Dynamical evolution of globular-cluster systems in clusters of galaxies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muzzio, J.C.
1987-04-01
The dynamical processes that affect globular-cluster systems in clusters of galaxies are analyzed. Two-body and impulsive approximations are utilized to study dynamical friction, drag force, tidal stripping, tidal radii, globular-cluster swapping, tidal accretion, and galactic cannibalism. The evolution of galaxies and the collision of galaxies are simulated numerically; the steps involved in the simulation are described. The simulated data are compared with observations. Consideration is given to the number of galaxies, halo extension, location of the galaxies, distribution of the missing mass, nonequilibrium initial conditions, mass dependence, massive central galaxies, globular-cluster distribution, and lost globular clusters. 116 references.
Dynamical evolution of galaxies in dense cluster environment.
NASA Astrophysics Data System (ADS)
Gnedin, O. Y.
1997-12-01
I present the results of study of the dynamics of galaxies in clusters of galaxies. The effects of the galaxy environment could be quite dramatic. The time-varying gravitational potential of the cluster subjects the galaxies to strong tidal effects. The tidal density cutoff effectively strips the dark matter halos and leads to highly concentrated structures in the galactic centers. The fast gravitational tidal shocks raise the random motion of stars in the galaxies, transforming the thin disks into the kinematically hot thick configurations. The tidal shocks also cause relaxation of stellar energies that enhances the rate of accretion onto the galactic centers. These effects of the time-varying cluster potential have not been consistently taken into account before. I present numerical N-body simulations of galaxies using the Self-Consistent Field code with 10(7) - 10(8) particles. The code is coupled with the PM code that provides a fully dynamic simulation of the cluster potential. The tidal field of the cluster along the galaxy trajectories is imposed as an external perturbation on the galaxies in the SCF scheme. Recent HST observations show that the high-redshift (z > 0.4) clusters contain numerous bright blue spirals, often with distorted profiles, whereas the nearby clusters are mostly populated by featureless ellipticals. The goal of my study is to understand whether dynamics is responsible for the observed strong evolution of galaxies in clusters.
Dynamics of cD Clusters of Galaxies. 4; Conclusion of a Survey of 25 Abell Clusters
NASA Technical Reports Server (NTRS)
Oegerle, William R.; Hill, John M.; Fisher, Richard R. (Technical Monitor)
2001-01-01
We present the final results of a spectroscopic study of a sample of cD galaxy clusters. The goal of this program has been to study the dynamics of the clusters, with emphasis on determining the nature and frequency of cD galaxies with peculiar velocities. Redshifts measured with the MX Spectrometer have been combined with those obtained from the literature to obtain typically 50 - 150 observed velocities in each of 25 galaxy clusters containing a central cD galaxy. We present a dynamical analysis of the final 11 clusters to be observed in this sample. All 25 clusters are analyzed in a uniform manner to test for the presence of substructure, and to determine peculiar velocities and their statistical significance for the central cD galaxy. These peculiar velocities were used to determine whether or not the central cD galaxy is at rest in the cluster potential well. We find that 30 - 50% of the clusters in our sample possess significant subclustering (depending on the cluster radius used in the analysis), which is in agreement with other studies of non-cD clusters. Hence, the dynamical state of cD clusters is not different than other present-day clusters. After careful study, four of the clusters appear to have a cD galaxy with a significant peculiar velocity. Dressler-Shectman tests indicate that three of these four clusters have statistically significant substructure within 1.5/h(sub 75) Mpc of the cluster center. The dispersion 75 of the cD peculiar velocities is 164 +41/-34 km/s around the mean cluster velocity. This represents a significant detection of peculiar cD velocities, but at a level which is far below the mean velocity dispersion for this sample of clusters. The picture that emerges is one in which cD galaxies are nearly at rest with respect to the cluster potential well, but have small residual velocities due to subcluster mergers.
Brighter galaxy bias: underestimating the velocity dispersions of galaxy clusters
NASA Astrophysics Data System (ADS)
Old, L.; Gray, M. E.; Pearce, F. R.
2013-09-01
We study the systematic bias introduced when selecting the spectroscopic redshifts of brighter cluster galaxies to estimate the velocity dispersion of galaxy clusters from both simulated and observational galaxy catalogues. We select clusters with Ngal ≥ 50 at five low-redshift snapshots from the publicly available De Lucia & Blaziot semi-analytic model galaxy catalogue. Clusters are also selected from the Tempel Sloan Digital Sky Survey Data Release 8 groups and clusters catalogue across the redshift range 0.021 ≤ z ≤ 0.098. We employ various selection techniques to explore whether the velocity dispersion bias is simply due to a lack of dynamical information or is the result of an underlying physical process occurring in the cluster, for example, dynamical friction experienced by the brighter cluster members. The velocity dispersions of the parent dark matter (DM) haloes are compared to the galaxy cluster dispersions and the stacked distribution of DM particle velocities is examined alongside the corresponding galaxy velocity distribution. We find a clear bias between the halo and the semi-analytic galaxy cluster velocity dispersion on the order of σgal/σDM ˜ 0.87-0.95 and a distinct difference in the stacked galaxy and DM particle velocities distribution. We identify a systematic underestimation of the velocity dispersions when imposing increasing absolute I-band magnitude limits. This underestimation is enhanced when using only the brighter cluster members for dynamical analysis on the order of 5-35 per cent, indicating that dynamical friction is a serious source of bias when using galaxy velocities as tracers of the underlying gravitational potential. In contrast to the literature we find that the resulting bias is not only halo mass dependent but also that the nature of the dependence changes according to the galaxy selection strategy. We make a recommendation that, in the realistic case of limited availability of spectral observations, a strictly magnitude-limited sample should be avoided to ensure an unbiased estimate of the velocity dispersion.
Galaxy Kinematics and Mass Calibration in Massive SZE Selected Galaxy Clusters to z=1.3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Capasso, R.; et al.
The galaxy phase-space distribution in galaxy clusters provides insights into the formation and evolution of cluster galaxies, and it can also be used to measure cluster mass profiles. We present a dynamical study based onmore » $$\\sim$$3000 passive, non-emission line cluster galaxies drawn from 110 galaxy clusters. The galaxy clusters were selected using the Sunyaev-Zel'dovich effect (SZE) in the 2500 deg$^2$ SPT-SZ survey and cover the redshift range $0.2 < z < 1.3$. We model the clusters using the Jeans equation, while adopting NFW mass profiles and a broad range of velocity dispersion anisotropy profiles. The data prefer velocity dispersion anisotropy profiles that are approximately isotropic near the center and increasingly radial toward the cluster virial radius, and this is true for all redshifts and masses we study. The pseudo-phase-space density profile of the passive galaxies is consistent with expectations for dark matter particles and subhalos from cosmological $N$-body simulations. The dynamical mass constraints are in good agreement with external mass estimates of the SPT cluster sample from either weak lensing, velocity dispersions, or X-ray $$Y_X$$ measurements. However, the dynamical masses are lower (at the 2.2$$\\sigma$$ level) when compared to the mass calibration favored when fitting the SPT cluster data to a LCDM model with external cosmological priors, including CMB anisotropy data from Planck. The tension grows with redshift, where in the highest redshift bin the ratio of dynamical to SPT+Planck masses is $$\\eta=0.63^{+0.13}_{-0.08}\\pm0.05$$ (statistical and systematic), corresponding to 2.6$$\\sigma$$ tension.« less
NASA Astrophysics Data System (ADS)
Zhang, Yu-Ying; Reiprich, Thomas H.; Schneider, Peter; Clerc, Nicolas; Merloni, Andrea; Schwope, Axel; Borm, Katharina; Andernach, Heinz; Caretta, César A.; Wu, Xiang-Ping
2017-03-01
We present the relation of X-ray luminosity versus dynamical mass for 63 nearby clusters of galaxies in a flux-limited sample, the HIghest X-ray FLUx Galaxy Cluster Sample (HIFLUGCS, consisting of 64 clusters). The luminosity measurements are obtained based on 1.3 Ms of clean XMM-Newton data and ROSAT pointed observations. The masses are estimated using optical spectroscopic redshifts of 13647 cluster galaxies in total. We classify clusters into disturbed and undisturbed based on a combination of the X-ray luminosity concentration and the offset between the brightest cluster galaxy and X-ray flux-weighted center. Given sufficient numbers (I.e., ≥45) of member galaxies when the dynamical masses are computed, the luminosity versus mass relations agree between the disturbed and undisturbed clusters. The cool-core clusters still dominate the scatter in the luminosity versus mass relation even when a core-corrected X-ray luminosity is used, which indicates that the scatter of this scaling relation mainly reflects the structure formation history of the clusters. As shown by the clusters with only few spectroscopically confirmed members, the dynamical masses can be underestimated and thus lead to a biased scaling relation. To investigate the potential of spectroscopic surveys to follow up high-redshift galaxy clusters or groups observed in X-ray surveys for the identifications and mass calibrations, we carried out Monte Carlo resampling of the cluster galaxy redshifts and calibrated the uncertainties of the redshift and dynamical mass estimates when only reduced numbers of galaxy redshifts per cluster are available. The resampling considers the SPIDERS and 4MOST configurations, designed for the follow-up of the eROSITA clusters, and was carried out for each cluster in the sample at the actual cluster redshift as well as at the assigned input cluster redshifts of 0.2, 0.4, 0.6, and 0.8. To follow up very distant clusters or groups, we also carried out the mass calibration based on the resampling with only ten redshifts per cluster, and redshift calibration based on the resampling with only five and ten redshifts per cluster, respectively. Our results demonstrate the power of combining upcoming X-ray and optical spectroscopic surveys for mass calibration of clusters. The scatter in the dynamical mass estimates for the clusters with at least ten members is within 50%.
The dynamics of z ~ 1 clusters of galaxies from the GCLASS survey
NASA Astrophysics Data System (ADS)
Biviano, A.; van der Burg, R. F. J.; Muzzin, A.; Sartoris, B.; Wilson, G.; Yee, H. K. C.
2016-10-01
Context. The dynamics of clusters of galaxies and its evolution provide information on their formation and growth, on the nature of dark matter and on the evolution of the baryonic components. Poor observational constraints exist so far on the dynamics of clusters at redshift z > 0.8. Aims: We aim to constrain the internal dynamics of clusters of galaxies at redshift z ~ 1, namely their mass profile M(r), velocity anisotropy profile β(r), and pseudo-phase-space density profiles Q(r) and Qr(r), obtained from the ratio between the mass density profile and the third power of the (total and, respectively, radial) velocity dispersion profiles of cluster galaxies. Methods: We used the spectroscopic and photometric data-set of 10 clusters at 0.87 < z < 1.34 from the Gemini Cluster Astrophysics Spectroscopic Survey (GCLASS). We determined the individual cluster masses from their velocity dispersions, then stack the clusters in projected phase-space. We investigated the internal dynamics of this stack cluster, using the spatial and velocity distribution of its member galaxies. We determined the stack cluster M(r) using the MAMPOSSt method, and its β(r) by direct inversion of the Jeans equation. The procedures used to determine the two aforementioned profiles also allowed us to determine Q(r) and Qr(r). Results: Several M(r) models are statistically acceptable for the stack cluster (Burkert, Einasto, Hernquist, NFW). The stack cluster total mass concentration, c ≡ r200/r-2 = 4.0-0.6+1.0, is in agreement with theoretical expectations. The total mass distribution is less concentrated than both the cluster stellar-mass and the cluster galaxies distributions. The stack cluster β(r) indicates that galaxy orbits are isotropic near the cluster center and become increasingly radially elongated with increasing cluster-centric distance. Passive and star-forming galaxies have similar β(r). The observed β(r) is similar to that of dark matter particles in simulated cosmological halos. Q(r) and Qr(r) are almost power-law relations with slopes similar to those predicted from numerical simulations of dark matter halos. Conclusions: Comparing our results with those obtained for lower-redshift clusters, we conclude that the evolution of the concentration-total mass relation and pseudo-phase-space density profiles agree with the expectations from ΛCDM cosmological simulations. The fact that Q(r) and Qr(r) already follow the theoretical expectations in z ~ 1 clusters suggest these profiles are the result of rapid dynamical relaxation processes, such as violent relaxation. The different concentrations of the total and stellar mass distribution, and their subsequent evolution, can be explained by merging processes of central galaxies leading to the formation of the brightest cluster galaxy. The orbits of passive cluster galaxies appear to become more isotropic with time, while those of star-forming galaxies do not evolve, presumably because star-formation is quenched on a shorter timescale than that required for orbital isotropization.
Luminosity segregation in galaxy clusters as an indication of dynamical evolution
NASA Technical Reports Server (NTRS)
Baier, F. W.; Schmidt, K.-H.
1993-01-01
Theoretical models describing the dynamical evolution of self-gravitating systems predict a spatial mass segregation for more evolved systems, with the more massive objects concentrated toward the center of the configuration. From the observational point of view, however, the existence of mass segregation in galaxy clusters seems to be a matter of controversy. A special problem in this connection is the formation of cD galaxies in the centers of galaxy clusters. The most promising scenarios of their formation are galaxy cannibalism (merger scenario) and growing by cooling flows. It seems to be plausible to consider the swallowing of smaller systems by a dominant galaxy as an important process in the evolution of a cD galaxy. The stage of the evolution of the dominant galaxy should be reflected by the surrounding galaxy population, especially by possible mass segregation effects. Assuming that mass segregation is tantamount to luminosity segregation we analyzed luminosity segregation in roughly 40 cD galaxy clusters. Obviously there are three different groups of clusters: (1) clusters with luminosity segregation, (2) clusters without luminosity segregation, and (3) such objects exhibiting a phenomenon which we call antisegregation in luminosity, i.e. a deficiency of bright galaxies in the central regions of clusters. This result is interpreted in the sense of different degrees of mass segregation and as an indication for different evolution stages of these clusters. The clusters are arranged in the three segregation classes 2, 1, and 0 (S2 = strong mass segregation, S1 = moderate mass segregation, S0 = weak or absent mass segregation). We assume that a galaxy cluster starts its dynamical evolution after virialization without any radial mass segregation. Energy exchange during encounters of cluster members as well as merger processes between cluster galaxies lead to an increasing radial mass segregation in the cluster (S1). If a certain degree of segregation (S2) has been established, an essential number of slow-moving and relative massive cluster members in the center will be cannibalized by the initial brightest cluster galaxy. This process should lead to the growing of the predominate galaxy, which is accompanied by a diminution of the mass segregation (transition to S1 and S0, respectively) in the neighborhood of the central very massive galaxy. An increase of the areal density of brighter galaxies towards the outer cluster regions (antisegregation of luminosity), i.e. an extreme low degree of mass segregation was estimated for a substantial percentage of cD clusters. This result favors the cannibalism scenario for the formation of cD galaxies.
Cluster Dynamical Mass from Magellan Multi-Object Spectroscopy for SGAS Clusters
NASA Astrophysics Data System (ADS)
Murray, Katherine; Sharon, Keren; Johnson, Traci; Gifford, Daniel; Gladders, Michael; Bayliss, Matthew; Florian, Michael; Rigby, Jane R.; Miller, Christopher J.
2016-01-01
Galaxy clusters are giant structures in space consisting of hundreds or thousands of galaxies, interstellar matter, and dark matter, all bound together by gravity. We analyze the spectra of the cluster members of several strong lensing clusters from a large program, the Sloan Giant Arcs Survey, to determine the total mass of the lensing clusters. From spectra obtained with the LDSS3 and IMACS cameras on the Magellan 6.5m telescopes, we measure the spectroscopic redshifts of about 50 galaxies in each cluster, and calculate the velocity distributions within the galaxy clusters, as well as their projected cluster-centric radii. From these two pieces of information, we measure the size and total dynamical mass of each cluster. We can combine this calculation with other measurements of mass of the same galaxy clusters (like measurements from strong lensing or X-ray) to determine the spatial distribution of luminous and dark matter out to the virial radius of the cluster.
On dynamic gas ablation from spherical galaxies
NASA Astrophysics Data System (ADS)
Nepveu, M.
1981-05-01
Two-dimensional, time dependent gas dynamic calculations are presented on the transonic motion of galaxies through a cluster medium. Lea and De Young's (1976) calculations are extended to include violent behavior in the center. On time scales of 10 to the 8th yr, galaxies in clusters can already lose a significant fraction of their gaseous content (up to 50% has been found in the calculations). This dynamic ablation occurs through rarefaction rather than shock heating. Explosions in spherical galaxies become effective as mechanisms for gas removal only if the galaxy moves with respect to its surroundings. Speculations are made on stripping of spiral galaxies (moving head-on in a cluster); the Gunn and Gott (1972) stripping formula is put to doubt. A method is suggested to obtain information on the state of motion of field galaxies.
Probing the dynamical and X-ray mass proxies of the cluster of galaxies Abell S1101
NASA Astrophysics Data System (ADS)
Rabitz, Andreas; Zhang, Yu-Ying; Schwope, Axel; Verdugo, Miguel; Reiprich, Thomas H.; Klein, Matthias
2017-01-01
Context. The galaxy cluster Abell S1101 (S1101 hereafter) deviates significantly from the X-ray luminosity versus velocity dispersion relation (L-σ) of galaxy clusters in our previous study. Given reliable X-ray luminosity measurement combining XMM-Newton and ROSAT, this could most likely be caused by the bias in the velocity dispersion due to interlopers and low member statistic in the previous sample of member galaxies, which was solely based on 20 galaxy redshifts drawn from the literature. Aims: We intend to increase the galaxy member statistics to perform precision measurements of the velocity dispersion and dynamical mass of S1101. We aim for a detailed substructure and dynamical state characterization of this cluster, and a comparison of mass estimates derived from (I) the velocity dispersion (Mvir), (II) the caustic mass computation (Mcaustic), and (III) mass proxies from X-ray observations and the Sunyaev-Zel'dovich (SZ) effect. Methods: We carried out new optical spectroscopic observations of the galaxies in this cluster field with VIMOS, obtaining a sample of 60 member galaxies for S1101. We revised the cluster redshift and velocity dispersion measurements based on this sample and also applied the Dressler-Shectman substructure test. Results: The completeness of cluster members within r200 was significantly improved for this cluster. Tests for dynamical substructure do not show evidence of major disturbances or merging activities in S1101. We find good agreement between the dynamical cluster mass measurements and X-ray mass estimates, which confirms the relaxed state of the cluster displayed in the 2D substructure test. The SZ mass proxy is slightly higher than the other estimates. The updated measurement of σ erased the deviation of S1101 in the L-σ relation. We also noticed a background structure in the cluster field of S1101. This structure is a galaxy group that is very close to the cluster S1101 in projection but at almost twice its redshift. However the mass of this structure is too low to significantly bias the observed bolometric X-ray luminosity of S1101. Hence, we can conclude that the deviation of S1101 in the L-σ relation in our previous study can be explained by low member statistics and galaxy interlopers, which are known to introduce biases in the estimated velocity dispersion. We have made use of VLT/VIMOS observations taken with the ESO Telescope at the Paranal Observatory under programme 087.A-0096.
Galaxy clusters as hydrodynamics laboratories
NASA Astrophysics Data System (ADS)
Roediger, Elke; Sheardown, Alexander; Fish, Thomas; ZuHone, John; Hunt, Matthew; Su, Yuanyuan; Kraft, Ralph P.; Nulsen, Paul; Forman, William R.; Churazov, Eugene; Randall, Scott W.; Jones, Christine; Machacek, Marie E.
2017-08-01
The intra-cluster medium (ICM) of galaxy clusters shows a wealth of hydrodynamical features that trace the growth of clusters via the infall of galaxies or smaller subclusters. Such hydrodynamical features include the wakes of the infalling objects as well as the interfaces between the host cluster’s ICM and the atmosphere of the infalling object. Furthermore, the cluster dynamics can be traced by merger shocks, bow shocks, and sloshing motions of the ICM.The characteristics of these dynamical features, e.g., the direction, length, brightness, and temperature of the galaxies' or subclusters' gas tails varies significantly between different objects. This could be due to either dynamical conditions or ICM transport coefficients such as viscosity and thermal conductivity. For example, the cool long gas tails of of some infalling galaxies and groups have been attributed to a substantial ICM viscosity suppressing mixing of the stripped galaxy or group gas with the hotter ambient ICM.Using hydrodynamical simulations of minor mergers we show, however, that these features can be explained naturally by the dynamical conditions of each particular galaxy or group infall. Specifically, we identify observable features to distinguish the first and second infall of a galaxy or group into its host cluster as well as characteristics during apocentre passage. Comparing our simulations with observations, we can explain several puzzling observations such as the long and cold tail of M86 in Virgo and the very long and tangentially oriented tail of the group LEDA 87445 in Hydra A.Using our simulations, we also assess the validity of the stagnation pressure method that is widely used to determine an infalling galaxy's velocity. We show that near pericentre passage the method gives reasonable results, but near apocentre it is not easily applicable.
Infalling groups and galaxy transformations in the cluster A2142
NASA Astrophysics Data System (ADS)
Einasto, Maret; Deshev, Boris; Lietzen, Heidi; Kipper, Rain; Tempel, Elmo; Park, Changbom; Gramann, Mirt; Heinämäki, Pekka; Saar, Enn; Einasto, Jaan
2018-03-01
Context. Superclusters of galaxies provide dynamical environments for the study of the formation and evolution of structures in the cosmic web from galaxies, to the richest galaxy clusters, and superclusters themselves. Aims: We study galaxy populations and search for possible merging substructures in the rich galaxy cluster A2142 in the collapsing core of the supercluster SCl A2142, which may give rise to radio and X-ray structures in the cluster, and affect galaxy properties of this cluster. Methods: We used normal mixture modelling to select substructure of the cluster A2142. We compared alignments of the cluster, its brightest galaxies (hereafter BCGs), subclusters, and supercluster axes. The projected phase space (PPS) diagram and clustercentric distributions are used to analyse the dynamics of the cluster and study the distribution of various galaxy populations in the cluster and subclusters. Results: We find several infalling galaxy groups and subclusters. The cluster, supercluster, BCGs, and one infalling subcluster are all aligned. Their orientation is correlated with the alignment of the radio and X-ray haloes of the cluster. Galaxy populations in the main cluster and in the outskirts subclusters are different. Galaxies in the centre of the main cluster at the clustercentric distances 0.5 h-1 Mpc (Dc/Rvir < 0.5, Rvir = 0.9 h-1 Mpc) have older stellar populations (with the median age of 10-11 Gyr) than galaxies at larger clustercentric distances. Star-forming and recently quenched galaxies are located mostly at the clustercentric distances Dc ≈ 1.8 h-1 Mpc, where subclusters fall into the cluster and the properties of galaxies change rapidly. In this region the median age of stellar populations of galaxies is about 2 Gyr. Galaxies in A2142 on average have higher stellar masses, lower star formation rates, and redder colours than galaxies in rich groups. The total mass in infalling groups and subclusters is M ≈ 6 × 1014 h-1 M⊙, that is approximately half of the mass of the cluster. This mass is sufficient for the mass growth of the cluster from redshift z = 0.5 (half-mass epoch) to the present. Conclusions: Our analysis suggests that the cluster A2142 has formed as a result of past and present mergers and infallen groups, predominantly along the supercluster axis. Mergers cause complex radio and X-ray structure of the cluster and affect the properties of galaxies in the cluster, especially at the boundaries of the cluster in the infall region. Explaining the differences between galaxy populations, mass, and richness of A2142, and other groups and clusters may lead to better insight about the formation and evolution of rich galaxy clusters.
Old, L.; Wojtak, R.; Pearce, F. R.; ...
2017-12-20
With the advent of wide-field cosmological surveys, we are approaching samples of hundreds of thousands of galaxy clusters. While such large numbers will help reduce statistical uncertainties, the control of systematics in cluster masses is crucial. Here we examine the effects of an important source of systematic uncertainty in galaxy-based cluster mass estimation techniques: the presence of significant dynamical substructure. Dynamical substructure manifests as dynamically distinct subgroups in phase-space, indicating an ‘unrelaxed’ state. This issue affects around a quarter of clusters in a generally selected sample. We employ a set of mock clusters whose masses have been measured homogeneously withmore » commonly used galaxy-based mass estimation techniques (kinematic, richness, caustic, radial methods). We use these to study how the relation between observationally estimated and true cluster mass depends on the presence of substructure, as identified by various popular diagnostics. We find that the scatter for an ensemble of clusters does not increase dramatically for clusters with dynamical substructure. However, we find a systematic bias for all methods, such that clusters with significant substructure have higher measured masses than their relaxed counterparts. This bias depends on cluster mass: the most massive clusters are largely unaffected by the presence of significant substructure, but masses are significantly overestimated for lower mass clusters, by ~ 10 percent at 10 14 and ≳ 20 percent for ≲ 10 13.5. Finally, the use of cluster samples with different levels of substructure can therefore bias certain cosmological parameters up to a level comparable to the typical uncertainties in current cosmological studies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Old, L.; Wojtak, R.; Pearce, F. R.
With the advent of wide-field cosmological surveys, we are approaching samples of hundreds of thousands of galaxy clusters. While such large numbers will help reduce statistical uncertainties, the control of systematics in cluster masses is crucial. Here we examine the effects of an important source of systematic uncertainty in galaxy-based cluster mass estimation techniques: the presence of significant dynamical substructure. Dynamical substructure manifests as dynamically distinct subgroups in phase-space, indicating an ‘unrelaxed’ state. This issue affects around a quarter of clusters in a generally selected sample. We employ a set of mock clusters whose masses have been measured homogeneously withmore » commonly used galaxy-based mass estimation techniques (kinematic, richness, caustic, radial methods). We use these to study how the relation between observationally estimated and true cluster mass depends on the presence of substructure, as identified by various popular diagnostics. We find that the scatter for an ensemble of clusters does not increase dramatically for clusters with dynamical substructure. However, we find a systematic bias for all methods, such that clusters with significant substructure have higher measured masses than their relaxed counterparts. This bias depends on cluster mass: the most massive clusters are largely unaffected by the presence of significant substructure, but masses are significantly overestimated for lower mass clusters, by ~ 10 percent at 10 14 and ≳ 20 percent for ≲ 10 13.5. Finally, the use of cluster samples with different levels of substructure can therefore bias certain cosmological parameters up to a level comparable to the typical uncertainties in current cosmological studies.« less
NASA Technical Reports Server (NTRS)
Sifon, Cristobal; Battaglia, Nick; Hasselfield, Matthew; Menanteau, Felipe; Barrientos, L. Felipe; Bond, J. Richard; Crichton, Devin; Devlin, Mark J.; Dunner, Rolando; Hilton, Matt;
2016-01-01
We present galaxy velocity dispersions and dynamical mass estimates for 44 galaxy clusters selected via the Sunyaev-Zeldovich (SZ) effect by the Atacama Cosmology Telescope. Dynamical masses for 18 clusters are reported here for the first time. Using N-body simulations, we model the different observing strategies used to measure the velocity dispersions and account for systematic effects resulting from these strategies. We find that the galaxy velocity distributions may be treated as isotropic, and that an aperture correction of up to 7 per cent in the velocity dispersion is required if the spectroscopic galaxy sample is sufficiently concentrated towards the cluster centre. Accounting for the radial profile of the velocity dispersion in simulations enables consistent dynamical mass estimates regardless of the observing strategy. Cluster masses M200 are in the range (1 - 15) times 10 (sup 14) Solar Masses. Comparing with masses estimated from the SZ distortion assuming a gas pressure profile derived from X-ray observations gives a mean SZ-to-dynamical mass ratio of 1:10 plus or minus 0:13, but there is an additional 0.14 systematic uncertainty due to the unknown velocity bias; the statistical uncertainty is dominated by the scatter in the mass-velocity dispersion scaling relation. This ratio is consistent with previous determinations at these mass scales.
Gas Dynamics in Galaxy Clusters
NASA Astrophysics Data System (ADS)
McCourt, Michael Kingsley, Jr.
Galaxy clusters are the most massive structures in the universe and, in the hierarchical pattern of cosmological structure formation, the largest objects in the universe form last. Galaxy clusters are thus interesting objects for a number of reasons. Three examples relevant to this thesis are: 1. Constraining the properties of dark energy: Due to the hierarchical nature of structure formation, the largest objects in the universe form last. The cluster mass function is thus sensitive to the entire expansion history of the universe and can be used to constrain the properties of dark energy. This constraint complements others derived from the CMB or from Type Ia supernovae and provides an important, independent confirmation of such methods. In particular, clusters provide detailed information about the equation of state parameter w because they sample a large redshift range z ˜ 0 - 1. 2. Probing galaxy formation: Clusters contain the most massive galaxies in the uni- verse, and the most massive black holes; because clusters form so late, we can still witness the assembly of these objects in the nearby universe. Clusters thus provide a more detailed view of galaxy formation than is possible in studies of lower-mass ob- jects. An important example comes from x-ray studies of clusters, which unexpectedly found that star formation in massive galaxies in clusters is closely correlated with the properties of the hot, virialized gas in their halos. This correlation persists despite the enormous separation in temperature, in dynamical time-scales, and in length-scales between the virialized gas in the halo and the star-forming regions in the galaxy. This remains a challenge to interpret theoretically. 3. Developing our knowledge of dilute plasmas: The masses and sizes of galaxy clusters imply that the plasma which permeates them is both very hot (˜ 108 K) and very dilute (˜ 10 -2 cm-3). This plasma is collisional enough to be considered a fluid, but collisionless enough to develop significant anisotropies with respect to the local magnetic field. This interesting regime is one of the frontiers in theoretical studies of fluid dynamics. Unlike other astrophysical environments of similar collisionality (e. g. accretion disk coronae), galaxy clusters are optically thin and subtend large angles on the sky. Thus, they are easily observed in the x-ray (to constrain thermal processes) and in the radio (to constrain non-thermal processes) and provide a wonderful environment to develop our understanding of dilute plasmas. This thesis studies the dynamics of the hot gas in galaxy clusters, which touches on all three of the above topics. Chapter 2 shows that galaxy clusters are likely to be unstable to a new, vigorous form of convection. As a dynamical process which involves thermodynamic and magnetic properties of the gas, this convection bears directly on our understanding of the physics of dilute plas- mas. Furthermore, by moving metals and thermal energy through the cluster, convection may change the cooling rate of the gas and thus significantly impact the process of galaxy formation. Cluster convection also impacts the use of clusters as cosmological probes. Convection may drive turbulence in clusters with mean Mach numbers of order-unity. This changes the force balance in clusters, decreasing the thermal energy of a cluster of a given mass. Current methods for using clusters to constrain dark energy rely on observational probes of the thermal energy as a proxy for total mass. The accuracy of these methods depends on how vigorous cluster convection is. Chapter 3 studies thermal instability in galaxy clusters. I argue that clusters are all likely to be thermally unstable, but that this instability only grows to large amplitude in a subset of systems. Later studies have applied this result to galaxy formation in clusters and shown that one can reproduce some features of the well-known non-self-similarity at the high mass end of the galaxy luminosity function. Chapters 4 and 5 extends my work on convection (and, eventually, thermal instability) to consider the cosmological context of galaxy formation. This work aims to remove any arbitrary initial and boundary conditions from my simulations and is an important step toward a self-consistent model for the plasma physics in clusters.
Galaxy evolution in clusters since z~1
NASA Astrophysics Data System (ADS)
Aragon-Salamanca, Alfonso
2010-09-01
Galaxy clusters provide some of the most extreme environments in which galaxies evolve, making them excellent laboratories to study the age old question of "nature" vs. "nurture" in galaxy evolution. Here I review some of the key observational results obtained during the last decade on the evolution of the morphology, structure, dynamics, star-formation history and stellar populations of cluster galaxies since the time when the universe was half its present age. Many of the results presented here have been obtained within the ESO Distant Cluster Survey (EDisCS) and Space Telescope A901/02 Galaxy Evolution Survey (STAGES) collaborations.
Galaxy Evolution in Clusters Since z ~ 1
NASA Astrophysics Data System (ADS)
Aragón-Salamanca, A.
Galaxy clusters provide some of the most extreme environments in which galaxies evolve, making them excellent laboratories to study the age old question of "nature" vs. "nurture" in galaxy evolution. Here I review some of the key observational results obtained during the last decade on the evolution of the morphology, structure, dynamics, star-formation history and stellar populations of cluster galaxies since the time when the Universe was half its present age. Many of the results presented here have been obtained within the ESO Distant Cluster Survey (EDisCS) and Space Telescope A901/02 Galaxy Evolution Survey (STAGES) collaborations.
What drives the evolution of Luminous Compact Blue Galaxies in Clusters vs. the Field?
NASA Astrophysics Data System (ADS)
Wirth, Gregory
2017-08-01
Present-day galaxy clusters consist chiefly of low-mass dwarf elliptical galaxies, but the progenitors of this dominant population remain unclear. A prime candidate is the class of objects known as Luminous Compact Blue Galaxies, common in intermediate-reshift clusters but virtually extinct today. Recent cosmological simulations suggest that the present-day dwarfs galaxies begin as irregular field galaxies, undergo an environmentally-driven starburst phase as they enter the cluster, and stop forming stars earlier than their counterparts in the field. This model predicts that cluster dwarfs should have lower stellar mass per unit dynamical mass than their counterparts in the field. We propose a two-pronged archival research program to test this key prediction using the combination of precision photometry from space and high-quality spectroscopy. First, we will combine optical HST/ACS imaging of five z=0.55 clusters (including two HST Frontier Fields) with Spitzer IR imaging and publicly-released Keck/DEIMOS spectroscopy to measure stellar-to-dynamical-mass ratios for a large sample of cluster LCBGs. Second, we will exploit a new catalog of LCBGs in the COSMOS field to gather corresponding data for a significant sample of field LCBGs. By comparing mass ratios from these datasets, we will test theoretical predictions and determine the primary physical driver of cluster dwarf-galaxy evolution.
NASA Astrophysics Data System (ADS)
Prichard, Laura Jane; Davies, Roger L.; Beifiori, Alessandra; Chan, Jeffrey C. C.; Cappellari, Michele; Houghton, Ryan C. W.; Mendel, Trevor; Bender, Ralf; Galametz, Audrey; Saglia, Roberto P.; Smith, Russell; Stott, John P.; Wilman, David J.; Lewis, Ian J.; Sharples, Ray; Wegner, Michael
2018-01-01
Galaxy clusters are the largest gravitationally bound structures in the Universe, and we know that early type galaxies (ETGs) are more common towards their centers. Clusters of galaxies are increasingly rare at early times, but are essential for understanding the formation of these massive structures and how they alter the fate of their member galaxies. However, long integration times are required to constrain the stellar properties of these distant cluster ETGs. Now with the advent of the multiplexed near-infrared integral field instrument, the K-band Multi-Object Spectrograph (KMOS) on the Very Large Telescope, we can target the ETGs in these valuable high-redshift clusters more efficiently than ever. The KMOS guaranteed observing program, the KMOS Cluster Survey (KCS; P.I.s Bender & Davies), has enabled a study of cluster galaxies in overdensities spanning z=1-2 through absorption-line spectroscopy obtained from 20-hour integrations. We will present spectra for 16 galaxies in the furthest KCS overdensity, JKCS 041, an ETG-rich cluster at z=1.80. We measured seven velocity dispersions from the quiescent galaxy spectra, expanding the sample of like measurements in the literature at or above z=1.80 by more than 40%. Through the analysis of Hubble Space Telescope photometry and deep absorption-line spectroscopy, we were able to construct the highest redshift fundamental plane (FP) within a single system for galaxies in JKCS 041. From the redshift evolution of the FP zero-point, we derived a mean age of the galaxies in this cluster of 1.4 +/- 0.2 Gyrs. We determined relative velocities of the galaxies to study the three-dimensional structure of this overdensity. We noticed from the dynamics of JKCS 041 that a group of galaxies was infalling towards the cluster center. When measuring FP ages for the infalling group, we found these galaxies had significantly younger mean ages (0.3 +/- 0.2 Gyrs) than the other galaxies in the cluster (2.0 +0.3/-0.1 Gyrs). Based on the galaxy dynamics, cluster morphology, and galaxy stellar age results, we concluded that JKCS 041 is in formation and consists of two merging groups of galaxies. This could link galaxy ages to large-scale structure for the first time at this redshift.
Nature of multiple-nucleus cluster galaxies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merritt, D.
1984-05-01
In models for the evolution of galaxy clusters which include dynamical friction with the dark binding matter, the distribution of galaxies becomes more concentrated to the cluster center with time. In a cluster like Coma, this evolution could increase by a factor of approximately 3 the probability of finding a galaxy very close to the cluster center, without decreasing the typical velocity of such a galaxy significantly below the cluster mean. Such an enhancement is roughly what is needed to explain the large number of first-ranked cluster galaxies which are observed to have extra ''nuclei''; it is also consistent withmore » the high velocities typically measured for these ''nuclei.'' Unlike the cannibalism model, this model predicts that the majority of multiple-nucleus systems are transient phenomena, and not galaxies in the process of merging.« less
X-ray morphological study of galaxy cluster catalogues
NASA Astrophysics Data System (ADS)
Democles, Jessica; Pierre, Marguerite; Arnaud, Monique
2016-07-01
Context : The intra-cluster medium distribution as probed by X-ray morphology based analysis gives good indication of the system dynamical state. In the race for the determination of precise scaling relations and understanding their scatter, the dynamical state offers valuable information. Method : We develop the analysis of the centroid-shift so that it can be applied to characterize galaxy cluster surveys such as the XXL survey or high redshift cluster samples. We use it together with the surface brightness concentration parameter and the offset between X-ray peak and brightest cluster galaxy in the context of the XXL bright cluster sample (Pacaud et al 2015) and a set of high redshift massive clusters detected by Planck and SPT and observed by both XMM-Newton and Chandra observatories. Results : Using the wide redshift coverage of the XXL sample, we see no trend between the dynamical state of the systems with the redshift.
A class of compact dwarf galaxies from disruptive processes in galaxy clusters.
Drinkwater, M J; Gregg, M D; Hilker, M; Bekki, K; Couch, W J; Ferguson, H C; Jones, J B; Phillipps, S
2003-05-29
Dwarf galaxies have attracted increased attention in recent years, because of their susceptibility to galaxy transformation processes within rich galaxy clusters. Direct evidence for these processes, however, has been difficult to obtain, with a small number of diffuse light trails and intra-cluster stars being the only signs of galaxy disruption. Furthermore, our current knowledge of dwarf galaxy populations may be very incomplete, because traditional galaxy surveys are insensitive to extremely diffuse or compact galaxies. Aware of these concerns, we recently undertook an all-object survey of the Fornax galaxy cluster. This revealed a new population of compact members, overlooked in previous conventional surveys. Here we demonstrate that these 'ultra-compact' dwarf galaxies are structurally and dynamically distinct from both globular star clusters and known types of dwarf galaxy, and thus represent a new class of dwarf galaxy. Our data are consistent with the interpretation that these are the remnant nuclei of disrupted dwarf galaxies, making them an easily observed tracer of galaxy disruption.
NASA Astrophysics Data System (ADS)
van der Marel, Roeland P.; van Dokkum, Pieter G.
2007-10-01
We present spatially resolved stellar rotation velocity and velocity dispersion profiles from Keck/LRIS absorption-line spectra for 25 galaxies, mostly visually classified ellipticals, in three clusters at z~0.5. We interpret the kinematical data and HST photometry using oblate axisymmetric two-integral f(E,Lz) dynamical models based on the Jeans equations. This yields good fits, provided that the seeing and observational characteristics are carefully modeled. The fits yield for each galaxy the dynamical mass-to-light ratio (M/L) and a measure of the galaxy rotation rate. Paper II addresses the implied M/L evolution. Here we study the rotation-rate evolution by comparison to a sample of local elliptical galaxies of similar present-day luminosity. The brightest galaxies in the sample all rotate too slowly to account for their flattening, as is also observed at z=0. But the average rotation rate is higher at z~0.5 than locally. This may be due to a higher fraction of misclassified S0 galaxies (although this effect is insufficient to explain the observed strong evolution of the cluster S0 fraction with redshift). Alternatively, dry mergers between early-type galaxies may have decreased the average rotation rate over time. It is unclear whether such mergers are numerous enough in clusters to explain the observed trend quantitatively. Disk-disk mergers may affect the comparison through the so-called ``progenitor bias,'' but this cannot explain the direction of the observed rotation-rate evolution. Additional samples are needed to constrain possible environmental dependencies and cosmic variance in galaxy rotation rates. Either way, studies of the internal stellar dynamics of distant galaxies provide a valuable new approach for exploring galaxy evolution.
NASA Astrophysics Data System (ADS)
Randriamampandry, S. M.; Crawford, S. M.; Bershady, M. A.; Wirth, G. D.; Cress, C. M.
2017-10-01
We investigate the stellar masses of the class of star-forming objects known as luminous compact blue galaxies (LCBGs) by studying a sample of galaxies in the distant cluster MS 0451.6-0305 at z ≈ 0.54 with ground-based multicolour imaging and spectroscopy. For a sample of 16 spectroscopically confirmed cluster LCBGs (colour B - V < 0.5, surface brightness μB < 21 mag arcsec-2 and magnitude MB < -18.5), we measure stellar masses by fitting spectral energy distribution (SED) models to multiband photometry, and compare with dynamical masses [determined from velocity dispersion in the range 10 < σv(km s- 1) < 80] we previously obtained from their emission-line spectra. We compare two different stellar population models that measure stellar mass in star-bursting galaxies, indicating correlations between the stellar age, extinction and stellar mass derived from the two different SED models. The stellar masses of cluster LCBGs are distributed similarly to those of field LCBGs, but the cluster LCBGs show lower dynamical-to-stellar mass ratios (Mdyn/M⋆ = 2.6) than their field LCBG counterparts (Mdyn/M⋆ = 4.8), echoing trends noted previously in low-redshift dwarf elliptical galaxies. Within this limited sample, the specific star formation rate declines steeply with increasing mass, suggesting that these cluster LCBGs have undergone vigorous star formation.
GEMINI/GMOS SPECTROSCOPY OF 26 STRONG-LENSING-SELECTED GALAXY CLUSTER CORES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bayliss, Matthew B.; Gladders, Michael D.; Koester, Benjamin P.
2011-03-15
We present results from a spectroscopic program targeting 26 strong-lensing cluster cores that were visually identified in the Sloan Digital Sky Survey (SDSS) and the Second Red-Sequence Cluster Survey (RCS-2). The 26 galaxy cluster lenses span a redshift range of 0.2 < z < 0.65, and our spectroscopy reveals 69 unique background sources with redshifts as high as z = 5.200. We also identify redshifts for 262 cluster member galaxies and measure the velocity dispersions and dynamical masses for 18 clusters where we have redshifts for N {>=} 10 cluster member galaxies. We account for the expected biases in dynamicalmore » masses of strong-lensing-selected clusters as predicted by results from numerical simulations and discuss possible sources of bias in our observations. The median dynamical mass of the 18 clusters with N {>=} 10 spectroscopic cluster members is M {sub Vir} = 7.84 x 10{sup 14} M {sub sun} h {sup -1} {sub 0.7}, which is somewhat higher than predictions for strong-lensing-selected clusters in simulations. The disagreement is not significant considering the large uncertainty in our dynamical data, systematic uncertainties in the velocity dispersion calibration, and limitations of the theoretical modeling. Nevertheless our study represents an important first step toward characterizing large samples of clusters that are identified in a systematic way as systems exhibiting dramatic strong-lensing features.« less
NASA Astrophysics Data System (ADS)
Rodrigo Carrasco Damele, Eleazar; Verdugo, Tomas
2018-01-01
The galaxy cluster Abell 3827 is one of the most massive clusters know at z ≦ 0.1 (Richness class 2, BM typeI, X-ray LX = 2.4 x 1044 erg s-1). The Brightest Cluster Galaxy (BCG) in Abell 3827 is perhaps the most extreme example of ongoing galaxy cannibalism. The multi-component BCG hosts the stellar remnants nuclei of at least four bright elliptical galaxies embedded in a common assymetric halo extended up to 15 kpc. The most notorious characteristic of the BCG is the existence of a unique strong gravitational lens system located within the inner 15 kpc region. A mass estimation of the galaxy based on strong lensing model was presented in Carrasco et al (2010, ApJL, 715, 160). Moreover, the exceptional strong lensing lens system in Abell 3827 and the location of the four bright galaxies has been used to measure for the first time small physical separations between dark and ordinary matter (Williams et al. 2011, MNRAS, 415, 448, Massey et al. 2015, MNRAS, 449, 3393). In this contribution, we present a detailed strong lensing and dynamical analysis of the cluster Abell 3827 based on spectroscopic redshift of the lensed features and from ~70 spectroscopically confirmed member galaxies inside 0.5 x 0.5 Mpc from the cluster center.
Radial alignment of elliptical galaxies by the tidal force of a cluster of galaxies
NASA Astrophysics Data System (ADS)
Rong, Yu; Yi, Shu-Xu; Zhang, Shuang-Nan; Tu, Hong
2015-08-01
Unlike the random radial orientation distribution of field elliptical galaxies, galaxies in a cluster are expected to point preferentially towards the centre of the cluster, as a result of the cluster's tidal force on its member galaxies. In this work, an analytic model is formulated to simulate this effect. The deformation time-scale of a galaxy in a cluster is usually much shorter than the time-scale of change of the tidal force; the dynamical process of tidal interaction within the galaxy can thus be ignored. The equilibrium shape of a galaxy is then assumed to be the surface of equipotential that is the sum of the self-gravitational potential of the galaxy and the tidal potential of the cluster at this location. We use a Monte Carlo method to calculate the radial orientation distribution of cluster galaxies, by assuming a Navarro-Frenk-White mass profile for the cluster and the initial ellipticity of field galaxies. The radial angles show a single-peak distribution centred at zero. The Monte Carlo simulations also show that a shift of the reference centre from the real cluster centre weakens the anisotropy of the radial angle distribution. Therefore, the expected radial alignment cannot be revealed if the distribution of spatial position angle is used instead of that of radial angle. The observed radial orientations of elliptical galaxies in cluster Abell 2744 are consistent with the simulated distribution.
Where are Low Mass X-ray Binaries Formed?
NASA Astrophysics Data System (ADS)
Kundu, A.; Maccarone, T. J.; Zepf, S. E.
2004-08-01
Chandra images of nearby galaxies reveal large numbers of low mass X-ray binaries (LMXBs). As in the Galaxy, a significant fraction of these are associated with globular clusters. We exploit the LMXB-globular cluster link in order to probe both the physical properties of globular clusters that promote the formation of LMXBs within clusters with specific characteristics, and to study whether the non-cluster field LMXB population was originally formed in clusters and then released into the field. The large population of globular clusters around nearby galaxies and the range of properties such as age, metallicity and host galaxy environment spanned by these objects enables us to identify and probe the link between these characteristics and the formation of LMXBs. We present the results of our study of a large sample of elliptical and S0 galaxies which reveals among other things that bright LMXBs definitively prefer metal-rich cluster hosts and that this relationship is unlikely to be driven by age effects. The ancestry of the non-cluster field LMXBs is a matter of some debate with suggestions that they they might have formed in the field, or created in globular clusters and then subsequently released into the field either by being ejected from clusters by dynamical processes or as remnants of dynamically destroyed clusters. Each of these scenarios has a specific spatial signature that can be tested by our combined optical and X-ray study. Furthermore, these scenarios predict additional statistical variations that may be driven by the specific host galaxy environment. We present a detailed analysis of our sample galaxies and comment on the probability that the field sources were actually formed in clusters.
Dynamics of Galaxy Clusters and Expectations from Astro-H
NASA Technical Reports Server (NTRS)
Markevitch, Maxim
2012-01-01
Galaxy clusters span a range of dynamical states, from violent mergers -- the most energetic events in the Universe -- to systems near hydrostatic equilibrium that allow us to map their dark matter distribution using X-ray observations of the intracluster gas. Accurate knowledge of the cluster physics, and in particular, the physics of the hot intracluster gas, is required to realize the full potential of clusters as cosmological probes. So far, we have been studying the cluster dynamics indirectly, deducing merger geometries, cluster masses, etc., using X-ray brightness and gas temperature mapping. For the first time, the calorimeter onboard Astro-H will provide direct measurements of line-of-sight velocities and turbulent broadening in the intracluster gas, testing many of our key assumptions about clusters. This talk will summarize expectations for cluster dynamic studies with this new instrument.
Analysis of candidates for interacting galaxy clusters. I. A1204 and A2029/A2033
NASA Astrophysics Data System (ADS)
Gonzalez, Elizabeth Johana; de los Rios, Martín; Oio, Gabriel A.; Lang, Daniel Hernández; Tagliaferro, Tania Aguirre; Domínguez R., Mariano J.; Castellón, José Luis Nilo; Cuevas L., Héctor; Valotto, Carlos A.
2018-04-01
Context. Merging galaxy clusters allow for the study of different mass components, dark and baryonic, separately. Also, their occurrence enables to test the ΛCDM scenario, which can be used to put constraints on the self-interacting cross-section of the dark-matter particle. Aim. It is necessary to perform a homogeneous analysis of these systems. Hence, based on a recently presented sample of candidates for interacting galaxy clusters, we present the analysis of two of these cataloged systems. Methods: In this work, the first of a series devoted to characterizing galaxy clusters in merger processes, we perform a weak lensing analysis of clusters A1204 and A2029/A2033 to derive the total masses of each identified interacting structure together with a dynamical study based on a two-body model. We also describe the gas and the mass distributions in the field through a lensing and an X-ray analysis. This is the first of a series of works which will analyze these type of system in order to characterize them. Results: Neither merging cluster candidate shows evidence of having had a recent merger event. Nevertheless, there is dynamical evidence that these systems could be interacting or could interact in the future. Conclusions: It is necessary to include more constraints in order to improve the methodology of classifying merging galaxy clusters. Characterization of these clusters is important in order to properly understand the nature of these systems and their connection with dynamical studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crawford, S. M.; Wirth, Gregory D.; Bershady, M. A.
2016-02-01
Luminous Compact Blue Galaxies (LCBGs) are an extreme star-bursting population of galaxies that were far more common at earlier epochs than today. Based on spectroscopic and photometric measurements of LCBGs in massive (M > 10{sup 15} M{sub ⊙}), intermediate redshift (0.5 < z < 0.9) galaxy clusters, we present their rest-frame properties including star formation rate, dynamical mass, size, luminosity, and metallicity. The appearance of these small, compact galaxies in clusters at intermediate redshift helps explain the observed redshift evolution in the size–luminosity relationship among cluster galaxies. In addition, we find the rest-frame properties of LCBGs appearing in galaxy clusters are indistinguishable from field LCBGs atmore » the same redshift. Up to 35% of the LCBGs show significant discrepancies between optical and infrared indicators of star formation, suggesting that star formation occurs in obscured regions. Nonetheless, the star formation for LCBGs shows a decrease toward the center of the galaxy clusters. Based on their position and velocity, we estimate that up to 10% of cluster LCBGs are likely to merge with another cluster galaxy. Finally, the observed properties and distributions of the LCBGs in these clusters lead us to conclude that we are witnessing the quenching of the progenitors of dwarf elliptical galaxies that dominate the number density of present-epoch galaxy clusters.« less
What drives the evolution of Luminous Compact Blue Galaxies in Clusters vs. the Field?
NASA Astrophysics Data System (ADS)
Wirth, Gregory D.; Bershady, Matthew A.; Crawford, Steven M.; Hunt, Lucas; Pisano, Daniel J.; Randriamampandry, Solohery M.
2018-06-01
Low-mass dwarf ellipticals are the most numerous members of present-day galaxy clusters, but the progenitors of this dominant population remain unclear. A prime candidate is the class of objects known as Luminous Compact Blue Galaxies (LCBGs), common in intermediate-redshift clusters but virtually extinct today. Recent cosmological simulations suggest that present-day dwarf galaxies begin as irregular field galaxies, undergo an environmentally-driven starburst phase as they enter the cluster, and stop forming stars earlier than their counterparts in the field. This model predicts that cluster dwarfs should have lower stellar mass per unit dynamical mass than their counterparts in the field. We are undertaking a two-pronged archival research program to test this key prediction using the combination of precision photometry from space and high-quality spectroscopy. First, we are combining optical HST/ACS imaging of five z=0.55 clusters (including two HST Frontier Fields) with Spitzer IR imaging and publicly-released Keck/DEIMOS spectroscopy to measure stellar-to-dynamical-mass ratios for a large sample of cluster LCBGs. Second, we are exploiting a new catalog of LCBGs in the COSMOS field to gather corresponding data for a significant sample of field LCBGs. By comparing mass ratios from these datasets, we aim to test theoretical predictions and determine the primary physical driver of cluster dwarf-galaxy evolution.
Kinematics and dynamics of the MKW/AWM poor clusters
NASA Technical Reports Server (NTRS)
Beers, Timothy C.; Kriessler, Jeffrey R.; Bird, Christina M.; Huchra, John P.
1995-01-01
We report 472 new redshifts for 416 galaxies in the regions of the 23 poor clusters of galaxies originally identified by Morgan, Kayser, and White (MKW), and Albert, White, and Morgan (AWM). Eighteen of the poor clusters now have 10 or more available redshifts within 1.5/h Mpc of the central galaxy; 11 clusters have at least 20 available redshifts. Based on the 21 clusters for which we have sufficient velocity information, the median velocity scale is 336 km/s, a factor of 2 smaller than found for rich clusters. Several of the poor clusters exhibit complex velocity distributions due to the presence of nearby clumps of galaxies. We check on the velocity of the dominant galaxy in each poor cluster relative to the remaining cluster members. Significantly high relative velocities of the dominant galaxy are found in only 4 of 21 poor clusters, 3 of which we suspect are due to contamination of the parent velocity distribution. Several statistical tests indicate that the D/cD galaxies are at the kinematic centers of the parent poor cluster velocity distributions. Mass-to-light ratios for 13 of the 15 poor clusters for which we have the required data are in the range 50 less than or = M/L(sub B(0)) less than or = 200 solar mass/solar luminosity. The complex nature of the regions surrounding many of the poor clusters suggests that these groupings may represent an early epoch of cluster formation. For example, the poor clusters MKW7 and MKWS are shown to be gravitationally bound and likely to merge to form a richer cluster within the next several Gyrs. Eight of the nine other poor clusters for which simple two-body dynamical models can be carried out are consistent with being bound to other clumps in their vicinity. Additional complex systems with more than two gravitationally bound clumps are observed among the poor clusters.
Dynamical Mass Measurements of Contaminated Galaxy Clusters Using Support Distribution Machines
NASA Astrophysics Data System (ADS)
Ntampaka, Michelle; Trac, Hy; Sutherland, Dougal; Fromenteau, Sebastien; Poczos, Barnabas; Schneider, Jeff
2018-01-01
We study dynamical mass measurements of galaxy clusters contaminated by interlopers and show that a modern machine learning (ML) algorithm can predict masses by better than a factor of two compared to a standard scaling relation approach. We create two mock catalogs from Multidark’s publicly available N-body MDPL1 simulation, one with perfect galaxy cluster membership infor- mation and the other where a simple cylindrical cut around the cluster center allows interlopers to contaminate the clusters. In the standard approach, we use a power-law scaling relation to infer cluster mass from galaxy line-of-sight (LOS) velocity dispersion. Assuming perfect membership knowledge, this unrealistic case produces a wide fractional mass error distribution, with a width E=0.87. Interlopers introduce additional scatter, significantly widening the error distribution further (E=2.13). We employ the support distribution machine (SDM) class of algorithms to learn from distributions of data to predict single values. Applied to distributions of galaxy observables such as LOS velocity and projected distance from the cluster center, SDM yields better than a factor-of-two improvement (E=0.67) for the contaminated case. Remarkably, SDM applied to contaminated clusters is better able to recover masses than even the scaling relation approach applied to uncon- taminated clusters. We show that the SDM method more accurately reproduces the cluster mass function, making it a valuable tool for employing cluster observations to evaluate cosmological models.
Non Thermal Emission from Clusters of Galaxies: the Importance of a Joint LOFAR/Simbol-X View
NASA Astrophysics Data System (ADS)
Ferrari, C.
2009-05-01
Deep radio observations of galaxy clusters have revealed the existence of diffuse radio sources (``halos'' and ``relics'') related to the presence of relativistic electrons and weak magnetic fields in the intracluster volume. I will outline our current knowledge about the presence and properties of this non-thermal cluster component. Despite the recent progress made in observational and theoretical studies of the non-thermal emission in galaxy clusters, a number of open questions about its origin and its effects on the thermo-dynamical evolution of galaxy clusters need to be answered. I will show the importance of combining galaxy cluster observations by new-generation instruments such as LOFAR and Simbol-X. A deeper knowledge of the non-thermal cluster component, together with statistical studies of radio halos and relics, will allow to test the current cluster formation scenario and to better constrain the physics of large scale structure evolution.
Simulating The Dynamical Evolution Of Galaxies In Group And Cluster Environments
NASA Astrophysics Data System (ADS)
Vijayaraghavan, Rukmani
2015-07-01
Galaxy clusters are harsh environments for their constituent galaxies. A variety of physical processes effective in these dense environments transform gas-rich, spiral, star-forming galaxies to elliptical or spheroidal galaxies with very little gas and therefore minimal star formation. The consequences of these processes are well understood observationally. Galaxies in progressively denser environments have systematically declining star formation rates and gas content. However, a theoretical understanding of of where, when, and how these processes act, and the interplay between the various galaxy transformation mechanisms in clusters remains elusive. In this dissertation, I use numerical simulations of cluster mergers as well as galaxies evolving in quiescent environments to develop a theoretical framework to understand some of the physics of galaxy transformation in cluster environments. Galaxies can be transformed in smaller groups before they are accreted by their eventual massive cluster environments, an effect termed `pre-processing'. Galaxy cluster mergers themselves can accelerate many galaxy transformation mechanisms, including tidal and ram pressure stripping of galaxies and galaxy-galaxy collisions and mergers that result in reassemblies of galaxies' stars and gas. Observationally, cluster mergers have distinct velocity and phase-space signatures depending on the observer's line of sight with respect to the merger direction. Using dark matter only as well as hydrodynamic simulations of cluster mergers with random ensembles of particles tagged with galaxy models, I quantify the effects of cluster mergers on galaxy evolution before, during, and after the mergers. Based on my theoretical predictions of the dynamical signatures of these mergers in combination with galaxy transformation signatures, one can observationally identify remnants of mergers and quantify the effect of the environment on galaxies in dense group and cluster environments. The presence of long-lived, hot X-ray emitting coronae observed in a large fraction of group and cluster galaxies is not well-understood. These coronae are not fully stripped by ram pressure and tidal forces that are efficient in these environments. Theoretically, this is a fascinating and challenging problem that involves understanding and simulating the multitude of physical processes in these dense environments that can remove or replenish galaxies' hot coronae. To solve this problem, I have developed and implemented a robust simulation technique where I simulate the evolution of a realistic cluster environment with a population of galaxies and their gas. With this technique, it is possible to isolate and quantify the importance of the various cluster physical processes for coronal survival. To date, I have performed hydrodynamic simulations of galaxies being ram pressure stripped in quiescent group and cluster environments. Using these simulations, I have characterized the physics of ram pressure stripping and investigated the survival of these coronae in the presence of tidal and ram pressure stripping. I have also generated synthetic X-ray observations of these simulated systems to compare with observed coronae. I have also performed magnetohydrodynamic simulations of galaxies evolving in a magnetized intracluster medium plasma to isolate the effect of magnetic fields on coronal evolution, as well the effect of orbiting galaxies in amplifying magnetic fields. This work is an important step towards understanding the effect of cluster environments on galactic gas, and consequently, their long term evolution and impact on star formation rates.
Radial Alignment of Ellipitcal Galaxies by the Tidal Force of a Cluster of Galaxies
NASA Astrophysics Data System (ADS)
Zhang, Shuang-Nan; Rong, Yu; Tu, Hong
2015-08-01
Unlike the random radial orientation distribution of field elliptical galaxies, galaxies in a cluster of galaxies are expected to point preferentially toward the center of the cluster, as a result of the cluster's tidal force on its member galaxies. In this work an analytic model is formulated to simulate this effect. The deformation time scale of a galaxy in a cluster is usually much shorter than the time scale of change of the tidal force; the dynamical process of the tidal interaction within the galaxy can thus be ignored. An equilibrium shape of a galaxy is then assumed to be the surface of equipotential, which is the sum of the self-gravitational potential of the galaxy and the tidal potential of the cluster at this location. We use a Monte-Carlo method to calculate the radial orientation distribution of these galaxies, by assuming the NFW mass profile of the cluster and the initial ellipticity of field galaxies. The radial angles show a single peak distribution centered at zero. The Monte-Carlo simulations also show that a shift of the reference center from the real cluster center weakens the anisotropy of the radial angle distribution. Therefore, the expected radial alignment cannot be revealed if the distribution of spatial position angle is used instead of that of radial angle. The observed radial orientations of elliptical galaxies in cluster Abell~2744 are consistent with the simulated distribution.
Radial Alignment of Elliptical Galaxies by the Tidal Force of a Cluster of Galaxies
NASA Astrophysics Data System (ADS)
Zhang, Shuang-Nan; Rong, Yu; Tu, Hong
2015-08-01
Unlike the random radial orientation distribution of field elliptical galaxies, galaxies in a cluster of galaxies are expected to point preferentially toward the center of the cluster, as a result of the cluster's tidal force on its member galaxies. In this work an analytic model is formulated to simulate this effect. The deformation time scale of a galaxy in a cluster is usually much shorter than the time scale of change of the tidal force; the dynamical process of the tidal interaction within the galaxy can thus be ignored. An equilibrium shape of a galaxy is then assumed to be the surface of equipotential, which is the sum of the self-gravitational potential of the galaxy and the tidal potential of the cluster at this location. We use a Monte-Carlo method to calculate the radial orientation distribution of these galaxies, by assuming the NFW mass profile of the cluster and the initial ellipticity of field galaxies. The radial angles show a single peak distribution centered at zero. The Monte-Carlo simulations also show that a shift of the reference center from the real cluster center weakens the anisotropy of the radial angle distribution. Therefore, the expected radial alignment cannot be revealed if the distribution of spatial position angle is used instead of that of radial angle. The observed radial orientations of elliptical galaxies in cluster Abell~2744 are consistent with the simulated distribution.
Galaxy evolution in clusters since z=1
NASA Astrophysics Data System (ADS)
Aragón-Salamanca, A.
2011-11-01
It is now 30 years since Alan Dressler published his seminal paper onthe morphology-density relation. Although there is still much to learnon the effect of the environment on galaxy evolution, extensive progress has been made since then both observationally and theoretically.Galaxy clusters provide some of the most extreme environments in which galaxies evolve, making them excellent laboratories to study the age old question of "nature'' vs. "nurture'' in galaxy evolution. Here I review some of the key observational results obtained during the last decade on the evolution of the morphology, structure, dynamics, star-formation history and stellar populations of cluster galaxies since the time when the universe was half its present age.Many of the results presented here have been obtainedwithin the ESO Distant Cluster Survey (EDisCS) and Space Telescope A901/02 Galaxy Evolution Survey (STAGES) collaborations.
Can cluster environment modify the dynamical evolution of spiral galaxies?
NASA Technical Reports Server (NTRS)
Amram, P.; Balkowski, C.; Cayatte, V.; Marcelin, M.; Sullivan, W. T., III
1993-01-01
Over the past decade many effects of the cluster environment on member galaxies have been established. These effects are manifest in the amount and distribution of gas in cluster spirals, the luminosity and light distributions within galaxies, and the segregation of morphological types. All these effects could indicate a specific dynamical evolution for galaxies in clusters. Nevertheless, a more direct evidence, such as a different mass distribution for spiral galaxies in clusters and in the field, is not yet clearly established. Indeed, Rubin, Whitmore, and Ford (1988) and Whitmore, Forbes, and Rubin (1988) (referred to as RWF) presented evidence that inner cluster spirals have falling rotation curves, unlike those of outer cluster spirals or the great majority of field spirals. If falling rotation curves exist in centers of clusters, as argued by RWF, it would suggest that dark matter halos were absent from cluster spirals, either because the halos had become stripped by interactions with other galaxies or with an intracluster medium, or because the halos had never formed in the first place. Even if they didn't disagree with RWF, other researchers pointed out that the behaviour of the slope of the rotation curves of spiral galaxies (in Virgo) is not so clear. Amram, using a different sample of spiral galaxies in clusters, found only 10% of declining rotation curves (2 declining vs 17 flat or rising) in opposition to RWF who find about 40% of declining rotation curves in their sample (6 declining vs 10 flat or rising), we will hereafter briefly discuss the Amram data paper and compare it to the results of RWF. We have measured the rotation curves for a sample of 21 spiral galaxies in 5 nearby clusters. These rotation curves have been constructed from detailed two-dimensional maps of each galaxy's velocity field as traced by emission from the Ha line. This complete mapping, combined with the sensitivity of our CFHT 3.60 m. + Perot-Fabry + CCD observations, allows the construction of high-quality rotation curves. Details concerning the acquisition and reduction procedures of the data are given in Amram. We present and discuss our preliminary analysis and compare them with RWF's results.
Dynamics, Chemical Abundances, and ages of Globular Clusters in the Virgo Cluster of Galaxies
NASA Astrophysics Data System (ADS)
Guhathakurta, Puragra; NGVS Collaboration
2018-01-01
We present a study of the dynamics, metallicities, and ages of globular clusters (GCs) in the Next Generation Virgo cluster Survey (NGVS), a deep, multi-band (u, g, r, i, z, and Ks), wide-field (104 deg2) imaging survey carried out using the 3.6-m Canada-France-Hawaii Telescope and MegaCam imager. GC candidates were selected from the NGVS survey using photometric and image morphology criteria and these were followed up with deep, medium-resolution, multi-object spectroscopy using the Keck II 10-m telescope and DEIMOS spectrograph. The primary spectroscopic targets were candidate GC satellites of dwarf elliptical (dE) and ultra-diffuse galaxies (UDGs) in the Virgo cluster. While many objects were confirmed as GC satellites of Virgo dEs and UDGs, many turned out to be non-satellites based on their radial velocity and/or positional mismatch any identifiable Virgo cluster galaxy. We have used a combination of spectral characteristics (e.g., presence of absorption vs. emission lines), new Gaussian mixture modeling of radial velocity and sky position data, and a new extreme deconvolution analysis of ugrizKs photometry and image morphology, to classify all the objects in our sample into: (1) GC satellites of dE galaxies, (2) GC satellites of UDGs, (3) intra-cluster GCs (ICGCs) in the Virgo cluster, (4) GCs in the outer halo of the central cluster galaxy M87, (5) foreground Milky Way stars, and (6) distant background galaxies. We use these data to study the dynamics and dark matter content of dE and UDGs in the Virgo cluster, place important constraints on the nature of dE nuclei, and study the origin of ICGCs versus GCs in the remote M87 halo.We are grateful for financial support from the NSF and NASA/STScI.
The dynamics and evolution of clusters of galaxies
NASA Technical Reports Server (NTRS)
Geller, Margaret; Huchra, John P.
1987-01-01
Research was undertaken to produce a coherent picture of the formation and evolution of large-scale structures in the universe. The program is divided into projects which examine four areas: the relationship between individual galaxies and their environment; the structure and evolution of individual rich clusters of galaxies; the nature of superclusters; and the large-scale distribution of individual galaxies. A brief review of results in each area is provided.
Galactic cannibalism. III. The morphological evolution of galaxies and clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hausman, M.A.; Ostriker, J.P.
1978-09-01
We present a numerical simulation for the evolution of massive cluster galaxies due to the accretion of other galaxies, finding that after several accretions a bright ''normal'' galaxy begins to resemble a cD giant, with a bright core and large core radius. Observable quantities such as color, scale size, and logarithmic intensity gradient ..cap alpha.. are calculated and are consistent with observations. The multiple nuclei sometimes found in cD galaxies may be understood as the undigested remnants of cannibalized companions. A cluster's bright galaxies are selectively depleted, an effect which can transform the cluster's luminosity function from a power lawmore » to the observed form with a steep high-luminosity falloff and which pushes the turnover point to lower luminosities with time. We suggest that these effects may account for apparent nonstatistical features observed in the luminosity distribution of bright cluster galaxies, and that the sequence of cluster types discovered by Bautz and Morgan and Oemler is essentially one of increasing dynamical evolution, the rate of evolution depending inversely on the cluster's central relaxation time.« less
The effect of gas dynamics on semi-analytic modelling of cluster galaxies
NASA Astrophysics Data System (ADS)
Saro, A.; De Lucia, G.; Dolag, K.; Borgani, S.
2008-12-01
We study the degree to which non-radiative gas dynamics affect the merger histories of haloes along with subsequent predictions from a semi-analytic model (SAM) of galaxy formation. To this aim, we use a sample of dark matter only and non-radiative smooth particle hydrodynamics (SPH) simulations of four massive clusters. The presence of gas-dynamical processes (e.g. ram pressure from the hot intra-cluster atmosphere) makes haloes more fragile in the runs which include gas. This results in a 25 per cent decrease in the total number of subhaloes at z = 0. The impact on the galaxy population predicted by SAMs is complicated by the presence of `orphan' galaxies, i.e. galaxies whose parent substructures are reduced below the resolution limit of the simulation. In the model employed in our study, these galaxies survive (unaffected by the tidal stripping process) for a residual merging time that is computed using a variation of the Chandrasekhar formula. Due to ram-pressure stripping, haloes in gas simulations tend to be less massive than their counterparts in the dark matter simulations. The resulting merging times for satellite galaxies are then longer in these simulations. On the other hand, the presence of gas influences the orbits of haloes making them on average more circular and therefore reducing the estimated merging times with respect to the dark matter only simulation. This effect is particularly significant for the most massive satellites and is (at least in part) responsible for the fact that brightest cluster galaxies in runs with gas have stellar masses which are about 25 per cent larger than those obtained from dark matter only simulations. Our results show that gas dynamics has only a marginal impact on the statistical properties of the galaxy population, but that its impact on the orbits and merging times of haloes strongly influences the assembly of the most massive galaxies.
Constraining hydrostatic mass bias of galaxy clusters with high-resolution X-ray spectroscopy
NASA Astrophysics Data System (ADS)
Ota, Naomi; Nagai, Daisuke; Lau, Erwin T.
2018-04-01
Gas motions in galaxy clusters play important roles in determining the properties of the intracluster medium (ICM) and in the constraint of cosmological parameters via X-ray and Sunyaev-Zel'dovich effect observations of galaxy clusters. The Hitomi measurements of gas motions in the core of the Perseus Cluster have provided new insights into the physics in galaxy clusters. The XARM mission, equipped with the Resolve X-ray micro-calorimeter, will continue Hitomi's legacy by measuring ICM motions through Doppler shifting and broadening of emission lines in a larger number of galaxy clusters, and at larger radii. In this work, we investigate how well we can measure bulk and turbulent gas motions in the ICM with XARM, by analyzing mock XARM simulations of galaxy clusters extracted from cosmological hydrodynamic simulations. We assess how photon counts, spectral fitting methods, multiphase ICM structure, deprojections, and region selection affect the measurements of gas motions. We first show that XARM is capable of recovering the underlying spherically averaged turbulent and bulk velocity profiles for dynamically relaxed clusters to within ˜50% with a reasonable amount of photon counts in the X-ray emission lines. We also find that there are considerable azimuthal variations in the ICM velocities, where the velocities measured in a single azimuthal direction can significantly deviate from the true value even in dynamically relaxed systems. Such variation must be taken into account when interpreting data and developing observing strategies. We will discuss the prospect of using the upcoming XARM mission to measure non-thermal pressure and to correct for the hydrostatic mass bias of galaxy clusters. Our results are broadly applicable for future X-ray missions, such as Athena and Lynx.
Constraining hydrostatic mass bias of galaxy clusters with high-resolution X-ray spectroscopy
NASA Astrophysics Data System (ADS)
Ota, Naomi; Nagai, Daisuke; Lau, Erwin T.
2018-06-01
Gas motions in galaxy clusters play important roles in determining the properties of the intracluster medium (ICM) and in the constraint of cosmological parameters via X-ray and Sunyaev-Zel'dovich effect observations of galaxy clusters. The Hitomi measurements of gas motions in the core of the Perseus Cluster have provided new insights into the physics in galaxy clusters. The XARM mission, equipped with the Resolve X-ray micro-calorimeter, will continue Hitomi's legacy by measuring ICM motions through Doppler shifting and broadening of emission lines in a larger number of galaxy clusters, and at larger radii. In this work, we investigate how well we can measure bulk and turbulent gas motions in the ICM with XARM, by analyzing mock XARM simulations of galaxy clusters extracted from cosmological hydrodynamic simulations. We assess how photon counts, spectral fitting methods, multiphase ICM structure, deprojections, and region selection affect the measurements of gas motions. We first show that XARM is capable of recovering the underlying spherically averaged turbulent and bulk velocity profiles for dynamically relaxed clusters to within ˜50% with a reasonable amount of photon counts in the X-ray emission lines. We also find that there are considerable azimuthal variations in the ICM velocities, where the velocities measured in a single azimuthal direction can significantly deviate from the true value even in dynamically relaxed systems. Such variation must be taken into account when interpreting data and developing observing strategies. We will discuss the prospect of using the upcoming XARM mission to measure non-thermal pressure and to correct for the hydrostatic mass bias of galaxy clusters. Our results are broadly applicable for future X-ray missions, such as Athena and Lynx.
WEIGHING GALAXY CLUSTERS WITH GAS. I. ON THE METHODS OF COMPUTING HYDROSTATIC MASS BIAS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lau, Erwin T.; Nagai, Daisuke; Nelson, Kaylea, E-mail: erwin.lau@yale.edu
2013-11-10
Mass estimates of galaxy clusters from X-ray and Sunyeav-Zel'dovich observations assume the intracluster gas is in hydrostatic equilibrium with their gravitational potential. However, since galaxy clusters are dynamically active objects whose dynamical states can deviate significantly from the equilibrium configuration, the departure from the hydrostatic equilibrium assumption is one of the largest sources of systematic uncertainties in cluster cosmology. In the literature there have been two methods for computing the hydrostatic mass bias based on the Euler and the modified Jeans equations, respectively, and there has been some confusion about the validity of these two methods. The word 'Jeans' wasmore » a misnomer, which incorrectly implies that the gas is collisionless. To avoid further confusion, we instead refer these methods as 'summation' and 'averaging' methods respectively. In this work, we show that these two methods for computing the hydrostatic mass bias are equivalent by demonstrating that the equation used in the second method can be derived from taking spatial averages of the Euler equation. Specifically, we identify the correspondences of individual terms in these two methods mathematically and show that these correspondences are valid to within a few percent level using hydrodynamical simulations of galaxy cluster formation. In addition, we compute the mass bias associated with the acceleration of gas and show that its contribution is small in the virialized regions in the interior of galaxy clusters, but becomes non-negligible in the outskirts of massive galaxy clusters. We discuss future prospects of understanding and characterizing biases in the mass estimate of galaxy clusters using both hydrodynamical simulations and observations and their implications for cluster cosmology.« less
Weighing Galaxy Clusters with Gas. I. On the Methods of Computing Hydrostatic Mass Bias
NASA Astrophysics Data System (ADS)
Lau, Erwin T.; Nagai, Daisuke; Nelson, Kaylea
2013-11-01
Mass estimates of galaxy clusters from X-ray and Sunyeav-Zel'dovich observations assume the intracluster gas is in hydrostatic equilibrium with their gravitational potential. However, since galaxy clusters are dynamically active objects whose dynamical states can deviate significantly from the equilibrium configuration, the departure from the hydrostatic equilibrium assumption is one of the largest sources of systematic uncertainties in cluster cosmology. In the literature there have been two methods for computing the hydrostatic mass bias based on the Euler and the modified Jeans equations, respectively, and there has been some confusion about the validity of these two methods. The word "Jeans" was a misnomer, which incorrectly implies that the gas is collisionless. To avoid further confusion, we instead refer these methods as "summation" and "averaging" methods respectively. In this work, we show that these two methods for computing the hydrostatic mass bias are equivalent by demonstrating that the equation used in the second method can be derived from taking spatial averages of the Euler equation. Specifically, we identify the correspondences of individual terms in these two methods mathematically and show that these correspondences are valid to within a few percent level using hydrodynamical simulations of galaxy cluster formation. In addition, we compute the mass bias associated with the acceleration of gas and show that its contribution is small in the virialized regions in the interior of galaxy clusters, but becomes non-negligible in the outskirts of massive galaxy clusters. We discuss future prospects of understanding and characterizing biases in the mass estimate of galaxy clusters using both hydrodynamical simulations and observations and their implications for cluster cosmology.
The effect of host cluster gravitational tidal forces on the internal dynamics of spiral galaxies
NASA Astrophysics Data System (ADS)
Mayer, Alexander
2013-04-01
New empirical observation by Bidin, Carraro, Mendez & Smith finds ``a lack of dark matter in the Solar neighborhood" (2012 ApJ 751, 30). This, and the discovery of a vast polar structure of Milky Way satellites by Pawlowski, Pflamm-Altenburg & Kroupa (2012 MNRAS 423, 1109), conflict with the prevailing interpretation of the measured Galactic rotation curve. Simulating the dynamical effects of host cluster tidal forces on galaxy disks reveals radial migration in a spiral structure and an orbital velocity that accelerates with increasing galactocentric radial coordinate. A virtual ``toy model,'' which is based on an Earth-orbiting system of particles and is physically realizable in principle, is available at GravitySim.net. Given the perturbing gravitational effect of the host cluster on a spiral galaxy disk and that a similar effect does not exist for the Solar System, the two systems represent distinct classes of gravitational dynamical systems. The observed `flat' and accelerating rotation curves of spiral galaxies can be attributed to gravitational interaction with the host cluster; no `dark matter halo' is required to explain the observable.
Dynamical Mass Measurements of Contaminated Galaxy Clusters Using Machine Learning
NASA Astrophysics Data System (ADS)
Ntampaka, M.; Trac, H.; Sutherland, D. J.; Fromenteau, S.; Póczos, B.; Schneider, J.
2016-11-01
We study dynamical mass measurements of galaxy clusters contaminated by interlopers and show that a modern machine learning algorithm can predict masses by better than a factor of two compared to a standard scaling relation approach. We create two mock catalogs from Multidark’s publicly available N-body MDPL1 simulation, one with perfect galaxy cluster membership information and the other where a simple cylindrical cut around the cluster center allows interlopers to contaminate the clusters. In the standard approach, we use a power-law scaling relation to infer cluster mass from galaxy line-of-sight (LOS) velocity dispersion. Assuming perfect membership knowledge, this unrealistic case produces a wide fractional mass error distribution, with a width of {{Δ }}ε ≈ 0.87. Interlopers introduce additional scatter, significantly widening the error distribution further ({{Δ }}ε ≈ 2.13). We employ the support distribution machine (SDM) class of algorithms to learn from distributions of data to predict single values. Applied to distributions of galaxy observables such as LOS velocity and projected distance from the cluster center, SDM yields better than a factor-of-two improvement ({{Δ }}ε ≈ 0.67) for the contaminated case. Remarkably, SDM applied to contaminated clusters is better able to recover masses than even the scaling relation approach applied to uncontaminated clusters. We show that the SDM method more accurately reproduces the cluster mass function, making it a valuable tool for employing cluster observations to evaluate cosmological models.
Galaxy properties in clusters. II. Backsplash galaxies
NASA Astrophysics Data System (ADS)
Muriel, H.; Coenda, V.
2014-04-01
Aims: We explore the properties of galaxies on the outskirts of clusters and their dependence on recent dynamical history in order to understand the real impact that the cluster core has on the evolution of galaxies. Methods: We analyse the properties of more than 1000 galaxies brighter than M0.1r = - 19.6 on the outskirts of 90 clusters (1 < r/rvir < 2) in the redshift range 0.05 < z < 0.10. Using the line of sight velocity of galaxies relative to the cluster's mean, we selected low and high velocity subsamples. Theoretical predictions indicate that a significant fraction of the first subsample should be backsplash galaxies, that is, objects that have already orbited near the cluster centre. A significant proportion of the sample of high relative velocity (HV) galaxies seems to be composed of infalling objects. Results: Our results suggest that, at fixed stellar mass, late-type galaxies in the low-velocity (LV) sample are systematically older, redder, and have formed fewer stars during the last 3 Gyrs than galaxies in the HV sample. This result is consistent with models that assume that the central regions of clusters are effective in quenching the star formation by means of processes such as ram pressure stripping or strangulation. At fixed stellar mass, LV galaxies show some evidence of having higher surface brightness and smaller size than HV galaxies. These results are consistent with the scenario where galaxies that have orbited the central regions of clusters are more likely to suffer tidal effects, producing loss of mass as well as a re-distribution of matter towards more compact configurations. Finally, we found a higher fraction of ET galaxies in the LV sample, supporting the idea that the central region of clusters of galaxies may contribute to the transformation of morphological types towards earlier types.
The dwarf galaxy population of nearby galaxy clusters
NASA Astrophysics Data System (ADS)
Lisker, Thorsten; Wittmann, Carolin; Pak, Mina; Janz, Joachim; Bialas, Daniel; Peletier, Reynier; Grebel, Eva; Falcon Barroso, Jesus; Toloba, Elisa; Smakced Collaboration, Focus Collaboration
2015-01-01
The Fornax, Virgo, Ursa Major and Perseus galaxy clusters all have very different characteristics, in terms of their density, mass, and large-scale environment. We can regard these clusters as laboratories for studying environmental influence on galaxy evolution, using the sensitive low-mass galaxies as probes for external mechanisms. Here we report on recent and ongoing observational studies of the said clusters with imaging and spectroscopy, as well as on the interpretation of present-day cluster galaxy populations with the aid of cosmological simulations.Multicolor imaging data allow us to identify residual star formation in otherwise red early-type dwarf galaxies, which hold clues to the strength of gas stripping processes. Major-axis spectra and 2D kinematical maps provide insight regarding the amount of rotational support and how much dynamical heating a dwarf galaxy may have experienced. To this end, dedicated N-body simulations that follow the evolution of galaxies since early epochs reveal their path through parameter space, and can be compared to observations in order to understand the time-integrated effect of environmental influence.
Structure of clusters with bimodal distribution of galaxy line-of-sight velocities III: A1831
NASA Astrophysics Data System (ADS)
Kopylov, A. I.; Kopylova, F. G.
2010-07-01
We study the A1831 cluster within the framework of our program of the investigation of galaxy clusters with bimodal velocity distributions (i.e., clusters where the velocities of subsystems differ by more than Δ cz ˜ 3000 km/s).We identify two subsystems in this cluster: A1831A ( cz = 18970 km/s) and A1831B ( cz = 22629 km/s) and directly estimate the distances to these subsystems using three methods applied to early-type galaxies: the Kormendy relation, the photometric plane, and the fundamental plane. To this end, we use the results of our observations made with the 1-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences and the data adopted from the SDSS DR6 catalog. We confirmed at a 99% confidence level that (1) the two subsystems are located at different distances, which are close to their Hubble distances, and (2) the two subsystems are located behind one another along the line of sight and are not gravitationally bound to each other. Both clusters have a complex internal structure, which makes it difficult to determine their dynamical parameters. Our estimates for the velocity dispersions and masses of the two clusters: 480 km/s and 1.9 × 1014 M ⊙ for A1831A, 952 km/s and 1.4 × 1015 M ⊙ for A1831B should be views as upper limits. At least three spatially and kinematically distinct groups of galaxies can be identified in the foreground cluster A1831A, and this fact is indicative of its incomplete dynamical relaxation. Neither can we rule out the possibility of a random projection. The estimate of the mass of the main cluster A1831B based on the dispersion of the line-of-sight velocities of galaxies is two-to-three times greater than the independent mass estimates based on the total K-band luminosity, temperature, and luminosity of the X-ray gas of the cluster. This fact, combined with the peculiarities of its kinematical structure, leads us to conclude that the cluster is in a dynamically active state: galaxies and groups of galaxies with large line-of-sight velocities relative to the center of the cluster accrete onto the virialized nucleus of the cluster (possibly, along the filament directed close to the line of sight).
Blooming Trees: Substructures and Surrounding Groups of Galaxy Clusters
NASA Astrophysics Data System (ADS)
Yu, Heng; Diaferio, Antonaldo; Serra, Ana Laura; Baldi, Marco
2018-06-01
We develop the Blooming Tree Algorithm, a new technique that uses spectroscopic redshift data alone to identify the substructures and the surrounding groups of galaxy clusters, along with their member galaxies. Based on the estimated binding energy of galaxy pairs, the algorithm builds a binary tree that hierarchically arranges all of the galaxies in the field of view. The algorithm searches for buds, corresponding to gravitational potential minima on the binary tree branches; for each bud, the algorithm combines the number of galaxies, their velocity dispersion, and their average pairwise distance into a parameter that discriminates between the buds that do not correspond to any substructure or group, and thus eventually die, and the buds that correspond to substructures and groups, and thus bloom into the identified structures. We test our new algorithm with a sample of 300 mock redshift surveys of clusters in different dynamical states; the clusters are extracted from a large cosmological N-body simulation of a ΛCDM model. We limit our analysis to substructures and surrounding groups identified in the simulation with mass larger than 1013 h ‑1 M ⊙. With mock redshift surveys with 200 galaxies within 6 h ‑1 Mpc from the cluster center, the technique recovers 80% of the real substructures and 60% of the surrounding groups; in 57% of the identified structures, at least 60% of the member galaxies of the substructures and groups belong to the same real structure. These results improve by roughly a factor of two the performance of the best substructure identification algorithm currently available, the σ plateau algorithm, and suggest that our Blooming Tree Algorithm can be an invaluable tool for detecting substructures of galaxy clusters and investigating their complex dynamics.
A spatial, kinematical, and dynamical analysis of Abell 400
NASA Technical Reports Server (NTRS)
Beers, Timothy C.; Gebhardt, Karl; Huchra, John P.; Forman, William; Jones, Christine; Bothun, Gregory D.
1992-01-01
The paper presents a detailed spatial, kinematical, and dynamical analysis for the cluster A400, based on a nearly complete redshift survey of bright galaxies within 1 Mpc of the cluster center. A dispersed component with a high fraction of spiral galaxies at a velocity of 8200 km/s, and a background group with a mean velocity of 13,400 km/s are identified. It is proposed that the main body of A400 is composed of at least two individual subclusters. If subclustering is ignored, the derived dispersion of the 88 galaxies with measured velocities within 4000 km/s of the bright dumbbell galaxy near the cluster center is 702 km/s. When kinematic information is used to split A400 into likely subclusters, the velocity dispersions of the individual units which make up this cluster are on the order of 200-300 km/s. If A400 is considered a single entity, the inferred blue mass-to-light ratio is 1210 solar masses/solar luminosities. It is argued that A400 is an example of a presently occurring merger, and that the individual components of the dumbbell galaxy were once individual D galaxies within the premerger subclusters.
The enhancement of rapidly quenched galaxies in distant clusters at 0.5 < z < 1.0
NASA Astrophysics Data System (ADS)
Socolovsky, Miguel; Almaini, Omar; Hatch, Nina A.; Wild, Vivienne; Maltby, David T.; Hartley, William G.; Simpson, Chris
2018-05-01
We investigate the relationship between environment and galaxy evolution in the redshift range 0.5 < z < 1.0. Galaxy overdensities are selected using a friends-of-friends algorithm, applied to deep photometric data in the Ultra-Deep Survey field. A study of the resulting stellar mass functions reveals clear differences between cluster and field environments, with a strong excess of low-mass rapidly quenched galaxies in cluster environments compared to the field. Cluster environments also show a corresponding deficit of young, low-mass star-forming galaxies, which show a sharp radial decline towards cluster centres. By comparing mass functions and radial distributions, we conclude that young star-forming galaxies are rapidly quenched as they enter overdense environments, becoming post-starburst galaxies before joining the red sequence. Our results also point to the existence of two environmental quenching pathways operating in galaxy clusters, operating on different time-scales. Fast quenching acts on galaxies with high specific star formation rates, operating on time-scales shorter than the cluster dynamical time (<1 Gyr). In contrast, slow quenching affects galaxies with moderate specific star formation rates, regardless of their stellar mass, and acts on longer time-scales (≳ 1 Gyr). Of the cluster galaxies in the stellar mass range 9.0 < log (M/M⊙) < 10.5 quenched during this epoch, we find that 73 per cent were transformed through fast quenching, while the remaining 27 per cent followed the slow quenching route.
Deep spectroscopy of nearby galaxy clusters - II. The Hercules cluster
NASA Astrophysics Data System (ADS)
Agulli, I.; Aguerri, J. A. L.; Diaferio, A.; Dominguez Palmero, L.; Sánchez-Janssen, R.
2017-06-01
We carried out the deep spectroscopic observations of the nearby cluster A 2151 with AF2/WYFFOS@WHT. The caustic technique enables us to identify 360 members brighter than Mr = -16 and within 1.3R200. We separated the members into subsamples according to photometrical and dynamical properties such as colour, local environment and infall time. The completeness of the catalogue and our large sample allow us to analyse the velocity dispersion and the luminosity functions (LFs) of the identified populations. We found evidence of a cluster still in its collapsing phase. The LF of the red population of A 2151 shows a deficit of dwarf red galaxies. Moreover, the normalized LFs of the red and blue populations of A 2151 are comparable to the red and blue LFs of the field, even if the blue galaxies start dominating 1 mag fainter and the red LF is well represented by a single Schechter function rather than a double Schechter function. We discuss how the evolution of cluster galaxies depends on their mass: bright and intermediate galaxies are mainly affected by dynamical friction and internal/mass quenching, while the evolution of dwarfs is driven by environmental processes that need time and a hostile cluster environment to remove the gas reservoirs and halt the star formation.
NASA Astrophysics Data System (ADS)
Trentham, Neil; Tully, R. Brent; Verheijen, Marc A. W.
2001-07-01
Results are presented of a deep optical survey of the Ursa Major cluster, a spiral-rich cluster of galaxies at a distance of 18.6Mpc which contains about 30 per cent of the light but only 5 per cent of the mass of the nearby Virgo cluster. Fields around known cluster members and a pattern of blind fields along the major and minor axes of the cluster were studied with mosaic CCD cameras on the Canada-France-Hawaii Telescope. The dynamical crossing time for the Ursa Major cluster is only slightly less than a Hubble time. Most galaxies in the local Universe exist in similar moderate-density environments. The Ursa Major cluster is therefore a good place to study the statistical properties of dwarf galaxies, since this structure is at an evolutionary stage representative of typical environments, yet has enough galaxies that reasonable counting statistics can be accumulated. The main observational results of our survey are as follows. (i) The galaxy luminosity function is flat, with a logarithmic slope α=-1.1 for -17
NASA Astrophysics Data System (ADS)
Hwang, Jeong-Sun; Park, Changbom; Banerjee, Arunima; Hwang, Ho Seong
2018-04-01
Late-type galaxies falling into a cluster would evolve being influenced by the interactions with both the cluster and the nearby cluster member galaxies. Most numerical studies, however, tend to focus on the effects of the former with little work done on those of the latter. We thus perform a numerical study on the evolution of a late-type galaxy interacting with neighboring early-type galaxies at high speed using hydrodynamic simulations. Based on the information obtained from the Coma cluster, we set up the simulations for the case where a Milky Way–like late-type galaxy experiences six consecutive collisions with twice as massive early-type galaxies having hot gas in their halos at the closest approach distances of 15–65 h ‑1 kpc at the relative velocities of 1500–1600 km s‑1. Our simulations show that the evolution of the late-type galaxy can be significantly affected by the accumulated effects of the high-speed multiple collisions with the early-type galaxies, such as on cold gas content and star formation activity of the late-type galaxy, particularly through the hydrodynamic interactions between cold disk and hot gas halos. We find that the late-type galaxy can lose most of its cold gas after the six collisions and have more star formation activity during the collisions. By comparing our simulation results with those of galaxy–cluster interactions, we claim that the role of the galaxy–galaxy interactions on the evolution of late-type galaxies in clusters could be comparable with that of the galaxy–cluster interactions, depending on the dynamical history.
Calibrating the Planck cluster mass scale with cluster velocity dispersions
NASA Astrophysics Data System (ADS)
Amodeo, S.; Mei, S.; Stanford, S. A.; Bartlett, J. G.; Lawrence, C. L.; Chary, R. R.; Shim, H.; Marleau, F.; Stern, D.
2017-12-01
The potential of galaxy clusters as cosmological probes critically depends on the capability to obtain accurate estimates of their mass. This will be a key measurement for the next generation of cosmological surveys, such as Euclid. The discrepancy between the cosmological parameters determined from anisotropies in the cosmic microwave background and those derived from cluster abundance measurements from the Planck satellite calls for careful evaluation of systematic biases in cluster mass estimates. For this purpose, it is crucial to use independent techniques, like analysis of the thermal emission of the intracluster medium (ICM), observed either in the X-rays or through the Sunyaev-Zeldovich (SZ) effect, dynamics of member galaxies or gravitational lensing. We discuss possible bias in the Planck SZ mass proxy, which is based on X-ray observations. Using optical spectroscopy from the Gemini Multi-Object Spectrograph of 17 Planck-selected clusters, we present new estimates of the cluster mass based on the velocity dispersion of the member galaxies and independently of the ICM properties. We show how the difference between the velocity dispersion of galaxy and dark matter particles in simulations is the primary factor limiting interpretation of dynamical cluster mass measurements at this time, and we give the first observational constraints on the velocity bias.
Investigating the internal structure of galaxies and clusters through strong gravitational lensing
NASA Astrophysics Data System (ADS)
Jigish Gandhi, Pratik; Grillo, Claudio; Bonamigo, Mario
2018-01-01
Gravitational lensing studies have radically improved our understanding of the internal structure of galaxies and cluster-scale systems. In particular, the combination of strong lensing and stellar dynamics or stellar population synthesis models have made it possible to characterize numerous fundamental properties of the galaxies as well as dark matter halos and subhalos with unprecedented robustness and accuracy. Here we demonstrate the usefulness and accuracy of strong lensing as a probe for characterising the properties of cluster members as well as dark matter halos, to show that such characterisation carried out via lensing analyses alone is as viable as those carried out through a combination of spectroscopy and lensing analyses.Our study uses focuses on the early-type galaxy cluster MACS J1149.5+2223 at redshift 0.54 in the Hubble Frontier Fields (HFF) program, where the first magnified and spatially resolved multiple images of supernova (SN) “Refsdal” and its late-type host galaxy at redshift 1.489 were detected. The Refsdal system is unique in being the first ever multiply-imaged supernova, with it’s first four images appearing in an Einstein Cross configuration around one of the cluster members in 2015. In our lensing analyses we use HST data of the multiply-imaged SN Refsdal to constrain the dynamical masses, velocity dispersions, and virial radii of individual galaxies and dark matter halos in the MACS J1149.5+2223 cluster. For our lensing models we select a sample of 300 cluster members within approximately 500 kpc from the BCG, and a set of reliable multiple images associated with 18 distinct knots in the SN host spiral galaxy, as well as multiple images of the supernova itself. Our results provide accurate measurements of the masses, velocity dispersions, and radii of the cluster’s dark matter halo as well as three chosen members galaxies, in strong agreement with those obtained by Grillo et al 2015, demonstrating the usefulness of strong lensing in characterising the properties of cluster-scale systems.
NASA Astrophysics Data System (ADS)
Zegeye, David W.
2018-01-01
We present a study of the evolution of the 10 brightest galaxies in the Fornax Cluster, as reconstructed through their Globular Cluster (GC) populations. GCs can be characterized by their projected two-dimensional (2D) spatial distribution. Over- or under-densities in the GC distribution, can be linked to events in the host galaxy assembly history, and used to constrain the properties of their progenitors. With HST/ACS imaging, we identified significant structures in the GC distribution of the 10 galaxies investigated, with some of the galaxies possessing structures with >10-sigma significance. GC over-densities have been found within the galaxies, with significant differences between the red and blue GC population. For elongated galaxies, structures are preferentially to be aligned along the major axis. Fornax Cluster galaxies appear to be more dynamically relaxed than the Virgo Cluster galaxies previously investigated with the same methodology by D'Abrusco et al. (2016). However, from these observations, the evident imprints left in the spatial distribution of GCs in these galaxies suggest a similarly intense history of interactions.The SAO REU program is funded by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant AST-1659473, and by the Smithsonian Institution.
Dynamical effects of dark matter in systems of galaxies
NASA Astrophysics Data System (ADS)
Navarro, J. F.; Garcia Lambas, D.; Sersic, J. L.
1986-06-01
Several N-body experiments were performed in order to simulate the dynamical behavior of systems of galaxies gravitationally dominated by a massive dark background. Mass estimates from the dynamics of the luminous component under the influence of such a background are discussed, assuming a constant dark/luminous mass ratio and plausible physical conditions. Previous studies (Smith, 1980, 1984) about the dependence of the virial theorem mass on the relative distributions of dark and luminous matter (Limber, 1959) are extended. It is found that the observed ratio of the virial theorem mass to luminosity in systems of galaxies of different sizes could be the result of different stages of their postvirialisation evolution as previously suggested by White and Rees (1978) and Barnes (1983). This evolution is mainly the result of the dynamical friction that dark matter exerts on the luminous component. Thus the results give support to the idea that compact groups of galaxies are dynamically more evolved than large clusters, which is expected from the 'hierarchical cluster' picture for the formation of such structures.
Generalizing MOND to explain the missing mass in galaxy clusters
NASA Astrophysics Data System (ADS)
Hodson, Alistair O.; Zhao, Hongsheng
2017-02-01
Context. MOdified Newtonian Dynamics (MOND) is a gravitational framework designed to explain the astronomical observations in the Universe without the inclusion of particle dark matter. MOND, in its current form, cannot explain the missing mass in galaxy clusters without the inclusion of some extra mass, be it in the form of neutrinos or non-luminous baryonic matter. We investigate whether the MOND framework can be generalized to account for the missing mass in galaxy clusters by boosting gravity in high gravitational potential regions. We examine and review Extended MOND (EMOND), which was designed to increase the MOND scale acceleration in high potential regions, thereby boosting the gravity in clusters. Aims: We seek to investigate galaxy cluster mass profiles in the context of MOND with the primary aim at explaining the missing mass problem fully without the need for dark matter. Methods: Using the assumption that the clusters are in hydrostatic equilibrium, we can compute the dynamical mass of each cluster and compare the result to the predicted mass of the EMOND formalism. Results: We find that EMOND has some success in fitting some clusters, but overall has issues when trying to explain the mass deficit fully. We also investigate an empirical relation to solve the cluster problem, which is found by analysing the cluster data and is based on the MOND paradigm. We discuss the limitations in the text.
A Systematic Analysis of Caustic Methods for Galaxy Cluster Masses
NASA Astrophysics Data System (ADS)
Gifford, Daniel; Miller, Christopher; Kern, Nicholas
2013-08-01
We quantify the expected observed statistical and systematic uncertainties of the escape velocity as a measure of the gravitational potential and total mass of galaxy clusters. We focus our attention on low redshift (z <=0.15) clusters, where large and deep spectroscopic datasets currently exist. Utilizing a suite of Millennium Simulation semi-analytic galaxy catalogs, we find that the dynamical mass, as traced by either the virial relation or the escape velocity, is robust to variations in how dynamical friction is applied to "orphan" galaxies in the mock catalogs (i.e., those galaxies whose dark matter halos have fallen below the resolution limit). We find that the caustic technique recovers the known halo masses (M 200) with a third less scatter compared to the virial masses. The bias we measure increases quickly as the number of galaxies used decreases. For N gal > 25, the scatter in the escape velocity mass is dominated by projections along the line-of-sight. Algorithmic uncertainties from the determination of the projected escape velocity profile are negligible. We quantify how target selection based on magnitude, color, and projected radial separation can induce small additional biases into the escape velocity masses. Using N gal = 150 (25), the caustic technique has a per cluster scatter in ln (M|M 200) of 0.3 (0.5) and bias 1% ± 3} (16% ± 5}) for clusters with masses >1014 M ⊙ at z < 0.15.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tucker, W.
1980-06-01
The collision and subsequent assimilation of small galaxies by larger ones are examined in connection with cD galaxy radio sources. The dynamic-friction galactic-cannibalism theory is reviewed. It is noted that galactic cannibalism accounts for the relative absence of bright galaxies other than cD galaxies in rich clusters.
Star Formation History In Merging Galaxies
NASA Astrophysics Data System (ADS)
Chien, Li-Hsin
2009-01-01
Interacting and merging galaxies are believed to play an important role in many aspects of galactic evolution. Their violent interactions can trigger starbursts, which lead to formation of young globular clusters. Therefore the ages of these young globular clusters can be interpreted to yield the timing of interaction-triggered events, and thus provide a key to reconstruct the star formation history in merging galaxies. The link between galaxy interaction and star formation is well established, but the triggers of star formation in interacting galaxies are still not understood. To date there are two competing formulas that describe the star formation mechanism--density-dependent and shock-induced rules. Numerical models implementing the two rules predict significantly different star formation histories in merging galaxies. My dissertation combines these two distinct areas of astrophysics, stellar evolution and galactic dynamics, to investigate the star formation history in galaxies at various merging stages. Begin with NGC 4676 as an example, I will briefly describe its model and illustrate the idea of using the ages of clusters to constrain the modeling. The ages of the clusters are derived from spectra that were taken with multi-object spectroscopy on Keck. Using NGC 7252 as a second example, I will present a state of the art dynamical model which predicts NGC7252's star formation history and other properties. I will then show a detailed comparison and analysis between the clusters and the modeling. In the end, I will address this important link as the key to answer the fundamental question of my thesis: what is the trigger of star formation in merging galaxies?
Globular Clusters Shine in a Galaxy Lacking Dark Matter
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2018-04-01
You may have seen recent news about NGC 1052DF2, a galaxy that was discovered to have little or no dark matter. Now, a new study explores what NGC 1052DF2 does have: an enigmatic population of unusually large and luminous globular clusters.Keck/LRIS spectra (left and right) and HST images (center) of the 11 clusters associated with NGC 1052DF2. The color images each span 1 1. [van Dokkum et al. 2018]An Unusual DwarfThe ultra-diffuse galaxy NGC 1052DF2, originally identified with the Dragonfly Telescope Array, has puzzled astronomers since the discovery that its dynamical mass determined by the motions of globular-cluster-like objects spotted within it is essentially the same as its stellar mass. This equivalence implies that the galaxy is strangely lacking dark matter; the upper limit set on its dark matter halo is 400 times smaller than what we would expect for such a dwarf galaxy.Led by Pieter van Dokkum (Yale University), the team that made this discovery has now followed up with detailed Hubble Space Telescope imaging and Keck spectroscopy. Their goal? To explore the objects that allowed them to make the dynamical-mass measurement: the oddly bright globular clusters of NGC 1052DF2.Sizes (circularized half-light radii) vs. absolute magnitudes for globular clusters in NGC1052DF2 (black) and the Milky Way (red). [Adapted from van Dokkum et al. 2018]Whats Up with the Globular Clusters?Van Dokkum and collaborators spectroscopically confirmed 11 compact objects associated with the faint galaxy. These objects are globular-cluster-like in their appearance, but the peak of their luminosity distribution is offset by a factor of four from globular clusters of other galaxies; these globular clusters are significantly brighter than is typical.Using the Hubble imaging, the authors determined that NGC 1052DF2s globular clusters are more than twice the size of the Milky Ways globular clusters in the same luminosity range. As is typical for globular clusters, they are an old ( 9.3 billion years) population and metal-poor.Rethinking Formation TheoriesThe long-standing picture of galaxies has closely connected old, metal-poor globular clusters to the galaxies dark-matter halos. Past studies have found that the ratio between the total globular-cluster mass and the overall mass of a galaxy (i.e., all dark + baryonic matter) holds remarkably constant across galaxies its typically 3 x 10-5. This has led researchers to believe that properties of the dark-matter halo may determine globular-cluster formation.The luminosity function of the compact objects in NGC 1052DF2. The red and blue curves show the luminosity functions of globular clusters in the Milky Way and in the typical ultra-diffuse galaxies of the Coma cluster, respectively. NGC 1052DF2s globular clusters peak at a significantly higher luminosity. [Adapted from van Dokkum et al. 2018]NGC 1052DF2, with a globular-cluster mass thats 3% of the mass of the galaxy ( 1000 times the expected ratio!), defies this picture. This unusual galaxy therefore demonstrates that the usual relation between globular-cluster mass and total galaxy mass probably isnt due to a fundamental connection between the dark-matter halo and globular-cluster formation. Instead, van Dokkum and collaborators suggest, globular-cluster formation may ultimately be a baryon-driven process.As with all unexpected discoveries in astronomy, we must now determine whether NGC 1052DF2 is simply a fluke, or whether it represents a new class of object we can expect to find more of. Either way, this unusual galaxy is forcing us to rethink what we know about galaxies and the star clusters they host.CitationPieter van Dokkum et al 2018 ApJL 856 L30. doi:10.3847/2041-8213/aab60b
NASA Astrophysics Data System (ADS)
Armitage, Thomas J.; Barnes, David J.; Kay, Scott T.; Bahé, Yannick M.; Dalla Vecchia, Claudio; Crain, Robert A.; Theuns, Tom
2018-03-01
We use the Cluster-EAGLE simulations to explore the velocity bias introduced when using galaxies, rather than dark matter particles, to estimate the velocity dispersion of a galaxy cluster, a property known to be tightly correlated with cluster mass. The simulations consist of 30 clusters spanning a mass range 14.0 ≤ log10(M200 c/M⊙) ≤ 15.4, with their sophisticated subgrid physics modelling and high numerical resolution (subkpc gravitational softening), making them ideal for this purpose. We find that selecting galaxies by their total mass results in a velocity dispersion that is 5-10 per cent higher than the dark matter particles. However, selecting galaxies by their stellar mass results in an almost unbiased (<5 per cent) estimator of the velocity dispersion. This result holds out to z = 1.5 and is relatively insensitive to the choice of cluster aperture, varying by less than 5 per cent between r500 c and r200 m. We show that the velocity bias is a function of the time spent by a galaxy inside the cluster environment. Selecting galaxies by their total mass results in a larger bias because a larger fraction of objects have only recently entered the cluster and these have a velocity bias above unity. Galaxies that entered more than 4 Gyr ago become progressively colder with time, as expected from dynamical friction. We conclude that velocity bias should not be a major issue when estimating cluster masses from kinematic methods.
The Universe at Moderate Redshift
NASA Technical Reports Server (NTRS)
Cen, Renyue; Ostriker, Jeremiah P.
1997-01-01
The report covers the work done in the past year and a wide range of fields including properties of clusters of galaxies; topological properties of galaxy distributions in terms of galaxy types; patterns of gravitational nonlinear clustering process; development of a ray tracing algorithm to study the gravitational lensing phenomenon by galaxies, clusters and large-scale structure, one of whose applications being the effects of weak gravitational lensing by large-scale structure on the determination of q(0); the origin of magnetic fields on the galactic and cluster scales; the topological properties of Ly(alpha) clouds the Ly(alpha) optical depth distribution; clustering properties of Ly(alpha) clouds; and a determination (lower bound) of Omega(b) based on the observed Ly(alpha) forest flux distribution. In the coming year, we plan to continue the investigation of Ly(alpha) clouds using larger dynamic range (about a factor of two) and better simulations (with more input physics included) than what we have now. We will study the properties of galaxies on 1 - 100h(sup -1) Mpc scales using our state-of-the-art large scale galaxy formation simulations of various cosmological models, which will have a resolution about a factor of 5 (in each dimension) better than our current, best simulations. We will plan to study the properties of X-ray clusters using unprecedented, very high dynamic range (20,000) simulations which will enable us to resolve the cores of clusters while keeping the simulation volume sufficiently large to ensure a statistically fair sample of the objects of interest. The details of the last year's works are now described.
NASA Astrophysics Data System (ADS)
Benson, Bryant Joseph
Context: Galaxy clusters are the most massive gravitationally bound structures in the universe and are formed through the process of hierarchical clustering, in which smaller systems undergo a series of mergers to form ever larger clusters. Because of the masses involved, mergers between these giants provide a unique laboratory for observing many interesting astrophysical processes. These merging systems also act as large dark matter colliders, because the dark matter halos of the clusters involved pass through each other during of the merger. This offers us a means to observe if dark matter-dark matter collisions result in momentum exchange beyond what occurs from gravity alone. Such observations can help us to unravel some of the mysteries behind dark matter, such as does it interact with itself through mechanisms beyond gravity, and how strong are those interactions. Answers to questions like these are what will eventually allow us to discover what dark matter really is. However, the extremely long time scales for these mergers (˜several billion years) make each observation a single snapshot in the long merger history, and we must infer many of the details necessary for understanding the full merger process. Furthermore, current weak lensing analyses lack the precision required to detect a signal from self-interacting dark matter. Uncertain weak lensing mass and position estimates also yield large uncertainties in the dynamical reconstruction of the merger scenarios. Need: In order to better model the dynamics of merging galaxy cluster systems, and to potentially measure any signal from self-interacting dark matter, we need to obtain more precise measurements on the masses and positions of the dark matter halos involved. Gravitational lensing offers a robust method for mapping the mass in these clusters because it directly measures the gravitational field, and does not depend on the dynamical state of the system that has been disturbed in the merger process. Of the lensing methods, weak gravitational lensing is the only way that we can probe a wide field and measure the total mass of the cluster. However, the precision of conventional weak lensing techniques is currently limited by shape noise (uncertainty in the shear due to the dispersion in the intrinsic shapes and orientations of unlensed galaxies). A possible avenue forward is to eliminate shape noise as a source of uncertainty in shear measurements via a technique to be described below. This would eliminate the largest source of uncertainty in weak lensing analyses, and enable us to obtain mass and position estimates of dark matter halos with a much higher level of precision. Task: In this dissertation we perform statistical clustering, conventional weak lensing analyses, and dynamical reconstruction on the merging galaxy cluster system ZwCl 2341.1+0000 in order to test the capabilities of the dynamical modeling on a complex, multiple merger. We use targeted optical spectroscopy to identify cluster member galaxies, which we then use to model the galaxy substructures. We also obtain a dynamical mass estimate using the galaxy velocity dispersions, and perform weak lensing analyses in the forms of aperture densitometry to place an upper bound on the total cluster mass, and multiple NFW profile halo fitting to approximate the masses and positions of the individual dark matter halos present in the merger. The masses, positions, and line of sight velocities of those clusters are then used to constrain the parameters describing the best fit merger scenario, with radio relic positions and polarization used to further tighten those constraints. We also develop a new method for obtaining weak lensing data from individual source galaxies in the form of shear measurements that are independent of shape noise, and direct measurements of the convergence. We accomplish this by simultaneously modeling the pre-lensing velocity and intensity profiles of a lensed, rotating disk galaxy, and the lensing transform required to distort those into the lensed profiles we observe. We test this method with a host of idealized simulations to characterize its capabilities in a best-case scenario and forecast the possible improvements it can bring to the precision of weak lensing analyses on galaxy clusters. (Abstract shortened by ProQuest.).
NASA Astrophysics Data System (ADS)
Schellenberger, G.; Reiprich, T. H.
2017-08-01
The X-ray regime, where the most massive visible component of galaxy clusters, the intracluster medium, is visible, offers directly measured quantities, like the luminosity, and derived quantities, like the total mass, to characterize these objects. The aim of this project is to analyse a complete sample of galaxy clusters in detail and constrain cosmological parameters, like the matter density, Ωm, or the amplitude of initial density fluctuations, σ8. The purely X-ray flux-limited sample (HIFLUGCS) consists of the 64 X-ray brightest galaxy clusters, which are excellent targets to study the systematic effects, that can bias results. We analysed in total 196 Chandra observations of the 64 HIFLUGCS clusters, with a total exposure time of 7.7 Ms. Here, we present our data analysis procedure (including an automated substructure detection and an energy band optimization for surface brightness profile analysis) that gives individually determined, robust total mass estimates. These masses are tested against dynamical and Planck Sunyaev-Zeldovich (SZ) derived masses of the same clusters, where good overall agreement is found with the dynamical masses. The Planck SZ masses seem to show a mass-dependent bias to our hydrostatic masses; possible biases in this mass-mass comparison are discussed including the Planck selection function. Furthermore, we show the results for the (0.1-2.4) keV luminosity versus mass scaling relation. The overall slope of the sample (1.34) is in agreement with expectations and values from literature. Splitting the sample into galaxy groups and clusters reveals, even after a selection bias correction, that galaxy groups exhibit a significantly steeper slope (1.88) compared to clusters (1.06).
Unveiling the Dynamical State of Massive Clusters through the ICL Fraction
NASA Astrophysics Data System (ADS)
Jiménez-Teja, Yolanda; Dupke, Renato; Benítez, Narciso; Koekemoer, Anton M.; Zitrin, Adi; Umetsu, Keiichi; Ziegler, Bodo L.; Frye, Brenda L.; Ford, Holland; Bouwens, Rychard J.; Bradley, Larry D.; Broadhurst, Thomas; Coe, Dan; Donahue, Megan; Graves, Genevieve J.; Grillo, Claudio; Infante, Leopoldo; Jouvel, Stephanie; Kelson, Daniel D.; Lahav, Ofer; Lazkoz, Ruth; Lemze, Dorom; Maoz, Dan; Medezinski, Elinor; Melchior, Peter; Meneghetti, Massimo; Mercurio, Amata; Merten, Julian; Molino, Alberto; Moustakas, Leonidas A.; Nonino, Mario; Ogaz, Sara; Riess, Adam G.; Rosati, Piero; Sayers, Jack; Seitz, Stella; Zheng, Wei
2018-04-01
We have selected a sample of 11 massive clusters of galaxies observed by the Hubble Space Telescope in order to study the impact of the dynamical state on the intracluster light (ICL) fraction, the ratio of total integrated ICL to the total galaxy member light. With the exception of the Bullet cluster, the sample is drawn from the Cluster Lensing and Supernova Survey and the Frontier Fields program, containing five relaxed and six merging clusters. The ICL fraction is calculated in three optical filters using the CHEFs ICL estimator, a robust and accurate algorithm free of a priori assumptions. We find that the ICL fraction in the three bands is, on average, higher for the merging clusters, ranging between ∼7% and 23%, compared with the ∼2%–11% found for the relaxed systems. We observe a nearly constant value (within the error bars) in the ICL fraction of the regular clusters at the three wavelengths considered, which would indicate that the colors of the ICL and the cluster galaxies are, on average, coincident and, thus, so are their stellar populations. However, we find a higher ICL fraction in the F606W filter for the merging clusters, consistent with an excess of lower-metallicity/younger stars in the ICL, which could have migrated violently from the outskirts of the infalling galaxies during the merger event.
Non-thermal emission and dynamical state of massive galaxy clusters from CLASH sample
NASA Astrophysics Data System (ADS)
Pandey-Pommier, M.; Richard, J.; Combes, F.; Edge, A.; Guiderdoni, B.; Narasimha, D.; Bagchi, J.; Jacob, J.
2016-12-01
Massive galaxy clusters are the most violent large scale structures undergoing merger events in the Universe. Based upon their morphological properties in X-rays, they are classified as un-relaxed and relaxed clusters and often host (a fraction of them) different types of non-thermal radio emitting components, viz., 'haloes', 'mini-haloes', 'relics' and 'phoenix' within their Intra Cluster Medium (ICM). The radio haloes show steep (α = -1.2) and ultra steep (α < -1.5) spectral properties at low radio frequencies, giving important insights on the merger (pre or post) state of the cluster. Ultra steep spectrum radio halo emissions are rare and expected to be the dominating population to be discovered via LOFAR and SKA in the future. Further, the distribution of matter (morphological information), alignment of hot X-ray emitting gas from the ICM with the total mass (dark + baryonic matter) and the bright cluster galaxy (BCG) is generally used to study the dynamical state of the cluster. We present here a multi wavelength study on 14 massive clusters from the CLASH survey and show the correlation between the state of their merger in X-ray and spectral properties (1.4 GHz - 150 MHz) at radio wavelengths. Using the optical data we also discuss about the gas-mass alignment, in order to understand the interplay between dark and baryonic matter in massive galaxy clusters.
MC 2 : galaxy imaging and redshift analysis of the merging cluster Ciza J2242.8+5301
Dawson, William A.; Jee, M. James; Stroe, Andra; ...
2015-05-28
X-ray and radio observations of CIZA J2242.8+5301 suggest that it is a major cluster merger. Despite being well studied in the X-ray, and radio, little has been presented on the cluster structure and dynamics inferred from its galaxy population. We carried out a deep (i < 25) broad band imaging survey of the system with Subaru SuprimeCam (g & i bands) and the Canada France Hawaii Telescope (r band) as well as a comprehensive spectroscopic survey of the cluster area (505 redshifts) using Keck DEIMOS. We use this data to perform a comprehensive galaxy/redshift analysis of the system, which ismore » the first step to a proper understanding the geometry and dynamics of the merger, as well as using the merger to constrain self-interacting dark matter.« less
Disentangling the Dynamical Mechanisms for Cluster Galaxy Evolution
2008-02-01
reversible energy and angular momentum exchange between the density wave and the disk matter and the outward transport of these exchanged energy and angular...elapsed time for a smaller z as well. Yet the argument should hold no matter what observation epoch one uses, as long as one concentrates to the regions... matter (CDM) paradigm, galaxy mergers are the preferred means of morphological evolution of galaxies in clusters (see, e.g., Kauffmann 1995). Even though
Multicolor photometry of the merging galaxy cluster A2319: Dynamics and star formation properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Peng-Fei; Yuan, Qi-Rong; Zhang, Li
2014-05-01
Asymmetric X-ray emission and a powerful cluster-scale radio halo indicate that A2319 is a merging cluster of galaxies. This paper presents our multicolor photometry for A2319 with 15 optical intermediate filters in the Beijing-Arizona-Taiwan-Connecticut (BATC) system. There are 142 galaxies with known spectroscopic redshifts within the viewing field of 58' × 58' centered on this rich cluster, including 128 member galaxies (called sample I). A large velocity dispersion in the rest frame, 1622{sub −70}{sup +91} km s{sup –1}, suggests merger dynamics in A2319. The contour map of projected density and localized velocity structure confirm the so-called A2319B substructure, at ∼10'more » northwest to the main concentration A2319A. The spectral energy distributions (SEDs) of more than 30,000 sources are obtained in our BATC photometry down to V ∼ 20 mag. A u-band (∼3551 Å) image with better seeing and spatial resolution, obtained with the Bok 2.3 m telescope at Kitt Peak, is taken to make star-galaxy separation and distinguish the overlapping contamination in the BATC aperture photometry. With color-color diagrams and photometric redshift technique, 233 galaxies brighter than h {sub BATC} = 19.0 are newly selected as member candidates after an exclusion of false candidates with contaminated BATC SEDs by eyeball-checking the u-band Bok image. The early-type galaxies are found to follow a tight color-magnitude correlation. Based on sample I and the enlarged sample of member galaxies (called sample II), subcluster A2319B is confirmed. The star formation properties of cluster galaxies are derived with the evolutionary synthesis model, PEGASE, assuming a Salpeter initial mass function and an exponentially decreasing star formation rate (SFR). A strong environmental effect on star formation histories is found in the manner that galaxies in the sparse regions have various star formation histories, while galaxies in the dense regions are found to have shorter SFR time scales, older stellar ages, and higher interstellar medium metallicities. For the merging cluster A2319, local surface density is a better environmental indicator rather than the cluster-centric distance. Compared with the well-relaxed cluster A2589, a higher fraction of star-forming galaxies is found in A2319, indicating that the galaxy-scale turbulence stimulated by the subcluster merger might have played a role in triggering the star formation activity.« less
A SYSTEMATIC ANALYSIS OF CAUSTIC METHODS FOR GALAXY CLUSTER MASSES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gifford, Daniel; Miller, Christopher; Kern, Nicholas
We quantify the expected observed statistical and systematic uncertainties of the escape velocity as a measure of the gravitational potential and total mass of galaxy clusters. We focus our attention on low redshift (z {<=}0.15) clusters, where large and deep spectroscopic datasets currently exist. Utilizing a suite of Millennium Simulation semi-analytic galaxy catalogs, we find that the dynamical mass, as traced by either the virial relation or the escape velocity, is robust to variations in how dynamical friction is applied to ''orphan'' galaxies in the mock catalogs (i.e., those galaxies whose dark matter halos have fallen below the resolution limit).more » We find that the caustic technique recovers the known halo masses (M{sub 200}) with a third less scatter compared to the virial masses. The bias we measure increases quickly as the number of galaxies used decreases. For N{sub gal} > 25, the scatter in the escape velocity mass is dominated by projections along the line-of-sight. Algorithmic uncertainties from the determination of the projected escape velocity profile are negligible. We quantify how target selection based on magnitude, color, and projected radial separation can induce small additional biases into the escape velocity masses. Using N{sub gal} = 150 (25), the caustic technique has a per cluster scatter in ln (M|M{sub 200}) of 0.3 (0.5) and bias 1% {+-} 3{r_brace} (16% {+-} 5{r_brace}) for clusters with masses >10{sup 14} M{sub Sun} at z < 0.15.« less
The SAMI Galaxy Survey: the cluster redshift survey, target selection and cluster properties
NASA Astrophysics Data System (ADS)
Owers, M. S.; Allen, J. T.; Baldry, I.; Bryant, J. J.; Cecil, G. N.; Cortese, L.; Croom, S. M.; Driver, S. P.; Fogarty, L. M. R.; Green, A. W.; Helmich, E.; de Jong, J. T. A.; Kuijken, K.; Mahajan, S.; McFarland, J.; Pracy, M. B.; Robotham, A. G. S.; Sikkema, G.; Sweet, S.; Taylor, E. N.; Verdoes Kleijn, G.; Bauer, A. E.; Bland-Hawthorn, J.; Brough, S.; Colless, M.; Couch, W. J.; Davies, R. L.; Drinkwater, M. J.; Goodwin, M.; Hopkins, A. M.; Konstantopoulos, I. S.; Foster, C.; Lawrence, J. S.; Lorente, N. P. F.; Medling, A. M.; Metcalfe, N.; Richards, S. N.; van de Sande, J.; Scott, N.; Shanks, T.; Sharp, R.; Thomas, A. D.; Tonini, C.
2017-06-01
We describe the selection of galaxies targeted in eight low-redshift clusters (APMCC0917, A168, A4038, EDCC442, A3880, A2399, A119 and A85; 0.029 < z < 0.058) as part of the Sydney-AAO Multi-Object Integral field spectrograph Galaxy Survey (SAMI-GS). We have conducted a redshift survey of these clusters using the AAOmega multi-object spectrograph on the 3.9-m Anglo-Australian Telescope. The redshift survey is used to determine cluster membership and to characterize the dynamical properties of the clusters. In combination with existing data, the survey resulted in 21 257 reliable redshift measurements and 2899 confirmed cluster member galaxies. Our redshift catalogue has a high spectroscopic completeness (˜94 per cent) for rpetro ≤ 19.4 and cluster-centric distances R < 2R200. We use the confirmed cluster member positions and redshifts to determine cluster velocity dispersion, R200, virial and caustic masses, as well as cluster structure. The clusters have virial masses 14.25 ≤ log(M200/M⊙) ≤ 15.19. The cluster sample exhibits a range of dynamical states, from relatively relaxed-appearing systems, to clusters with strong indications of merger-related substructure. Aperture- and point spread function matched photometry are derived from Sloan Digital Sky Survey and VLT Survey Telescope/ATLAS imaging and used to estimate stellar masses. These estimates, in combination with the redshifts, are used to define the input target catalogue for the cluster portion of the SAMI-GS. The primary SAMI-GS cluster targets have R
The Dynamical Properties of Virgo Cluster Disk Galaxies
NASA Astrophysics Data System (ADS)
Ouellette, N. N. Q.; Courteau, S.; Holtzman, J. A.; Dalcanton, J. J.; McDonald, M.; Zhu, Y.
2014-03-01
By virtue of its proximity, the Virgo Cluster is an ideal laboratory for testing our understanding of structure formation in the Universe. In this spirit, we present a dynamical study of Virgo galaxies as part of the Spectroscopic and H-band Imaging of Virgo (SHIVir) survey. Hα rotation curves (RC) for our gas-rich galaxies were modeled with a multi-parameter fit function from which various velocity measurements were inferred. Our study takes advantage of archival and our own new data as we aim to compile the largest Tully-Fisher relation (TFR) for a cluster to date. Extended velocity dispersion profiles (VDP) are integrated over varying aperture sizes to extract representative velocity dispersions (VDs) for gas-poor galaxies. Considering the lack of a common standard for the measurement of a fiducial galaxy VD in the literature, we rectify this situation by determining the radius at which the measured VD yields the tightest Fundamental Plane (FP). We found that radius to be at least 1 Re, which exceeds the extent of most dispersion profiles in other works.
Spheroidal Populated Star Systems
NASA Astrophysics Data System (ADS)
Angeletti, Lucio; Giannone, Pietro
2008-10-01
Globular clusters and low-ellipticity early-type galaxies can be treated as systems populated by a large number of stars and whose structures can be schematized as spherically symmetric. Their studies profit from the synthesis of stellar populations. The computation of synthetic models makes use of various contributions from star evolution and stellar dynamics. In the first sections of the paper we present a short review of our results on the occurrence of galactic winds in star systems ranging from globular clusters to elliptical galaxies, and the dynamical evolution of a typical massive globular cluster. In the subsequent sections we describe our approach to the problem of the stellar populations in elliptical galaxies. The projected radial behaviours of spectro-photometric indices for a sample of eleven galaxies are compared with preliminary model results. The best agreement between observation and theory shows that our galaxies share a certain degree of heterogeneity. The gas energy dissipation varies from moderate to large, the metal yield ranges from solar to significantly oversolar, the dispersion of velocities is isotropic in most of the cases and anisotropic in the remaining instances.
Dark Matter Halos with VIRUS-P
NASA Astrophysics Data System (ADS)
Murphy, Jeremy; Gebhardt, K.
2010-05-01
We present new, two-dimensional stellar kinematic data on several of the most massive galaxies in the local universe. These data were taken with the integral field spectrograph, VIRUS-P, and extend to unprecedented radial distances. Once robust stellar kinematics are in hand, we run orbit-based axisymmetric dynamical models in order to constrain the stellar mass-to-light ratio and dark matter halo parameters. We have run a large set of dynamical models on the second rank galaxy in the Virgo cluster, M87, and find clear evidence for a massive dark matter halo. The two-dimensional stellar kinematics for several of our other targets, all first and second rank galaxies, are also presented. Dark matter halos are known to dominate the mass profile of elliptical galaxies somewhere between one to two effective radii, yet due to the low surface brightness at these radial distances, determining stellar dynamics is technologically challenging. To overcome this, constraints on the dark matter halo are often made with planetary nebulae or globular clusters at large radii. However, as results from different groups have returned contradictory results, it remains unclear whether different dynamical tracers always follow the stellar kinematics. Due to VIRUS-P's large field of view and on-sky fiber diameter, we are able to determine stellar kinematics at radial distances that overlap with other dynamical tracers. Understanding what the dynamics of stars, planetary nebula and globular clusters tell us about both the extent of the dark matter halo profile and the formation histories of the largest elliptical galaxies is a primary science driver for this work.
Distributions of Gas and Galaxies from Galaxy Clusters to Larger Scales
NASA Astrophysics Data System (ADS)
Patej, Anna
2017-01-01
We address the distributions of gas and galaxies on three scales: the outskirts of galaxy clusters, the clustering of galaxies on large scales, and the extremes of the galaxy distribution. In the outskirts of galaxy clusters, long-standing analytical models of structure formation and recent simulations predict the existence of density jumps in the gas and dark matter profiles. We use these features to derive models for the gas density profile, obtaining a simple fiducial model that is in agreement with both observations of cluster interiors and simulations of the outskirts. We next consider the galaxy density profiles of clusters; under the assumption that the galaxies in cluster outskirts follow similar collisionless dynamics as the dark matter, their distribution should show a steep jump as well. We examine the profiles of a low-redshift sample of clusters and groups, finding evidence for the jump in some of these clusters. Moving to larger scales where massive galaxies of different types are expected to trace the same large-scale structure, we present a test of this prediction by measuring the clustering of red and blue galaxies at z 0.6, finding low stochasticity between the two populations. These results address a key source of systematic uncertainty - understanding how target populations of galaxies trace large-scale structure - in galaxy redshift surveys. Such surveys use baryon acoustic oscillations (BAO) as a cosmological probe, but are limited by the expense of obtaining sufficiently dense spectroscopy. With the intention of leveraging upcoming deep imaging data, we develop a new method of detecting the BAO in sparse spectroscopic samples via cross-correlation with a dense photometric catalog. This method will permit the extension of BAO measurements to higher redshifts than possible with the existing spectroscopy alone. Lastly, we connect galaxies near and far: the Local Group dwarfs and the high redshift galaxies observed by Hubble and Spitzer. We examine how the local dwarfs may have appeared in the past and compare their properties to the detection limits of the upcoming James Webb Space Telescope (JWST), finding that JWST should be able to detect galaxies similar to the progenitors of a few of the brightest of the local galaxies, revealing a hitherto unobserved population of galaxies at high redshifts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGlynn, T.A.; Ostriker, J.P.
1980-11-01
If the luminosity of supergiant cD galaxies in particular, and the Bautz-Morgan sequence of galaxy types in general, is produced by dynamical evolutionary processes, then one expects to find a correlation between dynamical times and ..delta..M/sub 12/, the magnitude difference between first and second brightest cluster members.
An Optical and X-Ray Study of Abell 576, a Galaxy Cluster with a Cold Core
NASA Astrophysics Data System (ADS)
Mohr, Joseph J.; Geller, Margaret J.; Fabricant, Daniel G.; Wegner, Gary; Thorstensen, John; Richstone, Douglas O.
1996-10-01
We analyze the galaxy population and dynamics of the galaxy cluster A576; the observational constraints include 281 redshifts (230 new), R- band CCD galaxy photometry over a 2 h^-1^ Mpc x 2 h^-1^ Mpc region centered on the cluster, an Einstein IPC X-ray image, and an Einstein MPC X-ray spectrum. We focus on an 86% complete magnitude-limited sample (R_23.5_ < 17) of 169 cluster galaxies. The cluster galaxies with emission lines in their spectra have a larger velocity dispersion and are significantly less clustered on this 2 h^-1^ Mpc scale than galaxies without emission lines. We show that excluding the emission-line galaxies from the cluster sample decreases the velocity dispersion by 18% and the virial mass estimate by a factor of 2. The central cluster region contains a nonemission galaxy population and an intracluster medium which is significantly cooler (σ_core_ = 387_-105_^+250^ km s^-1^ and T_x_ = 1.6_-0.3_^+0.4^ keV at 90% confidence) than the global populations (σ = 977_-96_^+124^ km s^- 1^ for the nonemission population and T_X_ > 4 keV at 90% confidence). Because (1) the low-dispersion galaxy population is no more luminous than the global population and (2) the evidence for a cooling flow is weak, we suggest that the core of A576 may contain the remnants of a lower mass subcluster. We examine the cluster mass, baryon fraction, and luminosity function. The cluster virial mass varies significantly depending on the galaxy sample used. Consistency between the hydrostatic and virial estimators can be achieved if (1) the gas temperature at r~1 h^-1^ Mpc is T_X_ ~ 8 keV (the best-fit value) and (2) several velocity outliers are excluded from the virial calculation. Although the best-fit Schechter function parameters and the ratio of galaxy to gas mass in A576 are typical of other clusters, the baryon fraction is relatively low. Using the consistent cluster binding mass, we show that the gas mass fraction is ~3 h^-3/2^% and the baryon fraction is ~4%.
Detection and Characterization of Galaxy Systems at Intermediate Redshift.
NASA Astrophysics Data System (ADS)
Barrena, Rafael
2004-11-01
This thesis is divided into two very related parts. In the first part we implement and apply a galaxy cluster detection method, based on multiband observations in visible. For this purpose, we use a new algorithm, the Voronoi Galaxy Cluster Finder, which identifies overdensities over a Poissonian field of objects. By applying this algorithm over four photometric bands (B, V, R and I) we reduce the possibility of detecting galaxy projection effects and spurious detections instead of real galaxy clusters. The B, V, R and I photometry allows a good characterization of galaxy systems. Therefore, we analyze the colour and early-type sequences in the colour-magnitude diagrams of the detected clusters. This analysis helps us to confirm the selected candidates as actual galaxy systems. In addition, by comparing observational early-type sequences with a semiempirical model we can estimate a photometric redshift for the detected clusters. We will apply this detection method on four 0.5x0.5 square degrees areas, that partially overlap the Postman Distant Cluster Survey (PDCS). The observations were performed as part of the International Time Programme 1999-B using the Wide Field Camera mounted at Isaac Newton Telescope (Roque de los Muchachos Observatory, La Palma island, Spain). The B and R data obtained were completed with V and I photometry performed by Marc Postman. The comparison of our cluster catalogue with that of PDCS reveals that our work is a clear improvement in the cluster detection techniques. Our method efficiently selects galaxy clusters, in particular low mass galaxy systems, even at relative high redshift, and estimate a precise photometric redshift. The validation of our method comes by observing spectroscopically several selected candidates. By comparing photometric and spectroscopic redshifts we conclude: 1) our photometric estimation method gives an precision lower than 0.1; 2) our detection technique is even able to detect galaxy systems at z~0.7 using visible photometric bands. In the second part of this thesis we analyze in detail the dynamical state of 1E0657-56 (z=0.296), a hot galaxy cluster with strong X-ray and radio emissions. Using spectroscopic and photometric observations in visible (obtained with the New Technology Telescope and the Very Large Telescope, both located at La Silla Observatory, Chile) we analyze the velocity field, morphology, colour and star formation in the galaxy population of this cluster. 1E0657-56 is involved in a collision event. We identify the substructure involved in this collision and we propose a dynamical model that allows us to investigate the origins of X-ray and radio emissions and the relation between them. The analysis of 1E0657-56 presented in this thesis constitutes a good example of what kind of properties could be studied in some of the clusters catalogued in first part of this thesis. In addition, the detailed analysis of this cluster represents an improvement in the study of the origin of X-ray and radio emissions and merging processes in galaxy clusters.
Dynamical theory of dense groups of galaxies
NASA Technical Reports Server (NTRS)
Mamon, Gary A.
1990-01-01
It is well known that galaxies associate in groups and clusters. Perhaps 40% of all galaxies are found in groups of 4 to 20 galaxies (e.g., Tully 1987). Although most groups appear to be so loose that the galaxy interactions within them ought to be insignificant, the apparently densest groups, known as compact groups appear so dense when seen in projection onto the plane of the sky that their members often overlap. These groups thus appear as dense as the cores of rich clusters. The most popular catalog of compact groups, compiled by Hickson (1982), includes isolation among its selection critera. Therefore, in comparison with the cores of rich clusters, Hickson's compact groups (HCGs) appear to be the densest isolated regions in the Universe (in galaxies per unit volume), and thus provide in principle a clean laboratory for studying the competition of very strong gravitational interactions. The $64,000 question here is then: Are compact groups really bound systems as dense as they appear? If dense groups indeed exist, then one expects that each of the dynamical processes leading to the interaction of their member galaxies should be greatly enhanced. This leads us to the questions: How stable are dense groups? How do they form? And the related question, fascinating to any theorist: What dynamical processes predominate in dense groups of galaxies? If HCGs are not bound dense systems, but instead 1D change alignments (Mamon 1986, 1987; Walke & Mamon 1989) or 3D transient cores (Rose 1979) within larger looser systems of galaxies, then the relevant question is: How frequent are chance configurations within loose groups? Here, the author answers these last four questions after comparing in some detail the methods used and the results obtained in the different studies of dense groups.
NASA Astrophysics Data System (ADS)
Steinhardt, Charles; Jauzac, Mathilde; Capak, Peter; Koekemoer, Anton; Oesch, Pascal; Richard, Johan; Sharon, Keren q.; BUFFALO
2018-01-01
Beyond Ultra-deep Frontier Fields And Legacy Observations (BUFFALO) is an astronomical survey built around the six Hubble Space Telescope (HST) Frontier Fields clusters designed to learn about early galactic assembly and clustering and prepare targets for observations with the James Webb Space Telescope. BUFFALO will place significant new constraints on how and when the most massive and luminous galaxies in the universe formed and how early galaxy formation is linked to dark matter assembly. The same data will also probe the temperature and cross section of dark matter in the massive Frontier Fields galaxy clusters, and tell us how the dark matter, cluster gas, and dynamics of the clusters influence the galaxies in and around them. These studies are possible because the Spitzer Space Telescope, Chandra X-ray Observatory, XMM-Newton, and ground based telescopes have already invested heavily in deep observations around the Frontier Fields, so that the addition of HST observations can yield significant new results.
Dynamical history of a binary cluster: Abell 3653
NASA Astrophysics Data System (ADS)
Caglar, Turgay; Hudaverdi, Murat
2017-12-01
We study the dynamical structure of a bimodal galaxy cluster Abell 3653 at z = 0.1089 using optical and X-ray data. Observations include archival data from the Anglo-Australian Telescope, X-ray observatories XMM-Newton and Chandra. We draw a global picture for A3653 using galaxy density, X-ray luminosity and temperature maps. The galaxy distribution has a regular morphological shape at the 3 Mpc size. The galaxy density map shows an elongation in the east-west direction, which perfectly aligns with the extended diffuse X-ray emission. We detect two dominant groups around the two brightest cluster galaxies (BCGs). BCG1 (z = 0.1099) can be associated with the main cluster A3653E, and a foreground subcluster A3653W is concentrated at BCG2 (z = 0.1075). Both X-ray peaks are dislocated from the BCGs by ∼35 kpc, which suggest an ongoing merger process. We measure the subcluster gas temperatures of 4.67 and 3.66 keV, respectively. Two-body dynamical analysis shows that A3653E and A3653W are very likely gravitationally bound (93.5 per cent probability). The highly favoured scenario suggests that the two subclusters have a mass ratio of 1.4 and are colliding close to the plane of sky (α = 17.61°) at 2400 km s-1, and will undergo core passage in 380 Myr. The temperature map also significantly shows a shock-heated gas (6.16 keV) between the subclusters, which confirms the supersonic infalling scenario.
Massive Star Clusters in Ongoing Galaxy Interactions: Clues to Cluster Formation
NASA Astrophysics Data System (ADS)
Keel, William C.; Borne, Kirk D.
2003-09-01
We present HST WFPC2 observations, supplemented by ground-based Hα data, of the star-cluster populations in two pairs of interacting galaxies selected for being in very different kinds of encounters seen at different stages. Dynamical information and n-body simulations provide the details of encounter geometry, mass ratio, and timing. In NGC 5752/4 we are seeing a weak encounter, well past closest approach, after about 2.5×108 yr. The large spiral NGC 5754 has a normal population of disk clusters, while the fainter companion NGC 5752 exhibits a rich population of luminous clusters with a flatter luminosity function. The strong, ongoing encounter in NGC 6621/2, seen about 1.0×108 yr past closest approach between roughly equal-mass galaxies, has produced an extensive population of luminous clusters, particularly young and luminous in a small region between the two nuclei. This region is dynamically interesting, with such a strong perturbation in the velocity field that the rotation curve reverses sign. From these results, in comparison with other strongly interacting systems discussed in the literature, cluster formation requires a threshold level of perturbation, with stage of the interaction a less important factor. The location of the most active star formation in NGC 6621/2 draws attention to a possible role for the Toomre stability threshold in shaping star formation in interacting galaxies. The rich cluster populations in NGC 5752 and NGC 6621 show that direct contact between gas-rich galaxy disks is not a requirement to form luminous clusters and that they can be triggered by processes happening within a single galaxy disk (albeit triggered by external perturbations). Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott, Nicholas; Graham, Alister W.
2013-02-15
We investigate whether or not nuclear star clusters and supermassive black holes (SMBHs) follow a common set of mass scaling relations with their host galaxy's properties, and hence can be considered to form a single class of central massive object (CMO). We have compiled a large sample of galaxies with measured nuclear star cluster masses and host galaxy properties from the literature and fit log-linear scaling relations. We find that nuclear star cluster mass, M {sub NC}, correlates most tightly with the host galaxy's velocity dispersion: log M {sub NC} = (2.11 {+-} 0.31)log ({sigma}/54) + (6.63 {+-} 0.09), butmore » has a slope dramatically shallower than the relation defined by SMBHs. We find that the nuclear star cluster mass relations involving host galaxy (and spheroid) luminosity and stellar and dynamical mass, intercept with but are in general shallower than the corresponding black hole scaling relations. In particular, M {sub NC}{proportional_to}M {sup 0.55{+-}0.15} {sub Gal,dyn}; the nuclear cluster mass is not a constant fraction of its host galaxy or spheroid mass. We conclude that nuclear stellar clusters and SMBHs do not form a single family of CMOs.« less
CONSTRAINTS ON MACHO DARK MATTER FROM COMPACT STELLAR SYSTEMS IN ULTRA-FAINT DWARF GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brandt, Timothy D.
2016-06-20
I show that a recently discovered star cluster near the center of the ultra-faint dwarf galaxy Eridanus II provides strong constraints on massive compact halo objects (MACHOs) of ≳5 M {sub ⊙} as the main component of dark matter. MACHO dark matter will dynamically heat the cluster, driving it to larger sizes and higher velocity dispersions until it dissolves into its host galaxy. The stars in compact ultra-faint dwarf galaxies themselves will be subject to the same dynamical heating; the survival of at least 10 such galaxies places independent limits on MACHO dark matter of masses ≳10 M {sub ⊙}.more » Both Eri II’s cluster and the compact ultra-faint dwarfs are characterized by stellar masses of just a few thousand M {sub ⊙} and half-light radii of 13 pc (for the cluster) and ∼30 pc (for the ultra-faint dwarfs). These systems close the ∼20–100 M {sub ⊙} window of allowed MACHO dark matter and combine with existing constraints from microlensing, wide binaries, and disk kinematics to rule out dark matter composed entirely of MACHOs from ∼10{sup −7} M {sub ⊙} up to arbitrarily high masses.« less
The rise and fall of star formation in z ~ 0.2 merging galaxy clusters
Stroe, Andra; Sobral, David; Dawson, William; ...
2015-04-20
CIZA J2242.8+5301 (‘Sausage’) and 1RXS J0603.3+4213 (‘Toothbrush’) are two low-redshift (z ~ 0.2), massive (~2 × 10 15 M ⊙), post-core passage merging clusters, which host-shock waves traced by diffuse radio emission. To study their star formation properties, we uniformly survey the ‘Sausage’ and ‘Toothbrush’ clusters in broad- and narrow-band filters and select a sample of 201 and 463 line emitters, down to a rest-frame equivalent width (13 Å). Here, we robustly separate between Hα and higher redshift emitters using a combination of optical multiband (B, g, V, r, i, z) and spectroscopic data. We build Hα luminosity functions formore » the entire cluster region, near the shock fronts, and away from the shock fronts and find striking differences between the two clusters. In the dynamically younger, 1 Gyr old ‘Sausage’ cluster we find numerous (59) Hα emitters above a star formation rate (SFR) of 0.17 M ⊙ yr -1 surprisingly located in close proximity to the shock fronts, embedded in very hot intracluster medium plasma. The SFR density for the cluster population is at least at the level of typical galaxies at z ~ 2. Down to the same SFR, the possibly dynamically more evolved ‘Toothbrush’ cluster has only nine Hα galaxies. The cluster Hα galaxies fall on the SFR–stellar mass relation z ~ 0.2 for the field. However, the ‘Sausage’ cluster has an Hα emitter density >20 times that of blank fields. If the shock passes through gas-rich cluster galaxies, the compressed gas could collapse into dense clouds and excite star formation for a few 100 Myr. Finally, this process ultimately leads to a rapid consumption of the molecular gas, accelerating the transformation of gas-rich field spirals into cluster S0s or ellipticals.« less
Kinematics of AWM and MKW Poor Clusters
NASA Astrophysics Data System (ADS)
Koranyi, Daniel M.; Geller, Margaret J.
2002-01-01
We have measured 1365 redshifts to a limiting magnitude of R~15.5 in 15 AWM/MKW clusters and have collected another 203 from the literature in MKW 4s, MKW 2, and MKW 2s. In AWM 7 we have extended the redshift sample to R~18 in the cluster center. We have identified 704 cluster members in 17 clusters; 201 are newly identified. We summarize the kinematics and distributions of the cluster galaxies and provide an initial discussion of substructure, mass and luminosity segregation, spectral segregation, velocity-dispersion profiles, and the relation of the central galaxy to global cluster properties. We compute optical mass estimates, which we compare with X-ray mass determinations from the literature. The clusters are in a variety of dynamical states, reflected in the three classes of behavior of the velocity-dispersion profile in the core: rising, falling, or flat/ambiguous. The velocity dispersion of the emission-line galaxy population significantly exceeds that of the absorption-line galaxies in almost all of the clusters, and the presence of emission-line galaxies at small projected radii suggests continuing infall of galaxies onto the clusters. The presence of a cD galaxy does not constrain the global cluster properties; these clusters are similar to other poor clusters that contain no cD. We use the similarity of the velocity-dispersion profiles at small radii and the cD-like galaxies' internal velocity dispersions to argue that cD formation is a local phenomenon. Our sample establishes an empirical observational baseline of poor clusters for comparison with simulations of similar systems. Observations reported in this paper were obtained at the Multiple Mirror Telescope Observatory, a facility operated jointly by the University of Arizona and the Smithsonian Institution; at the Whipple Observatory, a facility operated jointly by the Smithsonian Astrophysical Observatory and Harvard University; and at the WIYN Observatory, a joint facility of the University of Wisconsin-Madison, Indiana University, Yale University, and the National Optical Astronomy Observatories.
Dark Matter in Ultra-diffuse Galaxies in the Virgo Cluster from Their Globular Cluster Populations
NASA Astrophysics Data System (ADS)
Toloba, Elisa; Lim, Sungsoon; Peng, Eric; Sales, Laura V.; Guhathakurta, Puragra; Mihos, J. Christopher; Côté, Patrick; Boselli, Alessandro; Cuillandre, Jean-Charles; Ferrarese, Laura; Gwyn, Stephen; Lançon, Ariane; Muñoz, Roberto; Puzia, Thomas
2018-04-01
We present Keck/DEIMOS spectroscopy of globular clusters (GCs) around the ultra-diffuse galaxies (UDGs) VLSB‑B, VLSB‑D, and VCC615 located in the central regions of the Virgo cluster. We spectroscopically identify 4, 12, and 7 GC satellites of these UDGs, respectively. We find that the three UDGs have systemic velocities (V sys) consistent with being in the Virgo cluster, and that they span a wide range of velocity dispersions, from ∼16 to ∼47 km s‑1, and high dynamical mass-to-light ratios within the radius that contains half the number of GCs ({407}-407+916, {21}-11+15, {60}-38+65, respectively). VLSB‑D shows possible evidence for rotation along the stellar major axis and its V sys is consistent with that of the massive galaxy M84 and the center of the Virgo cluster itself. These findings, in addition to having a dynamically and spatially (∼1 kpc) off-centered nucleus and being extremely elongated, suggest that VLSB‑D could be tidally perturbed. On the contrary, VLSB‑B and VCC615 show no signs of tidal deformation. Whereas the dynamics of VLSB‑D suggest that it has a less massive dark matter halo than expected for its stellar mass, VLSB‑B and VCC615 are consistent with a ∼1012 M ⊙ dark matter halo. Although our samples of galaxies and GCs are small, these results suggest that UDGs may be a diverse population, with their low surface brightnesses being the result of very early formation, tidal disruption, or a combination of the two.
NASA Astrophysics Data System (ADS)
Bogdán, Ákos; Lovisari, Lorenzo; Volonteri, Marta; Dubois, Yohan
2018-01-01
Supermassive black holes (BHs) residing in the brightest cluster galaxies are over-massive relative to the stellar bulge mass or central stellar velocity dispersion of their host galaxies. As BHs residing at the bottom of the galaxy cluster’s potential well may undergo physical processes that are driven by the large-scale characteristics of the galaxy clusters, it is possible that the growth of these BHs is (indirectly) governed by the properties of their host clusters. In this work, we explore the connection between the mass of BHs residing in the brightest group/cluster galaxies (BGGs/BCGs) and the virial temperature, and hence total gravitating mass, of galaxy groups/clusters. To this end, we investigate a sample of 17 BGGs/BCGs with dynamical BH mass measurements and utilize XMM-Newton X-ray observations to measure the virial temperatures and infer the {M}500 mass of the galaxy groups/clusters. We find that the {M}{BH}{--}{kT} relation is significantly tighter and exhibits smaller scatter than the {M}{BH}{--}{M}{bulge} relations. The best-fitting power-law relations are {{log}}10({M}{BH}/{10}9 {M}ȯ )=0.20+1.74{{log}}10({kT}/1 {keV}) and {{log}}10({M}{BH}/{10}9 {M}ȯ ) = -0.80+1.72{{log}}10({M}{bulge}/{10}11 {M}ȯ ). Thus, the BH mass of BGGs/BCGs may be set by physical processes that are governed by the properties of the host galaxy group/cluster. These results are confronted with the Horizon-AGN simulation, which reproduces the observed relations well, albeit the simulated relations exhibit notably smaller scatter.
NASA Astrophysics Data System (ADS)
Krick, Kessica
This proposal is a specific response to the strategic goal of NASA's research program to "discover how the universe works and explore how the universe evolved into its present form." Towards this goal, we propose to mine the Spitzer archive for all observations of galaxy groups and clusters for the purpose of studying galaxy evolution in clusters, contamination rates for Sunyaev Zeldovich cluster surveys, and to provide a database of Spitzer observed clusters to the broader community. Funding from this proposal will go towards two years of support for a Postdoc to do this work. After searching the Spitzer Heritage Archive, we have found 194 unique galaxy groups and clusters that have data from both the Infrared array camera (IRAC; Fazio et al. 2004) at 3.6 - 8 microns and the multiband imaging photometer for Spitzer (MIPS; Rieke et al. 2004) at 24microns. This large sample will add value beyond the individual datasets because it will be a larger sample of IR clusters than ever before and will have sufficient diversity in mass, redshift, and dynamical state to allow us to differentiate amongst the effects of these cluster properties. An infrared sample is important because it is unaffected by dust extinction while at the same time is an excellent measure of both stellar mass (IRAC wavelengths) and star formation rate (MIPS wavelengths). Additionally, IRAC can be used to differentiate star forming galaxies (SFG) from active galactic nuclei (AGN), due to their different spectral shapes in this wavelength regime. Specifically, we intend to identify SFG and AGN in galaxy groups and clusters. Groups and clusters differ from the field because the galaxy densities are higher, there is a large potential well due mainly to the mass of the dark matter, and there is hot X-ray gas (the intracluster medium; ICM). We will examine the impact of these differences in environment on galaxy formation by comparing cluster properties of AGN and SFG to those in the field. Also, we will examine the effect that evolutions of cluster redshift and dynamical state have on SFG and AGN in groups and clusters. In addition to environment, we will study the timescales of chemical enrichment of the ICM, using the SFG and AGN as tracers of processes that can transport metals outside of galaxies. Cosmological parameters can be measured based on observing galaxy clusters as signposts of the growth of structure in the universe. The best way to select a redshift independent sample is to use the SZ effect with mm observations to detect a shift in the cosmic microwave background spectrum as those photons scatter off hot gas in clusters. However, such mm observations are contaminated by the emission of SFG and AGN. We intend to characterize the magnitude of this effect on SZ surveys by understanding the frequency, radial distribution, and redshift distribution of these galaxies in clusters. Lastly, a compiled cluster catalog of all Spitzer observed clusters would be useful to the broader astronomical community. We plan to incorporate ancillary multi-wavelength data, where available, and to both publish our catalog in journals, and work with NED to make the catalog easily accessible in an efficient manner by the community.
NASA Astrophysics Data System (ADS)
Capuzzo-Dolcetta, Roberto
1993-10-01
Among the possible phenomena inducing evolution of the globular cluster system in an elliptical galaxy, dynamical friction due to field stars and tidal disruption caused by a central nucleus is of crucial importance. The aim of this paper is the study of the evolution of the globular cluster system in a triaxial galaxy in the presence of these phenomena. In particular, the possibility is examined that some galactic nuclei have been formed by frictionally decayed globular clusters moving in a triaxial potential. We find that the initial rapid growth of the nucleus, due mainly to massive clusters on box orbits falling in a short time scale into the galactic center, is later slowed by tidal disruption induced by the nucleus itself on less massive clusters in the way described by Ostriker, Binney, and Saha. The efficiency of dynamical friction is such to carry to the center of the galaxy enough globular cluster mass available to form a compact nucleus, but the actual modes and results of cluster-cluster encounters in the central potential well are complicated phenomena which remains to be investigated. The mass of the resulting nucleus is determined by the mutual feedback of the described processes, together with the initial spatial, velocity, and mass distributions of the globular cluster family. The effect on the system mass function is studied, showing the development of a low- and high-mass turnover even with an initially flat mass function. Moreover, in this paper is discussed the possibility that the globular cluster fall to the galactic center has been a cause of primordial violent galactic activity. An application of the model to M31 is presented.
A Deep Look at the Fornax Cluster
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2016-04-01
Traditionally, dense cluster centers are cannibalistic environments, with larger galaxies stripping stars from smaller interlopers in minor mergers and dynamical harassment. A recent survey of the Fornax cluster, one example of such an environment, reveals how this cluster may have been built.Clues in HalosContext for the southern constellation Fornax (the furnace). The Fornax cluster is marked with a red circle. [ESO, IAU and Sky Telescope]Deep surveys of dense cluster environments are necessary because the imprint of mass assembly is hidden in galactic halos, the faint outer regions of galaxies. Deep observations can reveal answers to questions about how the galaxies in these extreme environments formed and evolved for instance, did the majority of the galaxies stars form in situ, or were they accreted from interactions with other galaxies?The Fornax Deep Survey (FDS) is just such a campaign. FDS uses the European Southern Observatorys VLT Survey Telescope to obtain deep photometry of the entire 26 square degrees of the Fornax cluster, a spectacular galaxy cluster located 65 million light-years away.Central ObservationsThe FDS team plans to release the full results from the survey soon. For now, in an initial study led by Enrichetta Iodice (INAFs Astronomical Observatory of Capodimonte, Italy), the team presents their first findings from the two square degrees around NGC 1399, a supergiant elliptical galaxy in the cluster center.The two main results from this study are:The discovery of a faint stellar bridge between NGC 1399 and a nearby galaxy, NGC 1387.The characterization of NGC 1399s light profile, which shows that the galaxy consists of two main components separated by a strong break. The bright central galaxy is likely composed of stars that formed in situ, whereas the exponential outer component is a stellar halo composed of stars likely captured from accretion events.What do these points tell us about the history of the center of the Fornax cluster? These observations are indications that the Fornax cluster was built up by mergers and accretion events.A Violent PastThe light profile the authors found is consistent with those of simulated galaxies whose halos were formed through the multiple accretion of progenitors. This suggests that the stellar halo of NGC 1399 has been through a major merging event.This enlarged view of NGC 1399 and 1387 in the g band (top) and gi band (bottom) gives a better view of the faint stellar stream connecting the two galaxies. North is up and east is left. [Iodice et al. 2016]The faint stellar bridge is likely a sign of an ongoing interaction between NGC 1399 and NGC 1387, in which NGC 1387s outer envelope on its east side is being stripped away. But besides this indication, there is little evidence for recent merger activity, which would usually produce a significant number of luminous stellar streams and tidal tails.The authors argue that this means that any major mergers in the Fornax cluster center probably happened in an early formation epoch. The cluster is now in a more dynamically evolved stage, in which most of the gravitational interactions between galaxies have already taken place.Follow-up kinematics studies will be crucial to further interpreting these photometric observations from the center of the Fornax cluster. In the meantime, keep an eye out for future results from FDS!CitationE. Iodice et al 2016 ApJ 820 42. doi:10.3847/0004-637X/820/1/42
A Study of the Dependence of the Properties of Galaxy Clusters on Cluster Morphology.
NASA Astrophysics Data System (ADS)
Lugger, Phyllis Minnie
1982-03-01
A quantitative study of the properties of clusters of galaxies as a function of cluster morphology has been carried out using photographic plates obtained with the Palomar 48 inch Schmidt telescope. Surface brightness profiles of 35 first ranked cluster galaxies and luminosity functions of nine clusters are presented and analyzed. The dispersion in the metric magnitudes of first ranked galaxies is quite small ((TURN) 0.4 mag) which is consistent with the results of Kristian, Sandage and Westphal as well as Hoessel, Gunn and Thuan. For the cD (supergiant elliptical) galaxy sample, the mean metric magnitude is (TURN) 0.5 mag brighter than for the non-cD galaxies. The dispersion in the metric magnitudes for the 10 cD galaxies studied is found to be much smaller ((sigma) (TURN) 0.1 mag) than the dispersion in the metric magnitudes of the non-cD first ranked galaxies ((sigma) (TURN) 0.4 mag). The de Vaucouleurs effective radius - magnitude relation determined in the present study for first ranked galaxies (log r(,e) = -0.2 M + const.) is consistent with the extrapolations to brighter magnitudes of the range of relations found by Strom and Strom. The average residuals from the mean radius-magnitude relation for the cD and non-cD galaxy samples were not found to differ at a significant level. Luminosity functions for the region within 0.5 Mpc of the cluster center for three of the clusters studied (A1656, A2147, and A2199) show a deficit of bright galaxies when compared to a concentric annular region with bounds of 0.5 and 1.0 Mpc. Characteristic magnitudes for the nine clusters (determined from square regions 4.6 Mpc on a side) show no significant correlation with cluster morphology, central density, or total magnitude of the first ranked galaxy. The mean values of the Schechter function parameters M('*) and (alpha) are in very good agreement with the previous determinations by Schechter and by Dressler. The differential luminosity functions for A569 and A1656 do not rise monotonically to fainter magnitudes but instead show dips. These data are used to test predictions of several recent theories of the dynamical evolution of clusters of galaxies.
Dynamics of cD clusters of galaxies. II: Analysis of seven Abell clusters
NASA Technical Reports Server (NTRS)
Oegerle, William R.; Hill, John M.
1994-01-01
We have investigated the dynamics of the seven Abell clusters A193, A399, A401, A1795, A1809, A2063, and A2124, based on redshift data reported previously by us (Hill & Oegerle, (1993)). These papers present the initial results of a survey of cD cluster kinematics, with an emphasis on studying the nature of peculiar velocity cD galaxies and their parent clusters. In the current sample, we find no evidence for significant peculiar cD velocities, with respect to the global velocity distribution. However, the cD in A2063 has a significant (3 sigma) peculiar velocity with respect to galaxies in the inner 1.5 Mpc/h, which is likely due to the merger of a subcluster with A2063. We also find significant evidence for subclustering in A1795, and a marginally peculiar cD velocity with respect to galaxies within approximately 200 kpc/h of the cD. The available x-ray, optical, and galaxy redshift data strongly suggest that a subcluster has merged with A1795. We propose that the subclusters which merged with A1795 and A2063 were relatively small, with shallow potential wells, so that the cooling flows in these clusters were not disrupted. Two-body gravitational models of the A399/401 and A2063/MKW3S systems indicate that A399/401 is a bound pair with a total virial mass of approximately 4 x 10(exp 15) solar mass/h, while A2063 and MKW3S are very unlikely to be bound.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balestra, I.; Sartoris, B.; Girardi, M.
2016-06-01
We present VIMOS-Very Large Telescope (VLT) spectroscopy of the Frontier Fields cluster MACS J0416.1-2403 ( z = 0.397). Taken as part of the CLASH-VLT survey, the large spectroscopic campaign provided more than 4000 reliable redshifts over ∼600 arcmin{sup 2}, including ∼800 cluster member galaxies. The unprecedented sample of cluster members at this redshift allows us to perform a highly detailed dynamical and structural analysis of the cluster out to ∼2.2 r {sub 200} (∼4 Mpc). Our analysis of substructures reveals a complex system composed of a main massive cluster ( M {sub 200} ∼ 0.9 × 10{sup 15} M {sub ⊙} and σ{sub V,r200} ∼ 1000 km s{supmore » −1}) presenting two major features: (i) a bimodal velocity distribution, showing two central peaks separated by Δ V {sub rf} ∼ 1100 km s{sup −1} with comparable galaxy content and velocity dispersion, and (ii) a projected elongation of the main substructures along the NE–SW direction, with a prominent sub-clump ∼600 kpc SW of the center and an isolated BCG approximately halfway between the center and the SW clump. We also detect a low-mass structure at z ∼ 0.390, ∼10′ south of the cluster center, projected at ∼3 Mpc, with a relative line-of-sight velocity of Δ V{sub rf} ∼ −1700 km s{sup −1}. The cluster mass profile that we obtain through our dynamical analysis deviates significantly from the “universal” NFW, being best fit by a Softened Isothermal Sphere model instead. The mass profile measured from the galaxy dynamics is found to be in relatively good agreement with those obtained from strong and weak lensing, as well as with that from the X-rays, despite the clearly unrelaxed nature of the cluster. Our results reveal an overall complex dynamical state of this massive cluster and support the hypothesis that the two main subclusters are being observed in a pre-collisional phase, in agreement with recent findings from radio and deep X-ray data. In this article, we also release the entire redshift catalog of 4386 sources in the field of this cluster, which includes 60 identified Chandra X-ray sources and 105 JVLA radio sources.« less
NASA Astrophysics Data System (ADS)
Gilbank, David G.; Barrientos, L. Felipe; Ellingson, Erica; Blindert, Kris; Yee, H. K. C.; Anguita, T.; Gladders, M. D.; Hall, P. B.; Hertling, G.; Infante, L.; Yan, R.; Carrasco, M.; Garcia-Vergara, Cristina; Dawson, K. S.; Lidman, C.; Morokuma, T.
2018-05-01
We present follow-up spectroscopic observations of galaxy clusters from the first Red-sequence Cluster Survey (RCS-1). This work focuses on two samples, a lower redshift sample of ˜30 clusters ranging in redshift from z ˜ 0.2-0.6 observed with multiobject spectroscopy (MOS) on 4-6.5-m class telescopes and a z ˜ 1 sample of ˜10 clusters 8-m class telescope observations. We examine the detection efficiency and redshift accuracy of the now widely used red-sequence technique for selecting clusters via overdensities of red-sequence galaxies. Using both these data and extended samples including previously published RCS-1 spectroscopy and spectroscopic redshifts from SDSS, we find that the red-sequence redshift using simple two-filter cluster photometric redshifts is accurate to σz ≈ 0.035(1 + z) in RCS-1. This accuracy can potentially be improved with better survey photometric calibration. For the lower redshift sample, ˜5 per cent of clusters show some (minor) contamination from secondary systems with the same red-sequence intruding into the measurement aperture of the original cluster. At z ˜ 1, the rate rises to ˜20 per cent. Approximately ten per cent of projections are expected to be serious, where the two components contribute significant numbers of their red-sequence galaxies to another cluster. Finally, we present a preliminary study of the mass-richness calibration using velocity dispersions to probe the dynamical masses of the clusters. We find a relation broadly consistent with that seen in the local universe from the WINGS sample at z ˜ 0.05.
Internal dynamics of the radio-halo cluster A2219: A multi-wavelength analysis
NASA Astrophysics Data System (ADS)
Boschin, W.; Girardi, M.; Barrena, R.; Biviano, A.; Feretti, L.; Ramella, M.
2004-03-01
We present the results of the dynamical analysis of the rich, hot, and X-ray very luminous galaxy cluster A2219, containing a powerful diffuse radio-halo. Our analysis is based on new redshift data for 27 galaxies in the cluster region, measured from spectra obtained at the TNG, with the addition of other 105 galaxies recovered from reduction of CFHT archive data in a cluster region of ˜5 arcmin radius (˜ 0.8 h-1 Mpc ; at the cluster distance) centered on the cD galaxy. The investigation of the dynamical status is also performed using X-ray data stored in the Chandra archive. Further, valuable information comes from other bands - optical photometric, infrared, and radio data - which are analyzed and/or discussed, too. We find that A2219 appears as a peak in the velocity space at z=0.225, and select 113 cluster members. We compute a high value for the line-of-sight velocity dispersion, σv= 1438+109-86 km s-1, consistent with the high average X-ray temperature of 10.3 keV. If dynamical equilibrium is assumed, the virial theorem leads to M˜2.8× 1015 M⊙ ;sun for the global mass within the virial region. However, further investigation based on both optical and X-ray data shows significant signs of a young dynamical status. In fact, we find strong evidence for the elongation of the cluster in the SE-NW direction coupled with a significant velocity gradient, as well as for the presence of substructure both in optical data and X-ray data. Moreover, we point out the presence of several active galaxies. We discuss the results of our multi-wavelength investigation suggesting a complex merging scenario where the main, original structure is subject to an ongoing merger with a few clumps aligned in a filament in the foreground oriented in an oblique direction with respect to the line-of-sight. Our conclusion supports the view of the connection between extended radio emission and merging phenomena in galaxy clusters. Based on observations made on the island of La Palma with the Italian Telescopio Nazionale Galileo (TNG) operated by the Centro Galileo Galilei of the INAF (Istituto Nazionale di Astrofisica) and with the 1.0 m Jacobus Kapteyn Telescope (JKT) operated by the Isaac Newton Group at the Spanish Observatorio de Roque de los Muchachos of the Instituto de Astrofisica de Canarias. Table 1 is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/416/839
The structure of first-ranked cluster galaxies and the radius-magnitude relation
NASA Astrophysics Data System (ADS)
Lugger, P. M.
1984-11-01
To investigate theoretical predictions for the dynamical evolution of first-ranked galaxies, a quantitative study of their properties, as a function of cluster morphology, has been carried out using photographic plates obtained with the Palomar 48 inch (1.2 m) Schmidt telescope. Surface brightness profiles to radii of several hundred kpc for 35 first-ranked cluster galaxies have been analyzed. The dispersion in the metric magnitudes of first-ranked galaxies is quite small (about 0.4 mag), which is consistent with the results of Kristian, Sandage, and Westphal (1978) as well as those of Hoessel, Gunn, and Thuan (1980) and the recent work of Schneider, Gunn, and Hoessel (1983). For the cD (supergiant elliptical) galaxy sample, the mean metric magnitude is about 0.5 mag brighter than for the non-cD galaxies. The mean de Vaucouleurs effective radius for the cD galaxy sample is 80 percent larger than that of the non-cD sample. The relation between de Vaucouleurs effective radius and magnitude determined in the present study for first-ranked galaxies, log r(e) equal to about -0.26 M + constant is consistent with the relations found for fainter galaxies by Strom and Strom (1978) as well as Wirth (1982). The residuals in radius from the mean radius-magnitude relation for first-ranked galaxies do not correlate with the Bautz-Morgan (1970) type of the cluster.
The Stormy Life of Galaxy Clusters
NASA Astrophysics Data System (ADS)
Rudnick, Lawrence
2018-01-01
Galaxy clusters, the largest gravitationally bound structures, hold the full history of their baryonic evolution, serve as important cosmological tools and allow us to probe unique physical regimes in their diffuse plasmas. With characteristic dynamical timescales of 107-109 years, these diffuse thermal and relativistic media continue to evolve, as dark matter drives major mergers and more gentle continuing accretion. The history of this assembly is encoded in the plasmas, and a wide range of observational and theoretical investigations are aimed at decoding their signatures. X-ray temperature and density variations, low Mach number shocks, and "cold front" discontinuities all illuminate clusters' continued evolution. Radio structures and spectra are passive indicators of merger shocks, while radio galaxy distortions reveal the complex motions in the intracluster medium. Deep in cluster cores, AGNs associated with brightest cluster galaxies provide ongoing energy, and perhaps even stabilize the intracluster medium. In this talk, we will recount this evolving picture of the stormy ICM, and suggest areas of likely advance in the coming years.
Effect of the Large Scale Environment on the Internal Dynamics of Early-Type Galaxies
NASA Astrophysics Data System (ADS)
Maubon, G.; Prugniel, Ph.
We have studied the population-density relation in very sparse environments, from poor clusters to isolated galaxies, and we find that early-type galaxies with a young stellar population are preferably found in the lowest density environments. We show a marginal indication that this effect is due to an enhancement of the stellar formation independent of the morphological segregation, but we failed to find any effect from the internal dynamics.
NASA Astrophysics Data System (ADS)
Aguerri, J. A. L.; Agulli, I.; Méndez-Abreu, J.
2018-06-01
Our aim is to understand the role of the environment in the quenching of star formation of galaxies located in the infall cluster region of Abell 85 (A85). This is achieved by studying the post-starburst galaxy population as tracer of recent quenching. By measuring the equivalent width (EW) of the [O II] and Hδ spectral lines, we classify the galaxies into three groups: passive (PAS), emission line (EL), and post-starburst (PSB) galaxies. The PSB galaxy population represents ˜ 4.5 per cent of the full sample. Dwarf galaxies (Mr > -18.0) account for ˜ 70 - 80 per cent of PSBs, which indicates that most of the galaxies undergoing recent quenching are low-mass objects. Independently of the environment, PSB galaxies are disc-like objects with g - r colour between the blue ELs and the red PAS ones. The PSB and EL galaxies in low-density environments show similar luminosities and local galaxy densities. The dynamics and local galaxy density of the PSB population in high-density environments are shared with PAS galaxies. However, PSB galaxies inside A85 are at shorter clustercentric radius than PAS and EL ones. The value of the EW(Hδ) is larger for those PSBs closer to the cluster centre. We propose two different physical mechanisms producing PSB galaxies depending on the environment. In low-density environments, gas-rich minor mergers or accretions could produce the PSB galaxies. For high-density environments like A85, PSBs would be produced by the removal of the gas reservoirs of EL galaxies by ram-pressure stripping when they pass near the cluster centre.
The Herschel Virgo Cluster Survey - XVI. A cluster inventory
NASA Astrophysics Data System (ADS)
Davies, J. I.; Bianchi, S.; Baes, M.; Bendo, G. J.; Clemens, M.; De Looze, I.; di Serego Alighieri, S.; Fritz, J.; Fuller, C.; Pappalardo, C.; Hughes, T. M.; Madden, S.; Smith, M. W. L.; Verstappen, J.; Vlahakis, C.
2014-03-01
Herschel far-infrared (FIR) observations are used to construct Virgo cluster galaxy luminosity functions and to show that the cluster lacks the very bright and the numerous faint sources detected in field galaxy surveys. The FIR spectral energy distributions are fitted to obtain dust masses and temperatures and the dust mass function. The cluster is overdense in dust by about a factor of 100 compared to the field. The same emissivity (β)-temperature relation applies for different galaxies as that found for different regions of M31. We use optical and H I data to show that Virgo is overdense in stars and atomic gas by about a factor of 100 and 20, respectively. Metallicity values are used to measure the mass of metals in the gas phase. The mean metallicity is ˜0.7 solar, and ˜50 per cent of the metals are in the dust. For the cluster as a whole, the mass density of stars in galaxies is eight times that of the gas and the gas mass density is 130 times that of the metals. We use our data to consider the chemical evolution of the individual galaxies, inferring that the measured variations in the effective yield are due to galaxies having different ages, being affected to varying degrees by gas loss. Four galaxy scaling relations are considered: mass-metallicity, mass-velocity, mass-star formation rate and mass-radius - we suggest that initial galaxy mass is the prime driver of a galaxy's ultimate destiny. Finally, we use X-ray observations and galaxy dynamics to assess the dark and baryonic matter content compared to the cosmological model.
ALMA Pinpoints a Strong Overdensity of U/LIRGs in the Massive Cluster XCS J2215 at z = 1.46
NASA Astrophysics Data System (ADS)
Stach, Stuart M.; Swinbank, A. M.; Smail, Ian; Hilton, Matt; Simpson, J. M.; Cooke, E. A.
2017-11-01
We surveyed the core regions of the z = 1.46 cluster XCS J2215.9-1738 with the Atacama Large Millimeter Array (ALMA) and the MUSE-GALACSI spectrograph on the Very Large Telescope (VLT). We obtained high spatial resolution observations with ALMA of the 1.2 mm dust continuum and molecular gas emission in the central regions of the cluster. These observations detect 14 significant millimeter sources in a region with a projected diameter of just ˜500 kpc (˜1‧). For six of these galaxies, we also obtain 12CO(2-1) and 12CO(5-4) line detections, confirming them as cluster members, and a further five of our millimeter galaxies have archival 12CO(2-1) detections, which also place them in the cluster. An additional two millimeter galaxies have photometric redshifts consistent with cluster membership, although neither show strong line emission in the MUSE spectra. This suggests that the bulk (≥11/14, ˜80%) of the submillimeter sources in the field are in fact luminous infrared galaxies lying within this young cluster. We then use our sensitive new observations to constrain the dust-obscured star formation activity and cold molecular gas within this cluster. We find hints that the cooler dust and gas components within these galaxies may have been influenced by their environment, reducing the gas reservoir available for their subsequent star formation. We also find that these actively star-forming galaxies have dynamical masses and stellar population ages expected for the progenitors of massive, early-type galaxies in local clusters, potentially linking these populations.
The shape of velocity dispersion profiles and the dynamical state of galaxy clusters
NASA Astrophysics Data System (ADS)
Costa, A. P.; Ribeiro, A. L. B.; de Carvalho, R. R.
2018-01-01
Motivated by the existence of the relationship between the dynamical state of clusters and the shape of the velocity dispersion profiles (VDPs), we study the VDPs for Gaussian (G) and non-Gaussian (NG) systems for a subsample of clusters from the Yang catalogue. The groups cover a redshift interval of 0.03 ≤ z ≤ 0.1 with halo mass ≥1014 M⊙. We use a robust statistical method, Hellinger Distance, to classify the dynamical state of the systems according to their velocity distribution. The stacked VDP of each class, G and NG, is then determined using either Bright or Faint galaxies. The stacked VDP for G groups displays a central peak followed by a monotonically decreasing trend which indicates a predominance of radial orbits, with the Bright stacked VDP showing lower velocity dispersions in all radii. The distinct features we find in NG systems are manifested not only by the characteristic shape of VDP, with a depression in the central region, but also by a possible higher infall rate associated with galaxies in the Faint stacked VDP.
An X-ray study of the Centaurus Cluster of galaxies using Einstein
NASA Technical Reports Server (NTRS)
Matilsky, T.; Jones, C.; Forman, W.
1985-01-01
Einstein Imaging Proportional Counter observations of the core of the Centaurus Cluster of galaxies have been analyzed to map the 0.5-3.5 keV surface brightness and temperature of the intracluster gas. The emission is centered on NGC 4696, the elliptical galaxy believed to be at or near the dynamical center of the cluster. Because the X-ray-emitting gas responds to the gravitational potential of the cluster, the observations may be used to measure the total mass distribution around the central region. It is shown that the gas is very likely in hydrostatic equilibrium. It is found that surrounding NGC 4696, like M87 at the center of the Virgo Cluster, is a dark, massive halo, with a gravitating mass of about 2 x 10 to the 13th M out to a radius of about 20 arcmin (or 200 kpc for H(o) = 50 km/s Mpc). The elliptical galaxy NGC 4709, at the core of a more distant cluster, is also detected with a luminosity of 2 x 10 to the 40th ergs per sec.
NASA Astrophysics Data System (ADS)
Voggel, Karina Theresia
2015-08-01
Ultra-Compact Dwarf Galaxies (UCDs) have filled the size gap (10-100pc) in the scaling relations of early-type stellar systems. Before their discovery, no objects were known in the parameter space between globular clusters (GCs) and dwarf galaxies. The nature of UCDs is widely debated. Two formation channels have been suggested: either UCDs are surviving nuclei of tidally stripped dwarf galaxies, or they constitute the high mass end of the GC population. In this work we establish new strategies to constrain the formation channel of UCDs, looking for the observational signatures of stripped nuclei.Before falling into a galaxy cluster dwarf galaxies initially host their own GC system. Through tidal interaction the GCs outside of the shrinking tidal radius are lost and disperse in the general GC population of the cluster, whereas GCs inside the tidal radius remain bound to the dwarf galaxy. Therefore, we expect to find some GCs close to the stripped nuclei that have not been removed yet, but dragged towards the nucleus via dynamical friction.We tested this prediction in the halo of NGC 1399, the central Fornax cluster galaxy, where we find a local overabundance of GCs on scales of 0.5 to 1 kpc around UCDs. A similar analysis of GC overdensities around UCDs in the halo of M87, the central Virgo cluster galaxy, is ongoing. Such a clustering signal of GCs around UCDs could be a hint that these UCDs formed as nuclei, and what we see is the remnant GC population of the ancestor galaxy.We also have studied the detailed structural composition of ~100 UCDs in the halo of NGC 1399 by analyzing their surface brightness profiles. We present new evidence for faint asymmetric structures and tidal tails around several UCDs, possible tracers for the assembly history of the central cluster galaxy. With new numbers on the abundance of tidal features and close GC companions within large UCD samples, the contribution of each formation channel to the GC/UCD populations in galaxy halos can be constrained.
NASA Astrophysics Data System (ADS)
Athanassoula, E.
Various aspects of the internal kinematics and dynamics of galaxies are considered. The kinematics of the gas and the underlying mass distribution are discussed, including the systematics of H II rotation curves, H I velocity fields and rotation curves, the distribution of molecular clouds in spiral galaxies, gas at large radii, the implications for galactic mass models of vertical motion and the thickness of H I disks, and mass distribution and dark halos. The theory of spiral structure is addressed, along with conflicts and directions in spiral structure studies. Theories of warps are covered. Barred galaxies are treated, including their morphology, stellar kinematics, and dynamics, the stability of their disks, theoretical studies of their gas flows, and the formation of rings and lenses. Spheroidal systems are considered, including dynamics of early type galaxies, models of ellipticals and bulges, and interstellar matter in elliptical galaxies. Simulations and observational evidence for mergers are addressed, and the formation of galaxies and dynamics of globular cluster systems are examined. For individual items see A83-49202 to A83-49267
Modified Baryonic Dynamics: two-component cosmological simulations with light sterile neutrinos
DOE Office of Scientific and Technical Information (OSTI.GOV)
Angus, G.W.; Gentile, G.; Diaferio, A.
2014-10-01
In this article we continue to test cosmological models centred on Modified Newtonian Dynamics (MOND) with light sterile neutrinos, which could in principle be a way to solve the fine-tuning problems of the standard model on galaxy scales while preserving successful predictions on larger scales. Due to previous failures of the simple MOND cosmological model, here we test a speculative model where the modified gravitational field is produced only by the baryons and the sterile neutrinos produce a purely Newtonian field (hence Modified Baryonic Dynamics). We use two-component cosmological simulations to separate the baryonic N-body particles from the sterile neutrinomore » ones. The premise is to attenuate the over-production of massive galaxy cluster halos which were prevalent in the original MOND plus light sterile neutrinos scenario. Theoretical issues with such a formulation notwithstanding, the Modified Baryonic Dynamics model fails to produce the correct amplitude for the galaxy cluster mass function for any reasonable value of the primordial power spectrum normalisation.« less
Using the morphology and magnetic fields of tailed radio galaxies as environmental probes
NASA Astrophysics Data System (ADS)
Johnston-Hollitt, M.; Dehghan, S.; Pratley, L.
2015-03-01
Bent-tailed (BT) radio sources have long been known to trace over densities in the Universe up to z ~ 1 and there is increasing evidence this association persists out to redshifts of 2. The morphology of the jets in BT galaxies is primarily a function of the environment that they have resided in and so BTs provide invaluable clues as to their local conditions. Thus, not only can samples of BT galaxies be used as signposts of large-scale structure, but are also valuable for obtaining a statistical measurement of properties of the intra-cluster medium including the presence of cluster accretion shocks & winds, and as historical anemometers, preserving the dynamical history of their surroundings in their jets. We discuss the use of BTs to unveil large-scale structure and provide an example in which a BT was used to unlock the dynamical history of its host cluster. In addition to their use as density and dynamical indicators, BTs are useful probes of the magnetic field on their environment on scales which are inaccessible to other methods. Here we discuss a novel way in which a particular sub-class of BTs, the so-called `corkscrew' galaxies might further elucidate the coherence lengths of the magnetic fields in their vicinity. Given that BTs are estimated to make up a large population in next generation surveys we posit that the use of jets in this way could provide a unique source of environmental information for clusters and groups up to z = 2.
NASA Astrophysics Data System (ADS)
McPartland, Conor; Ebeling, Harald; Roediger, Elke; Blumenthal, Kelly
2016-01-01
We investigate the observational signatures and physical origin of ram-pressure stripping (RPS) in 63 massive galaxy clusters at z = 0.3-0.7, based on images obtained with the Hubble Space Telescope. Using a training set of a dozen `jellyfish' galaxies identified earlier in the same imaging data, we define morphological criteria to select 211 additional, less obvious cases of RPS. Spectroscopic follow-up observations of 124 candidates so far confirmed 53 as cluster members. For the brightest and most favourably aligned systems, we visually derive estimates of the projected direction of motion based on the orientation of apparent compression shocks and debris trails. Our findings suggest that the onset of these events occurs primarily at large distances from the cluster core (>400 kpc), and that the trajectories of the affected galaxies feature high-impact parameters. Simple models show that such trajectories are highly improbable for galaxy infall along filaments but common for infall at high velocities, even after observational biases are accounted for, provided the duration of the resulting RPS events is ≲500 Myr. We thus tentatively conclude that extreme RPS events are preferentially triggered by cluster mergers, an interpretation that is supported by the disturbed dynamical state of many of the host clusters. This hypothesis implies that extreme RPS might occur also near the cores of merging poor clusters or even merging groups of galaxies. Finally, we present nine additional `jellyfish" galaxies at z > 0.3 discovered by us, thereby doubling the number of such systems known at intermediate redshift.
Ultra-diffuse cluster galaxies as key to the MOND cluster conundrum
NASA Astrophysics Data System (ADS)
Milgrom, Mordehai
2015-12-01
Modified Newtonian Dynamics (MOND) reduces greatly the mass discrepancy in clusters of galaxies,but does leave a global discrepancy of about a factor of 2 (epitomized by the structure of the Bullet Cluster). It has been proposed, within the minimalist and purist MOND, that clusters harbour some indigenous, yet undetected, cluster baryonic (dark) matter (CBDM), whose total amount is comparable with that of the observed hot gas. Koda et al. have recently identified more than a thousand ultra-diffuse, galaxy-like objects (UDGs) in the Coma cluster. These, they argue, require, within Newtonian dynamics, that they are much more massive than their observed stellar component. Here, I propound that some of the CBDM is internal to UDGs, which endows them with robustness. The rest of the CBDM objects formed in now-disrupted kin of the UDGs, and is dispersed in the intracluster medium. The discovery of cluster UDGs is not in itself a resolution of the MOND cluster conundrum, but it lends greater plausibility to CBDM as its resolution. Alternatively, if the UDGs are only now falling into Coma, their large size and very low surface brightness could result from the inflation due to the MOND, variable external-field effect (EFE). I also consider briefly solutions to the conundrum that invoke more elaborate extensions of purist MOND, e.g. that in clusters, the MOND constant takes up larger than canonical values of the MOND constant. Whatever solves the cluster conundrum within MOND might also naturally account for UDGs.
NASA Astrophysics Data System (ADS)
Sembolini, Federico; De Petris, Marco; Yepes, Gustavo; Foschi, Emma; Lamagna, Luca; Gottlöber, Stefan
2014-06-01
In this work, we study the properties of protoclusters of galaxies by employing the MultiDark SImulations of galaxy Clusters (MUSIC) set of hydrodynamical simulations, featuring a sample of 282 resimulated clusters with available merger trees up to z = 4. We study the characteristics and redshift evolution of the mass and the spatial distribution for all the protoclusters, which we define as the most massive progenitors of the clusters identified at z = 0. We extend the study of the baryon content to redshifts larger than 1 also in terms of gas and stars budgets: no remarkable variations with redshift are discovered. Furthermore, motivated by the proven potential of Sunyaev-Zel'dovich surveys to blindly search for faint distant objects, we compute the scaling relation between total object mass and integrated Compton y-parameter. We find that the slope of this scaling law is steeper than what expected for a self-similarity assumption among these objects, and it increases with redshift mainly when radiative processes are included. We use three different criteria to account for the dynamical state of the protoclusters, and find no significant dependence of the scaling parameters on the level of relaxation. We exclude the dynamical state as the cause of the observed deviations from self-similarity in protoclusters.
The special growth history of central galaxies in groups and clusters
NASA Astrophysics Data System (ADS)
Nipoti, Carlo
2017-05-01
Central galaxies (CGs) in galaxy groups and clusters are believed to form and assemble a good portion of their stellar mass at early times, but they also accrete significant mass at late times via galactic cannibalism, that is merging with companion group or cluster galaxies that experience dynamical friction against the common host dark-matter halo. The effect of these mergers on the structure and kinematics of the CG depends not only on the properties of the accreted satellites, but also on the orbital parameters of the encounters. Here we present the results of numerical simulations aimed at estimating the distribution of merging orbital parameters of satellites cannibalized by the CGs in groups and clusters. As a consequence of dynamical friction, the satellites' orbits evolve losing energy and angular momentum, with no clear trend towards orbit circularization. The distributions of the orbital parameters of the central-satellite encounters are markedly different from the distributions found for halo-halo mergers in cosmological simulations. The orbits of satellites accreted by the CGs are on average less bound and less eccentric than those of cosmological halo-halo encounters. We provide fits to the distributions of the central-satellite merging orbital parameters that can be used to study the merger-driven evolution of the scaling relations of CGs.
Capturing the 3D Motion of an Infalling Galaxy via Fluid Dynamics
NASA Astrophysics Data System (ADS)
Su, Yuanyuan; Kraft, Ralph P.; Nulsen, Paul E. J.; Roediger, Elke; Forman, William R.; Churazov, Eugene; Randall, Scott W.; Jones, Christine; Machacek, Marie E.
2017-01-01
The Fornax Cluster is the nearest (≤slant 20 Mpc) galaxy cluster in the southern sky. NGC 1404 is a bright elliptical galaxy falling through the intracluster medium (ICM) of the Fornax Cluster. The sharp leading edge of NGC 1404 forms a classical “cold front” that separates 0.6 keV dense interstellar medium and 1.5 keV diffuse ICM. We measure the angular pressure variation along the cold front using a very deep (670 ks) Chandra X-ray observation. We are taking the classical approach—using stagnation pressure to determine a substructure’s speed—to the next level by not only deriving a general speed but also directionality, which yields the complete velocity field as well as the distance of the substructure directly from the pressure distribution. We find a hydrodynamic model consistent with the pressure jump along NGC 1404's atmosphere measured in multiple directions. The best-fit model gives an inclination of 33° and a Mach number of 1.3 for the infall of NGC 1404, in agreement with complementary measurements of the motion of NGC 1404. Our study demonstrates the successful treatment of a highly ionized ICM as ideal fluid flow, in support of the hypothesis that magnetic pressure is not dynamically important over most of the virial region of galaxy clusters.
NASA Astrophysics Data System (ADS)
Conor, McPartland; Ebeling, Harald; Roediger, Elke
2015-08-01
We investigate the physical origin and observational signatures of extreme ram-pressure stripping (RPS) in 63 massive galaxy clusters at z=0.3-0.7, based on data in the F606W passband obtained with the Advanced Camera for Surveys aboard the Hubble Space Telescope. Using a training set of a dozen ``jellyfish" galaxies identified earlier in the same imaging data, we define quantitative morphological criteria to select candidate galaxies which are similar to known cases of RPS. Considering a sample of 16 ``jellyfish" galaxies (10 of which we present for the first time), we visually derive estimates of the projected direction of motion based on dynamical features such as apparent compression shocks and debris trails. Our findings suggest that the observed events occur primarily at large distances from the cluster core and involve infall trajectories featuring high impact parameters. Simple models of cluster growth show that such trajectories are consistent with two scenarios: 1) galaxy infall along filaments; and 2) infall at high velocities (≥1000 km/s) characteristic of cluster mergers. The observed distribution of events is best described by timescales of ˜few Myr in agreement with recent numerical simulations of RPS. The broader areal coverage of the Hubble Frontier Fields should provide an even larger sample of RPS events to determine the relative contributions of infall and cluster mergers. Prompted by the discovery of several jellyfish galaxies whose brightness in the F606W passband rivals or exceeds that of the respective brightest cluster galaxy, we attempt to constrain the luminosity function of galaxies undergoing RPS. The observed significant excess at the bright end compared to the luminosity functions of blue cluster members strongly suggests enhanced star formation, thus challenging theoretical and numerical studies according to which RPS merely displaces existing star-forming regions. In-depth studies of individual objects will help test our conclusions and allow a quantitative comparison with predictions of theoretical and numerical models of ram-pressure stripping.
Spectroscopic study of formation, evolution and interaction of M31 and M33 with star clusters
NASA Astrophysics Data System (ADS)
Fan, Zhou; Yang, Yanbin
2016-02-01
The recent studies show that the formation and evolution process of the nearby galaxies are still unclear. By using the Canada France Hawaii Telescope (CFHT) 3.6m telescope, the PanDAS shows complicated substructures (dwarf satellite galaxies, halo globular clusters, extended clusters, star streams, etc.) in the halo of M31 to ~150 kpc from the center of galaxy and M31-M33 interaction has been studied. In our work, we would like to investigate formation, evolution and interaction of M31 and M33, which are the nearest two spiral galaxies in Local Group. The star cluster systems of the two galaxies are good tracers to study the dynamics of the substructures and the interaction. Since 2010, the Xinglong 2.16m, Lijiang 2.4m and MMT 6.5m telescopes have been used for our spectroscopic observations. The radial velocities and Lick absorption-line indices can thus be measured with the spectroscopy and then ages, metallicities and masses of the star clusters can be fitted with the simple stellar population models. These parameters could be used as the input physical parameters for numerical simulations of M31-M33 interaction.
Kim, Ji-hoon; Ma, Xiangcheng; Grudić, Michael Y.; ...
2017-11-23
Using a state-of-the-art cosmological simulation of merging proto-galaxies at high redshift from the FIRE project, with explicit treatments of star formation and stellar feedback in the interstellar medium, we investigate the formation of star clusters and examine one of the formation hypotheses of present-day metal-poor globular clusters. Here, we find that frequent mergers in high-redshift proto-galaxies could provide a fertile environment to produce long-lasting bound star clusters. The violent merger event disturbs the gravitational potential and pushes a large gas mass of ≳ 10 5–6 M ⊙ collectively to high density, at which point it rapidly turns into stars beforemore » stellar feedback can stop star formation. The high dynamic range of the reported simulation is critical in realizing such dense star-forming clouds with a small dynamical time-scale, tff ≲ 3 Myr, shorter than most stellar feedback time-scales. Our simulation then allows us to trace how clusters could become virialized and tightly bound to survive for up to ~420 Myr till the end of the simulation. Finally, because the cluster's tightly bound core was formed in one short burst, and the nearby older stars originally grouped with the cluster tend to be preferentially removed, at the end of the simulation the cluster has a small age spread.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Ji-hoon; Ma, Xiangcheng; Grudić, Michael Y.
Using a state-of-the-art cosmological simulation of merging proto-galaxies at high redshift from the FIRE project, with explicit treatments of star formation and stellar feedback in the interstellar medium, we investigate the formation of star clusters and examine one of the formation hypotheses of present-day metal-poor globular clusters. Here, we find that frequent mergers in high-redshift proto-galaxies could provide a fertile environment to produce long-lasting bound star clusters. The violent merger event disturbs the gravitational potential and pushes a large gas mass of ≳ 10 5–6 M ⊙ collectively to high density, at which point it rapidly turns into stars beforemore » stellar feedback can stop star formation. The high dynamic range of the reported simulation is critical in realizing such dense star-forming clouds with a small dynamical time-scale, tff ≲ 3 Myr, shorter than most stellar feedback time-scales. Our simulation then allows us to trace how clusters could become virialized and tightly bound to survive for up to ~420 Myr till the end of the simulation. Finally, because the cluster's tightly bound core was formed in one short burst, and the nearby older stars originally grouped with the cluster tend to be preferentially removed, at the end of the simulation the cluster has a small age spread.« less
NASA Astrophysics Data System (ADS)
Kim, Ji-hoon; Ma, Xiangcheng; Grudić, Michael Y.; Hopkins, Philip F.; Hayward, Christopher C.; Wetzel, Andrew; Faucher-Giguère, Claude-André; Kereš, Dušan; Garrison-Kimmel, Shea; Murray, Norman
2018-03-01
Using a state-of-the-art cosmological simulation of merging proto-galaxies at high redshift from the FIRE project, with explicit treatments of star formation and stellar feedback in the interstellar medium, we investigate the formation of star clusters and examine one of the formation hypotheses of present-day metal-poor globular clusters. We find that frequent mergers in high-redshift proto-galaxies could provide a fertile environment to produce long-lasting bound star clusters. The violent merger event disturbs the gravitational potential and pushes a large gas mass of ≳ 105-6 M⊙ collectively to high density, at which point it rapidly turns into stars before stellar feedback can stop star formation. The high dynamic range of the reported simulation is critical in realizing such dense star-forming clouds with a small dynamical time-scale, tff ≲ 3 Myr, shorter than most stellar feedback time-scales. Our simulation then allows us to trace how clusters could become virialized and tightly bound to survive for up to ˜420 Myr till the end of the simulation. Because the cluster's tightly bound core was formed in one short burst, and the nearby older stars originally grouped with the cluster tend to be preferentially removed, at the end of the simulation the cluster has a small age spread.
Loss of Mass and Stability of Galaxies in Modified Newtonian Dynamics
NASA Astrophysics Data System (ADS)
Wu, Xufen; Zhao, HongSheng; Famaey, Benoit; Gentile, G.; Tiret, O.; Combes, F.; Angus, G. W.; Robin, A. C.
2007-08-01
The self-binding energy and stability of a galaxy in MOND-based gravity are curiously decreasing functions of its center-of-mass acceleration (of the order of 10-12 to 10-10 m s-2) toward neighboring mass concentrations. A tentative indication of this breaking of the strong equivalence principle in field galaxies is the RAVE-observed escape speed in the Milky Way. Another consequence is that satellites of field galaxies will move on nearly Keplerian orbits at large radii (100-500 kpc), with a declining speed below the asymptotically constant naive MOND prediction. But the consequences of an environment-sensitive gravity are even more severe in clusters, where member galaxies accelerate fast; no dark halo-like potential is present to support galaxies, meaning that extended axisymmetric disks of gas and stars are likely unstable. These predicted reappearances of asymptotic Keplerian velocity curves and disappearances of ``stereotypic galaxies'' in clusters are falsifiable with targeted surveys.
Dark energy and key physical parameters of clusters of galaxies
NASA Astrophysics Data System (ADS)
Bisnovatyi-Kogan, G. S.; Chernin, A. D.
2012-04-01
We study physics of clusters of galaxies embedded in the cosmic dark energy background. Under the assumption that dark energy is described by the cosmological constant, we show that the dynamical effects of dark energy are strong in clusters like the Virgo cluster. Specifically, the key physical parameters of the dark mater halos in clusters are determined by dark energy: (1) the halo cut-off radius is practically, if not exactly, equal to the zero-gravity radius at which the dark matter gravity is balanced by the dark energy antigravity; (2) the halo averaged density is equal to two densities of dark energy; (3) the halo edge (cut-off) density is the dark energy density with a numerical factor of the unity order slightly depending on the halo profile. The cluster gravitational potential well in which the particles of the dark halo (as well as galaxies and intracluster plasma) move is strongly affected by dark energy: the maximum of the potential is located at the zero-gravity radius of the cluster.
ISM stripping from cluster galaxies and inhomogeneities in cooling flows
NASA Technical Reports Server (NTRS)
Soker, Noam; Bregman, Joel N.; Sarazin, Craig L.
1990-01-01
Analyses of the x ray surface brightness profiles of cluster cooling flows suggest that the mass flow rate decreases towards the center of the cluster. It is often suggested that this decrease results from thermal instabilities, in which denser blobs of gas cool rapidly and drop below x ray emitting temperatures. If the seeds for the thermal instabilities are entropy perturbations, these perturbations must enter the flow already in the nonlinear regime. Otherwise, the blobs would take too long to cool. Here, researchers suggest that such nonlinear perturbations might start as blobs of interstellar gas which are stripped out of cluster galaxies. Assuming that most of the gas produced by stellar mass loss in cluster galaxies is stripped from the galaxies, the total rate of such stripping is roughly M sub Interstellar Matter (ISM) approx. 100 solar mass yr(-1). It is interesting that the typical rates of cooling in cluster cooling flows are M sub cool approx. 100 solar mass yr(-1). Thus, it is possible that a substantial portion of the cooling gas originates as blobs of interstellar gas stripped from galaxies. The magnetic fields within and outside of the low entropy perturbations can help to maintain their identities, both by suppressing thermal conduction and through the dynamical effects of magnetic tension. One significant question concerning this scenario is: Why are cooling flows seen only in a fraction of clusters, although one would expect gas stripping to be very common. It may be that the density perturbations only survive and cool efficiently in clusters with a very high intracluster gas density and with the focusing effect of a central dominant galaxy. Inhomogeneities in the intracluster medium caused by the stripping of interstellar gas from galaxies can have a number of other effects on clusters. For example, these density fluctuations may disrupt the propagation of radio jets through the intracluster gas, and this may be one mechanism for producing Wide-Angle-Tail radio galaxies.
The Splashback Feature around DES Galaxy Clusters: Galaxy Density and Weak Lensing Profiles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Chihway; et al.
Splashback refers to the process of matter that is accreting onto a dark matter halo reaching its first orbital apocenter and turning around in its orbit. The cluster-centric radius at which this process occurs, r_sp, defines a halo boundary that is connected to the dynamics of the cluster, in contrast with other common halo boundary definitions such as R_200. A rapid decline in the matter density profile of the halo is expected near r_sp. We measure the galaxy number density and weak lensing mass profiles around RedMapper galaxy clusters in the first year Dark Energy Survey (DES) data. For amore » cluster sample with mean mass ~2.5 x 10^14 solar masses, we find strong evidence of a splashback-like steepening of the galaxy density profile and measure r_sp=1.16 +/- 0.08 Mpc/h, consistent with earlier SDSS measurements of More et al. (2016) and Baxter et al. (2017). Moreover, our weak lensing measurement demonstrates for the first time the existence of a splashback-like steepening of the matter profile of galaxy clusters. We measure r_sp=1.28 +/- 0.18 Mpc/h from the weak lensing data, in good agreement with our galaxy density measurements. Applying our analysis to different cluster and galaxy samples, we find that consistent with LambdaCDM simulations, r_sp scales with R_200m and does not evolve with redshift over the redshift range of 0.3--0.6. We also find that potential systematic effects associated with the RedMapper algorithm may impact the location of r_sp, in particular the choice of scale used to estimate cluster richness. We discuss progress needed to understand the systematic uncertainties and fully exploit forthcoming data from DES and future surveys, emphasizing the importance of more realistic mock catalogs and independent cluster samples.« less
WINGS-SPE Spectroscopy in the WIde-field Nearby Galaxy-cluster Survey
NASA Astrophysics Data System (ADS)
Cava, A.; Bettoni, D.; Poggianti, B. M.; Couch, W. J.; Moles, M.; Varela, J.; Biviano, A.; D'Onofrio, M.; Dressler, A.; Fasano, G.; Fritz, J.; Kjærgaard, P.; Ramella, M.; Valentinuzzi, T.
2009-03-01
Aims: We present the results from a comprehensive spectroscopic survey of the WINGS (WIde-field Nearby Galaxy-cluster Survey) clusters, a program called WINGS-SPE. The WINGS-SPE sample consists of 48 clusters, 22 of which are in the southern sky and 26 in the north. The main goals of this spectroscopic survey are: (1) to study the dynamics and kinematics of the WINGS clusters and their constituent galaxies, (2) to explore the link between the spectral properties and the morphological evolution in different density environments and across a wide range of cluster X-ray luminosities and optical properties. Methods: Using multi-object fiber-fed spectrographs, we observed our sample of WINGS cluster galaxies at an intermediate resolution of 6-9 Å and, using a cross-correlation technique, we measured redshifts with a mean accuracy of ~45 km s-1. Results: We present redshift measurements for 6137 galaxies and their first analyses. Details of the spectroscopic observations are reported. The WINGS-SPE has ~30% overlap with previously published data sets, allowing us both to perform a complete comparison with the literature and to extend the catalogs. Conclusions: Using our redshifts, we calculate the velocity dispersion for all the clusters in the WINGS-SPE sample. We almost triple the number of member galaxies known in each cluster with respect to previous works. We also investigate the X-ray luminosity vs. velocity dispersion relation for our WINGS-SPE clusters, and find it to be consistent with the form Lx ∝ σ_v^4. Table 4, containing the complete redshift catalog, is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/495/707
NASA Astrophysics Data System (ADS)
Tremblay, Grant R.; Gladders, Michael D.; Baum, Stefi A.; O'Dea, Christopher P.; Bayliss, Matthew B.; Cooke, Kevin C.; Dahle, Håkon; Davis, Timothy A.; Florian, Michael; Rigby, Jane R.; Sharon, Keren; Soto, Emmaris; Wuyts, Eva
2014-08-01
New Hubble Space Telescope ultraviolet and optical imaging of the strong-lensing galaxy cluster SDSS J1531+3414 (z = 0.335) reveals two centrally dominant elliptical galaxies participating in an ongoing major merger. The interaction is at least somewhat rich in cool gas, as the merger is associated with a complex network of 19 massive superclusters of young stars (or small tidal dwarf galaxies) separated by ~1 kpc in projection from one another, combining to an estimated total star formation rate of ~5 M ⊙ yr-1. The resolved young stellar superclusters are threaded by narrow Hα, [O II], and blue excess filaments arranged in a network spanning ~27 kpc across the two merging galaxies. This morphology is strongly reminiscent of the well-known "beads on a string" mode of star formation observed on kiloparsec scales in the arms of spiral galaxies, resonance rings, and in tidal tails between interacting galaxies. Nevertheless, the arrangement of this star formation relative to the nuclei of the two galaxies is difficult to interpret in a dynamical sense, as no known "beads on a string" systems associated with kiloparsec-scale tidal interactions exhibit such lopsided morphology relative to the merger participants. In this Letter, we present the images and follow-up spectroscopy and discuss possible physical interpretations for the unique arrangement of the young stellar clusters. While we suggest that this morphology is likely to be dynamically short-lived, a more quantitative understanding awaits necessary multiwavelength follow-up, including optical integral field spectroscopy, ALMA submillimeter interferometry, and Chandra X-ray imaging.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tremblay, Grant R.; Davis, Timothy A.; Gladders, Michael D.
2014-08-01
New Hubble Space Telescope ultraviolet and optical imaging of the strong-lensing galaxy cluster SDSS J1531+3414 (z = 0.335) reveals two centrally dominant elliptical galaxies participating in an ongoing major merger. The interaction is at least somewhat rich in cool gas, as the merger is associated with a complex network of 19 massive superclusters of young stars (or small tidal dwarf galaxies) separated by ∼1 kpc in projection from one another, combining to an estimated total star formation rate of ∼5 M {sub ☉} yr{sup –1}. The resolved young stellar superclusters are threaded by narrow Hα, [O II], and blue excess filaments arrangedmore » in a network spanning ∼27 kpc across the two merging galaxies. This morphology is strongly reminiscent of the well-known ''beads on a string'' mode of star formation observed on kiloparsec scales in the arms of spiral galaxies, resonance rings, and in tidal tails between interacting galaxies. Nevertheless, the arrangement of this star formation relative to the nuclei of the two galaxies is difficult to interpret in a dynamical sense, as no known ''beads on a string'' systems associated with kiloparsec-scale tidal interactions exhibit such lopsided morphology relative to the merger participants. In this Letter, we present the images and follow-up spectroscopy and discuss possible physical interpretations for the unique arrangement of the young stellar clusters. While we suggest that this morphology is likely to be dynamically short-lived, a more quantitative understanding awaits necessary multiwavelength follow-up, including optical integral field spectroscopy, ALMA submillimeter interferometry, and Chandra X-ray imaging.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krolewski, Alex G.; Eisenstein, Daniel J., E-mail: akrolewski@college.harvard.edu
2015-04-10
We study the dependence of quasar clustering on quasar luminosity and black hole mass by measuring the angular overdensity of photometrically selected galaxies imaged by the Wide-field Infrared Survey Explorer (WISE) about z ∼ 0.8 quasars from SDSS. By measuring the quasar–galaxy cross-correlation function and using photometrically selected galaxies, we achieve a higher density of tracer objects and a more sensitive detection of clustering than measurements of the quasar autocorrelation function. We test models of quasar formation and evolution by measuring the luminosity dependence of clustering amplitude. We find a significant overdensity of WISE galaxies about z ∼ 0.8 quasarsmore » at 0.2–6.4 h{sup −1} Mpc in projected comoving separation. We find no appreciable increase in clustering amplitude with quasar luminosity across a decade in luminosity, and a power-law fit between luminosity and clustering amplitude gives an exponent of −0.01 ± 0.06 (1 σ error). We also fail to find a significant relationship between clustering amplitude and black hole mass, although our dynamic range in true mass is suppressed due to the large uncertainties in virial black hole mass estimates. Our results indicate that a small range in host dark matter halo mass maps to a large range in quasar luminosity.« less
X-ray morphological study of the ESZ sample
NASA Astrophysics Data System (ADS)
Lovisari, L.; Forman, W.; Jones, C.; Andrade-Santos, F.; Democles, J.; Pratt, G.; Ettori, S.; Arnaud, M.; Randall, S.; Kraft, R.
2017-10-01
An accurate knowledge of the scaling relations between X-ray observables and cluster mass is a crucial step for studies that aim to constrain cosmological parameters using galaxy clusters. The measure of the dynamical state of the systems offers important information to obtain precise scaling relations and understand their scatter. Unfortunately, characterize the dynamical state of a galaxy cluster requires to access a large set of information in different wavelength which are available only for a few individual systems. An alternative is to compute well defined morphological parameters making use of the relatively cheap X-ray images and profiles. Due to different projection effects none of the methods is good in all the cases and a combination of them is more effective to quantify the level of substructures. I will present the cluster morphologies that we derived for the ESZ sample. I will show their dependence on different cluster properties like total mass, redshift, and luminosity and how they differ from the ones obtained for X-ray selected clusters.
Weak lensing calibration of mass bias in the REFLEX+BCS X-ray galaxy cluster catalogue
NASA Astrophysics Data System (ADS)
Simet, Melanie; Battaglia, Nicholas; Mandelbaum, Rachel; Seljak, Uroš
2017-04-01
The use of large, X-ray-selected Galaxy cluster catalogues for cosmological analyses requires a thorough understanding of the X-ray mass estimates. Weak gravitational lensing is an ideal method to shed light on such issues, due to its insensitivity to the cluster dynamical state. We perform a weak lensing calibration of 166 galaxy clusters from the REFLEX and BCS cluster catalogue and compare our results to the X-ray masses based on scaled luminosities from that catalogue. To interpret the weak lensing signal in terms of cluster masses, we compare the lensing signal to simple theoretical Navarro-Frenk-White models and to simulated cluster lensing profiles, including complications such as cluster substructure, projected large-scale structure and Eddington bias. We find evidence of underestimation in the X-ray masses, as expected, with
Discovery of Misaligned Radio Emission in Galaxy Cluster Zw CL 2971
NASA Astrophysics Data System (ADS)
Wallack, Nicole; Migliore, C.; Resnick, A.; White, T.; Liu, C.
2014-01-01
In a search for green valley galaxies with radio loud active galactic nuclei (AGN), we found one such object that may be associated with the cluster of galaxies Zw CL 2971 (z = 0.098). Serendipitously, we found in this cluster a strong bent-jet radio source associated with the cluster's central dominant (cD) elliptical galaxy. The center of the cD galaxy is coincident (0.35 arcsecond) with the second brightest spot of radio continuum emission (34.3 mJy as measured by FIRST), but the brightest radio hotspot (66.8 mJy) is offset by 4.6 arcseconds 9 kpc at the redshift of the cluster) and has no visible counterpart. Furthermore, the optical spectrum of the cD galaxy has only weak emission lines, suggesting the absence of a currently active nucleus. It is possible that the counterpart is optically faint (possibly due to a recently completed duty cycle) or is not visible due to movement or position. If the radio source is a distant background object, then the brighter jet is most likely magnified by gravitational lensing. If the radio source is located at the redshift of the cluster, then the brighter radio jet trails backward toward and past the cD galaxy to a distance of ~120 kpc, while the fainter jet is bent at a nearly orthogonal angle, ~40 kpc away from the brightest radio hotspot, in the opposite direction. These geometric offsets could be used to constrain the duty cycle history of the AGN creating the radio emission, as well as the dynamical properties of the intracluster medium.
INTRAGROUP AND GALAXY-LINKED DIFFUSE X-RAY EMISSION IN HICKSON COMPACT GROUPS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Desjardins, Tyler D.; Gallagher, Sarah C.; Tzanavaris, Panayiotis
2013-02-15
Isolated compact groups (CGs) of galaxies present a range of dynamical states, group velocity dispersions, and galaxy morphologies with which to study galaxy evolution, particularly the properties of gas both within the galaxies and in the intragroup medium. As part of a large, multiwavelength examination of CGs, we present an archival study of diffuse X-ray emission in a subset of nine Hickson compact groups (HCGs) observed with the Chandra X-Ray Observatory. We find that seven of the groups in our sample exhibit detectable diffuse emission. However, unlike large-scale emission in galaxy clusters, the diffuse features in the majority of themore » detected groups are linked to the individual galaxies, in the form of both plumes and halos likely as a result of vigourous star formation or activity in the galaxy nucleus, as well as in emission from tidal features. Unlike previous studies from earlier X-ray missions, HCGs 31, 42, 59, and 92 are found to be consistent with the L{sub X} -T relationship from clusters within the errors, while HCGs 16 and 31 are consistent with the cluster L{sub X} -{sigma} relation, though this is likely coincidental given that the hot gas in these two systems is largely due to star formation. We find that L{sub X} increases with decreasing group H I to dynamical-mass ratio with tentative evidence for a dependence in X-ray luminosity on H I morphology whereby systems with intragroup H I indicative of strong interactions are considerably more X-ray luminous than passively evolving groups. We also find a gap in the L{sub X} of groups as a function of the total group specific star formation rate. Our findings suggest that the hot gas in these groups is not in hydrostatic equilibrium and these systems are not low-mass analogs of rich groups or clusters, with the possible exception of HCG 62.« less
Intragroup and Galaxy-linked Diffuse X-ray Emission In Hickson Compact Groups
NASA Technical Reports Server (NTRS)
Desjardins, Tyler D.; Gallagher, Sarah C.; Tzanavaris, Panayiotis; Mulchaey, John S.; Brandt, William N.; Charlton, Jane C.; Garmire, Gordon P.; Gronwall, Caryl; Cardiff, Ann; Johnson, Kelsey E.;
2013-01-01
Isolated compact groups (CGs) of galaxies present a range of dynamical states, group velocity dispersions, and galaxy morphologies with which to study galaxy evolution, particularly the properties of gas both within the galaxies and in the intragroup medium. As part of a large, multiwavelength examination of CGs, we present an archival study of diffuse X-ray emission in a subset of nine Hickson compact groups (HCGs) observed with the Chandra X-Ray Observatory. We find that seven of the groups in our sample exhibit detectable diffuse emission. However, unlike large-scale emission in galaxy clusters, the diffuse features in the majority of the detected groups are linked to the individual galaxies, in the form of both plumes and halos likely as a result of vigourous star formation or activity in the galaxy nucleus, as well as in emission from tidal features. Unlike previous studies from earlier X-ray missions, HCGs 31, 42, 59, and 92 are found to be consistent with the L(sub X-Tau) relationship from clusters within the errors, while HCGs 16 and 31 are consistent with the cluster L(sub X-sigma) relation, though this is likely coincidental given that the hot gas in these two systems is largely due to star formation. We find that L(sub X) increases with decreasing group Hi to dynamical-mass ratio with tentative evidence for a dependence in X-ray luminosity on Hi morphology whereby systems with intragroup Hi indicative of strong interactions are considerably more X-ray luminous than passively evolving groups. We also find a gap in the L(sub X) of groups as a function of the total group specific star formation rate. Our findings suggest that the hot gas in these groups is not in hydrostatic equilibrium and these systems are not low-mass analogs of rich groups or clusters, with the possible exception of HCG 62.
Dwarf galaxies in the coma cluster: Star formation properties and evolution
NASA Astrophysics Data System (ADS)
Hammer, Derek M.
The infall regions of galaxy clusters are unique laboratories for studying the impact of environment on galaxy evolution. This intermediate region links the low-density field environment and the dense core of the cluster, and is thought to host recently accreted galaxies whose star formation is being quenched by external processes associated with the cluster. In this dissertation, we measure the star formation properties of galaxies at the infall region of the nearby rich cluster of galaxies, Coma. We rely primarily on Ultraviolet (UV) data owing to its sensitivity to recent star formation and we place more emphasis on the properties of dwarf galaxies. Dwarf galaxies are good tracers of external processes in clusters but their evolution is poorly constrained as they are intrinsically faint and hence more challenging to detect. We make use of deep GALEX far-UV and near-UV observations at the infall region of the Coma cluster. This area of the cluster has supporting photometric coverage at optical and IR wavelengths in addition to optical spectroscopic data that includes deep redshift coverage of dwarf galaxies in Coma. Our GALEX observations were the deepest exposures taken for a local galaxy cluster. The depth of these images required alternative data analysis techniques to overcome systematic effects that limit the default GALEX pipeline analysis. Specifically, we used a deblending method that improved detection efficiency by a factor of ˜2 and allowed reliable photometry a few magnitudes deeper than the pipeline catalog. We performed deep measurements of the total UV galaxy counts in our field that were used to measure the source confusion limit for crowded GALEX fields. The star formation properties of Coma members were studied for galaxies that span from starbursts to passive galaxies. Star-forming galaxies in Coma tend to have lower specific star formation rates, on average, as compared to field galaxies. We show that the majority of these galaxies are likely in the process of being quenched or were only recently quenched. We modeled the quenching timescales for transition galaxies, or “green valley” objects, and found that the majority are quenched in less than 1 Gyr. This timescale is consistent with rapid dynamical processes that are active in the cluster environment as opposed to the more gradual quenching mechanisms that exist in the group environment. For the passive galaxy population, we have measured an average stellar age of 6-8 Gyr for the red sequence which is consistent with previous studies based on spectroscopic observations. We note that the star formation properties of Coma member galaxies were established from photometry alone, as opposed to using spectroscopic data which are more challenging to obtain for dwarf galaxies. We have measured the faintest UV luminosity functions (LFs) presented for a rich galaxy cluster thus far. The Coma UV LFs are 3.5 mag fainter than previous studies in Coma, and are sufficiently deep that we reach the dwarf passive galaxy population for the first time. We have introduced a new technique for measuring the LF which avoids color selection effects associated with previous methods. The UV LFs constructed separately for star-forming and passive galaxies follow a similar distribution at faint magnitudes, which suggests that the recent quenching of infalling dwarf star-forming galaxies is sufficient to build the dwarf passive population in Coma. The Coma UV LFs show a turnover at faint magnitudes as compared to the field, owing to a deficit of dwarf galaxies with stellar masses below M∗ = 108 M⊙ . We show that the UV LFs for the field behind the Coma cluster are nearly identical to the average field environment, and do not show evidence for a turnover at faint magnitudes. We suspect that the missing dwarf galaxies in Coma are severely disrupted by tidal processes as they are accreted onto the cluster, just prior to reaching the infall region studied here.
The VLT LBG redshift survey - VI. Mapping H I in the proximity of z ˜ 3 LBGs with X-Shooter
NASA Astrophysics Data System (ADS)
Bielby, R. M.; Shanks, T.; Crighton, N. H. M.; Bornancini, C. G.; Infante, L.; Lambas, D. G.; Minniti, D.; Morris, S. L.; Tummuangpak, P.
2017-10-01
We present an analysis of the spatial distribution and dynamics of neutral hydrogen gas around galaxies using new X-Shooter observations of z ˜ 2.5-4 quasars. Adding the X-Shooter data to our existing data set of high-resolution quasar spectroscopy, we use a total sample of 29 quasars alongside ˜1700 Lyman Break Galaxies (LBGs) in the redshift range 2 ≲ z ≲ 3.5. We measure the Lyα forest auto-correlation function, finding a clustering length of s0 = 0.081 ± 0.006 h-1 Mpc, and the cross-correlation function with LBGs, finding a cross-clustering length of s0 = 0.27 ± 0.14 h-1 Mpc and power-law slope γ = 1.1 ± 0.2. Our results highlight the weakly clustered nature of neutral hydrogren systems in the Lyα forest. Building on this, we make a first analysis of the dependence of the clustering on absorber strength, finding a clear preference for stronger Lyα forest absorption features to be more strongly clustered around the galaxy population, suggesting that they trace on average higher mass haloes. Using the projected and 2-D cross-correlation functions, we constrain the dynamics of Lyα forest clouds around z ˜ 3 galaxies. We find a significant detection of large-scale infall of neutral hydrogen, with a constraint on the Lyα forest infall parameter of βF = 1.02 ± 0.22.
The Formation and Evolution of Star Clusters in Interacting Galaxies
NASA Astrophysics Data System (ADS)
Maji, Moupiya; Zhu, Qirong; Li, Yuexing; Charlton, Jane; Hernquist, Lars; Knebe, Alexander
2017-08-01
Observations of globular clusters show that they have universal lognormal mass functions with a characteristic peak at ˜ 2× {10}5 {M}⊙ , but the origin of this peaked distribution is highly debated. Here we investigate the formation and evolution of star clusters (SCs) in interacting galaxies using high-resolution hydrodynamical simulations performed with two different codes in order to mitigate numerical artifacts. We find that massive SCs in the range of ˜ {10}5.5{--}{10}7.5 {M}⊙ form preferentially in the highly shocked regions produced by galaxy interactions. The nascent cluster-forming clouds have high gas pressures in the range of P/k˜ {10}8{--}{10}12 {{K}} {{cm}}-3, which is ˜ {10}4{--}{10}8 times higher than the typical pressure of the interstellar medium but consistent with recent observations of a pre-super-SC cloud in the Antennae Galaxies. Furthermore, these massive SCs have quasi-lognormal initial mass functions with a peak around ˜ {10}6 {M}⊙ . The number of clusters declines with time due to destructive processes, but the shape and the peak of the mass functions do not change significantly during the course of galaxy collisions. Our results suggest that gas-rich galaxy mergers may provide a favorable environment for the formation of massive SCs such as globular clusters, and that the lognormal mass functions and the unique peak may originate from the extreme high-pressure conditions of the birth clouds and may survive the dynamical evolution.
Galaxy evolution. Isolated compact elliptical galaxies: stellar systems that ran away.
Chilingarian, Igor; Zolotukhin, Ivan
2015-04-24
Compact elliptical galaxies form a rare class of stellar system (~30 presently known) characterized by high stellar densities and small sizes and often harboring metal-rich stars. They were thought to form through tidal stripping of massive progenitors, until two isolated objects were discovered where massive galaxies performing the stripping could not be identified. By mining astronomical survey data, we have now found 195 compact elliptical galaxies in all types of environment. They all share similar dynamical and stellar population properties. Dynamical analysis for nonisolated galaxies demonstrates the feasibility of their ejection from host clusters and groups by three-body encounters, which is in agreement with numerical simulations. Hence, isolated compact elliptical and isolated quiescent dwarf galaxies are tidally stripped systems that ran away from their hosts. Copyright © 2015, American Association for the Advancement of Science.
Tidal stripping stellar substructures around four metal-poor globular clusters in the galactic bulge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chun, Sang-Hyun; Kang, Minhee; Jung, DooSeok
2015-01-01
We investigate the spatial density configuration of stars around four metal-poor globular clusters (NGC 6266, NGC 6626, NGC 6642, and NGC 6723) in the Galactic bulge region using wide-field deep J, H, and K imaging data obtained with the Wide Field Camera near-infrared array on the United Kingdom Infrared Telescope. A statistical weighted filtering algorithm for the stars on the color–magnitude diagram is applied in order to sort cluster member candidates from the field star contamination. In two-dimensional isodensity contour maps of the clusters, we find that all four of the globular clusters exhibit strong evidence of tidally stripped stellarmore » features beyond the tidal radius in the form of tidal tails or small density lobes/chunks. The orientations of the extended stellar substructures are likely to be associated with the effect of dynamic interaction with the Galaxy and the cluster's space motion. The observed radial density profiles of the four globular clusters also describe the extended substructures; they depart from theoretical King and Wilson models and have an overdensity feature with a break in the slope of the profile at the outer region of clusters. The observed results could imply that four globular clusters in the Galactic bulge region have experienced strong environmental effects such as tidal forces or bulge/disk shocks of the Galaxy during the dynamical evolution of globular clusters. These observational results provide further details which add to our understanding of the evolution of clusters in the Galactic bulge region as well as the formation of the Galaxy.« less
The KMOS Cluster Survey (KCS). III. Fundamental Plane of Cluster Galaxies at z ≃ 1.80 in JKCS 041
NASA Astrophysics Data System (ADS)
Prichard, Laura J.; Davies, Roger L.; Beifiori, Alessandra; Chan, Jeffrey C. C.; Cappellari, Michele; Houghton, Ryan C. W.; Mendel, J. Trevor; Bender, Ralf; Galametz, Audrey; Saglia, Roberto P.; Stott, John P.; Wilman, David J.; Lewis, Ian J.; Sharples, Ray; Wegner, Michael
2017-12-01
We present data for 16 galaxies in the overdensity JKCS 041 at z≃ 1.80 as part of the K-band Multi-Object Spectrograph (KMOS) Cluster Survey (KCS). With 20 hr integrations, we have obtained deep absorption-line spectra from which we derived velocity dispersions for seven quiescent galaxies. We combined photometric parameters derived from Hubble Space Telescope images with the dispersions to construct a fundamental plane (FP) for quiescent galaxies in JKCS 041. From the zero-point evolution of the FP, we derived a formation redshift for the galaxies of {z}{form}=3.0+/- 0.3, corresponding to a mean age of 1.4 ± 0.2 Gyr. We tested the effect of structural and velocity dispersion evolution on our FP zero-point and found a negligible contribution when using dynamical mass-normalized parameters (˜ 3 % ) but a significant contribution from stellar-mass-normalized parameters (˜ 42 % ). From the relative velocities of the galaxies, we probed the 3D structure of these 16 confirmed members of JKCS 041 and found that a group of galaxies in the southwest of the overdensity had systematically higher velocities. We derived ages for the galaxies in the different groups from the FP. We found that the east-extending group had typically older galaxies ({2.1}-0.2+0.3 Gyr) than those in the southwest group (0.3 ± 0.2 Gyr). Although based on small numbers, the overdensity dynamics, morphology, and age results could indicate that JKCS 041 is in formation and may comprise two merging groups of galaxies. This result could link large-scale structure to ages of galaxies for the first time at this redshift. Based on observations obtained at the Very Large Telescope (VLT) of the European Southern Observatory (ESO), Paranal, Chile (ESO program IDs: 095.A-0137(A) and 096.A-0189(A)).
Selections from 2016: A Very Dark Galaxy
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2016-12-01
Editors note:In these last two weeks of 2016, well be looking at a few selections that we havent yet discussed on AAS Nova from among the most-downloaded paperspublished in AAS journals this year. The usual posting schedule will resume after the AAS winter meeting.A High Stellar Velocity Dispersion and 100 Globular Clusters for the Ultra-Diffuse Galaxy Dragonfly 44Published August2016Main takeaway:Using the Keck Observatory and the Gemini North telescope in Hawaii, a team led by Pieter van Dokkum (Yale University) discovered the very dim galaxy Dragonfly 44, located in the Coma cluster. The team estimated the center of this galaxys disk to be a whopping 98% dark matter.Why its interesting:Dragonfly 44, though dim, was discovered to host around 100 globular clusters. Measuring the dynamics of these clusters allowed van Dokkum and collaborators to estimate the mass of Dragonfly 44: roughly a trillion times the mass of the Sun. This is similar to the mass of the Milky Way, and yet the Milky Way has over a hundred times more stars than this intriguing galaxy. Its very unexpected to find a galaxy this massive that has a dark-matter fraction this high.What we can learn from this:How do ultra-faint galaxies like these form? One theory is that theyre failed normal galaxies: they have the sizes, dark-matter content, and globular cluster systems of much more luminous galaxies, but they were prevented from building up a normal stellar population. So far, Dragonfly 44s properties seem consistent with this picture.CitationPieter van Dokkum et al 2016 ApJL 828 L6. doi:10.3847/2041-8205/828/1/L6
Structure and Formation of cD Galaxies: NGC 6166 in ABELL 2199
NASA Astrophysics Data System (ADS)
Bender, Ralf; Kormendy, John; Cornell, Mark E.; Fisher, David B.
2015-07-01
Hobby-Eberly Telescope (HET) spectroscopy is used to measure the velocity dispersion profile of the nearest prototypical cD galaxy, NGC 6166 in the cluster Abell 2199. We also present composite surface photometry from many telescopes. We confirm the defining feature of a cD galaxy; i.e., (we suggest), a halo of stars that fills the cluster center and that is controlled dynamically by cluster gravity, not by the central galaxy. Our HET spectroscopy shows that the velocity dispersion of NGC 6166 rises from σ ≃ 300 km s-1 in the inner r˜ 10\\prime\\prime to σ =865+/- 58 km s-1 at r ˜ 100″ in the cD halo. This extends published observations of an outward σ increase and shows for the first time that σ rises all the way to the cluster velocity dispersion of 819 ± 32 km s-1. We also observe that the main body of NGC 6166 moves at +206 ± 39 km s-1 with respect to the cluster mean velocity, but the velocity of the inner cD halo is ˜70 km s-1 closer to the cluster velocity. These results support our picture that cD halos consist of stars that were stripped from individual cluster galaxies by fast tidal encounters. However, our photometry does not confirm the widespread view that cD halos are identifiable as an extra, low-surface-brightness component that is photometrically distinct from the inner, steep-Sérsic-function main body of an otherwise-normal giant elliptical galaxy. Instead, all of the brightness profile of NGC 6166 outside its core is described to ±0.037 V mag arcsec-2 by a single Sérsic function with index n≃ 8.3. The cD halo is not recognizable from photometry alone. This blurs the distinction between cluster-dominated cD halos and the similarly-large-Sérsic-index halos of giant, core-boxy-nonrotating ellipticals. These halos are believed to be accreted onto compact, high-redshift progenitors (“red nuggets”) by large numbers of minor mergers. They belong dynamically to their central galaxies. Still, cDs and core-boxy-nonrotating Es may be more similar than we think: both may have outer halos made largely via minor mergers and the accumulation of tidal debris. We construct a main-body+cD-halo decomposition that fits both the brightness and dispersion profiles. To fit σ (r), we need to force the component Sérsic indices to be smaller than a minimum-{χ }2 photometric decomposition would suggest. The main body has {M}V≃ -22.8≃ 30% of the total galaxy light. The cD halo has {M}V≃ -23.7, ˜1/2 mag brighter than the brightest galaxy in the Virgo cluster. A mass model based on published cluster dynamics and X-ray observations fits our observations if the tangential dispersion is larger than the radial dispersion at r≃ 20\\prime\\prime -60\\prime\\prime . The cD halo is as enhanced in α element abundances as the main body of NGC 6166. Quenching of star formation in ≲1 Gyr suggests that the center of Abell 2199 has been special for a long time during which dynamical evolution has liberated a large mass of now-intracluster stars. Based on observations obtained with the Hobby-Eberly Telescope, which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universität München, and Georg-August-Universität Göttingen.
DDO 161 and UGCA 319: an isolated pair of nearby dwarf galaxies
NASA Astrophysics Data System (ADS)
Karachentsev, I. D.; Makarova, L. N.; Tully, R. B.; Rizzi, L.; Karachentseva, V. E.; Shaya, E. J.
2017-07-01
We report Hubble Space Telescope/Advanced Camera for Surveys observations of two nearby gas-rich dwarf galaxies: DDO 161 and UGCA 319. Their distances determined via the tip of the red giant branch are 6.03_{-0.21}^{+0.29} and 5.75 ± 0.18 Mpc, respectively. The galaxies form an isolated pair dynamically well separated from the nearest neighbours: KK 176 (7.28 ± 0.29 Mpc) and NGC 5068 (5.16 ± 0.21 Mpc). All four galaxies have a bulk spatial peculiar velocity towards the Virgo cluster of ˜158 ± 17 km s-1 in the Local Group rest frame and ˜330 km s-1 with respect to the cluster centre.
Observing the clustering properties of galaxy clusters in dynamical dark-energy cosmologies
NASA Astrophysics Data System (ADS)
Fedeli, C.; Moscardini, L.; Bartelmann, M.
2009-06-01
We study the clustering properties of galaxy clusters expected to be observed by various forthcoming surveys both in the X-ray and sub-mm regimes by the thermal Sunyaev-Zel'dovich effect. Several different background cosmological models are assumed, including the concordance ΛCDM and various cosmologies with dynamical evolution of the dark energy. Particular attention is paid to models with a significant contribution of dark energy at early times which affects the process of structure formation. Past light cone and selection effects in cluster catalogs are carefully modeled by realistic scaling relations between cluster mass and observables and by properly taking into account the selection functions of the different instruments. The results show that early dark-energy models are expected to produce significantly lower values of effective bias and both spatial and angular correlation amplitudes with respect to the standard ΛCDM model. Among the cluster catalogs studied in this work, it turns out that those based on eRosita, Planck, and South Pole Telescope observations are the most promising for distinguishing between various dark-energy models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adamo, Angela; Oestlin, G.; Zackrisson, E.
2013-04-01
We analyze the clump population of the spiral galaxy Sp 1149 at redshift 1.5. Located behind the galaxy cluster MACS J1149.5+2223, Sp 1149 has been significantly magnified allowing us to study the galaxy on physical scales down to {approx}100 pc. The galaxy cluster frame is among the targets of the Cluster Lensing And Supernova survey with Hubble (CLASH), an ongoing Hubble Space Telescope (HST) Multi-Cycle Treasury program. We have used the publicly available multi-band imaging data set to reconstruct the spectral energy distributions of the clumps in Sp 1149, and derive, by means of stellar evolutionary models, their physical properties.more » We found that 40% of the clumps observed in Sp 1149 are older than 30 Myr and can be as old as 300 Myr. These are also the more massive (luminous) clumps in the galaxy. Among the complexes in the local reference sample, the star-forming knots in luminous blue compact galaxies could be considered progenitor analogs of these long-lived clumps. The remaining 60% of clumps have colors comparable to local cluster complexes, suggesting a similar young age. We observe that the Sp 1149 clumps follow the M{proportional_to}R {sup 2} relation similar to local cluster complexes, suggesting similar formation mechanisms although they may have different initial conditions (e.g., higher gas surface densities). We suggest that the galaxy is experiencing a slow decline in star formation rate and a likely transitional phase toward a more quiescent star formation mode. The older clumps have survived between 6 and 20 dynamical times and are all located at projected distances smaller than 4 kpc from the center. Their current location suggests migration toward the center and the possibility of being the building blocks of the bulge. On the other hand, the dynamical timescale of the younger clumps is significantly shorter, meaning that they are quite close to their birthplace. We show that the clumps of Sp 1149 may account for the expected metal-rich globular cluster population usually associated with the bulge and thick disk components of local spirals.« less
Mass Distribution in Galaxy Cluster Cores
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hogan, M. T.; McNamara, B. R.; Pulido, F.
Many processes within galaxy clusters, such as those believed to govern the onset of thermally unstable cooling and active galactic nucleus feedback, are dependent upon local dynamical timescales. However, accurate mapping of the mass distribution within individual clusters is challenging, particularly toward cluster centers where the total mass budget has substantial radially dependent contributions from the stellar ( M {sub *}), gas ( M {sub gas}), and dark matter ( M {sub DM}) components. In this paper we use a small sample of galaxy clusters with deep Chandra observations and good ancillary tracers of their gravitating mass at both largemore » and small radii to develop a method for determining mass profiles that span a wide radial range and extend down into the central galaxy. We also consider potential observational pitfalls in understanding cooling in hot cluster atmospheres, and find tentative evidence for a relationship between the radial extent of cooling X-ray gas and nebular H α emission in cool-core clusters. At large radii the entropy profiles of our clusters agree with the baseline power law of K ∝ r {sup 1.1} expected from gravity alone. At smaller radii our entropy profiles become shallower but continue with a power law of the form K ∝ r {sup 0.67} down to our resolution limit. Among this small sample of cool-core clusters we therefore find no support for the existence of a central flat “entropy floor.”.« less
A representative survey of the dynamics and energetics of FR II radio galaxies
NASA Astrophysics Data System (ADS)
Ineson, J.; Croston, J. H.; Hardcastle, M. J.; Mingo, B.
2017-05-01
We report the first large, systematic study of the dynamics and energetics of a representative sample of Fanaroff-Riley type II (FR II) radio galaxies with well-characterized group/cluster environments. We used X-ray inverse-Compton and radio synchrotron measurements to determine the internal radio-lobe conditions, and these were compared with external pressures acting on the lobes, determined from measurements of the thermal X-ray emission of the group/cluster. Consistent with previous work, we found that FR II radio lobes are typically electron dominated by a small factor relative to equipartition, and are overpressured relative to the external medium in their outer parts. These results suggest that there is typically no energetically significant proton population in the lobes of FR II radio galaxies (unlike for FR Is), and so for this population, inverse-Compton modelling provides an accurate way of measuring total energy content and estimating jet power. We estimated the distribution of Mach numbers for the population of expanding radio lobes, finding that at least half of the radio galaxies are currently driving strong shocks into their group/cluster environments. Finally, we determined a jet power-radio luminosity relation for FR II radio galaxies based on our estimates of lobe internal energy and Mach number. The slope and normalization of this relation are consistent with theoretical expectations, given the departure from equipartition and environmental distribution for our sample.
NASA Astrophysics Data System (ADS)
Martinet, L.; Mayor, M.
The basic problems and analysis techniques in examining the morphology, dynamics, and interactions between star systems, galaxies, and galactic clusters are detailed. Attention is devoted to the dynamics of hot stellar systems, with note taken of the derivation and application of the Vlasov equation, Jean's theorem, and the virial equations. Observations of galactic structure and dynamics are reviewed, and consideration is directed toward environmental influences on galactic structure. For individual items see A84-15503 to A84-15505
Formation of Cool Cores in Galaxy Clusters via Hierarchical Mergers
NASA Astrophysics Data System (ADS)
Motl, Patrick M.; Burns, Jack O.; Loken, Chris; Norman, Michael L.; Bryan, Greg
2004-05-01
We present a new scenario for the formation of cool cores in rich galaxy clusters, based on results from recent high spatial dynamic range, adaptive mesh Eulerian hydrodynamic simulations of large-scale structure formation. We find that cores of cool gas, material that would be identified as a classical cooling flow on the basis of its X-ray luminosity excess and temperature profile, are built from the accretion of discrete stable subclusters. Any ``cooling flow'' present is overwhelmed by the velocity field within the cluster; the bulk flow of gas through the cluster typically has speeds up to about 2000 km s-1, and significant rotation is frequently present in the cluster core. The inclusion of consistent initial cosmological conditions for the cluster within its surrounding supercluster environment is crucial when the evolution of cool cores in rich galaxy clusters is simulated. This new model for the hierarchical assembly of cool gas naturally explains the high frequency of cool cores in rich galaxy clusters, despite the fact that a majority of these clusters show evidence of substructure that is believed to arise from recent merger activity. Furthermore, our simulations generate complex cluster cores in concordance with recent X-ray observations of cool fronts, cool ``bullets,'' and filaments in a number of galaxy clusters. Our simulations were computed with a coupled N-body, Eulerian, adaptive mesh refinement, hydrodynamics cosmology code that properly treats the effects of shocks and radiative cooling by the gas. We employ up to seven levels of refinement to attain a peak resolution of 15.6 kpc within a volume 256 Mpc on a side and assume a standard ΛCDM cosmology.
NASA Astrophysics Data System (ADS)
van der Marel, Roeland P.; van Dokkum, Pieter G.
2007-10-01
We study the mass-to-light ratio (M/L) evolution of early-type galaxies using dynamical modeling of resolved internal kinematics. This makes fewer assumptions than fundamental plane (FP) studies and provides a powerful new approach for studying galaxy evolution. We focus on the sample of 25 galaxies in clusters at z~0.5 modeled in Paper I. For comparison, we compile and homogenize M/L literature data for 60 nearby galaxies that were modeled in comparable detail. The nearby sample obeys log(M/L)B=Z+Slog(σeff/200 km s-1), where Z=0.896+/-0.010, S=0.992+/-0.054, and σeff is the effective velocity dispersion. The z~0.5 sample follows a similar relation, but with lower zero point. The implied M/L evolution is Δlog(M/L)/Δz=-0.457+/-0.046(random)+/-0.078(systematic), consistent with passive evolution following high-redshift formation. This agrees with the FP results for this sample by van Dokkum & van der Marel, and confirms that FP evolution tracks M/L evolution, which is an important verification of the assumptions that underlie FP studies. However, while we find more FP evolution for galaxies of low σeff (or low mass), the dynamical M/L evolution shows little correlation with σeff. We argue that this difference can be plausibly attributed to a combination of two effects: (1) evolution in structural galaxy properties other than M/L, and (2) the neglect of rotational support in studies of FP evolution. The results leave the question open as to whether the low-mass galaxies in the sample have younger populations than the high-mass galaxies. This highlights the general importance in the study of population ages for complementing dynamical measurements with broadband colors or spectroscopic population diagnostics.
Is ram-pressure stripping an efficient mechanism to remove gas in galaxies?
NASA Astrophysics Data System (ADS)
Quilis, Vicent; Planelles, Susana; Ricciardelli, Elena
2017-07-01
We study how the gas in a sample of galaxies (M* > 109 M⊙) in clusters, obtained in a cosmological simulation, is affected by the interaction with the intracluster medium (ICM). The dynamical state of each elemental parcel of gas is studied using the total energy. At z ˜ 2, the galaxies in the simulation are evenly distributed within clusters, later moving towards more central locations. In this process, gas from the ICM is accreted and mixed with the gas in the galactic halo. Simultaneously, the interaction with the environment removes part of the gas. A characteristic stellar mass around M* ˜ 1010 M⊙ appears as a threshold marking two differentiated behaviours. Below this mass, galaxies are located at the external part of clusters and have eccentric orbits. The effect of the interaction with the environment is marginal. Above, galaxies are mainly located at the inner part of clusters with mostly radial orbits with low velocities. In these massive systems, part of the gas, strongly correlated with the stellar mass of the galaxy, is removed. The amount of removed gas is subdominant compared with the quantity of retained gas, which is continuously influenced by the hot gas coming from the ICM. The analysis of individual galaxies reveals the existence of a complex pattern of flows, turbulence and a constant fuelling of gas to the hot corona from the ICM, which could mean that the global effect of the interaction of galaxies with their environment is substantially less dramatic than previously expected.
NASA Astrophysics Data System (ADS)
Oliva-Altamirano, P.; Brough, S.; Lidman, C.; Couch, W. J.; Hopkins, A. M.; Colless, M.; Taylor, E.; Robotham, A. S. G.; Gunawardhana, M. L. P.; Ponman, T.; Baldry, I.; Bauer, A. E.; Bland-Hawthorn, J.; Cluver, M.; Cameron, E.; Conselice, C. J.; Driver, S.; Edge, A. C.; Graham, A. W.; van Kampen, E.; Lara-López, M. A.; Liske, J.; López-Sánchez, A. R.; Loveday, J.; Mahajan, S.; Peacock, J.; Phillipps, S.; Pimbblet, K. A.; Sharp, R. G.
2014-05-01
We have analysed the growth of Brightest Group Galaxies and Brightest Cluster Galaxies (BGGs/BCGs) over the last 3 billion years using a large sample of 883 galaxies from the Galaxy And Mass Assembly survey. By comparing the stellar mass of BGGs and BCGs in groups and clusters of similar dynamical masses, we find no significant growth between redshift z = 0.27 and 0.09. We also examine the number of BGGs/BCGs that have line emission, finding that approximately 65 per cent of BGGs/BCGs show Hα in emission. From the galaxies where the necessary spectroscopic lines were accurately recovered (54 per cent of the sample), we find that half of this (i.e. 27 per cent of the sample) harbour ongoing star formation with rates up to 10 M⊙ yr-1, and the other half (i.e. 27 per cent of the sample) have an active nucleus (AGN) at the centre. BGGs are more likely to have ongoing star formation, while BCGs show a higher fraction of AGN activity. By examining the position of the BGGs/BCGs with respect to their host dark matter halo, we find that around 13 per cent of them do not lie at the centre of the dark matter halo. This could be an indicator of recent cluster-cluster mergers. We conclude that BGGs and BCGs acquired their stellar mass rapidly at higher redshifts as predicted by semi-analytic models, mildly slowing down at low redshifts.
Galaxy clusters in the context of superfluid dark matter
NASA Astrophysics Data System (ADS)
Hodson, Alistair O.; Zhao, Hongsheng; Khoury, Justin; Famaey, Benoit
2017-11-01
Context. The mass discrepancy in the Universe has not been solved by the cold dark matter (CDM) or the modified Newtonian dynamics (MOND) paradigms so far. The problems and solutions of either scenario are mutually exclusive on large and small scales. It has recently been proposed, by assuming that dark matter is a superfluid, that MOND-like effects can be achieved on small scales whilst preserving the success of ΛCDM on large scales. Detailed models within this "superfluid dark matter" (SfDM) paradigm are yet to be constructed. Aims: Here, we aim to provide the first set of spherical models of galaxy clusters in the context of SfDM. We aim to determine whether the superfluid formulation is indeed sufficient to explain the mass discrepancy in galaxy clusters. Methods: The SfDM model is defined by two parameters. Λ can be thought of as a mass scale in the Lagrangian of the scalar field that effectively describes the phonons, and it acts as a coupling constant between the phonons and baryons. m is the mass of the DM particles. Based on these parameters, we outline the theoretical structure of the superfluid core and the surrounding "normal-phase" dark halo of quasi-particles. The latter are thought to encompass the largest part of galaxy clusters. Here, we set the SfDM transition at the radius where the density and pressure of the superfluid and normal phase coincide, neglecting the effect of phonons in the superfluid core. We then apply the formalism to a sample of galaxy clusters, and directly compare the SfDM predicted mass profiles to data. Results: We find that the superfluid formulation can reproduce the X-ray dynamical mass profile of clusters reasonably well, but with a slight under-prediction of the gravity in the central regions. This might be partly related to our neglecting of the effect of phonons in these regions. Two normal-phase halo profiles are tested, and it is found that clusters are better defined by a normal-phase halo resembling an Navarro-Frenk-White-like structure than an isothermal profile. Conclusions: In this first exploratory work on the topic, we conclude that depending on the amount of baryons present in the central galaxy and on the actual effect of phonons in the inner regions, this superfluid formulation could be successful in describing galaxy clusters. In the future, our model could be made more realistic by exploring non-sphericity and a more realistic SfDM to normal phase transition. The main result of this study is an estimate of the order of magnitude of the theory parameters for the superfluid formalism to be reasonably consistent with clusters. These values will have to be compared to the true values needed in galaxies.
The Dynamics of the Local Group in the Era of Precision Astrometry
NASA Astrophysics Data System (ADS)
Besla, Gurtina; Garavito-Camargo, Nicolas; Patel, Ekta
2018-06-01
Our understanding of the dynamics of our Local Group of galaxies has changed dramatically over the past few years owing to significant advancements in astrometry and our theoretical understanding of galaxy structure. New surveys now enable us to map the 3D structure of our Milky Way and the dynamics of tracers of its dark matter distribution, like globular clusters, satellite galaxies and streams, with unprecedented precision. Some results have met with controversy, challenging preconceived notions of the orbital dynamics of key components of the Local Group. I will provide an overview of this evolving picture of our Local Group and outline how we can test the cold dark matter paradigm in the era of Gaia, LSST and JWST.
NASA Astrophysics Data System (ADS)
Vazza, F.; Brunetti, G.; Gheller, C.; Brunino, R.
2010-11-01
We present a sample of 20 massive galaxy clusters with total virial masses in the range of 6 × 10 14 M ⊙ ⩽ Mvir ⩽ 2 × 10 15 M ⊙, re-simulated with a customized version of the 1.5. ENZO code employing adaptive mesh refinement. This technique allowed us to obtain unprecedented high spatial resolution (≈25 kpc/h) up to the distance of ˜3 virial radii from the clusters center, and makes it possible to focus with the same level of detail on the physical properties of the innermost and of the outermost cluster regions, providing new clues on the role of shock waves and turbulent motions in the ICM, across a wide range of scales. In this paper, a first exploratory study of this data set is presented. We report on the thermal properties of galaxy clusters at z = 0. Integrated and morphological properties of gas density, gas temperature, gas entropy and baryon fraction distributions are discussed, and compared with existing outcomes both from the observational and from the numerical literature. Our cluster sample shows an overall good consistency with the results obtained adopting other numerical techniques (e.g. Smoothed Particles Hydrodynamics), yet it provides a more accurate representation of the accretion patterns far outside the cluster cores. We also reconstruct the properties of shock waves within the sample by means of a velocity-based approach, and we study Mach numbers and energy distributions for the various dynamical states in clusters, giving estimates for the injection of Cosmic Rays particles at shocks. The present sample is rather unique in the panorama of cosmological simulations of massive galaxy clusters, due to its dynamical range, statistics of objects and number of time outputs. For this reason, we deploy a public repository of the available data, accessible via web portal at http://data.cineca.it.
NASA Astrophysics Data System (ADS)
Hallman, Eric J.; Alden, Brian; Rapetti, David; Datta, Abhirup; Burns, Jack O.
2018-05-01
We present results from an X-ray and radio study of the merging galaxy cluster Abell 115. We use the full set of five Chandra observations taken of A115 to date (360 ks total integration) to construct high-fidelity temperature and surface brightness maps. We also examine radio data from the Very Large Array at 1.5 GHz and the Giant Metrewave Radio Telescope at 0.6 GHz. We propose that the high X-ray spectral temperature between the subclusters results from the interaction of the bow shocks driven into the intracluster medium by the motion of the subclusters relative to one another. We have identified morphologically similar scenarios in Enzo numerical N-body/hydrodynamic simulations of galaxy clusters in a cosmological context. In addition, the giant radio relic feature in A115, with an arc-like structure and a relatively flat spectral index, is likely consistent with other shock-associated giant radio relics seen in other massive galaxy clusters. We suggest a dynamical scenario that is consistent with the structure of the X-ray gas, the hot region between the clusters, and the radio relic feature.
Globular Clusters for Faint Galaxies
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-07-01
The origin of ultra-diffuse galaxies (UDGs) has posed a long-standing mystery for astronomers. New observations of several of these faint giants with the Hubble Space Telescope are now lending support to one theory.Faint-Galaxy MysteryHubble images of Dragonfly 44 (top) and DFX1 (bottom). The right panels show the data with greater contrast and extended objects masked. [van Dokkum et al. 2017]UDGs large, extremely faint spheroidal objects were first discovered in the Virgo galaxy cluster roughly three decades ago. Modern telescope capabilities have resulted in many more discoveries of similar faint galaxies in recent years, suggesting that they are a much more common phenomenon than we originally thought.Despite the many observations, UDGs still pose a number of unanswered questions. Chief among them: what are UDGs? Why are these objects the size of normal galaxies, yet so dim? There are two primary models that explain UDGs:UDGs were originally small galaxies, hence their low luminosity. Tidal interactions then puffed them up to the large size we observe today.UDGs are effectively failed galaxies. They formed the same way as normal galaxies of their large size, but something truncated their star formation early, preventing them from gaining the brightness that we would expect for galaxies of their size.Now a team of scientists led by Pieter van Dokkum (Yale University) has made some intriguing observations with Hubble that lend weight to one of these models.Globulars observed in 16 Coma-cluster UDGs by Hubble. The top right panel shows the galaxy identifications. The top left panel shows the derived number of globular clusters in each galaxy. [van Dokkum et al. 2017]Globulars GaloreVan Dokkum and collaborators imaged two UDGs with Hubble: Dragonfly 44 and DFX1, both located in the Coma galaxy cluster. These faint galaxies are both smooth and elongated, with no obvious irregular features, spiral arms, star-forming regions, or other indications of tidal interactions.The most striking feature of these galaxies, however, is that they are surrounded by a large number of compact objects that appear to be globular clusters. From the observations, Van Dokkum and collaborators estimate that Dragonfly 44 and DFX1 have approximately 74 and 62 globulars, respectively significantly more than the low numbers expected for galaxies of this luminosity.Armed with this knowledge, the authors went back and looked at archival observations of 14 other UDGs also located in the Coma cluster. They found that these smaller and fainter galaxies dont host quite as many globular clusters as Dragonfly 44 and DFX1, but more than half also show significant overdensities of globulars.Main panel: relation between the number of globular clusters and total absolute magnitude for Coma UDGs (solid symbols) compared to normal galaxies (open symbols). Top panel: relation between effective radius and absolute magnitude. The UDGs are significantly larger and have more globular clusters than normal galaxies of the same luminosity. [van Dokkum et al. 2017]Evidence of FailureIn general, UDGs appear to have more globular clusters than other galaxies of the same total luminosity, by a factor of nearly 7. These results are consistent with the scenario in which UDGs are failed galaxies: they likely have the halo mass to have formed a large number of globular clusters, but they were quenched before they formed a disk and bulge. Because star formation never got going in UDGs, they are now much dimmer than other galaxies of the same size.The authors suggest that the next step is to obtain dynamical measurements of the UDGs to determine whether these faint galaxies really do have the halo mass suggested by their large numbers of globulars. Future observations will continue to help us pin down the origin of these dim giants.CitationPieter van Dokkum et al 2017 ApJL 844 L11. doi:10.3847/2041-8213/aa7ca2
Limit on graviton mass from galaxy cluster Abell 1689
NASA Astrophysics Data System (ADS)
Desai, Shantanu
2018-02-01
To date, the only limit on graviton mass using galaxy clusters was obtained by Goldhaber and Nieto in 1974, using the fact that the orbits of galaxy clusters are bound and closed, and extend up to 580 kpc. From positing that only a Newtonian potential gives rise to such stable bound orbits, a limit on the graviton mass m_g<10^{-29} eV was obtained (PRD 9,1119, 1974). Recently, it has been shown that one can obtain closed bound orbits for Yukawa potential (arXiv:1705.02444), thus invalidating the main ansatz used in Goldhaber and Nieto to obtain the graviton mass bound. In order to obtain a revised estimate using galaxy clusters, we use dynamical mass models of the Abell 1689 (A1689) galaxy cluster to check their compatibility with a Yukawa gravitational potential. We assume mass models for the gas, dark matter, and galaxies for A1689 from arXiv:1703.10219 and arXiv:1610.01543, who used this cluster to test various alternate gravity theories, which dispense with the need for dark matter. We quantify the deviations in the acceleration profile using these mass models assuming a Yukawa potential and that obtained assuming a Newtonian potential by calculating the χ^2 residuals between the two profiles. Our estimated bound on the graviton mass (m_g) is thereby given by, m_g < 1.37 × 10^{-29} eV or in terms of the graviton Compton wavelength of, λ_g>9.1 × 10^{19} km at 90% confidence level.
NASA Astrophysics Data System (ADS)
Bitsakis, Theodoros; González-Lópezlira, R. A.; Bonfini, P.; Bruzual, G.; Maravelias, G.; Zaritsky, D.; Charlot, S.; Ramírez-Siordia, V. H.
2018-02-01
We present a new study of the spatial distribution and ages of the star clusters in the Small Magellanic Cloud (SMC). To detect and estimate the ages of the star clusters we rely on the new fully automated method developed by Bitsakis et al. Our code detects 1319 star clusters in the central 18 deg2 of the SMC we surveyed (1108 of which have never been reported before). The age distribution of those clusters suggests enhanced cluster formation around 240 Myr ago. It also implies significant differences in the cluster distribution of the bar with respect to the rest of the galaxy, with the younger clusters being predominantly located in the bar. Having used the same setup, and data from the same surveys as for our previous study of the LMC, we are able to robustly compare the cluster properties between the two galaxies. Our results suggest that the bulk of the clusters in both galaxies were formed approximately 300 Myr ago, probably during a direct collision between the two galaxies. On the other hand, the locations of the young (≤50 Myr) clusters in both Magellanic Clouds, found where their bars join the H I arms, suggest that cluster formation in those regions is a result of internal dynamical processes. Finally, we discuss the potential causes of the apparent outside-in quenching of cluster formation that we observe in the SMC. Our findings are consistent with an evolutionary scheme where the interactions between the Magellanic Clouds constitute the major mechanism driving their overall evolution.
VIVA (VLA Imaging of Virgo in Atomic gas): H I Stripping in Virgo Galaxies
NASA Astrophysics Data System (ADS)
Chung, A.; van Gorkom, J. H.; Crowl, H.; Kenney, J. D. P.; Vollmer, B.
2008-08-01
We present results of a new Very Large Array survey of 53 Virgo galaxies (48 spirals and 5 dwarf/irregular systems). The goal is to study how the H I gas properties are affected by the cluster environment. The survey covers galaxies in a wide range of densities from the center of the cluster to more than 3 Mpc from M 87. The gas is imaged down to a column-density sensitivity of a few times 1019cm-2. We find examples of gas stripping at all stages. Within ˜0.5 Mpc from M 87, most galaxies are severely H I stripped. The H I disks are truncated to well within the optical disks. While the H I looks asymmetric, the outer stellar disks look undisturbed. The fact that only the gas and not the stars has been stripped suggests that those galaxies have been affected by the hot and dense cluster gas. Interestingly we also find a few truncated disks at large projected distances from the center. Although some of these may have been stripped while crossing the cluster core, a detailed population-synthesis study of the outer disk of one of these shows that star formation was terminated recently. The time since stripping is too short for the galaxy to have traveled from the core to its current location. So at least one galaxy has lost its gas from the outer disk by another mechanism than ram-pressure stripping in the dense cluster core. At intermediate- to low-density regions (>0.6 Mpc) we find H I tails with various lengths. We find seven galaxies with long one-sided H I tails pointing away from M 87. The galaxies are at 0.6-1 Mpc from M 87. Since these galaxies are only mildly H I deficient and the tails point away from M 87, these galaxies are probably falling into the cluster for the first time on highly radial orbits. For all but two of the galaxies the estimated ram pressure at their location in the cluster would be sufficient to pull out the H I in the very outer disks. One galaxy also looks optically disturbed and a simulation suggests that a combination of ram pressure plus a tidal interaction has pulled out the tail. In the outskirts of the cluster we find several examples of tidally interacting galaxies. We possibly see evidence for some accretion of gas as well. Lastly, the merging of subclusters with Virgo can cause bulk motions of the ICM. We see one example of a galaxy far out that appears to be ram-pressure stripped by a dynamic ICM. In summary, our results show that galaxies are already affected in the low-density outer regions of the cluster through ram-pressure stripping and tidal interactions, or a combination of both.
Dark matter dynamics in Abell 3827: new data consistent with standard cold dark matter
NASA Astrophysics Data System (ADS)
Massey, Richard; Harvey, David; Liesenborgs, Jori; Richard, Johan; Stach, Stuart; Swinbank, Mark; Taylor, Peter; Williams, Liliya; Clowe, Douglas; Courbin, Frédéric; Edge, Alastair; Israel, Holger; Jauzac, Mathilde; Joseph, Rémy; Jullo, Eric; Kitching, Thomas D.; Leonard, Adrienne; Merten, Julian; Nagai, Daisuke; Nightingale, James; Robertson, Andrew; Romualdez, Luis Javier; Saha, Prasenjit; Smit, Renske; Tam, Sut-Ieng; Tittley, Eric
2018-06-01
We present integral field spectroscopy of galaxy cluster Abell 3827, using Atacama Large Millimetre Array (ALMA) and Very Large Telescope/Multi-Unit Spectroscopic Explorer. It reveals an unusual configuration of strong gravitational lensing in the cluster core, with at least seven lensed images of a single background spiral galaxy. Lens modelling based on Hubble Space Telescope imaging had suggested that the dark matter associated with one of the cluster's central galaxies may be offset. The new spectroscopic data enable better subtraction of foreground light, and better identification of multiple background images. The inferred distribution of dark matter is consistent with being centred on the galaxies, as expected by Λ cold dark matter. Each galaxy's dark matter also appears to be symmetric. Whilst, we do not find an offset between mass and light (suggestive of self-interacting dark matter) as previously reported, the numerical simulations that have been performed to calibrate Abell 3827 indicate that offsets and asymmetry are still worth looking for in collisions with particular geometries. Meanwhile, ALMA proves exceptionally useful for strong lens image identifications.
Observations and Modeling of Merging Galaxy Clusters
NASA Astrophysics Data System (ADS)
Golovich, Nathan Ryan
Context: Galaxy clusters grow hierarchically with continuous accretion bookended by major merging events that release immense gravitational potential energy (as much as ˜1065 erg). This energy creates an environment for rich astrophysics. Precise measurements of the dark matter halo, intracluster medium, and galaxy population have resulted in a number of important results including dark matter constraints and explanations of the generation of cosmic rays. However, since the timescale of major mergers (˜several Gyr) relegates observations of individual systems to mere snapshots, these results are difficult to understand under a consistent dynamical framework. While computationally expensive simulations are vital in this regard, the vastness of parameter space has necessitated simulations of idealized mergers that are unlikely to capture the full richness. Merger speeds, geometries, and timescales each have a profound consequential effect, but even these simple dynamical properties of the mergers are often poorly understood. A method to identify and constrain the best systems for probing the rich astrophysics of merging clusters is needed. Such a method could then be utilized to prioritize observational follow up and best inform proper exploration of dynamical phase space. Task: In order to identify and model a large number of systems, in this dissertation, we compile an ensemble of major mergers each containing radio relics. We then complete a pan-chromatic study of these 29 systems including wide field optical photometry, targeted optical spectroscopy of member galaxies, radio, and X-ray observations. We use the optical observations to model the galaxy substructure and estimate line of sight motion. In conjunction with the radio and X-ray data, these substructure models helped elucidate the most likely merger scenario for each system and further constrain the dynamical properties of each system. We demonstrate the power of this technique through detailed analyses of two individual merging clusters. Each are largely bimodal mergers occurring in the plane of the sky. We build on the dynamical analyses of Dawson (2013b) and Ng et al. (2015) in order to constrain the merger speeds, timescales, and geometry for these two systems, which are among a gold sample earmarked for further follow up. Findings: MACS J1149.5+2223 has a previously unidentified southern subcluster involved in a major merger with the well-studied northern subcluster. We confirm the system to be among the most massive clusters known, and we study the dynamics of the merger. MACS J1149.5+2223 appears to be a more evolved system than the Bullet Cluster observed near apocenter. ZwCl 0008.8+5215 is a less massive but a bimodal system with two radio relics and a cool-core "bullet" analogous to the namesake of the Bullet Cluster. These two systems occupy different regions of merger phase space with the pericentric relative velocities of ˜2800 km s-1 and ˜1800 km s-1 for MACS J1149.5+2223 and ZwCl 0008.8+5215, respectively. The time since pericenter for the observed states are ˜1.2 Gyr and ˜0.8 Gyr, respectivel. In the ensemble analysis, we confirm that radio relic selection is an efficient trigger for the identification of major mergers. In particular, 28 of the 29 systems exhibit galaxy substructure aligned with the radio relics and the disturbed intra-cluster medium. Radio relics are typically aligned within 20° of the axis connecting the two galaxy subclusters. Furthermore, when radio relics are aligned with substructure, the line of sight velocity difference between the two subclusters is small compared with the infall velocity. This strongly implies radio relic selection is an efficient selector of systems merging in the plane of the sky. While many of the systems are complex with several simultaneous merging subclusters, these systems generally only contain one radio relic. Systems with double radio relics uniformly suggest major mergers with two dominant substructures well aligned between the radio relics. Conclusions: Radio relics are efficient triggers for identifying major mergers occurring within the plane of the sky. This is ideal for observing offsets between galaxies and dark matter distributions as well as cluster shocks. Double radio relic systems, in particular, have the simplest geometries, which allow for accurate dynamical models and inferred astrophysics. Comparing and contrasting the dynamical models of MACS J1149.5+2223 and ZwCl 0008.8+5215 with similar studies in the literature (Dawson, 2013b; Ng et al., 2015; van Weeren et al., 2017), a wide range of dynamical phase space (˜ 1500 - 3000 km -1 at pericenter and ˜ 500 - 1500 Myr after pericenter) may be sampled with radio relic mergers. With sufficient samples of bimodal systems, velocity dependence of underlying astrophysics may be uncovered. (Abstract shortened by ProQuest.).
Evolution of the BCG in Disturbed Galaxy Clusters
NASA Astrophysics Data System (ADS)
Ardila, Felipe; Strauss, Michael A.; Lauer, Tod R.; Postman, Marc
2017-01-01
The present paradigm in cosmology tells us that large-scale structures grow hierarchically. This suggests that galaxy clusters grow by accreting mass and merging with other clusters, a process which should be detectable by the presence of substructure within a cluster. Using the Dressler-Shectman (DS) three-dimensional test for dynamical substructure, we determined which clusters showed evidence for disturbance from a set of 227 Abell clusters from Lauer et al. (2014) with at least 50 member galaxies and spectroscopic redshifts, z < 0.08. Our results show that 155 (68.2%) of the clusters showed evidence for substructure at ≥ 95% confidence, while 72 did not. Kolmogorov-Smirnov tests suggest that the two populations of clusters (those with and without detected substructure) are significantly different in their distributions of BCG luminosities (Lm), but not in their BCG stellar velocity dispersions (σ), their BCG spatial offsets from the x-ray centers of the clusters, their BCG velocity offsets from the mean cluster velocity, the logarithmic slopes of their BCG photometric curves of growth (α), their cluster velocity dispersions, or their luminosity differences between the BCG and the second-ranked galaxy in the cluster (M2). Similarly, no significant difference was found in the fitting of the Lm-α-σ metric plane for BCGs of clusters with substructure compared those in which there is not substructure. This is surprising since our hierarchical growth models suggest that some of these BCG/cluster properties would be affected by a disturbance of the cluster, indicating that our understanding of how BCGs evolve with their clusters is incomplete and we should explore other ways to probe the level of disturbance.
Dark-Matter Halos of Tenuous Galaxies
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2016-03-01
A series of recent deep-imaging surveys has revealed dozens of lurking ultra-diffuse galaxies (UDGs) in nearby galaxy clusters. A new study provides key information to help us understand the origins of these faint giants.What are UDGs?There are three main possibilities for how UDGs galaxies with the sizes of giants, but luminosities no brighter than those of dwarfs formed:They are tidal dwarfs, created in galactic collisions when streams of matter were pulled away from the parent galaxies and halos to form dwarfs.They are descended from normal galaxies and were then altered by tidal interactions with the galaxy cluster.They are ancient remnant systems large galaxies whose gas was swept away, putting an early halt to star formation. The gas removal did not, however, affect their large dark matter halos, which permitted them to survive in the cluster environment.The key to differentiating between these options is to obtain mass measurements for the UDGs how large are their dark matter halos? In a recent study led by Michael Beasley (Institute of Astrophysics of the Canary Islands, University of La Laguna), a team of astronomers has determined a clever approach for measuring these galaxies masses: examine their globular clusters.Masses from Globular ClustersVCC 1287s mass measurements put it outside of the usual halo-mass vs. stellar-mass relationships for nearby galaxies: it has a significantly higher halo mass than is normal, given its stellar mass. [Adapted from Beasley et al. 2016]Beasley and collaborators selected one UDG, VCC 1287, from the Virgo galaxy cluster, and they obtained spectra of the globular clusters around it using the OSIRIS spectrograph on the Great Canary Telescope. They then determined VCC 1287s total halo mass in two ways: first by using the dynamics of the globular clusters, and then by relying on a relation between total globular cluster mass and halo mass.The two masses they found are in good agreement with each other; both are around 80 billion solar masses. This is an unprecedented factor of 3,000 larger than the stellar mass for the galaxy (obtained from the galaxys luminosity) which means that VCC 1287 has an unusually large dark matter halo given its stellar population.Clues to OriginsThis result makes it unlikely that VCC 1287 is a tidal-dwarf system, since these usually have dark-matter fractions of less than 10%. The authors also dont believe it is a tidally stripped system, since no obvious tidal features were revealed in their imaging. Instead, they think the most probable scenario is that VCC 1287 is a massive dwarf galaxy that had its star formation quenched by gas starvation as it fell into the Virgo cluster long ago.To learn whether VCC 1287 is typical of UDGs, the authors encourage finding additional UDG masses using the same techniques outlined in this study. Additional observations of the globular-cluster populations for UDGs will significantly help understand these unusual galaxies.CitationMichael A. Beasley et al 2016 ApJ 819 L20. doi:10.3847/2041-8205/819/2/L20
NASA Astrophysics Data System (ADS)
Moran, Sean M.
Clusters of galaxies represent the largest laboratories in the universe for testing the incredibly chaotic physics governing the collapse of baryons into the stars, galaxies, groups, and diffuse clouds that we see today. Within the cluster environment, there are a wide variety of physical processes that may be acting to transform galaxies.In this thesis, we combine extensive Keck spectroscopy with wide-field HST imaging to perform a detailed case study of two intermediate redshift galaxy clusters, Cl 0024+1654 (z=0.395) and MS 0451-03 (z=0.540). Leveraging a comprehensive multiwavelength data set that spans the X-ray to infrared, and with spectral-line measurements serving as the key to revealing both the recent star-formation histories and kinematics of infalling galaxies, we aim to shed light on the environmental processes that could be acting to transform galaxies in clusters.We adopt a strategy to make maximal use of our HST-based morphologies by splitting our sample of cluster galaxies according to morphological type, characterizing signs of recent evolution in spirals and early types separately. This approach proves to be powerful in identifying galaxies that are currently being altered by an environmental interaction: early-type galaxies that have either been newly transformed or prodded back into an active phase, and spiral galaxies where star formation is being suppressed or enhanced all stand out in our sample.We begin by using variations in the early-type galaxy population as indicators of recent activity. Because ellipticals and S0s form such a homogeneous class in the local universe, we are sensitive to even very subtle signatures of recent and current environmental interactions. This study has yielded two key results: By constructing the Fundamental Plane (FP) of Cl 0024, we observe that elliptical and S0 galaxies exhibit a high scatter in their FP residuals, which occurs only among galaxies in the cluster core, suggesting a turbulent assembly history for Cl 0024 early types. Near the Virial radius of Cl 0024, we observe a number of compact, intermediate-mass ellipticals undergoing a burst of star formation or weak AGN activity, indicated by strong [O II] emission; their locations may mark the minimum radius at which merging is effective in each cluster.While E+S0 galaxies do prove to be sensitive indicators of environmental interaction, it is the spiral galaxies that, of course, host the bulk of star formation within and around these clusters. We therefore probe for kinematic disturbances in spiral disks by measuring resolved rotation curves from optical emission lines, and constructing the Tully-Fisher relation for spirals across Cl 0024 and MS 0451. We find that the cluster Tully-Fisher relation exhibits significantly higher scatter than the field relation. In probing for the origin of this difference, we find that the central mass densities of star-forming spirals exhibit a sharp break near the cluster Virial radius, with spirals in the cluster outskirts exhibiting significantly lower densities. We argue that these results considered together demonstrate that cluster spirals are kinematically disturbed by their environment, likely due to galaxy-galaxy interactions (harassment).We then discuss our most powerful method of tracking galaxy evolution across Cl 0024 and MS 0451: identifying and studying "transition galaxies"-galaxies whose stellar populations or dynamical states indicate a recent or ongoing change in morphology or star formation rate. Such galaxies are often revealed by star formation histories that seem to be at odds with the galaxy morphologies: for example, spiral galaxies with no signs of star formation, or elliptical galaxies that do show signs of star formation.We identify and study one such class of objects, the "passive spirals" in Cl 0024. These objects exhibit no emission lines in their spectra, suggesting a lack of star formation, yet are surprisingly detected in the UV, revealing the presence of young stars. By modeling the different temporal sensitivities of UV and spectroscopic data to recent activity, we show that star formation in Cl 0024 passive spirals has decayed on timescales of less than 1 Gyr, consistent with the action of "gas starvation".We then build on and link together our previous indications of galaxy evolution at work, aiming to piece together a more comprehensive picture of how cluster galaxies are affected by their environment at intermediate redshift. To accomplish this, we document what we believe to be the first direct evidence for the transformation of spirals into S0s: through an analysis of their stellar populations and recent star formation rates, we link the passive spiral galaxies in both clusters to their eventual end states as newly generated cluster S0 galaxies. Differences between the two clusters in both the timescales and spatial location of this conversion process allow us to evaluate the relative importance of several proposed physical mechanisms that could be responsible for the transformation. Combined with other diagnostics that are sensitive to either ICM-driven galaxy evolution or galaxy-galaxy interactions, we describe a self-consistent picture of galaxy evolution in clusters.We find that spiral galaxies within infalling groups have already begun a slow process of conversion into S0s primarily via gentle galaxy-galaxy interactions that act to quench star formation. The fates of spirals upon reaching the core of the cluster depend heavily on the cluster ICM, with rapid conversion of all remaining spirals into S0s via ram-pressure stripping in clusters where the ICM is dense. In the presence of a less-dense ICM, the conversion continues at a slower pace, with galaxy-galaxy interactions continuing to play a role along with "starvation" by the ICM. We conclude that the buildup of the local S0 population through the transformation of spiral galaxies is a heterogeneous process that nevertheless proceeds robustly across a variety of different environments from cluster outskirts to cores.
Nonlinear Dynamics and Chaos in Astrophysics: A Festschrift in Honor of George Contopoulos
NASA Astrophysics Data System (ADS)
Buchler, J. Robert; Gottesman, Stephen T.; Kandrup, Henry E.
1998-12-01
The annals of the New York Academy of Sciences is a compilation of work in the area of nonlinear dynamics and chaos in Astrophysics. Sections included are: From Quasars to Extraordinary N-body Problems; Dynamical Spectra and the Onset of Chaos; Orbital Complexity, Short-Time Lyapunov Exponents, and Phase Space Transport in Time-Independent Hamiltonian Systems; Bifurcations of Periodic Orbits in Axisymmetric Scalefree Potentials; Irregular Period-Tripling Bifurcations in Axisymmetric Scalefree Potentials; Negative Energy Modes and Gravitational Instability of Interpenetrating Fluids; Invariants and Labels in Lie-Poisson Systems; From Jupiter's Great Red Spot to the Structure of Galaxies: Statistical Mechanics of Two-Dimensional Vortices and Stellar Systems; N-Body Simulations of Galaxies and Groups of Galaxies with the Marseille GRAPE Systems; On Nonlinear Dynamics of Three-Dimensional Astrophysical Disks; Satellites as Probes of the Masses of Spiral Galaxies; Chaos in the Centers of Galaxies; Counterrotating Galaxies and Accretion Disks; Global Spiral Patterns in Galaxies: Complexity and Simplicity; Candidates for Abundance Gradients at Intermediate Red-Shift Clusters; Scaling Regimes in the Distribution of Galaxies; Recent Progress in the Study of One-Dimensional Gravitating Systems; Modeling the Time Variability of Black Hole Candidates; Stellar Oscillons; Chaos in Cosmological Hamiltonians; and Phase Space Transport in Noisy Hamiltonian Systems.
Mapping the Dark Matter Distribution of the Merging Galaxy Cluster Abell 115
NASA Astrophysics Data System (ADS)
Kim, Mincheol; Jee, Myungkook James; Forman, William; Golovich, Nathan; van Weeren, Reinout
2018-01-01
The colliding galaxy cluster Abell 115 shows a number of clear merging features including radio relics, double X-ray peaks, and offsets between the cluster member galaxies and the X-ray distributions. In order to constrain the merging scenario of this complex system, it is critical to know where the dark matter is. We present a high-fidelity weak-lensing analysis of the system using a state-of-the-art method that robustly models the detailed PSF variations. Our mass reconstruction reveals two distinct mass peaks. Through a careful bootstrapping analysis, we demonstrate that the positions of these two mass peaks are highly consistent with those of the cluster galaxies, although the comparison with the X-ray emission shows that the mass peaks lead the X-ray peaks. We obtain the first weak-lensing mass of each subcluster by simultaneously fitting two NFW profiles, as well as the total mass of the system. Interestingly, the total mass is a few factors lower than the published dynamical mass based on velocity dispersion. This large mass discrepancy may be attributed to a significant disruption of the cluster galaxy orbits due to the violent merger. Our preliminary analysis indicates that the two subclusters might have experienced a first off-axis collision a few Gyrs ago and might be now returning for a second collision.
NASA Astrophysics Data System (ADS)
Hurier, G.
2017-08-01
The Sunyaev-Zel'dovich (SZ) effects are produced by the interaction of cosmic microwave background (CMB) photons with the ionized and diffuse gas of electrons inside galaxy clusters integrated along the line of sight. The two main effects are the thermal SZ (tSZ) produced by thermal pressure inside galaxy clusters and the kinematic SZ (kSZ) produced by peculiar motion of galaxy clusters compared to CMB rest-frame. The kSZ effect is particularly challenging to measure as it follows the same spectral behavior as the CMB, and consequently cannot be separated from the CMB using spectral considerations. In this paper, we explore the feasibility of detecting the kSZ through the computation of the tSZ-CMB-CMB cross-correlation bispectrum for current and future CMB experiments. We conclude that the next generation of CMB experiments will offer the possibility to detect the tSZ-kSZ-kSZ bispectrum at high signal-to-noise ration (S/N). This measurement will constraints the intra-cluster dynamics and the velocity field of galaxy cluster that is extremely sensitive to the growth rate of structures and thus to dark energy properties. Additionally, we also demonstrate that the tSZ-kSZ-kSZ bispectrum can be used to break the degeneracies between the mass-observable relation and the cosmological parameters to set tight constraints, up to 4%, on the Y - M relation calibration.
NASA Astrophysics Data System (ADS)
Barrena, R.; Rubiño-Martín, J. A.; Streblyanska, A.; Ferragamo, A.
2016-10-01
La Palma Observatory offers four multi-object spectrographs installed on 4 and 10 m class telescopes. We present an overview of these four instruments. As a scientific case for two of them, we present the optical follow-up of Sunyaev-Zeldovich (SZ) sources undertaken by the Planck collaboration, focused on the detection, redshifts determination and mass estimation of the (SZ) galaxies cluster candidates. After three years of observations we have found optical counterparts for 120 candidates confirmed spectroscopically. We have determined dynamical masses for more than 30 systems with redshifts of z<0.85. Our experience demonstrates that DOLORES (TNG) and OSIRIS (GTC) are the ideal multi-object spectroscopy (MOS) instruments to investigate galaxy clusters at z<0.45 and 0.45
The Peculiarities in O-Type Galaxy Clusters
NASA Astrophysics Data System (ADS)
Panko, E. A.; Emelyanov, S. I.
We present the results of analysis of 2D distribution of galaxies in galaxy cluster fields. The Catalogue of Galaxy Clusters and Groups PF (Panko & Flin) was used as input observational data set. We selected open rich PF galaxy clusters, containing 100 and more galaxies for our study. According to Panko classification scheme open galaxy clusters (O-type) have no concentration to the cluster center. The data set contains both pure O-type clusters and O-type clusters with overdence belts, namely OL and OF types. According to Rood & Sastry and Struble & Rood ideas, the open galaxy clusters are the beginning stage of cluster evolution. We found in the O-type clusters some types of statistically significant regular peculiarities, such as two crossed belts or curved strip. We suppose founded features connected with galaxy clusters evolution and the distribution of DM inside the clusters.
DDO 216-A1: A Central Globular Cluster in a Low-luminosity Transition-type Galaxy
NASA Astrophysics Data System (ADS)
Cole, Andrew A.; Weisz, Daniel R.; Skillman, Evan D.; Leaman, Ryan; Williams, Benjamin F.; Dolphin, Andrew E.; Johnson, L. Clifton; McConnachie, Alan W.; Boylan-Kolchin, Michael; Dalcanton, Julianne; Governato, Fabio; Madau, Piero; Shen, Sijing; Vogelsberger, Mark
2017-03-01
We confirm that the object DDO 216-A1 is a substantial globular cluster at the center of Local Group galaxy DDO 216 (the Pegasus dwarf irregular), using Hubble Space Telescope ACS imaging. By fitting isochrones, we find the cluster metallicity [M/H] = -1.6 ± 0.2, for reddening E(B-V) = 0.16 ± 0.02 the best-fit age is 12.3 ± 0.8 Gyr. There are ≈ 30 RR Lyrae variables in the cluster; the magnitude of the fundamental mode pulsators gives a distance modulus of 24.77 ± 0.08—identical to the host galaxy. The ratio of overtone to fundamental mode variables and their mean periods make DDO 216-A1 an Oosterhoff Type I cluster. We find a central surface brightness of 20.85 ± 0.17 F814W mag arcsec-2, a half-light radius of 3\\buildrel{\\prime\\prime}\\over{.} 1 (13.4 pc), and an absolute magnitude M814 = -7.90 ± 0.16 (M/{M}⊙ ≈ 105). King models fit to the cluster give the core radius and concentration index, r c = 2\\buildrel{\\prime\\prime}\\over{.} 1 ± 0\\buildrel{\\prime\\prime}\\over{.} 9 and c = 1.24 ± 0.39. The cluster is an “extended” cluster somewhat typical of some dwarf galaxies and the outer halo of the Milky Way. The cluster is projected ≲30 pc south of the center of DDO 216, unusually central compared to most dwarf galaxy globular clusters. Analytical models of dynamical friction and tidal destruction suggest that it probably formed at a larger distance, up to ˜1 kpc, and migrated inward. DDO 216 has an unexceptional specific cluster frequency, S N = 10. DDO 216 is the lowest-luminosity Local Group galaxy to host a 105 {M}⊙ globular cluster and the only transition-type (dSph/dIrr) galaxy in the Local Group with a globular cluster. Based on observations made with the NASA/ESA Hubble Space Telesope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. These observations were obtained under program GO-13768.
NASA Astrophysics Data System (ADS)
Martizzi, Davide; Teyssier, Romain; Moore, Ben; Wentz, Tina
2012-06-01
The spatial distribution of matter in clusters of galaxies is mainly determined by the dominant dark matter component; however, physical processes involving baryonic matter are able to modify it significantly. We analyse a set of 500 pc resolution cosmological simulations of a cluster of galaxies with mass comparable to Virgo, performed with the AMR code RAMSES. We compare the mass density profiles of the dark, stellar and gaseous matter components of the cluster that result from different assumptions for the subgrid baryonic physics and galaxy formation processes. First, the prediction of a gravity-only N-body simulation is compared to that of a hydrodynamical simulation with standard galaxy formation recipes, and then all results are compared to a hydrodynamical simulation which includes thermal active galactic nucleus (AGN) feedback from supermassive black holes (SMBHs). We find the usual effects of overcooling and adiabatic contraction in the run with standard galaxy formation physics, but very different results are found when implementing SMBHs and AGN feedback. Star formation is strongly quenched, producing lower stellar densities throughout the cluster, and much less cold gas is available for star formation at low redshifts. At redshift z= 0 we find a flat density core of radius 10 kpc in both the dark and stellar matter density profiles. We speculate on the possible formation mechanisms able to produce such cores and we conclude that they can be produced through the coupling of different processes: (I) dynamical friction from the decay of black hole orbits during galaxy mergers; (II) AGN-driven gas outflows producing fluctuations of the gravitational potential causing the removal of collisionless matter from the central region of the cluster; (III) adiabatic expansion in response to the slow expulsion of gas from the central region of the cluster during the quiescent mode of AGN activity.
The Dynamical Properties of Virgo Cluster Galaxies
NASA Astrophysics Data System (ADS)
Ouellette, Nathalie N.-Q.
By virtue of its proximity, the Virgo Cluster is an ideal laboratory for us to test our understanding of the formation of structure in our Universe. In this spirit, we present a dynamical study of 33 gas-poor and 34 gas-rich Virgo galaxies as part of the Spectroscopic and H-band Imaging of Virgo survey. Our final spectroscopic data set was acquired at the 3.5-m telescope at the Apache Point Observatory. Halpha rotation curves for the gas-rich galaxies were modelled with a multi-parameter fit function from which various velocity measurements were inferred. Analog values were measured off of the observed rotation curves, but yielded noisier scaling relations, such as the luminosity-velocity relation (also known as the Tully-Fisher relation). Our best i -band Tully-Fisher relation has slope alpha = --7.2 +/- 0.5 and intercept Mi(2.3) = --21.5 +/- 1.1 mag, matching similar previous studies. Our study takes advantage of our own, as well as literature, data; we plan to continue expanding our compilation in order to build the largest Tully-Fisher relation for a cluster to date. Following extensive testing of the IDL routine pPXF , extended velocity dispersion profiles were extracted for our gas-poor galaxies. Considering the lack of a common standard for the measurement of a fiducial galaxy velocity dispersion in the literature, we have endeavoured to rectify this situation by determining the radius at which the measured velocity dispersion, coupled with the galaxy luminosity, yields the tightest Faber-Jackson relation. We found that radius to be 1.5 R e, which exceeds the extent of most dispersion profiles in other works. The slope of our Faber-Jackson relation is alpha = --4.3 +/- 0.2, which closely matches the virial value of 4. This analysis will soon be applied to a study of the Virgo Cluster Fundamental Plane. Rotation correction of our dispersion profiles will also permit the study of galaxies' velocity dispersion profile shapes in an attempt to refine our understanding of the overall manifold of galaxy structural parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Konstantopoulos, I. S.; Maybhate, A.; Charlton, J. C.
2013-06-20
We present a multi-wavelength analysis of three compact galaxy groups, Hickson compact groups (HCGs) 16, 22, and 42, which describe a sequence in terms of gas richness, from space- (Swift, Hubble Space Telescope (HST), and Spitzer) and ground-based (Las Campanas Observatory and Cerro Tololo Inter-American Observatory) imaging and spectroscopy. We study various signs of past interactions including a faint, dusty tidal feature about HCG 16A, which we tentatively age-date at <1 Gyr. This represents the possible detection of a tidal feature at the end of its phase of optical observability. Our HST images also resolve what were thought to bemore » double nuclei in HCG 16C and D into multiple, distinct sources, likely to be star clusters. Beyond our phenomenological treatment, we focus primarily on contrasting the stellar populations across these three groups. The star clusters show a remarkable intermediate-age population in HCG 22, and identify the time at which star formation was quenched in HCG 42. We also search for dwarf galaxies at accordant redshifts. The inclusion of 33 members and 27 ''associates'' (possible members) radically changes group dynamical masses, which in turn may affect previous evolutionary classifications. The extended membership paints a picture of relative isolation in HCGs 16 and 22, but shows HCG 42 to be part of a larger structure, following a dichotomy expected from recent studies. We conclude that (1) star cluster populations provide an excellent metric of evolutionary state, as they can age-date the past epochs of star formation; and (2) the extended dwarf galaxy population must be considered in assessing the dynamical state of a compact group.« less
NASA Technical Reports Server (NTRS)
Konstantopoulos, I. S.; Maybhate, A.; Charlton, J. C.; Fedotov, K.; Durrell, P. R.; Mulchaey, J. S.; English, J.; Desjardins, T. D.; Gallagher, S. C.; Walker, L. M.;
2013-01-01
We present a multi-wavelength analysis of three compact galaxy groups, Hickson compact groups (HCGs) 16, 22, and 42, which describe a sequence in terms of gas richness, from space- (Swift, Hubble Space Telescope (HST), and Spitzer) and ground-based (Las Campanas Observatory and Cerro Tololo Inter-American Observatory) imaging and spectroscopy.We study various signs of past interactions including a faint, dusty tidal feature about HCG 16A, which we tentatively age-date at <1 Gyr. This represents the possible detection of a tidal feature at the end of its phase of optical observability. Our HST images also resolve what were thought to be double nuclei in HCG 16C and D into multiple, distinct sources, likely to be star clusters. Beyond our phenomenological treatment, we focus primarily on contrasting the stellar populations across these three groups. The star clusters show a remarkable intermediate-age population in HCG 22, and identify the time at which star formation was quenched in HCG 42. We also search for dwarf galaxies at accordant redshifts. The inclusion of 33 members and 27 "associates" (possible members) radically changes group dynamical masses, which in turn may affect previous evolutionary classifications. The extended membership paints a picture of relative isolation in HCGs 16 and 22, but shows HCG 42 to be part of a larger structure, following a dichotomy expected from recent studies. We conclude that (1) star cluster populations provide an excellent metric of evolutionary state, as they can age-date the past epochs of star formation; and (2) the extended dwarf galaxy population must be considered in assessing the dynamical state of a compact group.
Deep observation of A2163: studying a new bullet cluster
NASA Astrophysics Data System (ADS)
Bourdin, Herve
2011-10-01
Exhibiting a clear spatial separation between the gas and dark matter component of a fastly accreted subcluster, the `bullet cluster', 1E 0657-56, has provided us a unique laboratory to investigate the impact of violent cluster mergers on the Intra-Cluster Medium, galaxies and dark matter properties. In recent analyses of X-ray, optical and weak-lensing data, we show that the massive cluster A2163 also exhibits a crossing gas bullet separated from a galaxy and dark matter over-density, and suggest that both A2163 and 1E 0657-56 share a common merging scenario possibly just differing in the time elapsed after the closest cluster encounters. With this deeper XMM observation of A2163, we propose to refine our knowledge of the dynamics and geometry of the on-going subcluster accretion.
A Deep Chandra Observation of the Distant Galaxy Cluster MS 1137.5+6625
NASA Astrophysics Data System (ADS)
Grego, Laura; Vrtilek, J. M.; Van Speybroeck, Leon; David, Laurence P.; Forman, William; Carlstrom, John E.; Reese, Erik D.; Joy, Marshall K.
2004-06-01
We present results from a deep Chandra observation of MS 1137.5+66, a distant (z=0.783) and massive cluster of galaxies. Only a few similarly massive clusters are currently known at such high redshifts; accordingly, this observation provides much needed information on the dynamical state of these rare systems. The cluster appears both regular and symmetric in the X-ray image. However, our analysis of the spectral and spatial X-ray data in conjunction with interferometric Sunyaev-Zel'dovich effect data and published deep optical imaging suggests that the cluster has a fairly complex structure. The angular diameter distance we calculate from the Chandra and Sunyaev-Zel'dovich effect data assuming an isothermal, spherically symmetric cluster implies a low value for the Hubble constant for which we explore possible explanations.
NASA Technical Reports Server (NTRS)
Mohr, Joseph J.; Fabricant, Daniel G.; Geller, Margaret J.
1993-01-01
We use the moments of the X-ray surface brightness distribution to constrain the dynamical state of a galaxy cluster. Using X-ray observations from the Einstein Observatory IPC, we measure the first moment FM, the ellipsoidal orientation angle, and the axial ratio at a sequence of radii in the cluster. We argue that a significant variation in the image centroid FM as a function of radius is evidence for a nonequilibrium feature in the intracluster medium (ICM) density distribution. In simple terms, centroid shifts indicate that the center of mass of the ICM varies with radius. This variation is a tracer of continuing dynamical evolution. For each cluster, we evaluate the significance of variations in the centroid of the IPC image by computing the same statistics on an ensemble of simulated cluster images. In producing these simulated images we include X-ray point source emission, telescope vignetting, Poisson noise, and characteristics of the IPC. Application of this new method to five Abell clusters reveals that the core of each one has significant substructure. In addition, we find significant variations in the orientation angle and the axial ratio for several of the clusters.
The Perseus Cluster: Bridging the Extremes of Stellar Systems
NASA Astrophysics Data System (ADS)
Harris, William
2017-08-01
The Perseus cluster (Abell 426) at d=75 Mpc is as massive and diverse as Virgo and Coma and displays a rich laboratory for studying galaxy evolution. Its massive X-ray halo gas component and its high proportion of large early-type galaxies point to a long history of dynamical interaction amongst the cluster members. The central supergiant, NGC 1275, is perhaps the most active galaxy in the local universe, with a spectacular network of H-alpha filaments, cooling flows, feedback, and prominent star formation in plain view. We propose to use the Globular Cluster (GC) populations in the Perseus region with two-band imaging to pursue three connected goals: the stellar Intracluster Medium (ICM); its Ultra-Diffuse Galaxies (UDGs); and the GC populations in the Perseus core galaxies. Our analysis of a few HST/ACS Archival images covering the Perseus core strongly indicates that a substantial Intragalactic GC component is present. Our newly discovered sample of UDGs in Perseus covers the entire parameter space of these intriguing galaxies and will be thoroughly sampled in our study: are they 'failed' underluminous galaxies with high masses, or are they a mixed bag? For all our goals, the GC populations will act as powerful tracers of the dominant old stellar populations - their metallicity distributions and total populations in the ICM, the UDGs, and the three largest E galaxies in Perseus. As a bonus, we expect to find 200 new Ultra-Compact Dwarfs (UCDs) and half a dozen rare compact ellipticals (cEs). The scientific payoffs will include a broader understanding of the nature and history of all these types of galaxies and their stripped stellar material.
Cluster-cluster correlations and constraints on the correlation hierarchy
NASA Technical Reports Server (NTRS)
Hamilton, A. J. S.; Gott, J. R., III
1988-01-01
The hypothesis that galaxies cluster around clusters at least as strongly as they cluster around galaxies imposes constraints on the hierarchy of correlation amplitudes in hierachical clustering models. The distributions which saturate these constraints are the Rayleigh-Levy random walk fractals proposed by Mandelbrot; for these fractal distributions cluster-cluster correlations are all identically equal to galaxy-galaxy correlations. If correlation amplitudes exceed the constraints, as is observed, then cluster-cluster correlations must exceed galaxy-galaxy correlations, as is observed.
Mass profile and dynamical status of the z ~ 0.8 galaxy cluster LCDCS 0504
NASA Astrophysics Data System (ADS)
Guennou, L.; Biviano, A.; Adami, C.; Limousin, M.; Lima Neto, G. B.; Mamon, G. A.; Ulmer, M. P.; Gavazzi, R.; Cypriano, E. S.; Durret, F.; Clowe, D.; LeBrun, V.; Allam, S.; Basa, S.; Benoist, C.; Cappi, A.; Halliday, C.; Ilbert, O.; Johnston, D.; Jullo, E.; Just, D.; Kubo, J. M.; Márquez, I.; Marshall, P.; Martinet, N.; Maurogordato, S.; Mazure, A.; Murphy, K. J.; Plana, H.; Rostagni, F.; Russeil, D.; Schirmer, M.; Schrabback, T.; Slezak, E.; Tucker, D.; Zaritsky, D.; Ziegler, B.
2014-06-01
Context. Constraints on the mass distribution in high-redshift clusters of galaxies are currently not very strong. Aims: We aim to constrain the mass profile, M(r), and dynamical status of the z ~ 0.8 LCDCS 0504 cluster of galaxies that is characterized by prominent giant gravitational arcs near its center. Methods: Our analysis is based on deep X-ray, optical, and infrared imaging as well as optical spectroscopy, collected with various instruments, which we complemented with archival data. We modeled the mass distribution of the cluster with three different mass density profiles, whose parameters were constrained by the strong lensing features of the inner cluster region, by the X-ray emission from the intracluster medium, and by the kinematics of 71 cluster members. Results: We obtain consistent M(r) determinations from three methods based on kinematics (dispersion-kurtosis, caustics, and MAMPOSSt), out to the cluster virial radius, ≃1.3 Mpc and beyond. The mass profile inferred by the strong lensing analysis in the central cluster region is slightly higher than, but still consistent with, the kinematics estimate. On the other hand, the X-ray based M(r) is significantly lower than the kinematics and strong lensing estimates. Theoretical predictions from ΛCDM cosmology for the concentration-mass relation agree with our observational results, when taking into account the uncertainties in the observational and theoretical estimates. There appears to be a central deficit in the intracluster gas mass fraction compared with nearby clusters. Conclusions: Despite the relaxed appearance of this cluster, the determinations of its mass profile by different probes show substantial discrepancies, the origin of which remains to be determined. The extension of a dynamical analysis similar to that of other clusters of the DAFT/FADA survey with multiwavelength data of sufficient quality will allow shedding light on the possible systematics that affect the determination of mass profiles of high-z clusters, which is possibly related to our incomplete understanding of intracluster baryon physics. Table 2 is available in electronic form at http://www.aanda.org
Division H Commission 33: Structure & Dynamics of the Galactic System
NASA Astrophysics Data System (ADS)
Nordström, Birgitta; Bland-Hawthorn, Joss; Wyse, Rosemary; Athanassoula, Lia; Feltzing, Sofia; Jog, Chanda; Lockman, Jay; Minniti, Dante; Robin, Annie
2016-04-01
Research on the structure and dynamics of the Galactic System covers a large field of research, from formation scenarios to long-term evolution and secular processes. Today we speak of near-field cosmology where the oldest parts of the Galaxy are used to probe back to early times, e.g. studying the chemical signatures of the oldest star clusters and dwarf galaxies to learn about the byproducts of the first stars. Some of the most detailed work relates to the structure of the dark matter and baryons in order to compare with expectation from N-body models. Secular processes have been identified (e.g. stellar migration) where material within the Galaxy is being reorganized by dynamical resonances and feedback processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goudfrooij, Paul, E-mail: goudfroo@stsci.edu
We study mass functions of globular clusters derived from Hubble Space Telescope/Advanced Camera for Surveys images of the early-type merger remnant galaxy NGC 1316, which hosts a significant population of metal-rich globular clusters of intermediate age ({approx}3 Gyr). For the old, metal-poor ({sup b}lue{sup )} clusters, the peak mass of the mass function M{sub p} increases with internal half-mass density {rho}{sub h} as M{sub p}{proportional_to}{rho}{sub h}{sup 0.44}, whereas it stays approximately constant with galactocentric distance R{sub gal}. The mass functions of these clusters are consistent with a simple scenario in which they formed with a Schechter initial mass function andmore » evolved subsequently by internal two-body relaxation. For the intermediate-age population of metal-rich ({sup r}ed{sup )} clusters, the faint end of the previously reported power-law luminosity function of the clusters with R{sub gal} > 9 kpc is due to many of those clusters having radii larger than the theoretical maximum value imposed by the tidal field of NGC 1316 at their R{sub gal}. This renders disruption by two-body relaxation ineffective. Only a few such diffuse clusters are found in the inner regions of NGC 1316. Completeness tests indicate that this is a physical effect. Using comparisons with star clusters in other galaxies and cluster disruption calculations using published models, we hypothesize that most red clusters in the low-{rho}{sub h} tail of the initial distribution have already been destroyed in the inner regions of NGC 1316 by tidal shocking, and that several remaining low-{rho}{sub h} clusters will evolve dynamically to become similar to 'faint fuzzies' that exist in several lenticular galaxies. Finally, we discuss the nature of diffuse red clusters in early-type galaxies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, Jaejin; Woo, Jong-Hak; Mulchaey, John S.
We perform a comprehensive study of X-ray cavities using a large sample of X-ray targets selected from the Chandra archive. The sample is selected to cover a large dynamic range including galaxy clusters, groups, and individual galaxies. Using β -modeling and unsharp masking techniques, we investigate the presence of X-ray cavities for 133 targets that have sufficient X-ray photons for analysis. We detect 148 X-ray cavities from 69 targets and measure their properties, including cavity size, angle, and distance from the center of the diffuse X-ray gas. We confirm the strong correlation between cavity size and distance from the X-raymore » center similar to previous studies. We find that the detection rates of X-ray cavities are similar among galaxy clusters, groups and individual galaxies, suggesting that the formation mechanism of X-ray cavities is independent of environment.« less
A GLIMPSE of Star Formation in the Outer Galaxy
NASA Astrophysics Data System (ADS)
Winston, Elaine; Hora, Joseph L.; Tolls, Volker
2018-01-01
The wealth of infrared data provided by recent infrared missions such as Spitzer, Herschel, and WISE has yet to be fully mined in the study of star formation in the outer galaxy. The nearby galaxy and massive star forming regions towards the galactic center have been extensively studied. However the outer regions of the Milky Way, where the metallicity is intermediate in value between the inner galactic disk and the Magellanic Clouds, has not been systematically studied. We are using Spitzer/IRAC’s GLIMPSE (Galactic Legacy Infrared Mid-plane Survey Extraordinaire) observations of the galactic plane at 3.6, 4.5, 5.8, and 8.0 microns to identify young stellar objects (YSOs) via their disk emission in the mid-infrared. A tiered clustering analysis is then performed: preliminary large scale clustering is identified across the field using a Density-Based Spatial Clustering of Applications with Noise (DBSCAN) technique. Smaller scale sub clustering within these regions is performed using an implementation of the Minimum Spanning Tree (MST) technique. The YSOs are then compared to known objects in the SIMBAD catalogue and their photometry and cluster membership is augmented using available Herschel and WISE photometry. We compare our results to those in the inner galaxy to determine how dynamical processes and environmental factors affect the star formation efficiency. These results will have applications to the study of star formation in other galaxies, where only global properties can be determined. We will present here the results of our initial investigation into star formation in the outer galaxy using the Spitzer/GLIMPSE observations of the SMOG field.
Pressure of the hot gas in simulations of galaxy clusters
NASA Astrophysics Data System (ADS)
Planelles, S.; Fabjan, D.; Borgani, S.; Murante, G.; Rasia, E.; Biffi, V.; Truong, N.; Ragone-Figueroa, C.; Granato, G. L.; Dolag, K.; Pierpaoli, E.; Beck, A. M.; Steinborn, Lisa K.; Gaspari, M.
2017-06-01
We analyse the radial pressure profiles, the intracluster medium (ICM) clumping factor and the Sunyaev-Zel'dovich (SZ) scaling relations of a sample of simulated galaxy clusters and groups identified in a set of hydrodynamical simulations based on an updated version of the treepm-SPH GADGET-3 code. Three different sets of simulations are performed: the first assumes non-radiative physics, the others include, among other processes, active galactic nucleus (AGN) and/or stellar feedback. Our results are analysed as a function of redshift, ICM physics, cluster mass and cluster cool-coreness or dynamical state. In general, the mean pressure profiles obtained for our sample of groups and clusters show a good agreement with X-ray and SZ observations. Simulated cool-core (CC) and non-cool-core (NCC) clusters also show a good match with real data. We obtain in all cases a small (if any) redshift evolution of the pressure profiles of massive clusters, at least back to z = 1. We find that the clumpiness of gas density and pressure increases with the distance from the cluster centre and with the dynamical activity. The inclusion of AGN feedback in our simulations generates values for the gas clumping (√{C}_{ρ }˜ 1.2 at R200) in good agreement with recent observational estimates. The simulated YSZ-M scaling relations are in good accordance with several observed samples, especially for massive clusters. As for the scatter of these relations, we obtain a clear dependence on the cluster dynamical state, whereas this distinction is not so evident when looking at the subsamples of CC and NCC clusters.
Dynamic evolution of nearby galaxy clusters
NASA Astrophysics Data System (ADS)
Biernacka, M.; Flin, P.
2011-06-01
A study of the evolution of 377 rich ACO clusters with redshift z<0.2 is presented. The data concerning galaxies in the investigated clusters were obtained using FOCAS packages applied to Digital Sky Survey I. The 377 galaxy clusters constitute a statistically uniform sample to which visual galaxy/star reclassifications were applied. Cluster shape within 2.0 h-1 Mpc from the adopted cluster centre (the mean and the median of all galaxy coordinates, the position of the brightest and of the third brightest galaxy in the cluster) was determined through its ellipticity calculated using two methods: the covariance ellipse method (hereafter CEM) and the method based on Minkowski functionals (hereafter MFM). We investigated ellipticity dependence on the radius of circular annuli, in which ellipticity was calculated. This was realized by varying the radius from 0.5 to 2 Mpc in steps of 0.25 Mpc. By performing Monte Carlo simulations, we generated clusters to which the two ellipticity methods were applied. We found that the covariance ellipse method works better than the method based on Minkowski functionals. We also found that ellipticity distributions are different for different methods used. Using the ellipticity-redshift relation, we investigated the possibility of cluster evolution in the low-redshift Universe. The correlation of cluster ellipticities with redshifts is undoubtly an indicator of structural evolution. Using the t-Student statistics, we found a statistically significant correlation between ellipticity and redshift at the significance level of α = 0.95. In one of the two shape determination methods we found that ellipticity grew with redshift, while the other method gave opposite results. Monte Carlo simulations showed that only ellipticities calculated at the distance of 1.5 Mpc from cluster centre in the Minkowski functional method are robust enough to be taken into account, but for that radius we did not find any relation between e and z. Since CEM pointed towards the existence of the e(z) relation, we conclude that such an effect is real though rather weak. A detailed study of the e(z) relation showed that the observed relation is nonlinear, and the number of elongated structures grows rapidly for z>0.14.
Sloan Great Wall as a complex of superclusters with collapsing cores
NASA Astrophysics Data System (ADS)
Einasto, Maret; Lietzen, Heidi; Gramann, Mirt; Tempel, Elmo; Saar, Enn; Liivamägi, Lauri Juhan; Heinämäki, Pekka; Nurmi, Pasi; Einasto, Jaan
2016-10-01
Context. The formation and evolution of the cosmic web is governed by the gravitational attraction of dark matter and antigravity of dark energy (cosmological constant). In the cosmic web, galaxy superclusters or their high-density cores are the largest objects that may collapse at present or during the future evolution. Aims: We study the dynamical state and possible future evolution of galaxy superclusters from the Sloan Great Wall (SGW), the richest galaxy system in the nearby Universe. Methods: We calculated supercluster masses using dynamical masses of galaxy groups and stellar masses of galaxies. We employed normal mixture modelling to study the structure of rich SGW superclusters and search for components (cores) in superclusters. We analysed the radial mass distribution in the high-density cores of superclusters centred approximately at rich clusters and used the spherical collapse model to study their dynamical state. Results: The lower limit of the total mass of the SGW is approximately M = 2.5 × 1016 h-1 M⊙. Different mass estimators of superclusters agree well, the main uncertainties in masses of superclusters come from missing groups and clusters. We detected three high-density cores in the richest SGW supercluster (SCl 027) and two in the second richest supercluster (SCl 019). They have masses of 1.2 - 5.9 × 1015 h-1 M⊙ and sizes of up to ≈60 h-1 Mpc. The high-density cores of superclusters are very elongated, flattened perpendicularly to the line of sight. The comparison of the radial mass distribution in the high-density cores with the predictions of spherical collapse model suggests that their central regions with radii smaller than 8 h-1 Mpc and masses of up to M = 2 × 1015 h-1 M⊙ may be collapsing. Conclusions: The rich SGW superclusters with their high-density cores represent dynamically evolving environments for studies of the properties of galaxies and galaxy systems.
NASA Astrophysics Data System (ADS)
Angus, G. W.; Diaferio, Antonaldo
2011-10-01
We present a new particle mesh cosmological N-body code for accurately solving the modified Poisson equation of the quasi-linear formulation of modified Newtonian dynamics (MOND). We generate initial conditions for the Angus cosmological model, which is identical to Λ cold dark matter (ΛCDM) except that the CDM is switched for a single species of thermal sterile neutrinos. We set the initial conditions at z= 250 for a (512 Mpc h-1)3 box with 2563 particles, and we evolve them down to z= 0. We clearly demonstrate the ability of MOND to develop the large-scale structure in a hot dark matter cosmology and contradict the naive expectation that MOND cannot form galaxy clusters. We find that the correct order of magnitude of X-ray clusters (with TX > 4.5 keV) can be formed, but that we overpredict the number of very rich clusters and seriously underpredict the number of lower mass clusters. We present evidence that suggests the density profiles of our simulated clusters are compatible with those of the observed X-ray clusters in MOND. As a last test, we computed the relative velocity between pairs of haloes within 10 Mpc and find that pairs with velocities larger than 3000 km s-1, like the bullet cluster, can form without difficulty.
ULTRA-COMPACT DWARFS IN THE COMA CLUSTER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiboucas, Kristin; Tully, R. Brent; Marzke, R. O.
2011-08-20
We have undertaken a spectroscopic search for ultra-compact dwarf galaxies (UCDs) in the dense core of the dynamically evolved, massive Coma cluster as part of the Hubble Space Telescope/Advanced Camera for Surveys (HST/ACS) Coma Cluster Treasury Survey. UCD candidates were initially chosen based on color, magnitude, degree of resolution within the ACS images, and the known properties of Fornax and Virgo UCDs. Follow-up spectroscopy with Keck/Low-Resolution Imaging Spectrometer confirmed 27 candidates as members of the Coma cluster, a success rate >60% for targeted objects brighter than M{sub R} = -12. Another 14 candidates may also prove to be Coma members,more » but low signal-to-noise spectra prevent definitive conclusions. An investigation of the properties and distribution of the Coma UCDs finds these objects to be very similar to UCDs discovered in other environments. The Coma UCDs tend to be clustered around giant galaxies in the cluster core and have colors/metallicity that correlate with the host galaxy. With properties and a distribution similar to that of the Coma cluster globular cluster population, we find strong support for a star cluster origin for the majority of the Coma UCDs. However, a few UCDs appear to have stellar population or structural properties which differentiate them from the old star cluster populations found in the Coma cluster, perhaps indicating that UCDs may form through multiple formation channels.« less
Globular Cluster Systems in Interacting Galaxies
NASA Astrophysics Data System (ADS)
Zepf, S.; Murdin, P.
2000-11-01
GLOBULAR CLUSTERS are dynamically bound and dense collections of large numbers of coeval stars. Typical globular clusters have roughly one million stars within a radius of a few parsecs. They are also usually close to spherical, hence the name globular. By virtue of their rich, isolated population of stars they provide an important laboratory for studies of STELLAR EVOLUTION. Moreover, because of...
NASA Astrophysics Data System (ADS)
Zasov, A. V.; Cherepashchuk, A. M.
2013-11-01
The relationship between the masses of the central, supermassive black holes ( M bh) and of the nuclear star clusters ( M nc) of disk galaxies with various parameters galaxies are considered: the rotational velocity at R = 2 kpc V (2), the maximum rotational velocity V max, the indicative dynamical mass M 25, the integrated mass of the stellar population M *, and the integrated color index B-V. The rotational velocities andmasses of the central objects were taken from the literature. Themass M nc correlatesmore closely with the kinematic parameters and the disk mass than M bh, including with the velocity V max, which is closely related to the virial mass of the dark halo. On average, lenticular galaxies are characterized by higher masses M bh compared to other types of galaxies with similar characteristics. The dependence of the blackhole mass on the color index is bimodal: galaxies of the red group (red-sequence) with B-V >0.6-0.7 which are mostly early-type galaxies with weak star formation, differ appreciably from blue galaxies, which have higher values of M nc and M bh. At the dependences we consider between the masses of the central objects and the parameters of the host galaxies (except for the dependence of M bh on the central velocity dispersion), the red-group galaxies have systematically higher M bh values, even when the host-galaxy parameters are similar. In contrast, in the case of nuclear star clusters, the blue and red galaxies form unified sequences. The results agree with scenarios in which most red-group galaxies form as a result of the partial or complete loss of interstellar gas in a stage of high nuclear activity in galaxies whose central black-hole masses exceed 106-107 M ⊙ (depending on the mass of the galaxy itself). The bulk of disk galaxies with M bh > 107 M ⊙ are lenticular galaxies (types S0, E/S0) whose disks are practically devoid of gas.
Connections between Star Cluster Populations and Their Host Galaxy Nuclear Rings
NASA Astrophysics Data System (ADS)
Ma, Chao; de Grijs, Richard; Ho, Luis C.
2018-04-01
Nuclear rings are excellent laboratories for probing diverse phenomena such as the formation and evolution of young massive star clusters and nuclear starbursts, as well as the secular evolution and dynamics of their host galaxies. We have compiled a sample of 17 galaxies with nuclear rings, which are well resolved by high-resolution Hubble and Spitzer Space Telescope imaging. For each nuclear ring, we identified the ring star cluster population, along with their physical properties (ages, masses, and extinction values). We also determined the integrated ring properties, including the average age, total stellar mass, and current star formation rate (SFR). We find that Sb-type galaxies tend to have the highest ring stellar mass fraction with respect to the host galaxy, and this parameter is correlated with the ring’s SFR surface density. The ring SFRs are correlated with their stellar masses, which is reminiscent of the main sequence of star-forming galaxies. There are striking correlations between star-forming properties (i.e., SFR and SFR surface density) and nonaxisymmetric bar parameters, appearing to confirm previous inferences that strongly barred galaxies tend to have lower ring SFRs, although the ring star formation histories turn out to be significantly more complicated. Nuclear rings with higher stellar masses tend to be associated with lower cluster mass fractions, but there is no such relation for the ages of the rings. The two youngest nuclear rings in our sample, NGC 1512 and NGC 4314, which have the most extreme physical properties, represent the young extremity of the nuclear ring age distribution.
Current Velocity Data on Dwarf Galaxy NGC 1052-DF2 do not Constrain it to Lack Dark Matter
NASA Astrophysics Data System (ADS)
Martin, Nicolas F.; Collins, Michelle L. M.; Longeard, Nicolas; Tollerud, Erik
2018-05-01
It was recently proposed that the globular cluster system of the very low surface brightness galaxy NGC 1052-DF2 is dynamically very cold, leading to the conclusion that this dwarf galaxy has little or no dark matter. Here, we show that a robust statistical measure of the velocity dispersion of the tracer globular clusters implies a mundane velocity dispersion and a poorly constrained mass-to-light ratio. Models that include the possibility that some of the tracers are field contaminants do not yield a more constraining inference. We derive only a weak constraint on the mass-to-light ratio of the system within the half-light radius (M/{L}V< 6.7 at the 90% confidence level) or within the radius of the furthest tracer (M/{L}V< 8.1 at the 90% confidence level). This limit may imply a mass-to-light ratio on the low end for a dwarf galaxy, but many Local Group dwarf galaxies fall well within this contraint. With this study, we emphasize the need to reliably account for measurement uncertainties and to stay as close as possible to the data when determining dynamical masses from very small data sets of tracers.
Isophote Shapes Of Early-Type Galaxies In Massive Clusters At Z 1 And 0
NASA Astrophysics Data System (ADS)
Mitsuda, Kazuma; Doi, Mamoru; Morokuma, Tomoki; Suzuki, Nao; Yasuda, Naoki; Perlmutter, Saul; Aldering, Greg; Meyers, Joshua
2017-06-01
Dynamics of early-type galaxies (ETGs), whether they are supported by rotation or dispersion, is a clue to understand their assembly history. We compare the isophote shape parameter a4 between z ˜ 1 and 0 as a proxy for dynamics to investigate the epoch at which the dynamical properties are established. We create cluster ETG samples with stellar masses of log(M✽/M⦿) ≥ 10.5 with spectroscopic redshifts. We have 130 ETGs from the Hubble Space Telescope Cluster Supernova Survey for z ˜ 1 and 355 ETGs from the Sloan Digital Sky Survey for z ˜ 0. We find similar dependence of the a4 parameter on the mass at z ˜ 1 and 0; the main population changes from disky (a4 > 0) to boxy (a4 ≤ 0) at a critical mass of log(M✽/M⦿) 11.5 with the massive end dominated by boxy ETGs. The disky ETG fraction is consistent between these redshifts. Although uncertainties are large, the results suggest that the isophote shapes and probably dynamical properties of cluster ETGs are already in place at z > 1 and do not significantly evolve in z < 1, despite significant size evolution. The constant disky fraction imply that the processes responsible for the size evolution is not enough violent to convert the dynamical properties of ETGs.
LOCUSS: THE MID-INFRARED BUTCHER-OEMLER EFFECT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haines, C. P.; Smith, G. P.; Sanderson, A. J. R.
2009-10-10
We study the mid-infrared (MIR) properties of galaxies in 30 massive galaxy clusters at 0.02 <= z <= 0.40, using panoramic Spitzer/MIPS 24 mum and near-infrared data, including 27 new observations from the LoCuSS and ACCESS surveys. This is the largest sample of clusters to date with such high-quality and uniform MIR data covering not only the cluster cores, but extending into the infall regions. We use these data to revisit the so-called Butcher-Oemler (BO) effect, measuring the fraction of massive infrared luminous galaxies (K < K* + 1.5, L {sub IR} > 5 x 10{sup 10} L {sub sun})more » within r {sub 200}, finding a steady increase in the fraction with redshift from approx3% at z = 0.02 to approx10% by z = 0.30, and an rms cluster-to-cluster scatter about this trend of 0.03. The best-fit redshift evolution model of the form f {sub SF} propor to (1 + z) {sup n} has n = 5.7{sup +2.1} {sub -1.8}, which is stronger redshift evolution than that of L*{sub IR} in both clusters and the field. We find that, statistically, this excess is associated with galaxies found at large cluster-centric radii, specifically r {sub 500} < r < r {sub 200}, implying that the MIR BO effect can be explained by a combination of both the global decline in star formation in the universe since z approx 1 and enhanced star formation in the infall regions of clusters at intermediate redshifts. This picture is supported by a simple infall model based on the Millennium Simulation semianalytic galaxy catalogs, whereby star formation in infalling galaxies is instantaneously quenched upon their first passage through the cluster, in that the observed radial trends of f {sub SF} trace those inferred from the simulations. The observed f {sub SF} values, however, lie systematically above the predictions, suggesting an overall excess of star formation, either due to triggering by environmental processes, or a gradual quenching. We also find that f {sub SF} does not depend on simple indicators of the dynamical state of clusters, including the offset between the brightest cluster galaxy and the peak of the X-ray emission. This is consistent with the picture described above in that most new star formation in clusters occurs in the infall regions, and is thus not sensitive to the details of cluster-cluster mergers in the core regions.« less
Gas loss in simulated galaxies as they fall into clusters
Cen, Renyue; Pop, Ana Roxana; Bahcall, Neta A.
2014-01-01
We use high-resolution cosmological hydrodynamic galaxy formation simulations to gain insights into how galaxies lose their cold gas at low redshift as they migrate from the field to the high-density regions of clusters of galaxies. We find that beyond three cluster virial radii, the fraction of gas-rich galaxies is constant, representing the field. Within three cluster-centric radii, the fraction of gas-rich galaxies declines steadily with decreasing radius, reaching <10% near the cluster center. Our results suggest galaxies start to feel the effect of the cluster environment on their gas content well beyond the cluster virial radius. We show that almost all gas-rich galaxies at the cluster virial radius are falling in for the first time at nearly radial orbits. Furthermore, we find that almost no galaxy moving outward at the cluster virial radius is gas-rich (with a gas-to-baryon ratio greater than 1%). These results suggest that galaxies that fall into clusters lose their cold gas within a single radial round-trip. PMID:24843167
Gas loss in simulated galaxies as they fall into clusters.
Cen, Renyue; Pop, Ana Roxana; Bahcall, Neta A
2014-06-03
We use high-resolution cosmological hydrodynamic galaxy formation simulations to gain insights into how galaxies lose their cold gas at low redshift as they migrate from the field to the high-density regions of clusters of galaxies. We find that beyond three cluster virial radii, the fraction of gas-rich galaxies is constant, representing the field. Within three cluster-centric radii, the fraction of gas-rich galaxies declines steadily with decreasing radius, reaching <10% near the cluster center. Our results suggest galaxies start to feel the effect of the cluster environment on their gas content well beyond the cluster virial radius. We show that almost all gas-rich galaxies at the cluster virial radius are falling in for the first time at nearly radial orbits. Furthermore, we find that almost no galaxy moving outward at the cluster virial radius is gas-rich (with a gas-to-baryon ratio greater than 1%). These results suggest that galaxies that fall into clusters lose their cold gas within a single radial round-trip.
MC 2: A Deeper Look at ZwCl 2341.1+0000 with Bayesian Galaxy Clustering and Weak Lensing Analyses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benson, B.; Wittman, D. M.; Golovich, N.
ZwCl 2341.1+0000, a merging galaxy cluster with disturbed X-ray morphology and widely separated (~3 Mpc) double radio relics, was thought to be an extremely massive (10 - 30 X 10 14M⊙) and complex system with little known about its merger history. We present JVLA 2-4 GHz observations of the cluster, along with new spectroscopy from our Keck/DEIMOS survey, and apply Gaussian Mixture Modeling to the three-dimensional distribution of 227 con rmed cluster galaxies. After adopting the Bayesian Information Criterion to avoid over tting, which we discover can bias total dynamical mass estimates high, we nd that a three-substructure model withmore » a total dynamical mass estimate of 9:39 ± 0:81 X 10 14M⊙ is favored. We also present deep Subaru imaging and perform the rst weak lensing analysis on this system, obtaining a weak lensing mass estimate of 5:57±2:47X10 14M⊙. This is a more robust estimate because it does not depend on the dynamical state of the system, which is disturbed due to the merger. Our results indicate that ZwCl 2341.1+0000 is a multiple merger system comprised of at least three substructures, with the main merger that produced the radio relics occurring near to the plane of the sky, and a younger merger in the North occurring closer to the line of sight. Dynamical modeling of the main merger reproduces observed quantities (relic positions and polarizations, subcluster separation and radial velocity difference), if the merger axis angle of ~10 +34 -6 degrees and the collision speed at pericenter is ~1900 +300 -200 km/s.« less
MC 2: A Deeper Look at ZwCl 2341.1+0000 with Bayesian Galaxy Clustering and Weak Lensing Analyses
Benson, B.; Wittman, D. M.; Golovich, N.; ...
2017-05-16
ZwCl 2341.1+0000, a merging galaxy cluster with disturbed X-ray morphology and widely separated (~3 Mpc) double radio relics, was thought to be an extremely massive (10 - 30 X 10 14M⊙) and complex system with little known about its merger history. We present JVLA 2-4 GHz observations of the cluster, along with new spectroscopy from our Keck/DEIMOS survey, and apply Gaussian Mixture Modeling to the three-dimensional distribution of 227 con rmed cluster galaxies. After adopting the Bayesian Information Criterion to avoid over tting, which we discover can bias total dynamical mass estimates high, we nd that a three-substructure model withmore » a total dynamical mass estimate of 9:39 ± 0:81 X 10 14M⊙ is favored. We also present deep Subaru imaging and perform the rst weak lensing analysis on this system, obtaining a weak lensing mass estimate of 5:57±2:47X10 14M⊙. This is a more robust estimate because it does not depend on the dynamical state of the system, which is disturbed due to the merger. Our results indicate that ZwCl 2341.1+0000 is a multiple merger system comprised of at least three substructures, with the main merger that produced the radio relics occurring near to the plane of the sky, and a younger merger in the North occurring closer to the line of sight. Dynamical modeling of the main merger reproduces observed quantities (relic positions and polarizations, subcluster separation and radial velocity difference), if the merger axis angle of ~10 +34 -6 degrees and the collision speed at pericenter is ~1900 +300 -200 km/s.« less
X-ray aspects of the DAFT/FADA clusters
NASA Astrophysics Data System (ADS)
Guennou, L.; Durret, F.; Lima Neto, G. B.; Adami, C.
2012-12-01
We have undertaken the DAFT/FADA survey with the aim of applying constraints on dark energy based on weak lensing tomography as well as obtaining homogeneous and high quality data for a sample of 91 massive clusters in the redshift range [0.4,0.9] for which there are HST archive data. We have analysed the XMM-Newton data available for 42 of these clusters to derive their X-ray temperatures and luminosities and search for substructures. This study was coupled with a dynamical analysis for the 26 clusters having at least 30 spectroscopic galaxy redshifts in the cluster range. We present preliminary results on the coupled X-ray and dynamical analyses of these clusters.
A simulation of the intracluster medium with feedback from cluster galaxies
NASA Technical Reports Server (NTRS)
Metzler, Christopher A.; Evrard, August E.
1994-01-01
We detail method and report first results from a three-dimensional hydrodynamical and N-body simulation of the formation and evolution of a Coma-sized cluster of galaxies, with the intent of studying the history of the hot, X-ray emitting intracluster medium. Cluster gas, galaxies, and dark matter are included in the model. The galaxies and dark matter fell gravitational forces; the cluster gas also undergoes hydrodynamical effects such as shock heating and PdV work. For the first time in three dimensions, we include modeling of ejection of processed gas from the simulated galaxies by winds, including heating and heavy element enrichment. For comparison, we employ a `pure infall' simulation using the same initial conditions but with no galaxies or winds. We employ an extreme ejection history for galactic feedback in order to define the boundary of likely models. As expected, feedback raises the entropy of the intracluster gas, preventing it from collapsing to densities as high as those attained in the infall model. The effect is more pronounced in subclusters formed at high redshift. The cluster with feedback is always less X-ray luminous, but experiences more rapid luminosity evolution, than the pure infall cluster. Even employing an extreme ejection model, the final gas temperature is only approximately 15% larger than in the infall model. The radial temperature profile is very nearly isothermal within 1.5 Mpc. The cluster galaxies in the feedback model have a velocity dispersion approximately 15% lower than the dark matter. This results in the true ratio of specific energies in galaxies to gas being less than one, beta(sub spec) approximately 0.7. The infall model predicts beta(sub spec) approximately 1.2. Large excursions in these values occur over time, following the complex dynamical history of the cluster. The morphology of the X-ray emission is little affected by feedback. The emission profiles of both clusters are well described by the standard beta-model with beta(sub fit) approximately equal to 0.7 - 0.9. X-ray mass estimates based on the assumptions of hydrostatic equilibrium and the applicability of the beta-model are quite accurate in both cases. A strong, radial iron abundance gradient is present, which develops as a consequence of the steepening of the galaxy density profile over time. Spectroscopic observations using nonimaging detectors with wide (approximately 45 min) fields of view dramatically smear the gradient. Observations with arcminute resolution, made available with the ASCA satellite, would readily resolve the gradient.
Radial distribution of metals in the hot intra-cluster medium as observed by XMM-Newton
NASA Astrophysics Data System (ADS)
Mernier, F.; de Plaa, J.; Kaastra, J.; Zhang, Y.; Akamatsu, H.; Gu, L.; Mao, J.; Pinto, C.; Reiprich, T.; Sanders, J.
2017-10-01
The hot intra-cluster medium (ICM), which accounts for ˜80% of the baryonic content in galaxy clusters, is rich in heavy elements. Since these metals have been produced by stars and supernovae before enriching the ICM, measuring metal abundance distributions in galaxy clusters and groups provides essential clues to determine the main astrophysical source(s) and epoch(s) of the ICM enrichment. In this work, we present radial abundance profiles averaged over 44 nearby cool-core galaxy clusters, groups, and massive ellipticals (the CHEERS sample) measured with XMM-Newton EPIC. While most of the Fe of the Universe is thought to be synthesised by Type Ia supernovae (SNIa), lighter elements, such as O, Mg, Si or S, are mostly produced by core-collapse supernovae (SNcc). The derived average radial profiles of the O, Mg, Si, S, Ar, Ca, Fe, and Ni abundances out to ˜ 0.5 r_{500} allows us to accurately compare the distributions of SNIa and SNcc products in clusters and groups. By comparing our results with recent chemo-dynamical simulations, we discuss the interpretation of the profiles in the context of early and late ICM enrichments.
Too Fast, Too Furious: A Galaxy's Fatal Plunge
NASA Astrophysics Data System (ADS)
2004-01-01
Trailing 200,000-light-year-long streamers of seething gas, a galaxy that was once like our Milky Way is being shredded as it plunges at 4.5 million miles per hour through the heart of a distant cluster of galaxies. In this unusually violent collision with ambient cluster gas, the galaxy is stripped down to its skeletal spiral arms as it is eviscerated of fresh hydrogen for making new stars. The galaxy's untimely demise is offering new clues to solving the mystery of what happens to spiral galaxies in a violent universe. Views of the early universe show that spiral galaxies were once much more abundant in rich clusters of galaxies. But they seem to have been vanishing over cosmic time. Where have these "missing bodies" gone? Astronomers are using a wide range of telescopes and analysis techniques to conduct a "CSI" or Crime Scene Investigator-style look at what is happening to this galaxy inside its cluster's rough neighborhood. "It's a clear case of galaxy assault and battery," says William Keel of the University of Alabama. "This is the first time we have a full suite of results from such disparate techniques showing the crime being committed, and the modus operandi." Keel and colleagues are laying out the "forensic evidence" of the galaxy's late life, in a series of presentations today in Atlanta, Ga., at the 203rd meeting of the American Astronomical Society. Astronomers have assembled the evidence by combining a variety of diagnostic observations from telescopes analyzing the galaxy's appearance in X-ray, optical, and radio light. Parallel observations at different wavelengths trace how stars, gas, and dust are being tossed around and torn from the fragile galaxy, called C153. Though such "distressed" galaxies have been seen before, this one's demise is unusually swift and violent. The galaxy belongs to a cluster of galaxies that slammed into another cluster about 100 million years ago. This galaxy took the brunt of the beating as it fell along a trajectory straight through the dense core of the colliding cluster. "This helps explain the weird X-ray and radio emissions we see," says Keel. "The galaxy is a laboratory for studying how gas can be stripped away when it flies through the hot cluster gas, shutting down star birth and transforming the galaxy." The first suggestion of galactic mayhem in this cluster came in 1994 when the Very Large Array radio telescope near Socorro, N.M., detected an unusual number of radio galaxies in the cluster, called Abell 2125. Radio sources trace both star formation and the feeding of central black holes in galaxy clusters. The radio observations also showed that C153 stood out from the other galaxies as an exceptionally powerful radio source. Keel's team began an extensive program of further observations to uncover details about the galaxies. "This was designed to see what the connection could possibly be between events on the 10-million-light-year scale of the cluster merger and what happens deep inside individual galaxies," says Keel. X-ray observations from the ROSAT satellite (an acronym for the Roentgen Satellite) demonstrated that the cluster contains vast amounts of 36-million-degree Fahrenheit (20-million-degree Kelvin) gas that envelops the galaxies. The gas is concentrated into two main lumps rather than smoothly distributed across the cluster, as is more commonly the case. This bolstered the suspicion that two galaxy clusters are actually colliding. In the mid-to-late 1990s astronomers turned the Mayall 4-meter telescope and the WIYN 3.5-meter telescope at the Kitt Peak National Observatory on the cluster to analyze the starlight via spectroscopy. They found many star-forming systems and even active galactic black holes fueled by the collision. The disintegrating galaxy C153 stood out dramatically when the KPNO telescopes were used to photomap the cluster in color. Astronomers then trained NASA's Hubble Space Telescope (HST) onto C153 and resolved a bizarre shape. They found that the galaxy looks unusually clumpy with many young star clusters and chaotic dust features. Besides the disrupted features in the galaxy's disk, HST also showed that the light in the tail is mostly attributed to recent star formation, providing a direct link to the stripping of the galaxy as it passed through the cluster core. Gas compressed along the galaxy's leading edge, like snow before a plow, ignited a firestorm of new star birth. Evidence of recent star formation also comes from the optical spectrum obtained at the 10-meter Gemini North telescope in Hawaii. The spectrum allows the researchers to estimate the time since the most recent burst of star formation. This conclusion was further bolstered when the Mosaic camera on Kitt Peak's Mayall telescope found a very long tail of extended gas coming off the galaxy. The tail was apparently generated in part by a hurricane of stellar winds boiling off the new star-birth regions and being blown backwards as the galaxy streaks through the surrounding hot gas of the cluster. Spectroscopic observations with the Gemini telescope allowed astronomers to age-date the starburst. They find that 90 percent of C153's blue light is from a population of stars that are 100 million years old. This age corresponds to the time the galaxy should have gone careening through the densest gas in the cluster core. The Gemini spectroscopic observations show the stars are in a regular pattern of orbital motion around the center, as usual for disk galaxies. However, there are multiple widespread clouds of gas moving independently of the stars. "This is an important clue that something beyond gravitational forces must be at work, since stars and gas respond the same way to purely gravitational forces," says Keel. "In other words, the galaxy's gas doesn't know what the stars are doing." NASA's Chandra X-ray Observatory discovered that the cooler clouds detected with optical telescopes and an associated radio feature are embedded in a much larger multimillion-degree trail of gas. Chandra's data indicate that this hot gas was probably enriched in heavy elements by the starburst and driven out of the galaxy by its supersonic motion through the much larger cloud of gas that pervades the cluster. Collectively, these observations offer evidence that the ram pressure of external gas in the cluster is stripping away the galaxy's own gas. This process has long been hypothesized to account for the forced evolution of cluster galaxies. Its aftermath has been seen in several ways. Some nearby examples, Seyfert's Sextet and Stefan's Quintet, are tight clusters that show the aftermath of high-velocity collisions. The galaxy C153 is destined to lose the last vestiges of its spiral arms and become a bland S0-type galaxy having a central bulge and disk, but no spiral-arm structure. These types of galaxies are common in the dense galaxy clusters seen today. Astronomers plan to make new observations with Gemini again in 2004 to study the dynamics of the gas and stars in the tail. The science team members are William Keel (University of Alabama), Frazer Owen (National Radio Astronomy Observatory), Michael Ledlow (Gemini Observatory), and Daniel Wang (University of Massachusetts). NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the Office of Space Science, NASA Headquarters, Washington. Northrop Grumman of Redondo Beach, Calif., formerly TRW, Inc., was the prime development contractor for the observatory. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass. Additional information and images are available at: http://chandra.harvard.edu and http://chandra.nasa.gov
NASA Astrophysics Data System (ADS)
Gavazzi, G.; Fumagalli, M.; Fossati, M.; Galardo, V.; Grossetti, F.; Boselli, A.; Giovanelli, R.; Haynes, M. P.
2013-05-01
Context. We present the analysis of Hα3, an Hα narrow-band imaging follow-up survey of 409 galaxies selected from the HI Arecibo Legacy Fast ALFA Survey (ALFALFA) in the Local Supercluster, including the Virgo cluster, in the region 11h < RA < 16h ; 4o < Dec < 16°; 350 < cz < 2000 km s-1. Aims: Taking advantage of Hα3, which provides the complete census of the recent massive star formation rate (SFR) in HI-rich galaxies in the local Universe and of ancillary optical data from SDSS we explore the relations between the stellar mass, the HI mass, and the current, massive SFR of nearby galaxies in the Virgo cluster. We compare these with those of isolated galaxies in the Local Supercluster, and we investigate the role of the environment in shaping the star formation properties of galaxies at the present cosmological epoch. Methods: By using the Hα hydrogen recombination line as a tracer of recent star formation, we investigated the relationships between atomic neutral gas and newly formed stars in different environments (cluster and field), for many morphological types (spirals and dwarfs), and over a wide range of stellar masses (107.5 to 1011.5 M⊙). To quantify the degree of environmental perturbation, we adopted an updated calibration of the HI deficiency parameter which we used to divide the sample into three classes: unperturbed galaxies (DefHI ≤ 0.3), perturbed galaxies (0.3 < DefHI < 0.9), and highly perturbed galaxies (DefHI ≥ 0.9). Results: Studying the mean properties of late-type galaxies in the Local Supercluster, we find that galaxies in increasing dense local galaxy conditions (or decreasing projected angular separation from M 87) show a significant decrease in the HI content and in the mean specific SFR, along with a progressive reddening of their stellar populations. The gradual quenching of the star formation occurs outside-in, consistently with the predictions of the ram pressure model. Once considered as a whole, the Virgo cluster is effective in removing neutral hydrogen from galaxies, and this perturbation is strong enough to appreciably reduce the SFR of its entire galaxy population. Conclusions: An estimate of the present infall rate of 300-400 galaxies per Gyr in the Virgo cluster is obtained from the number of existing HI-rich late-type systems, assuming 200-300 Myr as the time scale for HI ablation. If the infall process has been acting at a constant rate, this would imply that the Virgo cluster has formed approximately 2 Gyr ago, consistently with the idea that Virgo is in a young state of dynamical evolution. Based on observations taken at the observatory of San Pedro Martir (Baja California, Mexico), belonging to the Mexican Observatorio Astronómico Nacional.
The role of penetrating gas streams in setting the dynamical state of galaxy clusters
NASA Astrophysics Data System (ADS)
Zinger, E.; Dekel, A.; Birnboim, Y.; Kravtsov, A.; Nagai, D.
2016-09-01
We utilize cosmological simulations of 16 galaxy clusters at redshifts z = 0 and z = 0.6 to study the effect of inflowing streams on the properties of the X-ray emitting intracluster medium. We find that the mass accretion occurs predominantly along streams that originate from the cosmic web and consist of heated gas. Clusters that are unrelaxed in terms of their X-ray morphology are characterized by higher mass inflow rates and deeper penetration of the streams, typically into the inner third of the virial radius. The penetrating streams generate elevated random motions, bulk flows and cold fronts. The degree of penetration of the streams may change over time such that clusters can switch from being unrelaxed to relaxed over a time-scale of several giga years.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crawford, Steven M.; Wirth, Gregory D.; Bershady, Matthew A., E-mail: crawford@saao.ac.za, E-mail: wirth@keck.hawaii.edu, E-mail: mab@astro.wisc.edu
2014-05-01
We analyze the spatial and velocity distributions of confirmed members in five massive clusters of galaxies at intermediate redshift (0.5 < z < 0.9) to investigate the physical processes driving galaxy evolution. Based on spectral classifications derived from broad- and narrow-band photometry, we define four distinct galaxy populations representing different evolutionary stages: red sequence (RS) galaxies, blue cloud (BC) galaxies, green valley (GV) galaxies, and luminous compact blue galaxies (LCBGs). For each galaxy class, we derive the projected spatial and velocity distribution and characterize the degree of subclustering. We find that RS, BC, and GV galaxies in these clusters havemore » similar velocity distributions, but that BC and GV galaxies tend to avoid the core of the two z ≈ 0.55 clusters. GV galaxies exhibit subclustering properties similar to RS galaxies, but their radial velocity distribution is significantly platykurtic compared to the RS galaxies. The absence of GV galaxies in the cluster cores may explain their somewhat prolonged star-formation history. The LCBGs appear to have recently fallen into the cluster based on their larger velocity dispersion, absence from the cores of the clusters, and different radial velocity distribution than the RS galaxies. Both LCBG and BC galaxies show a high degree of subclustering on the smallest scales, leading us to conclude that star formation is likely triggered by galaxy-galaxy interactions during infall into the cluster.« less
The specific entropy of elliptical galaxies: an explanation for profile-shape distance indicators?
NASA Astrophysics Data System (ADS)
Lima Neto, G. B.; Gerbal, D.; Márquez, I.
1999-10-01
Dynamical systems in equilibrium have a stationary entropy; we suggest that elliptical galaxies, as stellar systems in a stage of quasi-equilibrium, may have in principle a unique specific entropy. This uniqueness, a priori unknown, should be reflected in correlations between the fundamental parameters describing the mass (light) distribution in galaxies. Following recent photometrical work on elliptical galaxies by Caon et al., Graham & Colless and Prugniel & Simien, we use the Sérsic law to describe the light profile and an analytical approximation to its three-dimensional deprojection. The specific entropy is then calculated, supposing that the galaxy behaves as a spherical, isotropic, one-component system in hydrostatic equilibrium, obeying the ideal-gas equations of state. We predict a relation between the three parameters of the Sérsic law linked to the specific entropy, defining a surface in the parameter space, an `Entropic Plane', by analogy with the well-known Fundamental Plane. We have analysed elliptical galaxies in two rich clusters of galaxies (Coma and ABCG 85) and a group of galaxies (associated with NGC 4839, near Coma). We show that, for a given cluster, the galaxies follow closely a relation predicted by the constant specific entropy hypothesis with a typical dispersion (one standard deviation) of 9.5per cent around the mean value of the specific entropy. Moreover, assuming that the specific entropy is also the same for galaxies of different clusters, we are able to derive relative distances between Coma, ABGC 85, and the group of NGC 4839. If the errors are due only to the determination of the specific entropy (about 10per cent), then the error in the relative distance determination should be less than 20per cent for rich clusters. We suggest that the unique specific entropy may provide a physical explanation for the distance indicators based on the Sérsic profile put forward by Young & Currie and recently discussed by Binggeli & Jerjen.
Lopsidedness of Self-consistent Galaxies Caused by the External Field Effect of Clusters
NASA Astrophysics Data System (ADS)
Wu, Xufen; Wang, Yougang; Feix, Martin; Zhao, HongSheng
2017-08-01
Adopting Schwarzschild’s orbit-superposition technique, we construct a series of self-consistent galaxy models, embedded in the external field of galaxy clusters in the framework of Milgrom’s MOdified Newtonian Dynamics (MOND). These models represent relatively massive ellipticals with a Hernquist radial profile at various distances from the cluster center. Using N-body simulations, we perform a first analysis of these models and their evolution. We find that self-gravitating axisymmetric density models, even under a weak external field, lose their symmetry by instability and generally evolve to triaxial configurations. A kinematic analysis suggests that the instability originates from both box and nonclassified orbits with low angular momentum. We also consider a self-consistent isolated system that is then placed in a strong external field and allowed to evolve freely. This model, just like the corresponding equilibrium model in the same external field, eventually settles to a triaxial equilibrium as well, but has a higher velocity radial anisotropy and is rounder. The presence of an external field in the MOND universe generically predicts some lopsidedness of galaxy shapes.
Lopsidedness of Self-consistent Galaxies Caused by the External Field Effect of Clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Xufen; Wang, Yougang; Feix, Martin
2017-08-01
Adopting Schwarzschild’s orbit-superposition technique, we construct a series of self-consistent galaxy models, embedded in the external field of galaxy clusters in the framework of Milgrom’s MOdified Newtonian Dynamics (MOND). These models represent relatively massive ellipticals with a Hernquist radial profile at various distances from the cluster center. Using N -body simulations, we perform a first analysis of these models and their evolution. We find that self-gravitating axisymmetric density models, even under a weak external field, lose their symmetry by instability and generally evolve to triaxial configurations. A kinematic analysis suggests that the instability originates from both box and nonclassified orbitsmore » with low angular momentum. We also consider a self-consistent isolated system that is then placed in a strong external field and allowed to evolve freely. This model, just like the corresponding equilibrium model in the same external field, eventually settles to a triaxial equilibrium as well, but has a higher velocity radial anisotropy and is rounder. The presence of an external field in the MOND universe generically predicts some lopsidedness of galaxy shapes.« less
Structure and substructure analysis of DAFT/FADA galaxy clusters in the [0.4-0.9] redshift range
NASA Astrophysics Data System (ADS)
Guennou, L.; Adami, C.; Durret, F.; Lima Neto, G. B.; Ulmer, M. P.; Clowe, D.; LeBrun, V.; Martinet, N.; Allam, S.; Annis, J.; Basa, S.; Benoist, C.; Biviano, A.; Cappi, A.; Cypriano, E. S.; Gavazzi, R.; Halliday, C.; Ilbert, O.; Jullo, E.; Just, D.; Limousin, M.; Márquez, I.; Mazure, A.; Murphy, K. J.; Plana, H.; Rostagni, F.; Russeil, D.; Schirmer, M.; Slezak, E.; Tucker, D.; Zaritsky, D.; Ziegler, B.
2014-01-01
Context. The DAFT/FADA survey is based on the study of ~90 rich (masses found in the literature >2 × 1014 M⊙) and moderately distant clusters (redshifts 0.4 < z < 0.9), all with HST imaging data available. This survey has two main objectives: to constrain dark energy (DE) using weak lensing tomography on galaxy clusters and to build a database (deep multi-band imaging allowing photometric redshift estimates, spectroscopic data, X-ray data) of rich distant clusters to study their properties. Aims: We analyse the structures of all the clusters in the DAFT/FADA survey for which XMM-Newton and/or a sufficient number of galaxy redshifts in the cluster range are available, with the aim of detecting substructures and evidence for merging events. These properties are discussed in the framework of standard cold dark matter (ΛCDM) cosmology. Methods: In X-rays, we analysed the XMM-Newton data available, fit a β-model, and subtracted it to identify residuals. We used Chandra data, when available, to identify point sources. In the optical, we applied a Serna & Gerbal (SG) analysis to clusters with at least 15 spectroscopic galaxy redshifts available in the cluster range. We discuss the substructure detection efficiencies of both methods. Results: XMM-Newton data were available for 32 clusters, for which we derive the X-ray luminosity and a global X-ray temperature for 25 of them. For 23 clusters we were able to fit the X-ray emissivity with a β-model and subtract it to detect substructures in the X-ray gas. A dynamical analysis based on the SG method was applied to the clusters having at least 15 spectroscopic galaxy redshifts in the cluster range: 18 X-ray clusters and 11 clusters with no X-ray data. The choice of a minimum number of 15 redshifts implies that only major substructures will be detected. Ten substructures were detected both in X-rays and by the SG method. Most of the substructures detected both in X-rays and with the SG method are probably at their first cluster pericentre approach and are relatively recent infalls. We also find hints of a decreasing X-ray gas density profile core radius with redshift. Conclusions: The percentage of mass included in substructures was found to be roughly constant with redshift values of 5-15%, in agreement both with the general CDM framework and with the results of numerical simulations. Galaxies in substructures show the same general behaviour as regular cluster galaxies; however, in substructures, there is a deficiency of both late type and old stellar population galaxies. Late type galaxies with recent bursts of star formation seem to be missing in the substructures close to the bottom of the host cluster potential well. However, our sample would need to be increased to allow a more robust analysis. Tables 1, 2, 4 and Appendices A-C are available in electronic form at http://www.aanda.org
VizieR Online Data Catalog: RX J105453.3+552102 cluster SDSS photometry (Aguerri+, 2011)
NASA Astrophysics Data System (ADS)
Aguerri, J. A. L.; Girardi, M.; Boschin, W.; Barrena, R.; Mendez-Abreu, J.; Sanchez-Janssen, R.; Borgani, S.; Castro-Rodriguez, N.; Corsini, E. M.; Del Burgo, C.; D'Onghia, E.; Iglesias-Paramo, J.; Napolitano, N.; Vilchez, J. M.
2011-08-01
Optical imaging of RX J105453.3+552102 was carried out at the 2.5m NOT telescope in March 2008. Optical deep images were used for studying the properties of the brightest group galaxy and for computing the photometric luminosity function of the group. We have also performed a detail dynamical analysis of the system based on redshift data for 116 galaxies. Combining galaxy velocities and positions we selected 78 group members. (1 data file).
Galaxy clusters in the SDSS Stripe 82 based on photometric redshifts
Durret, F.; Adami, C.; Bertin, E.; ...
2015-06-10
Based on a recent photometric redshift galaxy catalogue, we have searched for galaxy clusters in the Stripe ~82 region of the Sloan Digital Sky Survey by applying the Adami & MAzure Cluster FInder (AMACFI). Extensive tests were made to fine-tune the AMACFI parameters and make the cluster detection as reliable as possible. The same method was applied to the Millennium simulation to estimate our detection efficiency and the approximate masses of the detected clusters. Considering all the cluster galaxies (i.e. within a 1 Mpc radius of the cluster to which they belong and with a photoz differing by less thanmore » 0.05 from that of the cluster), we stacked clusters in various redshift bins to derive colour-magnitude diagrams and galaxy luminosity functions (GLFs). For each galaxy with absolute magnitude brighter than -19.0 in the r band, we computed the disk and spheroid components by applying SExtractor, and by stacking clusters we determined how the disk-to-spheroid flux ratio varies with cluster redshift and mass. We also detected 3663 clusters in the redshift range 0.1513 and a few 10 14 solar masses. Furthermore, by stacking the cluster galaxies in various redshift bins, we find a clear red sequence in the (g'-r') versus r' colour-magnitude diagrams, and the GLFs are typical of clusters, though with a possible contamination from field galaxies. The morphological analysis of the cluster galaxies shows that the fraction of late-type to early-type galaxies shows an increase with redshift (particularly in high mass clusters) and a decrease with detection level, i.e. cluster mass. From the properties of the cluster galaxies, the majority of the candidate clusters detected here seem to be real clusters with typical cluster properties.« less
Galaxy clusters in the SDSS Stripe 82 based on photometric redshifts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durret, F.; Adami, C.; Bertin, E.
Based on a recent photometric redshift galaxy catalogue, we have searched for galaxy clusters in the Stripe ~82 region of the Sloan Digital Sky Survey by applying the Adami & MAzure Cluster FInder (AMACFI). Extensive tests were made to fine-tune the AMACFI parameters and make the cluster detection as reliable as possible. The same method was applied to the Millennium simulation to estimate our detection efficiency and the approximate masses of the detected clusters. Considering all the cluster galaxies (i.e. within a 1 Mpc radius of the cluster to which they belong and with a photoz differing by less thanmore » 0.05 from that of the cluster), we stacked clusters in various redshift bins to derive colour-magnitude diagrams and galaxy luminosity functions (GLFs). For each galaxy with absolute magnitude brighter than -19.0 in the r band, we computed the disk and spheroid components by applying SExtractor, and by stacking clusters we determined how the disk-to-spheroid flux ratio varies with cluster redshift and mass. We also detected 3663 clusters in the redshift range 0.1513 and a few 10 14 solar masses. Furthermore, by stacking the cluster galaxies in various redshift bins, we find a clear red sequence in the (g'-r') versus r' colour-magnitude diagrams, and the GLFs are typical of clusters, though with a possible contamination from field galaxies. The morphological analysis of the cluster galaxies shows that the fraction of late-type to early-type galaxies shows an increase with redshift (particularly in high mass clusters) and a decrease with detection level, i.e. cluster mass. From the properties of the cluster galaxies, the majority of the candidate clusters detected here seem to be real clusters with typical cluster properties.« less
Wide-Field HST Observations of the Globular Cluster System in NGC 1399
NASA Astrophysics Data System (ADS)
Puzia, Thomas H.; Paolillo, Maurizio; Goudfrooij, Paul; Maccarone, Thomas J.; Fabbiano, Giuseppina; Angelini, Lorella
2014-01-01
We present a comprehensive high spatial-resolution imaging study of globular clusters (GCs) in NGC 1399, the central giant elliptical cD galaxy in the Fornax galaxy cluster, obtained with HST/ACS. Using a novel technique to construct drizzled PSF libraries for HST/ACS data, we accurately determine the GC half-light radius, r_h, for the major fraction of the NGC 1399 GC system and find a trend of increasing r_h versus galactocentric distance, R_gal, out to ~10 kpc and a flat relation beyond. This trend is very similar for blue and red GCs which are found to have a mean size ratio of r_h(red)/r_h(blue)=0.82+/-0.11 at all R_gal from the core regions of the galaxy out to ~40 kpc. This suggests that the size difference between blue and red GCs is due to internal mechanisms related to the evolution of their constituent stellar populations. Modeling the stellar mass density profile of NGC 1399 derived from its surface brightness profile shows that additional external dynamical mechanisms are required to limit the GC size in the galaxy halo regions. We suggest that this may be realized by an exotic GC orbit distribution function, an extended dark matter halo, and/or tidal stress induced by the increased stochasticity in the dwarf halo substructure at larger galactocentric radii. We compare our results with the GC r_h distribution functions in various galaxies and find that the fraction of extended GCs is systematically larger in late-type galaxies compared with GC systems in early-type galaxies. This is likely due to the dynamically more violent evolution of early-type galaxies. We match our GC r_h measurements with radial velocity data from the literature and split the resulting sample at the median r_h value into compact and extended GCs. We find that compact GCs show a significantly smaller line-of-sight velocity dispersion, 225+/-25 km/s, than their extended counterparts, 317+/-21 km/s. Considering the weaker statistical correlation in the GC r_h-color and the GC r_h-R_gal relations, the more significant GC size-dynamics relation appears to be astrophysically more relevant and hints at the dominant influence of the GC orbit distribution function on the evolution of GC structural parameters.
Looking Wider and Further: The Evolution of Galaxies Inside Galaxy Clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yuanyuan
2016-01-01
Galaxy clusters are rare objects in the universe, but on-going wide field optical surveys are identifying many thousands of them to redshift 1.0 and beyond. Using early data from the Dark Energy Survey (DES) and publicly released data from the Sloan Digital Sky Survey (SDSS), this dissertation explores the evolution of cluster galaxies in the redshift range from 0 to 1.0. As it is common for deep wide field sky surveys like DES to struggle with galaxy detection efficiency at cluster core, the first component of this dissertation describes an efficient package that helps resolving the issue. The second partmore » focuses on the formation of cluster galaxies. The study quantifies the growth of cluster bright central galaxies (BCGs), and argues for the importance of merging and intra-cluster light production during BCG evolution. An analysis of cluster red sequence galaxy luminosity function is also performed, demonstrating that the abundance of these galaxies is mildly dependent on cluster mass and redshift. The last component of the dissertation characterizes the properties of galaxy filaments to help understanding cluster environments« less
Pre-processing and post-processing in group-cluster mergers
NASA Astrophysics Data System (ADS)
Vijayaraghavan, R.; Ricker, P. M.
2013-11-01
Galaxies in clusters are more likely to be of early type and to have lower star formation rates than galaxies in the field. Recent observations and simulations suggest that cluster galaxies may be `pre-processed' by group or filament environments and that galaxies that fall into a cluster as part of a larger group can stay coherent within the cluster for up to one orbital period (`post-processing'). We investigate these ideas by means of a cosmological N-body simulation and idealized N-body plus hydrodynamics simulations of a group-cluster merger. We find that group environments can contribute significantly to galaxy pre-processing by means of enhanced galaxy-galaxy merger rates, removal of galaxies' hot halo gas by ram pressure stripping and tidal truncation of their galaxies. Tidal distortion of the group during infall does not contribute to pre-processing. Post-processing is also shown to be effective: galaxy-galaxy collisions are enhanced during a group's pericentric passage within a cluster, the merger shock enhances the ram pressure on group and cluster galaxies and an increase in local density during the merger leads to greater galactic tidal truncation.
Anomalous Galactic Dynamics by Collusion of Rindler and Cosmological Horizons
NASA Astrophysics Data System (ADS)
van Putten, Maurice H. P. M.
2017-03-01
In holography, the dimensional reduction of phase space to two dimensions defines a dynamical dark energy of {{Λ }}=(1-q){H}2, associated with the cosmological horizon at a Hubble radius of {R}H=c/H, and inertia m of baryonic matter at acceleration α in terms of a thermodynamic potential U={{mc}}2 of Rindler horizons at ξ ={c}2/α . Here, H is the Hubble parameter with deceleration q and c is the velocity of light. In weak gravity, m drops below Newton’s value m 0 as α < {a}H, when Rindler horizons fall beyond the cosmological horizon. The onset to weak gravity across α ={a}H is sharp by causality. Striking evidence is found in galaxy rotation curves, whose asymptotic dynamics is parameterized by Milgrom’s scale of acceleration {a}0=({cH}/2π )\\sqrt{1-q}. This onset presents a new challenge for canonical dark matter distributions on galactic scales in ΛCDM. Instead, future galaxy surveys may determine {Q}0={{dq}(z)/{dz}| }z=0, to provide a direct test of dynamical dark energy ({Q}0> 2.5) versus ΛCDM ({Q}0< 1) and establish a bound of {10}-30 {{eV}} on the mass of the putative dark matter particle with clustering limited to galaxy clusters.
The Nature of LSB galaxies revealed by their Globular Clusters
NASA Astrophysics Data System (ADS)
Kissler-Patig, Markus
2005-07-01
Low Surface Brightness {LSB} galaxies encompass many of the extremes in galaxy properties. Their understanding is essential to complete our picture of galaxy formation and evolution. Due to their historical under-representation on galaxy surveys, their importance to many areas of astronomy has only recently began to be realized. Globular clusters are superb tracers of the formation histories of galaxies and have been extensively used as such in high surface brightness galaxies. We propose to investigate the nature of massive LSB galaxies by studying their globular cluster systems. No globular cluster study has been reported for LSB galaxies to date. Yet, both the presence or absence of globular clusters set very strong constraints on the conditions prevailing during LSB galaxy formation and evolution. Both in dwarf and giant high surface brightness {HSB} galaxies, globular clusters are known to form as a constant fraction of baryonic mass. Their presence/absence immediately indicates similarities or discrepancies in the formation and evolution conditions of LSB and HSB galaxies. In particular, the presence/absence of metal-poor halo globular clusters infers similarities/differences in the halo formation and assembly processes of LSB vs. HSB galaxies, while the presence/absence of metal-rich globular clusters can be used to derive the occurrence and frequency of violent events {such as mergers} in the LSB galaxy assembly history. Two band imaging with ACS will allow us to identify the globular clusters {just resolved at the selected distance} and to determine their metallicity {potentially their rough age}. The composition of the systems will be compared to the extensive census built up on HSB galaxies. Our representative sample of six LSB galaxies {cz < 2700 km/s} are selected such, that a large system of globular clusters is expected. Globular clusters will constrain phases of LSB galaxy formation and evolution that can currently not be probed by other means. HST/ACS imaging is the only facility capable of studying the globular cluster systems of LSB galaxies given their distance and relative scarcity.
Explaining formation of Astronomical Jets using Dynamic Universe Model
NASA Astrophysics Data System (ADS)
Naga Parameswara Gupta, Satyavarapu
2016-07-01
Astronomical jets are observed from the centres of many Galaxies including our own Milkyway. The formation of such jet is explained using SITA simulations of Dynamic Universe Model. For this purpose the path traced by a test neutron is calculated and depicted using a set up of one densemass of the mass equivalent to mass of Galaxy center, 90 stars with similar masses of stars near Galaxy center, mass equivalents of 23 Globular Cluster groups, 16 Milkyway parts, Andromeda and Triangulum Galaxies at appropriate distances. Five different kinds of theoretical simulations gave positive results The path travelled by this test neutron was found to be an astronomical jet emerging from Galaxy center. This is another result from Dynamic Universe Model. It solves new problems like a. Variable Mass Rocket Trajectory Problem b. Explaining Very long baseline interferometry (VLBI) observations c. Astronomical jets observed from Milkyway Center d. Prediction of Blue shifted Galaxies e. Explaining Pioneer Anomaly f. Prediction of New Horizons satellite trajectory etc. Dynamic Universe Model never reduces to General relativity on any condition. It uses a different type of mathematics based on Newtonian physics. This mathematics used here is simple and straightforward. As there are no differential equations present in Dynamic Universe Model, the set of equations give single solution in x y z Cartesian coordinates for every point mass for every time step
Ophiuchus: An optical view of a very massive cluster of galaxies hidden behind the Milky Way ⋆
NASA Astrophysics Data System (ADS)
Durret, F.; Wakamatsu, K.; Nagayama, T.; Adami, C.; Biviano, A.
2015-11-01
Context. The Ophiuchus cluster, at a redshift z = 0.0296, is known from X-rays to be one of the most massive nearby clusters, but its optical properties have not been investigated in detail because of its very low Galactic latitude. Aims: We discuss the optical properties of the galaxies in the Ophiuchus cluster, in particular, with the aim of understanding its dynamical properties better. Methods: We have obtained deep optical imaging in several bands with various telescopes, and applied a sophisticated method to model and subtract the contributions of stars to measure galaxy magnitudes as accurately as possible. The colour-magnitude relations obtained show that there are hardly any blue galaxies in Ophiuchus (at least brighter than r' ≤ 19.5), and this is confirmed by the fact that we only detect two galaxies in Hα. We also obtained a number of spectra with ESO-FORS2, which we combined with previously available redshifts. Altogether, we have 152 galaxies with spectroscopic redshifts in the 0.02 ≤ z ≤ 0.04 range, and 89 galaxies with both a redshift within the cluster redshift range and a measured r' band magnitude (limited to the Megacam 1 × 1 deg2 field). Results: A complete dynamical analysis based on the galaxy redshifts available shows that the overall cluster is relaxed and has a mass of 1.1 × 1015 M⊙. The Sernal-Gerbal method detects a main structure and a much smaller substructure, which are not separated in projection. Conclusions: From its dynamical properties derived from optical data, the Ophiuchus cluster seems overall to be a relaxed structure, or at most a minor merger, though in X-rays the central region (radius ~ 150 kpc) may show evidence for merging effects. Based on observations obtained with MegaPrime/MegaCam (program 10AF02), a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii. Based on observations performed with ESO Telescopes at the La Silla Paranal Observatory under programme ID 085.A-0016(C). Based on observations obtained at the Southern Astrophysical Research (SOAR) telescope (programme 2009B-0340 on SOI/SOAR), which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the US National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU). This research has made use of the NASA/IPAC Extragalactic Database (NED), which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration, and of the SIMBAD database, operated at CDS, Strasbourg, France.Tables A.1-A.3 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/583/A124
THE HST/ACS COMA CLUSTER SURVEY. VIII. BARRED DISK GALAXIES IN THE CORE OF THE COMA CLUSTER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marinova, Irina; Jogee, Shardha; Weinzirl, Tim
2012-02-20
We use high-resolution ({approx}0.''1) F814W Advanced Camera for Surveys (ACS) images from the Hubble Space Telescope ACS Treasury survey of the Coma cluster at z {approx} 0.02 to study bars in massive disk galaxies (S0s), as well as low-mass dwarf galaxies in the core of the Coma cluster, the densest environment in the nearby universe. Our study helps to constrain the evolution of bars and disks in dense environments and provides a comparison point for studies in lower density environments and at higher redshifts. Our results are: (1) we characterize the fraction and properties of bars in a sample ofmore » 32 bright (M{sub V} {approx}< -18, M{sub *} > 10{sup 9.5} M{sub Sun }) S0 galaxies, which dominate the population of massive disk galaxies in the Coma core. We find that the measurement of a bar fraction among S0 galaxies must be handled with special care due to the difficulty in separating unbarred S0s from ellipticals, and the potential dilution of the bar signature by light from a relatively large, bright bulge. The results depend sensitively on the method used: the bar fraction for bright S0s in the Coma core is 50% {+-} 11%, 65% {+-} 11%, and 60% {+-} 11% based on three methods of bar detection, namely, strict ellipse fit criteria, relaxed ellipse fit criteria, and visual classification. (2) We compare the S0 bar fraction across different environments (the Coma core, A901/902, and Virgo) adopting the critical step of using matched samples and matched methods in order to ensure robust comparisons. We find that the bar fraction among bright S0 galaxies does not show a statistically significant variation (within the error bars of {+-}11%) across environments which span two orders of magnitude in galaxy number density (n {approx} 300-10,000 galaxies Mpc{sup -3}) and include rich and poor clusters, such as the core of Coma, the A901/902 cluster, and Virgo. We speculate that the bar fraction among S0s is not significantly enhanced in rich clusters compared to low-density environments for two reasons. First, S0s in rich clusters are less prone to bar instabilities as they are dynamically heated by harassment and are gas poor as a result of ram pressure stripping and accelerated star formation. Second, high-speed encounters in rich clusters may be less effective than slow, strong encounters in inducing bars. (3) We also take advantage of the high resolution of the ACS ({approx}50 pc) to analyze a sample of 333 faint (M{sub V} > -18) dwarf galaxies in the Coma core. Using visual inspection of unsharp-masked images, we find only 13 galaxies with bar and/or spiral structure. An additional eight galaxies show evidence for an inclined disk. The paucity of disk structures in Coma dwarfs suggests that either disks are not common in these galaxies or that any disks present are too hot to develop instabilities.« less
NASA Astrophysics Data System (ADS)
Nastasi, A.; Fassbender, R.; Böhringer, H.; Šuhada, R.; Rosati, P.; Pierini, D.; Verdugo, M.; Santos, J. S.; Schwope, A. D.; de Hoon, A.; Kohnert, J.; Lamer, G.; Mühlegger, M.; Quintana, H.
2011-08-01
We report the discovery of a galaxy cluster at z = 1.490 originally selected as an extended X-ray source in the XMM-Newton Distant Cluster Project. Further observations carried out with the VLT-FORS2 spectrograph allowed the spectroscopic confirmation of seven secure cluster members, providing a median system redshift of z = 1.490 ± 0.009. The color-magnitude diagram of XMMU J0338.8+0021 reveals the presence of a well-populated red sequence with z - H ≈ 3, albeit with an apparent significant scatter in color. Since we do not detect indications of any strong star formation activity in these objects, the color spread could represent the different stellar ages of the member galaxies. In addition, we found the brightest cluster galaxy in a very active dynamical state, with an interacting, merging companion located at a physical projected distance of d ≈ 20 kpc. From the X-ray luminosity, we estimate a cluster mass of M200 ~ 1.2 × 1014 M⊙. The data appear to be consistent with a scenario in which XMMU J0338.8+0021 is a young system, possibly caught in a moment of active ongoing mass assembly. Based on observations under programme ID 084.A-0844 collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile, and observations collected at the Centro Astronómico Hispano Alemán at Calar Alto, operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC).Tables 1, 2 and Figs. 3-6 are available in electronic form at http://www.aanda.org
MACS: The impact of environment on galaxy evolution at z>0.5
NASA Astrophysics Data System (ADS)
Ma, Cheng-Jiun
2010-08-01
In order to investigate galaxy evolution in environments of greatly varying density, we conduct an extensive spectroscopic survey of galaxies in eight X-ray luminous clusters at redshift higher than 0.5. Unlike most spectroscopic surveys of cluster galaxies, we sample the galaxy population beyond the virial radius of each cluster (out to ˜6 Mpc), thereby probing regions that differ by typically two orders of magnitude in galaxy density. Galaxies are classified by spectroscopic type into emission-line, absorption-line, post starburst (E+A), and starburst (e(a) and e(b)) galaxies, and the spatial distribution of each type is used as a diagnostic of the presence and efficiency of different physical mechanisms of galaxy evolution. Our analysis yields the perhaps strongest confirmation so far of the morphology-density relation for emission- and absorption-line galaxies. In addition, we find E+A galaxies to be exclusively located within the ram-pressure stripping radius of each cluster. Taking advantage of this largest sample of E+A galaxies in clusters compiled to date, the spatial profile of the distribution of E+A galaxies can be studied for the first time. We show that ram-pressure stripping is the dominant, and possibly only, physical mechanism to cause the post-starburst phase of cluster galaxies. In addition, two particular interesting clusters are studied individually. For MACS J0717.5+3745, a clear morphology-density correlation is observed for lenticular (S0) galaxies around this cluster, but becomes insignificant toward the center of cluster. We interpret this finding as evidence of the creation of S0s being triggered primarily in environments of low to intermediate density. In MACS J0025.4-1225, a cluster undergoing a major merger, all faint E+A galaxies are observed to lie near the peak of the X-ray surface brightness, strongly suggesting that starbursts are enhanced as well as terminated during cluster mergers. We conclude that ram-pressure stripping and/or tidal destruction are central to the evolution of galaxies clusters, and that wide-field spectroscopic surveys around clusters are essential to distinguish between competing physical effects driving galaxy evolution in different environments.
The origin of ultra diffuse galaxies: stellar feedback and quenching
NASA Astrophysics Data System (ADS)
Chan, T. K.; Kereš, D.; Wetzel, A.; Hopkins, P. F.; Faucher-Giguère, C.-A.; El-Badry, K.; Garrison-Kimmel, S.; Boylan-Kolchin, M.
2018-05-01
We test if the cosmological zoom-in simulations of isolated galaxies from the FIRE project reproduce the properties of ultra diffuse galaxies (UDGs). We show that outflows that dynamically heat galactic stars, together with a passively aging stellar population after imposed quenching, naturally reproduce the observed population of red UDGs, without the need for high spin halos, or dynamical influence from their host cluster. We reproduce the range of surface brightness, radius and absolute magnitude of the observed red UDGs by quenching simulated galaxies at a range of different times. They represent a mostly uniform population of dark matter-dominated dwarf galaxies with M* ˜ 108 M⊙, low metallicity and a broad range of ages; the more massive the UDGs, the older they are. The most massive red UDG in our sample (M* ˜ 3 × 108M⊙) requires quenching at z ˜ 3 when its halo reached Mh ˜ 1011 M⊙. Our simulated UDGs form with normal stellar-to-halo ratios and match the central enclosed masses and the velocity dispersions of the observed UDGs. Enclosed masses remain largely fixed across a broad range of quenching times because the central regions of their dark matter halos complete their growth early. If our simulated dwarfs are not quenched, they evolve into bluer low-surface brightness galaxies with M/L similar to observed field dwarfs. While our simulation sample covers a limited range of formation histories and halo masses, we predict that UDG is a common, and perhaps even dominant, galaxy type around M* ˜ 108 M⊙, both in the field and in clusters.
The origin of ultra diffuse galaxies: stellar feedback and quenching
NASA Astrophysics Data System (ADS)
Chan, T. K.; Kereš, D.; Wetzel, A.; Hopkins, P. F.; Faucher-Giguère, C.-A.; El-Badry, K.; Garrison-Kimmel, S.; Boylan-Kolchin, M.
2018-07-01
We test if the cosmological zoom-in simulations of isolated galaxies from the FIRE project reproduce the properties of ultra diffuse galaxies (UDGs). We show that outflows that dynamically heat galactic stars, together with a passively aging stellar population after imposed quenching, naturally reproduce the observed population of red UDGs, without the need for high spin haloes, or dynamical influence from their host cluster. We reproduce the range of surface brightness, radius, and absolute magnitude of the observed red UDGs by quenching simulated galaxies at a range of different times. They represent a mostly uniform population of dark matter-dominated dwarf galaxies with M* ˜ 108 M⊙, low metallicity, and a broad range of ages; the more massive the UDGs, the older they are. The most massive red UDG in our sample (M* ˜ 3 × 108 M⊙) requires quenching at z ˜ 3 when its halo reached Mh ˜ 1011 M⊙. Our simulated UDGs form with normal stellar-to-halo ratios and match the central enclosed masses and the velocity dispersions of the observed UDGs. Enclosed masses remain largely fixed across a broad range of quenching times because the central regions of their dark matter haloes complete their growth early. If our simulated dwarfs are not quenched, they evolve into bluer low surface brightness galaxies with M/L similar to observed field dwarfs. While our simulation sample covers a limited range of formation histories and halo masses, we predict that UDG is a common, and perhaps even dominant, galaxy type around M* ˜ 108 M⊙, both in the field and in clusters.
NASA Astrophysics Data System (ADS)
Lee, Joon Hyeop; Oh, Sree; Jeong, Hyunjin; Yi, Sukyoung K.; Kyeong, Jaemann; Park, Byeong-Gon
2017-07-01
As a case study to understand the coevolution of Brightest Cluster Galaxies (BCGs) and their host clusters, we investigate the BCGs in dynamically young and old clusters Abell 1139 (A1139) and Abell 2589 (A2589). We analyze the pixel color–magnitude diagrams (pCMDs) using deep g- and r-band images, obtained from the Canada–France–Hawaii Telescope observations. After masking foreground/background objects and smoothing pixels in consideration of the observational seeing size, detailed pCMD features are compared between the two BCGs. (1) Although the overall shapes of the pCMDs are similar to those of typical early-type galaxies, the A2589-BCG tends to have redder mean pixel color and smaller pixel color deviation at given surface brightness than the A1139-BCG. (2) The mean pixel color distribution as a function of pixel surface brightness (pCMD backbone) indicates that the A2589-BCG formed a larger central body (∼2.0 kpc in radius) via major dry mergers at an early epoch than the A1139-BCG (a central body ∼1.3 kpc in radius), whereas they have grown commonly in subsequent minor mergers. (3) The spatial distributions of the pCMD outliers reveal that the A1139-BCG experienced considerable tidal events more recently than the A2589-BCG, whereas the A2589-BCG has an asymmetric compact core, possibly resulting from a major dry merger at an early epoch. (4) The A2589-BCG shows a very large faint-to-bright pixel number ratio, compared to early-type non-BCGs, whereas the ratio for the A1139-BCG is not distinctively large. These results are consistent with the idea that the BCG in the dynamically older cluster (A2589) formed earlier and is better relaxed.
Flash Galaxy Cluster Merger, Simulated using the Flash Code, Mass Ratio 1:1
None
2018-05-11
Since structure in the universe forms in a bottom-up fashion, with smaller structures merging to form larger ones, modeling the merging process in detail is crucial to our understanding of cosmology. At the current epoch, we observe clusters of galaxies undergoing mergers. It is seen that the two major components of galaxy clusters, the hot intracluster gas and the dark matter, behave very differently during the course of a merger. Using the N-body and hydrodynamics capabilities in the FLASH code, we have simulated a suite of representative galaxy cluster mergers, including the dynamics of both the dark matter, which is collisionless, and the gas, which has the properties of a fluid. 3-D visualizations such as these demonstrate clearly the different behavior of these two components over time. Credits: Science: John Zuhone (Harvard-Smithsonian Center for Astrophysics Visualization: Jonathan Gallagher (Flash Center, University of Chicago) This research used resources of the Argonne Leadership Computing Facility at Argonne National Laboratory, which is supported by the Office of Science of the U.S. Dept. of Energy (DOE) under contract DE-AC02-06CH11357. This research was supported by the National Nuclear Security Administration's (NNSA) Advanced Simulation and Computing (ASC) Academic Strategic Alliance Program (ASAP).
Flash Galaxy Cluster Merger, Simulated using the Flash Code, Mass Ratio 1:1
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2010-08-09
Since structure in the universe forms in a bottom-up fashion, with smaller structures merging to form larger ones, modeling the merging process in detail is crucial to our understanding of cosmology. At the current epoch, we observe clusters of galaxies undergoing mergers. It is seen that the two major components of galaxy clusters, the hot intracluster gas and the dark matter, behave very differently during the course of a merger. Using the N-body and hydrodynamics capabilities in the FLASH code, we have simulated a suite of representative galaxy cluster mergers, including the dynamics of both the dark matter, which ismore » collisionless, and the gas, which has the properties of a fluid. 3-D visualizations such as these demonstrate clearly the different behavior of these two components over time. Credits: Science: John Zuhone (Harvard-Smithsonian Center for Astrophysics Visualization: Jonathan Gallagher (Flash Center, University of Chicago) This research used resources of the Argonne Leadership Computing Facility at Argonne National Laboratory, which is supported by the Office of Science of the U.S. Dept. of Energy (DOE) under contract DE-AC02-06CH11357. This research was supported by the National Nuclear Security Administration's (NNSA) Advanced Simulation and Computing (ASC) Academic Strategic Alliance Program (ASAP).« less
The Optical Green Valley Versus Mid-infrared Canyon in Compact Groups
NASA Technical Reports Server (NTRS)
Walker, Lisa May; Butterfield, Natalie; Johnson, Kelsey; Zucker, Catherine; Gallagher, Sarah; Konstantopoulos, Iraklis; Zabludoff, Ann; Hornschemeier, Ann E.; Tzanavaris, Panayiotis; Charlton, Jane C.
2013-01-01
Compact groups of galaxies provide conditions similar to those experienced by galaxies in the earlier universe. Recent work on compact groups has led to the discovery of a dearth of mid-infrared transition galaxies (MIRTGs) in Infrared Array Camera (3.6-8.0 micrometers) color space as well as at intermediate specific star formation rates. However, we find that in compact groups these MIRTGs have already transitioned to the optical ([g-r]) red sequence. We investigate the optical color-magnitude diagram (CMD) of 99 compact groups containing 348 galaxies and compare the optical CMD with mid-infrared (mid-IR) color space for compact group galaxies. Utilizing redshifts available from Sloan Digital Sky Survey, we identified new galaxy members for four groups. By combining optical and mid-IR data, we obtain information on both the dust and the stellar populations in compact group galaxies. We also compare with more isolated galaxies and galaxies in the Coma Cluster, which reveals that, similar to clusters, compact groups are dominated by optically red galaxies. While we find that compact group transition galaxies lie on the optical red sequence, LVL (Local Volume Legacy) + (plus) SINGS (Spitzer Infrared Nearby Galaxies Survey) mid-IR (infrared) transition galaxies span the range of optical colors. The dearth of mid-IR transition galaxies in compact groups may be due to a lack of moderately star-forming low mass galaxies; the relative lack of these galaxies could be due to their relatively small gravitational potential wells. This makes them more susceptible to this dynamic environment, thus causing them to more easily lose gas or be accreted by larger members.
NASA Astrophysics Data System (ADS)
Jaffé, Yara L.; Poggianti, Bianca M.; Moretti, Alessia; Gullieuszik, Marco; Smith, Rory; Vulcani, Benedetta; Fasano, Giovanni; Fritz, Jacopo; Tonnesen, Stephanie; Bettoni, Daniela; Hau, George; Biviano, Andrea; Bellhouse, Callum; McGee, Sean
2018-06-01
It is well known that galaxies falling into clusters can experience gas stripping due to ram pressure by the intra-cluster medium. The most spectacular examples are galaxies with extended tails of optically bright stripped material known as `jellyfish'. We use the first large homogeneous compilation of jellyfish galaxies in clusters from the WINGS and OmegaWINGS surveys, and follow-up MUSE observations from the GASP MUSE programme to investigate the orbital histories of jellyfish galaxies in clusters and reconstruct their stripping history through position versus velocity phase-space diagrams. We construct analytic models to define the regions in phase-space where ram-pressure stripping is at play. We then study the distribution of cluster galaxies in phase-space and find that jellyfish galaxies have on average higher peculiar velocities (and higher cluster velocity dispersion) than the overall population of cluster galaxies at all cluster-centric radii, which is indicative of recent infall into the cluster and radial orbits. In particular, the jellyfish galaxies with the longest gas tails reside very near the cluster cores (in projection) and are moving at very high speeds, which coincides with the conditions of the most intense ram pressure. We conclude that many of the jellyfish galaxies seen in clusters likely formed via fast (˜1-2 Gyr), incremental, outside-in ram-pressure stripping during first infall into the cluster in highly radial orbits.
Galaxy cluster lensing masses in modified lensing potentials
Barreira, Alexandre; Li, Baojiu; Jennings, Elise; ...
2015-10-28
In this study, we determine the concentration–mass relation of 19 X-ray selected galaxy clusters from the Cluster Lensing and Supernova Survey with Hubble survey in theories of gravity that directly modify the lensing potential. We model the clusters as Navarro–Frenk–White haloes and fit their lensing signal, in the Cubic Galileon and Nonlocal gravity models, to the lensing convergence profiles of the clusters. We discuss a number of important issues that need to be taken into account, associated with the use of non-parametric and parametric lensing methods, as well as assumptions about the background cosmology. Our results show that the concentrationmore » and mass estimates in the modified gravity models are, within the error bars, the same as in Λ cold dark matter. This result demonstrates that, for the Nonlocal model, the modifications to gravity are too weak at the cluster redshifts, and for the Galileon model, the screening mechanism is very efficient inside the cluster radius. However, at distances ~ [2–20] Mpc/h from the cluster centre, we find that the surrounding force profiles are enhanced by ~ 20–40% in the Cubic Galileon model. This has an impact on dynamical mass estimates, which means that tests of gravity based on comparisons between lensing and dynamical masses can also be applied to the Cubic Galileon model.« less
Fundamental tests of galaxy formation theory
NASA Technical Reports Server (NTRS)
Silk, J.
1982-01-01
The structure of the universe as an environment where traces exist of the seed fluctuations from which galaxies formed is studied. The evolution of the density fluctuation modes that led to the eventual formation of matter inhomogeneities is reviewed, How the resulting clumps developed into galaxies and galaxy clusters acquiring characteristic masses, velocity dispersions, and metallicities, is discussed. Tests are described that utilize the large scale structure of the universe, including the dynamics of the local supercluster, the large scale matter distribution, and the anisotropy of the cosmic background radiation, to probe the earliest accessible stages of evolution. Finally, the role of particle physics is described with regard to its observable implications for galaxy formation.
NASA Astrophysics Data System (ADS)
Tonini, C.; Mutch, S. J.; Wyithe, J. S. B.; Croton, D. J.
2017-03-01
We investigate the properties of the stellar populations of model galaxies as a function of galaxy evolutionary history and angular momentum content. We use the new semi-analytic model presented in Tonini et al. This new model follows the angular momentum evolution of gas and stars, providing the base for a new star formation recipe, and treatment of the effects of mergers that depends on the central galaxy dynamical structure. We find that the new recipes have the effect of boosting the efficiency of the baryonic cycle in producing and recycling metals, as well as preventing minor mergers from diluting the metallicity of bulges and ellipticals. The model reproduces the stellar mass-stellar metallicity relation for galaxies above 1010 solar masses, including Brightest Cluster Galaxies. Model discs, galaxies dominated by instability-driven components, and merger-driven objects each stem from different evolutionary channels. These model galaxies therefore occupy different loci in the galaxy mass-size relation, which we find to be in accord with the ATLAS 3D classification of disc galaxies, fast rotators and slow rotators. We find that the stellar populations' properties depend on the galaxy evolutionary type, with more evolved stellar populations being part of systems that have lost or dissipated more angular momentum during their assembly history.
Star-Forming Galaxies in the Hercules Cluster: Hα Imaging of A2151
NASA Astrophysics Data System (ADS)
Cedrés, Bernabé; Iglesias-Páramo, Jorge; Vílchez, José Manuel; Reverte, Daniel; Petropoulou, Vasiliki; Hernández-Fernández, Jonathan
2009-09-01
This paper presents the first results of an Hα imaging survey of galaxies in the central regions of the A2151 cluster. A total of 50 sources were detected in Hα, from which 41 were classified as secure members of the cluster and 2 as likely members based on spectroscopic and photometric redshift considerations. The remaining seven galaxies were classified as background contaminants and thus excluded from our study on the Hα properties of the cluster. The morphologies of the 43 Hα selected galaxies range from grand design spirals and interacting galaxies to blue compacts and tidal dwarfs or isolated extragalactic H II regions, spanning a range of magnitudes of -21 <= MB <= -12.5 mag. From these 43 galaxies, 7 have been classified as active galactic nucleus (AGN) candidates. These AGN candidates follow the L(Hα) versus MB relationship of the normal galaxies, implying that the emission associated with the nuclear engine has a rather secondary impact on the total Hα emission of these galaxies. A comparison with the clusters Coma and A1367 and a sample of field galaxies has shown the presence of cluster galaxies with L(Hα) lower than expected for their MB , a consequence of the cluster environment. This fact results in differences in the L(Hα) versus EW(Hα) and L(Hα) distributions of the clusters with respect to the field, and in cluster-to-cluster variations of these quantities, which we propose are driven by a global cluster property as the total mass. In addition, the cluster Hα emitting galaxies tend to avoid the central regions of the clusters, again with different intensity depending on the cluster total mass. For the particular case of A2151, we find that most Hα emitting galaxies are located close to the regions with the higher galaxy density, offset from the main X-ray peak. Overall, we conclude that both the global cluster environment and the cluster merging history play a non-negligible role in the integral star formation properties of clusters of galaxies.
STAR-FORMING GALAXIES IN THE HERCULES CLUSTER: H{alpha} IMAGING OF A2151
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cedres, Bernabe; Iglesias-Paramo, Jorge; VIlchez, Jose Manuel
2009-09-15
This paper presents the first results of an H{alpha} imaging survey of galaxies in the central regions of the A2151 cluster. A total of 50 sources were detected in H{alpha}, from which 41 were classified as secure members of the cluster and 2 as likely members based on spectroscopic and photometric redshift considerations. The remaining seven galaxies were classified as background contaminants and thus excluded from our study on the H{alpha} properties of the cluster. The morphologies of the 43 H{alpha} selected galaxies range from grand design spirals and interacting galaxies to blue compacts and tidal dwarfs or isolated extragalacticmore » H II regions, spanning a range of magnitudes of -21 {<=} M{sub B} {<=} -12.5 mag. From these 43 galaxies, 7 have been classified as active galactic nucleus (AGN) candidates. These AGN candidates follow the L(H{alpha}) versus M{sub B} relationship of the normal galaxies, implying that the emission associated with the nuclear engine has a rather secondary impact on the total H{alpha} emission of these galaxies. A comparison with the clusters Coma and A1367 and a sample of field galaxies has shown the presence of cluster galaxies with L(H{alpha}) lower than expected for their M{sub B} , a consequence of the cluster environment. This fact results in differences in the L(H{alpha}) versus EW(H{alpha}) and L(H{alpha}) distributions of the clusters with respect to the field, and in cluster-to-cluster variations of these quantities, which we propose are driven by a global cluster property as the total mass. In addition, the cluster H{alpha} emitting galaxies tend to avoid the central regions of the clusters, again with different intensity depending on the cluster total mass. For the particular case of A2151, we find that most H{alpha} emitting galaxies are located close to the regions with the higher galaxy density, offset from the main X-ray peak. Overall, we conclude that both the global cluster environment and the cluster merging history play a non-negligible role in the integral star formation properties of clusters of galaxies.« less
Star-forming brightest cluster galaxies at 0.25
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDonald, M.; Stalder, B.; Bayliss, M.
2016-01-22
We present a multiwavelength study of the 90 brightest cluster galaxies (BCGs) in a sample of galaxy clusters selected via the Sunyaev Zel'dovich effect by the South Pole Telescope, utilizing data from various ground- and space-based facilities. We infer the star-formation rate (SFR) for the BCG in each cluster—based on the UV and IR continuum luminosity, as well as the [O ii]λλ3726,3729 emission line luminosity in cases where spectroscopy is available—and find seven systems with SFR > 100 M⊙ yr-1. We find that the BCG SFR exceeds 10 M⊙ yr-1 in 31 of 90 (34%) cases at 0.25 < z < 1.25, compared to ~1%–5% at z ~ 0 from the literature. At z gsim 1, this fraction increases tomore » $${92}_{-31}^{+6}$$%, implying a steady decrease in the BCG SFR over the past ~9 Gyr. At low-z, we find that the specific SFR in BCGs is declining more slowly with time than for field or cluster galaxies, which is most likely due to the replenishing fuel from the cooling ICM in relaxed, cool core clusters. At z gsim 0.6, the correlation between the cluster central entropy and BCG star formation—which is well established at z ~ 0—is not present. Instead, we find that the most star-forming BCGs at high-z are found in the cores of dynamically unrelaxed clusters. We use data from the Hubble Space Telescope to investigate the rest-frame near-UV morphology of a subsample of the most star-forming BCGs, and find complex, highly asymmetric UV morphologies on scales as large as ~50–60 kpc. The high fraction of star-forming BCGs hosted in unrelaxed, non-cool core clusters at early times suggests that the dominant mode of fueling star formation in BCGs may have recently transitioned from galaxy–galaxy interactions to ICM cooling.« less
Star-forming brightest cluster galaxies at 0.25 < z < 1.25: A transitioning fuel supply
McDonald, M.; Stalder, B.; Bayliss, M.; ...
2016-01-22
In this paper, we present a multiwavelength study of the 90 brightest cluster galaxies (BCGs) in a sample of galaxy clusters selected via the Sunyaev Zel'dovich effect by the South Pole Telescope, utilizing data from various ground- and space-based facilities. We infer the star-formation rate (SFR) for the BCG in each cluster—based on the UV and IR continuum luminosity, as well as the [O ii]λλ3726,3729 emission line luminosity in cases where spectroscopy is available—and find seven systems with SFR > 100 M ⊙ yr -1. We find that the BCG SFR exceeds 10 M ⊙ yr -1 in 31 of 90 (34%) cases at 0.25 < z < 1.25, compared to ~1%–5% at z ~ 0 from the literature. At z ≳ 1, this fraction increases tomore » $${92}_{-31}^{+6}$$%, implying a steady decrease in the BCG SFR over the past ~9 Gyr. At low-z, we find that the specific SFR in BCGs is declining more slowly with time than for field or cluster galaxies, which is most likely due to the replenishing fuel from the cooling ICM in relaxed, cool core clusters. At z ≳ 0.6, the correlation between the cluster central entropy and BCG star formation—which is well established at z ~ 0—is not present. Instead, we find that the most star-forming BCGs at high-z are found in the cores of dynamically unrelaxed clusters. We use data from the Hubble Space Telescope to investigate the rest-frame near-UV morphology of a subsample of the most star-forming BCGs, and find complex, highly asymmetric UV morphologies on scales as large as ~50–60 kpc. Finally, the high fraction of star-forming BCGs hosted in unrelaxed, non-cool core clusters at early times suggests that the dominant mode of fueling star formation in BCGs may have recently transitioned from galaxy–galaxy interactions to ICM cooling.« less
Dark energy and the structure of the Coma cluster of galaxies
NASA Astrophysics Data System (ADS)
Chernin, A. D.; Bisnovatyi-Kogan, G. S.; Teerikorpi, P.; Valtonen, M. J.; Byrd, G. G.; Merafina, M.
2013-05-01
Context. We consider the Coma cluster of galaxies as a gravitationally bound physical system embedded in the perfectly uniform static dark energy background as implied by ΛCDM cosmology. Aims: We ask if the density of dark energy is high enough to affect the structure of a large and rich cluster of galaxies. Methods: We base our work on recent observational data on the Coma cluster, and apply our theory of local dynamical effects of dark energy, including the zero-gravity radius RZG of the local force field as the key parameter. Results: 1) Three masses are defined that characterize the structure of a regular cluster: the matter mass MM, the dark-energy effective mass MDE (<0), and the gravitating mass MG (=MM + MDE). 2) A new matter-density profile is suggested that reproduces the observational data well for the Coma cluster in the radius range from 1.4 Mpc to 14 Mpc and takes the dark energy background into account. 3) Using this profile, we calculate upper limits for the total size of the Coma cluster, R ≤ RZG ≈ 20 Mpc, and its total matter mass, MM ≲ MM(RZG) = 6.2 × 1015 M⊙. Conclusions: The dark energy antigravity affects the structure of the Coma cluster strongly at large radii R ≳ 14 Mpc and should be considered when its total mass is derived.
Cosmological constraints from Chandra observations of galaxy clusters.
Allen, Steven W
2002-09-15
Chandra observations of rich, relaxed galaxy clusters allow the properties of the X-ray gas and the total gravitating mass to be determined precisely. Here, we present results for a sample of the most X-ray luminous, dynamically relaxed clusters known. We show that the Chandra data and independent gravitational lensing studies provide consistent answers on the mass distributions in the clusters. The mass profiles exhibit a form in good agreement with the predictions from numerical simulations. Combining Chandra results on the X-ray gas mass fractions in the clusters with independent measurements of the Hubble constant and the mean baryonic matter density in the Universe, we obtain a tight constraint on the mean total matter density of the Universe, Omega(m), and an interesting constraint on the cosmological constant, Omega(Lambda). We also describe the 'virial relations' linking the masses, X-ray temperatures and luminosities of galaxy clusters. These relations provide a key step in linking the observed number density and spatial distribution of clusters to the predictions from cosmological models. The Chandra data confirm the presence of a systematic offset of ca. 40% between the normalization of the observed mass-temperature relation and the predictions from standard simulations. This finding leads to a significant revision of the best-fit value of sigma(8) inferred from the observed temperature and luminosity functions of clusters.
Integral field spectroscopy with GEMINI: Extragalactic star cluster in NGC1275
NASA Astrophysics Data System (ADS)
Trancho, Gelys; Miller, Bryan; García-Lorenzo, Begoña; Sánchez, Sebastián F.
2006-01-01
Studies of globular cluster systems play a critical role in our understanding of galaxy formation. Imaging with the Hubble Space Telescope has revealed that young star clusters are formed copiously in galaxy mergers, strengthening theories in which giant elliptical galaxies are formed by the merger of spirals [e.g. Whitmore, B.C., Schweizer, F., Leitherer, C., Borne, K., Robert, C., 1993. Astronomical Journal. 106, 1354; Miller, B.W., Whitmore, B.C., Schweizer, F., Fall, S.M., 1997. Astronomical Journal. 114, 2381; Zepf, S.E., Ashman, K.M., English, J., Freeman, K.C., Sharples, R.M., 1999. Astronomical Journal. 118, 752; Ashman, K.M., Zepf, S.E., 1992. Astrophysical Journal. 384, 50]. However, the formation and evolution of globular cluster systems is still not well understood. Ages and metallicities of the clusters are uncertain either because of degeneracy in the broad-band colors or due to variable reddening. Also, the luminosity function of the young clusters, which depends critically on the metallicities and ages of the clusters, appears to be single power-laws while the luminosity function of old clusters has a well-defined break. Either there is significant dynamical evolution of the cluster systems or metallicity affects the mass function of forming clusters. Spectroscopy of these clusters are needed to improve the metallicity and age measurements and to study the kinematics of young cluster systems. Therefore, we have obtained GMOS IFU data of 4 clusters in NGC1275. We will present preliminary results like metallicities, ages, and velocities of the star clusters from IFU spectroscopy.
On the Distribution of Orbital Poles of Milky Way Satellites
NASA Astrophysics Data System (ADS)
Palma, Christopher; Majewski, Steven R.; Johnston, Kathryn V.
2002-01-01
In numerous studies of the outer Galactic halo some evidence for accretion has been found. If the outer halo did form in part or wholly through merger events, we might expect to find coherent streams of stars and globular clusters following orbits similar to those of their parent objects, which are assumed to be present or former Milky Way dwarf satellite galaxies. We present a study of this phenomenon by assessing the likelihood of potential descendant ``dynamical families'' in the outer halo. We conduct two analyses: one that involves a statistical analysis of the spatial distribution of all known Galactic dwarf satellite galaxies (DSGs) and globular clusters, and a second, more specific analysis of those globular clusters and DSGs for which full phase space dynamical data exist. In both cases our methodology is appropriate only to members of descendant dynamical families that retain nearly aligned orbital poles today. Since the Sagittarius dwarf (Sgr) is considered a paradigm for the type of merger/tidal interaction event for which we are searching, we also undertake a case study of the Sgr system and identify several globular clusters that may be members of its extended dynamical family. In our first analysis, the distribution of possible orbital poles for the entire sample of outer (Rgc>8 kpc) halo globular clusters is tested for statistically significant associations among globular clusters and DSGs. Our methodology for identifying possible associations is similar to that used by Lynden-Bell & Lynden-Bell, but we put the associations on a more statistical foundation. Moreover, we study the degree of possible dynamical clustering among various interesting ensembles of globular clusters and satellite galaxies. Among the ensembles studied, we find the globular cluster subpopulation with the highest statistical likelihood of association with one or more of the Galactic DSGs to be the distant, outer halo (Rgc>25 kpc), second-parameter globular clusters. The results of our orbital pole analysis are supported by the great circle cell count methodology of Johnston, Hernquist, & Bolte. The space motions of the clusters Pal 4, NGC 6229, NGC 7006, and Pyxis are predicted to be among those most likely to show the clusters to be following stream orbits, since these clusters are responsible for the majority of the statistical significance of the association between outer halo, second-parameter globular clusters and the Milky Way DSGs. In our second analysis, we study the orbits of the 41 globular clusters and six Milky Way-bound DSGs having measured proper motions to look for objects with both coplanar orbits and similar angular momenta. Unfortunately, the majority of globular clusters with measured proper motions are inner halo clusters that are less likely to retain memory of their original orbit. Although four potential globular cluster/DSG associations are found, we believe three of these associations involving inner halo clusters to be coincidental. While the present sample of objects with complete dynamical data is small and does not include many of the globular clusters that are more likely to have been captured by the Milky Way, the methodology we adopt will become increasingly powerful as more proper motions are measured for distant Galactic satellites and globular clusters, and especially as results from the Space Interferometry Mission (SIM) become available.
Morphological estimators on Sunyaev-Zel'dovich maps of MUSIC clusters of galaxies
NASA Astrophysics Data System (ADS)
Cialone, Giammarco; De Petris, Marco; Sembolini, Federico; Yepes, Gustavo; Baldi, Anna Silvia; Rasia, Elena
2018-06-01
The determination of the morphology of galaxy clusters has important repercussions for cosmological and astrophysical studies of them. In this paper, we address the morphological characterization of synthetic maps of the Sunyaev-Zel'dovich (SZ) effect for a sample of 258 massive clusters (Mvir > 5 × 1014 h-1 M⊙ at z = 0), extracted from the MUSIC hydrodynamical simulations. Specifically, we use five known morphological parameters (which are already used in X-ray) and two newly introduced ones, and we combine them in a single parameter. We analyse two sets of simulations obtained with different prescriptions of the gas physics (non-radiative and with cooling, star formation and stellar feedback) at four red shifts between 0.43 and 0.82. For each parameter, we test its stability and efficiency in discriminating the true cluster dynamical state, measured by theoretical indicators. The combined parameter is more efficient at discriminating between relaxed and disturbed clusters. This parameter had a mild correlation with the hydrostatic mass (˜0.3) and a strong correlation (˜0.8) with the offset between the SZ centroid and the cluster centre of mass. The latter quantity is, thus, the most accessible and efficient indicator of the dynamical state for SZ studies.
Enviromental Effects on Internal Color Gradients of Early-Type Galaxies
NASA Astrophysics Data System (ADS)
La Barbera, F.; de Carvalho, R. R.; Gal, R. R.; Busarello, G.; Haines, C. P.; Mercurio, A.; Merluzzi, P.; Capaccioli, M.; Djorgovski, S. G.
2007-05-01
One of the most debated issues of observational and theoretical cosmology is that of how the environment affects the formation and evolution of galaxies. To gain new insight into this subject, we have derived surface photometry for a sample of 3,000 early-type galaxies belonging to 163 clusters with different richness, spanning a redshift range of 0.05 to 0.25. This large data-set is used to analyze how the color distribution inside galaxies depends on several parameters, such as cluster richness, local galaxy density, galaxy luminosity and redshift. We find that the internal color profile of galaxies strongly depends on the environment where galaxies reside. Galaxies in poor and rich clusters are found to follow two distinct trends in the color gradient vs. redshift diagram, with color gradients beeing less steep in rich rather than in poor clusters. No dependence of color gradients on galaxy luminosity is detected both for poor and rich clusters. We find that color gradients strongly depend on local galaxy density, with more shallow gradients in high density regions. Interestingly, this result holds only for low richness clusters, with color gradients of galaxies in rich clusters showing no dependence on local galaxy density. Our results support a reasonable picture whereby young early-type galaxies form in a dissipative collapse process, and then undergo increased (either major or minor) merging activity in richer rather than in poor clusters.
Investigations of Galaxy Clusters Using Gravitational Lensing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiesner, Matthew P.
2014-08-01
In this dissertation, we discuss the properties of galaxy clusters that have been determined using strong and weak gravitational lensing. A galaxy cluster is a collection of galaxies that are bound together by the force of gravity, while gravitational lensing is the bending of light by gravity. Strong lensing is the formation of arcs or rings of light surrounding clusters and weak lensing is a change in the apparent shapes of many galaxies. In this work we examine the properties of several samples of galaxy clusters using gravitational lensing. In Chapter 1 we introduce astrophysical theory of galaxy clusters andmore » gravitational lensing. In Chapter 2 we examine evidence from our data that galaxy clusters are more concentrated than cosmology would predict. In Chapter 3 we investigate whether our assumptions about the number of galaxies in our clusters was valid by examining new data. In Chapter 4 we describe a determination of a relationship between mass and number of galaxies in a cluster at higher redshift than has been found before. In Chapter 5 we describe a model of the mass distribution in one of the ten lensing systems discovered by our group at Fermilab. Finally in Chapter 6 we summarize our conclusions.« less
LoCuSS: pre-processing in galaxy groups falling into massive galaxy clusters at z = 0.2
NASA Astrophysics Data System (ADS)
Bianconi, M.; Smith, G. P.; Haines, C. P.; McGee, S. L.; Finoguenov, A.; Egami, E.
2018-01-01
We report direct evidence of pre-processing of the galaxies residing in galaxy groups falling into galaxy clusters drawn from the Local Cluster Substructure Survey (LoCuSS). 34 groups have been identified via their X-ray emission in the infall regions of 23 massive (
Gemini Observations of Galaxies in Rich Early Environments (GOGREEN) I: survey description
NASA Astrophysics Data System (ADS)
Balogh, Michael L.; Gilbank, David G.; Muzzin, Adam; Rudnick, Gregory; Cooper, Michael C.; Lidman, Chris; Biviano, Andrea; Demarco, Ricardo; McGee, Sean L.; Nantais, Julie B.; Noble, Allison; Old, Lyndsay; Wilson, Gillian; Yee, Howard K. C.; Bellhouse, Callum; Cerulo, Pierluigi; Chan, Jeffrey; Pintos-Castro, Irene; Simpson, Rane; van der Burg, Remco F. J.; Zaritsky, Dennis; Ziparo, Felicia; Alonso, María Victoria; Bower, Richard G.; De Lucia, Gabriella; Finoguenov, Alexis; Lambas, Diego Garcia; Muriel, Hernan; Parker, Laura C.; Rettura, Alessandro; Valotto, Carlos; Wetzel, Andrew
2017-10-01
We describe a new Large Program in progress on the Gemini North and South telescopes: Gemini Observations of Galaxies in Rich Early Environments (GOGREEN). This is an imaging and deep spectroscopic survey of 21 galaxy systems at 1 < z < 1.5, selected to span a factor >10 in halo mass. The scientific objectives include measuring the role of environment in the evolution of low-mass galaxies, and measuring the dynamics and stellar contents of their host haloes. The targets are selected from the SpARCS, SPT, COSMOS, and SXDS surveys, to be the evolutionary counterparts of today's clusters and groups. The new red-sensitive Hamamatsu detectors on GMOS, coupled with the nod-and-shuffle sky subtraction, allow simultaneous wavelength coverage over λ ˜ 0.6-1.05 μm, and this enables a homogeneous and statistically complete redshift survey of galaxies of all types. The spectroscopic sample targets galaxies with AB magnitudes z΄ < 24.25 and [3.6] μm < 22.5, and is therefore statistically complete for stellar masses M* ≳ 1010.3 M⊙, for all galaxy types and over the entire redshift range. Deep, multiwavelength imaging has been acquired over larger fields for most systems, spanning u through K, in addition to deep IRAC imaging at 3.6 μm. The spectroscopy is ˜50 per cent complete as of semester 17A, and we anticipate a final sample of ˜500 new cluster members. Combined with existing spectroscopy on the brighter galaxies from GCLASS, SPT, and other sources, GOGREEN will be a large legacy cluster and field galaxy sample at this redshift that spectroscopically covers a wide range in stellar mass, halo mass, and clustercentric radius.
Optical Substructure and BCG Offsets of Sunyaev-Zel'dovich and X-ray Selected Galaxy Clusters
NASA Astrophysics Data System (ADS)
Lopes, Paulo AA; Trevisan, M.; Laganá, T. F.; Durret, F.; Ribeiro, A. LB; Rembold, S. B.
2018-05-01
We used optical imaging and spectroscopic data to derive substructure estimates for local Universe (z < 0.11) galaxy clusters from two different samples. The first was selected through the Sunyaev-Zel'dovich (SZ) effect by the Planck satellite and the second is an X-ray selected sample. In agreement to X-ray substructure estimates we found that the SZ systems have a larger fraction of substructure than the X-ray clusters. We have also found evidence that the higher mass regime of the SZ clusters, compared to the X-ray sample, explains the larger fraction of disturbed objects in the Planck data. Although we detect a redshift evolution in the substructure fraction, it is not sufficient to explain the different results between the higher-z SZ sample and the X-ray one. We have also verified a good agreement (˜60%) between the optical and X-ray substructure estimates. However, the best level of agreement is given by the substructure classification given by measures based on the brightest cluster galaxy (BCG), either the BCG-X-ray centroid offset, or the magnitude gap between the first and second BCGs. We advocate the use of those two parameters as the most reliable and cheap way to assess cluster dynamical state. We recommend an offset cut of ˜0.01 ×R500 to separate relaxed and disturbed clusters. Regarding the magnitude gap the separation can be done at Δm12 = 1.0. The central galaxy paradigm (CGP) may not be valid for ˜20% of relaxed massive clusters. This fraction increases to ˜60% for disturbed systems.
NASA Astrophysics Data System (ADS)
Gupta, Anshu; Yuan, Tiantian; Torrey, Paul; Vogelsberger, Mark; Martizzi, Davide; Tran, Kim-Vy H.; Kewley, Lisa J.; Marinacci, Federico; Nelson, Dylan; Pillepich, Annalisa; Hernquist, Lars; Genel, Shy; Springel, Volker
2018-06-01
We use the IllustrisTNG simulations to investigate the evolution of the mass-metallicity relation (MZR) for star-forming cluster galaxies as a function of the formation history of their cluster host. The simulations predict an enhancement in the gas-phase metallicities of star-forming cluster galaxies (109 < M* < 1010 M⊙ h-1) at z ≤ 1.0 in comparisons to field galaxies. This is qualitatively consistent with observations. We find that the metallicity enhancement of cluster galaxies appears prior to their infall into the central cluster potential, indicating for the first time a systematic `chemical pre-processing' signature for infalling cluster galaxies. Namely, galaxies that will fall into a cluster by z = 0 show a ˜0.05 dex enhancement in the MZR compared to field galaxies at z ≤ 0.5. Based on the inflow rate of gas into cluster galaxies and its metallicity, we identify that the accretion of pre-enriched gas is the key driver of the chemical evolution of such galaxies, particularly in the stellar mass range (109 < M* < 1010 M⊙ h-1). We see signatures of an environmental dependence of the ambient/inflowing gas metallicity that extends well outside the nominal virial radius of clusters. Our results motivate future observations looking for pre-enrichment signatures in dense environments.
The X-ray emitting gas in poor clusters with central dominant galaxies
NASA Technical Reports Server (NTRS)
Kriss, G. A.; Cioffi, D. F.; Canizares, C. R.
1983-01-01
The 12 clusters detected in the present study by the Einstein Observatory's X-ray imaging proportional counter show X-ray emission centered on the dominant galaxy in all cases. Comparison of the deduced distribution of binding mass with the light distribution of the central galaxies of four clusters indicates that the mass/luminosity ratio rises to over 200 solar masses/solar luminosity in the galaxy halos. These halos must therefore, like the clusters themselves, posses dark matter. The X-ray data clearly show that the dominant galaxies sit at the bottoms of the poor cluster gravitational potential wells, suggesting a similar origin for dominant galaxies in poor and rich clusters, perhaps through the merger and cannibalism of cluster galaxies. It is the luminosity of the distended cD envelope that reflects the relative wealth of the cluster environment.
The Dark Matter Crisis: Falsification of the Current Standard Model of Cosmology
NASA Astrophysics Data System (ADS)
Kroupa, P.
2012-06-01
The current standard model of cosmology (SMoC) requires The Dual Dwarf Galaxy Theorem to be true according to which two types of dwarf galaxies must exist: primordial dark-matter (DM) dominated (type A) dwarf galaxies, and tidal-dwarf and ram-pressure-dwarf (type B) galaxies void of DM. Type A dwarfs surround the host approximately spherically, while type B dwarfs are typically correlated in phase-space. Type B dwarfs must exist in any cosmological theory in which galaxies interact. Only one type of dwarf galaxy is observed to exist on the baryonic Tully-Fisher plot and in the radius-mass plane. The Milky Way satellite system forms a vast phase-space-correlated structure that includes globular clusters and stellar and gaseous streams. Other galaxies also have phase-space correlated satellite systems. Therefore, The Dual Dwarf Galaxy Theorem is falsified by observation and dynamically relevant cold or warm DM cannot exist. It is shown that the SMoC is incompatible with a large set of other extragalactic observations. Other theoretical solutions to cosmological observations exist. In particular, alone the empirical mass-discrepancy-acceleration correlation constitutes convincing evidence that galactic-scale dynamics must be Milgromian. Major problems with inflationary big bang cosmologies remain unresolved.
SPT-GMOS: A GEMINI/GMOS-SOUTH SPECTROSCOPIC SURVEY OF GALAXY CLUSTERS IN THE SPT-SZ SURVEY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bayliss, M. B.; Ruel, J.; Stubbs, C. W.
We present the results of SPT-GMOS, a spectroscopic survey with the Gemini Multi-Object Spectrograph (GMOS) on Gemini South. The targets of SPT-GMOS are galaxy clusters identified in the SPT-SZ survey, a millimeter-wave survey of 2500 deg{sup 2} of the southern sky using the South Pole Telescope (SPT). Multi-object spectroscopic observations of 62 SPT-selected galaxy clusters were performed between 2011 January and 2015 December, yielding spectra with radial velocity measurements for 2595 sources. We identify 2243 of these sources as galaxies, and 352 as stars. Of the galaxies, we identify 1579 as members of SPT-SZ galaxy clusters. The primary goal ofmore » these observations was to obtain spectra of cluster member galaxies to estimate cluster redshifts and velocity dispersions. We describe the full spectroscopic data set and resulting data products, including galaxy redshifts, cluster redshifts, and velocity dispersions, and measurements of several well-known spectral indices for each galaxy: the equivalent width, W , of [O ii] λλ 3727, 3729 and H- δ , and the 4000 Å break strength, D4000. We use the spectral indices to classify galaxies by spectral type (i.e., passive, post-starburst, star-forming), and we match the spectra against photometric catalogs to characterize spectroscopically observed cluster members as a function of brightness (relative to m {sup ⋆}). Finally, we report several new measurements of redshifts for ten bright, strongly lensed background galaxies in the cores of eight galaxy clusters. Combining the SPT-GMOS data set with previous spectroscopic follow-up of SPT-SZ galaxy clusters results in spectroscopic measurements for >100 clusters, or ∼20% of the full SPT-SZ sample.« less
SPT-GMOS: A Gemini/GMOS-South Spectroscopic survey of galaxy clusters in the SPT-SZ survey
Bayliss, M. B.; Ruel, J.; Stubbs, C. W.; ...
2016-11-01
Here, we present the results of SPT-GMOS, a spectroscopic survey with the Gemini Multi-Object Spectrograph (GMOS) on Gemini South. The targets of SPT-GMOS are galaxy clusters identified in the SPT-SZ survey, a millimeter-wave survey of 2500 deg 2 of the southern sky using the South Pole Telescope (SPT). Multi-object spectroscopic observations of 62 SPT-selected galaxy clusters were performed between 2011 January and 2015 December, yielding spectra with radial velocity measurements for 2595 sources. We identify 2243 of these sources as galaxies, and 352 as stars. Of the galaxies, we identify 1579 as members of SPT-SZ galaxy clusters. The primary goalmore » of these observations was to obtain spectra of cluster member galaxies to estimate cluster redshifts and velocity dispersions. We describe the full spectroscopic data set and resulting data products, including galaxy redshifts, cluster redshifts, and velocity dispersions, and measurements of several well-known spectral indices for each galaxy: the equivalent width, W, of [O II] λλ3727, 3729 and H-δ, and the 4000 Å break strength, D4000. We use the spectral indices to classify galaxies by spectral type (i.e., passive, post-starburst, star-forming), and we match the spectra against photometric catalogs to characterize spectroscopically observed cluster members as a function of brightness (relative to m*). Lastly, we report several new measurements of redshifts for ten bright, strongly lensed background galaxies in the cores of eight galaxy clusters. Combining the SPT-GMOS data set with previous spectroscopic follow-up of SPT-SZ galaxy clusters results in spectroscopic measurements for >100 clusters, or ~20% of the full SPT-SZ sample.« less
SPT-GMOS: A Gemini/GMOS-South Spectroscopic survey of galaxy clusters in the SPT-SZ survey
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bayliss, M. B.; Ruel, J.; Stubbs, C. W.
Here, we present the results of SPT-GMOS, a spectroscopic survey with the Gemini Multi-Object Spectrograph (GMOS) on Gemini South. The targets of SPT-GMOS are galaxy clusters identified in the SPT-SZ survey, a millimeter-wave survey of 2500 deg 2 of the southern sky using the South Pole Telescope (SPT). Multi-object spectroscopic observations of 62 SPT-selected galaxy clusters were performed between 2011 January and 2015 December, yielding spectra with radial velocity measurements for 2595 sources. We identify 2243 of these sources as galaxies, and 352 as stars. Of the galaxies, we identify 1579 as members of SPT-SZ galaxy clusters. The primary goalmore » of these observations was to obtain spectra of cluster member galaxies to estimate cluster redshifts and velocity dispersions. We describe the full spectroscopic data set and resulting data products, including galaxy redshifts, cluster redshifts, and velocity dispersions, and measurements of several well-known spectral indices for each galaxy: the equivalent width, W, of [O II] λλ3727, 3729 and H-δ, and the 4000 Å break strength, D4000. We use the spectral indices to classify galaxies by spectral type (i.e., passive, post-starburst, star-forming), and we match the spectra against photometric catalogs to characterize spectroscopically observed cluster members as a function of brightness (relative to m*). Lastly, we report several new measurements of redshifts for ten bright, strongly lensed background galaxies in the cores of eight galaxy clusters. Combining the SPT-GMOS data set with previous spectroscopic follow-up of SPT-SZ galaxy clusters results in spectroscopic measurements for >100 clusters, or ~20% of the full SPT-SZ sample.« less
SPT-GMOS: A Gemini/GMOS-South Spectroscopic Survey of Galaxy Clusters in the SPT-SZ Survey
NASA Astrophysics Data System (ADS)
Bayliss, M. B.; Ruel, J.; Stubbs, C. W.; Allen, S. W.; Applegate, D. E.; Ashby, M. L. N.; Bautz, M.; Benson, B. A.; Bleem, L. E.; Bocquet, S.; Brodwin, M.; Capasso, R.; Carlstrom, J. E.; Chang, C. L.; Chiu, I.; Cho, H.-M.; Clocchiatti, A.; Crawford, T. M.; Crites, A. T.; de Haan, T.; Desai, S.; Dietrich, J. P.; Dobbs, M. A.; Doucouliagos, A. N.; Foley, R. J.; Forman, W. R.; Garmire, G. P.; George, E. M.; Gladders, M. D.; Gonzalez, A. H.; Gupta, N.; Halverson, N. W.; Hlavacek-Larrondo, J.; Hoekstra, H.; Holder, G. P.; Holzapfel, W. L.; Hou, Z.; Hrubes, J. D.; Huang, N.; Jones, C.; Keisler, R.; Knox, L.; Lee, A. T.; Leitch, E. M.; von der Linden, A.; Luong-Van, D.; Mantz, A.; Marrone, D. P.; McDonald, M.; McMahon, J. J.; Meyer, S. S.; Mocanu, L. M.; Mohr, J. J.; Murray, S. S.; Padin, S.; Pryke, C.; Rapetti, D.; Reichardt, C. L.; Rest, A.; Ruhl, J. E.; Saliwanchik, B. R.; Saro, A.; Sayre, J. T.; Schaffer, K. K.; Schrabback, T.; Shirokoff, E.; Song, J.; Spieler, H. G.; Stalder, B.; Stanford, S. A.; Staniszewski, Z.; Stark, A. A.; Story, K. T.; Vanderlinde, K.; Vieira, J. D.; Vikhlinin, A.; Williamson, R.; Zenteno, A.
2016-11-01
We present the results of SPT-GMOS, a spectroscopic survey with the Gemini Multi-Object Spectrograph (GMOS) on Gemini South. The targets of SPT-GMOS are galaxy clusters identified in the SPT-SZ survey, a millimeter-wave survey of 2500 deg2 of the southern sky using the South Pole Telescope (SPT). Multi-object spectroscopic observations of 62 SPT-selected galaxy clusters were performed between 2011 January and 2015 December, yielding spectra with radial velocity measurements for 2595 sources. We identify 2243 of these sources as galaxies, and 352 as stars. Of the galaxies, we identify 1579 as members of SPT-SZ galaxy clusters. The primary goal of these observations was to obtain spectra of cluster member galaxies to estimate cluster redshifts and velocity dispersions. We describe the full spectroscopic data set and resulting data products, including galaxy redshifts, cluster redshifts, and velocity dispersions, and measurements of several well-known spectral indices for each galaxy: the equivalent width, W, of [O II] λλ3727, 3729 and H-δ, and the 4000 Å break strength, D4000. We use the spectral indices to classify galaxies by spectral type (i.e., passive, post-starburst, star-forming), and we match the spectra against photometric catalogs to characterize spectroscopically observed cluster members as a function of brightness (relative to m⋆). Finally, we report several new measurements of redshifts for ten bright, strongly lensed background galaxies in the cores of eight galaxy clusters. Combining the SPT-GMOS data set with previous spectroscopic follow-up of SPT-SZ galaxy clusters results in spectroscopic measurements for >100 clusters, or ∼20% of the full SPT-SZ sample.
NASA Astrophysics Data System (ADS)
Forbes, Duncan A.; Alabi, Adebusola; Brodie, Jean P.; Romanowsky, Aaron J.; Strader, Jay; Foster, Caroline; Usher, Christopher; Spitler, Lee; Bellstedt, Sabine; Pastorello, Nicola; Villaume, Alexa; Wasserman, Asher; Pota, Vincenzo
2017-03-01
Here, we present positions and radial velocities for over 4000 globular clusters (GCs) in 27 nearby early-type galaxies from the SLUGGS survey. The SLUGGS survey is designed to be representative of elliptical and lenticular galaxies in the stellar mass range 10 < log {M}* /M ⊙ < 11.7. The data have been obtained over many years, mostly using the very stable multi-object spectrograph DEIMOS on the Keck II 10 m telescope. Radial velocities are measured using the calcium triplet lines, with a velocity accuracy of ±10-15 km s-1. We use phase space diagrams (I.e., velocity-position diagrams) to identify contaminants such as foreground stars and background galaxies, and to show that the contribution of GCs from neighboring galaxies is generally insignificant. Likely ultra-compact dwarfs are tabulated separately. We find that the mean velocity of the GC system is close to that of the host galaxy systemic velocity, indicating that the GC system is in overall dynamical equilibrium within the galaxy potential. We also find that the GC system velocity dispersion scales with host galaxy stellar mass, in a similar manner to the Faber-Jackson relation for the stellar velocity dispersion. Publication of these GC radial velocity catalogs should enable further studies in many areas, such as GC system substructure, kinematics, and host galaxy mass measurements.
Detection of CO emission in Hydra 1 cluster galaxies
NASA Technical Reports Server (NTRS)
Huchtmeier, W. K.
1990-01-01
A survey of bright Hydra cluster spiral galaxies for the CO(1-0) transition at 115 GHz was performed with the 15m Swedish-ESO submillimeter telescope (SEST). Five out of 15 galaxies observed have been detected in the CO(1-0) line. The largest spiral galaxy in the cluster, NGC 3312, got more CO than any spiral of the Virgo cluster. This Sa-type galaxy is optically largely distorted and disrupted on one side. It is a good candidate for ram pressure stripping while passing through the cluster's central region. A comparison with global CO properties of Virgo cluster spirals shows a relatively good agreement with the detected Hydra cluster galaxies.
Enacs Survey of Southern Galaxies Indicates Open Universe
NASA Astrophysics Data System (ADS)
1996-02-01
New Light on Rich Clusters of Galaxies and their Formation History In the context of a comprehensive Key-Programme , carried out with telescopes at the ESO La Silla Observatory, a team of European astronomers [1]. has recently obtained radial velocities for more than 5600 galaxies in about 100 rich clusters of galaxies. With this programme the amount of information about the motions of galaxies (the kinematical data) in such clusters has almost been doubled. This has allowed the team to study the distribution of the cluster masses, and also the dynamical state of clusters in new and interesting ways. An important result of this programme is that the derived masses of the investigated clusters of galaxies indicate that the mean density of the Universe is insufficient to halt the current expansion; we may therefore be living in an open Universe that will expand forever. Clusters of galaxies as tracers of large-scale structure About 40 years ago, American astronomer George Abell, working at the Palomar Observatory in California, was the first to perform a systematic study of rich clusters of galaxies , that is clusters with particularly many member galaxies located within a relatively restricted region in the sky. He identified several thousands of such clusters, and he numbered and described them; they are now known to astronomers as `Abell clusters'. More than twenty years earlier, Swiss-American astronomer Fritz Zwicky, using the famous 100-inch Mount Wilson telescope above Los Angeles, concluded that the total mass of a rich cluster of galaxies is probably much larger than the combined mass of the individual galaxies we can observe in it. This phenomenon is now known as the `Missing Dark Matter' , and many attempts have since been made to understand its true nature. Although the existence of this Dark Matter is generally accepted, it has been very difficult to prove its existence in a direct way. Rich clusters have several components: in addition to several hundreds, in some cases even thousands of galaxies (each with many billions of stars and much interstellar matter), they also contain hot gas (with a temperature of several million degrees) which is best visible in X-rays, as well as the invisible dark matter just mentioned. In fact, these clusters are the largest and most massive objects that are known today, and a detailed study of their properties can therefore provide insight into the way in which large-scale structures in the Universe have formed. This unique information is encoded into the distribution of the clusters' total masses, of their physical shapes, and not the least in the way they are distributed in space. The need for a `complete' cluster sample Several of these fundamental questions can be studied by observing a few, or at the most several tens of well-chosen clusters. However, if the goal is to discriminate between the various proposed theories of formation of their spatial distribution and thus the Universe's large-scale structure, it is essential that uniform data is collected for a sample of clusters that is complete in a statistical sense. Only then will it be possible to determine reliably the distribution of cluster masses and shapes, etc. For such comprehensive investigations, `complete' samples of clusters (that is, brighter than a certain magnitude and located within a given area in the sky) can be compiled either by means of catalogues like the one published by Abell and his collaborators and based on the distribution of optically selected galaxies, or from large-scale surveys of X-ray sources. However, in both cases, it is of paramount importance to verify the physical reality of the presumed clusters. Sometimes several galaxies are seen in nearly the same direction and therefore appear to form a cluster, but it later turns out that they are at very different distances and do not form a physical entity. This control must be performed through spectroscopic observations of the galaxies in the candidate clusters. Such observations are crucial, as they not only prove the existence of a cluster, but also determine its distance and provide information about the motion of the individual galaxies within the cluster. The ESO Nearby Abell Cluster Survey (ENACS) Until recently, there existed no large cluster sample with extensive and uniform data on the motions of the individual galaxies. But now, in the context of an ESO Key-Programme known as the ESO Nearby Abell Cluster Survey or ENACS , the team of European astronomers has collected spectroscopic and photometric data for a substantial sample of more than one-hundred, rich and relatively nearby southern clusters from the Abell catalogue [2]. The extensive observations were carried out with the OPTOPUS multi-fibre spectrograph attached to the ESO 3.6-metre telescope at the La Silla Observatory, during 35 nights in the period from September 1989 to October 1993. With this very efficient spectrograph, the spectra of about 50 galaxies could be recorded simultaneously, dramatically reducing the necessary observing time. In total, the programme has yielded reliable radial velocities for more than 5600 galaxies in the direction of about 100 rich clusters. The velocities were derived from a comparison of the observed wavelengths of absorption and emission lines with their rest wavelengths (the galaxy `redshifts'). Assuming a particular value of the `Hubble constant' (the proportionality factor between the velocity of a galaxy and its distance, due to the general expansion of the Universe), the distances of the galaxies can then be derived directly from the measured velocities. The new observations approximately double the amount of data available for rich clusters of galaxies. In combination with earlier data, the ENACS has produced a `complete' sample of 128 rich Abell clusters in a region centered near the south galactic pole (the direction which is perpendicular to the main plane of the Milky Way galaxy), and comprising about one-fifth of the entire sky. The sample extends out to a cluster distance of almost 1,000 million light-years (300 Mpc) The space density of the 128 clusters is constant within the investigated volume, so that this sample is well suited to study, among others, the distribution of cluster masses. For a representative subset of 80 clusters, accurate information on the internal motions of galaxies in the clusters is available. Most nearby and rich Abell clusters are real In their pioneering work, Abell and his collaborators identified the clusters from visual inspection of photographic plates obtained with the Palomar telescopes [3]. Some concern has frequently been expressed that an important fraction of the rich Abell clusters may not be real, but rather the result of chance superpositions in the sky of several smaller groups of galaxies. However, the data of the ENACS now prove conclusively that 90 percent of the rich, nearby Abell clusters are real: i.e. many of the galaxies observed in each of these clusters are indeed at the same distance and they form a physical entity. Nevertheless, about one-quarter of the galaxies in the ENACS do not belong to the main clusters and reside in much smaller galaxy groups or are located in the vast space in between. This can be clearly seen in the distribution of the radial velocities in the direction of each of the clusters, shown in the diagramme (click here to get the [GIF,35k] or [Postscript,544k] version and the caption ) attached to this Press Release. When studying this distribution, it must be kept in mind, that the velocities of the galaxies in the clusters contain two components. The first is due to the general expansion of the Universe and depends only on the distance of the cluster; it is therefore the same for all galaxies in the cluster. The other reflects the individual motions of the galaxies within the cluster. Cluster masses and the mean density of the Universe The motions of the galaxies within a cluster makes it possible to estimate the total mass of the cluster: the greater the mass, the faster the motions must be in order to prevent the cluster from collapsing [4]. Using the data for the full sample of 128 clusters, the distribution of cluster masses has been derived. This distribution has been compared with predictions based on several models for the formation of large-scale structures in the Universe. A very important result of the current work is that the observations do not support scenarios which are based on the assumption that the mean density of the Universe is equal to the `critical' value, i.e. the one which would correspond to a so-called `flat' Universe. The observed cluster masses are systematically smaller than those predicted in such models. Instead, the observed distribution of cluster masses seems to indicate that the mean density of the Universe is probably only a fairly small fraction of the critical value. This points to the Universe being `open' and ever-expanding. Cluster formation may still be going on The galaxies observed during the ENACS programme may be divided into two groups on the basis of their optical spectra, those that show clear emission lines and those that do not. The former are almost all late-type galaxies, that is spiral galaxies with ionized gas in their disks which gives rise to the emission lines. It appears that both the distribution within the cluster, as well as the velocities, of the galaxies with emission lines are significantly different from those of the galaxies without emission lines. It seems that the emission-line galaxies have a tendency to avoid the central regions of their clusters, and their average radial velocities are about 20 percent larger than those of the non-emission galaxies. A plausible interpretation of these results is that a large part of the emission-line galaxies have not yet `mixed' with the other galaxies, and that they are approaching the central regions of their respective clusters for the first time. This may imply that the formation of at least a good fraction of the nearby, rich clusters is still going on. If the mean density of the Universe is indeed much smaller than the critical density, as indicated by the cluster masses determined during this survey, then this is a quite unexpected result. One explanation may be that many clusters have only started to form fairly recently. Notes: [1] The team is headed by Peter Katgert (Leiden Observatory, The Netherlands) and Alain Mazure (Laboratoire d'Astronomie Spatiale, Marseille, France); other members are Andrea Biviano and Roland den Hartog (Leiden Observatory, The Netherlands), Pierre Dubath (Observatoire de Geneve, Switzerland), Eric Escalera (SISSA, Trieste, Italy), Paola Focardi (Bologna University, Italy), Daniel Gerbal (Institut d'Astrophysique, Paris, France), Guilano Giuricin (SISSA, Trieste, Italy), Bernard Jones (Theoretical Astrophysics Centre, Copenhagen, Denmark), Olivier Le Fevre (Meudon Observatory, Paris, France), Mariano Moles and Jaime Perea (Astrophysics Institute of Andalucia, Granada, Spain), and George Rhee (University of Nevada, Las Vegas, U.S.A.). [2] The detailed results will soon be published in two comprehensive articles to appear in the European journal Astronomy & Astrophysics. [3] This Press Release is accompanied by ESO Press Photo 07/96, (click here to get the image [GIF,45k] and caption ) showing one of the rich clusters, as observed with the ESO 1-metre Schmidt telescope. [4] The masses of the planets in the solar system are determined in a similar way from the motions of their moons. The faster the moon moves around the planet at a given distance, the heavier is the planet.
Wide-Field Hubble Space Telescope Observations of the Globular Cluster System in NGC 1399*
NASA Technical Reports Server (NTRS)
Puzia, Thomas H.; Paolillo, Maurizio; Goudfrooij, Paul; Maccarone, Thomas J.; Fabbiano, Giuseppina; Angelini, Lorella
2014-01-01
We present a comprehensive high spatial resolution imaging study of globular clusters (GCs) in NGC 1399, thecentral giant elliptical cD galaxy in the Fornax galaxy cluster, conducted with the Advanced Camera for Surveys(ACS) aboard theHubble Space Telescope(HST).Using a novel technique to construct drizzled point-spreadfunction libraries for HSTACS data, we accurately determine the fidelity of GC structural parameter measurementsfrom detailed artificial star cluster experiments and show the superior robustness of the GC half-light radius,rh,compared with other GC structural parameters, such as King core and tidal radius. The measurement ofrhfor themajor fraction of the NGC 1399 GC system reveals a trend of increasingrhversus galactocentric distance,Rgal,out to about 10 kpc and a flat relation beyond. This trend is very similar for blue and red GCs, which are found tohave a mean size ratio ofrh,redrh,blue0.820.11 at all galactocentric radii from the core regions of the galaxyout to40 kpc. This suggests that the size difference between blue and red GCs is due to internal mechanismsrelated to the evolution of their constituent stellar populations. Modeling the mass density profile of NGC 1399shows that additional external dynamical mechanisms are required to limit the GC size in the galaxy halo regionstorh2 pc. We suggest that this may be realized by an exotic GC orbit distribution function, an extended darkmatter halo, andor tidal stress induced by the increased stochasticity in the dwarf halo substructure at largergalactocentric distances. We compare our results with the GCrhdistribution functions in various galaxies and findthat the fraction of extended GCs withrh5 pc is systematically larger in late-type galaxies compared with GCsystems in early-type galaxies. This is likely due to the dynamically more violent evolution of early-type galaxies.We match our GCrhmeasurements with radial velocity data from the literature and split the resulting sample at themedianrhvalue into compact and extended GCs. We find that compact GCs show a significantly smaller line-of-sight velocity dispersion,cmp22525 km s1, than their extended counterparts,ext31721 km s1.Considering the weaker statistical correlation in the GCrhcolor and the GCrhRgalrelations, the more significantGC sizedynamics relation appears to be astrophysically more relevant and hints at the dominant influence of theGC orbit distribution function on the evolution of GC structural parameters.
Characterizing the galaxy populations within different environments in the RCS2319 supercluster
NASA Astrophysics Data System (ADS)
Delahaye, Anna; Webb, Tracy
We present the results of a multi-wavelength photometric study of the high redshift supercluster RCS2319+00. RCS2319+00 is a high-redshift (z ~ 0.9) supercluster comprising three spectroscopically confrmed cluster cores discovered in the Red Sequence Cluster Survey (RCS) (Gladders & Yee 2005). Core proximities and merger rates estimate coalescence into a 1015 M ⊙ cluster by z ~ 0.5 (Gilbank et al. 2008). Spectroscopic studies of the system have revealed over 300 supercluster members located in the cores and several infalling groups (Faloon et al. 2013). RCS2319 presents a diverse range of dynamical systems and densities making it an ideal laboratory in which to study the effects of environment on galaxy properties. Imaging in optical and near infrared (griz' from MegaCam, JK s from WIRCam, both at CFHT), as well as 3.6 μm and 4.5μm from IRAC have enabled the assembly of a large photometric catalogue. Coupled with an extensive spectroscopic survey (Faloon et al. 2013) providing nearly 2400 redshifts across the field, photometric redshifts were determined using the template fitting code EAZY (Brammer et al. 2008). Nearly 80 000 photometric redshifts were measured providing a sample of nearly 3000 cluster members. To investigate effects of global environment, analysis was done utilizing a friend-of-friends group finding algorithm identifying several large and small infalling groups along with the three cluster cores. The cores are found to be dominated by massive, red galaxies and the field galaxies are populated by low mass, blue galaxies, as is the case in the local universe. Interestingly, the large groups exhibit intermediate properties between field and core populations, suggesting possible pre-processing as they are being accreted into the core halos. Relative fifth-nearest neighbour overdensity, log(1+δ5), is used as a proxy for local environment to investigate environmental dependence on galaxy colour. While there is an overall dependence of colour on local density, when controlled for stellar mass the dependence largely disappears. Indeed, galaxy mass is the dominant factor in determining colour, with local density a secondary effect only noticeable in lower mass galaxies at the 3 σ level for both colour and red fraction. RCS2319+00 presents a rare opportunity to probe many different densities and environments all located within the same object. We're able to investigate how galaxy evolution is affected by the environment, from field galaxies to infalling to groups to dense cluster cores, as well as the different density regions within each environment.
Discovery of the Kinematic Alignment of Early-type Galaxies in the Virgo Cluster
NASA Astrophysics Data System (ADS)
Kim, Suk; Jeong, Hyunjin; Lee, Jaehyun; Lee, Youngdae; Joo, Seok-Joo; Kim, Hak-Sub; Rey, Soo-Chang
2018-06-01
Using the kinematic position angles (PAkin), an accurate indicator for the spin axis of a galaxy, obtained from the ATLAS3D integral-field-unit (IFU) spectroscopic data, we discovered that 57 Virgo early-type galaxies tend to prefer the specific PAkin values of 20° and 100°, suggesting that they are kinematically aligned with each other. These kinematic alignment angles are further associated with the directions of the two distinct axes of the Virgo cluster extending east–west and north–south, strongly suggesting that the two distinct axes are the filamentary structures within the cluster as a trace of infall patterns of galaxies. Given that the spin axis of a massive early-type galaxy does not change easily even in clusters from the hydrodynamic simulations, Virgo early-type galaxies are likely to fall into the cluster along the filamentary structures while maintaining their angular momentum. This implies that many early-type galaxies in clusters are formed in filaments via major mergers before subsequently falling into the cluster. Investigating the kinematic alignment in other clusters will allow us to understand the formation of galaxy clusters and early-type galaxies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Papastergis, Emmanouil; Giovanelli, Riccardo; Haynes, Martha P.
We use a sample of ≈6000 galaxies detected by the Arecibo Legacy Fast ALFA (ALFALFA) 21 cm survey to measure the clustering properties of H I-selected galaxies. We find no convincing evidence for a dependence of clustering on galactic atomic hydrogen (H I) mass, over the range M{sub H{sub I}} ≈ 10{sup 8.5}-10{sup 10.5} M{sub ☉}. We show that previously reported results of weaker clustering for low H I mass galaxies are probably due to finite-volume effects. In addition, we compare the clustering of ALFALFA galaxies with optically selected samples drawn from the Sloan Digital Sky Survey (SDSS). We findmore » that H I-selected galaxies cluster more weakly than even relatively optically faint galaxies, when no color selection is applied. Conversely, when SDSS galaxies are split based on their color, we find that the correlation function of blue optical galaxies is practically indistinguishable from that of H I-selected galaxies. At the same time, SDSS galaxies with red colors are found to cluster significantly more than H I-selected galaxies, a fact that is evident in both the projected as well as the full two-dimensional correlation function. A cross-correlation analysis further reveals that gas-rich galaxies 'avoid' being located within ≈3 Mpc of optical galaxies with red colors. Next, we consider the clustering properties of halo samples selected from the Bolshoi ΛCDM simulation. A comparison with the clustering of ALFALFA galaxies suggests that galactic H I mass is not tightly related to host halo mass and that a sizable fraction of subhalos do not host H I galaxies. Lastly, we find that we can recover fairly well the correlation function of H I galaxies by just excluding halos with low spin parameter. This finding lends support to the hypothesis that halo spin plays a key role in determining the gas content of galaxies.« less
THE XMM CLUSTER SURVEY: THE STELLAR MASS ASSEMBLY OF FOSSIL GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrison, Craig D.; Miller, Christopher J.; Richards, Joseph W.
This paper presents both the result of a search for fossil systems (FSs) within the XMM Cluster Survey and the Sloan Digital Sky Survey and the results of a study of the stellar mass assembly and stellar populations of their fossil galaxies. In total, 17 groups and clusters are identified at z < 0.25 with large magnitude gaps between the first and fourth brightest galaxies. All the information necessary to classify these systems as fossils is provided. For both groups and clusters, the total and fractional luminosity of the brightest galaxy is positively correlated with the magnitude gap. The brightestmore » galaxies in FSs (called fossil galaxies) have stellar populations and star formation histories which are similar to normal brightest cluster galaxies (BCGs). However, at fixed group/cluster mass, the stellar masses of the fossil galaxies are larger compared to normal BCGs, a fact that holds true over a wide range of group/cluster masses. Moreover, the fossil galaxies are found to contain a significant fraction of the total optical luminosity of the group/cluster within 0.5 R{sub 200}, as much as 85%, compared to the non-fossils, which can have as little as 10%. Our results suggest that FSs formed early and in the highest density regions of the universe and that fossil galaxies represent the end products of galaxy mergers in groups and clusters.« less
Rotation curves of spiral galaxies in clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitmore, B.C.
1990-06-01
Recent observations of rotation curves of spiral galaxies in clusters made by Rubin et al. (1988), Whitmore et al. (1988) and Forbes and Whitmore (1988) are analyzed. It is found that spiral galaxies in the inner region of clusters appear to have falling rotation curves and M/L gradients which are flatter than for galaxies in the outer regions of clusters. Problems encountered in attempts to construct mass models for cluster galaxies are briefly discussed. 18 refs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koch, Andreas; Burkert, Andreas; Rich, R. Michael
We report on the discovery of strong tidal features around a dwarf spheroidal galaxy in the Hydra I galaxy cluster, indicating its ongoing tidal disruption. This very low surface brightness object, HCC-087, was originally classified as an early-type dwarf in the Hydra Cluster Catalogue (HCC), but our re-analysis of the ESO-VLT/FORS images of the HCC unearthed a clear indication of an S-shaped morphology and a large spatial extent. Its shape, luminosity (M{sub V} = -11.6 mag), and physical size (at a half-light radius of 3.1 kpc and a full length of {approx}5.9 kpc) are comparable to the recently discovered NGCmore » 4449B and the Sagittarius dwarf spheroidal, all of which are undergoing clear tidal disruption. Aided by N-body simulations we argue that HCC-087 is currently at its first apocenter, at 150 kpc, around the cluster center and that it is being tidally disrupted by the galaxy cluster's potential itself. An interaction with the nearby (50 kpc) S0 cluster galaxy HCC-005, at M{sub *} {approx} 3 Multiplication-Sign 10{sup 10} M{sub Sun} is rather unlikely, as this constellation requires a significant amount of dynamical friction and thus low relative velocities. The S-shaped morphology and large spatial extent of the satellite would, however, also appear if HCC-087 would orbit the cluster center. These features appear to be characteristic properties of satellites that are seen in the process of being tidally disrupted, independent of the environment of the destruction. An important finding of our simulations is an orientation of the tidal tails perpendicular to the orbit.« less
A History of H I Stripping in Virgo: A Phase-space View of VIVA Galaxies
NASA Astrophysics Data System (ADS)
Yoon, Hyein; Chung, Aeree; Smith, Rory; Jaffé, Yara L.
2017-04-01
We investigate the orbital histories of Virgo galaxies at various stages of H I gas stripping. In particular, we compare the location of galaxies with different H I morphology in phase space. This method is a great tool for tracing the gas stripping histories of galaxies as they fall into the cluster. Most galaxies at the early stage of H I stripping are found in the first infall region of Virgo, while galaxies undergoing active H I stripping mostly appear to be falling in or moving out near the cluster core for the first time. Galaxies with severely stripped, yet symmetric, H I disks are found in one of two locations. Some are deep inside the cluster, but others are found in the cluster outskirts with low orbital velocities. We suggest that the latter group of galaxies belong to a “backsplash” population. These present the clearest candidates for backsplashed galaxies observationally identified to date. We further investigate the distribution of a large sample of H I-detected galaxies toward Virgo in phase space, confirming that most galaxies are stripped of their gas as they settle into the gravitational potential of the cluster. In addition, we discuss the impact of tidal interactions between galaxies and group preprocessing on the H I properties of the cluster galaxies, and link the associated star formation evolution to the stripping sequence of cluster galaxies.
Galaxy dynamics and the mass density of the universe.
Rubin, V C
1993-06-01
Dynamical evidence accumulated over the past 20 years has convinced astronomers that luminous matter in a spiral galaxy constitutes no more than 10% of the mass of a galaxy. An additional 90% is inferred by its gravitational effect on luminous material. Here I review recent observations concerning the distribution of luminous and nonluminous matter in the Milky Way, in galaxies, and in galaxy clusters. Observations of neutral hydrogen disks, some extending in radius several times the optical disk, confirm that a massive dark halo is a major component of virtually every spiral. A recent surprise has been the discovery that stellar and gas motions in ellipticals are enormously complex. To date, only for a few spheroidal galaxies do the velocities extend far enough to probe the outer mass distribution. But the diverse kinematics of inner cores, peripheral to deducing the overall mass distribution, offer additional evidence that ellipticals have acquired gas-rich systems after initial formation. Dynamical results are consistent with a low-density universe, in which the required dark matter could be baryonic. On smallest scales of galaxies [10 kiloparsec (kpc); Ho = 50 km.sec-1.megaparsec-1] the luminous matter constitutes only 1% of the closure density. On scales greater than binary galaxies (i.e., >/=100 kpc) all systems indicate a density approximately 10% of the closure density, a density consistent with the low baryon density in the universe. If large-scale motions in the universe require a higher mass density, these motions would constitute the first dynamical evidence for nonbaryonic matter in a universe of higher density.
Galaxy dynamics and the mass density of the universe.
Rubin, V C
1993-01-01
Dynamical evidence accumulated over the past 20 years has convinced astronomers that luminous matter in a spiral galaxy constitutes no more than 10% of the mass of a galaxy. An additional 90% is inferred by its gravitational effect on luminous material. Here I review recent observations concerning the distribution of luminous and nonluminous matter in the Milky Way, in galaxies, and in galaxy clusters. Observations of neutral hydrogen disks, some extending in radius several times the optical disk, confirm that a massive dark halo is a major component of virtually every spiral. A recent surprise has been the discovery that stellar and gas motions in ellipticals are enormously complex. To date, only for a few spheroidal galaxies do the velocities extend far enough to probe the outer mass distribution. But the diverse kinematics of inner cores, peripheral to deducing the overall mass distribution, offer additional evidence that ellipticals have acquired gas-rich systems after initial formation. Dynamical results are consistent with a low-density universe, in which the required dark matter could be baryonic. On smallest scales of galaxies [10 kiloparsec (kpc); Ho = 50 km.sec-1.megaparsec-1] the luminous matter constitutes only 1% of the closure density. On scales greater than binary galaxies (i.e., >/=100 kpc) all systems indicate a density approximately 10% of the closure density, a density consistent with the low baryon density in the universe. If large-scale motions in the universe require a higher mass density, these motions would constitute the first dynamical evidence for nonbaryonic matter in a universe of higher density. Images Fig. 3 Fig. 5 PMID:11607393
Strong Lens Models for Massive Galaxy Clusters in the Reionization Lensing Cluster Survey
NASA Astrophysics Data System (ADS)
Cerny, Catherine; Sharon, Keren; Coe, Dan A.; Paterno-Mahler, Rachel; Jones, Christine; Czakon, Nicole G.; Umetsu, Keiichi; Stark, Daniel; Bradley, Larry D.; Trenti, Michele; Johnson, Traci; Bradac, Marusa; Dawson, William; Rodney, Steven A.; Strolger, Louis-Gregory; RELICS Team
2017-01-01
We present strong lensing models for five galaxy clusters from the Planck SZ cluster catalog as a part of the Reionization Lensing Cluster Survey (RELICS), a program that seeks to constrain the galaxy luminosity function past z~9 by conducting a wide field survey of massive galaxy clusters with HST (GO-14096, PI: Coe). The strong gravitational lensing effects of these clusters significantly magnify background galaxies, which enhances our ability to discover the large numbers of high redshift galaxies at z~9-12 needed to create a representative sample. We use strong lensing models for these clusters to study their mass distribution and magnification, which allows us to quantify the lensing effect on the background galaxies. These models can then be utilized in the RELICS survey in order to identify high redshift galaxy candidates that may be lensed by the clusters. The intrinsic properties of these galaxy candidates can be derived by removing the lensing effect as predicted by our models, which will meet the science goals of the RELICS survey. We use HST WFC3 and ACS imaging to create lensing models for the clusters RXC J0142.9+4438, ACO-2537, ACO-2163, RXCJ2211.7-0349, and ACT-CLJ0102-49151.
Exponential Potential versus Dark Matter
1993-10-15
scale of the solar system. Galaxy, Dark matter , Galaxy cluster, Gravitation, Quantum gravity...A two parameter exponential potential explains the anomalous kinematics of galaxies and galaxy clusters without need for the myriad ad hoc dark ... matter models currently in vogue. It also explains much about the scales and structures of galaxies and galaxy clusters while being quite negligible on the
NASA Technical Reports Server (NTRS)
Binggeli, B.; Tammann, G. A.; Sandage, A.
1985-01-01
The present catalog of 2096 galaxies within an area of about 140 sq deg approximately centered on the Virgo cluster should be an essentially complete listing of all certain and possible cluster members, independent of morphological type. Cluster membership is essentially decided by galaxy morphology; for giants and the rare class of high surface brightness dwarfs, membership rests on velocity data. While 1277 of the catalog entries are considered members of the Virgo cluster, 574 are possible members and 245 appear to be background Zwicky galaxies. Major-to-minor axis ratios are given for all galaxies brighter than B(T) = 18, as well as for many fainter ones.
NASA Technical Reports Server (NTRS)
Dickinson, Mark
1993-01-01
In the course of a survey investigating the cluster environments of distant 3CR radio galaxies, I have identified a previously unknown 'giant luminous arc' gravitational lens. The lensing cluster is associated with the radio galaxy 3C 220.1 at z = 0.62 and is the most distant cluster now known to produce such arcs. I present imaging and spectroscopic observations of the cluster and the arc, and discuss the implications for the cluster mass. At z greater than 0.6 the cluster velocity dispersions implied by such giant arcs may provide an interesting constraint on theories of large scale structure formation. The parent investigation in which this arc was identified concerns galaxy clusters and radio galaxy environments at 0.35 less than z less than 0.8. At the present epoch, powerful FR 2 radio galaxies tend to be found in environments of poor or average galaxy density. In contrast, at the higher redshifts investigated here, richer group and cluster environments are common. I present additional data on other clusters from this survey, and discuss its extension to z greater than 1 through a program of near-infrared and optical imaging.
Galaxy Merger Candidates in High-redshift Cluster Environments
NASA Astrophysics Data System (ADS)
Delahaye, A. G.; Webb, T. M. A.; Nantais, J.; DeGroot, A.; Wilson, G.; Muzzin, A.; Yee, H. K. C.; Foltz, R.; Noble, A. G.; Demarco, R.; Tudorica, A.; Cooper, M. C.; Lidman, C.; Perlmutter, S.; Hayden, B.; Boone, K.; Surace, J.
2017-07-01
We compile a sample of spectroscopically and photometrically selected cluster galaxies from four high-redshift galaxy clusters (1.59< z< 1.71) from the Spitzer Adaptation of the Red-Sequence Cluster Survey (SpARCS), and a comparison field sample selected from the UKIDSS Deep Survey. Using near-infrared imaging from the Hubble Space Telescope, we classify potential mergers involving massive ({M}* ≥slant 3× {10}10 {M}⊙ ) cluster members by eye, based on morphological properties such as tidal distortions, double nuclei, and projected near neighbors within 20 kpc. With a catalog of 23 spectroscopic and 32 photometric massive cluster members across the four clusters and 65 spectroscopic and 26 photometric comparable field galaxies, we find that after taking into account contamination from interlopers, {11.0}-5.6+7.0 % of the cluster members are involved in potential mergers, compared to {24.7}-4.6+5.3 % of the field galaxies. We see no evidence of merger enhancement in the central cluster environment with respect to the field, suggesting that galaxy-galaxy merging is not a stronger source of galaxy evolution in cluster environments compared to the field at these redshifts.
NASA Astrophysics Data System (ADS)
Vijayaraghavan, Rukmani; Ricker, Paul M.
2015-05-01
Ram pressure stripping can remove hot and cold gas from galaxies in the intracluster medium, as shown by observations of X-ray and H I galaxy wakes in nearby clusters of galaxies. However, ram pressure stripping, including pre-processing in group environments, does not remove all the hot coronal gas from cluster galaxies. Recent high-resolution Chandra observations have shown that ˜1-4 kpc extended, hot galactic coronae are ubiquitous in group and cluster galaxies. To better understand this result, we simulate ram pressure stripping of a cosmologically motivated population of galaxies in isolated group and cluster environments. The galaxies and the host group and cluster are composed of collisionless dark matter and hot gas initially in hydrostatic equilibrium with the galaxy and host potentials. We show that the rate at which gas is lost depends on the galactic and host halo mass. Using synthetic X-ray observations, we evaluate the detectability of stripped galactic coronae in real observations by stacking images on the known galaxy centres. We find that coronal emission should be detected within ˜10 arcsec, or ˜5 kpc up to ˜2.3 Gyr in the lowest (0.1-1.2 keV) energy band. Thus, the presence of observed coronae in cluster galaxies significantly smaller than the hot X-ray haloes of field galaxies indicates that at least some gas removal occurs within cluster environments for recently accreted galaxies. Finally, we evaluate the possibility that existing and future X-ray cluster catalogues can be used in combination with optical galaxy positions to detect galactic coronal emission via stacking analysis. We briefly discuss the effects of additional physical processes on coronal survival, and will address them in detail in future papers in this series.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jorgensen, Inger; Chiboucas, Kristin, E-mail: ijorgensen@gemini.edu, E-mail: kchiboucas@gemini.edu
2013-03-15
We present an analysis of stellar populations and evolutionary history of galaxies in three similarly rich galaxy clusters MS0451.6-0305 (z = 0.54), RXJ0152.7-1357 (z = 0.83), and RXJ1226.9+3332 (z = 0.89). Our analysis is based on high signal-to-noise ground-based optical spectroscopy and Hubble Space Telescope imaging for a total of 17-34 members in each cluster. Using the dynamical masses together with the effective radii and the velocity dispersions, we find no indication of evolution of sizes or velocity dispersions with redshift at a given galaxy mass. We establish the Fundamental Plane (FP) and scaling relations between absorption line indices andmore » velocity dispersions. We confirm that the FP is steeper at z Almost-Equal-To 0.86 compared to the low-redshift FP, indicating that under the assumption of passive evolution the formation redshift, z{sub form}, depends on the galaxy velocity dispersion (or alternatively mass). At a velocity dispersion of {sigma} = 125 km s{sup -1} (Mass = 10{sup 10.55} M{sub Sun }) we find z{sub form} = 1.24 {+-} 0.05, while at {sigma} = 225 km s{sup -1} (Mass = 10{sup 11.36} M{sub Sun }) the formation redshift is z{sub form} = 1.95{sup +0.3}{sub -0.2}, for a Salpeter initial mass function. The three clusters follow similar scaling relations between absorption line indices and velocity dispersions as those found for low-redshift galaxies. The zero point offsets for the Balmer lines depend on cluster redshifts. However, the offsets indicate a slower evolution, and therefore higher formation redshift, than the zero point differences found from the FP, if interpreting the data using a passive evolution model. Specifically, the strength of the higher order Balmer lines H{delta} and H{gamma} implies z{sub form} > 2.8. The scaling relations for the metal indices in general show small and in some cases insignificant zero point offsets, favoring high formation redshifts for a passive evolution model. Based on the absorption line indices and recent stellar population models from Thomas et al., we find that MS0451.6-0305 has a mean metallicity [M/H] approximately 0.2 dex below that of the other clusters and our low-redshift sample. We confirm our previous result that RXJ0152.7-1357 has a mean abundance ratio [{alpha}/Fe] approximately 0.3 dex higher than that of the other clusters. The differences in [M/H] and [{alpha}/Fe] between the high-redshift clusters and the low-redshift sample are inconsistent with a passive evolution scenario for early-type cluster galaxies over the redshift interval studied. Low-level star formation may be able to bring the metallicity of MS0451.6-0305 in agreement with the low-redshift sample, while we speculate whether galaxy mergers can lead to sufficiently large changes in the abundance ratios for the RXJ0152.7-1357 galaxies to allow them to reach the low-redshift sample values in the time available.« less
On the occurrence of galaxy harassment
NASA Astrophysics Data System (ADS)
Bialas, D.; Lisker, T.; Olczak, C.; Spurzem, R.; Kotulla, R.
2015-04-01
Context. Tidal interactions of galaxies in galaxy clusters have been proposed as one potential explanation of the morphology-density relation at low masses. Earlier studies have shown that galaxy harassment is a suitable mechanism for inducing a morphological transformation from low-mass late-type disk galaxies to the abundant early-type galaxies. Aims: The efficiency of tidal transformation is expected to depend strongly on the orbit of a galaxy within the cluster halo. The orbit determines both the strength of the cluster's global tidal field and the probability of encounters with other cluster members. Here we aim to explore these dependencies. Methods: We use a combination of N-body simulation and Monte-Carlo method to study the efficiency of the transformation of late-type galaxies by tidal interactions on different orbits in a galaxy cluster. Additionally, we investigate the effect of an inclination between the disk of the infalling galaxy and its orbital plane. We compare our results to observational data to assess the possible relevance of such transformations for the existing cluster galaxy population. Results: We find that galaxies that entered a cluster from the outskirts are unlikely to be significantly transformed (stellar mass loss ≤6%). Closer to the cluster centre, tidal interactions are a more efficient mechanism (stellar mass loss up to 50%) for producing harassed galaxies. The inclination of the disk can reduce the mass loss significantly, yet it amplifies the thickening of the galaxy disk. Galaxies with smaller sizes on intermediate orbits are nearly unaffected by tidal interactions. The tidal influence on an infalling galaxy and the likelihood that it leads to galaxy harassment make a very stochastical process that depends on the galaxy's specific history. Conclusions: We conclude that harassment is a suitable mechanism that could explain the transformation of at least a fraction of galaxies inside galaxy clusters. However, the transformation would have to start at an early epoch in protocluster environments and continue until today, in order to result in a complete morphological transformation. Appendices are available in electronic form at http://www.aanda.org
Resolving the problem of galaxy clustering on small scales: any new physics needed?
NASA Astrophysics Data System (ADS)
Kang, X.
2014-02-01
Galaxy clustering sets strong constraints on the physics governing galaxy formation and evolution. However, most current models fail to reproduce the clustering of low-mass galaxies on small scales (r < 1 Mpc h-1). In this paper, we study the galaxy clusterings predicted from a few semi-analytical models. We first compare two Munich versions, Guo et al. and De Lucia & Blaizot. The Guo11 model well reproduces the galaxy stellar mass function, but overpredicts the clustering of low-mass galaxies on small scales. The DLB07 model provides a better fit to the clustering on small scales, but overpredicts the stellar mass function. These seem to be puzzling. The clustering on small scales is dominated by galaxies in the same dark matter halo, and there is slightly more fraction of satellite galaxies residing in massive haloes in the Guo11 model, which is the dominant contribution to the clustering discrepancy between the two models. However, both models still overpredict the clustering at 0.1 < r < 10 Mpc h-1 for low-mass galaxies. This is because both models overpredict the number of satellites by 30 per cent in massive haloes than the data. We show that the Guo11 model could be slightly modified to simultaneously fit the stellar mass function and clusterings, but that cannot be easily achieved in the DLB07 model. The better agreement of DLB07 model with the data actually comes as a coincidence as it predicts too many low-mass central galaxies which are less clustered and thus brings down the total clustering. Finally, we show the predictions from the semi-analytical models of Kang et al. We find that this model can simultaneously fit the stellar mass function and galaxy clustering if the supernova feedback in satellite galaxies is stronger. We conclude that semi-analytical models are now able to solve the small-scales clustering problem, without invoking of any other new physics or changing the dark matter properties, such as the recent favoured warm dark matter.
NASA Astrophysics Data System (ADS)
Jee, Myungkook James
2006-06-01
Clusters of galaxies, the largest gravitationally bound objects in the Universe, are useful tracers of cosmic evolution, and particularly detailed studies of still-forming clusters at high-redshifts can considerably enhance our understanding of the structure formation. We use two powerful methods that have become recently available for the study of these distant clusters: spaced- based gravitational weak-lensing and high-resolution X-ray observations. Detailed analyses of five high-redshift (0.8 < z < 1.3) clusters are presented based on the deep Advanced Camera for Surveys (ACS) and Chandra X-ray images. We show that, when the instrumental characteristics are properly understood, the newly installed ACS on the Hubble Space Telescope (HST) can detect subtle shape distortions of background galaxies down to the limiting magnitudes of the observations, which enables the mapping of the cluster dark matter in unprecedented high-resolution. The cluster masses derived from this HST /ACS weak-lensing study have been compared with those from the re-analyses of the archival Chandra X-ray data. We find that there are interesting offsets between the cluster galaxy, intracluster medium (ICM), and dark matter centroids, and possible scenarios are discussed. If the offset is confirmed to be uniquitous in other clusters, the explanation may necessitate major refinements in our current understanding of the nature of dark matter, as well as the cluster galaxy dynamics. CL0848+4452, the highest-redshift ( z = 1.27) cluster yet detected in weak-lensing, has a significant discrepancy between the weak- lensing and X-ray masses. If this trend is found to be severe and common also for other X-ray weak clusters at redshifts beyond the unity, the conventional X-ray determination of cluster mass functions, often inferred from their immediate X-ray properties such as the X-ray luminosity and temperature via the so-called mass-luminosity (M-L) and mass-temperature (M-T) relations, will become highly unstable in this redshift regime. Therefore, the relatively unbiased weak-lensing measurements of the cluster mass properties can be used to adequately calibrate the scaling relations in future high-redshift cluster investigations.
A cooling flow in a high-redshift, X-ray-selected cluster of galaxies
NASA Astrophysics Data System (ADS)
Nesci, Roberto; Gioia, Isabella M.; Maccacaro, Tommaso; Morris, Simon L.; Perola, Giuseppe C.; Schild, Rudolph E.; Wolter, Anna
1989-09-01
The X-ray cluster of galaxies IE 0839.9 + 2938 was serendipitously discovered with the Einstein Observatory. CCD imaging at R and V wavelengths show that the color of the dominant elliptical galaxy of this cluster is significantly bluer than the colors of the next brightest cluster galaxies. Strong emission lines, typical of cD galaxies with cooling flows, are present in the spectrum of the dominant galaxy, from which a redshift of 0.193 is derived. The emitting line region is spatially resolved with an extension of about 13 kpc. All the collected data suggest that this cluster is one of the most distant cooling flow clusters known to date.
A cooling flow in a high-redshift, X-ray-selected cluster of galaxies
NASA Technical Reports Server (NTRS)
Nesci, Roberto; Perola, Giuseppe C.; Gioia, Isabella M.; Maccacaro, Tommaso; Morris, Simon L.
1989-01-01
The X-ray cluster of galaxies IE 0839.9 + 2938 was serendipitously discovered with the Einstein Observatory. CCD imaging at R and V wavelengths show that the color of the dominant elliptical galaxy of this cluster is significantly bluer than the colors of the next brightest cluster galaxies. Strong emission lines, typical of cD galaxies with cooling flows, are present in the spectrum of the dominant galaxy, from which a redshift of 0.193 is derived. The emitting line region is spatially resolved with an extension of about 13 kpc. All the collected data suggest that this cluster is one of the most distant cooling flow clusters known to date.
RR Lyrae in Sagittarius Dwarf Globular Clusters (Poster abstract)
NASA Astrophysics Data System (ADS)
Pritzl, B. J.; Gehrman, T. J.; Bell, E.; Salinas, R.; Smith, H. A.; Catelan, M.
2016-12-01
(Abstract only) The Milky Way Galaxy was built up in part by the cannibalization of smaller dwarf galaxies. Some of them likely contained globular clusters. The Sagittarius dwarf galaxy provides a unique opportunity to study a system of globular clusters that originated outside the Milky Way. We have investigated the RR Lyrae populations in two Sagittarius globular clusters, Arp 2 and Terzan 8. The RR Lyrae are used to study the properties of the clusters and to compare this system to Milky Way globular clusters. We will discuss whether or not dwarf galaxies similar to the Sagittarius dwarf galaxy could have played a role in the formation of the Milky Way Galaxy.
Globular clusters and environmental effects in galaxy clusters
NASA Astrophysics Data System (ADS)
Sales, Laura
2016-10-01
Globular clusters are old compact stellar systems orbiting around galaxies of all types. Tens of thousands of them can also be found populating the intra-cluster regions of nearby galaxy clusters like Virgo and Coma. Thanks to the HST Frontier Fields program, GCs are starting now to be detected also in intermediate redshift clusters. Yet, despite their ubiquity, a theoretical model for the formation and evolution of GCs is still missing, especially within the cosmological context.Here we propose to use cosmological hydrodynamical simulations of 18 galaxy clusters coupled to a post-processing GC formation model to explore the assembly of galaxies in clusters together with their expected GC population. The method, which has already been implemented and tested, will allow us to characterize for the first time the number, radial distribution and kinematics of GCs in clusters, with products directly comparable to observational maps. We will explore cluster-to-cluster variations and also characterize the build up of the intra-cluster component of GCs with time.As the method relies on a detailed study of the star-formation history of galaxies, we will jointly constrain the predicted quenching time-scales for satellites and the occurrence of starburst events associated to infall and orbital pericenters of galaxies in massive clusters. This will inform further studies on the distribution, velocity and properties of post-starburst galaxies in past, ongoing and future HST programs.
Formation and Assembly of Massive Star Clusters
NASA Astrophysics Data System (ADS)
McMillan, Stephen
The formation of stars and star clusters is a major unresolved problem in astrophysics. It is central to modeling stellar populations and understanding galaxy luminosity distributions in cosmological models. Young massive clusters are major components of starburst galaxies, while globular clusters are cornerstones of the cosmic distance scale and represent vital laboratories for studies of stellar dynamics and stellar evolution. Yet how these clusters form and how rapidly and efficiently they expel their natal gas remain unclear, as do the consequences of this gas expulsion for cluster structure and survival. Also unclear is how the properties of low-mass clusters, which form from small-scale instabilities in galactic disks and inform much of our understanding of cluster formation and star-formation efficiency, differ from those of more massive clusters, which probably formed in starburst events driven by fast accretion at high redshift, or colliding gas flows in merging galaxies. Modeling cluster formation requires simulating many simultaneous physical processes, placing stringent demands on both software and hardware. Simulations of galaxies evolving in cosmological contexts usually lack the numerical resolution to simulate star formation in detail. They do not include detailed treatments of important physical effects such as magnetic fields, radiation pressure, ionization, and supernova feedback. Simulations of smaller clusters include these effects, but fall far short of the mass of even single young globular clusters. With major advances in computing power and software, we can now directly address this problem. We propose to model the formation of massive star clusters by integrating the FLASH adaptive mesh refinement magnetohydrodynamics (MHD) code into the Astrophysical Multi-purpose Software Environment (AMUSE) framework, to work with existing stellar-dynamical and stellar evolution modules in AMUSE. All software will be freely distributed on-line, allowing open access to state-of- the-art simulation techniques within a modern, modular software environment. We will follow the gravitational collapse of 0.1-10 million-solar mass gas clouds through star formation and coalescence into a star cluster, modeling in detail the coupling of the gas and the newborn stars. We will study the effects of star formation by detecting accreting regions of gas in self-gravitating, turbulent, MHD, FLASH models that we will translate into collisional dynamical systems of stars modeled with an N-body code, coupled together in the AMUSE framework. Our FLASH models will include treatments of radiative transfer from the newly formed stars, including heating and radiative acceleration of the surrounding gas. Specific questions to be addressed are: (1) How efficiently does the gas in a star forming region form stars, how does this depend on mass, metallicity, and other parameters, and what terminates star formation? What observational predictions can be made to constrain our models? (2) How important are different mechanisms for driving turbulence and removing gas from a cluster: accretion, radiative feedback, and mechanical feedback? (3) How does the infant mortality rate of young clusters depend on the initial properties of the parent cloud? (4) What are the characteristic formation timescales of massive star clusters, and what observable imprints does the assembly process leave on their structure at an age of 10-20 Myr, when formation is essentially complete and many clusters can be observed? These studies are directly relevant to NASA missions at many electromagnetic wavelengths, including Chandra, GALEX, Hubble, and Spitzer. Each traces different aspects of cluster formation and evolution: X-rays trace supernovae, ultraviolet traces young stars, visible colors can distinguish between young blue stars and older red stars, and the infrared directly shows young embedded star clusters.
Record-breaking ancient galaxy clusters
NASA Astrophysics Data System (ADS)
2003-12-01
A tale of two record-breaking clusters hi-res Size hi-res: 768 kb Credits: for RDCS1252: NASA, ESA, J.Blakeslee (Johns Hopkins Univ.), M.Postman (Space Telescope Science Inst.) and P.Rosati, Chris Lidman & Ricardo Demarco (European Southern Observ.) for TNJ1338: NASA, ESA, G.Miley (Leiden Observ.) and R.Overzier (Leiden Obs) A tale of two record-breaking clusters Looking back in time to when the universe was in its formative youth, the Advanced Camera for Surveys (ACS) aboard the NASA/ESA Hubble Space Telescope captured these revealing images of two galaxy clusters. The image at left, which is made with an additional infrared exposure taken with the European Southern Observatory’s Very Large Telescope, shows mature galaxies in a massive cluster that existed when the cosmos was 5000 million years old. The cluster, called RDCS1252.9-2927, is as massive as ‘300 trillion’ suns and is the most massive known cluster for its epoch. The image reveals the core of the cluster and is part of a much larger mosaic of the entire cluster. Dominating the core are a pair of large, reddish elliptical galaxies [near centre of image]. Their red colour indicates an older population of stars. Most of the stars are at least 1000 million years old. The two galaxies appear to be interacting and may eventually merge to form a larger galaxy that is comparable to the brightest galaxies seen in present-day clusters. The red galaxies surrounding the central pair are also cluster members. The cluster probably contains many thousands of galaxies, but only about 50 can be seen in this image. The full mosaic (heic0313d) reveals several hundred cluster members. Many of the other galaxies in the image, including several of the blue galaxies, are foreground or background galaxies. The colour-composite image was assembled from two observations (through i and z filters) taken between May and June 2002 by the ACS Wide Field Camera, and one image with the ISAAC instrument on the VLT taken in 2002 (combined from a J filter exposure and a K filter exposure). In the image at right, astronomers are seeing an embryonic cluster as it was when the universe was 1500 million years old. The young system, called TNJ1338-1942, is the most distant known developing cluster, or proto-cluster. It is dominated by a massive ‘baby galaxy’ - the green object. The cluster RDCS1252.9-2927 hi-res Size hi-res: 2611 kb Credits: NASA, ESA, J. Blakeslee (Johns Hopkins University), M. Postman (Space Telescope Science Institute) and P. Rosati, Chris Lidman & Ricardo Demarco (European Southern Observatory) The cluster RDCS1252.9-2927 Looking back in time to when the Universe was in its formative youth, the Advanced Camera for Surveys (ACS) aboard the NASA/ESA Hubble Space Telescope captured this revealing image of the galaxy cluster RDCS1252.9-2927. The image shows the entire cluster (1/15 of a degree, corresponding to about 7 million light-years, across). The cluster probably contains many thousands of galaxies. Most of the other galaxies in the image, including most of the blue galaxies, are foreground or background galaxies. The image, which is made with an additional infrared exposure taken with the European Southern Observatory’s Very Large Telescope, shows mature galaxies in a massive cluster that existed when the cosmos was 5000 million years old. The cluster, called RDCS1252.9-2927, is as massive as ‘300 trillion’ suns and is the most massive known cluster for its epoch. Dominating the core are a pair of large, reddish elliptical galaxies [near centre of image]. Their red colour indicates an older population of stars. Most of the stars are at least 1000 million years old. The two galaxies appear to be interacting and may eventually merge to form a larger galaxy that is comparable to the brightest galaxies seen in present-day clusters. The red galaxies surrounding the central pair are also cluster members. The colour-composite image was assembled from two observations (through i and z filters) taken between May and June 2002 by the ACS Wide Field Camera, and one image with the ISAAC instrument on the VLT taken in 2002 (combined from a J filter exposure and a K filter exposure). The embryonic cluster TNJ1338-1942 hi-res Size hi-res: 154 kb Credits: NASA, ESA, G. Miley (Leiden Observatory) and R. Overzier (Leiden Observatory) The embryonic cluster TNJ1338-1942 In this image astronomers are seeing an embryonic cluster as it was when the universe was 1500 million years old. The young system, called TNJ1338-1942, is the most distant known developing cluster, or proto-cluster. It is dominated by a massive ‘baby galaxy’ - the green object in the centre. The galaxy is producing powerful radio emissions, and is the brightest galaxy in the proto-cluster. The green colour indicates that the galaxy is emitting glowing hydrogen gas. Its clumpy appearance suggests that it is still in the process of forming. Smaller developing galaxies are scattered around the massive galaxy. The galaxy on the left of the massive galaxy is a foreground galaxy. The bright object in the upper half of the image is a foreground star. This colour-composite image was assembled from observations taken between July 8 and 12, 2002 by the ACS Wide Field Camera. The cluster RDCS1252.9-2927 hi-res Size hi-res: 259 kb Credits: NASA, ESA, J. Blakeslee (Johns Hopkins University), M. Postman (Space Telescope Science Institute) and P. Rosati, Chris Lidman & Ricardo Demarco (European Southern Observatory) The cluster RDCS1252.9-2927 Looking back in time to when the universe was in its formative youth, the Advanced Camera for Surveys (ACS) aboard the NASA/ESA Hubble Space Telescope captured this revealing image of the galaxy cluster RDCS1252.9-2927. This image is made with an additional infrared exposure taken with the European Southern Observatory’s Very Large Telescope, shows mature galaxies in a massive cluster that existed when the cosmos was 5000 million years old. The cluster, called RDCS1252.9-2927, is as massive as ‘300 trillion’ suns and is the most massive known cluster for its epoch. The image reveals the core of the cluster and is part of a much larger mosaic of the entire cluster. Dominating the core are a pair of large, reddish elliptical galaxies [near centre of image]. Their red colour indicates an older population of stars. Most of the stars are at least 1 000 million years old. The two galaxies appear to be interacting and may eventually merge to form a larger galaxy that is comparable to the brightest galaxies seen in present-day clusters. The red galaxies surrounding the central pair are also cluster members. The cluster probably contains many thousands of galaxies, but only about 50 can be seen in this image. The full mosaic reveals several hundred cluster members. Many of the other galaxies in the image, including several of the blue galaxies, are foreground or background galaxies. The colour-composite image was assembled from two observations (through i and z filters) taken between May and June 2002 by the ACS Wide Field Camera, and one image with the ISAAC instrument on the VLT taken in 2002 (combined from a J filter exposure and a K filter exposure). Looking back in time nearly 9000 million years, an international team of astronomers found mature galaxies in a young Universe. The galaxies are members of a cluster of galaxies that existed when the Universe was only 5000 million years old, or about 35 percent of its present age. This is compelling evidence that galaxies must have started forming just after the Big Bang and is bolstered by observations made by the same team of astronomers when they peered even farther back in time. The team found embryonic galaxies a mere 1500 million years after the birth of the cosmos, or 10 percent of the Universe's present age. The ‘baby galaxies’ reside in a still developing cluster, the most distant proto-cluster ever found. The Advanced Camera for Surveys (ACS) aboard the NASA/ESA Hubble Space Telescope was used to make the observations of the massive cluster, RDCS1252.9-2927, and the proto-cluster, TNJ1338-1942. Observations by NASA’s Chandra X-ray Observatory yielded the mass and heavy element content of RDCS1252.9-2927, the most massive known cluster for that epoch. These observations are part of a co-ordinated effort by the ACS science team to track the formation and evolution of clusters of galaxies over a broad span of cosmic time. The ACS was specially built for such studies of very distant objects. These findings support the theory that galaxies formed relatively early in the history of the cosmos. The existence of such massive clusters in the early Universe agrees with a cosmological model wherein clusters form by the merger of many sub-clusters in a Universe dominated by cold dark matter. The precise nature of cold dark matter, however, is still not known. The first Hubble study estimated that the galaxies in RCDS1252 formed the bulk of their stars more than 11 000 million years ago (redshifts greater than 3). The results were published in the 20 October 2003, issue of the Astrophysical Journal. The paper's lead author is John Blakeslee of the Johns Hopkins University in Baltimore, USA. The second Hubble study uncovered, for the first time, a proto-cluster of ‘infant galaxies’ that existed more than 12 000 million years ago (redshift 4.1). These galaxies are so young that astronomers can still see a flurry of stars forming within them. The galaxies are grouped around one large galaxy. These results will be published in the January 1, 2004 issue of Nature. The paper's lead author is George Miley of Leiden Observatory in the Netherlands. "Until recently people didn't think that clusters existed when the Universe was only about 5000 million years old," Blakeslee explained. "Even if there were such clusters," Miley added, "until recently astronomers thought it was almost impossible to find clusters that existed 8000 million years ago. In fact, no one really knew when clustering began. Now we can witness it." Both studies led the astronomers to conclude that these systems are the progenitors of the galaxy clusters seen today. "The cluster RDCS1252 looks like a present-day cluster," said Marc Postman of the Space Telescope Science Institute in Baltimore, USA, and co-author of both research papers. "In fact, if you were to put it next to a present-day cluster you wouldn't know which is which." ‘A tale of two clusters’ How can galaxies grow so fast after the Big Bang? "It is a case of the rich getting richer," Blakeslee said. "These clusters grew quickly because they are located in very dense regions, so there is enough material to build up the member galaxies very fast." This idea is bolstered by X-ray observations of the massive cluster RDCS1252. Chandra and the European Space Agency's XMM-Newton provided astronomers with the most accurate measurements to date of the properties of an enormous cloud of hot gas that pervades the massive cluster. This 70 million °C gas is a reservoir of most of the heavy elements in the cluster, and an accurate tracer of its total mass. A paper by Piero Rosati of the European Southern Observatory (ESO) and colleagues that presents the X-ray observations of RDCS1252 will be published in January 2004 in the Astronomical Journal. "Chandra's sharp vision resolved the shape of the hot gas halo and showed that RDCS1252 is very mature for its age," said Rosati, who discovered the cluster with the ROSAT X-ray telescope. RDCS1252 may contain many thousands of galaxies. Most of those galaxies, however, are too faint to detect, although the powerful ‘eyes’ of the ACS pinpointed several hundred of them. Observations using ESO's Very Large Telescope (VLT) provided a precise measurement of the distance to the cluster. The ACS enabled the researchers to determine the shapes and the colours of the 100 galaxies accurately, providing information on the ages of the stars residing in them. The ACS team estimated that most of the stars in the cluster were already formed by the time the Universe was about 2000 million years old. In addition X-ray observations showed that 5 000 million years after the Big Bang the surrounding hot gas had been enriched with heavy elements from these stars and swept away from the galaxies. If most of the galaxies in RDCS1252 have reached maturity and are settling into a quiet adulthood, the galaxies forming in the distant proto-cluster are in their energetic, unruly youth. The proto-cluster TN J1338 contains a massive embryonic galaxy surrounded by smaller developing galaxies, which look like dots in the Hubble image. The dominant galaxy is producing spectacular radio-emitting jets, fuelled by a supermassive black hole deep within the galaxy's nucleus. Interaction between these jets and the gas can stimulate a torrent of star birth. The discovery of the energetic radio galaxy by radio telescopes prompted astronomers to hunt for the smaller galaxies that make up the bulk of the cluster. "Massive clusters are the cities of the Universe, and the radio galaxies within them are the smokestacks we can use for finding them when they are just beginning to form," Miley said. The two findings underscore the power of combining observations from many different telescopes to provide views of the distant Universe over a range of wavelengths. Hubble’s advanced camera provided critical information on the structure of both distant galaxy clusters. Chandra's and XMM-Newton’s X-ray vision furnished the essential measurements of the primordial gas in which the galaxies in RDCS1252 are embedded, and accurate estimates of the total mass contained within that cluster. Large ground-based telescopes, like the VLT, provided precise measurements of the distance of both clusters as well as the chemical composition of the galaxies in them. The ACS team is conducting further observations of distant clusters to solidify our understanding of how these young clusters and their galaxies evolve into the shape of things seen today. Their planned observations include using near-infrared observations to analyse the star-formation rates in some of their clusters, including RDCS1252, in order to measure the cosmic history of star formation in these massive structures. The team is also searching the regions around several ultra-distant radio galaxies for additional examples of proto-clusters. The team's ultimate scientific goal is to establish a complete picture of cluster evolution beginning with their formation at the earliest epochs and detailing their evolution up to the present time.
IPC two-color analysis of x ray galaxy clusters
NASA Technical Reports Server (NTRS)
White, Raymond E., III
1990-01-01
The mass distributions were determined of several clusters of galaxies by using X ray surface brightness data from the Einstein Observatory Imaging Proportional Counter (IPC). Determining cluster mass distributions is important for constraining the nature of the dark matter which dominates the mass of galaxies, galaxy clusters, and the Universe. Galaxy clusters are permeated with hot gas in hydrostatic equilibrium with the gravitational potentials of the clusters. Cluster mass distributions can be determined from x ray observations of cluster gas by using the equation of hydrostatic equilibrium and knowledge of the density and temperature structure of the gas. The x ray surface brightness at some distance from the cluster is the result of the volume x ray emissivity being integrated along the line of sight in the cluster.
A single population of red globular clusters around the massive compact galaxy NGC 1277
NASA Astrophysics Data System (ADS)
Beasley, Michael A.; Trujillo, Ignacio; Leaman, Ryan; Montes, Mireia
2018-03-01
Massive galaxies are thought to form in two phases: an initial collapse of gas and giant burst of central star formation, followed by the later accretion of material that builds up their stellar and dark-matter haloes. The systems of globular clusters within such galaxies are believed to form in a similar manner. The initial central burst forms metal-rich (spectrally red) clusters, whereas more metal-poor (spectrally blue) clusters are brought in by the later accretion of less-massive satellites. This formation process is thought to result in the multimodal optical colour distributions that are seen in the globular cluster systems of massive galaxies. Here we report optical observations of the massive relic-galaxy candidate NGC 1277—a nearby, un-evolved example of a high-redshift ‘red nugget’ galaxy. We find that the optical colour distribution of the cluster system of NGC 1277 is unimodal and entirely red. This finding is in strong contrast to other galaxies of similar and larger stellar mass, the cluster systems of which always exhibit (and are generally dominated by) blue clusters. We argue that the colour distribution of the cluster system of NGC 1277 indicates that the galaxy has undergone little (if any) mass accretion after its initial collapse, and use simulations of possible merger histories to show that the stellar mass due to accretion is probably at most ten per cent of the total stellar mass of the galaxy. These results confirm that NGC 1277 is a genuine relic galaxy and demonstrate that blue clusters constitute an accreted population in present-day massive galaxies.
A single population of red globular clusters around the massive compact galaxy NGC 1277.
Beasley, Michael A; Trujillo, Ignacio; Leaman, Ryan; Montes, Mireia
2018-03-22
Massive galaxies are thought to form in two phases: an initial collapse of gas and giant burst of central star formation, followed by the later accretion of material that builds up their stellar and dark-matter haloes. The systems of globular clusters within such galaxies are believed to form in a similar manner. The initial central burst forms metal-rich (spectrally red) clusters, whereas more metal-poor (spectrally blue) clusters are brought in by the later accretion of less-massive satellites. This formation process is thought to result in the multimodal optical colour distributions that are seen in the globular cluster systems of massive galaxies. Here we report optical observations of the massive relic-galaxy candidate NGC 1277-a nearby, un-evolved example of a high-redshift 'red nugget' galaxy. We find that the optical colour distribution of the cluster system of NGC 1277 is unimodal and entirely red. This finding is in strong contrast to other galaxies of similar and larger stellar mass, the cluster systems of which always exhibit (and are generally dominated by) blue clusters. We argue that the colour distribution of the cluster system of NGC 1277 indicates that the galaxy has undergone little (if any) mass accretion after its initial collapse, and use simulations of possible merger histories to show that the stellar mass due to accretion is probably at most ten per cent of the total stellar mass of the galaxy. These results confirm that NGC 1277 is a genuine relic galaxy and demonstrate that blue clusters constitute an accreted population in present-day massive galaxies.
The optical properties of galaxies in the Ophiuchus cluster
NASA Astrophysics Data System (ADS)
Durret, F.; Wakamatsu, K.; Adami, C.; Nagayama, T.; Omega Muleka Mwewa Mwaba, J. M.
2018-05-01
Context. Ophiuchus is one of the most massive clusters known, but due to its low Galactic latitude its optical properties remain poorly known. Aims: We investigate the optical properties of Ophiuchus to obtain clues on the formation epoch of this cluster, and compare them to those of the Coma cluster, which is comparable in mass to Ophiuchus but much more dynamically disturbed. Methods: Based on a deep image of the Ophiuchus cluster in the r' band obtained at the Canada France Hawaii Telescope with the MegaCam camera, we have applied an iterative process to subtract the contribution of the numerous stars that, due to the low Galactic latitude of the cluster, pollute the image, and have obtained a photometric catalogue of 2818 galaxies fully complete at r' = 20.5 mag and still 91% complete at r' = 21.5 mag. We use this catalogue to derive the cluster Galaxy Luminosity Function (GLF) for the overall image and for a region (hereafter the "rectangle" region) covering exactly the same physical size as the region in which the GLF of the Coma cluster was previously studied. We then compute density maps based on an adaptive kernel technique, for different magnitude limits, and define three circular regions covering 0.08, 0.08, and 0.06 deg2, respectively, centred on the cluster (C), on northwest (NW) of the cluster, and southeast (SE) of the cluster, in which we compute the GLFs. Results: The GLF fits are much better when a Gaussian is added to the usual Schechter function, to account for the excess of very bright galaxies. Compared to Coma, Ophiuchus shows a strong excess of bright galaxies. Conclusions: The properties of the two nearby very massive clusters Ophiuchus and Coma are quite comparable, though they seem embedded in different large-scale environments. Our interpretation is that Ophiuchus was built up long ago, as confirmed by its relaxed state (see paper I) while Coma is still in the process of forming. The photometric catalogue of Ophiuchus (full Table B.1) is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/613/A20
The distribution of early- and late-type galaxies in the Coma cluster
NASA Technical Reports Server (NTRS)
Doi, M.; Fukugita, M.; Okamura, S.; Turner, E. L.
1995-01-01
The spatial distribution and the morohology-density relation of Coma cluster galaxies are studied using a new homogeneous photmetric sample of 450 galaxies down to B = 16.0 mag with quantitative morphology classification. The sample covers a wide area (10 deg X 10 deg), extending well beyond the Coma cluster. Morphological classifications into early- (E+SO) and late-(S) type galaxies are made by an automated algorithm using simple photometric parameters, with which the misclassification rate is expected to be approximately 10% with respect to early and late types given in the Third Reference Catalogue of Bright Galaxies. The flattened distribution of Coma cluster galaxies, as noted in previous studies, is most conspicuously seen if the early-type galaxies are selected. Early-type galaxies are distributed in a thick filament extended from the NE to the WSW direction that delineates a part of large-scale structure. Spiral galaxies show a distribution with a modest density gradient toward the cluster center; at least bright spiral galaxies are present close to the center of the Coma cluster. We also examine the morphology-density relation for the Coma cluster including its surrounding regions.
Characterizing the Small Scale Structure in Clusters of Galaxies
NASA Technical Reports Server (NTRS)
Forman, William R.
2001-01-01
We studied galaxy clusters Abell 119, Abell 754, and Abell 1750, using data from the ASCA and ROSAT satellites. In addition, we completed the paper "Merging Binary Clusters". In this paper we study three prominent bi-modal X-ray clusters: A3528, A1750 and A3395. Since the sub-clusters in these systems have projected separations of 0.93, 1.00 and 0.67 Mpc respectively, we examine their X-ray and optical observations to investigate the dynamics and possible merging of these sub-clusters. Using data taken with ROSAT and ASCA, we analyze the temperature and surface brightness distributions. We also analyze the velocity distributions of the three clusters using new measurements supplemented with previously published data. We examined both the overall cluster properties as well as the two sub-cluster elements in each. These results were then applied to the determination of the overall cluster masses, that demonstrate excellent consistency between the various methods used. While the characteristic parameters of the sub-clusters are typical of isolated objects, our temperature results for the regions between the two sub-clusters clearly confirm the presence of merger activity that is suggested by the surface brightness distributions. These three clusters represent a progression of equal-sized sub-cluster mergers, starting from initial contact to immediately before first core passage.
Dark matter phenomenology of high-speed galaxy cluster collisions
Mishchenko, Yuriy; Ji, Chueng-Ryong
2017-07-29
Here, we perform a general computational analysis of possible post-collision mass distributions in high-speed galaxy cluster collisions in the presence of self-interacting dark matter. Using this analysis, we show that astrophysically weakly self-interacting dark matter can impart subtle yet measurable features in the mass distributions of colliding galaxy clusters even without significant disruptions to the dark matter halos of the colliding galaxy clusters themselves. Most profound such evidence is found to reside in the tails of dark matter halos’ distributions, in the space between the colliding galaxy clusters. Such features appear in our simulations as shells of scattered dark mattermore » expanding in alignment with the outgoing original galaxy clusters, contributing significant densities to projected mass distributions at large distances from collision centers and large scattering angles of up to 90°. Our simulations indicate that as much as 20% of the total collision’s mass may be deposited into such structures without noticeable disruptions to the main galaxy clusters. Such structures at large scattering angles are forbidden in purely gravitational high-speed galaxy cluster collisions.Convincing identification of such structures in real colliding galaxy clusters would be a clear indication of the self-interacting nature of dark matter. Our findings may offer an explanation for the ring-like dark matter feature recently identified in the long-range reconstructions of the mass distribution of the colliding galaxy cluster CL0024+017.« less
Dark matter phenomenology of high-speed galaxy cluster collisions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mishchenko, Yuriy; Ji, Chueng-Ryong
Here, we perform a general computational analysis of possible post-collision mass distributions in high-speed galaxy cluster collisions in the presence of self-interacting dark matter. Using this analysis, we show that astrophysically weakly self-interacting dark matter can impart subtle yet measurable features in the mass distributions of colliding galaxy clusters even without significant disruptions to the dark matter halos of the colliding galaxy clusters themselves. Most profound such evidence is found to reside in the tails of dark matter halos’ distributions, in the space between the colliding galaxy clusters. Such features appear in our simulations as shells of scattered dark mattermore » expanding in alignment with the outgoing original galaxy clusters, contributing significant densities to projected mass distributions at large distances from collision centers and large scattering angles of up to 90°. Our simulations indicate that as much as 20% of the total collision’s mass may be deposited into such structures without noticeable disruptions to the main galaxy clusters. Such structures at large scattering angles are forbidden in purely gravitational high-speed galaxy cluster collisions.Convincing identification of such structures in real colliding galaxy clusters would be a clear indication of the self-interacting nature of dark matter. Our findings may offer an explanation for the ring-like dark matter feature recently identified in the long-range reconstructions of the mass distribution of the colliding galaxy cluster CL0024+017.« less
Keck/LRIS Spectroscopy of the Distant Cluster Cl0016+16
NASA Astrophysics Data System (ADS)
Wirth, Gregory D.; Koo, David C.
1994-12-01
The rich galaxy cluster Cl0016+16 at z=0.55 initially achieved visibility (Koo 1981) for being the original ``anti Butcher-Oemler effect'' cluster: its galaxy population was found to be almost entirely red, indistinguishable in rest-frame color from local E/S0 galaxies, despite the expectation that higher redshift clusters should have a greater proportion of blue galaxies (Butcher & Oemler 1978, 1984). Interest in this cluster has heightened over the last decade as: X-ray observations found it to be among the most luminous clusters known (Henry et al. 1992); radio observations showed it to be among only a handful of clusters exhibiting a Sunyaev-Zel'dovich microwave decrement, useful for measuring the Hubble Constant (Lasenby 1992); optical spectroscopy revealed a significant population of ``E+A'' galaxies, enigmatic objects with spectra suggesting a recently-concluded episode of star formation (Dressler & Gunn 1992). Further observations by ROSAT, ASCA, and HST have established Cl0016+16 as among the best-studied clusters beyond Coma. The red nature of its galaxy population makes Cl0016+16 a prime candidate for the study of cluster galaxy evolution. As part of an ongoing effort to study the early-type galaxies in this cluster, we recently used the Keck Telescope and Low-Resolution Imaging Spectrograph to obtain high quality spectra of 19 cluster members at 6 Angstroms (FWHM) resolution. This poster describes the preliminary results from these data, which will allow us to investigate galaxy age and metallicity at lookback times nearly halfway to the Big Bang, probe the internal kinematics of galaxies at z=0.55, and thus perhaps trace the evolution of the ``fundamental plane'' for E/S0 galaxies.
Stroe, Andra; Oosterloo, Tom; Rottgering, Huub J. A.; ...
2015-07-25
CIZA J2242.8+5301 (z = 0.188, nicknamed ‘Sausage’) is an extremely massive (M 200 ~2.0 × 10 15 M ⊙), merging cluster with shock waves towards its outskirts, which was found to host numerous emission line galaxies. We performed extremely deep Westerbork Synthesis Radio Telescope H i observations of the ‘Sausage’ cluster to investigate the effect of the merger and the shocks on the gas reservoirs fuelling present and future star formation (SF) in cluster members. By using spectral stacking, we find that the emission line galaxies in the ‘Sausage’ cluster have, on average, as much H i gas as fieldmore » galaxies (when accounting for the fact cluster galaxies are more massive than the field galaxies), contrary to previous studies. Since the cluster galaxies are more massive than the field spirals, they may have been able to retain their gas during the cluster merger. The large H i reservoirs are expected to be consumed within ~0.75–1.0 Gyr by the vigorous SF and active galactic nuclei activity and/or driven out by the outflows we observe. We find that the star formation rate (SFR) in a large fraction of H α emission line cluster galaxies correlates well with the radio broad-band emission, tracing supernova remnant emission. This suggests that the cluster galaxies, all located in post-shock regions, may have been undergoing sustained SFR for at least 100 Myr. In conclusion, this fully supports the interpretation proposed by Stroe et al. and Sobral et al. that gas-rich cluster galaxies have been triggered to form stars by the passage of the shock.« less
A History of H i Stripping in Virgo: A Phase-space View of VIVA Galaxies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, Hyein; Chung, Aeree; Smith, Rory
We investigate the orbital histories of Virgo galaxies at various stages of H i gas stripping. In particular, we compare the location of galaxies with different H i morphology in phase space. This method is a great tool for tracing the gas stripping histories of galaxies as they fall into the cluster. Most galaxies at the early stage of H i stripping are found in the first infall region of Virgo, while galaxies undergoing active H i stripping mostly appear to be falling in or moving out near the cluster core for the first time. Galaxies with severely stripped, yetmore » symmetric, H i disks are found in one of two locations. Some are deep inside the cluster, but others are found in the cluster outskirts with low orbital velocities. We suggest that the latter group of galaxies belong to a “backsplash” population. These present the clearest candidates for backsplashed galaxies observationally identified to date. We further investigate the distribution of a large sample of H i-detected galaxies toward Virgo in phase space, confirming that most galaxies are stripped of their gas as they settle into the gravitational potential of the cluster. In addition, we discuss the impact of tidal interactions between galaxies and group preprocessing on the H i properties of the cluster galaxies, and link the associated star formation evolution to the stripping sequence of cluster galaxies.« less
NASA Astrophysics Data System (ADS)
Miller, Christopher J. Miller
2012-03-01
There are many examples of clustering in astronomy. Stars in our own galaxy are often seen as being gravitationally bound into tight globular or open clusters. The Solar System's Trojan asteroids cluster at the gravitational Langrangian in front of Jupiter’s orbit. On the largest of scales, we find gravitationally bound clusters of galaxies, the Virgo cluster (in the constellation of Virgo at a distance of ˜50 million light years) being a prime nearby example. The Virgo cluster subtends an angle of nearly 8◦ on the sky and is known to contain over a thousand member galaxies. Galaxy clusters play an important role in our understanding of theUniverse. Clusters exist at peaks in the three-dimensional large-scale matter density field. Their sky (2D) locations are easy to detect in astronomical imaging data and their mean galaxy redshifts (redshift is related to the third spatial dimension: distance) are often better (spectroscopically) and cheaper (photometrically) when compared with the entire galaxy population in large sky surveys. Photometric redshift (z) [Photometric techniques use the broad band filter magnitudes of a galaxy to estimate the redshift. Spectroscopic techniques use the galaxy spectra and emission/absorption line features to measure the redshift] determinations of galaxies within clusters are accurate to better than delta_z = 0.05 [7] and when studied as a cluster population, the central galaxies form a line in color-magnitude space (called the the E/S0 ridgeline and visible in Figure 16.3) that contains galaxies with similar stellar populations [15]. The shape of this E/S0 ridgeline enables astronomers to measure the cluster redshift to within delta_z = 0.01 [23]. The most accurate cluster redshift determinations come from spectroscopy of the member galaxies, where only a fraction of the members need to be spectroscopically observed [25,42] to get an accurate redshift to the whole system. If light traces mass in the Universe, then the locations of galaxy clusters will be at locations of the peaks in the true underlying (mostly) dark matter density field. Kaiser (1984) [19] called this the high-peak model, which we demonstrate in Figure 16.1. We show a two-dimensional representation of a density field created by summing plane-waves with a predetermined power and with random wave-vector directions. In the left panel, we plot only the largest modes, where we see the density peaks (black) and valleys (white) in the combined field. In the right panel, we allow for smaller modes. You can see that the highest density peaks in the left panel contain smaller-scale, but still high-density peaks. These are the locations of future galaxy clusters. The bottom panel shows just these cluster-scale peaks. As you can see, the peaks themselves are clustered, and instead of just one large high-density peak in the original density field (see the left panel), the smaller modes show that six peaks are "born" within the broader, underlying large-scale density modes. This exemplifies the "bias" or amplified structure that is traced by galaxy clusters [19]. Clusters are rare, easy to find, and their member galaxies provide good distance estimates. In combination with their amplified clustering signal described above, galaxy clusters are considered an efficient and precise tracer of the large-scale matter density field in the Universe. Galaxy clusters can also be used to measure the baryon content of the Universe [43]. They can be used to identify gravitational lenses [38] and map the distribution of matter in clusters. The number and spatial distribution of galaxy clusters can be used to constrain cosmological parameters, like the fraction of the energy density in the Universe due to matter (Omega_matter) or the variation in the density field on fixed physical scales (sigma_8) [26,33]. The individual clusters act as “Island Universes” and as such are laboratories here we can study the evolution of the properties of the cluster, like the hot, gaseous intra-cluster medium or shapes, colors, and star-formation histories of the member galaxies [17].
Galaxy clusters in the cosmic web
NASA Astrophysics Data System (ADS)
Acebrón, A.; Durret, F.; Martinet, N.; Adami, C.; Guennou, L.
2014-12-01
Simulations of large scale structure formation in the universe predict that matter is essentially distributed along filaments at the intersection of which lie galaxy clusters. We have analysed 9 clusters in the redshift range 0.4
Evolution of the Mass and Luminosity Functions of Globular Star Clusters
NASA Astrophysics Data System (ADS)
Goudfrooij, Paul; Fall, S. Michael
2016-12-01
We reexamine the dynamical evolution of the mass and luminosity functions of globular star clusters (GCMF and GCLF). Fall & Zhang (2001, FZ01) showed that a power-law MF, as commonly seen among young cluster systems, would evolve by dynamical processes over a Hubble time into a peaked MF with a shape very similar to the observed GCMF in the Milky Way and other galaxies. To simplify the calculations, the semi-analytical FZ01 model adopted the “classical” theory of stellar escape from clusters, and neglected variations in the M/L ratios of clusters. Kruijssen & Portegies Zwart (2009, KPZ09) modified the FZ01 model to include “retarded” and mass-dependent stellar escape, the latter causing significant M/L variations. KPZ09 asserted that their model was compatible with observations, whereas the FZ01 model was not. We show here that this claim is not correct; the FZ01 and KPZ09 models fit the observed Galactic GCLF equally well. We also show that there is no detectable correlation between M/L and L for GCs in the Milky Way and Andromeda galaxies, in contradiction with the KPZ09 model. Our comparisons of the FZ01 and KPZ09 models with observations can be explained most simply if stars escape at rates approaching the classical limit for high-mass clusters, as expected on theoretical grounds.
Tidal stripping as a test of satellite quenching in redMaPPer clusters
Fang, Yuedong; Clampitt, Joseph; Dalal, Neal; ...
2016-08-24
When dark matter haloes are accreted by massive host clusters, strong gravitational tidal forces begin stripping mass from the accreted subhaloes. This stripping eventually removes all mass beyond a subhalo's tidal radius, with unbound mass remaining in the vicinity of the satellite for at most a dynamical time tdyn. The N-body subhalo study of Chamberlain et al. verified this picture and pointed out a useful observational consequence: correlations between subhaloes beyond the tidal radius are sensitive to the infall time, tinfall, of the subhalo on to its host. We perform this correlation using ~160 000 red satellite galaxies in Sloanmore » Digital Sky Survey redMaPPer clusters and find evidence that subhalo correlations do persist well beyond the tidal radius, suggesting that many of the observed satellites fell into their current host less than a dynamical time ago, tinfall < tdyn. Combined with estimated dynamical times tdyn ~3–5 Gyr and SED fitting results for the time at which satellites stopped forming stars, tquench ~6 Gyr, we infer that for a significant fraction of the satellites, star formation quenched before those satellites entered their current hosts. Finally, the result holds for red satellites over a large range of cluster-centric distances 0.1–0.6 Mpc h –1. We discuss the implications of this result for models of galaxy formation.« less
Tidal stripping as a test of satellite quenching in redMaPPer clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Yuedong; Clampitt, Joseph; Dalal, Neal
When dark matter haloes are accreted by massive host clusters, strong gravitational tidal forces begin stripping mass from the accreted subhaloes. This stripping eventually removes all mass beyond a subhalo's tidal radius, with unbound mass remaining in the vicinity of the satellite for at most a dynamical time tdyn. The N-body subhalo study of Chamberlain et al. verified this picture and pointed out a useful observational consequence: correlations between subhaloes beyond the tidal radius are sensitive to the infall time, tinfall, of the subhalo on to its host. We perform this correlation using ~160 000 red satellite galaxies in Sloanmore » Digital Sky Survey redMaPPer clusters and find evidence that subhalo correlations do persist well beyond the tidal radius, suggesting that many of the observed satellites fell into their current host less than a dynamical time ago, tinfall < tdyn. Combined with estimated dynamical times tdyn ~3–5 Gyr and SED fitting results for the time at which satellites stopped forming stars, tquench ~6 Gyr, we infer that for a significant fraction of the satellites, star formation quenched before those satellites entered their current hosts. Finally, the result holds for red satellites over a large range of cluster-centric distances 0.1–0.6 Mpc h –1. We discuss the implications of this result for models of galaxy formation.« less
NASA Astrophysics Data System (ADS)
Huang, Hung-Jin; Mandelbaum, Rachel; Freeman, Peter E.; Chen, Yen-Chi; Rozo, Eduardo; Rykoff, Eli; Baxter, Eric J.
2016-11-01
The shapes of cluster central galaxies are not randomly oriented, but rather exhibit coherent alignments with the shapes of their parent clusters as well as with the surrounding large-scale structures. In this work, we aim to identify the galaxy and cluster quantities that most strongly predict the central galaxy alignment phenomenon among a large parameter space with a sample of 8237 clusters and 94 817 members within 0.1 < z < 0.35, based on the red-sequence Matched-filter Probabilistic Percolation cluster catalogue constructed from the Sloan Digital Sky Survey. We first quantify the alignment between the projected central galaxy shapes and the distribution of member satellites, to understand what central galaxy and cluster properties most strongly correlate with these alignments. Next, we investigate the angular segregation of satellites with respect to their central galaxy major axis directions, to identify the satellite properties that most strongly predict their angular segregation. We find that central galaxies are more aligned with their member galaxy distributions in clusters that are more elongated and have higher richness, and for central galaxies with larger physical size, higher luminosity and centring probability, and redder colour. Satellites with redder colour, higher luminosity, located closer to the central galaxy, and with smaller ellipticity show a stronger angular segregation towards their central galaxy major axes. Finally, we provide physical explanations for some of the identified correlations, and discuss the connection to theories of central galaxy alignments, the impact of primordial alignments with tidal fields, and the importance of anisotropic accretion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Hung -Jin; Mandelbaum, Rachel; Freeman, Peter E.
The shapes of cluster central galaxies are not randomly oriented, but rather exhibit coherent alignments with the shapes of their parent clusters as well as with the surrounding large-scale structures. In this work, we aim to identify the galaxy and cluster quantities that most strongly predict the central galaxy alignment phenomenon among a large parameter space with a sample of 8237 clusters and 94 817 members within 0.1 < z < 0.35, based on the red-sequence Matched-filter Probabilistic Percolation cluster catalogue constructed from the Sloan Digital Sky Survey. We first quantify the alignment between the projected central galaxy shapes andmore » the distribution of member satellites, to understand what central galaxy and cluster properties most strongly correlate with these alignments. Next, we investigate the angular segregation of satellites with respect to their central galaxy major axis directions, to identify the satellite properties that most strongly predict their angular segregation. We find that central galaxies are more aligned with their member galaxy distributions in clusters that are more elongated and have higher richness, and for central galaxies with larger physical size, higher luminosity and centring probability, and redder colour. Satellites with redder colour, higher luminosity, located closer to the central galaxy, and with smaller ellipticity show a stronger angular segregation towards their central galaxy major axes. Lastly, we provide physical explanations for some of the identified correlations, and discuss the connection to theories of central galaxy alignments, the impact of primordial alignments with tidal fields, and the importance of anisotropic accretion.« less
Huang, Hung -Jin; Mandelbaum, Rachel; Freeman, Peter E.; ...
2016-08-11
The shapes of cluster central galaxies are not randomly oriented, but rather exhibit coherent alignments with the shapes of their parent clusters as well as with the surrounding large-scale structures. In this work, we aim to identify the galaxy and cluster quantities that most strongly predict the central galaxy alignment phenomenon among a large parameter space with a sample of 8237 clusters and 94 817 members within 0.1 < z < 0.35, based on the red-sequence Matched-filter Probabilistic Percolation cluster catalogue constructed from the Sloan Digital Sky Survey. We first quantify the alignment between the projected central galaxy shapes andmore » the distribution of member satellites, to understand what central galaxy and cluster properties most strongly correlate with these alignments. Next, we investigate the angular segregation of satellites with respect to their central galaxy major axis directions, to identify the satellite properties that most strongly predict their angular segregation. We find that central galaxies are more aligned with their member galaxy distributions in clusters that are more elongated and have higher richness, and for central galaxies with larger physical size, higher luminosity and centring probability, and redder colour. Satellites with redder colour, higher luminosity, located closer to the central galaxy, and with smaller ellipticity show a stronger angular segregation towards their central galaxy major axes. Lastly, we provide physical explanations for some of the identified correlations, and discuss the connection to theories of central galaxy alignments, the impact of primordial alignments with tidal fields, and the importance of anisotropic accretion.« less
Star formation and galaxy evolution in different environments, from the field to massive clusters
NASA Astrophysics Data System (ADS)
Tyler, Krystal
This thesis focuses on how a galaxy's environment affects its star formation, from the galactic environment of the most luminous IR galaxies in the universe to groups and massive clusters of galaxies. Initially, we studied a class of high-redshift galaxies with extremely red optical-to-mid-IR colors. We used Spitzer spectra and photometry to identify whether the IR outputs of these objects are dominated by AGNs or star formation. In accordance with the expectation that the AGN contribution should increase with IR luminosity, we find most of our very red IR-luminous galaxies to be dominated by an AGN, though a few appear to be star-formation dominated. We then observed how the density of the extraglactic environment plays a role in galaxy evolution. We begin with Spitzer and HST observations of intermediate-redshift groups. Although the environment has clearly changed some properties of its members, group galaxies at a given mass and morphology have comparable amounts of star formation as field galaxies. We conclude the main difference between the two environments is the higher fraction of massive early-type galaxies in groups. Clusters show even more distinct trends. Using three different star-formation indicators, we found the mass-SFR relation for cluster galaxies can look similar to the field (A2029) or have a population of low-star-forming galaxies in addition to the field-like galaxies (Coma). We contribute this to differing merger histories: recently-accreted galaxies would not have time for their star formation to be quenched by the cluster environment (A2029), while an accretion event in the past few Gyr would give galaxies enough time to have their star formation suppressed by the cluster environment. Since these two main quenching mechanisms depend on the density of the intracluster gas, we turn to a group of X-ray underluminous clusters to study how star-forming galaxies have been affected in clusters with lower than expected X-ray emission. We find the distribution of star-forming galaxies with respect to stellar mass varies from cluster to cluster, echoing what we found for Coma and A2029. In other words, while some preprocessing occurs in groups, the cluster environment still contributes to the quenching of star formation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinez-Medina, L. A.; Pichardo, B.; Moreno, E.
We present a dynamical study of the effect of the bar and spiral arms on the simulated orbits of open clusters in the Galaxy. Specifically, this work is devoted to the puzzling presence of high-altitude open clusters in the Galaxy. For this purpose we employ a very detailed observationally motivated potential model for the Milky Way and a careful set of initial conditions representing the newly born open clusters in the thin disk. We find that the spiral arms are able to raise an important percentage of open clusters (about one-sixth of the total employed in our simulations, depending onmore » the structural parameters of the arms) above the Galactic plane to heights beyond 200 pc, producing a bulge-shaped structure toward the center of the Galaxy. Contrary to what was expected, the spiral arms produce a much greater vertical effect on the clusters than the bar, both in quantity and height; this is due to the sharper concentration of the mass on the spiral arms, when compared to the bar. When a bar and spiral arms are included, spiral arms are still capable of raising an important percentage of the simulated open clusters through chaotic diffusion (as tested from classification analysis of the resultant high-z orbits), but the bar seems to restrain them, diminishing the elevation above the plane by a factor of about two.« less
Wide-field Hubble Space Telescope Observations of the Globular Cluster System in NGC 1399
NASA Astrophysics Data System (ADS)
Puzia, Thomas H.; Paolillo, Maurizio; Goudfrooij, Paul; Maccarone, Thomas J.; Fabbiano, Giuseppina; Angelini, Lorella
2014-05-01
We present a comprehensive high spatial resolution imaging study of globular clusters (GCs) in NGC 1399, the central giant elliptical cD galaxy in the Fornax galaxy cluster, conducted with the Advanced Camera for Surveys (ACS) aboard the Hubble Space Telescope (HST). Using a novel technique to construct drizzled point-spread function libraries for HST/ACS data, we accurately determine the fidelity of GC structural parameter measurements from detailed artificial star cluster experiments and show the superior robustness of the GC half-light radius, rh , compared with other GC structural parameters, such as King core and tidal radius. The measurement of rh for the major fraction of the NGC 1399 GC system reveals a trend of increasing rh versus galactocentric distance, R gal, out to about 10 kpc and a flat relation beyond. This trend is very similar for blue and red GCs, which are found to have a mean size ratio of r h, red/r h, blue = 0.82 ± 0.11 at all galactocentric radii from the core regions of the galaxy out to ~40 kpc. This suggests that the size difference between blue and red GCs is due to internal mechanisms related to the evolution of their constituent stellar populations. Modeling the mass density profile of NGC 1399 shows that additional external dynamical mechanisms are required to limit the GC size in the galaxy halo regions to rh ≈ 2 pc. We suggest that this may be realized by an exotic GC orbit distribution function, an extended dark matter halo, and/or tidal stress induced by the increased stochasticity in the dwarf halo substructure at larger galactocentric distances. We compare our results with the GC rh distribution functions in various galaxies and find that the fraction of extended GCs with rh >= 5 pc is systematically larger in late-type galaxies compared with GC systems in early-type galaxies. This is likely due to the dynamically more violent evolution of early-type galaxies. We match our GC rh measurements with radial velocity data from the literature and split the resulting sample at the median rh value into compact and extended GCs. We find that compact GCs show a significantly smaller line-of-sight velocity dispersion, langσcmprang = 225 ± 25 km s-1, than their extended counterparts, langσextrang = 317 ± 21 km s-1. Considering the weaker statistical correlation in the GC rh color and the GC rh -R gal relations, the more significant GC size-dynamics relation appears to be astrophysically more relevant and hints at the dominant influence of the GC orbit distribution function on the evolution of GC structural parameters. Based on observations with the NASA/ESA Hubble Space Telescope obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Incorporated, under NASA contract NAS5-26555.
Dark matter and alternative recipes for the missing mass
NASA Astrophysics Data System (ADS)
Tortora, Crescenzo; Jetzer, Philippe; Napolitano, Nicola R.
2012-03-01
Within the standard cosmological scenario the Universe is found to be filled by obscure components (dark matter and dark energy) for ~ 95% of its energy budget. In particular, almost all the matter content in the Universe is given by dark matter, which dominates the mass budget and drives the dynamics of galaxies and clusters of galaxies. Unfortunately, dark matter and dark energy have not been detected and no direct or indirected observations have allowed to prove their existence and amount. For this reason, some authors have suggested that a modification of Einstein Relativity or the change of the Newton's dynamics law (within a relativistic and classical framework, respectively) could allow to replace these unobserved components. We will start discussing the role of dark matter in the early-type galaxies, mainly in their central regions, investigating how its content changes as a function of the mass and the size of each galaxy and few considerations about the stellar Initial mass function have been made. In the second part of the paper we have described, as examples, some ways to overcome the dark matter hypothesis, by fitting to the observations the modified dynamics coming out from general relativistic extended theories and the MOdyfled Newtonian dynamics (MOND).
NASA Astrophysics Data System (ADS)
Nguyen, Dieu D.; Seth, Anil C.; Neumayer, Nadine; Kamann, Sebastian; Voggel, Karina T.; Cappellari, Michele; Picotti, Arianna; Nguyen, Phuong M.; Böker, Torsten; Debattista, Victor; Caldwell, Nelson; McDermid, Richard; Bastian, Nathan; Ahn, Christopher C.; Pechetti, Renuka
2018-05-01
We present a detailed study of the nuclear star clusters (NSCs) and massive black holes (BHs) of four of the nearest low-mass early-type galaxies: M32, NGC 205, NGC 5102, and NGC 5206. We measure the dynamical masses of both the BHs and NSCs in these galaxies using Gemini/NIFS or VLT/SINFONI stellar kinematics, Hubble Space Telescope (HST) imaging, and Jeans anisotropic models. We detect massive BHs in M32, NGC 5102, and NGC 5206, while in NGC 205, we find only an upper limit. These BH mass estimates are consistent with previous measurements in M32 and NGC 205, while those in NGC 5102 and NGC 5206 are estimated for the first time and both found to be <106 M ⊙. This adds to just a handful of galaxies with dynamically measured sub-million M ⊙ central BHs. Combining these BH detections with our recent work on NGC 404's BH, we find that 80% (4/5) of nearby, low-mass ({10}9{--}{10}10 M ⊙ {σ }\\star ∼ 20{--}70 km s‑1) early-type galaxies host BHs. Such a high occupation fraction suggests that the BH seeds formed in the early epoch of cosmic assembly likely resulted in abundant seeds, favoring a low-mass seed mechanism of the remnants, most likely from the first generation of massive stars. We find dynamical masses of the NSCs ranging from 2 to 73 × 106 M ⊙ and compare these masses to scaling relations for NSCs based primarily on photometric mass estimates. Color gradients suggest that younger stellar populations lie at the centers of the NSCs in three of the four galaxies (NGC 205, NGC 5102, and NGC 5206), while the morphology of two are complex and best fit with multiple morphological components (NGC 5102 and NGC 5206). The NSC kinematics show they are rotating, especially in M32 and NGC 5102 (V/{σ }\\star ∼ 0.7).
Strong Lensing Analysis of the Galaxy Cluster MACS J1319.9+7003 and the Discovery of a Shell Galaxy
NASA Astrophysics Data System (ADS)
Zitrin, Adi
2017-01-01
We present a strong-lensing (SL) analysis of the galaxy cluster MACS J1319.9+7003 (z = 0.33, also known as Abell 1722), as part of our ongoing effort to analyze massive clusters with archival Hubble Space Telescope (HST) imaging. We spectroscopically measured with Keck/Multi-Object Spectrometer For Infra-Red Exploration (MOSFIRE) two galaxies multiply imaged by the cluster. Our analysis reveals a modest lens, with an effective Einstein radius of {θ }e(z=2)=12+/- 1\\prime\\prime , enclosing 2.1+/- 0.3× {10}13 M⊙. We briefly discuss the SL properties of the cluster, using two different modeling techniques (see the text for details), and make the mass models publicly available (ftp://wise-ftp.tau.ac.il/pub/adiz/MACS1319/). Independently, we identified a noteworthy, young shell galaxy (SG) system forming around two likely interacting cluster members, 20″ north of the brightest cluster galaxy. SGs are rare in galaxy clusters, and indeed, a simple estimate reveals that they are only expected in roughly one in several dozen, to several hundred, massive galaxy clusters (the estimate can easily change by an order of magnitude within a reasonable range of characteristic values relevant for the calculation). Taking advantage of our lens model best-fit, mass-to-light scaling relation for cluster members, we infer that the total mass of the SG system is ˜ 1.3× {10}11 {M}⊙ , with a host-to-companion mass ratio of about 10:1. Despite being rare in high density environments, the SG constitutes an example to how stars of cluster galaxies are efficiently redistributed to the intra-cluster medium. Dedicated numerical simulations for the observed shell configuration, perhaps aided by the mass model, might cast interesting light on the interaction history and properties of the two galaxies. An archival HST search in galaxy cluster images can reveal more such systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Nikhel; Saro, A.; Mohr, J. J.
We study the overdensity of point sources in the direction of X-ray-selected galaxy clusters from the meta-catalogue of X-ray-detected clusters of galaxies (MCXC; < z > = 0.14) at South Pole Telescope (SPT) and Sydney University Molonglo Sky Survey (SUMSS) frequencies. Flux densities at 95, 150 and 220 GHz are extracted from the 2500 deg 2 SPT-SZ survey maps at the locations of SUMSS sources, producing a multifrequency catalogue of radio galaxies. In the direction of massive galaxy clusters, the radio galaxy flux densities at 95 and 150 GHz are biased low by the cluster Sunyaev–Zel’dovich Effect (SZE) signal, whichmore » is negative at these frequencies. We employ a cluster SZE model to remove the expected flux bias and then study these corrected source catalogues. We find that the high-frequency radio galaxies are centrally concentrated within the clusters and that their luminosity functions (LFs) exhibit amplitudes that are characteristically an order of magnitude lower than the cluster LF at 843 MHz. We use the 150 GHz LF to estimate the impact of cluster radio galaxies on an SPT-SZ like survey. The radio galaxy flux typically produces a small bias on the SZE signal and has negligible impact on the observed scatter in the SZE mass–observable relation. If we assume there is no redshift evolution in the radio galaxy LF then 1.8 ± 0.7 per cent of the clusters with detection significance ξ ≥ 4.5 would be lost from the sample. As a result, allowing for redshift evolution of the form (1 + z) 2.5 increases the incompleteness to 5.6 ± 1.0 per cent. Improved constraints on the evolution of the cluster radio galaxy LF require a larger cluster sample extending to higher redshift.« less
Gupta, Nikhel; Saro, A.; Mohr, J. J.; ...
2017-01-15
We study the overdensity of point sources in the direction of X-ray-selected galaxy clusters from the meta-catalogue of X-ray-detected clusters of galaxies (MCXC; < z > = 0.14) at South Pole Telescope (SPT) and Sydney University Molonglo Sky Survey (SUMSS) frequencies. Flux densities at 95, 150 and 220 GHz are extracted from the 2500 deg 2 SPT-SZ survey maps at the locations of SUMSS sources, producing a multifrequency catalogue of radio galaxies. In the direction of massive galaxy clusters, the radio galaxy flux densities at 95 and 150 GHz are biased low by the cluster Sunyaev–Zel’dovich Effect (SZE) signal, whichmore » is negative at these frequencies. We employ a cluster SZE model to remove the expected flux bias and then study these corrected source catalogues. We find that the high-frequency radio galaxies are centrally concentrated within the clusters and that their luminosity functions (LFs) exhibit amplitudes that are characteristically an order of magnitude lower than the cluster LF at 843 MHz. We use the 150 GHz LF to estimate the impact of cluster radio galaxies on an SPT-SZ like survey. The radio galaxy flux typically produces a small bias on the SZE signal and has negligible impact on the observed scatter in the SZE mass–observable relation. If we assume there is no redshift evolution in the radio galaxy LF then 1.8 ± 0.7 per cent of the clusters with detection significance ξ ≥ 4.5 would be lost from the sample. As a result, allowing for redshift evolution of the form (1 + z) 2.5 increases the incompleteness to 5.6 ± 1.0 per cent. Improved constraints on the evolution of the cluster radio galaxy LF require a larger cluster sample extending to higher redshift.« less
VALIDITY OF HYDROSTATIC EQUILIBRIUM IN GALAXY CLUSTERS FROM COSMOLOGICAL HYDRODYNAMICAL SIMULATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suto, Daichi; Suto, Yasushi; Kawahara, Hajime
2013-04-10
We examine the validity of the hydrostatic equilibrium (HSE) assumption for galaxy clusters using one of the highest-resolution cosmological hydrodynamical simulations. We define and evaluate several effective mass terms corresponding to the Euler equations of gas dynamics, and quantify the degree of the validity of HSE in terms of the mass estimate. We find that the mass estimated under the HSE assumption (the HSE mass) deviates from the true mass by up to {approx}30%. This level of departure from HSE is consistent with the previous claims, but our physical interpretation is rather different. We demonstrate that the inertial term inmore » the Euler equations makes a negligible contribution to the total mass, and the overall gravity of the cluster is balanced by the thermal gas pressure gradient and the gas acceleration term. Indeed, the deviation from the HSE mass is well explained by the acceleration term at almost all radii. We also clarify the confusion of previous work due to the inappropriate application of the Jeans equations in considering the validity of HSE from the gas dynamics extracted from cosmological hydrodynamical simulations.« less
A cooling flow in a high-redshift, X-ray-selected cluster of galaxies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nesci, R.; Perola, G.C.; Gioia, I.M.
The X-ray cluster of galaxies IE 0839.9 + 2938 was serendipitously discovered with the Einstein Observatory. CCD imaging at R and V wavelengths show that the color of the dominant elliptical galaxy of this cluster is significantly bluer than the colors of the next brightest cluster galaxies. Strong emission lines, typical of cD galaxies with cooling flows, are present in the spectrum of the dominant galaxy, from which a redshift of 0.193 is derived. The emitting line region is spatially resolved with an extension of about 13 kpc. All the collected data suggest that this cluster is one of themore » most distant cooling flow clusters known to date. 28 refs.« less
2007-11-14
This image from NASA Galaxy Evolution Explorer shows the galaxy NGC 4569 in the constellation Virgo. It is one of the largest and brightest spiral galaxies found in the Virgo cluster of galaxies, the nearest major galaxy cluster to our Milky Way galaxy.
NASA Astrophysics Data System (ADS)
Stone, Maria Babakhanyan
Ultra-diffuse galaxies are a novel type of galaxies discovered first in the Coma cluster. These objects are characterized simultaneously by large sizes and by very low counts of constituent stars. Conflicting theories have been proposed to explain how these large diffuse galaxies could have survived in the harsh environment of clusters. To date, thousands of these new galaxies have been identified in cluster environments. However, further studies are required to understand their relationship to the known giant and dwarf classes of galaxies. The purpose of this study is to compare the trends of inner and outer populations of normal members of the Coma cluster and ultra-diffuse galaxies in color-magnitude space. The present work used several astronomical catalogs to identify the member galaxies based on the coordinates of their positions and to extract available colors and magnitudes. We obtained correlations to convert colors and magnitudes from different systems into the common Sloan Digital Sky Survey system to facilitate the comparative analysis. We showed the quantitative relations describing the color-magnitude trends of galaxies in the core and the outskirts of the cluster. We confirmed that the inner and outer populations of ultra-diffuse galaxies exhibit an offset similar to the normal red sequence galaxies. We presented an initial assessment of stellar population ages and metallicities which correspond to the obtained color offsets. We surveyed the available images of the cluster for outliers, merger candidates, and candidate ultra-diffuse galaxies. We conclude that ultra-diffuse galaxies are an important part of the Coma cluster evolutionary history and future work is needed especially in obtaining spectroscopic data of a larger number of these dim galaxies.
NASA Astrophysics Data System (ADS)
Khan, Mohammad S.; Abdullah, Mohamed H.; Ali, Gamal B.
2014-05-01
We derive analytical expression for the velocity dispersion of galaxy clusters, using the statistical mechanical approach. We compare the observed velocity dispersion profiles for 20 nearby ( z≤0.1) galaxy clusters with the analytical ones. It is interesting to find that the analytical results closely match with the observed velocity dispersion profiles only if the presence of the diffuse matter in clusters is taken into consideration. This takes us to introduce a new approach to detect the ratio of diffuse mass, M diff , within a galaxy cluster. For the present sample, the ratio f= M diff / M, where M the cluster's total mass is found to has an average value of 45±12 %. This leads us to the result that nearly 45 % of the cluster mass is impeded outside the galaxies, while around 55 % of the cluster mass is settled in the galaxies.
A New Estimator of the Deceleration Parameter from Galaxy Rotation Curves
NASA Astrophysics Data System (ADS)
van Putten, Maurice H. P. M.
2016-06-01
The nature of dark energy can be probed by the derivative Q={{dq}(z)/{dz}| }0 at redshift z = 0 of the deceleration parameter q(z). It is probably static if Q\\lt 1 or dynamic if Q\\gt 2.5, supporting ΛCDM or {{Λ }}=(1-q){H}2, respectively, where H denotes the Hubble parameter. We derive q=1-{(4π {a}0/{cH})}2, enabling a determination of q(z) by measuring Milgrom’s parameter, {a}0(z), in galaxy rotation curves, equivalent to the coefficient A in the Tully-Fisher relation {V}c4={{AM}}b between a rotation velocity V c and a baryonic mass M b . We infer that dark matter should be extremely light, with clustering limited to the size of galaxy clusters. The associated transition radius to non-Newtonian gravity can conceivably be probed in a freefall Cavendish-type experiment in space.
The Virgo Cluster of Galaxies in the Making
NASA Astrophysics Data System (ADS)
2004-10-01
VLT Observations of Planetary Nebulae Confirm the Dynamical Youth of Virgo [1] Summary An international team of astronomers [2] has succeeded in measuring with high precision the velocities of a large number of planetary nebulae [3] in the intergalactic space within the Virgo Cluster of galaxies. For this they used the highly efficient FLAMES spectrograph [4] on the ESO Very Large Telescope at the Paranal Observatory (Chile). These planetary nebulae stars free floating in the otherwise seemingly empty space between the galaxies of large clusters can be used as "probes" of the gravitational forces acting within these clusters. They trace the masses, visible as well as invisible, within these regions. This, in turn, allows astronomers to study the formation history of these large bound structures in the universe. The accurate velocity measurements of 40 of these stars confirm the view that Virgo is a highly non-uniform galaxy cluster, consisting of several subunits that have not yet had time to come to equilibrium. These new data clearly show that the Virgo Cluster of galaxies is still in its making. They also prove for the first time that one of the bright galaxies in the region scrutinized, Messier 87, has a very extended halo of stars, reaching out to at least 65 kpc. This is more than twice the size of our own galaxy, the Milky Way. PR Photo 29a/04: Velocity Measurements of Forty Intracluster Planetary Nebulae (FLAMES/VLT) PR Photo 29b/04: Intracluster Planetary Nebulae in the SUC field in the Virgo Cluster (Digital Sky Survey) A young cluster At a distance of approximately 50 million light-years, the Virgo Cluster is the nearest galaxy cluster. It is located in the zodiacal constellation Virgo (The Virgin) and contains many hundreds of galaxies, ranging from giant and massive elliptical galaxies and spirals like our own Milky Way, to dwarf galaxies, hundreds of times smaller than their big brethren. French astronomer Charles Messier entered 16 members of the Virgo cluster in his famous catalogue of nebulae. An image of the core of the cluster obtained with the Wide Field Imager camera at the ESO La Silla Observatory was published last year as PR Photo 04a/03. Clusters of galaxies are believed to have formed over a long period of time by the assembly of smaller entities, through the strong gravitational pull from dark and luminous matter. The Virgo cluster is considered to be a relatively young cluster because previous studies have revealed small "sub-clusters of galaxies" around the major galaxies Messier 87, Messier 86 and Messier 49. These sub-clusters have yet to merge to form a denser and smoother galaxy cluster. Recent observations have shown that the so-called "intracluster" space, the region between galaxies in a cluster, is permeated by a sparse "intracluster population of stars", which can be used to study in detail the structure of the cluster. Cosmic wanderers The first discoveries of intracluster stars in the Virgo cluster were made serendipitously by Italian astronomer, Magda Arnaboldi (Torino Observatory, Italy) and her colleagues, in 1996. In order to study the extended halos of galaxies in the Virgo cluster, with the ESO New Technology Telescope at La Silla, they searched for objects known as "planetary nebulae" [3]. Planetary nebulae (PNe) can be detected out to large distances from their strong emission lines. These narrow emission lines also allow for a precise measure of their radial velocities. Planetary Nebulae can thus serve to investigate the motions of stars in the halo regions of distant galaxies. In their study, the astronomers found several planetary nebulae apparently not related to any galaxies but moving in the gravity field of the whole cluster. These "wanderers" belonged to a newly discovered intracluster population of stars. Since these first observations, several hundreds of these wanderers have been discovered. They must represent the tip of the iceberg of a huge population of stars swarming among the galaxies in these enormous clusters. Indeed, as planetary nebulae are the final stage of common low mass stars - like our Sun - they are representative of the stellar population in general. And as planetary nebulae are rather short-lived (a few tens of thousand years - a blitz on astronomical timescales), astronomers can estimate that one star in about 8,000 million of solar-type stars is visible as a planetary nebula at any given moment. There must thus be a comparable number of stars in between galaxies as in the galaxies themselves. But because they are diluted in such a huge volume, they are barely detectable. Because these stars are predominantly old, the most likely explanation for their presence in the intracluster space is that they formed within individual galaxies, which were subsequently stripped of many of their stars during close encounters with other galaxies during the initial stages of cluster formation. These "lost" stars were then dispersed into intracluster space where we now find them. Thus planetary nebulae can provide a unique handle on the number, type of stars and motions in regions that may harbour a substantial amount of mass. Their motions contain the fossil record of the history of galaxy interaction and the formation of the galaxy cluster. Measuring the speed of dying stars ESO PR Photo 29a/04 ESO PR Photo 29a/04 Velocity Measurements of Forty Intracluster Planetary Nebulae [Preview - JPEG: 400 x 502 pix - 50k] [Normal - JPEG: 800 x 1004 pix - 330k] [Full Res - JPEG: 2321 x 2912 pix - 1.2M] Caption: ESO PR Photo 29a/04 shows the intracluster planetary nebulae radial velocity distributions in three different regions of the sky (identified with the following labels: FCJ, CORE and SUC) in the Virgo cluster core region. The central panel shows the image of the VIRGO cluster core obtained from the Digital Sky Survey. The four brighter galaxies in the field are on the left Messier 87 near the FCJ field, and Messier 86, Messier 84 and NGC 4388 in the SUC field. In the FCJ panel, the blue dashed line shows a Gaussian curve with a mean velocity, vrad= 1276 km/s, and a dispersion, σrad= 247 km/s. In CORE, the green dashed line shows a Gaussian curve with vrad= 1436 km/s and σrad= 538 km/s for Virgo Cluster dwarf ellipticals and lenticular galaxies within 2 degrees of Messier 87. In the SUC panel, the dashed red line shows a Gaussian curve with vrad= 1079 km/s and σrad= 286 km/s, associated to the Messier 84 (M84) peak. The overplotted dash-dotted lines show the SUC-FLAMES spectra of intracluster HII regions, which have radial velocities in the M84 and NGC 4388 velocity ranges. The international team of astronomers [2] went on further to make a detailed study of the motions of the planetary nebulae in the Virgo cluster in order to determine its dynamical structure and compare it with numerical simulations. To this aim, they carried out a challenging research programme, aimed at confirming intracluster planetary nebula candidates they found earlier and measuring their radial velocities in three different regions ("survey fields") in the Virgo cluster core. This is far from an easy task. The emission in the main Oxygen emission line from a planetary nebula in Virgo is comparable to that of a 60-Watt light bulb at a distance of about 6.6 million kilometres, about 17 times the average distance to the Moon. Furthermore intracluster planetary nebula samples are sparse, with only a few tens of planetary nebulae in a quarter of a degree square sky field - about the size of the Moon. Spectroscopic observations thus require 8 metre class telescopes and spectrographs with a large field of view. The astronomers had therefore to rely on the FLAMES-GIRAFFE spectrograph on the VLT [4], with its relatively high spectral resolution, its field of view of 25 arcmin and the possibility to take up to 130 spectra at a time. The astronomers studied a total of 107 stars, among which 71 were believed to be genuine intracluster planetary candidates. They observed between 21 and 49 objects simultaneously for about 2 hours per field. The three parts of the Virgo core surveyed contain several bright galaxies (Messier 84, 86, 87, and NGC 4388) and a large number of smaller galaxies. They were chosen to represent different entities of the cluster. The spectroscopic measurements could confirm the intracluster nature of 40 of the planetary nebulae studied. They also provided a wealth of knowledge on the structure of this part of the Virgo cluster. In The Making ESO PR Photo 29b/04 ESO PR Photo 29b/04 Intracluster Planetary Nebulae in the SUC field in the Virgo Cluster. (Digital Sky Survey) [Preview - JPEG: 400 x 471 pix - 55k] [Normal - JPEG: 800 x 942 pix - 512k] [Full Res - JPEG: 2189 x 2580 pix - 2.3M] Caption: ESO PR Photo 29b/04: Zoomed in view of the pointing relative to the SUC field. The image shows a 30 x 30 arcminute field centred on the Messier 86/ Messier 84 region of the Virgo cluster. The brighter galaxies in the field are (clockwise from the left) M86, M84 and NGC 4388. Their systemic velocities are -244, 1060 and 2524 km/s, respectively. Here the envelopes of bright galaxies are subtracted as much as possible for the detection of planetary nebulae embedded there. The larges circle indicates the FLAMES field-of-view. Intracluster planetary nebula candidates are marked by circles and show a highly non-uniform distribution in this field. The numbers near each circle indicate the measured line-of-sight velocity for that intracluster planetary nebula. The colour code used is blue for velocities smaller than the M84 systemic velocity (1060 km/s), red for larger velocities. In the first field near Messier 87 (M87), the astronomers measured a mean velocity close to 1250 km/s and a rather small dispersion around this value. Most stars in this field are thus physically bound to the bright galaxy M87, in the same way as the Earth is bound to the Sun. Magda Arnaboldi explains: "This study has led to the remarkable discovery that Messier 87 has a stellar halo in approximate dynamical equilibrium out to at least 65 kpc, or more than 200,000 light-years. This is more than twice the size of our own galaxy, the Milky Way, and was not known before." The velocity dispersion observed in the second field, which is far away from bright galaxies, is larger than in the first one by a factor four. This very large dispersion, indicating stars moving in very disparate directions at different speeds, also tells us that this field most probably contains many intracluster stars whose motions are barely influenced by large galaxies. The new data suggest as a tantalizing possibility that this intracluster population of stars could be the leftover from the disruption of small galaxies as they orbit M87. The velocity distribution in the third field, as deduced from FLAMES spectra, is again different. The velocities show substructures related to the large galaxies Messier 86, Messier 84 and NGC 4388. Most likely, the large majority of all these planetary nebulae belong to a very extended halo around Messier 84. Ortwin Gerhard (University of Basel, Switzerland), member of the team, is thrilled: "Taken together these velocity measurements confirm the view that the Virgo Cluster is a highly non-uniform and unrelaxed galaxy cluster, consisting of several subunits. With the FLAMES spectrograph, we have thus been able to watch the motions in the Virgo Cluster, at a moment when its subunits are still coming together. And it is certainly a view worth seeing!" More information The results presented in this ESO Press Release are based on a research paper ("The Line-of-Sight Velocity Distributions of Intracluster Planetary Nebulae in the Virgo Cluster Core" by M. Arnaboldi et al.) that has just appeared in the research journal Astrophysical Journal Letters Vol. 614, p. 33. Notes [1]: The University of Basel Press Release on this topic is available at http://www.zuv.unibas.ch/uni_media/2004/20041022virgo.html. [2]: The members of the team are Magda Arnaboldi (INAF, Osservatorio di Pino Torinese, Italy), Ortwin Gerhard (Astronomisches Institut, Universität Basel, Switzerland), Alfonso Aguerri (Instituto de Astrofisica de Canarias, Spain), Kenneth C. Freeman (Mount Stromlo Observatory, ACT, Australia), Nicola Napolitano (Kapteyn Astronomical Institute, The Netherlands), Sadanori Okamura (Dept. of Astronomy, University of Tokyo, Japan), and Naoki Yasuda (Institute for Cosmic Ray Research, University of Tokyo, Japan). [3]: Planetary nebulae are Sun-like stars in their final dying phase during which they eject their outer layers into surrounding space. At the same time, they unveil their small and hot stellar core which appears as a "white dwarf star". The ejected envelope is illuminated and heated by the stellar core and emits strongly in characteristic emission lines of several elements, notably oxygen (at wavelengths 495.9 and 500.7 nm). Their name stems from the fact that some of these nearby objects, such as the "Dumbbell Nebula" (see ESO PR Photo 38a/98) resemble the discs of the giant planets in the solar system when viewed with small telescopes. [4]: FLAMES, the Fibre Large Array Multi-Element Spectrograph, is installed at the 8.2-m VLT KUEYEN Unit Telescope. It is able to observe the spectra of a large number of individual, faint objects (or small sky areas) simultaneously and covers a sky field of no less than 25 arcmin in diameter, i.e., almost as large as the full Moon. It is the result of a collaboration between ESO, the Observatoire de Paris-Meudon, the Observatoire de Genève-Lausanne, and the Anglo Australian Observatory (AAO).
AMI-CL J0300+2613: a Galactic anomalous-microwave-emission ring masquerading as a galaxy cluster
NASA Astrophysics Data System (ADS)
Perrott, Yvette C.; Cantwell, Therese M.; Carey, Steve H.; Elwood, Patrick J.; Feroz, Farhan; Grainge, Keith J. B.; Green, David A.; Hobson, Michael P.; Javid, Kamran; Jin, Terry Z.; Pooley, Guy G.; Razavi-Ghods, Nima; Rumsey, Clare; Saunders, Richard D. E.; Scaife, Anna M. M.; Schammel, Michel P.; Scott, Paul F.; Shimwell, Timothy W.; Titterington, David J.; Waldram, Elizabeth M.
2018-01-01
The Arcminute Microkelvin Imager (AMI) carried out a blind survey for galaxy clusters via their Sunyaev-Zel'dovich effect decrements between 2008 and 2011. The first detection, known as AMI-CL J0300+2613, has been reobserved with AMI equipped with a new digital correlator with high dynamic range. The combination of the new AMI data and more recent high-resolution sub-mm and infrared maps now shows the feature in fact to be a ring of positive dust-correlated Galactic emission, which is likely to be anomalous microwave emission (AME). If so, this is the first completely blind detection of AME at arcminute scales.
From Globular Clusters to Tidal Dwarfs: Structure Formation in the Tidal Tails of Merging Galaxies
NASA Astrophysics Data System (ADS)
Knierman, Karen A.; Gallagher, Sarah C.; Charlton, Jane C.; Hunsberger, Sally D.; Whitmore, Bradley; Kundu, Arunav; Hibbard, J. E.; Zaritsky, Dennis
2003-09-01
Using V and I images obtained with the Wide Field Planetary Camera 2 (WFPC2) of the Hubble Space Telescope, we investigate compact stellar structures within tidal tails. Six regions of tidal debris in the four classic ``Toomre sequence'' mergers: NGC 4038/39 (``Antennae''), NGC 3256, NGC 3921, and NGC 7252 (``Atoms for Peace'') have been studied in order to explore how the star formation depends on the local and global physical conditions. These mergers sample a range of stages in the evolutionary sequence and tails with and without embedded tidal dwarf galaxies. The six tails are found to contain a variety of stellar structures, with sizes ranging from those of globular clusters up to those of dwarf galaxies. From V and I WFPC2 images, we measure the luminosities and colors of the star clusters. NGC 3256 is found to have a large population of blue clusters (0.2<~V-I<~0.9), particularly in its western tail, similar to those found in the inner region of the merger. In contrast, NGC 4038/39 has no clusters in the observed region of the tail, only less luminous point sources likely to be individual stars. NGC 3921 and NGC 7252 have small populations of clusters along their tails. A significant cluster population is clearly associated with the prominent tidal dwarf candidates in the eastern and western tails of NGC 7252. The cluster-rich western tail of NGC 3256 is not distinguished from the others by its dynamical age or by its total H I mass. However, the mergers that have few clusters in the tail all have tidal dwarf galaxies, while NGC 3256 does not have prominent tidal dwarfs. We speculate that star formation in tidal tails may manifest itself either in small structures like clusters along the tail or in large structures such as dwarf galaxies, but not in both. Also, NGC 3256 has the highest star formation rate of the four mergers studied, which may contribute to the high number of star clusters in its tidal tails. Based in part on observations obtained with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc., under NASA contract NAS 5-26555.
NASA Astrophysics Data System (ADS)
Tchernin, C.; Bartelmann, M.; Huber, K.; Dekel, A.; Hurier, G.; Majer, C. L.; Meyer, S.; Zinger, E.; Eckert, D.; Meneghetti, M.; Merten, J.
2018-06-01
Context. The mass of galaxy clusters is not a direct observable, nonetheless it is commonly used to probe cosmological models. Based on the combination of all main cluster observables, that is, the X-ray emission, the thermal Sunyaev-Zel'dovich (SZ) signal, the velocity dispersion of the cluster galaxies, and gravitational lensing, the gravitational potential of galaxy clusters can be jointly reconstructed. Aims: We derive the two main ingredients required for this joint reconstruction: the potentials individually reconstructed from the observables and their covariance matrices, which act as a weight in the joint reconstruction. We show here the method to derive these quantities. The result of the joint reconstruction applied to a real cluster will be discussed in a forthcoming paper. Methods: We apply the Richardson-Lucy deprojection algorithm to data on a two-dimensional (2D) grid. We first test the 2D deprojection algorithm on a β-profile. Assuming hydrostatic equilibrium, we further reconstruct the gravitational potential of a simulated galaxy cluster based on synthetic SZ and X-ray data. We then reconstruct the projected gravitational potential of the massive and dynamically active cluster Abell 2142, based on the X-ray observations collected with XMM-Newton and the SZ observations from the Planck satellite. Finally, we compute the covariance matrix of the projected reconstructed potential of the cluster Abell 2142 based on the X-ray measurements collected with XMM-Newton. Results: The gravitational potentials of the simulated cluster recovered from synthetic X-ray and SZ data are consistent, even though the potential reconstructed from X-rays shows larger deviations from the true potential. Regarding Abell 2142, the projected gravitational cluster potentials recovered from SZ and X-ray data reproduce well the projected potential inferred from gravitational-lensing observations. We also observe that the covariance matrix of the potential for Abell 2142 reconstructed from XMM-Newton data sensitively depends on the resolution of the deprojected grid and on the smoothing scale used in the deprojection. Conclusions: We show that the Richardson-Lucy deprojection method can be effectively applied on a grid and that the projected potential is well recovered from real and simulated data based on X-ray and SZ signal. The comparison between the reconstructed potentials from the different observables provides additional information on the validity of the assumptions as function of the projected radius.
Gravitational Lensing by Clusters of Galaxies
NASA Astrophysics Data System (ADS)
Tyson, J.; Murdin, P.
2000-11-01
CLUSTERS OF GALAXIES are massive and relatively rare objects containing hundreds of galaxies. Their huge mass—dominated by DARK MATTER—bends light from all background objects, systematically distorting the images of thousands of distant galaxies (shear). This observed gravitational lens distortion can be inverted to produce an `image' of the mass in the foreground cluster of galaxies. Most of the...
The Effect of Mergers on Galaxy Cluster Mass Estimates
NASA Astrophysics Data System (ADS)
Johnson, Ryan E.; Zuhone, John A.; Thorsen, Tessa; Hinds, Andre
2015-08-01
At vertices within the filamentary structure that describes the universal matter distribution, clusters of galaxies grow hierarchically through merging with other clusters. As such, the most massive galaxy clusters should have experienced many such mergers in their histories. Though we cannot see them evolve over time, these mergers leave lasting, measurable effects in the cluster galaxies' phase space. By simulating several different galaxy cluster mergers here, we examine how the cluster galaxies kinematics are altered as a result of these mergers. Further, we also examine the effect of our line of sight viewing angle with respect to the merger axis. In projecting the 6-dimensional galaxy phase space onto a 3-dimensional plane, we are able to simulate how these clusters might actually appear to optical redshift surveys. We find that for those optical cluster statistics which are most often used as a proxy for the cluster mass (variants of σv), the uncertainty due to an inprecise or unknown line of sight may alter the derived cluster masses moreso than the kinematic disturbance of the merger itself. Finally, by examining these, and several other clustering statistics, we find that significant events (such as pericentric crossings) are identifiable over a range of merger initial conditions and from many different lines of sight.
Illuminating the star clusters and satellite galaxies with multi-scale baryonic simulations
NASA Astrophysics Data System (ADS)
Maji, Moupiya; Zhu, Qirong; Li, Yuexing; Marinacci, Federico; Charlton, Jane; Hernquist, Lars; Knebe, Alexander
2018-01-01
Over the past decade, advances in computational architecture have made it possible for the first time to investigate some of the fundamental questions around the formation, evolution and assembly of the building blocks of the universe; star clusters and galaxies. In this talk, I will focus on two major questions: What is the origin of the observed universal lognormal mass function in globular clusters? What is the statistical distribution of the properties of satellite planes in a large sample of satellite systems?Observations of globular clusters show that they have universal lognormal mass functions with a characteristic peak at 2X105 MSun, although the origin of this peaked distribution is unclear. We investigate the formation of star clusters in interacting galaxies using baryonic simulations and found that massive clusters preferentially form in extremely high pressure gas clouds which reside in highly shocked regions produced by galaxy interactions. These massive clusters have quasi-lognormal initial mass functions with a peak around ~106MSun which may survive dynamical evolution and slowly evolve into the universal lognormal profiles observed today.The classical Milky Way (MW) satellites are observed to be distributed in a highly-flattened plane, called Disk of Satellites (DoS). However the significance, coherence and origin of DoS is highly debated. To understand this, we first analyze all MW satellites and find that a small sample size can artificially produce a highly anisotropic spatial distribution and a strong clustering of their angular momentum. Comparing a baryonic simulation of a MW-sized galaxy with its N-body counterpart we find that an anisotropic DoS can originate from baryonic processes. Furthermore, we explore the statistical distribution of DoS properties by analyzing 2591 satellite systems in the cosmological hydrodynamic simulation Illustris. We find that the DoS becomes more isotropic with increasing sample sizes and most (~90%) satellite systems have no clear coherent rotation. Their overall evolution indicate that the DoS may be part of large scale filamentary structure. Our results show that baryonic processes may be the key to solve many long standing theoretical problems.
JELLYFISH: EVIDENCE OF EXTREME RAM-PRESSURE STRIPPING IN MASSIVE GALAXY CLUSTERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ebeling, H.; Stephenson, L. N.; Edge, A. C.
Ram-pressure stripping by the gaseous intracluster medium has been proposed as the dominant physical mechanism driving the rapid evolution of galaxies in dense environments. Detailed studies of this process have, however, largely been limited to relatively modest examples affecting only the outermost gas layers of galaxies in nearby and/or low-mass galaxy clusters. We here present results from our search for extreme cases of gas-galaxy interactions in much more massive, X-ray selected clusters at z > 0.3. Using Hubble Space Telescope snapshots in the F606W and F814W passbands, we have discovered dramatic evidence of ram-pressure stripping in which copious amounts ofmore » gas are first shock compressed and then removed from galaxies falling into the cluster. Vigorous starbursts triggered by this process across the galaxy-gas interface and in the debris trail cause these galaxies to temporarily become some of the brightest cluster members in the F606W passband, capable of outshining even the Brightest Cluster Galaxy. Based on the spatial distribution and orientation of systems viewed nearly edge-on in our survey, we speculate that infall at large impact parameter gives rise to particularly long-lasting stripping events. Our sample of six spectacular examples identified in clusters from the Massive Cluster Survey, all featuring M {sub F606W} < –21 mag, doubles the number of such systems presently known at z > 0.2 and facilitates detailed quantitative studies of the most violent galaxy evolution in clusters.« less
Enrichment and heating of the intracluster medium by ejection from galaxies
NASA Technical Reports Server (NTRS)
Metzler, Chris; Evrard, August
1993-01-01
Results of N-body + hydrodynamic simulations designed to model the formation and evolution of clusters of galaxies and intracluster gas are presented. Clusters of galaxies are the largest bound, relaxed objects in the universe. They are strong x-ray emitters; this radiation originates through thermal bremsstrahlung from a diffuse plasma filling the space between cluster galaxies, the intracluster medium or ICM. From observations, one can infer that the mass of the ICM is comparable to or greater than the mass of all the galaxies in the cluster, and that the ratio of mass in hot gas to mass in galaxies, M(sub ICM)/M(sub STARS), increases with the richness of the cluster. Spectroscopic studies of cluster x-ray emission show heavy element emission lines. While M(sub ICM)/M(sub STARS) is greater than or equal to 1 implies that most of the ICM is primordial in nature, the discovery of heavy elements indicates that some of the gas must have been processed through galaxies. Galaxy evolution thus directly impacts cluster evolution.
Modelling baryonic effects on galaxy cluster mass profiles
NASA Astrophysics Data System (ADS)
Shirasaki, Masato; Lau, Erwin T.; Nagai, Daisuke
2018-06-01
Gravitational lensing is a powerful probe of the mass distribution of galaxy clusters and cosmology. However, accurate measurements of the cluster mass profiles are limited by uncertainties in cluster astrophysics. In this work, we present a physically motivated model of baryonic effects on the cluster mass profiles, which self-consistently takes into account the impact of baryons on the concentration as well as mass accretion histories of galaxy clusters. We calibrate this model using the Omega500 hydrodynamical cosmological simulations of galaxy clusters with varying baryonic physics. Our model will enable us to simultaneously constrain cluster mass, concentration, and cosmological parameters using stacked weak lensing measurements from upcoming optical cluster surveys.
An Archival Search For Young Globular Clusters in Galaxies
NASA Astrophysics Data System (ADS)
Whitmore, Brad
1995-07-01
One of the most intriguing results from HST has been the discovery of ultraluminous star clusters in interacting and merging galaxies. These clusters have the luminosities, colors, and sizes that would be expected of young globular clusters produced by the interaction. We propose to use the data in the HST Archive to determine how prevalent this phenomena is, and to determine whether similar clusters are produced in other environments. Three samples will be extracted and studied in a systematic and consistent manner: 1} interacting and merging galaxies, 2} starburst galaxies, 3} a control sample of ``normal'' galaxies. A preliminary search of the archives shows that there are at least 20 galaxies in each of these samples, and the number will grow by about 50 observations become available. The data will be used to determine the luminosity function, color histogram , spatial distribution, and structural properties of the clusters using the same techniques employed in our study of NGC 7252 {``Atoms -for-Peace'' galaxy} and NGC 4038/4039 {``The Antennae''}. Our ultimate goals are: 1} to understand how globular clusters form, and 2} to use the clusters as evolutionary tracers to unravel the histories of interacting galaxies.
NASA Astrophysics Data System (ADS)
Burchett, Joseph N.; Tripp, Todd M.; Wang, Q. Daniel; Willmer, Christopher N. A.; Bowen, David V.; Jenkins, Edward B.
2018-04-01
We analyse the intracluster medium (ICM) and circumgalactic medium (CGM) in seven X-ray-detected galaxy clusters using spectra of background quasi-stellar objects (QSOs) (HST-COS/STIS), optical spectroscopy of the cluster galaxies (MMT/Hectospec and SDSS), and X-ray imaging/spectroscopy (XMM-Newton and Chandra). First, we report a very low covering fraction of H I absorption in the CGM of these cluster galaxies, f_c = 25^{+25}_{-15} {per cent}, to stringent detection limits (N(H I) <1013 cm-2). As field galaxies have an H I covering fraction of ˜ 100 per cent at similar radii, the dearth of CGM H I in our data indicates that the cluster environment has effectively stripped or overionized the gaseous haloes of these cluster galaxies. Secondly, we assess the contribution of warm-hot (105-106 K) gas to the ICM as traced by O VI and broad Ly α (BLA) absorption. Despite the high signal-to-noise ratio of our data, we do not detect O VI in any cluster, and we only detect BLA features in the QSO spectrum probing one cluster. We estimate that the total column density of warm-hot gas along this line of sight totals to ˜ 3 per cent of that contained in the hot T > 107 K X-ray emitting phase. Residing at high relative velocities, these features may trace pre-shocked material outside the cluster. Comparing gaseous galaxy haloes from the low-density `field' to galaxy groups and high-density clusters, we find that the CGM is progressively depleted of H I with increasing environmental density, and the CGM is most severely transformed in galaxy clusters. This CGM transformation may play a key role in environmental galaxy quenching.
Stellar black holes in globular clusters
NASA Technical Reports Server (NTRS)
Kulkarni, S. R.; Hut, Piet; Mcmillan, Steve
1993-01-01
The recent discovery of large populations of millisec pulsars associated with neutron stars in globular clusters indicates that several hundred stellar black holes of about 10 solar masses each can form within a typical cluster. While, in clusters of high central density, the rapid dynamical evolution of the black-hole population leads to an ejection of nearly all holes on a short timescale, systems of intermediate density may involve a normal star's capture by one of the surviving holes to form a low-mass X-ray binary. One or more such binaries may be found in the globular clusters surrounding our galaxy.
NASA Astrophysics Data System (ADS)
Sultanova, Madina; Barkhouse, Wayne; Rude, Cody
2018-01-01
The classification of galaxies based on their morphology is a field in astrophysics that aims to understand galaxy formation and evolution based on their physical differences. Whether structural differences are due to internal factors or a result of local environment, the dominate mechanism that determines galaxy type needs to be robustly quantified in order to have a thorough grasp of the origin of the different types of galaxies. The main subject of my Ph.D. dissertation is to explore the use of computers to automatically classify and analyze large numbers of galaxies according to their morphology, and to analyze sub-samples of galaxies selected by type to understand galaxy formation in various environments. I have developed a computer code to classify galaxies by measuring five parameters from their images in FITS format. The code was trained and tested using visually classified SDSS galaxies from Galaxy Zoo and the EFIGI data set. I apply my morphology software to numerous galaxies from diverse data sets. Among the data analyzed are the 15 Abell galaxy clusters (0.03 < z < 0.184) from Rude et al. 2017 (in preparation), which were observed by the Canada-France-Hawaii Telescope. Additionally, I studied 57 galaxy clusters from Barkhouse et al. (2007), 77 clusters from the WINGS survey (Fasano et al. 2006), and the six Hubble Space Telescope (HST) Frontier Field galaxy clusters. The high resolution of HST allows me to compare distant clusters with those nearby to look for evolutionary changes in the galaxy cluster population. I use the results from the software to examine the properties (e.g. luminosity functions, radial dependencies, star formation rates) of selected galaxies. Due to the large amount of data that will be available from wide-area surveys in the future, the use of computer software to classify and analyze the morphology of galaxies will be extremely important in terms of efficiency. This research aims to contribute to the solution of this problem.
Assessing the Milky Way Satellites Associated with the Sagittarius Dwarf Spheroidal Galaxy
NASA Astrophysics Data System (ADS)
Law, David R.; Majewski, Steven R.
2010-08-01
Numerical models of the tidal disruption of the Sagittarius (Sgr) dwarf galaxy have recently been developed that for the first time simultaneously satisfy most observational constraints on the angular position, distance, and radial velocity trends of both leading and trailing tidal streams emanating from the dwarf. We use these dynamical models in combination with extant three-dimensional position and velocity data for Galactic globular clusters and dSph galaxies to identify those Milky Way satellites that are likely to have originally formed in the gravitational potential well of the Sgr dwarf, and have been stripped from Sgr during its extended interaction with the Milky Way. We conclude that the globular clusters Arp 2, M 54, NGC 5634, Terzan 8, and Whiting 1 are almost certainly associated with the Sgr dwarf, and that Berkeley 29, NGC 5053, Pal 12, and Terzan 7 are likely to be as well (albeit at lower confidence). The initial Sgr system therefore may have contained five to nine globular clusters, corresponding to a specific frequency SN = 5-9 for an initial Sgr luminosity MV = -15.0. Our result is consistent with the 8 ± 2 genuine Sgr globular clusters expected on the basis of statistical modeling of the Galactic globular cluster distribution and the corresponding false-association rate due to chance alignments with the Sgr streams. The globular clusters identified as most likely to be associated with Sgr are consistent with previous reconstructions of the Sgr age-metallicity relation, and show no evidence for a second-parameter effect shaping their horizontal branch morphologies. We find no statistically significant evidence to suggest that any of the recently discovered population of ultrafaint dwarf galaxies are associated with the Sgr tidal streams, but are unable to rule out this possibility conclusively for all systems.
STAR FORMATION AND SUPERCLUSTER ENVIRONMENT OF 107 NEARBY GALAXY CLUSTERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cohen, Seth A.; Hickox, Ryan C.; Wegner, Gary A.
We analyze the relationship between star formation (SF), substructure, and supercluster environment in a sample of 107 nearby galaxy clusters using data from the Sloan Digital Sky Survey. Previous works have investigated the relationships between SF and cluster substructure, and cluster substructure and supercluster environment, but definitive conclusions relating all three of these variables has remained elusive. We find an inverse relationship between cluster SF fraction ( f {sub SF}) and supercluster environment density, calculated using the Galaxy luminosity density field at a smoothing length of 8 h {sup −1} Mpc (D8). The slope of f {sub SF} versus D8more » is −0.008 ± 0.002. The f {sub SF} of clusters located in low-density large-scale environments, 0.244 ± 0.011, is higher than for clusters located in high-density supercluster cores, 0.202 ± 0.014. We also divide superclusters, according to their morphology, into filament- and spider-type systems. The inverse relationship between cluster f {sub SF} and large-scale density is dominated by filament- rather than spider-type superclusters. In high-density cores of superclusters, we find a higher f {sub SF} in spider-type superclusters, 0.229 ± 0.016, than in filament-type superclusters, 0.166 ± 0.019. Using principal component analysis, we confirm these results and the direct correlation between cluster substructure and SF. These results indicate that cluster SF is affected by both the dynamical age of the cluster (younger systems exhibit higher amounts of SF); the large-scale density of the supercluster environment (high-density core regions exhibit lower amounts of SF); and supercluster morphology (spider-type superclusters exhibit higher amounts of SF at high densities).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goudfrooij, Paul; Diederik Kruijssen, J. M., E-mail: goudfroo@stsci.edu, E-mail: kruijssen@mpa-garching.mpg.de
2013-01-10
We report a systematic and statistically significant offset between the optical (g - z or B - I) colors of seven massive elliptical galaxies and the mean colors of their associated massive metal-rich globular clusters (GCs) in the sense that the parent galaxies are redder by {approx}0.12-0.20 mag at a given galactocentric distance. However, spectroscopic indices in the blue indicate that the luminosity-weighted ages and metallicities of such galaxies are equal to that of their averaged massive metal-rich GCs at a given galactocentric distance, to within small uncertainties. The observed color differences between the red GC systems and their parentmore » galaxies cannot be explained by the presence of multiple stellar generations in massive metal-rich GCs, as the impact of the latter to the populations' integrated g - z or B - I colors is found to be negligible. However, we show that this paradox can be explained if the stellar initial mass function (IMF) in these massive elliptical galaxies was significantly steeper at subsolar masses than canonical IMFs derived from star counts in the solar neighborhood, with the GC colors having become bluer due to dynamical evolution, causing a significant flattening of the stellar MF of the average surviving GC.« less
MACS J0553.4-3342: a young merging galaxy cluster caught through the eyes of Chandra and HST
NASA Astrophysics Data System (ADS)
Pandge, M. B.; Bagchi, Joydeep; Sonkamble, S. S.; Parekh, Viral; Patil, M. K.; Dabhade, Pratik; Navale, Nilam R.; Raychaudhury, Somak; Jacob, Joe
2017-12-01
We present a detailed analysis of a young merging galaxy cluster MACS J0553.4-3342 (z=0.43) from Chandra X-ray and Hubble Space Telescope archival data. X-ray observations confirm that the X-ray emitting intra-cluster medium (ICM) in this system is among the hottest (average T = 12.1 ± 0.6 keV) and most luminous known. Comparison of X-ray and optical images confirms that this system hosts two merging subclusters SC1 and SC2, separated by a projected distance of about 650 kpc. The subcluster SC2 is newly identified in this work, while another subcluster (SC0), previously thought to be a part of this merging system, is shown to be possibly a foreground object. Apart from two subclusters, we find a tail-like structure in the X-ray image, extending to a projected distance of ∼1 Mpc, along the north-east direction of the eastern subcluster (SC1). From a surface brightness analysis, we detect two sharp surface brightness edges at ∼40 (∼320 kpc) and ∼80 arcsec (∼640 kpc) to the east of SC1. The inner edge appears to be associated with a merger-driven cold front, while the outer one is likely to be due to a shock front, the presence of which, ahead of the cold front, makes this dynamically disturbed cluster interesting. Nearly all the early-type galaxies belonging to the two subclusters, including their brightest cluster galaxies, are part of a well-defined red sequence.
The Hydra I cluster core. I. Stellar populations in the cD galaxy NGC 3311
NASA Astrophysics Data System (ADS)
Barbosa, C. E.; Arnaboldi, M.; Coccato, L.; Hilker, M.; Mendes de Oliveira, C.; Richtler, T.
2016-05-01
Context. The history of the mass assembly of brightest cluster galaxies may be studied by mapping the stellar populations at large radial distances from the galaxy centre, where the dynamical times are long and preserve the chemodynamical signatures of the accretion events. Aims: We provide extended and robust measurements of the stellar population parameters in NGC 3311, the cD galaxy at the centre of the Hydra I cluster, and out to three effective radii. We wish to characterize the processes that drove the build-up of the stellar light at all these radii. Methods: We obtained the spectra from several regions in NGC 3311 covering an area of ~3 arcmin2 in the wavelength range 4800 ≲ λ(Å) ≲ 5800, using the FORS2 spectrograph at the Very Large Telescope in the MXU mode. We measured the equivalent widths of seven absorption-features defined in the Lick/IDS system, which were modelled by single stellar populations, to provide luminosity-weighted ages, metallicities, and alpha element abundances. Results: The trends in the Lick indices and the distribution of the stellar population parameters indicate that the stars of NGC 3311 may be divided in two radial regimes, one within and the another beyond one effective radius, Re = 8.4 kpc, similar to the distinction between the inner galaxy and the external halo derived from the NGC 3311 velocity dispersion profile. The inner galaxy (R ≤ Re) is old (age ~14 Gyr), has negative metallicity gradients and positive alpha element gradients. The external halo is also very old, but has a negative age gradient. The metal and element abundances of the external halo both have a large scatter, indicating that stars from a variety of satellites with different masses have been accreted. The region in the extended halo associated with the off-centred envelope at 0°< PA < 90° has higher metallicity with respect to the symmetric external halo. Conclusions: The different stellar populations in the inner galaxy and extended halo reflect the dominance of in situ stars in the former and the accreted origin for the large majority of the stars in the latter. The low value of the velocity dispersion in the inner galaxy indicates that its stars are bound to the galaxy's gravitational potential, and the abundances and gradients suggest that the inner galaxy is formed in an outside-in scenario of merging gas-rich lumps, reminiscent of the first phase of galaxy formation. The external halo has a higher velocity dispersion, it is dynamically hotter than the galaxy and its stars are gravitationally driven by the cluster's gravitational potential. The stars in the external halo were removed from their parent galaxies, either disks with truncated star formation, or the outer regions of early-type galaxies. Late mass accretion at large radii is now coming from the tidal stripping of stars from dwarfs and S0 galaxies. These results provide supporting evidence for the recent theoretical models of formation of massive ellipticals as a two-phase process. Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under programme ID 088.B-0448(B) PI Richtler.Table 1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/589/A139
ΛGR Centennial: Cosmic Web in Dark Energy Background
NASA Astrophysics Data System (ADS)
Chernin, A. D.
The basic building blocks of the Cosmic Web are groups and clusters of galaxies, super-clusters (pancakes) and filaments embedded in the universal dark energy background. The background produces antigravity, and the antigravity effect is strong in groups, clusters and superclusters. Antigravity is very weak in filaments where matter (dark matter and baryons) produces gravity dominating in the filament internal dynamics. Gravity-antigravity interplay on the large scales is a grandiose phenomenon predicted by ΛGR theory and seen in modern observations of the Cosmic Web.
X-ray and optical substructures of the DAFT/FADA survey clusters
NASA Astrophysics Data System (ADS)
Guennou, L.; Durret, F.; Adami, C.; Lima Neto, G. B.
2013-04-01
We have undertaken the DAFT/FADA survey with the double aim of setting constraints on dark energy based on weak lensing tomography and of obtaining homogeneous and high quality data for a sample of 91 massive clusters in the redshift range 0.4-0.9 for which there were HST archive data. We have analysed the XMM-Newton data available for 42 of these clusters to derive their X-ray temperatures and luminosities and search for substructures. Out of these, a spatial analysis was possible for 30 clusters, but only 23 had deep enough X-ray data for a really robust analysis. This study was coupled with a dynamical analysis for the 26 clusters having at least 30 spectroscopic galaxy redshifts in the cluster range. Altogether, the X-ray sample of 23 clusters and the optical sample of 26 clusters have 14 clusters in common. We present preliminary results on the coupled X-ray and dynamical analyses of these 14 clusters.
NASA Astrophysics Data System (ADS)
Lin, Yen-Ting; Hsieh, Bau-Ching; Lin, Sheng-Chieh; Oguri, Masamune; Chen, Kai-Feng; Tanaka, Masayuki; Chiu, I.-non; Huang, Song; Kodama, Tadayuki; Leauthaud, Alexie; More, Surhud; Nishizawa, Atsushi J.; Bundy, Kevin; Lin, Lihwai; Miyazaki, Satoshi; HSC Collaboration
2018-01-01
The unprecedented depth and area surveyed by the Subaru Strategic Program with the Hyper Suprime-Cam (HSC-SSP) have enabled us to construct and publish the largest distant cluster sample out to z~1 to date. In this exploratory study of cluster galaxy evolution from z=1 to z=0.3, we investigate the stellar mass assembly history of brightest cluster galaxies (BCGs), and evolution of stellar mass and luminosity distributions, stellar mass surface density profile, as well as the population of radio galaxies. Our analysis is the first high redshift application of the top N richest cluster selection, which is shown to allow us to trace the cluster galaxy evolution faithfully. Our stellar mass is derived from a machine-learning algorithm, which we show to be unbiased and accurate with respect to the COSMOS data. We find very mild stellar mass growth in BCGs, and no evidence for evolution in both the total stellar mass-cluster mass correlation and the shape of the stellar mass surface density profile. The clusters are found to contain more red galaxies compared to the expectations from the field, even after the differences in density between the two environments have been taken into account. We also present the first measurement of the radio luminosity distribution in clusters out to z~1.
A model for the origin of bursty star formation in galaxies
NASA Astrophysics Data System (ADS)
Faucher-Giguère, Claude-André
2018-01-01
We propose a simple analytic model to understand when star formation is time steady versus bursty in galaxies. Recent models explain the observed Kennicutt-Schmidt relation between star formation rate and gas surface densities in galaxies as resulting from a balance between stellar feedback and gravity. We argue that bursty star formation occurs when such an equilibrium cannot be stably sustained, and identify two regimes in which galaxy-scale star formation should be bursty: (i) at high redshift (z ≳ 1) for galaxies of all masses, and (ii) at low masses (depending on gas fraction) for galaxies at any redshift. At high redshift, characteristic galactic dynamical time-scales become too short for supernova feedback to effectively respond to gravitational collapse in galactic discs (an effect recently identified for galactic nuclei), whereas in dwarf galaxies star formation occurs in too few bright star-forming regions to effectively average out. Burstiness is also enhanced at high redshift owing to elevated gas fractions in the early Universe. Our model can thus explain the bursty star formation rates predicted in these regimes by recent high-resolution galaxy formation simulations, as well as the bursty star formation histories observationally inferred in both local dwarf and high-redshift galaxies. In our model, bursty star formation is associated with particularly strong spatiotemporal clustering of supernovae. Such clustering can promote the formation of galactic winds and our model may thus also explain the much higher wind mass loading factors inferred in high-redshift massive galaxies relative to their z ∼ 0 counterparts.
Chandra Detection of Intracluster X-Ray sources in Virgo
NASA Astrophysics Data System (ADS)
Hou, Meicun; Li, Zhiyuan; Peng, Eric W.; Liu, Chengze
2017-09-01
We present a survey of X-ray point sources in the nearest and dynamically young galaxy cluster, Virgo, using archival Chandra observations that sample the vicinity of 80 early-type member galaxies. The X-ray source populations at the outskirts of these galaxies are of particular interest. We detect a total of 1046 point sources (excluding galactic nuclei) out to a projected galactocentric radius of ˜40 kpc and down to a limiting 0.5-8 keV luminosity of ˜ 2× {10}38 {erg} {{{s}}}-1. Based on the cumulative spatial and flux distributions of these sources, we statistically identify ˜120 excess sources that are not associated with the main stellar content of the individual galaxies, nor with the cosmic X-ray background. This excess is significant at a 3.5σ level, when Poisson error and cosmic variance are taken into account. On the other hand, no significant excess sources are found at the outskirts of a control sample of field galaxies, suggesting that at least some fraction of the excess sources around the Virgo galaxies are truly intracluster X-ray sources. Assisted with ground-based and HST optical imaging of Virgo, we discuss the origins of these intracluster X-ray sources, in terms of supernova-kicked low-mass X-ray binaries (LMXBs), globular clusters, LMXBs associated with the diffuse intracluster light, stripped nucleated dwarf galaxies and free-floating massive black holes.
A Proposal to Investigate Outstanding Problems in Astronomy
NASA Technical Reports Server (NTRS)
Ford, Holland
2003-01-01
During the past year the ACS science team has concentrated on analyzing ACS observations, writing papers, and disseminating our results to the astronomy community at conferences and workshops around the world. We also have put considerable effort in getting our results to the public via public lectures and through press releases. Taking a very broad view of our program, we are investigating the evolution of galaxies and clusters of galaxies from their birth, approximately one billion years after the beginning of the Universe, to the present. We have found and characterized a population of galaxies that are no more than 1.4 billion years old. These may well be the Universe s first generation of infant galaxies. Looking at the Universe 500,000 years later, we see what appears to be a cluster of galaxies just beginning to form (a proto-cluster) around a luminous radio galaxy. Moving forward in time and closer to the present, we are studying clusters of galaxies that are less than half the age of the Universe. Our observations and analysis lead us to the important conclusion that the elliptical galaxies in these clusters must have had their last significant star formation some three billion years earlier, which is about the time when the proto-cluster was forming. Coming still closer to home, we are observing nearby massive clusters of galaxies that are approximately 12 billion years old. The gravity from these large aggregates of dark and luminous matter is so strong it warps space-time itself, and makes the cluster act as a cosmic telescope that magnifies the distant galaxies behind the cluster. We used the magnified (or lensed) galaxies to map the distribution of the dominant matter within the clusters, which is the so-called dark matter (the matter is invisible, and its nature is unknown). We also are using these cosmic telescopes to study the distant lensed galaxies that would otherwise be too small and too faint to be seen even by Hubble and the ACS.
Confronting models of star formation quenching in galaxy clusters with archival Spitzer data
NASA Astrophysics Data System (ADS)
Rudnick, Gregory
Large scale structures in the universe form hierarchically: small structures merge to form larger ones. Over the same epoch where these structures experience significant growth, the fraction of star forming galaxies within them decreases, and at a faster rate than for field galaxies. It is now widely accepted that there must be physical processes at work in these dense environments to actively quench star formation. However, despite no shortage of candidate mechanisms, sophisticated cosmological simulations still cannot reproduce the star formation rate distributions within dense environments, such as galaxy clusters. Insufficient observational constraints are a primary obstacle to further progress. In particular, the interpretation of observations of nearby clusters relies on untested assumptions about the properties of galaxies before they entered the dense cluster environment at higher redshifts. Clearly, direct constraints on these properties are required. Our group has assembled two data sets designed to address these concerns. The first focuses on an intermediate wide-field cluster sample and the second focuses on a well-matched low-redshift cluster sample. We will use these samples, along with sophisticated models of hierarchical galaxy formation, to meet the following objectives: 1. Directly measure the SFR distribution of the progenitors of present-day cluster galaxies. We will use ground-based spectroscopy to identify cluster members within four virial radii of eight intermediate-redshift clusters. We will couple this with archival Spitzer/MIPS data to measure the SFRs of galaxies out to the cluster outskirts. 2. Measure the SFR distribution of the present-day cluster galaxies using Spitzer and WISE. Robust N-body simulations tell us statistically which galaxies at intermediate redshifts will have entered the cluster virial radius by the current epoch. By combining our wide-field coverage at high redshift with our local cluster sample, we will determine the evolution in cluster galaxy SFRs over 6 billion years making minimal assumptions about the infalling galaxy population. 3. Provide a rigorous test of the quenching processes embedded in the theoretical models. We will create observed realizations of the theoretical models by subjecting them to our observational selection. This will enable a fair comparison between the models and the data, which will provide a valuable test of current theoretical implementations of quenching processes. We will also modify the quenching prescriptions in the models to determine the parameters required to reproduce the observations. The proposed research is novel for several reasons. 1) We have wide-field Spitzer/MIPS data that allows us to robustly measure SFRs in our distant cluster galaxies. WISE data on local clusters will provide us with analogous measurements in the nearby Universe. 2) Our significant investment in ancillary spectroscopy allows us to identify infalling galaxies that will eventually join the central regions of the cluster z=0. 3) Our intermediate redshift cluster sample was chosen to have characteristics expected for the progenitors of a large fraction of the known clusters at z=0. 4) We will take advantage of our own cosmological simulations of structure growth to interpret our data. 5) We have optical photometry over the full infall region, allowing us to control for stellar masses and to distinguish passive from dusty star-forming galaxies. We will learn which, if any, of the quenching prescriptions currently employed in semi-analytic models correctly reproduces the observed characteristics of the galaxies that will become cluster galaxies at z=0. We will pinpoint the cluster-centric radii over which quenching takes place between. We will determine the timescale (as a function of stellar mass) over which it must take place. This program will cement the legacy of Spitzer and WISE as tools for studying galaxy formation in clusters.
The evolution of active galactic nuclei in clusters of galaxies from the Dark Energy Survey
Bufanda, E.; Hollowood, D.; Jeltema, T. E.; ...
2016-12-13
The correlation between active galactic nuclei (AGN) and environment provides important clues to AGN fueling and the relationship of black hole growth to galaxy evolution. Here, we analyze the fraction of galaxies in clusters hosting AGN as a function of redshift and cluster richness for X-ray detected AGN associated with clusters of galaxies in Dark Energy Survey (DES) Science Verification data. The present sample includes 33 AGN with L_X > 10 43 ergs s -1 in non-central, host galaxies with luminosity greater than 0.5 L* from a total sample of 432 clusters in the redshift range of 0.10.7. Our resultmore » is in good agreement with previous work and parallels the increase in star formation in cluster galaxies over the same redshift range. But, the AGN fraction in clusters is observed to have no significant correlation with cluster mass. Future analyses with DES Year 1 through Year 3 data will be able to clarify whether AGN activity is correlated to cluster mass and will tightly constrain the relationship between cluster AGN populations and redshift.« less
NASA Astrophysics Data System (ADS)
Lin, Yen-Ting; Hsieh, Bau-Ching; Lin, Sheng-Chieh; Oguri, Masamune; Chen, Kai-Feng; Tanaka, Masayuki; Chiu, I.-Non; Huang, Song; Kodama, Tadayuki; Leauthaud, Alexie; More, Surhud; Nishizawa, Atsushi J.; Bundy, Kevin; Lin, Lihwai; Miyazaki, Satoshi
2017-12-01
The unprecedented depth and area surveyed by the Subaru Strategic Program with the Hyper Suprime-Cam (HSC-SSP) have enabled us to construct and publish the largest distant cluster sample out to z∼ 1 to date. In this exploratory study of cluster galaxy evolution from z = 1 to z = 0.3, we investigate the stellar mass assembly history of brightest cluster galaxies (BCGs), the evolution of stellar mass and luminosity distributions, the stellar mass surface density profile, as well as the population of radio galaxies. Our analysis is the first high-redshift application of the top N richest cluster selection, which is shown to allow us to trace the cluster galaxy evolution faithfully. Over the 230 deg2 area of the current HSC-SSP footprint, selecting the top 100 clusters in each of the four redshift bins allows us to observe the buildup of galaxy population in descendants of clusters whose z≈ 1 mass is about 2× {10}14 {M}ȯ . Our stellar mass is derived from a machine-learning algorithm, which is found to be unbiased and accurate with respect to the COSMOS data. We find very mild stellar mass growth in BCGs (about 35% between z = 1 and 0.3), and no evidence for evolution in both the total stellar mass–cluster mass correlation and the shape of the stellar mass surface density profile. We also present the first measurement of the radio luminosity distribution in clusters out to z∼ 1, and show hints of changes in the dominant accretion mode powering the cluster radio galaxies at z∼ 0.8.
LoCuSS: weak-lensing mass calibration of galaxy clusters
NASA Astrophysics Data System (ADS)
Okabe, Nobuhiro; Smith, Graham P.
2016-10-01
We present weak-lensing mass measurements of 50 X-ray luminous galaxy clusters at 0.15 ≤ z ≤ 0.3, based on uniform high-quality observations with Suprime-Cam mounted on the 8.2-m Subaru telescope. We pay close attention to possible systematic biases, aiming to control them at the ≲4 per cent level. The dominant source of systematic bias in weak-lensing measurements of the mass of individual galaxy clusters is contamination of background galaxy catalogues by faint cluster and foreground galaxies. We extend our conservative method for selecting background galaxies with (V - I') colours redder than the red sequence of cluster members to use a colour-cut that depends on cluster-centric radius. This allows us to define background galaxy samples that suffer ≤1 per cent contamination, and comprise 13 galaxies per square arcminute. Thanks to the purity of our background galaxy catalogue, the largest systematic that we identify in our analysis is a shape measurement bias of 3 per cent, that we measure using simulations that probe weak shears up to g = 0.3. Our individual cluster mass and concentration measurements are in excellent agreement with predictions of the mass-concentration relation. Equally, our stacked shear profile is in excellent agreement with the Navarro Frenk and White profile. Our new Local Cluster Substructure Survey mass measurements are consistent with the Canadian Cluster Cosmology Project and Cluster Lensing And Supernova Survey with Hubble surveys, and in tension with the Weighing the Giants at ˜1σ-2σ significance. Overall, the consensus at z ≤ 0.3 that is emerging from these complementary surveys represents important progress for cluster mass calibration, and augurs well for cluster cosmology.
Distant Galaxy Clusters Hosting Extreme Central Galaxies
NASA Astrophysics Data System (ADS)
McDonald, Michael
2014-09-01
The recently-discovered Phoenix cluster harbors the most star-forming central cluster galaxy of any cluster in the known Universe, by nearly a factor of 10. This extreme system appears to be fulfilling early cooling flow predictions, although the lack of similar systems makes any interpretation difficult. In an attempt to find other "Phoenix-like" clusters, we have cross-correlated archival all-sky surveys (in which Phoenix was detected) and isolated 4 similarly-extreme systems which are also coincident in position and redshift with an overdensity of red galaxies. We propose here to obtain Chandra observations of these extreme, Phoenix-like systems, in order to confirm them as relaxed, rapidly-cooling galaxy clusters.
PRIMUS: Galaxy clustering as a function of luminosity and color at 0.2 < z < 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skibba, Ramin A.; Smith, M. Stephen M.; Coil, Alison L.
2014-04-01
We present measurements of the luminosity and color-dependence of galaxy clustering at 0.2 < z < 1.0 in the Prism Multi-object Survey. We quantify the clustering with the redshift-space and projected two-point correlation functions, ξ(r{sub p} , π) and w{sub p} (r{sub p} ), using volume-limited samples constructed from a parent sample of over ∼130, 000 galaxies with robust redshifts in seven independent fields covering 9 deg{sup 2} of sky. We quantify how the scale-dependent clustering amplitude increases with increasing luminosity and redder color, with relatively small errors over large volumes. We find that red galaxies have stronger small-scale (0.1more » Mpc h {sup –1} < r{sub p} < 1 Mpc h {sup –1}) clustering and steeper correlation functions compared to blue galaxies, as well as a strong color dependent clustering within the red sequence alone. We interpret our measured clustering trends in terms of galaxy bias and obtain values of b {sub gal} ≈ 0.9-2.5, quantifying how galaxies are biased tracers of dark matter depending on their luminosity and color. We also interpret the color dependence with mock catalogs, and find that the clustering of blue galaxies is nearly constant with color, while redder galaxies have stronger clustering in the one-halo term due to a higher satellite galaxy fraction. In addition, we measure the evolution of the clustering strength and bias, and we do not detect statistically significant departures from passive evolution. We argue that the luminosity- and color-environment (or halo mass) relations of galaxies have not significantly evolved since z ∼ 1. Finally, using jackknife subsampling methods, we find that sampling fluctuations are important and that the COSMOS field is generally an outlier, due to having more overdense structures than other fields; we find that 'cosmic variance' can be a significant source of uncertainty for high-redshift clustering measurements.« less
Panoramic Views of Cluster Evolution Since z = 3
NASA Astrophysics Data System (ADS)
Kodama, Tadayuki; Tanaka, M.; Tanaka, Ichi; Kajisawa, M.
2007-05-01
We have been conducting PISCES project (Panoramic Imaging and Spectroscopy of Cluster Evolution with Subaru) with making use of the wide-field imaging capability of Subaru. Our motivations are first to map out large scale structure and local environment of galaxies therein, and then to investigate the variation in galaxy properties as a function of environment and mass. We have completed multi-colour imaging of 8 distant clusters between 0.4
PRIMUS: Galaxy Clustering as a Function of Luminosity and Color at 0.2 < z < 1
NASA Astrophysics Data System (ADS)
Skibba, Ramin A.; Smith, M. Stephen M.; Coil, Alison L.; Moustakas, John; Aird, James; Blanton, Michael R.; Bray, Aaron D.; Cool, Richard J.; Eisenstein, Daniel J.; Mendez, Alexander J.; Wong, Kenneth C.; Zhu, Guangtun
2014-04-01
We present measurements of the luminosity and color-dependence of galaxy clustering at 0.2 < z < 1.0 in the Prism Multi-object Survey. We quantify the clustering with the redshift-space and projected two-point correlation functions, ξ(rp , π) and wp (rp ), using volume-limited samples constructed from a parent sample of over ~130, 000 galaxies with robust redshifts in seven independent fields covering 9 deg2 of sky. We quantify how the scale-dependent clustering amplitude increases with increasing luminosity and redder color, with relatively small errors over large volumes. We find that red galaxies have stronger small-scale (0.1 Mpc h -1 < rp < 1 Mpc h -1) clustering and steeper correlation functions compared to blue galaxies, as well as a strong color dependent clustering within the red sequence alone. We interpret our measured clustering trends in terms of galaxy bias and obtain values of b gal ≈ 0.9-2.5, quantifying how galaxies are biased tracers of dark matter depending on their luminosity and color. We also interpret the color dependence with mock catalogs, and find that the clustering of blue galaxies is nearly constant with color, while redder galaxies have stronger clustering in the one-halo term due to a higher satellite galaxy fraction. In addition, we measure the evolution of the clustering strength and bias, and we do not detect statistically significant departures from passive evolution. We argue that the luminosity- and color-environment (or halo mass) relations of galaxies have not significantly evolved since z ~ 1. Finally, using jackknife subsampling methods, we find that sampling fluctuations are important and that the COSMOS field is generally an outlier, due to having more overdense structures than other fields; we find that "cosmic variance" can be a significant source of uncertainty for high-redshift clustering measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hernandez-Fernandez, Jonathan D.; Iglesias-Paramo, J.; Vilchez, J. M., E-mail: jonatan@iaa.es
2012-03-01
In this paper, we present a sample of cluster galaxies devoted to study the environmental influence on the star formation activity. This sample of galaxies inhabits in clusters showing a rich variety in their characteristics and have been observed by the SDSS-DR6 down to M{sub B} {approx} -18, and by the Galaxy Evolution Explorer AIS throughout sky regions corresponding to several megaparsecs. We assign the broadband and emission-line fluxes from ultraviolet to far-infrared to each galaxy performing an accurate spectral energy distribution for spectral fitting analysis. The clusters follow the general X-ray luminosity versus velocity dispersion trend of L{sub X}more » {proportional_to} {sigma}{sup 4.4}{sub c}. The analysis of the distributions of galaxy density counting up to the 5th nearest neighbor {Sigma}{sub 5} shows: (1) the virial regions and the cluster outskirts share a common range in the high density part of the distribution. This can be attributed to the presence of massive galaxy structures in the surroundings of virial regions. (2) The virial regions of massive clusters ({sigma}{sub c} > 550 km s{sup -1}) present a {Sigma}{sub 5} distribution statistically distinguishable ({approx}96%) from the corresponding distribution of low-mass clusters ({sigma}{sub c} < 550 km s{sup -1}). Both massive and low-mass clusters follow a similar density-radius trend, but the low-mass clusters avoid the high density extreme. We illustrate, with ABELL 1185, the environmental trends of galaxy populations. Maps of sky projected galaxy density show how low-luminosity star-forming galaxies appear distributed along more spread structures than their giant counterparts, whereas low-luminosity passive galaxies avoid the low-density environment. Giant passive and star-forming galaxies share rather similar sky regions with passive galaxies exhibiting more concentrated distributions.« less
Galaxy Infall by Interacting with Its Environment: A Comprehensive Study of 340 Galaxy Clusters
NASA Astrophysics Data System (ADS)
Gu, Liyi; Wen, Zhonglue; Gandhi, Poshak; Inada, Naohisa; Kawaharada, Madoka; Kodama, Tadayuki; Konami, Saori; Nakazawa, Kazuhiro; Xu, Haiguang; Makishima, Kazuo
2016-07-01
To study systematically the evolution of the angular extents of the galaxy, intracluster medium (ICM), and dark matter components in galaxy clusters, we compiled the optical and X-ray properties of a sample of 340 clusters with redshifts <0.5, based on all the available data from the Sloan Digital Sky Survey and Chandra/XMM-Newton. For each cluster, the member galaxies were determined primarily with photometric redshift measurements. The radial ICM mass distribution, as well as the total gravitational mass distribution, was derived from a spatially resolved spectral analysis of the X-ray data. When normalizing the radial profile of galaxy number to that of the ICM mass, the relative curve was found to depend significantly on the cluster redshift; it drops more steeply toward the outside in lower-redshift subsamples. The same evolution is found in the galaxy-to-total mass profile, while the ICM-to-total mass profile varies in an opposite way. The behavior of the galaxy-to-ICM distribution does not depend on the cluster mass, suggesting that the detected redshift dependence is not due to mass-related effects, such as sample selection bias. Also, it cannot be ascribed to various redshift-dependent systematic errors. We interpret that the galaxies, the ICM, and the dark matter components had similar angular distributions when a cluster was formed, while the galaxies traveling in the interior of the cluster have continuously fallen toward the center relative to the other components, and the ICM has slightly expanded relative to the dark matter although it suffers strong radiative loss. This cosmological galaxy infall, accompanied by an ICM expansion, can be explained by considering that the galaxies interact strongly with the ICM while they are moving through it. The interaction is considered to create a large energy flow of 1044-45 erg s-1 per cluster from the member galaxies to their environment, which is expected to continue over cosmological timescales.
Cluster galaxy dynamics and the effects of large-scale environment
NASA Astrophysics Data System (ADS)
White, Martin; Cohn, J. D.; Smit, Renske
2010-11-01
Advances in observational capabilities have ushered in a new era of multi-wavelength, multi-physics probes of galaxy clusters and ambitious surveys are compiling large samples of cluster candidates selected in different ways. We use a high-resolution N-body simulation to study how the influence of large-scale structure in and around clusters causes correlated signals in different physical probes and discuss some implications this has for multi-physics probes of clusters (e.g. richness, lensing, Compton distortion and velocity dispersion). We pay particular attention to velocity dispersions, matching galaxies to subhaloes which are explicitly tracked in the simulation. We find that not only do haloes persist as subhaloes when they fall into a larger host, but groups of subhaloes retain their identity for long periods within larger host haloes. The highly anisotropic nature of infall into massive clusters, and their triaxiality, translates into an anisotropic velocity ellipsoid: line-of-sight galaxy velocity dispersions for any individual halo show large variance depending on viewing angle. The orientation of the velocity ellipsoid is correlated with the large-scale structure, and thus velocity outliers correlate with outliers caused by projection in other probes. We quantify this orientation uncertainty and give illustrative examples. Such a large variance suggests that velocity dispersion estimators will work better in an ensemble sense than for any individual cluster, which may inform strategies for obtaining redshifts of cluster members. We similarly find that the ability of substructure indicators to find kinematic substructures is highly viewing angle dependent. While groups of subhaloes which merge with a larger host halo can retain their identity for many Gyr, they are only sporadically picked up by substructure indicators. We discuss the effects of correlated scatter on scaling relations estimated through stacking, both analytically and in the simulations, showing that the strong correlation of measures with mass and the large scatter in mass at fixed observable mitigate line-of-sight projections.
Reconstructing galaxy histories from globular clusters.
West, Michael J; Côté, Patrick; Marzke, Ronald O; Jordán, Andrés
2004-01-01
Nearly a century after the true nature of galaxies as distant 'island universes' was established, their origin and evolution remain great unsolved problems of modern astrophysics. One of the most promising ways to investigate galaxy formation is to study the ubiquitous globular star clusters that surround most galaxies. Globular clusters are compact groups of up to a few million stars. They generally formed early in the history of the Universe, but have survived the interactions and mergers that alter substantially their parent galaxies. Recent advances in our understanding of the globular cluster systems of the Milky Way and other galaxies point to a complex picture of galaxy genesis driven by cannibalism, collisions, bursts of star formation and other tumultuous events.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lau, Erwin T.; Nagai, Daisuke; Avestruz, Camille
2015-06-10
Galaxy clusters exhibit remarkable self-similar behavior which allows us to establish simple scaling relationships between observable quantities and cluster masses, making galaxy clusters useful cosmological probes. Recent X-ray observations suggested that self-similarity may be broken in the outskirts of galaxy clusters. In this work, we analyze a mass-limited sample of massive galaxy clusters from the Omega500 cosmological hydrodynamic simulation to investigate the self-similarity of the diffuse X-ray emitting intracluster medium (ICM) in the outskirts of galaxy clusters. We find that the self-similarity of the outer ICM profiles is better preserved if they are normalized with respect to the mean densitymore » of the universe, while the inner profiles are more self-similar when normalized using the critical density. However, the outer ICM profiles as well as the location of accretion shock around clusters are sensitive to their mass accretion rate, which causes the apparent breaking of self-similarity in cluster outskirts. We also find that the collisional gas does not follow the distribution of collisionless dark matter (DM) perfectly in the infall regions of galaxy clusters, leading to 10% departures in the gas-to-DM density ratio from the cosmic mean value. Our results have a number implications for interpreting observations of galaxy clusters in X-ray and through the Sunyaev–Zel’dovich effect, and their applications to cosmology.« less
NASA Astrophysics Data System (ADS)
Thölken, Sophia; Schrabback, Tim; Reiprich, Thomas H.; Lovisari, Lorenzo; Allen, Steven W.; Hoekstra, Henk; Applegate, Douglas; Buddendiek, Axel; Hicks, Amalia
2018-03-01
Context. Observations of relaxed, massive, and distant clusters can provide important tests of standard cosmological models, for example by using the gas mass fraction. To perform this test, the dynamical state of the cluster and its gas properties have to be investigated. X-ray analyses provide one of the best opportunities to access this information and to determine important properties such as temperature profiles, gas mass, and the total X-ray hydrostatic mass. For the last of these, weak gravitational lensing analyses are complementary independent probes that are essential in order to test whether X-ray masses could be biased. Aims: We study the very luminous, high redshift (z = 0.902) galaxy cluster Cl J120958.9+495352 using XMM-Newton data. We measure global cluster properties and study the temperature profile and the cooling time to investigate the dynamical status with respect to the presence of a cool core. We use Hubble Space Telescope (HST) weak lensing data to estimate its total mass and determine the gas mass fraction. Methods: We perform a spectral analysis using an XMM-Newton observation of 15 ks cleaned exposure time. As the treatment of the background is crucial, we use two different approaches to account for the background emission to verify our results. We account for point spread function effects and deproject our results to estimate the gas mass fraction of the cluster. We measure weak lensing galaxy shapes from mosaic HST imaging and select background galaxies photometrically in combination with imaging data from the William Herschel Telescope. Results: The X-ray luminosity of Cl J120958.9+495352 in the 0.1-2.4 keV band estimated from our XMM-Newton data is LX = (13.4+1.2-1.0) × 1044 erg/s and thus it is one of the most X-ray luminous clusters known at similarly high redshift. We find clear indications for the presence of a cool core from the temperature profile and the central cooling time, which is very rare at such high redshifts. Based on the weak lensing analysis, we estimate a cluster mass of M500/1014 M⊙ = 4.4+2.2-2.0 (stat.) + 0.6 (sys.) and a gas mass fraction of fgas,2500 = 0.11-0.03+0.06 in good agreement with previous findings for high redshift and local clusters.
LBT/LUCIFER view of star-forming galaxies in the cluster 7C 1756+6520 at z ˜ 1.4
NASA Astrophysics Data System (ADS)
Magrini, Laura; Sommariva, Veronica; Cresci, Giovanni; Sani, Eleonora; Galametz, Audrey; Mannucci, Filippo; Petropoulou, Vasiliki; Fumana, Marco
2012-10-01
Galaxy clusters are key places to study the contribution of nature (i.e. mass and morphology) and nurture (i.e. environment) in the formation and evolution of galaxies. Recently, a number of clusters at z > 1, i.e. corresponding to the first epochs of the cluster formation, have been discovered and confirmed spectroscopically. We present new observations obtained with the LBT Near Infrared Spectroscopic Utility with Camera and Integral Field Unit for Extragalactic Research (LUCIFER) spectrograph at Large Binocular Telescope (LBT) of a sample of star-forming galaxies associated with a large-scale structure around the radio galaxy 7C 1756+6520 at z = 1.42. Combining our spectroscopic data and the literature photometric data, we derived some of the properties of these galaxies: star formation rate, metallicity and stellar mass. With the aim of analysing the effect of the cluster environment on galaxy evolution, we have located the galaxies in the plane of the so-called fundamental metallicity relation (FMR), which is known not to evolve with redshift up to z = 2.5 for field galaxies, but it is still unexplored in rich environments at low and high redshifts. We found that the properties of the galaxies in the cluster 7C 1756+6520 are compatible with the FMR which suggests that the effect of the environment on galaxy metallicity at this early epoch of cluster formation is marginal. As a side study, we also report the spectroscopic analysis of a bright active galactic nucleus, belonging to the cluster, which shows a significant outflow of gas.
Effects of Cluster Environment on Chemical Abundances in Virgo Cluster Spirals
NASA Astrophysics Data System (ADS)
Kennicutt, R. C.; Skillman, E. D.; Shields, G. A.; Zaritsky, D.
1995-12-01
We have obtained new chemical abundance measurements of HII regions in Virgo cluster spiral galaxies, in order to test whether the cluster environment has significantly influenced the gas-phase abundances and chemical evolution of spiral disks. The sample of 9 Virgo spirals covers a narrow range of morphological type (Sbc - Sc) but shows broad ranges in HI deficiencies and radii in the cluster. This allows us to compare the Virgo sample as a whole to field spirals, using a large sample from Zaritsky, Kennicutt, & Huchra, and to test for systematic trends with HI content and location within the cluster. The Virgo spirals show a wide dispersion in mean disk abundances and abundance gradients. Strongly HI deficient spirals closest to the cluster core show anomalously high oxygen abundances (by 0.3 to 0.5 dex), while outlying spirals with normal HI content show abundances similar to those of field spirals. The most HI depleted spirals also show weaker abundance gradients on average, but the formal significance of this trend is marginal. We find a strong correlation between mean abundance and HI/optical diameter ratio that is quite distinct from the behavior seen in field galaxies. This suggests that dynamical processes associated with the cluster environment are more important than cluster membership in determining the evolution of chemical abundances and stellar populations in spiral galaxies. Simple chemical evolution models are calculated to predict the magnitude of the abundance enhancement expected if ram-pressure stripping or curtailment of infall is responsible for the gas deficiencies. The increased abundances of the spirals in the cluster core may have significant effects on their use as cosmological standard candles.
Merger driven star-formation activity in Cl J1449+0856 at z=1.99 as seen by ALMA and JVLA
NASA Astrophysics Data System (ADS)
Coogan, R. T.; Daddi, E.; Sargent, M. T.; Strazzullo, V.; Valentino, F.; Gobat, R.; Magdis, G.; Bethermin, M.; Pannella, M.; Onodera, M.; Liu, D.; Cimatti, A.; Dannerbauer, H.; Carollo, M.; Renzini, A.; Tremou, E.
2018-06-01
We use ALMA and JVLA observations of the galaxy cluster Cl J1449+0856 at z=1.99, in order to study how dust-obscured star-formation, ISM content and AGN activity are linked to environment and galaxy interactions during the crucial phase of high-z cluster assembly. We present detections of multiple transitions of 12CO, as well as dust continuum emission detections from 11 galaxies in the core of Cl J1449+0856. We measure the gas excitation properties, star-formation rates, gas consumption timescales and gas-to-stellar mass ratios for the galaxies. We find evidence for a large fraction of galaxies with highly-excited molecular gas, contributing >50% to the total SFR in the cluster core. We compare these results with expectations for field galaxies, and conclude that environmental influences have strongly enhanced the fraction of excited galaxies in this cluster. We find a dearth of molecular gas in the galaxies' gas reservoirs, implying a high star-formation efficiency (SFE) in the cluster core, and find short gas depletion timescales τdep<0.1-0.4 Gyrs for all galaxies. Interestingly, we do not see evidence for increased specific star-formation rates (sSFRs) in the cluster galaxies, despite their high SFEs and gas excitations. We find evidence for a large number of mergers in the cluster core, contributing a large fraction of the core's total star-formation compared with expectations in the field. We conclude that the environmental impact on the galaxy excitations is linked to the high rate of galaxy mergers, interactions and active galactic nuclei in the cluster core.
NASA Astrophysics Data System (ADS)
Ekholm, T.; Lanoix, P.; Teerikorpi, P.; Paturel, G.; Fouqué, P.
1999-11-01
A sample of 32 galaxies with accurate distance moduli from the Cepheid PL-relation (Lanoix \\cite{Lanoix99}) has been used to study the dynamical behaviour of the Local (Virgo) supercluster. We used analytical Tolman-Bondi (TB) solutions for a spherically symmetric density excess embedded in the Einstein-deSitter universe (q_0=0.5). Using 12 galaxies within Theta =30degr from the centre we found a mass estimate of 1.62M_virial for the Virgo cluster. This agrees with the finding of Teerikorpi et al. (\\cite{Teerikorpi92}) that TB-estimate may be larger than virial mass estimate from Tully & Shaya (\\cite{Tully84}). Our conclusions do not critically depend on our primary choice of the global H_0=57 km s-1 Mpc{-1} established from SNe Ia (Lanoix \\cite{Lanoix99}). The remaining galaxies outside Virgo region do not disagree with this value. Finally, we also found a TB-solution with the H_0 and q_0 cited yielding exactly one virial mass for the Virgo cluster.
NASA Astrophysics Data System (ADS)
Gunawardhana, M. L. P.; Norberg, P.; Zehavi, I.; Farrow, D. J.; Loveday, J.; Hopkins, A. M.; Davies, L. J. M.; Wang, L.; Alpaslan, M.; Bland-Hawthorn, J.; Brough, S.; Holwerda, B. W.; Owers, M. S.; Wright, A. H.
2018-06-01
Statistical studies of galaxy-galaxy interactions often utilise net change in physical properties of progenitors as a function of the separation between their nuclei to trace both the strength and the observable timescale of their interaction. In this study, we use two-point auto, cross and mark correlation functions to investigate the extent to which small-scale clustering properties of star forming galaxies can be used to gain physical insight into galaxy-galaxy interactions between galaxies of similar optical brightness and stellar mass. The Hα star formers, drawn from the highly spatially complete Galaxy And Mass Assembly (GAMA) survey, show an increase in clustering on small separations. Moreover, the clustering strength shows a strong dependence on optical brightness and stellar mass, where (1) the clustering amplitude of optically brighter galaxies at a given separation is larger than that of optically fainter systems, (2) the small scale clustering properties (e.g. the strength, the scale at which the signal relative to the fiducial power law plateaus) of star forming galaxies appear to differ as a function of increasing optical brightness of galaxies. According to cross and mark correlation analyses, the former result is largely driven by the increased dust content in optically bright star forming galaxies. The latter could be interpreted as evidence of a correlation between interaction-scale and optical brightness of galaxies, where physical evidence of interactions between optically bright star formers, likely hosted within relatively massive halos, persist over larger separations than those between optically faint star formers.
A 17-billion-solar-mass black hole in a group galaxy with a diffuse core.
Thomas, Jens; Ma, Chung-Pei; McConnell, Nicholas J; Greene, Jenny E; Blakeslee, John P; Janish, Ryan
2016-04-21
Quasars are associated with and powered by the accretion of material onto massive black holes; the detection of highly luminous quasars with redshifts greater than z = 6 suggests that black holes of up to ten billion solar masses already existed 13 billion years ago. Two possible present-day 'dormant' descendants of this population of 'active' black holes have been found in the galaxies NGC 3842 and NGC 4889 at the centres of the Leo and Coma galaxy clusters, which together form the central region of the Great Wall--the largest local structure of galaxies. The most luminous quasars, however, are not confined to such high-density regions of the early Universe; yet dormant black holes of this high mass have not yet been found outside of modern-day rich clusters. Here we report observations of the stellar velocity distribution in the galaxy NGC 1600--a relatively isolated elliptical galaxy near the centre of a galaxy group at a distance of 64 megaparsecs from Earth. We use orbit superposition models to determine that the black hole at the centre of NGC 1600 has a mass of 17 billion solar masses. The spatial distribution of stars near the centre of NGC 1600 is rather diffuse. We find that the region of depleted stellar density in the cores of massive elliptical galaxies extends over the same radius as the gravitational sphere of influence of the central black holes, and interpret this as the dynamical imprint of the black holes.
Galaxy evolution in the densest environments: HST imaging
NASA Astrophysics Data System (ADS)
Jorgensen, Inger
2013-10-01
We propose to process in a consistent fashion all available HST/ACS and WFC3 imaging of seven rich clusters of galaxies at z=1.2-1.6. The clusters are part of our larger project aimed at constraining models for galaxy evolution in dense environments from observations of stellar populations in rich z=1.2-2 galaxy clusters. The main objective is to establish the star formation {SF} history and structural evolution over this epoch during which large changes in SF rates and galaxy structure are expected to take place in cluster galaxies.The observational data required to meet our main objective are deep HST imaging and high S/N spectroscopy of individual cluster members. The HST imaging already exists for the seven rich clusters at z=1.2-1.6 included in this archive proposal. However, the data have not been consistently processed to derive colors, magnitudes, sizes and morphological parameters for all potential cluster members bright enough to be suitable for spectroscopic observations with 8-m class telescopes. We propose to carry out this processing and make all derived parameters publicly available. We will use the parameters derived from the HST imaging to {1} study the structural evolution of the galaxies, {2} select clusters and galaxies for spectroscopic observations, and {3} use the photometry and spectroscopy together for a unified analysis aimed at the SF history and structural changes. The analysis will also utilize data from the Gemini/HST Cluster Galaxy Project, which covers rich clusters at z=0.2-1.0 and for which we have similar HST imaging and high S/N spectroscopy available.
Probing Globular Cluster Formation in Low Metallicity Dwarf Galaxies
NASA Astrophysics Data System (ADS)
Johnson, Kelsey E.; Hunt, Leslie K.; Reines, Amy E.
2008-12-01
The ubiquitous presence of globular clusters around massive galaxies today suggests that these extreme star clusters must have been formed prolifically in the earlier universe in low-metallicity galaxies. Numerous adolescent and massive star clusters are already known to be present in a variety of galaxies in the local universe; however most of these systems have metallicities of 12 + log(O/H) > 8, and are thus not representative of the galaxies in which today's ancient globular clusters were formed. In order to better understand the formation and evolution of these massive clusters in environments with few heavy elements, we have targeted several low-metallicity dwarf galaxies with radio observations, searching for newly-formed massive star clusters still embedded in their birth material. The galaxies in this initial study are HS 0822+3542, UGC 4483, Pox 186, and SBS 0335-052, all of which have metallicities of 12 + log(O/H) < 7.75. While no thermal radio sources, indicative of natal massive star clusters, are found in three of the four galaxies, SBS 0335-052 hosts two such objects, which are incredibly luminous. The radio spectral energy distributions of these intense star-forming regions in SBS 0335-052 suggest the presence of ~12,000 equivalent O-type stars, and the implied star formation rate is nearing the maximum starburst intensity limit.
RX J0848.6+4453: The evolution of galaxy sizes and stellar populations in A z = 1.27 cluster
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jørgensen, Inger; Chiboucas, Kristin; Schiavon, Ricardo P.
2014-12-01
RX J0848.6+4453 (Lynx W) at redshift 1.27 is part of the Lynx Supercluster of galaxies. We present an analysis of the stellar populations and star formation history for a sample of 24 members of the cluster. Our study is based on deep optical spectroscopy obtained with Gemini North combined with imaging data from Hubble Space Telescope. Focusing on the 13 bulge-dominated galaxies for which we can determine central velocity dispersions, we find that these show a smaller evolution with redshift of sizes and velocity dispersions than reported for field galaxies and galaxies in poorer clusters. Our data show that themore » galaxies in RX J0848.6+4453 populate the fundamental plane (FP) similar to that found for lower-redshift clusters. The zero-point offset for the FP is smaller than expected if the cluster's galaxies are to evolve passively through the location of the FP we established in our previous work for z = 0.8-0.9 cluster galaxies and then to the present-day FP. The FP zero point for RX J0848.6+4453 corresponds to an epoch of last star formation at z{sub form}=1.95{sub −0.15}{sup +0.22}. Further, we find that the spectra of the galaxies in RX J0848.6+4453 are dominated by young stellar populations at all galaxy masses and in many cases show emission indicating low-level ongoing star formation. The average age of the young stellar populations as estimated from the strength of the high-order Balmer line Hζ is consistent with a major star formation episode 1-2 Gyr prior, which in turn agrees with z {sub form} = 1.95. These galaxies dominated by young stellar populations are distributed throughout the cluster. We speculate that low-level star formation has not yet been fully quenched in the center of this cluster, possibly because the cluster is significantly poorer than other clusters previously studied at similar redshifts, which appear to have very little ongoing star formation in their centers. The mixture in RX J0848.6+4453 of passive galaxies with young stellar populations and massive galaxies still experiencing some star formation appears similar to the galaxy populations recently identified in two z ≈ 2 clusters.« less
Deep, wide-field, multi-band imaging of z approximately equal to 0.4 clusters and their environs
NASA Technical Reports Server (NTRS)
Silva, David R.; Pierce, Michael J.
1993-01-01
The existence of an excess population of blue galaxies in the cores of distant, rich clusters of galaxies, commonly referred to as the 'Butcher-Oemler' effect is now well established. Spectroscopy of clusters at z = 0.2-0.4 has confirmed that the luminous blue populations comprise as much as 20 percent of these clusters. This fraction is much higher that the 2 percent blue fraction found for nearby rich clusters, such as Coma, indicating that rapid galaxy evolution has occurred on a relatively short time scale. Spectroscopy has also shown that the 'blue' galaxies can basically be divided into three classes: 'starburst' galaxies with large (O II) equivalent widths, 'post-starburst' E+A galaxies (i.e. galaxies with strong Balmer lines shortward of 4000A but elliptical-like colors, and normal spiral/irregulars. Unfortunately, it is difficult to obtain enough spectra of individual galaxies in these intermediate redshift clusters to say anything statistically meaningful. Thus, limited information is available about the relative numbers of these three classes of 'blue' galaxies and the associated E/SO population in these intermediate redshift clusters. More statistically meaningful results can be derived from deep imaging of these clusters. However, the best published data to date (e.g. MacLaren et al. 1988; Dressler & Gunn 1992) are limited to the cluster cores and do not sample the galaxy luminosity functions very deeply at the bluest wavelengths. Furthermore, only limited spectro-energy distribution data is available below 4000A in the observed cluster rest frame providing limited sensitivity to 'recent' star formation activity. To improve this situation, we are currently obtaining deep, wide-field UBRI images of all known rich clusters at z approx. equals 0.4. Our main objective is to obtain the necessary color information to distinguish between the E+SO, 'E+A', and spiral/irregular galaxy populations throughout the cluster/supercluster complex. At this redshift, UBRI correspond to rest-frame 2500A/UVR bandpasses. The rest-frame UVR system provides a powerful 'blue' galaxy discriminate given the expected color distribution. Moreover, since 'hot' stars peak near 2500A, that bandpass is a powerful probe of recent star formation activity in all classes of galaxies. In particular, it is sensitive to ellipticals with 'UV excess' populations (MacLaren et al. 1988).
NASA Astrophysics Data System (ADS)
Webb, T. M. A.; O'Donnell, D.; Yee, H. K. C.; Gilbank, David; Coppin, Kristen; Ellingson, Erica; Faloon, Ashley; Geach, James E.; Gladders, Mike; Noble, Allison; Muzzin, Adam; Wilson, Gillian; Yan, Renbin
2013-10-01
We present the results of an infrared (IR) study of high-redshift galaxy clusters with the MIPS camera on board the Spitzer Space Telescope. We have assembled a sample of 42 clusters from the Red-Sequence Cluster Survey-1 over the redshift range 0.3 < z < 1.0 and spanning an approximate range in mass of 1014-15 M ⊙. We statistically measure the number of IR-luminous galaxies in clusters above a fixed inferred IR luminosity of 2 × 1011 M ⊙, assuming a star forming galaxy template, per unit cluster mass and find it increases to higher redshift. Fitting a simple power-law we measure evolution of (1 + z)5.1 ± 1.9 over the range 0.3 < z < 1.0. These results are tied to the adoption of a single star forming galaxy template; the presence of active galactic nuclei, and an evolution in their relative contribution to the mid-IR galaxy emission, will alter the overall number counts per cluster and their rate of evolution. Under the star formation assumption we infer the approximate total star formation rate per unit cluster mass (ΣSFR/M cluster). The evolution is similar, with ΣSFR/M cluster ~ (1 + z)5.4 ± 1.9. We show that this can be accounted for by the evolution of the IR-bright field population over the same redshift range; that is, the evolution can be attributed entirely to the change in the in-falling field galaxy population. We show that the ΣSFR/M cluster (binned over all redshift) decreases with increasing cluster mass with a slope (ΣSFR/M_{cluster} \\sim M_{cluster}^{-1.5+/- 0.4}) consistent with the dependence of the stellar-to-total mass per unit cluster mass seen locally. The inferred star formation seen here could produce ~5%-10% of the total stellar mass in massive clusters at z = 0, but we cannot constrain the descendant population, nor how rapidly the star-formation must shut-down once the galaxies have entered the cluster environment. Finally, we show a clear decrease in the number of IR-bright galaxies per unit optical galaxy in the cluster cores, confirming star formation continues to avoid the highest density regions of the universe at z ~ 0.75 (the average redshift of the high-redshift clusters). While several previous studies appear to show enhanced star formation in high-redshift clusters relative to the field we note that these papers have not accounted for the overall increase in galaxy or dark matter density at the location of clusters. Once this is done, clusters at z ~ 0.75 have the same or less star formation per unit mass or galaxy as the field.
http://www.esa.int/esaSC/Pr_21_2004_s_en.html
NASA Astrophysics Data System (ADS)
2004-09-01
X-ray brightness map hi-res Size hi-res: 38 Kb Credits: ESA/ XMM-Newton/ Patrick Henry et al. X-ray brightness map This map shows "surface brightness" or how luminous the region is. The larger of the two galaxy clusters is brighter, shown here as a white and red spot. A second cluster resides about "2 o'clock" from this, shown by a batch of yellow surrounded by green. Luminosity is related to density, so the densest regions (cluster cores) are the brightest regions. The white color corresponds to regions of the highest surface brightness, followed by red, orange, yellow, green, blue and purple. High resolution version (JPG format) 38 Kb High resolution version (TIFF format) 525 Kb Temperature map Credits: NASA Artist’s impression of cosmic head on collision The event details what the scientists are calling the perfect cosmic storm: galaxy clusters that collided like two high-pressure weather fronts and created hurricane-like conditions, tossing galaxies far from their paths and churning shock waves of 100-million-degree gas through intergalactic space. The tiny dots in this artist's concept are galaxies containing thousand million of stars. Animated GIF version Temperature map hi-res Size hi-res: 57 Kb Credits: ESA/ XMM-Newton/ Patrick Henry et al. Temperature map This image shows the temperature of gas in and around the two merging galaxy clusters, based directly on X-ray data. The galaxies themselves are difficult to identify; the image highlights the hot ‘invisible’ gas between the clusters heated by shock waves. The white colour corresponds to regions of the highest temperature - million of degrees, hotter than the surface of the Sun - followed by red, orange, yellow and blue. High resolution version (JPG format) 57 Kb High resolution version (TIFF format) 819 Kb The event details what the scientists are calling the ‘perfect cosmic storm’: galaxy clusters that collided like two high-pressure weather fronts and created hurricane-like conditions, tossing galaxies far from their paths and churning shock waves of 100-million-degree gas through intergalactic space. This unprecedented view of a merger in action crystallises the theory that the Universe built its magnificent hierarchal structure from the ‘bottom up’ - essentially through mergers of smaller galaxies and galaxy clusters into bigger ones. "Here before our eyes we see the making of one of the biggest objects in the Universe," said Dr Patrick Henry of the University of Hawaii, who led the study. "What was once two distinct but smaller galaxy clusters 300 million years ago is now one massive cluster in turmoil.” Henry and his colleagues, Alexis Finoguenov and Ulrich Briel of the Max-Planck Institute for Extraterrestrial Physics in Germany, present these results in an upcoming issue of the Astrophysical Journal. The forecast for the new super-cluster, they said, is 'clear and calm' now that the worst of the storm has passed. Galaxy clusters are the largest gravitationally bound structures in Universe, containing hundreds to thousands of galaxies. Our Milky Way galaxy is part of a small group of galaxies but is not gravitationally bound to the closest cluster, the Virgo Cluster. We are destined for a collision in a few thousand million years, though. The cluster named Abell 754 in the constellation Hydra has been known for decades. However, to the scientists' surprise, the new observation reveals that the merger may have occurred from the opposite direction than what was thought. They found evidence for this by tracing the wreckage today left in the merger's wake, spanning a distance of millions of light years. While other large mergers are known, none has been measured in such detail as Abell 754. For the first time, the scientists could create a complete ‘weather map’ of Abell 754 and thus determine a forecast. This map contains information about the temperature, pressure and density of the new cluster. As in all clusters, most the ordinary matter is in the form of gas between the galaxies and not locked up in the galaxies or stars themselves. The massive forces of the merging clusters accelerated intergalactic gas to great speeds. This resulted in shock waves that heat the gas to very high temperatures, which then radiated X-ray light, far more energetic than the visible light our eyes can detect. XMM-Newton, in orbit, detects this type of high-energy light. The dynamics of the merger revealed by XMM-Newton point to a cluster in transition. "One cluster has apparently smashed into the other from the 'north-west' and has since made one pass through," said Finoguenov. "Now, gravity will pull the remnants of this first cluster back towards the core of the second. Over the next few thousand million of years, the remnants of the clusters will settle and the merger will be complete." The observation implies that the largest structures in the Universe are essentially still forming in the modern era. Abell 754 is relatively close, about 800 million light years away. The construction boom may soon be over in a few more thousand million years though. A mysterious substance dubbed 'dark energy' appears to be accelerating the Universe's expansion rate. This means that objects are flying apart from each other at an ever-increasing speed and that clusters may eventually never have the opportunity to collide with each other. X-ray observations of galaxy clusters such as Abell 754 will help to better define dark energy and also dark matter, an ‘invisible’ and mysterious substance that appears to comprise over 80 percent of a galaxy cluster's mass. Notes for editors: This observation was announced at a NASA Internet press conference today. A paper describing these results, by Patrick Henry and his collaborators, will be published in the Astrophysical Journal. Images and other visual material are available at: http://www.gsfc.nasa.gov/topstory/2004/0831galaxymerger_media.html More about XMM-Newton ESA's XMM-Newton can detect more X-ray sources than any previous satellite and is helping to solve many cosmic mysteries of the violent Universe, from black holes to the formation of galaxies. It was launched on 10 December 1999, using an Ariane-5 rocket, from French Guiana. It is expected to return data for a decade. XMM-Newton's high-tech design uses over 170 wafer-thin cylindrical mirrors spread over three telescopes. Its orbit takes it almost a third of the way to the Moon, so that astronomers can enjoy long, uninterrupted views of celestial objects.
NASA Astrophysics Data System (ADS)
Ryś, Agnieszka; Falcón-Barroso, Jesús; van de Ven, Glenn
2015-03-01
In our contribution we show the effects of environmental evolution on cluster and field dwarf elliptical galaxies (dEs), presenting the first large-scale integral-field spectroscopic data for this galaxy class. Our sample con sists of 12 galaxies and no two of them are alike. We find that the level of rotation is not tied to flattening; we observe kinematic twists; we discover large-scale kinematically-decoupled components; we see varying gradient s in line-strength maps: from nearly flat to strongly peaked in the center. The great variety of morphological, kinematic, and stellar population parameters seen in our data supports the claim that dEs are defunct dwarf spiral/irregular galaxies and points to a formation scenario that allows for a stochastic shaping of galaxy properties. The combined influence of ram-pressure stripping and harassment fulfills these requirements, still, the exact impact of the two is not yet understood. We further investigate the properties of our sample by performing a detailed comprehensive analysis of its kinematic, dynamical, and stellar population parameters. The combined knowledge of the dynamical properties and star-formation histories, together with model predictions for different formation mechanisms, will be used to quant itatively determine the actual transformation paths for these galaxies.
A 3.5-million Solar Masses Black Hole in the Centre of the Ultracompact Dwarf Galaxy Fornax UCD3
NASA Astrophysics Data System (ADS)
Afanasiev, Anton V.; Chilingarian, Igor V.; Mieske, Steffen; Voggel, Karina T.; Picotti, Arianna; Hilker, Michael; Seth, Anil; Neumayer, Nadine; Frank, Matthias; Romanowsky, Aaron J.; Hau, George; Baumgardt, Holger; Ahn, Christopher; Strader, Jay; den Brok, Mark; McDermid, Richard; Spitler, Lee; Brodie, Jean; Walsh, Jonelle L.
2018-04-01
The origin of ultracompact dwarfs (UCDs), a class of compact stellar systems discovered two decades ago, still remains a matter of debate. Recent discoveries of central supermassive black holes in UCDs likely inherited from their massive progenitor galaxies provide support for the tidal stripping hypothesis. At the same time, on statistical grounds, some massive UCDs might be representatives of the high luminosity tail of the globular cluster luminosity function. Here we present a detection of a 3.3^{+1.4}_{-1.2}× 10^6 M_{⊙} black hole (1σ uncertainty) in the centre of the UCD3 galaxy in the Fornax cluster, that corresponds to 4 per cent of its stellar mass. We performed isotropic Jeans dynamical modelling of UCD3 using internal kinematics derived from adaptive optics assisted observations with the SINFONI spectrograph and seeing limited data collected with the FLAMES spectrograph at the ESO VLT. We rule out the zero black hole mass at the 3σ confidence level when adopting a mass-to-light ratio inferred from stellar populations. This is the fourth supermassive black hole found in a UCD and the first one in the Fornax cluster. Similarly to other known UCDs that harbour black holes, UCD3 hosts metal rich stars enhanced in α-elements that supports the tidal stripping of a massive progenitor as its likely formation scenario. We estimate that up to 80 per cent of luminous UCDs in galaxy clusters host central black holes. This fraction should be lower for UCDs in groups, because their progenitors are more likely to be dwarf galaxies, which do not tend to host central black holes.
A 3.5 million Solar masses black hole in the centre of the ultracompact dwarf galaxy fornax UCD3
NASA Astrophysics Data System (ADS)
Afanasiev, Anton V.; Chilingarian, Igor V.; Mieske, Steffen; Voggel, Karina T.; Picotti, Arianna; Hilker, Michael; Seth, Anil; Neumayer, Nadine; Frank, Matthias; Romanowsky, Aaron J.; Hau, George; Baumgardt, Holger; Ahn, Christopher; Strader, Jay; den Brok, Mark; McDermid, Richard; Spitler, Lee; Brodie, Jean; Walsh, Jonelle L.
2018-07-01
The origin of ultracompact dwarfs (UCDs), a class of compact stellar systems discovered two decades ago, still remains a matter of debate. Recent discoveries of central supermassive black holes in UCDs likely inherited from their massive progenitor galaxies provide support for the tidal stripping hypothesis. At the same time, on statistical grounds, some massive UCDs might be representatives of the high luminosity tail of the globular cluster luminosity function. Here we present a detection of a 3.3^{+1.4}_{-1.2}× 10^6 M_{⊙} black hole (1σ uncertainty) in the centre of the UCD3 galaxy in the Fornax cluster, which corresponds to 4 per cent of its stellar mass. We performed isotropic Jeans dynamical modelling of UCD3 using internal kinematics derived from adaptive optics-assisted observations with the SINFONI spectrograph and seeing limited data collected with the FLAMES spectrograph at the ESO VLT. We rule out the zero black hole mass at the 3σ confidence level when adopting a mass-to-light ratio inferred from stellar populations. This is the fourth supermassive black hole found in a UCD and the first one in the Fornax cluster. Similarly to other known UCDs that harbour black holes, UCD3 hosts metal rich stars enhanced in α-elements that support the tidal stripping of a massive progenitor as its likely formation scenario. We estimate that up to 80 per cent of luminous UCDs in galaxy clusters host central black holes. This fraction should be lower for UCDs in groups, because their progenitors are more likely to be dwarf galaxies, which do not usually host black holes massive enough to be detected.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haines, C. P.; Pereira, M. J.; Egami, E.
2013-10-01
We present an analysis of the levels and evolution of star formation activity in a representative sample of 30 massive galaxy clusters at 0.15 < z < 0.30 from the Local Cluster Substructure Survey, combining wide-field Spitzer/MIPS 24 μm data with extensive spectroscopy of cluster members. The specific SFRs of massive (M > or approx. 10{sup 10} M{sub ☉}) star-forming cluster galaxies within r{sub 200} are found to be systematically ∼28% lower than their counterparts in the field at fixed stellar mass and redshift, a difference significant at the 8.7σ level. This is the unambiguous signature of star formation inmore » most (and possibly all) massive star-forming galaxies being slowly quenched upon accretion into massive clusters, their star formation rates (SFRs) declining exponentially on quenching timescales in the range 0.7-2.0 Gyr. We measure the mid-infrared Butcher-Oemler effect over the redshift range 0.0-0.4, finding rapid evolution in the fraction (f{sub SF}) of massive (M{sub K} < – 23.1) cluster galaxies within r{sub 200} with SFRs > 3 M{sub ☉} yr{sup –1}, of the form f{sub SF}∝(1 + z){sup 7.6±1.1}. We dissect the origins of the Butcher-Oemler effect, revealing it to be due to the combination of a ∼3 × decline in the mean specific SFRs of star-forming cluster galaxies since z ∼ 0.3 with a ∼1.5 × decrease in number density. Two-thirds of this reduction in the specific SFRs of star-forming cluster galaxies is due to the steady cosmic decline in the specific SFRs among those field galaxies accreted into the clusters. The remaining one-third reflects an accelerated decline in the star formation activity of galaxies within clusters. The slow quenching of star formation in cluster galaxies is consistent with a gradual shut down of star formation in infalling spiral galaxies as they interact with the intracluster medium via ram-pressure stripping or starvation mechanisms. The observed sharp decline in star formation activity among cluster galaxies since z ∼ 0.4 likely reflects the increased susceptibility of low-redshift spiral galaxies to gas removal mechanisms as their gas surface densities decrease with time. We find no evidence for the build-up of cluster S0 bulges via major nuclear starburst episodes.« less
Globular cluster systems - Comparative evolution of Galactic halos
NASA Astrophysics Data System (ADS)
Harris, William E.
Space distributions, metallicity/age distributions, and kinematics are considered for the Milky Way halo system. Comparisons are made with other systems, and time scales for dynamical evolution are considered. It is noted that the globular cluster subsystems of halos resemble each other more closely than their parent galaxies do; this forms a reasonable basis for supposing that they represent a kind of underlying unity in the protogalaxy formation process.
A Starburst in the Core of a Galaxy Cluster: the Dwarf Irregular NGC 1427A in Fornax
NASA Astrophysics Data System (ADS)
Mora, Marcelo D.; Chanamé, Julio; Puzia, Thomas H.
2015-09-01
Gas-rich galaxies in dense environments such as galaxy clusters and massive groups are affected by a number of possible types of interactions with the cluster environment, which make their evolution radically different than that of field galaxies. The dwarf irregular galaxy NGC 1427A, presently infalling toward the core of the Fornax galaxy cluster for the first time, offers a unique opportunity to study those processes at a level of detail not possible to achieve for galaxies at higher redshifts, when galaxy-scale interactions were more common. Using the spatial resolution of the Hubble Space Telescope/Advanced Camera for Surveys and auxiliary Very Large Telescope/FORS1 ground-based observations, we study the properties of the most recent episodes of star formation in this gas-rich galaxy, the only one of its type near the core of the Fornax cluster. We study the structural and photometric properties of young star cluster complexes in NGC 1427A, identifying 12 bright such complexes with exceptionally blue colors. The comparison of our broadband near-UV/optical photometry with simple stellar population models yields ages below ˜ 4× {10}6 years and stellar masses from a few 1000 up to ˜ 3× {10}4{M}⊙ , slightly dependent on the assumption of cluster metallicity and initial mass function. Their grouping is consistent with hierarchical and fractal star cluster formation. We use deep Hα imaging data to determine the current star formation rate in NGC 1427A and estimate the ratio, Γ, of star formation occurring in these star cluster complexes to that in the entire galaxy. We find Γ to be among the largest such values available in the literature, consistent with starburst galaxies. Thus a large fraction of the current star formation in NGC 1427A is occurring in star clusters, with the peculiar spatial arrangement of such complexes strongly hinting at the possibility that the starburst is being triggered by the passage of the galaxy through the cluster environment. Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under programme ID 70.B-0695.
A Search for Ram-pressure Stripping in the Hydra I Cluster
NASA Technical Reports Server (NTRS)
Brown, B.
2005-01-01
Ram-pressure stripping is a method by which hot interstellar gas can be removed from a galaxy moving through a group or cluster of galaxies. Indirect evidence of ram-pressure stripping includes lowered X-ray brightness in a galaxy due to less X-ray emitting gas remaining in the galaxy. Here we present the initial results of our program to determine whether cluster elliptical galaxies have lower hot gas masses than their counterparts in less rich environments. This test requires the use of the high-resolution imaging of the Chandra Observatory and we present our analysis of the galaxies in the nearby cluster Hydra I.
A Search for Ram-pressure Stripping in the Hydra I Cluster
NASA Technical Reports Server (NTRS)
Brown, B. A.
2005-01-01
Ram-pressure stripping is a method by which hot interstellar gas can be removed from a galaxy moving through a group or cluster of galaxies. Indirect evidence of ram-pressure stripping includes lowered X- ray brightness in a galaxy due to less X-ray emitting gas remaining in the galaxy. Here we present the initial results of our program to determine whether cluster elliptical galaxies have lower hot gas masses than their counterparts in less rich environments. This test requires the use of the high-resolution imaging of the Chundru Observatory and we present our analysis of the galaxies in the nearby cluster Hydra I.
NASA Astrophysics Data System (ADS)
Yagi, Masafumi; Yoshida, Michitoshi; Komiyama, Yutaka; Kashikawa, Nobunari; Furusawa, Hisanori; Okamura, Sadanori; Graham, Alister W.; Miller, Neal A.; Carter, David; Mobasher, Bahram; Jogee, Shardha
2010-12-01
We present images of extended Hα clouds associated with 14 member galaxies in the Coma cluster obtained from deep narrowband imaging observations with the Suprime-Cam at the Subaru Telescope. The parent galaxies of the extended Hα clouds are distributed farther than 0.2 Mpc from the peak of the X-ray emission of the cluster. Most of the galaxies are bluer than g - r ≈ 0.5 and they account for 57% of the blue (g - r < 0.5) bright (r < 17.8 mag) galaxies in the central region of the Coma cluster. They reside near the red- and blueshifted edges of the radial velocity distribution of Coma cluster member galaxies. Our findings suggest that most of the parent galaxies were recently captured by the Coma cluster potential and are now infalling toward the cluster center with their disk gas being stripped off and producing the observed Hα clouds. Based on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burns, J.O.; White, R.A.; Hough, D.H.
1981-01-01
VLA radio maps and optical identifications of a sample of sources in the directions of 21 Yerkes poor cluster fields are presented. The majority of the cluster radio sources are associated with the dominant D or cD galaxies (approx.70%). Our analysis of dominant galaxies in rich and poor clusters indicates that these giant galaxies are much more often radio emitters (approx.25% of cD's are radio active in the poor clusters), have steeper radio spectra, and have simpler radio morphologies (i.e., double or other linear structure) than other less bright ellipticals. A strong continuum of radio properties in cD galaxies ismore » seen from rich to poor clusters. We speculate that the location of these dominant galaxies at the cluster centers (i.e., at the bottom of a deep, isolated gravitational potential well) is the crucial factor in explaining their multifrequency activity. We briefly discuss galaxy cannibalism and gas infall models as fueling mechanisms for the observed radio and x-ray emission.« less
NASA Technical Reports Server (NTRS)
Burns, J. O.; White, R. A.; Hough, D. H.
1981-01-01
VLA radio maps and optical identifications of a sample of sources in the directions of 21 Yerkes poor cluster fields are presented. The majority of the cluster radio sources are associated with the dominant D or cD galaxies (approximately 70 percent). Our analysis of dominant galaxies in rich and poor clusters indicates that these giant galaxies are much more often radio emitters (approximately 25 percent of cD's are radio active in the poor clusters), have steeper radio spectra, and have simpler radio morphologies (i.e., double or other linear structure) than other less bright ellipticals. A strong continuum of radio properties in cD galaxies is seen from rich to poor clusters. It is speculated that the location of these dominant galaxies at the cluster centers (i.e., at the bottom of a deep, isolated gravitational potential well) is the crucial factor in explaining their multifrequency activity. Galaxy cannibalism and gas infall models as fueling mechanisms for the observed radio and X-ray emission are discussed
Quenching of satellite galaxies at the outskirts of galaxy clusters
NASA Astrophysics Data System (ADS)
Zinger, Elad; Dekel, Avishai; Kravtsov, Andrey V.; Nagai, Daisuke
2018-04-01
We find, using cosmological simulations of galaxy clusters, that the hot X-ray emitting intracluster medium (ICM) enclosed within the outer accretion shock extends out to Rshock ˜ (2-3)Rvir, where Rvir is the standard virial radius of the halo. Using a simple analytic model for satellite galaxies in the cluster, we evaluate the effect of ram-pressure stripping on the gas in the inner discs and in the haloes at different distances from the cluster centre. We find that significant removal of star-forming disc gas occurs only at r ≲ 0.5Rvir, while gas removal from the satellite halo is more effective and can occur when the satellite is found between Rvir and Rshock. Removal of halo gas sets the stage for quenching of the star formation by starvation over 2-3 Gyr, prior to the satellite entry to the inner cluster halo. This scenario explains the presence of quenched galaxies, preferentially discs, at the outskirts of galaxy clusters, and the delayed quenching of satellites compared to central galaxies.
Finding SDSS Galaxy Clusters in 4-dimensional Color Space Using the False Discovery Rate
NASA Astrophysics Data System (ADS)
Nichol, R. C.; Miller, C. J.; Reichart, D.; Wasserman, L.; Genovese, C.; SDSS Collaboration
2000-12-01
We describe a recently developed statistical technique that provides a meaningful cut-off in probability-based decision making. We are concerned with multiple testing, where each test produces a well-defined probability (or p-value). By well-known, we mean that the null hypothesis used to determine the p-value is fully understood and appropriate. The method is entitled False Discovery Rate (FDR) and its largest advantage over other measures is that it allows one to specify a maximal amount of acceptable error. As an example of this tool, we apply FDR to a four-dimensional clustering algorithm using SDSS data. For each galaxy (or test galaxy), we count the number of neighbors that fit within one standard deviation of a four dimensional Gaussian centered on that test galaxy. The mean and standard deviation of that Gaussian are determined from the colors and errors of the test galaxy. We then take that same Gaussian and place it on a random selection of n galaxies and make a similar count. In the limit of large n, we expect the median count around these random galaxies to represent a typical field galaxy. For every test galaxy we determine the probability (or p-value) that it is a field galaxy based on these counts. A low p-value implies that the test galaxy is in a cluster environment. Once we have a p-value for every galaxy, we use FDR to determine at what level we should make our probability cut-off. Once this cut-off is made, we have a final sample of galaxies that are cluster-like galaxies. Using FDR, we also know the maximum amount of field contamination in our cluster galaxy sample. We present our preliminary galaxy clustering results using these methods.
NASA Astrophysics Data System (ADS)
Deng, Xin-Fa; Song, Jun; Chen, Yi-Qing; Jiang, Peng; Ding, Ying-Ping
2014-08-01
Using two volume-limited Main galaxy samples of the Sloan Digital Sky Survey Data Release 10 (SDSS DR10), we investigate the dependence of the clustering properties of galaxies on stellar velocity dispersion by cluster analysis. It is found that in the luminous volume-limited Main galaxy sample, except at r=1.2, richer and larger systems can be more easily formed in the large stellar velocity dispersion subsample, while in the faint volume-limited Main galaxy sample, at r≥0.9, an opposite trend is observed. According to statistical analyses of the multiplicity functions, we conclude in two volume-limited Main galaxy samples: small stellar velocity dispersion galaxies preferentially form isolated galaxies, close pairs and small group, while large stellar velocity dispersion galaxies preferentially inhabit the dense groups and clusters. However, we note the difference between two volume-limited Main galaxy samples: in the faint volume-limited Main galaxy sample, at r≥0.9, the small stellar velocity dispersion subsample has a higher proportion of galaxies in superclusters ( n≥200) than the large stellar velocity dispersion subsample.
Cold fronts and shocks formed by gas streams in galaxy clusters
NASA Astrophysics Data System (ADS)
Zinger, E.; Dekel, A.; Birnboim, Y.; Nagai, D.; Lau, E.; Kravtsov, A. V.
2018-05-01
Cold fronts (CFs) and shocks are hallmarks of the complex intra-cluster medium (ICM) in galaxy clusters. They are thought to occur due to gas motions within the ICM and are often attributed to galaxy mergers within the cluster. Using hydro-cosmological simulations of clusters of galaxies, we show that collisions of inflowing gas streams, seen to penetrate to the very centre of about half the clusters, offer an additional mechanism for the formation of shocks and CFs in cluster cores. Unlike episodic merger events, a gas stream inflow persists over a period of several Gyr and it could generate a particular pattern of multiple CFs and shocks.
Spiral Arm Morphology in Cluster Environment
NASA Astrophysics Data System (ADS)
Choi, Isaac Yeoun-Gyu; Ann, Hong Bae
2011-10-01
We examine the dependence of the morphology of spiral galaxies on the environment using the KIAS Value Added Galaxy Catalog (VAGC) which is derived from the Sloan Digital Sky Survey (SDSS) DR7. Our goal is to understand whether the local environment or global conditions dominate in determining the morphology of spiral galaxies. For the analysis, we conduct a morphological classification of galaxies in 20 X-ray selected Abell clusters up to z˜0.06, using SDSS color images and the X-ray data from the Northern ROSAT All-Sky (NORAS) catalog. We analyze the distribution of arm classes along the clustercentric radius as well as that of Hubble types. To segregate the effect of local environment from the global environment, we compare the morphological distribution of galaxies in two X-lay luminosity groups, the low-Lx clusters (Lx < 0.15×1044erg/s) and high-Lx clusters (Lx > 1.8×1044erg/s). We find that the morphology-clustercentric relation prevails in the cluster envirnment although there is a brake near the cluster virial radius. The grand design arms comprise about 40% of the cluster spiral galaxies with a weak morphology-clustercentric radius relation for the arm classes, in the sense that flocculent galaxies tend to increase outward, regardless of the X-ray luminosity. From the cumulative radial distribution of cluster galaxies, we found that the low-Lx clusters are fully virialized while the high-Lx clusters are not.
When clusters collide: constraints on antimatter on the largest scales
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steigman, Gary, E-mail: steigman@mps.ohio-state.edu
2008-10-15
Observations have ruled out the presence of significant amounts of antimatter in the Universe on scales ranging from the solar system, to the Galaxy, to groups and clusters of galaxies, and even to distances comparable to the scale of the present horizon. Except for the model-dependent constraints on the largest scales, the most significant upper limits to diffuse antimatter in the Universe are those on the {approx}Mpc scale of clusters of galaxies provided by the EGRET upper bounds to annihilation gamma rays from galaxy clusters whose intracluster gas is revealed through its x-ray emission. On the scale of individual clustersmore » of galaxies the upper bounds to the fraction of mixed matter and antimatter for the 55 clusters from a flux-limited x-ray survey range from 5 Multiplication-Sign 10{sup -9} to <1 Multiplication-Sign 10{sup -6}, strongly suggesting that individual clusters of galaxies are made entirely of matter or of antimatter. X-ray and gamma-ray observations of colliding clusters of galaxies, such as the Bullet Cluster, permit these constraints to be extended to even larger scales. If the observations of the Bullet Cluster, where the upper bound to the antimatter fraction is found to be <3 Multiplication-Sign 10{sup -6}, can be generalized to other colliding clusters of galaxies, cosmologically significant amounts of antimatter will be excluded on scales of order {approx}20 Mpc (M{approx}5 Multiplication-Sign 10{sup 15}M{sub sun})« less
GALAXY INFALL BY INTERACTING WITH ITS ENVIRONMENT: A COMPREHENSIVE STUDY OF 340 GALAXY CLUSTERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, Liyi; Wen, Zhonglue; Gandhi, Poshak
To study systematically the evolution of the angular extents of the galaxy, intracluster medium (ICM), and dark matter components in galaxy clusters, we compiled the optical and X-ray properties of a sample of 340 clusters with redshifts <0.5, based on all the available data from the Sloan Digital Sky Survey and Chandra / XMM-Newton . For each cluster, the member galaxies were determined primarily with photometric redshift measurements. The radial ICM mass distribution, as well as the total gravitational mass distribution, was derived from a spatially resolved spectral analysis of the X-ray data. When normalizing the radial profile of galaxymore » number to that of the ICM mass, the relative curve was found to depend significantly on the cluster redshift; it drops more steeply toward the outside in lower-redshift subsamples. The same evolution is found in the galaxy-to-total mass profile, while the ICM-to-total mass profile varies in an opposite way. The behavior of the galaxy-to-ICM distribution does not depend on the cluster mass, suggesting that the detected redshift dependence is not due to mass-related effects, such as sample selection bias. Also, it cannot be ascribed to various redshift-dependent systematic errors. We interpret that the galaxies, the ICM, and the dark matter components had similar angular distributions when a cluster was formed, while the galaxies traveling in the interior of the cluster have continuously fallen toward the center relative to the other components, and the ICM has slightly expanded relative to the dark matter although it suffers strong radiative loss. This cosmological galaxy infall, accompanied by an ICM expansion, can be explained by considering that the galaxies interact strongly with the ICM while they are moving through it. The interaction is considered to create a large energy flow of 10{sup 4445} erg s{sup 1} per cluster from the member galaxies to their environment, which is expected to continue over cosmological timescales.« less
X-ray archaeology in the Coma cluster
NASA Technical Reports Server (NTRS)
White, Simon D. M.; Briel, Ulrich G.; Henry, J. P.
1993-01-01
We present images of X-ray emission from hot gas within the Coma cluster of galaxies. These maps, made with the ROSAT satellite, have much higher SNR than any previous X-ray image of a galaxy cluster, and allow cluster structure to be analyzed in unprecedented detail. They show greater structural irregularity than might have been anticipated from earlier observations of Coma. Emission is detected from a number of bright cluster galaxies in addition to the two known previously. In four cases, there is evidence that these galaxies lie at the center of an extended subconcentration within the cluster, possibly the remnant of their associated groups. For at least two galaxies, the images show direct evidence for ongoing disruption of their gaseous atmosphere. The luminosity associated with these galaxies is comparable to that detected around similar ellipticals in much poorer environments. Emission is easily detected to the limit of our field, about 1 deg from the cluster center, and appears to become more regular at large radii. The data show clearly that this archetype of a rich and regular galaxy cluster was, in fact, formed by the merging of several distinct subunits which are not yet fully destroyed.
Characterization of Omega-WINGS galaxy clusters. I. Stellar light and mass profiles
NASA Astrophysics Data System (ADS)
Cariddi, S.; D'Onofrio, M.; Fasano, G.; Poggianti, B. M.; Moretti, A.; Gullieuszik, M.; Bettoni, D.; Sciarratta, M.
2018-02-01
Context. Galaxy clusters are the largest virialized structures in the observable Universe. Knowledge of their properties provides many useful astrophysical and cosmological information. Aims: Our aim is to derive the luminosity and stellar mass profiles of the nearby galaxy clusters of the Omega-WINGS survey and to study the main scaling relations valid for such systems. Methods: We merged data from the WINGS and Omega-WINGS databases, sorted the sources according to the distance from the brightest cluster galaxy (BCG), and calculated the integrated luminosity profiles in the B and V bands, taking into account extinction, photometric and spatial completeness, K correction, and background contribution. Then, by exploiting the spectroscopic sample we derived the stellar mass profiles of the clusters. Results: We obtained the luminosity profiles of 46 galaxy clusters, reaching r200 in 30 cases, and the stellar mass profiles of 42 of our objects. We successfully fitted all the integrated luminosity growth profiles with one or two embedded Sérsic components, deriving the main clusters parameters. Finally, we checked the main scaling relation among the clusters parameters in comparison with those obtained for a selected sample of early-type galaxies (ETGs) of the same clusters. Conclusions: We found that the nearby galaxy clusters are non-homologous structures such as ETGs and exhibit a color-magnitude (CM) red-sequence relation very similar to that observed for galaxies in clusters. These properties are not expected in the current cluster formation scenarios. In particular the existence of a CM relation for clusters, shown here for the first time, suggests that the baryonic structures grow and evolve in a similar way at all scales.
AGN jet-driven stochastic cold accretion in cluster cores
NASA Astrophysics Data System (ADS)
Prasad, Deovrat; Sharma, Prateek; Babul, Arif
2017-10-01
Several arguments suggest that stochastic condensation of cold gas and its accretion on to the central supermassive black hole (SMBH) is essential for active galactic nuclei (AGNs) feedback to work in the most massive galaxies that lie at the centres of galaxy clusters. Our 3-D hydrodynamic AGN jet-ICM (intracluster medium) simulations, looking at the detailed angular momentum distribution of cold gas and its time variability for the first time, show that the angular momentum of the cold gas crossing ≲1 kpc is essentially isotropic. With almost equal mass in clockwise and counterclockwise orientations, we expect a cancellation of the angular momentum on roughly the dynamical time. This means that a compact accretion flow with a short viscous time ought to form, through which enough accretion power can be channeled into jet mechanical energy sufficiently quickly to prevent a cooling flow. The inherent stochasticity, expected in feedback cycles driven by cold gas condensation, gives rise to a large variation in the cold gas mass at the centres of galaxy clusters, for similar cluster and SMBH masses, in agreement with the observations. Such correlations are expected to be much tighter for the smoother hot/Bondi accretion. The weak correlation between cavity power and Bondi power obtained from our simulations also matches observations.
DYNAMICS AND MAGNETIZATION IN GALAXY CLUSTER CORES TRACED BY X-RAY COLD FRONTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keshet, Uri; Markevitch, Maxim; Birnboim, Yuval
2010-08-10
Cold fronts (CFs)-density and temperature plasma discontinuities-are ubiquitous in cool cores of galaxy clusters, where they appear as X-ray brightness edges in the intracluster medium, nearly concentric with the cluster center. We analyze the thermodynamic profiles deprojected across core CFs found in the literature. While the pressure appears continuous across these CFs, we find that all of them require significant centripetal acceleration beneath the front. This is naturally explained by a tangential, nearly sonic bulk flow just below the CF, and a tangential shear flow involving a fair fraction of the plasma beneath the front. Such shear should generate near-equipartitionmore » magnetic fields on scales {approx}<50pc from the front and could magnetize the entire core. Such fields would explain the apparent stability of cool core CFs and the recently reported CF-radio minihalo association.« less
The Origin and Distribution of Heavy Elements in HCG 62
NASA Technical Reports Server (NTRS)
Vrtilek, Jan; Lavoie, Anthony R. (Technical Monitor)
2000-01-01
We present recent data on the compact group HCG 62 taken with AXAF CCD Imaging Spectrometer-S (ACIS-S) on Chandra. The sparseness of groups and their relatively simple dynamical history allow the properties of the Intergalatic Medium (IGM) to be more directly related to galaxy evolution than may be possible in clusters, and their lower gas temperatures produce strong lines from a broader range of elements than is the case in hotter clusters. This observation exploits the high X-ray brightness of HCG 62 to determine accurately the abundances of heavy elements as a function of position in the group, to test whether abundance variations are associated with individual galaxies, and to trace the origin of the enrichment.
M87 at 90 Centimeters: A Different Picture
2000-06-15
as is envisioned in the cooling Ñow model. Subject headings : cooling Ñows È galaxies : active È galaxies : clusters : individual ( Virgo ) È galaxies...atmosphere of the Virgo Cluster (Fabricant, Lecar, & Gorenstein 1980). The X-ray atmosphere has a simple, apparently undis- turbed, morphology with a central...of a small set of amorphous central radio galaxies in other, similar, cooling-core clusters ? 4. PHYSICAL PICTURE : THE CLUSTER CORE The Virgo X-ray
Abell 1142 and the Missing Central Galaxy – A Cluster in Transition?
NASA Astrophysics Data System (ADS)
Jones, Alexander; Su, Yuanyuan; Buote, David; Forman, William; van Weeren, Reinout; Jones, Christine; Gastaldello, Fabio; Kraft, Ralph; Randall, Scott
2018-01-01
Two types of galaxy clusters exist: cool core (CC) clusters which exhibit centrally-peaked metallicity and X-ray emission and non-cool core (NCC) clusters, possessing comparably homogeneous metallicity and X-ray emission distributions. However, the origin of this dichotomy is still unknown. The current prevailing theories state that either there is a primordial entropy limit, above which a CC is unable to form, or that clusters can change type through major mergers and radiative cooling. Abell 1142 is a galaxy cluster that can provide a unique probe of the root of this cluster-type division. It is formed of two merging sub-clusters, each with its own brightest cluster galaxies (BCG). Its enriched X-ray centroid (possible CC remnant) lies between these two BCGs. We present the thermal and chemical distributions of this system using deep (180ks) XMM-Newton observations to shed light on the role of mergers in the evolution of galaxy clusters.
Studies in the X-Ray Emission of Clusters of Galaxies and Other Topics
NASA Technical Reports Server (NTRS)
Vrtilek, Jan; Thronson, Harley (Technical Monitor)
2001-01-01
The paper discusses the following: (1) X-ray study of groups of galaxies with Chandra and XMM. (2) X-ray properties of point sources in Chandra deep fields. (3) Study of cluster substructure using wavelet techniques. (4) Combined study of galaxy clusters with X-ray and the S-Z effect. Groups of galaxies are the fundamental building blocks of large scale structure in the Universe. X-ray study of the intragroup medium offers a powerful approach to addressing some of the major questions that still remain about almost all aspects of groups: their ages, origins, importance of composition of various galaxy types, relations to clusters, and origin and enrichment of the intragroup gas. Long exposures with Chandra have opened new opportunities for the study of X-ray background. The presence of substructure within clusters of galaxies has substantial implications for our understanding of cluster evolution as well as fundamental questions in cosmology.
Hubble Views the Whirling Disk of NGC 4526
2014-10-24
This neat little galaxy is known as NGC 4526. Its dark lanes of dust and bright diffuse glow make the galaxy appear to hang like a halo in the emptiness of space in this image from the NASA/ESA Hubble Space Telescope. Although this image paints a picture of serenity, the galaxy is anything but. It is one of the brightest lenticular galaxies known, a category that lies somewhere between spirals and ellipticals. It has hosted two known supernova explosions, one in 1969 and another in 1994, and is known to have a colossal supermassive black hole at its center that has the mass of 450 million suns. NGC 4526 is part of the Virgo cluster of galaxies. Ground-based observations of galaxies in this cluster have revealed that a quarter of these galaxies seem to have rapidly rotating disks of gas at their centers. The most spectacular of these is this galaxy, NGC 4526, and its spinning disk of gas, dust, and stars reaches out uniquely far from its heart, spanning some seven percent of the galaxy's entire radius. This disk is moving incredibly fast, spinning at more than 250 kilometers per second. The dynamics of this quickly whirling region were actually used to infer the mass of NGC 4526’s central black hole — a technique that had not been used before to constrain a galaxy’s central black hole. This image was taken with Hubble's Wide Field and Planetary Camera 2 and the Advanced Camera for Surveys. Credit: ESA/Hubble & NASA, Acknowledgement: Judy Schmidt
Jellyfish: Evidence of Extreme Ram-pressure Stripping in Massive Galaxy Clusters
NASA Astrophysics Data System (ADS)
Ebeling, H.; Stephenson, L. N.; Edge, A. C.
2014-02-01
Ram-pressure stripping by the gaseous intracluster medium has been proposed as the dominant physical mechanism driving the rapid evolution of galaxies in dense environments. Detailed studies of this process have, however, largely been limited to relatively modest examples affecting only the outermost gas layers of galaxies in nearby and/or low-mass galaxy clusters. We here present results from our search for extreme cases of gas-galaxy interactions in much more massive, X-ray selected clusters at z > 0.3. Using Hubble Space Telescope snapshots in the F606W and F814W passbands, we have discovered dramatic evidence of ram-pressure stripping in which copious amounts of gas are first shock compressed and then removed from galaxies falling into the cluster. Vigorous starbursts triggered by this process across the galaxy-gas interface and in the debris trail cause these galaxies to temporarily become some of the brightest cluster members in the F606W passband, capable of outshining even the Brightest Cluster Galaxy. Based on the spatial distribution and orientation of systems viewed nearly edge-on in our survey, we speculate that infall at large impact parameter gives rise to particularly long-lasting stripping events. Our sample of six spectacular examples identified in clusters from the Massive Cluster Survey, all featuring M F606W < -21 mag, doubles the number of such systems presently known at z > 0.2 and facilitates detailed quantitative studies of the most violent galaxy evolution in clusters. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs GO-10491, -10875, -12166, and -12884.
Witnessing the Formation of a Brightest Cluster Galaxy in a Nearby X-ray Cluster
NASA Astrophysics Data System (ADS)
Rasmussen, Jesper; Mulchaey, John S.; Bai, Lei; Ponman, Trevor J.; Raychaudhury, Somak; Dariush, Ali
2010-07-01
The central dominant galaxies in galaxy clusters constitute the most massive and luminous galaxies in the universe. Despite this, the formation of these brightest cluster galaxies (BCGs) and the impact of this on the surrounding cluster environment remain poorly understood. Here we present multiwavelength observations of the nearby poor X-ray cluster MZ 10451, in which both processes can be studied in unprecedented detail. Chandra observations of the intracluster medium (ICM) in the cluster core, which harbors two optically bright early-type galaxies in the process of merging, show that the system has retained a cool core and a central metal excess. This suggests that any merger-induced ICM heating and mixing remain modest at this stage. Tidally stripped stars seen around either galaxy likely represent an emerging intracluster light component, and the central ICM abundance enhancement may have a prominent contribution from in situ enrichment provided by these stars. The smaller of the merging galaxies shows evidence for having retained a hot gas halo, along with tentative evidence for some obscured star formation, suggesting that not all BCG major mergers at low redshift are completely dissipationless. Both galaxies are slightly offset from the peak of the ICM emission, with all three lying on an axis that roughly coincides with the large-scale elongation of the ICM. Our data are consistent with a picture in which central BCGs are built up by mergers close to the cluster core, by galaxies infalling on radial orbits aligned with the cosmological filaments feeding the cluster. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.
GALAXY CLUSTERS IN THE LINE OF SIGHT TO BACKGROUND QUASARS. III. MULTI-OBJECT SPECTROSCOPY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrews, H.; Barrientos, L. F.; Padilla, N.
2013-09-01
We present Gemini/GMOS-S multi-object spectroscopy of 31 galaxy cluster candidates at redshifts between 0.2 and 1.0 and centered on QSO sight lines taken from Lopez et al. The targets were selected based on the presence of an intervening Mg II absorption system at a similar redshift to that of a galaxy cluster candidate lying at a projected distance <2 h{sub 71}{sup -1} Mpc from the QSO sight line (a {sup p}hotometric hit{sup )}. The absorption systems span rest-frame equivalent widths between 0.015 and 2.028 A. Our aim was three-fold: (1) to identify the absorbing galaxies and determine their impact parameters,more » (2) to confirm the galaxy cluster candidates in the vicinity of each quasar sightline, and (3) to determine whether the absorbing galaxies reside in galaxy clusters. In this way, we are able to characterize the absorption systems associated with cluster members. Our main findings are as follows. (1) We identified 10 out of 24 absorbing galaxies with redshifts between 0.2509 {<=} z{sub gal} {<=} 1.0955, up to an impact parameter of 142 h{sub 71}{sup -1} kpc and a maximum velocity difference of 280 km s{sup -1}. (2) We spectroscopically confirmed 20 out of 31 cluster/group candidates, with most of the confirmed clusters/groups at z < 0.7. This relatively low efficiency results from the fact that we centered our observations on the QSO location, and thus occasionally some of the cluster centers were outside the instrument field of view. (3) Following from the results above, we spectroscopically confirmed of 10 out of 14 photometric hits within {approx}650 km s{sup -1} from galaxy clusters/groups, in addition to two new ones related to galaxy group environments. These numbers imply efficiencies of 71% in finding such systems with MOS spectroscopy. This is a remarkable result since we defined a photometric hit as those cluster-absorber pairs having a redshift difference {Delta}z = 0.1. The general population of our confirmed absorbing galaxies have luminosities L{sub B}{approx}L{sub B}{sup *} and mean rest-frame colors (R{sub c} - z') typical of S{sub cd} galaxies. From this sample, absorbing cluster galaxies hosting weak absorbers are consistent with lower star formation activity than the rest, which produce strong absorption and agree with typical Mg II absorbing galaxies found in the literature. Our spectroscopic confirmations lend support to the selection of photometric hits made in Lopez et al.« less
Systematics in lensing reconstruction: dark matter rings in the sky?
NASA Astrophysics Data System (ADS)
Ponente, P. P.; Diego, J. M.
2011-11-01
Context. Non-parametric lensing methods are a useful way of reconstructing the lensing mass of a cluster without making assumptions about the way the mass is distributed in the cluster. These methods are particularly powerful in the case of galaxy clusters with a large number of constraints. The advantage of not assuming implicitly that the luminous matter follows the dark matter is particularly interesting in those cases where the cluster is in a non-relaxed dynamical state. On the other hand, non-parametric methods have several limitations that should be taken into account carefully. Aims: We explore some of these limitations and focus on their implications for the possible ring of dark matter around the galaxy cluster CL0024+17. Methods: We project three background galaxies through a mock cluster of known radial profile density and obtain a map for the arcs (θ map). We also calculate the shear field associated with the mock cluster across the whole field of view (3.3 arcmin). Combining the positions of the arcs and the two-direction shear, we perform an inversion of the lens equation using two separate methods, the biconjugate gradient, and the quadratic programming (QADP) to reconstruct the convergence map of the mock cluster. Results: We explore the space of the solutions of the convergence map and compare the radial density profiles to the density profile of the mock cluster. When the inversion matrix algorithms are forced to find the exact solution, we encounter systematic effects resembling ring structures, that clearly depart from the original convergence map. Conclusions: Overfitting lensing data with a non-parametric method can produce ring-like structures similar to the alleged one in CL0024.
Ram Pressure Stripping of Galaxy JO201
NASA Astrophysics Data System (ADS)
Zhong, Greta; Tonnesen, Stephanie; Jaffé, Yara; Bellhouse, Callum; Bianca Poggianti
2017-01-01
Despite the discovery of the morphology-density relation more than 30 years ago, the process driving the evolution of spiral galaxies into S0s in clusters is still widely debated. Ram pressure stripping--the removal of a galaxy's interstellar medium by the pressure of the intracluster medium through which it orbits--may help explain galactic evolution and quenching in clusters. MUSE (Multi Unit Spectroscopic Explorer) observational data of galaxy JO201 in cluster Abell 85 reveal it to be a jellyfish galaxy--one with an H-alpha emitting gas tail on only one side. We model the possible orbits for this galaxy, constrained by the cluster mass profile, line of sight velocity, and projected distance from the cluster center. Using Enzo, an adaptive mesh refinement hydrodynamics code, we simulate effects of ram pressure on this galaxy for a range of possible orbits. We present comparisons of both the morphology and velocity structure of our simulated galaxy to the observations of H-alpha emission.
Galaxy collisions as a mechanism of ultra diffuse galaxy (UDG) formation
NASA Astrophysics Data System (ADS)
Baushev, A. N.
2018-04-01
We suggest a possible mechanism of ultra diffuse galaxy formation: the UDGs may occur as a result of a central collision of galaxies. If the galaxies are young and contain a lot of gas, the collision may kick all the gas off the systems and thus strongly suppress any further star formation. As a result, the galaxies now have a very low surface brightness and other properties typical of the ultra diffuse galaxies. We use the Coma cluster (where numerous UDGs were recently discovered) to test the efficiency of the process. The mechanism works very well and can transform a significant fraction of the cluster population into ultra diffuse galaxies. The UDGs formed by the process concentrate towards the center of the cluster, and their globular cluster systems remain undamaged, in accordance with observational results. The projected surface density of UDGs in the cluster may help us to recognize the mechanism of UDG formation, or clarify relative contributions of several possible competitive mechanisms at work.
THE TEMPERATURE OF HOT GAS IN GALAXIES AND CLUSTERS: BARYONS DANCING TO THE TUNE OF DARK MATTER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, Steen H.; Maccio, Andrea V.; Romano-Diaz, Emilio
2011-06-10
The temperature profile of hot gas in galaxies and galaxy clusters is largely determined by the depth of the total gravitational potential and thereby by the dark matter (DM) distribution. We use high-resolution hydrodynamical simulations of galaxy formation to derive a surprisingly simple relation between the gas temperature and DM properties. We show that this relation holds not just for galaxy clusters but also for equilibrated and relaxed galaxies at radii beyond the central stellar-dominated region of typically a few kpc. It is then clarified how a measurement of the temperature and density of the hot gas component can leadmore » to an indirect measurement of the DM velocity anisotropy in galaxies. We also study the temperature relation for galaxy clusters in the presence of self-regulated, recurrent active galactic nuclei (AGNs), and demonstrate that this temperature relation even holds outside the inner region of {approx}30 kpc in clusters with an active AGN.« less
Galaxies at the Extremes: Ultradiffuse Galaxies in the Virgo Cluster
NASA Astrophysics Data System (ADS)
Mihos, Chris
2017-08-01
The ultradiffuse galaxies (UDGs) recently discovered in massive galaxy clusters presents both challenges and opportunities for our understanding of galaxy evolution in dense clusters. Such large, low density galaxies should be most vulnerable to gravitational destruction within the cluster environment. Thus their presence in cluster cores argues either that they must be stabilized by massive dark halos or else be short-lived objects undergoing rapid transformation, perhaps leading to the formation of ultracompact dwarf galaxies (UCDs) if their destruction leaves only a compact nucleus behind. We propose deep imaging of four Virgo Cluster UDGs to probe their local environment within Virgo via accurate tip of the red giant branch (TRGB) distances. With a distance precision of 1 Mpc, we will accurately place the objects in the Virgo core, cluster outskirts, or intervening field. When coupled with our extant kinematic data, we can determine whether they are infalling objects or instead have already passed through the cluster core. We will also compare their compact nuclei to Virgo UCDs, and study their globular cluster (GC) populations in detail. Probing three magnitudes beyond the turnover in the GC luminosity function, we will construct larger and cleaner GC samples than possible with ground-based imaging, using the total mass and radial extent of the globular cluster systems to estimate the dark halo mass and tidal radius for each UDG. The new information provided by HST about the local environment and intrinsic properties of these Virgo UDGs will be used in conjunction with simulation data to study cluster-driven evolution and transformation of low density galaxies.
NASA Astrophysics Data System (ADS)
Noble, A. G.; McDonald, M.; Muzzin, A.; Nantais, J.; Rudnick, G.; van Kampen, E.; Webb, T. M. A.; Wilson, G.; Yee, H. K. C.; Boone, K.; Cooper, M. C.; DeGroot, A.; Delahaye, A.; Demarco, R.; Foltz, R.; Hayden, B.; Lidman, C.; Manilla-Robles, A.; Perlmutter, S.
2017-06-01
We present ALMA CO (2-1) detections in 11 gas-rich cluster galaxies at z ˜ 1.6, constituting the largest sample of molecular gas measurements in z > 1.5 clusters to date. The observations span three galaxy clusters, derived from the Spitzer Adaptation of the Red-sequence Cluster Survey. We augment the >5σ detections of the CO (2-1) fluxes with multi-band photometry, yielding stellar masses and infrared-derived star formation rates, to place some of the first constraints on molecular gas properties in z ˜ 1.6 cluster environments. We measure sizable gas reservoirs of 0.5-2 × 1011 M ⊙ in these objects, with high gas fractions (f gas) and long depletion timescales (τ), averaging 62% and 1.4 Gyr, respectively. We compare our cluster galaxies to the scaling relations of the coeval field, in the context of how gas fractions and depletion timescales vary with respect to the star-forming main sequence. We find that our cluster galaxies lie systematically off the field scaling relations at z = 1.6 toward enhanced gas fractions, at a level of ˜4σ, but have consistent depletion timescales. Exploiting CO detections in lower-redshift clusters from the literature, we investigate the evolution of the gas fraction in cluster galaxies, finding it to mimic the strong rise with redshift in the field. We emphasize the utility of detecting abundant gas-rich galaxies in high-redshift clusters, deeming them as crucial laboratories for future statistical studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van den Bergh, Sidney
It is widely believed that lenticular (S0) galaxies were initially spirals from which the gas has been removed by interactions with hot cluster gas, or by ram pressure stripping of cool gas from spirals that are orbiting within rich clusters of galaxies. However, problems with this interpretation are that (1) some lenticulars, such as NGC 3115, are isolated field galaxies rather than cluster members. (2) The distribution of flattening values of S0 galaxies in clusters, in groups, and in the field are statistically indistinguishable. This is surprising because one might have expected most of the progenitors of field S0 galaxiesmore » to have been flattened late-type galaxies, whereas lenticulars in clusters are thought to have mostly been derived from bulge-dominated early-type galaxies. (3) It should be hardest for ram pressure to strip massive luminous galaxies with deep potential wells. However, no statistically significant differences are seen between the luminosity distributions of early-type Shapley-Ames galaxies in clusters, groups, and in the field. (4) Finally both ram pressure stripping and evaporation by hot intracluster gas would be most efficient in rich clusters. However, the small number of available data in the Shapley-Ames sample appears to show no statistically significant differences between the relative frequencies of dust-poor S0{sub 1} and dust-rich S0{sub 3} galaxies in clusters, groups, and in the field. It is tentatively concluded that ram pressure stripping and heating by intracluster gas, may not be the only evolutionary channels that lead to the formation of lenticular galaxies. It is speculated that gas starvation, or gas ejection by active nuclei, may have played a major role in the formation of a significant fraction of all S0 galaxies.« less
The case for electron re-acceleration at galaxy cluster shocks
NASA Astrophysics Data System (ADS)
van Weeren, Reinout J.; Andrade-Santos, Felipe; Dawson, William A.; Golovich, Nathan; Lal, Dharam V.; Kang, Hyesung; Ryu, Dongsu; Brìggen, Marcus; Ogrean, Georgiana A.; Forman, William R.; Jones, Christine; Placco, Vinicius M.; Santucci, Rafael M.; Wittman, David; Jee, M. James; Kraft, Ralph P.; Sobral, David; Stroe, Andra; Fogarty, Kevin
2017-01-01
On the largest scales, the Universe consists of voids and filaments making up the cosmic web. Galaxy clusters are located at the knots in this web, at the intersection of filaments. Clusters grow through accretion from these large-scale filaments and by mergers with other clusters and groups. In a growing number of galaxy clusters, elongated Mpc-sized radio sources have been found1,2 . Also known as radio relics, these regions of diffuse radio emission are thought to trace relativistic electrons in the intracluster plasma accelerated by low-Mach-number shocks generated by cluster-cluster merger events 3 . A long-standing problem is how low-Mach-number shocks can accelerate electrons so efficiently to explain the observed radio relics. Here, we report the discovery of a direct connection between a radio relic and a radio galaxy in the merging galaxy cluster Abell 3411-3412 by combining radio, X-ray and optical observations. This discovery indicates that fossil relativistic electrons from active galactic nuclei are re-accelerated at cluster shocks. It also implies that radio galaxies play an important role in governing the non-thermal component of the intracluster medium in merging clusters.
NASA Astrophysics Data System (ADS)
Huchtmeier, W. K.; Richter, O. G.; Materne, J.
1981-09-01
The large-scale structure of the universe is dominated by clustering. Most galaxies seem to be members of pairs, groups, clusters, and superclusters. To that degree we are able to recognize a hierarchical structure of the universe. Our local group of galaxies (LG) is centred on two large spiral galaxies: the Andromeda nebula and our own galaxy. Three sr:naller galaxies - like M 33 - and at least 23 dwarf galaxies (KraanKorteweg and Tammann, 1979, Astronomische Nachrichten, 300, 181) can be found in the evironment of these two large galaxies. Neighbouring groups have comparable sizes (about 1 Mpc in extent) and comparable numbers of bright members. Small dwarf galaxies cannot at present be observed at great distances.
NASA Astrophysics Data System (ADS)
Secker, Jeffrey Alan
1995-01-01
We have developed a statistically rigorous and automated method to implement the detection, photometry and classification of faint objects on digital images. We use these methods to analyze deep R- and B-band CCD images of the central ~ 700 arcmin ^2 of the Coma cluster core, and an associated control field. We have detected and measured total R magnitudes and (B-R) colors for a sample of 3741 objects on the galaxy cluster fields, and 1164 objects on a remote control field, complete to a limiting magnitude of R = 22.5 mag. The typical uncertainties are +/- 0.06 and +/-0.12 mag in total magnitude and color respectively. The dwarf elliptical (dE) galaxies are confined to a well-defined sequence in the color range given by 0.7<= (B-R)<= 1.9 mag: within this interval there are 2535 dE candidates on our fields in the cluster core, and 694 objects on the control field. With an image scale of 0.53 arcsec/pixel and seeing near 1.2 arcsec, a large fraction of the dE galaxy candidates are resolved. We find a significant metallicity gradient in the radial distribution of the dwarf elliptical galaxies, which goes as Z~ R^{-0.32 } outwards from the cluster center at NGC 4874. As well, there is a strong color-luminosity correlation, in the sense that more luminous dE galaxies are redder in the mean. These effects give rise to a radial variation in the cluster luminosity function. The spatial distribution of the faint dE galaxies is well fit by a standard King model with a central surface density of Sigma _0 = 1.44 dEs arcmin^{ -2}, a core radius R_{ rm c} = 18.7 arcmin (~eq 0.44 Mpc), and a tidal radius of 1.44 deg ( ~eq 2.05 Mpc). This core is significantly larger than R_{rm c} = 12.3 arcmin (~eq 0.29 Mpc) found for the bright cluster galaxies. The composite luminosity function for Coma galaxies is modeled as the sum of a log -normal distribution for the giant galaxies and a Schechter function for the dwarf elliptical galaxies, with a faint -end slope of alpha = -1.41, consistent with known faint-end slopes for the Virgo and Fornax clusters. The early-type dwarf-to-giant ratio for the Coma cluster core is consistent with that of the Virgo cluster, and thus with the rich Coma cluster being formed as the merger of multiple less-rich galaxy clusters.
Probing dark matter with star clusters: a dark matter core in the ultra-faint dwarf Eridanus II
NASA Astrophysics Data System (ADS)
Contenta, Filippo; Balbinot, Eduardo; Petts, James A.; Read, Justin I.; Gieles, Mark; Collins, Michelle L. M.; Peñarrubia, Jorge; Delorme, Maxime; Gualandris, Alessia
2018-05-01
We present a new technique to probe the central dark matter (DM) density profile of galaxies that harnesses both the survival and observed properties of star clusters. As a first application, we apply our method to the `ultra-faint' dwarf Eridanus II (Eri II) that has a lone star cluster ˜45 pc from its centre. Using a grid of collisional N-body simulations, incorporating the effects of stellar evolution, external tides and dynamical friction, we show that a DM core for Eri II naturally reproduces the size and the projected position of its star cluster. By contrast, a dense cusped galaxy requires the cluster to lie implausibly far from the centre of Eri II (>1 kpc), with a high inclination orbit that must be observed at a particular orbital phase. Our results, therefore, favour a DM core. This implies that either a cold DM cusp was `heated up' at the centre of Eri II by bursty star formation or we are seeing an evidence for physics beyond cold DM.
Gravitational lensing by clusters of galaxies - Constraining the mass distribution
NASA Technical Reports Server (NTRS)
Miralda-Escude, Jordi
1991-01-01
The possibility of placing constraints on the mass distribution of a cluster of galaxies by analyzing the cluster's gravitational lensing effect on the images of more distant galaxies is investigated theoretically in the limit of weak distortion. The steps in the proposed analysis are examined in detail, and it is concluded that detectable distortion can be produced by clusters with line-of-sight velocity dispersions of over 500 km/sec. Hence it should be possible to determine (1) the cluster center position (with accuracy equal to the mean separation of the background galaxies), (2) the cluster-potential quadrupole moment (to within about 20 percent of the total potential if velocity dispersion is 1000 km/sec), and (3) the power law for the outer-cluster density profile (if enough background galaxies in the surrounding region are observed).
Pandora Cluster Seen by Spitzer
2016-09-28
This image of galaxy cluster Abell 2744, also called Pandora's Cluster, was taken by the Spitzer Space Telescope. The gravity of this galaxy cluster is strong enough that it acts as a lens to magnify images of more distant background galaxies. This technique is called gravitational lensing. The fuzzy blobs in this Spitzer image are the massive galaxies at the core of this cluster, but astronomers will be poring over the images in search of the faint streaks of light created where the cluster magnifies a distant background galaxy. The cluster is also being studied by NASA's Hubble Space Telescope and Chandra X-Ray Observatory in a collaboration called the Frontier Fields project. In this image, light from Spitzer's infrared channels is colored blue at 3.6 microns and green at 4.5 microns. http://photojournal.jpl.nasa.gov/catalog/PIA20920
Ten billion years of brightest cluster galaxy alignments
NASA Astrophysics Data System (ADS)
West, Michael J.; de Propris, Roberto; Bremer, Malcolm N.; Phillipps, Steven
2017-07-01
A galaxy's orientation is one of its most basic observable properties. Astronomers once assumed that galaxies are randomly oriented in space; however, it is now clear that some have preferred orientations with respect to their surroundings. Chief among these are giant elliptical galaxies found in the centres of rich galaxy clusters. Numerous studies have shown that the major axes of these galaxies often share the same orientation as the surrounding matter distribution on larger scales1,2,3,4,5,6. Using Hubble Space Telescope observations of 65 distant galaxy clusters, we show that similar alignments are seen at earlier epochs when the Universe was only one-third of its current age. These results suggest that the brightest galaxies in clusters are the product of a special formation history, one influenced by development of the cosmic web over billions of years.
NASA Astrophysics Data System (ADS)
Reines, Amy Ellen
2011-01-01
Globular star clusters and supermassive black holes are fundamental components of today's massive galaxies, with origins dating back to the very early universe. Both globular clusters and the seeds of supermassive black holes are believed to have formed in the progenitors of modern massive galaxies, although the details are poorly understood. Direct observations of these low-mass, distant, and hence faint systems are unobtainable with current capabilities. However, gas-rich dwarf starburst galaxies in the local universe, analogous in many ways to protogalaxies at high-redshift, can provide critical insight into the early stages of galaxy evolution including the formation of globular clusters and massive black holes. This thesis presents a panchromatic study of nearby dwarf starburst galaxies harboring nascent globular clusters still embedded in their birth material. Infant clusters are identified via their production of thermal radio emission at centimeter wavelengths, which comes from dense gas ionized by young massive stars. By combining radio observations with complementary data at ultraviolet, optical and infrared wavelengths, we obtain a comprehensive view of massive clusters emerging from their gaseous and dusty birth cocoons. This thesis also presents the first example of a nearby dwarf starburst galaxy hosting an actively accreting massive central black hole. The black hole in this dwarf galaxy is unusual in that it is not associated with a bulge, a nuclear star cluster, or any other well-defined nucleus, likely reflecting an early phase of black hole and galaxy evolution that has not been previously observed.
Abell 2069 - An X-ray cluster of galaxies with multiple subcondensations
NASA Technical Reports Server (NTRS)
Gioia, I. M.; Maccacaro, T.; Geller, M. J.; Huchra, J. P.; Stocke, J.; Steiner, J. E.
1982-01-01
X-ray and optical observations of the cluster Abell 2069 are presented. The cluster is at a mean redshift of 0.116. The cluster shows multiple condensations in both the X-ray emission and in the galaxy surface density and, thus, does not appear to be relaxed. There is a close correspondence between the gas and galaxy distributions which indicates that the galaxies in this system do map the mass distribution, contrary to what might be expected if low-mass neutrinos dominate the cluster mass.
SEEDisCs: How Clusters Form and Galaxies Transform in the Cosmic Web
NASA Astrophysics Data System (ADS)
Jablonka, P.
2017-08-01
This presentation introduces a new survey, the Spatial Extended EDisCS Survey (SEEDisCS), which aims at understanding how clusters assemble and the level at which galaxies are preprocessed before falling on the cluster cores. I focus on the changes in galaxy properties in the cluster large scale environments, and how we can get constraints on the timescale of star formation quenching. I also discuss new ALMA CO observations, which trace the fate of the galaxy cold gas content along the infalling paths towards the cluster cores.
Building black holes: supercomputer cinema.
Shapiro, S L; Teukolsky, S A
1988-07-22
A new computer code can solve Einstein's equations of general relativity for the dynamical evolution of a relativistic star cluster. The cluster may contain a large number of stars that move in a strong gravitational field at speeds approaching the speed of light. Unstable star clusters undergo catastrophic collapse to black holes. The collapse of an unstable cluster to a supermassive black hole at the center of a galaxy may explain the origin of quasars and active galactic nuclei. By means of a supercomputer simulation and color graphics, the whole process can be viewed in real time on a movie screen.
NASA Astrophysics Data System (ADS)
Bower, Richard G.; Balogh, Michael L.
In this review, we take the reader on a journey. We start by looking at the properties of galaxies in the cores of rich clusters. We have focused on the overall picture: star formation in clusters is strongly suppressed relative to field galaxies at the same redshift. We will argue that the increasing activity and blue populations of clusters with redshift results from a greater level of activity in field galaxies rather than a change in the transformation imposed by the cluster environment. With this in mind, we travel out from the cluster, focusing first on the properties of galaxies in the outskirts of clusters and then on galaxies in isolated groups. At low redshift, we are able to efficiently probe these environments using the Sloan Digital Sky Survey and 2dF redshift surveys. These allow an accurate comparison of galaxy star formation rates in different regions. The current results show a strong suppression of star formation above a critical threshold in local density. The threshold seems similar regardless of the overall mass of the system. At low redshift at least, only galaxies in close, isolated pairs have their star formation rate boosted above the global average. At higher redshift, work on constructing homogeneous catalogs of galaxies in groups and in the infall regions of clusters is still at an early stage. In the final section, we draw these strands together, summarizing what we can deduce about the mechanisms that transform star-forming field galaxies into their quiescent cluster counterparts. We discuss what we can learn about the impact of environment on the global star formation history of the Universe.
The Nature and Origin of UCDs in the Coma Cluster
NASA Astrophysics Data System (ADS)
Chiboucas, Kristin; Tully, R. Brent; Madrid, Juan; Phillipps, Steven; Carter, David; Peng, Eric
2018-01-01
UCDs are super massive star clusters found largely in dense regions but have also been found around individual galaxies and in smaller groups. Their origin is still under debate but currently favored scenarios include formation as giant star clusters, either as the brightest globular clusters or through mergers of super star clusters, themselves formed during major galaxy mergers, or as remnant nuclei from tidal stripping of nucleated dwarf ellipticals. Establishing the nature of these enigmatic objects has important implications for our understanding of star formation, star cluster formation, the missing satellite problem, and galaxy evolution. We are attempting to disentangle these competing formation scenarios with a large survey of UCDs in the Coma cluster. Using ACS two-passband imaging from the HST/ACS Coma Cluster Treasury Survey, we are using colors and sizes to identify the UCD cluster members. With a large size limited sample of the UCD population within the core region of the Coma cluster, we are investigating the population size, properties, and spatial distribution, and comparing that with the Coma globular cluster and nuclear star cluster populations to discriminate between the threshing and globular cluster scenarios. In previous work, we had found a possible correlation of UCD colors with host galaxy and a possible excess of UCDs around a non-central giant galaxy with an unusually large globular cluster population, both suggestive of a globular cluster origin. With a larger sample size and additional imaging fields that encompass the regions around these giant galaxies, we have found that the color correlation with host persists and the giant galaxy with unusually large globular cluster population does appear to host a large UCD population as well. We present the current status of the survey.
Radio active galactic nuclei in galaxy clusters: Feedback, merger signatures, and cluster tracers
NASA Astrophysics Data System (ADS)
Paterno-Mahler, Rachel Beth
Galaxy clusters, the largest gravitationally-bound structures in the universe, are composed of 50-1000s of galaxies, hot X-ray emitting gas, and dark matter. They grow in size over time through cluster and group mergers. The merger history of a cluster can be imprinted on the hot gas, known as the intracluster medium (ICM). Merger signatures include shocks, cold fronts, and sloshing of the ICM, which can form spiral structures. Some clusters host double-lobed radio sources driven by active galactic nuclei (AGN). First, I will present a study of the galaxy cluster Abell 2029, which is very relaxed on large scales and has one of the largest continuous sloshing spirals yet observed in the X-ray, extending outward approximately 400 kpc. The sloshing gas interacts with the southern lobe of the radio galaxy, causing it to bend. Energy injection from the AGN is insufficient to offset cooling. The sloshing spiral may be an important additional mechanism in preventing large amounts of gas from cooling to very low temperatures. Next, I will present a study of Abell 98, a triple system currently undergoing a merger. I will discuss the merger history, and show that it is causing a shock. The central subcluster hosts a double-lobed AGN, which is evacuating a cavity in the ICM. Understanding the physical processes that affect the ICM is important for determining the mass of clusters, which in turn affects our calculations of cosmological parameters. To further constrain these parameters, as well as models of galaxy evolution, it is important to use a large sample of galaxy clusters over a range of masses and redshifts. Bent, double-lobed radio sources can potentially act as tracers of galaxy clusters over wide ranges of these parameters. I examine how efficient bent radio sources are at tracing high-redshift (z>0.7) clusters. Out of 646 sources in our high-redshift Clusters Occupied by Bent Radio AGN (COBRA) sample, 282 are candidate new, distant clusters of galaxies based on measurements of excess galaxy counts surrounding the radio sources in Spitzer infrared images.
FAR-FLUNG GALAXY CLUSTERS MAY REVEAL FATE OF UNIVERSE
NASA Technical Reports Server (NTRS)
2002-01-01
A selection of NASA Hubble Space Telescope snapshots of huge galaxy clusters that lie far away and far back in time. These are selected from a catalog of 92 new clusters uncovered during a six-year Hubble observing program known as the Medium Deep Survey. If the distances and masses of the clusters are confirmed by ground based telescopes, the survey may hold clues to how galaxies quickly formed into massive large-scale structures after the big bang, and what that may mean for the eventual fate of the expanding universe. The images are each a combination of two exposures in yellow and deep red taken with Hubble's Wide Field and Planetary Camera 2. Each cluster's distance is inferred from the reddening of the starlight, which is due to the expansion of space. Astronomers assume these clusters all formed early in the history of the universe. HST133617-00529 (left) This collection of spiral and elliptical galaxies lies an estimated 4 to 6 billion light-years away. It is in the constellation of Virgo not far from the 3rd magnitude star Zeta Virginis. The brighter galaxies in this cluster have red magnitudes between 20 and 22 near the limit of the Palomar Sky Survey. The bright blue galaxy (upper left) is probably a foreground galaxy, and not a cluster member. The larger of the galaxies in the cluster are probably about the size of our Milky Way Galaxy. The diagonal line at lower right is an artificial satellite trail. HST002013+28366 (upper right) This cluster of galaxies lies in the constellation of Andromeda a few degrees from the star Alpheratz in the northeast corner of the constellation Pegasus. It is at an estimated distance of 4 billion light-years, which means the light we are seeing from the cluster is as it appeared when the universe was roughly 2/3 of its present age. HST035528+09435 (lower right) At an estimated distance of about 7 to 10 billion light-years (z=1), this is one of the farthest clusters in the Hubble sample. The cluster lies in the constellation of Taurus. Credit: K. Ratnatunga, R. Griffiths (Carnegie Mellon University); and NASA
A Massive, Cooling-Flow-Induced Starburst in the Core of a Highly Luminous Galaxy Cluster
NASA Technical Reports Server (NTRS)
McDonald, M.; Bayliss, M.; Benson, B. A.; Foley, R. J.; Ruel, J.; Sullivan, P.; Veilleux, S.; Aird, K. A.; Ashby, M. L. N.; Bautz, M.;
2012-01-01
In the cores of some galaxy clusters the hot intracluster plasma is dense enough that it should cool radiatively in the cluster s lifetime, leading to continuous "cooling flows" of gas sinking towards the cluster center, yet no such cooling flow has been observed. The low observed star formation rates and cool gas masses for these "cool core" clusters suggest that much of the cooling must be offset by astrophysical feedback to prevent the formation of a runaway cooling flow. Here we report X-ray, optical, and infrared observations of the galaxy cluster SPT-CLJ2344-4243 at z = 0.596. These observations reveal an exceptionally luminous (L(sub 2-10 keV) = 8.2 10(exp 45) erg/s) galaxy cluster which hosts an extremely strong cooling flow (M(sub cool) = 3820 +/- 530 Stellar Mass/yr). Further, the central galaxy in this cluster appears to be experiencing a massive starburst (740 +/- 160 Stellar Mass/ yr), which suggests that the feedback source responsible for preventing runaway cooling in nearby cool core clusters may not yet be fully established in SPT-CLJ2344-4243. This large star formation rate implies that a significant fraction of the stars in the central galaxy of this cluster may form via accretion of the intracluster medium, rather than the current picture of central galaxies assembling entirely via mergers.
a Snapshot Survey of X-Ray Selected Central Cluster Galaxies
NASA Astrophysics Data System (ADS)
Edge, Alastair
1999-07-01
Central cluster galaxies are the most massive stellar systems known and have been used as standard candles for many decades. Only recently have central cluster galaxies been recognised to exhibit a wide variety of small scale {<100 pc} features that can only be reliably detected with HST resolution. The most intriguing of these are dust lanes which have been detected in many central cluster galaxies. Dust is not expected to survive long in the hostile cluster environment unless shielded by the ISM of a disk galaxy or very dense clouds of cold gas. WFPC2 snapshot images of a representative subset of the central cluster galaxies from an X-ray selected cluster sample would provide important constraints on the formation and evolution of dust in cluster cores that cannot be obtained from ground-based observations. In addition, these images will allow the AGN component, the frequency of multiple nuclei, and the amount of massive-star formation in central cluster galaxies to be ass es sed. The proposed HST observatio ns would also provide high-resolution images of previously unresolved gravitational arcs in the most massive clusters in our sample resulting in constraints on the shape of the gravitational potential of these systems. This project will complement our extensive multi-frequency work on this sample that includes optical spectroscopy and photometry, VLA and X-ray images for the majority of the 210 targets.
NASA Astrophysics Data System (ADS)
Kelkar, Kshitija; Gray, Meghan E.; Aragón-Salamanca, Alfonso; Rudnick, Gregory; Milvang-Jensen, Bo; Jablonka, Pascale; Schrabback, Tim
2017-08-01
With the aim of understanding the effect of the environment on the star formation history and morphological transformation of galaxies, we present a detailed analysis of the colour, morphology and internal structure of cluster and field galaxies at 0.4 ≤ z ≤ 0.8. We use the Hubble Space Telescope data for over 500 galaxies from the ESO Distant Cluster Survey to quantify how the galaxies' light distribution deviate from symmetric smooth profiles. We visually inspect the galaxies' images to identify the likely causes for such deviations. We find that the residual flux fraction (RFF), which measures the fractional contribution to the galaxy light of the residuals left after subtracting a symmetric and smooth model, is very sensitive to the degree of structural disturbance but not the causes of such disturbance. On the other hand, the asymmetry of these residuals (Ares) is more sensitive to the causes of the disturbance, with merging galaxies having the highest values of Ares. Using these quantitative parameters, we find that, at a fixed morphology, cluster and field galaxies show statistically similar degrees of disturbance. However, there is a higher fraction of symmetric and passive spirals in the cluster than in the field. These galaxies have smoother light distributions than their star-forming counterparts. We also find that while almost all field and cluster S0s appear undisturbed, there is a relatively small population of star-forming S0s in clusters but not in the field. These findings are consistent with relatively gentle environmental processes acting on galaxies infalling on to clusters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDonald, M.; Stalder, B.; Bayliss, M.
In this paper, we present a multiwavelength study of the 90 brightest cluster galaxies (BCGs) in a sample of galaxy clusters selected via the Sunyaev Zel'dovich effect by the South Pole Telescope, utilizing data from various ground- and space-based facilities. We infer the star-formation rate (SFR) for the BCG in each cluster—based on the UV and IR continuum luminosity, as well as the [O ii]λλ3726,3729 emission line luminosity in cases where spectroscopy is available—and find seven systems with SFR > 100 M ⊙ yr -1. We find that the BCG SFR exceeds 10 M ⊙ yr -1 in 31 of 90 (34%) cases at 0.25 < z < 1.25, compared to ~1%–5% at z ~ 0 from the literature. At z ≳ 1, this fraction increases tomore » $${92}_{-31}^{+6}$$%, implying a steady decrease in the BCG SFR over the past ~9 Gyr. At low-z, we find that the specific SFR in BCGs is declining more slowly with time than for field or cluster galaxies, which is most likely due to the replenishing fuel from the cooling ICM in relaxed, cool core clusters. At z ≳ 0.6, the correlation between the cluster central entropy and BCG star formation—which is well established at z ~ 0—is not present. Instead, we find that the most star-forming BCGs at high-z are found in the cores of dynamically unrelaxed clusters. We use data from the Hubble Space Telescope to investigate the rest-frame near-UV morphology of a subsample of the most star-forming BCGs, and find complex, highly asymmetric UV morphologies on scales as large as ~50–60 kpc. Finally, the high fraction of star-forming BCGs hosted in unrelaxed, non-cool core clusters at early times suggests that the dominant mode of fueling star formation in BCGs may have recently transitioned from galaxy–galaxy interactions to ICM cooling.« less
The Nature of Red-Sequence Cluster Spiral Galaxies
NASA Astrophysics Data System (ADS)
Kashur, Lane; Barkhouse, Wayne; Sultanova, Madina; Kalawila Vithanage, Sandanuwa; Archer, Haylee; Foote, Gregory; Mathew, Elijah; Rude, Cody; Lopez-Cruz, Omar
2017-01-01
Preliminary analysis of the red-sequence galaxy population from a sample of 57 low-redshift galaxy clusters observed using the KPNO 0.9m telescope and 74 clusters from the WINGS dataset, indicates that a small fraction of red-sequence galaxies have a morphology consistent with spiral systems. For spiral galaxies to acquire the color of elliptical/S0s at a similar luminosity, they must either have been stripped of their star-forming gas at an earlier epoch, or contain a larger than normal fraction of dust. To test these ideas we have compiled a sample of red-sequence spiral galaxies and examined their infrared properties as measured by 2MASS, WISE, Spitzer, and Herschel. These IR data allows us to estimate the amount of dust in each of our red-sequence spiral galaxies. We compare the estimated dust mass in each of these red-sequence late-type galaxies with spiral galaxies located in the same cluster field but having colors inconsistent with the red-sequence. We thus provide a statistical measure to discriminate between purely passive spiral galaxy evolution and dusty spirals to explain the presence of these late-type systems in cluster red-sequences.
Images From Hubbles's ACS Tell A Tale Of Two Record-Breaking Galaxy Clusters
NASA Astrophysics Data System (ADS)
2004-01-01
Looking back in time nearly 9 billion years, an international team of astronomers found mature galaxies in a young universe. The galaxies are members of a cluster of galaxies that existed when the universe was only 5 billion years old, or about 35 percent of its present age. This compelling evidence that galaxies must have started forming just after the big bang was bolstered by observations made by the same team of astronomers when they peered even farther back in time. The team found embryonic galaxies a mere 1.5 billion years after the birth of the cosmos, or 10 percent of the universe's present age. The "baby galaxies" reside in a still-developing cluster, the most distant proto-cluster ever found. The Advanced Camera for Surveys (ACS) aboard NASA's Hubble Space Telescope was used to make observations of the massive cluster, RDCS 1252.9-2927, and the proto-cluster, TN J1338-1942. Observations by NASA's Chandra X-ray Observatory yielded the mass and heavy element content of RDCS 1252, the most massive known cluster for that epoch. These observations are part of a coordinated effort by the ACS science team to track the formation and evolution of clusters of galaxies over a broad range of cosmic time. The ACS was built especially for studies of such distant objects. These findings further support observations and theories that galaxies formed relatively early in the history of the cosmos. The existence of such massive clusters in the early universe agrees with a cosmological model wherein clusters form from the merger of many sub-clusters in a universe dominated by cold dark matter. The precise nature of cold dark matter, however, is still not known. The first Hubble study estimated that galaxies in RDCS 1252 formed the bulk of their stars more than 11 billion years ago (at redshifts greater than 3). The results were published in the Oct. 20, 2003 issue of the Astrophysical Journal. The paper's lead author is John Blakeslee of the Johns Hopkins University in Baltimore, Md. Optical Image of RDCS 1252.9-2927 HST Optical Image of RDCS 1252.9-2927 The second Hubble study uncovered, for the first time, a proto-cluster of "infant galaxies" that existed more than 12 billion years ago (at redshift 4.1). These galaxies are so young that astronomers can still see a flurry of stars forming within them. The galaxies are grouped around one large galaxy. These results will be published in the Jan. 1, 2004 issue of Nature. The paper's lead author is George Miley of Leiden Observatory in the Netherlands. "Until recently people didn't think that clusters existed when the universe was only about 5 billion years old," Blakeslee explained. "Even if there were such clusters," Miley added, "until recently astronomers thought it was almost impossible to find clusters that existed 8 billion years ago. In fact, no one really knew when clustering began. Now we can witness it." Both studies led the astronomers to conclude that these systems are the progenitors of the galaxy clusters seen today. "The cluster RDCS 1252 looks like a present-day cluster," said Marc Postman of the Space Telescope Science Institute in Baltimore, Md., and co-author of both research papers. "In fact, if you were to put it next to a present-day cluster, you wouldn't know which is which." A Tale of Two Clusters How can galaxies grow so fast after the big bang? "It is a case of the rich getting richer," Blakeslee said. "These clusters grew quickly because they are located in very dense regions, so there is enough material to build up the member galaxies very fast." This idea is strengthened by X-ray observations of the massive cluster RDCS 1252. Chandra and the European Space Agency's XMM-Newton provided astronomers with the most accurate measurements to date of the properties of an enormous cloud of hot gas that pervades the massive cluster. This 160-million-degree Fahrenheit (70-million-degree Celsius) gas is a reservoir of most of the heavy elements in the cluster and an accurate tracer of its total mass. A paper by Piero Rosati of the European Southern Observatory (ESO) and colleagues that presents the X-ray observations of RDCS 1252 will be published in January 2004 in the Astronomical Journal. "Chandra's sharp vision resolved the shape of the hot gas halo and showed that RDCS 1252 is very mature for its age," said Rosati, who discovered the cluster with the ROSAT X-ray telescope. RDCS 1252 may contain many thousands of galaxies. Most of these galaxies, however, are too faint to detect. But the powerful "eyes" of the ACS pinpointed several hundred of them. Observations using ESO's Very Large Telescope (VLT) provided a precise measurement of the distance to the cluster. The ACS enabled the researchers to accurately determine the shapes and colors of the 100 galaxies, providing information on the ages of the stars residing in them. The ACS team estimated that most of the stars in the cluster were already formed when the universe was about 2 billion years old. X-ray observations, furthermore, showed that 5 billion years after the big bang the surrounding hot gas had been enriched with heavy elements from these stars and had been swept away from the galaxies. If most of the galaxies in RDCS 1252 have reached maturity and are settling into a quiet adulthood, the forming galaxies in the distant proto-cluster are in their energetic, unruly youth. The proto-cluster TN J1338 contains a massive embryonic galaxy surrounded by smaller developing galaxies, which look like dots in the Hubble image. The dominant galaxy is producing spectacular radio-emitting jets, fueled by a supermassive black hole deep within the galaxy's nucleus. Interaction between these jets and the gas can stimulate a torrent of star birth. The energetic radio galaxy's discovery by radio telescopes prompted astronomers to hunt for the smaller galaxies that make up the bulk of the cluster. "Massive clusters are the cities of the universe, and the radio galaxies within them are the smokestacks we can use for finding them when they are just beginning to form," Miley said. The two findings underscore the power of combining observations from many different telescopes that provided views of the distant universe in a range of wavelengths. Hubble's advanced camera provided critical information on the structure of both distant galaxy clusters. Chandra's and XMM-Newton's X-ray vision furnished the essential measurements of the primordial gas in which the galaxies in RDCS 1252 are embedded, and accurate estimates of the total mass contained within that cluster. Large ground-based telescopes, like the VLT, provided precise measurements of the distance of both clusters as well as the chemical composition of the galaxies in them. The ACS team is conducting further observations of distant clusters to solidify our understanding of how these young clusters and their galaxies evolve into the shape of things seen today. Their planned observations include using near-infrared observations to analyze the star-formation rates in some of the target clusters, including RDCS 1252, to measure the cosmic history of star formation in these massive structures. The team is also searching the regions around several ultra-distant radio galaxies for additional examples of proto-clusters. The team's ultimate scientific goal is to establish a complete picture of cluster evolution beginning with the formation at the earliest epochs and detailing the evolution up to today. Electronic image files and additional information are available at http://hubblesite.org/newscenter/newsdesk/archive/releases/2004/01/ The Space Telescope Science Institute (STScI) is operated by the Association of Universities for Research in Astronomy, Inc. (AURA), for NASA, under contract with the Goddard Space Flight Center, Greenbelt, MD. The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency (ESA).
VLA Discovers Giant Rings Around Galaxy Cluster
NASA Astrophysics Data System (ADS)
2006-11-01
Astronomers using the National Science Foundation's Very Large Array (VLA) radio telescope have discovered giant, ring-like structures around a cluster of galaxies. The discovery provides tantalizing new information about how such galaxy clusters are assembled, about magnetic fields in the vast spaces between galaxy clusters, and possibly about the origin of cosmic rays. Radio-Optical Image of Cluster Galaxy Cluster Abell 3376 (Radio/Optical) CREDIT: Joydeep Bagchi, IUCAA, NRAO/AUI/NSF Above, a combined radio/optical image shows the galaxy cluster Abell 3376 in visible light (blue) and radio (red) images. The giant radio arcs surrounding the cluster were discovered using the Very Large Array. The visible-light image is from the Digitized Sky survey. Below, an X-ray image of Abell 3376 made using the European Space Agency's XMM-Newton telescope shows a spectacular, bullet-shaped region of X-rays coming from gas heated to 60 million degrees Kelvin. The bullet shape results from the supersonic collision of a smaller smaller galaxy subcluster with the main body of the larger cluster. Click on images for larger version. X-Ray Image of Cluster Galaxy Cluster Abell 3376 (X-Ray) CREDIT: Joydeep Bagchi, IUCAA, ESA "These giant, radio-emitting rings probably are the result of shock waves caused by violent collisions of smaller groups of galaxies within the cluster," said Joydeep Bagchi, of the Inter-University Centre for Astronomy and Astrophysics in Pune, India, who led an international research team. The scientists reported their findings in the November 3 edition of the journal Science. The newly-discovered ring segments, some 6 million light-years across, surround a galaxy cluster called Abell 3376, more than 600 million light-years from Earth. They were revealed because fast-moving electrons emitted radio waves as they spiraled around magnetic field lines in intergalactic space. "Even from this large distance, the feeble radio waves were easily picked up by the VLA, thanks to its very high sensitivity and unique capability to make images of exceedingly faint radio-emitting objects," Bagchi said. The scientists also used the European Space Agency's XMM-Newton, the world's most sensitive X-ray observatory, to observe this extraordinary cluster of galaxies. "The advanced technical capabilities of the orbiting XMM-Newton revealed a spectacular bullet-like region of X-ray emission in this dynamically active cluster," said Gastao B. Lima Neto, of the Institute of Astronomy and Geophysics in Sao Paulo, Brazil, a co-author of the research paper. "Our X-ray observations strongly suggest a recent collision and merger of two or more smaller clusters. Such a phenomenon is among the most energetic events in the Universe after the Big Bang. Only a tiny fraction of the total energy of this collision, if transferred to electrons, would cause them to emit the radio waves observed by the VLA. However, the main question is, how this is achieved," said Florence Durret of the Astrophysical Institute of Paris, France, another of the researchers. The scientists calculated that the total energy of the colliding groups of galaxies would be enough to keep our Sun shining for more than 20 sextillion years (2 followed by 22 zeros)! "We think the shock waves that sped up these electrons came from the collision of a smaller group of galaxies with the main body of the larger cluster. When two such massive objects crash into each other at supersonic speed, gigantic ripple-like shock waves are created in the surrounding gas, which race out to the outer regions of the forming cluster at a speed of thousands of kilometers per second," Bagchi said. "You can imagine that each cluster is like a supersonic aircraft, moving faster than the speed of sound in the surrounding gas, and just as you hear a sonic boom when shock waves from an airplane pass by you, we believe that the situation in the Abell 3376 cluster is similar, with ringlike radio structures tracing out the shock waves," Bagchi explained. Such a scenario also is supported by images of the cluster made with the XMM-Newton and ROSAT X-ray satellites, as well as by computer simulations, Bagchi added. The exact mechanism for producing the shock waves is still open to question, the scientists said. "This is the first observational evidence for this type of shock wave around a massive galaxy cluster," Bagchi said. "This discovery will help us understand more about the thin gas between the galaxies, and also about the magnetic fields in the outskirts of such clusters -- magnetic fields whose origin still is unknown," he said. In addition, the scientists speculate that violent regions like those in Abell 3376 may be sites from which cosmic rays originate. Cosmic rays are protons or atomic nuclei accelerated to nearly the speed of light, and shocks such as those found in the collisions of galaxy groups may be energetic enough to provide the required amount of "kick." "Some of the most energetic cosmic ray particles detected on Earth may contain about 100 million times more energy than the highest energy achieved so far in any man-made particle accelerator. Where do these cosmic rays come from and exactly what process kicks them to such stupendous energy is still a fascinating unsolved problem of physics," said graduate student Surajit Paul of the Institute for Theoretical Physics and Astrophysisc at Wuerzburg University in Germany, who was on the research team. "A cosmic accelerator source containing powerful shock waves and magnetic fields extending over millions of light years in length is capable of accelerating a proton or nucleus to such enormous energies. Although our observations do not conclusively show the evidence for such particles, our VLA radio image does show clearly that such structures are indeed present in this galaxy cluster. Only future cosmic ray observations can tell if Abell 3376 is an ultra-high-energy cosmic ray source. We will continue to explore this fascinating cosmic laboratory in the future, employing some of the world's most sensitive radio, X-ray and gamma-ray telescopes to reveal its mysteries," Bagchi said. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
Optical signatures of high-redshift galaxy clusters
NASA Technical Reports Server (NTRS)
Evrard, August E.; Charlot, Stephane
1994-01-01
We combine an N-body and gasdynamic simulation of structure formation with an updated population synthesis code to explore the expected optical characteristics of a high-redshift cluster of galaxies. We examine a poor (2 keV) cluster formed in a biased, cold dark matter cosmology and employ simple, but plausible, threshold criteria to convert gas into stars. At z = 2, the forming cluster appears as a linear chain of very blue (g-r approximately equals 0) galaxies, with 15 objects brighter than r = 25 within a 1 square arcmin field of view. After 2 Gyr of evolution, the cluster viewed at z = 1 displays both freshly infalling blue galaxies and red galaxies robbed of recent accretion by interaction with the hot intracluster medium. The range in G-R colors is approximately 3 mag at z = 1, with the reddest objects lying at sites of highest galaxy density. We suggest that red, high-redshift galaxies lie in the cores of forming clusters and that their existence indicates the presence of a hot intracluster medium at redshifts z approximately equals 2. The simulated cluster viewed at z = 2 has several characteristics similar to the collection of faint, blue objects identified by Dressler et al. in a deep Hubble Space Telescope observation. The similarities provide some support for the interpretation of this collection as a high-redshift cluster of galaxies.
NASA Astrophysics Data System (ADS)
Mantz, A. B.; Allen, S. W.; Morris, R. G.; Schmidt, R. W.
2016-03-01
This is the third in a series of papers studying the astrophysics and cosmology of massive, dynamically relaxed galaxy clusters. Our sample comprises 40 clusters identified as being dynamically relaxed and hot (I.e. massive) in Papers I and II of this series. Here we consider the thermodynamics of the intracluster medium, in particular the profiles of density, temperature and related quantities, as well as integrated measurements of gas mass, average temperature, total luminosity and centre-excluded luminosity. We fit power-law scaling relations of each of these quantities as a function of redshift and cluster mass, which can be measured precisely and with minimal bias for these relaxed clusters using hydrostatic arguments. For the thermodynamic profiles, we jointly model the density and temperature and their intrinsic scatter as a function of radius, thus also capturing the behaviour of the gas pressure and entropy. For the integrated quantities, we also jointly fit a multidimensional intrinsic covariance. Our results reinforce the view that simple hydrodynamical models provide a good description of relaxed clusters outside their centres, but that additional heating and cooling processes are important in the inner regions (radii r ≲ 0.5 r2500 ≈ 0.15 r500). The thermodynamic profiles remain regular, with small intrinsic scatter, down to the smallest radii where deprojection is straightforward (˜20 kpc); within this radius, even the most relaxed systems show clear departures from spherical symmetry. Our results suggest that heating and cooling are continuously regulated in a tight feedback loop, allowing the cluster atmosphere to remain stratified on these scales.
The Observations of Redshift Evolution in Large Scale Environments (ORELSE) Survey
NASA Astrophysics Data System (ADS)
Squires, Gordon K.; Lubin, L. M.; Gal, R. R.
2007-05-01
We present the motivation, design, and latest results from the Observations of Redshift Evolution in Large Scale Environments (ORELSE) Survey, a systematic search for structure on scales greater than 10 Mpc around 20 known galaxy clusters at z > 0.6. When complete, the survey will cover nearly 5 square degrees, all targeted at high-density regions, making it complementary and comparable to field surveys such as DEEP2, GOODS, and COSMOS. For the survey, we are using the Large Format Camera on the Palomar 5-m and SuPRIME-Cam on the Subaru 8-m to obtain optical/near-infrared imaging of an approximately 30 arcmin region around previously studied high-redshift clusters. Colors are used to identify likely member galaxies which are targeted for follow-up spectroscopy with the DEep Imaging Multi-Object Spectrograph on the Keck 10-m. This technique has been used to identify successfully the Cl 1604 supercluster at z = 0.9, a large scale structure containing at least eight clusters (Gal & Lubin 2004; Gal, Lubin & Squires 2005). We present the most recent structures to be photometrically and spectroscopically confirmed through this program, discuss the properties of the member galaxies as a function of environment, and describe our planned multi-wavelength (radio, mid-IR, and X-ray) observations of these systems. The goal of this survey is to identify and examine a statistical sample of large scale structures during an active period in the assembly history of the most massive clusters. With such a sample, we can begin to constrain large scale cluster dynamics and determine the effect of the larger environment on galaxy evolution.
NASA Astrophysics Data System (ADS)
Deshev, Boris; Finoguenov, Alexis; Verdugo, Miguel; Ziegler, Bodo; Park, Changbom; Hwang, Ho Seong; Haines, Christopher; Kamphuis, Peter; Tamm, Antti; Einasto, Maret; Hwang, Narae; Park, Byeong-Gon
2017-11-01
Aims: The mergers of galaxy clusters are the most energetic events in the Universe after the Big Bang. With the increased availability of multi-object spectroscopy and X-ray data, an ever increasing fraction of local clusters are recognised as exhibiting signs of recent or past merging events on various scales. Our goal is to probe how these mergers affect the evolution and content of their member galaxies. We specifically aim to answer the following questions: is the quenching of star formation in merging clusters enhanced when compared with relaxed clusters? Is the quenching preceded by a (short-lived) burst of star formation? Methods: We obtained optical spectroscopy of >400 galaxies in the field of the merging cluster Abell 520. We combine these observations with archival data to obtain a comprehensive picture of the state of star formation in the members of this merging cluster. Finally, we compare these observations with a control sample of ten non-merging clusters at the same redshift from The Arizona Cluster Redshift Survey (ACReS). We split the member galaxies into passive, star forming or recently quenched depending on their spectra. Results: The core of the merger shows a decreased fraction of star forming galaxies compared to clusters in the non-merging sample. This region, dominated by passive galaxies, is extended along the axis of the merger. We find evidence of rapid quenching of the galaxies during the core passage with no signs of a star burst on the time scales of the merger (≲0.4 Gyr). Additionally, we report the tentative discovery of an infalling group along the main filament feeding the merger, currently at 2.5 Mpc from the merger centre. This group contains a high fraction of star forming galaxies as well as approximately two thirds of all the recently quenched galaxies in our survey. The reduced spectra are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/607/A131
NASA Astrophysics Data System (ADS)
Martinet, Nicolas; Durret, Florence; Guennou, Loïc; Adami, Christophe; Biviano, Andrea; Ulmer, Melville P.; Clowe, Douglas; Halliday, Claire; Ilbert, Olivier; Márquez, Isabel; Schirmer, Mischa
2015-03-01
Context. There is some disagreement about the abundance of faint galaxies in high-redshift clusters, with contradictory results in the literature arising from studies of the optical galaxy luminosity function (GLF) for small cluster samples. Aims: We compute GLFs for one of the largest medium-to-high-redshift (0.4 ≤ z < 0.9) cluster samples to date in order to probe the abundance of faint galaxies in clusters. We also study how the GLF depends on cluster redshift, mass, and substructure and compare the GLFs of clusters with those of the field. We separately investigate the GLFs of blue and red-sequence (RS) galaxies to understand the evolution of different cluster populations. Methods: We calculated the GLFs for 31 clusters taken from the DAFT/FADA survey in the B,V,R, and I rest-frame bands. We used photometric redshifts computed from BVRIZJ images to constrain galaxy cluster membership. We carried out a detailed estimate of the completeness of our data. We distinguished the red-sequence and blue galaxies using a V - I versus I colour-magnitude diagram. We studied the evolution of these two populations with redshift. We fitted Schechter functions to our stacked GLFs to determine average cluster characteristics. Results: We find that the shapes of our GLFs are similar for the B,V,R, and I bands with a drop at the red GLF faint ends that is more pronounced at high redshift: αred ~ -0.5 at 0.40 ≤ z < 0.65 and αred > 0.1 at 0.65 ≤ z < 0.90. The blue GLFs have a steeper faint end (αblue ~ -1.6) than the red GLFs, which appears to be independent of redshift. For the full cluster sample, blue and red GLFs meet at MV = -20, MR = -20.5, and MI = -20.3. A study of how galaxy types evolve with redshift shows that late-type galaxies appear to become early types between z ~ 0.9 and today. Finally, the faint ends of the red GLFs of more massive clusters appear to be richer than less massive clusters, which is more typical of the lower redshift behaviour. Conclusions: Our results indicate that these clusters form at redshifts higher than z = 0.9 from galaxy structures that already have an established red sequence. Late-type galaxies then appear to evolve into early types, enriching the red sequence between this redshift and today. This effect is consistent with the evolution of the faint-end slope of the red sequence and the galaxy type evolution that we find. Finally, faint galaxies accreted from the field environment at all redshifts might have replaced the blue late-type galaxies that converted into early types, explaining the lack of evolution in the faint-end slopes of the blue GLFs. Appendix is available in electronic form at http://www.aanda.org
Subaru Weak-Lensing Survey II: Multi-Object Spectroscopy and Cluster Masses
NASA Astrophysics Data System (ADS)
Hamana, Takashi; Miyazaki, Satoshi; Kashikawa, Nobunari; Ellis, Richard S.; Massey, Richard J.; Refregier, Alexandre; Taylor, James E.
2009-08-01
We present the first results of a multi-object spectroscopic campaign to follow up cluster candidates located via weak lensing. Our main goals are to search for spatial concentrations of galaxies that are plausible optical counterparts of the weak-lensing signals, and to determine the cluster redshifts from those of member galaxies. Around each of 36 targeted cluster candidates, we obtained 15-32 galaxy redshifts. For 28 of these targets, we confirmed a secure cluster identification, with more than five spectroscopic galaxies within a velocity of ±3000km s-1. This includes three cases where two clusters at different redshifts are projected along the same line-of-sight. In 6 of the 8 unconfirmed targets, we found multiple small galaxy concentrations at different redshifts, each containing at least three spectroscopic galaxies. The weak-lensing signal around those systems was thus probably created by the projection of groups or small clusters along the same line-of-sight. In both of the remaining two targets, a single small galaxy concentration was found. In some candidate super-cluster systems, we found additional evidence of filaments connecting the main density peak to an additional nearby structure. For a subsample of our most cleanly measured clusters, we investigated the statistical relation between their weak-lensing mass (MNFW, σSIS) and the velocity dispersion of their member galaxies (σv), comparing our sample with optically and X-ray selected samples from the literature. Our lensing-selected clusters are consistent with σv = σSIS, with a similar scatter to that of optically and X-ray selected clusters. We also derived an empirical relation between the cluster mass and the galaxy velocity dispersion, M200E(z) = 11.0 × 1014 × (σv/1000km s-1)3.0 h-1 Modot, which is in reasonable agreement with predictions of N-body simulations in the Λ CDM cosmology.
The morphological transformation of red sequence galaxies in clusters since z ˜ 1
NASA Astrophysics Data System (ADS)
Cerulo, P.; Couch, W. J.; Lidman, C.; Demarco, R.; Huertas-Company, M.; Mei, S.; Sánchez-Janssen, R.; Barrientos, L. F.; Muñoz, R.
2017-11-01
The study of galaxy morphology is fundamental to understand the physical processes driving the structural evolution of galaxies. It has long been known that dense environments host high fractions of early-type galaxies and low fractions of late-type galaxies, indicating that the environment affects the structural evolution of galaxies. In this paper, we present an analysis of the morphological composition of red sequence galaxies in a sample of nine galaxy clusters at 0.8 < z < 1.5 drawn from the HAWK-I Cluster Survey (HCS), with the aim of investigating the evolutionary paths of galaxies with different morphologies. We classify galaxies according to their apparent bulge-to-total light ratio and compare with red sequence galaxies from the lower redshift WIde-field Nearby Galaxy-cluster Survey (WINGS) and ESO Distant Cluster Survey (EDisCS). We find that, while the HCS red sequence is dominated by elliptical galaxies at all luminosities and stellar masses, the WINGS red sequence is dominated by elliptical galaxies only at its bright end (MV < -21.0 mag), while S0s become the most frequent class at fainter luminosities. Disc-dominated galaxies comprise 10-14 per cent of the red sequence population in the low (WINGS) and high (HCS) redshift samples, although their fraction increases up to 40 per cent at 0.4 < z < 0.8 (EDisCS). We find a 20 per cent increase in the fraction of S0 galaxies from z ∼ 1.5 to 0.05 on the red sequence. These results suggest that elliptical and S0 galaxies follow different evolutionary histories and, in particular, that S0 galaxies result, at least at intermediate luminosities (-22.0 < MV < -20.0), from the morphological transformation of quiescent spiral galaxies.
NASA Astrophysics Data System (ADS)
Moran, Sean; Smith, G.; Haines, C.; Egami, E.; Hardegree-Ullman, E.; Heckman, T.
2010-01-01
We present results from LoCuSS, the Local Cluster Substructure Survey, on the distribution and abundance of cluster galaxies showing signatures of recently quenched star formation, within a sample of 15 z 0.2 clusters. Combining LoCuSS' wide-field UV through NIR photometry with weak-lensing derived mass maps for these clusters, we identify passive galaxies that have undergone recent quenching via both rapid (100Myr) and slow (1Gyr) mechanisms. By studying their abundance in a statistically significant sample of z 0.2 clusters, we explore how the effectiveness of environmental quenching of star formation varies as a function of the level of cluster substructure, in addition to global cluster characteristics such as mass or X-ray luminosity and temperature, with the aim of understanding the role that pre-processing of galaxies within groups and filaments plays in the overall buildup of the morphology-density and SFR-density relations. We find that clusters with large levels of substructure indicative of recent assembly or cluster-cluster mergers host a higher fraction of galaxies with signs of recent ram-pressure stripping by the hot intra-cluster gas. In addition, we find that the fraction of post-starburst galaxies increases with cluster mass (M500), but fractions of optically-selected AGN and GALEX-defined "Green Valley" galaxies show the opposite trend, being most abundant in rather low-mass clusters. These trends suggest a picture where quenching of star formation occurs most vigorously in actively assembling structures, with comparatively little activity in the most massive structures where most of the nearby large-scale structure has already been accreted and Virialized into the main cluster body.
An AzTEC 1.1-mm survey for ULIRGs in the field of the Galaxy Cluster MS0451.6-0305
NASA Astrophysics Data System (ADS)
Wardlow, J. L.; Smail, Ian; Wilson, G. W.; Yun, M. S.; Coppin, K. E. K.; Cybulski, R.; Geach, J. E.; Ivison, R. J.; Aretxaga, I.; Austermann, J. E.; Edge, A. C.; Fazio, G. G.; Huang, J.; Hughes, D. H.; Kodama, T.; Kang, Y.; Kim, S.; Mauskopf, P. D.; Perera, T. A.; Scott, K. S.
2010-02-01
We have undertaken a deep (σ ~ 1.1 mJy) 1.1-mm survey of the z = 0.54 cluster MS0451.6-0305 using the AzTEC camera on the James Clerk Maxwell Telescope. We detect 36 sources with signal-to-noise ratio (S/N) >= 3.5 in the central 0.10 deg2 and present the AzTEC map, catalogue and number counts. We identify counterparts to 18 sources (50 per cent) using radio, mid-infrared, Spitzer InfraRed Array Camera (IRAC) and Submillimetre Array data. Optical, near- and mid-infrared spectral energy distributions are compiled for the 14 of these galaxies with detectable counterparts, which are expected to contain all likely cluster members. We then use photometric redshifts and colour selection to separate background galaxies from potential cluster members and test the reliability of this technique using archival observations of submillimetre galaxies. We find two potential MS0451-03 members, which, if they are both cluster galaxies, have a total star formation rate (SFR) of ~100Msolaryr-1 - a significant fraction of the combined SFR of all the other galaxies in MS0451-03. We also examine the stacked rest-frame mid-infrared, millimetre and radio emission of cluster members below our AzTEC detection limit, and find that the SFRs of mid-IR-selected galaxies in the cluster and redshift-matched field populations are comparable. In contrast, the average SFR of the morphologically classified late-type cluster population is nearly three times less than the corresponding redshift-matched field galaxies. This suggests that these galaxies may be in the process of being transformed on the red sequence by the cluster environment. Our survey demonstrates that although the environment of MS0451-03 appears to suppress star formation in late-type galaxies, it can support active, dust-obscured mid-IR galaxies and potentially millimetre-detected LIRGs.
A detection of wobbling brightest cluster galaxies within massive galaxy clusters
NASA Astrophysics Data System (ADS)
Harvey, David; Courbin, F.; Kneib, J. P.; McCarthy, Ian G.
2017-12-01
A striking signal of dark matter beyond the standard model is the existence of cores in the centre of galaxy clusters. Recent simulations predict that a brightest cluster galaxy (BCG) inside a cored galaxy cluster will exhibit residual wobbling due to previous major mergers, long after the relaxation of the overall cluster. This phenomenon is absent with standard cold dark matter where a cuspy density profile keeps a BCG tightly bound at the centre. We test this hypothesis using cosmological simulations and deep observations of 10 galaxy clusters acting as strong gravitational lenses. Modelling the BCG wobble as a simple harmonic oscillator, we measure the wobble amplitude, Aw, in the BAHAMAS suite of cosmological hydrodynamical simulations, finding an upper limit for the cold dark matter paradigm of Aw < 2 kpc at the 95 per cent confidence limit. We carry out the same test on the data finding a non-zero amplitude of A_w=11.82^{+7.3}_{-3.0} kpc, with the observations dis-favouring Aw = 0 at the 3σ confidence level. This detection of BCG wobbling is evidence for a dark matter core at the heart of galaxy clusters. It also shows that strong lensing models of clusters cannot assume that the BCG is exactly coincident with the large-scale halo. While our small sample of galaxy clusters already indicates a non-zero Aw, with larger surveys, e.g. Euclid, we will be able to not only confirm the effect but also to use it to determine whether or not the wobbling finds its origin in new fundamental physics or astrophysical process.
STAR FORMATION ACTIVITY IN A YOUNG GALAXY CLUSTER AT Z = 0.866
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laganá, T. F.; Martins, L. P.; Ulmer, M. P.
2016-07-10
The galaxy cluster RX J1257+4738 at z = 0.866 is one of the highest redshift clusters with a richness of multi-wavelength data, and is thus a good target to study the star formation–density relation at early epochs. Using a sample of spectroscopically confirmed cluster members, we derive the star-formation rates (SFRs) of our galaxies using two methods: (1) the relation between SFR and total infrared luminosity extrapolated from the observed Spitzer Multiband Imaging Photometer for Spitzer 24 μ m imaging data; and (2) spectral energy distribution fitting using the MAGPHYS code, including eight different bands. We show that, for thismore » cluster, the SFR–density relation is very weak and seems to be dominated by the two central galaxies and the SFR presents a mild dependence on stellar mass, with more massive galaxies having higher SFR. However, the specific SFR (SSFR) decreases with stellar mass, meaning that more massive galaxies are forming fewer stars per unit of mass, and thus suggesting that the increase in star-forming members is driven by cluster assembly and infall. If the environment is somehow driving the star formation, one would expect a relation between the SSFR and the cluster centric distance, but that is not the case. A possible scenario to explain this lack of correlation is the contamination by infalling galaxies in the inner part of the cluster, which may be on their initial pass through the cluster center. As these galaxies have higher SFRs for their stellar mass, they enhance the mean SSFR in the center of the cluster.« less
An Open-Source Galaxy Redshift Survey Simulator for next-generation Large Scale Structure Surveys
NASA Astrophysics Data System (ADS)
Seijak, Uros
Galaxy redshift surveys produce three-dimensional maps of the galaxy distribution. On large scales these maps trace the underlying matter fluctuations in a relatively simple manner, so that the properties of the primordial fluctuations along with the overall expansion history and growth of perturbations can be extracted. The BAO standard ruler method to measure the expansion history of the universe using galaxy redshift surveys is thought to be robust to observational artifacts and understood theoretically with high precision. These same surveys can offer a host of additional information, including a measurement of the growth rate of large scale structure through redshift space distortions, the possibility of measuring the sum of neutrino masses, tighter constraints on the expansion history through the Alcock-Paczynski effect, and constraints on the scale-dependence and non-Gaussianity of the primordial fluctuations. Extracting this broadband clustering information hinges on both our ability to minimize and subtract observational systematics to the observed galaxy power spectrum, and our ability to model the broadband behavior of the observed galaxy power spectrum with exquisite precision. Rapid development on both fronts is required to capitalize on WFIRST's data set. We propose to develop an open-source computational toolbox that will propel development in both areas by connecting large scale structure modeling and instrument and survey modeling with the statistical inference process. We will use the proposed simulator to both tailor perturbation theory and fully non-linear models of the broadband clustering of WFIRST galaxies and discover novel observables in the non-linear regime that are robust to observational systematics and able to distinguish between a wide range of spatial and dynamic biasing models for the WFIRST galaxy redshift survey sources. We have demonstrated the utility of this approach in a pilot study of the SDSS-III BOSS galaxies, in which we improved the redshift space distortion growth rate measurement precision by a factor of 2.5 using customized clustering statistics in the non-linear regime that were immunized against observational systematics. We look forward to addressing the unique challenges of modeling and empirically characterizing the WFIRST galaxies and observational systematics.
A BARYONIC EFFECT ON THE MERGER TIMESCALE OF GALAXY CLUSTERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Congyao; Yu, Qingjuan; Lu, Youjun, E-mail: yuqj@pku.edu.cn
2016-04-01
Accurate estimation of the merger timescales of galaxy clusters is important for understanding the cluster merger process and further understanding the formation and evolution of the large-scale structure of the universe. In this paper, we explore a baryonic effect on the merger timescale of galaxy clusters by using hydrodynamical simulations. We find that the baryons play an important role in accelerating the merger process. The merger timescale decreases upon increasing the gas fraction of galaxy clusters. For example, the merger timescale is shortened by a factor of up to 3 for merging clusters with gas fractions of 0.15, compared withmore » the timescale obtained with 0 gas fractions. The baryonic effect is significant for a wide range of merger parameters and is particularly more significant for nearly head-on mergers and high merging velocities. The baryonic effect on the merger timescale of galaxy clusters is expected to have an impact on the structure formation in the universe, such as the cluster mass function and massive substructures in galaxy clusters, and a bias of “no-gas” may exist in the results obtained from the dark matter-only cosmological simulations.« less
The case for electron re-acceleration at galaxy cluster shocks
DOE Office of Scientific and Technical Information (OSTI.GOV)
van Weeren, Reinout J.; Andrade-Santos, Felipe; Dawson, William A.
On the largest scales, the Universe consists of voids and filaments making up the cosmic web. Galaxy clusters are located at the knots in this web, at the intersection of filaments. Clusters grow through accretion from these large-scale filaments and by mergers with other clusters and groups. In a growing number of galaxy clusters, elongated Mpc-sized radio sources have been found. Also known as radio relics, these regions of diffuse radio emission are thought to trace relativistic electrons in the intracluster plasma accelerated by low-Mach-number shocks generated by cluster–cluster merger events. A long-standing problem is how low-Mach-number shocks can acceleratemore » electrons so efficiently to explain the observed radio relics. Here, we report the discovery of a direct connection between a radio relic and a radio galaxy in the merging galaxy cluster Abell 3411–3412 by combining radio, X-ray and optical observations. This discovery indicates that fossil relativistic electrons from active galactic nuclei are re-accelerated at cluster shocks. Lastly, it also implies that radio galaxies play an important role in governing the non-thermal component of the intracluster medium in merging clusters.« less
The case for electron re-acceleration at galaxy cluster shocks
van Weeren, Reinout J.; Andrade-Santos, Felipe; Dawson, William A.; ...
2017-01-04
On the largest scales, the Universe consists of voids and filaments making up the cosmic web. Galaxy clusters are located at the knots in this web, at the intersection of filaments. Clusters grow through accretion from these large-scale filaments and by mergers with other clusters and groups. In a growing number of galaxy clusters, elongated Mpc-sized radio sources have been found. Also known as radio relics, these regions of diffuse radio emission are thought to trace relativistic electrons in the intracluster plasma accelerated by low-Mach-number shocks generated by cluster–cluster merger events. A long-standing problem is how low-Mach-number shocks can acceleratemore » electrons so efficiently to explain the observed radio relics. Here, we report the discovery of a direct connection between a radio relic and a radio galaxy in the merging galaxy cluster Abell 3411–3412 by combining radio, X-ray and optical observations. This discovery indicates that fossil relativistic electrons from active galactic nuclei are re-accelerated at cluster shocks. Lastly, it also implies that radio galaxies play an important role in governing the non-thermal component of the intracluster medium in merging clusters.« less
NASA Astrophysics Data System (ADS)
Yoo, Jaiyul; Hamaus, Nico; Seljak, Uroš; Zaldarriaga, Matias
2012-09-01
Kaiser redshift-space distortion formula describes well the clustering of galaxies in redshift surveys on small scales, but there are numerous additional terms that arise on large scales. Some of these terms can be described using Newtonian dynamics and have been discussed in the literature, while the others require proper general relativistic description that was only recently developed. Accounting for these terms in galaxy clustering is the first step toward tests of general relativity on horizon scales. The effects can be classified as two terms that represent the velocity and the gravitational potential contributions. Their amplitude is determined by effects such as the volume and luminosity distance fluctuation effects and the time evolution of galaxy number density and Hubble parameter. We compare the Newtonian approximation often used in the redshift-space distortion literature to the fully general relativistic equation, and show that Newtonian approximation accounts for most of the terms contributing to velocity effect. We perform a Fisher matrix analysis of detectability of these terms and show that in a single tracer survey they are completely undetectable. To detect these terms one must resort to the recently developed methods to reduce sampling variance and shot noise. We show that in an all-sky galaxy redshift survey at low redshift the velocity term can be measured at a few sigma if one can utilize halos of mass M≥1012h-1M⊙ (this can increase to 10-σ or more in some more optimistic scenarios), while the gravitational potential term itself can only be marginally detected. We also demonstrate that the general relativistic effect is not degenerate with the primordial non-Gaussian signature in galaxy bias, and the ability to detect primordial non-Gaussianity is little compromised.
BUDHIES II: a phase-space view of H I gas stripping and star formation quenching in cluster galaxies
NASA Astrophysics Data System (ADS)
Jaffé, Yara L.; Smith, Rory; Candlish, Graeme N.; Poggianti, Bianca M.; Sheen, Yun-Kyeong; Verheijen, Marc A. W.
2015-04-01
We investigate the effect of ram-pressure from the intracluster medium on the stripping of H I gas in galaxies in a massive, relaxed, X-ray bright, galaxy cluster at z = 0.2 from the Blind Ultra Deep H I Environmental Survey (BUDHIES). We use cosmological simulations, and velocity versus position phase-space diagrams to infer the orbital histories of the cluster galaxies. In particular, we embed a simple analytical description of ram-pressure stripping in the simulations to identify the regions in phase-space where galaxies are more likely to have been sufficiently stripped of their H I gas to fall below the detection limit of our survey. We find a striking agreement between the model predictions and the observed location of H I-detected and non-detected blue (late-type) galaxies in phase-space, strongly implying that ram-pressure plays a key role in the gas removal from galaxies, and that this can happen during their first infall into the cluster. However, we also find a significant number of gas-poor, red (early-type) galaxies in the infall region of the cluster that cannot easily be explained with our model of ram-pressure stripping alone. We discuss different possible additional mechanisms that could be at play, including the pre-processing of galaxies in their previous environment. Our results are strengthened by the distribution of galaxy colours (optical and UV) in phase-space, that suggests that after a (gas-rich) field galaxy falls into the cluster, it will lose its gas via ram-pressure stripping, and as it settles into the cluster, its star formation will decay until it is completely quenched. Finally, this work demonstrates the utility of phase-space diagrams to analyse the physical processes driving the evolution of cluster galaxies, in particular H I gas stripping.
Submillimeter Galaxy Number Counts and Magnification by Galaxy Clusters
NASA Astrophysics Data System (ADS)
Lima, Marcos; Jain, Bhuvnesh; Devlin, Mark; Aguirre, James
2010-07-01
We present an analytical model that reproduces measured galaxy number counts from surveys in the wavelength range of 500 μm-2 mm. The model involves a single high-redshift galaxy population with a Schechter luminosity function that has been gravitationally lensed by galaxy clusters in the mass range 1013-1015 M sun. This simple model reproduces both the low-flux and the high-flux end of the number counts reported by the BLAST, SCUBA, AzTEC, and South Pole Telescope (SPT) surveys. In particular, our model accounts for the most luminous galaxies detected by SPT as the result of high magnifications by galaxy clusters (magnification factors of 10-30). This interpretation implies that submillimeter (submm) and millimeter surveys of this population may prove to be a useful addition to ongoing cluster detection surveys. The model also implies that the bulk of submm galaxies detected at wavelengths larger than 500 μm lie at redshifts greater than 2.
The accelerated build-up of the red sequence in high-redshift galaxy clusters
NASA Astrophysics Data System (ADS)
Cerulo, P.; Couch, W. J.; Lidman, C.; Demarco, R.; Huertas-Company, M.; Mei, S.; Sánchez-Janssen, R.; Barrientos, L. F.; Muñoz, R. P.
2016-04-01
We analyse the evolution of the red sequence in a sample of galaxy clusters at redshifts 0.8 < z < 1.5 taken from the HAWK-I Cluster Survey (HCS). The comparison with the low-redshift (0.04 < z < 0.08) sample of the WIde-field Nearby Galaxy-cluster Survey (WINGS) and other literature results shows that the slope and intrinsic scatter of the cluster red sequence have undergone little evolution since z = 1.5. We find that the luminous-to-faint ratio and the slope of the faint end of the luminosity distribution of the HCS red sequence are consistent with those measured in WINGS, implying that there is no deficit of red galaxies at magnitudes fainter than M_V^{ast } at high redshifts. We find that the most massive HCS clusters host a population of bright red sequence galaxies at MV < -22.0 mag, which are not observed in low-mass clusters. Interestingly, we also note the presence of a population of very bright (MV < -23.0 mag) and massive (log (M*/M⊙) > 11.5) red sequence galaxies in the WINGS clusters, which do not include only the brightest cluster galaxies and which are not present in the HCS clusters, suggesting that they formed at epochs later than z = 0.8. The comparison with the luminosity distribution of a sample of passive red sequence galaxies drawn from the COSMOS/UltraVISTA field in the photometric redshift range 0.8 < zphot < 1.5 shows that the red sequence in clusters is more developed at the faint end, suggesting that halo mass plays an important role in setting the time-scales for the build-up of the red sequence.
The distribution of mass for spiral galaxies in clusters and in the field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forbes, D.A.; Whitmore, B.C.
1989-04-01
A comparison is made between the mass distributions of spiral galaxies in clusters and in the field using Burstein's mass-type methodology. Both the H-alpha emission-line rotation curves and more extended H I rotation curves are used. The fitting technique for determining mass types used by Burstein and coworkers has been replaced by an objective chi-sq method. Mass types are shown to be a function of both the Hubble type and luminosity, contrary to earlier results. The present data show a difference in the distribution of mass types for spiral galaxies in the field and in clusters, in the sense thatmore » mass type I galaxies, where the inner and outer velocity gradients are similar, are generally found in the field rather than in clusters. This can be understood in terms of the results of Whitmore, Forbes, and Rubin (1988), who find that the rotation curves of galaxies in the central region of clusters are generally failing, while the outer galaxies in a cluster and field galaxies tend to have flat or rising rotation curves. 15 refs.« less
Gas Dynamics in the Fornax Cluster: Viscosity, turbulence, and sloshing
NASA Astrophysics Data System (ADS)
Kraft, Ralph; Su, Yuanyuan; Sheardown, Alexander; Roediger, Elke; Nulsen, Paul; Forman, William; Jones, Christine; Churazov, Eugene
2018-01-01
We present results from deep Chandra and XMM-Newton observations of the ICM in the Fornax cluster, and combine these data with specifically-tailored hydrodynamic simulations for an unprecedented view of the gas dynamics in this nearby cluster. We report the detection of four sloshing fronts (Su+2017). Based on our simulations, all four of these fronts can plausibly be attributed to the infall of the early-type galaxy NGC 1404 into the cluster potential. We argue that the presence of these sloshing cold fronts, the lack of its own extended gas halo, and the approximately transonic infall velocity indicate that this must be at least the second core passage for NGC 1404. Additionally, there is virtually no stripped tail of cool gas behind NGC 1404, conclusively demonstrating that the stripped gas is efficiently mixed with the cluster ICM. This mixing most likely occurs via small-scale Kelvin-Helmholtz instabilities formed in the high Reynolds number flow.
The Formation of Cluster Populations Through Direct Galaxy Collisions
NASA Astrophysics Data System (ADS)
Peterson, Bradley W.; Smith, Beverly J.; Struck, Curtis
2016-01-01
Much progress has been made on the question of how globular clusters form. In particular, the study of extragalactic populations of young, high-mass clusters ("super star clusters") has revealed a class of objects can evolve into globular clusters. The process by which these clusters form, and how many survive long enough to become globular clusters, is not wholly understood. Here, we use new data on the colliding galaxy system Arp 261 to investigate the possibility that young, massive clusters form in greater numbers during direct galaxy collisions, compared to less direct tidal collisions.
NASA Astrophysics Data System (ADS)
Frinchaboy, Peter Michael, III
Establishing the rotation curve of the Milky Way is one of the fundamental contributions needed to understand the Galaxy and its mass distribution. We have undertaken a systematic spectroscopic survey of open star clusters which can serve as tracers of Galactic disk dynamics. We report on our initial sample of 67 clusters for which the Hydra multi-fiber spectrographs on the WIYN and Blanco telescopes have delivered ~1-2 km s -1 radial velocities (RVs) of many dozens of stars in the fields of each cluster, which are used to derive cluster membership and bulk cluster kinematics when combined with Tycho-2 proper motions. The clusters selected for study have a broad spatial distribution in order to be sensitive to the disk velocity field in all Galactic quadrants and across a Galactocentric radius range as much as 3.0 kpc from the solar circle. Through analysis of the cluster sample, we find (1) the rotation velocity of the Local Standard of Rest (LSR) is [Special characters omitted.] km s -1 , (2 ) the local rotation curve is declining with radius having a slope of -9.1 km s -1 kpc -1 , (3) we find (using R 0 = 8.5 kpc) the following Galactic parameters: A = 17.0 km s -1 kpc -1 and B = -8.9 km s -1 kpc -1 , which using a flat rotation curve and our determined values for the rotation velocity of the LSR yields a Galaxy mass within 1.5 R 0 of M = 1.4 ± 0.2 × 10 11 [Spe cial characters omitted.] and a M/L of 9 [Special characters omitted.] . We also explore the distribution of the local velocity field and find evidence for non- circular motion due to the spiral arms. Additionally, a number of outer disk ( R gc > 12 kpc) open clusters, including Be29 and Sa1, are studied that have potentially critical leverage on radial, age and metallicity gradients in the outer Galactic disk. We find that the measured kinematics of Sa1 and Be29 are consistent with being associated with the Galactic anticenter stellar structure (GASS; or Monoceros stream), which points to a possible "accretion" origin for these and possibly other outer disk open clusters, if one believes that GASS represents an accreting dwarf galaxy system.
Small-scale Conformity of the Virgo Cluster Galaxies
NASA Astrophysics Data System (ADS)
Lee, Hye-Ran; Lee, Joon Hyeop; Jeong, Hyunjin; Park, Byeong-Gon
2016-06-01
We investigate the small-scale conformity in color between bright galaxies and their faint companions in the Virgo Cluster. Cluster member galaxies are spectroscopically determined using the Extended Virgo Cluster Catalog and the Sloan Digital Sky Survey Data Release 12. We find that the luminosity-weighted mean color of faint galaxies depends on the color of adjacent bright galaxy as well as on the cluster-scale environment (gravitational potential index). From this result for the entire area of the Virgo Cluster, it is not distinguishable whether the small-scale conformity is genuine or if it is artificially produced due to cluster-scale variation of galaxy color. To disentangle this degeneracy, we divide the Virgo Cluster area into three sub-areas so that the cluster-scale environmental dependence is minimized: A1 (central), A2 (intermediate), and A3 (outermost). We find conformity in color between bright galaxies and their faint companions (color-color slope significance S ˜ 2.73σ and correlation coefficient {cc}˜ 0.50) in A2, where the cluster-scale environmental dependence is almost negligible. On the other hand, the conformity is not significant or very marginal (S ˜ 1.75σ and {cc}˜ 0.27) in A1. The conformity is not significant either in A3 (S ˜ 1.59σ and {cc}˜ 0.44), but the sample size is too small in this area. These results are consistent with a scenario in which the small-scale conformity in a cluster is a vestige of infallen groups and these groups lose conformity as they come closer to the cluster center.
The Hubble Space Telescope Medium Deep Survey Cluster Sample: Methodology and Data
NASA Astrophysics Data System (ADS)
Ostrander, E. J.; Nichol, R. C.; Ratnatunga, K. U.; Griffiths, R. E.
1998-12-01
We present a new, objectively selected, sample of galaxy overdensities detected in the Hubble Space Telescope Medium Deep Survey (MDS). These clusters/groups were found using an automated procedure that involved searching for statistically significant galaxy overdensities. The contrast of the clusters against the field galaxy population is increased when morphological data are used to search around bulge-dominated galaxies. In total, we present 92 overdensities above a probability threshold of 99.5%. We show, via extensive Monte Carlo simulations, that at least 60% of these overdensities are likely to be real clusters and groups and not random line-of-sight superpositions of galaxies. For each overdensity in the MDS cluster sample, we provide a richness and the average of the bulge-to-total ratio of galaxies within each system. This MDS cluster sample potentially contains some of the most distant clusters/groups ever detected, with about 25% of the overdensities having estimated redshifts z > ~0.9. We have made this sample publicly available to facilitate spectroscopic confirmation of these clusters and help more detailed studies of cluster and galaxy evolution. We also report the serendipitous discovery of a new cluster close on the sky to the rich optical cluster Cl l0016+16 at z = 0.546. This new overdensity, HST 001831+16208, may be coincident with both an X-ray source and a radio source. HST 001831+16208 is the third cluster/group discovered near to Cl 0016+16 and appears to strengthen the claims of Connolly et al. of superclustering at high redshift.
IDENTIFICATION OF MEMBERS IN THE CENTRAL AND OUTER REGIONS OF GALAXY CLUSTERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Serra, Ana Laura; Diaferio, Antonaldo, E-mail: serra@ph.unito.it
2013-05-10
The caustic technique measures the mass of galaxy clusters in both their virial and infall regions and, as a byproduct, yields the list of cluster galaxy members. Here we use 100 galaxy clusters with mass M{sub 200} {>=} 10{sup 14} h {sup -1} M{sub Sun} extracted from a cosmological N-body simulation of a {Lambda}CDM universe to test the ability of the caustic technique to identify the cluster galaxy members. We identify the true three-dimensional members as the gravitationally bound galaxies. The caustic technique uses the caustic location in the redshift diagram to separate the cluster members from the interlopers. Wemore » apply the technique to mock catalogs containing 1000 galaxies in the field of view of 12 h {sup -1} Mpc on a side at the cluster location. On average, this sample size roughly corresponds to 180 real galaxy members within 3r{sub 200}, similar to recent redshift surveys of cluster regions. The caustic technique yields a completeness, the fraction of identified true members, f{sub c} = 0.95 {+-} 0.03, within 3r{sub 200}. The contamination, the fraction of interlopers in the observed catalog of members, increases from f{sub i}=0.020{sup +0.046}{sub -0.015} at r{sub 200} to f{sub i}=0.08{sup +0.11}{sub -0.05} at 3r{sub 200}. No other technique for the identification of the members of a galaxy cluster provides such large completeness and small contamination at these large radii. The caustic technique assumes spherical symmetry and the asphericity of the cluster is responsible for most of the spread of the completeness and the contamination. By applying the technique to an approximately spherical system obtained by stacking the individual clusters, the spreads decrease by at least a factor of two. We finally estimate the cluster mass within 3r{sub 200} after removing the interlopers: for individual clusters, the mass estimated with the virial theorem is unbiased and within 30% of the actual mass; this spread decreases to less than 10% for the spherically symmetric stacked cluster.« less
NASA Technical Reports Server (NTRS)
1999-01-01
Atlas Image mosaic, covering 34' x 34' on the sky, of the Coma cluster, aka Abell 1656. This is a particularly rich cluster of individual galaxies (over 1000 members), most prominently the two giant ellipticals, NGC 4874 (right) and NGC 4889 (left). The remaining members are mostly smaller ellipticals, but spiral galaxies are also evident in the 2MASS image. The cluster is seen toward the constellation Coma Berenices, but is actually at a distance of about 100 Mpc (330 million light years, or a redshift of 0.023) from us. At this distance, the cluster is in what is known as the 'Hubble flow,' or the overall expansion of the Universe. As such, astronomers can measure the Hubble Constant, or the universal expansion rate, based on the distance to this cluster. Large, rich clusters, such as Coma, allow astronomers to measure the 'missing mass,' i.e., the matter in the cluster that we cannot see, since it gravitationally influences the motions of the member galaxies within the cluster. The near-infrared maps the overall luminous mass content of the member galaxies, since the light at these wavelengths is dominated by the more numerous older stellar populations. Galaxies, as seen by 2MASS, look fairly smooth and homogeneous, as can be seen from the Hubble 'tuning fork' diagram of near-infrared galaxy morphology. Image mosaic by S. Van Dyk (IPAC).
The VLT LBG Redshift Survey - III. The clustering and dynamics of Lyman-break galaxies at z ˜ 3
NASA Astrophysics Data System (ADS)
Bielby, R.; Hill, M. D.; Shanks, T.; Crighton, N. H. M.; Infante, L.; Bornancini, C. G.; Francke, H.; Héraudeau, P.; Lambas, D. G.; Metcalfe, N.; Minniti, D.; Padilla, N.; Theuns, T.; Tummuangpak, P.; Weilbacher, P.
2013-03-01
We present a catalogue of 2135 galaxy redshifts from the VLT LBG Redshift Survey (VLRS), a spectroscopic survey of z ≈ 3 galaxies in wide fields centred on background quasi-stellar objects. We have used deep optical imaging to select galaxies via the Lyman-break technique. Spectroscopy of the Lyman-break galaxies (LBGs) was then made using the Very Large Telescope (VLT) Visible Multi-Object Spectrograph (VIMOS) instrument, giving a mean redshift of z = 2.79. We analyse the clustering properties of the VLRS sample and also of the VLRS sample combined with the smaller area Keck-based survey of Steidel et al. From the semiprojected correlation function, wp(σ), for the VLRS and combined surveys, we find that the results are well fit with a single power-law model, with clustering scale lengths of r0 = 3.46 ± 0.41 and 3.83 ± 0.24 h-1 Mpc, respectively. We note that the corresponding combined ξ(r) slope is flatter than for local galaxies at γ = 1.5-1.6 rather than γ = 1.8. This flat slope is confirmed by the z-space correlation function, ξ(s), and in the range 10 < s < 100 h-1 Mpc the VLRS shows an ≈2.5σ excess over the Λ cold dark matter (ΛCDM) linear prediction. This excess may be consistent with recent evidence for non-Gaussianity in clustering results at z ≈ 1. We then analyse the LBG z-space distortions using the 2D correlation function, ξ(σ, π), finding for the combined sample a large-scale infall parameter of β = 0.38 ± 0.19 and a velocity dispersion of sqrt{< w_z^2rangle }=420^{+140}_{-160} km s^{-1}. Based on our measured β, we are able to determine the gravitational growth rate, finding a value of f(z = 3) = 0.99 ± 0.50 (or fσ8 = 0.26 ± 0.13), which is the highest redshift measurement of the growth rate via galaxy clustering and is consistent with ΛCDM. Finally, we constrain the mean halo mass for the LBG population, finding that the VLRS and combined sample suggest mean halo masses of log(MDM/M⊙) = 11.57 ± 0.15 and 11.73 ± 0.07, respectively.
NASA Astrophysics Data System (ADS)
Rudnick, Gregory; Hodge, Jacqueline; Walter, Fabian; Momcheva, Ivelina; Tran, Kim-Vy; Papovich, Casey; da Cunha, Elisabete; Decarli, Roberto; Saintonge, Amelie; Willmer, Christopher; Lotz, Jennifer; Lentati, Lindley
2017-11-01
We present an extremely deep CO(1-0) observation of a confirmed z = 1.62 galaxy cluster. We detect two spectroscopically confirmed cluster members in CO(1-0) with signal-to-noise ratio > 5. Both galaxies have log({{ M }}\\star /{{ M }}⊙ ) > 11 and are gas rich, with {{ M }}{mol}/({{ M }}\\star +{{ M }}{mol}) ˜ 0.17-0.45. One of these galaxies lies on the star formation rate (SFR)-{{ M }}\\star sequence, while the other lies an order of magnitude below. We compare the cluster galaxies to other SFR-selected galaxies with CO measurements and find that they have CO luminosities consistent with expectations given their infrared luminosities. We also find that they have gas fractions and star formation efficiencies (SFE) comparable to what is expected from published field galaxy scaling relations. The galaxies are compact in their stellar light distribution, at the extreme end for all high-redshift star-forming galaxies. However, their SFE is consistent with other field galaxies at comparable compactness. This is similar to two other sources selected in a blind CO survey of the HDF-N. Despite living in a highly quenched protocluster core, the molecular gas properties of these two galaxies, one of which may be in the process of quenching, appear entirely consistent with field scaling relations between the molecular gas content, stellar mass, star formation rate, and redshift. We speculate that these cluster galaxies cannot have any further substantive gas accretion if they are to become members of the dominant passive population in z< 1 clusters.
Does faint galaxy clustering contradict gravitational instability?
NASA Technical Reports Server (NTRS)
Melott, Adrian L.
1992-01-01
It has been argued, based on the weakness of clustering of faint galaxies, that these objects cannot be the precursors of present galaxies in a simple Einstein-de Sitter model universe with clustering driven by gravitational instability. It is shown that the assumptions made about the growth of clustering were too restrictive. In such a universe, the growth of clustering can easily be fast enough to match the data.
Non-linear clustering in the cold plus hot dark matter model
NASA Astrophysics Data System (ADS)
Bonometto, Silvio A.; Borgani, Stefano; Ghigna, Sebastiano; Klypin, Anatoly; Primack, Joel R.
1995-03-01
The main aim of this work is to find out if hierarchical scaling, observed in galaxy clustering, can be dynamically explained by studying N-body simulations. Previous analyses of dark matter (DM) particle distributions indicated heavy distortions with respect to the hierarchical pattern. Here, we shall describe how such distortions are to be interpreted and why they can be fully reconciled with the observed galaxy clustering. This aim is achieved by using high-resolution (512^3 grid-points) particle-mesh (PM) N-body simulations to follow the development of non-linear clustering in a Omega=1 universe, dominated either by cold dark matter (CDM) or by a mixture of cold+hot dark matter (CHDM) with Omega_cold=0.6, and Omega_hot=0.3 and Omega_baryon=0.1 a simulation box of side 100 Mpc (h=0.5) is used. We analyse two CHDM realizations with biasing factor b=1.5 (COBE normalization), starting from different initial random numbers, and compare them with CDM simulations with b=1 (COBE-compatible) and b=1.5. We evaluate high-order correlation functions and the void probability function (VPF). Correlation functions are obtained from both counts in cells and counts of neighbours. The analysis is carried out for DM particles and for galaxies identified as massive haloes of the evolved density field. We confirm that clustering of DM particles systematically exhibits deviations from hierarchical scaling, although the deviation increases somewhat in redshift space. Deviations from the hierarchical scaling of DM particles are found to be related to the spectrum shape, in a way that indicates that such distortions arise from finite sampling effects. We identify galaxy positions in the simulations and show that, quite differently from the DM particle background, galaxies follow hierarchical scaling (S_q=xi_q/& xgr^q-1_2=consta nt) far more closely, with reduced skewness and kurtosis coefficients S_3~2.5 and S_4~7.5, in general agreement with observational results. Unlike DM, the scaling of galaxy clustering is must marginally affected by redshift distortions and is obtained for both CDM and CHDM models. Hierarchical scaling in simulations is confirmed by VPF analysis. Also in this case, we find substantial agreement with observational findings.
Stellar Populations and Radial Migrations in Virgo Disk Galaxies
NASA Astrophysics Data System (ADS)
Roediger, Joel C.; Courteau, Stéphane; Sánchez-Blázquez, Patricia; McDonald, Michael
2012-10-01
We present new stellar age profiles, derived from well-resolved optical and near-infrared images of 64 Virgo cluster disk galaxies, whose analysis poses a challenge for current disk galaxy formation models. Our ability to break the age-metallicity degeneracy and the significant size of our sample represent key improvements over complementary studies of field disk galaxies. Our results can be summarized as follows: first, and contrary to observations of disk galaxies in the field, these cluster galaxies are distributed almost equally amongst the three main types of disk galaxy luminosity profiles (I/II/III), indicating that the formation and/or survival of Type II breaks is suppressed within the cluster environment. Second, we find examples of statistically significant inversions ("U-shapes") in the age profiles of all three disk galaxy types, reminiscent of predictions from high-resolution simulations of classically truncated Type II disks in the field. These features characterize the age profiles for only about a third (<=36%) of each disk galaxy type in our sample. An even smaller fraction of cluster disks (~11% of the total sample) exhibit age profiles that decrease outward (i.e., negative age gradients). Instead, flat and/or positive age gradients prevail (>=50%) within our Type I, II, and III subsamples. These observations thus suggest that while stellar migrations and inside-out growth can play a significant role in the evolution of all disk galaxy types, other factors contributing to the evolution of galaxies can overwhelm the predicted signatures of these processes. We interpret our observations through a scenario whereby Virgo cluster disk galaxies formed initially like their brethren in the field but which, upon falling into the cluster, were transformed into their present state through external processes linked to the environment (e.g., ram-pressure stripping and harassment). Current disk galaxy formation models, which have largely focused on field galaxies, fail to reproduce these results, thus calling for adequate hydrodynamical simulations of dense galaxy environments if we are to understand cluster disks. The current paper highlights numerous constraints for such simulations. In the Appendix, we confirm the claim by Erwin et al. that Type II breaks are absent in Virgo cluster S0s and discuss the detection of Type III breaks in such galaxies.
IRAS galaxies and the large-scale structure in the CfA slice
NASA Technical Reports Server (NTRS)
Babul, Arif; Postman, Marc
1990-01-01
The spatial distributions of the IRAS and the optical galaxies in the first CfA slice are compared. The IRAS galaxies are generally less clustered than optical ones, but their distribution is essentially identical to that of late-type optical galaxies. The discrepancy between the clustering properties of the IRAS and optical samples in the CfA slice region is found to be entirely due to the paucity of IRAS galaxies in the core of the Coma cluster. The spatial distributions of the IRAS and the optical galaxies, both late and early types, outside the dense core of the Coma cluster are entirely consistent with each other. This conflicts with the prediction of the linear biasing scenario.
Galaxy luminosity function: evolution at high redshift
NASA Astrophysics Data System (ADS)
Martinet, N.; Durret, F.; Guennou, L.; Adami, C.
2014-12-01
There are some disagreements about the abundance of faint galaxies in high redshift clusters. DAFT/FADA (Dark energy American French Team) is a medium redshift (0.4
Dark energy in systems of galaxies
NASA Astrophysics Data System (ADS)
Chernin, A. D.
2013-11-01
The precise observational data of the Hubble Space Telescope have been used to study nearby galaxy systems. The main result is the detection of dark energy in groups, clusters, and flows of galaxies on a spatial scale of about 1-10 Mpc. The local density of dark energy in these systems, which is determined by various methods, is close to the global value or even coincides with it. A theoretical model of the nearby Universe has been constructed, which describes the Local Group of galaxies with the flow of dwarf galaxies receding from this system. The key physical parameter of the group-flow system is zero gravity radius, which is the distance at which the gravity of dark matter is compensated by dark-energy antigravity. The model predicts the existence of local regions of space where Einstein antigravity is stronger than Newton gravity. Six such regions have been revealed in the data of the Hubble space telescope. The nearest of these regions is at a distance of 1-3 Mpc from the center of the Milky Way. Antigravity in this region is several times stronger than gravity. Quasiregular flows of receding galaxies, which are accelerated by the dark-energy antigravity, exist in these regions. The model of the nearby Universe at the scale of groups of galaxies (˜1 Mpc) can be extended to the scale of clusters (˜10 Mpc). The systems of galaxies with accelerated receding flows constitute a new and probably widespread class of metagalactic populations. Strong dynamic effects of local dark energy constitute the main characteristic feature of these systems.
Dark matter searches with Cherenkov telescopes: nearby dwarf galaxies or local galaxy clusters?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sánchez-Conde, Miguel A.; Cannoni, Mirco; Gómez, Mario E.
2011-12-01
In this paper, we compare dwarf galaxies and galaxy clusters in order to elucidate which object class is the best target for gamma-ray DM searches with imaging atmospheric Cherenkov telescopes (IACTs). We have built a mixed dwarfs+clusters sample containing some of the most promising nearby dwarf galaxies (Draco, Ursa Minor, Wilman 1 and Segue 1) and local galaxy clusters (Perseus, Coma, Ophiuchus, Virgo, Fornax, NGC 5813 and NGC 5846), and then compute their DM annihilation flux profiles by making use of the latest modeling of their DM density profiles. We also include in our calculations the effect of DM substructure.more » Willman 1 appears as the best candidate in the sample. However, its mass modeling is still rather uncertain, so probably other candidates with less uncertainties and quite similar fluxes, namely Ursa Minor and Segue 1, might be better options. As for galaxy clusters, Virgo represents the one with the highest flux. However, its large spatial extension can be a serious handicap for IACT observations and posterior data analysis. Yet, other local galaxy cluster candidates with more moderate emission regions, such as Perseus, may represent good alternatives. After comparing dwarfs and clusters, we found that the former exhibit annihilation flux profiles that, at the center, are roughly one order of magnitude higher than those of clusters, although galaxy clusters can yield similar, or even higher, integrated fluxes for the whole object once substructure is taken into account. Even when any of these objects are strictly point-like according to the properties of their annihilation signals, we conclude that dwarf galaxies are best suited for observational strategies based on the search of point-like sources, while galaxy clusters represent best targets for analyses that can deal with rather extended emissions. Finally, we study the detection prospects for present and future IACTs in the framework of the constrained minimal supersymmetric standard model. We find that the level of the annihilation flux from these targets is below the sensitivities of current IACTs and the future CTA.« less
Dark Matter Searches with Cherenkov Telescopes: Nearby Dwarf Galaxies or Local Galaxy Clusters?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanchez-Conde, Miguel A.; /KIPAC, Menlo Park /SLAC /IAC, La Laguna /Laguna U., Tenerife; Cannoni, Mirco
2012-06-06
In this paper, we compare dwarf galaxies and galaxy clusters in order to elucidate which object class is the best target for gamma-ray DM searches with imaging atmospheric Cherenkov telescopes (IACTs). We have built a mixed dwarfs+clusters sample containing some of the most promising nearby dwarf galaxies (Draco, Ursa Minor, Wilman 1 and Segue 1) and local galaxy clusters (Perseus, Coma, Ophiuchus, Virgo, Fornax, NGC 5813 and NGC 5846), and then compute their DM annihilation flux profiles by making use of the latest modeling of their DM density profiles. We also include in our calculations the effect of DM substructure.more » Willman 1 appears as the best candidate in the sample. However, its mass modeling is still rather uncertain, so probably other candidates with less uncertainties and quite similar fluxes, namely Ursa Minor and Segue 1, might be better options. As for galaxy clusters, Virgo represents the one with the highest flux. However, its large spatial extension can be a serious handicap for IACT observations and posterior data analysis. Yet, other local galaxy cluster candidates with more moderate emission regions, such as Perseus, may represent good alternatives. After comparing dwarfs and clusters, we found that the former exhibit annihilation flux profiles that, at the center, are roughly one order of magnitude higher than those of clusters, although galaxy clusters can yield similar, or even higher, integrated fluxes for the whole object once substructure is taken into account. Even when any of these objects are strictly point-like according to the properties of their annihilation signals, we conclude that dwarf galaxies are best suited for observational strategies based on the search of point-like sources, while galaxy clusters represent best targets for analyses that can deal with rather extended emissions. Finally, we study the detection prospects for present and future IACTs in the framework of the constrained minimal supersymmetric standard model. We find that the level of the annihilation flux from these targets is below the sensitivities of current IACTs and the future CTA.« less
Dark matter searches with Cherenkov telescopes: nearby dwarf galaxies or local galaxy clusters?
NASA Astrophysics Data System (ADS)
Sánchez-Conde, Miguel A.; Cannoni, Mirco; Zandanel, Fabio; Gómez, Mario E.; Prada, Francisco
2011-12-01
In this paper, we compare dwarf galaxies and galaxy clusters in order to elucidate which object class is the best target for gamma-ray DM searches with imaging atmospheric Cherenkov telescopes (IACTs). We have built a mixed dwarfs+clusters sample containing some of the most promising nearby dwarf galaxies (Draco, Ursa Minor, Wilman 1 and Segue 1) and local galaxy clusters (Perseus, Coma, Ophiuchus, Virgo, Fornax, NGC 5813 and NGC 5846), and then compute their DM annihilation flux profiles by making use of the latest modeling of their DM density profiles. We also include in our calculations the effect of DM substructure. Willman 1 appears as the best candidate in the sample. However, its mass modeling is still rather uncertain, so probably other candidates with less uncertainties and quite similar fluxes, namely Ursa Minor and Segue 1, might be better options. As for galaxy clusters, Virgo represents the one with the highest flux. However, its large spatial extension can be a serious handicap for IACT observations and posterior data analysis. Yet, other local galaxy cluster candidates with more moderate emission regions, such as Perseus, may represent good alternatives. After comparing dwarfs and clusters, we found that the former exhibit annihilation flux profiles that, at the center, are roughly one order of magnitude higher than those of clusters, although galaxy clusters can yield similar, or even higher, integrated fluxes for the whole object once substructure is taken into account. Even when any of these objects are strictly point-like according to the properties of their annihilation signals, we conclude that dwarf galaxies are best suited for observational strategies based on the search of point-like sources, while galaxy clusters represent best targets for analyses that can deal with rather extended emissions. Finally, we study the detection prospects for present and future IACTs in the framework of the constrained minimal supersymmetric standard model. We find that the level of the annihilation flux from these targets is below the sensitivities of current IACTs and the future CTA.
The ROSAT Brightest Cluster Sample - III. Optical spectra of the central cluster galaxies
NASA Astrophysics Data System (ADS)
Crawford, C. S.; Allen, S. W.; Ebeling, H.; Edge, A. C.; Fabian, A. C.
1999-07-01
We present new spectra of dominant galaxies in X-ray-selected clusters of galaxies, which combine with our previously published spectra to form a sample of 256 dominant galaxies in 215 clusters. 177 of the clusters are members of the ROSAT Brightest Cluster Sample (BCS; Ebeling et al.), and 17 have no previous measured redshift. This is the first paper in a series correlating the properties of brightest cluster galaxies and their host clusters in the radio, optical and X-ray wavebands. 27 per cent of the central dominant galaxies have emission-line spectra, all but five with line intensity ratios typical of cooling flow nebulae. A further 6 per cent show only [N ii]lambdalambda6548,6584 with Hα in absorption. We find no evidence for an increase in the frequency of line emission with X-ray luminosity. Purely X-ray-selected clusters at low redshift have a higher probability of containing line emission. The projected separation between the optical position of the dominant galaxy and its host cluster X-ray centroid is less for the line-emitting galaxies than for those without line emission, consistent with a closer association of the central galaxy and the gravitational centre in cooling flow clusters. The more Hα-luminous galaxies have larger emission-line regions and show a higher ratio of Balmer to forbidden line emission, although there is a continuous trend of ionization behaviour across four decades in Hα luminosity. Galaxies with the more luminous line emission [L(Hα)> 10^41ergs^-1] show a significantly bluer continuum, whereas lower luminosity and [N ii]-only line emitters have continua that differ little from those of non-line-emitting dominant galaxies. Values of the Balmer decrement in the more luminous systems commonly imply intrinsic reddening of E(B-V)~0.3 and, when this is corrected for, the excess blue light can be characterized by a population of massive young stars. Several of the galaxies require a large population of O stars, which also provide sufficient photoionization to produce the observed Hα luminosity. The large number of lower mass stars relative to the O-star population suggests that this anomalous population is caused by a series of starbursts in the central galaxy. The lower Hα-luminosity systems show a higher ionization state and few massive stars, requiring instead the introduction of a harder source of photoionization, such as turbulent mixing layers, or low-level nuclear activity. The line emission from the systems showing only [N ii] is very similar to low-level LINER activity commonly found in many normal elliptical galaxies.
X ray archeology in the Coma cluster
NASA Technical Reports Server (NTRS)
White, Simon D. M.; Briel, Ulrich G.; Henry, J. Patrick
1993-01-01
Images of X-ray emission from hot gas within the Coma cluster of galaxies are presented. These maps, made with the Rosat satellite, have high signal to noise ratio and allow cluster structure to be analyzed in unprecedented detail. They show greater structural irregularity than could be anticipated from earlier observations of Coma. Emission is detected from a number of bright cluster galaxies in addition to the two known previously. In four cases there is evidence that these galaxies lie at the center of an extended subconcentration within the cluster, possibly the remnant of their associated groups. For at least two galaxies the images show direct evidence for ongoing disruption of their gaseous atmosphere. The luminosity associated with these galaxies is comparable to that detected around similar ellipticals in much poorer environments. Emission is easily detected and appears to become more regular at large radii. The data show that this archetype of a rich and regular galaxy cluster was formed by the merging of several distinct subunits which are not yet fully destroyed.
A measurement of CMB cluster lensing with SPT and DES year 1 data
NASA Astrophysics Data System (ADS)
Baxter, E. J.; Raghunathan, S.; Crawford, T. M.; Fosalba, P.; Hou, Z.; Holder, G. P.; Omori, Y.; Patil, S.; Rozo, E.; Abbott, T. M. C.; Annis, J.; Aylor, K.; Benoit-Lévy, A.; Benson, B. A.; Bertin, E.; Bleem, L.; Buckley-Geer, E.; Burke, D. L.; Carlstrom, J.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Chang, C. L.; Cho, H.-M.; Crites, A. T.; Crocce, M.; Cunha, C. E.; da Costa, L. N.; D'Andrea, C. B.; Davis, C.; de Haan, T.; Desai, S.; Dietrich, J. P.; Dobbs, M. A.; Dodelson, S.; Doel, P.; Drlica-Wagner, A.; Estrada, J.; Everett, W. B.; Fausti Neto, A.; Flaugher, B.; Frieman, J.; García-Bellido, J.; George, E. M.; Gaztanaga, E.; Giannantonio, T.; Gruen, D.; Gruendl, R. A.; Gschwend, J.; Gutierrez, G.; Halverson, N. W.; Harrington, N. L.; Hartley, W. G.; Holzapfel, W. L.; Honscheid, K.; Hrubes, J. D.; Jain, B.; James, D. J.; Jarvis, M.; Jeltema, T.; Knox, L.; Krause, E.; Kuehn, K.; Kuhlmann, S.; Kuropatkin, N.; Lahav, O.; Lee, A. T.; Leitch, E. M.; Li, T. S.; Lima, M.; Luong-Van, D.; Manzotti, A.; March, M.; Marrone, D. P.; Marshall, J. L.; Martini, P.; McMahon, J. J.; Melchior, P.; Menanteau, F.; Meyer, S. S.; Miller, C. J.; Miquel, R.; Mocanu, L. M.; Mohr, J. J.; Natoli, T.; Nord, B.; Ogando, R. L. C.; Padin, S.; Plazas, A. A.; Pryke, C.; Rapetti, D.; Reichardt, C. L.; Romer, A. K.; Roodman, A.; Ruhl, J. E.; Rykoff, E.; Sako, M.; Sanchez, E.; Sayre, J. T.; Scarpine, V.; Schaffer, K. K.; Schindler, R.; Schubnell, M.; Sevilla-Noarbe, I.; Shirokoff, E.; Smith, M.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Staniszewski, Z.; Stark, A.; Story, K.; Suchyta, E.; Tarle, G.; Thomas, D.; Troxel, M. A.; Vanderlinde, K.; Vieira, J. D.; Walker, A. R.; Williamson, R.; Zhang, Y.; Zuntz, J.
2018-05-01
Clusters of galaxies gravitationally lens the cosmic microwave background (CMB) radiation, resulting in a distinct imprint in the CMB on arcminute scales. Measurement of this effect offers a promising way to constrain the masses of galaxy clusters, particularly those at high redshift. We use CMB maps from the South Pole Telescope Sunyaev-Zel'dovich (SZ) survey to measure the CMB lensing signal around galaxy clusters identified in optical imaging from first year observations of the Dark Energy Survey. The cluster catalogue used in this analysis contains 3697 members with mean redshift of \\bar{z} = 0.45. We detect lensing of the CMB by the galaxy clusters at 8.1σ significance. Using the measured lensing signal, we constrain the amplitude of the relation between cluster mass and optical richness to roughly 17 {per cent} precision, finding good agreement with recent constraints obtained with galaxy lensing. The error budget is dominated by statistical noise but includes significant contributions from systematic biases due to the thermal SZ effect and cluster miscentring.
Dynamics of the Cluster of Galaxies A3266 (Sersic 40/60). I. Spectroscopic Data
NASA Astrophysics Data System (ADS)
Quintana, H.; Ramirez, A.; Way, M. J.
1996-07-01
We present 387 velocities covering an area 1.8^deg^ x 1.8^deg^, including 229 new galaxy velocities obtained from 309 spectra, of which 317 appear to be cluster members according to our analysis. Based on this extended velocity sample we reanalyzed the velocity structure of the cluster. We found a strongly decreasing velocity dispersion profile that, as well as the mean velocity, shows significant radial scatter. Inside the 2.5h_50_^-1^ Mpc radius, the velocity dispersion has a value of 1306+/-73 km s^-1^, while further out than 3h_50_^-1^ Mpc it falls below 800 km s^- 1^. The global dispersion is 1085+/-51 km s^-1^. We found a remarkable velocity substructure, which we interpret as a tidal outgoing arm reaching from the center to the northernmost extensions surveyed. The arm could be produced by a recent merger with another cluster, that moved from the front and SW direction and scattered from the main cluster core into the arm. This model allows us to derive an epoch for the collision between the more massive core and the front edge of the incoming cluster of 4 x 10^9^h_50_^-1^ yr ago and of ~2 x 10^9^h_50_^-1^ yr for the merging of both cores. Formation of the dumb-bell is a later merger process of the two BCMs, consistent with theoretical estimates. The collision picture is also consistent with the distorted x-ray image. The very northernmost parts of the arm could, alternatively, be interpreted as ongoing infall of a few outlying loose groups. The suggestion of a faint galaxy system within 400h_50_^-1^ kpc, satellite to the central dumb-bell, is maintained in spite of the large central velocity dispersion value; however, confirmation requires data for further compact faint members. From several mass estimators we derived a cluster dynamical mass value of 5 x 10^15^h_50_^-1^ M_sun_, but this value should be seen in the merger context described.
The cluster galaxy circular velocity function
NASA Astrophysics Data System (ADS)
Desai, V.; Dalcanton, J. J.; Mayer, L.; Reed, D.; Quinn, T.; Governato, F.
2004-06-01
We present galaxy circular velocity functions (GCVFs) for 34 low-redshift (z<~ 0.15) clusters identified in the Sloan Digital Sky Survey (SDSS), for 15 clusters drawn from dark matter simulations of hierarchical structure growth in a ΛCDM cosmology, and for ~22 000 SDSS field galaxies. We find that the simulations successfully reproduce the shape, amplitude and scatter in the observed distribution of cluster galaxy circular velocities. The power-law slope of the observed cluster GCVF is ~-2.4, independent of cluster velocity dispersion. The average slope of the simulated GCVFs is somewhat steeper, although formally consistent given the errors. We find that the effects of baryons on galaxy rotation curves is to flatten the simulated cluster GCVF into better agreement with observations. The cumulative GCVFs of the simulated clusters are very similar across a wide range of cluster masses, provided individual subhalo circular velocities are scaled by the circular velocities of the parent cluster. The scatter is consistent with that measured in the cumulative, scaled observed cluster GCVF. Finally, the observed field GCVF deviates significantly from a power law, being flatter than the cluster GCVF at circular velocities less than 200 km s-1.
On hierarchical solutions to the BBGKY hierarchy
NASA Technical Reports Server (NTRS)
Hamilton, A. J. S.
1988-01-01
It is thought that the gravitational clustering of galaxies in the universe may approach a scale-invariant, hierarchical form in the small separation, large-clustering regime. Past attempts to solve the Born-Bogoliubov-Green-Kirkwood-Yvon (BBGKY) hierarchy in this regime have assumed a certain separable hierarchical form for the higher order correlation functions of galaxies in phase space. It is shown here that such separable solutions to the BBGKY equations must satisfy the condition that the clustered component of the solution has cluster-cluster correlations equal to galaxy-galaxy correlations to all orders. The solutions also admit the presence of an arbitrary unclustered component, which plays no dyamical role in the large-clustering regime. These results are a particular property of the specific separable model assumed for the correlation functions in phase space, not an intrinsic property of spatially hierarchical solutions to the BBGKY hierarchy. The observed distribution of galaxies does not satisfy the required conditions. The disagreement between theory and observation may be traced, at least in part, to initial conditions which, if Gaussian, already have cluster correlations greater than galaxy correlations.
NASA Technical Reports Server (NTRS)
Houdashelt, Mark L.; Frogel, Jay A.
1993-01-01
Earlier researchers derived the relative distance between the Coma and Virgo clusters from color-magnitude relations of the early-type galaxies in each cluster. They found that the derived distance was color-dependent and concluded that the galaxies of similar luminosity in the two clusters differ in their red stellar populations. More recently, the color-dependence of the Coma-Virgo distance modulus has been called into question. However, because these two clusters differ so dramatically in their morphologies and kinematics, it is plausible that the star formation histories of the member galaxies also differed. If the conclusions of earlier researchers are indeed correct, then some signature of the resulting stellar population differences should appear in the near-infrared and/or infrared light of the respective galaxies. We have collected near-infrared spectra of 17 Virgo and 10 Coma early-type galaxies; this sample spans about four magnitudes in luminosity in each cluster. Seven field E/S0 galaxies have been observed for comparison. Pseudo-equivalent widths have been measured for all of the field galaxies, all but one of the Virgo members, and five of the Coma galaxies. The features examined are sensitive to the temperature, metallicity, and surface gravity of the reddest stars. A preliminary analysis of these spectral features has been performed, and, with a few notable exceptions, the measured pseudo-equivalent widths agree well with previously published values.
Stellar-to-halo mass relation of cluster galaxies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niemiec, Anna; Jullo, Eric; Limousin, Marceau
In the formation of galaxy groups and clusters, the dark matter haloes containing satellite galaxies are expected to be tidally stripped in gravitational interactions with the host. We use galaxy-galaxy weak lensing to measure the average mass of dark matter haloes of satellite galaxies as a function of projected distance to the centre of the host, since stripping is expected to be greater for satellites closer to the centre of the cluster. We further classify the satellites according to their stellar mass: assuming that the stellar component of the galaxy is less disrupted by tidal stripping, stellar mass can bemore » used as a proxy of the infall mass. We study the stellar to halo mass relation of satellites as a function of the cluster-centric distance to measure tidal stripping. We use the shear catalogues of the DES science veri cation archive, the CFHTLenS and the CFHT Stripe 82 surveys, and we select satellites from the redMaPPer catalogue of clusters. For galaxies located in the outskirts of clusters, we nd a stellar to halo mass relation in good agreement with the theoretical expectations from Moster, Naab & White (2013) for central galaxies. In the centre of the cluster, we nd that this relation is shifted to smaller halo mass for a given stellar mass. We interpret this nding as further evidence for tidal stripping of dark matter haloes in high density environments.« less
The Halo Boundary of Galaxy Clusters in the SDSS
NASA Astrophysics Data System (ADS)
Baxter, Eric; Chang, Chihway; Jain, Bhuvnesh; Adhikari, Susmita; Dalal, Neal; Kravtsov, Andrey; More, Surhud; Rozo, Eduardo; Rykoff, Eli; Sheth, Ravi K.
2017-05-01
Analytical models and simulations predict a rapid decline in the halo density profile associated with the transition from the “infalling” regime outside the halo to the “collapsed” regime within the halo. Using data from SDSS, we explore evidence for such a feature in the density profiles of galaxy clusters using several different approaches. We first estimate the steepening of the outer galaxy density profile around clusters, finding evidence for truncation of the halo profile. Next, we measure the galaxy density profile around clusters using two sets of galaxies selected on color. We find evidence of an abrupt change in galaxy colors that coincides with the location of the steepening of the density profile. Since galaxies that have completed orbits within the cluster are more likely to be quenched of star formation and thus appear redder, this abrupt change in galaxy color can be associated with the transition from single-stream to multi-stream regimes. We also use a standard model comparison approach to measure evidence for a “splashback”-like feature, but find that this approach is very sensitive to modeling assumptions. Finally, we perform measurements using an independent cluster catalog to test for potential systematic errors associated with cluster selection. We identify several avenues for future work: improved understanding of the small-scale galaxy profile, lensing measurements, identification of proxies for the halo accretion rate, and other tests. With upcoming data from the DES, KiDS, and HSC surveys, we can expect significant improvements in the study of halo boundaries.
Stellar-to-halo mass relation of cluster galaxies
Niemiec, Anna; Jullo, Eric; Limousin, Marceau; ...
2017-07-04
In the formation of galaxy groups and clusters, the dark matter haloes containing satellite galaxies are expected to be tidally stripped in gravitational interactions with the host. We use galaxy-galaxy weak lensing to measure the average mass of dark matter haloes of satellite galaxies as a function of projected distance to the centre of the host, since stripping is expected to be greater for satellites closer to the centre of the cluster. We further classify the satellites according to their stellar mass: assuming that the stellar component of the galaxy is less disrupted by tidal stripping, stellar mass can bemore » used as a proxy of the infall mass. We study the stellar to halo mass relation of satellites as a function of the cluster-centric distance to measure tidal stripping. We use the shear catalogues of the DES science veri cation archive, the CFHTLenS and the CFHT Stripe 82 surveys, and we select satellites from the redMaPPer catalogue of clusters. For galaxies located in the outskirts of clusters, we nd a stellar to halo mass relation in good agreement with the theoretical expectations from Moster, Naab & White (2013) for central galaxies. In the centre of the cluster, we nd that this relation is shifted to smaller halo mass for a given stellar mass. We interpret this nding as further evidence for tidal stripping of dark matter haloes in high density environments.« less
A homogeneous sample of binary galaxies: Basic observational properties
NASA Technical Reports Server (NTRS)
Karachentsev, I. D.
1990-01-01
A survey of optical characteristics for 585 binary systems, satisfying a condition of apparent isolation on the sky, is presented. Influences of various selection effects distorting the average parameters of the sample are noted. The pair components display mutual similarity over all the global properties: luminosity, diameter, morphological type, mass-to-luminosity ratio, angular momentum etc., which is not due only to selection effects. The observed correlations must be caused by common origin of pair members. Some features (nuclear activity, color index) could acquire similarity during synchronous evolution of double galaxies. Despite the observed isolation, the sample of double systems is seriously contaminated by accidental pairs, and also by members of groups and clusters. After removing false pairs estimates of orbital mass-to-luminosity ratio range from 0 to 30 f(solar), with the mean value (7.8 plus or minus 0.7) f(solar). Binary galaxies possess nearly circular orbits with a typical eccentrity e = 0.25, probably resulting from evolutionary selection driven by component mergers under dynamical friction. The double-galaxy population with space abundance 0.12 plus or minus 0.02 and characteristic merger timescale 0.2 H(exp -1) may significantly influence the rate of dynamical evolution of galaxies.
Galaxy Clustering Around Nearby Luminous Quasars
NASA Technical Reports Server (NTRS)
Fisher, Karl B.; Bahcall, John N.; Kirhakos, Sofia; Schneider, Donald P.
1996-01-01
We examine the clustering of galaxies around a sample of 20 luminous low redshift (z approx. less than 0.30) quasars observed with the Wide Field Camera-2 on the Hubble Space Telescope (HST). The HST resolution makes possible galaxy identification brighter than V = 24.5 and as close as 1 min or 2 min to the quasar. We find a significant enhancement of galaxies within a projected separation of approx. less than 100 1/h kpc of the quasars. If we model the QSO/galaxy correlation function as a power law with a slope given by the galaxy/galaxy correlation function, we find that the ratio of the QSO/galaxy to galaxy/galaxy correlation functions is 3.8 +/- 0.8. The galaxy counts within r less than 15 1/h kpc of the quasars are too high for the density profile to have an appreciable core radius (approx. greater than 100 1/h kpc). Our results reinforce the idea that low redshift quasars are located preferentially in groups of 10-20 galaxies rather than in rich clusters. We see no significant difference in the clustering amplitudes derived from radio-loud and radio-quiet subsamples.
NASA Astrophysics Data System (ADS)
Pfeffer, Joel; Kruijssen, J. M. Diederik; Crain, Robert A.; Bastian, Nate
2018-04-01
We introduce the MOdelling Star cluster population Assembly In Cosmological Simulations within EAGLE (E-MOSAICS) project. E-MOSAICS incorporates models describing the formation, evolution, and disruption of star clusters into the EAGLE galaxy formation simulations, enabling the examination of the co-evolution of star clusters and their host galaxies in a fully cosmological context. A fraction of the star formation rate of dense gas is assumed to yield a cluster population; this fraction and the population's initial properties are governed by the physical properties of the natal gas. The subsequent evolution and disruption of the entire cluster population are followed accounting for two-body relaxation, stellar evolution, and gravitational shocks induced by the local tidal field. This introductory paper presents a detailed description of the model and initial results from a suite of 10 simulations of ˜L⋆ galaxies with disc-like morphologies at z = 0. The simulations broadly reproduce key observed characteristics of young star clusters and globular clusters (GCs), without invoking separate formation mechanisms for each population. The simulated GCs are the surviving population of massive clusters formed at early epochs (z ≳ 1-2), when the characteristic pressures and surface densities of star-forming gas were significantly higher than observed in local galaxies. We examine the influence of the star formation and assembly histories of galaxies on their cluster populations, finding that (at similar present-day mass) earlier-forming galaxies foster a more massive and disruption-resilient cluster population, while galaxies with late mergers are capable of forming massive clusters even at late cosmic epochs. We find that the phenomenological treatment of interstellar gas in EAGLE precludes the accurate modelling of cluster disruption in low-density environments, but infer that simulations incorporating an explicitly modelled cold interstellar gas phase will overcome this shortcoming.
Large-scale Filamentary Structures around the Virgo Cluster Revisited
NASA Astrophysics Data System (ADS)
Kim, Suk; Rey, Soo-Chang; Bureau, Martin; Yoon, Hyein; Chung, Aeree; Jerjen, Helmut; Lisker, Thorsten; Jeong, Hyunjin; Sung, Eon-Chang; Lee, Youngdae; Lee, Woong; Chung, Jiwon
2016-12-01
We revisit the filamentary structures of galaxies around the Virgo cluster, exploiting a larger data set, based on the HyperLeda database, than previous studies. In particular, this includes a large number of low-luminosity galaxies, resulting in better sampled individual structures. We confirm seven known structures in the distance range 4 h -1 Mpc < SGY < 16 h -1 Mpc, now identified as filaments, where SGY is the axis of the supergalactic coordinate system roughly along the line of sight. The Hubble diagram of the filament galaxies suggests they are infalling toward the main body of the Virgo cluster. We propose that the collinear distribution of giant elliptical galaxies along the fundamental axis of the Virgo cluster is smoothly connected to two of these filaments (Leo II A and B). Behind the Virgo cluster (16 h -1 Mpc < SGY < 27 h -1 Mpc), we also identify a new filament elongated toward the NGC 5353/4 group (“NGC 5353/4 filament”) and confirm a sheet that includes galaxies from the W and M clouds of the Virgo cluster (“W-M sheet”). In the Hubble diagram, the NGC 5353/4 filament galaxies show infall toward the NGC 5353/4 group, whereas the W-M sheet galaxies do not show hints of gravitational influence from the Virgo cluster. The filamentary structures identified can now be used to better understand the generic role of filaments in the build-up of galaxy clusters at z ≈ 0.
Ten Billion Years of Brightest Cluster Galaxy Alignments
NASA Astrophysics Data System (ADS)
West, Michael J.
2017-07-01
Astronomers long assumed that galaxies are randomly oriented in space. However, it's now clear that some have preferred orientations with respect to their surroundings. Chief among these are the giant ellipticals found at the centers of rich galaxy clusters, whose major axes are often aligned with those of their host clusters - a remarkable coherence of structures over millions of light years. A better understanding of these alignments can yield new insights into the processes that have shaped galaxies over the history of the universe. Using Hubble Space Telescope observations of high-redshift galaxy clusters, we show for the first time that such alignments are seen at epochs when the universe was only one-third its current age. These results suggest that the brightest galaxies in clusters are the product of a special formation history, one influenced by development of the cosmic web over billions of years.
NASA Astrophysics Data System (ADS)
Goudfrooij, Paul
2018-04-01
I discuss a scenario in which the ultraviolet (UV) upturn of giant early-type galaxies (ETGs) is primarily due to helium-rich stellar populations that formed in massive metal-rich globular clusters (GCs), which subsequently dissolved in the strong tidal field in the central regions of the massive host galaxy. These massive GCs are assumed to show UV upturns similar to those observed recently in M87, the central giant elliptical galaxy in the Virgo cluster of galaxies. Data taken from the literature reveal a strong correlation between the strength of the UV upturn and the specific frequency of metal-rich GCs in ETGs. Adopting a Schechter function parameterization of GC mass functions, simulations of long-term dynamical evolution of GC systems show that the observed correlation between UV upturn strength and GC specific frequency can be explained by variations in the characteristic truncation mass {{ \\mathcal M }}{{c}} such that {{ \\mathcal M }}{{c}} increases with ETG luminosity in a way that is consistent with observed GC luminosity functions in ETGs. These findings suggest that the nature of the UV upturn in ETGs and the variation of its strength among ETGs are causally related to that of helium-rich populations in massive GCs, rather than intrinsic properties of field stars in massive galactic spheroids. With this in mind, I predict that future studies will find that [N/Fe] decreases with increasing galactocentric radius in massive ETGs, and that such gradients have the largest amplitudes in ETGs with the strongest UV upturns.
Chandra X-Ray Observatory Image of the Distant Galaxy, 3C294
NASA Technical Reports Server (NTRS)
2000-01-01
This most distant x-ray cluster of galaxies yet has been found by astronomers using Chandra X-ray Observatory (CXO). Approximately 10 billion light-years from Earth, the cluster 3C294 is 40 percent farther than the next most distant x-ray galaxy cluster. The existence of such a faraway cluster is important for understanding how the universe evolved. CXO's image reveals an hourglass-shaped region of x-ray emissions centered on the previously known central radio source (seen in this image as the blue central object) that extends outward for 60,000 light- years. The vast clouds of hot gas that surround such galaxies in clusters are thought to be heated by collapse toward the center of the cluster. Until CXO, x-ray telescopes have not had the needed sensitivity to identify such distant clusters of galaxies. Galaxy clusters are the largest gravitationally bound structures in the universe. The intensity of the x-rays in this CXO image of 3C294 is shown as red for low energy x-rays, green for intermediate, and blue for the most energetic x-rays. (Photo credit: NASA/loA/A. Fabian et al)
NASA Astrophysics Data System (ADS)
Hincks, Adam D.; Hajian, Amir; Addison, Graeme E.
2013-05-01
We cross-correlate the 100 μm Improved Reprocessing of the IRAS Survey (IRIS) map and galaxy clusters at 0.1 < z < 0.3 in the maxBCG catalogue taken from the Sloan Digital Sky Survey, measuring an angular cross-power spectrum over multipole moments 150 < l < 3000 at a total significance of over 40σ. The cross-spectrum, which arises from the spatial correlation between unresolved dusty galaxies that make up the cosmic infrared background (CIB) in the IRIS map and the galaxy clusters, is well-fit by a single power law with an index of -1.28±0.12, similar to the clustering of unresolved galaxies from cross-correlating far-infrared and submillimetre maps at longer wavelengths. Using a recent, phenomenological model for the spectral and clustering properties of the IRIS galaxies, we constrain the large-scale bias of the maxBCG clusters to be 2.6±1.4, consistent with existing analyses of the real-space cluster correlation function. The success of our method suggests that future CIB-optical cross-correlations using Planck and Herschel data will significantly improve our understanding of the clustering and redshift distribution of the faint CIB sources.
LoCuSS: THE SLOW QUENCHING OF STAR FORMATION IN CLUSTER GALAXIES AND THE NEED FOR PRE-PROCESSING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haines, C. P.; Pereira, M. J.; Egami, E.
2015-06-10
We present a study of the spatial distribution and kinematics of star-forming galaxies in 30 massive clusters at 0.15 < z < 0.30, combining wide-field Spitzer 24 μm and GALEX near-ultraviolet imaging with highly complete spectroscopy of cluster members. The fraction (f{sub SF}) of star-forming cluster galaxies rises steadily with cluster-centric radius, increasing fivefold by 2r{sub 200}, but remains well below field values even at 3r{sub 200}. This suppression of star formation at large radii cannot be reproduced by models in which star formation is quenched in infalling field galaxies only once they pass within r{sub 200} of the cluster,more » but is consistent with some of them being first pre-processed within galaxy groups. Despite the increasing f{sub SF}-radius trend, the surface density of star-forming galaxies actually declines steadily with radius, falling ∼15× from the core to 2r{sub 200}. This requires star formation to survive within recently accreted spirals for 2–3 Gyr to build up the apparent over-density of star-forming galaxies within clusters. The velocity dispersion profile of the star-forming galaxy population shows a sharp peak of 1.44 σ{sub ν} at 0.3r{sub 500}, and is 10%–35% higher than that of the inactive cluster members at all cluster-centric radii, while their velocity distribution shows a flat, top-hat profile within r{sub 500}. All of these results are consistent with star-forming cluster galaxies being an infalling population, but one that must also survive ∼0.5–2 Gyr beyond passing within r{sub 200}. By comparing the observed distribution of star-forming galaxies in the stacked caustic diagram with predictions from the Millennium simulation, we obtain a best-fit model in which star formation rates decline exponentially on quenching timescales of 1.73 ± 0.25 Gyr upon accretion into the cluster.« less
Discovery of a Galaxy Cluster with a Violently Starbursting Core at z = 2.506
NASA Astrophysics Data System (ADS)
Wang, Tao; Elbaz, David; Daddi, Emanuele; Finoguenov, Alexis; Liu, Daizhong; Schreiber, Corentin; Martín, Sergio; Strazzullo, Veronica; Valentino, Francesco; van der Burg, Remco; Zanella, Anita; Ciesla, Laure; Gobat, Raphael; Le Brun, Amandine; Pannella, Maurilio; Sargent, Mark; Shu, Xinwen; Tan, Qinghua; Cappelluti, Nico; Li, Yanxia
2016-09-01
We report the discovery of a remarkable concentration of massive galaxies with extended X-ray emission at z spec = 2.506, which contains 11 massive (M * ≳ 1011 M ⊙) galaxies in the central 80 kpc region (11.6σ overdensity). We have spectroscopically confirmed 17 member galaxies with 11 from CO and the remaining ones from Hα. The X-ray luminosity, stellar mass content, and velocity dispersion all point to a collapsed, cluster-sized dark matter halo with mass M 200c = 1013.9±0.2 M ⊙, making it the most distant X-ray-detected cluster known to date. Unlike other clusters discovered so far, this structure is dominated by star-forming galaxies (SFGs) in the core with only 2 out of the 11 massive galaxies classified as quiescent. The star formation rate (SFR) in the 80 kpc core reaches ˜3400 M ⊙ yr-1 with a gas depletion time of ˜200 Myr, suggesting that we caught this cluster in rapid build-up of a dense core. The high SFR is driven by both a high abundance of SFGs and a higher starburst fraction (˜25%, compared to 3%-5% in the field). The presence of both a collapsed, cluster-sized halo and a predominant population of massive SFGs suggests that this structure could represent an important transition phase between protoclusters and mature clusters. It provides evidence that the main phase of massive galaxy passivization will take place after galaxies accrete onto the cluster, providing new insights into massive cluster formation at early epochs. The large integrated stellar mass at such high redshift challenges our understanding of massive cluster formation.
DISCOVERY OF A GALAXY CLUSTER WITH A VIOLENTLY STARBURSTING CORE AT z = 2.506
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Tao; Elbaz, David; Daddi, Emanuele
2016-09-01
We report the discovery of a remarkable concentration of massive galaxies with extended X-ray emission at z {sub spec} = 2.506, which contains 11 massive (M {sub *} ≳ 10{sup 11} M {sub ⊙}) galaxies in the central 80 kpc region (11.6 σ overdensity). We have spectroscopically confirmed 17 member galaxies with 11 from CO and the remaining ones from H α . The X-ray luminosity, stellar mass content, and velocity dispersion all point to a collapsed, cluster-sized dark matter halo with mass M {sub 200} {sub c} = 10{sup 13.9±0.2} M {sub ⊙}, making it the most distant X-ray-detectedmore » cluster known to date. Unlike other clusters discovered so far, this structure is dominated by star-forming galaxies (SFGs) in the core with only 2 out of the 11 massive galaxies classified as quiescent. The star formation rate (SFR) in the 80 kpc core reaches ∼3400 M {sub ⊙} yr{sup −1} with a gas depletion time of ∼200 Myr, suggesting that we caught this cluster in rapid build-up of a dense core. The high SFR is driven by both a high abundance of SFGs and a higher starburst fraction (∼25%, compared to 3%–5% in the field). The presence of both a collapsed, cluster-sized halo and a predominant population of massive SFGs suggests that this structure could represent an important transition phase between protoclusters and mature clusters. It provides evidence that the main phase of massive galaxy passivization will take place after galaxies accrete onto the cluster, providing new insights into massive cluster formation at early epochs. The large integrated stellar mass at such high redshift challenges our understanding of massive cluster formation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, Kaylea; Nagai, Daisuke; Yu, Liang
2014-02-20
The use of galaxy clusters as cosmological probes hinges on our ability to measure their masses accurately and with high precision. Hydrostatic mass is one of the most common methods for estimating the masses of individual galaxy clusters, which suffer from biases due to departures from hydrostatic equilibrium. Using a large, mass-limited sample of massive galaxy clusters from a high-resolution hydrodynamical cosmological simulation, in this work we show that in addition to turbulent and bulk gas velocities, acceleration of gas introduces biases in the hydrostatic mass estimate of galaxy clusters. In unrelaxed clusters, the acceleration bias is comparable to themore » bias due to non-thermal pressure associated with merger-induced turbulent and bulk gas motions. In relaxed clusters, the mean mass bias due to acceleration is small (≲ 3%), but the scatter in the mass bias can be reduced by accounting for gas acceleration. Additionally, this acceleration bias is greater in the outskirts of higher redshift clusters where mergers are more frequent and clusters are accreting more rapidly. Since gas acceleration cannot be observed directly, it introduces an irreducible bias for hydrostatic mass estimates. This acceleration bias places limits on how well we can recover cluster masses from future X-ray and microwave observations. We discuss implications for cluster mass estimates based on X-ray, Sunyaev-Zel'dovich effect, and gravitational lensing observations and their impact on cluster cosmology.« less
NASA Astrophysics Data System (ADS)
Nelson, Kaylea; Lau, Erwin T.; Nagai, Daisuke; Rudd, Douglas H.; Yu, Liang
2014-02-01
The use of galaxy clusters as cosmological probes hinges on our ability to measure their masses accurately and with high precision. Hydrostatic mass is one of the most common methods for estimating the masses of individual galaxy clusters, which suffer from biases due to departures from hydrostatic equilibrium. Using a large, mass-limited sample of massive galaxy clusters from a high-resolution hydrodynamical cosmological simulation, in this work we show that in addition to turbulent and bulk gas velocities, acceleration of gas introduces biases in the hydrostatic mass estimate of galaxy clusters. In unrelaxed clusters, the acceleration bias is comparable to the bias due to non-thermal pressure associated with merger-induced turbulent and bulk gas motions. In relaxed clusters, the mean mass bias due to acceleration is small (lsim 3%), but the scatter in the mass bias can be reduced by accounting for gas acceleration. Additionally, this acceleration bias is greater in the outskirts of higher redshift clusters where mergers are more frequent and clusters are accreting more rapidly. Since gas acceleration cannot be observed directly, it introduces an irreducible bias for hydrostatic mass estimates. This acceleration bias places limits on how well we can recover cluster masses from future X-ray and microwave observations. We discuss implications for cluster mass estimates based on X-ray, Sunyaev-Zel'dovich effect, and gravitational lensing observations and their impact on cluster cosmology.
What Feeds the Beast in a Galaxy Cluster?
2015-09-10
A massive cluster of galaxies, called SpARCS1049+56, can be seen in this multi-wavelength view from NASA Hubble and Spitzer space telescopes. At the middle of the picture is the largest, central member of the family of galaxies (upper right red dot of central pair). Unlike other central galaxies in clusters, this one is bursting with the birth of new stars. Scientists say this star birth was triggered by a collision between a smaller galaxy and the giant, central galaxy. The smaller galaxy's wispy, shredded parts, called a tidal tail, can be seen coming out below the larger galaxy. Throughout this region are features called "beads on a string," which are areas where gas has clumped to form new stars. This type of "feeding" mechanism for galaxy clusters -- where gas from the merging of galaxies is converted to new stars -- is rare. The Hubble data in this image show infrared light with a wavelength of 1 micron in blue, and 1.6 microns in green. The Spitzer data show infrared light of 3.6 microns in red. http://photojournal.jpl.nasa.gov/catalog/PIA19837
Molecular gas in the halo fuels the growth of a massive cluster galaxy at high redshift.
Emonts, B H C; Lehnert, M D; Villar-Martín, M; Norris, R P; Ekers, R D; van Moorsel, G A; Dannerbauer, H; Pentericci, L; Miley, G K; Allison, J R; Sadler, E M; Guillard, P; Carilli, C L; Mao, M Y; Röttgering, H J A; De Breuck, C; Seymour, N; Gullberg, B; Ceverino, D; Jagannathan, P; Vernet, J; Indermuehle, B T
2016-12-02
The largest galaxies in the universe reside in galaxy clusters. Using sensitive observations of carbon monoxide, we show that the Spiderweb galaxy-a massive galaxy in a distant protocluster-is forming from a large reservoir of molecular gas. Most of this molecular gas lies between the protocluster galaxies and has low velocity dispersion, indicating that it is part of an enriched intergalactic medium. This may constitute the reservoir of gas that fuels the widespread star formation seen in earlier ultraviolet observations of the Spiderweb galaxy. Our results support the notion that giant galaxies in clusters formed from extended regions of recycled gas at high redshift. Copyright © 2016, American Association for the Advancement of Science.
NASA Astrophysics Data System (ADS)
Choi, Yun-Young; Park, Changbom; Kim, Juhan; Gott, J. Richard, III; Weinberg, David H.; Vogeley, Michael S.; Kim, Sungsoo S.; SDSS Collaboration
2010-09-01
We measure the topology of the main galaxy distribution using the Seventh Data Release of the Sloan Digital Sky Survey, examining the dependence of galaxy clustering topology on galaxy properties. The observational results are used to test galaxy formation models. A volume-limited sample defined by Mr < -20.19 enables us to measure the genus curve with an amplitude of G = 378 at 6 h -1 Mpc smoothing scale, with 4.8% uncertainty including all systematics and cosmic variance. The clustering topology over the smoothing length interval from 6 to 10 h -1 Mpc reveals a mild scale dependence for the shift (Δν) and void abundance (AV ) parameters of the genus curve. We find substantial bias in the topology of galaxy clustering with respect to the predicted topology of the matter distribution, which varies with luminosity, morphology, color, and the smoothing scale of the density field. The distribution of relatively brighter galaxies shows a greater prevalence of isolated clusters and more percolated voids. Even though early (late)-type galaxies show topology similar to that of red (blue) galaxies, the morphology dependence of topology is not identical to the color dependence. In particular, the void abundance parameter AV depends on morphology more strongly than on color. We test five galaxy assignment schemes applied to cosmological N-body simulations of a ΛCDM universe to generate mock galaxies: the halo-galaxy one-to-one correspondence model, the halo occupation distribution model, and three implementations of semi-analytic models (SAMs). None of the models reproduces all aspects of the observed clustering topology; the deviations vary from one model to another but include statistically significant discrepancies in the abundance of isolated voids or isolated clusters and the amplitude and overall shift of the genus curve. SAM predictions of the topology color dependence are usually correct in sign but incorrect in magnitude. Our topology tests indicate that, in these models, voids should be emptier and more connected and the threshold for galaxy formation should be at lower densities.
The MICE Grand Challenge lightcone simulation - II. Halo and galaxy catalogues
NASA Astrophysics Data System (ADS)
Crocce, M.; Castander, F. J.; Gaztañaga, E.; Fosalba, P.; Carretero, J.
2015-10-01
This is the second in a series of three papers in which we present an end-to-end simulation from the MICE collaboration, the MICE Grand Challenge (MICE-GC) run. The N-body contains about 70 billion dark-matter particles in a (3 h-1 Gpc)3 comoving volume spanning five orders of magnitude in dynamical range. Here, we introduce the halo and galaxy catalogues built upon it, both in a wide (5000 deg2) and deep (z < 1.4) lightcone and in several comoving snapshots. Haloes were resolved down to few 1011 h-1 M⊙. This allowed us to model galaxies down to absolute magnitude Mr < -18.9. We used a new hybrid halo occupation distribution and abundance matching technique for galaxy assignment. The catalogue includes the spectral energy distributions of all galaxies. We describe a variety of halo and galaxy clustering applications. We discuss how mass resolution effects can bias the large-scale two-pt clustering amplitude of poorly resolved haloes at the ≲5 per cent level, and their three-pt correlation function. We find a characteristic scale-dependent bias of ≲6 per cent across the BAO feature for haloes well above M⋆ ˜ 1012 h-1 M⊙ and for luminous red galaxy like galaxies. For haloes well below M⋆ the scale dependence at 100 h-1 Mpc is ≲2 per cent. Lastly, we discuss the validity of the large-scale Kaiser limit across redshift and departures from it towards non-linear scales. We make the current version of the lightcone halo and galaxy catalogue (
Molecular Gas Reservoirs in Cluster Galaxies at z = 1.46
NASA Astrophysics Data System (ADS)
Hayashi, Masao; Tadaki, Ken-ichi; Kodama, Tadayuki; Kohno, Kotaro; Yamaguchi, Yuki; Hatsukade, Bunyo; Koyama, Yusei; Shimakawa, Rhythm; Tamura, Yoichi; Suzuki, Tomoko L.
2018-04-01
We present molecular gas reservoirs of 18 galaxies associated with the XMMXCS J2215.9–1738 cluster at z = 1.46. From Band 7 and Band 3 data of the Atacama Large Millimeter/submillimeter Array, we detect dust continuum emission at 870 μm and the CO J = 2–1 emission line from 8 and 17 member galaxies, respectively, within a clustercentric radius of R 200. The molecular gas masses derived from the CO and/or dust continuum luminosities show that the fraction of molecular gas mass and the depletion timescale for the cluster galaxies are larger than expected from the scaling relations of molecular gas on stellar mass and offset from the main sequence of star-forming galaxies in general fields. The galaxies closer to the cluster center in terms of both projected position and accretion phase seem to show a larger deviation from the scaling relations. We speculate that the environment of the galaxy cluster helps feed the gas through inflow to the member galaxies and reduce the efficiency of star formation. The stacked Band 3 spectrum of 12 quiescent galaxies with M stellar ∼ 1011 M ⊙ within 0.5R 200 shows no detection of a CO emission line, giving the upper limit of molecular gas mass and molecular gas fraction to be ≲1010 M ⊙ and ≲10%, respectively. Therefore, the massive galaxies in the cluster core quench the star formation activity while consuming most of the gas reservoirs.