/yr) is dominated by ice dynamics (73%). Its acceleration (0.6 ± 0.3 Gt/yr2) is dominated by surface mass balance (80%). Ice velocity apparently increased when ocean temperature was warmer, which suggests a linkage between ice dynamics and ocean temperature.

  3. Dynamical mass generation in QED with magnetic fields: Arbitrary field strength and coupling constant

    NASA Astrophysics Data System (ADS)

    Rojas, Eduardo; Ayala, Alejandro; Bashir, Adnan; Raya, Alfredo

    2008-05-01

    We study the dynamical generation of masses for fundamental fermions in quenched quantum electrodynamics, in the presence of magnetics fields of arbitrary strength, by solving the Schwinger-Dyson equation for the fermion self-energy in the rainbow approximation. We employ the Ritus eigenfunction formalism which provides a neat solution to the technical problem of summing over all Landau levels. It is well known that magnetic fields catalyze the generation of fermion mass m for arbitrarily small values of electromagnetic coupling α. For intense fields it is also well known that m∝eB. Our approach allows us to span all regimes of parameters α and eB. We find that m∝eB provided α is small. However, when α increases beyond the critical value αc which marks the onslaught of dynamical fermion masses in vacuum, we find m∝Λ, the cutoff required to regularize the ultraviolet divergences. Our method permits us to verify the results available in literature for the limiting cases of eB and α. We also point out the relevance of our work for possible physical applications.

  4. CONNECTION BETWEEN DYNAMICALLY DERIVED INITIAL MASS FUNCTION NORMALIZATION AND STELLAR POPULATION PARAMETERS

    SciTech Connect

    McDermid, Richard M.; Cappellari, Michele; Bayet, Estelle; Bureau, Martin; Davies, Roger L.; Alatalo, Katherine; Blitz, Leo; Bois, Maxime; Bournaud, Frédéric; Duc, Pierre-Alain; Davis, Timothy A.; De Zeeuw, P. T.; Emsellem, Eric; Kuntschner, Harald; Khochfar, Sadegh; Krajnović, Davor; Morganti, Raffaella; Oosterloo, Tom; Naab, Thorsten; and others

    2014-09-10

    We report on empirical trends between the dynamically determined stellar initial mass function (IMF) and stellar population properties for a complete, volume-limited sample of 260 early-type galaxies from the ATLAS{sup 3D} project. We study trends between our dynamically derived IMF normalization α{sub dyn} ≡ (M/L){sub stars}/(M/L){sub Salp} and absorption line strengths, and interpret these via single stellar population-equivalent ages, abundance ratios (measured as [α/Fe]), and total metallicity, [Z/H]. We find that old and alpha-enhanced galaxies tend to have on average heavier (Salpeter-like) mass normalization of the IMF, but stellar population does not appear to be a good predictor of the IMF, with a large range of α{sub dyn} at a given population parameter. As a result, we find weak α{sub dyn}-[α/Fe] and α{sub dyn} –Age correlations and no significant α{sub dyn} –[Z/H] correlation. The observed trends appear significantly weaker than those reported in studies that measure the IMF normalization via the low-mass star demographics inferred through stellar spectral analysis.

  5. Correlation and prediction of dynamic human isolated joint strength from lean body mass

    NASA Technical Reports Server (NTRS)

    Pandya, Abhilash K.; Hasson, Scott M.; Aldridge, Ann M.; Maida, James C.; Woolford, Barbara J.

    1992-01-01

    A relationship between a person's lean body mass and the amount of maximum torque that can be produced with each isolated joint of the upper extremity was investigated. The maximum dynamic isolated joint torque (upper extremity) on 14 subjects was collected using a dynamometer multi-joint testing unit. These data were reduced to a table of coefficients of second degree polynomials, computed using a least squares regression method. All the coefficients were then organized into look-up tables, a compact and convenient storage/retrieval mechanism for the data set. Data from each joint, direction and velocity, were normalized with respect to that joint's average and merged into files (one for each curve for a particular joint). Regression was performed on each one of these files to derive a table of normalized population curve coefficients for each joint axis, direction, and velocity. In addition, a regression table which included all upper extremity joints was built which related average torque to lean body mass for an individual. These two tables are the basis of the regression model which allows the prediction of dynamic isolated joint torques from an individual's lean body mass.

  6. Charge Competition and the Linear Dynamic Range of Detection in Electrospray Ionization Mass Spectrometry

    SciTech Connect

    Tang, Keqi; Page, Jason S.; Smith, Richard D.

    2004-10-02

    An experimental investigation and theoretical analysis are reported on charge competition in electrospray ionization (ESI) and its effects on the linear dynamic range of ESI mass spectrometric (MS) measurements. The experiments confirmed the expected increase of MS sensitivities as the ESI flow rate decreases. However, different compounds show somewhat different mass spectral peak intensities even at the lowest flow rates, the same concentration and electrospray operating conditions. MS response for each compound solution shows good linearity at lower concentrations and levels off at high concentration, consistent with analyte ''saturation'' in the ESI process. The extent of charge competition leading to saturation in the ESI process is consistent with the relative magnitude of excess charge in the electrospray compared to the total number of analyte molecules in the solution. This ESI capacity model allows one to predict the sample concentration limits for charge competition and the on-set of ionization suppression effects, as well as the linear dynamic range for ESI-MS. The implications for quantitative MS analysis and possibilities for effectively extending the dynamic range of ESI measurements are discussed.

  7. Future projections of Greenland's ice loss accounting for changes in surface mass balance and dynamic discharge

    NASA Astrophysics Data System (ADS)

    Fürst, J. J.; Goelzer, H.; Huybrechts, P.

    2012-04-01

    Under future climate change, the Greenland Ice Sheet (GrIS) is highly vulnerable as its margins are relatively warm compared to Antarctica making them relatively prone for summer melting. A rise of about three degrees in annual average temperature over Greenland is expected to lead to irreversible ice sheet melting, which makes the GrIS a sensitive element in the Earth's climate system. Moreover, extended coverage and improved observation techniques have revealed high variations in dynamical ice discharge from outlet glaciers around the entire ice sheet. During the last decade, this dynamic discharge has contributed to almost half of the total mass loss. Since variations of the dynamic discharge are limited to the GrIS margin, direct inland transmission of these perturbations is necessary to significantly alter the overall GIS evolution on short time scales. Gradients in membrane stresses hold the potential for direct horizontal coupling and thus concerns are raised whether direct signal transmission has a significant impact on the ice interior. Because of strong mutual feedbacks between surface mass balance and marginal ice dynamics, our aim is to account for changes in both to assess the future GrIS contribution to sea level rise. For this purpose, we use a three-dimensional ice sheet model with a Blatter/Pattyn dynamic core that allows for direct signal transmission in ice flow. The surface mass balance is calculated by a positive degree-day model, which accounts for internal accumulation and temporary water storage in the snow cover. The model is initialised by calibrating a glacial cycle spin-up to the present day geometry. For the last half of the 20th century we force the ice sheet model with reanalysis data of surface temperature and precipitation. Future climate scenarios are taken from general circulation models and used in anomaly mode in the positive degree-day model. These scenarios are based on the representative concentration pathways that were

  8. Galactic-scale civilization

    NASA Technical Reports Server (NTRS)

    Kuiper, T. B. H.

    1980-01-01

    Evolutionary arguments are presented in favor of the existence of civilization on a galactic scale. Patterns of physical, chemical, biological, social and cultural evolution leading to increasing levels of complexity are pointed out and explained thermodynamically in terms of the maximization of free energy dissipation in the environment of the organized system. The possibility of the evolution of a global and then a galactic human civilization is considered, and probabilities that the galaxy is presently in its colonization state and that life could have evolved to its present state on earth are discussed. Fermi's paradox of the absence of extraterrestrials in light of the probability of their existence is noted, and a variety of possible explanations is indicated. Finally, it is argued that although mankind may be the first occurrence of intelligence in the galaxy, it is unjustified to presume that this is so.

  9. The Galactic Bulge

    NASA Astrophysics Data System (ADS)

    Barbuy, B.

    2016-06-01

    The Galactic bulge is the least studied component of our Galaxy. Yet, its formation and evolution are key to understand the formation of the Galaxy itself. Studies on the Galactic bulge have increased significantly in the last years, but still there are many points of controversy. This volume contains several contributions from experts in different aspects of the bulge. Issues discussed include the following: the presence of an old spheroidal bulge, or identification of its old stellar population with the thick disk or halo; fraction of stars younger than 10 Gyr is estimated to be of < 5 to 22% depending on method and authors; multiple populations or only a metal-poor and a metal-rich ones; spheroidal or ellipsoidal distribution of RR Lyrae; formation of the bulge from early mergers or from secular evolution of the bar; different methods of mapping extinction; selection and identification of bulge globular clusters.

  10. The Atacama Cosmology Telescope: Dynamical Masses for 44 SZ-Selected Galaxy Clusters over 755 Square Degrees

    NASA Technical Reports Server (NTRS)

    Sifon, Cristobal; Battaglia, Nick; Hasselfield, Matthew; Menanteau, Felipe; Barrientos, L. Felipe; Bond, J. Richard; Crichton, Devin; Devlin, Mark J.; Dunner, Rolando; Hilton, Matt; Wollack, Edward J.

    2016-01-01

    We present galaxy velocity dispersions and dynamical mass estimates for 44 galaxy clusters selected via the Sunyaev-Zeldovich (SZ) effect by the Atacama Cosmology Telescope. Dynamical masses for 18 clusters are reported here for the first time. Using N-body simulations, we model the different observing strategies used to measure the velocity dispersions and account for systematic effects resulting from these strategies. We find that the galaxy velocity distributions may be treated as isotropic, and that an aperture correction of up to 7 per cent in the velocity dispersion is required if the spectroscopic galaxy sample is sufficiently concentrated towards the cluster centre. Accounting for the radial profile of the velocity dispersion in simulations enables consistent dynamical mass estimates regardless of the observing strategy. Cluster masses M200 are in the range (1 - 15) times 10 (sup 14) Solar Masses. Comparing with masses estimated from the SZ distortion assuming a gas pressure profile derived from X-ray observations gives a mean SZ-to-dynamical mass ratio of 1:10 plus or minus 0:13, but there is an additional 0.14 systematic uncertainty due to the unknown velocity bias; the statistical uncertainty is dominated by the scatter in the mass-velocity dispersion scaling relation. This ratio is consistent with previous determinations at these mass scales.

  11. Neutrino Transport in Black Hole-Neutron Star Binaries: Dynamical Mass Ejection and Neutrino-Driven Wind

    NASA Astrophysics Data System (ADS)

    Kyutoku, K.; Kiuchi, K.; Sekiguchi, Y.; Shibata, M.; Taniguchi, K.

    2016-10-01

    We present our recent results of numerical-relativity simulations of black hole-neutron star binary mergers incorporating approximate neutrino transport. We in particular discuss dynamical mass ejection and neutrino-driven wind.

  12. Dynamical mass of the O-type supergiant in ζ Orionis A

    NASA Astrophysics Data System (ADS)

    Hummel, C. A.; Rivinius, Th.; Nieva, M.-F.; Stahl, O.; van Belle, G.; Zavala, R. T.

    2013-06-01

    Aims: A close companion of ζ Orionis A was found in 2000 with the Navy Precision Optical Interferometer (NPOI), and shown to be a physical companion. Because the primary is a supergiant of type O, for which dynamical mass measurements are very rare, the companion was observed with NPOI over the full 7-year orbit. Our aim was to determine the dynamical mass of a supergiant that, due to the physical separation of more than 10 AU between the components, cannot have undergone mass exchange with the companion. Methods: The interferometric observations allow measuring the relative positions of the binary components and their relative brightness. The data collected over the full orbital period allows all seven orbital elements to be determined. In addition to the interferometric observations, we analyzed archival spectra obtained at the Calar Alto, Haute Provence, Cerro Armazones, and La Silla observatories, as well as new spectra obtained at the VLT on Cerro Paranal. In the high-resolution spectra we identified a few lines that can be associated exclusively to one or the other component for the measurement of the radial velocities of both. The combination of astrometry and spectroscopy then yields the stellar masses and the distance to the binary star. Results: The resulting masses for components Aa of 14.0 ± 2.2 M⊙ and Ab of 7.4 ± 1.1 M⊙ are low compared to theoretical expectations, with a distance of 294 ± 21 pc which is smaller than a photometric distance estimate of 387 ± 54 pc based on the spectral type B0III of the B component. If the latter (because it is also consistent with the distance to the Orion OB1 association) is adopted, the mass of the secondary component Ab of 14 ± 3 M⊙ would agree with classifying a star of type B0.5IV. It is fainter than the primary by about 2.2 ± 0.1 magnitudes in the visual. The primary mass is then determined to be 33 ± 10 M⊙. The possible reasons for the distance discrepancy are most likely related to physical

  13. Grains in galactic haloes.

    NASA Astrophysics Data System (ADS)

    Ferrara, A.; Barsella, B.; Ferrini, F.; Greenberg, J. M.; Aiello, S.

    1989-12-01

    The authors considered the effect of extensive forces on dust grains subjected to the light and matter distribution of the spiral galaxy NGC 3198. They have shown that the combined force on a small particle located above the plane of a galactic disk may be either attractive or repulsive depending on a variety of parameters. The authors present here the preliminary results of the study of the motion of a dust grain for NGC 3198.

  14. Haloes light and dark: dynamical models of the stellar halo and constraints on the mass of the Galaxy

    NASA Astrophysics Data System (ADS)

    Williams, A. A.; Evans, N. W.

    2015-11-01

    We develop a flexible set of action-based distribution functions (DFs) for stellar haloes. The DFs have five free parameters, controlling the inner and outer density slope, break radius, flattening, and anisotropy, respectively. The DFs generate flattened stellar haloes with a rapidly varying logarithmic slope in density, as well as a spherically aligned velocity ellipsoid with a long axis that points towards the Galactic Centre - all attributes possessed by the stellar halo of the Milky Way. We use our action-based DF to model the blue horizontal branch stars extracted from the Sloan Digital Sky Survey as stellar halo tracers in a spherical Galactic potential. As the selection function is hard to model, we fix the density law from earlier studies and solve for the anisotropy and gravitational potential parameters. Our best-fitting model has a velocity anisotropy that becomes more radially anisotropic on moving outwards. It changes from β ≈ 0.4 at Galactocentric radius of 15 kpc to ≈0.7 at 60 kpc. This is a gentler increase than is typically found in simulations of stellar haloes built from the multiple accretion of smaller systems. We find the potential corresponds to an almost flat rotation curve with amplitude of ≈200 km s-1 at these distances. This implies an enclosed mass of ≈4.5 × 1011 M⊙ within a spherical shell of radius 50 kpc.

  15. Low-mass molecular dynamics simulation: A simple and generic technique to enhance configurational sampling

    SciTech Connect

    Pang, Yuan-Ping

    2014-09-26

    Highlights: • Reducing atomic masses by 10-fold vastly improves sampling in MD simulations. • CLN025 folded in 4 of 10 × 0.5-μs MD simulations when masses were reduced by 10-fold. • CLN025 folded as early as 96.2 ns in 1 of the 4 simulations that captured folding. • CLN025 did not fold in 10 × 0.5-μs MD simulations when standard masses were used. • Low-mass MD simulation is a simple and generic sampling enhancement technique. - Abstract: CLN025 is one of the smallest fast-folding proteins. Until now it has not been reported that CLN025 can autonomously fold to its native conformation in a classical, all-atom, and isothermal–isobaric molecular dynamics (MD) simulation. This article reports the autonomous and repeated folding of CLN025 from a fully extended backbone conformation to its native conformation in explicit solvent in multiple 500-ns MD simulations at 277 K and 1 atm with the first folding event occurring as early as 66.1 ns. These simulations were accomplished by using AMBER forcefield derivatives with atomic masses reduced by 10-fold on Apple Mac Pros. By contrast, no folding event was observed when the simulations were repeated using the original AMBER forcefields of FF12SB and FF14SB. The results demonstrate that low-mass MD simulation is a simple and generic technique to enhance configurational sampling. This technique may propel autonomous folding of a wide range of miniature proteins in classical, all-atom, and isothermal–isobaric MD simulations performed on commodity computers—an important step forward in quantitative biology.

  16. Investigation of dynamic characteristics of an elastic wing model by using corrections of mass and stiffness matrices

    NASA Astrophysics Data System (ADS)

    Hashemi-Kia, M.; Cutchins, M. A.; Tinker, M. L.

    1988-02-01

    The effects of theoretical changes in mass and stiffness matrices on the dynamic characteristics of a model wing are considered. The NASTRAN computer code is utilized to find theoretical mass and stiffness matrices with their corresponding natural frequencies and mode shapes. The dynamic response is then calculated by using theoretical mass and stiffness matrices and theoretical modal data. Experimentally measured mode shapes and natural frequencies are used to improve the stiffness and mass matrices. The resulting improved stiffness and mass matrices are further used to calculate again the dynamic response for the model. Analysis of the computational results and experimental data show that the improved theoretical model represents the experimental model better than the original theoretical model. Other means of improving the theoretical model are summarized.

  17. Galactic Diffuse Emissions

    SciTech Connect

    Digel, Seth W.; /SLAC

    2007-10-25

    Interactions of cosmic rays with interstellar nucleons and photons make the Milky Way a bright, diffuse source of high-energy {gamma}-rays. Observationally, the results from EGRET, COMPTEL, and OSSE have now been extended to higher energies by ground-based experiments, with detections of diffuse emission in the Galactic center reported by H.E.S.S. in the range above 100 GeV and of diffuse emission in Cygnus by MILAGRO in the TeV range. In the range above 100 keV, INTEGRAL SPI has found that diffuse emission remains after point sources are accounted for. I will summarize current knowledge of diffuse {gamma}-ray emission from the Milky Way and review some open issues related to the diffuse emission -- some old, like the distribution of cosmic-ray sources and the origin of the 'excess' of GeV emission observed by EGRET, and some recently recognized, like the amount and distribution of molecular hydrogen not traced by CO emission -- and anticipate some of the advances that will be possible with the Large Area Telescope on GLAST. We plan to develop an accurate physical model for the diffuse emission, which will be useful for detecting and accurately characterizing emission from Galactic point sources as well as any Galactic diffuse emission from exotic processes, and for studying the unresolved extragalactic emission.

  18. Modeling the Mass Action Dynamics of Metabolism with Fluctuation Theorems and Maximum Entropy

    NASA Astrophysics Data System (ADS)

    Cannon, William; Thomas, Dennis; Baxter, Douglas; Zucker, Jeremy; Goh, Garrett

    The laws of thermodynamics dictate the behavior of biotic and abiotic systems. Simulation methods based on statistical thermodynamics can provide a fundamental understanding of how biological systems function and are coupled to their environment. While mass action kinetic simulations are based on solving ordinary differential equations using rate parameters, analogous thermodynamic simulations of mass action dynamics are based on modeling states using chemical potentials. The latter have the advantage that standard free energies of formation/reaction and metabolite levels are much easier to determine than rate parameters, allowing one to model across a large range of scales. Bridging theory and experiment, statistical thermodynamics simulations allow us to both predict activities of metabolites and enzymes and use experimental measurements of metabolites and proteins as input data. Even if metabolite levels are not available experimentally, it is shown that a maximum entropy assumption is quite reasonable and in many cases results in both the most energetically efficient process and the highest material flux.

  19. Investigation of structure, dynamics and function of metalloproteins with electrospray ionization mass spectrometry.

    PubMed

    Kaltashov, Igor A; Zhang, Mingxuan; Eyles, Stephen J; Abzalimov, Rinat R

    2006-10-01

    Electrospray ionization mass spectrometry (ESI MS) has emerged recently as a powerful tool for analyzing many structural and behavioral aspects of metalloproteins in great detail. In this review we discuss recent developments in the field, placing particular emphasis on the unique features of ESI MS that lend themselves to metalloprotein characterization at a variety of levels. Direct mass measurement enables the determination of protein-metal ion binding stoichiometry in solution and metalloprotein higher order structure in the case of multi-subunit proteins. MS techniques have been developed for determining the locations of metal-binding centers, metal oxidation states and reaction intermediates of metal-containing enzymes. Other ESI MS techniques are also discussed, such as protein ion charge state distributions and hydrogen/deuterium exchange studies, which can be used to measure metal binding affinities and to shed light on vital dynamic aspects of the functional properties of metalloproteins endowed by metal binding.

  20. Evidence for enhanced dynamic flow in ionospheric holes from the Pioneer Venus Orbiter Neutral Mass Spectrometer

    NASA Technical Reports Server (NTRS)

    Kasprzak, W. T.; Niemann, H. B.

    1992-01-01

    Ion mode measurements made by the Pioneer Venus Orbiter Neutral Mass Spectrometer (ONMS) for two ionospheric holes on orbit numbers 530 and 531 were used to find evidence for enhanced dynamic flow in ionospheric holes. The analysis of the spin modulation has provided measurements of one component of the ion drift in the hole regions. It was found that, inside the holes, the He(+)/O(+) ratio is enhanced relative to that occurring outside the holes. The in drift direction in the ecliptic plane for the hole regions was found to be consistent with downward ion flow (i.e., toward the planet) and, for one orbit examined without a hole, with upward ion flow at the approach of ionopause. The ONMS measurements in the hole and near the ionopause suggest that both areas are regions of enhanced dynamic flow.

  1. Mass Spectrometric Analysis of Spatio-Temporal Dynamics of Crustacean Neuropeptides

    PubMed Central

    OuYang, Chuanzi; Liang, Zhidan; Li, Lingjun

    2014-01-01

    Neuropeptides represent one of the largest classes of signaling molecules used by nervous systems to regulate a wide range of physiological processes. Over the past several years, mass spectrometry (MS)-based strategies have revolutionized the discovery of neuropeptides in numerous model organisms, especially in decapod crustaceans. Here, we focus our discussion on recent advances in the use of MS-based techniques to map neuropeptides in spatial domain and monitoring their dynamic changes in temporal domain. These MS-enabled investigations provide valuable information about the distribution, secretion and potential function of neuropeptides with high molecular specificity and sensitivity. In situ MS imaging and in vivo microdialysis are highlighted as key technologies for probing spatio-temporal dynamics of neuropeptides in the crustacean nervous system. This review summarizes the latest advancement in MS-based methodologies for neuropeptide analysis including typical workflow and sample preparation strategies as well as major neuropeptide families discovered in decapod crustaceans. PMID:25448012

  2. Multi-valley effective mass theory for device-level modeling of open quantum dynamics

    NASA Astrophysics Data System (ADS)

    Jacobson, N. Tobias; Baczewski, Andrew D.; Frees, Adam; Gamble, John King; Montano, Ines; Moussa, Jonathan E.; Muller, Richard P.; Nielsen, Erik

    2015-03-01

    Simple models for semiconductor-based quantum information processors can provide useful qualitative descriptions of device behavior. However, as experimental implementations have matured, more specific guidance from theory has become necessary, particularly in the form of quantitatively reliable yet computationally efficient modeling. Besides modeling static device properties, improved characterization of noisy gate operations requires a more sophisticated description of device dynamics. Making use of recent developments in multi-valley effective mass theory, we discuss device-level simulations of the open system quantum dynamics of a qubit interacting with phonons and other noise sources. Sandia is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy National Nuclear Security Administration under Contract No. DE-AC04-94AL85000.

  3. Perturbations and dynamics of reaction-diffusion systems with mass conservation.

    PubMed

    Kuwamura, Masataka; Morita, Yoshihisa

    2015-07-01

    In some reaction-diffusion systems where the total mass of their components is conserved, solutions with initial values near a homogeneous equilibrium converge to a simple localized pattern (spike) after exhibiting Turing-like patterns near the equilibrium for appropriate diffusion coefficients. In this study, we investigate the perturbed reaction-diffusion systems of such conserved systems. We show that a reaction-diffusion model with a globally stable homogeneous equilibrium can exhibit large amplitude Turing-like patterns in the transient dynamics. Moreover, we propose a three-component model, which exhibits an alternating repetition of spatially (almost) homogeneous oscillations and large amplitude Turing-like patterns.

  4. Use of Generalized Mass in the Interpretation of Dynamic Response of BENDING-TORSION Coupled Beams

    NASA Astrophysics Data System (ADS)

    ESLIMY-ISFAHANY, S. H. R.; BANERJEE, J. R.

    2000-11-01

    The interpretation of mode shapes and dynamic response of bending-torsion coupled beams is assessed by using the concept of generalized mass. In the first part of this investigation, the free vibratory motion of bending-torsion coupled beams is studied in detail. The conventional method of interpreting the normal modes of vibration consisting of bending displacements and torsional rotations is shown to be inadequate and replaced by an alternative method which is focussed on the constituent parts of the generalized mass arising from bending and torsional displacements. Basically, the generalized mass in a particular mode is identified and examined in terms of bending, torsion and bending-torsion coupling effects. It is demonstrated that the contribution of individual components in the expression of the generalized mass of a normal mode is a much better indicator in characterizing a coupled mode. It is also shown that the usually adopted criteria of plotting bending displacement and torsional rotations to describe a coupled mode can be deceptive and misleading. In the second part of the investigation, attention is focussed on the dynamic response characteristics of bending-torsion coupled beams when subjected to random bending or torsional loads. A normal mode approach is used to establish the total response. The input random excitation is assumed to be stationary and ergodic so that with the linearity assumption, the output spectrum of the response is obtained by using the frequency response function. The contribution of each normal mode to the overall response is isolated. Particular emphasis is placed on bending-induced torsional response and torsion-induced bending response. A number of case studies involving different types of bending-torsion coupled beams with Cantilever end conditions are presented. The limitations of existing methods of modal interpretation are highlighted, and an insight into the mode selection for response analysis is provided.

  5. Galactic diffuse gamma rays from galactic plane

    NASA Astrophysics Data System (ADS)

    Tateyama, N.; Nishimura, J.

    2001-08-01

    The dominant part of the diffuse gamma rays from the Galactic plane, with energy greater than 1TeV, has been thought as due to the inverse Compton scattering of the interstellar photons with the high-energy cosmic electrons. In these energy regions, the diffuse gamma-ray observation gives us unique infor-mation on the energy spectrum of the high-energy electrons in the interstellar space, since we cannot observe those electrons directly. This provides us information on the cosmicray source, production mechanism and propagation in the Galaxy. We discuss the implication of our results by comparing with the work of Porter and Protheroe, and also compare with the data observed by the most recent extensive air showers. It is also pointed out that the patchy structure of gammaray distribution will appear at high-energy side, if we observe the distribution with a higher angular resolution of a few arc degrees. This patchy structure will become clear beyond 10TeV of IC gamma rays, where the number of contributing sources of parent decrease and the diffusion distance of the electrons become smaller.

  6. Dynamics of a variable mass system applied to spacecraft rocket attitude theory

    NASA Astrophysics Data System (ADS)

    Mudge, Jason Dominic

    This research project is a study of the dynamics of a variable mass system. The scope of this research project is to gain understanding as to how a variable mass system will behave. The intent is to bring the level of understanding of variable mass dynamics higher and closer to the level of constant mass dynamics in the area of spacecrafts in particular. A main contribution is the finding of a set of criteria to minimize or eliminate the deviation of the nutation angle (or cone angle or angle of attack) of spacecraft rockets passively, i.e. without active control. The motivation for this research project is the Star 48 anomaly. The Star 48 is a solid rocket motor which has propelled (boosted) communication satellites from lower earth orbit to a higher one during the 1980's. The anomaly is that when the spacecraft rocket is being propelled, the nutation angle may deviate excessively which is considered undesirable. In the first part of this research project, a variable mass system is described and defined and the governing equations are derived. The type of governing equations derived are those that are most useful for analyzing the motion of a spacecraft rocket. The method of derivation makes use of Leibnitz Theorem, Divergence Theorem and Newton's Second Law of Motion. Next, the governing equations are specialized with several assumptions which are generally accepted assumptions applied in the analysis of spacecraft rockets. With these assumptions, the form governing equations is discussed and then the equations are solved analytically for the system's angular velocity. Having solved for the angular velocity of the system, the attitude of the system is obtained using a unique method which circumvents the nonlinearities that exist using Euler Angles and their kinematical equations. The attitude is approximately found analytically and a set of criteria is discussed which will minimize or eliminate the deviation of the nutation angle of a spacecraft rocket. Finally

  7. Molecular modeling of surfactant covered oil-water interfaces: Dynamics, microstructure, and barrier for mass transport

    NASA Astrophysics Data System (ADS)

    Gupta, Ashish; Chauhan, Anuj; Kopelevich, Dmitry I.

    2008-06-01

    Mass transport across surfactant-covered oil-water interfaces of microemulsions plays an important role in numerous applications. In the current work, we use coarse-grained molecular dynamics simulations to investigate model systems containing flat hexadecane-water interfaces covered by monolayers of nonionic surfactants of various lengths. Several properties of the surfactant monolayers relevant to the mass transport are considered, including the monolayer microstructure, dynamics, and a free energy barrier to the solute transport. It is observed that the dominant contribution of a surfactant monolayer to the free energy barrier is a steric repulsion caused by a local density increase inside the monolayer. The local densities, and hence the free energy barriers, are larger for monolayers composed of longer surfactants. Since it is likely that the solute transport mechanism involves a sequence of jumps between short-lived pores within a monolayer, we perform a detailed analysis of structure, size, and lifetime of these pores. We demonstrate that the pore statistics is consistent with predictions of percolation theory and apply this theory to identify the characteristic length scale of the monolayer microstructure. The obtained pore structures are sensitive to minute changes of surfactant configurations occurring on the picosecond time scale. To reduce this sensitivity, the pores are averaged over short time intervals. The optimal duration of these time intervals is estimated from analysis of dynamics of pores with diameters comparable to or exceeding the characteristic percolation length scale. The developed approach allows one to filter out transient events of the pore dynamics and to focus on events leading to substantial changes of the monolayer microstructure.

  8. Structure and dynamics of a protein-surfactant assembly studied by ion-mobility mass spectrometry and molecular dynamics simulations.

    PubMed

    Borysik, Antoni J

    2015-09-01

    The structure and dynamics of a protein-surfactant assembly studied by ion-mobility mass spectrometry (IMS) and vacuum molecular dynamics (MD) simulations is reported. Direct evidence is provided for the ability of the surfactant dodecyl-β-D-maltoside (DDM) to prevent charge-induced unfolding of the membrane protein (PagP) in the gas-phase. Restraints obtained by IMS are used to map the surfactant positions onto the protein surface. Surfactants occupying more exposed positions at the apexes of the β-barrel structure are most in-line with the experimental observations. MD simulations provide additional evidence for this assembly organization through surfactant inversion and migration on the protein structure in the absence of solvent. Surfactant migration entails a net shift from apolar membrane spanning regions to more polar regions of the protein structure with the DDM molecule remaining attached to the protein via headgroup interactions. These data provide evidence for the role of protein-DDM headgroup interactions in stabilizing membrane protein structure from gas-phase unfolding.

  9. The Structure of Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Kriss, Gerard A.

    1997-01-01

    We are continuing our systematic investigation of the nuclear structure of nearby active galactic nuclei (AGN). Upon completion, our study will characterize hypothetical constructs such as narrow-line clouds, obscuring tori, nuclear gas disks. and central black holes with physical measurements for a complete sample of nearby AGN. The major scientific goals of our program are: (1) the morphology of the NLR; (2) the physical conditions and dynamics of individual clouds in the NLR; (3) the structure and physical conditions of the warm reflecting gas; (4) the structure of the obscuring torus; (5) the population and morphology of nuclear disks/tori in AGN; (6) the physical conditions in nuclear disks; and (7) the masses of central black holes in AGN. We will use the Hubble Space Telescope (HST) to obtain high-resolution images and spatially resolved spectra. Far-UV spectroscopy of emission and absorption in the nuclear regions using HST/FOS and the Hopkins Ultraviolet Telescope (HUT) will help establish physical conditions in the absorbing and emitting gas. By correlating the dynamics and physical conditions of the gas with the morphology revealed through our imaging program, we will be able to examine mechanisms for fueling the central engine and transporting angular momentum. The kinematics of the nuclear gas disks may enable us to measure the mass of the central black hole. Contemporaneous X-ray observations using ASCA will further constrain the ionization structure of any absorbing material. Monitoring of variability in the UV and X-ray absorption will be used to determine the location of the absorbing gas, possibly in the outflowing warm reflecting gas, or the broad-line region, or the atmosphere of the obscuring torus. Supporting ground-based observations in the optical, near-IR, imaging polarimetry, and the radio will complete our picture of the nuclear structures. With a comprehensive survey of these characteristics in a complete sample of nearby AGN, our

  10. Mass-energy distribution of fragments within Langevin dynamics of fission induced by heavy ions

    SciTech Connect

    Anischenko, Yu. A. Adeev, G. D.

    2012-08-15

    A stochastic approach based on four-dimensional Langevin fission dynamics is applied to calculating mass-energy distributions of fragments originating from the fission of excited compound nuclei. In the model under investigation, the coordinate K representing the projection of the total angular momentum onto the symmetry axis of the nucleus is taken into account in addition to three collective shape coordinates introduced on the basis of the {l_brace}c, h, {alpha}{r_brace} parametrization. The evolution of the orientation degree of freedom (K mode) is described by means of the Langevin equation in the overdamped regime. The tensor of friction is calculated under the assumption of the reducedmechanismof one-body dissipation in the wall-plus-window model. The calculations are performed for two values of the coefficient that takes into account the reduction of the contribution from the wall formula: k{sub s} 0.25 and k{sub s} = 1.0. Calculations with a modified wall-plus-window formula are also performed, and the quantity measuring the degree to which the single-particle motion of nucleons within the nuclear system being considered is chaotic is used for k{sub s} in this calculation. Fusion-fission reactions leading to the production of compound nuclei are considered for values of the parameter Z{sup 2}/A in the range between 21 and 44. So wide a range is chosen in order to perform a comparative analysis not only for heavy but also for light compound nuclei in the vicinity of the Businaro-Gallone point. For all of the reactions considered in the present study, the calculations performed within four-dimensional Langevin dynamics faithfully reproduce mass-energy and mass distributions obtained experimentally. The inclusion of the K mode in the Langevin equation leads to an increase in the variances of mass and energy distributions in relation to what one obtains from three-dimensional Langevin calculations. The results of the calculations where one associates k{sub s

  11. Missing Mass in Galaxies in Dynamic Universe Model of Cosmology (Part 3)

    NASA Astrophysics Data System (ADS)

    Gupta, S. N. P.

    2006-07-01

    In this present work SITA simulations were used to find out Theoretical star circular velocity curves in a Galaxy (star circular velocity verses star distance from the center of galaxy), depends on various initial conditions and are never half bell shaped curves as predicted by Bigbang cosmologies. Here we are presenting four main cases. In the first case A Galaxy with a huge central mass with star like masses in presence of external galaxies were taken. Theoretical prediction of circular velocities were matching with the observed velocities. In the later cases either Huge central mass was absent or external galaxies were absent or both were absent, the theoretical circular velocities did not match the observations. Hence the question of missing mass does not arise. Large-scale structures of universe could not be explained by Big bang based theories using additional repulsive forces like ``Einstein's λ'', as it requires isotropy and homogeneity. Our universe is neither isotropic nor homogeneous. It is LUMPY. And there is no gravitational repulsive force found in the universe even after almost a century after publication of General theory of Relativity. We find that for all fringe effects, Special theory of Relativity is sufficient. Things can be explained by Newtonian gravitation. This proves Galaxy disk formation require some external forces other than self-gravitation of Galaxy it self. Here the there is universal gravitational effect at that position and time are calculated due to ALL the bodies present in the universe. This forms a repulsive force. And this force varies with time, position, structure, masses, their distances, their dynamic movement etc. SITA (Simulation of Inter-intra-Galaxy Tautness and Attraction forces) was successful in the formation of Dynamic universe model where Blue shifted Galaxies were also present (Paper presented by SNP. Gupta, GR17, Dublin, 2004 & Presented in ICR 2005 International Conference on Relativity) , at Amravati

  12. The Atacama Cosmology Telescope: dynamical masses for 44 SZ-selected galaxy clusters over 755 square degrees

    NASA Astrophysics Data System (ADS)

    Sifón, Cristóbal; Battaglia, Nick; Hasselfield, Matthew; Menanteau, Felipe; Barrientos, L. Felipe; Bond, J. Richard; Crichton, Devin; Devlin, Mark J.; Dünner, Rolando; Hilton, Matt; Hincks, Adam D.; Hlozek, Renée; Huffenberger, Kevin M.; Hughes, John P.; Infante, Leopoldo; Kosowsky, Arthur; Marsden, Danica; Marriage, Tobias A.; Moodley, Kavilan; Niemack, Michael D.; Page, Lyman A.; Spergel, David N.; Staggs, Suzanne T.; Trac, Hy; Wollack, Edward J.

    2016-09-01

    We present galaxy velocity dispersions and dynamical mass estimates for 44 galaxy clusters selected via the Sunyaev-Zel'dovich (SZ) effect by the Atacama Cosmology Telescope. Dynamical masses for 18 clusters are reported here for the first time. Using N-body simulations, we model the different observing strategies used to measure the velocity dispersions and account for systematic effects resulting from these strategies. We find that the galaxy velocity distributions may be treated as isotropic, and that an aperture correction of up to 7 per cent in the velocity dispersion is required if the spectroscopic galaxy sample is sufficiently concentrated towards the cluster centre. Accounting for the radial profile of the velocity dispersion in simulations enables consistent dynamical mass estimates regardless of the observing strategy. Cluster masses M200 are in the range (1-15) × 1014 M⊙. Comparing with masses estimated from the SZ distortion assuming a gas pressure profile derived from X-ray observations gives a mean SZ-to-dynamical mass ratio of 1.10 ± 0.13, but there is an additional 0.14 systematic uncertainty due to the unknown velocity bias; the statistical uncertainty is dominated by the scatter in the mass-velocity dispersion scaling relation. This ratio is consistent with previous determinations at these mass scales.

  13. The role of self-interacting right-handed neutrinos in galactic structure

    NASA Astrophysics Data System (ADS)

    Argüelles, C. R.; Mavromatos, N. E.; Rueda, J. A.; Ruffini, R.

    2016-04-01

    It has been shown previously that the DM in galactic halos can be explained by a self-gravitating system of massive keV fermions (`inos') in thermodynamic equilibrium, and predicted the existence of a denser quantum core of inos towards the center of galaxies. In this article we show that the inclusion of self-interactions among the inos, modeled within a relativistic mean-field-theory approach, allows the quantum core to become massive and compact enough to explain the dynamics of the S-cluster stars closest to the Milky Way's galactic center. The application of this model to other galaxies such as large elliptical harboring massive central dark objects of ~ 109 Msolar is also investigated. We identify these interacting inos with sterile right-handed neutrinos pertaining to minimal extensions of the Standard Model, and calculate the corresponding total cross-section σ within an electroweak-like formalism to be compared with other observationally inferred cross-section estimates. The coincidence of an ino mass range of few tens of keV derived here only from the galactic structure, with the range obtained independently from other astrophysical and cosmological constraints, points towards an important role of the right-handed neutrinos in the cosmic structure.

  14. Photodissociation dynamics of ethanethiol in clusters: complementary information from velocity map imaging, mass spectrometry and calculations.

    PubMed

    Svrčková, Pavla; Pysanenko, Andriy; Lengyel, Jozef; Rubovič, Peter; Kočišek, Jaroslav; Poterya, Viktoriya; Slavíček, Petr; Fárník, Michal

    2015-10-21

    We investigate the solvent effects on photodissociation dynamics of the S-H bond in ethanethiol CH3CH2SH (EtSH). The H fragment images are recorded by velocity map imaging (VMI) at 243 nm in various expansion regimes ranging from isolated molecules to clusters of different sizes and compositions. The VMI experiment is accompanied by electron ionization mass spectrometry using a reflectron time-of-flight mass spectrometer (RTOFMS). The experimental data are interpreted using ab initio calculations. The direct S-H bond fission results in a peak of fast fragments at Ekin(H) ≈ 1.25 eV with a partly resolved structure corresponding to vibrational levels of the CH3CH2S cofragment. Clusters of different nature ranging from dimers to large (EtSH)N, N ≥ 10, clusters and to ethanethiol clusters embedded in larger argon "snowballs" are investigated. In the clusters a sharp peak of near-zero kinetic energy fragments occurs due to the caging. The dynamics of the fragment caging is pictured theoretically, using multi-reference ab initio theory for the ethanethiol dimer. The larger cluster character is revealed by the simultaneous analysis of the VMI and RTOFMS experiments; none of these tools alone can provide the complete picture. PMID:25743944

  15. DYNAMICAL VERSUS STELLAR MASSES IN COMPACT EARLY-TYPE GALAXIES: FURTHER EVIDENCE FOR SYSTEMATIC VARIATION IN THE STELLAR INITIAL MASS FUNCTION

    SciTech Connect

    Conroy, Charlie; Dutton, Aaron A.; Graves, Genevieve J.; Mendel, J. Trevor; Van Dokkum, Pieter G.

    2013-10-20

    Several independent lines of evidence suggest that the stellar initial mass function (IMF) in early-type galaxies becomes increasingly 'bottom-heavy' with increasing galaxy mass and/or velocity dispersion, σ. Here we consider evidence for IMF variation in a sample of relatively compact early-type galaxies drawn from the Sloan Digital Sky Survey. These galaxies are of sufficiently high stellar density that a dark halo likely makes a minor contribution to the total dynamical mass, M {sub dyn}, within one effective radius. We fit our detailed stellar population synthesis models to the stacked absorption line spectra of these galaxies in bins of σ and find evidence from IMF-sensitive spectral features for a bottom-heavy IMF at high σ. We also apply simple 'mass-follows-light' dynamical models to the same data and find that M {sub dyn} is significantly higher than what would be expected if these galaxies were stellar dominated and had a universal Milky Way IMF. Adopting M {sub dyn} ≈ M {sub *} therefore implies that the IMF is 'heavier' at high σ. Most importantly, the quantitative amount of inferred IMF variation is very similar between the two techniques, agreeing to within ∼< 0.1 dex in mass. The agreement between two independent techniques, when applied to the same data, provides compelling evidence for systematic variation in the IMF as a function of early-type galaxy velocity dispersion. Any alternative explanations must reproduce both the results from dynamical and stellar population-based techniques.

  16. A cool disk in the Galactic Center?

    NASA Astrophysics Data System (ADS)

    Liu, B. F.; Meyer, F.; Meyer-Hofmeister, E.

    2004-07-01

    We study the possibility of a cool disk existing in the Galactic Center in the framework of the disk-corona evaporation/condensation model. Assuming an inactive disk near the gravitational capture distance left over from an earlier evolutionary stage, a hot corona should form above the disk since there is a continuous supply of hot gas from stellar winds of the close-by massive stars. We study the interaction between the disk and the corona. Whether the cool disk can survive depends on the mass exchange between disk and corona which is determined by the energy and pressure balance. If evaporation is the dominant process and the rate is larger than the Bondi accretion rate in the Galactic Center, the disk will be depleted within a certain time and no persistent disk will exist. On the other hand, if the interaction results in hot gas steadily condensing into the disk, an inactive cool disk with little gas accreting towards the central black hole might survive in the Galactic Center. For this case we further investigate the Bremsstrahlung radiation from the hot corona and compare it with the observed X-ray luminosity. Our model shows that, for standard viscosity in the corona (α=0.3), the mass evaporation rate is much higher than the Bondi accretion rate and the coronal density is much larger than that inferred from Chandra observations. An inactive disk can not survive such strong evaporation. For small viscosity (α ⪉ 0.07) we find condensation solutions. But detailed coronal structure computations show that in this case there is too much X-ray radiation from the corona to be in agreement with the observations. From this modeling we conclude that there should be no thin/inactive disk presently in the Galactic Center. However we do not exclude that the alternative non-radiative model of Nayakshin (\\cite{Nayakshin04}) might instead be realized in nature and shortly discuss this question.}

  17. Cold GMC cores in the Galactic Centre

    NASA Astrophysics Data System (ADS)

    Lis, D. C.; Li, Y.; Dowell, C. D.; Menten, K. M.

    1999-03-01

    We have used the Long Wavelength Spectrometer (LWS) aboard the Infrared Space Observatory in grating mode to map the far-infrared continuum emission (45-175 mic) toward several massive Giant Molecular Cloud (GMC) cores located near the Galactic center. These sources are observed in emission at far-infrared and submillimeter wavelengths (>100 mic). However, at mid-infrared wavelengths (<70 mic) they are seen in absorption against the general Galactic centre background. Gray-body fits to the observed far-infrared and submillimeter spectral energy distributions give low temperatures (about 13-20 K) for the bulk of the dust in all the sources. This indicates external heating of the dust by the diffuse ISRF and suggests that the cores do not harbor high-mass star-formation sites, in spite of their large molecular mass. In addition, the grain emissivity in these sources is a very steep function of frequency (β > 2.4). The high grain emissivity exponent is consistent with the presence of dust grains covered with thick ice mantles. Molecular line observations carried out with the Caltech Submillimeter Observatory (CSO) show a large velocity gradient across the most massive core, GCM0.25+0.11, indicative of streaming motions of the gas or of the presence of multiple, spatially overlapping velocity components. The observed gas kinematics may indicate that the GCM0.25+0.11 core is in an early stage of a cloud-cloud collision that may result in a future star formation episode. Recent MSX observations indicate that cold GMC cores similar to those studied with ISO are ubiquitous in the Galactic center and throughout the Galaxy. The observed intensities of the OI and CII fine structure lines imply a radiation field intensity of about 1000 times the standard ISRF intensity and a hydrogen density of about 1000 pccm\\ for the diffuse gas component in the Galactic center.

  18. Dynamics of Astrophysical Discs

    NASA Astrophysics Data System (ADS)

    Sellwood, J. A.

    2004-01-01

    Preface; Names and addresses of participants; Conference photograph; 1. Spiral waves in Saturn's rings; 2. Structure of the Uranian rings; 3. Planetary rings: theory; 4. Simulations of light scattering in planetary rings; 5. Accretion discs around young stellar objects and the proto-Sun; 6. The ß Pictoris disc: a planetary rather than a protoplanetary one; 7. Optical polarimetry and thermal imaging of the disc axound ß Pictoris; 8. Observations of discs around protostars and young stars; 9. VLA observations of ammonia towaxd moleculax outflow sources; 10. Derivation of the physical properties of molecular discs by an MEM method; 11. Masers associated with discs around young stars; 12. The nature of polarisation discs axound young stars; 13. The correlation between the main parameters of the interstellar gas (including Salpeter's spectrum of masses) as a result of the development of turbulent Rossby waves; 14. Discs in cataclysmic variables and X-ray binaries; 15. A disc instability model for soft X-ray transients containing black holes; 16. X-ray variability from the accretion disc of NGC 5548; 17. Viscously heated coronae and winds around accretion discs; 18. Optical emission line profiles of symbiotic stars; 19. The effect of formation of Fell in winds confined to discs for luminous stars; 20. Observational evidence for accretion discs in active galactic nuclei; 21. The fuelling of active galactic nuclei by non-axisynlinetric instabilities; 22. The circum-nuclear disc in the Galactic centre; 23. Non-axisymmetric instabilities in thin self-gravitating differentially rotating gaseous discs; 24. Non-linear evolution of non-axisymmetric perturbations in thin self-gravitating gaseous discs; 25. Eccentric gravitational instabilities in nearly Keplerian discs; 26. Gravity mode instabilities in accretion tori; 27. The stability of viscous supersonic shear flows - critical Reynolds numbers and their implications for accretion discs; 28. Asymptotic analysis of overstable

  19. Dynamic modeling of mass-flowing linear medium with large amplitude displacement and rotation

    NASA Astrophysics Data System (ADS)

    Hong, Difeng; Tang, Jiali; Ren, Gexue

    2011-11-01

    In this paper, a dynamic model of a linear medium with mass flow, such as traveling strings, cables, belts, beams or pipes conveying fluids, is proposed, in the framework of Arbitrary-Lagrange-Euler (ALE) description. The material coordinate is introduced to characterize the mass-flow of the medium, and the Absolute Nodal Coordinate Formulation (ANCF) is employed to capture geometric nonlinearity of the linear media under large displacement and rotation. The governing equations are derived in terms of d'Alembert's principle. When using an ALE description, complex mass-flowing boundary conditions can be easily enforced. Numerical examples are presented to validate the proposed method by comparison with analytical results of simplified models. The computed critical fluid velocity for the stability of a cantilevered pipe conveying fluid is correlated with the available theory in literature. The large amplitude limit-cycle oscillations of flexible pipes conveying fluid are presented, and the effect of the velocity of the fluid on the static equilibrium of the pipe under gravity is investigated.

  20. Zeeman splitting and dynamical mass generation in Dirac semimetal ZrTe5

    PubMed Central

    Liu, Yanwen; Yuan, Xiang; Zhang, Cheng; Jin, Zhao; Narayan, Awadhesh; Luo, Chen; Chen, Zhigang; Yang, Lei; Zou, Jin; Wu, Xing; Sanvito, Stefano; Xia, Zhengcai; Li, Liang; Wang, Zhong; Xiu, Faxian

    2016-01-01

    Dirac semimetals have attracted extensive attentions in recent years. It has been theoretically suggested that many-body interactions may drive exotic phase transitions, spontaneously generating a Dirac mass for the nominally massless Dirac electrons. So far, signature of interaction-driven transition has been lacking. In this work, we report high-magnetic-field transport measurements of the Dirac semimetal candidate ZrTe5. Owing to the large g factor in ZrTe5, the Zeeman splitting can be observed at magnetic field as low as 3 T. Most prominently, high pulsed magnetic field up to 60 T drives the system into the ultra-quantum limit, where we observe abrupt changes in the magnetoresistance, indicating field-induced phase transitions. This is interpreted as an interaction-induced spontaneous mass generation of the Dirac fermions, which bears resemblance to the dynamical mass generation of nucleons in high-energy physics. Our work establishes Dirac semimetals as ideal platforms for investigating emerging correlation effects in topological matters. PMID:27515493

  1. Zeeman splitting and dynamical mass generation in Dirac semimetal ZrTe5

    NASA Astrophysics Data System (ADS)

    Liu, Yanwen; Yuan, Xiang; Zhang, Cheng; Jin, Zhao; Narayan, Awadhesh; Luo, Chen; Chen, Zhigang; Yang, Lei; Zou, Jin; Wu, Xing; Sanvito, Stefano; Xia, Zhengcai; Li, Liang; Wang, Zhong; Xiu, Faxian

    2016-08-01

    Dirac semimetals have attracted extensive attentions in recent years. It has been theoretically suggested that many-body interactions may drive exotic phase transitions, spontaneously generating a Dirac mass for the nominally massless Dirac electrons. So far, signature of interaction-driven transition has been lacking. In this work, we report high-magnetic-field transport measurements of the Dirac semimetal candidate ZrTe5. Owing to the large g factor in ZrTe5, the Zeeman splitting can be observed at magnetic field as low as 3 T. Most prominently, high pulsed magnetic field up to 60 T drives the system into the ultra-quantum limit, where we observe abrupt changes in the magnetoresistance, indicating field-induced phase transitions. This is interpreted as an interaction-induced spontaneous mass generation of the Dirac fermions, which bears resemblance to the dynamical mass generation of nucleons in high-energy physics. Our work establishes Dirac semimetals as ideal platforms for investigating emerging correlation effects in topological matters.

  2. Zeeman splitting and dynamical mass generation in Dirac semimetal ZrTe5.

    PubMed

    Liu, Yanwen; Yuan, Xiang; Zhang, Cheng; Jin, Zhao; Narayan, Awadhesh; Luo, Chen; Chen, Zhigang; Yang, Lei; Zou, Jin; Wu, Xing; Sanvito, Stefano; Xia, Zhengcai; Li, Liang; Wang, Zhong; Xiu, Faxian

    2016-01-01

    Dirac semimetals have attracted extensive attentions in recent years. It has been theoretically suggested that many-body interactions may drive exotic phase transitions, spontaneously generating a Dirac mass for the nominally massless Dirac electrons. So far, signature of interaction-driven transition has been lacking. In this work, we report high-magnetic-field transport measurements of the Dirac semimetal candidate ZrTe5. Owing to the large g factor in ZrTe5, the Zeeman splitting can be observed at magnetic field as low as 3 T. Most prominently, high pulsed magnetic field up to 60 T drives the system into the ultra-quantum limit, where we observe abrupt changes in the magnetoresistance, indicating field-induced phase transitions. This is interpreted as an interaction-induced spontaneous mass generation of the Dirac fermions, which bears resemblance to the dynamical mass generation of nucleons in high-energy physics. Our work establishes Dirac semimetals as ideal platforms for investigating emerging correlation effects in topological matters. PMID:27515493

  3. Coupled dynamics of body mass and population growth in response to environmental change.

    PubMed

    Ozgul, Arpat; Childs, Dylan Z; Oli, Madan K; Armitage, Kenneth B; Blumstein, Daniel T; Olson, Lucretia E; Tuljapurkar, Shripad; Coulson, Tim

    2010-07-22

    Environmental change has altered the phenology, morphological traits and population dynamics of many species. However, the links underlying these joint responses remain largely unknown owing to a paucity of long-term data and the lack of an appropriate analytical framework. Here we investigate the link between phenotypic and demographic responses to environmental change using a new methodology and a long-term (1976-2008) data set from a hibernating mammal (the yellow-bellied marmot) inhabiting a dynamic subalpine habitat. We demonstrate how earlier emergence from hibernation and earlier weaning of young has led to a longer growing season and larger body masses before hibernation. The resulting shift in both the phenotype and the relationship between phenotype and fitness components led to a decline in adult mortality, which in turn triggered an abrupt increase in population size in recent years. Direct and trait-mediated effects of environmental change made comparable contributions to the observed marked increase in population growth. Our results help explain how a shift in phenology can cause simultaneous phenotypic and demographic changes, and highlight the need for a theory integrating ecological and evolutionary dynamics in stochastic environments. PMID:20651690

  4. Center-of-mass motion as a sensitive convergence test for variational multimode quantum dynamics

    NASA Astrophysics Data System (ADS)

    Cosme, Jayson G.; Weiss, Christoph; Brand, Joachim

    2016-10-01

    Multimode expansions in computational quantum dynamics promise convergence toward exact results upon increasing the number of modes. Convergence is difficult to ascertain in practice due to the unfavorable scaling of required resources for many-particle problems and therefore a simplified criterion based on a threshold value for the least occupied mode function is often used. Here we show how the separable quantum motion of the center of mass can be used to sensitively detect unconverged numerical multiparticle dynamics in harmonic potentials. Based on an experimentally relevant example of attractively interacting bosons in one dimension, we demonstrate that the simplified convergence criterion fails to assure qualitatively correct results. Furthermore, the numerical evidence for the creation of two-hump fragmented bright soliton-like states presented by A. I. Streltsov et al. [Phys. Rev. Lett. 100, 130401 (2008), 10.1103/PhysRevLett.100.130401] is shown to be inconsistent with exact results. Implications for understanding dynamical fragmentation in attractive boson systems are briefly discussed.

  5. STUDYING THE PHYSICAL DIVERSITY OF LATE-M DWARFS WITH DYNAMICAL MASSES

    SciTech Connect

    Dupuy, Trent J.; Liu, Michael C.; Bowler, Brendan P.; Cushing, Michael C.; Helling, Christiane; Witte, Soeren; Hauschildt, Peter

    2010-10-01

    We present a systematic study of the physical properties of late-M dwarfs based on high-quality dynamical mass measurements and near-infrared (NIR) spectroscopy. We use astrometry from Keck natural and laser guide star adaptive optics imaging to determine orbits for the late-M binaries LP 349 - 25AB (M7.5+M8), LHS 1901AB (M6.5+M6.5), and Gl 569Bab (M8.5+M9). We find that LP 349 - 25AB (M{sub tot} = 0.120{sup +0.008}{sub -0.007} M{sub sun}) is a pair of young brown dwarfs for which Lyon and Tucson evolutionary models jointly predict an age of 140 {+-} 30 Myr, consistent with the age of the Pleiades. However, at least the primary component seems to defy the empirical Pleiades lithium depletion boundary, implying that the system is in fact older (if the parallax is correct) and that evolutionary models under-predict the component luminosities for this magnetically active binary. We find that LHS 1901AB is a pair of very low-mass stars (M{sub tot} = 0.194{sup +0.025}{sub -0.021} M{sub sun}) with evolutionary model-derived ages consistent with the old age (>6 Gyr) implied by its lack of activity. Our improved orbit for Gl 569Bab results in a higher mass for this binary (M{sub tot} = 0.140{sup +0.009}{sub -0.008} M{sub sun}) compared to previous work (0.125 {+-} 0.007 M{sub sun}). We use these mass measurements along with our published results for 2MASS J2206 - 2047AB (M8+M8) to test four sets of ultracool model atmospheres currently in use. Fitting these models to our NIR integrated-light spectra provides temperature estimates warmer by {approx}250 K than those derived independently from Dusty evolutionary models given the measured masses and luminosities. We propose that model atmospheres are more likely to be the source of this discrepancy, as it would be difficult to explain a uniform temperature offset over such a wide range of masses, ages, and activity levels in the context of evolutionary models. This contrasts with the conclusion of Konopacky et al. that model

  6. The Gell-Mann - Okubo Mass Relation among Baryons from Fully-Dynamical, Mixed-Action Lattice QCD

    SciTech Connect

    Konstantinos Orginos; Silas Beane; Martin Savage

    2007-10-01

    We explore the Gell-Mann - Okubo mass relation among the octet baryons using fully-dynamical, mixed-action (domain-wall on rooted-staggered) lattice QCD calculations at a lattice spacing of b {approx} 0.125 fm and pion masses of m{sub pi} {approx} 290 MeV, 350 MeV, 490 MeV and 590 MeV. Deviations from the Gell-Mann - Okubo mass relation are found to be small at each quark mass.

  7. THE GALACTIC MAGNETIC FIELD

    SciTech Connect

    Jansson, Ronnie; Farrar, Glennys R.

    2012-12-10

    With this Letter, we complete our model of the Galactic magnetic field (GMF), by using the WMAP7 22 GHz total synchrotron intensity map and our earlier results to obtain a 13-parameter model of the Galactic random field, and to determine the strength of the striated random field. In combination with our 22-parameter description of the regular GMF, we obtain a very good fit to more than 40,000 extragalactic Faraday rotation measures and the WMAP7 22 GHz polarized and total intensity synchrotron emission maps. The data call for a striated component to the random field whose orientation is aligned with the regular field, having zero mean and rms strength Almost-Equal-To 20% larger than the regular field. A noteworthy feature of the new model is that the regular field has a significant out-of-plane component, which had not been considered earlier. The new GMF model gives a much better description of the totality of data than previous models in the literature.

  8. Testing Galactic Cosmic Ray Models

    NASA Technical Reports Server (NTRS)

    Adams, James H., Jr.

    2009-01-01

    Models of the Galactic Cosmic Ray Environment are used for designing and planning space missions. The existing models will be reviewed. Spectral representations from these models will be compared with measurements of galactic cosmic ray spectra made on balloon flights and satellite flights over a period of more than 50 years.

  9. Testing Galactic Cosmic Ray Models

    NASA Technical Reports Server (NTRS)

    Adams, James H., Jr.

    2010-01-01

    Models of the Galactic Cosmic Ray Environment are used for designing and planning space missions. The exising models will be reviewed. Spectral representations from these models will be compared with measurements of galactic cosmic ray spectra made on balloon flights and satellite flights over a period of more than 50 years.

  10. Galactic cosmic rays and nucleosynthesis

    SciTech Connect

    Kiener, Juergen

    2010-03-01

    The nucleosynthesis of the light elements Li, Be and B by galactic cosmic rays is presented. Observations of cosmic rays and the nuclear reactions responsible for Li, Be and B nucleosynthesis are described, followed by some words on propagation. At the end, some open questions concerning galactic cosmic rays are discussed.

  11. Forming Binary Black Holes in Galactic Mergers

    NASA Astrophysics Data System (ADS)

    Quinn, Thomas R.; Roskar, R.; Mayer, L.; Kazantzidis, S.

    2010-01-01

    As galaxies merge in the standard hierarchical scenario of galaxy formation, their central Black Holes also can merge and grow. The violent dynamics of the galaxy merger will deliver a significant amount of gas and stars to the central regions of the galaxy further growing the central Black Hole and fueling an Active Galactic Nucleus. We perform state-of-art numerical simulations of this merging process using N-body simulations and gas dynamics. These simulations resolved the dynamics in the central kiloparsec of the merging galaxies, and enable us to follow the sinking of the Black Holes to the center via dynamical friction up to the formation of binary Black Holes. Critical to this process is the state of the surrounding gas which we follow with an equation of state that includes star formation and supernova feedback. This work is supported by a grant from NASA.

  12. PREFACE: Galactic Center Workshop 2006

    NASA Astrophysics Data System (ADS)

    Schödel, Rainer; Bower, Geoffrey C.; Muno, Michael P.; Nayakshin, Sergei; Ott, Thomas

    2006-12-01

    We are pleased to present the proceedings from the Galactic Center Workshop 2006—From the Center of the Milky Way to Nearby Low-Luminosity Galactic Nuclei. The conference took place in the Physikzentrum, Bad Honnef, Germany, on 18 to 22 April 2006. It is the third workshop of this kind, following the Galactic Center Workshops held 1998 in Tucson, Arizona, and 2002 in Kona, Hawaii. The center of the Milky Way is the only galactic nucleus of a fairly common spiral galaxy that can be observed in great detail. With a distance of roughly 8 kpc, the resolution that can currently be achieved is of the order 40 mpc/8000 AU in the X-ray domain, 2 mpc/400 AU in the near-infrared, and 0.01 mpc/1 AU with VLBI in the millimeter domain. This is two to three orders of magnitude better than for any comparable nearby galaxy, making thus the center of the Milky Way thetemplate object for the general physical interpretation of the phenomena that can be observed in galactic nuclei. We recommend the summary article News from the year 2006 Galactic Centre workshopby Mark Morris and Sergei Nayakshin—who also gave the summary talk of the conference—to the reader in order to obtain a first, concise overview of the results presented at the workshop and some of the currently most exciting—and debated—developments in recent GC research. While the workshops held in 1998 and 2002 were dedicated solely to the center of the Milky Way, the field of view was widened in Bad Honnef to include nearby low-luminosity nuclei. This new feature followed the realization that not only the GC serves as a template for understanding extragalactic nuclei, but that the latter can also provide the context and broader statistical base for understanding the center of our Milky Way. This concerns especially the accretion and emission processes related to the Sagittarius A*, the manifestation of the super massive black hole in the GC, but also the surprising observation of great numbers of massive, young

  13. PREFACE: Galactic Center Workshop 2006

    NASA Astrophysics Data System (ADS)

    Schödel, Rainer; Bower, Geoffrey C.; Muno, Michael P.; Nayakshin, Sergei; Ott, Thomas

    2006-12-01

    We are pleased to present the proceedings from the Galactic Center Workshop 2006—From the Center of the Milky Way to Nearby Low-Luminosity Galactic Nuclei. The conference took place in the Physikzentrum, Bad Honnef, Germany, on 18 to 22 April 2006. It is the third workshop of this kind, following the Galactic Center Workshops held 1998 in Tucson, Arizona, and 2002 in Kona, Hawaii. The center of the Milky Way is the only galactic nucleus of a fairly common spiral galaxy that can be observed in great detail. With a distance of roughly 8 kpc, the resolution that can currently be achieved is of the order 40 mpc/8000 AU in the X-ray domain, 2 mpc/400 AU in the near-infrared, and 0.01 mpc/1 AU with VLBI in the millimeter domain. This is two to three orders of magnitude better than for any comparable nearby galaxy, making thus the center of the Milky Way thetemplate object for the general physical interpretation of the phenomena that can be observed in galactic nuclei. We recommend the summary article News from the year 2006 Galactic Centre workshopby Mark Morris and Sergei Nayakshin—who also gave the summary talk of the conference—to the reader in order to obtain a first, concise overview of the results presented at the workshop and some of the currently most exciting—and debated—developments in recent GC research. While the workshops held in 1998 and 2002 were dedicated solely to the center of the Milky Way, the field of view was widened in Bad Honnef to include nearby low-luminosity nuclei. This new feature followed the realization that not only the GC serves as a template for understanding extragalactic nuclei, but that the latter can also provide the context and broader statistical base for understanding the center of our Milky Way. This concerns especially the accretion and emission processes related to the Sagittarius A*, the manifestation of the super massive black hole in the GC, but also the surprising observation of great numbers of massive, young

  14. Population dynamics of Tisbe holothuriae (Copepoda; Harpacticoida) in exploited mass cultures

    NASA Astrophysics Data System (ADS)

    Gaudy, R.; Guerin, J. P.

    Three cultures of Tisbe holothuriae in 101 tanks were harvested each 7 or 10 to 12 days at a rate of 50%. The most frequently harvested culture showed the highest yield. At lower exploitation rates a higher rate of sea water renewal resulted in a higher production. In the cultures, variations in sex ratio, ovigerous rate, and number of eggs per sac contributed to a stabilization of the egg production. More frequent harvesting favoured the ovigerous rate and a higher renewal rate of the medium resulted in more eggs per sac. The growth rate of the population was estimated from calculated values for birth rate and death rate, and this estimate was compared with the observed growth rate. The quality of the sea water medium in mass cultures was investigated and discussed in its effects on population dynamics.

  15. Recovery after mass extinction: evolutionary assembly in large-scale biosphere dynamics.

    PubMed Central

    Solé, Ricard V; Montoya, José M; Erwin, Douglas H

    2002-01-01

    Biotic recoveries following mass extinctions are characterized by a process in which whole ecologies are reconstructed from low-diversity systems, often characterized by opportunistic groups. The recovery process provides an unexpected window to ecosystem dynamics. In many aspects, recovery is very similar to ecological succession, but important differences are also apparently linked to the innovative patterns of niche construction observed in the fossil record. In this paper, we analyse the similarities and differences between ecological succession and evolutionary recovery to provide a preliminary ecological theory of recoveries. A simple evolutionary model with three trophic levels is presented, and its properties (closely resembling those observed in the fossil record) are compared with characteristic patterns of ecological response to disturbances in continuous models of three-level ecosystems. PMID:12079530

  16. Smallest Black Hole in Galactic Nucleus Detected

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-08-01

    A team of astronomers have reported the detection of the smallest black hole (BH) ever observed in a galactic nucleus. The BH is hosted in the center of dwarf galaxy RGG 118, and it weighs in at 50,000 solar masses, according to observations made by Vivienne Baldassare of University of Michigan and her collaborators. Small Discoveries: Why is the discovery of a small nuclear BH important? Some open questions that this could help answer are: - Do the very smallest dwarf galaxies have BHs at their centers too? Though we believe that there's a giant BH at the center of every galaxy, we aren't sure how far down the size scale this holds true. - What is the formation mechanism for BHs at the center of galaxies? - What's the behavior of the M-sigma relation at the low-mass end? The M-sigma relation is an observed correlation between the mass of a galaxy's central BH and the velocity dispersion of the stars in the galaxy. This relation is incredibly useful for determining properties of distant BHs and their galaxies empirically, but little data is available to constrain the low-mass end of the relation. M-sigma relation, plotting systems with dynamically-measured black hole masses. RGG 118 is plotted as the pink star. The solid and dashed lines represent various determinations of scaling relations. Credit: Baldassare et al. 2015. Identifying a Black Hole: RGG 118 was identified as a candidate host for an accreting, nuclear BH from the catalog of dwarf galaxies observed in the Sloan Digital Sky Survey. Baldassare and her team followed up with high-resolution spectroscopy from the Clay telescope in Chile and Chandra x-ray observations. Using these observations, the team determined that RGG 118 plays host to a massive BH at its center based on three clues: 1) narrow emission line ratios, which is a signature of accretion onto a massive BH, 2) the presence of broad emission lines, indicating that gas is rotating around a central BH, and 3) the existence of an X-ray point

  17. An Empirical Relation between the Large-scale Magnetic Field and the Dynamical Mass in Galaxies

    NASA Astrophysics Data System (ADS)

    Tabatabaei, F. S.; Martinsson, T. P. K.; Knapen, J. H.; Beckman, J. E.; Koribalski, B.; Elmegreen, B. G.

    2016-02-01

    The origin and evolution of cosmic magnetic fields as well as the influence of the magnetic fields on the evolution of galaxies are unknown. Though not without challenges, the dynamo theory can explain the large-scale coherent magnetic fields that govern galaxies, but observational evidence for the theory is so far very scarce. Putting together the available data of non-interacting, non-cluster galaxies with known large-scale magnetic fields, we find a tight correlation between the integrated polarized flux density, SPI, and the rotation speed, vrot, of galaxies. This leads to an almost linear correlation between the large-scale magnetic field \\bar{B} and vrot, assuming that the number of cosmic-ray electrons is proportional to the star formation rate, and a super-linear correlation assuming equipartition between magnetic fields and cosmic rays. This correlation cannot be attributed to an active linear α-Ω dynamo, as no correlation holds with global shear or angular speed. It indicates instead a coupling between the large-scale magnetic field and the dynamical mass of the galaxies, \\bar{B}˜ \\{M}{{dyn}}0.25-0.4. Hence, faster rotating and/or more massive galaxies have stronger large-scale magnetic fields. The observed \\bar{B}-{v}{{rot}} correlation shows that the anisotropic turbulent magnetic field dominates \\bar{B} in fast rotating galaxies as the turbulent magnetic field, coupled with gas, is enhanced and ordered due to the strong gas compression and/or local shear in these systems. This study supports a stationary condition for the large-scale magnetic field as long as the dynamical mass of galaxies is constant.

  18. Vertical Shear of the Galactic Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Benjamin, R. A.

    2000-05-01

    The detection of UV absorption, 21 cm, Hα and other diffuse optical emission lines from gas up to ten kiloparsecs above the plane of the Milky Way and other galaxies provides the first opportunity to probe the rotational properties of the ionized ``atmospheres'' of galaxies. This rotation has implications for our understanding of the Galactic gravitational potential, angular momentum transport in the Galactic disk, and the maintenance of a Galactic dynamo. The available evidence indicates that gas rotates nearly cylindrically up to a few kiloparsecs. This is in contrast to the expectation that there should be a significant gradient in rotation speed as a function of height assuming a reasonable mass model for the Galaxy. For example, for a vertical cut at galactocentric radius R= 5 kpc in NGC 891 by Rand, the rotation speed is observed to drop by ~ 30 km s-1 from z=1 to 5 kpc and is expected to drop by 80 km s-1. Magnetic tension forces may resolve this discrepancy. Other possiblilities will be examined in the near future.

  19. Galactic Hearts of Glass

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Click on image for larger graph

    This artist's concept shows delicate greenish crystals sprinkled throughout the violent core of a pair of colliding galaxies. The white spots represent a thriving population of stars of all sizes and ages. NASA's Spitzer Space Telescope detected more than 20 bright and dusty galactic mergers like the one depicted here, all teeming with the tiny gem-like crystals.

    When galaxies collide, they trigger the birth of large numbers of massive stars. Astronomers believe these blazing hot stars act like furnaces to produce silicate crystals in the same way that glass is made from sand. The stars probably shed the crystals as they age, and as they blow apart in supernovae explosions.

    At the same time the crystals are being churned out, they are also being destroyed. Fast-moving particles from supernova blasts easily convert silicates crystals back to their amorphous, or shapeless, form.

    How is Spitzer seeing the crystals if they are rapidly disappearing? Astronomers say that, for a short period of time at the beginning of galactic mergers, massive stars might be producing silicate crystals faster than they are eliminating them. When our own galaxy merges with the Andromeda galaxy in a few billion years, a similar burst of massive stars and silicate crystals might occur.

    Crystal Storm in Distant Galaxy The graph (see inset above) of infrared data from NASA's Spitzer Space Telescope tells astronomers that a distant galaxy called IRAS 08752+3915 is experiencing a storm of tiny crystals made up of silicates. The crystals are similar to the glass-like grains of sand found on Earth's many beaches.

    The data were taken by Spitzer's infrared spectrograph, which splits light open to reveal its rainbow-like components. The resulting spectrum shown here reveals the signatures of both crystalline (green) and non-crystalline (brown) silicates.

    Spitzer detected the same

  20. The FADE mass-stat: a technique for inserting or deleting particles in molecular dynamics simulations.

    PubMed

    Borg, Matthew K; Lockerby, Duncan A; Reese, Jason M

    2014-02-21

    The emergence of new applications of molecular dynamics (MD) simulation calls for the development of mass-statting procedures that insert or delete particles on-the-fly. In this paper we present a new mass-stat which we term FADE, because it gradually "fades-in" (inserts) or "fades-out" (deletes) molecules over a short relaxation period within a MD simulation. FADE applies a time-weighted relaxation to the intermolecular pair forces between the inserting/deleting molecule and any neighbouring molecules. The weighting function we propose in this paper is a piece-wise polynomial that can be described entirely by two parameters: the relaxation time scale and the order of the polynomial. FADE inherently conserves overall system momentum independent of the form of the weighting function. We demonstrate various simulations of insertions of atomic argon, polyatomic TIP4P water, polymer strands, and C60 Buckminsterfullerene molecules. We propose FADE parameters and a maximum density variation per insertion-instance that restricts spurious potential energy changes entering the system within desired tolerances. We also demonstrate in this paper that FADE compares very well to an existing insertion algorithm called USHER, in terms of accuracy, insertion rate (in dense fluids), and computational efficiency. The USHER algorithm is applicable to monatomic and water molecules only, but we demonstrate that FADE can be generally applied to various forms and sizes of molecules, such as polymeric molecules of long aspect ratio, and spherical carbon fullerenes with hollow interiors.

  1. The FADE mass-stat: A technique for inserting or deleting particles in molecular dynamics simulations

    SciTech Connect

    Borg, Matthew K.; Lockerby, Duncan A.; Reese, Jason M.

    2014-02-21

    The emergence of new applications of molecular dynamics (MD) simulation calls for the development of mass-statting procedures that insert or delete particles on-the-fly. In this paper we present a new mass-stat which we term FADE, because it gradually “fades-in” (inserts) or “fades-out” (deletes) molecules over a short relaxation period within a MD simulation. FADE applies a time-weighted relaxation to the intermolecular pair forces between the inserting/deleting molecule and any neighbouring molecules. The weighting function we propose in this paper is a piece-wise polynomial that can be described entirely by two parameters: the relaxation time scale and the order of the polynomial. FADE inherently conserves overall system momentum independent of the form of the weighting function. We demonstrate various simulations of insertions of atomic argon, polyatomic TIP4P water, polymer strands, and C{sub 60} Buckminsterfullerene molecules. We propose FADE parameters and a maximum density variation per insertion-instance that restricts spurious potential energy changes entering the system within desired tolerances. We also demonstrate in this paper that FADE compares very well to an existing insertion algorithm called USHER, in terms of accuracy, insertion rate (in dense fluids), and computational efficiency. The USHER algorithm is applicable to monatomic and water molecules only, but we demonstrate that FADE can be generally applied to various forms and sizes of molecules, such as polymeric molecules of long aspect ratio, and spherical carbon fullerenes with hollow interiors.

  2. The mass of the isolated elliptical NGC 720 as determined from the dynamics of its companions

    NASA Astrophysics Data System (ADS)

    Dressler, A.; Schechter, P. L.; Rose, J. A.

    1986-05-01

    Redshifts have been measured for 14 galaxies brighter than V = 16 in a 1.5 degree square field centered on the relatively isolated elliptical galaxy NGC 720. Six of these have redshifts within 600 km/s of that of NGC 720, well in excess of the number expected for a randomly chosen field. Within the field surveyed, they show a significant tendency to cluster around NGC 720. Their combined luminosity is only 20 percent that of the elliptical. Their average distance from NGC 720 is 23 arcmin, and their dispersion about its redshift is 353 km/s. The possibility that five of the six, with redshifts significantly less than that of NGC 720, form a foreground group is considered but is ultimately discounted. With a half-light radius for NGC 720 of 38 arcsec, and an internal velocity dispersion of 214 km/s, the mass computed for the galaxy alone is smaller than the mass computed from the dynamics of its companions by a factor of 44 (albeit with considerable uncertainty).

  3. Dynamic Bayesian Network for Accurate Detection of Peptides from Tandem Mass Spectra.

    PubMed

    Halloran, John T; Bilmes, Jeff A; Noble, William S

    2016-08-01

    A central problem in mass spectrometry analysis involves identifying, for each observed tandem mass spectrum, the corresponding generating peptide. We present a dynamic Bayesian network (DBN) toolkit that addresses this problem by using a machine learning approach. At the heart of this toolkit is a DBN for Rapid Identification (DRIP), which can be trained from collections of high-confidence peptide-spectrum matches (PSMs). DRIP's score function considers fragment ion matches using Gaussians rather than fixed fragment-ion tolerances and also finds the optimal alignment between the theoretical and observed spectrum by considering all possible alignments, up to a threshold that is controlled using a beam-pruning algorithm. This function not only yields state-of-the art database search accuracy but also can be used to generate features that significantly boost the performance of the Percolator postprocessor. The DRIP software is built upon a general purpose DBN toolkit (GMTK), thereby allowing a wide variety of options for user-specific inference tasks as well as facilitating easy modifications to the DRIP model in future work. DRIP is implemented in Python and C++ and is available under Apache license at http://melodi-lab.github.io/dripToolkit .

  4. Quest for the Dynamical Origin of Mass ---An LHC Perspective from Sakata, Nambu and Maskawa---

    NASA Astrophysics Data System (ADS)

    Yamawaki, Koichi

    I review the dynamical symmetry breaking (DSB) approach to the Origin of Mass, which is traced back to the original (2008 Nobel Prize) work of Nambu based on the BCS analogue of superconductor where mass of nucleon (then elementary particle) arises due to Cooper paring and pions are provided as massless Nambu-Goldstone (NG) bosons, being composite as in Fermi-Yang/Sakata model. In this talk I will focus on the modern version of DSB or composite Higgs models: Walking/Conformal Technicolor, Hidden Local Symmetry (HLS) or Moose, and Top Quark Condensate, with the their extra dimension versions closely related with HLS. Particular emphasis will be placed on the large anomalous dimension and conformal symmetry at the conformal fixed points, developed along the line of the pioneering work of Maskawa and Nakajima. Due to (approximate) conformal symmetry these models do have composite Higgs particle (``Techni-dilaton'', ``Top-sigma'', etc.). Weakly coupled composite gauge boson is realized at ``Vector Manifestation'' formulated at conformal fixed point, which may be applied to the composite W/Z boson models. They will be tested in the upcoming LHC experiments.

  5. Dynamic Bayesian Network for Accurate Detection of Peptides from Tandem Mass Spectra.

    PubMed

    Halloran, John T; Bilmes, Jeff A; Noble, William S

    2016-08-01

    A central problem in mass spectrometry analysis involves identifying, for each observed tandem mass spectrum, the corresponding generating peptide. We present a dynamic Bayesian network (DBN) toolkit that addresses this problem by using a machine learning approach. At the heart of this toolkit is a DBN for Rapid Identification (DRIP), which can be trained from collections of high-confidence peptide-spectrum matches (PSMs). DRIP's score function considers fragment ion matches using Gaussians rather than fixed fragment-ion tolerances and also finds the optimal alignment between the theoretical and observed spectrum by considering all possible alignments, up to a threshold that is controlled using a beam-pruning algorithm. This function not only yields state-of-the art database search accuracy but also can be used to generate features that significantly boost the performance of the Percolator postprocessor. The DRIP software is built upon a general purpose DBN toolkit (GMTK), thereby allowing a wide variety of options for user-specific inference tasks as well as facilitating easy modifications to the DRIP model in future work. DRIP is implemented in Python and C++ and is available under Apache license at http://melodi-lab.github.io/dripToolkit . PMID:27397138

  6. Absolute densities, masses, and radii of the WASP-47 system determined dynamically

    NASA Astrophysics Data System (ADS)

    Almenara, J. M.; Díaz, R. F.; Bonfils, X.; Udry, S.

    2016-10-01

    We present a self-consistent modelling of the available light curve and radial velocity data of WASP-47 that takes into account the gravitational interactions between all known bodies in the system. The joint analysis of light curve and radial velocity data in a multi-planetary system allows deriving absolute densities, radii, and masses without the use of theoretical stellar models. For WASP-47 the precision is limited by the reduced dynamical information that is due to the short time span of the K2 light curve. We achieve a precision of around 22% for the radii of the star and the transiting planets, between 40% and 60% for their masses, and between 1.5% and 38% for their densities. All values agree with previously reported measurements. When theoretical stellar models are included, the system parameters are determined with a precision that exceeds that achieved by previous studies, thanks to the self-consistent modelling of light curve and radial velocity data.

  7. WIMPs at the galactic center

    SciTech Connect

    Agrawal, Prateek; Batell, Brian; Fox, Patrick J.; Harnik, Roni

    2015-05-07

    Simple models of weakly interacting massive particles (WIMPs) predict dark matter annihilations into pairs of electroweak gauge bosons, Higgses or tops, which through their subsequent cascade decays produce a spectrum of gamma rays. Intriguingly, an excess in gamma rays coming from near the Galactic center has been consistently observed in Fermi data. A recent analysis by the Fermi collaboration confirms these earlier results. Taking into account the systematic uncertainties in the modelling of the gamma ray backgrounds, we show for the first time that this excess can be well fit by these final states. In particular, for annihilations to (WW, ZZ, hh, tt{sup -bar}), dark matter with mass between threshold and approximately (165, 190, 280, 310) GeV gives an acceptable fit. The fit range for bb{sup -bar} is also enlarged to 35 GeV≲m{sub χ}≲165 GeV. These are to be compared to previous fits that concluded only much lighter dark matter annihilating into b, τ, and light quark final states could describe the excess. We demonstrate that simple, well-motivated models of WIMP dark matter including a thermal-relic neutralino of the MSSM, Higgs portal models, as well as other simplified models can explain the excess.

  8. WIMPs at the galactic center

    SciTech Connect

    Agrawal, Prateek; Batell, Brian; Fox, Patrick J.; Harnik, Roni

    2015-05-07

    Simple models of weakly interacting massive particles (WIMPs) predict dark matter annihilations into pairs of electroweak gauge bosons, Higgses or tops, which through their subsequent cascade decays produce a spectrum of gamma rays. Intriguingly, an excess in gamma rays coming from near the Galactic center has been consistently observed in Fermi data. A recent analysis by the Fermi collaboration confirms these earlier results. Taking into account the systematic uncertainties in the modelling of the gamma ray backgrounds, we show for the first time that this excess can be well fit by these final states. In particular, for annihilations to (WW, ZZ, hh, tt¯), dark matter with mass between threshold and approximately (165, 190, 280, 310) GeV gives an acceptable fit. The fit range for bb¯ is also enlarged to 35 GeV ≲ mχ ≲ 165 GeV. These are to be compared to previous fits that concluded only much lighter dark matter annihilating into b, τ, and light quark final states could describe the excess. We demonstrate that simple, well-motivated models of WIMP dark matter including a thermal-relic neutralino of the MSSM, Higgs portal models, as well as other simplified models can explain the excess.

  9. WIMPs at the galactic center

    DOE PAGESBeta

    Agrawal, Prateek; Batell, Brian; Fox, Patrick J.; Harnik, Roni

    2015-05-07

    Simple models of weakly interacting massive particles (WIMPs) predict dark matter annihilations into pairs of electroweak gauge bosons, Higgses or tops, which through their subsequent cascade decays produce a spectrum of gamma rays. Intriguingly, an excess in gamma rays coming from near the Galactic center has been consistently observed in Fermi data. A recent analysis by the Fermi collaboration confirms these earlier results. Taking into account the systematic uncertainties in the modelling of the gamma ray backgrounds, we show for the first time that this excess can be well fit by these final states. In particular, for annihilations to (WW,more » ZZ, hh, tt¯), dark matter with mass between threshold and approximately (165, 190, 280, 310) GeV gives an acceptable fit. The fit range for bb¯ is also enlarged to 35 GeV ≲ mχ ≲ 165 GeV. These are to be compared to previous fits that concluded only much lighter dark matter annihilating into b, τ, and light quark final states could describe the excess. We demonstrate that simple, well-motivated models of WIMP dark matter including a thermal-relic neutralino of the MSSM, Higgs portal models, as well as other simplified models can explain the excess.« less

  10. WIMPs at the galactic center

    SciTech Connect

    Agrawal, Prateek; Fox, Patrick J.; Harnik, Roni; Batell, Brian E-mail: brian.batell@cern.ch E-mail: roni@fnal.gov

    2015-05-01

    Simple models of weakly interacting massive particles (WIMPs) predict dark matter annihilations into pairs of electroweak gauge bosons, Higgses or tops, which through their subsequent cascade decays produce a spectrum of gamma rays. Intriguingly, an excess in gamma rays coming from near the Galactic center has been consistently observed in Fermi data. A recent analysis by the Fermi collaboration confirms these earlier results. Taking into account the systematic uncertainties in the modelling of the gamma ray backgrounds, we show for the first time that this excess can be well fit by these final states. In particular, for annihilations to (WW, ZZ, hh, t t-bar ), dark matter with mass between threshold and approximately (165, 190, 280, 310) GeV gives an acceptable fit. The fit range for b b-bar is also enlarged to 35 GeV ∼< m{sub χ} ∼< 165 GeV. These are to be compared to previous fits that concluded only much lighter dark matter annihilating into b, τ, and light quark final states could describe the excess. We demonstrate that simple, well-motivated models of WIMP dark matter including a thermal-relic neutralino of the MSSM, Higgs portal models, as well as other simplified models can explain the excess.

  11. Dynamic phosphorus mass balance modeling of large watersheds: long-term implications of management strategies.

    PubMed

    Cassell, E A; Kort, R L; Meals, D W; Aschmann, S G; Dorioz, J M; Anderson, D P

    2001-01-01

    The principles of mass balance, compartment-flux diagramming, and dynamic simulation modeling are integrated to create computer models that estimate phosphorus (P) export from large-scale watersheds over long-term futures. These Watershed Ecosystem Nutrient Dynamics (WEND) models are applied to a 275,000 ha dairy-documented watershed and a 77,000 ha poultry-dominated watershed in northeastern USA. Model predictions of present-day P export loads are consistent with monitoring data and estimates made using P export coefficients. For both watersheds P import exceeds P export and P is accumulating in the agricultural soils. Agricultural and urban activities are major contributors to P export from both watersheds. Continued urban growth will increase P export over time unless wastewater management is substantially enhanced and/or rates of urban growth are controlled. Agriculture cannot rely solely on the implementation of increasingly stringent conservation practices to reduce long-term P export but must consider options that promote P input/output balance. The WEND modeling process is a powerful tool to integrate the diversity of activities in watersheds into a holistic framework. Model outputs are suited to assist managers to explore long-term effects of overall watershed management strategies on P export in comparison to environmental and economic goals.

  12. Tree carbon allocation dynamics determined using a carbon mass balance approach.

    PubMed

    Klein, Tamir; Hoch, Günter

    2015-01-01

    Tree internal carbon (C) fluxes between compound and compartment pools are difficult to measure directly. Here we used a C mass balance approach to decipher these fluxes and provide a full description of tree C allocation dynamics. We collected independent measurements of tree C sinks, source and pools in Pinus halepensis in a semi-arid forest, and converted all fluxes to g C per tree d(-1) . Using this data set, a process flowchart was created to describe and quantify the tree C allocation on diurnal to annual time-scales. The annual C source of 24.5 kg C per tree yr(-1) was balanced by C sinks of 23.5 kg C per tree yr(-1) , which partitioned into 70%, 17% and 13% between respiration, growth, and litter (plus export to soil), respectively. Large imbalances (up to 57 g C per tree d(-1) ) were observed as C excess during the wet season, and as C deficit during the dry season. Concurrent changes in C reserves (starch) were sufficient to buffer these transient C imbalances. The C pool dynamics calculated using the flowchart were in general agreement with the observed pool sizes, providing confidence regarding our estimations of the timing, magnitude, and direction of the internal C fluxes. PMID:25157793

  13. Mass spectrometric analysis of spatio-temporal dynamics of crustacean neuropeptides.

    PubMed

    OuYang, Chuanzi; Liang, Zhidan; Li, Lingjun

    2015-07-01

    Neuropeptides represent one of the largest classes of signaling molecules used by nervous systems to regulate a wide range of physiological processes. Over the past several years, mass spectrometry (MS)-based strategies have revolutionized the discovery of neuropeptides in numerous model organisms, especially in decapod crustaceans. Here, we focus our discussion on recent advances in the use of MS-based techniques to map neuropeptides in the spatial domain and monitoring their dynamic changes in the temporal domain. These MS-enabled investigations provide valuable information about the distribution, secretion and potential function of neuropeptides with high molecular specificity and sensitivity. In situ MS imaging and in vivo microdialysis are highlighted as key technologies for probing spatio-temporal dynamics of neuropeptides in the crustacean nervous system. This review summarizes the latest advancement in MS-based methodologies for neuropeptide analysis including typical workflow and sample preparation strategies as well as major neuropeptide families discovered in decapod crustaceans. This article is part of a Special Issue entitled: Neuroproteomics: Applications in Neuroscience and Neurology.

  14. Tree carbon allocation dynamics determined using a carbon mass balance approach.

    PubMed

    Klein, Tamir; Hoch, Günter

    2015-01-01

    Tree internal carbon (C) fluxes between compound and compartment pools are difficult to measure directly. Here we used a C mass balance approach to decipher these fluxes and provide a full description of tree C allocation dynamics. We collected independent measurements of tree C sinks, source and pools in Pinus halepensis in a semi-arid forest, and converted all fluxes to g C per tree d(-1) . Using this data set, a process flowchart was created to describe and quantify the tree C allocation on diurnal to annual time-scales. The annual C source of 24.5 kg C per tree yr(-1) was balanced by C sinks of 23.5 kg C per tree yr(-1) , which partitioned into 70%, 17% and 13% between respiration, growth, and litter (plus export to soil), respectively. Large imbalances (up to 57 g C per tree d(-1) ) were observed as C excess during the wet season, and as C deficit during the dry season. Concurrent changes in C reserves (starch) were sufficient to buffer these transient C imbalances. The C pool dynamics calculated using the flowchart were in general agreement with the observed pool sizes, providing confidence regarding our estimations of the timing, magnitude, and direction of the internal C fluxes.

  15. Basin mass dynamic changes in China from GRACE based on a multibasin inversion method

    NASA Astrophysics Data System (ADS)

    Yi, Shuang; Wang, Qiuyu; Sun, Wenke

    2016-05-01

    Complex landforms, miscellaneous climates, and enormous populations have influenced various geophysical phenomena in China, which range from water depletion in the underground to retreating glaciers on high mountains and have attracted abundant scientific interest. This paper, which utilizes gravity observations during 2003-2014 from the Gravity Recovery and Climate Experiment (GRACE), intends to comprehensively estimate the mass status in 16 drainage basins in the region. We propose a multibasin inversion method that features resistance to stripe noise and an ability to alleviate signal attenuation from the truncation and smoothing of GRACE data. The results show both positive and negative trends. Tremendous mass accumulation has occurred from the Tibetan Plateau (12.1 ± 0.6 Gt/yr) to the Yangtze River (7.7 ± 1.3 Gt/yr) and southeastern coastal areas, which is suggested to involve an increase in the groundwater storage, lake and reservoir water volume, and the flow of materials from tectonic processes. Additionally, mass loss has occurred in the Huang-Huai-Hai-Liao River Basin (-10.2 ± 0.9 Gt/yr), the Brahmaputra-Nujiang-Lancang River Basin (-15.0 ± 1.1 Gt/yr), and Tienshan Mountain (-4.1 ± 0.3 Gt/yr), a result of groundwater pumping and glacier melting. Areas with groundwater depletion are consistent with the distribution of cities with land subsidence in North China. We find that intensified precipitation can alter the local water supply and that GRACE can adequately capture these dynamics, which could be instructive for China's South-to-North Water Diversion hydrologic project.

  16. GRACE captures basin mass dynamic changes in China based on a multi-basin inversion method

    NASA Astrophysics Data System (ADS)

    Yi, Shuang; Wang, Qiuyu; Sun, Wenke

    2016-04-01

    Complex landform, miscellaneous climate and enormous population have enriched China with geophysical phenomena ranging from water depletion in the underground to glaciers retreat on the high mountains and have aroused large scientific interests. This paper, utilizing gravity observations 2003-2014 from the Gravity Recovery and Climate Experiment (GRACE), intends to make a comprehensive estimation of mass status in 16 drainage basins in the whole region. We proposed a multi-basin inversion method, which is featured by resistance to the stripe noise and ability to alleviate signal attenuation due to truncation and smoothing of GRACE data. The results show both positive and negative trends: there is a tremendous mass accumulation spreading from the Tibetan plateau (12.2 ± 0.6 Gt/yr) to the Yangtze River (7.6 ± 1.3 Gt/yr), and further to the southeast coastal areas, which is suggested to involve an increase in the ground water storage, lake and reservoir water volume and likely materials flowed in by tectonic process; a mass loss is occurring in Huang-Huai-Hai-Liao River Basin (-10.5 ± 0.8 Gt/yr), as well as the Brahmaputra-Nujiang-Lancang River Basin (-15.0 ± 0.9 Gt/yr) and Tienshan Mountain (-4.1 ± 0.3 Gt/yr), which is a result of groundwater pumping and glacier melting. The groundwater depletion area is well consistent with the distribution of land subsidence in North China. In the end, we find intensified precipitation can alter the local water supply and GRACE is proficient to capture this dynamics, which could be instructive for the South-to-North Water Diversion - one China's giant hydrologic project.

  17. Chemical crosslinking and mass spectrometry studies of the structure and dynamics of membrane proteins and receptors.

    SciTech Connect

    Haskins, William E.; Leavell, Michael D.; Lane, Pamela; Jacobsen, Richard B.; Hong, Joohee; Ayson, Marites J.; Wood, Nichole L.; Schoeniger, Joseph S.; Kruppa, Gary Hermann; Sale, Kenneth L.; Young, Malin M.; Novak, Petr

    2005-03-01

    Membrane proteins make up a diverse and important subset of proteins for which structural information is limited. In this study, chemical cross-linking and mass spectrometry were used to explore the structure of the G-protein-coupled photoreceptor bovine rhodopsin in the dark-state conformation. All experiments were performed in rod outer segment membranes using amino acid 'handles' in the native protein sequence and thus minimizing perturbations to the native protein structure. Cysteine and lysine residues were covalently cross-linked using commercially available reagents with a range of linker arm lengths. Following chemical digestion of cross-linked protein, cross-linked peptides were identified by accurate mass measurement using liquid chromatography-fourier transform mass spectrometry and an automated data analysis pipeline. Assignments were confirmed and, if necessary, resolved, by tandem MS. The relative reactivity of lysine residues participating in cross-links was evaluated by labeling with NHS-esters. A distinct pattern of cross-link formation within the C-terminal domain, and between loop I and the C-terminal domain, emerged. Theoretical distances based on cross-linking were compared to inter-atomic distances determined from the energy-minimized X-ray crystal structure and Monte Carlo conformational search procedures. In general, the observed cross-links can be explained by re-positioning participating side-chains without significantly altering backbone structure. One exception, between C3 16 and K325, requires backbone motion to bring the reactive atoms into sufficient proximity for cross-linking. Evidence from other studies suggests that residues around K325 for a region of high backbone mobility. These findings show that cross-linking studies can provide insight into the structural dynamics of membrane proteins in their native environment.

  18. Hybrid Residual Flexibility/Mass-Additive Method for Structural Dynamic Testing

    NASA Technical Reports Server (NTRS)

    Tinker, M. L.

    2003-01-01

    A large fixture was designed and constructed for modal vibration testing of International Space Station elements. This fixed-base test fixture, which weighs thousands of pounds and is anchored to a massive concrete floor, initially utilized spherical bearings and pendulum mechanisms to simulate Shuttle orbiter boundary constraints for launch of the hardware. Many difficulties were encountered during a checkout test of the common module prototype structure, mainly due to undesirable friction and excessive clearances in the test-article-to-fixture interface bearings. Measured mode shapes and frequencies were not representative of orbiter-constrained modes due to the friction and clearance effects in the bearings. As a result, a major redesign effort for the interface mechanisms was undertaken. The total cost of the fixture design, construction and checkout, and redesign was over $2 million. Because of the problems experienced with fixed-base testing, alternative free-suspension methods were studied, including the residual flexibility and mass-additive approaches. Free-suspension structural dynamics test methods utilize soft elastic bungee cords and overhead frame suspension systems that are less complex and much less expensive than fixed-base systems. The cost of free-suspension fixturing is on the order of tens of thousands of dollars as opposed to millions, for large fixed-base fixturing. In addition, free-suspension test configurations are portable, allowing modal tests to be done at sites without modal test facilities. For example, a mass-additive modal test of the ASTRO-1 Shuttle payload was done at the Kennedy Space Center launch site. In this Technical Memorandum, the mass-additive and residual flexibility test methods are described in detail. A discussion of a hybrid approach that combines the best characteristics of each method follows and is the focus of the study.

  19. The balanced-force volume tracking algorithm and global embedded interface formulation for droplet dynamics with mass transfer

    SciTech Connect

    Francois, Marianne M; Carlson, Neil N

    2010-01-01

    Understanding the complex interaction of droplet dynamics with mass transfer and chemical reactions is of fundamental importance in liquid-liquid extraction. High-fidelity numerical simulation of droplet dynamics with interfacial mass transfer is particularly challenging because the position of the interface between the fluids and the interface physics need to be predicted as part of the solution of the flow equations. In addition, the discontinuity in fluid density, viscosity and species concentration at the interface present additional numerical challenges. In this work, we extend our balanced-force volume-tracking algorithm for modeling surface tension force (Francois et al., 2006) and we propose a global embedded interface formulation to model the interfacial conditions of an interface in thermodynamic equilibrium. To validate our formulation, we perform simulations of pure diffusion problems in one- and two-dimensions. Then we present two and three-dimensional simulations of a single droplet dynamics rising by buoyancy with mass transfer.

  20. Galactic Distribution of Planets Spitzer Microlens Parallaxes

    NASA Astrophysics Data System (ADS)

    Gould, Andrew; Carey, Sean; Yee, Jennifer

    2016-08-01

    We will measure the Galactic distribution of planets by obtaining 'microlens parallaxes' of about 700 events, including 18 planetary events, from the comparison of microlens lightcurves observed from Spitzer and Earth, which are separated by 1 AU in projection. As we have demonstrated in two previous programs, the difference in these lightcurves yields both the 'microlens parallax' (ratio of the lens-source relative parallax) to the Einstein radius, and the direction of lens-source relative motion. For planetary events, this measurement directly yields the mass and distance of the planet. For non-planetary events it can be combined with a Galactic model to estimate these quantities with factor 1.4 precision. Hence, the cumulative distributions of planetary events and all events can be compared to determine the relative frequency of planets in the Galactic disk and bulge. The results will be combined with those of current/previous Spitzer campaigns and the current Kepler campaign. This proposal is significantly more sensitive to planets than previous work because it takes advantage of the new KMTNet observing strategy that covers 80 sq.deg at >0.4/hr cadence, 24/7 from 3 southern observatories. This same observing program also provides a unique probe of dark objects. It will yield the first mass-measurement based determination of the isolated-brown-dwarf mass function. Thirteen percent of the observations will specifically target binaries, which will probe systems with dark components (brown dwarfs, neutron stars, black holes) that are difficult or impossible to investigate by other methods. The observations and methods from this work are a test bed for WFIRST microlensing.

  1. Dynamical Masses of Young M Dwarfs: Masses and Orbital Parameters of GJ 3305 AB, the Wide Binary Companion to the Imaged Exoplanet Host 51 Eri

    NASA Astrophysics Data System (ADS)

    Montet, Benjamin T.; Bowler, Brendan P.; Shkolnik, Evgenya L.; Deck, Katherine M.; Wang, Ji; Horch, Elliott P.; Liu, Michael C.; Hillenbrand, Lynne A.; Kraus, Adam L.; Charbonneau, David

    2015-11-01

    We combine new high resolution imaging and spectroscopy from Keck/NIRC2, Discovery Channel Telescope/DSSI, and Keck/HIRES with published astrometry and radial velocities to measure individual masses and orbital elements of the GJ 3305 AB system, a young (∼20 Myr) M+M binary (unresolved spectral type M0) member of the β Pictoris moving group comoving with the imaged exoplanet host 51 Eri. We measure a total system mass of 1.11 ± 0.04 {M}ȯ , a period of 29.03 ± 0.50 year, a semimajor axis of 9.78 ± 0.14 AU, and an eccentricity of 0.19 ± 0.02. The primary component has a dynamical mass of 0.67 ± 0.05 {M}ȯ and the secondary has a mass of 0.44 ± 0.05 {M}ȯ . The recently updated BHAC15 models are consistent with the masses of both stars to within 1.5σ . Given the observed masses the models predict an age of the GJ 3305 AB system of 37 ± 9 Myr. Based on the observed system architecture and our dynamical mass measurement, it is unlikely that the orbit of 51 Eri b has been significantly altered by the Kozai–Lidov mechanism. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  2. Dynamical Masses of Young M Dwarfs: Masses and Orbital Parameters of GJ 3305 AB, the Wide Binary Companion to the Imaged Exoplanet Host 51 Eri

    NASA Astrophysics Data System (ADS)

    Montet, Benjamin T.; Bowler, Brendan P.; Shkolnik, Evgenya L.; Deck, Katherine M.; Wang, Ji; Horch, Elliott P.; Liu, Michael C.; Hillenbrand, Lynne A.; Kraus, Adam L.; Charbonneau, David

    2015-11-01

    We combine new high resolution imaging and spectroscopy from Keck/NIRC2, Discovery Channel Telescope/DSSI, and Keck/HIRES with published astrometry and radial velocities to measure individual masses and orbital elements of the GJ 3305 AB system, a young (˜20 Myr) M+M binary (unresolved spectral type M0) member of the β Pictoris moving group comoving with the imaged exoplanet host 51 Eri. We measure a total system mass of 1.11 ± 0.04 {M}⊙ , a period of 29.03 ± 0.50 year, a semimajor axis of 9.78 ± 0.14 AU, and an eccentricity of 0.19 ± 0.02. The primary component has a dynamical mass of 0.67 ± 0.05 {M}⊙ and the secondary has a mass of 0.44 ± 0.05 {M}⊙ . The recently updated BHAC15 models are consistent with the masses of both stars to within 1.5σ . Given the observed masses the models predict an age of the GJ 3305 AB system of 37 ± 9 Myr. Based on the observed system architecture and our dynamical mass measurement, it is unlikely that the orbit of 51 Eri b has been significantly altered by the Kozai-Lidov mechanism. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  3. Protein structural dynamics at the gas/water interface examined by hydrogen exchange mass spectrometry.

    PubMed

    Xiao, Yiming; Konermann, Lars

    2015-08-01

    Gas/water interfaces (such as air bubbles or foam) are detrimental to the stability of proteins, often causing aggregation. This represents a potential problem for industrial processes, for example, the production and handling of protein drugs. Proteins possess surfactant-like properties, resulting in a high affinity for gas/water interfaces. The tendency of previously buried nonpolar residues to maximize contact with the gas phase can cause significant structural distortion. Most earlier studies in this area employed spectroscopic tools that could only provide limited information. Here we use hydrogen/deuterium exchange (HDX) mass spectrometry (MS) for probing the conformational dynamics of the model protein myoglobin (Mb) in the presence of N(2) bubbles. HDX/MS relies on the principle that unfolded and/or highly dynamic regions undergo faster deuteration than tightly folded segments. In bubble-free solution Mb displays EX2 behavior, reflecting the occurrence of short-lived excursions to partially unfolded conformers. A dramatically different behavior is seen in the presence of N(2) bubbles; EX2 dynamics still take place, but in addition the protein shows EX1 behavior. The latter results from interconversion of the native state with conformers that are globally unfolded and long-lived. These unfolded species likely correspond to Mb that is adsorbed to the surface of gas bubbles. N(2) sparging also induces aggregation. To explain the observed behavior we propose a simple model, that is, "semi-unfolded" ↔ "native" ↔ "globally unfolded" → "aggregated". This model quantitatively reproduces the experimentally observed kinetics. To the best of our knowledge, the current study marks the first exploration of surface denaturation phenomena by HDX/MS. PMID:25761782

  4. Protein structural dynamics at the gas/water interface examined by hydrogen exchange mass spectrometry

    PubMed Central

    Xiao, Yiming; Konermann, Lars

    2015-01-01

    Gas/water interfaces (such as air bubbles or foam) are detrimental to the stability of proteins, often causing aggregation. This represents a potential problem for industrial processes, for example, the production and handling of protein drugs. Proteins possess surfactant-like properties, resulting in a high affinity for gas/water interfaces. The tendency of previously buried nonpolar residues to maximize contact with the gas phase can cause significant structural distortion. Most earlier studies in this area employed spectroscopic tools that could only provide limited information. Here we use hydrogen/deuterium exchange (HDX) mass spectrometry (MS) for probing the conformational dynamics of the model protein myoglobin (Mb) in the presence of N2 bubbles. HDX/MS relies on the principle that unfolded and/or highly dynamic regions undergo faster deuteration than tightly folded segments. In bubble-free solution Mb displays EX2 behavior, reflecting the occurrence of short-lived excursions to partially unfolded conformers. A dramatically different behavior is seen in the presence of N2 bubbles; EX2 dynamics still take place, but in addition the protein shows EX1 behavior. The latter results from interconversion of the native state with conformers that are globally unfolded and long-lived. These unfolded species likely correspond to Mb that is adsorbed to the surface of gas bubbles. N2 sparging also induces aggregation. To explain the observed behavior we propose a simple model, that is, “semi-unfolded” ↔ “native” ↔ “globally unfolded” → “aggregated”. This model quantitatively reproduces the experimentally observed kinetics. To the best of our knowledge, the current study marks the first exploration of surface denaturation phenomena by HDX/MS. PMID:25761782

  5. [Dynamic behavior of aldicarb and its metabolites in cabbage by liquid chromatography-tandem mass spectrometry].

    PubMed

    Ding, Kuiying; Xu, Wenjuan; Li, Kai; Guo, Liqiang; Sun, Jun

    2016-02-01

    A liquid chromatography-tandem mass spectrometry ( LC-MS/MS ) method was developed for the study of dynamic behavior of aldicarb and its metabolite residues in cabbage. Aldicarb was applied onto cultivated cabbages. The pesticides concentrations were measured periodically (between application and harvest) , and modeled to illustrate the dynamic behavior. The results showed that the liner ranges of aldicarb and its metabolites were from 0. 005 to 0. 2 mg/L, and the recoveries ranged from 78. 9% to 108. 5% with the relative standard deviations of 2. 03%- 8. 91% (n = 8). The aldicarb in cabbage increased at first with the first-order kinetic equation model of c = 0. 020(0.136t) with the correlation coefficient (r2) of 0. 888, and then decreased with the equation of c = 0. 65e(-059t) with the r2 of 0. 979 and the half-life of 29. 1 d. The reducing processes of aldicarb-sulfone and aldicarb-sulfoxide both matched the first-order kinetic equations (c = 23. 4e(-0.044t) and c = 4. 54e(-0.027t) with r2 of 0. 916 and 0. 972 respectively. To meet the limitation requirement of 0. 01 mg/kg, 70. 7, 226. 6 and 176. 3 d were respectively necessary for aldicarb, aldicarb-sulfone and aldicarb-sulfoxide. Final residues of aldicarb-sulfone and aldicarb-sulfoxide were still more than the limitation requirements, indicating that aldicarb should not be used in vegetables of growth cycle shorter than 120 d. This study provided theoretical basis for dynamic behavior of aldicarb residue and its safe use in vegetables. PMID:27382721

  6. Grains in galactic haloes

    NASA Technical Reports Server (NTRS)

    Ferrara, Andrea; Barsella, Bruno; Ferrini, F.; Greenberg, J. Mayo; Aiello, Santi

    1989-01-01

    Researchers considered the effect of extensive forces on dust grains subjected to the light and matter distribution of a spiral galaxy (Greenberg et al. (1987), Ferrini et al. (1987), Barsella et al (1988). Researchers showed that the combined force on a small particle located above the plane of a galactic disk may be either attractive or repulsive depending on a variety of parameters. They found, for example, that graphite grains from 20 nm to 250 nm radius are expelled from a typical galaxy, while silicates and other forms of dielectrics, after initial expulsion, may settle in potential minimum within the halo. They discuss only the statistical behavior of the forces for 17 galaxies whose luminosity and matter distribution in the disk, bulge and halo components are reasonably well known. The preliminary results of the study of the motion of a dust grain for NGC 3198 are given.

  7. Galactic Diffuse Polarized Emission

    NASA Astrophysics Data System (ADS)

    Carretti, Ettore

    2011-12-01

    Diffuse polarized emission by synchrotron is a key tool to investigate magnetic fields in the Milky Way, particularly the ordered component of the large scale structure. Key observables are the synchrotron emission itself and the RM is by Faraday rotation. In this paper the main properties of the radio polarized diffuse emission and its use to investigate magnetic fields will be reviewed along with our current understanding of the galactic magnetic field and the data sets available. We will then focus on the future perspective discussing RM-synthesis - the new powerful instrument devised to unlock the information encoded in such an emission - and the surveys currently in progress like S-PASS and GMIMS.

  8. Linear center-of-mass dynamics emerge from non-linear leg-spring properties in human hopping.

    PubMed

    Riese, Sebastian; Seyfarth, Andre; Grimmer, Sten

    2013-09-01

    Given the almost linear relationship between ground-reaction force and leg length, bouncy gaits are commonly described using spring-mass models with constant leg-spring parameters. In biological systems, however, spring-like properties of limbs may change over time. Therefore, it was investigated how much variation of leg-spring parameters is present during vertical human hopping. In order to do so, rest-length and stiffness profiles were estimated from ground-reaction forces and center-of-mass dynamics measured in human hopping. Trials included five hopping frequencies ranging from 1.2 to 3.6 Hz. Results show that, even though stiffness and rest length vary during stance, for most frequencies the center-of-mass dynamics still resemble those of a linear spring-mass hopper. Rest-length and stiffness profiles differ for slow and fast hopping. Furthermore, at 1.2 Hz two distinct control schemes were observed.

  9. STELLAR TRANSITS IN ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Beky, Bence; Kocsis, Bence E-mail: bkocsis@cfa.harvard.edu

    2013-01-01

    Supermassive black holes (SMBHs) are typically surrounded by a dense stellar population in galactic nuclei. Stars crossing the line of site in active galactic nuclei (AGNs) produce a characteristic transit light curve, just like extrasolar planets do when they transit their host star. We examine the possibility of finding such AGN transits in deep optical, UV, and X-ray surveys. We calculate transit light curves using the Novikov-Thorne thin accretion disk model, including general relativistic effects. Based on the expected properties of stellar cusps, we find that around 10{sup 6} solar mass SMBHs, transits of red giants are most common for stars on close orbits with transit durations of a few weeks and orbital periods of a few years. We find that detecting AGN transits requires repeated observations of thousands of low-mass AGNs to 1% photometric accuracy in optical, or {approx}10% in UV bands or soft X-ray. It may be possible to identify stellar transits in the Pan-STARRS and LSST optical and the eROSITA X-ray surveys. Such observations could be used to constrain black hole mass, spin, inclination, and accretion rate. Transit rates and durations could give valuable information on the circumnuclear stellar clusters as well. Transit light curves could be used to image accretion disks with unprecedented resolution, allowing us to resolve the SMBH silhouette in distant AGNs.

  10. Stellar Transits in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Béky, Bence; Kocsis, Bence

    2013-01-01

    Supermassive black holes (SMBHs) are typically surrounded by a dense stellar population in galactic nuclei. Stars crossing the line of site in active galactic nuclei (AGNs) produce a characteristic transit light curve, just like extrasolar planets do when they transit their host star. We examine the possibility of finding such AGN transits in deep optical, UV, and X-ray surveys. We calculate transit light curves using the Novikov-Thorne thin accretion disk model, including general relativistic effects. Based on the expected properties of stellar cusps, we find that around 106 solar mass SMBHs, transits of red giants are most common for stars on close orbits with transit durations of a few weeks and orbital periods of a few years. We find that detecting AGN transits requires repeated observations of thousands of low-mass AGNs to 1% photometric accuracy in optical, or ~10% in UV bands or soft X-ray. It may be possible to identify stellar transits in the Pan-STARRS and LSST optical and the eROSITA X-ray surveys. Such observations could be used to constrain black hole mass, spin, inclination, and accretion rate. Transit rates and durations could give valuable information on the circumnuclear stellar clusters as well. Transit light curves could be used to image accretion disks with unprecedented resolution, allowing us to resolve the SMBH silhouette in distant AGNs.

  11. Galactic plane gamma-radiation

    NASA Technical Reports Server (NTRS)

    Hartman, R. C.; Kniffen, D. A.; Thompson, D. J.; Fichtel, C. E.; Ogelman, H. B.; Tumer, T.; Ozel, M. E.

    1979-01-01

    Analysis of the SAS 2 data together with the COS B results shows that the distribution of galactic gamma-radiation has several similarities to that of other large-scale tracers of galactic structure. The radiation is primarily confined to a thin disc which exhibits offsets from b = 0 degrees similar to warping at radio frequencies. The principal distinction of the gamma-radiation is a stronger contrast in intensity between the region from 310 to 45 degrees in longitude and the regions away from the center that can be attributed to a variation in cosmic-ray density as a function of position in Galaxy. The diffuse galactic gamma-ray energy spectrum shows no significant variation in direction, and the spectrum seen along the plane is the same as that for the galactic component of the gamma-radiation at high altitudes. The uniformity of the galactic gamma-ray spectrum, the smooth decrease in intensity as a function of altitude, and the absence of any galactic gamma-ray sources at high altitudes indicate a diffuse origin for bulk of the galactic gamma-radiation rather than a collection of localized sources.

  12. THE SDSS-HET SURVEY OF KEPLER ECLIPSING BINARIES: SPECTROSCOPIC DYNAMICAL MASSES OF THE KEPLER-16 CIRCUMBINARY PLANET HOSTS

    SciTech Connect

    Bender, Chad F.; Mahadevan, Suvrath; Deshpande, Rohit; Wright, Jason T.; Roy, Arpita; Terrien, Ryan C.; Sigurdsson, Steinn; Ramsey, Lawrence W.; Schneider, Donald P.; Fleming, Scott W.

    2012-06-01

    We have used high-resolution spectroscopy to observe the Kepler-16 eclipsing binary as a double-lined system and measure precise radial velocities for both stellar components. These velocities yield a dynamical mass ratio of q = 0.2994 {+-} 0.0031. When combined with the inclination, i 90.{sup 0}3401{sup +0.0016}{sub -0.0019}, measured from the Kepler photometric data by Doyle et al. (D11), we derive dynamical masses for the Kepler-16 components of M{sub A} = 0.654 {+-} 0.017 M{sub Sun} and M{sub B} = 0.1959 {+-} 0.0031 M{sub Sun }, a precision of 2.5% and 1.5%, respectively. Our results confirm at the {approx}2% level the mass-ratio derived by D11 with their photometric-dynamical model (PDM), q = 0.2937 {+-} 0.0006. These are among the most precise spectroscopic dynamical masses ever measured for low-mass stars and provide an important direct test of the results from the PDM technique.

  13. The Inner Galactic Bulge: Evidence for a Nuclear Bar?

    NASA Astrophysics Data System (ADS)

    Gerhard, Ortwin; Martinez-Valpuesta, Inma

    2012-01-01

    Recent data from the VVV survey have strengthened evidence for a structural change in the Galactic bulge inward of |l| <= 4°. Here we show with an N-body barred galaxy simulation that a boxy bulge formed through the bar and buckling instabilities effortlessly matches measured bulge longitude profiles for red clump stars. The same simulation snapshot was earlier used to clarify the apparent boxy bulge—long bar dichotomy, for the same orientation and scaling. The change in the slope of the model longitude profiles in the inner few degrees is caused by a transition from highly elongated to more nearly axisymmetric isodensity contours in the inner boxy bulge. This transition is confined to a few degrees from the Galactic plane; thus the change of slope is predicted to disappear at higher Galactic latitudes. We also show that the nuclear star count map derived from this simulation snapshot displays a longitudinal asymmetry similar to that observed in the Two Micron All Sky Survey (2MASS) data, but is less flattened to the Galactic plane than the 2MASS map. These results support the interpretation that the Galactic bulge originated from disk evolution and question the evidence advanced from star count data for the existence of a secondary nuclear bar in the Milky Way.

  14. THE INNER GALACTIC BULGE: EVIDENCE FOR A NUCLEAR BAR?

    SciTech Connect

    Gerhard, Ortwin; Martinez-Valpuesta, Inma

    2012-01-15

    Recent data from the VVV survey have strengthened evidence for a structural change in the Galactic bulge inward of |l| {<=} 4 Degree-Sign . Here we show with an N-body barred galaxy simulation that a boxy bulge formed through the bar and buckling instabilities effortlessly matches measured bulge longitude profiles for red clump stars. The same simulation snapshot was earlier used to clarify the apparent boxy bulge-long bar dichotomy, for the same orientation and scaling. The change in the slope of the model longitude profiles in the inner few degrees is caused by a transition from highly elongated to more nearly axisymmetric isodensity contours in the inner boxy bulge. This transition is confined to a few degrees from the Galactic plane; thus the change of slope is predicted to disappear at higher Galactic latitudes. We also show that the nuclear star count map derived from this simulation snapshot displays a longitudinal asymmetry similar to that observed in the Two Micron All Sky Survey (2MASS) data, but is less flattened to the Galactic plane than the 2MASS map. These results support the interpretation that the Galactic bulge originated from disk evolution and question the evidence advanced from star count data for the existence of a secondary nuclear bar in the Milky Way.

  15. Mass spectrometry-based monitoring of millisecond protein-ligand bind