Further development of the dynamic gas temperature measurement system. Volume 1: Technical efforts
NASA Technical Reports Server (NTRS)
Elmore, D. L.; Robinson, W. W.; Watkins, W. B.
1986-01-01
A compensated dynamic gas temperature thermocouple measurement method was experimentally verified. Dynamic gas temperature signals from a flow passing through a chopped-wheel signal generator and an atmospheric pressure laboratory burner were measured by the dynamic temperature sensor and other fast-response sensors. Compensated data from dynamic temperature sensor thermoelements were compared with fast-response sensors. Results from the two experiments are presented as time-dependent waveforms and spectral plots. Comparisons between compensated dynamic temperature sensor spectra and a commercially available optical fiber thermometer compensated spectra were made for the atmospheric burner experiment. Increases in precision of the measurement method require optimization of several factors, and directions for further work are identified.
Hydrodynamics in a Degenerate, Strongly Attractive Fermi Gas
NASA Technical Reports Server (NTRS)
Thomas, John E.; Kinast, Joseph; Hemmer, Staci; Turlapov, Andrey; O'Hara, Ken; Gehm, Mike; Granade, Stephen
2004-01-01
In summary, we use all-optical methods with evaporative cooling near a Feshbach resonance to produce a strongly interacting degenerate Fermi gas. We observe hydrodynamic behavior in the expansion dynamics. At low temperatures, collisions may not explain the expansion dynamics. We observe hydrodynamics in the trapped gas. Our observations include collisionally-damped excitation spectra at high temperature which were not discussed above. In addition, we observe weakly damped breathing modes at low temperature. The observed temperature dependence of the damping time and hydrodynamic frequency are not consistent with collisional dynamics nor with collisionless mean field interactions. These observations constitute the first evidence for superfluid hydrodynamics in a Fermi gas.
Gas-controlled dynamic vacuum insulation with gas gate
Benson, David K.; Potter, Thomas F.
1994-06-07
Disclosed is a dynamic vacuum insulation comprising sidewalls enclosing an evacuated chamber and gas control means for releasing hydrogen gas into a chamber to increase gas molecule conduction of heat across the chamber and retrieving hydrogen gas from the chamber. The gas control means includes a metal hydride that absorbs and retains hydrogen gas at cooler temperatures and releases hydrogen gas at hotter temperatures; a hydride heating means for selectively heating the metal hydride to temperatures high enough to release hydrogen gas from the metal hydride; and gate means positioned between the metal hydride and the chamber for selectively allowing hydrogen to flow or not to flow between said metal hydride and said chamber.
Gas-controlled dynamic vacuum insulation with gas gate
Benson, D.K.; Potter, T.F.
1994-06-07
Disclosed is a dynamic vacuum insulation comprising sidewalls enclosing an evacuated chamber and gas control means for releasing hydrogen gas into a chamber to increase gas molecule conduction of heat across the chamber and retrieving hydrogen gas from the chamber. The gas control means includes a metal hydride that absorbs and retains hydrogen gas at cooler temperatures and releases hydrogen gas at hotter temperatures; a hydride heating means for selectively heating the metal hydride to temperatures high enough to release hydrogen gas from the metal hydride; and gate means positioned between the metal hydride and the chamber for selectively allowing hydrogen to flow or not to flow between said metal hydride and said chamber. 25 figs.
Study of Influencing Factors of Dynamic Measurements Based on SnO2 Gas Sensor
Sun, Yufeng; Huang, Xingjiu; Meng, Fanli; Liu, Jinhuai
2004-01-01
The gas-sensing behaviour based on a dynamic measurement method of a single SnO2 gas sensor was investigated by comparison with the static measurement. The influencing factors of nonlinear response such as modulation temperature, duty ratio, heating waveform (rectangular, sinusoidal, saw-tooth, pulse, etc.) were also studied. Experimental data showed that temperature was the most essential factor because the changes of frequency and heating waveform could result in the changes of temperature essentially.
Comet Gas and Dust Dynamics Modeling
NASA Technical Reports Server (NTRS)
Von Allmen, Paul A.; Lee, Seungwon
2010-01-01
This software models the gas and dust dynamics of comet coma (the head region of a comet) in order to support the Microwave Instrument for Rosetta Orbiter (MIRO) project. MIRO will study the evolution of the comet 67P/Churyumov-Gerasimenko's coma system. The instrument will measure surface temperature, gas-production rates and relative abundances, and velocity and excitation temperatures of each species along with their spatial temporal variability. This software will use these measurements to improve the understanding of coma dynamics. The modeling tool solves the equation of motion of a dust particle, the energy balance equation of the dust particle, the continuity equation for the dust and gas flow, and the dust and gas mixture energy equation. By solving these equations numerically, the software calculates the temperature and velocity of gas and dust as a function of time for a given initial gas and dust production rate, and a dust characteristic parameter that measures the ability of a dust particle to adjust its velocity to the local gas velocity. The software is written in a modular manner, thereby allowing the addition of more dynamics equations as needed. All of the numerical algorithms are added in-house and no third-party libraries are used.
Cycle of a closed gas-turbine plant with a gas-dynamic energy-separation device
NASA Astrophysics Data System (ADS)
Leontiev, A. I.; Burtsev, S. A.
2017-09-01
The efficiency of closed gas-turbine space-based plants is analyzed. The weight-size characteristics of closed gas-turbine plants are shown in many respects as determined by the refrigerator-radiator parameters. The scheme of closed gas-turbine plants with a gas-dynamic temperature-stratification device is proposed, and a calculation model is developed. This model shows that the cycle efficiency decreases by 2% in comparison with that of the closed gas-turbine plants operating by the traditional scheme with increasing temperature at the output from the refrigerator-radiator by 28 K and decreasing its area by 13.7%.
A Proposed Dynamic Pressure and Temperature Primary Standard
Rosasco, Gregory J.; Bean, Vern E.; Hurst, Wilbur S.
1990-01-01
Diatomic gas molecules have a fundamental vibrational motion whose frequency is affected by pressure in a simple way. In addition, these molecules have well defined rotational energy levels whose populations provide a reliable measure of the thermodynamic temperature. Since information concerning the frequency of vibration and the relative populations can be determined by laser spectroscopy, the gas molecules themselves can serve as sensors of pressure and temperature. Through measurements under static conditions, the pressure and temperature dependence of the spectra of selected molecules is now understood. As the time required for the spectroscopic measurement can be reduced to nanoseconds, the diatomic gas molecule is an excellent candidate for a dynamic pressure/temperature primary standard. The temporal response in this case will be limited by the equilibration time for the molecules to respond to changes in local thermodynamic variables. Preliminary feasibility studies suggest that by using coherent anti-Stokes Raman spectroscopy we will be able to measure dynamic pressure up to 108 Pa and dynamic temperature up to 1500 K with an uncertainty of 5%. PMID:28179756
Dynamic gas temperature measurement system. Volume 2: Operation and program manual
NASA Technical Reports Server (NTRS)
Purpura, P. T.
1983-01-01
The hot section technology (HOST) dynamic gas temperature measurement system computer program acquires data from two type B thermocouples of different diameters. The analysis method determines the in situ value of an aerodynamic parameter T, containing the heat transfer coefficient from the transfer function of the two thermocouples. This aerodynamic parameter is used to compute a fequency response spectrum and compensate the dynamic portion of the signal of the smaller thermocouple. The calculations for the aerodynamic parameter and the data compensation technique are discussed. Compensated data are presented in either the time or frequency domain, time domain data as dynamic temperature vs time, or frequency domain data.
Argon concentration time-series as a tool to study gas dynamics in the hyporheic zone.
Mächler, Lars; Brennwald, Matthias S; Kipfer, Rolf
2013-07-02
The oxygen dynamics in the hyporheic zone of a peri-alpine river (Thur, Switzerland), were studied through recording and analyzing the concentration time-series of dissolved argon, oxygen, carbon dioxide, and temperature during low flow conditions, for a period of one week. The argon concentration time-series was used to investigate the physical gas dynamics in the hyporheic zone. Differences in the transport behavior of heat and gas were determined by comparing the diel temperature evolution of groundwater to the measured concentration of dissolved argon. These differences were most likely caused by vertical heat transport which influenced the local groundwater temperature. The argon concentration time-series were also used to estimate travel times by cross correlating argon concentrations in the groundwater with argon concentrations in the river. The information gained from quantifying the physical gas transport was used to estimate the oxygen turnover in groundwater after water recharge. The resulting oxygen turnover showed strong diel variations, which correlated with the water temperature during groundwater recharge. Hence, the variation in the consumption rate was most likely caused by the temperature dependence of microbial activity.
Dynamic gas temperature measurement system
NASA Technical Reports Server (NTRS)
Elmore, D. L.; Robinson, W. W.; Watkins, W. B.
1983-01-01
A gas temperature measurement system with compensated frequency response of 1 KHz and capability to operate in the exhaust of a gas turbine combustor was developed. Environmental guidelines for this measurement are presented, followed by a preliminary design of the selected measurement method. Transient thermal conduction effects were identified as important; a preliminary finite-element conduction model quantified the errors expected by neglecting conduction. A compensation method was developed to account for effects of conduction and convection. This method was verified in analog electrical simulations, and used to compensate dynamic temperature data from a laboratory combustor and a gas turbine engine. Detailed data compensations are presented. Analysis of error sources in the method were done to derive confidence levels for the compensated data.
Selectivity of the gas sensor based on the 50%In2O3-50%Ga2O3 thin film in dynamic mode of operation
NASA Astrophysics Data System (ADS)
Demin, I. E.; Kozlov, A. G.
2018-01-01
The article considers the gas sensor with the sensitive layer based on the 50%In2O3 -50%Ga2O3 thin film. The temperature and concentration dependencies of gas-induced resistance response of this sensor and the dynamical dependencies of its resistance response on the test gases in air are investigated. The test gases were ethanol, acetone, ammonia and liquefied petroleum gas. The information parameters of the sensor in the dynamical mode of operation were considered to improve its selectivity. The presented results show that the selectivity of the sensor in this mode may be improved by using the following information parameters: gas-induced resistance response in steady state, activation energy of the response and pre-exponential factor of the temperature dependence of the response time constant.
Effect of cyclic conditions on the dynamic oxidation of gas turbine superalloys
NASA Technical Reports Server (NTRS)
Johnston, J. R.; Ashbrook, R. L.
1974-01-01
The effects of operating parameters of a dynamic apparatus used to study oxidation and thermal fatigue of gas turbine materials were studied. IN-100, TD-NiCr, and WI-52 were tested at a maximum temperature of 1,090 deg C. Heating time per cycle was varied from 1/20 hr to 10 hr. Minimum temperatures between heating cycles were room temperature, 430 deg, and 650 deg C. Cooling air velocities were zero, Mach 0.7, and Mach 1. Increasing the number of cycles for a given time at temperature increased weight loss. Thermal fatigue was related to number of cycles more than to time at temperature.
State-resolved Thermal/Hyperthermal Dynamics of Atmospheric Species
2015-06-23
gas -room temperature ionic liquid (RTIL) interfaces. 2) Large scale trajectory simulations for theoretical analysis of gas - liquid scattering studies...areas: 1) Diode laser and LIF studies of hyperthermal CO2 and NO collisions at the gas -room temperature ionic liquid (RTIL) interfaces. 2) Large...scale trajectory simulations for theoretical analysis of gas - liquid scattering studies, 3) LIF data for state-resolved scattering of hyperthermal NO at
Dynamic gas temperature measurements using a personal computer for data acquisition and reduction
NASA Technical Reports Server (NTRS)
Fralick, Gustave C.; Oberle, Lawrence G.; Greer, Lawrence C., III
1993-01-01
This report describes a dynamic gas temperature measurement system. It has frequency response to 1000 Hz, and can be used to measure temperatures in hot, high pressure, high velocity flows. A personal computer is used for collecting and processing data, which results in a much shorter wait for results than previously. The data collection process and the user interface are described in detail. The changes made in transporting the software from a mainframe to a personal computer are described in appendices, as is the overall theory of operation.
Boiling regimes of impacting drops on a heated substrate under reduced pressure
NASA Astrophysics Data System (ADS)
van Limbeek, Michiel A. J.; Hoefnagels, Paul B. J.; Shirota, Minori; Sun, Chao; Lohse, Detlef
2018-05-01
We experimentally investigate the boiling behavior of impacting ethanol drops on a heated smooth sapphire substrate at pressures ranging from P =0.13 bar to atmospheric pressure. We employ frustrated total internal reflection imaging to study the wetting dynamics of the contact between the drop and the substrate. The spreading drop can be in full contact (contact boiling), it can partially touch (transition boiling), or the drop can be fully levitated (Leidenfrost boiling). We show that the temperature of the boundary between contact and transition boiling shows at most a weak dependence on the impact velocity, but a significant decrease with decreasing ambient gas pressure. A striking correspondence is found between the temperature of this boundary and the static Leidenfrost temperature for all pressures. We therefore conclude that both phenomena share the same mechanism and are dominated by the dynamics taking place at the contact line. On the other hand, the boundary between transition boiling and Leidenfrost boiling, i.e., the dynamic Leidenfrost temperature, increases for increasing impact velocity for all ambient gas pressures. Moreover, the dynamic Leidenfrost temperature coincides for pressures between P =0.13 and 0.54 bar, whereas for atmospheric pressure the dynamic Leidenfrost temperature is slightly elevated. This indicates that the dynamic Leidenfrost temperature is at most weakly dependent on the enhanced evaporation by the lower saturation temperature of the liquid.
Dynamic gas temperature measurement system, volume 1
NASA Technical Reports Server (NTRS)
Elmore, D. L.; Robinson, W. W.; Watkins, W. B.
1983-01-01
A gas temperature measurement system with compensated frequency response of 1 kHz and capability to operate in the exhaust of a gas turbine engine combustor was developed. A review of available technologies which could attain this objective was done. The most promising method was identified as a two wire thermocouple, with a compensation method based on the responses of the two different diameter thermocouples to the fluctuating gas temperature field. In a detailed design of the probe, transient conduction effects were identified as significant. A compensation scheme was derived to include the effects of gas convection and wire conduction. The two wire thermocouple concept was tested in a laboratory burner exhaust to temperatures of about 3000 F and in a gas turbine engine to combustor exhaust temperatures of about 2400 F. Uncompensated and compensated waveforms and compensation spectra are presented.
Diode laser absorption sensors for gas-dynamic and combustion flows
NASA Technical Reports Server (NTRS)
Allen, M. G.
1998-01-01
Recent advances in room-temperature, near-IR and visible diode laser sources for tele-communication, high-speed computer networks, and optical data storage applications are enabling a new generation of gas-dynamic and combustion-flow sensors based on laser absorption spectroscopy. In addition to conventional species concentration and density measurements, spectroscopic techniques for temperature, velocity, pressure and mass flux have been demonstrated in laboratory, industrial and technical flows. Combined with fibreoptic distribution networks and ultrasensitive detection strategies, compact and portable sensors are now appearing for a variety of applications. In many cases, the superior spectroscopic quality of the new laser sources compared with earlier cryogenic, mid-IR devices is allowing increased sensitivity of trace species measurements, high-precision spectroscopy of major gas constituents, and stable, autonomous measurement systems. The purpose of this article is to review recent progress in this field and suggest likely directions for future research and development. The various laser-source technologies are briefly reviewed as they relate to sensor applications. Basic theory for laser absorption measurements of gas-dynamic properties is reviewed and special detection strategies for the weak near-IR and visible absorption spectra are described. Typical sensor configurations are described and compared for various application scenarios, ranging from laboratory research to automated field and airborne packages. Recent applications of gas-dynamic sensors for air flows and fluxes of trace atmospheric species are presented. Applications of gas-dynamic and combustion sensors to research and development of high-speed flows aeropropulsion engines, and combustion emissions monitoring are presented in detail, along with emerging flow control systems based on these new sensors. Finally, technology in nonlinear frequency conversion, UV laser materials, room-temperature mid-IR materials and broadly tunable multisection devices is reviewed to suggest new sensor possibilities.
Interference-free coherence dynamics of gas-phase molecules using spectral focusing.
Wrzesinski, Paul J; Roy, Sukesh; Gord, James R
2012-10-08
Spectral focusing using broadband femtosecond pulses to achieve highly selective measurements has been employed for numerous applications in spectroscopy and microspectroscopy. In this work we highlight the use of spectral focusing for selective excitation and detection of gas-phase species. Furthermore, we demonstrate that spectral focusing, coupled with time-resolved measurements based upon probe delay, allows the observation of interference-free coherence dynamics of multiple molecules and gas-phase temperature making this technique ideal for gas-phase measurements of reacting flows and combustion processes.
NASA Technical Reports Server (NTRS)
Stocks, Dana R.
1986-01-01
The Dynamic Gas Temperature Measurement System compensation software accepts digitized data from two different diameter thermocouples and computes a compensated frequency response spectrum for one of the thermocouples. Detailed discussions of the physical system, analytical model, and computer software are presented in this volume and in Volume 1 of this report under Task 3. Computer program software restrictions and test cases are also presented. Compensated and uncompensated data may be presented in either the time or frequency domain. Time domain data are presented as instantaneous temperature vs time. Frequency domain data may be presented in several forms such as power spectral density vs frequency.
NASA Technical Reports Server (NTRS)
Mielke, Amy F.; Seasholtz, Richard G.; Elam, Kristie A.; Panda, Jayanta
2005-01-01
Nonintrusive optical point-wise measurement techniques utilizing the principles of molecular Rayleigh scattering have been developed at the NASA Glenn Research Center to obtain time-averaged information about gas velocity, density, temperature, and turbulence, or dynamic information about gas velocity and density in unseeded flows. These techniques enable measurements that are necessary for validating computational fluid dynamics (CFD) and computational aeroacoustic (CAA) codes. Dynamic measurements allow the calculation of power spectra for the various flow properties. This type of information is currently being used in jet noise studies, correlating sound pressure fluctuations with velocity and density fluctuations to determine noise sources in jets. These nonintrusive techniques are particularly useful in supersonic flows, where seeding the flow with particles is not an option, and where the environment is too harsh for hot-wire measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, E; Marie Kane, M
2008-12-12
Four formulations of EPDM (ethylene-propylene diene monomer) elastomer were exposed to tritium gas initially at one atmosphere and ambient temperature for between three and four months in closed containers. Material properties that were characterized include density, volume, mass, appearance, flexibility, and dynamic mechanical properties. The glass transition temperature was determined by analysis of the dynamic mechanical property data per ASTM standards. EPDM samples released significant amounts of gas when exposed to tritium, and the glass transition temperature increased by about 3 C. during the exposure. Effects of ultraviolet and gamma irradiation on the surface electrical conductivity of two types ofmore » polyaniline films are also documented as complementary results to planned tritium exposures. Future work will determine the effects of tritium gas exposure on the electrical conductivity of polyaniline films, to demonstrate whether such films can be used as a sensor to detect tritium. Surface conductivity was significantly reduced by irradiation with both gamma rays and ultraviolet light. The results of the gamma and UV experiments will be correlated with the tritium exposure results.« less
Analysis and design of an ultrahigh temperature hydrogen-fueled MHD generator
NASA Technical Reports Server (NTRS)
Moder, Jeffrey P.; Myrabo, Leik N.; Kaminski, Deborah A.
1993-01-01
A coupled gas dynamics/radiative heat transfer analysis of partially ionized hydrogen, in local thermodynamic equilibrium, flowing through an ultrahigh temperature (10,000-20,000 K) magnetohydrodynamic (MHD) generator is performed. Gas dynamics are modeled by a set of quasi-one-dimensional, nonlinear differential equations which account for friction, convective and radiative heat transfer, and the interaction between the ionized gas and applied magnetic field. Radiative heat transfer is modeled using nongray, absorbing-emitting 2D and 3D P-1 approximations which permit an arbitrary variation of the spectral absorption coefficient with frequency. Gas dynamics and radiative heat transfer are coupled through the energy equation and through the temperature- and density-dependent absorption coefficient. The resulting nonlinear elliptic problem is solved by iterative methods. Design of such MHD generators as onboard, open-cycle, electric power supplies for a particular advanced airbreathing propulsion concept produced an efficient and compact 128-MWe generator characterized by an extraction ratio of 35.5 percent, a power density of 10,500 MWe/cu m, and a specific (extracted) energy of 324 MJe/kg of hydrogen. The maximum wall heat flux and total wall heat load were 453 MW/sq m and 62 MW, respectively.
Fluid absorption solar energy receiver
NASA Technical Reports Server (NTRS)
Bair, Edward J.
1993-01-01
A conventional solar dynamic system transmits solar energy to the flowing fluid of a thermodynamic cycle through structures which contain the gas and thermal energy storage material. Such a heat transfer mechanism dictates that the structure operate at a higher temperature than the fluid. This investigation reports on a fluid absorption receiver where only a part of the solar energy is transmitted to the structure. The other part is absorbed directly by the fluid. By proportioning these two heat transfer paths the energy to the structure can preheat the fluid, while the energy absorbed directly by the fluid raises the fluid to its final working temperature. The surface temperatures need not exceed the output temperature of the fluid. This makes the output temperature of the gas the maximum temperature in the system. The gas can have local maximum temperatures higher than the output working temperature. However local high temperatures are quickly equilibrated, and since the gas does not emit radiation, local high temperatures do not result in a radiative heat loss. Thermal radiation, thermal conductivity, and heat exchange with the gas all help equilibrate the surface temperature.
Determination of chlorine concentration using single temperature modulated semiconductor gas sensor
NASA Astrophysics Data System (ADS)
Woźniak, Ł.; Kalinowski, P.; Jasiński, G.; Jasiński, P.
2016-11-01
A periodic temperature modulation using sinusoidal heater voltage was applied to a commercial SnO2 semiconductor gas sensor. Resulting resistance response of the sensor was analyzed using a feature extraction method based on Fast Fourier Transformation (FFT). The amplitudes of the higher harmonics of the FFT from the dynamic nonlinear responses of measured gas were further utilized as an input for Artificial Neuron Network (ANN). Determination of the concentration of chlorine was performed. Moreover, this work evaluates the sensor performance upon sinusoidal temperature modulation.
Blind system identification of two-thermocouple sensor based on cross-relation method.
Li, Yanfeng; Zhang, Zhijie; Hao, Xiaojian
2018-03-01
In dynamic temperature measurement, the dynamic characteristics of the sensor affect the accuracy of the measurement results. Thermocouples are widely used for temperature measurement in harsh conditions due to their low cost, robustness, and reliability, but because of the presence of the thermal inertia, there is a dynamic error in the dynamic temperature measurement. In order to eliminate the dynamic error, two-thermocouple sensor was used to measure dynamic gas temperature in constant velocity flow environments in this paper. Blind system identification of two-thermocouple sensor based on a cross-relation method was carried out. Particle swarm optimization algorithm was used to estimate time constants of two thermocouples and compared with the grid based search method. The method was validated on the experimental equipment built by using high temperature furnace, and the input dynamic temperature was reconstructed by using the output data of the thermocouple with small time constant.
Blind system identification of two-thermocouple sensor based on cross-relation method
NASA Astrophysics Data System (ADS)
Li, Yanfeng; Zhang, Zhijie; Hao, Xiaojian
2018-03-01
In dynamic temperature measurement, the dynamic characteristics of the sensor affect the accuracy of the measurement results. Thermocouples are widely used for temperature measurement in harsh conditions due to their low cost, robustness, and reliability, but because of the presence of the thermal inertia, there is a dynamic error in the dynamic temperature measurement. In order to eliminate the dynamic error, two-thermocouple sensor was used to measure dynamic gas temperature in constant velocity flow environments in this paper. Blind system identification of two-thermocouple sensor based on a cross-relation method was carried out. Particle swarm optimization algorithm was used to estimate time constants of two thermocouples and compared with the grid based search method. The method was validated on the experimental equipment built by using high temperature furnace, and the input dynamic temperature was reconstructed by using the output data of the thermocouple with small time constant.
NASA Technical Reports Server (NTRS)
Acosta, Waldo A.; Chang, Clarence T.
2016-01-01
An experimental investigation of the combustion dynamic characteristics of a research multi-element lean direct injection (LDI) combustor under simulated gas turbine conditions was conducted. The objective was to gain a better understanding of the physical phenomena inside a pressurized flametube combustion chamber under acoustically isolated conditions. A nine-point swirl venturi lean direct injection (SV-LDI) geometry was evaluated at inlet pressures up to 2,413 kPa and non-vitiated air temperatures up to 867 K. The equivalence ratio was varied to obtain adiabatic flame temperatures between 1388 K and 1905 K. Dynamic pressure measurements were taken upstream of the SV-LDI, in the combustion zone and downstream of the exit nozzle. The measurements showed that combustion dynamics were fairly small when the fuel was distributed uniformly and mostly due to fluid dynamics effects. Dynamic pressure fluctuations larger than 40 kPa at low frequencies were measured at 653 K inlet temperature and 1117 kPa inlet pressure when fuel was shifted and the pilot fuel injector equivalence ratio was increased to 0.72.
Nedea, S V; van Steenhoven, A A; Markvoort, A J; Spijker, P; Giordano, D
2014-05-01
The influence of gas-surface interactions of a dilute gas confined between two parallel walls on the heat flux predictions is investigated using a combined Monte Carlo (MC) and molecular dynamics (MD) approach. The accommodation coefficients are computed from the temperature of incident and reflected molecules in molecular dynamics and used as effective coefficients in Maxwell-like boundary conditions in Monte Carlo simulations. Hydrophobic and hydrophilic wall interactions are studied, and the effect of the gas-surface interaction potential on the heat flux and other characteristic parameters like density and temperature is shown. The heat flux dependence on the accommodation coefficient is shown for different fluid-wall mass ratios. We find that the accommodation coefficient is increasing considerably when the mass ratio is decreased. An effective map of the heat flux depending on the accommodation coefficient is given and we show that MC heat flux predictions using Maxwell boundary conditions based on the accommodation coefficient give good results when compared to pure molecular dynamics heat predictions. The accommodation coefficients computed for a dilute gas for different gas-wall interaction parameters and mass ratios are transferred to compute the heat flux predictions for a dense gas. Comparison of the heat fluxes derived using explicit MD, MC with Maxwell-like boundary conditions based on the accommodation coefficients, and pure Maxwell boundary conditions are discussed. A map of the heat flux dependence on the accommodation coefficients for a dense gas, and the effective accommodation coefficients for different gas-wall interactions are given. In the end, this approach is applied to study the gas-surface interactions of argon and xenon molecules on a platinum surface. The derived accommodation coefficients are compared with values of experimental results.
Effect of pairwise additivity on finite-temperature behavior of classical ideal gas
NASA Astrophysics Data System (ADS)
Shekaari, Ashkan; Jafari, Mahmoud
2018-05-01
Finite-temperature molecular dynamics simulations have been applied to inquire into the effect of pairwise additivity on the behavior of classical ideal gas within the temperature range of T = 250-4000 K via applying a variety of pair potentials and then examining the temperature dependence of a number of thermodynamical properties. Examining the compressibility factor reveals the most deviation from ideal-gas behavior for the Lennard-Jones system mainly due to the presence of both the attractive and repulsive terms. The systems with either attractive or repulsive intermolecular potentials are found to present no resemblance to real gases, but the most similarity to the ideal one as temperature rises.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suk Kim, Jong; McKellar, Michael; Bragg-Sitton, Shannon M.
This report has been prepared as part of an effort to design and build a modeling and simulation (M&S) framework to assess the economic viability of a nuclear-renewable hybrid energy system (N-R HES). In order to facilitate dynamic M&S of such an integrated system, research groups in multiple national laboratories have been developing various subsystems as dynamic physics-based components using the Modelica programming language. In fiscal year (FY) 2015, Idaho National Laboratory (INL) performed a dynamic analysis of two region-specific N-R HES configurations, including the gas-to-liquid (natural gas to Fischer-Tropsch synthetic fuel) and brackish water reverse osmosis desalination plants asmore » industrial processes. In FY 2016, INL has developed two additional subsystems in the Modelica framework: a high-temperature steam electrolysis (HTSE) plant and a gas turbine power plant (GTPP). HTSE has been proposed as a high priority industrial process to be integrated with a light water reactor (LWR) in an N-R HES. This integrated energy system would be capable of dynamically apportioning thermal and electrical energy (1) to provide responsive generation to the power grid and (2) to produce alternative industrial products (i.e., hydrogen and oxygen) without generating any greenhouse gases. A dynamic performance analysis of the LWR/HTSE integration case was carried out to evaluate the technical feasibility (load-following capability) and safety of such a system operating under highly variable conditions requiring flexible output. To support the dynamic analysis, the detailed dynamic model and control design of the HTSE process, which employs solid oxide electrolysis cells, have been developed to predict the process behavior over a large range of operating conditions. As first-generation N-R HES technology will be based on LWRs, which provide thermal energy at a relatively low temperature, complementary temperature-boosting technology was suggested for integration with the HTSE process that requires higher temperature input. Simulation results involving several case studies show that the suggested control scheme could maintain the controlled variables (including the steam utilization factor, cathode stream inlet composition, and temperatures of the process streams at various locations) within desired limits under various plant operating conditions. The results also indicate that the proposed HTSE plant could provide operational flexibility to participate in energy management at the utility scale by dynamically optimizing the use of excess plant capacity within an N-R HES. A natural-gas fired GTPP has been proposed as a secondary energy supply to be included in an N-R HES. This auxiliary generator could be used to cover rapid dynamics in grid demand that cannot be met by the remainder of the N-R HES. To evaluate the operability and controllability of the proposed process during transients between load (demand) levels, the dynamic model and control design were developed. Special attention was given to the design of feedback controllers to regulate the power frequency, and exhaust gas and turbine firing temperatures. Several case studies were performed to investigate the system responses to the major disturbance (power load demand) in such a control system. The simulation results show that the performance of the proposed control strategies was satisfactory under each test when the GTPP experienced high rapid variations in the load.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Hai; Tsai, Hai-Lung; Dong, Junhang
2014-09-30
This is the final report for the program “Micro-Structured Sapphire Fiber Sensors for Simultaneous Measurements of High Temperature and Dynamic Gas Pressure in Harsh Environments”, funded by NETL, and performed by Missouri University of Science and Technology, Clemson University and University of Cincinnati from October 1, 2009 to September 30, 2014. Securing a sustainable energy economy by developing affordable and clean energy from coal and other fossil fuels is a central element to the mission of The U.S. Department of Energy’s (DOE) National Energy Technology Laboratory (NETL). To further this mission, NETL funds research and development of novel sensor technologiesmore » that can function under the extreme operating conditions often found in advanced power systems. The main objective of this research program is to conduct fundamental and applied research that will lead to successful development and demonstration of robust, multiplexed, microstructured silica and single-crystal sapphire fiber sensors to be deployed into the hot zones of advanced power and fuel systems for simultaneous measurements of high temperature and gas pressure. The specific objectives of this research program include: 1) Design, fabrication and demonstration of multiplexed, robust silica and sapphire fiber temperature and dynamic gas pressure sensors that can survive and maintain fully operational in high-temperature harsh environments. 2) Development and demonstration of a novel method to demodulate the multiplexed interferograms for simultaneous measurements of temperature and gas pressure in harsh environments. 3) Development and demonstration of novel sapphire fiber cladding and low numerical aperture (NA) excitation techniques to assure high signal integrity and sensor robustness.« less
Molecular Rayleigh Scattering Diagnostic for Dynamic Temperature, Velocity, and Density Measurements
NASA Technical Reports Server (NTRS)
Mielke, Amy R.; Elam, Kristie A.; Sung, Chi-Jen
2006-01-01
A molecular Rayleigh scattering technique is developed to measure dynamic gas temperature, velocity, and density in unseeded turbulent flows at sampling rates up to 16 kHz. A high power CW laser beam is focused at a point in an air jet plume and Rayleigh scattered light is collected and spectrally resolved. The spectrum of the light, which contains information about the temperature and velocity of the flow, is analyzed using a Fabry-Perot interferometer. The circular interference fringe pattern is divided into four concentric regions and sampled at 1 and 16 kHz using photon counting electronics. Monitoring the relative change in intensity within each region allows for measurement of gas temperature and velocity. Independently monitoring the total scattered light intensity provides a measure of gas density. A low speed heated jet is used to validate the measurement of temperature fluctuations and an acoustically excited nozzle flow is studied to validate velocity fluctuation measurements. Power spectral density calculations of the property fluctuations, as well as mean and fluctuating quantities are presented. Temperature fluctuation results are compared with constant current anemometry measurements and velocity fluctuation results are compared with constant temperature anemometry measurements at the same locations.
Studies on biomass char gasification and dynamics
NASA Astrophysics Data System (ADS)
You, Zhanping; You, Shijun; Ma, Xiaoyan
2018-01-01
The gasification performances of two kinds of biomass char by experiment methods are studied, including conversion rate and gasification gas component with temperature and time. Experimental results show that gasification temperature has important effects on the conversion rate and gas component. In the range of experimental temperature, char conversion rates are no more than 30.0%. The apparent activation energies and apparent reaction frequency factors of two biomass chars are obtained through kinetic studies.
Dynamic Temperature and Pressure Measurements in the Core of a Propulsion Engine
NASA Technical Reports Server (NTRS)
Schuster, Bill; Gordon, Grant; Hultgren, Lennart S.
2015-01-01
Dynamic temperature and pressure measurements were made in the core of a TECH977 propulsion engine as part of a NASA funded investigation into indirect combustion noise. Dynamic temperature measurements were made in the combustor, the inter-turbine duct, and the mixer using ten two-wire thermocouple probes. Internal dynamic pressure measurements were made at the same locations using piezoresistive transducers installed in semi-infinite coils. Measurements were acquired at four steady state operating conditions covering the range of aircraft approach power settings. Fluctuating gas temperature spectra were computed from the thermocouple probe voltage measurements using a compensation procedure that was developed under previous NASA test programs. A database of simultaneously acquired dynamic temperature and dynamic pressure measurements was produced. Spectral and cross-spectral analyses were conducted to explore the characteristics of the temperature and pressure fluctuations inside the engine, with a particular focus on attempting to identify the presence of indirect combustion noise.
Experiments in a Combustion-Driven Shock Tube with an Area Change
NASA Astrophysics Data System (ADS)
Schmidt, B. E.; Bobbitt, B.; Parziale, N. J.; Shepherd, J. E.
Shock tubes are versatile and useful tools for studying high temperature gas dynamics and the production of hypervelocity flows. High shock speeds are desirable for creating higher enthalpy, pressure, and temperature in the test gas which makes the study of thermo-chemical effects on fluid dynamics possible. Independent of construction and operational cost, free-piston drivers, such as the one used in the T5 facility at Caltech, give the best performance [3]. The high operational cost and long turnaround time of such a facility make a more economical option desirable for smaller-scale testing.
Chen, Hongzhang; Qin, Lanzhi; Li, Hongqiang
2014-02-01
Internal air circulation affects the temperature field distribution in a gas double-dynamic solid-state fermentation bioreactor (GDSFB). To enhance heat transfer through strengthening internal air circulation in a GDSFB, we put an air distribution plate (ADP) into the bioreactor and studied the effects of forced internal air circulation on airflow, heat transfer, and cellulase activity of Trichoderma viride L3. Results showed that ADP could help form a steady and uniform airflow distribution, and with gas-guide tubes, air reversal was formed inside the bioreactor, thus resulting in a smaller temperature difference between medium and air by enhancing convective heat transfer inside the bioreactor. Using an ADP of 5.35 % aperture ratio caused a 1 °C decrease in the average temperature difference during the solid-state fermentation process of T. viride L3. Meanwhile, the cellulase activity of T. viride L3 increased by 13.5 %. The best heat-transfer effect was attained when using an ADP of 5.35 % aperture ratio and setting the fan power to 125 V (4.81 W) in the gas double-dynamic solid-state fermentation (GDSF) process. An option of suitable aperture ratio and fan power may be conducive to ADPs' industrial amplification.
NASA Astrophysics Data System (ADS)
Shariati, Mohsen; Khosravinejad, Fariba
The gas nanosensor of indium oxide nanowires in laser assisted approach, doped with tin and zinc for gas sensing and 1D growth purposes respectively, was reported. The nanowires were very sensitive to H2S gas in low concentration of 20ppb gas at room temperature. The fast dynamic intensive and sensitive response to gas was in a few seconds with an on/off sensitivity ratio of around 10. The square cross-section indium oxide nanowires were fabricated through physical vapor deposition (PVD) mechanism and annealing approach. The field emission scanning electron microscopy (FESEM) observations indicated that the annealing temperature was vital in nanostructures’ morphology. The fabricated nanowires for the optimized annealing temperature in applied growth technique were around 60nm in diameter.
Dynamic and spectroscopic characteristics of atmospheric gliding arc in gas-liquid two-phase flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tu, X.; Yu, L.; Yan, J. H.
In this study, an atmospheric alternating-current gliding arc device in gas-liquid two-phase flow has been developed for the purpose of waste water degradation. The dynamic behavior of the gas-liquid gliding arc is investigated through the oscillations of electrical signals, while the spatial evolution of the arc column is analyzed by high speed photography. Different arc breakdown regimes are reported, and the restrike mode is identified as the typical fluctuation characteristic of the hybrid gliding arc in air-water mixture. Optical emission spectroscopy is employed to investigate the active species generated in the gas-liquid plasma. The axial evolution of the OH (309more » nm) intensity is determined, while the rotational and vibrational temperatures of the OH are obtained by a comparison between the experimental and simulated spectra. The significant discrepancy between the rotational and translational temperatures has also been discussed.« less
NASA Astrophysics Data System (ADS)
Hyo Park, Jung; Min Choi, Kyung; Joon Jeon, Hyung; Jung Choi, Yoon; Ku Kang, Jeung
2015-07-01
Although structures with the single functional constructions and micropores were demonstrated to capture many different molecules such as carbon dioxide, methane, and hydrogen with high capacities at low temperatures, their feeble interactions still limit practical applications at room temperature. Herein, we report in-situ growth observation of hierarchical pores in pomegranate metal-organic frameworks (pmg-MOFs) and their self-sequestering storage mechanism, not observed for pristine MOFs. Direct observation of hierarchical pores inside the pmg-MOF was evident by in-situ growth X-ray measurements while self-sequestering storage mechanism was revealed by in-situ gas sorption X-ray analysis and molecular dynamics simulations. The results show that meso/macropores are created at the early stage of crystal growth and then enclosed by micropore crystalline shells, where hierarchical pores are networking under self-sequestering mechanism to give enhanced gas storage. This pmg-MOF gives higher CO2 (39%) and CH4 (14%) storage capacity than pristine MOF at room temperature, in addition to fast kinetics with robust capacity retention during gas sorption cycles, thus giving the clue to control dynamic behaviors of gas adsorption.
Dynamics of Galaxy Clusters and Expectations from Astro-H
NASA Technical Reports Server (NTRS)
Markevitch, Maxim
2012-01-01
Galaxy clusters span a range of dynamical states, from violent mergers -- the most energetic events in the Universe -- to systems near hydrostatic equilibrium that allow us to map their dark matter distribution using X-ray observations of the intracluster gas. Accurate knowledge of the cluster physics, and in particular, the physics of the hot intracluster gas, is required to realize the full potential of clusters as cosmological probes. So far, we have been studying the cluster dynamics indirectly, deducing merger geometries, cluster masses, etc., using X-ray brightness and gas temperature mapping. For the first time, the calorimeter onboard Astro-H will provide direct measurements of line-of-sight velocities and turbulent broadening in the intracluster gas, testing many of our key assumptions about clusters. This talk will summarize expectations for cluster dynamic studies with this new instrument.
Isothermal evaporation of ethanol in a dynamic gas atmosphere.
Milev, Adriyan S; Wilson, Michael A; Kannangara, G S Kamali; Feng, Hai; Newman, Phillip A
2012-01-12
Optimization of evaporation and pyrolysis conditions for ethanol are important in carbon nanotube (CNT) synthesis. The activation enthalpy (ΔH(‡)), the activation entropy (ΔS(‡)), and the free energy barrier (ΔG(‡)) to evaporation have been determined by measuring the molar coefficient of evaporation, k(evap), at nine different temperatures (30-70 °C) and four gas flow rates (25-200 mL/min) using nitrogen and argon as carrier gases. At 70 °C in argon, the effect of the gas flow rate on k(evap) and ΔG(‡) is small. However, this is not true at temperatures as low as 30 °C, where the increase of the gas flow rate from 25 to 200 mL/min results in a nearly 6 times increase of k(evap) and decrease of ΔG(‡) by ~5 kJ/mol. Therefore, at 30 °C, the effect of the gas flow rate on the ethanol evaporation rate is attributed to interactions of ethanol with argon molecules. This is supported by simultaneous infrared spectroscopic analysis of the evolved vapors, which demonstrates the presence of different amounts of linear and cyclic hydrogen bonded ethanol aggregates. While the amount of these aggregates at 30 °C depends upon the gas flow rate, no such dependence was observed during evaporation at 70 °C. When the evaporation was carried out in nitrogen, ΔG(‡) was almost independent of the evaporation temperature (30-70 °C) and the gas flow rate (25-200 mL/min). Thus the evaporation of ethanol in a dynamic gas atmosphere at different temperatures may go via different mechanisms depending on the nature of the carrier gas.
Selective vibrational pumping of molecular hydrogen via gas phase atomic recombination.
Esposito, Fabrizio; Capitelli, Mario
2009-12-31
Formation of rovibrational excited molecular hydrogen from atomic recombination has been computationally studied using three body dynamics and orbiting resonance theory. Each of the two methods in the frame of classical mechanics, that has been used for all of the calculations, appear complementary rather than complete, with similar values in the low temperature region, and predominance of three body dynamics for temperatures higher than about 1000 K. The sum of the two contributions appears in fairly good agreement with available data from the literature. Dependence of total recombination on the temperature over pressure ratio is stressed. Detailed recombination toward rovibrational states is presented, with large evidence of importance of rotation in final products. Comparison with gas-surface recombination implying only physiadsorbed molecules shows approximate similarities at T = 5000 K, being on the contrary different at lower temperature.
Fluid dynamics analysis of a gas attenuator for X-ray FELs under high-repetition-rate operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Bo; Wu, Juhao; Raubenheimer, Tor O.
Newtonian fluid dynamics simulations were performed using the Navier–Stokes–Fourier formulations to elucidate the short time-scale (µs and longer) evolution of the density and temperature distributions in an argon-gas-filled attenuator for an X-ray free-electron laser under high-repetition-rate operation. Both hydrodynamic motions of the gas molecules and thermal conductions were included in a finite-volume calculation. It was found that the hydrodynamic wave motions play the primary role in creating a density depression (also known as a filament) by advectively transporting gas particles away from the X-ray laser–gas interaction region, where large pressure and temperature gradients have been built upon the initial energymore » depositionviaX-ray photoelectric absorption and subsequent thermalization. Concurrent outward heat conduction tends to reduce the pressure in the filament core region, generating a counter gas flow to backfill the filament, but on an initially slower time scale. If the inter-pulse separation is sufficiently short so the filament cannot recover, the depth of the filament progressively increases as the trailing pulses remove additional gas particles. Since the rate of hydrodynamic removal decreases while the rate of heat conduction back flow increases as time elapses, the two competing mechanisms ultimately reach a dynamic balance, establishing a repeating pattern for each pulse cycle. Finally, by performing simulations at higher repetition rates but lower per pulse energies while maintaining a constant time-averaged power, the amplitude of the hydrodynamic motion per pulse becomes smaller, and the evolution of the temperature and density distributions approach asymptotically towards, as expected, those calculated for a continuous-wave input of the equivalent power.« less
Fluid dynamics analysis of a gas attenuator for X-ray FELs under high-repetition-rate operation
Yang, Bo; Wu, Juhao; Raubenheimer, Tor O.; ...
2017-05-01
Newtonian fluid dynamics simulations were performed using the Navier–Stokes–Fourier formulations to elucidate the short time-scale (µs and longer) evolution of the density and temperature distributions in an argon-gas-filled attenuator for an X-ray free-electron laser under high-repetition-rate operation. Both hydrodynamic motions of the gas molecules and thermal conductions were included in a finite-volume calculation. It was found that the hydrodynamic wave motions play the primary role in creating a density depression (also known as a filament) by advectively transporting gas particles away from the X-ray laser–gas interaction region, where large pressure and temperature gradients have been built upon the initial energymore » depositionviaX-ray photoelectric absorption and subsequent thermalization. Concurrent outward heat conduction tends to reduce the pressure in the filament core region, generating a counter gas flow to backfill the filament, but on an initially slower time scale. If the inter-pulse separation is sufficiently short so the filament cannot recover, the depth of the filament progressively increases as the trailing pulses remove additional gas particles. Since the rate of hydrodynamic removal decreases while the rate of heat conduction back flow increases as time elapses, the two competing mechanisms ultimately reach a dynamic balance, establishing a repeating pattern for each pulse cycle. Finally, by performing simulations at higher repetition rates but lower per pulse energies while maintaining a constant time-averaged power, the amplitude of the hydrodynamic motion per pulse becomes smaller, and the evolution of the temperature and density distributions approach asymptotically towards, as expected, those calculated for a continuous-wave input of the equivalent power.« less
Electronic excitation and quenching of atoms at insulator surfaces
NASA Technical Reports Server (NTRS)
Swaminathan, P. K.; Garrett, Bruce C.; Murthy, C. S.
1988-01-01
A trajectory-based semiclassical method is used to study electronically inelastic collisions of gas atoms with insulator surfaces. The method provides for quantum-mechanical treatment of the internal electronic dynamics of a localized region involving the gas/surface collision, and a classical treatment of all the nuclear degrees of freedom (self-consistently and in terms of stochastic trajectories), and includes accurate simulation of the bath-temperature effects. The method is easy to implement and has a generality that holds promise for many practical applications. The problem of electronically inelastic dynamics is solved by computing a set of stochastic trajectories that on thermal averaging directly provide electronic transition probabilities at a given temperature. The theory is illustrated by a simple model of a two-state gas/surface interaction.
Quantum State-Resolved Collision Dynamics of Nitric Oxide at Ionic Liquid and Molten Metal Surfaces
NASA Astrophysics Data System (ADS)
Zutz, Amelia Marie
Detailed molecular scale interactions at the gas-liquid interface are explored with quantum state-to-state resolved scattering of a jet-cooled beam of NO(2pi1/2; N = 0) from ionic liquid and molten metal surfaces. The scattered distributions are probed via laser-induced fluorescence methods, which yield rotational and spin-orbit state populations that elucidate the dynamics of energy transfer at the gas-liquid interface. These collision dynamics are explored as a function of incident collision energy, surface temperature, scattering angle, and liquid identity, all of which are found to substantially affect the degree of rotational, electronic and vibrational excitation of NO via collisions at the liquid surface. Rotational distributions observed reveal two distinct scattering pathways, (i) molecules that trap, thermalize and eventually desorb from the surface (trapping-desorption, TD), and (ii) those that undergo prompt recoil (impulsive scattering, IS) prior to complete equilibration with the liquid surface. Thermally desorbing NO molecules are found to have rotational temperatures close to, but slightly cooler than the surface temperature, indicative of rotational dependent sticking probabilities on liquid surfaces. Nitric oxide is a radical with multiple low-lying electronic states that serves as an ideal candidate for exploring nonadiabatic state-changing collision dynamics at the gas-liquid interface, which induce significant excitation from ground (2pi1/2) to excited (2pi 3/2) spin-orbit states. Molecular beam scattering of supersonically cooled NO from hot molten metals (Ga and Au, Ts = 300 - 1400 K) is also explored, which provide preliminary evidence for vibrational excitation of NO mediated by thermally populated electron-hole pairs in the hot, conducting liquid metals. The results highlight the presence of electronically nonadiabatic effects and build toward a more complete characterization of energy transfer dynamics at gas-liquid interfaces.
High-temperature optical fiber instrumentation for gas flow monitoring in gas turbine engines
NASA Astrophysics Data System (ADS)
Roberts, Adrian; May, Russell G.; Pickrell, Gary R.; Wang, Anbo
2002-02-01
In the design and testing of gas turbine engines, real-time data about such physical variables as temperature, pressure and acoustics are of critical importance. The high temperature environment experienced in the engines makes conventional electronic sensors devices difficult to apply. Therefore, there is a need for innovative sensors that can reliably operate under the high temperature conditions and with the desirable resolution and frequency response. A fiber optic high temperature sensor system for dynamic pressure measurement is presented in this paper. This sensor is based on a new sensor technology - the self-calibrated interferometric/intensity-based (SCIIB) sensor, recently developed at Virginia Tech. State-of-the-art digital signal processing (DSP) methods are applied to process the signal from the sensor to acquire high-speed frequency response.
NASA Astrophysics Data System (ADS)
Mayer, Simon; Jenner, Florian; Aeschbach, Werner
2017-04-01
Applications of inert gases in groundwater hydrology require a profound understanding of underlying biogeochemical processes. Some of these processes are, however, not well understood and therefore require further investigation. This is the first study simultaneously investigating soil air and groundwater in the context of noble gas tracer applications, accounting for seasonal effects in different climate regions. The sampled data confirm a general reliability of common assumptions proposed in the literature. In particular, a solubility-controlled description of excess air formation and of groundwater degassing can be confirmed. This study identifies certain effects which need to be taken into account to reliably evaluate noble gas patterns. First, long-term samplings suggest a permanent temperature-driven equilibration of shallow groundwater with entrapped air bubbles, even some years after recharge. Second, minor groundwater degassing is found to challenge existing excess air model approaches, depending on the amount and the fractionation of excess air. Third, soil air composition data of this study imply a potential bias of noble gas temperatures by up to about 2℃ due to microbial oxygen depletion and a reduced sum value of O2+CO2. This effect causes systematically lower noble gas temperatures in tropical groundwater samples and in shallow mid-latitude groundwater samples after strong recharge during the warm season. However, a general bias of noble gas temperatures in mid-latitudes is probably prevented by a predominant recharge during the cold season, accompanied by nearly atmospheric noble gas mixing ratios in the soil air. Findings of this study provide a remarkable contribution to the reliability of noble gas tracer applications in hydrology, in particular with regard to paleoclimate reconstructions and an understanding of subsurface gas dynamics.
Yeh, Li-Ko; Luo, Jie-Chun; Chen, Min-Chun; Wu, Chih-Hung; Chen, Jian-Zhang; Cheng, I-Chun; Hsu, Cheng-Che; Tian, Wei-Cheng
2016-01-01
A photoactivated gas detector operated at room temperature was microfabricated using a simple hydrothermal method. We report that the photoactivated gas detector can detect toluene using a UV illumination of 2 μW/cm2. By ultraviolet (UV) illumination, gas detectors sense toluene at room temperature without heating. A significant enhancement of detector sensitivity is achieved because of the high surface-area-to-volume ratio of the morphology of the coral-like ZnO nanorods arrays (NRAs) and the increased number of photo-induced oxygen ions under UV illumination. The corresponding sensitivity (ΔR/R0) of the detector based on coral-like ZnO NRAs is enhanced by approximately 1022% compared to that of thin-film detectors. The proposed detector greatly extends the dynamic range of detection of metal-oxide-based detectors for gas sensing applications. We report the first-ever detection of toluene with a novel coral-like NRAs gas detector at room temperature. A sensing mechanism model is also proposed to explain the sensing responses of gas detectors based on coral-like ZnO NRAs. PMID:27809222
Yeh, Li-Ko; Luo, Jie-Chun; Chen, Min-Chun; Wu, Chih-Hung; Chen, Jian-Zhang; Cheng, I-Chun; Hsu, Cheng-Che; Tian, Wei-Cheng
2016-10-31
A photoactivated gas detector operated at room temperature was microfabricated using a simple hydrothermal method. We report that the photoactivated gas detector can detect toluene using a UV illumination of 2 μW/cm². By ultraviolet (UV) illumination, gas detectors sense toluene at room temperature without heating. A significant enhancement of detector sensitivity is achieved because of the high surface-area-to-volume ratio of the morphology of the coral-like ZnO nanorods arrays (NRAs) and the increased number of photo-induced oxygen ions under UV illumination. The corresponding sensitivity (ΔR/R₀) of the detector based on coral-like ZnO NRAs is enhanced by approximately 1022% compared to that of thin-film detectors. The proposed detector greatly extends the dynamic range of detection of metal-oxide-based detectors for gas sensing applications. We report the first-ever detection of toluene with a novel coral-like NRAs gas detector at room temperature. A sensing mechanism model is also proposed to explain the sensing responses of gas detectors based on coral-like ZnO NRAs.
NASA Astrophysics Data System (ADS)
Wang, Z. L.; Shen, Y. F.; Wang, Z. B.; Wang, J.
2017-08-01
Semi-closed single screw refrigeration compressors (SSRC) are widely used in refrigeration and air conditioning systems owing to the advantages of simple structure, balanced forces on the rotor, high volumetric efficiency and so on. In semi-closed SSRCs, motor is often cooled by suction gas or injected refrigerant liquid. Motor cooling method will changes the suction gas temperature, this to a certain extent, is an important factor influencing the thermal dynamic performance of a compressor. Thus the effects of motor cooling method on the performance of the compressor must be studied. In this paper mathematical models of motor cooling process by using these two methods were established. Influences of motor cooling parameters such as suction gas temperature, suction gas quantity, temperature of the injected refrigerant liquid and quantity of the injected refrigerant liquid on the thermal dynamic performance of the compressor were analyzed. The performances of the compressor using these two kinds of motor cooling methods were compared. The motor cooling capacity of the injected refrigerant liquid is proved to be better than the suction gas. All analysis results obtained can be useful for optimum design of the motor cooling process to improve the efficiency and the energy efficiency of the compressor.
Fluorescence probe of polypeptide conformational dynamics in gas phase and in solution
NASA Astrophysics Data System (ADS)
Iavarone, Anthony T.; Meinen, Jan; Schulze, Susanne; Parks, Joel H.
2006-07-01
Fluorescence measurements of polypeptides derivatized with the fluorescent dye BODIPY TMR have been used to probe the polypeptide conformational dynamics as a function of temperature and charge state. Measurements of (BODIPY TMR)-[Pro]n-Arg-Trp and (BODIPY TMR)-[Gly-Ser]m-Arg-Trp have been performed for charge states 1+ and 2+ of n = 4 and 10 and m = 2 and 5. The 2+ charge states of both of these polypeptides exhibit similar temperature dependences for equal chain lengths (n = 4, m = 2 and n = 10, m = 5) and suggest conformations dominated by Coulomb repulsion. In the absence of such Coulomb repulsion, the 1+ charge state conformations appear to be characterized by the flexibility of the polypeptide chain for which [Gly-Ser]m > [Pro]n. Comparisons of these gas phase polypeptide measurements with corresponding measurements in solution provide a direct measure of the effects of solvent on the conformational dynamics. The change in fluorescence as a function of temperature in the gas phase is two orders of magnitude greater than that in solution, a dramatic result we attribute to the restrictions on intramolecular dynamics imposed by diffusion-limited kinetics and the lack of shielding by solvent. Measurements were also made of unsolvated Pron peptides without the tryptophan (Trp) residue to isolate the interaction of the fluorescent dye with charges.
Gas Atomization of Molten Metal: Part I. Numerical Modeling Conception
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leon, Genaro Perez-de; Lamberti, Vincent E.; Seals, Roland D.
This numerical analysis study entails creating and assessing a model that is capable of simulating molten metal droplets and the production of metal powder during the Gas Atomization (GA) method. The essential goal of this research aims to gather more information on simulating the process of creating metal powder. The model structure and perspective was built through the application of governing equations and aspects that utilized factors such as gas dynamics, droplet dynamics, energy balance, heat transfer, fluid mechanics and thermodynamics that were proposed from previous studies. The model is very simple and can be broken down into having amore » set of inputs to produce outputs. The inputs are the processing parameters such as the initial temperature of the metal alloy, the gas pressure and the size of the droplets. Additional inputs include the selection of the metal alloy and the atomization gas and factoring in their properties. The outputs can be designated by the velocity and thermal profiles of the droplet and gas. These profiles illustrate the speed of both as well as the rate of temperature change or cooling rate of the droplets. Here, the main focus is the temperature change and finding the right parameters to ensure that the metal powder is efficiently produced. Once the model was conceptualized and finalized, it was employed to verify the results of other previous studies.« less
Gas Atomization of Molten Metal: Part I. Numerical Modeling Conception
Leon, Genaro Perez-de; Lamberti, Vincent E.; Seals, Roland D.; ...
2016-02-01
This numerical analysis study entails creating and assessing a model that is capable of simulating molten metal droplets and the production of metal powder during the Gas Atomization (GA) method. The essential goal of this research aims to gather more information on simulating the process of creating metal powder. The model structure and perspective was built through the application of governing equations and aspects that utilized factors such as gas dynamics, droplet dynamics, energy balance, heat transfer, fluid mechanics and thermodynamics that were proposed from previous studies. The model is very simple and can be broken down into having amore » set of inputs to produce outputs. The inputs are the processing parameters such as the initial temperature of the metal alloy, the gas pressure and the size of the droplets. Additional inputs include the selection of the metal alloy and the atomization gas and factoring in their properties. The outputs can be designated by the velocity and thermal profiles of the droplet and gas. These profiles illustrate the speed of both as well as the rate of temperature change or cooling rate of the droplets. Here, the main focus is the temperature change and finding the right parameters to ensure that the metal powder is efficiently produced. Once the model was conceptualized and finalized, it was employed to verify the results of other previous studies.« less
Free radical propulsion concept
NASA Technical Reports Server (NTRS)
Hawkins, C. E.; Nakanishi, S.
1981-01-01
A free radical propulsion concept utilizing the recombination energy of dissociated low molecular weight gases to produce thrust was examined. The concept offered promise of a propulsion system operating at a theoretical impulse, with hydrogen, as high as 2200 seconds at high thrust to power ratio, thus filling the gas existing between chemical and electrostatic propulsion capabilities. Microwave energy used to dissociate a continuously flowing gas was transferred to the propellant via three body recombination for conversion to propellant kinetic energy. Power absorption by the microwave plasma discharge was in excess of 90 percent over a broad range of pressures. Gas temperatures inferred from gas dynamic equations showed much higher temperatures from microwave heating than from electrothermal heating. Spectroscopic analysis appeared to corroborate the inferred temperatures of one of the gases tested.
Full-size solar dynamic heat receiver thermal-vacuum tests
NASA Technical Reports Server (NTRS)
Sedgwick, L. M.; Kaufmann, K. J.; Mclallin, K. L.; Kerslake, Thomas W.
1991-01-01
The testing of a full-size, 120 kW, solar dynamic heat receiver utilizing high-temperature thermal energy storage is described. The purpose of the test program was to quantify receiver thermodynamic performance, operating temperatures, and thermal response to changes in environmental and power module interface boundary conditions. The heat receiver was tested in a vacuum chamber with liquid nitrogen cold shrouds and an aperture cold plate to partly simulate a low-Earth-orbit environment. The cavity of the receiver was heated by an infrared quartz lamp heater with 30 independently controllable zones to allow axially and circumferentially varied flux distributions. A closed-Brayton cycle engine simulator conditioned a helium-xenon gas mixture to specific interface conditions to simulate the various operational modes of the solar dynamic power module on the Space Station Freedom. Inlet gas temperature, pressure, and flow rate were independently varied. A total of 58 simulated orbital cycles, each 94 minutes in duration, was completed during the test conduct period.
Full-size solar dynamic heat receiver thermal-vacuum tests
NASA Technical Reports Server (NTRS)
Sedgwick, L. M.; Kaufmann, K. J.; Mclallin, K. L.; Kerslake, T. W.
1991-01-01
The testing of a full-size, 102 kW, solar dynamic heat receiver utilizing high-temperature thermal energy storage is described. The purpose of the test program was to quantify receiver thermodynamic performance, operating temperatures, and thermal response to changes in environmental and power module interface boundary conditions. The heat receiver was tested in a vacuum chamber with liquid nitrogen cold shrouds and an aperture cold plate to partly simulate a low-Earth-orbit environment. The cavity of the receiver was heated by an infrared quartz lamp heater with 30 independently controllable zones to allow axially and circumferentially varied flux distributions. A closed-Brayton cycle engine simulator conditioned a helium-xenon gas mixture to specific interface conditions to simulate the various operational modes of the solar dynamic power module on the Space Station Freedom. Inlet gas temperature, pressure, and flow rate were independently varied. A total of 58 simulated orbital cycles, each 94 minutes in duration, was completed during the test period.
Full-size solar dynamic heat receiver thermal-vacuum tests
NASA Astrophysics Data System (ADS)
Sedgwick, L. M.; Kaufmann, K. J.; McLallin, K. L.; Kerslake, T. W.
The testing of a full-size, 102 kW, solar dynamic heat receiver utilizing high-temperature thermal energy storage is described. The purpose of the test program was to quantify receiver thermodynamic performance, operating temperatures, and thermal response to changes in environmental and power module interface boundary conditions. The heat receiver was tested in a vacuum chamber with liquid nitrogen cold shrouds and an aperture cold plate to partly simulate a low-Earth-orbit environment. The cavity of the receiver was heated by an infrared quartz lamp heater with 30 independently controllable zones to allow axially and circumferentially varied flux distributions. A closed-Brayton cycle engine simulator conditioned a helium-xenon gas mixture to specific interface conditions to simulate the various operational modes of the solar dynamic power module on the Space Station Freedom. Inlet gas temperature, pressure, and flow rate were independently varied. A total of 58 simulated orbital cycles, each 94 minutes in duration, was completed during the test period.
NASA Astrophysics Data System (ADS)
Kheruntsyan, Karen; Atas, Yasar; Bouchoule, Isabelle; Gangardt, Dimitri
2017-04-01
We analyse the breathing-mode oscillations of a harmonically quenched Tonks-Giradeau (TG) gas using an exact finite-temperature dynamical theory. We predict a striking collective manifestation of impenetrability-a collective many-body bounce effect. The effect, while being invisible in the evolution of the in situ density profile of the gas, can be revealed through a nontrivial periodic narrowing of its momentum distribution, taking place at twice the rate of the fundamental breathing-mode frequency of oscillations of the density profile. We identify physical regimes for observing the many-body bounce and construct the respective nonequilibrium phase diagram as a function of the quench strength and the initial equilibrium temperature of the gas. We also develop a finite-temperature hydrodynamic theory of the TG gas, wherein the many-body bounce is explained by an increased thermodynamic pressure during the isentropic compression cycle, which acts as a potential barrier for the particles to bounce off.
Koroglu, Batikan; Mehl, Marco; Armstrong, Michael R; Crowhurst, Jonathan C; Weisz, David G; Zaug, Joseph M; Dai, Zurong; Radousky, Harry B; Chernov, Alex; Ramon, Erick; Stavrou, Elissaios; Knight, Kim; Fabris, Andrea L; Cappelli, Mark A; Rose, Timothy P
2017-09-01
We present the development of a steady state plasma flow reactor to investigate gas phase physical and chemical processes that occur at high temperature (1000 < T < 5000 K) and atmospheric pressure. The reactor consists of a glass tube that is attached to an inductively coupled argon plasma generator via an adaptor (ring flow injector). We have modeled the system using computational fluid dynamics simulations that are bounded by measured temperatures. In situ line-of-sight optical emission and absorption spectroscopy have been used to determine the structures and concentrations of molecules formed during rapid cooling of reactants after they pass through the plasma. Emission spectroscopy also enables us to determine the temperatures at which these dynamic processes occur. A sample collection probe inserted from the open end of the reactor is used to collect condensed materials and analyze them ex situ using electron microscopy. The preliminary results of two separate investigations involving the condensation of metal oxides and chemical kinetics of high-temperature gas reactions are discussed.
High Temperature Modification of SNCR Technology and its Impact on NOx Removal Process
NASA Astrophysics Data System (ADS)
Blejchař, Tomáš; Konvička, Jaroslav; von der Heide, Bernd; Malý, Rostislav; Maier, Miloš
2018-06-01
SNCR (Selective non-catalytic reduction) Technology is currently being used to reach the emission limit for nitrogen oxides at fossil fuel fired power plant and/or heating plant and optimum temperature for SNCR process is in range 850 - 1050°C. Modified SNCR technology is able to reach reduction 60% of nitrogen oxides at temperature up to 1250°C. So the technology can also be installed where the flue gas temperature is too high in combustion chamber. Modified SNCR was tested using generally known SNCR chemistry implemented in CFD (Computation fluid dynamics) code. CFD model was focused on detail simulation of reagent injection and influence of flue gas temperature. Than CFD simulation was compared with operating data of boiler where the modified SNCR technology is installed. By comparing the experiment results with the model, the effect on nitrous oxides removal process and temperature of flue gas at the injection region.
NASA Astrophysics Data System (ADS)
Wang, L. L.; Lu, F. G.; Wang, H. P.; Murphy, A. B.; Tang, X. H.
2014-11-01
In gas metal arc welding, gases of different compositions are used to produce an arc plasma, which heats and melts the workpiece. They also protect the workpiece from the influence of the air during the welding process. This paper models gas metal arc welding (GMAW) processes using an in-house simulation code. It investigates the effects of the gas composition on the temperature distribution in the arc and on the molten pool dynamics in gas metal arc welding of steels. Pure argon, pure CO2 and different mixtures of argon and CO2 are considered in the study. The model is validated by comparing the calculated weld profiles with physical weld measurements. The numerical calculations reveal that gas composition greatly affects the arc temperature profile, heat transfer to the workpiece, and consequently the weld dimension. As the CO2 content in the shielding gas increases, a more constricted arc plasma with higher energy density is generated as a result of the increased current density in the arc centre and increased Lorentz force. The calculation also shows that the heat transferred from the arc to the workpiece increases with increasing CO2 content, resulting in a wider and deeper weld pool and decreased reinforcement height.
NASA Astrophysics Data System (ADS)
Riedel, M.; Wallmann, K.; Berndt, C.; Pape, T.; Freudenthal, T.; Bergenthal, M.; Bünz, S.; Bohrmann, G.
2018-04-01
During expedition MARIA S. MERIAN MSM57/2 to the Svalbard margin offshore Prins Karls Forland, the seafloor drill rig MARUM-MeBo70 was used to assess the landward termination of the gas hydrate system in water depths between 340 and 446 m. The study region shows abundant seafloor gas vents, clustered at a water depth of ˜400 m. The sedimentary environment within the upper 100 m below seafloor (mbsf) is dominated by ice-berg scours and glacial unconformities. Sediments cored included glacial diamictons and sheet-sands interbedded with mud. Seismic data show a bottom simulating reflector terminating ˜30 km seaward in ˜760 m water depth before it reaches the theoretical limit of the gas hydrate stability zone (GHSZ) at the drilling transect. We present results of the first in situ temperature measurements conducted with MeBo70 down to 28 mbsf. The data yield temperature gradients between ˜38°C km-1 at the deepest site (446 m) and ˜41°C km-1 at a shallower drill site (390 m). These data constrain combined with in situ pore-fluid data, sediment porosities, and thermal conductivities the dynamic evolution of the GHSZ during the past 70 years for which bottom water temperature records exist. Gas hydrate is not stable in the sediments at sites shallower than 390 m water depth at the time of acquisition (August 2016). Only at the drill site in 446 m water depth, favorable gas hydrate stability conditions are met (maximum vertical extent of ˜60 mbsf); however, coring did not encounter any gas hydrates.
Collective many-body bounce in the breathing-mode oscillations of a Tonks-Girardeau gas
NASA Astrophysics Data System (ADS)
Atas, Y. Y.; Bouchoule, I.; Gangardt, D. M.; Kheruntsyan, K. V.
2017-10-01
We analyze the breathing-mode oscillations of a harmonically quenched Tonks-Giradeau (TG) gas using an exact finite-temperature dynamical theory. We predict a striking collective manifestation of impenetrability—a collective many-body bounce effect. The effect, although being invisible in the evolution of the in situ density profile of the gas, can be revealed through a nontrivial periodic narrowing of its momentum distribution, taking place at twice the rate of the fundamental breathing-mode frequency. We identify physical regimes for observing the many-body bounce and construct the respective nonequilibrium phase diagram as a function of the quench strength and the initial temperature of the gas. We also develop a finite-temperature hydrodynamic theory of the TG gas wherein the many-body bounce is explained by an increased thermodynamic pressure during the isentropic compression cycle, which acts as a potential barrier for the particles to bounce off.
Perkins, Bradford G; Nesbitt, David J
2007-08-09
Energy transfer dynamics at the gas-liquid interface have been probed with a supersonic molecular beam of CO2 and a clean perfluorinated-liquid surface in vacuum. High-resolution infrared spectroscopy measures both the rovibrational state populations and the translational distributions for the scattered CO2 flux. The present study investigates collision dynamics as a function of incident angle (thetainc = 0 degrees, 30 degrees, 45 degrees, and 60 degrees), where column-integrated quantum state populations are detected along the specular-scattering direction (i.e., thetascat approximately thetainc). Internal state rovibrational and Doppler translational distributions in the scattered CO2 yield clear evidence for nonstatistical behavior, providing quantum-state-resolved support for microscopic branching of the gas-liquid collision dynamics into multiple channels. Specifically, the data are remarkably well described by a two-temperature model, which can be associated with both a trapping desorption (TD) component emerging at the surface temperature (Trot approximately TS) and an impulsive scattering (IS) component appearing at hyperthermal energies (Trot > TS). The branching ratio between the TD and IS channels is found to depend strongly on thetainc, with the IS component growing dramatically with increasingly steeper angle of incidence.
NASA Astrophysics Data System (ADS)
Ivanov, Rossen I.; Prodanov, Emil M.
2018-01-01
The cosmological dynamics of a quintessence model based on real gas with general equation of state is presented within the framework of a three-dimensional dynamical system describing the time evolution of the number density, the Hubble parameter and the temperature. Two global first integrals are found and examples for gas with virial expansion and van der Waals gas are presented. The van der Waals system is completely integrable. In addition to the unbounded trajectories, stemming from the presence of the conserved quantities, stable periodic solutions (closed orbits) also exist under certain conditions and these represent models of a cyclic Universe. The cyclic solutions exhibit regions characterized by inflation and deflation, while the open trajectories are characterized by inflation in a “fly-by” near an unstable critical point.
Low-temperature gas from marine shales: wet gas to dry gas over experimental time.
Mango, Frank D; Jarvie, Daniel M
2009-11-09
Marine shales exhibit unusual behavior at low temperatures under anoxic gas flow. They generate catalytic gas 300 degrees below thermal cracking temperatures, discontinuously in aperiodic episodes, and lose these properties on exposure to trace amounts of oxygen. Here we report a surprising reversal in hydrocarbon generation. Heavy hydrocarbons are formed before light hydrocarbons resulting in wet gas at the onset of generation grading to dryer gas over time. The effect is moderate under gas flow and substantial in closed reactions. In sequential closed reactions at 100 degrees C, gas from a Cretaceous Mowry shale progresses from predominately heavy hydrocarbons (66% C5, 2% C1) to predominantly light hydrocarbons (56% C1, 8% C5), the opposite of that expected from desorption of preexisting hydrocarbons. Differences in catalyst substrate composition explain these dynamics. Gas flow should carry heavier hydrocarbons to catalytic sites, in contrast to static conditions where catalytic sites are limited to in-place hydrocarbons. In-place hydrocarbons and their products should become lighter with conversion thus generating lighter hydrocarbon over time, consistent with our experimental results. We recognize the similarities between low-temperature gas generation reported here and the natural progression of wet gas to dry gas over geologic time. There is now substantial evidence for natural catalytic activity in source rocks. Natural gas at thermodynamic equilibrium and the results reported here add to that evidence. Natural catalysis provides a plausible and unique explanation for the origin and evolution of gas in sedimentary basins.
Local Dynamics of Chemical Kinetics at Different Phases of Nitriding Process
NASA Astrophysics Data System (ADS)
Özdemir, İ. Bedii; Akar, Firat
2015-08-01
The local dynamics of chemical kinetics at different phases of the nitriding process have been studied. The calculations are performed under the conditions where the temperature and composition data are provided experimentally from an in-service furnace. Results are presented in temporal variations of gas concentrations and the nitrogen coverage on the surface. It is shown that if it is available in the furnace, the adsorption of the N2 gas can seemingly start at temperatures as low as 200 °C. However, at such low temperatures, as the diffusion into the material is very unlikely, this results in the surface poisoning. It becomes clear that, contrary to common knowledge, the nitriding heat treatment with ammonia as a nitrogen-providing medium is possible at temperatures like 400 °C. Under these conditions, however, the presence of excess amounts of product gas N2 in the furnace atmosphere suppresses the forward kinetics in the nitriding process. It seems that the best operating point in the nitriding heat treatment is achieved with a mixture of 6% N2. When the major nitriding species NH3 is substituted by N2 and the N2 fraction increases above 30%, the rate of the forward reaction decreases drastically, so that there is no point to continue the furnace operation any further. Hence, during the initial heating phase, the N2 gas must be purged from the furnace to keep its fraction less than 30% before the furnace reaches the temperature where the reaction starts.
The use of computer models to predict temperature and smoke movement in high bay spaces
NASA Technical Reports Server (NTRS)
Notarianni, Kathy A.; Davis, William D.
1993-01-01
The Building and Fire Research Laboratory (BFRL) was given the opportunity to make measurements during fire calibration tests of the heat detection system in an aircraft hangar with a nominal 30.4 (100 ft) ceiling height near Dallas, TX. Fire gas temperatures resulting from an approximately 8250 kW isopropyl alcohol pool fire were measured above the fire and along the ceiling. The results of the experiments were then compared to predictions from the computer fire models DETACT-QS, FPETOOL, and LAVENT. In section A of the analysis conducted, DETACT-QS AND FPETOOL significantly underpredicted the gas temperature. LAVENT at the position below the ceiling corresponding to maximum temperature and velocity provided better agreement with the data. For large spaces, hot gas transport time and an improved fire plume dynamics model should be incorporated into the computer fire model activation routines. A computational fluid dynamics (CFD) model, HARWELL FLOW3D, was then used to model the hot gas movement in the space. Reasonable agreement was found between the temperatures predicted from the CFD calculations and the temperatures measured in the aircraft hangar. In section B, an existing NASA high bay space was modeled using the CFD model. The NASA space was a clean room, 27.4 m (90 ft) high with forced horizontal laminar flow. The purpose of this analysis is to determine how the existing fire detection devices would respond to various size fires in the space. The analysis was conducted for 32 MW, 400 kW, and 40 kW fires.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liese, Eric; Zitney, Stephen E.
A generic training simulator of a natural gas combined cycle was modified to match operations at a real plant. The objective was to use the simulator to analyze cycling operations of the plant. Initial operation of the simulator revealed the potential for saturation conditions in the final high pressure superheater as the attemperator tried to control temperature at the superheater outlet during gas turbine loading and unloading. Subsequent plant operational data confirmed simulation results. Multiple simulations were performed during loading and unloading of the gas turbine to determine operational strategies that prevented saturation and increased the approach to saturation temperature.more » The solutions included changes to the attemperator temperature control setpoints and strategic control of the steam turbine inlet pressure control valve.« less
Polyaniline-based optical ammonia detector
Duan, Yixiang; Jin, Zhe; Su, Yongxuan
2002-01-01
Electronic absorption spectroscopy of a polyaniline film deposited on a polyethylene surface by chemical oxidation of aniline monomer at room temperature was used to quantitatively detect ammonia gas. The present optical ammonia gas detector was found to have a response time of less than 15 s, a regeneration time of less than 2 min. at room temperature, and a detection limit of 1 ppm (v/v) for ammonia, with a linear dynamic range from 180 ppm to 18,000 ppm.
Gas Atomization of Molten Metal: Part II. Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abu-Lebdeh, Taher M.; Leon, Genaro Perez-de; Hamoush, Sameer A.
A numerical model was derived to obtain results for two alloys during the Gas Atomization (GA) method. The model equations and governing equations were implemented through the application of part I data. Aspects such as heat transfer, fluid mechanics, thermodynamics and law of motions were taken into account for the formulation of equations that take gas dynamics, droplet dynamics and energy balance or conservation into consideration. The inputs of the model include: Processing parameters such as the size of the droplets, characteristics of the metal alloy, initial temperature of the molten metal, properties and fractions of the atomization gas andmore » the gas pressure. The outputs include velocity and thermal profiles of the droplet and gas. Velocity profiles illustrate the velocity of both droplet and gas, while thermal profiles illustrate cooling rate and the rate of temperature change of the droplets. The alloys are gamma-Titanium Aluminide (γ-TiAl) and Al-3003-O. These alloys were selected due to the vast amount of applications both can have in several industries. Certain processing parameters were held constant, while others were altered. Furthermore, the main focus of this study was to gain insight into which optimal parameters should be utilized within the GA method for these alloys and to provide insight into the behavior of these alloys« less
Gas Atomization of Molten Metal: Part II. Applications
Abu-Lebdeh, Taher M.; Leon, Genaro Perez-de; Hamoush, Sameer A.; ...
2016-02-01
A numerical model was derived to obtain results for two alloys during the Gas Atomization (GA) method. The model equations and governing equations were implemented through the application of part I data. Aspects such as heat transfer, fluid mechanics, thermodynamics and law of motions were taken into account for the formulation of equations that take gas dynamics, droplet dynamics and energy balance or conservation into consideration. The inputs of the model include: Processing parameters such as the size of the droplets, characteristics of the metal alloy, initial temperature of the molten metal, properties and fractions of the atomization gas andmore » the gas pressure. The outputs include velocity and thermal profiles of the droplet and gas. Velocity profiles illustrate the velocity of both droplet and gas, while thermal profiles illustrate cooling rate and the rate of temperature change of the droplets. The alloys are gamma-Titanium Aluminide (γ-TiAl) and Al-3003-O. These alloys were selected due to the vast amount of applications both can have in several industries. Certain processing parameters were held constant, while others were altered. Furthermore, the main focus of this study was to gain insight into which optimal parameters should be utilized within the GA method for these alloys and to provide insight into the behavior of these alloys« less
Technological parameters of welding of branch saddles to polyethylene pipes at low temperatures
NASA Astrophysics Data System (ADS)
Starostin, N. P.; Vasilieva, M. A.
2017-12-01
The present paper outlines a procedure for determination of dynamics of the temperature field during the welding of the branch saddle to the polyethylene gas pipeline at ambient temperatures below the normative. The analysis is accomplished by the finite element method with the heat of the phase transition taken into account. Methods of the visualization of data sets reveal the possibility of controlling the thermal process by preheating and thermal insulation during welding of the branch saddle to the pipe at low temperatures and the possibility of obtaining the dynamics of the temperature field at which a high-quality welded joint is formed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Claudio, Tania; Stein, Niklas; Petermann, Nils
2015-10-26
The lattice dynamics and thermoelectric properties of sintered phosphorus-doped nanostructured silicon–germanium alloys obtained by gas-phase synthesis were studied. Measurements of the density of phonon states by inelastic neutron scattering were combined with measurements of the elastic constants and the low-temperature heat capacity. A strong influence of nanostructuring and alloying on the lattice dynamics was observed. The thermoelectric transport properties of samples with different doping as well as samples sintered at different temperature were characterized between room temperature and 1000°C. A peak figure of merit zT=0.88 at 900°C is observed and is comparatively insensitive to the aforementioned parameter variations.
Burger, Jessica L; Lovestead, Tara M; Bruno, Thomas J
2016-03-17
As the sources of natural gas become more diverse, the trace constituents of the C 6 + fraction are of increasing interest. Analysis of fuel gas (including natural gas) for compounds with more than 6 carbon atoms (the C 6 + fraction) has historically been complex and expensive. Hence, this is a procedure that is used most often in troubleshooting rather than for day-to-day operations. The C 6 + fraction affects gas quality issues and safety considerations such as anomalies associated with odorization. Recent advances in dynamic headspace vapor collection can be applied to this analysis and provide a faster, less complex alternative for compositional determination of the C 6 + fraction of natural gas. Porous layer open tubular capillaries maintained at low temperatures (PLOT-cryo) form the basis of a dynamic headspace sampling method that was developed at NIST initially for explosives in 2009. This method has been recently advanced by the combining of multiple PLOT capillary traps into one "bundle," or wafer, resulting in a device that allows the rapid trapping of relatively large amounts of analyte. In this study, natural gas analytes were collected by flowing natural gas from the laboratory (gas out of the wall) or a prepared surrogate gas flowing through a chilled wafer. The analytes were then removed from the PLOT-cryo wafer by thermal desorption and subsequent flushing of the wafer with helium. Gas chromatography (GC) with mass spectrometry (MS) was then used to identify the analytes.
Characterization of Thin Film Polymers Through Dynamic Mechanical Analysis and Permeation
NASA Technical Reports Server (NTRS)
Herring, Helen
2003-01-01
Thin polymer films are being considered, as candidate materials to augment the permeation resistance of cryogenic hydrogen fuel tanks such as would be required for future reusable launch vehicles. To evaluate performance of candidate films after environmental exposure, an experimental study was performed to measure the thermal/mechanical and permeation performance of six, commercial-grade materials. Dynamic storage modulus, as measured by Dynamic Mechanical Analysis, was found over a range of temperatures. Permeability, as measured by helium gas diffusion, was found at room temperature. Test data was correlated with respect to film type and pre-test exposure to moisture, elevated temperature, and cryogenic temperature. Results indicated that the six films were comparable in performance and their resistance to environmental degradation.
Microwave plasma assisted supersonic gas jet deposition of thin film materials
Schmitt, III, Jerome J.; Halpern, Bret L.
1993-01-01
An apparatus for fabricating thin film materials utilizing high speed gas dynamics relies on supersonic free jets of carrier gas to transport depositing vapor species generated in a microwave discharge to the surface of a prepared substrate where the vapor deposits to form a thin film. The present invention generates high rates of deposition and thin films of unforeseen high quality at low temperatures.
Method of calculating gas dynamics and heat transfer in single stage refrigeration units
NASA Technical Reports Server (NTRS)
Zhitomirskiy, I. S.; Popolskiy, A. B.
1974-01-01
A generalized mathematical model of gas-dynamic and heat transfer processes in single-stage regenerative installations operating in Stirling, MacMahon, Gifford-MacMahon, and pulsating tube cycles is proposed. A numerical method os solving initial equations on a digital computer is given. This makes it possible to calculate the change in the thermodynamic parameters in the working cycle in different machine components, as well as the dependence of cold productivity on the temperature level in the steady regime.
Rayleigh Scattering Diagnostic for Dynamic Measurement of Velocity and Temperature
NASA Technical Reports Server (NTRS)
Seasholtz, Richard G.; Panda, J.
2001-01-01
A new technique for measuring dynamic gas velocity and temperature is described. The technique is based on molecular Rayleigh scattering of laser light, so no seeding of the flow is necessary. The Rayleigh scattered light is filtered with a fixed cavity, planar mirror Fabry-Perot interferometer. A minimum number of photodetectors were used in order to allow the high data acquisition rate needed for dynamic measurements. One photomultiplier tube (PMT) was used to measure the total Rayleigh scattering, which is proportional to the gas density. Two additional PMTs were used to detect light that passes through two apertures in a mask located in the interferometer fringe plane. An uncertainty analysis was used to select the optimum aperture parameters and to predict the measurement uncertainty due to photon shot-noise. Results of an experiment to measure the velocity of a subsonic free jet are presented.
NASA Astrophysics Data System (ADS)
Taniguchi, Shigeru; Arima, Takashi; Ruggeri, Tommaso; Sugiyama, Masaru
2018-05-01
The shock wave structure in rarefied polyatomic gases is analyzed based on extended thermodynamics (ET). In particular, the case with large relaxation time for the dynamic pressure, which corresponds to large bulk viscosity, is considered by adopting the simplest version of extended thermodynamics with only 6 independent fields (ET6); the mass density, the velocity, the temperature and the dynamic pressure. Recently, the validity of the theoretical predictions by ET was confirmed by the numerical analysis based on the kinetic theory in [S Kosuge and K Aoki: Phys. Rev. Fluids, Vol. 3, 023401 (2018)]. It was shown that numerical results using the polyatomic version of ellipsoidal statistical model agree with the theoretical predictions by ET for small or moderately large Mach numbers. In the present paper, first, we compare the theoretical predictions by ET6 with the ones by kinetic theory for large Mach number under the same assumptions, that is, the gas is polytropic and the bulk viscosity is proportional to the temperature. Second, the shock wave structure for large Mach number in a non-polytropic gas is analyzed with the particular interest in the effect of the temperature dependence of specific heat and the bulk viscosity on the shock wave structure. Through the analysis of the case of a rarefied carbon dioxide (CO2) gas, it is shown that these temperature dependences play important roles in the precise analysis of the structure for strong shock waves.
al-Wahish, Amal; Armitage, D; al-Binni, U; Hill, B; Mills, R; Jalarvo, N; Santodonato, L; Herwig, K W; Mandrus, D
2015-09-01
A design for a sample cell system suitable for high temperature Quasi-Elastic Neutron Scattering (QENS) experiments is presented. The apparatus was developed at the Spallation Neutron Source in Oak Ridge National Lab where it is currently in use. The design provides a special sample cell environment under controlled humid or dry gas flow over a wide range of temperature up to 950 °C. Using such a cell, chemical, dynamical, and physical changes can be studied in situ under various operating conditions. While the cell combined with portable automated gas environment system is especially useful for in situ studies of microscopic dynamics under operational conditions that are similar to those of solid oxide fuel cells, it can additionally be used to study a wide variety of materials, such as high temperature proton conductors. The cell can also be used in many different neutron experiments when a suitable sample holder material is selected. The sample cell system has recently been used to reveal fast dynamic processes in quasi-elastic neutron scattering experiments, which standard probes (such as electrochemical impedance spectroscopy) could not detect. In this work, we outline the design of the sample cell system and present results demonstrating its abilities in high temperature QENS experiments.
FFT analysis of sensible-heat solar-dynamic receivers
NASA Astrophysics Data System (ADS)
Lund, Kurt O.
The use of solar dynamic receivers with sensible energy storage in single-phase materials is considered. The feasibility of single-phase designs with weight and thermal performance comparable to existing two-phase designs is addressed. Linearized heat transfer equations are formulated for the receiver heat storage, representing the periodic input solar flux as the sum of steady and oscillating distributions. The steady component is solved analytically to produce the desired receiver steady outlet gas temperature, and the FFT algorithm is applied to the oscillating components to obtain the amplitudes and mode shapes of the oscillating solid and gas temperatures. The results indicate that sensible-heat receiver designs with performance comparable to state-of-the-art two-phase receivers are available.
Effects of tritium gas exposure on the dynamic mechanical properties of EPDM elastomer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, E. A.; Staack, G. C.
2008-07-15
Samples of ethylene propylene diene monomer (EPDM) elastomer were exposed to tritium gas in closed containers at 101 kPa (1 atmosphere) pressure and ambient temperature for about one week. Tritium exposure effects on the samples were characterized by dynamic mechanical analysis (DMA) and radiolysis products were characterized by measuring the total final pressure and composition in the exposure containers at the end of exposure period. There was no effect of one week tritium exposure on the glass transition temperature, Tg, of the samples tested. Impurity gases produced in the closed containers included HT and lesser amounts of H{sub 2}, DTO,more » and CT{sub 4}. The total pressure remained the same during exposure. (authors)« less
EFFECTS OF TRITIUM GAS EXPOSURE ON THE DYNAMIC MECHANICAL PROPERTIES OF EPDM ELASTOMER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, E; Gregory Staack, G
2007-08-13
Samples of ethylene propylene diene monomer (EPDM) elastomer were exposed to tritium gas in closed containers initially at 101 kPa (1 atmosphere) pressure and ambient temperature for about one week. Tritium exposure effects on the samples were characterized by dynamic mechanical analysis (DMA) and radiolysis products were characterized by measuring the total final pressure and composition in the exposure containers at the end of exposure period. There was no effect of one week tritium exposure on the glass transition temperature, Tg, of the samples tested. Impurity gases produced in the closed containers included HT and lesser amounts of H{sub 2},more » DTO, and CT{sub 4}. The total pressure remained the same during exposure.« less
Proton cooling in ultracold low-density electron gas
NASA Astrophysics Data System (ADS)
Bobrov, A. A.; Bronin, S. Y.; Manykin, E. A.; Zelener, B. B.; Zelener, B. V.; Khikhlukha, D. R.
2015-11-01
A sole proton energy loss processes in an electron gas and the dependence of these processes on temperature and magnetic field are studied using molecular dynamics techniques in present work. It appears that for electron temperatures less than 100 K many body collisions affect the proton energy loss and these collisions must be taken into account. The influence of a strong magnetic field on the relaxation processes is also considered in this work. Calculations were performed for electron densities 10 cm-3, magnetic field 1-3 Tesla, electron temperatures 10-50 K, initial proton energies 100-10000 K.
Gebert, Julia; Groengroeft, Alexander
2006-01-01
A passively vented landfill site in Northern Germany was monitored for gas emission dynamics through high resolution measurements of landfill gas pressure, flow rate and composition as well as atmospheric pressure and temperature. Landfill gas emission could be directly related to atmospheric pressure changes on all scales as induced by the autooscillation of air, diurnal variations and the passage of pressure highs and lows. Gas flux reversed every 20 h on average, with 50% of emission phases lasting only 10h or less. During gas emission phases, methane loads fed to a connected methane oxidising biofiltration unit varied between near zero and 247 g CH4 h(-1)m(-3) filter material. Emission dynamics not only influenced the amount of methane fed to the biofilter but also the establishment of gas composition profiles within the biofilter, thus being of high relevance for biofilter operation. The duration of the gas emission phase emerged as most significant variable for the distribution of landfill gas components within the biofilter.
Modeling shock waves in an ideal gas: combining the Burnett approximation and Holian's conjecture.
He, Yi-Guang; Tang, Xiu-Zhang; Pu, Yi-Kang
2008-07-01
We model a shock wave in an ideal gas by combining the Burnett approximation and Holian's conjecture. We use the temperature in the direction of shock propagation rather than the average temperature in the Burnett transport coefficients. The shock wave profiles and shock thickness are compared with other theories. The results are found to agree better with the nonequilibrium molecular dynamics (NEMD) and direct simulation Monte Carlo (DSMC) data than the Burnett equations and the modified Navier-Stokes theory.
NASA Astrophysics Data System (ADS)
Aksenov, A. G.; Chechetkin, V. M.
2018-04-01
Most of the energy released in the gravitational collapse of the cores of massive stars is carried away by neutrinos. Neutrinos play a pivotal role in explaining core-collape supernovae. Currently, mathematical models of the gravitational collapse are based on multi-dimensional gas dynamics and thermonuclear reactions, while neutrino transport is considered in a simplified way. Multidimensional gas dynamics is used with neutrino transport in the flux-limited diffusion approximation to study the role of multi-dimensional effects. The possibility of large-scale convection is discussed, which is interesting both for explaining SN II and for setting up observations to register possible high-energy (≳10MeV) neutrinos from the supernova. A new multi-dimensional, multi-temperature gas dynamics method with neutrino transport is presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koroglu, Batikan; Mehl, Marco; Armstrong, Michael R.
Here, we present the development of a steady state plasma flow reactor to investigate gas phase physical and chemical processes that occur at high temperature (1000 < T < 5000 K) and atmospheric pressure. The reactor consists of a glass tube that is attached to an inductively coupled argon plasma generator via an adaptor (ring flow injector). We have modeled the system using computational fluid dynamics simulations that are bounded by measured temperatures. In situ line-of-sight optical emission and absorption spectroscopy have been used to determine the structures and concentrations of molecules formed during rapid cooling of reactants after theymore » pass through the plasma. Emission spectroscopy also enables us to determine the temperatures at which these dynamic processes occur. A sample collection probe inserted from the open end of the reactor is used to collect condensed materials and analyze them ex situ using electron microscopy. The preliminary results of two separate investigations involving the condensation of metal oxides and chemical kinetics of high-temperature gas reactions are discussed.« less
Koroglu, Batikan; Mehl, Marco; Armstrong, Michael R.; ...
2017-09-11
Here, we present the development of a steady state plasma flow reactor to investigate gas phase physical and chemical processes that occur at high temperature (1000 < T < 5000 K) and atmospheric pressure. The reactor consists of a glass tube that is attached to an inductively coupled argon plasma generator via an adaptor (ring flow injector). We have modeled the system using computational fluid dynamics simulations that are bounded by measured temperatures. In situ line-of-sight optical emission and absorption spectroscopy have been used to determine the structures and concentrations of molecules formed during rapid cooling of reactants after theymore » pass through the plasma. Emission spectroscopy also enables us to determine the temperatures at which these dynamic processes occur. A sample collection probe inserted from the open end of the reactor is used to collect condensed materials and analyze them ex situ using electron microscopy. The preliminary results of two separate investigations involving the condensation of metal oxides and chemical kinetics of high-temperature gas reactions are discussed.« less
Nanostructured ZnO films for potential use in LPG gas sensors
NASA Astrophysics Data System (ADS)
Latyshev, V. M.; Berestok, T. O.; Opanasyuk, A. S.; Kornyushchenko, A. S.; Perekrestov, V. I.
2017-05-01
The aim of the work was to obtain ZnO nanostructures with heightened surface area and to study relationship between formation method and gas sensor properties towards propane-butane mixture (LPG). In order to synthesize ZnO nanostructures chemical and physical formation methods have been utilized. The first one was chemical bath deposition technology and the second one magnetron sputtering of Zn followed by oxidation. Optimal method and technological parameters corresponding to formation of material with the highest sensor response have been determined experimentally. Dynamical gas sensor response at different temperature values and dependencies of the sensor sensitivity on the temperature at different LPG concentrations in air have been investigated. It has been found, that sensor response depends on the sample morphology and has the highest value for the structure consisting of thin nanowires. The factors that lead to the decrease in the gas sensor operating temperature have been determined.
Lattice dynamics and thermoelectric properties of nanocrystalline silicon-germanium alloys
Claudio, Tania; Stein, Niklas; Peterman, Nils; ...
2015-10-26
The lattice dynamics and thermoelectric properties of sintered phosphorus-doped nanostructured silicon- germanium alloys obtained by gas-phase synthesis were studied. Measurements of the density of phonon states by inelastic neutron scattering were combined with measurements of the elastic constants and the low- temperature heat capacity. A strong influence of nanostructuring and alloying on the lattice dynamics was observed. The thermoelectric transport properties of samples with different doping as well as samples sintered at different temperature were characterized between room temperature and 1000C. A peak figure of merit zT = 0:88 at 900C is observed and comparatively insensitive to the aforementioned param-more » eter variations.« less
A Computational Fluid Dynamic Model for a Novel Flash Ironmaking Process
NASA Astrophysics Data System (ADS)
Perez-Fontes, Silvia E.; Sohn, Hong Yong; Olivas-Martinez, Miguel
A computational fluid dynamic model for a novel flash ironmaking process based on the direct gaseous reduction of iron oxide concentrates is presented. The model solves the three-dimensional governing equations including both gas-phase and gas-solid reaction kinetics. The turbulence-chemistry interaction in the gas-phase is modeled by the eddy dissipation concept incorporating chemical kinetics. The particle cloud model is used to track the particle phase in a Lagrangian framework. A nucleation and growth kinetics rate expression is adopted to calculate the reduction rate of magnetite concentrate particles. Benchmark experiments reported in the literature for a nonreacting swirling gas jet and a nonpremixed hydrogen jet flame were simulated for validation. The model predictions showed good agreement with measurements in terms of gas velocity, gas temperature and species concentrations. The relevance of the computational model for the analysis of a bench reactor operation and the design of an industrial-pilot plant is discussed.
Microwave plasma assisted supersonic gas jet deposition of thin film materials
Schmitt, J.J. III; Halpern, B.L.
1993-10-26
An apparatus for fabricating thin film materials utilizing high speed gas dynamics relies on supersonic free jets of carrier gas to transport depositing vapor species generated in a microwave discharge to the surface of a prepared substrate where the vapor deposits to form a thin film. The present invention generates high rates of deposition and thin films of unforeseen high quality at low temperatures. 5 figures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Modekurti, Srinivasarao; Bhattacharyya, Debangsu; Zitney, Stephen E.
2013-07-31
A one-dimensional, non-isothermal, pressure-driven dynamic model has been developed for a two-stage bubbling fluidized bed (BFB) adsorber-reactor for solid-sorbent carbon dioxide (CO{sub 2}) capture using Aspen Custom Modeler® (ACM). The BFB model for the flow of gas through a continuous phase of downward moving solids considers three regions: emulsion, bubble, and cloud-wake. Both the upper and lower reactor stages are of overflow-type configuration, i.e., the solids leave from the top of each stage. In addition, dynamic models have been developed for the downcomer that transfers solids between the stages and the exit hopper that removes solids from the bottom ofmore » the bed. The models of all auxiliary equipment such as valves and gas distributor have been integrated with the main model of the two-stage adsorber reactor. Using the developed dynamic model, the transient responses of various process variables such as CO{sub 2} capture rate and flue gas outlet temperatures have been studied by simulating typical disturbances such as change in the temperature, flowrate, and composition of the incoming flue gas from pulverized coal-fired power plants. In control studies, the performance of a proportional-integral-derivative (PID) controller, feedback-augmented feedforward controller, and linear model predictive controller (LMPC) are evaluated for maintaining the overall CO{sub 2} capture rate at a desired level in the face of typical disturbances.« less
The effect of gas double-dynamic on mass distribution in solid-state fermentation.
Chen, Hong-Zhang; Zhao, Zhi-Min; Li, Hong-Qiang
2014-05-10
The mass distribution regularity in substrate of solid-state fermentation (SSF) has rarely been reported due to the heterogeneity of solid medium and the lack of suitable instrument and method, which limited the comprehensive analysis and enhancement of the SSF performance. In this work, the distributions of water, biomass, and fermentation product in different medium depths of SSF were determined using near-infrared spectroscopy (NIRS) and the developed models. Based on the mass distribution regularity, the effects of gas double-dynamic on heat transfer, microbial growth and metabolism, and product distribution gradient were systematically investigated. Results indicated that the maximum temperature of substrate and the maximum carbon dioxide evolution rate (CER) were 39.5°C and 2.48mg/(hg) under static aeration solid-state fermentation (SASSF) and 33.9°C and 5.38mg/(hg) under gas double-dynamic solid-state fermentation (GDSSF), respectively, with the environmental temperature for fermentation of 30±1°C. The fermentation production (cellulase activity) ratios of the upper, middle, and lower levels were 1:0.90:0.78 at seventh day under SASSF and 1:0.95:0.89 at fifth day under GDSSF. Therefore, combined with NIRS analysis, gas double-dynamic could effectively strengthen the solid-state fermentation performance due to the enhancement of heat transfer, the stimulation of microbial metabolism and the increase of the homogeneity of fermentation products. Copyright © 2014 Elsevier Inc. All rights reserved.
RDHWT/MARIAH II Hypersonic Wind Tunnel Research Program
2008-09-01
Diagnostics Dr. Gary Brown – Gas Dynamics Dr. Ihab Girgis – Modeling Dr. Dennis Mansfield – Experimental Ring Technical Services Dr. Leon Ring – Systems...wind tunnel (MSHWT) with Mach 8 to 15, true -temperature flight test capabilities. This research program was initiated in fiscal year (FY) 1998 and is...Force test capabilities that exist today. Performance goals of the MSHWT are true temperature, Mach 8 to 15, dynamic pressure of 500 to 2000 psf (24 to
Shock initiation of explosives: High temperature hot spots explained
NASA Astrophysics Data System (ADS)
Bassett, Will P.; Johnson, Belinda P.; Neelakantan, Nitin K.; Suslick, Kenneth S.; Dlott, Dana D.
2017-08-01
We investigated the shock initiation of energetic materials with a tabletop apparatus that uses km s-1 laser-driven flyer plates to initiate tiny explosive charges and obtains complete temperature histories with a high dynamic range. By comparing various microstructured formulations, including a pentaerythritol tetranitrate (PETN) based plastic explosive (PBX) denoted XTX-8003, we determined that micron-scale pores were needed to create high hot spot temperatures. In charges where micropores (i.e., micron-sized pores) were present, a hot spot temperature of 6000 K was observed; when the micropores were pre-compressed to nm scale, however, the hot spot temperature dropped to ˜4000 K. By comparing XTX-8003 with an analog that replaced PETN by nonvolatile silica, we showed that the high temperatures require gas in the pores, that the high temperatures were created by adiabatic gas compression, and that the temperatures observed can be controlled by the choice of ambient gases. The hot spots persist in shock-compressed PBXs even in vacuum because the initially empty pores became filled with gas created in-situ by shock-induced chemical decomposition.
Modeling Io's Sublimation-Driven Atmosphere: Gas Dynamics and Radiation Emission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, Andrew C.; Goldstein, David B.; Varghese, Philip L.
2008-12-31
Io's sublimation-driven atmosphere is modeled using the direct simulation Monte Carlo method. These rarefied gas dynamics simulations improve upon earlier models by using a three-dimensional domain encompassing the entire planet computed in parallel. The effects of plasma impact heating, planetary rotation, and inhomogeneous surface frost are investigated. Circumplanetary flow is predicted to develop from the warm subsolar region toward the colder night-side. The non-equilibrium thermal structure of the atmosphere, including vibrational and rotational temperatures, is also presented. Io's rotation leads to an asymmetric surface temperature distribution which is found to strengthen circumplanetary flow near the dusk terminator. Plasma heating ismore » found to significantly inflate the atmosphere on both day- and night-sides. The plasma energy flux also causes high temperatures at high altitudes but permits relatively cooler temperatures at low altitudes near the dense subsolar point due to plasma energy depletion. To validate the atmospheric model, a radiative transfer model was developed utilizing the backward Monte Carlo method. The model allows the calculation of the atmospheric radiation from emitting/absorbing and scattering gas using an arbitrary scattering law and an arbitrary surface reflectivity. The model calculates the spectra in the {nu}{sub 2} vibrational band of SO{sub 2} which are then compared to the observational data.« less
Review of CTF s Fuel Rod Modeling Using FRAPCON-4.0 s Centerline Temperature Predictions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toptan, Aysenur; Salko, Robert K; Avramova, Maria
Coolant Boiling in Rod Arrays Two Fluid (COBRA-TF), or CTF1 [1], is a nuclear thermal hydraulic subchannel code used throughout academia and industry. CTF s fuel rod modeling is originally developed for VIPRE code [2]. Its methodology is based on GAPCON [3] and FRAP [4] fuel performance codes, and material properties are included from MATPRO handbook [5]. This work focuses on review of CTF s fuel rod modeling to address shortcomings in CTF s temperature predictions. CTF is compared to FRAPCON which is U.S. NRC s steady-state fuel performance code for light-water reactor fuel rods. FRAPCON calculates the changes inmore » fuel rod variables and temperatures including the eects of cladding hoop strain, cladding oxidation, hydriding, fuel irradiation swelling, densification, fission gas release and rod internal gas pressure. It uses fuel, clad and gap material properties from MATPRO. Additionally, it has its own models for fission gas release, cladding corrosion and cladding hydrogen pickup. It allows finite dierence or finite element approaches for its mechanical model. In this study, FRAPCON-4.0 [6] is used as a reference fuel performance code. In comparison, Halden Reactor Data for IFA432 Rod 1 and Rod 3. CTF simulations are performed in two ways; informing CTF with gap conductance value from FRAPCON, and using CTF s dynamic gap conductance model. First case is chosen to show temperature is predicted correctly with CTF s models for thermal and cladding conductivities once gap conductance is provided. Latter is to review CTF s dynamic gap conductance model. These Halden test cases are selected to be representative of cases with and without any physical contact between fuel-pellet and clad while reviewing functionality of CTF s dynamic gap conductance model. Improving the CTF s dynamic gap conductance model will allow prediction of fuel and cladding thermo-mechanical behavior under irradiation, and better temperature feedbacks from CTF in transient calculations.« less
Burger, Jessica L.; Lovestead, Tara M.; Bruno, Thomas J.
2017-01-01
As the sources of natural gas become more diverse, the trace constituents of the C6+ fraction are of increasing interest. Analysis of fuel gas (including natural gas) for compounds with more than 6 carbon atoms (the C6+ fraction) has historically been complex and expensive. Hence, this is a procedure that is used most often in troubleshooting rather than for day-to-day operations. The C6+ fraction affects gas quality issues and safety considerations such as anomalies associated with odorization. Recent advances in dynamic headspace vapor collection can be applied to this analysis and provide a faster, less complex alternative for compositional determination of the C6+ fraction of natural gas. Porous layer open tubular capillaries maintained at low temperatures (PLOT-cryo) form the basis of a dynamic headspace sampling method that was developed at NIST initially for explosives in 2009. This method has been recently advanced by the combining of multiple PLOT capillary traps into one “bundle,” or wafer, resulting in a device that allows the rapid trapping of relatively large amounts of analyte. In this study, natural gas analytes were collected by flowing natural gas from the laboratory (gas out of the wall) or a prepared surrogate gas flowing through a chilled wafer. The analytes were then removed from the PLOT-cryo wafer by thermal desorption and subsequent flushing of the wafer with helium. Gas chromatography (GC) with mass spectrometry (MS) was then used to identify the analytes. PMID:29332993
Marques, Ricardo; Oehmen, Adrian; Pijuan, Maite
2014-11-04
Clark-type nitrous oxide (N2O) microelectrodes are commonly used for measuring dissolved N2O levels, but have not previously been tested for gas-phase applications, where the N2O emitted from wastewater systems can be directly quantified. In this study, N2O microelectrodes were tested and validated for online gas measurements, and assessed with respect to their temperature, gas flow, composition dependence, gas pressure, and humidity. An exponential correlation between temperature and sensor signal was found, whereas gas flow, composition, pressure, and humidity did not have any influence on the signal. Two of the sensors were tested at different N2O concentration ranges (0-422.3, 0-50, 0-10, and 0-2 ppmv N2O) and exhibited a linear response over each range. The N2O emission dynamics from two laboratory scale sequencing batch reactors performing ammonia or nitrite oxidation were also monitored using one of the microsensors and results were compared with two other analytical methods. Results show that N2O emissions were accurately described with these microelectrodes and support their application for assessing gaseous N2O emissions from wastewater treatment systems. Advantages of the sensors as compared to conventional measurement techniques include a wider quantification range of N2O fluxes, and a single measurement system that can assess both liquid and gas-phase N2O dynamics.
NASA Astrophysics Data System (ADS)
Lu, Zhiwei; Han, Li; Hu, Chengjun; Pan, Yong; Duan, Shengnan; Wang, Ningbo; Li, Shijian; Nuer, Maimaiti
2017-10-01
With the development of oil and gas fields, the accuracy and quantity requirements of real-time dynamic monitoring data needed for well dynamic analysis and regulation are increasing. Permanent, distributed downhole optical fiber temperature and pressure monitoring and other online real-time continuous data monitoring has become an important data acquisition and transmission technology in digital oil field and intelligent oil field construction. Considering the requirement of dynamic analysis of steam chamber developing state in SAGD horizontal wells in F oil reservoir in Xinjiang oilfield, it is necessary to carry out real-time and continuous temperature monitoring in horizontal section. Based on the study of the principle of optical fiber temperature measurement, the factors that cause the deviation of optical fiber temperature sensing are analyzed, and the method of fiber temperature calibration is proposed to solve the problem of temperature deviation. Field application in three wells showed that it could attain accurate measurement of downhole temperature by temperature correction. The real-time and continuous downhole distributed fiber temperature sensing technology has higher application value in the reservoir management of SAGD horizontal wells. It also has a reference for similar dynamic monitoring in reservoir production.
Model calculations of kinetic and fluid dynamic processes in diode pumped alkali lasers
NASA Astrophysics Data System (ADS)
Barmashenko, Boris D.; Rosenwaks, Salman; Waichman, Karol
2013-10-01
Kinetic and fluid dynamic processes in diode pumped alkali lasers (DPALs) are analyzed in detail using a semianalytical model, applicable to both static and flowing-gas devices. The model takes into account effects of temperature rise, excitation of neutral alkali atoms to high lying electronic states and their losses due to ionization and chemical reactions, resulting in a decrease of the pump absorption, slope efficiency and lasing power. Effects of natural convection in static DPALs are also taken into account. The model is applied to Cs DPALs and the results are in good agreement with measurements in a static [B.V. Zhdanov, J. Sell and R.J. Knize, Electron. Lett. 44, 582 (2008)] and 1-kW flowing-gas [A.V. Bogachev et al., Quantum Electron. 42, 95 (2012)] DPALs. It predicts the dependence of power on the flow velocity in flowing-gas DPALs and on the buffer gas composition. The maximum values of the laser power can be substantially increased by optimization of the flowing-gas DPAL parameters. In particular for the aforementioned 1 kW DPAL, 6 kW maximum power is achievable just by increasing the pump power and the temperature of the wall and the gas at the flow inlet (resulting in increase of the alkali saturated vapor density). Dependence of the lasing power on the pump power is non-monotonic: the power first increases, achieves its maximum and then decreases. The decrease of the lasing power with increasing pump power at large values of the latter is due to the rise of the aforementioned losses of the alkali atoms as a result of ionization. Work in progress applying two-dimensional computational fluid dynamics modeling of flowing-gas DPALs is also reported.
High Resolution Spectroscopy and Dynamics: from Jet Cooled Radicals to Gas-Liquid Interfaces
NASA Astrophysics Data System (ADS)
Sharp-Williams, E.; Roberts, M. A.; Roscioli, J. R.; Gisler, A. W.; Ziemkiewicz, M.; Nesbitt, D. J.; Dong, F.; Perkins, B. G., Jr.
2010-06-01
This talk will attempt to reflect recent work in our group involving two quite different but complementary applications of high resolution molecular spectroscopy for detailed study of intramolecular as well as intermolecular dynamics in small molecules. The first is based on direct infrared absorption spectroscopy in a 100 KHz slit supersonic discharge, which provides a remarkably versatile and yet highly sensitive probe for study of important chemical transients such as open shell combustion species and molecular ions under jet cooled (10-20K), sub-Doppler conditions. For this talk will focus on gas phase spectroscopic results for a series of unsaturated hydrocarbon radical species (ethynyl, vinyl, and phenyl) reputed to be critical intermediates in soot formation. Secondly, we will discuss recent applications of high resolution IR and velocity map imaging spectroscopy toward quantum state resolved collision dynamics of jet cooled molecules from gas-room temperature ionic liquid (RTIL) and gas-self assembled monolayer (SAM) interfaces. Time permitting, we will also present new results on hyperthermal scattering of jet cooled NO radical from liquid Ga, which offer a novel window into non-adiabatic energy transfer and electron-hole pair dynamics at the gas-molten metal interface.
NASA Astrophysics Data System (ADS)
Dyrdin, V. V.; Smirnov, V. G.; Kim, T. L.; Manakov, A. Yu.; Fofanov, A. A.; Kartopolova, I. S.
2017-06-01
The physical processes occurring in the coal - natural gas system under the gas pressure release were studied experimentally. The possibility of gas hydrates presence in the inner space of natural coal was shown, which decomposition leads to an increase in the amount of gas passing into the free state. The decomposition of gas hydrates can be caused either by the seam temperature increase or the pressure decrease to lower than the gas hydrates equilibrium curve. The contribution of methane released during gas hydrates decomposition should be taken into account in the design of safe mining technologies for coal seams prone to gas dynamic phenomena.
NASA Technical Reports Server (NTRS)
Wang, Qunzhen; Mathias, Edward C.; Heman, Joe R.; Smith, Cory W.
2000-01-01
A new, thermal-flow simulation code, called SFLOW. has been developed to model the gas dynamics, heat transfer, as well as O-ring and flow path erosion inside the space shuttle solid rocket motor joints by combining SINDA/Glo, a commercial thermal analyzer. and SHARPO, a general-purpose CFD code developed at Thiokol Propulsion. SHARP was modified so that friction, heat transfer, mass addition, as well as minor losses in one-dimensional flow can be taken into account. The pressure, temperature and velocity of the combustion gas in the leak paths are calculated in SHARP by solving the time-dependent Navier-Stokes equations while the heat conduction in the solid is modeled by SINDA/G. The two codes are coupled by the heat flux at the solid-gas interface. A few test cases are presented and the results from SFLOW agree very well with the exact solutions or experimental data. These cases include Fanno flow where friction is important, Rayleigh flow where heat transfer between gas and solid is important, flow with mass addition due to the erosion of the solid wall, a transient volume venting process, as well as some transient one-dimensional flows with analytical solutions. In addition, SFLOW is applied to model the RSRM nozzle joint 4 subscale hot-flow tests and the predicted pressures, temperatures (both gas and solid), and O-ring erosions agree well with the experimental data. It was also found that the heat transfer between gas and solid has a major effect on the pressures and temperatures of the fill bottles in the RSRM nozzle joint 4 configuration No. 8 test.
Acoustic Database for Turbofan Engine Core-Noise Sources. I; Volume
NASA Technical Reports Server (NTRS)
Gordon, Grant
2015-01-01
In this program, a database of dynamic temperature and dynamic pressure measurements were acquired inside the core of a TECH977 turbofan engine to support investigations of indirect combustion noise. Dynamic temperature and pressure measurements were recorded for engine gas dynamics up to temperatures of 3100 degrees Fahrenheit and transient responses as high as 1000 hertz. These measurements were made at the entrance of the high pressure turbine (HPT) and at the entrance and exit of the low pressure turbine (LPT). Measurements were made at two circumferential clocking positions. In the combustor and inter-turbine duct (ITD), measurements were made at two axial locations to enable the exploration of time delays. The dynamic temperature measurements were made using dual thin-wire thermocouple probes. The dynamic pressure measurements were made using semi-infinite probes. Prior to the engine test, a series of bench, oven, and combustor rig tests were conducted to characterize the performance of the dual wire temperature probes and to define and characterize the data acquisition systems. A measurement solution for acquiring dynamic temperature and pressure data on the engine was defined. A suite of hardware modifications were designed to incorporate the dynamic temperature and pressure instrumentation into the TECH977 engine. In particular, a probe actuation system was developed to protect the delicate temperature probes during engine startup and transients in order to maximize sensor life. A set of temperature probes was procured and the TECH977 engine was assembled with the suite of new and modified hardware. The engine was tested at four steady state operating speeds, with repeats. Dynamic pressure and temperature data were acquired at each condition for at least one minute. At the two highest power settings, temperature data could not be obtained at the forward probe locations since the mean temperatures exceeded the capability of the probes. The temperature data were processed using software that accounts for the effects of convective and conductive heat transfer. The software was developed under previous NASA sponsored programs. Compensated temperature spectra and compensated time histories corresponding to the dynamic temperature of the gas stream were generated. Auto-spectral and cross-spectral analyses of the data were performed to investigate spectral features, acoustic circumferential mode content, signal coherence, and time delays. The dynamic temperature data exhibit a wideband and fairly flat spectral content. The temperature spectra do not change substantially with operating speed. The pressure spectra in the combustor and ITD exhibit generally similar shapes and amplitudes, making it difficult to identify any features that suggest the presence of indirect combustion noise. Cross-spectral analysis reveal a strong correlation between pressure and temperature fluctuations in the ITD, but little correlation between temperature fluctuations at the entrance of the HPT and pressure fluctuations downstream of it. Temperature fluctuations at the entrance of the low pressure turbine were an order of magnitude smaller than those at the entrance to the high pressure turbine. Time delay analysis of the temperature fluctuations in the combustor was inconclusive, perhaps due to the substantial mixing that occurs between the upstream and downstream locations. Time delay analysis of the temperature fluctuations in the ITD indicate that they convect at the mean flow speed. Analysis of the data did not reveal any convincing indications of the presence of indirect combustion noise. However, this analysis has been preliminary and additional exploration of the data is recommended including the use of more sophisticated signal processing to explore subtle issues that have been revealed but which are not yet fully understood or explained.
The dynamic effects of metal vapour in gas metal arc welding
NASA Astrophysics Data System (ADS)
Haidar, Jawad
2010-04-01
Numerical simulations for the dynamic effects of metal vapour in gas metal arc welding (GMAW) suggest that vapour from the welding droplet at the tip of the welding wire has a significant influence on the plasma properties. It is found that for the evaporation rates calculated for arcs in pure argon, the dynamic effects of metal vapour markedly cool down the plasma in the central region of the arc, leading to the formation of a low temperature zone centred on the arc axis, in agreement with experimental measurements in the literature. Radiation effects, omitted in this paper, may produce further cooling of the plasma gas. The results highlight major deficiencies in the common approach to modelling the GMAW process and suggest that accurate description of GMAW must include the influence of metal vapour on the plasma.
NASA Astrophysics Data System (ADS)
Jia, Zhenzhong; Sun, Jing; Dobbs, Herb; King, Joel
2015-02-01
Conventional recuperating solid oxide fuel cell (SOFC)/gas turbine (GT) system suffers from its poor dynamic capability and load following performance. To meet the fast, safe and efficient load following requirements for mobile applications, a sprinter SOFC/GT system concept is proposed in this paper. In the proposed system, an SOFC stack operating at fairly constant temperature provides the baseline power with high efficiency while the fast dynamic capability of the GT-generator is fully explored for fast dynamic load following. System design and control studies have been conducted by using an SOFC/GT system model consisting of experimentally-verified component models. In particular, through analysis of the steady-state simulation results, an SOFC operation strategy is proposed to maintain fairly constant SOFC power (less than 2% power variation) and temperature (less than 2 K temperature variation) over the entire load range. A system design procedure well-suited to the proposed system has also been developed to help determining component sizes and the reference steady-state operation line. In addition, control analysis has been studied for both steady-state and transient operations. Simulation results suggest that the proposed system holds the promise to achieve fast and safe transient operations by taking full advantage of the fast dynamics of the GT-generator.
On the application of the PFEM to droplet dynamics modeling in fuel cells
NASA Astrophysics Data System (ADS)
Ryzhakov, Pavel B.; Jarauta, Alex; Secanell, Marc; Pons-Prats, Jordi
2017-07-01
The Particle Finite Element Method (PFEM) is used to develop a model to study two-phase flow in fuel cell gas channels. First, the PFEM is used to develop the model of free and sessile droplets. The droplet model is then coupled to an Eulerian, fixed-grid, model for the airflow. The resulting coupled PFEM-Eulerian algorithm is used to study droplet oscillations in an air flow and droplet growth in a low-temperature fuel cell gas channel. Numerical results show good agreement with predicted frequencies of oscillation, contact angle, and deformation of injected droplets in gas channels. The PFEM-based approach provides a novel strategy to study droplet dynamics in fuel cells.
Radiative gas dynamics of the Fire-II superorbital space vehicle
NASA Astrophysics Data System (ADS)
Surzhikov, S. T.
2016-03-01
The rates of convective and radiative heating of the Fire-II reentry vehicle are calculated, and the results are compared with experimental flight data. The computational model is based on solving a complete set of equations for (i) the radiative gas dynamics of a physically and chemically nonequilibrium viscous heatconducting gas and (ii) radiative transfer in 2D axisymmetric statement. The spectral optical parameters of high-temperature gases are calculated using ab initio quasi-classical and quantum-mechanical methods. The transfer of selective thermal radiation in terms of atomic lines is calculated using the line-by-line method on a specially generated computational grid that is nonuniform in radiation wavelength.
DOE Office of Scientific and Technical Information (OSTI.GOV)
al-Wahish, Amal; Armitage, D.; al-Binni, U.
Our design for a sample cell system suitable for high temperature Quasi-Elastic Neutron Scattering (QENS) experiments is presented. The apparatus was developed at the Spallation Neutron Source in Oak Ridge National Lab where it is currently in use. The design provides a special sample cell environment under controlled humid or dry gas flow over a wide range of temperature up to 950°C. Using such a cell, chemical, dynamical, and physical changes can be studied in situ under various operating conditions. And while the cell combined with portable automated gas environment system is especially useful for in situ studies of microscopicmore » dynamics under operational conditions that are similar to those of solid oxide fuel cells, it can additionally be used to study a wide variety of materials, such as high temperature protonconductors. The cell can also be used in many different neutron experiments when a suitable sample holder material is selected. Finally, the sample cell system has recently been used to reveal fast dynamic processes in quasi-elastic neutron scattering experiments, which standard probes (such as electrochemical impedance spectroscopy) could not detect. In this work, we outline the design of the sample cell system and present results demonstrating its abilities in high temperature QENS experiments.« less
Dynamic measurement of temperature, velocity, and density in hot jets using Rayleigh scattering
NASA Astrophysics Data System (ADS)
Mielke, Amy F.; Elam, Kristie A.
2009-10-01
A molecular Rayleigh scattering technique is utilized to measure gas temperature, velocity, and density in unseeded gas flows at sampling rates up to 10 kHz, providing fluctuation information up to 5 kHz based on the Nyquist theorem. A high-power continuous-wave laser beam is focused at a point in an air flow field and Rayleigh scattered light is collected and fiber-optically transmitted to a Fabry-Perot interferometer for spectral analysis. Photomultiplier tubes operated in the photon counting mode allow high-frequency sampling of the total signal level and the circular interference pattern to provide dynamic density, temperature, and velocity measurements. Mean and root mean square velocity, temperature, and density, as well as power spectral density calculations, are presented for measurements in a hydrogen-combustor heated jet facility with a 50.8-mm diameter nozzle at NASA John H. Glenn Research Center at Lewis Field. The Rayleigh measurements are compared with particle image velocimetry data and computational fluid dynamics predictions. This technique is aimed at aeronautics research related to identifying noise sources in free jets, as well as applications in supersonic and hypersonic flows where measurement of flow properties, including mass flux, is required in the presence of shocks and ionization occurrence.
EFFECTS OF ONE WEEK TRITIUM EXPOSURE ON EPDM ELASTOMER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, E
This report documents test results for the exposure of four formulations of EPDM (ethylene-propylene diene monomer) elastomer to tritium gas at one atmosphere for approximately one week and characterization of material property changes and changes to the exposure gas during exposure. All EPDM samples were provided by Los Alamos National Laboratory (LANL). Material properties that were characterized include mass, sample dimensions, appearance, flexibility, and dynamic mechanical properties. The glass transition temperature was determined by analysis of the dynamic mechanical property data per ASTM standards. No change of glass transition temperature due to the short tritium gas exposure was observed. Filledmore » and unfilled formulations of Dupont{reg_sign} Nordel{trademark} 1440 had a slightly higher glass transition temperature than filled and unfilled formulations of Uniroyal{reg_sign} Royalene{reg_sign} 580H; filled formulations had the same glass transition as unfilled. The exposed samples appeared the same as before exposure--there was no evidence of discoloration, and no residue on stainless steel spacers contacting the samples during exposure was observed. The exposed samples remained flexible--all formulations passed a break test without failing. The unique properties of polymers make them ideal for certain components in gas handling systems. Specifically, the resiliency of elastomers is ideal for sealing surfaces, for example in valves. EPDM, initially developed in the 1960s, is a hydrocarbon polymer used extensively for sealing applications. EPDM is used for its excellent combination of properties including high/low-temperature resistance, radiation resistance, aging resistance, and good mechanical properties. This report summarizes initial work to characterize effects of tritium gas exposure on samples of four types of EPDM elastomer: graphite filled and unfilled formulations of Nordel{trademark} 1440 and Royalene{reg_sign} 580H.« less
Time-resolved temperature study in a high-power impulse magnetron sputtering discharge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Britun, Nikolay; Palmucci, Maria; Konstantinidis, Stephanos
2013-07-07
The gas heating dynamics is studied in a high-power impulse magnetron sputtering discharge operating in Ar-N{sub 2} gas mixtures. The time-resolved rotational temperature analysis based on the spectral transition between the B{sup 2}{Sigma}{sub u}{sup +}-X{sup 2}{Sigma}{sub g}{sup +} energy levels in molecular nitrogen ion (N{sub 2}{sup +} First Negative Band) is undertaken for this purpose. The rotational temperature in the discharge is found to increase linearly during the plasma pulse being roughly independent on the nitrogen content in the examined range. Such a temperature increase is attributed to the bulk gas heating which is the result of collisions with themore » sputtered species. Two sputtered materials, Ti and W, are examined during the study. In the case of W sputtering, the gas heating is found to be more pronounced than in the Ti case, which is explained by more efficient energy exchange between the sputtered W atoms and the bulk gas atoms during the plasma on-time. The obtained temperature data are compared to the laser-induced fluorescence study of Ar metastable atoms performed recently in the same discharge in our group. The particularities related to gas thermalization as well as to validity of the utilized approach for characterization of the pulsed sputtering discharges are discussed.« less
The HNC/HCN ratio in star-forming regions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graninger, Dawn M.; Öberg, Karin I.; Herbst, Eric
2014-05-20
HNC and HCN, typically used as dense gas tracers in molecular clouds, are a pair of isomers that have great potential as a temperature probe because of temperature dependent, isomer-specific formation and destruction pathways. Previous observations of the HNC/HCN abundance ratio show that the ratio decreases with increasing temperature, something that standard astrochemical models cannot reproduce. We have undertaken a detailed parameter study on which environmental characteristics and chemical reactions affect the HNC/HCN ratio and can thus contribute to the observed dependence. Using existing gas and gas-grain models updated with new reactions and reaction barriers, we find that in staticmore » models the H + HNC gas-phase reaction regulates the HNC/HCN ratio under all conditions, except for very early times. We quantitatively constrain the combinations of H abundance and H + HNC reaction barrier that can explain the observed HNC/HCN temperature dependence and discuss the implications in light of new quantum chemical calculations. In warm-up models, gas-grain chemistry contributes significantly to the predicted HNC/HCN ratio and understanding the dynamics of star formation is therefore key to model the HNC/HCN system.« less
A flexible metal–organic framework: Guest molecules controlled dynamic gas adsorption
Mahurin, Shannon Mark; Li, Man -Rong; Wang, Hailong; ...
2015-04-13
A flexible metal–organic framework (MOF) of [Zn 3(btca) 2(OH) 2]·(guest) n (H 2btca = 1,2,3-benzotriazole-5-carboxylic acid) that exhibits guest molecule-controlled dynamic gas adsorption is reported in which carbon dioxide molecules rather than N 2, He, and Ar induce a structural transition with a corresponding appearance of additional steps in the isotherms. Physical insights into the dynamic adsorption behaviors of flexible compound 1 were detected by gas adsorption at different temperatures and different pressures and confirmed by Fourier transform infrared spectroscopy and molecular simulations. Interestingly, by taking advantage of the flexible nature inherent to the framework, this MOF material enables highlymore » selective adsorption of CO 2/N 2, CO 2/Ar, and CO 2/He of 36.3, 32.6, and 35.9, respectively, at 298 K. Furthermore, this class of flexible MOFs has potential applications for controlled release, molecular sensing, noble gas separation, smart membranes, and nanotechnological devices.« less
EFFECTS OF TRITIUM GAS EXPOSURE ON EPDM ELASTOMER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, E.
2009-12-11
Samples of four formulations of ethylene-propylene diene monomer (EPDM) elastomer were exposed to initially pure tritium gas at one atmosphere and ambient temperature for various times up to about 420 days in closed containers. Two formulations were carbon-black-filled commercial formulations, and two were the equivalent formulations without filler synthesized for this work. Tritium effects on the samples were characterized by measuring the sample volume, mass, flexibility, and dynamic mechanical properties and by noting changes in appearance. The glass transition temperature was determined by analysis of the dynamic mechanical properties. The glass transition temperature increased significantly with tritium exposure, and themore » unfilled formulations ceased to behave as elastomers after the longest tritium exposure. The filled formulations were more resistant to tritium exposure. Tritium exposure made all samples significantly stiffer and therefore much less able to form a reliable seal when employed as O-rings. No consistent change of volume or density was observed; there was a systematic lowering of sample mass with tritium exposure. In addition, the significant radiolytic production of gas, mainly protium (H{sub 2}) and HT, by the samples when exposed to tritium was characterized by measuring total pressure in the container at the end of each exposure and by mass spectroscopy of a gas sample at the end of each exposure. The total pressure in the containers more than doubled after {approx}420 days tritium exposure.« less
USDA-ARS?s Scientific Manuscript database
As atmospheric trace gas concentrations and global temperatures climb, scientists are challenged to determine how microbial communities may mediate plant response to future climate change. To this end, a Temperature Free-Air Controlled Enrichment (T-FACE) experiment was implemented in a spring wheat...
Simulations of the Neutron Gas in the Inner Crust of Neutron Stars
NASA Astrophysics Data System (ADS)
Vandegriff, Elizabeth; Horowitz, Charles; Caplan, Matthew
2017-09-01
Inside neutron stars, the structures known as `nuclear pasta' are found in the crust. This pasta forms near nuclear density as nucleons arrange in spaghetti- or lasagna-like structures to minimize their energy. We run classical molecular dynamics simulations to visualize the geometry of this pasta and study the distribution of nucleons. In the simulations, we observe that the pasta is embedded in a gas of neutrons, which we call the `sauce'. In this work, we developed two methods for determining the density of neutrons in the gas, one which is accurate at low temperatures and a second which justifies an extrapolation at high temperatures. Running simulations with no Coulomb interactions, we find that the neutron density increases linearly with temperature for every proton fraction we simulated. NSF REU Grant PHY-1460882 at Indiana University.
Thermodynamics and Dynamics of Bose condensation in a quasi-homogeneous gas
NASA Astrophysics Data System (ADS)
Navon, Nir; Schmidutz, Tobias; Gotlibovych, Igor; Gaunt, Alexander; Robert-de-Saint-Vincent, Martin; Smith, Robert; Hadzibabic, Zoran
2014-05-01
We present an experimental study of the thermodynamics and dynamics of Bose-Einstein condensation (BEC) in an optical-box trap. We first characterize the critical point for BEC, and observe saturation of the thermal component in a partially condensed cloud, in agreement with Einstein's textbook picture of a purely statistical phase transition. We also observed the quantum Joule-Thomson effect, namely isoenthalpic cooling of a non-interacting gas. We then investigate the dynamics of Bose condensation in the box potential following a rapid temperature quench through the phase transition, and focus on the time-evolution of the condensed fraction, the coherence length and the mean-field shift, that we probe via Bragg spectroscopy.
NASA Astrophysics Data System (ADS)
Zhang, Liehui; Li, Jianchao; Jia, Du; Zhao, Yulong; Xie, Chunyu; Tao, Zhengwu
As one of the key status of gas in shale reservoir, adsorption gas accounts for considerable percentage of total gas amount. Due to the complexity and nanostructure of shale gas reservoir, it is very challenging to represent adsorption gas through traditional methods. However, the integration of the fractal theory and molecular dynamics (MD) simulation may provide a new perspective of understanding such nanostructure and the micro-phenomenon happening in it. The key purpose of this paper is to investigate the adsorption phenomenon in shale kerogen. By using MD simulation and grand canonical Monte Carlo (GCMC) algorithm, the adsorption of methane in 2, 5 and 10nm slit-like pores is simulated for different temperature and pressure status. According to the results, the average gas density in smaller pores is higher than that in bigger pores, and multilayer adsorption presents on some areas of pore surfaces. Then, the simulation results are analyzed using the multilayer fractal adsorption model. The analysis indicates that the number of adsorption layer increases with pressure increase: four-layer adsorption presents in 10nm pores while three-layer adsorption shows up in 2nm and 5nm pores due to pore volume limit. Fractal dimension of pore wall surface generated in this study is in the range of 2.31-2.63. Moreover, high temperature could decrease the adsorption behavior in reservoir condition.
Dynamics of spiral patterns in gas discharge detected by optical method
NASA Astrophysics Data System (ADS)
Yang, Fan; Wang, Mingyi; Liu, Shuhua
2016-09-01
The dynamics behavior of spiral patterns is investigated in gas discharge using optical method. Rich kinks of spiral patterns are obtained and the formation and evolution process is investigated. The process of pattern formation is breakdown -> hexagon -> bee comb-like -> strip -> spiral -> chaos. Spiral pattern always formed after the strip pattern. It is found that the temperature of the water electrodes plays an important role in the spiral patterns formation. When it exceeds 20°C no spiral has been obtained. The discharge current waveform and the emission spectrum of the discharge have been measured when the filaments self-organized in spiral pattern. Electron excited temperature of forming spiral pattern is calculated using intensity ratio method. It is found that the electron excited temperature of spiral pattern increase as the power supply frequency increased. Relation between wavelength and discharge parameter has been measured. It shows that the wavelength of spiral pattern increases as the discharge gap increases, and decreases as the air ratio mixed in argon increases. Accompanying measurements proved that the wavelength is approximately linear to the square root of the spiral rotating period .This work has useful reference value for studying pattern dynamics.
Effective height of chimney for biomass cook stove simulated by computational fluid dynamics
NASA Astrophysics Data System (ADS)
Faisal; Setiawan, A.; Wusnah; Khairil; Luthfi
2018-02-01
This paper presents the results of numerical modelling of temperature distribution and flow pattern in a biomass cooking stove using CFD simulation. The biomass stove has been designed to suite the household cooking process. The stove consists of two pots. The first is the main pot located on the top of the combustion chamber where the heat from the combustion process is directly received. The second pot absorbs the heat from the exhaust gas. A chimney installed at the end of the stove releases the exhaust gas to the ambient air. During the tests, the height of chimney was varied to find the highest temperatures at both pots. Results showed that the height of the chimney at the highest temperatures of the pots is 1.65 m. This chimney height was validated by developing a model for computational fluid dynamics. Both experimental and simulations results show a good agreement and help in tune-fining the design of biomass cooking stove.
Casolo, Simone; Martinazzo, Rocco; Bonfanti, Matteo; Tantardini, Gian Franco
2009-12-31
Eley-Rideal formation of hydrogen molecules on graphite, as well as competing collision induced processes, are investigated quantum dynamically at typical interstellar cloud conditions, focusing in particular on gas-phase temperatures below 100 K, where much of the chemistry of the so-called diffuse clouds takes place on the surface of bare carbonaceous dust grains. Collisions of gas-phase hydrogen atoms with both chemisorbed and physisorbed species are considered using available potential energy surfaces (Sha et al., J. Chem. Phys.2002 116, 7158), and state-to-state, energy-resolved cross sections are computed for a number of initial vibrational states of the hydrogen atoms bound to the surface. Results show that (i) product molecules are internally hot in both cases, with vibrational distributions sharply peaked around few (one or two) vibrational levels, and (ii) cross sections for chemisorbed species are 2-3x smaller than those for physisorbed ones. In particular, we find that H(2) formation cross sections out of chemically bound species decrease steadily when the temperature drops below approximately 1000 K, and this is likely due to a quantum reflection phenomenon. This suggests that such Eley-Rideal reaction is all but efficient in the relevant gas-phase temperature range, even when gas-phase H atoms happen to chemisorb barrierless to the surface as observed, e.g., for forming so-called para dimers. Comparison with results from classical trajectory calculations highlights the need of a quantum description of the dynamics in the astrophysically relevant energy range, whereas preliminary results of an extensive first-principles investigation of the reaction energetics reveal the importance of the adopted substrate model.
Importance of many-body dispersion and temperature effects on gas-phase gold cluster (meta)stability
NASA Astrophysics Data System (ADS)
Goldsmith, Bryan R.; Gruene, Philipp; Lyon, Jonathan T.; Rayner, David M.; Fielicke, André; Scheffler, Matthias; Ghiringhelli, Luca M.
Gold clusters in the gas phase exhibit many structural isomers that are shown to intercovert frequently, even at room temperature. We performed ab initio replica-exchange molecular dynamics (REMD) calculations on gold clusters (of sizes 5-14 atoms) to identify metastable states and their relative populations at finite temperature, as well as to examine the importance of temperature and van der Waals (vdW) on their isomer energetic ordering. Free energies of the gold cluster isomers are optimally estimated using the Multistate Bennett Acceptance Ratio. The distribution of bond coordination numbers and radius of gyration are used to address the challenge of discriminating isomers along their dynamical trajectories. Dispersion effects are important for stabilizing three-dimensional structures relative to planar structures and brings isomer energetic predictions to closer quantitative agreement compared with RPA@PBE calculations. We find that higher temperatures typically stabilize metastable three-dimensional structures relative to planar/quasiplanar structures. Computed IR spectra of low free energy Au9, Au10, and Au12 isomers are in agreement with experimental spectra obtained by far-IR multiple photon dissociation in a molecular beam at 100 K.
Huang, Pei-Hsing
2015-09-21
The separation of poisonous compounds from various process fluids has long been highly intractable, motivating the present study on the dynamic separation of H2S in acidic-gas-mixture-filled micropores. The molecular dynamics approach, coupled with the isothermal-isochoric ensemble, was used to model the molecular interactions and adsorption of H2S/CO2/CO/H2O mixtures inside metal-doped graphite slits. Due to the difference in the adsorption characteristics between the two distinct adsorbent materials, the metal dopant in the graphitic micropores leads to competitive adsorption, i.e. the Au and graphite walls compete to capture free adsorbates. The effects of competitive adsorption, coupled with changes in the gas temperature, concentration, constituent ratio and slit width on the constituent separation of mixtures were systematically studied. The molecule-wall binding energies calculated in this work (those of H2S, H2O and CO on Au walls and those of H2O, CO and CO2 on graphite walls) show good agreement with those obtained using density functional theory (DFT) and experimental results. The z-directional self-diffusivities (Dz) for adsorbates inside the slit ranged from 10(-9) to 10(-7) m(2) s(-1) as the temperature was increased from 10 to 500 K. The values are comparable with those for a typical microporous fluid (10(-8)-10(-9) m(2) s(-1) in a condensed phase and 10(-6)-10(-7) m(2) s(-1) in the gaseous state). The formation of H-bonding networks and hydrates of H2S is disadvantageous for the separation of mixtures. The results indicate that H2S can be efficiently separated from acidic gas mixtures onto the Au(111) surface by (i) reducing the mole fraction of H2S and H2O in the mixtures, (ii) raising the gas temperature to the high temperature limit (≥400 K), and (iii) lowering the slit width to below the threshold dimension (≤23.26 Å).
Fluctuations in non-ideal pion gas with dynamically fixed particle number
NASA Astrophysics Data System (ADS)
Kolomeitsev, E. E.; Voskresensky, D. N.
2018-05-01
We consider a non-ideal hot pion gas with the dynamically fixed number of particles in the model with the λϕ4 interaction. The effective Lagrangian for the description of such a system is obtained after dropping the terms responsible for the change of the total particle number. Reactions π+π- ↔π0π0, which determine the isospin balance of the medium, are permitted. Within the self-consistent Hartree approximation we compute the effective pion mass, thermodynamic characteristics of the system and the variance of the particle number at temperatures above the critical point of the induced Bose-Einstein condensation when the pion chemical potential reaches the value of the effective pion mass. We analyze conditions for the condensate formation in the process of thermalization of an initially non-equilibrium pion gas. The normalized variance of the particle number increases with a temperature decrease but remains finite in the critical point of the Bose-Einstein condensation. This is due to the non-perturbative account of the interaction and is in contrast to the ideal-gas case. In the kinetic regime of the condensate formation the variance is shown to stay finite also.
Three-dimensional modeling of the neutral gas depletion effect in a helicon discharge plasma
NASA Astrophysics Data System (ADS)
Kollasch, Jeffrey; Schmitz, Oliver; Norval, Ryan; Reiter, Detlev; Sovinec, Carl
2016-10-01
Helicon discharges provide an attractive radio-frequency driven regime for plasma, but neutral-particle dynamics present a challenge to extending performance. A neutral gas depletion effect occurs when neutrals in the plasma core are not replenished at a sufficient rate to sustain a higher plasma density. The Monte Carlo neutral particle tracking code EIRENE was setup for the MARIA helicon experiment at UW Madison to study its neutral particle dynamics. Prescribed plasma temperature and density profiles similar to those in the MARIA device are used in EIRENE to investigate the main causes of the neutral gas depletion effect. The most dominant plasma-neutral interactions are included so far, namely electron impact ionization of neutrals, charge exchange interactions of neutrals with plasma ions, and recycling at the wall. Parameter scans show how the neutral depletion effect depends on parameters such as Knudsen number, plasma density and temperature, and gas-surface interaction accommodation coefficients. Results are compared to similar analytic studies in the low Knudsen number limit. Plans to incorporate a similar Monte Carlo neutral model into a larger helicon modeling framework are discussed. This work is funded by the NSF CAREER Award PHY-1455210.
Simulation of RCC Crack Growth Due to Carbon Oxidation in High-Temperature Gas Environments
NASA Technical Reports Server (NTRS)
Titov, E. V.; Levin, D. A.; Picetti, Donald J.; Anderson, Brian P.
2009-01-01
The carbon wall oxidation technique coupled with a CFD technique was employed to study the flow in the expanding crack channel caused by the oxidation of the channel carbon walls. The recessing 3D surface morphing procedure was developed and tested in comparison with the arcjet experimental results. The multi-block structured adaptive meshing was used to model the computational domain changes due to the wall recession. Wall regression rates for a reinforced carbon-carbon (RCC) samples, that were tested in a high enthalpy arcjet environment, were computationally obtained and used to assess the channel expansion. The test geometry and flow conditions render the flow regime as the transitional to continuum, therefore Navier-Stokes gas dynamic approach with the temperature jump and velocity slip correction to the boundary conditions was used. The modeled mechanism for wall material loss was atomic oxygen reaction with bare carbon. The predicted channel growth was found to agree with arcjet observations. Local gas flow field results were found to affect the oxidation rate in a manner that cannot be predicted by previous mass loss correlations. The method holds promise for future modeling of materials gas-dynamic interactions for hypersonic flight.
NASA Astrophysics Data System (ADS)
Tzou, Chia-Yu; Altwegg, Kathrin; Fiethe, Björn; Gasc, Sébastien; Rubin, Martin
2015-04-01
Rosetta is part of the cornerstone missions executed by the European Space Agency. It is the first space mission to orbit and also land on a comet. The Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) is one of the core payloads on board of the Rosetta spacecraft [Balsiger et al, 2007]. ROSINA's main objective is to determine the major atmospheric and ionospheric composition in the coma and to investigate the gas dynamics around the comet. ROSINA consists of two mass spectrometers and a pressure sensor. The COmet Pressure Sensor (COPS) includes two gauges: the "nude gauge" measures total neutral density in the coma and the "ram gauge" measures the dynamic pressure of the cometary gas flux. The combination of these two gauges makes COPS capable to derive the gas dynamics (velocity and temperature) at the location of the spacecraft. Over several months Rosetta has been carrying out a close study of comet 67P/Churyumov-Gerasimenko. In early August 2014 COPS detected the faint and expanding atmosphere of the comet while it was still outside of 3.5 AU from the Sun. We will present ROSINA COPS observations of the evolution and gas dynamics of the cometary coma following these first observations until spring 2015. Reference: Balsiger, H. et al.: ROSINA-Rosetta Orbiter Spectrometer for Ion and Neutral Analysis, Space Science Reviews, Vol. 128, 745-801, 2007.
NASA Technical Reports Server (NTRS)
Wang, Qun-Zhen; Cash, Steve (Technical Monitor)
2002-01-01
It is very important to accurately predict the gas pressure, gas and solid temperature, as well as the amount of O-ring erosion inside the space shuttle Reusable Solid Rocket Motor (RSRM) joints in the event of a leak path. The scenarios considered are typically hot combustion gas rapid pressurization events of small volumes through narrow and restricted flow paths. The ideal method for this prediction is a transient three-dimensional computational fluid dynamics (CFD) simulation with a computational domain including both combustion gas and surrounding solid regions. However, this has not yet been demonstrated to be economical for this application due to the enormous amount of CPU time and memory resulting from the relatively long fill time as well as the large pressure and temperature rising rate. Consequently, all CFD applications in RSRM joints so far are steady-state simulations with solid regions being excluded from the computational domain by assuming either a constant wall temperature or no heat transfer between the hot combustion gas and cool solid walls.
Computer program for analysis of split-Stirling-cycle cryogenic coolers
NASA Technical Reports Server (NTRS)
Brown, M. T.; Russo, S. C.
1983-01-01
A computer program for predicting the detailed thermodynamic performance of split-Stirling-cycle refrigerators has been developed. The mathematical model includes the refrigerator cold head, free-displacer/regenerator, gas transfer line, and provision for modeling a mechanical or thermal compressor. To allow for dynamic processes (such as aerodynamic friction and heat transfer) temperature, pressure, and mass flow rate are varied by sub-dividing the refrigerator into an appropriate number of fluid and structural control volumes. Of special importance to modeling of cryogenic coolers is the inclusion of real gas properties, and allowance for variation of thermo-physical properties such as thermal conductivities, specific heats and viscosities, with temperature and/or pressure. The resulting model, therefore, comprehensively simulates the split-cycle cooler both spatially and temporally by reflecting the effects of dynamic processes and real material properties.
Han, Longtao; Irle, Stephan; Nakai, Hiromi
2018-01-01
We performed nanosecond timescale computer simulations of clusterization and agglomeration processes of boron nitride (BN) nanostructures in hot, high pressure gas, starting from eleven different atomic and molecular precursor systems containing boron, nitrogen and hydrogen at various temperatures from 1500 to 6000 K. The synthesized BN nanostructures self-assemble in the form of cages, flakes, and tubes as well as amorphous structures. The simulations facilitate the analysis of chemical dynamics and we are able to predict the optimal conditions concerning temperature and chemical precursor composition for controlling the synthesis process in a high temperature gas volume, at high pressure. We identify the optimal precursor/temperature choices that lead to the nanostructures of highest quality with the highest rate of synthesis, using a novel parameter of the quality of the synthesis (PQS). Two distinct mechanisms of BN nanotube growth were found, neither of them based on the root-growth process. The simulations were performed using quantum-classical molecular dynamics (QCMD) based on the density-functional tight-binding (DFTB) quantum mechanics in conjunction with a divide-and-conquer (DC) linear scaling algorithm, as implemented in the DC-DFTB-K code, enabling the study of systems as large as 1300 atoms in canonical NVT ensembles for 1 ns time. PMID:29780513
NASA Astrophysics Data System (ADS)
Synek, Petr; Obrusník, Adam; Hübner, Simon; Nijdam, Sander; Zajíčková, Lenka
2015-04-01
A complementary simulation and experimental study of an atmospheric pressure microwave torch operating in pure argon or argon/hydrogen mixtures is presented. The modelling part describes a numerical model coupling the gas dynamics and mixing to the electromagnetic field simulations. Since the numerical model is not fully self-consistent and requires the electron density as an input, quite extensive spatially resolved Stark broadening measurements were performed for various gas compositions and input powers. In addition, the experimental part includes Rayleigh scattering measurements, which are used for the validation of the model. The paper comments on the changes in the gas temperature and hydrogen dissociation with the gas composition and input power, showing in particular that the dependence on the gas composition is relatively strong and non-monotonic. In addition, the work provides interesting insight into the plasma sustainment mechanism by showing that the power absorption profile in the plasma has two distinct maxima: one at the nozzle tip and one further upstream.
NASA Astrophysics Data System (ADS)
Ning, Fulong; Zhang, Keni; Wu, Nengyou; Zhang, Ling; Li, Gang; Jiang, Guosheng; Yu, Yibing; Liu, Li; Qin, Yinghong
2013-06-01
To our knowledge, this study is the first to perform a numerical simulation and analysis of the dynamic behaviour of drilling mud invasion into oceanic gas-hydrate-bearing sediment (GHBS) and to consider the effects of such an invasion on borehole stability and the reliability of well logging. As a case study, the simulation background sets up the conditions of mud temperature over hydrate equilibrium temperature and overbalanced drilling, considering the first Chinese expedition to drill gas hydrate (GMGS-1). The results show that dissociating gas may form secondary hydrates in the sediment around borehole by the combined effects of increased pore pressure (caused by mud invasion and flow resistance), endothermic cooling that accompanies hydrate dissociation compounded by the Joule-Thompson effect and the lagged effect of heat transfer in sediments. The secondary hydrate ring around the borehole may be more highly saturated than the in situ sediment. Mud invasion in GHBS is a dynamic process of thermal, fluid (mud invasion), chemical (hydrate dissociation and reformation) and mechanical couplings. All of these factors interact and influence the pore pressure, flow ability, saturation of fluid and hydrates, mechanical parameters and electrical properties of sediments around the borehole, thereby having a strong effect on borehole stability and the results of well logging. The effect is particularly clear in the borehole SH7 of GMGS-1 project. The borehole collapse and resistivity distortion were observed during practical drilling and wireline logging operations in borehole SH7 of the GMGS-1.mud density (i.e. the corresponding borehole pressure), temperature and salinity have a marked influence on the dynamics of mud invasion and on hydrate stability. Therefore, perhaps well-logging distortion caused by mud invasion, hydrate dissociation and reformation should be considered for identifying and evaluating gas hydrate reservoirs. And some suitable drilling measurements need to be adopted to reduce the risk of well-logging distortion and borehole instability.
NASA Astrophysics Data System (ADS)
Yamaguchi, Hiroki; Matsuda, Yu; Niimi, Tomohide
2017-07-01
Gas-surface interaction is studied by the molecular dynamics method to investigate qualitatively characteristics of accommodation coefficients. A large number of trajectories of gas molecules colliding to and scattering from a surface are statistically analyzed to calculate the energy (thermal) accommodation coefficient (EAC) and the tangential momentum accommodation coefficient (TMAC). Considering experimental measurements of the accommodation coefficients, the incident velocities are stochastically sampled to represent a bulk condition. The accommodation coefficients for noble gases show qualitative coincidence with experimental values. To investigate characteristics of these accommodation coefficients in detail, the gas-surface interaction is parametrically studied by varying the molecular mass of gas, the gas-surface interaction strength, and the molecular size of gas, one by one. EAC increases with increasing every parameter, while TMAC increases with increasing the interaction strength, but decreases with increasing the molecular mass and the molecular size. Thus, contradictory results in experimentally measured TMAC for noble gases could result from the difference between the surface conditions employed in the measurements in the balance among the effective parameters of molecular mass, interaction strength, and molecular size, due to surface roughness and/or adsorbed molecules. The accommodation coefficients for a thermo-fluid dynamics field with a temperature difference between gas and surface and a bulk flow at the same time are also investigated.
An isentropic compression-heated Ludweig tube transient wind tunnel
NASA Technical Reports Server (NTRS)
Magari, Patrick J.; Lagraff, John E.
1991-01-01
Theoretical development and experimental results show that the Ludweig tube with isentropic heating (LICH) transient wind tunnel described is a viable means of producing flow conditions that are suitable for a variety of experimental investigations. A complete analysis of the wave dynamics of the pump tube compression process is presented. The LICH tube operating conditions are very steady and run times are greater than those of other types of transient facilities such as shock tubes and gas tunnels. This facility is well suited for producing flow conditions that are dynamically similar to those found in a gas turbine, i.e., transonic Mach number, gas-to-wall temperature ratios of about 1.5, and Reynolds numbers greater than 10 to the 6th.
Ion dynamics in a trapped ion mobility spectrometer†
Hernandez, Diana Rosa; DeBord, John Daniel; Ridgeway, Mark E.; Kaplan, Desmond A.; Park, Melvin A.; Fernandez-Lima, Francisco
2014-01-01
In the present paper, theoretical simulations and experimental observations are used to describe the ion dynamics in a trapped ion mobility spectrometer. In particular, the ion motion, ion transmission and mobility separation are discussed as a function of the bath gas velocity, radial confinement, analysis time and speed. Mobility analysis and calibration procedure are reported for the case of sphere-like molecules for positive and negative ion modes. Results showed that a maximal mobility resolution can be achieved by optimizing the gas velocity, radial confinement (RF amplitude) and ramp speed (voltage range and ramp time). The mobility resolution scales with the electric field and gas velocity and R = 100–250 can be routinely obtained at room temperature. PMID:24571000
Parkes, Marie V; Greathouse, Jeffery A; Hart, David B; Gallis, Dorina F Sava; Nenoff, Tina M
2016-04-28
The separation of oxygen from nitrogen using metal-organic frameworks (MOFs) is of great interest for potential pressure-swing adsorption processes for the generation of purified O2 on industrial scales. This study uses ab initio molecular dynamics (AIMD) simulations to examine for the first time the pure-gas and competitive gas adsorption of O2 and N2 in the M2(dobdc) (M = Cr, Mn, Fe) MOF series with coordinatively unsaturated metal centers. Effects of metal, temperature, and gas composition are explored. This unique application of AIMD allows us to study in detail the adsorption/desorption processes and to visualize the process of multiple guests competitively binding to coordinatively unsaturated metal sites of a MOF.
Schlesinger, Daniel; Sellberg, Jonas A.; Nilsson, Anders; ...
2016-03-22
In the present study, we investigate the process of evaporative cooling of nanometer-sized droplets in vacuum using molecular dynamics simulations with the TIP4P/2005 water model. The results are compared to the temperature evolution calculated from the Knudsen theory of evaporation which is derived from kinetic gas theory. The calculated and simulation results are found to be in very good agreement for an evaporation coefficient equal to unity. Lastly, our results are of interest to experiments utilizing droplet dispensers as well as to cloud micro-physics.
NASA Technical Reports Server (NTRS)
Wardwell, Douglas A.; Corsiglia, Victor R.; Kuhn, Richard E.
1992-01-01
NASA Ames Research Center has been conducting a program to improve the methods for predicting the jet-induced lift loss (suckdown) and hot gas ingestion on jet Short Takeoff and Vertical Landing (STOVL) aircraft during hover near the ground. As part of that program, small-scale hover tests were conducted to expand the current data base and to improve upon the current empirical methods for predicting jet-induced lift loss and hot gas ingestion (HGI) effects. This report is one of three data reports covering data obtained from hover tests conducted at Lockheed Aeronautical Systems, Rye Canyon Facility. It will include dynamic (time dependent) test data for both lift loss and HGI parameters (height, nozzle temperature, nozzle pressure ratio, and inlet location). The flat plate models tested were tandem jet configurations with three planform variations and variable position side-by-side sucking inlets mounted above the planform. Temperature time lags from 8-15 seconds were observed before the model temperatures stabilize. This was larger than the expected 1.5-second lag calculated from literature. Several possible explanations for the flow temperatures to stabilize may include some, or all, of the following: thermocouple lag, radiation to the model surface, and heat loss to the ground board. Further investigations are required to understand the reasons for this temperature lag.
NASA Technical Reports Server (NTRS)
Fessler, T. E.
1977-01-01
A computer program subroutine, FLUID, was developed to calculate thermodynamic and transport properties of pure fluid substances. It provides for determining the thermodynamic state from assigned values for temperature-density, pressure-density, temperature-pressure, pressure-entropy, or pressure-enthalpy. Liquid or two-phase (liquid-gas) conditions are considered as well as the gas phase. A van der Waals model is used to obtain approximate state values; these values are then corrected for real gas effects by model-correction factors obtained from tables based on experimental data. Saturation conditions, specific heat, entropy, and enthalpy data are included in the tables for each gas. Since these tables are external to the FLUID subroutine itself, FLUID can implement any gas for which a set of tables has been generated. (A setup phase is used to establish pointers dynamically to the tables for a specific gas.) Data-table preparation is described. FLUID is available in both SFTRAN and FORTRAN
Gas identification by dynamic measurements of SnO2 sensors
NASA Astrophysics Data System (ADS)
Vorobioff, Juan; Rodriguez, Daniel; Boselli, Alfredo; Lamagna, Alberto; Rinaldi, Carlos
2011-09-01
It is well know that the use of chambers with the sensors in the e-nose improves the measurements, due to a constant gas flow and the controlled temperature sensors[1]. Normally, the chamber temperature is above room temperature due to the heat generated by the heater of sensors. Also, the chamber takes a long time to reach a stable equilibrium temperature and it depends on enviromental conditions. Besides, the temperature variations modify the humidity producing variations in resistance measurements[2]. In this work using a heater system that controls the temperature of the chamber, the desorption process on SnO2 sensor array was study[3]. Also, it was fitted the data signal sensors using a two exponential decay functions in order to determine the desorbing constant process. These constants were used to classify and identify different alcohols and their concentrations.
NASA Astrophysics Data System (ADS)
Shiraishi, Hiroyuki
2015-09-01
Microwave-supported Detonation (MSD), one type of Microwave-supported Plasma (MSP), is considered as one of the most important phenomena because it can generate high pressure and high temperature for beam-powered space propulsion systems. In this study, I numerically simulate MSD waves propagating through a diatomic gas. In order to evaluate the threshold of beam intensity, I use the physical-fluid dynamics scheme, which has been developed for simulating unsteady and non-equilibrium LSD waves propagating through a hydrogen gas.
Laboratory Gas Dynamic Measurements of the Comet Pressure Sensor COPS on the Rosetta Spacecraft
NASA Astrophysics Data System (ADS)
Tzou, Chia-Yu; Altwegg, Kathrin; Gasc, Sébastien; Rubin, Martin
2014-05-01
Rosetta is part of the cornerstone missions executed by the European Space Agency (ESA). It is the first space mission to orbit and also land on a comet. By the end of July 2014 Rosetta will be able to carry out a close study of comet 67P/Churyumov-Gerasimenko. The Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) is one of the core payloads on board of the Rosetta spacecraft [Balsiger et al, 2007]. ROSINA's main objective is to determine the major atmospheric and ionospheric composition in the coma and to investigate the gas dynamics around the comet. ROSINA consists of two mass spectrometers and a pressure sensor. The Comet Pressure Sensor (COPS) is not only a pressure sensor but also plays the role of a safety instrument for Rosetta by providing high-density alerts to the other payload instruments. It includes two gauges: the "nude gauge" measures total neutral density in the coma and the "ram gauge" measures the dynamic pressure of the cometary gas flux to obtain the bulk velocity of the neutral gas. The combination of these two gauges makes COPS capable to derive the gas dynamics in the coma. We recently performed laboratory gas dynamic measurements with the identical flight-spare instrument of COPS. Using the Calibration System for The Mass Spectrometer Instrument ROSINA (CASYMIR) we produce neutral gas beams to model cometary gas jets with velocities from thermal to 2 km/s. For COPS calibration we measure gas beams with different incident angles to derive the velocity and the temperature of the gas using different mixtures expected at the comet. We demonstrate that COPS will be ready for the prime mission and it will be fascinating to compare COPS measurements with numerous observation results and computer models starting in summer 2014 to gain new insights into the gas dynamics around a comet. Reference: Balsiger, H. et al.: ROSINA-Rosetta Orbiter Spectrometer for Ion and Neutral Analysis, Space Science Reviews, Vol. 128, 745-801, 2007.
Fuel cell-gas turbine hybrid system design part II: Dynamics and control
NASA Astrophysics Data System (ADS)
McLarty, Dustin; Brouwer, Jack; Samuelsen, Scott
2014-05-01
Fuel cell gas turbine hybrid systems have achieved ultra-high efficiency and ultra-low emissions at small scales, but have yet to demonstrate effective dynamic responsiveness or base-load cost savings. Fuel cell systems and hybrid prototypes have not utilized controls to address thermal cycling during load following operation, and have thus been relegated to the less valuable base-load and peak shaving power market. Additionally, pressurized hybrid topping cycles have exhibited increased stall/surge characteristics particularly during off-design operation. This paper evaluates additional control actuators with simple control methods capable of mitigating spatial temperature variation and stall/surge risk during load following operation of hybrid fuel cell systems. The novel use of detailed, spatially resolved, physical fuel cell and turbine models in an integrated system simulation enables the development and evaluation of these additional control methods. It is shown that the hybrid system can achieve greater dynamic response over a larger operating envelope than either individual sub-system; the fuel cell or gas turbine. Results indicate that a combined feed-forward, P-I and cascade control strategy is capable of handling moderate perturbations and achieving a 2:1 (MCFC) or 4:1 (SOFC) turndown ratio while retaining >65% fuel-to-electricity efficiency, while maintaining an acceptable stack temperature profile and stall/surge margin.
Vöhringer-Martinez, E; Link, O; Lugovoy, E; Siefermann, K R; Wiederschein, F; Grubmüller, H; Abel, B
2014-09-28
Supercritical water and methanol have recently drawn much attention in the field of green chemistry. It is crucial to an understanding of supercritical solvents to know their dynamics and to what extent hydrogen (H) bonds persist in these fluids. Here, we show that with femtosecond infrared (IR) laser pulses water and methanol can be heated to temperatures near and above their critical temperature Tc and their molecular dynamics can be studied via ultrafast photoelectron spectroscopy at liquid jet interfaces with high harmonics radiation. As opposed to previous studies, the main focus here is the comparison between the hydrogen bonded systems of methanol and water and their interpretation by theory. Superheated water initially forms a dense hot phase with spectral features resembling those of monomers in gas phase water. On longer timescales, this phase was found to build hot aggregates, whose size increases as a function of time. In contrast, methanol heated to temperatures near Tc initially forms a broad distribution of aggregate sizes and some gas. These experimental features are also found and analyzed in extended molecular dynamics simulations. Additionally, the simulations enabled us to relate the origin of the different behavior of these two hydrogen-bonded liquids to the nature of the intermolecular potentials. The combined experimental and theoretical approach delivers new insights into both superheated phases and may contribute to understand their different chemical reactivities.
NASA Astrophysics Data System (ADS)
Jacob, Rohit J.; Kline, Dylan J.; Zachariah, Michael R.
2018-03-01
This work investigates the reaction dynamics of metastable intermolecular composites through high speed spectrometry, pressure measurements, and high-speed color camera pyrometry. Eight mixtures including Al/CuO and Al/Fe2O3/xWO3 (x being the oxidizer mol. %) were reacted in a constant volume pressure cell as a means of tuning gas release and adiabatic temperature. A direct correlation between gas release, peak pressure, and pressurization rate was observed, but it did not correlate with temperature. When WO3 was varied as part of the stoichiometric oxidizer content, it was found that Al/Fe2O3/70% WO3 achieved the highest pressures and shortest burn time despite a fairly constant temperature between mixtures, suggesting an interplay between the endothermic Fe2O3 decomposition and the higher adiabatic flame temperature sustained by the Al/WO3 reaction in the composite. It is proposed that the lower ignition temperature of Al/WO3 leads to the initiation of the composite and its higher flame temperature enhances the gasification of Fe2O3, thus improving advection and propagation as part of a feedback loop that drives the reaction. Direct evidence of such gas release promoting reactivity was obtained through high speed pyrometry videos of the reaction. These results set the stage for nanoenergetic materials that can be tuned for specific applications through carefully chosen oxidizer mixtures.
Pleistocene tropical Pacific temperature sensitivity to radiative greenhouse gas forcing
NASA Astrophysics Data System (ADS)
Dyck, K. A.; Ravelo, A. C.
2011-12-01
How high will Earth's global average surface temperature ultimately rise as greenhouse gas concentrations increase in the future? One way to tackle this question is to compare contemporaneous temperature and greenhouse gas concentration data from paleoclimate records, while considering that other radiative forcing mechanisms (e.g. changes in the amount and distribution of incoming solar radiation associated with changes in the Earth's orbital configuration) also contribute to surface temperature change. Since the sensitivity of surface temperature varies with location and latitude, here we choose a central location representative of the west Pacific warm pool, far from upwelling regions or surface temperature gradients in order to minimize climate feedbacks associated with high-latitude regions or oceanic dynamics. The 'steady-state' or long-term temperature change associated with greenhouse gas radiative forcing is often labeled as equilibrium (or 'Earth system') climate sensitivity to the doubling of atmospheric greenhouse gas concentration. Climate models suggest that Earth system sensitivity does not change dramatically over times when CO2 was lower or higher than the modern atmospheric value. Thus, in our investigation of the changes in tropical SST, from the glacial to interglacial states when greenhouse gas forcing nearly doubled, we use Late Pleistocene paleoclimate records to constrain earth system sensitivity for the tropics. Here we use Mg/Ca-paleothermometry using the foraminifera G. ruber from ODP Site 871 from the past 500 kyr in the western Pacific warm pool to estimate tropical Pacific equilibrium climate sensitivity to a doubling of greenhouse gas concentrations to be ~4°C. This tropical SST sensitivity to greenhouse gas forcing is ~1-2°C higher than that predicted by climate models of past glacial periods or future warming for the tropical Pacific. Equatorial Pacific SST sensitivity may be higher than predicted by models for a number of reasons. First, models may not be adequately representing long-term deep ocean feedbacks. Second, models may incorrectly parameterize tropical cloud (or other short-term) feedback processes. Lastly, either paleo-temperature or radiative forcing may have been incorrectly estimated (e.g. through calibration of paleoclimate evidence for temperature change). Since theory suggests that surface temperature in the high latitudes is more sensitive to radiative forcing changes than surface temperature in the tropics, the results of this study also imply that globally averaged Earth system sensitivity to greenhouse gas concentrations may be higher than most climate models predict.
The Experimental Study of Dynamics of Scaled Gas-Filled Bubble Collapse in Liquid
NASA Astrophysics Data System (ADS)
Pavlenko, Alexander
2011-06-01
The article provides results of analyzing special features of the single-bubble sonoluminescence, developing the special apparatus to investigate this phenomenon on a larger-scale basis. Certain very important effects of high energy density physics, i.e. liquid compressibility, shock-wave formation under the collapse of the gas cavity in liquid, shock-wave focusing in the gas-filled cavity, occurrence of hot dense plasma in the focusing area, and high-temperature radiation yield are observed in this phenomenon. Specificity of the process is conditioned by the ``ideal'' preparation and sphericity of the gas-and-liquid contact boundary what makes the collapse process efficient due to the reduced influence of hydrodynamic instabilities. Results of experimental investigations; results of developing the facilities, description of methods used to register parameters of facilities and the system under consideration; analytical estimates how gas-filled bubbles evolve in liquid with the regard for scale effects; results of preliminary 1-D gas dynamic calculations of the gas bubble evolution are presented. The work supported by ISTC Project #2116.
Sonoluminescence and acoustic cavitation
NASA Astrophysics Data System (ADS)
Choi, Pak-Kon
2017-07-01
Sonoluminescence (SL) is light emission under high-temperature and high-pressure conditions of a cavitating bubble under intense ultrasound in liquid. In this review, the fundamentals of the interactions between the sound field and the bubble, and between bubbles are explained. Experimental results on high-speed shadowgraphy of bubble dynamics and multibubble SL are shown, demonstrating that the SL intensity is closely related to the bubble dynamics. SL studies of alkali-metal atom (Na and K) emission are summarized. The spectral measurements in solutions with different noble-gas dissolutions and in surfactant solutions, and the results of spatiotemporal separation of SL distribution strongly suggested that the site of alkali-metal atom emission is the gas phase inside bubbles. The spectral studies indicated that alkali-metal atom lines are composed of two kinds of lines: a component that is broadened and shifted from the original D lines arises from van der Waals molecules formed between alkali-metal atoms and noble-gas atoms under extreme conditions at bubble collapse. The other spectral component exhibiting no broadening and no shift was suggested to originate from higher temperature bubbles than those producing the broadened component.
NASA Technical Reports Server (NTRS)
Mielke, Amy F.; Elam, Kristie A.; Sung, Chih-Jen; Panda, Jayanta
2006-01-01
A molecular Rayleigh scattering technique is developed to measure dynamic gas temperature, velocity, and density in unseeded turbulent flows at sampling rates up to 10 kHz. A high power CW laser beam is focused at a point in a heated air jet plume and Rayleigh scattered light is collected and spectrally resolved. The spectrum of the light, which contains information about the temperature, velocity, and density of the flow, is analyzed using a Fabry-Perot interferometer. The circular interference fringe pattern is divided into four concentric regions and sampled at 1 and 10 kHz using photon counting electronics. Monitoring the relative change in intensity within each region allows for measurement of gas temperature and velocity. Independently monitoring the total scattered light intensity provides a measure of gas density. Power spectral density calculations of temperature, velocity, and density fluctuations, as well as mean and fluctuating quantities are demonstrated for various radial locations in the jet flow at a fixed axial distance from the jet exit plane. Results are compared with constant current anemometry and pitot probe measurements at the same locations.
NASA Astrophysics Data System (ADS)
Zhao, X. Y.; Haworth, D. C.; Ren, T.; Modest, M. F.
2013-04-01
A computational fluid dynamics model for high-temperature oxy-natural gas combustion is developed and exercised. The model features detailed gas-phase chemistry and radiation treatments (a photon Monte Carlo method with line-by-line spectral resolution for gas and wall radiation - PMC/LBL) and a transported probability density function (PDF) method to account for turbulent fluctuations in composition and temperature. The model is first validated for a 0.8 MW oxy-natural gas furnace, and the level of agreement between model and experiment is found to be at least as good as any that has been published earlier. Next, simulations are performed with systematic model variations to provide insight into the roles of individual physical processes and their interplay in high-temperature oxy-fuel combustion. This includes variations in the chemical mechanism and the radiation model, and comparisons of results obtained with versus without the PDF method to isolate and quantify the effects of turbulence-chemistry interactions and turbulence-radiation interactions. In this combustion environment, it is found to be important to account for the interconversion of CO and CO2, and radiation plays a dominant role. The PMC/LBL model allows the effects of molecular gas radiation and wall radiation to be clearly separated and quantified. Radiation and chemistry are tightly coupled through the temperature, and correct temperature prediction is required for correct prediction of the CO/CO2 ratio. Turbulence-chemistry interactions influence the computed flame structure and mean CO levels. Strong local effects of turbulence-radiation interactions are found in the flame, but the net influence of TRI on computed mean temperature and species profiles is small. The ultimate goal of this research is to simulate high-temperature oxy-coal combustion, where accurate treatments of chemistry, radiation and turbulence-chemistry-particle-radiation interactions will be even more important.
Inertial collapse of bubble pairs near a solid surface
NASA Astrophysics Data System (ADS)
Alahyari Beig, Shahaboddin; Johnsen, Eric
2017-11-01
Cavitation occurs in a variety of applications ranging from naval structures to biomedical ultrasound. One important consequence is structural damage to neighboring surfaces following repeated inertial collapse of vapor bubbles. Although the mechanical loading produced by the collapse of a single bubble has been widely investigated, less is known about the detailed dynamics of the collapse of multiple bubbles. In such a problem, the bubble-bubble interactions typically affect the dynamics, e.g., by increasing the non-sphericity of the bubbles and amplifying/hindering the collapse intensity depending on the flow parameters. Here, we quantify the effects of bubble-bubble interactions on the bubble dynamics, as well as the pressures/temperatures produced by the collapse of a pair of gas bubbles near a rigid surface. We perform high-resolution simulations of this problem by solving the three-dimensional compressible Navier-Stokes equations for gas/liquid flows. The results are used to investigate the non-spherical bubble dynamics and characterize the pressure and temperature fields based on the relevant parameters entering the problem: stand-off distance, geometrical configuration (angle, relative size, distance), collapse strength. This research was supported in part by ONR Grant N00014-12-1-0751 and NSF Grant CBET 1253157.
Support services for the automative gas turbine project
NASA Technical Reports Server (NTRS)
Golec, T. (Editor)
1981-01-01
Support was provided to DOE and NASA in their efforts to inform industry, the public, and Government on the benefits and purpose of the gas turbine programs through demonstrations and exhibits. Tasks were carried out for maintenance, repair, and retrofit of the experimental gas turbine engines being used by NASA in their gas turbine technology programs and in program demonstrations. Limited support testing was conducted at Chrysler in which data were generated on air bearing rotor shaft dynamics, heavy duty variable sheave rubber belts, high temperature elastomer regenerator drive mounting and graphite regenerator seal friction characteristics.
Lin, Xiangfeng; Fang, Jian; Chen, Menglin; Huang, Zhi; Su, Chengyuan
2016-08-01
An efficient adsorbent/catalyst Co and Fe-catalysts loaded on sepiolite (Co-Fe/sepiolite) was successfully prepared for high temperature gas flow catalytic reaction by a simple impregnation method. The impact of preparation conditions (such as pH value of impregnation solution, impregnation time, calcination temperature, and time) on catalytic activity was studied. We found that the catalytic activity of Co-Fe/sepiolite was strongly influenced by all the investigated parameters. The regeneration efficiency (RE) was used to evaluate the catalytic activity. The RE is more noticeable at pH 5.0 of impregnation solution, impregnation time 18 h, calcination temperature 650 °C, and calcination time 3 h. This Co-Fe/sepiolite has great adsorption capacity in absorbing dye. It is used for an adsorbent to adsorb dye from wastewater solution under dynamic adsorption and saturated with dye, then regenerated with high temperature gas flow for adsorption/oxidation cycles. The Co-Fe/sepiolite acts as a catalyst to degrade the dye during regeneration under high temperature gas flow. Hence, the Co-Fe/sepiolite is not only an adsorbent but also a catalyst. The Co-Fe/sepiolite is more stable than sepiolite when applied in the treatment of plant's wastewater. The Co-Fe/sepiolite can be reused in adsorption-regeneration cycle. The results indicate the usability of the proposed combined process, dye adsorption on Co-Fe/sepiolite followed by the catalytic oxidation in high temperature gas flow.
Dai, Jiayu; Hou, Yong; Yuan, Jianmin
2010-06-18
Electron-ion interactions are central to numerous phenomena in the warm dense matter (WDM) regime and at higher temperature. The electron-ion collisions induced friction at high temperature is introduced in the procedure of ab initio molecular dynamics using the Langevin equation based on density functional theory. In this framework, as a test for Fe and H up to 1000 eV, the equation of state and the transition of electronic structures of the materials with very wide density and temperature can be described, which covers a full range of WDM up to high energy density physics. A unified first principles description from condensed matter to ideal ionized gas plasma is constructed.
High Accuracy Acoustic Relative Humidity Measurement in Duct Flow with Air
van Schaik, Wilhelm; Grooten, Mart; Wernaart, Twan; van der Geld, Cees
2010-01-01
An acoustic relative humidity sensor for air-steam mixtures in duct flow is designed and tested. Theory, construction, calibration, considerations on dynamic response and results are presented. The measurement device is capable of measuring line averaged values of gas velocity, temperature and relative humidity (RH) instantaneously, by applying two ultrasonic transducers and an array of four temperature sensors. Measurement ranges are: gas velocity of 0–12 m/s with an error of ±0.13 m/s, temperature 0–100 °C with an error of ±0.07 °C and relative humidity 0–100% with accuracy better than 2 % RH above 50 °C. Main advantage over conventional humidity sensors is the high sensitivity at high RH at temperatures exceeding 50 °C, with accuracy increasing with increasing temperature. The sensors are non-intrusive and resist highly humid environments. PMID:22163610
High accuracy acoustic relative humidity measurement in duct flow with air.
van Schaik, Wilhelm; Grooten, Mart; Wernaart, Twan; van der Geld, Cees
2010-01-01
An acoustic relative humidity sensor for air-steam mixtures in duct flow is designed and tested. Theory, construction, calibration, considerations on dynamic response and results are presented. The measurement device is capable of measuring line averaged values of gas velocity, temperature and relative humidity (RH) instantaneously, by applying two ultrasonic transducers and an array of four temperature sensors. Measurement ranges are: gas velocity of 0-12 m/s with an error of ± 0.13 m/s, temperature 0-100 °C with an error of ± 0.07 °C and relative humidity 0-100% with accuracy better than 2 % RH above 50 °C. Main advantage over conventional humidity sensors is the high sensitivity at high RH at temperatures exceeding 50 °C, with accuracy increasing with increasing temperature. The sensors are non-intrusive and resist highly humid environments.
NASA Astrophysics Data System (ADS)
Saijyo, Katsuya; Nishiwaki, Kazuie; Yoshihara, Yoshinobu
The CFD simulations were performed integrating the low-temperature oxidation reaction. Analyses were made with respect to the first auto-ignition location in the case of a premixed-charge compression auto-ignition in a laminar flow field and in the case of the auto-ignition in an end gas during an S. I. Engine combustion process. In the latter simulation, the spatially-filtered transport equations were solved to express fluctuating temperatures in a turbulent flow in consideration of strong non-linearity to temperature in the reaction equations. It is suggested that the first auto-ignition location does not always occur at higher-temperature locations and that the difference in the locations of the first auto-ignition depends on the time period during which the local end gas temperature passes through the region of shorter ignition delay, including the NTC region.
Molecular Gas in Starburts: Understanding Mergers using High Density Gas Tracers
NASA Astrophysics Data System (ADS)
Manohar, Swarnima; Scoville, N.; Walter, F.; Sheth, K.
2014-01-01
NGC 6240 and Arp 220 can be considered the founding members of a very active class of objects called Ultraluminous Infrared Galaxies or ULIRGs. They are in different stages of mergers and hence are excellent case studies to enhance our knowledge about the merging process. We have imaged the dense star-forming regions of these galaxies at sub-arcsec resolution with ALMA and CARMA. Multi-band imaging allows multilevel excitation analysis of HCN, HCO+ and CS transitions which will constrain the properties of the gas as a function of position and velocity (across line profiles). We are doing an extensive multilevel excitation analysis of the merger as a function of radius which enables in depth understanding of the gas dynamics and gas properties such as temperature and density. This in turn probes the homogeneity of the gas in the merging system and hence the regions that facilitate high star formation rates. This tandem use of CARMA with ALMA to map these systems at different merger stages will assemble a more integrated picture of the merger process. We are probing the distribution and dynamics of star forming gas and star formation activity in the dense disk structures to enable new theoretical understanding of the physics, dynamics, star formation activity and associated feedback in the most active and rapidly evolving galactic nuclei. Here we present preliminary observations of Arp 220 and NGC 6240 from ALMA and CARMA.
NASA Astrophysics Data System (ADS)
Takamatsu, Kuniyoshi; Nakagawa, Shigeaki; Takeda, Tetsuaki
Safety demonstration tests using the High Temperature Engineering Test Reactor (HTTR) are in progress to verify its inherent safety features and improve the safety technology and design methodology for High-temperature Gas-cooled Reactors (HTGRs). The reactivity insertion test is one of the safety demonstration tests for the HTTR. This test simulates the rapid increase in the reactor power by withdrawing the control rod without operating the reactor power control system. In addition, the loss of coolant flow tests has been conducted to simulate the rapid decrease in the reactor power by tripping one, two or all out of three gas circulators. The experimental results have revealed the inherent safety features of HTGRs, such as the negative reactivity feedback effect. The numerical analysis code, which was named-ACCORD-, was developed to analyze the reactor dynamics including the flow behavior in the HTTR core. We have modified this code to use a model with four parallel channels and twenty temperature coefficients. Furthermore, we added another analytical model of the core for calculating the heat conduction between the fuel channels and the core in the case of the loss of coolant flow tests. This paper describes the validation results for the newly developed code using the experimental results. Moreover, the effect of the model is formulated quantitatively with our proposed equation. Finally, the pre-analytical result of the loss of coolant flow test by tripping all gas circulators is also discussed.
Dissolved gases in hydrothermal (phreatic) and geyser eruptions at Yellowstone National Park, USA
Hurwitz, Shaul; Clor, Laura; McCleskey, R. Blaine; Nordstrom, D. Kirk; Hunt, Andrew G.; Evans, William C.
2016-01-01
Multiphase and multicomponent fluid flow in the shallow continental crust plays a significant role in a variety of processes over a broad range of temperatures and pressures. The presence of dissolved gases in aqueous fluids reduces the liquid stability field toward lower temperatures and enhances the explosivity potential with respect to pure water. Therefore, in areas where magma is actively degassing into a hydrothermal system, gas-rich aqueous fluids can exert a major control on geothermal energy production, can be propellants in hazardous hydrothermal (phreatic) eruptions, and can modulate the dynamics of geyser eruptions. We collected pressurized samples of thermal water that preserved dissolved gases in conjunction with precise temperature measurements with depth in research well Y-7 (maximum depth of 70.1 m; casing to 31 m) and five thermal pools (maximum depth of 11.3 m) in the Upper Geyser Basin of Yellowstone National Park, USA. Based on the dissolved gas concentrations, we demonstrate that CO2 mainly derived from magma and N2 from air-saturated meteoric water reduce the near-surface saturation temperature, consistent with some previous observations in geyser conduits. Thermodynamic calculations suggest that the dissolved CO2 and N2 modulate the dynamics of geyser eruptions and are likely triggers of hydrothermal eruptions when recharged into shallow reservoirs at high concentrations. Therefore, monitoring changes in gas emission rate and composition in areas with neutral and alkaline chlorine thermal features could provide important information on the natural resources (geysers) and hazards (eruptions) in these areas.
Circumplanetary disc or circumplanetary envelope?
NASA Astrophysics Data System (ADS)
Szulágyi, J.; Masset, F.; Lega, E.; Crida, A.; Morbidelli, A.; Guillot, T.
2016-08-01
We present three-dimensional simulations with nested meshes of the dynamics of the gas around a Jupiter mass planet with the JUPITER and FARGOCA codes. We implemented a radiative transfer module into the JUPITER code to account for realistic heating and cooling of the gas. We focus on the circumplanetary gas flow, determining its characteristics at very high resolution (80 per cent of Jupiter's diameter). In our nominal simulation where the temperature evolves freely by the radiative module and reaches 13000 K at the planet, a circumplanetary envelope was formed filling the entire Roche lobe. Because of our equation of state is simplified and probably overestimates the temperature, we also performed simulations with limited maximal temperatures in the planet region (1000, 1500, and 2000 K). In these fixed temperature cases circumplanetary discs (CPDs) were formed. This suggests that the capability to form a CPD is not simply linked to the mass of the planet and its ability to open a gap. Instead, the gas temperature at the planet's location, which depends on its accretion history, plays also fundamental role. The CPDs in the simulations are hot and cooling very slowly, they have very steep temperature and density profiles, and are strongly sub-Keplerian. Moreover, the CPDs are fed by a strong vertical influx, which shocks on the CPD surfaces creating a hot and luminous shock-front. In contrast, the pressure supported circumplanetary envelope is characterized by internal convection and almost stalled rotation.
Elasticity and Stability of Clathrate Hydrate: Role of Guest Molecule Motions.
Jia, Jihui; Liang, Yunfeng; Tsuji, Takeshi; Murata, Sumihiko; Matsuoka, Toshifumi
2017-05-02
Molecular dynamic simulations were performed to determine the elastic constants of carbon dioxide (CO 2 ) and methane (CH 4 ) hydrates at one hundred pressure-temperature data points, respectively. The conditions represent marine sediments and permafrost zones where gas hydrates occur. The shear modulus and Young's modulus of the CO 2 hydrate increase anomalously with increasing temperature, whereas those of the CH 4 hydrate decrease regularly with increase in temperature. We ascribe this anomaly to the kinetic behavior of the linear CO 2 molecule, especially those in the small cages. The cavity space of the cage limits free rotational motion of the CO 2 molecule at low temperature. With increase in temperature, the CO 2 molecule can rotate easily, and enhance the stability and rigidity of the CO 2 hydrate. Our work provides a key database for the elastic properties of gas hydrates, and molecular insights into stability changes of CO 2 hydrate from high temperature of ~5 °C to low decomposition temperature of ~-150 °C.
Gas gun driven dynamic fracture and fragmentation of Ti-6Al-4V cylinders
NASA Astrophysics Data System (ADS)
Jones, D. R.; Chapman, D. J.; Eakins, D. E.
2014-05-01
The dynamic fracture and fragmentation of a material is a complex late stage phenomenon occurring in many shock loading scenarios. Improving our predictive capability depends upon exercising our current failure models against new loading schemes and data. We present axially-symmetric high strain rate (104 s-1) expansion of Ti-6Al-4V cylinders using a single stage light gas gun technique. A steel ogive insert was located inside the target cylinder, into which a polycarbonate rod was launched. Deformation of this rod around the insert drives the cylinder into rapid expansion. This technique we have developed facilitates repeatable loading, independent of the temperature of the sample cylinder, with straightforward adjustment of the radial strain rate. Expansion velocity was measured with multiple channels of photon Doppler velocimetry. High speed imaging was used to track the overall expansion process and record strain to failure and crack growth. Results from a cylinder at a temperature of 150 K are compared with work at room temperature, examining the deformation, failure mechanisms and differences in fragmentation.
Advanced development receiver thermal vacuum tests with cold wall
NASA Technical Reports Server (NTRS)
Sedgwick, Leigh M.
1991-01-01
The first ever testing of a full size solar dynamic heat receiver using high temperature thermal energy storage was completed. The heat receiver was designed to meet the requirements for operation on the Space Station Freedom. The purpose of the test program was to quantify the receiver thermodynamic performance, its operating temperatures, and thermal response to changes in environmental and power module interface boundary conditions. The heat receiver was tested in a vacuum chamber with liquid nitrogen cold shrouds and an aperture cold plate to partially simulate a low Earth orbit environment. The cavity of the receiver was heated by an infrared quartz lamp heater with 30 independently controllable zones to produce flux distributions typical of candidate concentrators. A closed Brayton cycle engine simulator conditioned a helium xenon gas mixture to specific interface conditions to simulate various operational modes of the solar dynamic power module. Inlet gas temperature, pressure, and flow rate were independently varied. A total of 58 simulated orbital cycles were completed during the test conduct period. The test hardware, execution of testing, test data, and post test inspections are described.
Advanced radial inflow turbine rotor program: Design and dynamic testing
NASA Technical Reports Server (NTRS)
Rodgers, C.
1976-01-01
The advancement of small, cooled, radial inflow turbine technology in the area of operation at higher turbine inlet temperature is discussed. The first step was accomplished by designing, fabricating, and subjecting to limited mechanical testing an advanced gas generator rotating assembly comprising a radial inflow turbine and two-stage centrifugal compressor. The radial inflow turbine and second-stage compressor were designed as an integrally machined monorotor with turbine cooling taking place basically by conduction to the compressor. Design turbine inlet rotor gas temperature, rotational speed, and overall gas generator compressor pressure ratio were 1422 K (2560 R), 71,222 rpm, and 10/1 respectively. Mechanical testing on a fabricated rotating assembly and bearing system covered 1,000 cold start/stop cycles and three spins to 120 percent design speed (85,466 rpm).
Turbine blade and vane heat flux sensor development, phase 2
NASA Technical Reports Server (NTRS)
Atkinson, W. H.; Cyr, M. A.; Strange, R. R.
1985-01-01
The development of heat flux sensors for gas turbine blades and vanes and the demonstration of heat transfer measurement methods are reported. The performance of the heat flux sensors was evaluated in a cylinder in cross flow experiment and compared with two other heat flux measurement methods, the slug calorimeter and a dynamic method based on fluctuating gas and surface temperature. Two cylinders, each instrumented with an embedded thermocouple sensor, a Gardon gauge, and a slug calorimeter, were fabricated. Each sensor type was calibrated using a quartz lamp bank facility. The instrumented cylinders were then tested in an atmospheric pressure combustor rig at conditions up to gas stream temperatures of 1700K and velocities to Mach 0.74. The test data are compared to other measurements and analytical prediction.
NASA Astrophysics Data System (ADS)
Charoenlerdchanya, A.; Rattanadecho, P.; Keangin, P.
2018-01-01
An infrared gas stove is a low-pressure gas stove type and it has higher thermal efficiency than the other domestic cooking stoves. This study considers the computationally determine water and air temperature distributions, water and air velocity distributions and thermal efficiency of the infrared gas stove. The goal of this work is to investigate the effect of various pot diameters i.e. 220 mm, 240 mm and 260 mm on the water and air temperature distributions, water and air velocity distributions and thermal efficiency of the infrared gas stove. The time-dependent heat transfer equation involving diffusion and convection coupled with the time-dependent fluid dynamic equation is implemented and is solved by using the finite element method (FEM). The computer simulation study is validated with an experimental study, which is use standard experiment by LPG test for low-pressure gas stove in households (TIS No. 2312-2549). The findings revealed that the water and air temperature distributions increase with greater heating time, which varies with the three different pot diameters (220 mm, 240 mm and 260 mm). Similarly, the greater heating time, the water and air velocity distributions increase that vary by pot diameters (220, 240 and 260 mm). The maximum water temperature in the case of pot diameter of 220 mm is higher than the maximum water velocity in the case of pot diameters of 240 mm and 260 mm, respectively. However, the maximum air temperature in the case of pot diameter of 260 mm is higher than the maximum water velocity in the case of pot diameters of 240 mm and 220 mm, respectively. The obtained results may provide a basis for improving the energy efficiency of infrared gas stoves and other equipment, including helping to reduce energy consumption.
Two-temperature Brownian dynamics of a particle in a confining potential
NASA Astrophysics Data System (ADS)
Mancois, Vincent; Marcos, Bruno; Viot, Pascal; Wilkowski, David
2018-05-01
We consider the two-dimensional motion of a particle in a confining potential, subject to Brownian orthogonal forces associated with two different temperatures. Exact solutions are obtained for an asymmetric harmonic potential in the overdamped and underdamped regimes. For more general confining potentials, a perturbative approach shows that the stationary state exhibits some universal properties. The nonequilibrium stationary state is characterized with a nonzero orthoradial mean current, corresponding to a global rotation of the particle around the center. The rotation is due to two broken symmetries: two different temperatures and a mismatch between the principal axes of the confining asymmetric potential and the temperature axes. We confirm our predictions by performing a Brownian dynamics simulation. Finally, we propose to observe this effect on a laser-cooled atomic gas.
Synthesis of diamond films at low temperature and study of nonlinear dynamic synthesis process
NASA Astrophysics Data System (ADS)
Zhao, Qingxun; Shang, Yong; Dong, Lifang; Fu, Guangsheng; Yan, Zheng; Yang, Jingfa
2002-09-01
In this paper, the experimental synthesis of diamond films and optical emission spectroscopy (OES) of the gaseous phase species are studied in the range of substrate temperature from Ts = 300°C to 850°C. The high quality sub-microcrystalline diamond films are successfully deposited at substrate temperature (330 ≍ 340)°C by adopting glow plasma assisted hot filament chemical vapor deposition (GPCVD). For the first time, in situ OES is applied to diagnose weak signal of GPCVD system when CH4 and H2 are used as the input gas, and the reactive species are identified in diamond growth processes. A primary model of diamond films growing at low temperature is presented by studying dynamic behavior for nonequilibrium plasma reactions.
Some fundamental properties and reactions of ice surfaces at low temperatures.
Park, Seong-Chan; Moon, Eui-Seong; Kang, Heon
2010-10-14
Ice surfaces offer a unique chemical environment in which reactions occur quite differently from those in liquid water or gas phases. In this article, we examine the basic properties of ice surfaces below the surface premelting temperature and discuss some of the recent investigations carried out on reactions at the ice surfaces. The static and dynamic properties of an ice surface as a reaction medium, such as its structure, molecule diffusion and proton transfer dynamics, and the surface preference of hydronium and hydroxide ions, are discussed in relation to the reactivity of the surface.
Hołyst, Robert; Litniewski, Marek; Jakubczyk, Daniel
2017-09-13
Transport of heat to the surface of a liquid is a limiting step in the evaporation of liquids into an inert gas. Molecular dynamics (MD) simulations of a two component Lennard-Jones (LJ) fluid revealed two modes of energy transport from a vapour to an interface of an evaporating droplet of liquid. Heat is transported according to the equation of temperature diffusion, far from the droplet of radius R. The heat flux, in this region, is proportional to temperature gradient and heat conductivity in the vapour. However at some distance from the interface, Aλ, (where λ is the mean free path in the gas), the temperature has a discontinuity and heat is transported ballistically i.e. by direct individual collisions of gas molecules with the interface. This ballistic transport reduces the heat flux (and consequently the mass flux) by the factor R/(R + Aλ) in comparison to the flux obtained from temperature diffusion. Thus it slows down the evaporation of droplets of sizes R ∼ Aλ and smaller (practically for sizes from 10 3 nm down to 1 nm). We analyzed parameter A as a function of interactions between molecules and their masses. The rescaled parameter, A(k B T b /ε 11 ) 1/2 , is a linear function of the ratio of the molecular mass of the liquid molecules to the molecular mass of the gas molecules, m 1 /m 2 (for a series of chemically similar compounds). Here ε 11 is the interaction parameter between molecules in the liquid (proportional to the enthalpy of evaporation) and T b is the temperature of the gas in the bulk. We tested the predictions of MD simulations in experiments performed on droplets of ethylene glycol, diethylene glycol, triethylene glycol and tetraethylene glycol. They were suspended in an electrodynamic trap and evaporated into dry nitrogen gas. A changes from ∼1 (for ethylene glycol) to approximately 10 (for tetraethylene glycol) and has the same dependence on molecular parameters as obtained for the LJ fluid in MD simulations. The value of x = A(k B T b /ε 11 ) 1/2 is of the order of 1 (for water x = 1.8, glycerol x = 1, ethylene glycol x = 0.4, tetraethylene glycol x = 2.1 evaporating into dry nitrogen at room temperature and for Lennard-Jones fluids x = 2 for m 1 /m 2 = 1 and low temperature).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miloshevsky, Alexander; Harilal, Sivanandan S.; Miloshevsky, Gennady, E-mail: gennady@purdue.edu
2014-04-15
Plasma expansion with shockwave formation during laser ablation of materials in a background gasses is a complex process. The spatial and temporal evolution of pressure, temperature, density, and velocity fields is needed for its complete understanding. We have studied the expansion of femtosecond (fs) laser-ablated aluminum (Al) plumes in Argon (Ar) gas at 0.5 and 1 atmosphere (atm). The expansion of the plume is investigated experimentally using shadowgraphy and fast-gated imaging. The computational fluid dynamics (CFD) modeling is also carried out. The position of the shock front measured by shadowgraphy and fast-gated imaging is then compared to that obtained frommore » the CFD modeling. The results from the three methods are found to be in good agreement, especially during the initial stage of plasma expansion. The computed time- and space-resolved fields of gas-dynamic parameters have provided valuable insights into the dynamics of plasma expansion and shockwave formation in fs-pulse ablated Al plumes in Ar gas at 0.5 and 1 atm. These results are compared to our previous data on nanosecond (ns) laser ablation of Al [S. S. Harilal et al., Phys. Plasmas 19, 083504 (2012)]. It is observed that both fs and ns plumes acquire a nearly spherical shape at the end of expansion in Ar gas at 1 atm. However, due to significantly lower pulse energy of the fs laser (5 mJ) compared to pulse energy of the ns laser (100 mJ) used in our studies, the values of pressure, temperature, mass density, and velocity are found to be smaller in the fs laser plume, and their time evolution occurs much faster on the same time scale. The oscillatory shock waves clearly visible in the ns plume are not observed in the internal region of the fs plume. These experimental and computational results provide a quantitative understanding of plasma expansion and shockwave formation in fs-pulse and ns-pulse laser ablated Al plumes in an ambient gas at atmospheric pressures.« less
Competition between Bose-Einstein Condensation and Spin Dynamics.
Naylor, B; Brewczyk, M; Gajda, M; Gorceix, O; Maréchal, E; Vernac, L; Laburthe-Tolra, B
2016-10-28
We study the impact of spin-exchange collisions on the dynamics of Bose-Einstein condensation by rapidly cooling a chromium multicomponent Bose gas. Despite relatively strong spin-dependent interactions, the critical temperature for Bose-Einstein condensation is reached before the spin degrees of freedom fully thermalize. The increase in density due to Bose-Einstein condensation then triggers spin dynamics, hampering the formation of condensates in spin-excited states. Small metastable spinor condensates are, nevertheless, produced, and they manifest in strong spin fluctuations.
Lumped Multi-Bubble Analysis of Injection Cooling System for Storage of Cryogenic Liquids
NASA Astrophysics Data System (ADS)
Saha, Pritam; Sandilya, Pavitra
2017-12-01
Storage of cryogenic liquids is a critical issue in many cryogenic applications. Subcooling of the liquid by bubbling a gas has been suggested to extend the storage period by reducing the boil-off loss. Liquid evaporation into the gas may cause liquid subcooling by extracting the latent heat of vaporization from the liquid. The present study aims at studying the factors affecting the liquid subcooling during gas injection. A lumped parameter model is presented to capture the effects of bubble dynamics (coalescence, breakup, deformation etc.) on the heat and mass transport between the gas and the liquid. The liquid subcooling has been estimated as a function of the key operating variables such as gas flow rate and gas injection temperature. Numerical results have been found to predict the change in the liquid temperature drop reasonably well when compared with the previously reported experimental results. This modelling approach can therefore be used in gauging the significance of various process variables on the liquid subcooling by injection cooling, as well as in designing and rating an injection cooling system.
EFFECTS OF GAMMA IRRADIATION ON EPDM ELASTOMERS (REVISION 1)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, E.
Two formulations of EPDM elastomer, one substituting a UV stabilizer for the normal antioxidant in this polymer, and the other the normal formulation, were synthesized and samples of each were exposed to gamma irradiation in initially pure deuterium gas to compare their radiation stability. Stainless steel containers having rupture disks were designed for this task. After 130 MRad dose of cobalt-60 radiation in the SRNL Gamma Irradiation Facility, a significant amount of gas was created by radiolysis; however the composition indicated by mass spectroscopy indicated an unexpected increase in the total amount deuterium in both formulations. The irradiated samples retainedmore » their ductility in a bend test. No change of sample weight, dimensions, or density was observed. No change of the glass transition temperature as measured by dynamic mechanical analysis was observed, and most of the other dynamic mechanical properties remained unchanged. There appeared to be an increase in the storage modulus of the irradiated samples containing the UV stabilizer above the glass transition, which may indicate hardening of the material by radiation damage. Revision 1 adds a comparison with results of a study of tritium exposed EPDM. The amount of gas produced by the gamma irradiation was found to be equivalent to about 280 days exposure to initially pure tritium gas at one atmosphere. The glass transition temperature of the tritium exposed EPDM rose about 10°C. over 280 days, while no glass transition temperature change was observed for gamma irradiated EPDM. This means that gamma irradiation in deuterium cannot be used as a surrogate for tritium exposure.« less
A Simple and Accurate Network for Hydrogen and Carbon Chemistry in the Interstellar Medium
NASA Astrophysics Data System (ADS)
Gong, Munan; Ostriker, Eve C.; Wolfire, Mark G.
2017-07-01
Chemistry plays an important role in the interstellar medium (ISM), regulating the heating and cooling of the gas and determining abundances of molecular species that trace gas properties in observations. Although solving the time-dependent equations is necessary for accurate abundances and temperature in the dynamic ISM, a full chemical network is too computationally expensive to incorporate into numerical simulations. In this paper, we propose a new simplified chemical network for hydrogen and carbon chemistry in the atomic and molecular ISM. We compare results from our chemical network in detail with results from a full photodissociation region (PDR) code, and also with the Nelson & Langer (NL99) network previously adopted in the simulation literature. We show that our chemical network gives similar results to the PDR code in the equilibrium abundances of all species over a wide range of densities, temperature, and metallicities, whereas the NL99 network shows significant disagreement. Applying our network to 1D models, we find that the CO-dominated regime delimits the coldest gas and that the corresponding temperature tracks the cosmic-ray ionization rate in molecular clouds. We provide a simple fit for the locus of CO-dominated regions as a function of gas density and column. We also compare with observations of diffuse and translucent clouds. We find that the CO, {{CH}}x, and {{OH}}x abundances are consistent with equilibrium predictions for densities n=100{--}1000 {{cm}}-3, but the predicted equilibrium C abundance is higher than that seen in observations, signaling the potential importance of non-equilibrium/dynamical effects.
Parkes, Marie V.; Greathouse, Jeffery A.; Hart, David B.; ...
2016-04-04
The separation of oxygen from nitrogen using metal–organic frameworks (MOFs) is of great interest for potential pressure-swing adsorption processes for the generation of purified O 2 on industrial scales. This study uses ab initio molecular dynamics (AIMD) simulations to examine for the first time the pure-gas and competitive gas adsorption of O 2 and N 2 in the M 2(dobdc) (M = Cr, Mn, Fe) MOF series with coordinatively unsaturated metal centers. Effects of metal, temperature, and gas composition are explored. Lastly, this unique application of AIMD allows us to study in detail the adsorption/desorption processes and to visualize themore » process of multiple guests competitively binding to coordinatively unsaturated metal sites of a MOF.« less
Discovering the gas laws and understanding the kinetic theory of gases with an iPad app
NASA Astrophysics Data System (ADS)
Davies, Gary B.
2017-07-01
Carrying out classroom experiments that demonstrate Boyle’s law and Gay-Lussac’s law can be challenging. Even if we are able to conduct classroom experiments using pressure gauges and syringes, the results of these experiments do little to illuminate the kinetic theory of gases. However, molecular dynamics simulations that run on computers allow us to visualise the behaviour of individual particles and to link this behaviour to the bulk properties of the gas e.g. its pressure and temperature. In this article, I describe how to carry out ‘computer experiments’ using a commercial molecular dynamics iPad app called Atoms in Motion [1]. Using the app, I show how to obtain data from simulations that demonstrate Boyle’s law and Gay-Lussac’s law, and hence also the combined gas law.
NASA Astrophysics Data System (ADS)
Yousfi, M.; Merbahi, N.; Reichert, F.; Petchanka, A.
2017-03-01
Measurements of breakdown voltage Vb, gas temperature Tg, and density N and the associated critical electric field Ecr/N are performed in hot dissociated SF6 highly diluted in argon and in hot dissociated SF6 mixed with PTFE (Polytetrafluoroethylene or C2F4) also highly diluted in argon. Gases are heated using a microwave source and optical emission spectroscopy is used for measurements of Tg and N while Vb is measured from a specific inter-electrode arrangement placed inside of the cell of the hot gas conditioning. The experimental Ecr/N data in the numerous considered cases of gas temperatures and compositions have been used to evaluate and validate the sets of the collision cross sections of the 11 species involved in hot dissociated SF6 (i.e., SF6, SF5, SF4, S2F2, SF3, SF2, SF, S2, F2, F, and S), the 13 additional species involved either in hot C2F4 or CF4 (C2F6, C2F4, C2F2, CF4, CF3, CF2, CF, F2, F and carbon species as C, C2, C3, C4) and also the 2 further species (CS and CS2) present only in the considered mixtures SF6 + C2F4. The fitted sets of collision cross sections of all these 26 species are then used without argon dilution in hot SF6 and hot SF6 + C2F4 mixtures to calculate and to analyze the Ecr/N data obtained for a wide range of gas temperature (up to 4000 K) and gas pressure (8 bar and more) using a rigorous multi-term solution of the Boltzmann equation for electron energy distribution function and standard calculations of hot gas composition for the species proportions. Such Ecr/N data have been then successfully used to evaluate from a Computational Fluid Dynamics model the switching capacity at terminal fault from a coupled simulation of the electrostatic field and the hot gas flow after current zero.
High Temperature Fusion Reactor Cooling Using Brayton Cycle Based Partial Energy Conversion
NASA Technical Reports Server (NTRS)
Juhasz, Albert J.; Sawicki, Jerzy T.
2003-01-01
For some future space power systems using high temperature nuclear heat sources most of the output energy will be used in other than electrical form, and only a fraction of the total thermal energy generated will need to be converted to electrical work. The paper describes the conceptual design of such a partial energy conversion system, consisting of a high temperature fusion reactor operating in series with a high temperature radiator and in parallel with dual closed cycle gas turbine (CCGT) power systems, also referred to as closed Brayton cycle (CBC) systems, which are supplied with a fraction of the reactor thermal energy for conversion to electric power. Most of the fusion reactor's output is in the form of charged plasma which is expanded through a magnetic nozzle of the interplanetary propulsion system. Reactor heat energy is ducted to the high temperature series radiator utilizing the electric power generated to drive a helium gas circulation fan. In addition to discussing the thermodynamic aspects of the system design the authors include a brief overview of the gas turbine and fan rotor-dynamics and proposed bearing support technology along with performance characteristics of the three phase AC electric power generator and fan drive motor.
High Temperature Fusion Reactor Cooling Using Brayton Cycle Based Partial Energy Conversion
NASA Astrophysics Data System (ADS)
Juhasz, Albert J.; Sawicki, Jerzy T.
2004-02-01
For some future space power systems using high temperature nuclear heat sources most of the output energy will be used in other than electrical form, and only a fraction of the total thermal energy generated will need to be converted to electrical work. The paper describes the conceptual design of such a ``partial energy conversion'' system, consisting of a high temperature fusion reactor operating in series with a high temperature radiator and in parallel with dual closed cycle gas turbine (CCGT) power systems, also referred to as closed Brayton cycle (CBC) systems, which are supplied with a fraction of the reactor thermal energy for conversion to electric power. Most of the fusion reactor's output is in the form of charged plasma which is expanded through a magnetic nozzle of the interplanetary propulsion system. Reactor heat energy is ducted to the high temperature series radiator utilizing the electric power generated to drive a helium gas circulation fan. In addition to discussing the thermodynamic aspects of the system design the authors include a brief overview of the gas turbine and fan rotor-dynamics and proposed bearing support technology along with performance characteristics of the three phase AC electric power generator and fan drive motor.
Jafarpour, Farshid; Angheluta, Luiza; Goldenfeld, Nigel
2013-10-01
The dynamics of edge dislocations with parallel Burgers vectors, moving in the same slip plane, is mapped onto Dyson's model of a two-dimensional Coulomb gas confined in one dimension. We show that the tail distribution of the velocity of dislocations is power law in form, as a consequence of the pair interaction of nearest neighbors in one dimension. In two dimensions, we show the presence of a pairing phase transition in a system of interacting dislocations with parallel Burgers vectors. The scaling exponent of the velocity distribution at effective temperatures well below this pairing transition temperature can be derived from the nearest-neighbor interaction, while near the transition temperature, the distribution deviates from the form predicted by the nearest-neighbor interaction, suggesting the presence of collective effects.
Dynamic void behavior in polymerizing polymethyl methacrylate cement.
Muller, Scott D; McCaskie, Andrew W
2006-02-01
Cement mantle voids remain controversial with respect to survival of total hip arthroplasty. Void evolution is poorly understood, and attempts at void manipulation can only be empirical. We induced voids in a cement model simulating the constraints of the proximal femur. Intravoid pressure and temperature were recorded throughout polymerization, and the initial and final void volumes were measured. Temperature-dependent peak intravoid pressures and void volume increases were observed. After solidification, subatmospheric intravoid pressures were observed. The magnitude of these observations could not be explained by the ideal gas law. Partial pressures of the void gas at peak pressures demonstrated a dominant effect of gaseous monomer, thereby suggesting that void growth is a pressure-driven phenomenon resulting from temperature-dependent evaporation of monomer into existing trapped air voids.
Chang, Yang; Zhao, Xiao-zhuo; Wang, Cheng; Ning, Fang-gang; Zhang, Guo-an
2015-01-01
Inhalation injury is an important cause of death after thermal burns. This study was designed to simulate the velocity and temperature distribution of inhalation thermal injury in the upper airway in humans using computational fluid dynamics. Cervical computed tomography images of three Chinese adults were imported to Mimics software to produce three-dimensional models. After grids were established and boundary conditions were defined, the simulation time was set at 1 minute and the gas temperature was set to 80 to 320°C using ANSYS software (ANSYS, Canonsburg, PA) to simulate the velocity and temperature distribution of inhalation thermal injury. Cross-sections were cut at 2-mm intervals, and maximum airway temperature and velocity were recorded for each cross-section. The maximum velocity peaked in the lower part of the nasal cavity and then decreased with air flow. The velocities in the epiglottis and glottis were higher than those in the surrounding areas. Further, the maximum airway temperature decreased from the nasal cavity to the trachea. Computational fluid dynamics technology can be used to simulate the velocity and temperature distribution of inhaled heated air.
A UAV-Mounted Whole Cell Biosensor System for Environmental Monitoring Applications
Lu, Yi; Macias, Dominique; Dean, Zachary S.; Kreger, Nicole R.; Wong, Pak Kin
2016-01-01
This study reports the development of a portable whole cell biosensor system for environmental monitoring applications, such as air quality control, water pollution monitoring and radiation leakage detection. The system consists of a lightweight mechanical housing, a temperature regulating system, and a microfluidic bacterial inoculation channel. The overall system, which is less than 200 g, serves as a portable incubator for cell inoculation and can be mounted on an unmanned aerial vehicle for monitoring remote and unreachable locations. The feedback control system maintains the inoculation temperature within 0.05 degree Celsius. The large surface-to-volume ratio of the polydimethylsiloxane microchannel facilitates effective gas exchange for rapid bacterial growth. Molecular dynamic simulation shows effective diffusion of major gas pollutants in PDMS toward gas sensing applications. By optimizing the design, we demonstrate the operation of the system in ambient temperatures from 5°C to 32°C and rapid bacterial growth in microchannels compared to standard bacterial culture techniques. PMID:26584498
Bose-Einstein condensation of spin wave quanta at room temperature.
Dzyapko, O; Demidov, V E; Melkov, G A; Demokritov, S O
2011-09-28
Spin waves are delocalized excitations of magnetic media that mainly determine their magnetic dynamics and thermodynamics at temperatures far below the critical one. The quantum-mechanical counterparts of spin waves are magnons, which can be considered as a gas of weakly interacting bosonic quasi-particles. Here, we discuss the room-temperature kinetics and thermodynamics of the magnon gas in yttrium iron garnet films driven by parametric microwave pumping. We show that for high enough pumping powers, the thermalization of the driven gas results in a quasi-equilibrium state described by Bose-Einstein statistics with a non-zero chemical potential. Further increases of the pumping power cause a Bose-Einstein condensation documented by an observation of the magnon accumulation at the lowest energy level. Using the sensitivity of the Brillouin light scattering spectroscopy to the degree of coherence of the scattering magnons, we confirm the spontaneous emergence of coherence of the magnons accumulated at the bottom of the spectrum, occurring if their density exceeds a critical value.
Corrosion of Advanced Steels: Challenges in the Oil and Gas Industry
NASA Astrophysics Data System (ADS)
Mishra, Brajendra; Apelian, Diran
Drill pipe steels are in contact with CO2 and H2S environments, depending on the oil and gas field. These steels have to be resistant to various in-service conditions including aggressive environments containing CO2, H2S, O2, and chlorides, in addition to static and dynamic mechanical stresses. In this respect stress corrosion cracking susceptibility of two grades of drill pipe steel in CO2 environment have been studied simulating the bottom hole oil and gas well conditions. SSRT results show that SCC susceptibility or loss of ductility changes with temperature and increasing temperature increases the loss of ductility. No FeCO3 is observed below 100 °C, and density of FeCO3 is higher in grip section than gauge length and this is due to strain disturbance of growth of iron carbonate crystals. Material selection for down hole in CO2 containing environments needs has been reviewed and probability of SCC occurrence in higher temperatures has been included.
A Finite-Rate-Catalytic Model For Hypersonic Flows Informed By Molecular Dynamics
NASA Astrophysics Data System (ADS)
Schwartzentruber, T. E.; Valentini, P.; Norman, P.; Sorensen, C.
2011-05-01
The implementation of a finite-rate catalytic (FRC) wall boundary condition within a general 3D unstructured CFD solver is described. A set of one-step gas-surface chemical equations and atomistic parameters that deter- mine the reaction rates must be prescribed as input to the model. The chemical rate equations are solved at each wall face in the CFD simulation and result in a net production of species at the wall. In order for a finite- rate gas-surface reaction model to be consistent at equilibrium, it is determined that not all forward and back- ward rates can be specified arbitrarily. Provided that the forward rates for each surface recombination are as- signed, the backward rates must be determined using equilibrium constants that are consistent with the gas- phase chemistry model and thermodynamics. Reactive molecular dynamics (MD) simulations are performed us- ing the ReaxFFSiO potential to investigate oxygen-silica interactions. β-quartz and amorphous SiO2 surfaces are accommodated to a high temperature gas via MD simulation and reach a steady-state surface coverage. In addition to stable surface reconstructions a number of active sites are observed on which recombination occurs. Single collision MD simulations are performed where gas-phase oxygen atoms interact with the most dominant active site. Probabilities of recombination are found to have an exponential trend with gas-surface system temperature. The MD simulations are used to determine the activation energy for Eley-Rideal recombination of oxygen on a specific silica active site which is an important input parameter for the FRC model.
Zhang, Zhi-Yu; Papadopoulos, Padelis P; Ivison, R J; Galametz, Maud; Smith, M W L; Xilouris, Emmanuel M
2016-06-01
Images of dust continuum and carbon monoxide (CO) line emission are powerful tools for deducing structural characteristics of galaxies, such as disc sizes, H2 gas velocity fields and enclosed H2 and dynamical masses. We report on a fundamental constraint set by the cosmic microwave background (CMB) on the observed structural and dynamical characteristics of galaxies, as deduced from dust continuum and CO-line imaging at high redshifts. As the CMB temperature rises in the distant Universe, the ensuing thermal equilibrium between the CMB and the cold dust and H2 gas progressively erases all spatial and spectral contrasts between their brightness distributions and the CMB. For high-redshift galaxies, this strongly biases the recoverable H2 gas and dust mass distributions, scale lengths, gas velocity fields and dynamical mass estimates. This limitation is unique to millimetre/submillimetre wavelengths and unlike its known effect on the global dust continuum and molecular line emission of galaxies, it cannot be addressed simply. We nevertheless identify a unique signature of CMB-affected continuum brightness distributions, namely an increasing rather than diminishing contrast between such brightness distributions and the CMB when the cold dust in distant galaxies is imaged at frequencies beyond the Raleigh-Jeans limit. For the molecular gas tracers, the same effect makes the atomic carbon lines maintain a larger contrast than the CO lines against the CMB.
NASA Astrophysics Data System (ADS)
Fomin, Yu D.; Ryzhov, V. N.; Tsiok, E. N.; Proctor, J. E.; Prescher, C.; Prakapenka, V. B.; Trachenko, K.; Brazhkin, V. V.
2018-04-01
We review recent work aimed at understanding dynamical and thermodynamic properties of liquids and supercritical fluids. The focus of our discussion is on solid-like transverse collective modes, whose evolution in the supercritical fluids enables one to discuss the main properties of the Frenkel line separating rigid liquid-like and non-rigid gas-like supercritical states. We subsequently present recent experimental evidence of the Frenkel line showing that structural and dynamical crossovers are seen at a pressure and temperature corresponding to the line as predicted by theory and modelling. Finally, we link dynamical and thermodynamic properties of liquids and supercritical fluids by the new calculation of liquid energy governed by the evolution of solid-like transverse modes. The disappearance of those modes at high temperature results in the observed decrease of heat capacity.
Chemistry in a gravitationally unstable protoplanetary disc
NASA Astrophysics Data System (ADS)
Ilee, J. D.; Boley, A. C.; Caselli, P.; Durisen, R. H.; Hartquist, T. W.; Rawlings, J. M. C.
2011-11-01
Until now, axisymmetric, α-disc models have been adopted for calculations of the chemical composition of protoplanetary discs. While this approach is reasonable for many discs, it is not appropriate when self-gravity is important. In this case, spiral waves and shocks cause temperature and density variations that affect the chemistry. We have adopted a dynamical model of a solar-mass star surrounded by a massive (0.39 M⊙), self-gravitating disc, similar to those that may be found around Class 0 and early Class I protostars, in a study of disc chemistry. We find that for each of a number of species, e.g. H2O, adsorption and desorption dominate the changes in the gas-phase fractional abundance; because the desorption rates are very sensitive to temperature, maps of the emissions from such species should reveal the locations of shocks of varying strengths. The gas-phase fractional abundances of some other species, e.g. CS, are also affected by gas-phase reactions, particularly in warm shocked regions. We conclude that the dynamics of massive discs have a strong impact on how they appear when imaged in the emission lines of various molecular species.
Optimization of a new flow design for solid oxide cells using computational fluid dynamics modelling
NASA Astrophysics Data System (ADS)
Duhn, Jakob Dragsbæk; Jensen, Anker Degn; Wedel, Stig; Wix, Christian
2016-12-01
Design of a gas distributor to distribute gas flow into parallel channels for Solid Oxide Cells (SOC) is optimized, with respect to flow distribution, using Computational Fluid Dynamics (CFD) modelling. The CFD model is based on a 3d geometric model and the optimized structural parameters include the width of the channels in the gas distributor and the area in front of the parallel channels. The flow of the optimized design is found to have a flow uniformity index value of 0.978. The effects of deviations from the assumptions used in the modelling (isothermal and non-reacting flow) are evaluated and it is found that a temperature gradient along the parallel channels does not affect the flow uniformity, whereas a temperature difference between the channels does. The impact of the flow distribution on the maximum obtainable conversion during operation is also investigated and the obtainable overall conversion is found to be directly proportional to the flow uniformity. Finally the effect of manufacturing errors is investigated. The design is shown to be robust towards deviations from design dimensions of at least ±0.1 mm which is well within obtainable tolerances.
NASA Technical Reports Server (NTRS)
Grant, J.R.; Thorpe, A. N.; James, C.; Michael, A.; Ware, M.; Senftle, F.; Smith, S.
1997-01-01
During recent high altitude flights, we have tested the aerosol section of the fast flow flight cascade impactor quartz crystal microbalance (QCM) on loan to Howard University from NASA. The aerosol mass collected during these flights was disappointingly small. Increasing the flow through the QCM did not correct the problem. It was clear that the instrument was not being operated under proper conditions for aerosol collect ion primarily because the gas dynamics is not well understood. A laboratory study was therefore undertaken using two different fast flow QCM's in an attempt to establish the gas flow characteristics of the aerosol sections and its effect on particle collection, Some tests were made at low temperatures but most of the work reported here was carried out at room temperature. The QCM is a cascade type impactor originally designed by May (1945) and later modified by Anderson (1966) and Mercer et al (1970) for chemical gas analysis. The QCM has been used extensively for collecting and sizing stratospheric aerosol particles. In this paper all flow rates are given or corrected and referred to in terms of air at STP. All of the flow meters were kept at STP. Although there have been several calibration and evaluation studies of moderate flow cascade impactors of less than or equal to 1 L/rein., there is little experimental information on the gas flow characteristics for fast flow rates greater than 1 L/rein.
Thermosphere Dynamics Workshop, volume 2
NASA Technical Reports Server (NTRS)
Mayr, H. G. (Editor); Miller, N. J. (Editor)
1986-01-01
Atmospheric observations reported on include recent measurements of thermospherical composition, gas temperatures, auroral emissions, ion-neutral collisional coupling, electric fields, and plasma convection. Theoretical studies reported on include model calculations of thermospherical general circulation, thermospheric tides, thermospheric tidal coupling to the lower atmosphere, interactions between thermospheic chemistry and dynamics and thermosphere-ionosphere coupling processes. The abstracts provide details given in each talk but the figures represent the fundamental information exchanged within the workshop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gun’ko, Vladimir M.; Sir Harry Ricardo Laboratories, School of Computing, Engineering and Mathematics, University of Brighton, Cockcroft Building, Lewes Road, Brighton BN2 4GJ; Nasiri, Rasoul
2015-01-21
The evaporation/condensation coefficient (β) and the evaporation rate (γ) for n-dodecane vs. temperature, gas pressure, gas and liquid density, and solvation effects at a droplet surface are analysed using quantum chemical density functional theory calculations of several ensembles of conformers of n-dodecane molecules in the gas phase (hybrid functional ωB97X-D with the cc-pVTZ and cc-pVDZ basis sets) and in liquid phase (solvation method: SMD/ωB97X-D). It is shown that β depends more strongly on a number of neighbouring molecules interacting with an evaporating molecule at a droplet surface (this number is estimated through changes in the surface Gibbs free energy ofmore » solvation) than on pressure in the gas phase or conformerisation and cross-conformerisation of molecules in both phases. Thus, temperature and the surrounding effects at droplet surfaces are the dominant factors affecting the values of β for n-dodecane molecules. These values are shown to be similar (at reduced temperatures T/T{sub c} < 0.8) or slightly larger (at T/T{sub c} > 0.8) than the values of β calculated by the molecular dynamics force fields (MD FF) methods. This endorses the reliability of the previously developed classical approach to estimation of β by the MD FF methods, except at temperatures close to the critical temperature.« less
Mass and Dynamical Structures of the Lensing Clusters CL0024+17 and CL2244+02
NASA Technical Reports Server (NTRS)
Forman, William; Mushotzky, Richard (Technical Monitor)
2004-01-01
We present a detailed gravitational mass measurement based on the XMM-Newton imaging spectroscopy analysis of the lensing cluster of galaxies CL0024+17 at $z = 0.395$. The emission appears approximately symmetric. However, on the scale of $r\\sim3.3'$, some indication of elongation is visible in the northwest-southeast direction from the hardness ratio map. Within $3'$, we measure a global gas temperature of $3.52\\pm0.17$ keV, metallicity of $0.22\\pm0.07$, and a bolometric luminosity of $2.9\\pm0. l\\times10(exp 44)$ erg/s. We derive a temperature distribution with an isothermal temperature of 3.9 keV up to a radius of $1.5'$ and a strong temperature gradient in the outskirts ($1.3' less than r less than 3.3'$). Under the assumption of hydrostatic equilibrium, we measure the gravitational mass and gas mass fraction to be $M-{200} = 2.0\\pm0.3\\times 10(exp 14)$ solar masses and $f-{gas} = 0.20\\pm0.03$ at $r-{200} = 1.05$ Mpc (all for a Hubble constant of 70 km/sec/Mpc) using the observed gas temperature profile. The complex core structure is the key to explaining the discrepancy between the gravitational mass determined from the XMM-Newton observations and HST optical lensing measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jong Suk; Bragg-Sitton, Shannon M.; Boardman, Richard D.
This report has been prepared as part of an effort to design and build a modeling and simulation (M&S) framework to assess the economic viability of a nuclear-renewable hybrid energy system (N-R HES). In order to facilitate dynamic M&S of such an integrated system, research groups in multiple national laboratories have been developing various subsystems as dynamic physics-based components using the Modelica programming language. In fiscal year 2015 (FY15), Idaho National Laboratory (INL) performed a dynamic analysis of two region-specific N-R HES configurations, including the gas-to-liquid (natural gas to Fischer-Tropsch synthetic fuel) and brackish water reverse osmosis desalination plants asmore » industrial processes. In FY16, INL developed two additional subsystems in the Modelica framework: (1) a high-temperature steam electrolysis (HTSE) plant as a high priority industrial plant to be integrated with a light water reactor (LWR) within an N-R HES and (2) a gas turbine power plant as a secondary energy supply. In FY17, five new components (i.e., a feedwater pump, a multi-stage compression system, a sweep-gas turbine, flow control valves, and pressure control valves) have been incorporated into the HTSE system proposed in FY16, aiming to better realistically characterize all key components of concern. Special attention has been given to the controller settings based on process models (i.e., direct synthesis method), aiming to improve process dynamics and controllability. A dynamic performance analysis of the improved LWR/HTSE integration case was carried out to evaluate the technical feasibility (load-following capability) and safety of such a system operating under highly variable conditions requiring flexible output. The analysis (evaluated in terms of the step response) clearly shows that the FY17 model resulted in superior output responses with much smaller settling times and less oscillatory behavior in response to disturbances in the electric load than those observed with the FY16 model. Simulation results involving several case studies show that the suggested control scheme could maintain the controlled variables (including the steam utilization factor, cathode stream inlet composition, and temperatures and pressures of the process streams at various locations) within desired limits under various plant operating conditions. The results also indicate that the proposed HTSE plant could provide operational flexibility to participate in energy management at the utility scale by dynamically optimizing the use of excess plant capacity within an N-R HES.« less
Dynamic Contraction of the Positive Column of a Self-Sustained Glow Discharge in Molecular Gas Flow
NASA Astrophysics Data System (ADS)
Shneider, Mikhail
2014-10-01
Contraction of the gas discharge, when current contracts from a significant volume of weakly ionized plasma into a thin arc channel, was attracted attention of scientists for more than a century. Studies of the contraction (also called constriction) mechanisms, besides carrying interesting science, are of practical importance, especially when contraction should be prevented. A set of time-dependent two-dimensional equations for the non-equilibrium weakly-ionized nitrogen/ air plasma is formulated. The process is described by a set of time-dependent continuity equations for the electrons, positive and negative ions; gas and vibrational temperature; by taking into account the convective heat and plasma losses by the transverse flux. Transition from the uniform to contracted state was analyzed. It was shown that such transition experiences a hysteresis, and that the critical current of the transition increases when the pressure (gas density) drops. Possible coexistence of the contracted and uniform state of the plasma in the discharge where the current flows along the density gradient of the background gas was discussed. In this talk the problems related to the dynamic contraction of the current channel inside a quasineutral positive column of a self-sustained glow discharge in molecular gas in a rectangular duct with convection cooling will be discussed. Study presented in this talk was stimulated by the fact that there are large number of experiments on the dynamic contraction of a glow discharge in nitrogen and air flows and a many of possible applications. Similar processes play a role in the powerful gas-discharge lasers. In addition, the problem of dynamic contraction in the large volume of non-equilibrium weakly ionized plasma is closely related to the problem of streamer to leader transitions in lightning and blue jets.
Molecular Gas in Local Mergers: Understanding Mergers using High Density Gas Tracers
NASA Astrophysics Data System (ADS)
Manohar, Swarnima; Scoville, N.; Sheth, K.
2013-01-01
NGC 6240 and Arp 220 can be considered the founding members of a very active class of objects called Ultraluminous Infrared Galaxies or ULIRGs. They are in different stages of mergers and hence are excellent case studies to enhance our knowledge about the merging process. We have imaged the dense star-forming regions of these galaxies at sub-arcsec resolution with ALMA and CARMA. Multi-band imaging will allow multilevel excitation analysis of HCN, HCO+ and CS transitions which will be used to constrain the properties of the gas as a function of position and velocity (across line profiles). We aim to do an extensive multilevel excitation analysis of the merger as a function of radius which will enable in depth understanding of the gas dynamics and gas properties such as temperature and density. This will in turn probe the homogeneity of the gas in the merging system and hence the regions that facilitate high star formation rates. This tandem use of CARMA with ALMA to map these systems at different merger stages will help assemble a more integrated picture of the merger process. We will probe the distribution and dynamics of star forming gas and star formation activity in the dense disk structures to enable new theoretical understanding of the physics, dynamics, star formation activity and associated feedback in the most active and rapidly evolving galactic nuclei. Here we present preliminary observations of Arp 220 and NGC 6240 from ALMA and CARMA.
Molecular Gas in Starburts ARP 220 & NGC 6240: Understanding Mergers using High Density Gas Tracers
NASA Astrophysics Data System (ADS)
Manohar, Swarnima; Scoville, Nicholas; Sheth, Kartik
2015-01-01
NGC 6240 and Arp 220 can be considered the founding members of a very active class of objects called Ultraluminous Infrared Galaxies or ULIRGs. They are in different stages of mergers and hence are excellent case studies to enhance our knowledge about the merging process. We have imaged the dense star-forming regions of these galaxies at sub-arcsec resolution with ALMA and CARMA. Multi-band imaging allows multilevel excitation analysis of HCN, HCO+ and CS transitions which will constrain the properties of the gas as a function of position and velocity (across line profiles). We are doing an extensive multilevel excitation analysis of the merger as a function of radius which enables in depth understanding of the gas dynamics and gas properties such as temperature and density. This in turn probes the homogeneity of the gas in the merging system and hence the regions that facilitate high star formation rates. This tandem use of CARMA with ALMA to map these systems at different merger stages will assemble a more integrated picture of the merger process. We are probing the distribution and dynamics of star forming gas and star formation activity in the dense disk structures to enable new theoretical understanding of the physics, dynamics, star formation activity and associated feedback in the most active and rapidly evolving galactic nuclei. Here we present our observations of Arp 220 and NGC 6240 from ALMA and CARMA.
Dipolar Spin Ice States with a Fast Monopole Hopping Rate in CdEr2X4 (X =Se , S)
NASA Astrophysics Data System (ADS)
Gao, Shang; Zaharko, O.; Tsurkan, V.; Prodan, L.; Riordan, E.; Lago, J.; Fâk, B.; Wildes, A. R.; Koza, M. M.; Ritter, C.; Fouquet, P.; Keller, L.; Canévet, E.; Medarde, M.; Blomgren, J.; Johansson, C.; Giblin, S. R.; Vrtnik, S.; Luzar, J.; Loidl, A.; Rüegg, Ch.; Fennell, T.
2018-03-01
Excitations in a spin ice behave as magnetic monopoles, and their population and mobility control the dynamics of a spin ice at low temperature. CdEr2 Se4 is reported to have the Pauling entropy characteristic of a spin ice, but its dynamics are three orders of magnitude faster than the canonical spin ice Dy2 Ti2 O7 . In this Letter we use diffuse neutron scattering to show that both CdEr2 Se4 and CdEr2 S4 support a dipolar spin ice state—the host phase for a Coulomb gas of emergent magnetic monopoles. These Coulomb gases have similar parameters to those in Dy2 Ti2 O7 , i.e., dilute and uncorrelated, and so cannot provide three orders faster dynamics through a larger monopole population alone. We investigate the monopole dynamics using ac susceptometry and neutron spin echo spectroscopy, and verify the crystal electric field Hamiltonian of the Er3 + ions using inelastic neutron scattering. A quantitative calculation of the monopole hopping rate using our Coulomb gas and crystal electric field parameters shows that the fast dynamics in CdEr2X4 (X =Se , S) are primarily due to much faster monopole hopping. Our work suggests that CdEr2X4 offer the possibility to study alternative spin ice ground states and dynamics, with equilibration possible at much lower temperatures than the rare earth pyrochlore examples.
ACCEPT 2: A public library of cluster properties
NASA Astrophysics Data System (ADS)
Donahue, Megan
2012-09-01
The current public ACCEPT database of cluster properties includes radial profiles of Tx, n_elec, entropy, and cooling time. We propose to more than double the current number of clusters in ACCEPT and to expand the current suite of properties to include uniformly measured profiles of gas mass and hydrostatic equilibrium mass along with signatures of dynamical relaxation (centroid shift, power ratios, surface brightness concentration, temperature ratios) and global quantities such as core-excised Tx, Lx, and metallicities. We will explore the relationship between cool cores and dynamical relaxation, the reliability of hydrostatic mass profiles, and the dependence of the gas mass fraction on halo mass, redshift, and the degree of relaxation. ACCEPT2 will enable further community science.
NASA Astrophysics Data System (ADS)
Li, Dong; Feng, Chi; Gao, Shan; Chen, Liwei; Daniel, Ketui
2018-06-01
Accurate measurement of gas turbine blade temperature is of great significance as far as blade health monitoring is concerned. An important method for measuring this temperature is the use of a radiation pyrometer. In this research, error of the pyrometer caused by reflected radiation from the surfaces surrounding the target and the emission angle of the target was analyzed. Important parameters for this analysis were the view factor between interacting surfaces, spectral directional emissivity, pyrometer operating wavelength and the surface temperature distribution on the blades and the vanes. The interacting surface of the rotor blade and the vane models used were discretized using triangular surface elements from which contour integral was used to calculate the view factor between the surface elements. Spectral directional emissivities were obtained from an experimental setup of Ni based alloy samples. A pyrometer operating wavelength of 1.6 μm was chosen. Computational fluid dynamics software was used to simulate the temperature distribution of the rotor blade and the guide vane based on the actual gas turbine input parameters. Results obtained in this analysis show that temperature error introduced by reflected radiation and emission angle ranges from ‑23 K to 49 K.
Description and control of dissociation channels in gas-phase protein complexes
NASA Astrophysics Data System (ADS)
Thachuk, Mark; Fegan, Sarah K.; Raheem, Nigare
2016-08-01
Using molecular dynamics simulations of a coarse-grained model of the charged apo-hemoglobin protein complex, this work expands upon our initial report [S. K. Fegan and M. Thachuk, J. Am. Soc. Mass Spectrom. 25, 722-728 (2014)] about control of dissociation channels in the gas phase using specially designed charge tags. Employing a charge hopping algorithm and a range of temperatures, a variety of dissociation channels are found for activated gas-phase protein complexes. At low temperatures, a single monomer unfolds and becomes charge enriched. At higher temperatures, two additional channels open: (i) two monomers unfold and charge enrich and (ii) two monomers compete for unfolding with one eventually dominating and the other reattaching to the complex. At even higher temperatures, other more complex dissociation channels open with three or more monomers competing for unfolding. A model charge tag with five sites is specially designed to either attract or exclude charges. By attaching this tag to the N-terminus of specific monomers, the unfolding of those monomers can be decidedly enhanced or suppressed. In other words, using charge tags to direct the motion of charges in a protein complex provides a mechanism for controlling dissociation. This technique could be used in mass spectrometry experiments to direct forces at specific attachment points in a protein complex, and hence increase the diversity of product channels available for quantitative analysis. In turn, this could provide insight into the function of the protein complex in its native biological environment. From a dynamics perspective, this system provides an interesting example of cooperative behaviour involving motions with differing time scales.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al-Wahish, Amal; Armitage, D.; Hill, B.
A design for a sample cell system suitable for high temperature Quasi-Elastic Neutron Scattering (QENS) experiments is presented. The apparatus was developed at the Spallation Neutron Source in Oak Ridge National Lab where it is currently in use. The design provides a special sample cell environment under controlled humid or dry gas flow over a wide range of temperature up to 950 °C. Using such a cell, chemical, dynamical, and physical changes can be studied in situ under various operating conditions. While the cell combined with portable automated gas environment system is especially useful for in situ studies of microscopic dynamicsmore » under operational conditions that are similar to those of solid oxide fuel cells, it can additionally be used to study a wide variety of materials, such as high temperature proton conductors. The cell can also be used in many different neutron experiments when a suitable sample holder material is selected. The sample cell system has recently been used to reveal fast dynamic processes in quasi-elastic neutron scattering experiments, which standard probes (such as electrochemical impedance spectroscopy) could not detect. In this work, we outline the design of the sample cell system and present results demonstrating its abilities in high temperature QENS experiments.« less
Milestone report: The simulation of radiation driven gas diffusion in UO 2 at low temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cooper, Michael William; Kuganathan, Navaratnarajah; Burr, Patrick A
2016-10-24
Below 1000 K it is thought that fission gas diffusion in nuclear fuel during irradiation occurs through atomic mixing due to radiation damage. This is an important process for nuclear reactor performance as it affects fission gas release, particularly from the periphery of the pellet where such temperatures are normal. Here we present a molecular dynamics study of Xe and Kr diffusion due to irradiation. Thermal spikes and cascades have been used to study the electronic stopping and ballistic phases of damage, respectively. Our results predict that O and Kr exhibit the greatest diffusivity and U the least, while Xemore » lies in between. It is concluded that the ballistic phase does not sufficiently account for the experimentally observed diffusion. Preliminary thermal spike calculations indicate that the electronic stopping phase generates greater fission gas displacement than the ballistic phase, although further calculation must be carried out to confirm this. A good description of the system by the empirical potentials is important over the very wide temperatures induced during thermal spike and damage cascade simulations. This has motivated the development of a parameter set for gas-actinide and gas-oxygen interactions that is complementary for use with a recent many-body potential set. A comprehensive set of density functional theory (DFT) calculations were used to study Xe and Kr incorporation at a number of sites in CeO 2, ThO 2, UO 2 and PuO 2. These structures were used to fit a potential, which was used to generate molecular dynamics (MD) configurations incorporating Xe and Kr at 300 K, 1500 K, 3000 K and 5000 K. Subsequent matching to the forces predicted by DFT for these MD configurations was used to refine the potential set. This fitting approach ensured weighted fitting to configurations that are thermodynamically significant over a broad temperature range, while avoiding computationally expensive DFT-MD calculations. The resultant gas potentials were validated against DFT binding energies and are suitable for simulating combinations of Xe and Kr in solid solutions of CeO 2, ThO 2, UO 2 and PuO 2, providing a powerful tool for the atomistic simulation of conventional nuclear reactor fuel UO 2 as well as advanced MOX fuels.« less
Adiabatic temperature changes of magma-gas mixtures during ascent and eruption
Mastin, L.G.; Ghiorso, M.S.
2001-01-01
Most quantitative studies of flow dynamics in eruptive conduits during volcanic eruptions use a simplified energy equation that ignores either temperature changes, or the thermal effects of gas exsolution. In this paper we assess the effects of those simplifications by analyzing the influence of equilibrium gas exsolution and expansion on final temperatures, velocities, and liquid viscosities of magma-gas mixtures during adiabatic decompression. For a given initial pressure (p1), temperature (T1) and melt composition, the final temperature (Tf) and velocity (Umax) will vary depending on the degree to which friction and other irreversible processes reduce mechanical energy within the conduit. The final conditions range between two thermodynamic end members: (1) Constant enthalpy (dh=0), in which Tf is maximal and no energy goes into lifting or acceleration; and (2) constant entropy (ds=0), in which Tf is minimal and maximum energy goes into lifting and acceleration. For ds=0, T1=900 ??C and p1=200 MPa, a water-saturated albitic melt cools by ???200 ??C during decompression, but only about 250 ??C of this temperature decrease can be attributed to the energy of gas exsolution per se: The remainder results from expansion of gas that has already exsolved. For the same T1 and p1, and dh=0, Tf is 10-15 ??C hotter than T1 but is about 10-25 ??C cooler than Tf in similar calculations that ignore the energy of gas exsolution. For ds=0, p1=200 MPa and T1= 9,000 ??C, assuming that all the enthalpy change of decompression goes into kinetic energy, a water-saturated albitic mixture can theoretically accelerate to ???800 m/s. Similar calculations that ignore gas exsolution (but take into account gas expansion) give velocities about 10-15% higher. For the same T1, p1 = 200 MPa, and ds = 0, the cooling associated with gas expansion and exsolution increases final melt viscosity more than 2.5 orders of magnitude. For dh = 0, isenthalpic heating decreases final melt viscosity by about 0.7 orders of magnitude. Thermal effects of gas exsolution are responsible for less than 10% of these viscosity changes. Isenthalpic heating could significantly reduce flow resistance in eruptive conduits if heat generation were concentrated along conduit walls, where shearing is greatest. Isentropic cooling could enhance clast fragmentation in near-surface vents in cases where extremely rapid pressure drops reduce gas temperatures and chill the margins of expanding pyroclasts.
NASA Astrophysics Data System (ADS)
Plaza-Faverola, A.; Vadakkepuliyambatta, S.; Hong, W.-L.; Mienert, J.; Bünz, S.; Chand, S.; Greinert, J.
2017-06-01
The Vestnesa Ridge comprises a >100 km long sediment drift located between the western continental slope of Svalbard and the Arctic mid-ocean ridges. It hosts a deep water (>1000 m) gas hydrate and associated seafloor seepage system. Near-seafloor headspace gas compositions and its methane carbon isotopic signature along the ridge indicate a predominance of thermogenic gas sources feeding the system. Prediction of the base of the gas hydrate stability zone for theoretical pressure and temperature conditions and measured gas compositions results in an unusual underestimation of the observed bottom-simulating reflector (BSR) depth. The BSR is up to 60 m deeper than predicted for pure methane and measured gas compositions with >99% methane. Models for measured gas compositions with >4% higher-order hydrocarbons result in a better BSR approximation. However, the BSR remains >20 m deeper than predicted in a region without active seepage. A BSR deeper than predicted is primarily explained by unaccounted spatial variations in the geothermal gradient and by larger amounts of thermogenic gas at the base of the gas hydrate stability zone. Hydrates containing higher-order hydrocarbons form at greater depths and higher temperatures and contribute with larger amounts of carbons than pure methane hydrates. In thermogenic provinces, this may imply a significant upward revision (up to 50% in the case of Vestnesa Ridge) of the amount of carbon in gas hydrates.
Molecular dynamics simulations of collision-induced absorption: Implementation in LAMMPS
NASA Astrophysics Data System (ADS)
Fakhardji, W.; Gustafsson, M.
2017-02-01
We pursue simulations of collision-induced absorption in a mixture of argon and xenon gas at room temperature by means of classical molecular dynamics. The established theoretical approach (Hartmann et al. 2011 J. Chem. Phys. 134 094316) is implemented with the molecular dynamics package LAMMPS. The bound state features in the absorption spectrum are well reproduced with the molecular dynamics simulation in comparison with a laboratory measurement. The magnitude of the computed absorption, however, is underestimated in a large part of the spectrum. We suggest some aspects of the simulation that could be improved.
High precision Hugoniot measurements on statically pre-compressed fluid helium
NASA Astrophysics Data System (ADS)
Seagle, Christopher T.; Reinhart, William D.; Lopez, Andrew J.; Hickman, Randy J.; Thornhill, Tom F.
2016-09-01
The capability for statically pre-compressing fluid targets for Hugoniot measurements utilizing gas gun driven flyer plates has been developed. Pre-compression expands the capability for initial condition control, allowing access to thermodynamic states off the principal Hugoniot. Absolute Hugoniot measurements with an uncertainty less than 3% on density and pressure were obtained on statically pre-compressed fluid helium utilizing a two stage light gas gun. Helium is highly compressible; the locus of shock states resulting from dynamic loading of an initially compressed sample at room temperature is significantly denser than the cryogenic fluid Hugoniot even for relatively modest (0.27-0.38 GPa) initial pressures. The dynamic response of pre-compressed helium in the initial density range of 0.21-0.25 g/cm3 at ambient temperature may be described by a linear shock velocity (us) and particle velocity (up) relationship: us = C0 + sup, with C0 = 1.44 ± 0.14 km/s and s = 1.344 ± 0.025.
Effect of point defects on the thermal conductivity of UO2: molecular dynamics simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xiang-Yang; Stanek, Christopher Richard; Andersson, Anders David Ragnar
2015-07-21
The thermal conductivity of uranium dioxide (UO 2) fuel is an important materials property that affects fuel performance since it is a key parameter determining the temperature distribution in the fuel, thus governing, e.g., dimensional changes due to thermal expansion, fission gas release rates, etc. [1] The thermal conductivity of UO 2 nuclear fuel is also affected by fission gas, fission products, defects, and microstructural features such as grain boundaries. Here, molecular dynamics (MD) simulations are carried out to determine quantitatively, the effect of irradiation induced point defects on the thermal conductivity of UO 2, as a function of defectmore » concentrations, for a range of temperatures, 300 – 1500 K. The results will be used to develop enhanced continuum thermal conductivity models for MARMOT and BISON by INL. These models express the thermal conductivity as a function of microstructure state-variables, thus enabling thermal conductivity models with closer connection to the physical state of the fuel [2].« less
High temperature strain gage technology for gas turbine engines
NASA Technical Reports Server (NTRS)
Fichtel, Edward J.; Mcdaniel, Amos D.
1994-01-01
This report summarizes the results of a six month study that addressed specific issues to transfer the Pd-13Cr static strain sensor to a gas turbine engine environment. The application issues that were addressed include: (1) evaluation of a miniature, variable potentiometer for use as the ballast resistor, in conjunction with a conventional strain gage signal conditioning unit; (2) evaluation of a metal sheathed, platinum conductor leadwire assembly for use with the three-wire sensor; and (3) subjecting the sensor to dynamic strain cyclic testing to determine fatigue characteristics. Results indicate a useful static strain gage system at all temperature levels up to 1350 F. The fatigue characteristics also appear to be very promising, indicating a potential use in dynamic strain measurement applications. The procedure, set-up, and data for all tests are presented in this report. This report also discusses the specific strain gage installation technique for the Pd-13Cr gage because of its potential impact on the quality of the output data.
Combustibility Tests of 1,1,1,2-tetrafluoroethane in a Simulated Compressor Cylinder
NASA Technical Reports Server (NTRS)
Babcock, Dale A.; Bruce, Robert A.
1997-01-01
The advantages of high-molecular-weight gas (heavy gas) as a wind-tunnel medium have been recognized for some time. The current heavy gas of choice chlorofluorocarbon-12(CFC-12) (refrigerant R12) for the Transonic Dynamics Tunnel(TDT) must be replaced because manufacture of this gas ceased in 1995. An attractive replacement is 1,1,1,2-tetrafluoroethane (refrigerant R134a). Acceptable properties of this gas include molecular weight and speed of sound. Its vapor pressure allows simplified reclamation from mixtures with air. However, it is recognized that R134a is combustible under certain conditions of temperature, pressure, and concentration. A comprehensive study was conducted to identify those conditions and the influence of various parameters on the combustibility of the gas-air mixture.
Jatana, Gurneesh S; Magee, Mark; Fain, David; Naik, Sameer V; Shaver, Gregory M; Lucht, Robert P
2015-02-10
A diode-laser-absorption-spectroscopy-based sensor system was used to perform high-speed (100 Hz to 5 kHz) measurements of gas properties (temperature, pressure, and H(2)O vapor concentration) at the turbocharger inlet and at the exhaust gas recirculation (EGR) cooler exit of a diesel engine. An earlier version of this system was previously used for high-speed measurements of gas temperature and H(2)O vapor concentration in the intake manifold of the diesel engine. A 1387.2 N m tunable distributed feedback diode laser was used to scan across multiple H(2)O absorption transitions, and the direct absorption signal was recorded using a high-speed data acquisition system. Compact optical connectors were designed to conduct simultaneous measurements in the intake manifold, the EGR cooler exit, and the turbocharger inlet of the engine. For measurements at the turbocharger inlet, these custom optical connectors survived gas temperatures as high as 800 K using a simple and passive arrangement in which the temperature-sensitive components were protected from high temperatures using ceramic insulators. This arrangement reduced system cost and complexity by eliminating the need for any active water or oil cooling. Diode-laser measurements performed during steady-state engine operation were within 5% of the thermocouple and pressure sensor measurements, and within 10% of the H(2)O concentration values derived from the CO(2) gas analyzer measurements. Measurements were also performed in the engine during transient events. In one such transient event, where a step change in fueling was introduced, the diode-laser sensor was able to capture the 30 ms change in the gas properties; the thermocouple, on the other hand, required 7.4 s to accurately reflect the change in gas conditions, while the gas analyzer required nearly 600 ms. To the best of our knowledge, this is the first implementation of such a simple and passive arrangement of high-temperature optical connectors as well as the first documented application of diode-laser absorption for high-speed gas dynamics measurements in the turbocharger inlet and EGR cooler exit of a diesel engine.
NASA Astrophysics Data System (ADS)
Dong, Keqiang; Fan, Jie; Gao, You
2015-12-01
Identifying the mutual interaction is a crucial problem that facilitates the understanding of emerging structures in complex system. We here focus on aero-engine dynamic as an example of complex system. By applying the detrended cross-correlation analysis (DCCA) coefficient method to aero-engine gas path system, we find that the low-spool rotor speed (N1) and high-spool rotor speed (N2) fluctuation series exhibit cross-correlation characteristic. Further, we employ detrended cross-correlation coefficient matrix and rooted tree to investigate the mutual interactions of other gas path variables. The results can infer that the exhaust gas temperature (EGT), N1, N2, fuel flow (WF) and engine pressure ratio (EPR) are main gas path parameters.
NASA Astrophysics Data System (ADS)
Chen, Zhe; Wang, Changhui; Gschwendtner, Silvia; Schloter, Michael; Butterbach-Bahl, Klaus; Dannenmann, Michael
2013-04-01
Due to methodological problems, reliable data on soil dinitrogen (N2) emission by denitrification are extremely scarce, and the impacts of climate change on nitrogen (N) gas formation by denitrification and N gas product ratios as well as the underlying microbial drivers remain unclear. We combined the helium-gas-flow-soil-core technique for simultaneously quantification of nitrous oxide (N2O) and N2 emission with the reverse transcript qPCR technology. Our goals were to characterize denitrification dynamics and N gas product ratios in alpine grassland soil as affected by climate change conditions and to evaluate relationships between denitrification gene expression and N gas emission. We used soils from the pre-alpine grassland Terrestrial Environmental Observatory (TERENO), exposed to ambient temperature and precipitation (control treatment), or three years of simulated climate change conditions (increased temperature, reduction of summer precipitation and reduced snow cover). Soils were amended with glucose and nitrate and incubated subsequently at 1) 5°C and 20% oxygen; 2) 5°C and 0% oxygen; 3) 20°C and 0% oxygen until stabilization of N gas emissions in each incubation step. After switching incubation conditions to 0% oxygen and 20°C, N2O emission peaked immediately and declined again, followed by a delayed peak in N2 emission. The dynamics of cnorB gene expression, encoding the reduction of nitric oxide (NO) to N2O, followed the N2O emission pattern, while nosZ gene expression, encoding N2O reduction to N2 followed the course of N2 emission. The mean N2O:N2 ratios were 1.31 + 0.10 and 1.56 + 0.16 for control and climate change treatment respectively, but the denitrification potential was overall lower in climate change treatment. Hence, simulated climate change promoted N2O but lessened N2 emission. This stimulation of N2O was in accordance with increased cnorB gene expression in soil of the climate change treatment. N mass balance calculations revealed that denitrification N gas formation accounted for 21%, dissimilatory nitrate reduction to ammonium for 8%, and microbial immobilization for 73% of nitrate consumption. Overall, our study shows that changes in climate exert feedback on denitrification N gas formation and N gas product ratios via changes in microbial activity at the level of single denitrification steps. The close relationships found between denitrification N gas formation, N gas product ratios and denitrification gene expression suggests a large potential of molecular methods to predict denitrification dynamics in soil.
The studies on gas adsorption properties of MIL-53 series MOFs materials
NASA Astrophysics Data System (ADS)
Jiao, Yuqiu; Li, Zhenyu; Ma, Yue; Zhou, Guanggang; Wang, Shuangxi; Lu, Guiwu
2017-08-01
Molecular dynamics (MD), grand canonical Monte Carlo (GCMC) and ideal adsorbed solution theory (IAST) were used to study the structures and gas adsorption properties of MIL-53(M)[M=Cr, Fe, Sc, Al] metal organic framework (MOF) materials. The results show that the volumes of those MOF materials increase significantly at high temperature. By analyzing the adsorption isotherms, we found that the temperature had a paramount effect on the gas adsorption behaviors of these MOF materials. For MIL-53(Cr), the orders of the quantities of adsorbed gases were CH4>N2>CO2>H2S, CH4>H2S>CO2>N2 and CH4>CO2>H2S>N2 at 100K, 293K and 623K, respectively. We also calculated the adsorption of several combinations of two gases by MIL-53(Cr) at 293K, the results indicate that the material had selective adsorption of CH4 over CO2, H2S and N2. Our calculations provide microscopic insights into the gas adsorption performances of these MOFs and may further guide the practice of gas separation.
Numerical analysis on centrifugal compressor with membrane type dryer
NASA Astrophysics Data System (ADS)
Razali, M. A.; Zulkafli, M. F.; Mat Isa, N.; Subari, Z.
2017-09-01
Moisture content is a common phenomenon in industrial processes especially in oil and gas industries. This contaminant has a lot of disadvantages which can lead to mechanical failure DEC (Deposition, Erosion & Corrosion) problems. To overcome DEC problem, this study proposed to design a centrifugal compressor with a membrane type dryer to reduce moisture content of a gas. The effectiveness of such design has been analyzed in this study using Computational Fluid Dynamics (CFD) approach. Numerical scheme based on multiphase flow technique is used in ANSYS Fluent software to evaluate the moisture content of the gas. Through this technique, two kind of centrifugal compressor, with and without membrane type dryer has been tested. The results show that the effects of pressure on dew point temperature of the gas change the composition of its moisture content, where high value lead more condensation to occur. However, with the injection of cool dry gas through membrane type dryer in the centrifugal compressor, the pressure and temperature of moisture content as well as mass fraction of H2O in centrifugal compressor show significant reduction.
NASA Technical Reports Server (NTRS)
Andre, M. A.; Bardet, P. M.; Cadell, S. R.; Woods, B.; Burns, R. A.; Danehy, P. M.
2017-01-01
N2O molecular tagging velocimetry (N2O-MTV) is developed for use in very-high-temperature reactor environments. Tests were carried out to determine the optimum excitation wavelength, tracer concentration, and timing parameters for the laser system. Using NO tracers obtained from photo-dissociation of N2O, velocity profiles are successfully obtained in air, nitrogen, and helium for a large range of parameters: temperature from 295 to 781 K, pressure from 1 to 3 bars, with a velocity precision of 0.01 m/s. Furthermore, by using two read pulses at adjustable time delays, the velocity dynamic range can be increased. An unprecedented dynamic range of 5,000 has been obtained to successfully resolve the flow during a helium blowdown from 1000 m/s down to 0.2 m/s. This technique is also applied to the high-temperature test facility (HTTF) at Oregon State University (OSU) during a depressurized condition cooldown (DCC) event. Details of these measurements are presented in a companion paper. This technique shows a strong potential for fundamental understanding of gas flows in nuclear reactors and to provide benchmark experimental data to validate numerical simulations.
Fast Dynamical Evolution of Hadron Resonance Gas via Hagedorn States
NASA Astrophysics Data System (ADS)
Beitel, M.; Gallmeister, K.; Greiner, C.
2017-01-01
Hagedorn states (HS) are a tool to model the hadronization process which occurs in the phase transition region between the quark gluon plasma (QGP) and the hadron resonance gas (HRG). These states are believed to appear near the Hagedorn temperature TH which in our understanding equals the critical temperature Tc . A covariantly formulated bootstrap equation is solved to generate the zoo of these particles characterized baryon number B, strangeness S and electric charge Q. These hadron-like resonances are characterized by being very massive and by not being limited to quantum numbers of known hadrons. All hadronic properties like masses, spectral functions etc. are taken from the hadronic transport model Ultra Relativistic Quantum Molecular Dynamics (UrQMD). Decay chains of single Hagedorn states provide a well description of experimentally observed multiplicity ratios of strange and multi-strange particles as the Ξ0- and the Ω--baryon. In addition, the final energy spectra of resulting hadrons show a thermal-like distribution with the characteristic Hagedorn temperature TH . Box calculations including these Hagedorn states are performed. Indeed, the time scales leading to equilibration of the system are drastically reduced down to 2. . . 5 fm/c.
Potential Engineering of Fermi-Hubbard Systems using a Quantum Gas Microscope
NASA Astrophysics Data System (ADS)
Ji, Geoffrey; Mazurenko, Anton; Chiu, Christie; Parsons, Maxwell; Kanász-Nagy, Márton; Schmidt, Richard; Grusdt, Fabian; Demler, Eugene; Greif, Daniel; Greiner, Markus
2017-04-01
Arbitrary control of optical potentials has emerged as an important tool in manipulating ultracold atomic systems, especially when combined with the single-site addressing afforded by quantum gas microscopy. Already, experiments have used digital micromirror devices (DMDs) to initialize and control ultracold atomic systems in the context of studying quantum walks, quantum thermalization, and many-body localization. Here, we report on progress in using a DMD located in the image plane of a quantum gas microscope to explore static and dynamic properties of a 2D Fermi-Hubbard system. By projecting a large, ring-shaped anti-confining potential, we demonstrate entropy redistribution and controlled doping of the system. Moreover, we use the DMD to prepare localized holes, which upon release interact with and disrupt the surrounding spin environment. These techniques pave the way for controlled investigations of dynamics in the low-temperature phases of the Hubbard model.
Dynamic contraction of the positive column of a self-sustained glow discharge in air flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shneider, M. N.; Mokrov, M. S.; Milikh, G. M.
We study the dynamic contraction of a self-sustained glow discharge in air in a rectangular duct with convective cooling. A two dimensional numerical model of the plasma contraction was developed in a cylindrical frame. The process is described by a set of time-dependent continuity equations for the electrons, positive and negative ions; gas and vibrational temperature; and equations which account for the convective heat and plasma losses by the transverse flux. Transition from the uniform to contracted state was analyzed. It was shown that such transition experiences a hysteresis, and that the critical current of the transition increases when themore » gas density drops. Possible coexistence of the contracted and uniform state of the plasma in the discharge, where the current flows along the density gradient of the background gas, is discussed.« less
High Resolution IRS Mapping of the Star-Forming Region NGC 6334 A
NASA Astrophysics Data System (ADS)
Sarma, Anuj; Abel, Nicholas; Ferland, Gary; Mayo, Elizabeth; Troland, Thomas
2005-06-01
Star formation involves the interplay of thermal, gravitational and magnetic forces. These processes lead to a dynamically evolving region in which O stars ionize the surrounding medium, and the ionized gas expands into the molecular cloud. Of these forces, magnetic effects are the least understood. A detailed analysis of the conditions in star-forming environments requires that one combine magnetic field observations with observations of the ionized, atomic, and molecular gas along with dust. We propose to carry out high-resolution IRS spectroscopy between 9.9-37.2 microns of the nearby (1.7 kpc) star-forming region NGC 6334 A. Maps of the magnetic field strength in the molecular gas exist for NGC 6334 A, yet the conditions in the H II region, the surrounding photodissociated region (PDR), and the dynamical interaction between the two regions are poorly understood. In the H II region, our proposed observation will allow us to use well-known infrared diagnostic ratios to determine the electron density, temperature, and the hardness of the continuum source. Spitzer observations of rotational transitions of molecular hydrogen and PAH emission, combined with previous observations, will allow us to determine the hydrogen density, UV radiation flux, and temperature in the PDR. We will combine our observations with theoretical calculations, using the spectral synthesis code Cloudy. Recent improvements to Cloudy include a ~1000 reaction molecular network, the ability to treat the dynamical flow of ionized gas into a molecular cloud, and the effects of magnetic pressure. Matching the observed spectra with theoretical calculations will tell us the physical conditions in the H II region and PDR, the role of magnetic fields in NGC 6334 A, and the importance of dynamics in the region. Overall, IRS observations of NGC 6334 A offers a unique opportunity to study, at high spatial resolution, many of the physical processes in star-forming regions.
TRITIUM EFFECTS ON DYNAMIC MECHANICAL PROPERTIES OF POLYMERIC MATERIALS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, E
2008-11-12
Dynamic mechanical analysis has been used to characterize the effects of tritium gas (initially 1 atm. pressure, ambient temperature) exposure over times up to 2.3 years on several thermoplastics-ultrahigh molecular weight polyethylene (UHMW-PE), polytetrafluoroethylene (PTFE), and Vespel{reg_sign} polyimide, and on several formulations of elastomers based on ethylene propylene diene monomer (EPDM). Tritium exposure stiffened the elastic modulus of UHMW-PE up to about 1 year and then softened it, and reduced the viscous response monotonically with time. PTFE initially stiffened, however the samples became too weak to handle after nine months exposure. The dynamic properties of Vespel{reg_sign} were not affected. Themore » glass transition temperature of the EPDM formulations increased approximately 4 C. following three months tritium exposure.« less
Ordered and disordered dynamics in monolayers of rolling particles.
Kim, Byungsoo; Putkaradze, Vakhtang
2010-12-10
We consider the ordered and disordered dynamics for monolayers of rolling self-interacting particles modeling water molecules. The rolling constraint represents a simplified model of a strong, but rapidly decaying bond with the surface. We show the existence and nonlinear stability of ordered lattice states, as well as disturbance propagation through and chaotic vibrations of these states. We study the dynamics of disordered gas states and show that there is a surprising and universal linear connection between distributions of angular and linear velocity, allowing definition of temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Costandy, Joseph; Michalis, Vasileios K.; Economou, Ioannis G., E-mail: i.tsimpanogiannis@qatar.tamu.edu, E-mail: ioannis.economou@qatar.tamu.edu
2016-03-28
We introduce a simple correction to the calculation of the lattice constants of fully occupied structure sI methane or carbon dioxide pure hydrates that are obtained from classical molecular dynamics simulations using the TIP4PQ/2005 water force field. The obtained corrected lattice constants are subsequently used in order to obtain isobaric thermal expansion coefficients of the pure gas hydrates that exhibit a trend that is significantly closer to the experimental behavior than previously reported classical molecular dynamics studies.
NASA Astrophysics Data System (ADS)
Hu, Hui; Zou, Peng; Liu, Xia-Ji
2018-02-01
We provide a description of the dynamic structure factor of a homogeneous unitary Fermi gas at low momentum and low frequency, based on the dissipative two-fluid hydrodynamic theory. The viscous relaxation time is estimated and is used to determine the regime where the hydrodynamic theory is applicable and to understand the nature of sound waves in the density response near the superfluid phase transition. By collecting the best knowledge on the shear viscosity and thermal conductivity known so far, we calculate the various diffusion coefficients and obtain the damping width of the (first and second) sounds. We find that the damping width of the first sound is greatly enhanced across the superfluid transition and very close to the transition the second sound might be resolved in the density response for the transferred momentum up to half of Fermi momentum. Our work is motivated by the recent measurement of the local dynamic structure factor at low momentum at Swinburne University of Technology and the ongoing experiment on sound attenuation of a homogeneous unitary Fermi gas at Massachusetts Institute of Technology. We discuss how the measurement of the velocity and damping width of the sound modes in low-momentum dynamic structure factor may lead to an improved determination of the universal superfluid density, shear viscosity, and thermal conductivity of a unitary Fermi gas.
Probabilistic structural analysis of space propulsion system LOX post
NASA Technical Reports Server (NTRS)
Newell, J. F.; Rajagopal, K. R.; Ho, H. W.; Cunniff, J. M.
1990-01-01
The probabilistic structural analysis program NESSUS (Numerical Evaluation of Stochastic Structures Under Stress; Cruse et al., 1988) is applied to characterize the dynamic loading and response of the Space Shuttle main engine (SSME) LOX post. The design and operation of the SSME are reviewed; the LOX post structure is described; and particular attention is given to the generation of composite load spectra, the finite-element model of the LOX post, and the steps in the NESSUS structural analysis. The results are presented in extensive tables and graphs, and it is shown that NESSUS correctly predicts the structural effects of changes in the temperature loading. The probabilistic approach also facilitates (1) damage assessments for a given failure model (based on gas temperature, heat-shield gap, and material properties) and (2) correlation of the gas temperature with operational parameters such as engine thrust.
The creation of hypersonic flows by a powerful impulse capillary discharge
NASA Astrophysics Data System (ADS)
Pashchina, A. S.; Karmatsky, R. E.; Klimov, A. I.
2017-11-01
The possibility of using a powerful pulsed capillary discharge to produce quasi-stationary highspeed plasma flows with characteristic Mach numbers M = 3-10 and temperatures T = 3000-6000 K has been experimentally substantiated. In a rarefied gas atmosphere ( p ∞ < 10 Torr), the transverse size of flow exceeds d < 3 cm and the duration of the working cycle can be brought to hundreds of milliseconds, which is of interest in problems of laboratory modeling of physical-chemical and gas-dynamic effects of interaction of bodies with hypersonic flows. Strong temperature nonequilibrium has been found (with the ratio between the vibrational and rotational temperatures reaching T v/ T r = 3 and more) and anomalously low values of the effective adiabatic index, which indicates an intensive formation of polyatomic molecules and condensed particles in a carbon-containing plasma.
Non-equilibrium dynamics of artificial quantum matter
NASA Astrophysics Data System (ADS)
Babadi, Mehrtash
The rapid progress of the field of ultracold atoms during the past two decades has set new milestones in our control over matter. By cooling dilute atomic gases and molecules to nano-Kelvin temperatures, novel quantum mechanical states of matter can be realized and studied on a table-top experimental setup while bulk matter can be tailored to faithfully simulate abstract theoretical models. Two of such models which have witnessed significant experimental and theoretical attention are (1) the two-component Fermi gas with resonant s-wave interactions, and (2) the single-component Fermi gas with dipole-dipole interactions. This thesis is devoted to studying the non-equilibrium collective dynamics of these systems using the general framework of quantum kinetic theory. We present a concise review of the utilized mathematical methods in the first two chapters, including the Schwinger-Keldysh formalism of non-equilibrium quantum fields, two-particle irreducible (2PI) effective actions and the framework of quantum kinetic theory. We study the collective dynamics of the dipolar Fermi gas in a quasi-two-dimensional optical trap in chapter 3 and provide a detailed account of its dynamical crossover from the collisionless to the hydrodynamical regime. Chapter 4 is devoted to studying the dynamics of the attractive Fermi gas in the normal phase. Starting from the self-consistent T-matrix (pairing fluctuation) approximation, we systematically derive a set of quantum kinetic equations and show that they provide a globally valid description of the dynamics of the attractive Fermi gas, ranging from the weak-coupling Fermi liquid phase to the intermediate non-Fermi liquid pairing pseudogap regime and finally the strong-coupling Bose liquid phase. The shortcomings of the self-consistent T-matrix approximation in two spatial dimensions are discussed along with a proposal to overcome its unphysical behaviors. The developed kinetic formalism is finally utilized to reproduce and interpret the findings of a recent experiment done on the collective dynamics of trapped two-dimensional ultracold gases.
Polar Vortex Dynamics During Spring and Fall Diagnosed Using ATMOS Trace Gas Observation
NASA Technical Reports Server (NTRS)
Manney, G.; Michelsen, H.; Santee, M.; Gunson, M.; Irion, F.; Roche, A.; Livesey, N.
1999-01-01
Trace gases measured by the Atmospheric Trace Molecule Spectroscopy (ATMOS) instrument during the Mar/Apr 1992(AT-1), Apr 1993(AT-2), and Nov 1994(AT-3) space-shuttle missions have been mapped into equivalent latitude/potential temperature (EqL/0) coordinates.
Nonlinear Dynamics and Strong Cavity Cooling of Levitated Nanoparticles.
Fonseca, P Z G; Aranas, E B; Millen, J; Monteiro, T S; Barker, P F
2016-10-21
Optomechanical systems explore and exploit the coupling between light and the mechanical motion of macroscopic matter. A nonlinear coupling offers rich new physics, in both quantum and classical regimes. We investigate a dynamic, as opposed to the usually studied static, nonlinear optomechanical system, comprising a nanosphere levitated in a hybrid electro-optical trap. The cavity offers readout of both linear-in-position and quadratic-in-position (nonlinear) light-matter coupling, while simultaneously cooling the nanosphere, for indefinite periods of time and in high vacuum. We observe the cooling dynamics via both linear and nonlinear coupling. As the background gas pressure was lowered, we observed a greater than 1000-fold reduction in temperature before temperatures fell below readout sensitivity in the present setup. This Letter opens the way to strongly coupled quantum dynamics between a cavity and a nanoparticle largely decoupled from its environment.
Nonlinear Dynamics and Strong Cavity Cooling of Levitated Nanoparticles
NASA Astrophysics Data System (ADS)
Fonseca, P. Z. G.; Aranas, E. B.; Millen, J.; Monteiro, T. S.; Barker, P. F.
2016-10-01
Optomechanical systems explore and exploit the coupling between light and the mechanical motion of macroscopic matter. A nonlinear coupling offers rich new physics, in both quantum and classical regimes. We investigate a dynamic, as opposed to the usually studied static, nonlinear optomechanical system, comprising a nanosphere levitated in a hybrid electro-optical trap. The cavity offers readout of both linear-in-position and quadratic-in-position (nonlinear) light-matter coupling, while simultaneously cooling the nanosphere, for indefinite periods of time and in high vacuum. We observe the cooling dynamics via both linear and nonlinear coupling. As the background gas pressure was lowered, we observed a greater than 1000-fold reduction in temperature before temperatures fell below readout sensitivity in the present setup. This Letter opens the way to strongly coupled quantum dynamics between a cavity and a nanoparticle largely decoupled from its environment.
Yang, Huan; Goudeli, Eirini; Hogan, Christopher J.
2018-04-24
In gas phase synthesis systems, clusters form and grow via condensation, in which a monomer binds to an existing cluster. While a hard sphere equation is frequently used to predict the condensation rate coefficient, this equation neglects the influences of potential interactions and cluster internal energy on the condensation process. Here, we present a collision rate theory-Molecular Dynamics simulation approach to calculate condensation probabilities and condensation rate coefficients; we use this approach to examine atomic condensation onto 6-56 atom Au and Mg clusters. The probability of condensation depends upon the initial relative velocity ( v) between atom and cluster andmore » the initial impact parameter ( b). In all cases there is a well-defined region of b-v space where condensation is highly probable, and outside of which the condensation probability drops to zero. For Au clusters with more than 10 atoms, we find that at gas temperatures in the 300-1200 K range, the condensation rate coefficient exceeds the hard sphere rate coefficient by a factor of 1.5-2.0. Conversely, for Au clusters with 10 or fewer atoms, and for 14 atom and 28 atom Mg clusters, as cluster equilibration temperature increases the condensation rate coefficient drops to values below the hard sphere rate coefficient. Calculations also yield the self-dissociation rate coefficient, which is found to vary considerably with gas temperature. Finally, calculations results reveal that grazing (high b) atom-cluster collisions at elevated velocity (> 1000 m s -1) can result in the colliding atom rebounding (bounce) from the cluster surface or binding while another atom dissociates (replacement). In conclusion, the presented method can be applied in developing rate equations to predict material formation and growth rates in vapor phase systems.« less
Yang, Huan; Goudeli, Eirini; Hogan, Christopher J
2018-04-28
In gas phase synthesis systems, clusters form and grow via condensation, in which a monomer binds to an existing cluster. While a hard-sphere equation is frequently used to predict the condensation rate coefficient, this equation neglects the influences of potential interactions and cluster internal energy on the condensation process. Here, we present a collision rate theory-molecular dynamics simulation approach to calculate condensation probabilities and condensation rate coefficients. We use this approach to examine atomic condensation onto 6-56-atom Au and Mg clusters. The probability of condensation depends upon the initial relative velocity (v) between atom and cluster and the initial impact parameter (b). In all cases, there is a well-defined region of b-v space where condensation is highly probable, and outside of which the condensation probability drops to zero. For Au clusters with more than 10 atoms, we find that at gas temperatures in the 300-1200 K range, the condensation rate coefficient exceeds the hard-sphere rate coefficient by a factor of 1.5-2.0. Conversely, for Au clusters with 10 or fewer atoms and for 14- and 28-atom Mg clusters, as cluster equilibration temperature increases, the condensation rate coefficient drops to values below the hard-sphere rate coefficient. Calculations also yield the self-dissociation rate coefficient, which is found to vary considerably with gas temperature. Finally, calculations results reveal that grazing (high b) atom-cluster collisions at elevated velocity (>1000 m s -1 ) can result in the colliding atom rebounding (bounce) from the cluster surface or binding while another atom dissociates (replacement). The presented method can be applied in developing rate equations to predict material formation and growth rates in vapor phase systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arnold, C. Jr.; Bieg, K.W.; Cuthrell, R.E.
1982-03-01
Elastomers are widely used in drilling and logging applications as static seals such as casing packers and dynamic seals such as o-rings for drill bits. Static seals often fail in service because of thermochemical degradation due to the combined effects of steam and sour gas at elevated temperatures that are characteristic of deep wells. Dynamic seals frequently fail because of abrasive wear that occurs even at the low temperatures that prevail in shallow wells. We have shown that improved steam-sour gas resistance of a fully formulated ethylene-propylene rubber at elevated temperatures can be achieved by coating the rubber with amore » thin film of plasma polymerized tetrafluoroethylene. Thus, no change in the mechanical properties of the coated rubber was observed after exposure to steam and sour gas at 275/sup 0/C for 48 h. In contrast, the shear modulus of the upcoated rubber increased by 96% after the same exposure. While the effectiveness of the fluorocarbon coating decreased at longer exposure times, short-term protection of elastomers could be beneficial in certain logging operations. It was also found that the coefficient of friction of a nitrile rubber (Buna N) was reduced by 20% after treatment with a carbon tetrafluoride plasma. This enhanced lubricity could lead to better wear characteristics in conventional drill bits where the seal is in contact with a moving metal surface. The surfaces of the plasma treated elastomers were characterized by water contact angle, scanning electron microscopy, and electron spectroscopy for chemical analysis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Huan; Goudeli, Eirini; Hogan, Christopher J.
In gas phase synthesis systems, clusters form and grow via condensation, in which a monomer binds to an existing cluster. While a hard sphere equation is frequently used to predict the condensation rate coefficient, this equation neglects the influences of potential interactions and cluster internal energy on the condensation process. Here, we present a collision rate theory-Molecular Dynamics simulation approach to calculate condensation probabilities and condensation rate coefficients; we use this approach to examine atomic condensation onto 6-56 atom Au and Mg clusters. The probability of condensation depends upon the initial relative velocity ( v) between atom and cluster andmore » the initial impact parameter ( b). In all cases there is a well-defined region of b-v space where condensation is highly probable, and outside of which the condensation probability drops to zero. For Au clusters with more than 10 atoms, we find that at gas temperatures in the 300-1200 K range, the condensation rate coefficient exceeds the hard sphere rate coefficient by a factor of 1.5-2.0. Conversely, for Au clusters with 10 or fewer atoms, and for 14 atom and 28 atom Mg clusters, as cluster equilibration temperature increases the condensation rate coefficient drops to values below the hard sphere rate coefficient. Calculations also yield the self-dissociation rate coefficient, which is found to vary considerably with gas temperature. Finally, calculations results reveal that grazing (high b) atom-cluster collisions at elevated velocity (> 1000 m s -1) can result in the colliding atom rebounding (bounce) from the cluster surface or binding while another atom dissociates (replacement). In conclusion, the presented method can be applied in developing rate equations to predict material formation and growth rates in vapor phase systems.« less
NASA Astrophysics Data System (ADS)
Yang, Huan; Goudeli, Eirini; Hogan, Christopher J.
2018-04-01
In gas phase synthesis systems, clusters form and grow via condensation, in which a monomer binds to an existing cluster. While a hard-sphere equation is frequently used to predict the condensation rate coefficient, this equation neglects the influences of potential interactions and cluster internal energy on the condensation process. Here, we present a collision rate theory-molecular dynamics simulation approach to calculate condensation probabilities and condensation rate coefficients. We use this approach to examine atomic condensation onto 6-56-atom Au and Mg clusters. The probability of condensation depends upon the initial relative velocity (v) between atom and cluster and the initial impact parameter (b). In all cases, there is a well-defined region of b-v space where condensation is highly probable, and outside of which the condensation probability drops to zero. For Au clusters with more than 10 atoms, we find that at gas temperatures in the 300-1200 K range, the condensation rate coefficient exceeds the hard-sphere rate coefficient by a factor of 1.5-2.0. Conversely, for Au clusters with 10 or fewer atoms and for 14- and 28-atom Mg clusters, as cluster equilibration temperature increases, the condensation rate coefficient drops to values below the hard-sphere rate coefficient. Calculations also yield the self-dissociation rate coefficient, which is found to vary considerably with gas temperature. Finally, calculations results reveal that grazing (high b) atom-cluster collisions at elevated velocity (>1000 m s-1) can result in the colliding atom rebounding (bounce) from the cluster surface or binding while another atom dissociates (replacement). The presented method can be applied in developing rate equations to predict material formation and growth rates in vapor phase systems.
Note: Heated flyer-plate impact system
NASA Astrophysics Data System (ADS)
Dolan, D. H.; Seagle, C. T.; Ao, T.; Hacking, R. G.
2014-07-01
A technique for launching heated flyer plates was developed on a single-stage gas gun. This type of impact creates a well-posed mechanical state and a tunable thermal state, which is useful for calibrating dynamic temperature measurements. Proof-of-principle thermoreflectance measurements were performed using this technique. Since the target remains at room temperature until the moment of impact, heated flyers avoid differential expansion and annealing issues, allowing novel impact experiments to be performed.
Note: Heated flyer-plate impact system.
Dolan, D H; Seagle, C T; Ao, T; Hacking, R G
2014-07-01
A technique for launching heated flyer plates was developed on a single-stage gas gun. This type of impact creates a well-posed mechanical state and a tunable thermal state, which is useful for calibrating dynamic temperature measurements. Proof-of-principle thermoreflectance measurements were performed using this technique. Since the target remains at room temperature until the moment of impact, heated flyers avoid differential expansion and annealing issues, allowing novel impact experiments to be performed.
Rapid estimation of characteristics of gas dynamic lasers
NASA Technical Reports Server (NTRS)
Murty, S. S. R.
1974-01-01
Sudden-freeze approximation is applied to the flow of a CO2-N2-He mixture in wedge-type nozzles. This approximation permits rapid estimation of the freezing temperature of the upper laser level as a function of the stagnation pressure and the nozzle geometry. The stagnation temperature and the composition of the mixture appear as parameters. Gain and power output may then be estimated and calculations are presented for two cases.
Fragmentation Speed at Magmatic Temperatures: an Experimental Determination
NASA Astrophysics Data System (ADS)
Alatorre-Ibarguengoitia, M. A.; Scheu, B.; Dingwell, D. B.
2011-12-01
The propagation speed of the fragmentation front (fragmentation speed) is a controlling factor in the dynamics of explosive volcanic eruptions and can affect the eruptive regime. It is impossible to measure the fragmentation speed directly in natural systems. Thus, laboratory experiments using natural samples represent a unique source of information revealing the dynamics of fragmentation processes. Rapid decompression experiments of natural samples from several volcanoes allowed us to quantify the influence of sample porosity and pressure differential on the fragmentation speed. These previous experiments have been performed almost exclusively at temperatures up to 300 °C. Due to experimental constraints it is not possible to measure directly the fragmentation speed at magmatic temperatures using the same procedure as in the experiments up to moderate temperature. The magmatic temperature for the analyzed rock types varies typically between 700 - 900 °C, reflecting their moderate to high silica content. For this reason, the influence of the temperature on the fragmentation speed had not been investigated systematically. In order to determine the fragmentation speed at magmatic temperatures (700 - 900 °C), we performed rapid decompression experiments of volcanic rocks and measured with a high-speed camera the ejection speed at the front of the gas-particle mixture produced by fragmentation. Then we used a theoretical model based on a 1-D shock-tube theory considering the conservation laws across the fragmentation front that provides a relationship between the fragmentation speed and the ejection speed at the front of the gas-particle mixture. This model has been validated in fragmentation experiments at room temperature where the fragmentation and ejection speed were measured simultaneously. We investigated natural volcanic samples covering a broad range of connected porosity (16 - 65 vol. %) and applied pressures (4-20 MPa) at room temperature and up to 850 °C. To our knowledge, this is the first systematic investigation of the fragmentation speed of volcanic samples at magmatic temperatures. These results enhance our understanding of explosive volcanic eruptions. As has been shown by recent studies, a quantitative knowledge of the dynamics of magma fragmentation is critical for determining the eruptive regime.
CFD Modeling of Helium Pressurant Effects on Cryogenic Tank Pressure Rise Rates in Normal Gravity
NASA Technical Reports Server (NTRS)
Grayson, Gary; Lopez, Alfredo; Chandler, Frank; Hastings, Leon; Hedayat, Ali; Brethour, James
2007-01-01
A recently developed computational fluid dynamics modeling capability for cryogenic tanks is used to simulate both self-pressurization from external heating and also depressurization from thermodynamic vent operation. Axisymmetric models using a modified version of the commercially available FLOW-3D software are used to simulate actual physical tests. The models assume an incompressible liquid phase with density that is a function of temperature only. A fully compressible formulation is used for the ullage gas mixture that contains both condensable vapor and a noncondensable gas component. The tests, conducted at the NASA Marshall Space Flight Center, include both liquid hydrogen and nitrogen in tanks with ullage gas mixtures of each liquid's vapor and helium. Pressure and temperature predictions from the model are compared to sensor measurements from the tests and a good agreement is achieved. This further establishes the accuracy of the developed FLOW-3D based modeling approach for cryogenic systems.
Nanosecond repetitively pulsed discharges in air at atmospheric pressure—the spark regime
NASA Astrophysics Data System (ADS)
Pai, David Z.; Lacoste, Deanna A.; Laux, Christophe O.
2010-12-01
Nanosecond repetitively pulsed (NRP) spark discharges have been studied in atmospheric pressure air preheated to 1000 K. Measurements of spark initiation and stability, plasma dynamics, gas temperature and current-voltage characteristics of the spark regime are presented. Using 10 ns pulses applied repetitively at 30 kHz, we find that 2-400 pulses are required to initiate the spark, depending on the applied voltage. Furthermore, about 30-50 pulses are required for the spark discharge to reach steady state, following initiation. Based on space- and time-resolved optical emission spectroscopy, the spark discharge in steady state is found to ignite homogeneously in the discharge gap, without evidence of an initial streamer. Using measured emission from the N2 (C-B) 0-0 band, it is found that the gas temperature rises by several thousand Kelvin in the span of about 30 ns following the application of the high-voltage pulse. Current-voltage measurements show that up to 20-40 A of conduction current is generated, which corresponds to an electron number density of up to 1015 cm-3 towards the end of the high-voltage pulse. The discharge dynamics, gas temperature and electron number density are consistent with a streamer-less spark that develops homogeneously through avalanche ionization in volume. This occurs because the pre-ionization electron number density of about 1011 cm-3 produced by the high frequency train of pulses is above the critical density for streamer-less discharge development, which is shown to be about 108 cm-3.
Research in Varying Burner Tilt Angle to Reduce Rear Pass Temperature in Coal Fired Boiler
NASA Astrophysics Data System (ADS)
Thrangaraju, Savithry K.; Munisamy, Kannan M.; Baskaran, Saravanan
2017-04-01
This research shows the investigation conducted on one of techniques that is used in Manjung 700 MW tangentially fired coal power plant. The investigation conducted in this research is finding out the right tilt angle for the burners in the boiler that causes an efficient temperature distribution and combustion gas flow pattern in the boiler especially at the rear pass section. The main outcome of the project is to determine the right tilt angle for the burner to create an efficient temperature distribution and combustion gas flow pattern that able to increase the efficiency of the boiler. The investigation is carried out by using Computational Fluid Dynamics method to obtain the results by varying the burner tilt angle. The boiler model is drawn by using designing software which is called Solid Works and Fluent from Computational Fluid Dynamics is used to conduct the analysis on the boiler model. The analysis is to imitate the real combustion process in the real Manjung 700 MW boiler. The expected results are to determine the right burner tilt angle with a computational fluid analysis by obtaining the temperature distribution and combustion gas flow pattern for each of the three angles set for the burner tilt angle in FLUENT software. Three burner tilt angles are selected which are burner tilt angle at (0°) as test case 1, burner tilt angle at (+10°) as test case 2 and burner tilt angle at (-10°) as test case 3. These entire three cases were run in CFD software and the results of temperature distribution and velocity vector were obtained to find out the changes on the three cases at the furnace and rear pass section of the boiler. The results are being compared in analysis part by plotting graphs to determine the right tilting angle that reduces the rear pass temperature.
Osada, T; Fukumoto, Y
2001-01-01
A dynamic chamber system consisting of a chamber covering a composting mixture (3 m in diameter, 2.2 m in height, 13 m3), a ventilator for suction of air into the chamber, and equipment to measure the gas composition and indicate temperature, was developed for evaluation of harmful gas emissions from such livestock waste composting. Fresh air was introduced through the space between the floor and the lower edge of the chamber, and exhaust gas was removed through an outlet placed on top of the chamber. NH3, CH4 and N2O concentrations in exhaust air from the chamber were measured by Infrared Photoacoustic Detector (IPD, multi gas monitor type 1312, INNOVA, Copenhagen, Denmark) at 5 minutes intervals. The system was evaluated with standard gas of NH3, CH4 and N2O. High recoveries of 98.5% (NH3, SD 6.25), 96.6% (CH4, SD 4.03) and 99.5% ( N2O, SD 2.68) were obtained for each gas emission in the chamber over 17-20 min. The measured values of those gases obtained by the IPD method and conventional method at the time of a composting examination of swine waste were measured, and the differences were only a few percent of the total emissions.
Boundary conditions for gas flow problems from anisotropic scattering kernels
NASA Astrophysics Data System (ADS)
To, Quy-Dong; Vu, Van-Huyen; Lauriat, Guy; Léonard, Céline
2015-10-01
The paper presents an interface model for gas flowing through a channel constituted of anisotropic wall surfaces. Using anisotropic scattering kernels and Chapman Enskog phase density, the boundary conditions (BCs) for velocity, temperature, and discontinuities including velocity slip and temperature jump at the wall are obtained. Two scattering kernels, Dadzie and Méolans (DM) kernel, and generalized anisotropic Cercignani-Lampis (ACL) are examined in the present paper, yielding simple BCs at the wall fluid interface. With these two kernels, we rigorously recover the analytical expression for orientation dependent slip shown in our previous works [Pham et al., Phys. Rev. E 86, 051201 (2012) and To et al., J. Heat Transfer 137, 091002 (2015)] which is in good agreement with molecular dynamics simulation results. More important, our models include both thermal transpiration effect and new equations for the temperature jump. While the same expression depending on the two tangential accommodation coefficients is obtained for slip velocity, the DM and ACL temperature equations are significantly different. The derived BC equations associated with these two kernels are of interest for the gas simulations since they are able to capture the direction dependent slip behavior of anisotropic interfaces.
NASA Astrophysics Data System (ADS)
Waichman, Karol; Barmashenko, Boris D.; Rosenwaks, Salman
2017-10-01
Analysis of beam propagation, kinetic and fluid dynamic processes in Cs diode pumped alkali lasers (DPALs), using wave optics model and gasdynamic code, is reported. The analysis is based on a three-dimensional, time-dependent computational fluid dynamics (3D CFD) model. The Navier-Stokes equations for momentum, heat and mass transfer are solved by a commercial Ansys FLUENT solver based on the finite volume discretization technique. The CFD code which solves the gas conservation equations includes effects of natural convection and temperature diffusion of the species in the DPAL mixture. The DPAL kinetic processes in the Cs/He/C2H6 gas mixture dealt with in this paper involve the three lowest energy levels of Cs, (1) 62S1/2, (2) 62P1/2 and (3) 62P3/2. The kinetic processes include absorption due to the 1->3 D2 transition followed by relaxation the 3 to 2 fine structure levels and stimulated emission due to the 2->1 D1 transition. Collisional quenching of levels 2 and 3 and spontaneous emission from these levels are also considered. The gas flow conservation equations are coupled to fast-Fourier-transform algorithm for transverse mode propagation to obtain a solution of the scalar paraxial propagation equation for the laser beam. The wave propagation equation is solved by the split-step beam propagation method where the gain and refractive index in the DPAL medium affect the wave amplitude and phase. Using the CFD and beam propagation models, the gas flow pattern and spatial distributions of the pump and laser intensities in the resonator were calculated for end-pumped Cs DPAL. The laser power, DPAL medium temperature and the laser beam quality were calculated as a function of pump power. The results of the theoretical model for laser power were compared to experimental results of Cs DPAL.
Zhang, Zhi-Yu; Smith, M. W. L.; Xilouris, Emmanuel M.
2016-01-01
Images of dust continuum and carbon monoxide (CO) line emission are powerful tools for deducing structural characteristics of galaxies, such as disc sizes, H2 gas velocity fields and enclosed H2 and dynamical masses. We report on a fundamental constraint set by the cosmic microwave background (CMB) on the observed structural and dynamical characteristics of galaxies, as deduced from dust continuum and CO-line imaging at high redshifts. As the CMB temperature rises in the distant Universe, the ensuing thermal equilibrium between the CMB and the cold dust and H2 gas progressively erases all spatial and spectral contrasts between their brightness distributions and the CMB. For high-redshift galaxies, this strongly biases the recoverable H2 gas and dust mass distributions, scale lengths, gas velocity fields and dynamical mass estimates. This limitation is unique to millimetre/submillimetre wavelengths and unlike its known effect on the global dust continuum and molecular line emission of galaxies, it cannot be addressed simply. We nevertheless identify a unique signature of CMB-affected continuum brightness distributions, namely an increasing rather than diminishing contrast between such brightness distributions and the CMB when the cold dust in distant galaxies is imaged at frequencies beyond the Raleigh–Jeans limit. For the molecular gas tracers, the same effect makes the atomic carbon lines maintain a larger contrast than the CO lines against the CMB. PMID:27429763
Omar, Jone; Olivares, Maitane; Alonso, Ibone; Vallejo, Asier; Aizpurua-Olaizola, Oier; Etxebarria, Nestor
2016-04-01
Seven monoterpenes in 4 aromatic plants (sage, cardamom, lavender, and rosemary) were quantified in liquid extracts and directly in solid samples by means of dynamic headspace-gas chromatography-mass spectrometry (DHS-GC-MS) and multiple headspace extraction-gas chromatography-mass spectrometry (MHSE), respectively. The monoterpenes were 1st extracted by means of supercritical fluid extraction (SFE) and analyzed by an optimized DHS-GC-MS. The optimization of the dynamic extraction step and the desorption/cryo-focusing step were tackled independently by experimental design assays. The best working conditions were set at 30 °C for the incubation temperature, 5 min of incubation time, and 40 mL of purge volume for the dynamic extraction step of these bioactive molecules. The conditions of the desorption/cryo-trapping step from the Tenax TA trap were set at follows: the temperature was increased from 30 to 300 °C at 150 °C/min, although the cryo-trapping was maintained at -70 °C. In order to estimate the efficiency of the SFE process, the analysis of monoterpenes in the 4 aromatic plants was directly carried out by means of MHSE because it did not require any sample preparation. Good linearity (r2) > 0.99) and reproducibility (relative standard deviation % <12) was obtained for solid and liquid quantification approaches, in the ranges of 0.5 to 200 ng and 10 to 500 ng/mL, respectively. The developed methods were applied to analyze the concentration of 7 monoterpenes in aromatic plants obtaining concentrations in the range of 2 to 6000 ng/g and 0.25 to 110 μg/mg, respectively. © 2016 Institute of Food Technologists®
NASA Astrophysics Data System (ADS)
Ungermann, J.; Blank, J.; Dick, M.; Ebersoldt, A.; Friedl-Vallon, F.; Giez, A.; Guggenmoser, T.; Höpfner, M.; Jurkat, T.; Kaufmann, M.; Kaufmann, S.; Kleinert, A.; Krämer, M.; Latzko, T.; Oelhaf, H.; Olchewski, F.; Preusse, P.; Rolf, C.; Schillings, J.; Suminska-Ebersoldt, O.; Tan, V.; Thomas, N.; Voigt, C.; Zahn, A.; Zöger, M.; Riese, M.
2015-06-01
The Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) is an airborne infrared limb imager combining a two-dimensional infrared detector with a Fourier transform spectrometer. It was operated aboard the new German Gulfstream G550 High Altitude LOng Range (HALO) research aircraft during the Transport And Composition in the upper Troposphere/lowermost Stratosphere (TACTS) and Earth System Model Validation (ESMVAL) campaigns in summer 2012. This paper describes the retrieval of temperature and trace gas (H2O, O3, HNO3) volume mixing ratios from GLORIA dynamics mode spectra that are spectrally sampled every 0.625 cm-1. A total of 26 integrated spectral windows are employed in a joint fit to retrieve seven targets using consecutively a fast and an accurate tabulated radiative transfer model. Typical diagnostic quantities are provided including effects of uncertainties in the calibration and horizontal resolution along the line of sight. Simultaneous in situ observations by the Basic Halo Measurement and Sensor System (BAHAMAS), the Fast In-situ Stratospheric Hygrometer (FISH), an ozone detector named Fairo, and the Atmospheric chemical Ionization Mass Spectrometer (AIMS) allow a validation of retrieved values for three flights in the upper troposphere/lowermost stratosphere region spanning polar and sub-tropical latitudes. A high correlation is achieved between the remote sensing and the in situ trace gas data, and discrepancies can to a large extent be attributed to differences in the probed air masses caused by different sampling characteristics of the instruments. This 1-D processing of GLORIA dynamics mode spectra provides the basis for future tomographic inversions from circular and linear flight paths to better understand selected dynamical processes of the upper troposphere and lowermost stratosphere.
NASA Astrophysics Data System (ADS)
Ungermann, J.; Blank, J.; Dick, M.; Ebersoldt, A.; Friedl-Vallon, F.; Giez, A.; Guggenmoser, T.; Höpfner, M.; Jurkat, T.; Kaufmann, M.; Kaufmann, S.; Kleinert, A.; Krämer, M.; Latzko, T.; Oelhaf, H.; Olchewski, F.; Preusse, P.; Rolf, C.; Schillings, J.; Suminska-Ebersoldt, O.; Tan, V.; Thomas, N.; Voigt, C.; Zahn, A.; Zöger, M.; Riese, M.
2014-12-01
The Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) is an airborne infrared limb-imager combining a two-dimensional infrared detector with a Fourier transform spectrometer. It was operated aboard the new German Gulfstream G550 research aircraft HALO during the Transport And Composition in the upper Troposphere/lowermost Stratosphere (TACTS) and Earth System Model Validation (ESMVAL) campaigns in summer 2012. This paper describes the retrieval of temperature and trace gas (H2O, O3, HNO3) volume mixing ratios from GLORIA dynamics mode spectra. 26 integrated spectral windows are employed in a joint fit to retrieve seven targets using consecutively a fast and an accurate tabulated radiative transfer model. Typical diagnostic quantities are provided including effects of uncertainties in the calibration and horizontal resolution along the line-of-sight. Simultaneous in-situ observations by the BAsic HALO Measurement And Sensor System (BAHAMAS), the Fast In-Situ Stratospheric Hygrometer (FISH), FAIRO, and the Atmospheric chemical Ionization Mass Spectrometer (AIMS) allow a validation of retrieved values for three flights in the upper troposphere/lowermost stratosphere region spanning polar and sub-tropical latitudes. A high correlation is achieved between the remote sensing and the in-situ trace gas data, and discrepancies can to a large fraction be attributed to differences in the probed air masses caused by different sampling characteristics of the instruments. This 1-D processing of GLORIA dynamics mode spectra provides the basis for future tomographic inversions from circular and linear flight paths to better understand selected dynamical processes of the upper troposphere and lowermost stratosphere.
Magnetic monopole dynamics in spin ice.
Jaubert, L D C; Holdsworth, P C W
2011-04-27
One of the most remarkable examples of emergent quasi-particles is that of the 'fractionalization' of magnetic dipoles in the low energy configurations of materials known as 'spin ice' into free and unconfined magnetic monopoles interacting via Coulomb's 1/r law (Castelnovo et al 2008 Nature 451 42-5). Recent experiments have shown that a Coulomb gas of magnetic charges really does exist at low temperature in these materials and this discovery provides a new perspective on otherwise largely inaccessible phenomenology. In this paper, after a review of the different spin ice models, we present detailed results describing the diffusive dynamics of monopole particles starting both from the dipolar spin ice model and directly from a Coulomb gas within the grand canonical ensemble. The diffusive quasi-particle dynamics of real spin ice materials within the 'quantum tunnelling' regime is modelled with Metropolis dynamics, with the particles constrained to move along an underlying network of oriented paths, which are classical analogues of the Dirac strings connecting pairs of Dirac monopoles.
Kikkinides, E S; Monson, P A
2015-03-07
Building on recent developments in dynamic density functional theory, we have developed a version of the theory that includes hydrodynamic interactions. This is achieved by combining the continuity and momentum equations eliminating velocity fields, so the resulting model equation contains only terms related to the fluid density and its time and spatial derivatives. The new model satisfies simultaneously continuity and momentum equations under the assumptions of constant dynamic or kinematic viscosity and small velocities and/or density gradients. We present applications of the theory to spinodal decomposition of subcritical temperatures for one-dimensional and three-dimensional density perturbations for both a van der Waals fluid and for a lattice gas model in mean field theory. In the latter case, the theory provides a hydrodynamic extension to the recently studied dynamic mean field theory. We find that the theory correctly describes the transition from diffusive phase separation at short times to hydrodynamic behaviour at long times.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kikkinides, E. S.; Monson, P. A.
Building on recent developments in dynamic density functional theory, we have developed a version of the theory that includes hydrodynamic interactions. This is achieved by combining the continuity and momentum equations eliminating velocity fields, so the resulting model equation contains only terms related to the fluid density and its time and spatial derivatives. The new model satisfies simultaneously continuity and momentum equations under the assumptions of constant dynamic or kinematic viscosity and small velocities and/or density gradients. We present applications of the theory to spinodal decomposition of subcritical temperatures for one-dimensional and three-dimensional density perturbations for both a van dermore » Waals fluid and for a lattice gas model in mean field theory. In the latter case, the theory provides a hydrodynamic extension to the recently studied dynamic mean field theory. We find that the theory correctly describes the transition from diffusive phase separation at short times to hydrodynamic behaviour at long times.« less
Sintering of polydisperse viscous droplets
NASA Astrophysics Data System (ADS)
Wadsworth, Fabian B.; Vasseur, Jérémie; Llewellin, Edward W.; Dingwell, Donald B.
2017-03-01
Sintering—or coalescence—of compacts of viscous droplets is driven by the interfacial tension between the droplets and the interstitial gas phase. The process, which occurs in a range of industrial and natural settings, such as the manufacture of ceramics and the welding of volcanic ash, causes the compact to densify, to become stronger, and to become less permeable. We investigate the role of droplet polydispersivity in sintering dynamics by conducting experiments in which populations of glass spheres with different size distributions are heated to temperatures above the glass transition interval. We quantify the progress of sintering by tracking changes in porosity with time. The sintering dynamics is modeled by treating the system as a random distribution of interstitial gas bubbles shrinking under the action of interfacial tension only. We identify the scaling between the polydispersivity of the initial droplets and the dynamics of bulk densification. The framework that we develop allows the sintering dynamics of arbitrary polydisperse populations of droplets to be predicted if the initial droplet (or particle) size distribution is known.
Selectivity and self-diffusion of CO2 and H2 in a mixture on a graphite surface
Trinh, Thuat T.; Vlugt, Thijs J. H.; Hägg, May-Britt; Bedeaux, Dick; Kjelstrup, Signe
2013-01-01
We performed classical molecular dynamics (MD) simulations to understand the mechanism of adsorption from a gas mixture of CO2 and H2 (mole fraction of CO2 = 0.30) and diffusion along a graphite surface, with the aim to help enrich industrial off-gases in CO2, separating out H2. The temperature of the system in the simulation covered typical industrial conditions for off-gas treatment (250–550 K). The interaction energy of single molecules CO2 or H2 on graphite surface was calculated with classical force fields (FFs) and with Density Functional Theory (DFT). The results were in good agreement. The binding energy of CO2 on graphite surface is three times larger than that of H2. At lower temperatures, the selectivity of CO2 over H2 is five times larger than at higher temperatures. The position of the dividing surface was used to explain how the adsorption varies with pore size. In the temperature range studied, the self-diffusion coefficient of CO2 is always smaller than of H2. The temperature variation of the selectivities and the self-diffusion coefficient imply that the carbon molecular sieve membrane can be used for gas enrichment of CO2. PMID:24790965
The temporal evolution of pyroclast ejection velocity and exit trajectory, a laboratory case study.
NASA Astrophysics Data System (ADS)
Cigala, Valeria; Kueppers, Ulrich; José Peña Fernández, Juan; Sesterhenn, Jörn; Taddeucci, Jacopo; Dingwell, Donald Bruce
2017-04-01
Pyroclast ejection dynamics during explosive volcanic eruptions are highly variable. This variability is due to complex interaction among different parameters, which define the boundary conditions for a certain eruption. Scaled and controlled laboratory experiments come in hand to characterize the effect of specific physical parameters on the ejection dynamics. We focus, in particular, on the dynamics of pyroclasts ejection in the region just above the vent, also called gas-thrust region, for the case of impulsively released gas-pyroclast mixtures (i.e., unsteady eruptions). In this study, gas-particle mixtures were released in a series of shock-tube experiments with varying 1) tube length, 2) vent geometry, 3) gas-particle ratio, 4) initial temperature and 5) particle size distribution. The tube length was varied by changing the starting sample load, resulting in a gas-particle ratio of 1, 2.5 and 8, respectively. Thereby, the initial distance of the sample from the exit varied between 320, 230 and 140 mm, respectively, allowing for variable time for accelerating (and possibly decelerating) the particles prior to exit. Moreover, four vent geometries were employed, a nozzle with converging walls (5°), a cylinder and two funnels with walls diverging at 15° and 30° respectively. All of them are characterized by a value h/D=1.07, where h is the length between the throat and the lip of the vent and D is throat diameter. The experiments were performed at both 500°C and room temperature using particles from 2 to 0.125 mm in diameter. In all experiments, initial pressure was 15 MPa. High speed videos of the ejection behaviour were analyzed to obtain the temporal evolution of particle velocity and exit trajectory depending on boundary conditions. Max velocity of 300 m/s was observed together with a non-linear decay of exit velocity over time. The exit trajectories were found to deviate from the vertical by 5° to 45° and also display a non-linear evolution with time. Moreover, the velocity decay was used to investigate the accuracy of the empirical fragmentation depth model from Alatorre-Ibargüengoitia et al. (2011), when different gas-particle ratios are employed. This model is not reproducing all experimental constellations satisfactorily. Further experiments will help to develop this model further. Vent geometry, particle size and temperature show the largest effect on ejection velocity and trajectory. In particular, we observed a positive correlation of velocity with 1) diverging vent walls and 2) temperature and a negative correlation with 1) starting tube length and 2) particle size. On the other hand, exit trajectories show negative correlation with 1) diverging walls, 2) starting tube length, 3) temperature and 4) particle size. Moreover, we found that gas-particle ratio additionally strongly affects the temporal evolution of particle ejection velocity and trajectory. These results highlight the importance of scaled and repeatable laboratory experiments for an enhanced understanding of natural volcanic phenomena that bear direct observability. A closer link will enhance volcanic hazard assessment.
Symbiont diversity may help coral reefs survive moderate climate change.
Baskett, Marissa L; Gaines, Steven D; Nisbet, Roger M
2009-01-01
Given climate change, thermal stress-related mass coral-bleaching events present one of the greatest anthropogenic threats to coral reefs. While corals and their symbiotic algae may respond to future temperatures through genetic adaptation and shifts in community compositions, the climate may change too rapidly for coral response. To test this potential for response, here we develop a model of coral and symbiont ecological dynamics and symbiont evolutionary dynamics. Model results without variation in symbiont thermal tolerance predict coral reef collapse within decades under multiple future climate scenarios, consistent with previous threshold-based predictions. However, model results with genetic or community-level variation in symbiont thermal tolerance can predict coral reef persistence into the next century, provided low enough greenhouse gas emissions occur. Therefore, the level of greenhouse gas emissions will have a significant effect on the future of coral reefs, and accounting for biodiversity and biological dynamics is vital to estimating the size of this effect.
Coarse-grained molecular dynamics simulation of activated penetrant transport in glassy polymers.
Zhang, Kai; Meng, Dong; Müller-Plathe, Florian; Kumar, Sanat K
2018-01-17
Membrane separations of gas mixtures strive to maximize the permeability of a desired species while keeping out undesired ones. Permeability vs. selectivity data from many polymer membranes for a given gas pair with diameters d A and d B are typically collected in a "Robeson plot"', and are bound from above by a line with a slope λ = (d B /d A ) 2 - 1. A microscopic understanding of this relationship, especially λ, is still missing. We perform molecular dynamics simulations of penetrant diffusion using three different coarse-grained polymer models over a wide range of penetrant sizes, temperatures, and monomer densities. The empirically relevant λ = (d B /d A ) 2 - 1 is only found for polymers that are either supercooled liquids with caged segmental dynamics or glasses and when the penetrant size is approximately half the Kuhn length of the chains, for which the penetrant diffusion is an activated process.
Numerical simulation of synthesis gas incineration
NASA Astrophysics Data System (ADS)
Kazakov, A. V.; Khaustov, S. A.; Tabakaev, R. B.; Belousova, Y. A.
2016-04-01
The authors have analysed the expediency of the suggested low-grade fuels application method. Thermal processing of solid raw materials in the gaseous fuel, called synthesis gas, is investigated. The technical challenges concerning the applicability of the existing gas equipment developed and extensively tested exclusively for natural gas were considered. For this purpose computer simulation of three-dimensional syngas-incinerating flame dynamics was performed by means of the ANSYS Multiphysics engineering software. The subjects of studying were: a three-dimensional aerodynamic flame structure, heat-release and temperature fields, a set of combustion properties: a flare range and the concentration distribution of burnout reagents. The obtained results were presented in the form of a time-averaged pathlines with color indexing. The obtained results can be used for qualitative and quantitative evaluation of complex multicomponent gas incineration singularities.
Numerical simulation of hydrogen fluorine overtone chemical lasers
NASA Astrophysics Data System (ADS)
Chen, Jinbao; Jiang, Zhongfu; Hua, Weihong; Liu, Zejin; Shu, Baihong
1998-08-01
A two-dimensional program was applied to simulate the chemical dynamic process, gas dynamic process and lasing process of a combustion-driven CW HF overtone chemical lasers. Some important parameters in the cavity were obtained. The calculated results included HF molecule concentration on each vibration energy level while lasing, averaged pressure and temperature, zero power gain coefficient of each spectral line, laser spectrum, the averaged laser intensity, output power, chemical efficiency and the length of lasing zone.
Glacigenic sedimentation pulses triggered post-glacial gas hydrate dissociation.
Karstens, Jens; Haflidason, Haflidi; Becker, Lukas W M; Berndt, Christian; Rüpke, Lars; Planke, Sverre; Liebetrau, Volker; Schmidt, Mark; Mienert, Jürgen
2018-02-12
Large amounts of methane are stored in continental margins as gas hydrates. They are stable under high pressure and low, but react sensitively to environmental changes. Bottom water temperature and sea level changes were considered as main contributors to gas hydrate dynamics after the last glaciation. However, here we show with numerical simulations that pulses of increased sedimentation dominantly controlled hydrate stability during the end of the last glaciation offshore mid-Norway. Sedimentation pulses triggered widespread gas hydrate dissociation and explains the formation of ubiquitous blowout pipes in water depths of 600 to 800 m. Maximum gas hydrate dissociation correlates spatially and temporally with the formation or reactivation of pockmarks, which is constrained by radiocarbon dating of Isorropodon nyeggaensis bivalve shells. Our results highlight that rapid changes of sedimentation can have a strong impact on gas hydrate systems affecting fluid flow and gas seepage activity, slope stability and the carbon cycle.
Role of temperature on static correlational properties in a spin-polarized electron gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arora, Priya; Moudgil, R. K., E-mail: rkmoudgil@kuk.ac.in; Kumar, Krishan
We have studied the effect of temperature on the static correlational properties of a spin-polarized three-dimensional electron gas (3DEG) over a wide coupling and temperature regime. This problem has been very recently studied by Brown et al. using the restricted path-integral Monte Carlo (RPIMC) technique in the warm-dense regime. To this endeavor, we have used the finite temperature version of the dynamical mean-field theory of Singwi et al, the so-called quantum STLS (qSTLS) approach. The static density structure factor and the static pair-correlation function are calculated, and compared with the RPIMC simulation data. We find an excellent agreement with themore » simulation at high temperature over a wide coupling range. However, the agreement is seen to somewhat deteriorate with decreasing temperature. The pair-correlation function is found to become small negative for small electron separation. This may be attributed to the inadequacy of the mean-field theory in dealing with the like spin electron correlations in the strong-coupling domain. A nice agreement with RPIMC data at high temperature seems to arise due to weakening of both the exchange and coulomb correlations with rising temperature.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaefer, J.; Foest, R.; Reuter, S.
The heat convection generated by micro filaments of a self-organized non-thermal atmospheric pressure plasma jet in Ar is characterized by employing laser schlieren deflectometry (LSD). It is demonstrated as a proof of principle, that the spatial and temporal changes of the refractive index n in the optical beam path related to the neutral gas temperature of the plasma jet can be monitored and evaluated simultaneously. The refraction of a laser beam in a high gradient field of n(r) with cylindrical symmetry is given for a general real refraction index profile. However, the usually applied Abel approach represents an ill-posed problemmore » and in particular for this plasma configuration. A simple analytical model is proposed in order to minimize the statistical error. Based on that, the temperature profile, specifically the absolute temperature in the filament core, the FWHM, and the frequencies of the collective filament dynamics are obtained for non-stationary conditions. For a gas temperature of 700 K inside the filament, the presented model predicts maximum deflection angles of the laser beam of 0.3 mrad which is in accordance to the experimental results obtained with LSD. Furthermore, the experimentally obtained FWHM of the temperature profile produced by the filament at the end of capillary is (1.5 {+-} 0.2) mm, which is about 10 times wider than the visual radius of the filament. The obtained maximum temperature in the effluent is (450 {+-} 30) K and is in consistence with results of other techniques. The study demonstrates that LSD represents a useful low-cost method for monitoring the spatiotemporal behaviour of microdischarges and allows to uncover their dynamic characteristics, e.g., the temperature profile even for challenging diagnostic conditions such as moving thin discharge filaments. The method is not restricted to the miniaturized and self-organized plasma studied here. Instead, it can be readily applied to other configurations that produce measurable gradients of refractive index by local gas heating and opens new diagnostics prospects particularly for microplasmas.« less
Schäfer, J.; Foest, R.; Reuter, S.; Kewitz, T.; Šperka, J.; Weltmann, K.-D.
2012-01-01
The heat convection generated by micro filaments of a self-organized non-thermal atmospheric pressure plasma jet in Ar is characterized by employing laser schlieren deflectometry (LSD). It is demonstrated as a proof of principle, that the spatial and temporal changes of the refractive index n in the optical beam path related to the neutral gas temperature of the plasma jet can be monitored and evaluated simultaneously. The refraction of a laser beam in a high gradient field of n(r) with cylindrical symmetry is given for a general real refraction index profile. However, the usually applied Abel approach represents an ill-posed problem and in particular for this plasma configuration. A simple analytical model is proposed in order to minimize the statistical error. Based on that, the temperature profile, specifically the absolute temperature in the filament core, the FWHM, and the frequencies of the collective filament dynamics are obtained for non-stationary conditions. For a gas temperature of 700 K inside the filament, the presented model predicts maximum deflection angles of the laser beam of 0.3 mrad which is in accordance to the experimental results obtained with LSD. Furthermore, the experimentally obtained FWHM of the temperature profile produced by the filament at the end of capillary is (1.5 ± 0.2) mm, which is about 10 times wider than the visual radius of the filament. The obtained maximum temperature in the effluent is (450 ± 30) K and is in consistence with results of other techniques. The study demonstrates that LSD represents a useful low-cost method for monitoring the spatiotemporal behaviour of microdischarges and allows to uncover their dynamic characteristics, e.g., the temperature profile even for challenging diagnostic conditions such as moving thin discharge filaments. The method is not restricted to the miniaturized and self-organized plasma studied here. Instead, it can be readily applied to other configurations that produce measurable gradients of refractive index by local gas heating and opens new diagnostics prospects particularly for microplasmas. PMID:23126765
A Method for Studying the Temperature Dependence of Dynamic Fracture and Fragmentation.
Jones, David R; Chapman, David J; Eakins, Daniel E
2015-06-28
The dynamic fracture of a body is a late-stage phenomenon typically studied under simplified conditions, in which a sample is deformed under uniform stress and strain rate. This can be produced by evenly loading the inner surface of a cylinder. Due to the axial symmetry, as the cylinder expands the wall is placed into a tensile hoop stress that is uniform around the circumference. While there are various techniques to generate this expansion such as explosives, electromagnetic drive, and existing gas gun techniques they are all limited in the fact that the sample cylinder must be at room temperature. We present a new method using a gas gun that facilitates experiments on cylinders from 150 K to 800 K with a consistent, repeatable loading. These highly diagnosed experiments are used to examine the effect of temperature on the fracture mechanisms responsible for failure, and their resulting influence on fragmentation statistics. The experimental geometry employs a steel ogive located inside the target cylinder, with the tip located about halfway in. A single stage light gas gun is then used to launch a polycarbonate projectile into the cylinder at 1,000 m/sec(-1). The projectile impacts and flows around the rigid ogive, driving the sample cylinder from the inside. The use of a non-deforming ogive insert allows us to install temperature control hardware inside the rear of the cylinder. Liquid nitrogen (LN₂) is used for cooling and a resistive high current load for heating. Multiple channels of upshifted photon Doppler velocimetry (PDV) track the expansion velocity along the cylinder enabling direct comparison to computer simulations, while High speed imaging is used to measure the strain to failure. The recovered cylinder fragments are also subject to optical and electron microscopy to ascertain the failure mechanism.
A Method for Studying the Temperature Dependence of Dynamic Fracture and Fragmentation
Jones, David R.; Chapman, David J.; Eakins, Daniel E.
2015-01-01
The dynamic fracture of a body is a late-stage phenomenon typically studied under simplified conditions, in which a sample is deformed under uniform stress and strain rate. This can be produced by evenly loading the inner surface of a cylinder. Due to the axial symmetry, as the cylinder expands the wall is placed into a tensile hoop stress that is uniform around the circumference. While there are various techniques to generate this expansion such as explosives, electromagnetic drive, and existing gas gun techniques they are all limited in the fact that the sample cylinder must be at room temperature. We present a new method using a gas gun that facilitates experiments on cylinders from 150 K to 800 K with a consistent, repeatable loading. These highly diagnosed experiments are used to examine the effect of temperature on the fracture mechanisms responsible for failure, and their resulting influence on fragmentation statistics. The experimental geometry employs a steel ogive located inside the target cylinder, with the tip located about halfway in. A single stage light gas gun is then used to launch a polycarbonate projectile into the cylinder at 1,000 m/sec-1. The projectile impacts and flows around the rigid ogive, driving the sample cylinder from the inside. The use of a non-deforming ogive insert allows us to install temperature control hardware inside the rear of the cylinder. Liquid nitrogen (LN2) is used for cooling and a resistive high current load for heating. Multiple channels of upshifted photon Doppler velocimetry (PDV) track the expansion velocity along the cylinder enabling direct comparison to computer simulations, while High speed imaging is used to measure the strain to failure. The recovered cylinder fragments are also subject to optical and electron microscopy to ascertain the failure mechanism. PMID:26168019
An "Inefficient Fin" Non-Dimensional Parameter to Measure Gas Temperatures Efficiently
NASA Technical Reports Server (NTRS)
Lemieux, Patrick; Murray, William; Cooke, Terry; Gerhardt, James
2012-01-01
A gas containment vessel that is not in thermal equilibrium with the bulk gas can affect its temperature measurement. The physical nature of many gas dynamics experiments often makes the accurate measurement of temperature a challenge. The environment itself typically requires that the thermocouple be sheathed, both to protect the wires and hot junction of the instrument from their environment, and to provide a smooth, rigid surface for pressure sealing of the enclosure. However, that enclosure may also be much colder than the gas to be sensed, or vice-versa. Either way, the effect of such gradients is to potentially skew the temperature measurements themselves, since heat may then be conducted by the instrument. Thermocouple designers traditionally address this problem by insulating the sheath from the thermocouple leads and hot junction as much as possible. The thermocouple leads are typically packed in a ceramic powder inside the sheath, protecting them somewhat from temperature gradients along the sheath, but there is no effective mechanism to shield the sheath from the enclosure body itself. Standard practice dictates that thermocouples be used in installations that do not present large thermal gradients along the probe. If this conduction dominates heat transfer near the tip of the probe, then temperature measurements may be expected to be skewed. While the same problem may be experienced in the measurement of temperature at various points within a solid in a gradient, it tends to be aggravated in the measurements of gas temperature, since heat transfer dependent on convection is often less efficient than conduction along the thermocouple. The proposed solution is an inefficient fin thermocouple probe. Conventional wisdom suggests that in many experiments where gas flows through an enclosure (e.g., flow in pipe, manifold, nozzle, etc.), the thermocouple be introduced flush to the surface, so as not to interfere with the flow. In practice, however, many such experiments take place where the flow is already turbulent, so that a protruding thermocouple probe has a negligible effect on the flow characteristics. The key question then becomes just how far into the flow should a thermocouple protrude in order to properly sense the gas temperature at that point. Modeling the thermocouple as an "inefficient fin" directly addresses this question. The appropriate assumptions in this case are: one-dimensional conduction along the fin; steady-state, constant, and homogeneous thermal conductivity; negligible radiation; and a uniform, constant heat transfer coefficient over the probe surface. It is noted that the nature of the ceramic-filled probe makes the key assumption of homogeneous thermal conductivity that much more conservative.
Liquid phase fluid dynamic (methanol) run in the LaPorte alternative fuels development unit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bharat L. Bhatt
1997-05-01
A fluid dynamic study was successfully completed in a bubble column at DOE's Alternative Fuels Development Unit (AFDU) in LaPorte, Texas. Significant fluid dynamic information was gathered at pilot scale during three weeks of Liquid Phase Methanol (LPMEOJP) operations in June 1995. In addition to the usual nuclear density and temperature measurements, unique differential pressure data were collected using Sandia's high-speed data acquisition system to gain insight on flow regime characteristics and bubble size distribution. Statistical analysis of the fluctuations in the pressure data suggests that the column was being operated in the churn turbulent regime at most of themore » velocities considered. Dynamic gas disengagement experiments showed a different behavior than seen in low-pressure, cold-flow work. Operation with a superficial gas velocity of 1.2 ft/sec was achieved during this run, with stable fluid dynamics and catalyst performance. Improvements included for catalyst activation in the design of the Clean Coal III LPMEOH{trademark} plant at Kingsport, Tennessee, were also confirmed. In addition, an alternate catalyst was demonstrated for LPMEOH{trademark}.« less
NASA Astrophysics Data System (ADS)
Ohkubo, Tomomasa; Sato, Yuji; Matsunaga, Ei-ichi; Tsukamoto, Masahiro
2018-02-01
Although laser processing is widely used for many applications, the cutting quality of carbon fiber reinforced plastic (CFRP) decreases around the heat-affected zone (HAZ) during laser processing. Carbon fibers are exposed around the HAZ, and tensile strength decreases with increasing length of the HAZ. Some theoretical studies of thermal conductions that do not consider fluid dynamics have been performed; however, theoretical considerations that include the dynamics of laser ablation are scarce. Using removed mass and depth observed from experiments, the dynamics of laser ablation of CFRP with high-temperature and high-pressure of compressive gas is simulated herein. In this calculation, the mushroom-like shape of laser ablation is qualitatively simulated compared with experiments using a high-speed camera. Considering the removal temperature of the resin and the temperature distribution at each point on the surface, the simulation results suggest that a wide area of the resin is removed when the processing depth is shallow, and a rounded kerf is generated as the processing depth increases.
Quench-induced breathing mode of one-dimensional Bose gases.
Fang, Bess; Carleo, Giuseppe; Johnson, Aisling; Bouchoule, Isabelle
2014-07-18
We measure the position- and momentum-space breathing dynamics of trapped one-dimensional Bose gases at finite temperature. The profile in real space reveals sinusoidal width oscillations whose frequency varies continuously through the quasicondensate to ideal Bose gas crossover. A comparison with theoretical models taking temperature into account is provided. In momentum space, we report the first observation of a frequency doubling in the quasicondensate regime, corresponding to a self-reflection mechanism due to the repulsive interactions. Such a mechanism is predicted for a fermionized system, and has not been observed to date. The disappearance of the frequency doubling through the crossover is mapped out experimentally, giving insights into the dynamics of the breathing evolution.
Quench-Induced Breathing Mode of One-Dimensional Bose Gases
NASA Astrophysics Data System (ADS)
Fang, Bess; Carleo, Giuseppe; Johnson, Aisling; Bouchoule, Isabelle
2014-07-01
We measure the position- and momentum-space breathing dynamics of trapped one-dimensional Bose gases at finite temperature. The profile in real space reveals sinusoidal width oscillations whose frequency varies continuously through the quasicondensate to ideal Bose gas crossover. A comparison with theoretical models taking temperature into account is provided. In momentum space, we report the first observation of a frequency doubling in the quasicondensate regime, corresponding to a self-reflection mechanism due to the repulsive interactions. Such a mechanism is predicted for a fermionized system, and has not been observed to date. The disappearance of the frequency doubling through the crossover is mapped out experimentally, giving insights into the dynamics of the breathing evolution.
Gas Generation of Heated PBX 9502
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holmes, Matthew David; Parker, Gary Robert
2016-10-07
Uniaxially pressed samples of PBX 9502 were heated until self-ignition (cookoff) in order to collect pressure and temperature data relevant for model development. Samples were sealed inside a small gas-tight vessel, but were mechanically unconfined. Long-duration static pressure rise, as well as dynamic pressure rise during the cookoff event, were recorded. Time-lapse photography of the sample was used to measure the thermal expansion of the sample as a function of time and temperature. High-speed videography qualitatively characterized the mechanical behavior and failure mechanisms at the time of cookoff. These results provide valuable input to modeling efforts, in order to improvemore » the ability to predict pressure output during cookoff as well as the effect of pressure on time-toignition.« less
Heat-flow equation motivated by the ideal-gas shock wave.
Holian, Brad Lee; Mareschal, Michel
2010-08-01
We present an equation for the heat-flux vector that goes beyond Fourier's Law of heat conduction, in order to model shockwave propagation in gases. Our approach is motivated by the observation of a disequilibrium among the three components of temperature, namely, the difference between the temperature component in the direction of a planar shock wave, versus those in the transverse directions. This difference is most prominent near the shock front. We test our heat-flow equation for the case of strong shock waves in the ideal gas, which has been studied in the past and compared to Navier-Stokes solutions. The new heat-flow treatment improves the agreement with nonequilibrium molecular-dynamics simulations of hard spheres under strong shockwave conditions.
Self-organized shocks in the sedimentation of a granular gas
NASA Astrophysics Data System (ADS)
Almazán, Lidia; Serero, Dan; Salueña, Clara; Pöschel, Thorsten
2015-06-01
A granular gas in gravity heated from below develops a certain stationary density profile. When the heating is switched off, the granular gas collapses. We investigate the process of sedimentation using computational hydrodynamics, based on the Jenkins-Richman theory, and find that the process is significantly more complex than generally acknowledged. In particular, during its evolution, the system passes several stages which reveal distinct spatial regions of inertial (supersonic) and diffusive (subsonic) dynamics. During the supersonic stages, characterized by Mach>1 , the system develops supersonic shocks which are followed by a steep front of the hydrodynamic fields of temperature and density, traveling upward.
NPS Gas Gun for Planar Impact Studies
NASA Astrophysics Data System (ADS)
Cheong Ho, Chien; Hixson, Robert
2009-11-01
The Naval Postgraduate School (NPS) commissioned a Gas Gun for shock wave studies on 9^th October 2009, by performing the first experiment. The Gas Gun is the key element of NPS Shock Wave Research Program within the Physics Department, where well-characterized planar impacts are essential for obtaining high quality data, to characterize a solid material. This first experiment was very successful, and returned key data on the quality of the impact conditions created. The Gas Gun is designed by SANDIA NATIONAL LABORATORIES, and the NPS spent twelve months fabricating the components of the Gas Gun and six months assembling the Gas Gun. Three inch projectile are launched at velocities up to 0.5 km/s, creating high pressure and temperature states that can be used to characterize the fundamental response of relevant materials to dynamic loading. The projectile is launched from a `wrap around' gas breech where helium gas is pressurized to relatively low pressure. This gas is used to accelerate the projectile down a 3m barrel. Upon impact, the speed of the projectile and the flatness of the impact is measured, via a stepped circular pin array circuit. The next stage of development for the Gas Gun is to integrate a Velocity Interferometer System for Any Reflector (VISAR). The VISAR sees all the waves that flow through the target plate as a result of the impact. This is a key diagnostic for determining material properties under dynamic loading conditions.
1982-08-01
Session on Recent Advances in High Temperature Chemistry’ Thursday. July 29 Ab Initio Calculations of Molecular W. Weltner, Discussion Leader Structure...atomic fluorescence 13 R. Schoonmaker, Oberlin College: "Scattering of molecular beams from surfaces, dynamics of gas-surface interactions and the...Air Force Geophys. Lab., Ianscom, AFB ,iA Group V1310, lela Park, Cleveland, OH 44112 01731 Saboungi, Marie-Louise off campus Myers, Clifford and
Dynamics of the Exchange of Carbon Dioxide in Arctic and Subarctic Regions,
1973-01-01
snow, at temperatures too low for significant biological activity. The phenomena of gas evasion under conditions of 3 freezing soil solution , confirmed...1972) have observed a de- pression rather than an acceleration in soil respiration, as the soil solution undergoes a phase change near 0C. On the other...temperatures are too low for significant biological activity. CO2 from biological sources expressed by freezing the soil solution , evidently leaks to the
Dynamical history of a binary cluster: Abell 3653
NASA Astrophysics Data System (ADS)
Caglar, Turgay; Hudaverdi, Murat
2017-12-01
We study the dynamical structure of a bimodal galaxy cluster Abell 3653 at z = 0.1089 using optical and X-ray data. Observations include archival data from the Anglo-Australian Telescope, X-ray observatories XMM-Newton and Chandra. We draw a global picture for A3653 using galaxy density, X-ray luminosity and temperature maps. The galaxy distribution has a regular morphological shape at the 3 Mpc size. The galaxy density map shows an elongation in the east-west direction, which perfectly aligns with the extended diffuse X-ray emission. We detect two dominant groups around the two brightest cluster galaxies (BCGs). BCG1 (z = 0.1099) can be associated with the main cluster A3653E, and a foreground subcluster A3653W is concentrated at BCG2 (z = 0.1075). Both X-ray peaks are dislocated from the BCGs by ∼35 kpc, which suggest an ongoing merger process. We measure the subcluster gas temperatures of 4.67 and 3.66 keV, respectively. Two-body dynamical analysis shows that A3653E and A3653W are very likely gravitationally bound (93.5 per cent probability). The highly favoured scenario suggests that the two subclusters have a mass ratio of 1.4 and are colliding close to the plane of sky (α = 17.61°) at 2400 km s-1, and will undergo core passage in 380 Myr. The temperature map also significantly shows a shock-heated gas (6.16 keV) between the subclusters, which confirms the supersonic infalling scenario.
NON-EQUILIBRIUM HELIUM IONIZATION IN AN MHD SIMULATION OF THE SOLAR ATMOSPHERE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Golding, Thomas Peter; Carlsson, Mats; Leenaarts, Jorrit, E-mail: thomas.golding@astro.uio.no, E-mail: mats.carlsson@astro.uio.no, E-mail: jorrit.leenaarts@astro.su.se
The ionization state of the gas in the dynamic solar chromosphere can depart strongly from the instantaneous statistical equilibrium commonly assumed in numerical modeling. We improve on earlier simulations of the solar atmosphere that only included non-equilibrium hydrogen ionization by performing a 2D radiation-magnetohydrodynamics simulation featuring non-equilibrium ionization of both hydrogen and helium. The simulation includes the effect of hydrogen Lyα and the EUV radiation from the corona on the ionization and heating of the atmosphere. Details on code implementation are given. We obtain helium ion fractions that are far from their equilibrium values. Comparison with models with local thermodynamicmore » equilibrium (LTE) ionization shows that non-equilibrium helium ionization leads to higher temperatures in wavefronts and lower temperatures in the gas between shocks. Assuming LTE ionization results in a thermostat-like behavior with matter accumulating around the temperatures where the LTE ionization fractions change rapidly. Comparison of DEM curves computed from our models shows that non-equilibrium ionization leads to more radiating material in the temperature range 11–18 kK, compared to models with LTE helium ionization. We conclude that non-equilibrium helium ionization is important for the dynamics and thermal structure of the upper chromosphere and transition region. It might also help resolve the problem that intensities of chromospheric lines computed from current models are smaller than those observed.« less
Dynamics and Solubility of He and CO 2 in Brine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ho, Tuan Anh; Tenney, Craig M.
2016-09-01
Molecular dynamics simulation was implemented using LAMMPS simulation package (1) to study the diffusivity of He 3 and CO 2 in NaCl aqueous solution. To simulate at infinite dilute gas concentration, we placed one He 3 or CO 2 molecule in an initial simulation box of 24x24x33Å 3 containing 512 water molecules and a certain number of NaCl molecules depending on the concentration. Initial configuration was set up by placing water, NaCl, and gas molecules into different regions in the simulation box. Calculating diffusion coefficient for one He or CO 2 molecule consistently yields poor results. To overcome this, formore » each simulation at specific conditions (i.e., temperature, pressure, and NaCl concentration), we conducted 50 simulations initiated from 50 different configurations. These configurations are obtained by performing the simulation starting from the initial configuration mentioned above in the NVE ensemble (i.e., constant number of particles, volume, and energy). for 100,000 time steps and collecting one configuration every 2,000 times step. The output temperature of this simulation is about 500K. The collected configurations were then equilibrated for 2ns in the NPT ensemble (i.e., constant number of particles, pressure, and temperature) followed by 9ns simulations in the NVT ensemble (i.e., constant number of particles, volume, and temperature). The time step is 1fs for all simulations.« less
Hierarchical layered double hydroxides with Ag nanoparticle modification for ethanol sensing
NASA Astrophysics Data System (ADS)
Qin, Yuxiang; Wang, Liping; Wang, Xiaofei
2018-07-01
Layered double hydroxides (LDHs) have recently been revealed to be promising in gas sensor applications due to their compositional flexibility and unique 2D-interlayer channel for gas diffusion and adsorption. This work demonstrates highly porous hierarchical LDHs containing Mg2+ and Al3+ (MgAl-LDHs) for ethanol sensing at room temperature. These MgAl-LDHs, with unique flower-like hierarchical structure and mesoporous interlayer, were synthesized hydrothermally using sodium dodecyl sulfate as soft template as well as intercalating agent. Further modification by discrete Ag nanoparticles (NPs) was achieved via an environmentally friendly glucose-reduction method to improve the gas-sensing response of the LDH-based sensor. It is found that the hierarchical MgAl-LDHs show potential in sensing ethanol gas with rapid dynamic characteristics at room temperature; their response magnitude towards ethanol can be enhanced significantly by Ag NP modification. The gas-response value of the Ag-modified MgAl-LDH sensor is about twice that of pristine MgAl-LDH sensors, towards 5–200 ppm ethanol at room temperature. Meanwhile, rapid response-recovery characteristics are achieved, with response and recovery times shorter than 10 and 50 s, respectively. The satisfactory sensing performance and remarkable response enhancement by Ag NP modification are demonstrated in terms of the unique microstructure of the hierarchical MgAl-LDHs and a constructed conductive effect model of Ag functionalized LDHs.
Hierarchical layered double hydroxides with Ag nanoparticle modification for ethanol sensing.
Qin, Yuxiang; Wang, Liping; Wang, Xiaofei
2018-07-06
Layered double hydroxides (LDHs) have recently been revealed to be promising in gas sensor applications due to their compositional flexibility and unique 2D-interlayer channel for gas diffusion and adsorption. This work demonstrates highly porous hierarchical LDHs containing Mg 2+ and Al 3+ (MgAl-LDHs) for ethanol sensing at room temperature. These MgAl-LDHs, with unique flower-like hierarchical structure and mesoporous interlayer, were synthesized hydrothermally using sodium dodecyl sulfate as soft template as well as intercalating agent. Further modification by discrete Ag nanoparticles (NPs) was achieved via an environmentally friendly glucose-reduction method to improve the gas-sensing response of the LDH-based sensor. It is found that the hierarchical MgAl-LDHs show potential in sensing ethanol gas with rapid dynamic characteristics at room temperature; their response magnitude towards ethanol can be enhanced significantly by Ag NP modification. The gas-response value of the Ag-modified MgAl-LDH sensor is about twice that of pristine MgAl-LDH sensors, towards 5-200 ppm ethanol at room temperature. Meanwhile, rapid response-recovery characteristics are achieved, with response and recovery times shorter than 10 and 50 s, respectively. The satisfactory sensing performance and remarkable response enhancement by Ag NP modification are demonstrated in terms of the unique microstructure of the hierarchical MgAl-LDHs and a constructed conductive effect model of Ag functionalized LDHs.
Are cosmological gas accretion streams multiphase and turbulent?
NASA Astrophysics Data System (ADS)
Cornuault, Nicolas; Lehnert, Matthew D.; Boulanger, François; Guillard, Pierre
2018-03-01
Simulations of cosmological filamentary accretion reveal flows ("streams") of warm gas, T 104 K, which bring gas into galaxies efficiently. We present a phenomenological scenario in which gas in such flows, if it is shocked as it enters the halo as we assume and depending on the post-shock temperature, stream radius, its relative overdensity, and other factors, becomes biphasic and turbulent. We consider a collimated stream of warm gas that flows into a halo from an overdense filament of the cosmic web. The post-shock streaming gas expands because it has a higher pressure than the ambient halo gas and fragments as it cools. The fragmented stream forms a two phase medium: a warm cloudy phase embedded in hot post-shock gas. We argue that the hot phase sustains the accretion shock. During fragmentation, a fraction of the initial kinetic energy of the infalling gas is converted into turbulence among and within the warm clouds. The thermodynamic evolution of the post-shock gas is largely determined by the relative timescales of several processes. These competing timescales characterize the cooling, expansion of the post-shock gas, amount of turbulence in the clouds, and dynamical time of the halo. We expect the gas to become multiphase when the gas cooling and dynamical times are of the same order of magnitude. In this framework, we show that this mainly occurs in the mass range, Mhalo 1011 to 1013 M⊙, where the bulk of stars have formed in galaxies. Because of the expansion of the stream and turbulence, gas accreting along cosmic web filaments may eventually lose coherence and mix with the ambient halo gas. Through both the phase separation and "disruption" of the stream, the accretion efficiency onto a galaxy in a halo dynamical time is lowered. Decollimating flows make the direct interaction between galaxy feedback and accretion streams more likely, thereby further reducing the overall accretion efficiency. As we discuss in this work, moderating the gas accretion efficiency through these mechanisms may help to alleviate a number of significant challenges in theoretical galaxy formation.
Emergent kinetic constraints, ergodicity breaking, and cooperative dynamics in noisy quantum systems
NASA Astrophysics Data System (ADS)
Everest, B.; Marcuzzi, M.; Garrahan, J. P.; Lesanovsky, I.
2016-11-01
Kinetically constrained spin systems play an important role in understanding key properties of the dynamics of slowly relaxing materials, such as glasses. Recent experimental studies have revealed that manifest kinetic constraints govern the evolution of strongly interacting gases of highly excited atoms in a noisy environment. Motivated by this development we explore which types of kinetically constrained dynamics can generally emerge in quantum spin systems subject to strong noise and show how, in this framework, constraints are accompanied by conservation laws. We discuss an experimentally realizable case of a lattice gas, where the interplay between those and the geometry of the lattice leads to collective behavior and time-scale separation even at infinite temperature. This is in contrast to models of glass-forming substances which typically rely on low temperatures and the consequent suppression of thermal activation.
NASA Astrophysics Data System (ADS)
Dupuy, John L.; Lewis, Steven P.; Stancil, P. C.
2016-11-01
Gas-grain and gas-phase reactions dominate the formation of molecules in the interstellar medium (ISM). Gas-grain reactions require a substrate (e.g., a dust or ice grain) on which the reaction is able to occur. The formation of molecular hydrogen (H2) in the ISM is the prototypical example of a gas-grain reaction. In these reactions, an atom of hydrogen will strike a surface, stick to it, and diffuse across it. When it encounters another adsorbed hydrogen atom, the two can react to form molecular hydrogen and then be ejected from the surface by the energy released in the reaction. We perform in-depth classical molecular dynamics simulations of hydrogen atoms interacting with an amorphous water-ice surface. This study focuses on the first step in the formation process; the sticking of the hydrogen atom to the substrate. We find that careful attention must be paid in dealing with the ambiguities in defining a sticking event. The technical definition of a sticking event will affect the computed sticking probabilities and coefficients. Here, using our new definition of a sticking event, we report sticking probabilities and sticking coefficients for nine different incident kinetic energies of hydrogen atoms [5-400 K] across seven different temperatures of dust grains [10-70 K]. We find that probabilities and coefficients vary both as a function of grain temperature and incident kinetic energy over the range of 0.99-0.22.
Statistical thermodynamics of a two-dimensional relativistic gas.
Montakhab, Afshin; Ghodrat, Malihe; Barati, Mahmood
2009-03-01
In this paper we study a fully relativistic model of a two-dimensional hard-disk gas. This model avoids the general problems associated with relativistic particle collisions and is therefore an ideal system to study relativistic effects in statistical thermodynamics. We study this model using molecular-dynamics simulation, concentrating on the velocity distribution functions. We obtain results for x and y components of velocity in the rest frame (Gamma) as well as the moving frame (Gamma;{'}) . Our results confirm that Jüttner distribution is the correct generalization of Maxwell-Boltzmann distribution. We obtain the same "temperature" parameter beta for both frames consistent with a recent study of a limited one-dimensional model. We also address the controversial topic of temperature transformation. We show that while local thermal equilibrium holds in the moving frame, relying on statistical methods such as distribution functions or equipartition theorem are ultimately inconclusive in deciding on a correct temperature transformation law (if any).
Toward large-scale solar energy systems with peak concentrations of 20,000 suns
NASA Astrophysics Data System (ADS)
Kribus, Abraham
1997-10-01
The heliostat field plays a crucial role in defining the achievable limits for central receiver system efficiency and cost. Increasing system efficiency, thus reducing the reflective area and system cost, can be achieved by increasing the concentration and the receiver temperature. The concentration achievable in central receiver plants, however, is constrained by current heliostat technology and design practices. The factors affecting field performance are surface and tracking errors, astigmatism, shadowing, blocking and dilution. These are geometric factors that can be systematically treated and reduced. We present improvements in collection optics and technology that may boost concentration (up to 20,000 peak), achievable temperature (2,000 K), and efficiency in solar central receiver plants. The increased performance may significantly reduce the cost of solar energy in existing applications, and enable solar access to new ultra-high-temperature applications, such as: future gas turbines approaching 60% combined cycle efficiency; high-temperature thermo-chemical processes; and gas-dynamic processes.
NASA Technical Reports Server (NTRS)
Vinatier, S.; Bezard, B.; Anderson, C. M.; Coustenis, A.; Teanby, N.
2012-01-01
Titan's northern spring equinox occurred in August 2009. General Circulation Models (e.g. Lebonnois et al., 2012) predict strong modifications of the global circulation in this period, with formation of two circulation cells instead of the pole-to-pole cell that occurred during northern winter. This winter single cell, which had its descending branch at the north pole, was at the origin of the enrichment of molecular abundances and high stratopause temperatures observed by Cassini/CIRS at high northern latitudes (e.g. Achterberg et al., 2011, Coustenis et al., 2010, Teanby et al., 2008, Vinatier et al., 2010). The predicted dynamical seasonal variations after the equinox have strong impact on the spatial distributions of trace gas, temperature and aerosol abundances. We will present here an analysis of CIRS limb-geometry datasets acquired in 2010 and 2011 that we used to monitor the seasonal evolution of the vertical profiles of temperature, molecular (C2H2, C2H6, HCN, ..) and aerosol abundances.
Strong-Field Control of Laser Filamentation Mechanisms
NASA Astrophysics Data System (ADS)
Levis, Robert; Romanov, Dmitri; Filin, Aleskey; Compton, Ryan
2008-05-01
The propagation of short strong-file laser pulses in gas and solution phases often result in formation of filaments. This phenomenon involves many nonlinear processes including Kerr lensing, group velocity dispersion, multi-photon ionization, plasma defocusing, intensity clamping, and self-steepening. Of these, formation and dynamics of pencil-shape plasma areas plays a crucial role. The fundamental understanding of these laser-induced plasmas requires additional effort, because the process is highly nonlinear and complex. We studied the ultrafast laser-generated plasma dynamics both experimentally and theoretically. Ultrafast plasma dynamics was probed using Coherent Anti-Stokes Raman Scattering. The measurements were made in a room temperature gas maintained at 1 atm in a flowing cell. The time dependent scattering was measured by delaying the CARS probe with respect to the intense laser excitation pulse. A general trend is observed between the spacing of the ground state and the first allowed excited state with the rise time for the noble gas series and the molecular gases. This trend is consistent with our theoretical model, which considers the ultrafast dynamics of the strong field generated plasma as a three-step process; (i) strong-field ionization followed by the electron gaining considerable kinetic energy during the pulse; (ii) immediate post-pulse dynamics: fast thermalization, impact-ionization-driven electron multiplication and cooling; (iii) ensuing relaxation: evolution to electron-ion equilibrium and eventual recombination.
Tracing Water Vapor and Ice During Dust Growth
NASA Astrophysics Data System (ADS)
Krijt, Sebastiaan; Ciesla, Fred J.; Bergin, Edwin A.
2016-12-01
The processes that govern the evolution of dust and water (in the form of vapor or ice) in protoplanetary disks are intimately connected. We have developed a model that simulates dust coagulation, dust dynamics (settling, turbulent mixing), vapor diffusion, and condensation/sublimation of volatiles onto grains in a vertical column of a protoplanetary disk. We employ the model to study how dust growth and dynamics influence the vertical distribution of water vapor and water ice in the region just outside the radial snowline. Our main finding is that coagulation (boosted by the enhanced stickiness of icy grains) and the ensuing vertical settling of solids results in water vapor being depleted, but not totally removed, from the region above the snowline on a timescale commensurate with the vertical turbulent mixing timescale. Depending on the strength of the turbulence and the temperature, the depletion can reach factors of up to ˜50 in the disk atmosphere. In our isothermal column, this vapor depletion results in the vertical snowline moving closer to the midplane (by up to 2 gas scale heights) and the gas-phase {{C}}/{{O}} ratio above the vertical snowline increasing. Our findings illustrate the importance of dynamical effects and the need for understanding coevolutionary dynamics of gas and solids in planet-forming environments.
Versatile in situ gas analysis apparatus for nanomaterials reactors.
Meysami, Seyyed Shayan; Snoek, Lavina C; Grobert, Nicole
2014-09-02
We report a newly developed technique for the in situ real-time gas analysis of reactors commonly used for the production of nanomaterials, by showing case-study results obtained using a dedicated apparatus for measuring the gas composition in reactors operating at high temperature (<1000 °C). The in situ gas-cooled sampling probe mapped the chemistry inside the high-temperature reactor, while suppressing the thermal decomposition of the analytes. It thus allows a more accurate study of the mechanism of progressive thermocatalytic cracking of precursors compared to previously reported conventional residual gas analyses of the reactor exhaust gas and hence paves the way for the controlled production of novel nanomaterials with tailored properties. Our studies demonstrate that the composition of the precursors dynamically changes as they travel inside of the reactor, causing a nonuniform growth of nanomaterials. Moreover, mapping of the nanomaterials reactor using quantitative gas analysis revealed the actual contribution of thermocatalytic cracking and a quantification of individual precursor fragments. This information is particularly important for quality control of the produced nanomaterials and for the recycling of exhaust residues, ultimately leading toward a more cost-effective continuous production of nanomaterials in large quantities. Our case study of multiwall carbon nanotube synthesis was conducted using the probe in conjunction with chemical vapor deposition (CVD) techniques. Given the similarities of this particular CVD setup to other CVD reactors and high-temperature setups generally used for nanomaterials synthesis, the concept and methodology of in situ gas analysis presented here does also apply to other systems, making it a versatile and widely applicable method across a wide range of materials/manufacturing methods, catalysis, as well as reactor design and engineering.
NASA Astrophysics Data System (ADS)
Padrino, Juan C.; Sprittles, James; Lockerby, Duncan
2017-11-01
Thermophoresis refers to the forces on and motions of objects caused by temperature gradients when these objects are exposed to rarefied gases. This phenomenon can occur when the ratio of the gas mean free path to the characteristic physical length scale (Knudsen number) is not negligible. In this work, we obtain the thermophoretic force on a rigid, heat-conducting spherical particle immersed in a rarefied gas resulting from a uniform temperature gradient imposed far from the sphere. To this end, we model the gas dynamics using the steady, linearized version of the so-called regularized 13-moment equations (R13). This set of equations, derived from the Boltzmann equation using the moment method, provides closures to the mass, momentum, and energy conservation laws in the form of constitutive, transport equations for the stress and heat flux that extends the Navier-Stokes-Fourier model to include rarefaction effects. Integration of the pressure and stress on the surface of the sphere leads to the net force as a function of the Knudsen number, dimensionless temperature gradient, and particle-to-gas thermal conductivity ratio. Results from this expression are compared with predictions from other moment-based models as well as from kinetic models. Supported in the UK by the Engineering and Physical Sciences Research Council (EP/N016602/1).
Argonne Bubble Experiment Thermal Model Development II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buechler, Cynthia Eileen
2016-07-01
This report describes the continuation of the work reported in “Argonne Bubble Experiment Thermal Model Development”. The experiment was performed at Argonne National Laboratory (ANL) in 2014. A rastered 35 MeV electron beam deposited power in a solution of uranyl sulfate, generating heat and radiolytic gas bubbles. Irradiations were performed at three beam power levels, 6, 12 and 15 kW. Solution temperatures were measured by thermocouples, and gas bubble behavior was observed. This report will describe the Computational Fluid Dynamics (CFD) model that was developed to calculate the temperatures and gas volume fractions in the solution vessel during the irradiations.more » The previous report described an initial analysis performed on a geometry that had not been updated to reflect the as-built solution vessel. Here, the as-built geometry is used. Monte-Carlo N-Particle (MCNP) calculations were performed on the updated geometry, and these results were used to define the power deposition profile for the CFD analyses, which were performed using Fluent, Ver. 16.2. CFD analyses were performed for the 12 and 15 kW irradiations, and further improvements to the model were incorporated, including the consideration of power deposition in nearby vessel components, gas mixture composition, and bubble size distribution. The temperature results of the CFD calculations are compared to experimental measurements.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarkisov, G. S.; Rosenthal, S. E.; Struve, K. W.
For nanosecond electrical explosion of fine metal wires in vacuum generates calibrated, radially expanded gas cylinders of metal atoms are surrounded by low-density fast expanding plasma corona. Here, a novel integrated-phase technique, based on laser interferometry, provides the dynamic dipole polarizability of metal atoms. This data was previously unavailable for tungsten atoms. Furthermore, an extremely high melting temperature and significant pre-melt electronic emission make these measurements particularly complicated for this refractory metal.
Sarkisov, G. S.; Rosenthal, S. E.; Struve, K. W.
2016-10-12
For nanosecond electrical explosion of fine metal wires in vacuum generates calibrated, radially expanded gas cylinders of metal atoms are surrounded by low-density fast expanding plasma corona. Here, a novel integrated-phase technique, based on laser interferometry, provides the dynamic dipole polarizability of metal atoms. This data was previously unavailable for tungsten atoms. Furthermore, an extremely high melting temperature and significant pre-melt electronic emission make these measurements particularly complicated for this refractory metal.
High precision Hugoniot measurements on statically pre-compressed fluid helium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seagle, Christopher T.; Reinhart, William D.; Lopez, Andrew J.
Here we describe how the capability for statically pre-compressing fluid targets for Hugoniot measurements utilizing gas gun driven flyer plates has been developed. Pre-compression expands the capability for initial condition control, allowing access to thermodynamic states off the principal Hugoniot. Absolute Hugoniot measurements with an uncertainty less than 3% on density and pressure were obtained on statically pre-compressed fluid helium utilizing a two stage light gas gun. Helium is highly compressible; the locus of shock states resulting from dynamic loading of an initially compressed sample at room temperature is significantly denser than the cryogenic fluid Hugoniot even for relatively modestmore » (0.27–0.38 GPa) initial pressures. Lastly, the dynamic response of pre-compressed helium in the initial density range of 0.21–0.25 g/cm3 at ambient temperature may be described by a linear shock velocity (us) and particle velocity (u p) relationship: u s = C 0 + su p, with C 0 = 1.44 ± 0.14 km/s and s = 1.344 ± 0.025.« less
Vorticity generation and jetting caused by a laser-induced optical breakdown
NASA Astrophysics Data System (ADS)
Wang, Jonathan; Buchta, David; Freund, Jonathan
2017-11-01
A focused laser can cause optical breakdown of a gas that absorbs energy and can seed ignition. The local hydrodynamics are complex. The breakdown is observed to produce vorticity that subsequently collects into a jetting flow towards the laser source. The strength and the very direction of the jet is observed to be sensitive to the plasma kernel geometry. We use detailed numerical simulations to examine the short-time (< 1 μ s) dynamics leading to this vorticity and jetting. The simulation employs a two-temperature model, free-electron generation by multi-photon ionization, absorption of laser energy by inverse Bremsstrahlung, and 11 charged and neutral species for air. We quantify the early-time contributions of different thermodynamic and gas-dynamic effects to the baroclinic torque. It is found that the breakdown produces compression waves within the plasma kernel, and that the mismatch in their strengths precipitates the involution of the plasma remnants and yields the net vorticity that ultimately develops into the jet. We also quantify the temperature distribution and local strain rates and demonstrate their importance in seeding ignition in non-homogeneous hydrogen/air mixtures.
High precision Hugoniot measurements on statically pre-compressed fluid helium
Seagle, Christopher T.; Reinhart, William D.; Lopez, Andrew J.; ...
2016-09-27
Here we describe how the capability for statically pre-compressing fluid targets for Hugoniot measurements utilizing gas gun driven flyer plates has been developed. Pre-compression expands the capability for initial condition control, allowing access to thermodynamic states off the principal Hugoniot. Absolute Hugoniot measurements with an uncertainty less than 3% on density and pressure were obtained on statically pre-compressed fluid helium utilizing a two stage light gas gun. Helium is highly compressible; the locus of shock states resulting from dynamic loading of an initially compressed sample at room temperature is significantly denser than the cryogenic fluid Hugoniot even for relatively modestmore » (0.27–0.38 GPa) initial pressures. Lastly, the dynamic response of pre-compressed helium in the initial density range of 0.21–0.25 g/cm3 at ambient temperature may be described by a linear shock velocity (us) and particle velocity (u p) relationship: u s = C 0 + su p, with C 0 = 1.44 ± 0.14 km/s and s = 1.344 ± 0.025.« less
NASA Astrophysics Data System (ADS)
Radhakrishnan, Dhanya; Narayana, Chandrabhas
2015-12-01
Brillouin spectroscopy is used to study the effect of pore occupancy on the elastic constants by incorporating various guest molecules into zeolitic imidazolate framework (ZIF)-8. A systematic study on the effect of mass and polarizability of the guest has been carried out by incorporating alcohols of varying chain lengths at room temperature. The interaction between the guest and host affects the elastic properties, lifetimes and guest dynamics inside the pores. The elastic anisotropy was seen to reduce upon incorporation of the guests. We have also studied the temperature dependence of the acoustic modes on gas adsorption to understand the framework flexibility. The Brillouin shift of the acoustic modes increases upon temperature dependent gas adsorption with transverse acoustic modes exhibiting a larger shift. This suggests a hardening of otherwise low shear modulus of ZIF-8. Our findings give insight into the role of guest molecules and temperature in tuning the elastic properties of ZIF-8 which is important for practical applications.
Finite Element Modeling and Analysis of Powder Stream in Low Pressure Cold Spray Process
NASA Astrophysics Data System (ADS)
Goyal, Tarun; Walia, Ravinderjit Singh; Sharma, Prince; Sidhu, Tejinder Singh
2016-07-01
Low pressure cold gas dynamic spray (LPCGDS) is a coating process that utilize low pressure gas (5-10 bars instead of 25-30 bars) and the radial injection of powder instead of axial injection with the particle range (1-50 μm). In the LPCGDS process, pressurized compressed gas is accelerated to the critical velocity, which depends on length of the divergent section of nozzle, the propellant gas and particle characteristics, and the diameters ratio of the inlet and outer diameters. This paper presents finite element modeling (FEM) of powder stream in supersonic nozzle wherein adiabatic gas flow and expansion of gas occurs in uniform manner and the same is used to evaluate the resultant temperature and velocity contours during coating process. FEM analyses were performed using commercial finite volume package, ANSYS CFD FLUENT. The results are helpful to predict the characteristics of powder stream at the exit of the supersonic nozzle.
Formation of a knudsen layer in electronically induced desorption
NASA Astrophysics Data System (ADS)
Sibold, D.; Urbassek, H. M.
1992-10-01
For intense desorption fluxes, particles desorbed by electronic transitions (DIET) from a surface into a vacuum may thermalize in the gas cloud forming above the surface. In immediate vicinity to the surface, however, a non-equilibrium layer (the Knudsen layer) exists which separates the recently desorbed, non-thermal particles from the thermalized gas cloud. We investigate by Monte Carlo computer simulation the time it takes to form a Knudsen layer, and its properties. It is found that a Knudsen layer, and thus also a thermalized gas cloud, is formed after around 200 mean free flight times of the desorbing particles, corresponding to a desorption of 20 monolayers. At the end of the Knudsen layer, the gas density will be higher, and the flow velocity and temperature smaller, than literature values indicate for thermal desorption. These data are of fundamental interest for the modeling of gas-kinetic and gas-dynamic effects in DIET.
Cyclic Activity of Mud Volcanoes: Evidences from Trinidad (SE Caribbean)
NASA Astrophysics Data System (ADS)
Deville, E.
2007-12-01
Fluid and solid transfer in mud volcanoes show different phases of activity, including catastrophic events followed by periods of relative quiescence characterized by moderate activity. This can be notably shown by historical data onshore Trinidad. Several authors have evoked a possible link between the frequencies of eruption of some mud volcanoes and seismic activity, but in Trinidad there is no direct correlation between mud eruptions and seisms. It appears that each eruptive mud volcano has its own period of catastrophic activity, and this period is highly variable from one volcano to another. The frequency of activity of mud volcanoes seems essentially controlled by local pressure regime within the sedimentary pile. At the most, a seism can, in some cases, activate an eruption close to its term. The dynamics of expulsion of the mud volcanoes during the quiescence phases has been studied notably from temperature measurements within the mud conduits. The mud temperature is concurrently controlled by, either, the gas flux (endothermic gas depressurizing induces a cooling effect), or by the mud flux (mud is a vector for convective heat transfer). Complex temperature distribution was observed in large conduits and pools. Indeed, especially in the bigger pools, the temperature distribution characterizes convective cells with an upward displacement of mud above the deep outlet, and ring-shaped rolls associated with the burial of the mud on the flanks of the pools. In simple, tube-like shaped, narrow conduits, the temperature is more regular, but we observed different types of profiles, with either downward increasing or decreasing temperatures. If the upward flow of mud would be regular, we should expect increasing temperatures and progressively decreasing gradient with depth within the conduits. However, the variable measured profiles from one place to another, as well as time-variable measured temperatures within the conduits and especially, at the base of the conduits, shows that the fluid flow expelled by the studied mud volcanoes is not constant but highly variable through short time-periods. We notably observed very short time-period cyclic variations with a frequency of about 10 minutes. These high frequencies temperature changes could be related to the dynamics of two-phase flows (gas and mud) through the mud volcano conduits. We also observed locally a significant daily changes of the temperature of the expelled mud which shows also that the mud flux is changing very rapidly from one day to another.
NASA Astrophysics Data System (ADS)
Thirupathi, Rampelly; Solleti, Goutham; Sreekanth, Tirumala; Sadasivuni, Kishor Kumar; Venkateswara Rao, Kalagadda
2018-03-01
The exceptional chemical and physical properties of nanostructured materials are extremely suitable for designing new and enhanced sensing devices, particularly gas sensors and biosensors. The present work describes the synthesis of magnesium oxide (MgO) nanoparticles through two methods: a green synthesis using aloe vera plant extract and a chemical method using a glycine-based solution combustion route. In a single step, the extracted organic molecules from aloe vera plants were used to reduce metal ions by the green method. MgO nanoparticles were coated onto the interdigital electrode using the drop-drying method. The dynamic gas-sensing characteristics were measured for liquefied petroleum gas (LPG) at different concentrations and various temperatures. The MgO nanoparticles were characterized by using x-ray diffraction, field emission scanning electron microscopy, and high-resolution transmission electron microscopy to determine the size and structure of the particles. The product's functional properties were analyzed by Fourier transform-infrared spectroscopy and UV-visible spectroscopy. We found that the LPG sensing behavior of biologically synthesized MgO registers excellent sensitivity at various operating temperatures.
NASA Astrophysics Data System (ADS)
Thirupathi, Rampelly; Solleti, Goutham; Sreekanth, Tirumala; Sadasivuni, Kishor Kumar; Venkateswara Rao, Kalagadda
2018-07-01
The exceptional chemical and physical properties of nanostructured materials are extremely suitable for designing new and enhanced sensing devices, particularly gas sensors and biosensors. The present work describes the synthesis of magnesium oxide (MgO) nanoparticles through two methods: a green synthesis using aloe vera plant extract and a chemical method using a glycine-based solution combustion route. In a single step, the extracted organic molecules from aloe vera plants were used to reduce metal ions by the green method. MgO nanoparticles were coated onto the interdigital electrode using the drop-drying method. The dynamic gas-sensing characteristics were measured for liquefied petroleum gas (LPG) at different concentrations and various temperatures. The MgO nanoparticles were characterized by using x-ray diffraction, field emission scanning electron microscopy, and high-resolution transmission electron microscopy to determine the size and structure of the particles. The product's functional properties were analyzed by Fourier transform-infrared spectroscopy and UV-visible spectroscopy. We found that the LPG sensing behavior of biologically synthesized MgO registers excellent sensitivity at various operating temperatures.
Optimal Energy Consumption Analysis of Natural Gas Pipeline
Liu, Enbin; Li, Changjun; Yang, Yi
2014-01-01
There are many compressor stations along long-distance natural gas pipelines. Natural gas can be transported using different boot programs and import pressures, combined with temperature control parameters. Moreover, different transport methods have correspondingly different energy consumptions. At present, the operating parameters of many pipelines are determined empirically by dispatchers, resulting in high energy consumption. This practice does not abide by energy reduction policies. Therefore, based on a full understanding of the actual needs of pipeline companies, we introduce production unit consumption indicators to establish an objective function for achieving the goal of lowering energy consumption. By using a dynamic programming method for solving the model and preparing calculation software, we can ensure that the solution process is quick and efficient. Using established optimization methods, we analyzed the energy savings for the XQ gas pipeline. By optimizing the boot program, the import station pressure, and the temperature parameters, we achieved the optimal energy consumption. By comparison with the measured energy consumption, the pipeline now has the potential to reduce energy consumption by 11 to 16 percent. PMID:24955410
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gafner, Yu. Ya., E-mail: ygafner@khsu.ru; Gafner, S. L.; Chepkasov, I. V.
2010-10-15
The condensation of 85000 Cu or Ni atoms from the high-temperature gas phase has been simulated by molecular dynamics with the tight binding potential. The efect of the subsequent thermal treatment on the shape and structure of synthesized particles was studied by simulating their gradual heating in a range of 100-1200 K. Some tendencies are revealed that are characteristic of the influence of heat treatment on the nanoparticles synthesized from the gas phase. It is concluded that short-term heating leads to significant ordering of the internal structure in 70% of agglomerated nanoparticles with the predominant formation of spherical shapes. Inmore » order to explain this result, the main mechanisms of cluster formation from the gas phase have been analyzed and it is found that the agglomeration temperature plays the main role in the formation of clusters with unified shape and structure. This opens the fundamental possibility of obtaining Cu and Ni nanoclusters with preset size, shape, and structure and, hence, predictable physical properties.« less
Probing Buffer-Gas Cooled Molecules with Direct Frequency Comb Spectroscopy in the Mid-Infrrared
NASA Astrophysics Data System (ADS)
Spaun, Ben; Changala, Bryan; Bjork, Bryce J.; Heckl, Oliver H.; Patterson, David; Doyle, John M.; Ye, Jun
2015-06-01
We present the first demonstration of cavity-enhanced direct frequency comb spectroscopy on buffer-gas cooled molecules.By coupling a mid-infrared frequency comb to a high-finesse cavity surrounding a helium buffer-gas chamber, we can gather rotationally resolved absorption spectra with high sensitivity over a broad wavelength region. The measured ˜10 K rotational and translational temperatures of buffer-gas cooled molecules drastically simplify the observed spectra, compared to those of room temperature molecules, and allow for high spectral resolution limited only by Doppler broadening (10-100 MHz). Our system allows for the extension of high-resolution spectroscopy to larger molecules, enabling detailed analysis of molecular structure and dynamics, while taking full advantage of the powerful optical properties of frequency combs. A. Foltynowicz et al. Cavity-enhanced optical frequency comb spectroscopy in the mid-infrared application to trace detection of hydrogen peroxide. Applied Physics B, vol. 110, pp. 163-175, 2013. {D. Patterson and J. M. Doyle. Cooling molecules in a cell for FTMW spectroscopy. Molecular Physics 110, 1757-1766, 2012
NASA Technical Reports Server (NTRS)
Otugen, M. Volkan
1997-01-01
Non-intrusive techniques for the dynamic measurement of gas flow properties such as density, temperature and velocity, are needed in the research leading to the development of new generation high-speed aircraft. Accurate velocity, temperature and density data obtained in ground testing and in-flight measurements can help understand the flow physics leading to transition and turbulence in supersonic, high-altitude flight. Such non-intrusive measurement techniques can also be used to study combustion processes of hydrocarbon fuels in aircraft engines. Reliable, time and space resolved temperature measurements in various combustor configurations can lead to a better understanding of high temperature chemical reaction dynamics thus leading to improved modeling and better prediction of such flows. In view of this, a research program was initiated at Polytechnic University's Aerodynamics Laboratory with support from NASA Lewis Research Center through grants NAG3-1301 and NAG3-1690. The overall objective of this program has been to develop laser-based, non-contact, space- and time-resolved temperature and velocity measurement techniques. In the initial phase of the program a ND:YAG laser-based dual-line Rayleigh scattering technique was developed and tested for the accurate measurement of gas temperature in the presence of background laser glare. Effort was next directed towards the development of a filtered, spectrally-resolved Rayleigh/Mie scattering technique with the objective of developing an interferometric method for time-frozen velocity measurements in high-speed flows utilizing the uv line of an ND:YAG laser and an appropriate molecular absorption filter. This effort included both a search for an appropriate filter material for the 266 nm laser line and the development and testing of several image processing techniques for the fast processing of Fabry-Perot images for velocity and temperature information. Finally, work was also carried out for the development of a new laser-based strain-rate and vorticity technique for the time-resolved measurement of vorticity and strain-rates in turbulent flows.
Cucurbit[6]uril: A Possible Host for Noble Gas Atoms.
Pan, Sudip; Mandal, Subhajit; Chattaraj, Pratim K
2015-08-27
Density functional and ab initio molecular dynamics studies are carried out to investigate the stability of noble gas encapsulated cucurbit[6]uril (CB[6]) systems. Interaction energy, dissociation energy and dissociation enthalpy are calculated to understand the efficacy of CB[6] in encapsulating noble gas atoms. CB[6] could encapsulate up to three Ne atoms having dissociation energy (zero-point energy corrected) in the range of 3.4-4.1 kcal/mol, whereas due to larger size, only one Ar or Kr atom encapsulated analogues would be viable. The dissociation energy value for the second Ar atom is only 1.0 kcal/mol. On the other hand, the same for the second Kr is -0.5 kcal/mol, implying the instability of the system. The noble gas dissociation processes are endothermic in nature, which increases gradually along Ne to Kr. Kr encapsulated analogue is found to be viable at room temperature. However, low temperature is needed for Ne and Ar encapsulated analogues. The temperature-pressure phase diagram highlights the region in which association and dissociation processes of Kr@CB[6] would be favorable. At ambient temperature and pressure, CB[6] may be used as an effective noble gas carrier. Wiberg bond indices, noncovalent interaction indices, electron density, and energy decomposition analyses are used to explore the nature of interaction between noble gas atoms and CB[6]. Dispersion interaction is found to be the most important term in the attraction energy. Ne and Ar atoms in one Ng entrapped analogue are found to stay inside the cavity of CB[6] throughout the simulation at 298 K. However, during simulation Ng2 units in Ng2@CB[6] flip toward the open faces of CB[6]. After 1 ps, one Ne atom of Ne3@CB[6] almost reaches the open face keeping other two Ne atoms inside. At lower temperature (77 K), all the Ng atoms in Ngn@CB[6] remain well inside the cavity of CB[6] throughout the simulation time (1 ps).
Kinetics of CH4 and CO2 hydrate dissociation and gas bubble evolution via MD simulation.
Uddin, M; Coombe, D
2014-03-20
Molecular dynamics simulations of gas hydrate dissociation comparing the behavior of CH4 and CO2 hydrates are presented. These simulations were based on a structurally correct theoretical gas hydrate crystal, coexisting with water. The MD system was first initialized and stabilized via a thorough energy minimization, constant volume-temperature ensemble and constant volume-energy ensemble simulations before proceeding to constant pressure-temperature simulations for targeted dissociation pressure and temperature responses. Gas bubble evolution mechanisms are demonstrated as well as key investigative properties such as system volume, density, energy, mean square displacements of the guest molecules, radial distribution functions, H2O order parameter, and statistics of hydrogen bonds. These simulations have established the essential similarities between CH4 and CO2 hydrate dissociation. The limiting behaviors at lower temperature (no dissociation) and higher temperature (complete melting and formation of a gas bubble) have been illustrated for both hydrates. Due to the shift in the known hydrate stability curves between guest molecules caused by the choice of water model as noted by other authors, the intermediate behavior (e.g., 260 K) showed distinct differences however. Also, because of the more hydrogen-bonding capability of CO2 in water, as reflected in its molecular parameters, higher solubility of dissociated CO2 in water was observed with a consequence of a smaller size of gas bubble formation. Additionally, a novel method for analyzing hydrate dissociation based on H-bond breakage has been proposed and used to quantify the dissociation behaviors of both CH4 and CO2 hydrates. Activation energies Ea values from our MD studies were obtained and evaluated against several other published laboratory and MD values. Intrinsic rate constants were estimated and upscaled. A kinetic reaction model consistent with macroscale fitted kinetic models has been proposed to indicate the macroscopic consequences of this analysis.
Nonequilibrium Thermodynamics of Hydrate Growth on a Gas-Liquid Interface
NASA Astrophysics Data System (ADS)
Fu, Xiaojing; Cueto-Felgueroso, Luis; Juanes, Ruben
2018-04-01
We develop a continuum-scale phase-field model to study gas-liquid-hydrate systems far from thermodynamic equilibrium. We design a Gibbs free energy functional for methane-water mixtures that recovers the isobaric temperature-composition phase diagram under thermodynamic equilibrium conditions. The proposed free energy is incorporated into a phase-field model to study the dynamics of hydrate formation on a gas-liquid interface. We elucidate the role of initial aqueous concentration in determining the direction of hydrate growth at the interface, in agreement with experimental observations. Our model also reveals two stages of hydrate growth at an interface—controlled by a crossover in how methane is supplied from the gas and liquid phases—which could explain the persistence of gas conduits in hydrate-bearing sediments and other nonequilibrium phenomena commonly observed in natural methane hydrate systems.
2017-01-01
The hydrodynamics and heat transfer of cylindrical gas–solid fluidized beds for polyolefin production was investigated with the two-fluid model (TFM) based on the kinetic theory of granular flow (KTGF). It was found that the fluidized bed becomes more isothermal with increasing superficial gas velocity. This is mainly due to the increase of solids circulation and improvement in gas solid contact. It was also found that the average Nusselt number weakly depends on the gas velocity. The TFM results were qualitatively compared with simulation results of computational fluid dynamics combined with the discrete element model (CFD-DEM). The TFM results were in very good agreement with the CFD-DEM outcomes, so the TFM can be a reliable source for further investigations of fluidized beds especially large lab-scale reactors PMID:29187774
Nonequilibrium Thermodynamics of Hydrate Growth on a Gas-Liquid Interface.
Fu, Xiaojing; Cueto-Felgueroso, Luis; Juanes, Ruben
2018-04-06
We develop a continuum-scale phase-field model to study gas-liquid-hydrate systems far from thermodynamic equilibrium. We design a Gibbs free energy functional for methane-water mixtures that recovers the isobaric temperature-composition phase diagram under thermodynamic equilibrium conditions. The proposed free energy is incorporated into a phase-field model to study the dynamics of hydrate formation on a gas-liquid interface. We elucidate the role of initial aqueous concentration in determining the direction of hydrate growth at the interface, in agreement with experimental observations. Our model also reveals two stages of hydrate growth at an interface-controlled by a crossover in how methane is supplied from the gas and liquid phases-which could explain the persistence of gas conduits in hydrate-bearing sediments and other nonequilibrium phenomena commonly observed in natural methane hydrate systems.
Using Temperature as a Tracer to Study Fluid Flow Patterns On and Offshore Taiwan
NASA Astrophysics Data System (ADS)
Chi, W. C.
2017-12-01
Fluid flows are a dynamic system in the crust that affect crustal deformation and formation of natural resources. It is difficult to study fluid flow velocity instrumentally, but temperature data offers a quantitative tool that can be used as a tracer to study crustal hydrogeology. Here we present numerical techniques we have applied to study the fluid migration velocity along conduits including faults in on and offshore settings. Offshore SW Taiwan, we use a bottom-simulating reflector (BSR) from seismic profiles to study the temperature field at several hundred meters subbottom depth. The BSR is interpreted as the base of a gas hydrate stability zone under the seabed. Gas hydrates are solid-state water with gas molecules enclosed, which can be found where the temperature, pressure, and salinity conditions allow hydrates to be stable. Using phase diagrams and hydro pressure information we can derive the temperature at the BSR. BSRs are widespread in the study area, providing very dense temperature field information which shows upward bending of the BSR near faults. We have quantitatively estimated the 1D and 2D fluid flow patterns required to fit the BSR-based temperature field. This shows that fault zones can act as conduits with high permeability parallel to the fault planes. On the other hand, fault zones can also act as barriers to fluid flow, as demonstrated in our onland temperature data. We have collected temperature profiles at several bore holes onland that are very close together. The preliminary results show that the fault zones separate the ground water systems, causing very different geothermal gradients. Our results show that the physical properties of fault zones can be anisotropic, as demonstrated in previous work. Future work includes estimating the regional water expulsion budget offshore SW Taiwan, in particular for several gas hydrate sites.
Overview of the 1985 NASA Lewis Research Center SP-100 free-piston Stirling engine activities
NASA Technical Reports Server (NTRS)
Slaby, J.
1985-01-01
This effort is keyed on the design, fabrication, assembly, and testing of a 25 kWe Stirling space-power technology-feasibility demonstrator engine. Another facet of the SP-100 project covers the status of a 9000-hr endurance test conducted on a 2 kWe free-piston Stirling/linear alternator system employing hydrostatic gas bearings. Dynamic balancing of the RE-1000 engine (a 1 kWe free-piston Stirling engine) using a passive dynamic absorber will be discussed along with the results of a parametric study showing the relationships of Stirling power converter specific weight and efficiency as functions of Stirling engine heater to cooler temperature ratio. Planned tests will be described covering a hydrodynamic gas bearing concept for potential SP-100 application.
NASA Technical Reports Server (NTRS)
Thornton, D. E.
1975-01-01
Tests were conducted in the NASA Langley Research Center 31-inch Continuous Flow Hypersonic Wind Tunnel to determine RCS jet interaction effects on hypersonic aerodynamic characteristics and to investigate RT (gas constant times temperature) scaling effects on the RCS similitude. The model was an 0.010-scale replica of the Space Shuttle Orbiter Configuration 3. Hypersonic aerodynamic data were obtained from tests at Mach 10.3 and dynamic pressures of 200, 150, 125, and 100 psf. The RCS modes of pitch, yaw, and roll at free flight dynamic pressure simulation of 20 psf were investigated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demidov, V. E.; Dzyapko, O.; Demokritov, S. O.
The room-temperature dynamics of a magnon gas driven by short microwave pumping pulses is studied. An overpopulation of the lowest energy level of the system following the pumping is observed. Using the sensitivity of the Brillouin light scattering technique to the coherence degree of the scattering magnons we demonstrate the spontaneous emergence of coherence of the magnons at the lowest level, if their density exceeds a critical value. This finding is clear proof of the quantum nature of the observed phenomenon and direct evidence of Bose-Einstein condensation of magnons at room temperature.
Single particle dynamics in a radio-frequency produced plasma sheath
NASA Astrophysics Data System (ADS)
Rubin-Zuzic, M.; Nosenko, V.; Zhdanov, S.; Ivlev, A.; Thomas, H.; Khrapak, S.; Couedel, L.
2018-01-01
Recently different research groups have investigated the motion of a single dust particle levitated in a rf plasma. Here we describe a highly resolved experiment where a single spherical melamine formaldehyde microparticle is suspended in the plasma sheath above the lower electrode of a capacitively coupled radio-frequency discharge at controlled pressure, power and neutral gas flow rate. The particle's horizontal oscillation is investigated, from which its neutral gas damping rate, kinetic temperature and eigenfrequency of the potential trap are measured. Compared to prior experiments we report about inhomogeneous and anisotropic velocity variations.
NASA Astrophysics Data System (ADS)
Shoev, G. V.; Bondar, Ye. A.; Oblapenko, G. P.; Kustova, E. V.
2016-03-01
Various issues of numerical simulation of supersonic gas flows with allowance for thermochemical nonequilibrium on the basis of fluid dynamic equations in the two-temperature approximation are discussed. The computational tool for modeling flows with thermochemical nonequilibrium is the commercial software package ANSYS Fluent with an additional userdefined open-code module. A comparative analysis of results obtained by various models of vibration-dissociation coupling in binary gas mixtures of nitrogen and oxygen is performed. Results of numerical simulations are compared with available experimental data.
Hydrogen gas embrittlement and the disc pressure test
NASA Technical Reports Server (NTRS)
Bachelet, E. J.; Troiano, A. R.
1973-01-01
A disc pressure test has been used to study the influenced of a hydrogen gas environment on the mechanical properties of three high strength superalloys, Inconel 718, L-605 and A-286, in static and dynamic conditions. The influence of the hydrogen pressure, loading rate, temperature, mechanical and thermal fatigue has investigated. The permeation characteristics of Inconel 718 have been determined in collaboration with the French AEC. The results complemented by a fractographic study are consistent either with a stress-sorption or with an internal embrittlement type of mechanism.
NASA Astrophysics Data System (ADS)
Małolepsza, Edyta; Kim, Jaegil; Keyes, Tom
2015-05-01
Metastable β ice holds small guest molecules in stable gas hydrates, so its solid-liquid equilibrium is of interest. However, aqueous crystal-liquid transitions are very difficult to simulate. A new molecular dynamics algorithm generates trajectories in a generalized N P T ensemble and equilibrates states of coexisting phases with a selectable enthalpy. With replicas spanning the range between β ice and liquid water, we find the statistical temperature from the enthalpy histograms and characterize the transition by the entropy, introducing a general computational procedure for first-order transitions.
NASA Astrophysics Data System (ADS)
Joewondo, N.; Zhang, Y.; Prasad, M.
2016-12-01
Sequestration of carbon dioxide in shale has been a subject of interest as the result of the technological advancement in gas shale production. The process involves injection of CO2 to enhance methane recovery and storing CO2 in depleted shale reservoir at elevated pressures. To better understand both shale production and carbon storage one must study the physical phenomena acting at different scales that control the in situ fluid flow. Shale rocks are complex systems with heterogeneous structures and compositions. Pore structures of these systems are in nanometer scales and have significant gas storage capacity and surface area. Adsorption is prominent in nanometer sized pores due to the high attraction between gas molecules and the surface of the pores. Recent studies attempt to find correlation between storage capacity and the rock composition, particularly the clay content. This study, however, focuses on the study of supercritical adsorption of CO2 on pure clay sample. We have built an in-house manometric experimental setup that can be used to study both the equilibrium and kinetics of adsorption. The experiment is conducted at isothermal condition. The study of equilibrium of adsorption gives insight on the storage capacity of these systems, and the study of the kinetics of adsorption is essential in understanding the resistance to fluid transport. The diffusion coefficient, which can be estimated from the dynamic experimental results, is a parameter which quantify diffusion mobility, and is affected by many factors including pressure and temperature. The first part of this paper briefly discusses the study of both equilibrium and kinetics of the CO2 adsorption on illite. Both static and dynamic measurements on the system are compared to theoretical models available in the literature to estimate the storage capacity and the diffusion time constants. The main part of the paper discusses the effect of varying temperature on the static and dynamic experimental results.
Online monitoring of dynamic tip clearance of turbine blades in high temperature environments
NASA Astrophysics Data System (ADS)
Han, Yu; Zhong, Chong; Zhu, Xiaoliang; Zhe, Jiang
2018-04-01
Minimized tip clearance reduces the gas leakage over turbine blade tips and improves the thrust and efficiency of turbomachinery. An accurate tip clearance sensor, measuring the dynamic clearances between blade tips and the turbine case, is a critical component for tip clearance control. This paper presents a robust inductive tip clearance sensor capable of monitoring dynamic tip clearances of turbine machines in high-temperature environments and at high rotational speeds. The sensor can also self-sense the temperature at a blade tip in situ such that temperature effect on tip clearance measurement can be estimated and compensated. To evaluate the sensor’s performance, the sensor was tested for measuring the tip clearances of turbine blades under various working temperatures ranging from 700 K to 1300 K and at turbine rotational speeds ranging from 3000 to 10 000 rpm. The blade tip clearance was varied from 50 to 2000 µm. The experiment results proved that the sensor can accurately measure the blade tip clearances with a temporal resolution of 10 µm. The capability of accurately measuring the tip clearances at high temperatures (~1300 K) and high turbine rotation speeds (~30 000 rpm), along with its compact size, makes it promising for online monitoring and active control of blade tip clearances of high-temperature turbomachinery.
Methodology for the investigation of ignition near hot surfaces in a high-pressure shock tube
NASA Astrophysics Data System (ADS)
Niegemann, P.; Fikri, M.; Wlokas, I.; Röder, M.; Schulz, C.
2018-05-01
Autoignition of fuel/air mixtures is a determining process in internal combustion engines. Ignition can start either homogeneously in the gas phase after compression or in the vicinity of hot surfaces. While ignition properties of commercial fuels are conventionally described by a single quantity (octane number), it is known that some fuels have a varying propensity to the two processes. We present a new experimental concept that generates well-controlled temperature inhomogeneities in the shock-heated gases of a high-pressure shock tube. A shock-heated reactive mixture is brought into contact with a heated silicon nitride ceramic glow plug. The glow-plug temperature can be set up to 1200 K, higher than the post-reflected-shock gas temperatures (650-1050 K). High-repetition-rate chemiluminescence imaging is used to localize the onset of ignition in the vicinity of the hot surface. In experiments with ethanol, the results show that in most cases under shock-heated conditions, the ignition begins inhomogeneously in the vicinity of the glow plug and is favored because of the high wall temperature. Additionally, the interaction of geometry, external heating, and gas-dynamic effects was investigated by numerical simulations of the shock wave in a non-reactive flow.
NASA Astrophysics Data System (ADS)
Leach, Felix C. P.; Davy, Martin H.; Siskin, Dmitrij; Pechstedt, Ralf; Richardson, David
2017-12-01
Measurement of exhaust gas pressure at high speed in an engine is important for engine efficiency, computational fluid dynamics analysis, and turbocharger matching. Currently used piezoresistive sensors are bulky, require cooling, and have limited lifetimes. A new sensor system uses an interferometric technique to measure pressure by measuring the size of an optical cavity, which varies with pressure due to movement of a diaphragm. This pressure measurement system has been used in gas turbine engines where the temperatures and pressures have no significant transients but has never been applied to an internal combustion engine before, an environment where both temperature and pressure can change rapidly. This sensor has been compared with a piezoresistive sensor representing the current state-of-the-art at three engine operating points corresponding to both light load and full load. The results show that the new sensor can match the measurements from the piezoresistive sensor except when there are fast temperature swings, so the latter part of the pressure during exhaust blowdown is only tracked with an offset. A modified sensor designed to compensate for these temperature effects is also tested. The new sensor has shown significant potential as a compact, durable sensor, which does not require external cooling.
Leach, Felix C P; Davy, Martin H; Siskin, Dmitrij; Pechstedt, Ralf; Richardson, David
2017-12-01
Measurement of exhaust gas pressure at high speed in an engine is important for engine efficiency, computational fluid dynamics analysis, and turbocharger matching. Currently used piezoresistive sensors are bulky, require cooling, and have limited lifetimes. A new sensor system uses an interferometric technique to measure pressure by measuring the size of an optical cavity, which varies with pressure due to movement of a diaphragm. This pressure measurement system has been used in gas turbine engines where the temperatures and pressures have no significant transients but has never been applied to an internal combustion engine before, an environment where both temperature and pressure can change rapidly. This sensor has been compared with a piezoresistive sensor representing the current state-of-the-art at three engine operating points corresponding to both light load and full load. The results show that the new sensor can match the measurements from the piezoresistive sensor except when there are fast temperature swings, so the latter part of the pressure during exhaust blowdown is only tracked with an offset. A modified sensor designed to compensate for these temperature effects is also tested. The new sensor has shown significant potential as a compact, durable sensor, which does not require external cooling.
[Preparation of titanium dioxide particles and properties for flue gas desulfurization].
Luo, Yonggang; Li, Daji; Huang, Zhen
2003-01-01
Under different sintering temperatures(340 degrees C, 440 degrees C, 540 degrees C, 640 degrees C), four TiO2 particles were prepared. The crystal types of all four samples were found to possess anatase structures by XRD. It was obtained by N2 experimental adsorption at low temperature (77K) that their surface areas and average pore size were between 79 and 124 m2/g, 56.8 and 254.8 A respectively. The pore structure of TiO2 particles was characterized by scanning electron microscope (SEM). The tests of adsorption dynamics for FGD and the performance of SO2 removal were investigated in a fixed-bed system for different samples. The results show that SG540 sample which made at 540 degrees C sintering temperature had the most quality among the four samples. It can adsorb SO2 of 38.9 mg for one gram SG540 sample. Different operating conditions for SG540 such as adsorption temperature, SO2 concentration in flue gas and the superficial velocity of flue gas were investigated. TiO2 particles for FGD had more efficiency than other physical sorbents such as active carbon and zeolite. The mechanism for SO2 removal was demonstrated by infrared (IR) spectroscopy and desorption test results to be mainly physical adsorption.
Asymptotic modeling of flows of a mixture of two monoatomic gases in a coplanar microchannel
NASA Astrophysics Data System (ADS)
Gatignol, Renée; Croizet, Cédric
2016-11-01
Gas mixtures are present in a number of microsystems, such as heat exchangers, propulsion systems, and so on. This paper aims to describe some basic physical phenomena of flows of a mixture of two monoatomic gases in a coplanar microchannel. Gas flows are described by the Navier-Stokes-Fourier equations with coupling terms, and with first order boundary conditions for the velocities and the temperatures on the microchannel walls. With the small parameter equal to the ratio of the transverse and longitudinal lengths, an asymptotic model was presented at the 29th Symposium on Rarefied Gas Dynamics. It corresponds to a low Mach number and a low to moderate Knudsen number. First-order differential equations for mass, momentum and energy have been written. For each species, the pressure depends only on the longitudinal variable and the temperature is equal to the wall temperature (the two walls have the same temperature). Both pressures are solutions of ordinary differential equations. Results are given on the longitudinal profile of both pressures and on the longitudinal velocities, for different binary mixtures, and for the cases of isothermal and thermal regimes. Asymptotic solutions are compared to DSMC simulations in the same configuration: they are roughly in agreement.
Woodmansee, M A; Lucht, R P; Dutton, J C
2000-11-20
Mean and instantaneous measurements of pressure, temperature, and density have been acquired in an optically accessible gas cell and in the flow field of an underexpanded sonic jet by use of the high-resolution N(2) coherent anti-Stokes Raman scattering (CARS) technique. This nonintrusive method resolves the pressure- and temperature-sensitive rotational transitions of the nu = 0 ? 1 N(2) Q-branch to within Domega = 0.10 cm(-1). To extract thermodynamic information from the experimental spectra, theoretical spectra, generated by a N(2) spectral modeling program, are fit to the experimental spectra in a least-squares manner. In the gas cell, the CARS-measured pressures compare favorably with transducer-measured pressures. The precision and accuracy of the single-shot CARS pressure measurements increase at subatmospheric conditions. Along the centerline of the underexpanded jet, the agreement between the mean CARS P/T/rho measurements and similar quantities extracted from a Reynolds-averaged Navier-Stokes computational fluid dynamic simulation is generally excellent. This CARS technique is able to capture the low-pressure and low-temperature conditions of the M = 3.4 flow entering the Mach disk, as well as the subsonic conditions immediately downstream of this normal shock.
Methodology for the investigation of ignition near hot surfaces in a high-pressure shock tube.
Niegemann, P; Fikri, M; Wlokas, I; Röder, M; Schulz, C
2018-05-01
Autoignition of fuel/air mixtures is a determining process in internal combustion engines. Ignition can start either homogeneously in the gas phase after compression or in the vicinity of hot surfaces. While ignition properties of commercial fuels are conventionally described by a single quantity (octane number), it is known that some fuels have a varying propensity to the two processes. We present a new experimental concept that generates well-controlled temperature inhomogeneities in the shock-heated gases of a high-pressure shock tube. A shock-heated reactive mixture is brought into contact with a heated silicon nitride ceramic glow plug. The glow-plug temperature can be set up to 1200 K, higher than the post-reflected-shock gas temperatures (650-1050 K). High-repetition-rate chemiluminescence imaging is used to localize the onset of ignition in the vicinity of the hot surface. In experiments with ethanol, the results show that in most cases under shock-heated conditions, the ignition begins inhomogeneously in the vicinity of the glow plug and is favored because of the high wall temperature. Additionally, the interaction of geometry, external heating, and gas-dynamic effects was investigated by numerical simulations of the shock wave in a non-reactive flow.
Stability of chromium (III) sulfate in atmospheres containing oxygen and sulfur
NASA Technical Reports Server (NTRS)
Jacob, K. T.; Rao, B. D.; Nelson, H. G.
1978-01-01
The stability of chromium sulfate in the temperature range from 880 K to 1040 K was determined by employing a dynamic gas-solid equilibration technique. The solid chromium sulfate was equilibrated in a gas stream of controlled SO3 potential. Thermogravimetric and differential thermal analyses were used to follow the decomposition of chromium sulfate. X-ray diffraction analysis indicated that the decomposition product was crystalline Cr2O3 and that the mutual solubility between Cr2(SO4)3 and Cr2O3 was negligible. Over the temperature range investigated, the decomposition pressure were significantly high so that chromium sulfate is not expected to form on commercial alloys containing chromium when exposed to gaseous environments containing oxygen and sulfur (such as those encountered in coal gasification).
Predictive Finite Rate Model for Oxygen-Carbon Interactions at High Temperature
NASA Astrophysics Data System (ADS)
Poovathingal, Savio
An oxidation model for carbon surfaces is developed to predict ablation rates for carbon heat shields used in hypersonic vehicles. Unlike existing empirical models, the approach used here was to probe gas-surface interactions individually and then based on an understanding of the relevant fundamental processes, build a predictive model that would be accurate over a wide range of pressures and temperatures, and even microstructures. Initially, molecular dynamics was used to understand the oxidation processes on the surface. The molecular dynamics simulations were compared to molecular beam experiments and good qualitative agreement was observed. The simulations reproduced cylindrical pitting observed in the experiments where oxidation was rapid and primarily occurred around a defect. However, the studies were limited to small systems at low temperatures and could simulate time scales only of the order of nanoseconds. Molecular beam experiments at high surface temperature indicated that a majority of surface reaction products were produced through thermal mechanisms. Since the reactions were thermal, they occurred over long time scales which were computationally prohibitive for molecular dynamics to simulate. The experiments provided detailed dynamical data on the scattering of O, O2, CO, and CO2 and it was found that the data from molecular beam experiments could be used directly to build a model. The data was initially used to deduce surface reaction probabilities at 800 K. The reaction probabilities were then incorporated into the direct simulation Monte Carlo (DSMC) method. Simulations were performed where the microstructure was resolved and dissociated oxygen convected and diffused towards it. For a gas-surface temperature of 800 K, it was found that despite CO being the dominant surface reaction product, a gas-phase reaction forms significant CO2 within the microstructure region. It was also found that surface area did not play any role in concentration of reaction products because the reaction probabilities were in the diffusion dominant regime. The molecular beam data at different surface temperatures was then used to build a finite rate model. Each reaction mechanism and all rate parameters of the new model were determined individually based on the molecular beam data. Despite the experiments being performed at near vacuum conditions, the finite rate model developed using the data could be used at pressures and temperatures relevant to hypersonic conditions. The new model was implemented in a computational fluid dynamics (CFD) solver and flow over a hypersonic vehicle was simulated. The new model predicted similar overall mass loss rates compared to existing models, however, the individual species production rates were completely different. The most notable difference was that the new model (based on molecular beam data) predicts CO as the oxidation reaction product with virtually no CO2 production, whereas existing models predict the exact opposite trend. CO being the dominant oxidation product is consistent with recent high enthalpy wind tunnel experiments. The discovery that measurements taken in molecular beam facilities are able to determine individual reaction mechanisms, including dependence on surface coverage, opens up an entirely new way of constructing ablation models.
Dynamics of hydrocarbon vents: Focus on primary porosity
NASA Astrophysics Data System (ADS)
Johansen, C.; Shedd, W.; Abichou, T.; Pineda-Garcia, O.; Silva, M.; MacDonald, I. R.
2012-12-01
This study investigated the dynamics of hydrocarbon release by monitoring activity of a single vent at a 1215m deep site in the Gulf of Mexico (GC600). An autonomous camera, deployed by the submersible ALVIN, was programmed to capture a close-up image every 4 seconds for approximately 3.5 hours. The images provided the ability to study the gas hydrate outcrop site (that measured 5.2x16.3cm3) in an undisturbed state. The outcrop included an array of 38 tube-like vents through which dark brown oil bubbles are released at a rate ranging from 8 bubbles per minute to 0 bubbles per minute. The average release of bubbles from all the separate vents was 59.5 bubbles per minute, equating the total volume released to 106.38cm per minute. The rate of bubble release decreased toward the end of the observation interval, which coincided approximately with the tidal minimum. Ice worms (Hesiocaeca methanicola, Desbruyères & Toulmond, 1998) were abundant at the vent site. The image sequence showed the ice-worms actively moving in and out of burrows in the mound. It has been speculated that Hesiocaeca methanicola contribute to gas hydrate decomposition by creating burrows and depressions in the gas hydrate matrix (Fisher et al, 2000). Ice worm burrows could generate pathways for the passage of oil and gas through the gas hydrate mound. Gas hydrates commonly occur along active and/or passive continental margins (Kennicutt et al, 1988a). The release of oil and gas at this particular hydrocarbon seep site is along a passive continental margin, and controlled primarily by active salt tectonics as opposed to the movement of continental tectonic plates (Salvador, 1987). We propose a descriptive model governing the release of gas and oil from deep sub-bottom reservoirs at depths of 3000-5000m (MacDonald, 1998), through consolidated and unconsolidated sediments, and finally through gas hydrate deposits at the sea floor. The oil and gas escape from the source rock and/or reservoir through at least three degrees of porosity (i.e. traveling through faulted consolidated sediment, unconsolidated sediment, and finally the gas hydrate outcroppings as described here). The oil and gas travel from the sub-bottom reservoir along, what is thought, an interface between the salt and sediment, and then up a fault in the consolidated sediment. When it reaches the unconsolidated sediments, vertical pathways bifurcate due to lack of sediment strength to allow for the oil and gas to reach different clusters of hydrocarbon vents at the sea floor. Hydrocarbon vents are formed and sustained by a combination of pressure, temperature, and gas solubility (Peltzer & Brewer, 2000) creating persistent primary porosity conduits, from which the bubbles escape at different rates depending on the size of the tubes. Previous research has been carried out in order to determine the effect of temperature fluxes on hydrocarbon outcroppings (MacDonald et al, 2005), however, a focus on the dynamics at this level of primary porosity is lacking. By determining the rate and size of bubbles and pore size distribution of the hydrocarbon outcropping, we can explore the hydraulic properties. Therefore, examination of biological and physical effects, such as the role of ice-worms, and the effect of tides, allow for a better understanding of the dynamics and persistency of hydrocarbon vent outcroppings.
NASA Astrophysics Data System (ADS)
Albert, Brice J.; Pahng, Seong Ho; Alaniva, Nicholas; Sesti, Erika L.; Rand, Peter W.; Saliba, Edward P.; Scott, Faith J.; Choi, Eric J.; Barnes, Alexander B.
2017-10-01
Cryogenic sample temperatures can enhance NMR sensitivity by extending spin relaxation times to improve dynamic nuclear polarization (DNP) and by increasing Boltzmann spin polarization. We have developed an efficient heat exchanger with a liquid nitrogen consumption rate of only 90 L per day to perform magic-angle spinning (MAS) DNP experiments below 85 K. In this heat exchanger implementation, cold exhaust gas from the NMR probe is returned to the outer portion of a counterflow coil within an intermediate cooling stage to improve cooling efficiency of the spinning and variable temperature gases. The heat exchange within the counterflow coil is calculated with computational fluid dynamics to optimize the heat transfer. Experimental results using the novel counterflow heat exchanger demonstrate MAS DNP signal enhancements of 328 ± 3 at 81 ± 2 K, and 276 ± 4 at 105 ± 2 K.
Gas Flow in the Capillary of the Atmosphere-to-Vacuum Interface of Mass Spectrometers
NASA Astrophysics Data System (ADS)
Skoblin, Michael; Chudinov, Alexey; Soulimenkov, Ilia; Brusov, Vladimir; Kozlovskiy, Viacheslav
2017-10-01
Numerical simulations of a gas flow through a capillary being a part of mass spectrometer atmospheric interface were performed using a detailed laminar flow model. The simulated interface consisted of atmospheric and forevacuum volumes connected via a thin capillary. The pressure in the forevacuum volume where the gas was expanding after passing through the capillary was varied in the wide range from 10 to 900 mbar in order to study the volume flow rate as well as the other flow parameters as functions of the pressure drop between the atmospheric and forevacuum volumes. The capillary wall temperature was varied in the range from 24 to 150 °C. Numerical integration of the complete system of Navier-Stokes equations for a viscous compressible gas taking into account the heat transfer was performed using the standard gas dynamic simulation software package ANSYS CFX. The simulation results were compared with experimental measurements of gas flow parameters both performed using our experimental setup and taken from the literature. The simulated volume flow rates through the capillary differed no more than by 10% from the measured ones over the entire pressure and temperatures ranges. A conclusion was drawn that the detailed digital laminar model is able to quantitatively describe the measured gas flow rates through the capillaries under conditions considered. [Figure not available: see fulltext.
Gas Flow in the Capillary of the Atmosphere-to-Vacuum Interface of Mass Spectrometers.
Skoblin, Michael; Chudinov, Alexey; Soulimenkov, Ilia; Brusov, Vladimir; Kozlovskiy, Viacheslav
2017-10-01
Numerical simulations of a gas flow through a capillary being a part of mass spectrometer atmospheric interface were performed using a detailed laminar flow model. The simulated interface consisted of atmospheric and forevacuum volumes connected via a thin capillary. The pressure in the forevacuum volume where the gas was expanding after passing through the capillary was varied in the wide range from 10 to 900 mbar in order to study the volume flow rate as well as the other flow parameters as functions of the pressure drop between the atmospheric and forevacuum volumes. The capillary wall temperature was varied in the range from 24 to 150 °C. Numerical integration of the complete system of Navier-Stokes equations for a viscous compressible gas taking into account the heat transfer was performed using the standard gas dynamic simulation software package ANSYS CFX. The simulation results were compared with experimental measurements of gas flow parameters both performed using our experimental setup and taken from the literature. The simulated volume flow rates through the capillary differed no more than by 10% from the measured ones over the entire pressure and temperatures ranges. A conclusion was drawn that the detailed digital laminar model is able to quantitatively describe the measured gas flow rates through the capillaries under conditions considered. Graphical Abstract ᅟ.
Gas Sloshing and Radio Galaxy Dynamics in the Core of the 3C 449 Group
NASA Technical Reports Server (NTRS)
Lal, Dharam V.; Kraft, Ralph P.; Randall, Scott W.; Forman, William R.; Nulsen, Paul E.; Roediger, Elke; ZuHone, John A.; Hardcastle, Martin J.; Jones, Christine; Croston, Judith H.
2013-01-01
We present results from a 140 ks Chandra/ACIS-S observation of the hot gas around the canonical FR I radio galaxy 3C 449. An earlier, shorter 30 ks Chandra observation of the group gas showed an unusual entropy distribution and a surface brightness edge in the gas that could be a strong shock around the inner radio lobes. In our deeper data we find no evidence for a temperature increase inside of the brightness edge, but a temperature decrease across part of the edge. This suggests that the edge is a "sloshing" cold front due to a merger within the last 1.3-1.6 Gyr. Both the northern and southern inner jets are bent slightly to the west in projection as they enter their respective lobes, suggesting that the sloshing core is moving to the east. The straight inner jet flares at approximately the position where it crosses the contact edge, suggesting that the jet is entraining and thermalizing some of the hot gas as it crosses the edge.We also detect filaments of X-ray emission around the southern inner radio jet and lobe which we attribute to low entropy entrained gas. The lobe flaring and gas entrainment were originally predicted in simulations of Loken et al. and are confirmed in our deep observation.
Tholken, Sophia; Schrabback, Tim; Reiprich, Thomas H.; ...
2018-03-05
Here, observations of relaxed, massive, and distant clusters can provide important tests of standard cosmological models, for example by using the gas mass fraction. To perform this test, the dynamical state of the cluster and its gas properties have to be investigated. X-ray analyses provide one of the best opportunities to access this information and to determine important properties such as temperature profiles, gas mass, and the total X-ray hydrostatic mass. For the last of these, weak gravitational lensing analyses are complementary independent probes that are essential in order to test whether X-ray masses could be biased.
X-Ray Spectroscopy of Photoionized Plasmas
NASA Technical Reports Server (NTRS)
Kallman, Tim
2008-01-01
Spectroscopy allows study of sources on small spatial scales, and can provide detailed diagnostic information about elemental abundances, temperature, density and gas dynamics. For compact sources such as accreting black holes in active galactic nuclei (AGN) and X-ray binaries X-ray spectra provide truly unique insight. Observations using Chandra and XMM have revealed components of gas in these systems which were previously unknown or poorly studied. Interpretation of these data presents modeling and analysis challenges, and requires an understanding of atomic physics, ionization and spectrum formation in a radiation-dominated environment. In this talk I will discuss examples, and how they have contributed to our understanding of accreting sources and the nearby gas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tholken, Sophia; Schrabback, Tim; Reiprich, Thomas H.
Here, observations of relaxed, massive, and distant clusters can provide important tests of standard cosmological models, for example by using the gas mass fraction. To perform this test, the dynamical state of the cluster and its gas properties have to be investigated. X-ray analyses provide one of the best opportunities to access this information and to determine important properties such as temperature profiles, gas mass, and the total X-ray hydrostatic mass. For the last of these, weak gravitational lensing analyses are complementary independent probes that are essential in order to test whether X-ray masses could be biased.
Kinetics and thermodynamics of gas diffusion in a NiFe hydrogenase.
Topin, Jérémie; Rousset, Marc; Antonczak, Serge; Golebiowski, Jérôme
2012-03-01
We have investigated O₂ and H₂ transport across a NiFe hydrogenase at the atomic scale by means of computational methods. The Wild Type protein has been compared with the V74Q mutant. Two distinct methodologies have been applied to study the gas access to the active site. Temperature locally enhanced sampling simulations have emphasized the importance of protein dynamics on gas diffusion. The O₂ diffusion free energy profiles, obtained by umbrella sampling, are in agreement with the known kinetic data and show that in the V74Q mutant, the inhibition process is lowered from both a kinetic and a thermodynamic point of view. Copyright © 2011 Wiley Periodicals, Inc.
Lach, Joanna; Goclon, Jakub; Rodziewicz, Pawel
2016-04-05
Sulfur mustard (SM) is one of the most dangerous chemical compounds used against humans, mostly at war conditions but also in terrorist attacks. Even though the sulfur mustard has been synthesized over a hundred years ago, some of its molecular properties are not yet resolved. We investigate the structural flexibility of the SM molecule in the gas phase by Car-Parrinello molecular dynamics simulations. Thorough conformation analysis of 81 different SM configurations using density functional theory is performed to analyze the behavior of the system at finite temperature. The conformational diversity is analyzed with respect to the formation of intramolecular blue-shifting CH⋯S and CH⋯Cl hydrogen bonds. Molecular dynamics simulations indicate that all structural rearrangements between SM local minima are realized either in direct or non-direct way, including the intermediate structure in the last case. We study the lifetime of the SM conformers and perform the population analysis. Additionally, we provide the anharmonic dynamical finite temperature IR spectrum from the Fourier Transform of the dipole moment autocorrelation function to mimic the missing experimental IR spectrum. Copyright © 2015 Elsevier B.V. All rights reserved.
Numerical simulation of the baking of porous anode carbon in a vertical flue ring furnace
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobsen, M.; Melaaen, M.C.
The interaction of pitch pyrolysis in porous anode carbon during heating and volatiles combustion in the flue gas channel has been analyzed to gain insight in the anode baking process. A two-dimensional geometry of a flue gas channel adjacent to a porous flue gas wall, packing coke, and an anode was used for studying the effect of heating rate on temperature gradients and internal gas pressure in the anodes. The mathematical model included porous heat and mass transfer, pitch pyrolysis, combustion of volatiles, radiation, and turbulent channel flow. The mathematical model was developed through source code modification of the computationalmore » fluid dynamics code FLUENT. The model was useful for studying the effects of heating rate, geometry, and anode properties.« less
Studying dynamic processes in liquids by TEM/STEM/DTEM
NASA Astrophysics Data System (ADS)
Abellan, Patricia; Evans, James; Woehl, Taylor; Jungjohann, Katherine; Parent, Lucas; Arslan, Ilke; Ristenpart, William; Browning, Nigel; Mater. Sci. Group Team; Microsc. Group Team; Catal. Sci. Group Collaboration; Ristenpart Res. Group Collaboration
2013-03-01
In order to study dynamic phenomena such as corrosion or catalysis, extreme environmental conditions must be reproduced around the specimen - these include high-temperatures, high-pressures, specific oxidizing/reducing atmospheres or a liquid environment. The use of environmental stages specifically designed to fit in any transmission electron microscope (TEM) allows us to apply the distinct capabilities of each instrument to study dynamic processes. Localized gas/fluid conditions are created around the sample and separated from the high vacuum inside the microscope using hermetically sealed windowed-cells. Advanced capabilities of these techniques include spatial resolutions of ~1 Angstrom or better in aberration corrected instruments or temporal resolutions in the microsecond-nanosecond range in a dynamic TEM (DTEM). Here, unique qualities of the DTEM that benefit the in-situ experiments with gas/fluid environmental cells will be discussed. We also present our results with a liquid stage allowing atomic resolution imaging of nanomaterials in a colloidal suspension, core EEL spectra acquisition, continuous flow, controlled growth of nanocrystals and systematic calibration of the effect of the electron dose on silver nuclei formation.
Atomic and Molecular Dynamics on and in Superfluid Helium Nanodroplets
NASA Astrophysics Data System (ADS)
Lehmann, Kevin K.
2003-03-01
Studies of intramolecular and intermolecular dynamics is at the core of Molecular Spectroscopic research several decades. Gas phase, particularly molecular beam, studies have greatly illuminated these processes in isolated molecules, bimolecular collisions, or small covalent and van der Waals complexes. Parallel to this effort have been studies in condensed phases, but there has unfortunately been little intellectual contact between these. The recent development of Helium Nanodropet Isolation Spectroscopy is providing an intellectual bridge between gas phase and condensed phase spectroscopy. While droplets of 10,000 He atoms are effectively a condensed phase, their low temperature ( 0.4 K) and ultralow heat capacities combined with their superfluid state make them an almost ideal matrix in which to study both molecular dynamics, including solute induced relaxations. The nsec times scales for many of the relaxation events, orders of magnitude slower than in classical liquids, results in spectra with unprecedented resolution for the liquid state. In this talk, studies of the Princeton group will be highlighted, with particular emphasis on those for which a combination of theory and experiment have combined to reveal dynamics in this unique Quantum Fluid.
Khain, Evgeniy; Meerson, Baruch; Sasorov, Pavel V
2008-10-01
Thermal wall is a convenient idealization of a rapidly vibrating plate used for vibrofluidization of granular materials. The objective of this work is to incorporate the Knudsen temperature jump at thermal wall in the Navier-Stokes hydrodynamic modeling of dilute granular gases of monodisperse particles that collide nearly elastically. The Knudsen temperature jump manifests itself as an additional term, proportional to the temperature gradient, in the boundary condition for the temperature. Up to a numerical prefactor O(1) , this term is known from kinetic theory of elastic gases. We determine the previously unknown numerical prefactor by measuring, in a series of molecular dynamics (MD) simulations, steady-state temperature profiles of a gas of elastically colliding hard disks, confined between two thermal walls kept at different temperatures, and comparing the results with the predictions of a hydrodynamic calculation employing the modified boundary condition. The modified boundary condition is then applied, without any adjustable parameters, to a hydrodynamic calculation of the temperature profile of a gas of inelastic hard disks driven by a thermal wall. We find the hydrodynamic prediction to be in very good agreement with MD simulations of the same system. The results of this work pave the way to a more accurate hydrodynamic modeling of driven granular gases.
Effect of Fuel Particle Size on the Stability of Swirl Stabilized Flame in a Gas Turbine Combustor
NASA Astrophysics Data System (ADS)
Mishra, R. K.; Kishore Kumar, S.; Chandel, Sunil
2015-05-01
Combustion stability is examined in a swirl stabilized aero gas turbine combustor using computational fluid dynamics. A 22.5° sector of an annular combustor is modeled for the study. Unstructured tetrahedral meshes comprising 1.2 × 106 elements are employed in the model where the governing equations are solved using CFD flow solver CFX using eddy dissipation combustion model. The effect of fuel particle size on the combustion and its stability has been studied at steady state and transient conditions. The time for complete evaporation is increased exponentially when drop size increases. It delays heating up the mixture and subsequent ignition. This strongly affects the stability of the combustion flame as the incoming fresh mixture will have a quenching effect on the existing temperature field. Transient analysis at low fuel-air ratio and high particle size shows that there is a series of flame extinction and re-ignition prior to complete extinction which is observed from the fluctuation of gas temperature in the primary zone.
Microwave plasma synthesis of Si/Ge and Si/WSi2 nanoparticles for thermoelectric applications
NASA Astrophysics Data System (ADS)
Petermann, Nils; Schneider, Tom; Stötzel, Julia; Stein, Niklas; Weise, Claudia; Wlokas, Irenäus; Schierning, Gabi; Wiggers, Hartmut
2015-08-01
The utilization of microwave-based plasma systems enables a contamination-free synthesis of highly specific nanoparticles in the gas phase. A reactor setup allowing stable, long-term operation was developed with the support of computational fluid dynamics. This paper highlights the prospects of gas-phase plasma synthesis to produce specific materials for bulk thermoelectrics. Taking advantage of specific plasma reactor properties such as Coulomb repulsion in combination with gas temperatures considerably higher than 1000 K, spherical and non-aggregated nanoparticles of multiple compositions are accessible. Different strategies towards various nanostructured composites and alloys are discussed. It is shown that, based on doped silicon/germanium alloys and composites, thermoelectric materials with zT values up to almost unity can be synthesized in one step. First experimental results concerning silicon/tungsten silicide thermoelectrics applying the nanoparticle-in-alloy idea are presented indicating that this concept might work. However, it is found that tungsten silicides show a surprising sinter activity more than 1000 K below their melting temperature.
THETRIS: A MICRO-SCALE TEMPERATURE AND GAS RELEASE MODEL FOR TRISO FUEL
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. Ortensi; A.M. Ougouag
2011-12-01
The dominating mechanism in the passive safety of gas-cooled, graphite-moderated, high-temperature reactors (HTRs) is the Doppler feedback effect. These reactor designs are fueled with sub-millimeter sized kernels formed into TRISO particles that are imbedded in a graphite matrix. The best spatial and temporal representation of the feedback effect is obtained from an accurate approximation of the fuel temperature. Most accident scenarios in HTRs are characterized by large time constants and slow changes in the fuel and moderator temperature fields. In these situations a meso-scale, pebble and compact scale, solution provides a good approximation of the fuel temperature. Micro-scale models aremore » necessary in order to obtain accurate predictions in faster transients or when parameters internal to the TRISO are needed. Since these coated particles constitute one of the fundamental design barriers for the release of fission products, it becomes important to understand the transient behavior inside this containment system. An explicit TRISO fuel temperature model named THETRIS has been developed and incorporated into the CYNOD-THERMIX-KONVEK suite of coupled codes. The code includes gas release models that provide a simple predictive capability of the internal pressure during transients. The new model yields similar results to those obtained with other micro-scale fuel models, but with the added capability to analyze gas release, internal pressure buildup, and effects of a gap in the TRISO. The analyses show the instances when the micro-scale models improve the predictions of the fuel temperature and Doppler feedback. In addition, a sensitivity study of the potential effects on the transient behavior of high-temperature reactors due to the presence of a gap is included. Although the formation of a gap occurs under special conditions, its consequences on the dynamic behavior of the reactor can cause unexpected responses during fast transients. Nevertheless, the strong Doppler feedback forces the reactor to quickly stabilize.« less
NASA Astrophysics Data System (ADS)
Sun, Fei; Gao, Jihui; Liu, Xin; Tang, Xiaofan; Wu, Shaohua
2015-12-01
For the aim to break through the long-term roadblock to porous carbon based SO2 removal technology, typical coal-based activated cokes differing in terms of surface area, pore configuration and surface functional properties, were employed to investigate the SO2 removal dynamics. Among the employed activated cokes, the one with a hierarchically porous structure greatly enhanced the SO2 removal dynamics under the simulated flue gas compositions. More detailedly, SO2 separate adsorption property under normal temperature and pressure evidenced that monolayer SO2 molecules anchoring on micropore surface is the main adsorption pattern. The catalytic oxidation of SO2 follows the Eley-Rideal mechanism by which SO2 was firstly oxidized by molecular oxygen into SO3 which could depart partially to release the active sites for further adsorption. For the role of hierarchical pore configuration, it was proposed that micropores serve as gas adsorption and reaction accommodation, meso-/macropores act as byproduct H2SO4 transport and buffing reservoirs, which may in turn gives rise to the recovery of active sites in micropores and guarantees the continuous proceeding of sulfur-containing species transformation in the micropores. The present results suggest that pore configuration or interconnecting pattern, but not mere surface area or pore volume, should be favourably considered for optimizing heterogeneous gas-solid adsorption and reaction.
NASA Astrophysics Data System (ADS)
Sądowski, Aleksander; Wielgus, Maciek; Narayan, Ramesh; Abarca, David; McKinney, Jonathan C.; Chael, Andrew
2017-04-01
We present a numerical method that evolves a two-temperature, magnetized, radiative, accretion flow around a black hole, within the framework of general relativistic radiation magnetohydrodynamics. As implemented in the code KORAL, the gas consists of two sub-components - ions and electrons - which share the same dynamics but experience independent, relativistically consistent, thermodynamical evolution. The electrons and ions are heated independently according to a prescription from the literature for magnetohydrodynamical turbulent dissipation. Energy exchange between the particle species via Coulomb collisions is included. In addition, electrons gain and lose energy and momentum by absorbing and emitting synchrotron and bremsstrahlung radiation and through Compton scattering. All evolution equations are handled within a fully covariant framework in the relativistic fixed-metric space-time of the black hole. Numerical results are presented for five models of low-luminosity black hole accretion. In the case of a model with a mass accretion rate dot{M}˜ 4× 10^{-8} dot{M}_Edd, we find that radiation has a negligible effect on either the dynamics or the thermodynamics of the accreting gas. In contrast, a model with a larger dot{M}˜ 4× 10^{-4} dot{M}_Edd behaves very differently. The accreting gas is much cooler and the flow is geometrically less thick, though it is not quite a thin accretion disc.
NASA Astrophysics Data System (ADS)
Dickens, Gerald R.
2003-08-01
Prominent negative δ13C excursions characterize several past intervals of abrupt (<100 kyr) environmental change. These anomalies, best exemplified by the >2.5‰ drop across the Paleocene/Eocene thermal maximum (PETM) ca. 55.5 Ma, command our attention because they lack explanation with conventional models for global carbon cycling. Increasingly, Earth scientists have argued that they signify massive release of CH4 from marine gas hydrates, although typically without considering the underlying process or the ensuing ramifications of such an interpretation. At the most basic level, a large, dynamic 'gas hydrate capacitor' stores and releases 13C-depleted carbon at rates linked to external conditions such as deep ocean temperature. The capacitor contains three internal reservoirs: dissolved gas, gas hydrate, and free gas. Carbon enters and leaves these reservoirs through microbial decomposition of organic matter, anaerobic oxidation of CH4 in shallow sediment, and seafloor gas venting; carbon cycles between these reservoirs through several processes, including fluid flow, precipitation and dissolution of gas hydrate, and burial. Numerical simulations show that simple gas hydrate capacitors driven by inferred changes in bottom water warming during the PETM can generate a global δ13C excursion that mimics observations. The same modeling extended over longer time demonstrates that variable CH4 fluxes to and from gas hydrates can partly explain other δ13C excursions, rapid and slow, large and small, negative and positive. Although such modeling is rudimentary (because processes and variables in modern and ancient gas hydrate systems remain poorly constrained), acceptance of a vast, externally regulated gas hydrate capacitor forces us to rethink δ13C records and the operation of the global carbon cycle throughout time.
NASA Technical Reports Server (NTRS)
Mendis, A.; Alfven, H.
1976-01-01
Physico-chemical processes leading to the dynamic formation and physical evolution of comets are reviewed in relationship to the various theories that propose solar origins, protoplanetary origins, planetary origins and interstellar origins. Evidence points to the origins of comets by the growth and agglomeration of small particles from gas and dust at very low temperatures at undetermined regions in space.
A Quasi-Optical Method for Measuring the Complex Permittivity of Materials.
1984-09-01
structural mechanics, flight dynamics; high-temperature thermomechanica, gas kinetics and radiation; research in environmental chemistry and...specific chemical reactions and radia- tion transport in rocket pluses, applied laser spectroscopy, laser chemistry, batery electrochemistry, space...corrosion; evaluation of materials in space environment ; materials performance In space transportation systems; anal- ysis of system vulnerability and
NASA Astrophysics Data System (ADS)
Reiss, P.
2018-05-01
Chemical analysis of lunar soil samples often involves thermal processing to extract their volatile constituents, such as loosely adsorbed water. For the characterization of volatiles and their bonding mechanisms it is important to determine their desorption temperature. However, due to the low thermal diffusivity of lunar regolith, it might be difficult to reach a uniform heat distribution in a sample that is larger than only a few particles. Furthermore, the mass transport through such a sample is restricted, which might lead to a significant delay between actual desorption and measurable outgassing of volatiles from the sample. The entire volatiles extraction process depends on the dynamically changing heat and mass transfer within the sample, and is influenced by physical parameters such as porosity, tortuosity, gas density, temperature and pressure. To correctly interpret measurements of the extracted volatiles, it is important to understand the interaction between heat transfer, sorption, and gas transfer through the sample. The present paper discusses the molecular kinetics and mechanisms that are involved in the thermal extraction process and presents a combined parametrical computation model to simulate this process. The influence of water content on the gas diffusivity and thermal diffusivity is discussed and the issue of possible resorption of desorbed molecules within the sample is addressed. Based on the multi-physical computation model, a case study for the ProSPA instrument for in situ analysis of lunar volatiles is presented, which predicts relevant dynamic process parameters, such as gas pressure and process duration.
Argonne Bubble Experiment Thermal Model Development III
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buechler, Cynthia Eileen
This report describes the continuation of the work reported in “Argonne Bubble Experiment Thermal Model Development” and “Argonne Bubble Experiment Thermal Model Development II”. The experiment was performed at Argonne National Laboratory (ANL) in 2014. A rastered 35 MeV electron beam deposited power in a solution of uranyl sulfate, generating heat and radiolytic gas bubbles. Irradiations were performed at beam power levels between 6 and 15 kW. Solution temperatures were measured by thermocouples, and gas bubble behavior was recorded. The previous report2 described the Monte-Carlo N-Particle (MCNP) calculations and Computational Fluid Dynamics (CFD) analysis performed on the as-built solution vesselmore » geometry. The CFD simulations in the current analysis were performed using Ansys Fluent, Ver. 17.2. The same power profiles determined from MCNP calculations in earlier work were used for the 12 and 15 kW simulations. The primary goal of the current work is to calculate the temperature profiles for the 12 and 15 kW cases using reasonable estimates for the gas generation rate, based on images of the bubbles recorded during the irradiations. Temperature profiles resulting from the CFD calculations are compared to experimental measurements.« less
NASA Astrophysics Data System (ADS)
Nguyen, V. B.; Li, J.; Chang, P.-H.; Phan, Q. T.; Teo, C. J.; Khoo, B. C.
2018-01-01
In this paper, numerical simulations are performed to study the dynamics of the deflagration-to-detonation transition (DDT) in pulse detonation engines (PDE) using energetic aluminum particles. The DDT process and detonation wave propagation toward the unburnt hydrogen/air mixture containing solid aluminum particles is numerically studied using the Eulerian-Lagrangian approach. A hybrid numerical methodology combined with appropriate sub-models is used to capture the gas dynamic characteristics, particle behavior, combustion characteristics, and two-way solid-particle-gas flow interactions. In our approach, the gas mixture is expressed in the Eulerian frame of reference, while the solid aluminum particles are tracked in the Lagrangian frame of reference. The implemented computer code is validated using published benchmark problems. The obtained results show that the aluminum particles not only shorten the DDT length but also reduce the DDT time. The improvement of DDT is primarily attributed to the heat released from surface chemical reactions on the aluminum particles. The temperatures associated with the DDT process are greater than the case of non-reacting particles added, with an accompanying rise in the pressure. For an appropriate range of particle volume fraction, particularly in this study, the higher volume fraction of the micro-aluminum particles added in the detonation chamber can lead to more heat energy released and more local instabilities in the combustion process (caused by the local high temperature), thereby resulting in a faster DDT process. In essence, the aluminum particles contribute to the DDT process of successfully transitioning to detonation waves for (failure) cases in which the fuel gas mixture can be either too lean or too rich. With a better understanding of the influence of added aluminum particles on the dynamics of the DDT and detonation process, we can apply it to modify the geometry of the detonation chamber (e.g., the length of the detonation tube) accordingly to improve the operational performance of the PDE.
NASA Astrophysics Data System (ADS)
Li, Linmin; Li, Baokuan; Liu, Lichao; Motoyama, Yuichi
2017-04-01
The present work develops a multi-region dynamic coupling model for fluid flow, heat transfer and arc-melt interaction in tungsten inert gas (TIG) welding using the dynamic mesh technique. The arc-weld pool unified model is developed on basis of magnetohydrodynamic (MHD) equations and the interface is tracked using the dynamic mesh method. The numerical model for arc is firstly validated by comparing the calculated temperature profiles and essential results with the former experimental data. For weld pool convection solution, the drag, Marangoni, buoyancy and electromagnetic forces are separately validated, and then taken into account. Moreover, the model considering interface deformation is adopted in a stationary TIG welding process with SUS304 stainless steel and the effect of interface deformation is investigated. The depression of weld pool center and the lifting of pool periphery are both predicted. The results show that the weld pool shape calculated with considering the interface deformation is more accurate.
Free-piston driver performance characterisation using experimental shock speeds through helium
NASA Astrophysics Data System (ADS)
Gildfind, D. E.; James, C. M.; Morgan, R. G.
2015-03-01
Tuned free-piston driver operation involves configuring the driver to produce a relatively steady blast of driver gas over the critical time scales of the experiment. For the purposes of flow condition development and parametric studies, it is useful to establish some average working values of the driver pressure and temperature for a given driver operating condition. However, in practise, these averaged values need to produce sufficiently accurate estimates of performance. In this study, two tuned driver conditions in the X2 expansion tube have been used to generate shock waves through a helium test gas. The measured shock speeds have then been used to calculate the effective driver gas pressure and temperature after diaphragm rupture. Since the driver gas is typically helium, or a mixture of helium and argon, and the test gas is also helium, ideal gas assumptions can be made without significant loss of accuracy. The technique is applicable to tuned free-piston drivers with a simple area change, as well as those using orifice plates. It is shown that this technique can be quickly used to establish average working driver gas properties which produce very good estimates of actual driven shock speed, across a wide range of operating conditions. The use of orifice plates to control piston dynamics at high driver gas sound speeds is also discussed in the paper, and a simple technique for calculating the restriction required to modify an established safe condition for use with lighter gases, such as pure helium, is presented.
Nonlinear oscillatory rarefied gas flow inside a rectangular cavity
NASA Astrophysics Data System (ADS)
Wang, Peng; Zhu, Lianhua; Su, Wei; Wu, Lei; Zhang, Yonghao
2018-04-01
The nonlinear oscillation of rarefied gas flow inside a two-dimensional rectangular cavity is investigated on the basis of the Shakhov kinetic equation. The gas dynamics, heat transfer, and damping force are studied numerically via the discrete unified gas-kinetic scheme for a wide range of parameters, including gas rarefaction, cavity aspect ratio, and oscillation frequency. Contrary to the linear oscillation where the velocity, temperature, and heat flux are symmetrical and oscillate with the same frequency as the oscillating lid, flow properties in nonlinear oscillatory cases turn out to be asymmetrical, and second-harmonic oscillation of the temperature field is observed. As a consequence, the amplitude of the shear stress near the top-right corner of the cavity could be several times larger than that at the top-left corner, while the temperature at the top-right corner could be significantly higher than the wall temperature in nearly the whole oscillation period. For the linear oscillation with the frequency over a critical value, and for the nonlinear oscillation, the heat transfer from the hot to cold region dominates inside the cavity, which is contrary to the anti-Fourier heat transfer in a low-speed rarefied lid-driven cavity flow. The damping force exerted on the oscillating lid is studied in detail, and the scaling laws are developed to describe the dependency of the resonance and antiresonance frequencies (corresponding to the damping force at a local maximum and minimum, respectively) on the reciprocal aspect ratio from the near hydrodynamic to highly rarefied regimes. These findings could be useful in the design of the micro-electro-mechanical devices operating in the nonlinear-flow regime.
NASA Astrophysics Data System (ADS)
Pepich, Barry V.; Callis, James B.; Danielson, J. D. Sheldon; Gouterman, Martin
1986-05-01
A method for detection of capillary gas chromatographic (C-GC) effluent using supersonic jet spectroscopy is described. A novel concept is introduced which overcomes four major obstacles: (i) high temperature of the GC; (ii) low GC flow rate; (iii) low dead volume requirement; and (iv) duty factor mismatch to a pulsed laser. The effluent from the C-GC flows into a low dead volume antechamber into which a pulsed valve, operating at 5 Hz, discharges high-pressure inert gas for 600 μs. The antechamber feeds through a small orifice into a high-vacuum chamber; here an isentropic expansion takes place which causes marked cooling of the GC effluent. The fluorescence of the effluent is then excited by a synchronously pulsed dye laser. With iodine vapor in helium (2 ml/min) modeling the GC effluent, the fluorescence of the cooled molecules is monitored with different delay times between opening of the pulsed valve and firing of the laser. With a glass wool plug inserted in the antechamber to promote mixing between the high-pressure pulse gas and the iodine, the observed pressure variation with time follows a simple gas-dynamic model. Operating in this pulsed mode it is found that the effluent concentration increases by a factor of 7 while the rotational temperature drops from 373 to 7 K. The overall fluorescence intensity actually increases nearly 30-fold because the temperature drop narrows the absorption bands. Tests on acenaphthene chromatographed on a 15-m capillary column show that the antechamber does not degrade resolution and that the high-pressure pulses act to reduce C-GC retention times, presumably through a Venturi effect. The antechamber can be operated with GC effluent temperatures above 200 °C without adversely affecting the pulsed valve.
NASA Technical Reports Server (NTRS)
Anghaie, S.; Chen, G.
1996-01-01
A computational model based on the axisymmetric, thin-layer Navier-Stokes equations is developed to predict the convective, radiation and conductive heat transfer in high temperature space nuclear reactors. An implicit-explicit, finite volume, MacCormack method in conjunction with the Gauss-Seidel line iteration procedure is utilized to solve the thermal and fluid governing equations. Simulation of coolant and propellant flows in these reactors involves the subsonic and supersonic flows of hydrogen, helium and uranium tetrafluoride under variable boundary conditions. An enthalpy-rebalancing scheme is developed and implemented to enhance and accelerate the rate of convergence when a wall heat flux boundary condition is used. The model also incorporated the Baldwin and Lomax two-layer algebraic turbulence scheme for the calculation of the turbulent kinetic energy and eddy diffusivity of energy. The Rosseland diffusion approximation is used to simulate the radiative energy transfer in the optically thick environment of gas core reactors. The computational model is benchmarked with experimental data on flow separation angle and drag force acting on a suspended sphere in a cylindrical tube. The heat transfer is validated by comparing the computed results with the standard heat transfer correlations predictions. The model is used to simulate flow and heat transfer under a variety of design conditions. The effect of internal heat generation on the heat transfer in the gas core reactors is examined for a variety of power densities, 100 W/cc, 500 W/cc and 1000 W/cc. The maximum temperature, corresponding with the heat generation rates, are 2150 K, 2750 K and 3550 K, respectively. This analysis shows that the maximum temperature is strongly dependent on the value of heat generation rate. It also indicates that a heat generation rate higher than 1000 W/cc is necessary to maintain the gas temperature at about 3500 K, which is typical design temperature required to achieve high efficiency in the gas core reactors. The model is also used to predict the convective and radiation heat fluxes for the gas core reactors. The maximum value of heat flux occurs at the exit of the reactor core. Radiation heat flux increases with higher wall temperature. This behavior is due to the fact that the radiative heat flux is strongly dependent on wall temperature. This study also found that at temperature close to 3500 K the radiative heat flux is comparable with the convective heat flux in a uranium fluoride failed gas core reactor.
Impact of cloud timing on surface temperature and related hydroclimatic dynamics
NASA Astrophysics Data System (ADS)
Porporato, A. M.; Yin, J.
2015-12-01
Cloud feedbacks have long been identified as one of the largest source of uncertainty in climate change predictions. Differences in the spatial distribution of clouds and the related impact on surface temperature and climate dynamics have been recently emphasized in quasi-equilibrium General Circulation Models (GCM). However, much less attention has been paid to the temporal variation of cloud presence and thickness. Clouds in fact shade the solar radiation during the daytime, but also acts as greenhouse gas to reduce the emission of longwave radiation to the outer space anytime of the day. Thus it is logical to expect that even small differences in timing and thickness of clouds could result in very different predictions in GCMs. In this study, these two effects of cloud dynamics are analyzed by tracking the cloud impacts on longwave and shortwave radiation in a minimalist transient thermal balance model of the land surface. The marked changes in surface temperature due to alterations in the timing of onset of clouds demonstrate that capturing temporal variation of cloud at sub-daily scale should be a priority in cloud parameterization schemes in GCMs.
Freshwater lake to salt-water sea causing widespread hydrate dissociation in the Black Sea.
Riboulot, Vincent; Ker, Stephan; Sultan, Nabil; Thomas, Yannick; Marsset, Bruno; Scalabrin, Carla; Ruffine, Livio; Boulart, Cédric; Ion, Gabriel
2018-01-09
Gas hydrates, a solid established by water and gas molecules, are widespread along the continental margins of the world. Their dynamics have mainly been regarded through the lens of temperature-pressure conditions. A fluctuation in one of these parameters may cause destabilization of gas hydrate-bearing sediments below the seafloor with implications in ocean acidification and eventually in global warming. Here we show throughout an example of the Black Sea, the world's most isolated sea, evidence that extensive gas hydrate dissociation may occur in the future due to recent salinity changes of the sea water. Recent and forthcoming salt diffusion within the sediment will destabilize gas hydrates by reducing the extension and thickness of their thermodynamic stability zone in a region covering at least 2800 square kilometers which focus seepages at the observed sites. We suspect this process to occur in other world regions (e.g., Caspian Sea, Sea of Marmara).
NASA Astrophysics Data System (ADS)
Sesti, Erika L.; Alaniva, Nicholas; Rand, Peter W.; Choi, Eric J.; Albert, Brice J.; Saliba, Edward P.; Scott, Faith J.; Barnes, Alexander B.
2018-01-01
We report magic angle spinning (MAS) up to 8.5 kHz with a sample temperature below 6 K using liquid helium as a variable temperature fluid. Cross polarization 13C NMR spectra exhibit exquisite sensitivity with a single transient. Remarkably, 1H saturation recovery experiments show a 1H T1 of 21 s with MAS below 6 K in the presence of trityl radicals in a glassy matrix. Leveraging the thermal spin polarization available at 4.2 K versus 298 K should result in 71 times higher signal intensity. Taking the 1H longitudinal relaxation into account, signal averaging times are therefore predicted to be expedited by a factor of >500. Computer assisted design (CAD) and finite element analysis were employed in both the design and diagnostic stages of this cryogenic MAS technology development. Computational fluid dynamics (CFD) models describing temperature gradients and fluid flow are presented. The CFD models bearing and drive gas maintained at 100 K, while a colder helium variable temperature fluid stream cools the center of a zirconia rotor. Results from the CFD were used to optimize the helium exhaust path and determine the sample temperature. This novel cryogenic experimental platform will be integrated with pulsed dynamic nuclear polarization and electron decoupling to interrogate biomolecular structure within intact human cells.
NASA Technical Reports Server (NTRS)
Egolfopoulos, Fokion N.; Campbell, Charles S.
1999-01-01
A detailed numerical study was conducted on the dynamics and thermal response of inert, spherical particles in strained, laminar, premixed hydrogen/air flames. The modeling included the solution of the steady conservation equations for both the gas and particle phases along and around the stagnation streamline of an opposed-jet configuration, and the use of detailed descriptions of chemical kinetics and molecular transport, For the gas phase, the equations of mass, momentum, energy, and species are considered, while for the particle phase, the model is based on conservation equations of the particle momentum balance in the axial and radial direction, the particle number density, and the particle thermal energy equation. The particle momentum equation includes the forces as induced by drag, thermophoresis, and gravity. The particle thermal energy equation includes the convective/conductive heat exchange between the two phases, as well as radiation emission and absorption by the particle. A one-point continuation method is also included in the code that allows for the description of turning points, typical of ignition and extinction behavior. As expected, results showed that the particle velocity can be substantially different than the gas phase velocity, especially in the presence of large temperature gradients and large strain rates. Large particles were also found to cross the gas stagnation plane, stagnate, and eventually reverse as a result of the opposing gas phase velocity. It was also shown that the particle number density varies substantially throughout the flowfield, as a result of the straining of the flow and the thermal expansion. Finally, for increased values of the particle number density, substantial flame cooling to extinction states and modification of the gas phase fluid mechanics were observed. As also expected, the effect of gravity was shown to be important for low convective velocities and heavy particles. Under such conditions, simulations indicate that the magnitude and direction of the gravitational force can substantially affect the profiles of the particle velocity, number density, mass flux, and temperature.
NASA Technical Reports Server (NTRS)
Egolfopoulos, Fokion N.; Campbell, Charles S.; Wu, Ming-Shin (Technical Monitor)
1999-01-01
A detailed numerical study was conducted on the dynamics and thermal response of inert spherical particles in strained, laminar, premixed hydrogen/air flames. The modeling included the solution of the steady conservation equations for both the gas and particle phases along and around the stagnation streamline of an opposed-jet configuration, and the use of detailed descriptions of chemical kinetics and molecular transport. For the gas phase, the equations of mass, momentum, energy, and species are considered, while for the particle phase, the model is based on conservation equations of the particle momentum balance in the axial and radial direction, the particle number density, and the particle thermal energy equation. The particle momentum equation includes the forces as induced by drag, thermophoresis, and gravity. The particle thermal energy equation includes the convective/conductive heat exchange between the two phases, as well as radiation emission and absorption by the particle. A one-point continuation method is also included in the code that allows for the description of turning points, typical of ignition and extinction behavior. As expected, results showed that the particle velocity can be substantially different than the gas phase velocity, especially in the presence of large temperature gradients and large strain rates. Large particles were also found to cross the gas stagnation plane, stagnate, and eventually reverse as a result of the opposing gas phase velocity. It was also shown that the particle number density varies substantially throughout the flowfield, as a result of the straining of the flow and the thermal expansion. Finally, for increased values of the particle number density, substantial flame cooling to extinction states and modification of the gas phase fluid mechanics were observed. As also expected, the effect of gravity was shown to be important for low convective velocities and heavy particles. Under such conditions, simulations indicate that the magnitude and direction of the gravitational force can substantially affect the profiles of the particle velocity, number density, mass flux, and temperature.
da Silva Marques, Rogério; Prado, Adilson Ribeiro; da Costa Antunes, Paulo Fernando; de Brito André, Paulo Sérgio; Ribeiro, Moisés R. N.; Frizera-Neto, Anselmo; Pontes, Maria José
2015-01-01
This article presents a corrosion resistant, maneuverable, and intrinsically safe fiber Bragg grating (FBG)-based temperature optical sensor. Temperature monitoring is a critical activity for the oil and gas industry. It typically involves acquiring the desired parameters in a hazardous and corrosive environment. The use of polytetrafluoroethylene (PTFE) was proposed as a means of simultaneously isolating the optical fiber from the corrosive environment and avoiding undesirable mechanical tensions on the FBGs. The presented sensor head is based on multiple FBGs inscribed in a lengthy single mode fiber. The sensor presents an average thermal sensitivity of 8.82 ± 0.09 pm/°C, resulting in a typical temperature resolution of ~0.1 °C and an average time constant value of 6.25 ± 0.08 s. Corrosion and degradation resistance were verified by infrared spectroscopy and scanning electron microscopy during 90 days exposure to high salinity crude oil samples. The developed sensor was tested in a field pilot test, mimicking the operation of an inland crude tank, demonstrating its abilities to dynamically monitor temperature profile. PMID:26690166
Marques, Rogério da Silva; Prado, Adilson Ribeiro; Antunes, Paulo Fernando da Costa; André, Paulo Sérgio de Brito; Ribeiro, Moisés R N; Frizera-Neto, Anselmo; Pontes, Maria José
2015-12-05
This article presents a corrosion resistant, maneuverable, and intrinsically safe fiber Bragg grating (FBG)-based temperature optical sensor. Temperature monitoring is a critical activity for the oil and gas industry. It typically involves acquiring the desired parameters in a hazardous and corrosive environment. The use of polytetrafluoroethylene (PTFE) was proposed as a means of simultaneously isolating the optical fiber from the corrosive environment and avoiding undesirable mechanical tensions on the FBGs. The presented sensor head is based on multiple FBGs inscribed in a lengthy single mode fiber. The sensor presents an average thermal sensitivity of 8.82 ± 0.09 pm/°C, resulting in a typical temperature resolution of ~0.1 °C and an average time constant value of 6.25 ± 0.08 s. Corrosion and degradation resistance were verified by infrared spectroscopy and scanning electron microscopy during 90 days exposure to high salinity crude oil samples. The developed sensor was tested in a field pilot test, mimicking the operation of an inland crude tank, demonstrating its abilities to dynamically monitor temperature profile.
Impact of future warming on winter chilling in Australia.
Darbyshire, Rebecca; Webb, Leanne; Goodwin, Ian; Barlow, E W R
2013-05-01
Increases in temperature as a result of anthropogenically generated greenhouse gas (GHG) emissions are likely to impact key aspects of horticultural production. The potential effect of higher temperatures on fruit and nut trees' ability to break winter dormancy, which requires exposure to winter chilling temperatures, was considered. Three chill models (the 0-7.2°C, Modified Utah, and Dynamic models) were used to investigate changes in chill accumulation at 13 sites across Australia according to localised temperature change related to 1, 2 and 3°C increases in global average temperatures. This methodology avoids reliance on outcomes of future GHG emission pathways, which vary and are likely to change. Regional impacts and rates of decline in chilling differ among the chill models, with the 0-7.2°C model indicating the greatest reduction and the Dynamic model the slowest rate of decline. Elevated and high latitude eastern Australian sites were the least affected while the three more maritime, less elevated Western Australian locations were shown to bear the greatest impact from future warming.
Dynamics and thermodynamics of polymer glasses.
Cangialosi, D
2014-04-16
The fate of matter when decreasing the temperature at constant pressure is that of passing from gas to liquid and, subsequently, from liquid to crystal. However, a class of materials can exist in an amorphous phase below the melting temperature. On cooling such materials, a glass is formed; that is, a material with the rigidity of a solid but exhibiting no long-range order. The study of the thermodynamics and dynamics of glass-forming systems is the subject of continuous research. Within the wide variety of glass formers, an important sub-class is represented by glass forming polymers. The presence of chain connectivity and, in some cases, conformational disorder are unfavourable factors from the point of view of crystallization. Furthermore, many of them, such as amorphous thermoplastics, thermosets and rubbers, are widely employed in many applications. In this review, the peculiarities of the thermodynamics and dynamics of glass-forming polymers are discussed, with particular emphasis on those topics currently the subject of debate. In particular, the following aspects will be reviewed in the present work: (i) the connection between the pronounced slowing down of glassy dynamics on cooling towards the glass transition temperature (Tg) and the thermodynamics; and, (ii) the fate of the dynamics and thermodynamics below Tg. Both aspects are reviewed in light of the possible presence of a singularity at a finite temperature with diverging relaxation time and zero configurational entropy. In this context, the specificity of glass-forming polymers is emphasized.
Recent studies on nanosecond-timescale pressurized gas discharges
Yatom, S.; Shlapakovski, A.; Beilin, L.; ...
2016-10-05
The results of recent experimental and numerical studies of nanosecond high-voltage discharges in pressurized gases are reviewed. The discharges were ignited in a diode filled by different gases within a wide range of pressures by an applied pulsed voltage or by a laser pulse in the gas-filled charged resonant microwave cavity. Fast-framing imaging of light emission, optical emission spectroscopy, X-ray foil spectrometry and coherent anti-Stokes Raman scattering were used to study temporal and spatial evolution of the discharge plasma density and temperature, energy distribution function of runaway electrons and dynamics of the electric field in the plasma channel. The resultsmore » obtained allow a deeper understanding of discharge dynamical properties in the nanosecond timescale, which is important for various applications of these types of discharges in pressurized gases.« less
CFD simulation of the gas flow in a pulse tube cryocooler with two pulse tubes
NASA Astrophysics Data System (ADS)
Yin, C. L.
2015-12-01
In this paper, in order to instruct the next optimization work, a two-dimension Computational Fluid Dynamics (CFD) model is developed to simulate temperature distribution and velocity distribution of oscillating fluid in the DPTC by individual phase-shifting. It is found that the axial temperature distribution of regenerator is generally uniform and the temperatures near the center at the same cross setion of two pulse tubes are obviously higher than their near wall temperatures. The wall temperature difference about 0-7 K exists between the two pulse tubes. The velocity distribution near the center of the regenerator is uniform and there is obvious injection stream coming at the center of the pulse tubes from the hot end. The formation reason of temperature distribution and velocity distribution is explained.
Effects of outgassing of loader chamber walls on hydriding of thin films for commercial applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Provo, James L., E-mail: jlprovo@verizon.net
2014-07-01
An important aspect of understanding industrial processing is to know the characteristics of the materials used in such processes. A study was performed to determine the effects of hydriding chamber material on the degree of hydriding for the commercial production of thin film hydride targets for various research universities, commercial companies, and government national laboratories. The goal was to increase the degree of hydriding of various thin film hydrides and to study the vacuum environment during air-exposure hydriding. For this purpose, dynamic residual gas analysis during deuterium gas hydride processing was utilized with erbium thin films, employing a special set-upmore » for direct dynamic hydride gas sampling during processing at elevated temperature and full loading gas pressure. Complete process data for (1) a copper–(1.83 wt. %)beryllium wet hydrogen fired passivated (600 °C–1 h) externally heated pipe hydriding chamber are reported. Dynamic residual gas analysis comparisons during hydriding are presented for hydriding chambers made from (2) alumina (99.8 wt. %), (3) copper (with an interior aluminum coating ∼10 k Å thick, and (4) for a stainless-steel air-fired passivated (900 °C–1 h) chamber. Dynamic data with deuterium gas in the chamber at the hydriding temperature (450 °C) showed the presence and growth of water vapor (D{sub 2}O) and related mixed ion species(H{sub 2}O{sup +}, HDO{sup +}, D{sub 2}O{sup +}, and OD{sup +}) from hydrogen isotope exchange reactions during the 1 h process time. Peaks at mass-to-charge ratios (i.e., m/e) of 12(C{sup +}), 16(CD{sub 2}{sup +}), 17(CHD{sub 2}{sup +}), and 18(CD{sub 3}{sup +}, OD{sup +}) increased for approximately the first half hour of a 1 h hydriding process and then approach steady state. Mass-to-charge peaks at 19(HDO{sup +}) and 20(D{sub 2}O{sup +}) continue to increase throughout the process cycle. Using the m/e = 20 (D{sub 2}O{sup +}) peak intensity from chamber (1)–Cu(1.83 wt. %)Be as a standard, the peak intensity from chamber (4)—stainless-steel (air-fired) was 7.1× higher, indicating that the surface of stainless-steel had a larger concentration of reactive oxygen and/or water than hydrogen. The (D{sub 2}O{sup +}) peak intensity from chamber (3)—Cu (interior Al coating) was 1.55× larger and chamber (2)—alumina(99.8%) was 1.33× higher than Cu(1.83 wt. %)Be. Thus copper–(1.83 wt. %)beryllium was the best hydriding chamber material studied followed closely by the alumina (99.8 wt. %) chamber. Gas take-up by Er occluder targets processed in Cu(1.83 wt. %)Be hydriding chambers (i.e., gas/metal atomic ratios) correlate with the dynamic RGA data.« less
NASA Astrophysics Data System (ADS)
Szidarovszky, Tamás; Jono, Maho; Yamanouchi, Kaoru
2018-07-01
A user-friendly and cross-platform software called Laser-Induced Molecular Alignment and Orientation simulator (LIMAO) has been developed. The program can be used to simulate within the rigid rotor approximation the rotational dynamics of gas phase molecules induced by linearly polarized intense laser fields at a given temperature. The software is implemented in the Java and Mathematica programming languages. The primary aim of LIMAO is to aid experimental scientists in predicting and analyzing experimental data representing laser-induced spatial alignment and orientation of molecules.
Vortex Thermometry for Turbulent Two-Dimensional Fluids.
Groszek, Andrew J; Davis, Matthew J; Paganin, David M; Helmerson, Kristian; Simula, Tapio P
2018-01-19
We introduce a new method of statistical analysis to characterize the dynamics of turbulent fluids in two dimensions. We establish that, in equilibrium, the vortex distributions can be uniquely connected to the temperature of the vortex gas, and we apply this vortex thermometry to characterize simulations of decaying superfluid turbulence. We confirm the hypothesis of vortex evaporative heating leading to Onsager vortices proposed in Phys. Rev. Lett. 113, 165302 (2014)PRLTAO0031-900710.1103/PhysRevLett.113.165302, and we find previously unidentified vortex power-law distributions that emerge from the dynamics.
CFD analysis of a diaphragm free-piston Stirling cryocooler
NASA Astrophysics Data System (ADS)
Caughley, Alan; Sellier, Mathieu; Gschwendtner, Michael; Tucker, Alan
2016-10-01
This paper presents a Computational Fluid Dynamics (CFD) analysis of a novel free-piston Stirling cryocooler that uses a pair of metal diaphragms to seal and suspend the displacer. The diaphragms allow the displacer to move without rubbing or moving seals. When coupled to a metal diaphragm pressure wave generator, the system produces a complete Stirling cryocooler with no rubbing parts in the working gas space. Initial modelling of this concept using the Sage modelling tool indicated the potential for a useful cryocooler. A proof-of-concept prototype was constructed and achieved cryogenic temperatures. A second prototype was designed and constructed using the experience gained from the first. The prototype produced 29 W of cooling at 77 K and reached a no-load temperature of 56 K. The diaphragm's large diameter and short stroke produces a significant radial component to the oscillating flow fields inside the cryocooler which were not modelled in the one-dimensional analysis tool Sage that was used to design the prototypes. Compared with standard pistons, the diaphragm geometry increases the gas-to-wall heat transfer due to the higher velocities and smaller hydraulic diameters. A Computational Fluid Dynamics (CFD) model of the cryocooler was constructed to understand the underlying fluid-dynamics and heat transfer mechanisms with the aim of further improving performance. The CFD modelling of the heat transfer in the radial flow fields created by the diaphragms shows the possibility of utilizing the flat geometry for heat transfer, reducing the need for, and the size of, expensive heat exchangers. This paper presents details of a CFD analysis used to model the flow and gas-to-wall heat transfer inside the second prototype cryocooler, including experimental validation of the CFD to produce a robust analysis.
NASA Astrophysics Data System (ADS)
Cigala, V.; Kueppers, U.; Dingwell, D. B.
2015-12-01
Explosive volcanic eruptions eject large quantities of gas and particles into the atmosphere. The portion directly above the vent commonly shows characteristics of underexpanded jets. Understanding the factors that influence the initial pyroclast ejection dynamics is necessary in order to better assess the resulting near- and far-field hazards. Field observations are often insufficient for the characterization of volcanic explosions due to lack of safe access to such environments. Fortunately, their dynamics can be simulated in the laboratory where experiments are performed under controlled conditions. We ejected loose natural particles from a shock-tube while controlling temperature (25˚ and 500˚C), overpressure (15MPa), starting grain size distribution (1-2 mm, 0.5-1 mm and 0.125-0.250 mm), sample-to-vent distance and vent geometry. For each explosion we quantified the velocity of individual particles, the jet spreading angle and the production of fines. Further, we varied the setup to allow for different sample-to-gas ratios and deployed four different vent geometries: 1) cylindrical, 2) funnel with a flaring of 30˚, 3) funnel with a flaring of 15˚ and 4) nozzle. The results showed maximum particle velocities up to 296 m/s, gas spreading angles varying from 21˚ to 37˚ and particle spreading angles from 3˚ to 40˚. Moreover we observed dynamically evolving ejection characteristics and variations in the production of fines during the course of individual experiments. Our experiments mechanistically mimic the process of pyroclast ejection. Thus the capability for constraining the effects of input parameters (fragmentation conditions) and conduit/vent geometry on ballistic pyroclastic plumes has been clearly established. These data obtained in the presence of well-documented conduit and vent conditions, should greatly enhance our ability to numerically model explosive ejecta in nature.
NASA Astrophysics Data System (ADS)
Baier, Tobias; Dölger, Julia; Hardt, Steffen
2014-05-01
For a gas confined between surfaces held at different temperatures the velocity distribution shows a significant deviation from the Maxwell distribution when the mean free path of the molecules is comparable to or larger than the channel dimensions. If one of the surfaces is suitably structured, this nonequilibrium distribution can be exploited for momentum transfer in a tangential direction between the two surfaces. This opens up the possibility to extract work from the system which operates as a heat engine. Since both surfaces are held at constant temperatures, the mode of momentum transfer is different from the thermal creep flow that has gained more attention so far. This situation is studied in the limit of free-molecular flow for the case that an unstructured surface is allowed to move tangentially with respect to a structured surface. Parameter studies are conducted, and configurations with maximum thermodynamic efficiency are identified. Overall, it is shown that significant efficiencies can be obtained by tangential momentum transfer between structured surfaces.
Baier, Tobias; Dölger, Julia; Hardt, Steffen
2014-05-01
For a gas confined between surfaces held at different temperatures the velocity distribution shows a significant deviation from the Maxwell distribution when the mean free path of the molecules is comparable to or larger than the channel dimensions. If one of the surfaces is suitably structured, this nonequilibrium distribution can be exploited for momentum transfer in a tangential direction between the two surfaces. This opens up the possibility to extract work from the system which operates as a heat engine. Since both surfaces are held at constant temperatures, the mode of momentum transfer is different from the thermal creep flow that has gained more attention so far. This situation is studied in the limit of free-molecular flow for the case that an unstructured surface is allowed to move tangentially with respect to a structured surface. Parameter studies are conducted, and configurations with maximum thermodynamic efficiency are identified. Overall, it is shown that significant efficiencies can be obtained by tangential momentum transfer between structured surfaces.
Numerical simulation of proton exchange membrane fuel cells at high operating temperature
NASA Astrophysics Data System (ADS)
Peng, Jie; Lee, Seung Jae
A three-dimensional, single-phase, non-isothermal numerical model for proton exchange membrane (PEM) fuel cell at high operating temperature (T ≥ 393 K) was developed and implemented into a computational fluid dynamic (CFD) code. The model accounts for convective and diffusive transport and allows predicting the concentration of species. The heat generated from electrochemical reactions, entropic heat and ohmic heat arising from the electrolyte ionic resistance were considered. The heat transport model was coupled with the electrochemical and mass transport models. The product water was assumed to be vaporous and treated as ideal gas. Water transportation across the membrane was ignored because of its low water electro-osmosis drag force in the polymer polybenzimidazole (PBI) membrane. The results show that the thermal effects strongly affect the fuel cell performance. The current density increases with the increasing of operating temperature. In addition, numerical prediction reveals that the width and distribution of gas channel and current collector land area are key optimization parameters for the cell performance improvement.
Computational fluid dynamics analysis of a synthesis gas turbulent combustion in a round jet burner
NASA Astrophysics Data System (ADS)
Mansourian, Mohammad; Kamali, Reza
2017-05-01
In this study, the RNG-Large Eddy Simulation (RNG-LES) methodology of a synthesis gas turbulent combustion in a round jet burner is investigated, using OpenFoam package. In this regard, the extended EDC extinction model of Aminian et al. for coupling the reaction and turbulent flow along with various reaction kinetics mechanisms such as Skeletal and GRI-MECH 3.0 have been utilized. To estimate precision and error accumulation, we used the Smirinov's method and the results are compared with the available experimental data under the same conditions. As a result, it was found that the GRI-3.0 reaction mechanism has the least computational error and therefore, was considered as a reference reaction mechanism. Afterwards, we investigated the influence of various working parameters including the inlet flow temperature and inlet velocity on the behavior of combustion. The results show that the maximum burner temperature and pollutant emission are affected by changing the inlet flow temperature and velocity.
Exploring the temperature dependence of failure mechanisms in fragmenting metal cylinders
NASA Astrophysics Data System (ADS)
Jones, David; Chapman, David; Hazell, Paul; Bland, Simon; Eakins, Daniel
2011-06-01
We present current work to investigate the influence of temperature on the dynamic fragmentation of metals. Pre-heated/cooled cylinders of Ti-6Al-4V were subjected to rapid radial expansion up to and past the point of failure using a modified expanding insert method on a single stage gas gun. Additional experiments were performed using an electromagnetic drive system to produce uniform deformations on targets of differing dimensions (radius, wall thickness). Issues concerning the geometry of the experiments, methods of heating and cooling the sample and diagnostics are covered. Finally, the role of temperature on adiabatic shear banding and fragment distribution statistics is discussed.
Low temperature impact toughness of the main gas pipeline steel after long-term degradation
NASA Astrophysics Data System (ADS)
Maruschak, Pavlo O.; Danyliuk, Iryna M.; Bishchak, Roman T.; Vuherer, Tomaž
2014-12-01
The correlation of microstructure, temperature and Charpy V-notch impact properties of a steel 17G1S pipeline steel was investigated in this study. Within the concept of physical mesomechanics, the dynamic failure of specimens is represented as a successive process of the loss of shear stability, which takes place at different structural/scale levels of the material. Characteristic stages are analyzed for various modes of failure, moreover, typical levels of loading and oscillation periods, etc. are determined. Relations between low temperature derived through this test, microstructures and Charpy (V-notch) toughness test results are also discussed in this paper.
Wright, Steven A.; Pickard, Paul S.; Vernon, Milton E.; Radel, Ross F.
2017-08-29
Various technologies pertaining to tuning composition of a fluid mixture in a supercritical Brayton cycle power generation system are described herein. Compounds, such as Alkanes, are selectively added or removed from an operating fluid of the supercritical Brayton cycle power generation system to cause the critical temperature of the fluid to move up or down, depending upon environmental conditions. As efficiency of the supercritical Brayton cycle power generation system is substantially optimized when heat is rejected near the critical temperature of the fluid, dynamically modifying the critical temperature of the fluid based upon sensed environmental conditions improves efficiency of such a system.
NASA Technical Reports Server (NTRS)
Brinson, Thomas E.; Kopasakis, George
2004-01-01
The Controls and Dynamics Technology Branch at NASA Glenn Research Center are interested in combining a solid oxide fuel cell (SOFC) to operate in conjunction with a gas turbine engine. A detailed engine model currently exists in the Matlab/Simulink environment. The idea is to incorporate a SOFC model within the turbine engine simulation and observe the hybrid system's performance. The fuel cell will be heated to its appropriate operating condition by the engine s combustor. Once the fuel cell is operating at its steady-state temperature, the gas burner will back down slowly until the engine is fully operating on the hot gases exhausted from the SOFC. The SOFC code is based on a steady-state model developed by The U.S. Department of Energy (DOE). In its current form, the DOE SOFC model exists in Microsoft Excel and uses Visual Basics to create an I-V (current-voltage) profile. For the project's application, the main issue with this model is that the gas path flow and fuel flow temperatures are used as input parameters instead of outputs. The objective is to create a SOFC model based on the DOE model that inputs the fuel cells flow rates and outputs temperature of the flow streams; therefore, creating a temperature profile as a function of fuel flow rate. This will be done by applying the First Law of Thermodynamics for a flow system to the fuel cell. Validation of this model will be done in two procedures. First, for a given flow rate the exit stream temperature will be calculated and compared to DOE SOFC temperature as a point comparison. Next, an I-V curve and temperature curve will be generated where the I-V curve will be compared with the DOE SOFC I-V curve. Matching I-V curves will suggest validation of the temperature curve because voltage is a function of temperature. Once the temperature profile is created and validated, the model will then be placed into the turbine engine simulation for system analysis.
NASA Astrophysics Data System (ADS)
Russell, Brock Richard
X-ray astrophysics provides a great many opportunities to study astronomical structures with large energies or high temperatures. This dissertation will describe two such applications: the use of Swift X-ray Telescope (XRT) data to analyze the interaction between a supernova shock and the circumstellar medium, and the use of a straightforward computer simulation to model the dynamics of intracluster gas in clusters of galaxies and constrain the thermal conduction coefficient. Stars emit stellar wind at varying rates throughout their lifetimes. This wind populates the circumstellar medium (CSM) with gas. When the supernova explodes, the shock wave propogates outward through this CSM and heats it to X-ray emitting temperatures. By analyzing X-ray observations of the immediate post-supernova environment, we are able to determine whether any significant CSM is present. By stacking a large number of Swift observations of SNe Ia, we increase the sensitivity. We find no X-rays, with an upper limit of 1.7 x 1038 erg s-1 and a 3 sigma upper limit on the mass loss rate of progenitor systems 1.1 x 10-6 solar masses per year x (vw)/(10 km s -1). This low upper limit precludes a massive progenitor as the binary companion in the supernova progenitor system, unless that star is in Roche lobe overflow. The hot Intracluster Medium (ICM) is composed of tenuous gas which is gravitationally-bound to the cluster of galaxies. This gas is not initially of uniform temperature, and experiences thermal conduction while maintaining hydrostatic equilibrium. However, magnetic field lines present in the ionized gas inhibit the full thermal conduction. In this dissertation, we present the results of a new one-dimensional simulation that models this conduction (and includes cooling while maintaining hydrostatic equilibrium). By comparing the results of this model with the observed gas temperature profiles and recent accurate constraints on the scatter of the gas fraction, we are able to constrain the thermal conductivity. Our results suggest that conduction factors are not higher than 10% of full Spitzer conduction for hot, relaxed clusters.
MAPPING THE DYNAMICS OF COLD GAS AROUND SGR A* THROUGH 21 cm ABSORPTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christian, Pierre; Loeb, Abraham, E-mail: pchristian@cfa.harvard.edu
2015-11-20
The presence of a circumnuclear stellar disk around Sgr A* and megamaser systems near other black holes indicates that dense neutral disks can be found in galactic nuclei. We show that depending on their inclination angle, optical depth, and spin temperature, these disks could be observed spectroscopically through 21 cm absorption. Related spectroscopic observations of Sgr A* can determine its HI disk parameters and the possible presence of gaps in the disk. Clumps of dense gas similar to the G2 could could also be detected in 21 cm absorption against Sgr A* radio emission.
NASA Astrophysics Data System (ADS)
Smelov, V. G.; Sotov, A. V.; Agapovichev, A. V.; Nosova, E. A.
2018-03-01
The structure and mechanical properties of samples are obtained from metal powder based on intermetallic compound by selective laser melting. The chemical analysis of the raw material and static tensile test of specimens were made. Change in the samples’ structure and mechanical properties after homogenization during four and twenty-four hours were investigated. A small-sized combustion chamber of a gas turbine engine was performed by the selective laser melting method. The print combustion chamber was subjected to the gas-dynamic test in a certain temperature and time range.
Method For Enhanced Gas Monitoring In High Density Flow Streams
Von Drasek, William A.; Mulderink, Kenneth A.; Marin, Ovidiu
2005-09-13
A method for conducting laser absorption measurements in high temperature process streams having high levels of particulate matter is disclosed. An impinger is positioned substantially parallel to a laser beam propagation path and at upstream position relative to the laser beam. Beam shielding pipes shield the beam from the surrounding environment. Measurement is conducted only in the gap between the two shielding pipes where the beam propagates through the process gas. The impinger facilitates reduced particle presence in the measurement beam, resulting in improved SNR (signal-to-noise) and improved sensitivity and dynamic range of the measurement.
Two-Phase Model of Combustion in Explosions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuhl, A L; Khasainov, B; Bell, J
2006-06-19
A two-phase model for Aluminum particle combustion in explosions is proposed. It combines the gas-dynamic conservation laws for the gas phase with the continuum mechanics laws of multi-phase media, as formulated by Nigmatulin. Inter-phase mass, momentum and energy exchange are prescribed by the Khasainov model. Combustion is specified as material transformations in the Le Chatelier diagram which depicts the locus of thermodynamic states in the internal energy-temperature plane according to Kuhl. Numerical simulations are used to show the evolution of two-phase combustion fields generated by the explosive dissemination of a powdered Al fuel.
In situ spectroscopic ellipsometry study of low-temperature epitaxial silicon growth
NASA Astrophysics Data System (ADS)
Halagačka, L.; Foldyna, M.; Leal, R.; Roca i Cabarrocas, P.
2018-07-01
Low-temperature growth of doped epitaxial silicon layers is a promising way to reduce the cost of p-n junction formation in c-Si solar cells. In this work, we study process of highly doped epitaxial silicon layer growth using in situ spectroscopic ellipsometry. The film was deposited by plasma-enhanced chemical vapor deposition (PECVD) on a crystalline silicon substrate at a low substrate temperature of 200 °C. In the deposition process, SiF4 was used as a precursor, B2H6 as doping gas, and a hydrogen/argon mixture as carrier gas. A spectroscopic ellipsometer with a wide spectral range was used for in situ spectroscopic measurements. Since the temperature during process is 200 °C, the optical functions of silicon differ from these at room temperature and have to be adjusted. Thickness of the epitaxial silicon layer was fitted on in situ ellipsometric data. As a result we were able to determine the dynamics of epitaxial layer growth, namely initial layer formation time and epitaxial growth rate. This study opens new perspectives in understanding and monitoring the epitaxial silicon deposition processes as the model fitting can be applied directly during the growth.
1982-01-01
1980 The Use of Heat Pipes to Control Temperature in Electronic Systems. B. Larkin, Gas Dynamics Laboratory. No. 3 - Apr. 1980 Industrial Combustor...1979. A SIMPLE LEAK-PROOF HEAT EXCHANGER FOR USE IN SOLAR ENERGY SYSTEMS, by B.S. Larkin and J. Ramsden. 14th Intersociety Energy Conversion Eng. Conf...STUDY OF THE TEMPERATURE PROFILES AND HEAT TRANSFER COEFFICIENTS IN A HEAT PIPE FOR A HEAT EXCHANGER, by B.S. Larkin. To be presented at 4th Int. Heat
NASA Technical Reports Server (NTRS)
Robbins, M. D.; Kelley, J. A.; Elliott, L.
1972-01-01
NASA contributions to the advancement of major developments in twelve selected fields of technology are presented. The twelve fields of technology discussed are: (1) cryogenics, (2) electrochemical energy conversion and storage, (3) high-temperature ceramics, (4) high-temperature metals (5) integrated circuits, (6) internal gas dynamics (7) materials machining and forming, (8) materials joining, (9) microwave systems, (10) nondestructive testing, (11) simulation, and (12) telemetry. These field were selected on the basis of both NASA and nonaerospace interest and activity.
Deviation from equilibrium conditions in molecular dynamic simulations of homogeneous nucleation.
Halonen, Roope; Zapadinsky, Evgeni; Vehkamäki, Hanna
2018-04-28
We present a comparison between Monte Carlo (MC) results for homogeneous vapour-liquid nucleation of Lennard-Jones clusters and previously published values from molecular dynamics (MD) simulations. Both the MC and MD methods sample real cluster configuration distributions. In the MD simulations, the extent of the temperature fluctuation is usually controlled with an artificial thermostat rather than with more realistic carrier gas. In this study, not only a primarily velocity scaling thermostat is considered, but also Nosé-Hoover, Berendsen, and stochastic Langevin thermostat methods are covered. The nucleation rates based on a kinetic scheme and the canonical MC calculation serve as a point of reference since they by definition describe an equilibrated system. The studied temperature range is from T = 0.3 to 0.65 ϵ/k. The kinetic scheme reproduces well the isothermal nucleation rates obtained by Wedekind et al. [J. Chem. Phys. 127, 064501 (2007)] using MD simulations with carrier gas. The nucleation rates obtained by artificially thermostatted MD simulations are consistently lower than the reference nucleation rates based on MC calculations. The discrepancy increases up to several orders of magnitude when the density of the nucleating vapour decreases. At low temperatures, the difference to the MC-based reference nucleation rates in some cases exceeds the maximal nonisothermal effect predicted by classical theory of Feder et al. [Adv. Phys. 15, 111 (1966)].
Deviation from equilibrium conditions in molecular dynamic simulations of homogeneous nucleation
NASA Astrophysics Data System (ADS)
Halonen, Roope; Zapadinsky, Evgeni; Vehkamäki, Hanna
2018-04-01
We present a comparison between Monte Carlo (MC) results for homogeneous vapour-liquid nucleation of Lennard-Jones clusters and previously published values from molecular dynamics (MD) simulations. Both the MC and MD methods sample real cluster configuration distributions. In the MD simulations, the extent of the temperature fluctuation is usually controlled with an artificial thermostat rather than with more realistic carrier gas. In this study, not only a primarily velocity scaling thermostat is considered, but also Nosé-Hoover, Berendsen, and stochastic Langevin thermostat methods are covered. The nucleation rates based on a kinetic scheme and the canonical MC calculation serve as a point of reference since they by definition describe an equilibrated system. The studied temperature range is from T = 0.3 to 0.65 ɛ/k. The kinetic scheme reproduces well the isothermal nucleation rates obtained by Wedekind et al. [J. Chem. Phys. 127, 064501 (2007)] using MD simulations with carrier gas. The nucleation rates obtained by artificially thermostatted MD simulations are consistently lower than the reference nucleation rates based on MC calculations. The discrepancy increases up to several orders of magnitude when the density of the nucleating vapour decreases. At low temperatures, the difference to the MC-based reference nucleation rates in some cases exceeds the maximal nonisothermal effect predicted by classical theory of Feder et al. [Adv. Phys. 15, 111 (1966)].
Pressure intelligent control strategy of Waste heat recovery system of converter vapors
NASA Astrophysics Data System (ADS)
Feng, Xugang; Wu, Zhiwei; Zhang, Jiayan; Qian, Hong
2013-01-01
The converter gas evaporative cooling system is mainly used for absorbing heat in the high temperature exhaust gas which produced by the oxygen blowing reaction. Vaporization cooling steam pressure control system of converter is a nonlinear, time-varying, lagging behind, close coupling of multivariable control object. This article based on the analysis of converter operation characteristics of evaporation cooling system, of vaporization in a production run of pipe pressure variation and disturbance factors.For the dynamic characteristics of the controlled objects,we have improved the conventional PID control scheme.In Oxygen blowing process, we make intelligent control by using fuzzy-PID cascade control method and adjusting the Lance,that it can realize the optimization of the boiler steam pressure control.By design simulation, results show that the design has a good control not only ensures drum steam pressure in the context of security, enabling efficient conversion of waste heat.And the converter of 1800 flue gas through pipes and cool and dust removal also can be cooled to about 800. Therefore the converter haze evaporative cooling system has achieved to the converter haze temperature decrease effect and enhanced to the coal gas returns-ratio.
Pati, Sumati; Maity, A; Banerji, P; Majumder, S B
2014-04-07
In the present work we have grown highly textured, ultra-thin, nano-crystalline zinc oxide thin films using a metal organic chemical vapor deposition technique and addressed their selectivity towards hydrogen, carbon dioxide and methane gas sensing. Structural and microstructural characteristics of the synthesized films were investigated utilizing X-ray diffraction and electron microscopy techniques respectively. Using a dynamic flow gas sensing measurement set up, the sensing characteristics of these films were investigated as a function of gas concentration (10-1660 ppm) and operating temperature (250-380 °C). ZnO thin film sensing elements were found to be sensitive to all of these gases. Thus at a sensor operating temperature of ~300 °C, the response% of the ZnO thin films were ~68, 59, and 52% for hydrogen, carbon monoxide and methane gases respectively. The data matrices extracted from first Fourier transform analyses (FFT) of the conductance transients were used as input parameters in a linear unsupervised principal component analysis (PCA) pattern recognition technique. We have demonstrated that FFT combined with PCA is an excellent tool for the differentiation of these reducing gases.
NASA Astrophysics Data System (ADS)
Liang, Zhi; Keblinski, Pawel
2018-02-01
Using molecular dynamics simulations, we study evaporation and condensation of fluid Ar in the presence of a non-condensable Ne gas in a nanochannel. The evaporation and condensation are driven by the temperature difference, ΔTL, between the evaporating and condensing liquid surfaces. The steady-state evaporation and condensation fluxes (JMD) are also affected by the Ne concentration, ρNe, and the nanochannel length. We find that across a wide range of ΔTL and ρNe, JMD is in good agreement with the prediction from Stefan's law and from Schrage relationships. Furthermore, for ΔTL less than ˜20% of the absolute average temperature, we find that both steady-state heat and mass fluxes are proportional to ΔTL. This allows us to determine the interfacial resistance to the heat and mass transfer and compare it with the corresponding resistances in the gas phase. In this context, we derive an analytical expression for the effective thermal conductivity of the gas region in the nanochannel and the mass transport interfacial resistance equivalent length, i.e., the length of the nanochannel for which the resistance to the mass flow is the same as the interfacial resistance to the mass flow.
Unified Description of Dynamics of a Repulsive Two-Component Fermi Gas
NASA Astrophysics Data System (ADS)
Grochowski, Piotr T.; Karpiuk, Tomasz; Brewczyk, Mirosław; Rzążewski, Kazimierz
2017-11-01
We study a binary spin mixture of a zero-temperature repulsively interacting
NASA Astrophysics Data System (ADS)
Robinson, Patrick J.
Gasification has been used in industry on a relatively limited scale for many years, but it is emerging as the premier unit operation in the energy and chemical industries. The switch from expensive and insecure petroleum to solid hydrocarbon sources (coal and biomass) is occurring due to the vast amount of domestic solid resources, national security and global warming issues. Gasification (or partial oxidation) is a vital component of "clean coal" technology. Sulfur and nitrogen emissions can be reduced, overall energy efficiency is increased and carbon dioxide recovery and sequestration are facilitated. Gasification units in an electric power generation plant produce a fuel gas for driving combustion turbines. Gasification units in a chemical plant generate synthesis gas, which can be used to produce a wide spectrum of chemical products. Future plants are predicted to be hybrid power/chemical plants with gasification as the key unit operation. The coupling of an Integrated Gasification Combined Cycle (IGCC) with a methanol plant can handle swings in power demand by diverting hydrogen gas from a combustion turbine and synthesis gas from the gasifier to a methanol plant for the production of an easily-stored, hydrogen-consuming liquid product. An additional control degree of freedom is provided with this hybrid plant, fundamentally improving the controllability of the process. The idea is to base-load the gasifier and use the more responsive gas-phase units to handle disturbances. During the summer days, power demand can fluctuate up to 50% over a 12-hour period. The winter provides a different problem where spikes of power demand can go up 15% within the hour. The following dissertation develops a hybrid IGCC / methanol plant model, validates the steady-state results with a National Energy Technical Laboratory study, and tests a proposed control structure to handle these significant disturbances. All modeling was performed in the widely used chemical process simulators Aspen Plus and Aspen Dynamics. This dissertation first presents a simple approximate method for achieving the objective of having a gasifier model that can be exported into Aspen Dynamics. Limitations in the software dealing with solids make this a necessary task. The basic idea is to use a high molecular weight hydrocarbon that is present in the Aspen library as a pseudo fuel. For many plantwide dynamic studies, a rigorous high-fidelity dynamic model of the gasifier is not needed because its dynamics are very fast and the gasifier gas volume is a relatively small fraction of the total volume of the entire plant. The proposed approximate model captures the essential macro-scale thermal, flow, composition and pressure dynamics. This paper does not attempt to optimize the design or control of gasifiers, but merely presents an idea of how to dynamically simulate coal gasification in an approximate way. This dissertation also presents models of the downstream units of a typical IGCC. Dynamic simulations of the H2S absorption/stripping unit, Water-gas Shift (WGS) reactors, and CO2 absorption/stripping unit are essential for the development of stable and agile plantwide control structures of this hybrid power/chemical plant. Due to the high pressure of the system, hydrogen sulfide is removed by means of physical absorption. SELEXOLRTM (a mixture of the dimethyl ethers of polyethylene glycol) is used to achieve a gas purity of less than 5 ppm H2S. This desulfurized synthesis gas is sent to two water gas shift reactors that convert a total of 99% of carbon monoxide to hydrogen. Physical absorption of carbon dioxide with Selexol produces a hydrogen rich stream (90 mol% H2) to be fed into combustion turbines or to a methanol plant. Steady-state economic designs and plantwide control structures are developed in this dissertation. A steady-state economic design, control structure, and successful turndown of the methanol plant are shown in this dissertation. The Plantwide control structure and interaction among units are also shown. The methanol plant was sized to handle a reductions of the power generation from an IGCC by 50%, producing a high purity methanol stream of 99.5 mol%. Advanced regulatory control structures were designed and play a significant role for the successful turndown of the methanol plant to 20% capacity. The cooled methanol reactor is controlled by the exit temperature instead of a peak temperature within the reactor. During times of low capacity and minimum vapor rate within the column, tray temperature is controlled by recycling some of the distillate and bottoms flow. The gasifier feed is held constant. The product hydrogen from the IGCC is fed to the combustion turbine as required by electric power demand. Synthesis gas fed into the methanol plant maintains pressure of the hydrogen stream. Make-up hydrogen is also fed to the methanol plant to maintain stoichiometry via a flow ratio. This ratio is adjusted to hold carbon monoxide composition of the recycle gas in the methanol plant. This dissertation also explores various methods on how to turn down distillation columns to very low capacity. Recycling flow back to the column was determined to be the best method. Inserting Langmuir-Hinshelwood-Hougen-Watson kinetics into Aspen was also demonstrated with an example.
2008-07-01
Gas - Solid Systems. Chem. Eng. Comm. 1990, 92, 199. 74. Dimitriou, P.; Puszynski, J. A.; Hlavacek, V. On the Dynamic of Equations Describing...Yu, L. H.; Thadani, N. N.; Meyers, M. A.; Graham, R. A.; Hammetter , W. F. Shock-Induced Chemical Synthesis of Intermetallic Compounds. In
Nanocrystalline silicon: Lattice dynamics and enhanced thermoelectric properties
Claudio, Tania; Stein, Niklas; Stroppa, Daniel G.; ...
2014-12-21
In this study, silicon has several advantages when compared to other thermoelectric materials, but until recently it was not used for thermoelectric applications due to its high thermal conductivity, 156 W K -1 m -1 at room temperature. Nanostructuration as means to decrease thermal transport through enhanced phonon scattering has been a subject of many studies. In this work we have evaluated the effects of nanostructuration on the lattice dynamics of bulk nanocrystalline doped silicon. The samples were prepared by gas phase synthesis, followed by current and pressure assisted sintering. The heat capacity, density of phonons states, and elastic constantsmore » were measured, which all reveal a significant, ≈25%, reduction in the speed of sound. The samples present a significantly decreased lattice thermal conductivity, ≈25 W K -1 m -1, which, combined with a very high carrier mobility, results in a dimensionless figure of merit with a competitive value that peaks at ZT ≈ 0.57 at 973 °C. Due to its easily scalable and extremely low-cost production process, nanocrystalline Si prepared by gas phase synthesis followed by sintering could become the material of choice for high temperature thermoelectric generators.« less
NASA Astrophysics Data System (ADS)
Alam, Morshed; Naser, Jamal; Brooks, Geoffrey; Fontana, Andrea
2010-12-01
Supersonic coherent gas jets are now used widely in electric arc furnace steelmaking and many other industrial applications to increase the gas-liquid mixing, reaction rates, and energy efficiency of the process. However, there has been limited research on the basic physics of supersonic coherent jets. In the present study, computational fluid dynamics (CFD) simulation of the supersonic jet with and without a shrouding flame at room ambient temperature was carried out and validated against experimental data. The numerical results show that the potential core length of the supersonic oxygen and nitrogen jet with shrouding flame is more than four times and three times longer, respectively, than that without flame shrouding, which is in good agreement with the experimental data. The spreading rate of the supersonic jet decreased dramatically with the use of the shrouding flame compared with a conventional supersonic jet. The present CFD model was used to investigate the characteristics of the supersonic coherent oxygen jet at steelmaking conditions of around 1700 K (1427 °C). The potential core length of the supersonic coherent oxygen jet at steelmaking conditions was 1.4 times longer than that at room ambient temperature.
On the mechanism of flow evolution in shock-tube experiments
NASA Astrophysics Data System (ADS)
Kiverin, Alexey; Yakovenko, Ivan
2018-02-01
The paper studies numerically the flow development behind the shock wave propagating inside the tube. The detailed analysis of the flow patterns behind the shock wave allows determination of the gas-dynamical origins of the temperature non-uniformities responsible for the subsequent localized start of chemical reactions in the test mixture. In particular, it is shown that the temperature field structure is determined mainly by the mechanisms of boundary layer instability development. The kinetic energy dissipation related to the flow deceleration inside boundary layer results in local heating of the test gas. At the same time, the heat losses to the tube wall lead to the cooling of the gas. Therefore the temperature stratification takes place on the scales of the boundary layer. As soon as the shock wave reflected from the end-wall of the tube interacts with the developed boundary layer the localized hot regions arise at a certain distance from the end wall. The position of these hot regions is associated with the zones of shock wave interaction with roller vortices at the margin between the boundary layer and the bulk flow. Formulated mechanism of the temperature field evolution can be used to explain the peculiarities of non-steady shock-induced ignition of combustible mixtures with moderate ignition delay times, where the ignition starts inside localized kernels at distance from the end wall.
Miandad, R; Nizami, A S; Rehan, M; Barakat, M A; Khan, M I; Mustafa, A; Ismail, I M I; Murphy, J D
2016-12-01
This paper aims to investigate the effect of temperature and reaction time on the yield and quality of liquid oil produced from a pyrolysis process. Polystyrene (PS) type plastic waste was used as a feedstock in a small pilot scale batch pyrolysis reactor. At 400°C with a reaction time of 75min, the gas yield was 8% by mass, the char yield was 16% by mass, while the liquid oil yield was 76% by mass. Raising the temperature to 450°C increased the gas production to 13% by mass, reduced the char production to 6.2% and increased the liquid oil yield to 80.8% by mass. The optimum temperature and reaction time was found to be 450°C and 75min. The liquid oil at optimum conditions had a dynamic viscosity of 1.77mPas, kinematic viscosity of 1.92cSt, a density of 0.92g/cm 3 , a pour point of -60°C, a freezing point of -64°C, a flash point of 30.2°C and a high heating value (HHV) of 41.6MJ/kg this is similar to conventional diesel. The gas chromatography with mass spectrophotometry (GC-MS) analysis showed that liquid oil contains mainly styrene (48%), toluene (26%) and ethyl-benzene (21%) compounds. Copyright © 2016 Elsevier Ltd. All rights reserved.
Quantum State-Resolved Reactive and Inelastic Scattering at Gas-Liquid and Gas-Solid Interfaces
NASA Astrophysics Data System (ADS)
Grütter, Monika; Nelson, Daniel J.; Nesbitt, David J.
2012-06-01
Quantum state-resolved reactive and inelastic scattering at gas-liquid and gas-solid interfaces has become a research field of considerable interest in recent years. The collision and reaction dynamics of internally cold gas beams from liquid or solid surfaces is governed by two main processes, impulsive scattering (IS), where the incident particles scatter in a few-collisions environment from the surface, and trapping-desorption (TD), where full equilibration to the surface temperature (T{TD}≈ T{s}) occurs prior to the particles' return to the gas phase. Impulsive scattering events, on the other hand, result in significant rotational, and to a lesser extent vibrational, excitation of the scattered molecules, which can be well-described by a Boltzmann-distribution at a temperature (T{IS}>>T{s}). The quantum-state resolved detection used here allows the disentanglement of the rotational, vibrational, and translational degrees of freedom of the scattered molecules. The two examples discussed are (i) reactive scattering of monoatomic fluorine from room-temperature ionic liquids (RTILs) and (ii) inelastic scattering of benzene from a heated (˜500 K) gold surface. In the former experiment, rovibrational states of the nascent HF beam are detected using direct infrared absorption spectroscopy, and in the latter, a resonace-enhanced multi-photon-ionization (REMPI) scheme is employed in combination with a velocity-map imaging (VMI) device, which allows the detection of different vibrational states of benzene excited during the scattering process. M. E. Saecker, S. T. Govoni, D. V. Kowalski, M. E. King and G. M. Nathanson Science 252, 1421, 1991. A. M. Zolot, W. W. Harper, B. G. Perkins, P. J. Dagdigian and D. J. Nesbitt J. Chem. Phys 125, 021101, 2006. J. R. Roscioli and D. J. Nesbitt Faraday Disc. 150, 471, 2011.
Ambarkhane, Ameet V; Pincott, Kim; Buckton, Graham
2005-04-27
The aim of this study was to measure the glass transition of amorphous lactose under well-controlled temperature and humidity, using inverse gas chromatography (IGC) and to relate these data to gravimetric vapour sorption experiments. Amorphous lactose (spray-dried) was exposed to a stepwise increment in the relative humidity (%RH) under isothermal conditions in an IGC. At the end of each conditioning step a decane injection was made, and the retention volumes were calculated using the maximum peak height (V(max)) method. The pressure drop across the column was recorded using the pressure transducers. These measurements were performed at various temperatures from 25 to 40 degrees C. The extent of water sorption at identical humidity (%RH) and temperature conditions was determined gravimetrically using dynamic vapour sorption (DVS). At each T, it was possible to determine: (1) a transition at low RH relating to the onset of mobility; (2) changes in retention volume relating to the point, where T(g) = T; (3) changes in pressure drop, which were related to the sample collapse. The rate and extent of water sorption was seen to alter at T(g) and also at a collapse point. Combinations of temperature and critical %RH (%cRH required to lower the dry glass transition temperature to the experimental temperature) obtained from IGC were comparable to those obtained from DVS. It was shown that at each T, the sample spontaneously crystallised, when T(g) was 32 degrees C below T. Inverse gas chromatograph can be used in this novel way to reveal the series of transitions that occur in amorphous materials.
Aerosol processing of materials: Aerosol dynamics and microstructure evolution
NASA Astrophysics Data System (ADS)
Gurav, Abhijit Shankar
Spray pyrolysis is an aerosol process commonly used to synthesize a wide variety of materials in powder or film forms including metals, metal oxides and non-oxide ceramics. It is capable of producing high purity, unagglomerated, and micrometer to submicron-size powders, and scale-up has been demonstrated. This dissertation deals with the study of aerosol dynamics during spray pyrolysis of multicomponent systems involving volatile phases/components, and aspects involved with using fuel additives during spray processes to break apart droplets and particles in order to produce powders with smaller sizes. The gas-phase aerosol dynamics and composition size distributions were measured during spray pyrolysis of (Bi, Pb)-Sr-Ca-Cu-O, and Sr-Ru-O and Bi-Ru-O at different temperatures. A differential mobility analyzer (DMA) was used in conjunction with a condensation particle counter (CPC) to monitor the gas-phase particle size distributions, and a Berner-type low-pressure impactor was used to obtain mass size distributions and size-classified samples for chemical analysis. (Bi, Pb)-Sr-Ca-Cu-O powders made at temperatures up to 700sp°C maintained their initial stoichiometry over the whole range of particle sizes monitored, however, those made at 800sp°C and above were heavily depleted in lead in the size range 0.5-5.0 mum. When the reactor temperature was raised from 700 and 800sp°C to 900sp°C, a large number ({˜}10sp7\\ #/cmsp3) of new ultrafine particles were formed from PbO vapor released from the particles and the reactor walls at the beginning of high temperature runs (at 900sp°C). The metal ruthenate systems showed generation of ultrafine particles (<40-50 nm) at the beginning of runs at 800-900sp°C and also as a steady state process at a reactor temperature of 1000sp°C. The methods of aerosol dynamics measurements were also used to monitor the gas-phase particle size distributions during the generation of fullerene (Csb{60}) nano-particles (30 to 50 nm size) via vapor condensation at 400-650sp°C using Nsb2 carrier gas. In general, during laboratory-scale aerosol processing of materials containing a volatile component, significant evaporative losses and formation of new ultrafine particles were observed at synthesis temperatures at which the saturation vapor pressure of the volatile species exceeded about 0.1-0.5 mTorr. Spray calcination synthesis of pigment-size titania from titanium hydrolysate (TiOsb{x}(SOsb4)sb{y}(OH)sb{z}) using fuel additives such as ethyl alcohol, sugar and urea was also investigated. When pure water was used as a medium of suspension, agglomerates of 0.5 to 1.5 mum were produced by spray calcination. Use of pure ethanol as a solvent as well as small amounts (5-10 wt.%) urea additions to the suspension of Ti-hydrolysate in water were successful in producing predominantly unagglomerated, single crystalline titania particles of 0.1 to 0.3 mum size. Such additions of fuels such as alcohols, sugar and urea to suspensions and solutions used in spray processes are promising for making powders having smaller sizes and unagglomerated, denser morphologies.
NASA Astrophysics Data System (ADS)
Kumagai, Takashi
2015-08-01
Hydrogen(H)-bond dynamics are involved in many elementary processes in chemistry and biology. Because of its fundamental importance, a variety of experimental and theoretical approaches have been employed to study the dynamics in gas, liquid, solid phases, and their interfaces. This review describes the recent progress of direct observation and control of H-bond dynamics in several model systems on a metal surface by using low-temperature scanning tunneling microscopy (STM). General aspects of H-bond dynamics and the experimental methods are briefly described in chapter 1 and 2. In the subsequent four chapters, I present direct observation of an H-bond exchange reaction within a single water dimer (chapter 3), a symmetric H bond (chapter 4) and H-atom relay reactions (chapter 5) within water-hydroxyl complexes, and an intramolecular H-atom transfer reaction (tautomerization) within a single porphycene molecule (chapter 6). These results provide novel microscopic insights into H-bond dynamics at the single-molecule level, and highlight significant impact on the process from quantum effects, namely tunneling and zero-point vibration, resulting from the small mass of H atom. Additionally, local environmental effect on H-bond dynamics is also examined by using atom/molecule manipulation with the STM.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Modekurti, S.; Bhattacharyya, D.; Zitney, S.
2012-01-01
Solid-sorbent-based CO{sub 2} capture processes have strong potential for reducing the overall energy penalty for post-combustion capture from the flue gas of a conventional pulverized coal power plant. However, the commercial success of this technology is contingent upon it operating over a wide range of capture rates, transient events, malfunctions, and disturbances, as well as under uncertainties. To study these operational aspects, a dynamic model of a solid-sorbent-based CO{sub 2} capture process has been developed. In this work, a one-dimensional (1D), non-isothermal, dynamic model of a two-stage bubbling fluidized bed (BFB) adsorber-reactor system with overflow-type weir configuration has been developedmore » in Aspen Custom Modeler (ACM). The physical and chemical properties of the sorbent used in this study are based on a sorbent (32D) developed at National Energy Technology Laboratory (NETL). Each BFB is divided into bubble, emulsion, and cloud-wake regions with the assumptions that the bubble region is free of solids while both gas and solid phases coexist in the emulsion and cloud-wake regions. The BFB dynamic model includes 1D partial differential equations (PDEs) for mass and energy balances, along with comprehensive reaction kinetics. In addition to the two BFB models, the adsorber-reactor system includes 1D PDE-based dynamic models of the downcomer and outlet hopper, as well as models of distributors, control valves, and other pressure-drop devices. Consistent boundary and initial conditions are considered for simulating the dynamic model. Equipment items are sized and appropriate heat transfer options, wherever needed, are provided. Finally, a valid pressure-flow network is developed and a lower-level control system is designed. Using ACM, the transient responses of various process variables such as flue gas and sorbent temperatures, overall CO{sub 2} capture, level of solids in the downcomer and hopper have been studied by simulating typical disturbances such as change in the temperature, flowrate, and composition of the flue gas. To maintain the overall CO{sub 2} capture at a desired level in face of the typical disturbances, two control strategies were considered–a proportional-integral-derivative (PID)-based feedback control strategy and a feedforward-augmented feedback control strategy. Dynamic simulation results show that both the strategies result in unacceptable overshoot/undershoot and a long settling time. To improve the control system performance, a linear model predictive controller (LMPC) is designed. In summary, the overall results illustrate how optimizing the operation and control of carbon capture systems can have a significant impact on the extent and the rate at which commercial-scale capture processes will be scaled-up, deployed, and used in the years to come.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kee, R.J.; Rupley, F.M.; Meeks, E.
1996-05-01
This document is the user`s manual for the third-generation CHEMKIN package. CHEMKIN is a software package whose purpose is to facilitate the formation, solution, and interpretation of problems involving elementary gas-phase chemical kinetics. It provides a flexible and powerful tool for incorporating complex chemical kinetics into simulations of fluid dynamics. The package consists of two major software components: an Interpreter and a Gas-Phase Subroutine Library. The Interpreter is a program that reads a symbolic description of an elementary, user-specified chemical reaction mechanism. One output from the Interpreter is a data file that forms a link to the Gas-Phase Subroutine Library.more » This library is a collection of about 100 highly modular FORTRAN subroutines that may be called to return information on equations of state, thermodynamic properties, and chemical production rates. CHEMKIN-III includes capabilities for treating multi-fluid plasma systems, that are not in thermal equilibrium. These new capabilities allow researchers to describe chemistry systems that are characterized by more than one temperature, in which reactions may depend on temperatures associated with different species; i.e. reactions may be driven by collisions with electrons, ions, or charge-neutral species. These new features have been implemented in such a way as to require little or no changes to CHEMKIN implementation for systems in thermal equilibrium, where all species share the same gas temperature. CHEMKIN-III now has the capability to handle weakly ionized plasma chemistry, especially for application related to advanced semiconductor processing.« less
Simulating the formation of carbon-rich molecules on an idealized graphitic surface
NASA Astrophysics Data System (ADS)
Marshall, David W.; Sadeghpour, H. R.
2016-01-01
There is accumulating evidence for the presence of complex molecules, including carbon-bearing and organic molecules, in the interstellar medium. Much of this evidence comes to us from studies of chemical composition, photo- and mass spectroscopy in cometary, meteoritic and asteroid samples, indicating a need to better understand the surface chemistry of astrophysical objects. There is also considerable interest in the origins of life-forming and life-sustaining molecules on the Earth. Here, we perform reactive molecular dynamics simulations to probe the formation of carbon-rich molecules and clusters on carbonaceous surfaces resembling dust grains and meteoroids. Our results show that large chains form on graphitic surfaces at low temperatures (100-500 K) and smaller fullerene-like molecules form at higher temperatures (2000-3000 K). The formation is faster on the surface than in the gas at low temperatures but slower at high temperatures as surface interactions prevent small clusters from coagulation. We find that for efficient formation of molecular complexity, mobility about the surface is important and helps to build larger carbon chains on the surface than in the gas phase at low temperatures. Finally, we show that the temperature of the surface strongly determines what kind of structures forms and that low turbulent environments are needed for efficient formation.
Pulsed photothermal interferometry for spectroscopic gas detection with hollow-core optical fibre
Lin, Yuechuan; Jin, Wei; Yang, Fan; Ma, Jun; Wang, Chao; Ho, Hoi Lut; Liu, Yang
2016-01-01
Gas detection with hollow-core photonic bandgap fibre (HC-PBF) and pulsed photothermal (PT) interferometry spectroscopy are studied theoretically and experimentally. A theoretical model is developed and used to compute the gas-absorption-induced temperature and phase modulation in a HC-PBF filled with low-concentration of C2H2 in nitrogen. The PT phase modulation dynamics for different pulse duration, peak power and energy of pump beam are numerically modelled, which are supported by the experimental results obtained around the P(9) absorption line of C2H2 at 1530.371 nm. Thermal conduction is identified as the main process responsible for the phase modulation dynamics. For a constant peak pump power level, the phase modulation is found to increase with pulse duration up to ~1.2 μs, while it increases with decreasing pulse duration for a constant pulse energy. It is theoretically possible to achieve ppb level detection of C2H2 with ~1 m length HC-PBF and a pump beam with ~10 ns pulse duration and ~100 nJ pulse energy. PMID:28009011
Pulsed photothermal interferometry for spectroscopic gas detection with hollow-core optical fibre.
Lin, Yuechuan; Jin, Wei; Yang, Fan; Ma, Jun; Wang, Chao; Ho, Hoi Lut; Liu, Yang
2016-12-23
Gas detection with hollow-core photonic bandgap fibre (HC-PBF) and pulsed photothermal (PT) interferometry spectroscopy are studied theoretically and experimentally. A theoretical model is developed and used to compute the gas-absorption-induced temperature and phase modulation in a HC-PBF filled with low-concentration of C 2 H 2 in nitrogen. The PT phase modulation dynamics for different pulse duration, peak power and energy of pump beam are numerically modelled, which are supported by the experimental results obtained around the P(9) absorption line of C 2 H 2 at 1530.371 nm. Thermal conduction is identified as the main process responsible for the phase modulation dynamics. For a constant peak pump power level, the phase modulation is found to increase with pulse duration up to ~1.2 μs, while it increases with decreasing pulse duration for a constant pulse energy. It is theoretically possible to achieve ppb level detection of C 2 H 2 with ~1 m length HC-PBF and a pump beam with ~10 ns pulse duration and ~100 nJ pulse energy.
NASA Astrophysics Data System (ADS)
Fuc, Pawel; Lijewski, Piotr; Ziolkowski, Andrzej; Dobrzyński, Michal
2017-05-01
Analysis of the energy balance for an exhaust system of a diesel engine fit with an automotive thermoelectric generator (ATEG) of our own design has been carried out. A special measurement system and dedicated software were developed to measure the power generated by the modules. The research object was a 1.3-l small diesel engine with power output of 66 kW. The tests were carried out on a dynamic engine test bed that allows reproduction of an actual driving cycle expressed as a function V = f( t), simulating drivetrain (clutch, transmission) operating characteristics, vehicle geometrical parameters, and driver behavior. Measurements of exhaust gas thermodynamic parameters (temperature, pressure, and mass flow) as well as the voltage and current generated by the thermoelectric modules were performed during tests of our own design. Based on the results obtained, the flow of exhaust gas energy in the entire exhaust system was determined along with the ATEG power output. The ideal area of the exhaust system for location of the ATEG was defined to ensure the highest thermal energy recovery efficiency.
Shock Initiation of Explosives - High Temperature Hot Spots Explained
NASA Astrophysics Data System (ADS)
Bassett, Will
2017-06-01
The pore-collapse mechanism for hot spot creation is currently one of the most intensely studied subjects in the initiation of energetic materials. In the present study, we use 1.5 - 3.5 km s-1 laser-driven flyer plates to impact microgram charges of both polymer-bound and pure pentaerythritol tetranitrate (PETN) while recording the temperature and spatially-averaged emissivity with a high-speed optical pyrometer. The 32-color pyrometer has nanosecond time resolution and a high dynamic range with sensitivity to temperatures from 7000 to 2000 K. Hot spot temperatures of 4000 K at impact are observed in the polymer-bound explosive charges where an elastomeric binder is used to fill void spaces. In pure PETN and more heterogeneous polymer-bound charges, in which significant void space is present, hot spot temperatures of 6000 K are observed, similar to previous reports with significant porosity. We attribute these high temperatures to gas-phase products formed in-situ being compressed under the driving shock. Experiments performed under various gas environments (air, butane, etc.) showed a strong influence on observed temperature upon impact. Control experiments where the PETN in the polymer-bound charges were replaced with sucrose and silica reinforce the result that hot spots are a result of in-situ gas formation from decomposition of organic molecules. US Air Force Office of Scientific Research awards FA9550-14-1-0142 and FA9550-16-1-0042; US Army Research Office award W911NF-13-1-0217; Defense Threat Reduction Agency award HDTRA1-12-1-0011. In collaboration with: Belinda Pacheco and Dana Dlott, University of Illinois at Urbana Champaign.
Dynamics of explosively imploded pressurized tubes
NASA Astrophysics Data System (ADS)
Szirti, Daniel; Loiseau, Jason; Higgins, Andrew; Tanguay, Vincent
2011-04-01
The detonation of an explosive layer surrounding a pressurized thin-walled tube causes the formation of a virtual piston that drives a precursor shock wave ahead of the detonation, generating very high temperatures and pressures in the gas contained within the tube. Such a device can be used as the driver for a high energy density shock tube or hypervelocity gas gun. The dynamics of the precursor shock wave were investigated for different tube sizes and initial fill pressures. Shock velocity and standoff distance were found to decrease with increasing fill pressure, mainly due to radial expansion of the tube. Adding a tamper can reduce this effect, but may increase jetting. A simple analytical model based on acoustic wave interactions was developed to calculate pump tube expansion and the resulting effect on the shock velocity and standoff distance. Results from this model agree quite well with experimental data.
Nonlinear two-dimensional terahertz photon echo and rotational spectroscopy in the gas phase.
Lu, Jian; Zhang, Yaqing; Hwang, Harold Y; Ofori-Okai, Benjamin K; Fleischer, Sharly; Nelson, Keith A
2016-10-18
Ultrafast 2D spectroscopy uses correlated multiple light-matter interactions for retrieving dynamic features that may otherwise be hidden under the linear spectrum; its extension to the terahertz regime of the electromagnetic spectrum, where a rich variety of material degrees of freedom reside, remains an experimental challenge. We report a demonstration of ultrafast 2D terahertz spectroscopy of gas-phase molecular rotors at room temperature. Using time-delayed terahertz pulse pairs, we observe photon echoes and other nonlinear signals resulting from molecular dipole orientation induced by multiple terahertz field-dipole interactions. The nonlinear time domain orientation signals are mapped into the frequency domain in 2D rotational spectra that reveal J-state-resolved nonlinear rotational dynamics. The approach enables direct observation of correlated rotational transitions and may reveal rotational coupling and relaxation pathways in the ground electronic and vibrational state.
Three-dimensional modeling of the plasma arc in arc welding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, G.; Tsai, H. L.; Hu, J.
2008-11-15
Most previous three-dimensional modeling on gas tungsten arc welding (GTAW) and gas metal arc welding (GMAW) focuses on the weld pool dynamics and assumes the two-dimensional axisymmetric Gaussian distributions for plasma arc pressure and heat flux. In this article, a three-dimensional plasma arc model is developed, and the distributions of velocity, pressure, temperature, current density, and magnetic field of the plasma arc are calculated by solving the conservation equations of mass, momentum, and energy, as well as part of the Maxwell's equations. This three-dimensional model can be used to study the nonaxisymmetric plasma arc caused by external perturbations such asmore » an external magnetic field. It also provides more accurate boundary conditions when modeling the weld pool dynamics. The present work lays a foundation for true three-dimensional comprehensive modeling of GTAW and GMAW including the plasma arc, weld pool, and/or electrode.« less
Molecular Momentum Transport at Fluid-Solid Interfaces in MEMS/NEMS: A Review
Cao, Bing-Yang; Sun, Jun; Chen, Min; Guo, Zeng-Yuan
2009-01-01
This review is focused on molecular momentum transport at fluid-solid interfaces mainly related to microfluidics and nanofluidics in micro-/nano-electro-mechanical systems (MEMS/NEMS). This broad subject covers molecular dynamics behaviors, boundary conditions, molecular momentum accommodations, theoretical and phenomenological models in terms of gas-solid and liquid-solid interfaces affected by various physical factors, such as fluid and solid species, surface roughness, surface patterns, wettability, temperature, pressure, fluid viscosity and polarity. This review offers an overview of the major achievements, including experiments, theories and molecular dynamics simulations, in the field with particular emphasis on the effects on microfluidics and nanofluidics in nanoscience and nanotechnology. In Section 1 we present a brief introduction on the backgrounds, history and concepts. Sections 2 and 3 are focused on molecular momentum transport at gas-solid and liquid-solid interfaces, respectively. Summary and conclusions are finally presented in Section 4. PMID:20087458
Evaluation of short-term tracer fluctuations in groundwater and soil air in a two year study
NASA Astrophysics Data System (ADS)
Jenner, Florian; Mayer, Simon; Aeschbach, Werner; Weissbach, Therese
2016-04-01
The application of gas tracers like noble gases (NGs), SF6 or CFCs in groundwater studies such as paleo temperature determination requires a detailed understanding of the dynamics of reactive and inert gases in the soil air with which the infiltrating water equilibrates. Due to microbial gas consumption and production, NG partial pressures in soil air can deviate from atmospheric air, an effect that could bias noble gas temperatures estimates if not taken into account. So far, such an impact on NG contents in groundwater has not been directly demonstrated. We provide the first long-term study of the above mentioned gas tracers and physical parameters in both the saturated and unsaturated soil zone, sampled continuously for more than two years near Mannheim (Germany). NG partial pressures in soil air correlate with soil moisture and the sum value of O2+CO2, with a maximal significant enhancement of 3-6% with respect to atmospheric air during summer time. Observed seasonal fluctuations result in a mass dependent fractionation of NGs in soil air. Concentrations of SF6 and CFCs in soil air are determined by corresponding fluctuations in local atmospheric air, caused by industrial emissions. Arising concentration peaks are damped with increasing soil depth. Shallow groundwater shows short-term NG fluctuations which are smoothed within a few meters below the water table. A correlation between NG contents of soil air and of groundwater is observable during strong recharge events. However, there is no evidence for a permanent influence of seasonal variations of soil air composition on shallow groundwater. Fluctuating NG contents in shallow groundwater are rather determined by variations of soil temperature and water table level. Our data gives evidence for a further temperature driven equilibration of groundwater with entrapped air bubbles within the topmost saturated zone, which permanently occurs even some years after recharge. Local subsurface temperature fluctuations may thus lead to subsequent variations of NG contents in groundwater, independent of the former recharge temperature. This effect is of major importance for gas tracer applications in recent and shallow groundwater.
Geometrical evidence for dark matter: X-ray constraints on the mass of the elliptical galaxy NGC 720
NASA Astrophysics Data System (ADS)
Buote, David A.; Canizares, Claude R.
1994-05-01
We describe (1) a new test for dark matter and alternate theories of gravitation based on the relative geometries of the X-ray and optical surface brightness distributions and an assumed form for the potential, of the optical light, (2) a technique to measure the shapes of the total gravitating matter and dark matter of an ellipsoidal system which is insensitive to the precise value of the temperature of the gas and to modest temperature gradients, and (3) a new method to determine the ratio of dark mass to stellar mass that is dependent on the functional forms for the visible star, gas and dark matter distributions, but independent of the distance to the galaxy or the gas temperature. We apply these techniques to X-ray data from the ROSAT Position Sensitive Proportional Counter (PSPC) of the optically flattened elliptical galaxy NGC 720; the optical isophotes have ellipticity epsilon approximately 0.40 extending out to approximately 120 sec. The X-ray isophotes are significantly elongated, epsilon = 0.20-0.30 for semimajor axis a approximately 100 sec. The major axes of the optical and X-ray isophotes are misaligned by approximately 30 deg +/- 15 deg. Spectral analysis of the X-ray data reveals no evidence of temperature gradients or anisotropies and demonstrates that a single-temperature plasma (T approximately 0.6 keV) having subsolar heavy element abundances and a two-temperature model having solar abundances describe the spectrum equally well. Considering only the relative geometries of the X-ray and optical surface brightness distributions and an assumed functional form for the potential of the optical light, we conclude that matter distributed like the optical light cannot produce the observed ellipticities of the X-ray isophotes, independent of the gas pressure, the gas temperature, and the value of the stellar mass; this comparison assumes a state of quasi-hydrostatic equilibrium so that the three-dimensional surfaces of the gas emissivity trace the three-dimensional isopotential surfaces -- we discuss the viability of this assumption for NGC 720. Milgrom's Modification of Newtonian Dynamics (MOND) cannot dispel this manifestation of dark matter. Hence, geometrical considerations require, without mention of pressure or temperature, the presence of an extended, massive dark matter halo in NGC 720. Employing essentially the technique of Buote & Canizares (1992; Buote 1992) we use the shape of the X-ray surface brightness to constrain the shape of the total gravitating matter. The total matter is modeled as either an oblate or prolate spheriod of constant shape and orientation having either a Ferrers (rho approximately r-n) or Hernquist density. Assuming the X-ray gas is in hydrostatic equilibrium, we construct a model X-ray gas distribution for various temperature profiles. We determine the ellipticity of the total gravitating matter to be epsilon approximately 0.50-0.70. Using the single-temperature model we estimate a total mass approximately (0.41-1.4) x 1012 h80 solar mass interior to the ellipsoid of semimajor axis 43.6 h80 kpc. Ferrers densities as steep as r-3 do not fit the data, but the r-2 and Hernquist models yield excellent fits. We estimate the mass distributions of the stars and the gas and fit the dark matter directly. For a given gas equation of state and functional forms for the visible stars, gas, and dark matter, these models yield a distance-independent and temperature-independent measurement of the ratio of dark mass to stellar mass MDM/Mstars. We estimate a minimum MDM/Mstars greater than or equal to 4 which corresponds to a total mass slightly greater than that derived from the single-temperature models for distance D = 20h80 Mpc.
Geometrical evidence for dark matter: X-ray constraints on the mass of the elliptical galaxy NGC 720
NASA Technical Reports Server (NTRS)
Buote, David A.; Canizares, Claude R.
1994-01-01
We describe (1) a new test for dark matter and alternate theories of gravitation based on the relative geometries of the X-ray and optical surface brightness distributions and an assumed form for the potential, of the optical light, (2) a technique to measure the shapes of the total gravitating matter and dark matter of an ellipsoidal system which is insensitive to the precise value of the temperature of the gas and to modest temperature gradients, and (3) a new method to determine the ratio of dark mass to stellar mass that is dependent on the functional forms for the visible star, gas and dark matter distributions, but independent of the distance to the galaxy or the gas temperature. We apply these techniques to X-ray data from the ROSAT Position Sensitive Proportional Counter (PSPC) of the optically flattened elliptical galaxy NGC 720; the optical isophotes have ellipticity epsilon approximately 0.40 extending out to approximately 120 sec. The X-ray isophotes are significantly elongated, epsilon = 0.20-0.30 for semimajor axis a approximately 100 sec. The major axes of the optical and X-ray isophotes are misaligned by approximately 30 deg +/- 15 deg. Spectral analysis of the X-ray data reveals no evidence of temperature gradients or anisotropies and demonstrates that a single-temperature plasma (T approximately 0.6 keV) having subsolar heavy element abundances and a two-temperature model having solar abundances describe the spectrum equally well. Considering only the relative geometries of the X-ray and optical surface brightness distributions and an assumed functional form for the potential of the optical light, we conclude that matter distributed like the optical light cannot produce the observed ellipticities of the X-ray isophotes, independent of the gas pressure, the gas temperature, and the value of the stellar mass; this comparison assumes a state of quasi-hydrostatic equilibrium so that the three-dimensional surfaces of the gas emissivity trace the three-dimensional isopotential surfaces -- we discuss the viability of this assumption for NGC 720. Milgrom's Modification of Newtonian Dynamics (MOND) cannot dispel this manifestation of dark matter. Hence, geometrical considerations require, without mention of pressure or temperature, the presence of an extended, massive dark matter halo in NGC 720. Employing essentially the technique of Buote & Canizares (1992; Buote 1992) we use the shape of the X-ray surface brightness to constrain the shape of the total gravitating matter. The total matter is modeled as either an oblate or prolate spheriod of constant shape and orientation having either a Ferrers (rho approximately r(exp -n)) or Hernquist density. Assuming the X-ray gas is in hydrostatic equilibrium, we construct a model X-ray gas distribution for various temperature profiles. We determine the ellipticity of the total gravitating matter to be epsilon approximately 0.50-0.70. Using the single-temperature model we estimate a total mass approximately (0.41-1.4) x 10(exp 12) h(sub 80) solar mass interior to the ellipsoid of semimajor axis 43.6 h(sub 80) kpc. Ferrers densities as steep as r(exp -3) do not fit the data, but the r(exp -2) and Hernquist models yield excellent fits. We estimate the mass distributions of the stars and the gas and fit the dark matter directly. For a given gas equation of state and functional forms for the visible stars, gas, and dark matter, these models yield a distance-independent and temperature-independent measurement of the ratio of dark mass to stellar mass M(sub DM)/M(sub stars). We estimate a minimum M(sub DM)/M(sub stars) greater than or equal to 4 which corresponds to a total mass slightly greater than that derived from the single-temperature models for distance D = 20h(sub 80) Mpc.
Free-piston Stirling engine conceptual design and technologies for space power, phase 1
NASA Technical Reports Server (NTRS)
Penswick, L. Barry; Beale, William T.; Wood, J. Gary
1990-01-01
As part of the SP-100 program, a phase 1 effort to design a free-piston Stirling engine (FPSE) for a space dynamic power conversion system was completed. SP-100 is a combined DOD/DOE/NASA program to develop nuclear power for space. This work was completed in the initial phases of the SP-100 program prior to the power conversion concept selection for the Ground Engineering System (GES). Stirling engine technology development as a growth option for SP-100 is continuing after this phase 1 effort. Following a review of various engine concepts, a single-cylinder engine with a linear alternator was selected for the remainder of the study. The relationships of specific mass and efficiency versus temperature ratio were determined for a power output of 25 kWe. This parametric study was done for a temperature ratio range of 1.5 to 2.0 and for hot-end temperatures of 875 K and 1075 K. A conceptual design of a 1080 K FPSE with a linear alternator producing 25 kWe output was completed. This was a single-cylinder engine designed for a 62,000 hour life and a temperature ratio of 2.0. The heat transport systems were pumped liquid-metal loops on both the hot and cold ends. These specifications were selected to match the SP-100 power system designs that were being evaluated at that time. The hot end of the engine used both refractory and superalloy materials; the hot-end pressure vessel featured an insulated design that allowed use of the superalloy material. The design was supported by the hardware demonstration of two of the component concepts - the hydrodynamic gas bearing for the displacer and the dynamic balance system. The hydrodynamic gas bearing was demonstrated on a test rig. The dynamic balance system was tested on the 1 kW RE-1000 engine at NASA Lewis.
Unsteady Flow in a Supersonic Turbine with Variable Specific Heats
NASA Technical Reports Server (NTRS)
Dorney, Daniel J.; Griffin, Lisa W.; Huber, Frank; Sondak, Douglas L.; Turner, James (Technical Monitor)
2001-01-01
Modern high-work turbines can be compact, transonic, supersonic, counter-rotating, or use a dense drive gas. The vast majority of modern rocket turbine designs fall into these Categories. These turbines usually have large temperature variations across a given stage, and are characterized by large amounts of flow unsteadiness. The flow unsteadiness can have a major impact on the turbine performance and durability. For example, the Space Transportation Main Engine (STME) fuel turbine, a high work, transonic design, was found to have an unsteady inter-row shock which reduced efficiency by 2 points and increased dynamic loading by 24 percent. The Revolutionary Reusable Technology Turbopump (RRTT), which uses full flow oxygen for its drive gas, was found to shed vortices with such energy as to raise serious blade durability concerns. In both cases, the sources of the problems were uncovered (before turbopump testing) with the application of validated, unsteady computational fluid dynamics (CFD) to the designs. In the case of the RRTT and the Alternate Turbopump Development (ATD) turbines, the unsteady CFD codes have been used not just to identify problems, but to guide designs which mitigate problems due to unsteadiness. Using unsteady flow analyses as a part of the design process has led to turbine designs with higher performance (which affects temperature and mass flow rate) and fewer dynamics problems. One of the many assumptions made during the design and analysis of supersonic turbine stages is that the values of the specific heats are constant. In some analyses the value is based on an average of the expected upstream and downstream temperatures. In stages where the temperature can vary by 300 to 500 K, however, the assumption of constant fluid properties may lead to erroneous performance and durability predictions. In this study the suitability of assuming constant specific heats has been investigated by performing three-dimensional unsteady Navier-Stokes simulations for a supersonic turbine stage.
Dynamic Tensile Strength of Low Temperature Ice and Kuiper Belt Size Distributions
NASA Astrophysics Data System (ADS)
Ahrens, Thomas J.; Fat'yanov, O. V.; Engelhardt, H.; Fraser, W. C.
2009-09-01
We model mutual gravitationally driven impact interactions in a nearly gas-free environment of the Kuiper belt (KB) and use low-temperature (< 100 K) ice dynamic strength dependent collisional out-come (accretion vs. erosion and fragmentation) models. These lead to theoretically predictable distributions of object number density, vs. mass distributions. These derived mass distributions are comparable to the now rapidly growing KB survey data. Tensional failure of single and polycrystalline ice in the temperature range from 263 to 128 K was measured for high strain rate, c.a. 104 s-1, dynamic loading conditions. Experiments, similar to Lange and Ahrens(1991)(LA), were conducted using a gas gun launched Lexan projectile. The liquid nitrogen cooled ice target approaching KB-like temperatures was partially confined, rather than using the LA confined geometry. Another set of experiments used a drop tube projectile launcher within the 263 K Caltech Ice Laboratory and at 163 K in a liquid nitrogen cooled chamber. New experiments give tensile strengths of 7.6±1.5 MPa at 263 K and 9.1±1.5 MPa at 163 K for unconfined, free of visual initial defects and measurable imperfections ice samples. The new strengths are lower than the earlier LA data ( 17 MPa). The major differences arise from ice target assembly. LA used polycrystalline ice samples confined in annular stainless steel target rings. New measurements were partially confined, in not initially contacting concentric target rings. Later shots used unconfined configurations with ice pellets affixed to aluminum foil. Circumferential confinement is known to increase the material damage threshold upon both compression and tensile loading. Previous confinement in LA is the main cause of the above discrepancy. Present tensile strengths are only a few times higher than 0.7 - 3.0 MPa summarized in Petrovic (2003) for quasistatic tension at 10-7 to 10-3 s-1 strain rate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corradini, D.; Rovere, M.; Gallo, P., E-mail: gallop@fis.uniroma3.it
2015-09-21
In a previous study [Gallo et al., Nat. Commun. 5, 5806 (2014)], we have shown an important connection between thermodynamic and dynamical properties of water in the supercritical region. In particular, by analyzing the experimental viscosity and the diffusion coefficient obtained in simulations performed using the TIP4P/2005 model, we have found that the line of response function maxima in the one phase region, the Widom line, is connected to a crossover from a liquid-like to a gas-like behavior of the transport coefficients. This is in agreement with recent experiments concerning the dynamics of supercritical simple fluids. We here show howmore » different popular water models (TIP4P/2005, TIP4P, SPC/E, TIP5P, and TIP3P) perform in reproducing thermodynamic and dynamic experimental properties in the supercritical region. In particular, the comparison with experiments shows that all the analyzed models are able to qualitatively predict the dynamical crossover from a liquid-like to a gas-like behavior upon crossing the Widom line. Some of the models perform better in reproducing the pressure-temperature slope of the Widom line of supercritical water once a rigid shift of the phase diagram is applied to bring the critical points to coincide with the experimental ones.« less
Side-chain mobility in the folded state of Myoglobin
NASA Astrophysics Data System (ADS)
Lammert, Heiko; Onuchic, Jose
We study the accessibility of alternative side-chain rotamer configurations in the native state of Myoglobin, using an all-atom structure-based model. From long, unbiased simulation trajectories we determine occupancies of rotameric states and also estimate configurational and vibrational entropies. Direct sampling of the full native-state dynamics, enabled by the simple model, reveals facilitation of side-chain motions by backbone dynamics. Correlations between different dihedral angles are quantified and prove to be weak. We confirm global trends in the mobilities of side-chains, following burial and also the chemical character of residues. Surface residues loose little configurational entropy upon folding; side-chains contribute significantly to the entropy of the folded state. Mobilities of buried side-chains vary strongly with temperature. At ambient temperature, individual side-chains in the core of the protein gain substantial access to alternative rotamers, with occupancies that are likely observable experimentally. Finally, the dynamics of buried side-chains may be linked to the internal pockets, available to ligand gas molecules in Myoglobin.
NASA Astrophysics Data System (ADS)
Shen, Binglin; Xu, Xingqi; Xia, Chunsheng; Pan, Bailiang
2017-11-01
Combining the kinetic and fluid dynamic processes in static and flowing-gas diode-pumped alkali vapor lasers, a comprehensive physical model with three cyclically iterative algorithms for simulating the three-dimensional pump and laser intensities as well as temperature distribution in the vapor cell of side-pumped alkali vapor lasers is established. Comparison with measurement of a static side-pumped cesium vapor laser with a diffuse type hollow cylinder cavity, and with classical and modified models is made. Influences of flowed velocity and pump power on laser power are calculated and analyzed. The results have demonstrated that for high-power side-pumped alkali vapor lasers, it is necessary to take into account the three-dimensional distributions of pump energy, laser energy and temperature in the cell to simultaneously obtain the thermal features and output characteristics. Therefore, the model can deepen the understanding of the complete kinetic and fluid dynamic mechanisms of a side-pumped alkali vapor laser, and help with its further experimental design.
NASA Astrophysics Data System (ADS)
Leontidis, V.; Brandner, J. J.; Baldas, L.; Colin, S.
2012-05-01
The possibility to generate a gas flow inside a channel just by imposing a tangential temperature gradient along the walls without the existence of an initial pressure difference is well known. The gas must be under rarefied conditions, meaning that the system must operate between the slip and the free molecular flow regimes, either at low pressure or/and at micro/nano-scale dimensions. This phenomenon is at the basis of the operation principle of Knudsen pumps, which are actually compressors without any moving parts. Nowadays, gas flows in the slip flow regime through microchannels can be modeled using commercial Computational Fluid Dynamics softwares, because in this regime the compressible Navier-Stokes equations with appropriate boundary conditions are still valid. A simulation procedure has been developed for the modeling of thermal creep flow using ANSYS Fluent®. The implementation of the boundary conditions is achieved by developing User Defined Functions (UDFs) by means of C++ routines. The complete first order velocity slip boundary condition, including the thermal creep effects due to the axial temperature gradient and the effect of the wall curvature, and the temperature jump boundary condition are applied. The developed simulation tool is used for the preliminary design of Knudsen micropumps consisting of a sequence of curved and straight channels.
Modeling the combustion behavior of hazardous waste in a rotary kiln incinerator.
Yang, Yongxiang; Pijnenborg, Marc J A; Reuter, Markus A; Verwoerd, Joep
2005-01-01
Hazardous wastes have complex physical forms and chemical compositions and are normally incinerated in rotary kilns for safe disposal and energy recovery. In the rotary kiln, the multifeed stream and wide variation of thermal, physical, and chemical properties of the wastes cause the incineration system to be highly heterogeneous, with severe temperature fluctuations and unsteady combustion chemistry. Incomplete combustion is often the consequence, and the process is difficult to control. In this article, modeling of the waste combustion is described by using computational fluid dynamics (CFD). Through CFD simulation, gas flow and mixing, turbulent combustion, and heat transfer inside the incinerator were predicted and visualized. As the first step, the waste in various forms was modeled to a hydrocarbon-based virtual fuel mixture. The combustion of the simplified waste was then simulated with a seven-gas combustion model within a CFD framework. Comparison was made with previous global three-gas combustion model with which no chemical behavior can be derived. The distribution of temperature and chemical species has been investigated. The waste combustion model was validated with temperature measurements. Various operating conditions and the influence on the incineration performance were then simulated. Through this research, a better process understanding and potential optimization of the design were attained.
Multiphysics Modeling of a Single Channel in a Nuclear Thermal Propulsion Grooved Ring Fuel Element
NASA Technical Reports Server (NTRS)
Kim, Tony; Emrich, William J., Jr.; Barkett, Laura A.; Mathias, Adam D.; Cassibry, Jason T.
2013-01-01
In the past, fuel rods have been used in nuclear propulsion applications. A new fuel element concept that reduces weight and increases efficiency uses a stack of grooved discs. Each fuel element is a flat disc with a hole on the interior and grooves across the top. Many grooved ring fuel elements for use in nuclear thermal propulsion systems have been modeled, and a single flow channel for each design has been analyzed. For increased efficiency, a fuel element with a higher surface-area-to-volume ratio is ideal. When grooves are shallower, i.e., they have a lower surface area, the results show that the exit temperature is higher. By coupling the physics of turbulence with those of heat transfer, the effects on the cooler gas flowing through the grooves of the thermally excited solid can be predicted. Parametric studies were done to show how a pressure drop across the axial length of the channels will affect the exit temperatures of the gas. Geometric optimization was done to show the behaviors that result from the manipulation of various parameters. Temperature profiles of the solid and gas showed that more structural optimization is needed to produce the desired results. Keywords: Nuclear Thermal Propulsion, Fuel Element, Heat Transfer, Computational Fluid Dynamics, Coupled Physics Computations, Finite Element Analysis
Stringent Mitigation Policy Implied By Temperature Impacts on Economic Growth
NASA Astrophysics Data System (ADS)
Moore, F.; Turner, D.
2014-12-01
Integrated assessment models (IAMs) compare the costs of greenhouse gas mitigation with damages from climate change in order to evaluate the social welfare implications of climate policy proposals and inform optimal emissions reduction trajectories. However, these models have been criticized for lacking a strong empirical basis for their damage functions, which do little to alter assumptions of sustained GDP growth, even under extreme temperature scenarios. We implement empirical estimates of temperature effects on GDP growth-rates in the Dynamic Integrated Climate and Economy (DICE) model via two pathways, total factor productivity (TFP) growth and capital depreciation. Even under optimistic adaptation assumptions, this damage specification implies that optimal climate policy involves the elimination of emissions in the near future, the stabilization of global temperature change below 2°C, and a social cost of carbon (SCC) an order of magnitude larger than previous estimates. A sensitivity analysis shows that the magnitude of growth effects, the rate of adaptation, and the dynamic interaction between damages from warming and GDP are three critical uncertainties and an important focus for future research.
Ab Initio Modeling of the Electronic Absorption Spectrum of Previtamin D in Solution
NASA Astrophysics Data System (ADS)
Zhu, Tianyang
To study the solvent effects of water on the previtamin D absorption spectrum, we use the quantum mechanics (QM)/molecular mechanics (MM) method combined with replica-exchange molecular dynamics (REMD). The QM method is applied for the previtamin D molecule and the MM method is used for the water molecules. To enhance conformational sampling of the flexible previtamin D molecule we apply REMD. Based on the REMD structures, we calculate the macroscopic ensemble of the absorption spectrum in solution by time-dependent density functional theory (TDDFT). Comparison between the calculated spectrum in the gas phase and in the solution reveals minor influences of the solvent on the absorption spectrum. In the conventional molecule dynamics simulation, the previtamin D molecule can be trapped by local minimum and cannot overcome energetics barriers when it is calculated at the room temperature. In addition, the higher temperature calculation for the molecule in REMD allows to overcome energetics barriers and to change the structure to other rotational isomers, then switch to the lower temperature and gives a more complete result in the configuration space for the lower temperature.
Computation of Thermally Perfect Properties of Oblique Shock Waves
NASA Technical Reports Server (NTRS)
Tatum, Kenneth E.
1996-01-01
A set of compressible flow relations describing flow properties across oblique shock waves, derived for a thermally perfect, calorically imperfect gas, is applied within the existing thermally perfect gas (TPG) computer code. The relations are based upon a value of cp expressed as a polynomial function of temperature. The updated code produces tables of compressible flow properties of oblique shock waves, as well as the original properties of normal shock waves and basic isentropic flow, in a format similar to the tables for normal shock waves found in NACA Rep. 1135. The code results are validated in both the calorically perfect and the calorically imperfect, thermally perfect temperature regimes through comparisons with the theoretical methods of NACA Rep. 1135, and with a state-of-the-art computational fluid dynamics code. The advantages of the TPG code for oblique shock wave calculations, as well as for the properties of isentropic flow and normal shock waves, are its ease of use, and its applicability to any type of gas (monatomic, diatomic, triatomic, polyatomic, or any specified mixture thereof).
NASA Technical Reports Server (NTRS)
Chen, L.-T.; Dugundji, J.
1979-01-01
A preliminary study conducted by Kerrebrock et al. (1976) has shown that the torsional rigidity of untwisted thin blades of a transonic compressor can be reduced significantly by transient thermal stresses. The aerodynamic loads have various effects on blade vibration. One effect is that gas bending loads may result in a bending-torsion coupling which may change the characteristics of the torsion and bending vibration of the blade. For a general study of transient-temperature distribution within a rotor stage, a finite-element heat-conduction analysis was developed. The blade and shroud are divided into annular elements. With a temperature distribution obtained from the heat-conduction analysis and a prescribed gas bending load distribution along the blade span, the static deformation and moment distributions of the blade can be solved iteratively using the finite-element method. The reduction of the torsional rigidity of pretwisted blades caused by the thermal stress effect is then computed. The dynamic behavior of the blade is studied by a modified Galerkin's method.
Study of Electron Gas on a Neutron-Rich Nuclear Pasta
NASA Astrophysics Data System (ADS)
Ramirez-Homs, Enrique
This study used a classical molecular dynamics model to observe the role of electron gas on the formation of nuclear structures at subsaturation densities (rho < 0.015 fm-3) and low temperatures (T < 1MeV ). The simulations were performed by varying the Coulomb interaction strength on systems of isospin symmetric and asymmetric matter with periodic boundary conditions. The effect was quantified on the fragment size multiplicity, the inter-particle distance, the isospin content of the clusters, the nucleon mobility and cluster persistence, and on the nuclear structure shapes. The existence of the nuclear pasta structures was observed even with the absence of the Coulomb interaction but with a modication of the shapes formed. It was found that the presence of the electron gas tends to distribute matter more evenly, forms less compact objects, decreases the isospin content of clusters, modies the nucleon mobility, reduces the persistence and the fragment size multiplicity, but does not alter the inter-particle distance in clusters. The degree of these effects also varied on the nuclear structures and depended on their isospin content, temperature, and density.
NASA Technical Reports Server (NTRS)
Bragg-Sitton, Shannon M.; Hervol, David S.; Godfroy, Thomas J.
2009-01-01
A Direct Drive Gas-Cooled (DDG) reactor core simulator has been coupled to a Brayton Power Conversion Unit (BPCU) for integrated system testing at NASA Glenn Research Center (GRC) in Cleveland, OH. This is a closed-cycle system that incorporates an electrically heated reactor core module, turbo alternator, recuperator, and gas cooler. Nuclear fuel elements in the gas-cooled reactor design are replaced with electric resistance heaters to simulate the heat from nuclear fuel in the corresponding fast spectrum nuclear reactor. The thermodynamic transient behavior of the integrated system was the focus of this test series. In order to better mimic the integrated response of the nuclear-fueled system, a simulated reactivity feedback control loop was implemented. Core power was controlled by a point kinetics model in which the reactivity feedback was based on core temperature measurements; the neutron generation time and the temperature feedback coefficient are provided as model inputs. These dynamic system response tests demonstrate the overall capability of a non-nuclear test facility in assessing system integration issues and characterizing integrated system response times and response characteristics.
NASA Technical Reports Server (NTRS)
Bragg-Sitton, Shannon M.; Hervol, David S.; Godfroy, Thomas J.
2010-01-01
A Direct Drive Gas-Cooled (DDG) reactor core simulator has been coupled to a Brayton Power Conversion Unit (BPCU) for integrated system testing at NASA Glenn Research Center (GRC) in Cleveland, Ohio. This is a closed-cycle system that incorporates an electrically heated reactor core module, turboalternator, recuperator, and gas cooler. Nuclear fuel elements in the gas-cooled reactor design are replaced with electric resistance heaters to simulate the heat from nuclear fuel in the corresponding fast spectrum nuclear reactor. The thermodynamic transient behavior of the integrated system was the focus of this test series. In order to better mimic the integrated response of the nuclear-fueled system, a simulated reactivity feedback control loop was implemented. Core power was controlled by a point kinetics model in which the reactivity feedback was based on core temperature measurements; the neutron generation time and the temperature feedback coefficient are provided as model inputs. These dynamic system response tests demonstrate the overall capability of a non-nuclear test facility in assessing system integration issues and characterizing integrated system response times and response characteristics.
Emissions Control in Swirl Stabilized Spray Combusters, an Experimental and Computational Study
2007-02-01
dynamics and thus provide an attractive alternative for application in aircraft gas turbine engines. Triple Annular Research Swirler, which has been...octagonal combustor because it provided optical access for flame imaging while avoiding difficulty of drilling thermocouple access holes on the...indicated by the temperature distribution. c. OH* chemiluminescence image It is commonly accepted that CH* and OH* chemiluminescence represents reaction or
Bose-Einstein condensation in an ultra-hot gas of pumped magnons.
Serga, Alexander A; Tiberkevich, Vasil S; Sandweg, Christian W; Vasyuchka, Vitaliy I; Bozhko, Dmytro A; Chumak, Andrii V; Neumann, Timo; Obry, Björn; Melkov, Gennadii A; Slavin, Andrei N; Hillebrands, Burkard
2014-03-11
Bose-Einstein condensation of quasi-particles such as excitons, polaritons, magnons and photons is a fascinating quantum mechanical phenomenon. Unlike the Bose-Einstein condensation of real particles (like atoms), these processes do not require low temperatures, since the high densities of low-energy quasi-particles needed for the condensate to form can be produced via external pumping. Here we demonstrate that such a pumping can create remarkably high effective temperatures in a narrow spectral region of the lowest energy states in a magnon gas, resulting in strikingly unexpected transitional dynamics of Bose-Einstein magnon condensate: the density of the condensate increases immediately after the external magnon flow is switched off and initially decreases if it is switched on again. This behaviour finds explanation in a nonlinear 'evaporative supercooling' mechanism that couples the low-energy magnons overheated by pumping with all the other thermal magnons, removing the excess heat, and allowing Bose-Einstein condensate formation.
Modeling the field of a passive scalar in a nonisothermal turbulent plane gas jet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abrashin, V.N.; Barykin, V.N.; Martynenko, O.G.
The problem of the distribution of thermal characteristics in a plane nonisothermal turbulent gas jet in the case of large Reynolds numbers and a small temperature difference, allowing heat to be regarded as a passive impurity, is solved in the range of jet cross sections 20-100 caliber by a second-order correlational model of turbulence and an effective numerical algorithm. Analysis of the results show that the model allows computational data in good agreement with experiment to be obtained in the range of jet cross section 20-100 diameters. The relative error in determining the maximum values of the functions is 3-10%more » for the dynamic characteristics while the mean temperature and its mean square pulsations are determined with an accuracy of 5-10%; the corresponding figures for the thermal characteristics are 5-15% and 5-10%.« less
Tchouar, N; Ould-Kaddour, F; Levesque, D
2004-10-15
The properties of liquid methane, liquid neon, and gas helium are calculated at low temperatures over a large range of pressure from the classical molecular-dynamics simulations. The molecular interactions are represented by the Lennard-Jones pair potentials supplemented by quantum corrections following the Feynman-Hibbs approach. The equations of state, diffusion, and shear viscosity coefficients are determined for neon at 45 K, helium at 80 K, and methane at 110 K. A comparison is made with the existing experimental data and for thermodynamical quantities, with results computed from quantum numerical simulations when they are available. The theoretical variation of the viscosity coefficient with pressure is in good agreement with the experimental data when the quantum corrections are taken into account, thus reducing considerably the 60% discrepancy between the simulations and experiments in the absence of these corrections.
Simulation of the Effects of Cooling Techniques on Turbine Blade Heat Transfer
NASA Astrophysics Data System (ADS)
Shaw, Vince; Fatuzzo, Marco
Increases in the performance demands of turbo machinery has stimulated the development many new technologies over the last half century. With applications that spread beyond marine, aviation, and power generation, improvements in gas turbine technologies provide a vast impact. High temperatures within the combustion chamber of the gas turbine engine are known to cause an increase in thermal efficiency and power produced by the engine. However, since operating temperatures of these engines reach above 1000 K within the turbine section, the need for advances in material science and cooling techniques to produce functioning engines under these high thermal and dynamic stresses is crucial. As with all research and development, costs related to the production of prototypes can be reduced through the use of computational simulations. By making use of Ansys Simulation Software, the effects of turbine cooling techniques were analyzed. Simulation of the Effects of Cooling Techniques on Turbine Blade Heat Transfer.
Varghese, Oomman K; Mor, Gopal K; Grimes, Craig A; Paulose, Maggie; Mukherjee, Niloy
2004-09-01
A tremendous variation in electrical resistance, from the semiconductor to metallic range, has been observed in titania nanotube arrays at room temperature, approximately 25 degrees C, in the presence of < or = 1000 ppm hydrogen gas. The nanotube arrays are fabricated by anodizing titanium foil in an aqueous electrolyte solution containing hydrofluoric acid and acetic acid. Subsequently, the arrays are coated with a 10 nm layer of palladium by evaporation. Electrical contacts are made by sputtering a 2 mm diameter platinum disk atop the Pd-coated nanotube array. These sensors exhibit a resistance variation of the order of 10(4) in the presence of 100 ppm hydrogen at 25 degrees C. The sensors demonstrate complete reversibility, repeatability, high selectivity, negligible drift and wide dynamic range. The nanoscale geometry of the nanotubes, in particular the points of tube-to-tube contact, is believed to be responsible for the outstanding hydrogen gas sensitivities.
Temperature control of thermal-gas-dynamical installation in cleaning oil-well tubes
NASA Astrophysics Data System (ADS)
Penner, V. A.; Martemyanov, D. B.; Pshenichnikova, V. V.
2017-08-01
The article provides the study results of cleaning oil-well tubes, the oil-well tube failure reasons for service by their types have been considered. The chemical method of cleaning oil-well tubes as the least expensive has been reviewed when acid solution moves to the interptube space mixing up with oil and liquidates paraffin and pitches deposits on the internal pipe surface. Except the chemical method of pipes cleaning the mechanical one was considered as well. Also the disadvantages -such as the low productivity of cleaning and design complexity- of this deposits removal method on the internal oil-well tube surface have been considered. An effective method for cleaning oil-well tubing from paraffin and pitches by the thermodynamic plant based on the aircraft engine has been introduced for the first time. The temperature distribution graph in the gas stream at the engine output has been given.
The isentropic exponent in plasmas
NASA Astrophysics Data System (ADS)
Burm, K. T. A. L.; Goedheer, W. J.; Schram, D. C.
1999-06-01
The isentropic exponent for gases is a physical quantity that can ease significantly the hydrodynamic modeling effort. In gas dynamics the isentropic exponent depends only on the number of degrees of freedom of the considered gas. The isentropic exponent for a plasma is lower due to an extra degree of freedom caused by ionization. In this paper it will be shown that, like for gases, the isentropic exponent for atomic plasmas is also constant, as long as the ionization degree is between 5%-80%. Only a very weak dependence on the electron temperature and the two nonequilibrium parameters remain. An argon plasma is used to demonstrate the behavior of the isentropic exponent on the plasma conditions, and to make an estimation of the value of the isentropic exponent of a customary plasma. For atmospheric plasmas, which usually have an electron temperature of about 1 eV, a sufficiently accurate estimate for the isentropic exponent of plasmas is 1.16.
Detection of gas atoms with carbon nanotubes
Arash, B.; Wang, Q.
2013-01-01
Owning to their unparalleled sensitivity resolution, nanomechanical resonators have excellent capabilities in design of nano-sensors for gas detection. The current challenge is to develop new designs of the resonators for differentiating distinct gas atoms with a recognizably high sensitivity. In this work, the characteristics of impulse wave propagation in carbon nanotube-based sensors are investigated using molecular dynamics simulations to provide a new method for detection of noble gases. A sensitivity index based on wave velocity shifts in a single-walled carbon nanotube, induced by surrounding gas atoms, is defined to explore the efficiency of the nano-sensor. The simulation results indicate that the nano-sensor is able to differentiate distinct noble gases at the same environmental temperature and pressure. The inertia and the strengthening effects by the gases on wave characteristics of carbon nanotubes are particularly discussed, and a continuum mechanics shell model is developed to interpret the effects.
Photoluminescence quenching processes by NO2 adsorption in ZnO nanostructured films
NASA Astrophysics Data System (ADS)
Cretı, A.; Valerini, D.; Taurino, A.; Quaranta, F.; Lomascolo, M.; Rella, R.
2012-04-01
The optical response by NO2 gas adsorption at different concentrations has been investigated, at room temperature, in ZnO nanostructured films grown by controlled vapor phase deposition. The variation (quenching) in the photoluminescence signal from excitonic and defects bands, due to the interactions between the oxidizing gas molecules and the sample surface, has been detected and dynamic responses and calibration curves as a function of gas concentration have been obtained and analyzed for each band. We showed that the sensing response results larger in excitonic band than in defect one and that the emission signal rises from two different quenchable and unquenchable states. A simple model was proposed in order to explain the quenching processes on the emission intensity and to correlate them to the morphological features of the samples. Finally, the reversibility of the quenching effects has also been tested at high gas concentration.
Searching for order in atmospheric pressure plasma jets
NASA Astrophysics Data System (ADS)
Schäfer, Jan; Sigeneger, Florian; Šperka, Jiří; Rodenburg, Cornelia; Foest, Rüdiger
2018-01-01
The self-organized discharge behaviour occurring in a non-thermal radio-frequency plasma jet in rare gases at atmospheric pressure was investigated. The frequency of the azimuthal rotation of filaments in the active plasma volume and their inclination were measured along with the gas temperature under varying discharge conditions. The gas flow and heating were described theoretically by a three-dimensional hydrodynamic model. The rotation frequencies obtained by both methods qualitatively agree. The results demonstrate that the plasma filaments forming an inclination angle α with the axial gas velocity u z are forced to a transversal movement with the velocity {u}φ =\\tan (α )\\cdot {u}z, which is oriented in the inclination direction. Variations of {u}φ in the model reveal that the observed dynamics minimizes the energy loss due to convective heat transfer by the gas flow. The control of the self-organization regime motivates the application of the plasma jet for precise and reproducible material processing.
An experimental study on premixed CNG/H2/CO2 mixture flames
NASA Astrophysics Data System (ADS)
Yilmaz, Ilker; Yilmaz, Harun; Cam, Omer
2018-03-01
In this study, the effect of swirl number, gas composition and CO2 dilution on combustion and emission behaviour of CNG/H2/CO2 gas mixtures was experimentally investigated in a laboratory scale combustor. Irrespective of the gas composition, thermal power of the combustor was kept constant (5 kW). All experiments were conducted at or near stoichiometric and the local atmospheric conditions of the city of Kayseri, Turkey. During experiments, swirl number was varied and the combustion performance of this combustor was analysed by means of centreline temperature distributions. On the other hand, emission behaviour was examined with respect to emitted CO, CO2 and NOx levels. Dynamic flame behaviour was also evaluated by analysing instantaneous flame images. Results of this study revealed the great impact of swirl number and gas composition on combustion and emission behaviour of studied flames.
Momentum and energy balance in late-type stellar winds
NASA Technical Reports Server (NTRS)
Macgregor, K. B.
1981-01-01
Observations at ultraviolet and X-ray wavelengths indicate that the classical picture of a static stellar atmosphere containing a radiative equilibrium temperature distribution is inapplicable to the majority of late type stars. Mass loss and the presence of atmospheric regions characterized by gas temperatures in excess of the stellar effective temperature appear to be almost ubiquitous throughout the HR diagram. Evidence pertaining to the thermal and dynamical structure of the outer envelopes of cool stars is summarized. These results are compared with the predictions of several theoretical models which were proposed to account for mass loss from latetype stars. Models in which the outflow is thermally radiatively, or wave driven are considered for identification of the physical processes responsible for the observed wind properties. The observed variation of both the wind, thermal and dynamical structure as one proceeds from the supergiant branch toward the main sequence in the cool portion of the HR diagram give consideration to potential mechanisms for heating and cooling the flow from low gravity stars.
Bubbles are responsive materials interesting for nonequilibrium physics
NASA Astrophysics Data System (ADS)
Andreeva, Daria; Granick, Steve
Understanding of nature and conditions of non-equilibrium transformations of bubbles, droplets, polysomes and vesicles in a gradient filed is a breath-taking question that dissipative systems raise. We ask: how to establish a dynamic control of useful characteristics, for example dynamic control of morphology and composition modulation in soft matter. A possible answer is to develop a new generation of dynamic impactors that can trigger spatiotemporal oscillations of structures and functions. We aim to apply acoustic filed for development of temperature and pressure oscillations at a microscale area. We demonstrate amazing dynamic behavior of gas-filled bubbles in pressure gradient field using a unique technique combining optical imaging, high intensity ultrasound and high speed camera. We find that pressure oscillations trigger continuous phase transformations that are considered to be impossible in physical systems.
NASA Astrophysics Data System (ADS)
Seepersad, Yohan
The state of plasma is widely known as a gas-phase phenomenon, but plasma in liquids have also received significant attention over the last century. Generating plasma in liquids however is theoretically challenging, and this problem is often overcome via liquid-gas phase transition preceding the actual plasma formation. In this sense, plasma forms in gas bubbles in the liquid. Recent work at the Drexel Plasma Institute has shown that nanosecond pulsed electric fields can initiate plasma in liquids without any initial cavitation phase, at voltages below theoretical direct-ionization thresholds. This unique regime is poorly understood and does not fit into any current descriptive mechanisms. As with all new phenomena, a complete fundamental description is paramount to understanding its usefulness to practical applications. The primary goals of this research were to qualitatively and quantitatively understand the phenomenon of nanosecond pulsed discharge in liquids as a means to characterizing properties that may open up niche application possibilities. Analysis of the plasma was based on experimental results from non-invasive, sub-nanosecond time-resolved optical diagnostics, including direct imaging, transmission imaging (Schlieren and shadow), and optical emission spectroscopy. The physical characteristics of the plasma were studied as a function of variations in the electric field amplitude and polarity, liquid permittivity, and pulse duration. It was found that the plasma size and emission intensity was dependent on the permittivity of the liquid, as well as the voltage polarity, and the structure and dynamics were explained by a 'cold-lightning' mechanism. The under-breakdown dynamics at the liquid-electrode interface were investigated by transmission imaging to provide evidence for a novel mechanism for initiation based on the electrostriction. This mechanism was proposed by collaborators on the project and developed alongside the experimental work in this research. Finally, analysis of emission spectra obtained from the OH(A-X) band at 308 nm by the excited hydroxyl radical was performed to quantify the temperature parameters of the plasma. Boltzmann analysis was performed to quantify the rotational temperature of OH which correlates well to the liquid temperature, and Stark broadening of the ionic lines belonging to hydrogen and oxygen was analysed to estimate electron temperature. It was found that the liquid temperature remained close to bulk temperature with T_(n,i)<500 K, and that the electron temperature was very high Te˜6-10 eV. Finally, based on the characterization of the plasma parameters, several potential avenues for applications of this regime of plasma will be suggested. The complex physical and chemical dynamics established when plasma is generated within a liquid medium has unlocked new and fascinating possibilities in the areas of biomedicine, water treatment, material synthesis and nanoscience. The high density, low temperature plasma formed could potentially be harnessed to unlock new applications across these fields and more.
NASA Astrophysics Data System (ADS)
Nasruddin; Lestari, M.; Supriyadi; Sholahudin
2018-03-01
The use of hydrogen gas in fuel cell technology has a huge opportunity to be applied in upcoming vehicle technology. One of the most important problems in fuel cell technology is the hydrogen storage. The adsorption of hydrogen in carbon-based materials attracts a lot of attention because of its reliability. This study investigated the adsorption of hydrogen gas in Single-walled Carbon Nano Tubes (SWCNT) with chilarity of (0, 12), (0, 15), and (0, 18) to find the optimum chilarity. Artificial Neural Networks (ANN) can be used to predict the hydrogen storage capacity at different pressure and temperature conditions appropriately, using simulated series of data. The Artificial Neural Network is modeled as a predictor of the hydrogen adsorption capacity which provides solutions to some deficiencies in molecular dynamics (MD) simulations. In a previous study, ANN configurations have been developed for 77k, 233k, and 298k temperatures in hydrogen gas storage. To prepare this prediction, ANN is modeled to find out the configurations that exist in the set of training and validation of specified data selection, the distance between data, and the number of neurons that produce the smallest error. This configuration is needed to make an accurate artificial neural network. The configuration of neural network was then applied to this research. The neural network analysis results show that the best configuration of artificial neural network in hydrogen storage is at 233K temperature i.e. on SWCNT with chilarity of (0.12).
Topology (and axion's properties) from lattice QCD with a dynamical charm
NASA Astrophysics Data System (ADS)
Burger, Florian; Ilgenfritz, Ernst-Michael; Lombardo, Maria Paola; Müller-Preussker, Michael; Trunin, Anton
2017-11-01
We present results on QCD with four dynamical flavors in the temperature range 0.9 ≲ T /Tc ≲ 2. We have performed lattice simulations with Wilson fermions at maximal twist and measured the topological charge with gluonic and fermionic methods. The topological charge distribution is studied by means of its cumulants, which encode relevant properties of the QCD axion, a plausible Dark Matter candidate. The topological susceptibility measured with the fermionic method exhibits a power-law decay for T /Tc ≳ 2, with an exponent close to the one predicted by the Dilute Instanton Gas Approximation (DIGA). Close to Tc the temperature dependent effective exponent approaches the DIGA result from above, in agreement with recent analytic calculations. These results constrain the axion window, once an assumption on the fraction of axions contributing to Dark Matter is made.
Equation of state of solid, liquid and gaseous tantalum from first principles
Miljacic, Ljubomir; Demers, Steven; Hong, Qi-Jun; ...
2015-09-18
Here, we present ab initio calculations of the phase diagram and the equation of state of Ta in a wide range of volumes and temperatures, with volumes from 9 to 180 Å 3/atom, temperature as high as 20000 K, and pressure up to 7 Mbars. The calculations are based on first principles, in combination with techniques of molecular dynamics, thermodynamic integration, and statistical modeling. Multiple phases are studied, including the solid, fluid, and gas single phases, as well as two-phase coexistences. We calculate the critical point by direct molecular dynamics sampling, and extend the equation of state to very lowmore » density through virial series fitting. The accuracy of the equation of state is assessed by comparing both the predicted melting curve and the critical point with previous experimental and theoretical investigations.« less
NASA Technical Reports Server (NTRS)
Mckenzie, R. L.; Gross, K. P.
1980-01-01
A laser induced fluorescence technique, suitable for measuring fluctuating temperatures in cold turbulent flows containing very low concentrations of nitric oxide is described. Temperatures below 300 K may be resolved with signal to noise ratios greater than 50 to 1 using high peak power, tunable dye lasers. The method relies on the two photon excitation of selected ro-vibronic transitions. The analysis includes the effects of fluorescence quenching and shows the technique to be effective at all densities below ambient. Signal to noise ratio estimates are based on a preliminary measurement of the two photon absorptivity for a selected rotational transition in the NO gamma (0,0) band.
NASA Astrophysics Data System (ADS)
Rieker, G. B.; Li, H.; Liu, X.; Jeffries, J. B.; Hanson, R. K.; Allen, M. G.; Wehe, S. D.; Mulhall, P. A.; Kindle, H. S.
2007-05-01
A near-infrared diode laser sensor is presented that is capable of measuring time-varying gas temperature and water vapour concentration at temperatures up to 1050 K and pressures up to 25 atm with a bandwidth of 7.5 kHz. Measurements with noise-equivalent-absorbances of the order of 10-3 (10-5 Hz-1/2) are made possible in dynamic environments through the use of wavelength modulation spectroscopy (WMS) with second harmonic detection (2f) on two water vapour spectral features near 7203.9 and 7435.6 cm-1. Laser performance characteristics that become important at the large modulation depths needed at high pressures are accounted for in the WMS-2f signal analysis, and the utility of normalization by the 1f signal to correct for variations in laser intensity, transmission and detector gain is presented. Laboratory measurements with the sensor system in a static cell with known temperature and pressure agree to 3% RMS in temperature and 4% RMS in H2O mole fraction for 500 < T < 900 K and 1 < P < 25 atm. The sensor time response is demonstrated in a high-pressure shock tube where shock wave transients are successfully captured, the average measured post-shock temperature agrees within 1% of the expected value, and H2O mole fraction agrees within 8%.
Thurber, Kent; Tycko, Robert
2016-03-01
We describe novel instrumentation for low-temperature solid state nuclear magnetic resonance (NMR) with dynamic nuclear polarization (DNP) and magic-angle spinning (MAS), focusing on aspects of this instrumentation that have not been described in detail in previous publications. We characterize the performance of an extended interaction oscillator (EIO) microwave source, operating near 264 GHz with 1.5 W output power, which we use in conjunction with a quasi-optical microwave polarizing system and a MAS NMR probe that employs liquid helium for sample cooling and nitrogen gas for sample spinning. Enhancement factors for cross-polarized (13)C NMR signals in the 100-200 range are demonstrated with DNP at 25K. The dependences of signal amplitudes on sample temperature, as well as microwave power, polarization, and frequency, are presented. We show that sample temperatures below 30K can be achieved with helium consumption rates below 1.3 l/h. To illustrate potential applications of this instrumentation in structural studies of biochemical systems, we compare results from low-temperature DNP experiments on a calmodulin-binding peptide in its free and bound states. Published by Elsevier Inc.
Development of Novel PEM Membrane and Multiphase CD Modeling of PEM Fuel Cell
DOE Office of Scientific and Technical Information (OSTI.GOV)
K. J. Berry; Susanta Das
2009-12-30
To understand heat and water management phenomena better within an operational proton exchange membrane fuel cell's (PEMFC) conditions, a three-dimensional, two-phase computational fluid dynamic (CFD) flow model has been developed and simulated for a complete PEMFC. Both liquid and gas phases are considered in the model by taking into account the gas flow, diffusion, charge transfer, change of phase, electro-osmosis, and electrochemical reactions to understand the overall dynamic behaviors of species within an operating PEMFC. The CFD model is solved numerically under different parametric conditions in terms of water management issues in order to improve cell performance. The results obtainedmore » from the CFD two-phase flow model simulations show improvement in cell performance as well as water management under PEMFCs operational conditions as compared to the results of a single phase flow model available in the literature. The quantitative information obtained from the two-phase model simulation results helped to develop a CFD control algorithm for low temperature PEM fuel cell stacks which opens up a route in designing improvement of PEMFC for better operational efficiency and performance. To understand heat and water management phenomena better within an operational proton exchange membrane fuel cell's (PEMFC) conditions, a three-dimensional, two-phase computational fluid dynamic (CFD) flow model has been developed and simulated for a complete PEMFC. Both liquid and gas phases are considered in the model by taking into account the gas flow, diffusion, charge transfer, change of phase, electro-osmosis, and electrochemical reactions to understand the overall dynamic behaviors of species within an operating PEMFC. The CFD model is solved numerically under different parametric conditions in terms of water management issues in order to improve cell performance. The results obtained from the CFD two-phase flow model simulations show improvement in cell performance as well as water management under PEMFCs operational conditions as compared to the results of a single phase flow model available in the literature. The quantitative information obtained from the two-phase model simulation results helped to develop a CFD control algorithm for low temperature PEM fuel cell stacks which opens up a route in designing improvement of PEMFC for better operational efficiency and performance.« less
Domain-adaptive finite difference methods for collapsing annular liquid jets
NASA Astrophysics Data System (ADS)
Ramos, J. I.
1993-01-01
A domain-adaptive technique which maps a time-dependent, curvilinear geometry into a unit square is used to determine the steady state mass absorption rate and the collapse of annular liquid jets. A method of lines is used to solve the one-dimensional fluid dynamics equations written in weak conservation-law form, and upwind differences are employed to evaluate the axial convective fluxes. The unknown, time-dependent, axial location of the downstream boundary is determined from the solution of an ordinary differential equation which is nonlinearly coupled to the fluid dynamics and gas concentration equations. The equation for the gas concentration in the annular liquid jet is written in strong conservation-law form and solved by means of a method of lines at high Peclet numbers and a line Gauss-Seidel method at low Peclet numbers. The effects of the number of grid points along and across the annular jet, time step, and discretization of the radial convective fluxes on both the steady state mass absorption rate and the jet's collapse rate have been analyzed on staggered and non-staggered grids. The steady state mass absorption rate and the collapse of annular liquid jets are determined as a function of the Froude, Peclet and Weber numbers, annular jet's thickness-to-radius ratio at the nozzle exit, initial pressure difference across the annular jet, nozzle exit angle, temperature of the gas enclosed by the annular jet, pressure of the gas surrounding the jet, solubilities at the inner and outer interfaces of the annular jet, and gas concentration at the nozzle exit. It is shown that the steady state mass absorption rate is proportional to the inverse square root of the Peclet number except for low values of this parameter, and that the possible mathematical incompatibilities in the concentration field at the nozzle exit exert a great influence on the steady state mass absorption rate and on the jet collapse. It is also shown that the steady state mass absorption rate increases as the Weber number, nozzle exit angle, gas concentration at the nozzle exit, and temperature of the gases enclosed by the annular liquid jet are increased, but it decreases as the Froude and Peclet numbers, and annular liquid jet's thickness-to-radius ratio at the nozzle exit are increased. It is also shown that the annular liquid jet's collapse rate increases as the Weber number, nozzle exit angle, temperature of the gases enclosed by the annular liquid jet, and pressure of the gases which surround the jet are increased, but decreases as the Froude and Peclet numbers, and annular liquid jet's thickness-toradius ratio at the nozzle exit are increased. It is also shown that both the ratio of the initial pressure of the gas enclosed by the jet to the pressure of the gas surrounding the jet and the ratio of solubilities at the annular liquid jet's inner and outer interfaces play an important role on both the steady state mass absorption rate and the jet collapse. If the product of these ratios is greater or less than one, both the pressure and the mass of the gas enclosed by the annular liquid jet decrease or increase, respectively, with time. It is also shown that the numerical results obtained with the conservative, domain-adaptive method of lines technique presented in this paper are in excellent agreement with those of a domain-adaptive, iterative, non-conservative, block-bidiagonal, finite difference method which uncouples the solution of the fluid dynamics equations from that of the convergence length.
Empirical Temperature Measurement in Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Weaver, Erik; Isella, Andrea; Boehler, Yann
2018-02-01
The accurate measurement of temperature in protoplanetary disks is critical to understanding many key features of disk evolution and planet formation, from disk chemistry and dynamics, to planetesimal formation. This paper explores the techniques available to determine temperatures from observations of single, optically thick molecular emission lines. Specific attention is given to issues such as the inclusion of optically thin emission, problems resulting from continuum subtraction, and complications of real observations. Effort is also made to detail the exact nature and morphology of the region emitting a given line. To properly study and quantify these effects, this paper considers a range of disk models, from simple pedagogical models to very detailed models including full radiative transfer. Finally, we show how the use of the wrong methods can lead to potentially severe misinterpretations of data, leading to incorrect measurements of disk temperature profiles. We show that the best way to estimate the temperature of emitting gas is to analyze the line peak emission map without subtracting continuum emission. Continuum subtraction, which is commonly applied to observations of line emission, systematically leads to underestimation of the gas temperature. We further show that once observational effects such as beam dilution and noise are accounted for, the line brightness temperature derived from the peak emission is reliably within 10%–15% of the physical temperature of the emitting region, assuming optically thick emission. The methodology described in this paper will be applied in future works to constrain the temperature, and related physical quantities, in protoplanetary disks observed with ALMA.
Feasibility of magnetic bearings for advanced gas turbine engines
NASA Technical Reports Server (NTRS)
Hibner, David; Rosado, Lewis
1992-01-01
The application of active magnetic bearings to advanced gas turbine engines will provide a product with major improvements compared to current oil lubricated bearing designs. A rethinking of the engine rotating and static structure design is necessary and will provide the designer with significantly more freedom to meet the demanding goals of improved performance, increased durability, higher reliability, and increased thrust to weight ratio via engine weight reduction. The product specific technology necessary for this high speed, high temperature, dynamically complex application has been defined. The resulting benefits from this approach to aircraft engine rotor support and the complementary engine changes and improvements have been assessed.
Stable spin domains in a nondegenerate ultracold gas
NASA Astrophysics Data System (ADS)
Graham, S. D.; Niroomand, D.; Ragan, R. J.; McGuirk, J. M.
2018-05-01
We study the stability of two-domain spin structures in an ultracold gas of magnetically trapped 87Rb atoms above quantum degeneracy. Adding a small effective magnetic field gradient stabilizes the domains via coherent collective spin rotation effects, despite negligibly perturbing the potential energy relative to the thermal energy. We demonstrate that domain stabilization is accomplished through decoupling the dynamics of longitudinal magnetization, which remains in time-independent domains, from transverse magnetization, which undergoes a purely transverse spin wave trapped within the domain wall. We explore the effect of temperature and density on the steady-state domains, and compare our results to a hydrodynamic solution to a quantum Boltzmann equation.
Determination of pore-scale hydrate phase equilibria in sediments using lab-on-a-chip technology.
Almenningen, Stian; Flatlandsmo, Josef; Kovscek, Anthony R; Ersland, Geir; Fernø, Martin A
2017-11-21
We present an experimental protocol for fast determination of hydrate stability in porous media for a range of pressure and temperature (P, T) conditions. Using a lab-on-a-chip approach, we gain direct optical access to dynamic pore-scale hydrate formation and dissociation events to study the hydrate phase equilibria in sediments. Optical pore-scale observations of phase behavior reproduce the theoretical hydrate stability line with methane gas and distilled water, and demonstrate the accuracy of the new method. The procedure is applicable for any kind of hydrate transitions in sediments, and may be used to map gas hydrate stability zones in nature.
Ceramic micro-injection molded nozzles for serial femtosecond crystallography sample delivery
NASA Astrophysics Data System (ADS)
Beyerlein, K. R.; Adriano, L.; Heymann, M.; Kirian, R.; Knoška, J.; Wilde, F.; Chapman, H. N.; Bajt, S.
2015-12-01
Serial femtosecond crystallography (SFX) using X-ray Free-Electron Lasers (XFELs) allows for room temperature protein structure determination without evidence of conventional radiation damage. In this method, a liquid suspension of protein microcrystals can be delivered to the X-ray beam in vacuum as a micro-jet, which replenishes the crystals at a rate that exceeds the current XFEL pulse repetition rate. Gas dynamic virtual nozzles produce the required micrometer-sized streams by the focusing action of a coaxial sheath gas and have been shown to be effective for SFX experiments. Here, we describe the design and characterization of such nozzles assembled from ceramic micro-injection molded outer gas-focusing capillaries. Trends of the emitted jet diameter and jet length as a function of supplied liquid and gas flow rates are measured by a fast imaging system. The observed trends are explained by derived relationships considering choked gas flow and liquid flow conservation. Finally, the performance of these nozzles in a SFX experiment is presented, including an analysis of the observed background.
DWPF Melter Off-Gas Flammability Assessment for Sludge Batch 9
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, A. S.
2016-07-11
The slurry feed to the Defense Waste Processing Facility (DWPF) melter contains several organic carbon species that decompose in the cold cap and produce flammable gases that could accumulate in the off-gas system and create potential flammability hazard. To mitigate such a hazard, DWPF has implemented a strategy to impose the Technical Safety Requirement (TSR) limits on all key operating variables affecting off-gas flammability and operate the melter within those limits using both hardwired/software interlocks and administrative controls. The operating variables that are currently being controlled include; (1) total organic carbon (TOC), (2) air purges for combustion and dilution, (3)more » melter vapor space temperature, and (4) feed rate. The safety basis limits for these operating variables are determined using two computer models, 4-stage cold cap and Melter Off-Gas (MOG) dynamics models, under the baseline upset scenario - a surge in off-gas flow due to the inherent cold cap instabilities in the slurry-fed melter.« less
Superstatistical Energy Distributions of an Ion in an Ultracold Buffer Gas
NASA Astrophysics Data System (ADS)
Rouse, I.; Willitsch, S.
2017-04-01
An ion in a radio frequency ion trap interacting with a buffer gas of ultracold neutral atoms is a driven dynamical system which has been found to develop a nonthermal energy distribution with a power law tail. The exact analytical form of this distribution is unknown, but has often been represented empirically by q -exponential (Tsallis) functions. Based on the concepts of superstatistics, we introduce a framework for the statistical mechanics of an ion trapped in an rf field subject to collisions with a buffer gas. We derive analytic ion secular energy distributions from first principles both neglecting and including the effects of the thermal energy of the buffer gas. For a buffer gas with a finite temperature, we prove that Tsallis statistics emerges from the combination of a constant heating term and multiplicative energy fluctuations. We show that the resulting distributions essentially depend on experimentally controllable parameters paving the way for an accurate control of the statistical properties of ion-atom hybrid systems.
NASA Astrophysics Data System (ADS)
Kadyrov, E.; Evdokimenko, Y.; Kisel, V.; Kadyrov, V.; Worzala, F.
1994-12-01
Several designs of high-velocity oxygen fuel (HVOF) thermal spray systems have been created during the last decade. The most advanced systems are now producing coatings comparable in quality to detonation (D-gun) coatings. This paper presents numerical analysis of the interaction of dispersive particles with the carrying gas flow for three different HVOF systems, along with a method to calculate the parameters of sprayed particles that highlights the advantages and limitations of each design. The method includes gas dynamical calculations of the gas flow in an accelerating channel and calculations of the injected par-motion and thermal state (temperature and melted mass fraction). The calculations were performed for particles of tungsten carbide, aluminum oxide, and zirconium oxide with size distributions of 10 to 80 μm. Two conventional types of HVOF systems were considered: those with a supersonic accelerating channel and those with a subsonic accelerating channel (without a de Laval nozzle). A novel design is pro-posed that contains a combined gas dynamical path with functionally separated regions of heating and acceleration. The regularities and distinctions in the behavior of the metallic and ceramic oxide particles are discussed for different jet configurations. The results obtained indicate that it is possible to signifi-cantly affect particle parameters by using the new configuration solutions without creating construction complications.
Elsaidi, Sameh K; Mohamed, Mona H; Simon, Cory M; Braun, Efrem; Pham, Tony; Forrest, Katherine A; Xu, Wenqian; Banerjee, Debasis; Space, Brian; Zaworotko, Michael J; Thallapally, Praveen K
2017-03-01
Dynamic and flexible metal-organic frameworks (MOFs) that respond to external stimuli, such as stress, light, heat, and the presence of guest molecules, hold promise for applications in chemical sensing, drug delivery, gas separations, and catalysis. A greater understanding of the relationship between flexible constituents in MOFs and gas adsorption may enable the rational design of MOFs with dynamic moieties and stimuli-responsive behavior. Here, we detail the effect of subtle structural changes upon the gas sorption behavior of two "SIFSIX" pillared square grid frameworks, namely SIFSIX-3-M (M = Ni, Fe). We observe a pronounced inflection in the Xe adsorption isotherm in the Ni variant. With evidence from X-ray diffraction studies, density functional theory, and molecular simulations, we attribute the inflection to a disordered to ordered transition of the rotational configurations of the pyrazine rings induced by sorbate-sorbent interactions. We also address the effect of cage size, temperature, and sorbate on the guest-induced ring rotation and the adsorption isotherms. The absence of an inflection in the Xe adsorption isotherm in SIFSIX-3-Fe and in the Kr, N 2 , and CO 2 adsorption isotherms in SIFSIX-3-Ni suggest that the inflection is highly sensitive to the match between the size of the cage and the guest molecule.
Atmospheric gas dynamics in the Perseus cluster observed with Hitomi
NASA Astrophysics Data System (ADS)
Hitomi Collaboration; Aharonian, Felix; Akamatsu, Hiroki; Akimoto, Fumie; Allen, Steven W.; Angelini, Lorella; Audard, Marc; Awaki, Hisamitsu; Axelsson, Magnus; Bamba, Aya; Bautz, Marshall W.; Blandford, Roger; Brenneman, Laura W.; Brown, Gregory V.; Bulbul, Esra; Cackett, Edward M.; Canning, Rebecca E. A.; Chernyakova, Maria; Chiao, Meng P.; Coppi, Paolo S.; Costantini, Elisa; de Plaa, Jelle; de Vries, Cor P.; den Herder, Jan-Willem; Done, Chris; Dotani, Tadayasu; Ebisawa, Ken; Eckart, Megan E.; Enoto, Teruaki; Ezoe, Yuichiro; Fabian, Andrew C.; Ferrigno, Carlo; Foster, Adam R.; Fujimoto, Ryuichi; Fukazawa, Yasushi; Furuzawa, Akihiro; Galeazzi, Massimiliano; Gallo, Luigi C.; Gandhi, Poshak; Giustini, Margherita; Goldwurm, Andrea; Gu, Liyi; Guainazzi, Matteo; Haba, Yoshito; Hagino, Kouichi; Hamaguchi, Kenji; Harrus, Ilana M.; Hatsukade, Isamu; Hayashi, Katsuhiro; Hayashi, Takayuki; Hayashi, Tasuku; Hayashida, Kiyoshi; Hiraga, Junko S.; Hornschemeier, Ann; Hoshino, Akio; Hughes, John P.; Ichinohe, Yuto; Iizuka, Ryo; Inoue, Hajime; Inoue, Shota; Inoue, Yoshiyuki; Ishida, Manabu; Ishikawa, Kumi; Ishisaki, Yoshitaka; Iwai, Masachika; Kaastra, Jelle; Kallman, Tim; Kamae, Tsuneyoshi; Kataoka, Jun; Katsuda, Satoru; Kawai, Nobuyuki; Kelley, Richard L.; Kilbourne, Caroline A.; Kitaguchi, Takao; Kitamoto, Shunji; Kitayama, Tetsu; Kohmura, Takayoshi; Kokubun, Motohide; Koyama, Katsuji; Koyama, Shu; Kretschmar, Peter; Krimm, Hans A.; Kubota, Aya; Kunieda, Hideyo; Laurent, Philippe; Lee, Shiu-Hang; Leutenegger, Maurice A.; Limousin, Olivier; Loewenstein, Michael; Long, Knox S.; Lumb, David; Madejski, Greg; Maeda, Yoshitomo; Maier, Daniel; Makishima, Kazuo; Markevitch, Maxim; Matsumoto, Hironori; Matsushita, Kyoko; McCammon, Dan; McNamara, Brian R.; Mehdipour, Missagh; Miller, Eric D.; Miller, Jon M.; Mineshige, Shin; Mitsuda, Kazuhisa; Mitsuishi, Ikuyuki; Miyazawa, Takuya; Mizuno, Tsunefumi; Mori, Hideyuki; Mori, Koji; Mukai, Koji; Murakami, Hiroshi; Mushotzky, Richard F.; Nakagawa, Takao; Nakajima, Hiroshi; Nakamori, Takeshi; Nakashima, Shinya; Nakazawa, Kazuhiro; Nobukawa, Kumiko K.; Nobukawa, Masayoshi; Noda, Hirofumi; Odaka, Hirokazu; Ohashi, Takaya; Ohno, Masanori; Okajima, Takashi; Ota, Naomi; Ozaki, Masanobu; Paerels, Frits; Paltani, Stéphane; Petre, Robert; Pinto, Ciro; Porter, Frederick S.; Pottschmidt, Katja; Reynolds, Christopher S.; Safi-Harb, Samar; Saito, Shinya; Sakai, Kazuhiro; Sasaki, Toru; Sato, Goro; Sato, Kosuke; Sato, Rie; Sawada, Makoto; Schartel, Norbert; Serlemtsos, Peter J.; Seta, Hiromi; Shidatsu, Megumi; Simionescu, Aurora; Smith, Randall K.; Soong, Yang; Stawarz, Łukasz; Sugawara, Yasuharu; Sugita, Satoshi; Szymkowiak, Andrew; Tajima, Hiroyasu; Takahashi, Hiromitsu; Takahashi, Tadayuki; Takeda, Shin'ichiro; Takei, Yoh; Tamagawa, Toru; Tamura, Takayuki; Tanaka, Keigo; Tanaka, Takaaki; Tanaka, Yasuo; Tanaka, Yasuyuki T.; Tashiro, Makoto S.; Tawara, Yuzuru; Terada, Yukikatsu; Terashima, Yuichi; Tombesi, Francesco; Tomida, Hiroshi; Tsuboi, Yohko; Tsujimoto, Masahiro; Tsunemi, Hiroshi; Tsuru, Takeshi Go; Uchida, Hiroyuki; Uchiyama, Hideki; Uchiyama, Yasunobu; Ueda, Shutaro; Ueda, Yoshihiro; Uno, Shin'ichiro; Urry, C. Megan; Ursino, Eugenio; Wang, Qian H. S.; Watanabe, Shin; Werner, Norbert; Wilkins, Dan R.; Williams, Brian J.; Yamada, Shinya; Yamaguchi, Hiroya; Yamaoka, Kazutaka; Yamasaki, Noriko Y.; Yamauchi, Makoto; Yamauchi, Shigeo; Yaqoob, Tahir; Yatsu, Yoichi; Yonetoku, Daisuke; Zhuravleva, Irina; Zoghbi, Abderahmen
2018-03-01
Extending the earlier measurements reported in Hitomi collaboration (2016, Nature, 535, 117), we examine the atmospheric gas motions within the central 100 kpc of the Perseus cluster using observations obtained with the Hitomi satellite. After correcting for the point spread function of the telescope and using optically thin emission lines, we find that the line-of-sight velocity dispersion of the hot gas is remarkably low and mostly uniform. The velocity dispersion reaches a maxima of approximately 200 km s-1 toward the central active galactic nucleus (AGN) and toward the AGN inflated northwestern "ghost" bubble. Elsewhere within the observed region, the velocity dispersion appears constant around 100 km s-1. We also detect a velocity gradient with a 100 km s-1 amplitude across the cluster core, consistent with large-scale sloshing of the core gas. If the observed gas motions are isotropic, the kinetic pressure support is less than 10% of the thermal pressure support in the cluster core. The well-resolved, optically thin emission lines have Gaussian shapes, indicating that the turbulent driving scale is likely below 100 kpc, which is consistent with the size of the AGN jet inflated bubbles. We also report the first measurement of the ion temperature in the intracluster medium, which we find to be consistent with the electron temperature. In addition, we present a new measurement of the redshift of the brightest cluster galaxy NGC 1275.
NASA Technical Reports Server (NTRS)
Hartman, A. S.; Nutt, K. W.
1982-01-01
Tests of the space shuttle external tank foam insulation were conducted in the von Karman Gas Dynamics Facility Tunnel C. For these tests, Tunnel C was run at Mach 4 with a total temperature of 1440 F and a total pressure which varied from 30-100 psia. Cold wall heating rates were changed by varying the test article support wedge angle and by adding and removing a shock generator or a cylindrical protuberance. Selected results are presented to illustrate the test techniques and typical data obtained.
The CIRS Investigation on Cassini after Six Years at Saturn
NASA Technical Reports Server (NTRS)
Jennings, Donald
2010-01-01
The CIRS investigation designed to provide: 1) infrared spectroscopy of thermal emission from atmospheres, rings, and surfaces in 10 +/- 1450 cm(exp -1) (1000 +/- 7 micron) region; 2) global mapping in atmospheres of three dimensional and temporal variation of gas composition, temperatures, dynamics, and aerosols and clouds; and 3) mapping of rings and icy satellite surfaces for composition and thermal properties. Topics include: optical and mechanical layouts, instrument description, preparation for launch, Saturn's rings in the light spectrum, Saturn brightness temperature spectrum, and views of Saturn's surface, rings, and Saturn's moons and their atmospheres.
Light-induced metal-insulator transition in a switchable mirror.
Hoekstra, A F; Roy, A S; Rosenbaum, T F; Griessen, R; Wijngaarden, R J; Koeman, N J
2001-06-04
Rare earth hydride films can be converted reversibly from metallic mirrors to insulating windows simply by changing the surrounding hydrogen gas pressure at room temperature. At low temperatures, in situ doping is not possible in this way as hydrogen cannot diffuse. However, our finding of persistent photoconductivity under ultraviolet illumination offers an attractive possibility to tune yttrium hydride through the T = 0 metal-insulator transition. Conductivity and Hall measurements are used to determine critical exponents. The unusually large value for the product of the static and dynamical critical exponents appears to signify the important role played by electron-electron interactions.
Dynamic Measurement of Temperature, Velocity, and Density in Hot Jets Using Rayleigh Scattering
NASA Technical Reports Server (NTRS)
Mielke, Amy F.; Elam, Kristie A.
2008-01-01
A molecular Rayleigh scattering technique was utilized to measure time-resolved gas temperature, velocity, and density in unseeded gas flows at sampling rates up to 10 kHz. A high power continuous-wave (cw) laser beam was focused at a point in an air flow field and Rayleigh scattered light was collected and fiber-optically transmitted to a Fabry-Perot interferometer for spectral analysis. Photomultipler tubes operated in the photon counting mode allowed high frequency sampling of the total signal level and the circular interference pattern to provide time-resolved density, temperature, and velocity measurements. Mean and rms velocity and temperature, as well as power spectral density calculations, are presented for measurements in a hydrogen-combustor heated jet facility with a 50.8-mm diameter nozzle at the NASA Glenn Research Center (GRC). The Rayleigh measurements are compared with particle image velocimetry data and CFD predictions. This technique is aimed at aeronautics research related to identifying noise sources in free jets, as well as applications in supersonic and hypersonic flows where measurement of flow properties, including mass flux, is required in the presence of shocks and ionization occurrence.
Zhang, Shenli; Perez-Page, Maria; Guan, Kelly; Yu, Erick; Tringe, Joseph; Castro, Ricardo H R; Faller, Roland; Stroeve, Pieter
2016-11-08
Molecular dynamics (MD) and Monte Carlo (MC) simulations were applied together for the first time to reveal the porous structure transformation mechanisms of mesoporous silica MCM-41 subjected to temperatures up to 2885 K. Silica was experimentally characterized to inform the models and enable prediction of changes in gas adsorption/separation properties. MD simulations suggest that the pore closure process is activated by a collective diffusion of matrix atoms into the porous region, accompanied by bond reformation at the surface. Degradation is kinetically limited, such that complete pore closure is postponed at high heating rates. We experimentally observe decreased gas adsorption with increasing temperature in mesoporous silica heated at fixed rates, due to pore closure and structural degradation consistent with simulation predictions. Applying the Kissinger equation, we find a strong correlation between the simulated pore collapse temperatures and the experimental values which implies an activation energy of 416 ± 17 kJ/mol for pore closure. MC simulations give the adsorption and selectivity for thermally treated MCM-41, for N 2 , Ar, Kr, and Xe at room temperature within the 1-10 000 kPa pressure range. Relative to pristine MCM-41, we observe that increased surface roughness due to decreasing pore size amplifies the difference of the absolute adsorption amount differently for different adsorbate molecules. In particular, we find that adsorption of strongly interacting molecules can be enhanced in the low-pressure region while adsorption of weakly interacting molecules is inhibited. This then results in higher selectivity in binary mixture adsorption in mesoporous silica.
1-D DSMC simulation of Io's atmospheric collapse and reformation during and after eclipse
NASA Astrophysics Data System (ADS)
Moore, C. H.; Goldstein, D. B.; Varghese, P. L.; Trafton, L. M.; Stewart, B.
2009-06-01
A one-dimensional Direct Simulation Monte Carlo (DSMC) model is used to examine the effects of a non-condensable species on Io's sulfur dioxide sublimation atmosphere during eclipse and just after egress. Since the vapor pressure of SO 2 is extremely sensitive to temperature, the frost-supported dayside sublimation atmosphere had generally been expected to collapse during eclipse as the surface temperature dropped. For a pure SO 2 atmosphere, however, it was found that during the first 10 min of eclipse, essentially no change in the atmospheric properties occurs at altitudes above ˜100 km due to the finite ballistic/acoustic time. Hence immediately after ingress the auroral emission morphology above 100 km should resemble that of the immediate pre-eclipse state. Furthermore, the collapse dynamics are found to be greatly altered by the presence of even a small amount of a non-condensable species which forms a diffusion layer near the surface that prevents rapid collapse. It is found that after 10 min essentially no collapse has occurred at altitudes above ˜20 km when a nominal mole fraction of non-condensable gas is present. Collapse near the surface occurs relatively quickly until a static diffusion layer many mean free paths thick of the non-condensable gas builds up which then retards further collapse of the SO 2 atmosphere. For example, for an initial surface temperature of 110 K and 35% non-condensable mole-fraction, the ratio of the SO 2 column density to the initial column density was found to be 0.73 after 10 min, 0.50 after 30 min, and 0.18 at the end of eclipse. However, real gas species (SO, O 2) may not be perfectly non-condensable at Io's surface temperatures. If the gas species was even weakly condensable (non-zero sticking/reaction coefficient) then the effect of the diffusion layer on the dynamics was dramatically reduced. In fact, if the sticking coefficient of the non-condensable exceeds ˜0.25, the collapse dynamics are effectively the same as if there were no non-condensable present. This sensitivity results because the loss of non-condensable to the surface reduces the effective diffusion layer size, and the formation of an effective diffusion layer requires that the layer be stationary; this does not occur if the surface is a sink. Upon egress, vertical stratification of the condensable and non-condensable species occurs, with the non-condensable species being lifted (or pushed) to higher altitudes by the sublimating SO 2 after the sublimating atmosphere becomes collisional. Stratification should affect the morphology and intensity of auroral glows shortly after egress.
In-Situ Ultrafast 3D Imaging of Magma Vesiculation at High Temperature
NASA Astrophysics Data System (ADS)
Ulmer, P.; Pistone, M.; Caricchi, L.; Fife, J.; Marone, F.; Benson, P. M.; Almqvist, B.; Reusser, E.; Rust, A.; Burlini, L.
2011-12-01
We present new experimental results on magma vesiculation at high temperature. We investigated the processes of volatile exsolution (nucleation, growth and coalescence of gas bubbles) in magmas by performing in-situ high-temperature and ambient pressure experiments. Samples were heated with a newly-commissioned class 4 laser system and manual control. Simultaneously, the evolving 3D structure was captured by ultrafast synchrotron based X-ray tomographic microscopy (pixel size of 2.9 microns; 1 complete tomographic dataset acquired in 1 s), performed at the TOMCAT beam-line at Swiss Light Source (PSI, Villigen, Switzerland). Hydrous crystal- and bubble-free magmatic glasses liable to vesiculate at high temperature (400-1100 °C) were employed for the experiments. The samples used were cylindrical cores (2 mm in diameter and 2 mm in length), drilled from natural samples of obsidian (from: Lipari Island, Italy; Mayor Island, New Zealand; Tenerife Island, Spain; Little Glass Mountain, USA), containing different amounts of water (less than 1 wt%). These were chosen to represent a range of different physical properties (i.e., viscosity) as function of increasing temperature, due to their specific chemical compositions and, in particular, water content in the starting glass (measured via Karl Fischer titration). We observed the development of four different kinds of 3D microstructures during in-situ high-temperature experiments, depending on the starting material employed: (1) low vesicularity (40 vol%) with a narrow range in size of bubbles, which are generally spherical; (2) high vesicularity (80 vol%), showing a range of bubble sizes, shapes and extent of coalescence; (3) high vesicularity (85 vol%) and a polyhedral cell network (similar to reticulites); (4) a single expanding bubble. No magma fragmentation occurred in any of the experiments performed; we noticed different degrees of vertical thermal expansion, mainly depending on the amount of bubbles generated during heating. The real-time three-dimensional analyses provide new insights into the nucleation and exsolution mechanisms of volatiles that occur during ascent of magmas in volcanic conduits. As the timescale and modality of gas release from magmas are known to exert a key control on eruptive dynamics, we therefore propose a model that links the evolution of viscosity and water content with the modalities of vesiculation, in order to establish a relationship between gas release and eruptive dynamics.
Desertification of the peritoneum by thin-film evaporation during laparoscopy.
Ott, Douglas E
2003-01-01
To assess the effects of gas flow during insufflation on peritoneal fluid and peritoneal tissue regarding transient thermal behavior and thin-film evaporation. The effects of laparoscopic gas on peritoneal cell desiccation and peritoneal fluid thin-film evaporation were analyzed. Measurment of tissue and peritoneal fluid and analysis of gas flow dynamics during laparoscopy. High-velocity gas interface conditions during laparoscopic gas insufflation result in peritoneal surface temperature and decreases up to 20 degrees C/second due to rapid thin-film evaporation of the peritoneal fluid. Evaporation of the thin film of peritoneal fluid extends quickly to the peritoneal cell membrane, causing peritoneal cell desiccation, internal cytoplasmic stress, and disruption of the cell membrane, resulting in loss of peritoneal surface continuity and integrity. Changing the gas conditions to 35 degrees C and 95% humidity maintains normal peritoneal fluid thin-film characteristics, cellular integrity, and prevents evaporative losses. Cold, dry gas and the characteristics of the laparoscopic gas delivery apparatus cause local peritoneal damaging alterations by high-velocity gas flow with extremely dry gas, creating extreme arid surface conditions, rapid evaporative and hydrological changes, tissue desiccation, and peritoneal fluid alterations that contribute to the process of desertification and thin-film evaporation. Peritoneal desertification is preventable by preconditioning the gas to 35 degrees C and 95% humidity.
Zhao, J. Y.; Bi, W.; Sinogeikin, S.; ...
2017-12-13
In order to study the vibrational and thermal dynamic properties of materials using the nuclear resonant inelastic X-ray scattering (NRIXS) and the hyperfine interactions and magnetic properties using the synchrotron Mössbauer spectroscopy (SMS) at simultaneously high pressure (multi-Mbar) and low temperature (T< 10 K), a new miniature panoramic diamond anvil cell (mini-pDAC) as well as a special gas membrane driven mechanism have been developed and implemented at 3ID, Advanced Photon Source. The gas membrane system allows in situ pressure tuning of the mini- pDAC at low temperature. The mini-pDAC fits into a specially designed compact liquid helium flow cryostat systemmore » to achieve low temperature, where liquid helium flows through the holder of the mini-pDAC to cool the sample more efficiently. The sample temperature as low as 9 K has been achieved. Through the membrane, the sample pressure as high as 1.4 Mbar has been generated from this mini-pDAC. The instrument has been routinely used at 3ID for NRIXS and SMS studies. In this paper, technical details of the mini-pDAC, membrane engaging mechanism and the cryostat system are described, and some experimental results are discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, J. Y.; Bi, W.; Sinogeikin, S.
In order to study the vibrational and thermal dynamic properties of materials using the nuclear resonant inelastic X-ray scattering (NRIXS) and the hyperfine interactions and magnetic properties using the synchrotron Mössbauer spectroscopy (SMS) at simultaneously high pressure (multi-Mbar) and low temperature (T< 10 K), a new miniature panoramic diamond anvil cell (mini-pDAC) as well as a special gas membrane driven mechanism have been developed and implemented at 3ID, Advanced Photon Source. The gas membrane system allows in situ pressure tuning of the mini- pDAC at low temperature. The mini-pDAC fits into a specially designed compact liquid helium flow cryostat systemmore » to achieve low temperature, where liquid helium flows through the holder of the mini-pDAC to cool the sample more efficiently. The sample temperature as low as 9 K has been achieved. Through the membrane, the sample pressure as high as 1.4 Mbar has been generated from this mini-pDAC. The instrument has been routinely used at 3ID for NRIXS and SMS studies. In this paper, technical details of the mini-pDAC, membrane engaging mechanism and the cryostat system are described, and some experimental results are discussed.« less
NASA Astrophysics Data System (ADS)
Yousfi, M.; Eichwald, O.; Merbahi, N.; Jomaa, N.
2012-08-01
This work is devoted to fluid modeling based on experimental investigations of a classical setup of a low-temperature plasma jet. The latter is generated at atmospheric pressure using a quartz tube of small diameter crossed by helium gas flow and surrounded by an electrode system powered by a mono-polar high-voltage pulse. The streamer-like behavior of the fast plasma bullets or ionization waves launched in ambient air for every high-voltage pulse, already emphasized in the literature from experimental or analytical considerations or recent preliminary fluid models, is confirmed by a numerical one-moment fluid model for the simulation of the ionization wave dynamics. The dominant interactions between electron and the main ions present in He-air mixtures with their associated basic data are taken into account. The gradual dilution of helium in air outside the tube along the axis is also considered using a gas hydrodynamics model based on the Navier-Stokes equation assuming a laminar flow. Due to the low magnitude of the reduced electric field E/N (not exceeding 15 Td), it is first shown that consideration of the stepwise ionization of helium metastables is required to reach the critical size of the electron avalanches in order to initiate the formation of ionization waves. It is also shown that a gas pre-ionization ahead of the wave front of about 109 cm-3 (coming from Penning ionization without considering the gas photo-ionization) is required for the propagation. Furthermore, the second ionization wave experimentally observed during the falling time of the voltage pulse, between the powered electrode and the tube exit, is correlated with the electric field increase inside the ionized channel in the whole region between the electrode and the tube exit. The propagation velocity and the distance traveled by the front of the ionization wave outside the tube in the downstream side are consistent with the present experimental measurements. In comparison with the streamer dynamics in a classical corona discharge, it is shown that under the same gas composition the plasma jet ionization waves propagate with a lower velocity (about 5 times), and have a higher diameter (at least 10 times) and a lower plasma density (at least 100 times).
Advanced high temperature instrument for hot section research applications
NASA Technical Reports Server (NTRS)
Englund, D. R.; Seasholtz, R. G.
1989-01-01
Programs to develop research instrumentation for use in turbine engine hot sections are described. These programs were initiated to provide improved measurements capability as support for a multidisciplinary effort to establish technology leading to improved hot section durability. Specific measurement systems described here include heat flux sensors, a dynamic gas temperature measuring system, laser anemometry for hot section applications, an optical system for viewing the interior of a combustor during operation, thin film sensors for surface temperature and strain measurements, and high temperature strain measuring systems. The state of development of these sensors and measuring systems is described, and, in some cases, examples of measurements made with these instruments are shown. Work done at the NASA Lewis Research Center and at various contract and grant facilities is covered.
NASA Astrophysics Data System (ADS)
Nikolaev, V. S.; Timofeev, A. V.
2018-01-01
It is often suggested that inter-particle distance in stable dusty plasma structures decreases with cooling as a square root of neutral gas temperature. Deviations from this dependence (up to the increase at cryogenic temperatures) found in the experimental results for the pressures range 0.1-8.0 mbar and for the currents range 0.1-1.0 mA are given. Inter-particle distance dependences on the charge of particles, parameter of the trap and the screening length in surrounding plasma are obtained for different conditions from molecular dynamics simulations. They are well approximated by power functions in the mentioned range of parameters. It is found that under certain assumptions thermophoretical force is responsible for inter-particle distance increase at cryogenic temperatures.
NASA Astrophysics Data System (ADS)
Chang, C. Y.; Kang, B. S.; Wang, H. T.; Ren, F.; Wang, Y. L.; Pearton, S. J.; Dennis, D. M.; Johnson, J. W.; Rajagopal, P.; Roberts, J. C.; Piner, E. L.; Linthicum, K. J.
2008-06-01
AlGaN /GaN high electron mobility transistors (HEMTs) functionalized with polyethylenimine/starch were used for detecting CO2 with a wide dynamic range of 0.9%-50% balanced with nitrogen at temperatures from 46to220°C. Higher detection sensitivity to CO2 gas was achieved at higher testing temperatures. At a fixed source-drain bias voltage of 0.5V, drain-source current of the functionalized HEMTs showed a sublinear correlation upon exposure to different CO2 concentrations at low temperature. The superlinear relationship was at high temperature. The sensor exhibited a reversible behavior and a repeatable current change of 32 and 47μA with the introduction of 28.57% and 37.5% CO2 at 108°C, respectively.
NASA Astrophysics Data System (ADS)
Zhou, W.; Zhao, C. S.; Duan, L. B.; Qu, C. R.; Lu, J. Y.; Chen, X. P.
Oxy-fuel circulating fluidized bed (CFB) combustion technology is in the stage of initial development for carbon capture and storage (CCS). Numerical simulation is helpful to better understanding the combustion process and will be significant for CFB scale-up. In this paper, a computational fluid dynamics (CFD) model was employed to simulate the hydrodynamics of gas-solid flow in a CFB riser based on the Eulerian-Granular multiphase model. The cold model predicted the main features of the complex gas-solid flow, including the cluster formation of the solid phase along the walls, the flow structure of up-flow in the core and downward flow in the annular region. Furthermore, coal devolatilization, char combustion and heat transfer were considered by coupling semi-empirical sub-models with CFD model to establish a comprehensive model. The gas compositions and temperature profiles were predicted and the outflow gas fractions are validated with the experimental data in air combustion. With the experimentally validated model being applied, the concentration and temperature distributions in O2/CO2 combustion were predicted. The model is useful for the further development of a comprehensive model including more sub-models, such as pollutant emissions, and better understanding the combustion process in furnace.
Maximum drop radius and critical Weber number for splashing in the dynamical Leidenfrost regime
NASA Astrophysics Data System (ADS)
Riboux, Guillaume; Gordillo, Jose Manuel
2015-11-01
At room temperature, when a drop impacts against a smooth solid surface at a velocity above the so called critical velocity for splashing, the drop loses its integrity and fragments into tiny droplets violently ejected radially outwards. Below this critical velocity, the drop simply spreads over the substrate. Splashing is also reported to occur for solid substrate temperatures above the Leidenfrost temperature, T, for which a vapor layer prevents the drop from touching the substrate. In this case, the splashing morphology largely differs from the one reported at room temperature because, thanks to the presence of the gas layer, the shear stresses on the liquid do not decelerate the ejected lamella. Our purpose here is to predict, for wall temperatures above T, the dependence of the critical impact velocity on the temperature of the substrate as well as the maximum spreading radius for impacting velocities below the critical velocity for splashing. This is done making use of boundary integral simulations, where the velocity and the height of the liquid layer at the root of the ejected lamella are calculated numerically. This information constitutes the initial conditions for the one dimensional mass and momentum equations governing the dynamics of the toroidal rim limiting the edge of the lamella.
NASA Technical Reports Server (NTRS)
Bade, W. L.; Yos, J. M.
1975-01-01
A computer program for calculating quasi-one-dimensional gas flow in axisymmetric and two-dimensional nozzles and rectangular channels is presented. Flow is assumed to start from a state of thermochemical equilibrium at a high temperature in an upstream reservoir. The program provides solutions based on frozen chemistry, chemical equilibrium, and nonequilibrium flow with finite reaction rates. Electronic nonequilibrium effects can be included using a two-temperature model. An approximate laminar boundary layer calculation is given for the shear and heat flux on the nozzle wall. Boundary layer displacement effects on the inviscid flow are considered also. Chemical equilibrium and transport property calculations are provided by subroutines. The code contains precoded thermochemical, chemical kinetic, and transport cross section data for high-temperature air, CO2-N2-Ar mixtures, helium, and argon. It provides calculations of the stagnation conditions on axisymmetric or two-dimensional models, and of the conditions on the flat surface of a blunt wedge. The primary purpose of the code is to describe the flow conditions and test conditions in electric arc heated wind tunnels.
Fundamental Mixing and Combustion Experiments for Propelled Hypersonic Flight
NASA Technical Reports Server (NTRS)
Cutler, A. D.; Diskin, G. S.; Danehy, P. M.; Drummond, J. P.
2002-01-01
Two experiments have been conducted to acquire data for the validation of computational fluid dynamics (CFD) codes used in the design of supersonic combustors. The first experiment is a study of a supersonic coaxial jet into stagnant air in which the center jet is of a light gas, the coflow jet is of air, and the mixing layer between them is compressible. The jet flow field is characterized using schlieren imaging, surveys with Pitot, total temperature and gas sampling probes, and RELIEF velocimetry. VULCAN, a structured grid CFD code, is used to solve for the nozzle and jet flow. The second experiment is a study of a supersonic combustor consisting of a diverging duct with single downstream-angled wall injector. Entrance Mach number is 2 and enthalpy is nominally that of Mach 7 flight. Coherent anti-Stokes Raman spectroscopy (CARS) has been used to obtain nitrogen temperature in planes of the flow, and surface pressures and temperatures have also been acquired. Modern-design-of-experiment techniques have been used to maximize the quality of the data set.