Sample records for dynamic helical computed

  1. Geometry Dynamics of α-Helices in Different Class I Major Histocompatibility Complexes

    PubMed Central

    Karch, Rudolf; Schreiner, Wolfgang

    2015-01-01

    MHC α-helices form the antigen-binding cleft and are of particular interest for immunological reactions. To monitor these helices in molecular dynamics simulations, we applied a parsimonious fragment-fitting method to trace the axes of the α-helices. Each resulting axis was fitted by polynomials in a least-squares sense and the curvature integral was computed. To find the appropriate polynomial degree, the method was tested on two artificially modelled helices, one performing a bending movement and another a hinge movement. We found that second-order polynomials retrieve predefined parameters of helical motion with minimal relative error. From MD simulations we selected those parts of α-helices that were stable and also close to the TCR/MHC interface. We monitored the curvature integral, generated a ruled surface between the two MHC α-helices, and computed interhelical area and surface torsion, as they changed over time. We found that MHC α-helices undergo rapid but small changes in conformation. The curvature integral of helices proved to be a sensitive measure, which was closely related to changes in shape over time as confirmed by RMSD analysis. We speculate that small changes in the conformation of individual MHC α-helices are part of the intrinsic dynamics induced by engagement with the TCR. PMID:26649324

  2. Molecular dynamics of individual alpha-helices of bacteriorhodopsin in dimyristol phosphatidylocholine. I. Structure and dynamics.

    PubMed

    Woolf, T B

    1997-11-01

    Understanding the role of the lipid bilayer in membrane protein structure and dynamics is needed for tertiary structure determination methods. However, the molecular details are not well understood. Molecular dynamics computer calculations can provide insight into these molecular details of protein:lipid interactions. This paper reports on 10 simulations of individual alpha-helices in explicit lipid bilayers. The 10 helices were selected from the bacteriorhodopsin structure as representative alpha-helical membrane folding components. The bilayer is constructed of dimyristoyl phosphatidylcholine molecules. The only major difference between simulations is the primary sequence of the alpha-helix. The results show dramatic differences in motional behavior between alpha-helices. For example, helix A has much smaller root-mean-squared deviations than does helix D. This can be understood in terms of the presence of aromatic residues at the interface for helix A that are not present in helix D. Additional motions are possible for the helices that contain proline side chains relative to other amino acids. The results thus provide insight into the types of motion and the average structures possible for helices within the bilayer setting and demonstrate the strength of molecular simulations in providing molecular details that are not directly visualized in experiments.

  3. Helical vortices: viscous dynamics and instability

    NASA Astrophysics Data System (ADS)

    Rossi, Maurice; Selcuk, Can; Delbende, Ivan; Ijlra-Upmc Team; Limsi-Cnrs Team

    2014-11-01

    Understanding the dynamical properties of helical vortices is of great importance for numerous applications such as wind turbines, helicopter rotors, ship propellers. Locally these flows often display a helical symmetry: fields are invariant through combined axial translation of distance Δz and rotation of angle θ = Δz / L around the same z-axis, where 2 πL denotes the helix pitch. A DNS code with built-in helical symmetry has been developed in order to compute viscous quasi-steady basic states with one or multiple vortices. These states will be characterized (core structure, ellipticity, ...) as a function of the pitch, without or with an axial flow component. The instability modes growing in the above base flows and their growth rates are investigated by a linearized version of the DNS code coupled to an Arnoldi procedure. This analysis is complemented by a helical thin-cored vortex filaments model. ANR HELIX.

  4. Dynamic helical computed tomography of the pituitary gland in healthy dogs.

    PubMed

    Van der Vlugt-Meijer, Roselinda H; Meij, Björn P; Voorhout, George

    2007-01-01

    Dynamic helical computed tomography (CT) of the pituitary gland can be used to image the three-dimensional shape and dimensions of abnormalities within the pituitary gland. The aim of this study was to develop a protocol for dynamic helical CT of the pituitary gland in healthy dogs as a future reference study for patients with pituitary disease. Dynamic helical series of nine scans of the pituitary gland during and following contrast medium injection were performed in six healthy dogs using the following protocols: a series with 1 mm collimation and a table feed per X-ray tube rotation of 2 mm (pitch of 2) in six dogs, a series with 2 mm collimation and pitch of 2 in three dogs, and a series with 1 mm collimation and pitch of 1 in three other dogs. Multiplanar reconstructions of the images were made using a reconstruction index of 0.5. Images of all series were assessed visually for enhancement of the arteries, the neurohypophysis, and the adenohypophysis. The enhancement pattern of the neurohypophysis was distinguished adequately from that of the adenohypophysis in five dogs that were scanned with 1 mm collimation and pitch of 2, but the difference was less discernable when the other protocols were used. The carotid artery, its trifurcation, and the arterial cerebral circle were best visualized in dorsal reconstructions. Dynamic helical CT of the pituitary gland in healthy dogs can be performed with 1 mm collimation and pitch of 2, and a scan length that includes the entire pituitary region. Using this protocol, with the specific scanner used, the neurohypophysis, the adenohypophysis, and the surrounding vascular structures are adequately visualized.

  5. Three-dimensional quantification of vorticity and helicity from 3D cine PC-MRI using finite-element interpolations.

    PubMed

    Sotelo, Julio; Urbina, Jesús; Valverde, Israel; Mura, Joaquín; Tejos, Cristián; Irarrazaval, Pablo; Andia, Marcelo E; Hurtado, Daniel E; Uribe, Sergio

    2018-01-01

    We propose a 3D finite-element method for the quantification of vorticity and helicity density from 3D cine phase-contrast (PC) MRI. By using a 3D finite-element method, we seamlessly estimate velocity gradients in 3D. The robustness and convergence were analyzed using a combined Poiseuille and Lamb-Ossen equation. A computational fluid dynamics simulation was used to compared our method with others available in the literature. Additionally, we computed 3D maps for different 3D cine PC-MRI data sets: phantom without and with coarctation (18 healthy volunteers and 3 patients). We found a good agreement between our method and both the analytical solution of the combined Poiseuille and Lamb-Ossen. The computational fluid dynamics results showed that our method outperforms current approaches to estimate vorticity and helicity values. In the in silico model, we observed that for a tetrahedral element of 2 mm of characteristic length, we underestimated the vorticity in less than 5% with respect to the analytical solution. In patients, we found higher values of helicity density in comparison to healthy volunteers, associated with vortices in the lumen of the vessels. We proposed a novel method that provides entire 3D vorticity and helicity density maps, avoiding the used of reformatted 2D planes from 3D cine PC-MRI. Magn Reson Med 79:541-553, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  6. Statistical analyses and computational prediction of helical kinks in membrane proteins

    NASA Astrophysics Data System (ADS)

    Huang, Y.-H.; Chen, C.-M.

    2012-10-01

    We have carried out statistical analyses and computer simulations of helical kinks for TM helices in the PDBTM database. About 59 % of 1562 TM helices showed a significant kink, and 38 % of these kinks are associated with prolines in a range of ±4 residues. Our analyses show that helical kinks are more populated in the central region of helices, particularly in the range of 1-3 residues away from the helix center. Among 1,053 helical kinks analyzed, 88 % of kinks are bends (change in helix axis without loss of helical character) and 12 % are disruptions (change in helix axis and loss of helical character). It is found that proline residues tend to cause larger kink angles in helical bends, while this effect is not observed in helical disruptions. A further analysis of these kinked helices suggests that a kinked helix usually has 1-2 broken backbone hydrogen bonds with the corresponding N-O distance in the range of 4.2-8.7 Å, whose distribution is sharply peaked at 4.9 Å followed by an exponential decay with increasing distance. Our main aims of this study are to understand the formation of helical kinks and to predict their structural features. Therefore we further performed molecular dynamics (MD) simulations under four simulation scenarios to investigate kink formation in 37 kinked TM helices and 5 unkinked TM helices. The representative models of these kinked helices are predicted by a clustering algorithm, SPICKER, from numerous decoy structures possessing the above generic features of kinked helices. Our results show an accuracy of 95 % in predicting the kink position of kinked TM helices and an error less than 10° in the angle prediction of 71.4 % kinked helices. For unkinked helices, based on various structure similarity tests, our predicted models are highly consistent with their crystal structure. These results provide strong supports for the validity of our method in predicting the structure of TM helices.

  7. Evaluation of helicity generation in the tropical storm Gonu

    NASA Astrophysics Data System (ADS)

    Farahani, Majid M.; Khansalari, Sakineh; Azadi, Majid

    2017-06-01

    Helicity is a valuable dynamical concept for the study of rotating flows. Consequently helicity flux, indicative of the source or sink of helicity, owns comparable importance. In this study, while reviewing the existing methods, a mathematical relation between helicity and helicity-flux is introduced, discussed and examined. The computed values of helicity and helicity fluxes in an actual case, using the classical and this proposed method are compared. The down-stream helicity flux including sources and sinks of helicity is considered for the tropical storm Gonu that occurred over the coasts of Oman and Iran on June 2-7, 2007. Results show that the buoyancy, through the upper troposphere down to a height within boundary layer, is the main source in producing helicity, and surface friction from earth surface up to a height within boundary layer, is the main dissipating element of helicity. The dominance of buoyancy forcing over the dissipative friction forcing results in generation of vortex or enhancement of it after bouncing the land. Furthermore, the increase (decrease) of helicity results in an increase (decrease) in the height of the level in which maximum helicity flux occurs. It is suggested that the maximum helicity flux occurs at the top of the turbulent boundary layer, so that the height of boundary layer could be obtained.

  8. Free Enthalpy Differences between α-, π-, and 310-Helices of an Atomic Level Fine-Grained Alanine Deca-Peptide Solvated in Supramolecular Coarse-Grained Water.

    PubMed

    Lin, Zhixiong; Riniker, Sereina; van Gunsteren, Wilfred F

    2013-03-12

    Atomistic molecular dynamics simulations of peptides or proteins in aqueous solution are still limited to the multi-nanosecond time scale and multi-nanometer range by computational cost. Combining atomic solutes with a supramolecular solvent model in hybrid fine-grained/coarse-grained (FG/CG) simulations allows atomic detail in the region of interest while being computationally more efficient. We used enveloping distribution sampling (EDS) to calculate the free enthalpy differences between different helical conformations, i.e., α-, π-, and 310-helices, of an atomic level FG alanine deca-peptide solvated in a supramolecular CG water solvent. The free enthalpy differences obtained show that by replacing the FG solvent by the CG solvent, the π-helix is destabilized with respect to the α-helix by about 2.5 kJ mol(-1), and the 310-helix is stabilized with respect to the α-helix by about 9 kJ mol(-1). In addition, the dynamics of the peptide becomes faster. By introducing a FG water layer of 0.8 nm around the peptide, both thermodynamic and dynamic properties are recovered, while the hybrid FG/CG simulations are still four times more efficient than the atomistic simulations, even when the cutoff radius for the nonbonded interactions is increased from 1.4 to 2.0 nm. Hence, the hybrid FG/CG model, which yields an appropriate balance between reduced accuracy and enhanced computational speed, is very suitable for molecular dynamics simulation investigations of biomolecules.

  9. Conformational Changes in the Epidermal Growth Factor Receptor: Role of the Transmembrane Domain Investigated by Coarse-Grained MetaDynamics Free Energy Calculations

    PubMed Central

    2016-01-01

    The epidermal growth factor receptor (EGFR) is a dimeric membrane protein that regulates key aspects of cellular function. Activation of the EGFR is linked to changes in the conformation of the transmembrane (TM) domain, brought about by changes in interactions of the TM helices of the membrane lipid bilayer. Using an advanced computational approach that combines Coarse-Grained molecular dynamics and well-tempered MetaDynamics (CG-MetaD), we characterize the large-scale motions of the TM helices, simulating multiple association and dissociation events between the helices in membrane, thus leading to a free energy landscape of the dimerization process. The lowest energy state of the TM domain is a right-handed dimer structure in which the TM helices interact through the N-terminal small-X3-small sequence motif. In addition to this state, which is thought to correspond to the active form of the receptor, we have identified further low-energy states that allow us to integrate with a high level of detail a range of previous experimental observations. These conformations may lead to the active state via two possible activation pathways, which involve pivoting and rotational motions of the helices, respectively. Molecular dynamics also reveals correlation between the conformational changes of the TM domains and of the intracellular juxtamembrane domains, paving the way for a comprehensive understanding of EGFR signaling at the cell membrane. PMID:27459426

  10. Conformational Changes in the Epidermal Growth Factor Receptor: Role of the Transmembrane Domain Investigated by Coarse-Grained MetaDynamics Free Energy Calculations.

    PubMed

    Lelimousin, Mickaël; Limongelli, Vittorio; Sansom, Mark S P

    2016-08-24

    The epidermal growth factor receptor (EGFR) is a dimeric membrane protein that regulates key aspects of cellular function. Activation of the EGFR is linked to changes in the conformation of the transmembrane (TM) domain, brought about by changes in interactions of the TM helices of the membrane lipid bilayer. Using an advanced computational approach that combines Coarse-Grained molecular dynamics and well-tempered MetaDynamics (CG-MetaD), we characterize the large-scale motions of the TM helices, simulating multiple association and dissociation events between the helices in membrane, thus leading to a free energy landscape of the dimerization process. The lowest energy state of the TM domain is a right-handed dimer structure in which the TM helices interact through the N-terminal small-X3-small sequence motif. In addition to this state, which is thought to correspond to the active form of the receptor, we have identified further low-energy states that allow us to integrate with a high level of detail a range of previous experimental observations. These conformations may lead to the active state via two possible activation pathways, which involve pivoting and rotational motions of the helices, respectively. Molecular dynamics also reveals correlation between the conformational changes of the TM domains and of the intracellular juxtamembrane domains, paving the way for a comprehensive understanding of EGFR signaling at the cell membrane.

  11. Cutoff size need not strongly influence molecular dynamics results for solvated polypeptides.

    PubMed

    Beck, David A C; Armen, Roger S; Daggett, Valerie

    2005-01-18

    The correct treatment of van der Waals and electrostatic nonbonded interactions in molecular force fields is essential for performing realistic molecular dynamics (MD) simulations of solvated polypeptides. The most computationally tractable treatment of nonbonded interactions in MD utilizes a spherical distance cutoff (typically, 8-12 A) to reduce the number of pairwise interactions. In this work, we assess three spherical atom-based cutoff approaches for use with all-atom explicit solvent MD: abrupt truncation, a CHARMM-style electrostatic shift truncation, and our own force-shifted truncation. The chosen system for this study is an end-capped 17-residue alanine-based alpha-helical peptide, selected because of its use in previous computational and experimental studies. We compare the time-averaged helical content calculated from these MD trajectories with experiment. We also examine the effect of varying the cutoff treatment and distance on energy conservation. We find that the abrupt truncation approach is pathological in its inability to conserve energy. The CHARMM-style shift truncation performs quite well but suffers from energetic instability. On the other hand, the force-shifted spherical cutoff method conserves energy, correctly predicts the experimental helical content, and shows convergence in simulation statistics as the cutoff is increased. This work demonstrates that by using proper and rigorous techniques, it is possible to correctly model polypeptide dynamics in solution with a spherical cutoff. The inherent computational advantage of spherical cutoffs over Ewald summation (and related) techniques is essential in accessing longer MD time scales.

  12. Computer Modeling of Protocellular Functions: Peptide Insertion in Membranes

    NASA Technical Reports Server (NTRS)

    Rodriquez-Gomez, D.; Darve, E.; Pohorille, A.

    2006-01-01

    Lipid vesicles became the precursors to protocells by acquiring the capabilities needed to survive and reproduce. These include transport of ions, nutrients and waste products across cell walls and capture of energy and its conversion into a chemically usable form. In modem organisms these functions are carried out by membrane-bound proteins (about 30% of the genome codes for this kind of proteins). A number of properties of alpha-helical peptides suggest that their associations are excellent candidates for protobiological precursors of proteins. In particular, some simple a-helical peptides can aggregate spontaneously and form functional channels. This process can be described conceptually by a three-step thermodynamic cycle: 1 - folding of helices at the water-membrane interface, 2 - helix insertion into the lipid bilayer and 3 - specific interactions of these helices that result in functional tertiary structures. Although a crucial step, helix insertion has not been adequately studied because of the insolubility and aggregation of hydrophobic peptides. In this work, we use computer simulation methods (Molecular Dynamics) to characterize the energetics of helix insertion and we discuss its importance in an evolutionary context. Specifically, helices could self-assemble only if their interactions were sufficiently strong to compensate the unfavorable Free Energy of insertion of individual helices into membranes, providing a selection mechanism for protobiological evolution.

  13. Discrete Molecular Dynamics Can Predict Helical Prestructured Motifs in Disordered Proteins

    PubMed Central

    Han, Kyou-Hoon; Dokholyan, Nikolay V.; Tompa, Péter; Kalmár, Lajos; Hegedűs, Tamás

    2014-01-01

    Intrinsically disordered proteins (IDPs) lack a stable tertiary structure, but their short binding regions termed Pre-Structured Motifs (PreSMo) can form transient secondary structure elements in solution. Although disordered proteins are crucial in many biological processes and designing strategies to modulate their function is highly important, both experimental and computational tools to describe their conformational ensembles and the initial steps of folding are sparse. Here we report that discrete molecular dynamics (DMD) simulations combined with replica exchange (RX) method efficiently samples the conformational space and detects regions populating α-helical conformational states in disordered protein regions. While the available computational methods predict secondary structural propensities in IDPs based on the observation of protein-protein interactions, our ab initio method rests on physical principles of protein folding and dynamics. We show that RX-DMD predicts α-PreSMos with high confidence confirmed by comparison to experimental NMR data. Moreover, the method also can dissect α-PreSMos in close vicinity to each other and indicate helix stability. Importantly, simulations with disordered regions forming helices in X-ray structures of complexes indicate that a preformed helix is frequently the binding element itself, while in other cases it may have a role in initiating the binding process. Our results indicate that RX-DMD provides a breakthrough in the structural and dynamical characterization of disordered proteins by generating the structural ensembles of IDPs even when experimental data are not available. PMID:24763499

  14. Viability of Cross-Flow Fan with Helical Blades for Vertical Take-off and Landing Aircraft

    DTIC Science & Technology

    2012-09-01

    fluid dynamics (CFD) software, ANSYS - CFX , a three-dimensional (3-D) straight-bladed model was validated against previous study’s experimental results...computational fluid dynamics software (CFD), ANSYS - CFX , a three-dimensional (3-D) straight-bladed model was validated against previous study’s experimental...37 B. SIZING PARAMETERS AND ILLUSTRATION ................................. 37 APPENDIX B. ANSYS CFX PARAMETERS

  15. INTERPRETING ERUPTIVE BEHAVIOR IN NOAA AR 11158 VIA THE REGION'S MAGNETIC ENERGY AND RELATIVE-HELICITY BUDGETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tziotziou, Kostas; Georgoulis, Manolis K.; Liu Yang

    In previous works, we introduced a nonlinear force-free method that self-consistently calculates the instantaneous budgets of free magnetic energy and relative magnetic helicity in solar active regions (ARs). Calculation is expedient and practical, using only a single vector magnetogram per computation. We apply this method to a time series of 600 high-cadence vector magnetograms of the eruptive NOAA AR 11158 acquired by the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory over a five-day observing interval. Besides testing our method extensively, we use it to interpret the dynamical evolution in the AR, including eruptions. We find that themore » AR builds large budgets of both free magnetic energy and relative magnetic helicity, sufficient to power many more eruptions than the ones it gave within the interval of interest. For each of these major eruptions, we find eruption-related decreases and subsequent free-energy and helicity budgets that are consistent with the observed eruption (flare and coronal mass ejection (CME)) sizes. In addition, we find that (1) evolution in the AR is consistent with the recently proposed (free) energy-(relative) helicity diagram of solar ARs, (2) eruption-related decreases occur before the flare and the projected CME-launch times, suggesting that CME progenitors precede flares, and (3) self terms of free energy and relative helicity most likely originate from respective mutual terms, following a progressive mutual-to-self conversion pattern that most likely stems from magnetic reconnection. This results in the non-ideal formation of increasingly helical pre-eruption structures and instigates further research on the triggering of solar eruptions with magnetic helicity firmly placed in the eruption cadre.« less

  16. A tendril perversion in a helical oligomer: trapping and characterizing a mobile screw-sense reversal† †Electronic supplementary information (ESI) available. CCDC X-ray crystal data for 1a and 1b have been deposited with the CCDC, deposition numbers 1518806 and 1518807. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c6sc05474a Click here for additional data file. Click here for additional data file.

    PubMed Central

    Tomsett, Michael; Maffucci, Irene; Le Bailly, Bryden A. F.; Byrne, Liam; Bijvoets, Stefan M.; Lizio, M. Giovanna; Raftery, James; Butts, Craig P.; Webb, Simon J.; Contini, Alessandro

    2017-01-01

    Helical oligomers of achiral monomers adopt domains of uniform screw sense, which are occasionally interrupted by screw-sense reversals. These rare, elusive, and fast-moving features have eluded detailed characterization. We now describe the structure and habits of a screw-sense reversal trapped within a fragment of a helical oligoamide foldamer of the achiral quaternary amino acid 2-aminoisobutyric acid (Aib). The reversal was enforced by compelling the amide oligomer to adopt a right-handed screw sense at one end and a left-handed screw sense at the other. The trapped reversal was characterized by X-ray crystallography, and its dynamic properties were monitored by NMR and circular dichroism, and modelled computationally. Raman spectroscopy indicated that a predominantly helical architecture was maintained despite the reversal. NMR and computational results indicated a stepwise shift from one screw sense to another on moving along the helical chain, indicating that in solution the reversal is not localised at a specific location, but is free to migrate across a number of residues. Analogous unconstrained screw-sense reversals that are free to move within a helical structure are likely to provide the mechanism by which comparable helical polymers and foldamers undergo screw-sense inversion. PMID:28451368

  17. Low Reynolds Number Bacterial Robots

    NASA Astrophysics Data System (ADS)

    Giesbrecht, Grant; Ni, Katha; Vock, Isaac; Rodenborn, Bruce

    The dynamics of prokaryotic motility in a fluid is important in a wide range of fields. Our experiment models the locomotion of bacteria with a robotic swimmer made using a computer controlled DC motor that drives a helical flagellum formed from welding wire. Because of its small size, a bacterium swimming in water is like our robot swimming in corn syrup. We compensate for the size difference by placing the robot in highly viscous silicone oil. Previous research measured helical propulsion of a swimmer far from a boundary. However proximity to a boundary strongly affects bacterial swimming. We have designed a system to precisely control the distance from the flagellum to the tank wall, and have made some of the first macroscopic measurements of boundary effects on helical propulsion.

  18. Computational prediction of kink properties of helices in membrane proteins

    NASA Astrophysics Data System (ADS)

    Mai, T.-L.; Chen, C.-M.

    2014-02-01

    We have combined molecular dynamics simulations and fold identification procedures to investigate the structure of 696 kinked and 120 unkinked transmembrane (TM) helices in the PDBTM database. Our main aim of this study is to understand the formation of helical kinks by simulating their quasi-equilibrium heating processes, which might be relevant to the prediction of their structural features. The simulated structural features of these TM helices, including the position and the angle of helical kinks, were analyzed and compared with statistical data from PDBTM. From quasi-equilibrium heating processes of TM helices with four very different relaxation time constants, we found that these processes gave comparable predictions of the structural features of TM helices. Overall, 95 % of our best kink position predictions have an error of no more than two residues and 75 % of our best angle predictions have an error of less than 15°. Various structure assessments have been carried out to assess our predicted models of TM helices in PDBTM. Our results show that, in 696 predicted kinked helices, 70 % have a RMSD less than 2 Å, 71 % have a TM-score greater than 0.5, 69 % have a MaxSub score greater than 0.8, 60 % have a GDT-TS score greater than 85, and 58 % have a GDT-HA score greater than 70. For unkinked helices, our predicted models are also highly consistent with their crystal structure. These results provide strong supports for our assumption that kink formation of TM helices in quasi-equilibrium heating processes is relevant to predicting the structure of TM helices.

  19. The Complex Dynamics of the Precessing Vortex Rope in a Straight Diffuser

    NASA Astrophysics Data System (ADS)

    Stuparu, Adrian; Susan-Resiga, Romeo

    2016-11-01

    The decelerated swirling flow in the discharge cone of Francis turbines operated at partial discharge develops a self-induced instability with a precessing helical vortex (vortex rope). In an axisymmetric geometry, this phenomenon is expected to generate asynchronous pressure fluctuations as a result of the precessing motion. However, numerical and experimental data indicate that synchronous (plunging) fluctuations, with a frequency lower than the precessing frequency, also develops as a result of helical vortex filament dynamics. This paper presents a quantitative approach to describe the precessing vortex rope by properly fitting a three-dimensional logarithmic spiral model with the vortex filament computed from the velocity gradient tensor. We show that the slope coefficient of either curvature or torsion radii of the helix is a good indicator for the vortex rope dynamics, and it supports the stretching - breaking up - bouncing back mechanism that may explain the plunging oscillations.

  20. Simulation Study of the Helical Superconducting Undulator Installation at the Advanced Photon Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sajaev, V.; Borland, M.; Sun, Y.

    A helical superconducting undulator is planned for installation at the APS. Such an installation would be first of its kind – helical devices were never installed in synchrotron light sources before. Due to its reduced horizontal aperture, a lattice modification is required to accommodate for large horizontal oscillations during injection. We describe the lattice change details and show the new lattice experimental test results. To understand the effect of the undulator on single-particle dynamics, first, its kick maps were computed using different methods. We have found that often-used Elleaume formula* for kick maps gives wrong results for this undulator. Wemore » then used the kick maps obtained by other methods to simulate the effect of the undulator on injection and lifetime.« less

  1. Transmembrane helices containing a charged arginine are thermodynamically stable.

    PubMed

    Ulmschneider, Martin B; Ulmschneider, Jakob P; Freites, J Alfredo; von Heijne, Gunnar; Tobias, Douglas J; White, Stephen H

    2017-10-01

    Hydrophobic amino acids are abundant in transmembrane (TM) helices of membrane proteins. Charged residues are sparse, apparently due to the unfavorable energetic cost of partitioning charges into nonpolar phases. Nevertheless, conserved arginine residues within TM helices regulate vital functions, such as ion channel voltage gating and integrin receptor inactivation. The energetic cost of arginine in various positions along hydrophobic helices has been controversial. Potential of mean force (PMF) calculations from atomistic molecular dynamics simulations predict very large energetic penalties, while in vitro experiments with Sec61 translocons indicate much smaller penalties, even for arginine in the center of hydrophobic TM helices. Resolution of this conflict has proved difficult, because the in vitro assay utilizes the complex Sec61 translocon, while the PMF calculations rely on the choice of simulation system and reaction coordinate. Here we present the results of computational and experimental studies that permit direct comparison with the Sec61 translocon results. We find that the Sec61 translocon mediates less efficient membrane insertion of Arg-containing TM helices compared with our computational and experimental bilayer-insertion results. In the simulations, a combination of arginine snorkeling, bilayer deformation, and peptide tilting is sufficient to lower the penalty of Arg insertion to an extent such that a hydrophobic TM helix with a central Arg residue readily inserts into a model membrane. Less favorable insertion by the translocon may be due to the decreased fluidity of the endoplasmic reticulum (ER) membrane compared with pure palmitoyloleoyl-phosphocholine (POPC). Nevertheless, our results provide an explanation for the differences between PMF- and experiment-based penalties for Arg burial.

  2. Spur, helical, and spiral bevel transmission life modeling

    NASA Technical Reports Server (NTRS)

    Savage, Michael; Rubadeux, Kelly L.; Coe, Harold H.; Coy, John J.

    1994-01-01

    A computer program, TLIFE, which estimates the life, dynamic capacity, and reliability of aircraft transmissions, is presented. The program enables comparisons of transmission service life at the design stage for optimization. A variety of transmissions may be analyzed including: spur, helical, and spiral bevel reductions as well as series combinations of these reductions. The basic spur and helical reductions include: single mesh, compound, and parallel path plus revert star and planetary gear trains. A variety of straddle and overhung bearing configurations on the gear shafts are possible as is the use of a ring gear for the output. The spiral bevel reductions include single and dual input drives with arbitrary shaft angles. The program is written in FORTRAN 77 and has been executed both in the personal computer DOS environment and on UNIX workstations. The analysis may be performed in either the SI metric or the English inch system of units. The reliability and life analysis is based on the two-parameter Weibull distribution lives of the component gears and bearings. The program output file describes the overall transmission and each constituent transmission, its components, and their locations, capacities, and loads. Primary output is the dynamic capacity and 90-percent reliability and mean lives of the unit transmissions and the overall system which can be used to estimate service overhaul frequency requirements. Two examples are presented to illustrate the information available for single element and series transmissions.

  3. Extended MHD Modeling of Tearing-Driven Magnetic Relaxation

    NASA Astrophysics Data System (ADS)

    Sauppe, Joshua

    2016-10-01

    Driven plasma pinch configurations are characterized by the gradual accumulation and episodic release of free energy in discrete relaxation events. The hallmark of this relaxation in a reversed-field pinch (RFP) plasma is flattening of the parallel current density profile effected by a fluctuation-induced dynamo emf in Ohm's law. Nonlinear two-fluid modeling of macroscopic RFP dynamics has shown appreciable coupling of magnetic relaxation and the evolution of plasma flow. Accurate modeling of RFP dynamics requires the Hall effect in Ohm's law as well as first order ion finite Larmor radius (FLR) effects, represented by the Braginskii ion gyroviscous stress tensor. New results find that the Hall dynamo effect from < J × B > / ne can counter the MHD effect from - < V × B > in some of the relaxation events. The MHD effect dominates these events and relaxes the current profile toward the Taylor state, but the opposition of the two dynamos generates plasma flow in the direction of equilibrium current density, consistent with experimental measurements. Detailed experimental measurements of the MHD and Hall emf terms are compared to these extended MHD predictions. Tracking the evolution of magnetic energy, helicity, and hybrid helicity during relaxation identifies the most important contributions in single-fluid and two-fluid models. Magnetic helicity is well conserved relative to the magnetic energy during relaxation. The hybrid helicity is dominated by magnetic helicity in realistic low-beta pinch conditions and is also well conserved. Differences of less than 1 % between magnetic helicity and hybrid helicity are observed with two-fluid modeling and result from cross helicity evolution through ion FLR effects, which have not been included in contemporary relaxation theories. The kinetic energy driven by relaxation in the computations is dominated by velocity components perpendicular to the magnetic field, an effect that had not been predicted. Work performed at University of Wisconsin-Madison. LA-UR-16-24727.

  4. Helicity in dynamic atmospheric processes

    NASA Astrophysics Data System (ADS)

    Kurgansky, M. V.

    2017-03-01

    An overview on the helicity of the velocity field and the role played by this concept in modern research in the field of geophysical fluid dynamics and dynamic meteorology is given. Different (both previously known in the literature and first presented) formulations of the equation of helicity balance in atmospheric motions (including those with allowance for effects of air compressibility and Earth's rotation) are brought together. Equations and relationships are given which are valid in different approximations accepted in dynamic meteorology: Boussinesq approximation, quasi-static approximation, and quasi-geostrophic approximation. Emphasis is placed on the analysis of helicity budget in large-scale quasi-geostrophic systems of motion; a formula for the helicity flux across the upper boundary of the nonlinear Ekman boundary layer is given, and this flux is shown to be exactly compensated for by the helicity destruction inside the Ekman boundary layer.

  5. Hydrodynamics of insect spermatozoa

    NASA Astrophysics Data System (ADS)

    Pak, On Shun; Lauga, Eric

    2010-11-01

    Microorganism motility plays important roles in many biological processes including reproduction. Many microorganisms propel themselves by propagating traveling waves along their flagella. Depending on the species, propagation of planar waves (e.g. Ceratium) and helical waves (e.g. Trichomonas) were observed in eukaryotic flagellar motion, and hydrodynamic models for both were proposed in the past. However, the motility of insect spermatozoa remains largely unexplored. An interesting morphological feature of such cells, first observed in Tenebrio molitor and Bacillus rossius, is the double helical deformation pattern along the flagella, which is characterized by the presence of two superimposed helical flagellar waves (one with a large amplitude and low frequency, and the other with a small amplitude and high frequency). Here we present the first hydrodynamic investigation of the locomotion of insect spermatozoa. The swimming kinematics, trajectories and hydrodynamic efficiency of the swimmer are computed based on the prescribed double helical deformation pattern. We then compare our theoretical predictions with experimental measurements, and explore the dependence of the swimming performance on the geometric and dynamical parameters.

  6. Pumping Characteristics of a Helical Screw Agitator with a Draught Tube

    NASA Astrophysics Data System (ADS)

    Hwang, Jung-Hoon; Kim, Youn-Jea

    In the use of helical type agitator, the mixing process is usually restricted to the laminar flow regime. Common examples of laminar mixing are found where the fluid has a very high viscosity, i.e., pseudoplastic fluids. It can be indicated that a helical type agitator is sufficiently suited to the creeping flow mixing. The pumping characteristic of a Helical Screw Agitator with a draught tube (HSA) is required to evaluate its capacity for the optimal configuration of the mixing chamber. It could be executed by changing some parameters such as the number of helix, the angular velocity and the rotating direction and so on. In this study, the numerical simulation was carried out with the Eulerian multiphase mixture model and the moving mesh approximation. Some of the optimum design parameters have been developed with the aid of numerical data from the Computational Fluid Dynamics (CFD) analysis. Using the commercial code, Fluent, the pumping characteristics in the HSA are investigated from the rheological properties, and the results are graphically depicted.

  7. Fluid-Dynamic Optimal Design of Helical Vascular Graft for Stenotic Disturbed Flow

    PubMed Central

    Ha, Hojin; Hwang, Dongha; Choi, Woo-Rak; Baek, Jehyun; Lee, Sang Joon

    2014-01-01

    Although a helical configuration of a prosthetic vascular graft appears to be clinically beneficial in suppressing thrombosis and intimal hyperplasia, an optimization of a helical design has yet to be achieved because of the lack of a detailed understanding on hemodynamic features in helical grafts and their fluid dynamic influences. In the present study, the swirling flow in a helical graft was hypothesized to have beneficial influences on a disturbed flow structure such as stenotic flow. The characteristics of swirling flows generated by helical tubes with various helical pitches and curvatures were investigated to prove the hypothesis. The fluid dynamic influences of these helical tubes on stenotic flow were quantitatively analysed by using a particle image velocimetry technique. Results showed that the swirling intensity and helicity of the swirling flow have a linear relation with a modified Germano number (Gn*) of the helical pipe. In addition, the swirling flow generated a beneficial flow structure at the stenosis by reducing the size of the recirculation flow under steady and pulsatile flow conditions. Therefore, the beneficial effects of a helical graft on the flow field can be estimated by using the magnitude of Gn*. Finally, an optimized helical design with a maximum Gn* was suggested for the future design of a vascular graft. PMID:25360705

  8. Peptide crystal simulations reveal hidden dynamics

    PubMed Central

    Janowski, Pawel A.; Cerutti, David S.; Holton, James; Case, David A.

    2013-01-01

    Molecular dynamics simulations of biomolecular crystals at atomic resolution have the potential to recover information on dynamics and heterogeneity hidden in the X-ray diffraction data. We present here 9.6 microseconds of dynamics in a small helical peptide crystal with 36 independent copies of the unit cell. The average simulation structure agrees with experiment to within 0.28 Å backbone and 0.42 Å all-atom rmsd; a model refined against the average simulation density agrees with the experimental structure to within 0.20 Å backbone and 0.33 Å all-atom rmsd. The R-factor between the experimental structure factors and those derived from this unrestrained simulation is 23% to 1.0 Å resolution. The B-factors for most heavy atoms agree well with experiment (Pearson correlation of 0.90), but B-factors obtained by refinement against the average simulation density underestimate the coordinate fluctuations in the underlying simulation where the simulation samples alternate conformations. A dynamic flow of water molecules through channels within the crystal lattice is observed, yet the average water density is in remarkable agreement with experiment. A minor population of unit cells is characterized by reduced water content, 310 helical propensity and a gauche(−) side-chain rotamer for one of the valine residues. Careful examination of the experimental data suggests that transitions of the helices are a simulation artifact, although there is indeed evidence for alternate valine conformers and variable water content. This study highlights the potential for crystal simulations to detect dynamics and heterogeneity in experimental diffraction data, as well as to validate computational chemistry methods. PMID:23631449

  9. Research on the influence of helical strakes on dynamic response of floating wind turbine platform

    NASA Astrophysics Data System (ADS)

    Ding, Qin-wei; Li, Chun

    2017-04-01

    The stability of platform structure is the paramount guarantee of the safe operation of the offshore floating wind turbine. The NREL 5MW floating wind turbine is established based on the OC3-Hywind Spar Buoy platform with the supplement of helical strakes for the purpose to analyze the impact of helical strakes on the dynamic response of the floating wind turbine Spar platform. The dynamic response of floating wind turbine Spar platform under wind, wave and current loading from the impact of number, height and pitch ratio of the helical strakes is analysed by the radiation and diffraction theory, the finite element method and orthogonal design method. The result reveals that the helical strakes can effectively inhibit the dynamic response of the platform but enlarge the wave exciting force; the best parameter combination is two pieces of helical strakes with the height of 15% D ( D is the diameter of the platform) and the pitch ratio of 5; the height of the helical strake and its pitch ratio have significant influence on pitch response.

  10. FtsZ rings and helices: physical mechanisms for the dynamic alignment of biopolymers in rod-shaped bacteria.

    PubMed

    Fischer-Friedrich, Elisabeth; Friedrich, Benjamin M; Gov, Nir S

    2012-02-01

    In many bacterial species, the protein FtsZ forms a cytoskeletal ring that marks the future division site and scaffolds the division machinery. In rod-shaped bacteria, most frequently membrane-attached FtsZ rings or ring fragments are reported and occasionally helices. By contrast, axial FtsZ clusters have never been reported. In this paper, we investigate theoretically how dynamic FtsZ aggregates align in rod-shaped bacteria. We study systematically different physical mechanisms that affect the alignment of FtsZ polymers using a computational model that relies on autocatalytic aggregation of FtsZ filaments at the membrane. Our study identifies a general tool kit of physical and geometrical mechanisms by which rod-shaped cells align biopolymer aggregates. Our analysis compares the relative impact of each mechanism on the circumferential alignment of FtsZ as observed in rod-shaped bacteria. We determine spontaneous curvature of FtsZ polymers and axial confinement of FtsZ on the membrane as the strongest factors. Including Min oscillations in our model, we find that these stabilize axial and helical clusters on short time scales, but promote the formation of an FtsZ ring at the cell middle at longer times. This effect could provide an explanation to the long standing puzzle of transiently observed oscillating FtsZ helices in Escherichia coli cells prior to cell division.

  11. A Structural Framework for a Near-Minimal Form of Life: Mass and Compositional Analysis of the Helical Mollicute Spiroplasma melliferum BC3

    PubMed Central

    Trachtenberg, Shlomo; Schuck, Peter; Phillips, Terry M.; Andrews, S. Brian; Leapman, Richard D.

    2014-01-01

    Spiroplasma melliferum is a wall-less bacterium with dynamic helical geometry. This organism is geometrically well defined and internally well ordered, and has an exceedingly small genome. Individual cells are chemotactic, polar, and swim actively. Their dynamic helicity can be traced at the molecular level to a highly ordered linear motor (composed essentially of the proteins fib and MreB) that is positioned on a defined helical line along the internal face of the cell’s membrane. Using an array of complementary, informationally overlapping approaches, we have taken advantage of this uniquely simple, near-minimal life-form and its helical geometry to analyze the copy numbers of Spiroplasma’s essential parts, as well as to elucidate how these components are spatially organized to subserve the whole living cell. Scanning transmission electron microscopy (STEM) was used to measure the mass-per-length and mass-per-area of whole cells, membrane fractions, intact cytoskeletons and cytoskeletal components. These local data were fit into whole-cell geometric parameters determined by a variety of light microscopy modalities. Hydrodynamic data obtained by analytical ultracentrifugation allowed computation of the hydration state of whole living cells, for which the relative amounts of protein, lipid, carbohydrate, DNA, and RNA were also estimated analytically. Finally, ribosome and RNA content, genome size and gene expression were also estimated (using stereology, spectroscopy and 2D-gel analysis, respectively). Taken together, the results provide a general framework for a minimal inventory and arrangement of the major cellular components needed to support life. PMID:24586297

  12. Spin dynamics in helical molecules with nonlinear interactions

    NASA Astrophysics Data System (ADS)

    Díaz, E.; Albares, P.; Estévez, P. G.; Cerveró, J. M.; Gaul, C.; Diez, E.; Domínguez-Adame, F.

    2018-04-01

    It is widely admitted that the helical conformation of certain chiral molecules may induce a sizable spin selectivity observed in experiments. Spin selectivity arises as a result of the interplay between a helicity-induced spin–orbit coupling (SOC) and electric dipole fields in the molecule. From the theoretical point of view, different phenomena might affect the spin dynamics in helical molecules, such as quantum dephasing, dissipation and the role of metallic contacts. With a few exceptions, previous studies usually neglect the local deformation of the molecule about the carrier, but this assumption seems unrealistic to describe charge transport in molecular systems. We introduce an effective model describing the electron spin dynamics in a deformable helical molecule with weak SOC. We find that the electron–lattice interaction allows the formation of stable solitons such as bright solitons with well defined spin projection onto the molecule axis. We present a thorough study of these bright solitons and analyze their possible impact on the spin dynamics in deformable helical molecules.

  13. Accurate Cold-Test Model of Helical TWT Slow-Wave Circuits

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.; Dayton, James A., Jr.

    1997-01-01

    Recently, a method has been established to accurately calculate cold-test data for helical slow-wave structures using the three-dimensional electromagnetic computer code, MAFIA. Cold-test parameters have been calculated for several helical traveling-wave tube (TWT) slow-wave circuits possessing various support rod configurations, and results are presented here showing excellent agreement with experiment. The helical models include tape thickness, dielectric support shapes and material properties consistent with the actual circuits. The cold-test data from this helical model can be used as input into large-signal helical TWT interaction codes making it possible, for the first time, to design a complete TWT via computer simulation.

  14. Detailed microscopic unfolding pathways of an α-helix and a β-hairpin: direct observation and molecular dynamics.

    PubMed

    Jas, Gouri S; Hegefeld, Wendy A; Middaugh, C Russell; Johnson, Carey K; Kuczera, Krzysztof

    2014-07-03

    We present a combined experimental and computational study of unfolding pathways of a model 21-residue α-helical heteropeptide (W1H5-21) and a 16-residue β-hairpin (GB41-56). Experimentally, we measured fluorescence energy transfer efficiency as a function of temperature, employing natural tryptophans as donors and dansylated lysines as acceptors. Secondary structural analysis was performed with circular dichroism and Fourier transform infrared spectroscopy. Our studies present markedly different unfolding pathways of the two elementary secondary structural elements. During thermal denaturation, the helical peptide exhibits an initial decrease in length, followed by an increase, while the hairpin undergoes a systematic increase in length. In the complementary computational part of the project, we performed microsecond length replica-exchange molecular dynamics simulations of the peptides in explicit solvent, yielding a detailed microscopic picture of the unfolding processes. For the α-helical peptide, we found a large heterogeneous population of intermediates that are primarily frayed single helices or helix-turn-helix motifs. Unfolding starts at the termini and proceeds through a stable helical region in the interior of the peptide but shifted off-center toward the C-terminus. The simulations explain the experimentally observed non-monotonic variation of helix length with temperature as due primarily to the presence of frayed-end single-helix intermediate structures. For the β-hairpin peptide, our simulations indicate that folding is initiated at the turn, followed by formation of the hairpin in zipper-like fashion, with Cα···Cα contacts propagating from the turn to termini and hairpin hydrogen bonds forming in parallel with these contacts. In the early stages of hairpin formation, the hydrophobic side-chain contacts are only partly populated. Intermediate structures with low numbers of β-hairpin hydrogen bonds have very low populations. This is in accord with the "broken zipper" model of Scheraga. The monotonic increase in length with temperature may be explained by the zipper-like breaking of the hairpin hydrogen bonds and backbone contacts.

  15. Structure and Dynamics of Helical Protein Fragments Investigated by Theory and Experiment

    NASA Astrophysics Data System (ADS)

    Karimi, Afshin

    This work addresses the conformation and dynamics of model peptides using spectroscopy and molecular dynamics simulations. Experimentally, we investigate the structure and dynamics of peptide fragments taken from coiled coil and three helical bundle motifs of bacterial coat proteins. Theoretically, we use molecular dynamics simulations of isolated helices with explicit water molecules to derive trajectories which reveal features about picosecond dynamics and local unfolding events. The assignment of the ^1H, ^{15}N, and ^ {13}C resonances, secondary structure, backbone dynamics, hydration and other biophysical parameters of a 30 residue recombinant peptide corresponding to an immunogenic site on the coiled coil region of Streptococcus pyogenes 24M protein are reported. Our results suggest that this peptide is a symmetric parallel dimeric alpha-helical coiled coil with local defects within the helix and fraying at the termini. The ^1H and ^ {15}N assignments, the hydration, the overall fold, and other biophysical parameters of a recombinant B domain of Staphylococcal protein A (FB) are reported. Our results indicate FB is a highly stable monomeric three helical bundle. A symmetric two domain construct was used to probe the modular assembly of two B domains. Here, spectroscopic results suggest weak interactions between the two domains. The folding pathway of FB was investigated using amide exchange data of the native protein and peptide models. We propose that the helical hairpin consisting of helices II and III is an on-pathway intermediate in the folding of FB. Two 1 ns molecular dynamics simulations (MD) on two mainly helical peptides--an 18 residue peptide corresponding to a portion of the H helix of myoglobin (MBH) and a 14 residue analogue of the C-peptide of ribonuclease A (CRNA) --were carried out in water using the united atom AMBER/OPLS force-field. In the case of MBH, the initial helical conformation progressively frays to a more disordered structure. A common motif in the unfolding mechanism involves the formation of transient turn structures involving several water molecules. In contrast to the MBH simulation, the CRNA trajectory was characterized by the presence of fairly stable i ... i+4 (alpha-helical) hydrogen bonds throughout the simulation, except at the N-terminus where some fraying was observed.

  16. Functioning efficiency of intermediate coolers of multistage steam-jet ejectors of steam turbines

    NASA Astrophysics Data System (ADS)

    Aronson, K. E.; Ryabchikov, A. Yu.; Brodov, Yu. M.; Zhelonkin, N. V.; Murmanskii, I. B.

    2017-03-01

    Designs of various types of intermediate coolers of multistage ejectors are analyzed and thermal effectiveness and gas-dynamic resistance of coolers are estimated. Data on quantity of steam condensed from steam-air mixture in stage I of an ejector cooler was obtained on the basis of experimental results. It is established that the amount of steam condensed in the cooler constitutes 0.6-0.7 and is almost independent of operating steam pressure (and, consequently, of steam flow) and air amount in steam-air mixture. It is suggested to estimate the amount of condensed steam in a cooler of stage I based on comparison of computed and experimental characteristics of stage II. Computation taking this hypothesis for main types of mass produced multistage ejectors into account shows that 0.60-0.85 of steam amount should be condensed in stage I of the cooler. For ejectors with "pipe-in-pipe" type coolers (EPO-3-200) and helical coolers (EO-30), amount of condensed steam may reach 0.93-0.98. Estimation of gas-dynamic resistance of coolers shows that resistance from steam side in coolers with built-in and remote pipe bundle constitutes 100-300 Pa. Gas-dynamic resistance of "pipein- pipe" and helical type coolers is significantly higher (3-6 times) compared with pipe bundle. However, performance by "dry" (atmospheric) air is higher for ejectors with relatively high gas-dynamic resistance of coolers than those with low resistance at approximately equal operating flow values of ejectors.

  17. Molecular modeling of biomembranes and their complexes with protein transmembrane α-helices

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Andrey S.; Smirnov, Kirill V.; Antonov, Mikhail Yu.; Nikolaev, Ivan N.; Efremov, Roman G.

    2017-11-01

    Helical segments are common structural elements of membrane proteins. Dimerization and oligomerization of transmembrane (TM) α-helices provides the framework for spatial structure formation and protein-protein interactions. The membrane itself also takes part in the protein functioning. There are some examples of the mutual influence of the lipid bilayer properties and embedded membrane proteins. This work aims at the detail investigation of protein-lipid interactions using model systems: TM peptides corresponding to native protein segments. Three peptides were considered corresponding to TM domains of human glycophorin A (GpA), epidermal growth factor receptor (EGFR) and proposed TM-segment of human neuraminidase-1 (Neu1). A computational analysis of structural and dynamical properties was performed using molecular dynamics method. Monomers of peptides were considered incorporated into hydrated lipid bilayers. It was confirmed, that all these TM peptides have stable helical conformation in lipid environment, and the mutual adaptation of peptides and membrane was observed. It was shown that incorporation of the peptide into membrane results in the modulation of local and mean structural properties of the bilayer. Each peptide interacts with lipid acyl chains having special binding sites on the surface of central part of α-helix that exist for at least 200 ns. However, lipid acyl chains substitute each other faster occupying the same site. The formation of a special pattern of protein-lipid interactions may modulate the association of TM domains of membrane proteins, so membrane environment should be considered when proposing new substances targeting cell receptors.

  18. Driven evolution of a constitutional dynamic library of molecular helices toward the selective generation of [2 x 2] gridlike arrays under the pressure of metal ion coordination.

    PubMed

    Giuseppone, Nicolas; Schmitt, Jean-Louis; Lehn, Jean-Marie

    2006-12-27

    Constitutional dynamics, self-assembly, and helical-folding control are brought together in the efficient Sc(OTf)3/microwave-catalyzed transimination of helical oligohydrazone strands, yielding highly diverse dynamic libraries of interconverting constituents through assembly, dissociation, and exchange of components. The transimination-type mechanism of the ScIII-promoted exchange, as well as its regioselectivity, occurring only at the extremities of the helical strands, allow one to perform directional terminal polymerization/depolymerization processes when starting with dissymmetric strands. A particular library is subsequently brought to express quantitatively [2 x 2] gridlike metallosupramolecular arrays in the presence of ZnII ions by component recombination generating the correct ligand from the dynamic set of interconverting strands. This behavior represents a process of driven evolution of a constitutional dynamic chemical system under the pressure (coordination interaction) of an external effector (metal ions).

  19. Computational study of solution behavior of magainin 2 monomers.

    PubMed

    Petkov, P; Marinova, R; Kochev, V; Ilieva, N; Lilkova, E; Litov, L

    2018-03-27

    Antimicrobial peptides (AMPs) play crucial role as mediators of the primary host defense against microbial invasion. They are considered a promising alternative to antibiotics for multidrug resistant bacterial strains. For complete understanding of the antimicrobial defense mechanism, a detailed knowledge of the dynamics of peptide-membrane interactions, including atomistic studies on AMPs geometry and both peptide and membrane structural changes during the whole process is a prerequisite. We aim at clarifying the conformation dynamics of small linear AMPs in solution as a first step of in silico protocol for establishing a correspondence between certain amino-acid sequence motifs, secondary-structure elements, conformational dynamics in solution and the intensity and mode of interaction with the bacterial membrane. To this end, we use molecular dynamics simulations augmented by well-tempered metadynamics to study the free-energy landscape of two AMPs with close primary structure and different antibacterial activity - the native magainin 2 (MG2) and an analog (MG2m, with substitutions F5Y and F16W) in aqueous solution. We observe that upon solvation, the initial α-helical structures change differently. The native form remains structured, with three shorter α-helical motifs, connected by random coils, while the synthetic analog tends predominantly to a disordered conformation. Our results indicate the importance of the side-chains at positions 5 and 16 for maintaining the solvated peptide conformation. They also provide a modeling background for recent experimental observations, relating the higher α-helical content in solution (peptide pre-folding) in the case of small linear AMPs to a lower antibacterial activity.

  20. Computation of Relative Magnetic Helicity in Spherical Coordinates

    NASA Astrophysics Data System (ADS)

    Moraitis, Kostas; Pariat, Étienne; Savcheva, Antonia; Valori, Gherardo

    2018-06-01

    Magnetic helicity is a quantity of great importance in solar studies because it is conserved in ideal magnetohydrodynamics. While many methods for computing magnetic helicity in Cartesian finite volumes exist, in spherical coordinates, the natural coordinate system for solar applications, helicity is only treated approximately. We present here a method for properly computing the relative magnetic helicity in spherical geometry. The volumes considered are finite, of shell or wedge shape, and the three-dimensional magnetic field is considered to be fully known throughout the studied domain. Testing of the method with well-known, semi-analytic, force-free magnetic-field models reveals that it has excellent accuracy. Further application to a set of nonlinear force-free reconstructions of the magnetic field of solar active regions and comparison with an approximate method used in the past indicates that the proposed method can be significantly more accurate, thus making our method a promising tool in helicity studies that employ spherical geometry. Additionally, we determine and discuss the applicability range of the approximate method.

  1. Stimuli-Driven Control of the Helical Axis of Self-Organized Soft Helical Superstructures.

    PubMed

    Bisoyi, Hari Krishna; Bunning, Timothy J; Li, Quan

    2018-06-01

    Supramolecular and macromolecular functional helical superstructures are ubiquitous in nature and display an impressive catalog of intriguing and elegant properties and performances. In materials science, self-organized soft helical superstructures, i.e., cholesteric liquid crystals (CLCs), serve as model systems toward the understanding of morphology- and orientation-dependent properties of supramolecular dynamic helical architectures and their potential for technological applications. Moreover, most of the fascinating device applications of CLCs are primarily determined by different orientations of the helical axis. Here, the control of the helical axis orientation of CLCs and its dynamic switching in two and three dimensions using different external stimuli are summarized. Electric-field-, magnetic-field-, and light-irradiation-driven orientation control and reorientation of the helical axis of CLCs are described and highlighted. Different techniques and strategies developed to achieve a uniform lying helix structure are explored. Helical axis control in recently developed heliconical cholesteric systems is examined. The control of the helical axis orientation in spherical geometries such as microdroplets and microshells fabricated from these enticing photonic fluids is also explored. Future challenges and opportunities in this exciting area involving anisotropic chiral liquids are then discussed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Helicity in the dynamic magnetotail

    NASA Astrophysics Data System (ADS)

    Buchert, Stephan

    Observations of substorms typically feature a clear azimuthal or east-west asymmetry which has been described in expressions like for example westward-traveling surge. The origin of this asymmetry is not clear. Candidates are the Hall effect, either in the ionosphere, or in magnetic reconnection, and self-induction when Hall currents change in time. The magnetic helicity in the tail measured by the Cluster satellites shows a clear preference during dynamic events, that we have studied. We discuss possible causes of this non-zero helicity and whether it is related to east-west assymmetric tail dynamics.

  3. Absolute comparison of simulated and experimental protein-folding dynamics

    NASA Astrophysics Data System (ADS)

    Snow, Christopher D.; Nguyen, Houbi; Pande, Vijay S.; Gruebele, Martin

    2002-11-01

    Protein folding is difficult to simulate with classical molecular dynamics. Secondary structure motifs such as α-helices and β-hairpins can form in 0.1-10µs (ref. 1), whereas small proteins have been shown to fold completely in tens of microseconds. The longest folding simulation to date is a single 1-µs simulation of the villin headpiece; however, such single runs may miss many features of the folding process as it is a heterogeneous reaction involving an ensemble of transition states. Here, we have used a distributed computing implementation to produce tens of thousands of 5-20-ns trajectories (700µs) to simulate mutants of the designed mini-protein BBA5. The fast relaxation dynamics these predict were compared with the results of laser temperature-jump experiments. Our computational predictions are in excellent agreement with the experimentally determined mean folding times and equilibrium constants. The rapid folding of BBA5 is due to the swift formation of secondary structure. The convergence of experimentally and computationally accessible timescales will allow the comparison of absolute quantities characterizing in vitro and in silico (computed) protein folding.

  4. Analysis of Dynamic Stiffness Effect of Primary Suspension Helical Springs on Railway Vehicle Vibration

    NASA Astrophysics Data System (ADS)

    Sun, W.; Thompson, D. J.; Zhou, J.; Gong, D.

    2016-09-01

    Helical springs within the primary suspension are critical components for isolating the whole vehicle system from vibration generated at the wheel/rail contact. As train speeds increase, the frequency region of excitation becomes larger, and a simplified static stiffness can no longer represent the real stiffness property in a vehicle dynamic model. Coil springs in particular exhibit strong internal resonances, which lead to high vibration amplitudes within the spring itself as well as degradation of the vibration isolation. In this paper, the dynamic stiffness matrix method is used to determine the dynamic stiffness of a helical spring from a vehicle primary suspension. Results are confirmed with a finite element analysis. Then the spring dynamic stiffness is included within a vehicle-track coupled dynamic model of a high speed train and the effect of the dynamic stiffening of the spring on the vehicle vibration is investigated. It is shown that, for frequencies above about 50 Hz, the dynamic stiffness of the helical spring changes sharply. Due to this effect, the vibration transmissibility increases considerably which results in poor vibration isolation of the primary suspension. Introducing a rubber layer in series with the coil spring can attenuate this effect.

  5. Numerical simulation of mechanical mixing in high solid anaerobic digester.

    PubMed

    Yu, Liang; Ma, Jingwei; Chen, Shulin

    2011-01-01

    Computational fluid dynamics (CFD) was employed to study mixing performance in high solid anaerobic digester (HSAD) with A-310 impeller and helical ribbon. A mathematical model was constructed to assess flow fields. Good agreement of the model results with experimental data was obtained for the A-310 impeller. A systematic comparison for the interrelationship of power number, flow number and Reynolds number was simulated in a digester with less than 5% TS and 10% TS (total solids). The simulation results suggested a great potential for using the helical ribbon mixer in the mixing of high solids digester. The results also provided quantitative confirmation for minimum power consumption in HSAD and the effect of share rate on bio-structure. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Flow characteristics in narrowed coronary bypass graft

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernad, S. I.; Bosioc, A.; Totorean, A. F.

    2016-06-08

    Tortuous saphenous vein graft (SVG) hemodynamics was investigated using computational fluid dynamics (CFD) techniques. Computed tomography (CT) technology is used for non-invasive bypass graft assessment 7 days after surgery. CT investigation shown two regions with severe shape remodelling first is an elbow type contortion and second is a severe curvature with tortuous area reduction. In conclusion, the helical flow induced by vessel torsion may stabilize the blood flow in the distal part of the SVG, reducing the flow disturbance and suppressing the flow separation, but in the distal end of the graft, promote the inflammatory processes in the vessels.

  7. Public Data Set: Radially Scanning Magnetic Probes to Study Local Helicity Injection Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richner, Nathan J; Bongard, Michael W; Fonck, Raymond J

    This data set contains openly-documented, machine readable digital research data corresponding to figures published in N.J. Richner et al., 'Radially Scanning Magnetic Probes to Study Local Helicity Injection Dynamics,' accepted for publication in Rev. Sci. Instrum (2018).

  8. Contractile and chiral activities codetermine the helicity of swimming droplet trajectories

    NASA Astrophysics Data System (ADS)

    Tjhung, Elsen; Cates, Michael E.; Marenduzzo, Davide

    2017-05-01

    Active fluids are a class of nonequilibrium systems where energy is injected into the system continuously by the constituent particles themselves. Many examples, such as bacterial suspensions and actomyosin networks, are intrinsically chiral at a local scale, so that their activity involves torque dipoles alongside the force dipoles usually considered. Although many aspects of active fluids have been studied, the effects of chirality on them are much less known. Here, we study by computer simulation the dynamics of an unstructured droplet of chiral active fluid in three dimensions. Our model considers only the simplest possible combination of chiral and achiral active stresses, yet this leads to an unprecedented range of complex motilities, including oscillatory swimming, helical swimming, and run-and-tumble motion. Strikingly, whereas the chirality of helical swimming is the same as the microscopic chirality of torque dipoles in one regime, the two are opposite in another. Some of the features of these motility modes resemble those of some single-celled protozoa, suggesting that underlying mechanisms may be shared by some biological systems and synthetic active droplets.

  9. Dynamic response functions, helical gaps, and fractional charges in quantum wires

    NASA Astrophysics Data System (ADS)

    Meng, Tobias; Pedder, Christopher J.; Tiwari, Rakesh P.; Schmidt, Thomas L.

    We show how experimentally accessible dynamic response functions can discriminate between helical gaps due to magnetic field, and helical gaps driven by electron-electron interactions (''umklapp gaps''). The latter are interesting since they feature gapped quasiparticles of fractional charge e / 2 , and - when coupled to a standard superconductor - an 8 π-Josephson effect and topological zero energy states bound to interfaces. National Research Fund, Luxembourg (ATTRACT 7556175), Deutsche Forschungsgemeinschaft (GRK 1621 and SFB 1143), Swiss National Science Foundation.

  10. Magnetic Helicities and Dynamo Action in Magneto-rotational Turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bodo, G.; Rossi, P.; Cattaneo, F.

    We examine the relationship between magnetic flux generation, taken as an indicator of large-scale dynamo action, and magnetic helicity, computed as an integral over the dynamo volume, in a simple dynamo. We consider dynamo action driven by magneto-rotational turbulence (MRT) within the shearing-box approximation. We consider magnetically open boundary conditions that allow a flux of helicity in or out of the computational domain. We circumvent the problem of the lack of gauge invariance in open domains by choosing a particular gauge—the winding gauge—that provides a natural interpretation in terms of the average winding number of pairwise field lines. We usemore » this gauge precisely to define and measure the helicity and the helicity flux for several realizations of dynamo action. We find in these cases that the system as a whole does not break reflectional symmetry and that the total helicity remains small even in cases when substantial magnetic flux is generated. We find no particular connection between the generation of magnetic flux and the helicity or the helicity flux through the boundaries. We suggest that this result may be due to the essentially nonlinear nature of the dynamo processes in MRT.« less

  11. Integrating Solid-State NMR and Computational Modeling to Investigate the Structure and Dynamics of Membrane-Associated Ghrelin

    PubMed Central

    Els-Heindl, Sylvia; Chollet, Constance; Scheidt, Holger A.; Beck-Sickinger, Annette G.; Meiler, Jens; Huster, Daniel

    2015-01-01

    The peptide hormone ghrelin activates the growth hormone secretagogue receptor 1a, also known as the ghrelin receptor. This 28-residue peptide is acylated at Ser3 and is the only peptide hormone in the human body that is lipid-modified by an octanoyl group. Little is known about the structure and dynamics of membrane-associated ghrelin. We carried out solid-state NMR studies of ghrelin in lipid vesicles, followed by computational modeling of the peptide using Rosetta. Isotropic chemical shift data of isotopically labeled ghrelin provide information about the peptide’s secondary structure. Spin diffusion experiments indicate that ghrelin binds to membranes via its lipidated Ser3. Further, Phe4, as well as electrostatics involving the peptide’s positively charged residues and lipid polar headgroups, contribute to the binding energy. Other than the lipid anchor, ghrelin is highly flexible and mobile at the membrane surface. This observation is supported by our predicted model ensemble, which is in good agreement with experimentally determined chemical shifts. In the final ensemble of models, residues 8–17 form an α-helix, while residues 21–23 and 26–27 often adopt a polyproline II helical conformation. These helices appear to assist the peptide in forming an amphipathic conformation so that it can bind to the membrane. PMID:25803439

  12. Propagation dynamics of Helical Hermite-Gaussian beams

    NASA Astrophysics Data System (ADS)

    López-Mariscal, Carlos; Gutiérrez-Vega, Julio C.

    2007-09-01

    We investigate theoretically and experimentally the propagation characteristics of the Helical Hermite-Gauss beams corresponding to the helical Ince-Gauss beams in the limit of infinite ellipticity. Particular attention is paid to the transverse irradiance structure, the orbital angular momentum density, and the vortex distribution.

  13. Conformational Preference of ‘CαNN’ Short Peptide Motif towards Recognition of Anions

    PubMed Central

    Banerjee, Raja

    2013-01-01

    Among several ‘anion binding motifs’, the recently described ‘CαNN’ motif occurring in the loop regions preceding a helix, is conserved through evolution both in sequence and its conformation. To establish the significance of the conserved sequence and their intrinsic affinity for anions, a series of peptides containing the naturally occurring ‘CαNN’ motif at the N-terminus of a designed helix, have been modeled and studied in a context free system using computational techniques. Appearance of a single interacting site with negative binding free-energy for both the sulfate and phosphate ions, as evidenced in docking experiments, establishes that the ‘CαNN’ segment has an intrinsic affinity for anions. Molecular Dynamics (MD) simulation studies reveal that interaction with anion triggers a conformational switch from non-helical to helical state at the ‘CαNN’ segment, which extends the length of the anchoring-helix by one turn at the N-terminus. Computational experiments substantiate the significance of sequence/structural context and justify the conserved nature of the ‘CαNN’ sequence for anion recognition through “local” interaction. PMID:23516403

  14. Evaluation of CFD Methods for Simulation of Two-Phase Boiling Flow Phenomena in a Helical Coil Steam Generator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pointer, William David; Shaver, Dillon; Liu, Yang

    The U.S. Department of Energy, Office of Nuclear Energy charges participants in the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program with the development of advanced modeling and simulation capabilities that can be used to address design, performance and safety challenges in the development and deployment of advanced reactor technology. The NEAMS has established a high impact problem (HIP) team to demonstrate the applicability of these tools to identification and mitigation of sources of steam generator flow induced vibration (SGFIV). The SGFIV HIP team is working to evaluate vibration sources in an advanced helical coil steam generator using computational fluidmore » dynamics (CFD) simulations of the turbulent primary coolant flow over the outside of the tubes and CFD simulations of the turbulent multiphase boiling secondary coolant flow inside the tubes integrated with high resolution finite element method assessments of the tubes and their associated structural supports. This report summarizes the demonstration of a methodology for the multiphase boiling flow analysis inside the helical coil steam generator tube. A helical coil steam generator configuration has been defined based on the experiments completed by Polytecnico di Milano in the SIET helical coil steam generator tube facility. Simulations of the defined problem have been completed using the Eulerian-Eulerian multi-fluid modeling capabilities of the commercial CFD code STAR-CCM+. Simulations suggest that the two phases will quickly stratify in the slightly inclined pipe of the helical coil steam generator. These results have been successfully benchmarked against both empirical correlations for pressure drop and simulations using an alternate CFD methodology, the dispersed phase mixture modeling capabilities of the open source CFD code Nek5000.« less

  15. Advances in numerical and applied mathematics

    NASA Technical Reports Server (NTRS)

    South, J. C., Jr. (Editor); Hussaini, M. Y. (Editor)

    1986-01-01

    This collection of papers covers some recent developments in numerical analysis and computational fluid dynamics. Some of these studies are of a fundamental nature. They address basic issues such as intermediate boundary conditions for approximate factorization schemes, existence and uniqueness of steady states for time dependent problems, and pitfalls of implicit time stepping. The other studies deal with modern numerical methods such as total variation diminishing schemes, higher order variants of vortex and particle methods, spectral multidomain techniques, and front tracking techniques. There is also a paper on adaptive grids. The fluid dynamics papers treat the classical problems of imcompressible flows in helically coiled pipes, vortex breakdown, and transonic flows.

  16. Free energy landscapes of short peptide chains using adaptively biased molecular dynamics

    NASA Astrophysics Data System (ADS)

    Karpusenka, Vadzim; Babin, Volodymyr; Roland, Christopher; Sagui, Celeste

    2009-03-01

    We present the results of a computational study of the free energy landscapes of short polypeptide chains, as a function of several reaction coordinates meant to distinguish between several known types of helices. The free energy landscapes were calculated using the recently developed adaptively biased molecular dynamics method followed up with equilibrium ``umbrella correction'' runs. Specific polypeptides investigated include small chains of pure and mixed alanine, glutamate, leucine, lysine and methionine (all amino acids with strong helix-forming propensities), as well as glycine, proline(having a low helix forming propensities), tyrosine, serine and arginine. Our results are consistent with the existing experimental and other theoretical evidence.

  17. Helical vortices: linear stability analysis and nonlinear dynamics

    NASA Astrophysics Data System (ADS)

    Selçuk, C.; Delbende, I.; Rossi, M.

    2018-02-01

    We numerically investigate, within the context of helical symmetry, the dynamics of a regular array of two or three helical vortices with or without a straight central hub vortex. The Navier-Stokes equations are linearised to study the instabilities of such basic states. For vortices with low pitches, an unstable mode is extracted which corresponds to a displacement mode and growth rates are found to compare well with results valid for an infinite row of point vortices or an infinite alley of vortex rings. For larger pitches, the system is stable with respect to helically symmetric perturbations. In the nonlinear regime, we follow the time-evolution of the above basic states when initially perturbed by the dominant instability mode. For two vortices, sequences of overtaking events, leapfrogging and eventually merging are observed. The transition between such behaviours occurs at a critical ratio involving the core size and the vortex-separation distance. Cases with three helical vortices are also presented.

  18. Multi-mesh gear dynamics program evaluation and enhancements

    NASA Technical Reports Server (NTRS)

    Boyd, L. S.; Pike, J.

    1985-01-01

    A multiple mesh gear dynamics computer program was continually developed and modified during the last four years. The program can handle epicyclic gear systems as well as single mesh systems with internal, buttress, or helical tooth forms. The following modifications were added under the current funding: variable contact friction, planet cage and ring gear rim flexibility options, user friendly options, dynamic side bands, a speed survey option and the combining of the single and multiple mesh options into one general program. The modified program was evaluated by comparing calculated values to published test data and to test data taken on a Hamilton Standard turboprop reduction gear-box. In general, the correlation between the test data and the analytical data is good.

  19. Toward high-resolution computational design of helical membrane protein structure and function

    PubMed Central

    Barth, Patrick; Senes, Alessandro

    2016-01-01

    The computational design of α-helical membrane proteins is still in its infancy but has made important progress. De novo design has produced stable, specific and active minimalistic oligomeric systems. Computational re-engineering can improve stability and modulate the function of natural membrane proteins. Currently, the major hurdle for the field is not computational, but the experimental characterization of the designs. The emergence of new structural methods for membrane proteins will accelerate progress PMID:27273630

  20. Electrical manipulation of dynamic magnetic impurity and spin texture of helical Dirac fermions

    NASA Astrophysics Data System (ADS)

    Wang, Rui-Qiang; Zhong, Min; Zheng, Shi-Han; Yang, Mou; Wang, Guang-Hui

    2016-05-01

    We have theoretically investigated the spin inelastic scattering of helical electrons off a high-spin nanomagnet absorbed on a topological surface. The nanomagnet is treated as a dynamic quantum spin and driven by the spin transfer torque effect. We proposed a mechanism to electrically manipulate the spin texture of helical Dirac fermions rather than by an external magnetic field. By tuning the bias voltage and the direction of impurity magnetization, we present rich patterns of spin texture, from which important fingerprints exclusively associated with the spin helical feature are obtained. Furthermore, it is found that the nonmagnetic potential can create the resonance state in the spin density with different physics as the previously reported resonance of charge density.

  1. Optimization of view weighting in tilted-plane-based reconstruction algorithms to minimize helical artifacts in multi-slice helical CT

    NASA Astrophysics Data System (ADS)

    Tang, Xiangyang

    2003-05-01

    In multi-slice helical CT, the single-tilted-plane-based reconstruction algorithm has been proposed to combat helical and cone beam artifacts by tilting a reconstruction plane to fit a helical source trajectory optimally. Furthermore, to improve the noise characteristics or dose efficiency of the single-tilted-plane-based reconstruction algorithm, the multi-tilted-plane-based reconstruction algorithm has been proposed, in which the reconstruction plane deviates from the pose globally optimized due to an extra rotation along the 3rd axis. As a result, the capability of suppressing helical and cone beam artifacts in the multi-tilted-plane-based reconstruction algorithm is compromised. An optomized tilted-plane-based reconstruction algorithm is proposed in this paper, in which a matched view weighting strategy is proposed to optimize the capability of suppressing helical and cone beam artifacts and noise characteristics. A helical body phantom is employed to quantitatively evaluate the imaging performance of the matched view weighting approach by tabulating artifact index and noise characteristics, showing that the matched view weighting improves both the helical artifact suppression and noise characteristics or dose efficiency significantly in comparison to the case in which non-matched view weighting is applied. Finally, it is believed that the matched view weighting approach is of practical importance in the development of multi-slive helical CT, because it maintains the computational structure of fan beam filtered backprojection and demands no extra computational services.

  2. A reconstruction algorithm for helical CT imaging on PI-planes.

    PubMed

    Liang, Hongzhu; Zhang, Cishen; Yan, Ming

    2006-01-01

    In this paper, a Feldkamp type approximate reconstruction algorithm is presented for helical cone-beam Computed Tomography. To effectively suppress artifacts due to large cone angle scanning, it is proposed to reconstruct the object point-wisely on unique customized tilted PI-planes which are close to the data collecting helices of the corresponding points. Such a reconstruction scheme can considerably suppress the artifacts in the cone-angle scanning. Computer simulations show that the proposed algorithm can provide improved imaging performance compared with the existing approximate cone-beam reconstruction algorithms.

  3. Dynamics of zonal flows in helical systems.

    PubMed

    Sugama, H; Watanabe, T-H

    2005-03-25

    A theory for describing collisionless long-time behavior of zonal flows in helical systems is presented and its validity is verified by gyrokinetic-Vlasov simulation. It is shown that, under the influence of particles trapped in helical ripples, the response of zonal flows to a given source becomes weaker for lower radial wave numbers and deeper helical ripples while a high-level zonal-flow response, which is not affected by helical-ripple-trapped particles, can be maintained for a longer time by reducing their bounce-averaged radial drift velocity. This implies a possibility that helical configurations optimized for reducing neoclassical ripple transport can simultaneously enhance zonal flows which lower anomalous transport.

  4. Disentangling the triadic interactions in Navier-Stokes equations.

    PubMed

    Sahoo, Ganapati; Biferale, Luca

    2015-10-01

    We study the role of helicity in the dynamics of energy transfer in a modified version of the Navier-Stokes equations with explicit breaking of the mirror symmetry. We select different set of triads participating in the dynamics on the basis of their helicity content. In particular, we remove the negative helically polarized Fourier modes at all wave numbers except for those falling on a localized shell of wave number, |k| ~ k(m). Changing k(m) to be above or below the forcing scale, k(f), we are able to assess the energy transfer of triads belonging to different interaction classes. We observe that when the negative helical modes are present only at a wave number smaller than the forced wave numbers, an inverse energy cascade develops with an accumulation of energy on a stationary helical condensate. Vice versa, when negative helical modes are present only at a wave number larger than the forced wave numbers, a transition from backward to forward energy transfer is observed in the regime when the minority modes become energetic enough.

  5. Study of an expanding magnetic cloud

    NASA Astrophysics Data System (ADS)

    Nakwacki, M. S.; Dasso, S.; Mandrini, C. H.; Démoulin, P.

    Magnetic Clouds (MCs) transport into the interplanetary medium the magnetic flux and helicity released in coronal mass ejections by the Sun. At 1 AU from the Sun, MCs are generally modelled as static flux ropes. However, the velocity profile of some MCs presents signatures of expansion. We analise here the magnetic structure of an expanding magnetic cloud observed by Wind spacecraft. We consider a dynamical model, based on a self-similar behaviour for the cloud radial velocity. We assume a free expansion for the cloud, and a cylindrical linear force free field (i.e., the Lundquist's field) as the initial condition for its magnetic configuration. We derive theoretical expressions for the magnetic flux across a surface perpendicular to the cloud axis, for the magnetic helicity and magnetic energy per unit length along the tube using the self-similar model. Finally, we compute these magntitudes with the fitted parameters. FULL TEXT IN SPANISH

  6. Dynamic mode decomposition for plasma diagnostics and validation.

    PubMed

    Taylor, Roy; Kutz, J Nathan; Morgan, Kyle; Nelson, Brian A

    2018-05-01

    We demonstrate the application of the Dynamic Mode Decomposition (DMD) for the diagnostic analysis of the nonlinear dynamics of a magnetized plasma in resistive magnetohydrodynamics. The DMD method is an ideal spatio-temporal matrix decomposition that correlates spatial features of computational or experimental data while simultaneously associating the spatial activity with periodic temporal behavior. DMD can produce low-rank, reduced order surrogate models that can be used to reconstruct the state of the system with high fidelity. This allows for a reduction in the computational cost and, at the same time, accurate approximations of the problem, even if the data are sparsely sampled. We demonstrate the use of the method on both numerical and experimental data, showing that it is a successful mathematical architecture for characterizing the helicity injected torus with steady inductive (HIT-SI) magnetohydrodynamics. Importantly, the DMD produces interpretable, dominant mode structures, including a stationary mode consistent with our understanding of a HIT-SI spheromak accompanied by a pair of injector-driven modes. In combination, the 3-mode DMD model produces excellent dynamic reconstructions across the domain of analyzed data.

  7. Dynamic mode decomposition for plasma diagnostics and validation

    NASA Astrophysics Data System (ADS)

    Taylor, Roy; Kutz, J. Nathan; Morgan, Kyle; Nelson, Brian A.

    2018-05-01

    We demonstrate the application of the Dynamic Mode Decomposition (DMD) for the diagnostic analysis of the nonlinear dynamics of a magnetized plasma in resistive magnetohydrodynamics. The DMD method is an ideal spatio-temporal matrix decomposition that correlates spatial features of computational or experimental data while simultaneously associating the spatial activity with periodic temporal behavior. DMD can produce low-rank, reduced order surrogate models that can be used to reconstruct the state of the system with high fidelity. This allows for a reduction in the computational cost and, at the same time, accurate approximations of the problem, even if the data are sparsely sampled. We demonstrate the use of the method on both numerical and experimental data, showing that it is a successful mathematical architecture for characterizing the helicity injected torus with steady inductive (HIT-SI) magnetohydrodynamics. Importantly, the DMD produces interpretable, dominant mode structures, including a stationary mode consistent with our understanding of a HIT-SI spheromak accompanied by a pair of injector-driven modes. In combination, the 3-mode DMD model produces excellent dynamic reconstructions across the domain of analyzed data.

  8. Effect of proline kinks on the mechanical unfolding of α-helices

    NASA Astrophysics Data System (ADS)

    Arteca, Gustavo A.; Li, Zhiying

    2004-12-01

    Proteins unfold by applying an external force, although the microscopic mechanism is still not well understood. In this work, we use steered molecular dynamics to probe fundamental aspects of the stretching transition of α-helices, in particular how proline kinks and side chain dynamics would influence their ability to resist the applied force. We find that proline residues effectively 'cut' a helix in half when introduced on stable homopolymers, whereas their effect is smaller when present in helices that are more easily deformed. Our findings provide insight into the factors that may regulate the mechanical stretching of realistic protein domains.

  9. Effects of hydrophobic and dipole-dipole interactions on the conformational transitions of a model polypeptide

    NASA Astrophysics Data System (ADS)

    Mu, Yan; Gao, Yi Qin

    2007-09-01

    We studied the effects of hydrophobicity and dipole-dipole interactions between the nearest-neighbor amide planes on the secondary structures of a model polypeptide by calculating the free energy differences between different peptide structures. The free energy calculations were performed with low computational costs using the accelerated Monte Carlo simulation (umbrella sampling) method, with a bias-potential method used earlier in our accelerated molecular dynamics simulations. It was found that the hydrophobic interaction enhances the stability of α helices at both low and high temperatures but stabilizes β structures only at high temperatures at which α helices are not stable. The nearest-neighbor dipole-dipole interaction stabilizes β structures under all conditions, especially in the low temperature region where α helices are the stable structures. Our results indicate clearly that the dipole-dipole interaction between the nearest neighboring amide planes plays an important role in determining the peptide structures. Current research provides a more unified and quantitative picture for understanding the effects of different forms of interactions on polypeptide structures. In addition, the present model can be extended to describe DNA/RNA, polymer, copolymer, and other chain systems.

  10. The L49F mutation in alpha erythroid spectrin induces local disorder in the tetramer association region: Fluorescence and molecular dynamics studies of free and bound alpha spectrin

    PubMed Central

    Song, Yuanli; Pipalia, Nina H; Fung, L W-M

    2009-01-01

    The bundling of the N-terminal, partial domain helix (Helix C′) of human erythroid α-spectrin (αI) with the C-terminal, partial domain helices (Helices A′ and B′) of erythroid β-spectrin (βI) to give a spectrin pseudo structural domain (triple helical bundle A′B′C′) has long been recognized as a crucial step in forming functional spectrin tetramers in erythrocytes. We have used apparent polarity and Stern–Volmer quenching constants of Helix C′ of αI bound to Helices A′ and B′ of βI, along with previous NMR and EPR results, to propose a model for the triple helical bundle. This model was used as the input structure for molecular dynamics simulations for both wild type (WT) and αI mutant L49F. The simulation output structures show a stable helical bundle for WT, but not for L49F. In WT, four critical interactions were identified: two hydrophobic clusters and two salt bridges. However, in L49F, the region downstream of Helix C′ was unable to assume a helical conformation and one critical hydrophobic cluster was disrupted. Other molecular interactions critical to the WT helical bundle were also weakened in L49F, possibly leading to the lower tetramer levels observed in patients with this mutation-induced blood disorder. PMID:19593814

  11. Numerical simulation of a helical shape electric arc in the external axial magnetic field

    NASA Astrophysics Data System (ADS)

    Urusov, R. M.; Urusova, I. R.

    2016-10-01

    Within the frameworks of non-stationary three-dimensional mathematical model, in approximation of a partial local thermodynamic equilibrium, a numerical calculation was made of characteristics of DC electric arc burning in a cylindrical channel in the uniform external axial magnetic field. The method of numerical simulation of the arc of helical shape in a uniform external axial magnetic field was proposed. This method consists in that that in the computational algorithm, a "scheme" analog of fluctuations for electrons temperature is supplemented. The "scheme" analogue of fluctuations increases a weak numerical asymmetry of electrons temperature distribution, which occurs randomly in the course of computing. This asymmetry can be "picked up" by the external magnetic field that continues to increase up to a certain value, which is sufficient for the formation of helical structure of the arc column. In the absence of fluctuations in the computational algorithm, the arc column in the external axial magnetic field maintains cylindrical axial symmetry, and a helical form of the arc is not observed.

  12. Expansion of epicyclic gear dynamic analysis program

    NASA Technical Reports Server (NTRS)

    Boyd, Linda Smith; Pike, James A.

    1987-01-01

    The multiple mesh/single stage dynamics program is a gear tooth analysis program which determines detailed geometry, dynamic loads, stresses, and surface damage factors. The program can analyze a variety of both epicyclic and single mesh systems with spur or helical gear teeth including internal, external, and buttress tooth forms. The modifications refine the options for the flexible carrier and flexible ring gear rim and adds three options: a floating Sun gear option; a natural frequency option; and a finite element compliance formulation for helical gear teeth. The option for a floating Sun incorporates two additional degrees of freedom at the Sun center. The natural frequency option evaluates the frequencies of planetary, star, or differential systems as well as the effect of additional springs at the Sun center and those due to a flexible carrier and/or ring gear rim. The helical tooth pair finite element calculated compliance is obtained from an automated element breakup of the helical teeth and then is used with the basic gear dynamic solution and stress postprocessing routines. The flexible carrier or ring gear rim option for planetary and star spur gear systems allows the output torque per carrier and ring gear rim segment to vary based on the dynamic response of the entire system, while the total output torque remains constant.

  13. Dynamical control on helicity of electromagnetic waves by tunable metasurfaces

    PubMed Central

    Xu, He-Xiu; Sun, Shulin; Tang, Shiwei; Ma, Shaojie; He, Qiong; Wang, Guang-Ming; Cai, Tong; Li, Hai-Peng; Zhou, Lei

    2016-01-01

    Manipulating the polarization states of electromagnetic (EM) waves, a fundamental issue in optics, attracted intensive attention recently. However, most of the devices realized so far are either too bulky in size, and/or are passive with only specific functionalities. Here we combine theory and experiment to demonstrate that, a tunable metasurface incorporating diodes as active elements can dynamically control the reflection phase of EM waves, and thus exhibits unprecedented capabilities to manipulate the helicity of incident circular-polarized (CP) EM wave. By controlling the bias voltages imparted on the embedded diodes, we demonstrate that the device can work in two distinct states. Whereas in the “On” state, the metasurface functions as a helicity convertor and a helicity hybridizer within two separate frequency bands, it behaves as a helicity keeper within an ultra-wide frequency band in the “Off” state. Our findings pave the way to realize functionality-switchable devices related to phase control, such as frequency-tunable subwavelength cavities, anomalous reflectors and even holograms. PMID:27272350

  14. Dynamical control on helicity of electromagnetic waves by tunable metasurfaces.

    PubMed

    Xu, He-Xiu; Sun, Shulin; Tang, Shiwei; Ma, Shaojie; He, Qiong; Wang, Guang-Ming; Cai, Tong; Li, Hai-Peng; Zhou, Lei

    2016-06-08

    Manipulating the polarization states of electromagnetic (EM) waves, a fundamental issue in optics, attracted intensive attention recently. However, most of the devices realized so far are either too bulky in size, and/or are passive with only specific functionalities. Here we combine theory and experiment to demonstrate that, a tunable metasurface incorporating diodes as active elements can dynamically control the reflection phase of EM waves, and thus exhibits unprecedented capabilities to manipulate the helicity of incident circular-polarized (CP) EM wave. By controlling the bias voltages imparted on the embedded diodes, we demonstrate that the device can work in two distinct states. Whereas in the "On" state, the metasurface functions as a helicity convertor and a helicity hybridizer within two separate frequency bands, it behaves as a helicity keeper within an ultra-wide frequency band in the "Off" state. Our findings pave the way to realize functionality-switchable devices related to phase control, such as frequency-tunable subwavelength cavities, anomalous reflectors and even holograms.

  15. Thermal transport dynamics in the quasi-single helicity state

    NASA Astrophysics Data System (ADS)

    McKinney, I. J.; Terry, P. W.

    2017-06-01

    A dynamical model describing oscillations between multiple and single helicity configurations in the quasi-single helicity (QSH) state of the reversed field pinch [P. W. Terry and G. G. Whelan, Plasma Phys. Controlled Fusion 56, 094003 (2014)] is extended to include electron temperature profile dynamics. It is shown that QSH dynamics is linked to the electron temperature profile because the suppression of mode coupling between tearing modes proposed to underlie QSH also suppresses magnetic-fluctuation-induced thermal transport. Above the threshold of dominant-mode shear that marks the transition to QSH, the model produces temperature-gradient steepening in the strong shear region. Oscillations of the dominant and secondary mode amplitudes give rise to oscillations of the temperature gradient. The phasing and amplitude of temperature gradient oscillations relative to those of the dominant mode are in agreement with experiment. This provides further evidence that the model, while heuristic, captures key physical aspects of the QSH state.

  16. Magnetic Helicity Estimations in Models and Observations of the Solar Magnetic Field. III. Twist Number Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Y.; Pariat, E.; Moraitis, K.

    We study the writhe, twist, and magnetic helicity of different magnetic flux ropes, based on models of the solar coronal magnetic field structure. These include an analytical force-free Titov–Démoulin equilibrium solution, non-force-free magnetohydrodynamic simulations, and nonlinear force-free magnetic field models. The geometrical boundary of the magnetic flux rope is determined by the quasi-separatrix layer and the bottom surface, and the axis curve of the flux rope is determined by its overall orientation. The twist is computed by the Berger–Prior formula, which is suitable for arbitrary geometry and both force-free and non-force-free models. The magnetic helicity is estimated by the twistmore » multiplied by the square of the axial magnetic flux. We compare the obtained values with those derived by a finite volume helicity estimation method. We find that the magnetic helicity obtained with the twist method agrees with the helicity carried by the purely current-carrying part of the field within uncertainties for most test cases. It is also found that the current-carrying part of the model field is relatively significant at the very location of the magnetic flux rope. This qualitatively explains the agreement between the magnetic helicity computed by the twist method and the helicity contributed purely by the current-carrying magnetic field.« less

  17. Techniques in helical scanning, dynamic imaging and image segmentation for improved quantitative analysis with X-ray micro-CT

    NASA Astrophysics Data System (ADS)

    Sheppard, Adrian; Latham, Shane; Middleton, Jill; Kingston, Andrew; Myers, Glenn; Varslot, Trond; Fogden, Andrew; Sawkins, Tim; Cruikshank, Ron; Saadatfar, Mohammad; Francois, Nicolas; Arns, Christoph; Senden, Tim

    2014-04-01

    This paper reports on recent advances at the micro-computed tomography facility at the Australian National University. Since 2000 this facility has been a significant centre for developments in imaging hardware and associated software for image reconstruction, image analysis and image-based modelling. In 2010 a new instrument was constructed that utilises theoretically-exact image reconstruction based on helical scanning trajectories, allowing higher cone angles and thus better utilisation of the available X-ray flux. We discuss the technical hurdles that needed to be overcome to allow imaging with cone angles in excess of 60°. We also present dynamic tomography algorithms that enable the changes between one moment and the next to be reconstructed from a sparse set of projections, allowing higher speed imaging of time-varying samples. Researchers at the facility have also created a sizeable distributed-memory image analysis toolkit with capabilities ranging from tomographic image reconstruction to 3D shape characterisation. We show results from image registration and present some of the new imaging and experimental techniques that it enables. Finally, we discuss the crucial question of image segmentation and evaluate some recently proposed techniques for automated segmentation.

  18. Characterization of the Protein Unfolding Processes Induced by Urea and Temperature

    PubMed Central

    Rocco, Alessandro Guerini; Mollica, Luca; Ricchiuto, Piero; Baptista, António M.; Gianazza, Elisabetta; Eberini, Ivano

    2008-01-01

    Correct folding is critical for the biological activities of proteins. As a contribution to a better understanding of the protein (un)folding problem, we studied the effect of temperature and of urea on peptostreptococcal Protein L destructuration. We performed standard molecular dynamics simulations at 300 K, 350 K, 400 K, and 480 K, both in 10 M urea and in water. Protein L followed at least two alternative unfolding pathways. Urea caused the loss of secondary structure acting preferentially on the β-sheets, while leaving the α-helices almost intact; on the contrary, high temperature preserved the β-sheets and led to a complete loss of the α-helices. These data suggest that urea and high temperature act through different unfolding mechanisms, and protein secondary motives reveal a differential sensitivity to various denaturant treatments. As further validation of our results, replica-exchange molecular dynamics simulations of the temperature-induced unfolding process in the presence of urea were performed. This set of simulations allowed us to compute the thermodynamical parameters of the process and confirmed that, in the configurational space of Protein L unfolding, both of the above pathways are accessible, although to a different relative extent. PMID:18065481

  19. Computer Simulations of Polytetrafluoroethylene in the Solid State

    NASA Astrophysics Data System (ADS)

    Holt, D. B.; Farmer, B. L.; Eby, R. K.; Macturk, K. S.

    1996-03-01

    Force field parameters (Set I) for fluoropolymers were previously derived from MOPAC AM1 semiempirical data on model molecules. A second set (Set II) was derived from the AM1 results augmented by ab initio calculations. Both sets yield reasonable helical and phase II packing structures for polytetrafluoroethylene (PTFE) chains. However, Set I and Set II differ in the strength of van der Waals interactions, with Set II having deeper potential wells (order of magnitude). To differentiate which parameter set provides a better description of PTFE behavior, molecular dynamics simulations have been performed with Biosym Discover on clusters of PTFE chains which begin in a phase II packing environment. Added to the model are artificial constraints which allow the simulation of thermal expansion without having to define periodic boundary conditions for each specific temperature of interest. The preliminary dynamics simulations indicate that the intra- and intermolecular interactions provided by Set I are too weak. The degree of helical disorder and chain motion are high even at temperatures well below the phase II-phase IV transition temperature (19 C). Set II appears to yield a better description of PTFE in the solid state.

  20. Toward high-resolution computational design of the structure and function of helical membrane proteins.

    PubMed

    Barth, Patrick; Senes, Alessandro

    2016-06-07

    The computational design of α-helical membrane proteins is still in its infancy but has already made great progress. De novo design allows stable, specific and active minimal oligomeric systems to be obtained. Computational reengineering can improve the stability and function of naturally occurring membrane proteins. Currently, the major hurdle for the field is the experimental characterization of the designs. The emergence of new structural methods for membrane proteins will accelerate progress.

  1. Helicity conservation under quantum reconnection of vortex rings.

    PubMed

    Zuccher, Simone; Ricca, Renzo L

    2015-12-01

    Here we show that under quantum reconnection, simulated by using the three-dimensional Gross-Pitaevskii equation, self-helicity of a system of two interacting vortex rings remains conserved. By resolving the fine structure of the vortex cores, we demonstrate that the total length of the vortex system reaches a maximum at the reconnection time, while both writhe helicity and twist helicity remain separately unchanged throughout the process. Self-helicity is computed by two independent methods, and topological information is based on the extraction and analysis of geometric quantities such as writhe, total torsion, and intrinsic twist of the reconnecting vortex rings.

  2. Helical gears with circular arc teeth: Generation, geometry, precision and adjustment to errors, computer aided simulation of conditions of meshing and bearing contact

    NASA Technical Reports Server (NTRS)

    Litvin, Faydor L.; Tsay, Chung-Biau

    1987-01-01

    The authors have proposed a method for the generation of circular arc helical gears which is based on the application of standard equipment, worked out all aspects of the geometry of the gears, proposed methods for the computer aided simulation of conditions of meshing and bearing contact, investigated the influence of manufacturing and assembly errors, and proposed methods for the adjustment of gears to these errors. The results of computer aided solutions are illustrated with computer graphics.

  3. Magnetic field generation by pointwise zero-helicity three-dimensional steady flow of an incompressible electrically conducting fluid

    NASA Astrophysics Data System (ADS)

    Rasskazov, Andrey; Chertovskih, Roman; Zheligovsky, Vladislav

    2018-04-01

    We introduce six families of three-dimensional space-periodic steady solenoidal flows, whose kinetic helicity density is zero at any point. Four families are analytically defined. Flows in four families have zero helicity spectrum. Sample flows from five families are used to demonstrate numerically that neither zero kinetic helicity density nor zero helicity spectrum prohibit generation of large-scale magnetic field by the two most prominent dynamo mechanisms: the magnetic α -effect and negative eddy diffusivity. Our computations also attest that such flows often generate small-scale field for sufficiently small magnetic molecular diffusivity. These findings indicate that kinetic helicity and helicity spectrum are not the quantities controlling the dynamo properties of a flow regardless of whether scale separation is present or not.

  4. Validation of an Accurate Three-Dimensional Helical Slow-Wave Circuit Model

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.

    1997-01-01

    The helical slow-wave circuit embodies a helical coil of rectangular tape supported in a metal barrel by dielectric support rods. Although the helix slow-wave circuit remains the mainstay of the traveling-wave tube (TWT) industry because of its exceptionally wide bandwidth, a full helical circuit, without significant dimensional approximations, has not been successfully modeled until now. Numerous attempts have been made to analyze the helical slow-wave circuit so that the performance could be accurately predicted without actually building it, but because of its complex geometry, many geometrical approximations became necessary rendering the previous models inaccurate. In the course of this research it has been demonstrated that using the simulation code, MAFIA, the helical structure can be modeled with actual tape width and thickness, dielectric support rod geometry and materials. To demonstrate the accuracy of the MAFIA model, the cold-test parameters including dispersion, on-axis interaction impedance and attenuation have been calculated for several helical TWT slow-wave circuits with a variety of support rod geometries including rectangular and T-shaped rods, as well as various support rod materials including isotropic, anisotropic and partially metal coated dielectrics. Compared with experimentally measured results, the agreement is excellent. With the accuracy of the MAFIA helical model validated, the code was used to investigate several conventional geometric approximations in an attempt to obtain the most computationally efficient model. Several simplifications were made to a standard model including replacing the helical tape with filaments, and replacing rectangular support rods with shapes conforming to the cylindrical coordinate system with effective permittivity. The approximate models are compared with the standard model in terms of cold-test characteristics and computational time. The model was also used to determine the sensitivity of various circuit parameters including typical manufacturing dimensional tolerances and support rod permittivity. By varying the circuit parameters of an accurate model using MAFIA, these sensitivities can be computed for manufacturing concerns, and design optimization previous to fabrication, thus eliminating the need for costly experimental iterations. Several variations were made to a standard helical circuit using MAFIA to investigate the effect that variations on helical tape and support rod width, metallized loading height and support rod permittivity, have on TWT cold-test characteristics.

  5. Impact of helical boundary conditions in MHD modeling of RFP and tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Bonfiglio, D.; Cappello, S.; Escande, D. F.; Piovesan, P.; Veranda, M.; Chacón, L.

    2012-10-01

    Helical boundary conditions imposed by the active control system of the RFX-mod device provide a handle to govern the plasma dynamics in both RFP and Ohmic tokamak discharges [1]. By applying an edge radial magnetic field with proper helicity, it is possible to increase the persistence of the spontaneous helical RFP states at high current,and to stimulate them also at low current or high density. Helical BCs even allow to access helical states with different helicity than the spontaneous one [2]. In Ohmic tokamak operation at q(a)<2, the presence of the 2/1 RWM reduces the sawtoothing activity of the 1/1 internal kink, which takes a stationary snake-like character instead. Many of these features are qualitatively reproduced in 3D nonlinear MHD modeling. We study the impact of helical BCs on the MHD dynamics in both RFP and tokamak with two successfully benchmarked numerical tools, SpeCyl and PIXIE3D [3]. We recover the bifurcation from a sawtooth to a snake solution when imposing a 2/1 BC in the tokamak case and we interpret this as a toroidal/nonlinear coupling effect. We show that the bifurcation is more easily stimulated with a 1/1 BC.[4pt] [1] P. Piovesan, invited talk this meeting[0pt] [2] M. Veranda et al EPS-ICPP Conference (2012) P4.004[0pt] [3] D. Bonfiglio et al Phys. Plasmas (2010)

  6. Computer-aided diagnosis workstation and database system for chest diagnosis based on multi-helical CT images

    NASA Astrophysics Data System (ADS)

    Satoh, Hitoshi; Niki, Noboru; Mori, Kiyoshi; Eguchi, Kenji; Kaneko, Masahiro; Kakinuma, Ryutarou; Moriyama, Noriyuki; Ohmatsu, Hironobu; Masuda, Hideo; Machida, Suguru; Sasagawa, Michizou

    2006-03-01

    Multi-helical CT scanner advanced remarkably at the speed at which the chest CT images were acquired for mass screening. Mass screening based on multi-helical CT images requires a considerable number of images to be read. It is this time-consuming step that makes the use of helical CT for mass screening impractical at present. To overcome this problem, we have provided diagnostic assistance methods to medical screening specialists by developing a lung cancer screening algorithm that automatically detects suspected lung cancers in helical CT images and a coronary artery calcification screening algorithm that automatically detects suspected coronary artery calcification. We also have developed electronic medical recording system and prototype internet system for the community health in two or more regions by using the Virtual Private Network router and Biometric fingerprint authentication system and Biometric face authentication system for safety of medical information. Based on these diagnostic assistance methods, we have now developed a new computer-aided workstation and database that can display suspected lesions three-dimensionally in a short time. This paper describes basic studies that have been conducted to evaluate this new system. The results of this study indicate that our computer-aided diagnosis workstation and network system can increase diagnostic speed, diagnostic accuracy and safety of medical information.

  7. Topological solitons in helical strings

    NASA Astrophysics Data System (ADS)

    Nisoli, Cristiano; Balatsky, Alexander V.

    2015-06-01

    The low-energy physics of (quasi)degenerate one-dimensional systems is typically understood as the particle-like dynamics of kinks between stable, ordered structures. Such dynamics, we show, becomes highly nontrivial when the ground states are topologically constrained: a dynamics of the domains rather than on the domains which the kinks separate. Motivated by recently reported observations of charged polymers physio-adsorbed on nanotubes, we study kinks between helical structures of a string wrapping around a cylinder. While their motion cannot be disentangled from domain dynamics, and energy and momentum is not concentrated in the solitons, the dynamics of the domains can be folded back into a particle-like description of the local excitations.

  8. Comparison of Image Quality and Radiation Dose of Coronary Computed Tomography Angiography Between Conventional Helical Scanning and a Strategy Incorporating Sequential Scanning

    PubMed Central

    Einstein, Andrew J.; Wolff, Steven D.; Manheimer, Eric D.; Thompson, James; Terry, Sylvia; Uretsky, Seth; Pilip, Adalbert; Peters, M. Robert

    2009-01-01

    Radiation dose from coronary computed tomography angiography may be reduced using a sequential scanning protocol rather than a conventional helical scanning protocol. Here we compare radiation dose and image quality from coronary computed tomography angiography in a single center between an initial period during which helical scanning with electrocardiographically-controlled tube current modulation was used for all patients (n=138) and after adoption of a strategy incorporating sequential scanning whenever appropriate (n=261). Using the sequential-if-appropriate strategy, sequential scanning was employed in 86.2% of patients. Compared to the helical-only strategy, this strategy was associated with a 65.1% dose reduction (mean dose-length product of 305.2 vs. 875.1 and mean effective dose of 14.9 mSv vs. 5.2 mSv, respectively), with no significant change in overall image quality, step artifacts, motion artifacts, or perceived image noise. For the 225 patients undergoing sequential scanning, the dose-length product was 201.9 ± 90.0 mGy·cm, while for patients undergoing helical scanning under either strategy, the dose-length product was 890.9 ± 293.3 mGy·cm (p<0.0001), corresponding to mean effective doses of 3.4 mSv and 15.1 mSv, respectively, a 77.5% reduction. Image quality was significantly greater for the sequential studies, reflecting the poorer image quality in patients undergoing helical scanning in the sequential-if-appropriate strategy. In conclusion, a sequential-if-appropriate diagnostic strategy reduces dose markedly compared to a helical-only strategy, with no significant difference in image quality. PMID:19892048

  9. Helically agitated mixing in dry dilute acid pretreatment enhances the bioconversion of corn stover into ethanol

    PubMed Central

    2014-01-01

    Background Dry dilute acid pretreatment at extremely high solids loading of lignocellulose materials demonstrated promising advantages of no waste water generation, less sugar loss, and low steam consumption while maintaining high hydrolysis yield. However, the routine pretreatment reactor without mixing apparatus was found not suitable for dry pretreatment operation because of poor mixing and mass transfer. In this study, helically agitated mixing was introduced into the dry dilute acid pretreatment of corn stover and its effect on pretreatment efficiency, inhibitor generation, sugar production, and bioconversion efficiency through simultaneous saccharification and ethanol fermentation (SSF) were evaluated. Results The overall cellulose conversion taking account of cellulose loss in pretreatment was used to evaluate the efficiency of pretreatment. The two-phase computational fluid dynamics (CFD) model on dry pretreatment was established and applied to analyze the mixing mechanism. The results showed that the pretreatment efficiency was significantly improved and the inhibitor generation was reduced by the helically agitated mixing, compared to the dry pretreatment without mixing: the ethanol titer and yield from cellulose in the SSF reached 56.20 g/L and 69.43% at the 30% solids loading and 15 FPU/DM cellulase dosage, respectively, corresponding to a 26.5% increase in ethanol titer and 17.2% increase in ethanol yield at the same fermentation conditions. Conclusions The advantage of helically agitated mixing may provide a prototype of dry dilute acid pretreatment processing for future commercial-scale production of cellulosic ethanol. PMID:24387051

  10. Numerical study of the influence of geometrical characteristics of a vertical helical coil on a bubbly flow

    NASA Astrophysics Data System (ADS)

    Saffari, H.; Moosavi, R.

    2014-11-01

    In this article, turbulent single-phase and two-phase (air-water) bubbly fluid flows in a vertical helical coil are analyzed by using computational fluid dynamics (CFD). The effects of the pipe diameter, coil diameter, coil pitch, Reynolds number, and void fraction on the pressure loss, friction coefficient, and flow characteristics are investigated. The Eulerian-Eulerian model is used in this work to simulate the two-phase fluid flow. Three-dimensional governing equations of continuity, momentum, and energy are solved by using the finite volume method. The k- ɛ turbulence model is used to calculate turbulence fluctuations. The SIMPLE algorithm is employed to solve the velocity and pressure fields. Due to the effect of a secondary force in helical pipes, the friction coefficient is found to be higher in helical pipes than in straight pipes. The friction coefficient increases with an increase in the curvature, pipe diameter, and coil pitch and decreases with an increase in the coil diameter and void fraction. The close correlation between the numerical results obtained in this study and the numerical and empirical results of other researchers confirm the accuracy of the applied method. For void fractions up to 0.1, the numerical results indicate that the friction coefficient increases with increasing the pipe diameter and keeping the coil pitch and diameter constant and decreases with increasing the coil diameter. Finally, with an increase in the Reynolds number, the friction coefficient decreases, while the void fraction increases.

  11. Phase space trajectories and Lyapunov exponents in the dynamics of an alpha-helical protein lattice with intra- and inter-spine interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angelin Jeba, K.; Latha, M. M., E-mail: lathaisaac@yahoo.com; Jain, Sudhir R.

    2015-11-15

    The nonlinear dynamics of intra- and inter-spine interaction models of alpha-helical proteins is investigated by proposing a Hamiltonian using the first quantized operators. Hamilton's equations of motion are derived, and the dynamics is studied by constructing the trajectories and phase space plots in both cases. The phase space plots display a chaotic behaviour in the dynamics, which opens questions about the relationship between the chaos and exciton-exciton and exciton-phonon interactions. This is verified by plotting the Lyapunov characteristic exponent curves.

  12. PI-line-based image reconstruction in helical cone-beam computed tomography with a variable pitch.

    PubMed

    Zou, Yu; Pan, Xiaochuan; Xia, Dan; Wang, Ge

    2005-08-01

    Current applications of helical cone-beam computed tomography (CT) involve primarily a constant pitch where the translating speed of the table and the rotation speed of the source-detector remain constant. However, situations do exist where it may be more desirable to use a helical scan with a variable translating speed of the table, leading a variable pitch. One of such applications could arise in helical cone-beam CT fluoroscopy for the determination of vascular structures through real-time imaging of contrast bolus arrival. Most of the existing reconstruction algorithms have been developed only for helical cone-beam CT with constant pitch, including the backprojection-filtration (BPF) and filtered-backprojection (FBP) algorithms that we proposed previously. It is possible to generalize some of these algorithms to reconstruct images exactly for helical cone-beam CT with a variable pitch. In this work, we generalize our BPF and FBP algorithms to reconstruct images directly from data acquired in helical cone-beam CT with a variable pitch. We have also performed a preliminary numerical study to demonstrate and verify the generalization of the two algorithms. The results of the study confirm that our generalized BPF and FBP algorithms can yield exact reconstruction in helical cone-beam CT with a variable pitch. It should be pointed out that our generalized BPF algorithm is the only algorithm that is capable of reconstructing exactly region-of-interest image from data containing transverse truncations.

  13. Helical Spin Order from Topological Dirac and Weyl Semimetals

    DOE PAGES

    Sun, Xiao-Qi; Zhang, Shou-Cheng; Wang, Zhong

    2015-08-14

    In this paper, we study dynamical mass generation and the resultant helical spin orders in topological Dirac and Weyl semimetals, including the edge states of quantum spin Hall insulators, the surface states of weak topological insulators, and the bulk materials of Weyl semimetals. In particular, the helical spin textures of Weyl semimetals manifest the spin-momentum locking of Weyl fermions in a visible manner. Finally, the spin-wave fluctuations of the helical order carry electric charge density; therefore, the spin textures can be electrically controlled in a simple and predictable manner.

  14. Structural dynamics of free proteins in diffraction.

    PubMed

    Lin, Milo M; Shorokhov, Dmitry; Zewail, Ahmed H

    2011-10-26

    Among the macromolecular patterns of biological significance, right-handed α-helices are perhaps the most abundant structural motifs. Here, guided by experimental findings, we discuss both ultrafast initial steps and longer-time-scale structural dynamics of helix-coil transitions induced by a range of temperature jumps in large, isolated macromolecular ensembles of an α-helical protein segment thymosin β(9) (Tβ(9)), and elucidate the comprehensive picture of (un)folding. In continuation of an earlier theoretical work from this laboratory that utilized a simplistic structure-scrambling algorithm combined with a variety of self-avoidance thresholds to approximately model helix-coil transitions in Tβ(9), in the present contribution we focus on the actual dynamics of unfolding as obtained from massively distributed ensemble-convergent MD simulations which provide an unprecedented scope of information on the nature of transient macromolecular structures, and with atomic-scale spatiotemporal resolution. In addition to the use of radial distribution functions of ultrafast electron diffraction (UED) simulations in gaining an insight into the elementary steps of conformational interconversions, we also investigate the structural dynamics of the protein via the native (α-helical) hydrogen bonding contact metric which is an intuitive coarse graining approach. Importantly, the decay of α-helical motifs and the (globular) conformational annealing in Tβ(9) occur consecutively or competitively, depending on the magnitude of temperature jump.

  15. Free Energy and Structure of Helix-forming Peptides: A Theoretical Investigation

    NASA Astrophysics Data System (ADS)

    Karpusenka, Vadzim

    This thesis focuses on the structure and free energy of helical secondary structures of short peptides in a variety of experimental settings. Specifically, the formation of alpha-, pi- and 310-helices was investigated using large-scale classical molecular dynamics simulations with state-of-the-art force fields. In addition, the recently developed Adaptively Biased Molecular Dynamics (ABMD) and Steered Molecular Dynamics (SMD) methods were used to calculate the corresponding free energies. The most important results are as follows. For the examined peptide homopolymers, the observed minima on the free energy landscapes (based on suitable collective variables such as the radius of gyration, number of hydrogen bonds, and handedness) were associated with alpha-helices and "globular" or "knot-like" configurations only. No evidence was found to indicate that 310- or pi-helices represent equilibrium structures for these systems. In addition, the free energy landscape of short peptide chains formed by mixing two different amino acids were also examined. These results too indicate that the alpha-helix is only equilibrium helical secondary structure, and that the mixing of different amino acids does not result in the introduction of any significant new minima into the free energy landscapes. These results are in agreement with experimental observations insofar as these indicate that helical structural motifs are primary based on alpha-helices, with 310- and pi-helices being observed only rarely. Although pi- and 310-helices represent nonequilibrium structures, we were still able to estimate their free energies by means of SMD simulations. The helical secondary structure of the examined polypeptide chains is due to the formation of hydrogen bonds. However, there are other mechanisms that may allow for the additional stabilization of these structures. Specifically, in the so-called AK-(4,7) protein, the possible presence of disulfide bonds connecting cysteine residues may significantly alter the free energy landscapes and therefore the stability of different helical structures. We therefore examined this issue with ABMD simulations. However, our results show that while the free energy landscapes are indeed significantly altered only the formation of alpha-helices is favored as a secondary structural motif. Since all the results indicate that alpha-helix formation dominates, it is natural to think in terms of an alpha-helix forming propensity for different amino acids. To address this question, we carried out an extensive residue-by-residue population analysis of different amino acid guests in an alanine-based host setting. Such an analysis allows us to rank the different amino acid guests based on whether they increased or decreased the population in the alpha-helix region of the corresponding Ramachandran plots. Our ranking of the different guest amino acids is in reasonable correspondence with the experimental results, although some differences are observed. Finally, using a four-beads coarse-grained model were have investigated the stability of GA88 and GB88 proteins, which are quite similar in terms of their amino acid sequence, by means of 10mus simulations. The results indicate that while the three alpha-helix bundle of the GA88 protein remains stable, the 2beta--alpha--2beta configuration of the GB88 protein does not: the latter rapidly converts to a structure consisting mostly of helices similar to the GA88 protein design. These results indicate that this particular four-bead coarse-grained model is not able to properly grasp the dynamics of the beta-sheet secondary structure and overstabilizes the corresponding helical content.

  16. Photometrical research geostationary satellite "SBIRS GEO-2"

    NASA Astrophysics Data System (ADS)

    Sukhov, P. P.; Epishev, V. P; Sukhov, K. P; Kudak, V. I.

    The multicolor photometrical observations GSS "Sbirs Geo-2" were carried in B,V,R filters out during the autumn equinox 2014 and spring 2015 y. Periodic appearance of many light curves and dips of mirror reflections suggests that the GSS was not in orbit in a static position, predetermined three-axis orientation and in dynamic motion. On the basis of computer modeling suggests the following dynamics GSS "Sbirs Geo-2" in orbit. Helically scanning the visible Earth's surface infrared satellite sensors come with period P1 = 15.66 sec. and the rocking of the GSS about the direction of the motion vector of the satellite in orbit with P2 = 62.64 sec., most likely with the purpose to survey the greatest possible portion of the earth's surface.

  17. Magnetic helicity in emerging solar active regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Y.; Hoeksema, J. T.; Bobra, M.

    Using vector magnetic field data from the Helioseismic and Magnetic Imager instrument aboard the Solar Dynamics Observatory, we study magnetic helicity injection into the corona in emerging active regions (ARs) and examine the hemispheric helicity rule. In every region studied, photospheric shearing motion contributes most of the helicity accumulated in the corona. In a sample of 28 emerging ARs, 17 follow the hemisphere rule (61% ± 18% at a 95% confidence interval). Magnetic helicity and twist in 25 ARs (89% ± 11%) have the same sign. The maximum magnetic twist, which depends on the size of an AR, is inferredmore » in a sample of 23 emerging ARs with a bipolar magnetic field configuration.« less

  18. Real-space processing of helical filaments in SPARX

    PubMed Central

    Behrmann, Elmar; Tao, Guozhi; Stokes, David L.; Egelman, Edward H.; Raunser, Stefan; Penczek, Pawel A.

    2012-01-01

    We present a major revision of the iterative helical real-space refinement (IHRSR) procedure and its implementation in the SPARX single particle image processing environment. We built on over a decade of experience with IHRSR helical structure determination and we took advantage of the flexible SPARX infrastructure to arrive at an implementation that offers ease of use, flexibility in designing helical structure determination strategy, and high computational efficiency. We introduced the 3D projection matching code which now is able to work with non-cubic volumes, the geometry better suited for long helical filaments, we enhanced procedures for establishing helical symmetry parameters, and we parallelized the code using distributed memory paradigm. Additional feature includes a graphical user interface that facilitates entering and editing of parameters controlling the structure determination strategy of the program. In addition, we present a novel approach to detect and evaluate structural heterogeneity due to conformer mixtures that takes advantage of helical structure redundancy. PMID:22248449

  19. Helicity amplitudes for QCD with massive quarks

    NASA Astrophysics Data System (ADS)

    Ochirov, Alexander

    2018-04-01

    The novel massive spinor-helicity formalism of Arkani-Hamed, Huang and Huang provides an elegant way to calculate scattering amplitudes in quantum chromodynamics for arbitrary quark spin projections. In this note we compute two families of tree-level QCD amplitudes with one massive quark pair and n - 2 gluons. The two cases include all gluons with identical helicity and one opposite-helicity gluon being color-adjacent to one of the quarks. Our results naturally incorporate the previously known amplitudes for both quark spins quantized along one of the gluonic momenta. In the all-multiplicity formulae presented here the spin quantization axes can be tuned at will, which includes the case of the definite-helicity quark states.

  20. The hydration of amides in helices; a comprehensive picture from molecular dynamics, IR, and NMR

    PubMed Central

    Walsh, Scott T.R.; Cheng, Richard P.; Wright, Wayne W.; Alonso, Darwin O.V.; Daggett, Valerie; Vanderkooi, Jane M.; DeGrado, William F.

    2003-01-01

    We examined the hydration of amides of α3D, a simple, designed three-helix bundle protein. Molecular dynamics calculations show that the amide carbonyls on the surface of the protein tilt away from the helical axis to interact with solvent water, resulting in a lengthening of the hydrogen bonds on this face of the helix. Water molecules are bonded to these carbonyl groups with partial occupancy (∼50%–70%), and their interaction geometries show a large variation in their hydrogen bond lengths and angles on the nsec time scale. This heterogeneity is reflected in the carbonyl stretching vibration (amide I′ band) of a group of surface Ala residues. The surface-exposed amides are broad, and shift to lower frequency (reflecting strengthening of the hydrogen bonds) as the temperature is decreased. By contrast, the amide I′ bands of the buried 13C-labeled Leu residues are significantly sharper and their frequencies are consistent with the formation of strong hydrogen bonds, independent of temperature. The rates of hydrogen-deuterium exchange and the proton NMR chemical shifts of the helical amide groups also depend on environment. The partial occupancy of the hydration sites on the surface of helices suggests that the interaction is relatively weak, on the order of thermal energy at room temperature. One unexpected feature that emerged from the dynamics calculations was that a Thr side chain subtly disrupted the helical geometry 4–7 residues N-terminal in sequence, which was reflected in the proton chemical shifts and the rates of amide proton exchange for several amides that engage in a mixed 310/α/π-helical conformation. PMID:12592022

  1. Intermolecular detergent-membrane protein noes for the characterization of the dynamics of membrane protein-detergent complexes.

    PubMed

    Eichmann, Cédric; Orts, Julien; Tzitzilonis, Christos; Vögeli, Beat; Smrt, Sean; Lorieau, Justin; Riek, Roland

    2014-12-11

    The interaction between membrane proteins and lipids or lipid mimetics such as detergents is key for the three-dimensional structure and dynamics of membrane proteins. In NMR-based structural studies of membrane proteins, qualitative analysis of intermolecular nuclear Overhauser enhancements (NOEs) or paramagnetic resonance enhancement are used in general to identify the transmembrane segments of a membrane protein. Here, we employed a quantitative characterization of intermolecular NOEs between (1)H of the detergent and (1)H(N) of (2)H-perdeuterated, (15)N-labeled α-helical membrane protein-detergent complexes following the exact NOE (eNOE) approach. Structural considerations suggest that these intermolecular NOEs should show a helical-wheel-type behavior along a transmembrane helix or a membrane-attached helix within a membrane protein as experimentally demonstrated for the complete influenza hemagglutinin fusion domain HAfp23. The partial absence of such a NOE pattern along the amino acid sequence as shown for a truncated variant of HAfp23 and for the Escherichia coli inner membrane protein YidH indicates the presence of large tertiary structure fluctuations such as an opening between helices or the presence of large rotational dynamics of the helices. Detergent-protein NOEs thus appear to be a straightforward probe for a qualitative characterization of structural and dynamical properties of membrane proteins embedded in detergent micelles.

  2. Computational study of the fibril organization of polyglutamine repeats reveals a common motif identified in beta-helices.

    PubMed

    Zanuy, David; Gunasekaran, Kannan; Lesk, Arthur M; Nussinov, Ruth

    2006-04-21

    The formation of fibril aggregates by long polyglutamine sequences is assumed to play a major role in neurodegenerative diseases such as Huntington. Here, we model peptides rich in glutamine, through a series of molecular dynamics simulations. Starting from a rigid nanotube-like conformation, we have obtained a new conformational template that shares structural features of a tubular helix and of a beta-helix conformational organization. Our new model can be described as a super-helical arrangement of flat beta-sheet segments linked by planar turns or bends. Interestingly, our comprehensive analysis of the Protein Data Bank reveals that this is a common motif in beta-helices (termed beta-bend), although it has not been identified so far. The motif is based on the alternation of beta-sheet and helical conformation as the protein sequence is followed from the N to the C termini (beta-alpha(R)-beta-polyPro-beta). We further identify this motif in the ssNMR structure of the protofibril of the amyloidogenic peptide Abeta(1-40). The recurrence of the beta-bend suggests a general mode of connecting long parallel beta-sheet segments that would allow the growth of partially ordered fibril structures. The design allows the peptide backbone to change direction with a minimal loss of main chain hydrogen bonds. The identification of a coherent organization beyond that of the beta-sheet segments in different folds rich in parallel beta-sheets suggests a higher degree of ordered structure in protein fibrils, in agreement with their low solubility and dense molecular packing.

  3. Matter-induced magnetic moment and neutrino helicity rotation in external fields

    NASA Astrophysics Data System (ADS)

    Ternov, Alexei I.

    2016-11-01

    The induced magnetic moment that arises due to the propagation of neutrinos in a dispersive medium can affect the dynamics of the neutrino spin in an external electromagnetic field. In particular, it can cause a helicity flip of a massive neutrino in a magnetic field. In some astrophysical media, this helicity transition mechanism could be more effective than a similar process caused by the anomalous magnetic moment of the neutrino. If the neutrino energy is sufficiently high, the two helicity transition mechanisms mentioned above can compensate each other. Then a helicity flip in an external field will not occur. Calculations are carried out using both the methods of relativistic quantum mechanics and the quasiclassical Bargmann-Michel-Telegdi equation.

  4. Dynamic allostery of protein alpha helical coiled-coils

    PubMed Central

    Hawkins, Rhoda J; McLeish, Tom C.B

    2005-01-01

    Alpha helical coiled-coils appear in many important allosteric proteins such as the dynein molecular motor and bacteria chemotaxis transmembrane receptors. As a mechanism for transmitting the information of ligand binding to a distant site across an allosteric protein, an alternative to conformational change in the mean static structure is an induced change in the pattern of the internal dynamics of the protein. We explore how ligand binding may change the intramolecular vibrational free energy of a coiled-coil, using parameterized coarse-grained models, treating the case of dynein in detail. The models predict that coupling of slide, bend and twist modes of the coiled-coil transmits an allosteric free energy of ∼2kBT, consistent with experimental results. A further prediction is a quantitative increase in the effective stiffness of the coiled-coil without any change in inherent flexibility of the individual helices. The model provides a possible and experimentally testable mechanism for transmission of information through the alpha helical coiled-coil of dynein. PMID:16849225

  5. SolCalc: A Suite for the Calculation and the Display of Magnetic Fields Generated by Solenoid Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopes, M. L.

    2014-07-01

    SolCalc is a software suite that computes and displays magnetic fields generated by a three dimensional (3D) solenoid system. Examples of such systems are the Mu2e magnet system and Helical Solenoids for muon cooling systems. SolCalc was originally coded in Matlab, and later upgraded to a compiled version (called MEX) to improve solving speed. Matlab was chosen because its graphical capabilities represent an attractive feature over other computer languages. Solenoid geometries can be created using any text editor or spread sheets and can be displayed dynamically in 3D. Fields are computed from any given list of coordinates. The field distributionmore » on the surfaces of the coils can be displayed as well. SolCalc was benchmarked against a well-known commercial software for speed and accuracy and the results compared favorably.« less

  6. Triple-phase helical computed tomography in dogs with solid splenic masses

    PubMed Central

    KUTARA, Kenji; SEKI, Mamiko; ISHIGAKI, Kumiko; TESHIMA, Kenji; ISHIKAWA, Chieko; KAGAWA, Yumiko; EDAMURA, Kazuya; NAKAYAMA, Tomohiro; ASANO, Kazushi

    2017-01-01

    We investigated the utility of triple-phase helical computed tomography (CT) in differentiating between benign and malignant splenic masses in dogs. Forty-two dogs with primary splenic masses underwent triple-phase helical CT scanning (before administration of contrast, and in the arterial phase, portal venous phase, and delayed phase) prior to splenectomy. Tissue specimens were sent for pathological diagnosis; these included hematomas (n=14), nodular hyperplasias (n=12), hemangiosarcomas (n=11), and undifferentiated sarcomas (n=5). The CT findings were compared with the histological findings. Nodular hyperplasia significantly displayed a homogeneous normal enhancement pattern in all phases. Hemangiosarcoma displayed 2 significant contrast-enhancement patterns, including a homogeneous pattern of poor enhancement in all phases, and a heterogeneous remarkable enhancement pattern in the arterial and portal venous phases. Hematoma and undifferentiated sarcoma displayed a heterogeneous normal enhancement pattern in all phases. The contrast-enhanced volumetric ratios of hematoma tended to be greater than those of undifferentiated sarcoma. Our study demonstrated that the characteristic findings on triple-phase helical CT could be useful for the preoperative differentiation of hematoma, nodular hyperplasia, hemangiosarcoma, and undifferentiated sarcoma in dogs. Triple-phase helical CT may be a useful diagnostic tool in dogs with splenic masses. PMID:28993600

  7. Computational prediction of atomic structures of helical membrane proteins aided by EM maps.

    PubMed

    Kovacs, Julio A; Yeager, Mark; Abagyan, Ruben

    2007-09-15

    Integral membrane proteins pose a major challenge for protein-structure prediction because only approximately 100 high-resolution structures are available currently, thereby impeding the development of rules or empirical potentials to predict the packing of transmembrane alpha-helices. However, when an intermediate-resolution electron microscopy (EM) map is available, it can be used to provide restraints which, in combination with a suitable computational protocol, make structure prediction feasible. In this work we present such a protocol, which proceeds in three stages: 1), generation of an ensemble of alpha-helices by flexible fitting into each of the density rods in the low-resolution EM map, spanning a range of rotational angles around the main helical axes and translational shifts along the density rods; 2), fast optimization of side chains and scoring of the resulting conformations; and 3), refinement of the lowest-scoring conformations with internal coordinate mechanics, by optimizing the van der Waals, electrostatics, hydrogen bonding, torsional, and solvation energy contributions. In addition, our method implements a penalty term through a so-called tethering map, derived from the EM map, which restrains the positions of the alpha-helices. The protocol was validated on three test cases: GpA, KcsA, and MscL.

  8. Dynamic and Progressive Control of DNA Origami Conformation by Modulating DNA Helicity with Chemical Adducts.

    PubMed

    Chen, Haorong; Zhang, Hanyu; Pan, Jing; Cha, Tae-Gon; Li, Shiming; Andréasson, Joakim; Choi, Jong Hyun

    2016-05-24

    DNA origami has received enormous attention for its ability to program complex nanostructures with a few nanometer precision. Dynamic origami structures that change conformation in response to environmental cues or external signals hold great promises in sensing and actuation at the nanoscale. The reconfiguration mechanism of existing dynamic origami structures is mostly limited to single-stranded hinges and relies almost exclusively on DNA hybridization or strand displacement. Here, we show an alternative approach by demonstrating on-demand conformation changes with DNA-binding molecules, which intercalate between base pairs and unwind DNA double helices. The unwinding effect modulates the helicity mismatch in DNA origami, which significantly influences the internal stress and the global conformation of the origami structure. We demonstrate the switching of a polymerized origami nanoribbon between different twisting states and a well-constrained torsional deformation in a monomeric origami shaft. The structural transformation is shown to be reversible, and binding isotherms confirm the reconfiguration mechanism. This approach provides a rapid and reversible means to change DNA origami conformation, which can be used for dynamic and progressive control at the nanoscale.

  9. New generation methods for spur, helical, and spiral-bevel gears

    NASA Technical Reports Server (NTRS)

    Litvin, F. L.; Tsung, W.-J.; Coy, J. J.; Handschuh, R. F.; Tsay, C.-B. P.

    1986-01-01

    New methods for generating spur, helical, and spiral-bevel gears are proposed. These methods provide the gears with conjugate gear tooth surfaces, localized bearing contact, and reduced sensitivity to gear misalignment. Computer programs have been developed for simulating gear meshing and bearing contact.

  10. New generation methods for spur, helical, and spiral-bevel gears

    NASA Technical Reports Server (NTRS)

    Litvin, F. L.; Tsung, W.-J.; Coy, J. J.; Handschuh, R. F.; Tsay, C.-B. P.

    1987-01-01

    New methods for generating spur, helical, and spiral-bevel gears are proposed. These methods provide the gears with conjugate gear tooth surfaces, localized bearing contact, and reduced sensitivity to gear misalignment. Computer programs have been developed for simulating gear meshing and bearing contact.

  11. Usefulness of axial planes of helical computed tomography for diagnosis of pancreaticobiliary maljunction in early infants with negative findings on magnetic resonance cholangiopancreatography.

    PubMed

    Okada, Tadao; Sasaki, Fumiaki; Honda, Shouhei; Naitou, Satsuki; Onodera, Yuya; Todo, Satoru

    2008-03-01

    Magnetic resonance cholangiopancreatography (MRCP) is not sufficient to detect pancreaticobiliary maljunction (PBM) in young infants because the main pancreatic duct is not visualized and respiratory artifacts occur. To our knowledge, there are no reports highlighting the diagnostic accuracy of evaluation using the axial planes of helical computed tomographic (CT) scanning with contrast medium instead of 3-dimensional (3D) reconstruction. The aim of this study was to describe our experience and the characteristics of 3 children with PBM diagnosed using the axial planes of helical CT with contrast medium, although they showed negative findings of PBM by MRCP, instead of 3D reconstruction. Three patients aged from 1 month to 3 years were diagnosed with PBM using the axial planes of helical CT with contrast medium though MRCP could not show the common channel and/or the entrance of the common channel into the duodenum. In all 3 patients, PBM of the common channel was not revealed by MRCP. On the other hand, axial planes of contrast-enhanced helical CT scans showed PBM clearly. Our experience suggests that axial planes of the contrast-enhanced helical CT scan comprise an accurate tool for the diagnosis of fusiform-type PBM and could replace MRCP in younger children. Further studies are necessary for better assessment of the potential advantages and pitfalls of this modality.

  12. Wormlike Chain Theory and Bending of Short DNA

    NASA Astrophysics Data System (ADS)

    Mazur, Alexey K.

    2007-05-01

    The probability distributions for bending angles in double helical DNA obtained in all-atom molecular dynamics simulations are compared with theoretical predictions. The computed distributions remarkably agree with the wormlike chain theory and qualitatively differ from predictions of the subelastic chain model. The computed data exhibit only small anomalies in the apparent flexibility of short DNA and cannot account for the recently reported AFM data. It is possible that the current atomistic DNA models miss some essential mechanisms of DNA bending on intermediate length scales. Analysis of bent DNA structures reveal, however, that the bending motion is structurally heterogeneous and directionally anisotropic on the length scales where the experimental anomalies were detected. These effects are essential for interpretation of the experimental data and they also can be responsible for the apparent discrepancy.

  13. Helicity Transformation under the Collision and Merging of Magnetic Flux Ropes

    NASA Astrophysics Data System (ADS)

    Dehaas, Timothy

    2016-10-01

    A magnetic flux rope is a tube-like, current carrying plasma embedded in an external magnetic field. The magnetic field lines resemble threads in a rope, which vary in pitch according to radius. Flux ropes are ubiquitous in astrophysical plasmas, and bundles of these structures play an important role in the dynamics of the space environment. They are observed in the solar atmosphere and near-earth environment where they are seen to twist, merge, tear, and writhe. In this MHD context, their global dynamics are bound by rules of magnetic helicity conservation, unless, under a non-ideal process, helicity is transformed through magnetic reconnection, turbulence, or localized instabilities. These processes are tested under experimental conditions in the Large Plasma Device (LAPD). The device is a twenty-meter long, one-meter diameter, cylindrical vacuum vessel designed to generate a highly reproducible, magnetized plasma. Reliable shot-to-shot repetition of plasma parameters and over four hundred diagnostic ports enable the collection of volumetric datasets (measurements of ne, Te, Vp, B, J, E, uflow) as two kink-unstable flux ropes form, move, collide, and merge. Similar experiments on the LAPD have utilized these volumetric datasets, visualizing magnetic reconnection through a topological quasi-separatrix layer, or QSL. This QSL is shown to be spatially coincident with the reconnection rate, ∫ E . dl , and oscillates (although out of phase) with global helicity. Magnetic helicity is observed to have a negative sign and its counterpart, cross helicity, a positive one. These quantities oscillate 8% peak-to-peak, and the changes in helicity are visualized as 1) the transport of helicity (ϕB + E × A) and 2) the dissipation of the helicity - 2 E . B . This work is supported by LANL-UC research Grant and done at the Basic Plasma Science Facility, which is funded by DOE and NSF.

  14. Monte Carlo simulations of adult and pediatric computed tomography exams: Validation studies of organ doses with physical phantoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, Daniel J.; Lee, Choonsik; Tien, Christopher

    2013-01-15

    Purpose: To validate the accuracy of a Monte Carlo source model of the Siemens SOMATOM Sensation 16 CT scanner using organ doses measured in physical anthropomorphic phantoms. Methods: The x-ray output of the Siemens SOMATOM Sensation 16 multidetector CT scanner was simulated within the Monte Carlo radiation transport code, MCNPX version 2.6. The resulting source model was able to perform various simulated axial and helical computed tomographic (CT) scans of varying scan parameters, including beam energy, filtration, pitch, and beam collimation. Two custom-built anthropomorphic phantoms were used to take dose measurements on the CT scanner: an adult male and amore » 9-month-old. The adult male is a physical replica of University of Florida reference adult male hybrid computational phantom, while the 9-month-old is a replica of University of Florida Series B 9-month-old voxel computational phantom. Each phantom underwent a series of axial and helical CT scans, during which organ doses were measured using fiber-optic coupled plastic scintillator dosimeters developed at University of Florida. The physical setup was reproduced and simulated in MCNPX using the CT source model and the computational phantoms upon which the anthropomorphic phantoms were constructed. Average organ doses were then calculated based upon these MCNPX results. Results: For all CT scans, good agreement was seen between measured and simulated organ doses. For the adult male, the percent differences were within 16% for axial scans, and within 18% for helical scans. For the 9-month-old, the percent differences were all within 15% for both the axial and helical scans. These results are comparable to previously published validation studies using GE scanners and commercially available anthropomorphic phantoms. Conclusions: Overall results of this study show that the Monte Carlo source model can be used to accurately and reliably calculate organ doses for patients undergoing a variety of axial or helical CT examinations on the Siemens SOMATOM Sensation 16 scanner.« less

  15. Simulation of multi-pulse coaxial helicity injection in the Sustained Spheromak Physics Experiment

    NASA Astrophysics Data System (ADS)

    O'Bryan, J. B.; Romero-Talamás, C. A.; Woodruff, S.

    2018-03-01

    Nonlinear, numerical computation with the NIMROD code is used to explore magnetic self-organization during multi-pulse coaxial helicity injection in the Sustained Spheromak Physics eXperiment. We describe multiple distinct phases of spheromak evolution, starting from vacuum magnetic fields and the formation of the initial magnetic flux bubble through multiple refluxing pulses and the eventual onset of the column mode instability. Experimental and computational magnetic diagnostics agree on the onset of the column mode instability, which first occurs during the second refluxing pulse of the simulated discharge. Our computations also reproduce the injector voltage traces, despite only specifying the injector current and not explicitly modeling the external capacitor bank circuit. The computations demonstrate that global magnetic evolution is fairly robust to different transport models and, therefore, that a single fluid-temperature model is sufficient for a broader, qualitative assessment of spheromak performance. Although discharges with similar traces of normalized injector current produce similar global spheromak evolution, details of the current distribution during the column mode instability impact the relative degree of poloidal flux amplification and magnetic helicity content.

  16. Alternating phenylene and furan/pyrrole/thiophene units-based oligomers: A computational study of the structures and optoelectronic properties

    NASA Astrophysics Data System (ADS)

    Sahu, Harikrishna; Shukla, Rishabh; Goswami, Juri; Gaur, Priyank; Panda, Aditya N.

    2018-01-01

    Structural and optoelectronic properties of phenylene-furan, phenylene-pyrrole and phenylene-thiophene oligomers are reported using density functional theory methods. Studies reveal that stabilities of conformers change with increasing chain length, and helical conformers are energetically feasible for large oligomers of the studied systems, due to stacking interactions between adjacent helical turns. Absorption spectra of helices are dominated by multiple number of electronic transitions other than the S0 →S1 , involving orbitals other than the HOMO/LUMO. All studied helices are optically active having similar pattern of negative and positive peaks in the CD spectra.

  17. Computational Investigation of Helical Traveling Wave Tube Transverse RF Field Forces

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.; Dayton, James A.

    1998-01-01

    In a previous study using a fully three-dimensional (3D) helical slow-wave circuit cold- test model it was found, contrary to classical helical circuit analyses, that transverse FF electric fields have significant amplitudes compared with the longitudinal component. The RF fields obtained using this helical cold-test model have been scaled to correspond to those of an actual TWT. At the output of the tube, RF field forces reach 61%, 26% and 132% for radial, azimuthal and longitudinal components, respectively, compared to radial space charge forces indicating the importance of considering them in the design of electron beam focusing.

  18. Optically Reconfigurable Chiral Microspheres of Self-Organized Helical Superstructures with Handedness Inversion.

    PubMed

    Wang, Ling; Chen, Dong; Gutierrez-Cuevas, Karla G; Bisoyi, Hari Krishna; Fan, Jing; Zola, Rafael S; Li, Guoqiang; Urbas, Augustine M; Bunning, Timothy J; Weitz, David A; Li, Quan

    2017-01-01

    Optically reconfigurable monodisperse chiral microspheres of self-organized helical superstructures with dynamic chirality were fabricated via a capillary-based microfluidic technique. Light-driven handedness-invertible transformations between different configurations of microspheres were vividly observed and optically tunable RGB photonic cross-communications among the microspheres were demonstrated.

  19. Instability mechanisms and transition scenarios of spiral turbulence in Taylor-Couette flow.

    PubMed

    Meseguer, Alvaro; Mellibovsky, Fernando; Avila, Marc; Marques, Francisco

    2009-10-01

    Alternating laminar and turbulent helical bands appearing in shear flows between counterrotating cylinders are accurately computed and the near-wall instability phenomena responsible for their generation identified. The computations show that this intermittent regime can only exist within large domains and that its spiral coherence is not dictated by endwall boundary conditions. A supercritical transition route, consisting of a progressive helical alignment of localized turbulent spots, is carefully studied. Subcritical routes disconnected from secondary laminar flows have also been identified.

  20. Modeling the locomotion of the African trypanosome using multi-particle collision dynamics

    NASA Astrophysics Data System (ADS)

    Babu, Sujin B.; Stark, Holger

    2012-08-01

    The African trypanosome is a single flagellated micro-organism that causes the deadly sleeping sickness in humans and animals. We study the locomotion of a model trypanosome by modeling the spindle-shaped cell body using an elastic network of vertices with additional bending rigidity. The flagellum firmly attached to the model cell body is either straight or helical. A bending wave propagates along the flagellum and pushes the trypanosome forward in its viscous environment, which we simulate with the method of multi-particle collision dynamics. The relaxation dynamics of the model cell body due to a static bending wave reveals the sperm number from elastohydrodynamics as the relevant parameter. Characteristic cell body conformations for the helically attached flagellum resemble experimental observations. We show that the swimming velocity scales as the root of the angular frequency of the bending wave reminiscent of predictions for an actuated slender rod attached to a large viscous load. The swimming velocity for one geometry collapses on a single master curve when plotted versus the sperm number. The helically attached flagellum leads to a helical swimming path and a rotation of the model trypanosome about its long axis as observed in experiments. The simulated swimming velocity agrees with the experimental value.

  1. A dynamic model to determine vibrations in involute helical gears

    NASA Astrophysics Data System (ADS)

    Andersson, A.; Vedmar, L.

    2003-02-01

    A method to determine the dynamic load between two rotating elastic helical gears is presented. The stiffness of the gear teeth is calculated using the finite element method and includes the contribution from the elliptic distributed tooth load. To make sure that the new incoming contacts which are the main excitation source are properly simulated, the necessary deformation of the gears is determined by using the true geometry and positions of the gears for every time step of the dynamic calculation. This allows the contact to be positioned outside the plane of action. A numerical example is presented with figures that show the behaviour of the dynamic transmission error as well as the variation of the contact pressure due to the dynamic load for different rotational speeds.

  2. Investigation of hemodynamics in the development of dissecting aneurysm within patient-specific dissecting aneurismal aortas using computational fluid dynamics (CFD) simulations.

    PubMed

    Tse, Kwong Ming; Chiu, Peixuan; Lee, Heow Pueh; Ho, Pei

    2011-03-15

    Aortic dissecting aneurysm is one of the most catastrophic cardiovascular emergencies that carries high mortality. It was pointed out from clinical observations that the aneurysm development is likely to be related to the hemodynamics condition of the dissected aorta. In order to gain more insight on the formation and progression of dissecting aneurysm, hemodynamic parameters including flow pattern, velocity distribution, aortic wall pressure and shear stress, which are difficult to measure in vivo, are evaluated using numerical simulations. Pulsatile blood flow in patient-specific dissecting aneurismal aortas before and after the formation of lumenal aneurysm (pre-aneurysm and post-aneurysm) is investigated by computational fluid dynamics (CFD) simulations. Realistic time-dependent boundary conditions are prescribed at various arteries of the complete aorta models. This study suggests the helical development of false lumen around true lumen may be related to the helical nature of hemodynamic flow in aorta. Narrowing of the aorta is responsible for the massive recirculation in the poststenosis region in the lumenal aneurysm development. High pressure difference of 0.21 kPa between true and false lumens in the pre-aneurismal aorta infers the possible lumenal aneurysm site in the descending aorta. It is also found that relatively high time-averaged wall shear stress (in the range of 4-8 kPa) may be associated with tear initiation and propagation. CFD modeling assists in medical planning by providing blood flow patterns, wall pressure and wall shear stress. This helps to understand various phenomena in the development of dissecting aneurysm. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Effect of Helical Slow-Wave Circuit Variations on TWT Cold-Test Characteristics

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.; Dayton, J. A., Jr.

    1998-01-01

    Recent advances in the state of the art of computer modeling offer the possibility for the first time to evaluate the effect that slow-wave structure parameter variations, such as manufacturing tolerances, have on the cold-test characteristics of helical traveling-wave tubes (TWT's). This will enable manufacturers to determine the cost effectiveness of controlling the dimensions of the component parts of the TWT, which is almost impossible to do experimentally without building a large number of tubes and controlling several parameters simultaneously. The computer code MAFIA is used in this analysis to determine the effect on dispersion and on-axis interaction impedance of several helical slow-wave circuit parameter variations, including thickness and relative dielectric constant of the support rods, tape width, and height of the metallized films deposited on the dielectric rods. Previous computer analyzes required so many approximations that accurate determinations of the effect of many relevant dimensions on tube performance were practically impossible.

  4. Effect of Helical Slow-Wave Circuit Variations on TWT Cold-Test Characteristics

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.; Dayton, James A., Jr.

    1997-01-01

    Recent advances in the state of the art of computer modeling offer the possibility for the first time to evaluate the effect that slow-wave structure parameter variations, such as manufacturing tolerances, have on the cold-test characteristics of helical traveling-wave tubes (TWT's). This will enable manufacturers to determine the cost effectiveness of controlling the dimensions of the component parts of the TWT, which is almost impossible to do experimentally without building a large number of tubes and controlling several parameters simultaneously. The computer code MAFIA is used in this analysis to determine the effect on dispersion and on-axis interaction impedance of several helical slow-wave circuit parameter variations, including thickness and relative dielectric constant of the support rods, tape width, and height of the metallized films deposited on the dielectric rods. Previous computer analyses required so many approximations that accurate determinations of the effect of many relevant dimensions on tube performance were practically impossible.

  5. Effect of Helical Slow-Wave Circuit Variations on TWT Cold-Test Characteristics

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.; Dayton, James A., Jr.

    1998-01-01

    Recent advances in the state of the art of computer modeling offer the possibility for the first time to evaluate the effect that slow-wave structure parameter variations, such'as manufacturing tolerances, have on the cold-test characteristics of helical traveling-wave tubes (TWT's). This will enable manufacturers to determine the cost effectiveness of controlling the dimensions of the component parts of the TWT, which is almost impossible to do experimentally without building a large number of tubes and controlling several parameters simultaneously. The computer code MAxwell's equations by the Finite Integration Algorithm (MAFIA) is used in this analysis to determine the effect on dispersion and on-axis interaction impedance of several helical slow-wave circuit parameter variations, including thickness and relative dielectric constant of the support rods, tape width, and height of the metallized films deposited on the dielectric rods. Previous computer analyzes required so many approximations that accurate determinations of the effect of many relevant dimensions on tube performance were practically impossible.

  6. Effects of Magnetic and Kinetic Helicities on the Growth of Magnetic Fields in Laminar and Turbulent Flows by Helical Fourier Decomposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linkmann, Moritz; Sahoo, Ganapati; Biferale, Luca

    We present a numerical and analytical study of incompressible homogeneous conducting fluids using a helical Fourier representation. We analytically study both small- and large-scale dynamo properties, as well as the inverse cascade of magnetic helicity, in the most general minimal subset of interacting velocity and magnetic fields on a closed Fourier triad. We mainly focus on the dependency of magnetic field growth as a function of the distribution of kinetic and magnetic helicities among the three interacting wavenumbers. By combining direct numerical simulations of the full magnetohydrodynamics equations with the helical Fourier decomposition, we numerically confirm that in the kinematicmore » dynamo regime the system develops a large-scale magnetic helicity with opposite sign compared to the small-scale kinetic helicity, a sort of triad-by-triad α -effect in Fourier space. Concerning the small-scale perturbations, we predict theoretically and confirm numerically that the largest instability is achived for the magnetic component with the same helicity of the flow, in agreement with the Stretch–Twist–Fold mechanism. Vice versa, in the presence of Lorentz feedback on the velocity, we find that the inverse cascade of magnetic helicity is mostly local if magnetic and kinetic helicities have opposite signs, while it is more nonlocal and more intense if they have the same sign, as predicted by the analytical approach. Our analytical and numerical results further demonstrate the potential of the helical Fourier decomposition to elucidate the entangled dynamics of magnetic and kinetic helicities both in fully developed turbulence and in laminar flows.« less

  7. RELATIONSHIPS BETWEEN FLUID VORTICITY, KINETIC HELICITY, AND MAGNETIC FIELD ON SMALL-SCALES (QUIET-NETWORK) ON THE SUN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sangeetha, C. R.; Rajaguru, S. P., E-mail: crsangeetha@iiap.res.in

    We derive horizontal fluid motions on the solar surface over large areas covering the quiet-Sun magnetic network from local correlation tracking of convective granules imaged in continuum intensity and Doppler velocity by the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory . From these we calculate the horizontal divergence, the vertical component of vorticity, and the kinetic helicity of fluid motions. We study the correlations between fluid divergence and vorticity, and between vorticity (kinetic helicity) and the magnetic field. We find that the vorticity (kinetic helicity) around small-scale fields exhibits a hemispherical pattern (in sign) similar tomore » that followed by the magnetic helicity of large-scale active regions (containing sunspots). We identify this pattern to be a result of the Coriolis force acting on supergranular-scale flows (both the outflows and inflows), consistent with earlier studies using local helioseismology. Furthermore, we show that the magnetic fields cause transfer of vorticity from supergranular inflow regions to outflow regions, and that they tend to suppress the vortical motions around them when magnetic flux densities exceed about 300 G (from HMI). We also show that such an action of the magnetic fields leads to marked changes in the correlations between fluid divergence and vorticity. These results are speculated to be of importance to local dynamo action (if present) and to the dynamical evolution of magnetic helicity at the small-scale.« less

  8. Computer-aided diagnosis workstation and network system for chest diagnosis based on multislice CT images

    NASA Astrophysics Data System (ADS)

    Satoh, Hitoshi; Niki, Noboru; Eguchi, Kenji; Moriyama, Noriyuki; Ohmatsu, Hironobu; Masuda, Hideo; Machida, Suguru

    2008-03-01

    Mass screening based on multi-helical CT images requires a considerable number of images to be read. It is this time-consuming step that makes the use of helical CT for mass screening impractical at present. To overcome this problem, we have provided diagnostic assistance methods to medical screening specialists by developing a lung cancer screening algorithm that automatically detects suspected lung cancers in helical CT images, a coronary artery calcification screening algorithm that automatically detects suspected coronary artery calcification and a vertebra body analysis algorithm for quantitative evaluation of osteoporosis likelihood by using helical CT scanner for the lung cancer mass screening. The function to observe suspicious shadow in detail are provided in computer-aided diagnosis workstation with these screening algorithms. We also have developed the telemedicine network by using Web medical image conference system with the security improvement of images transmission, Biometric fingerprint authentication system and Biometric face authentication system. Biometric face authentication used on site of telemedicine makes "Encryption of file" and Success in login" effective. As a result, patients' private information is protected. Based on these diagnostic assistance methods, we have developed a new computer-aided workstation and a new telemedicine network that can display suspected lesions three-dimensionally in a short time. The results of this study indicate that our radiological information system without film by using computer-aided diagnosis workstation and our telemedicine network system can increase diagnostic speed, diagnostic accuracy and security improvement of medical information.

  9. Moreau's hydrodynamic helicity and the life of vortex knots and links

    NASA Astrophysics Data System (ADS)

    Irvine, William T. M.

    2018-03-01

    This contribution to an issue of Comptes rendus Mécanique, commemorating the scientific work of Jean-Jacques Moreau (1923-2014), is intended to give a brief overview of recent developments in the study of helicity dynamics in real fluids and an outlook on the growing legacy of Moreau's work. Moreau's discovery of the conservation of hydrodynamic helicity, presented in an article in the Comptes rendus de l'Académie des sciences in 1961, was not recognized until long after it was published. This seminal contribution is gaining a new life now that modern developments allow the study of helicity and topology in fields and is having a growing impact on diverse areas of physics.

  10. Maintenance of electrostatic stabilization in altered tubulin lateral contacts may facilitate formation of helical filaments in foraminifera.

    PubMed

    Bassen, David M; Hou, Yubo; Bowser, Samuel S; Banavali, Nilesh K

    2016-08-19

    Microtubules in foraminiferan protists (forams) can convert into helical filament structures, in which longitudinal intraprotofilament interactions between tubulin heterodimers are thought to be lost, while lateral contacts across protofilaments are still maintained. The coarse geometric features of helical filaments are known through low-resolution negative stain electron microscopy (EM). In this study, geometric restraints derived from these experimental data were used to generate an average atomic-scale helical filament model, which anticipated a modest reorientation in the lateral tubulin heterodimer interface. Restrained molecular dynamics (MD) simulations of the nearest neighbor interactions combined with a Genalized Born implicit solvent model were used to assess the lateral, longitudinal, and seam contacts in 13-3 microtubules and the reoriented lateral contacts in the helical filament model. This electrostatic analysis suggests that the change in the lateral interface in the helical filament does not greatly diminish the lateral electrostatic interaction. After longitudinal dissociation, the 13-3 seam interaction is much weaker than the reoriented lateral interface in the helical filament model, providing a plausible atomic-detail explanation for seam-to-lateral contact transition that enables the transition to a helical filament structure.

  11. Maintenance of electrostatic stabilization in altered tubulin lateral contacts may facilitate formation of helical filaments in foraminifera

    NASA Astrophysics Data System (ADS)

    Bassen, David M.; Hou, Yubo; Bowser, Samuel S.; Banavali, Nilesh K.

    2016-08-01

    Microtubules in foraminiferan protists (forams) can convert into helical filament structures, in which longitudinal intraprotofilament interactions between tubulin heterodimers are thought to be lost, while lateral contacts across protofilaments are still maintained. The coarse geometric features of helical filaments are known through low-resolution negative stain electron microscopy (EM). In this study, geometric restraints derived from these experimental data were used to generate an average atomic-scale helical filament model, which anticipated a modest reorientation in the lateral tubulin heterodimer interface. Restrained molecular dynamics (MD) simulations of the nearest neighbor interactions combined with a Genalized Born implicit solvent model were used to assess the lateral, longitudinal, and seam contacts in 13-3 microtubules and the reoriented lateral contacts in the helical filament model. This electrostatic analysis suggests that the change in the lateral interface in the helical filament does not greatly diminish the lateral electrostatic interaction. After longitudinal dissociation, the 13-3 seam interaction is much weaker than the reoriented lateral interface in the helical filament model, providing a plausible atomic-detail explanation for seam-to-lateral contact transition that enables the transition to a helical filament structure.

  12. Theoretical model of chirality-induced helical self-propulsion

    NASA Astrophysics Data System (ADS)

    Yamamoto, Takaki; Sano, Masaki

    2018-01-01

    We recently reported the experimental realization of a chiral artificial microswimmer exhibiting helical self-propulsion [T. Yamamoto and M. Sano, Soft Matter 13, 3328 (2017), 10.1039/C7SM00337D]. In the experiment, cholesteric liquid crystal (CLC) droplets dispersed in surfactant solutions swam spontaneously, driven by the Marangoni flow, in helical paths whose handedness is determined by the chirality of the component molecules of CLC. To study the mechanism of the emergence of the helical self-propelled motion, we propose a phenomenological model of the self-propelled helical motion of the CLC droplets. Our model is constructed by symmetry argument in chiral systems, and it describes the dynamics of CLC droplets with coupled time-evolution equations in terms of a velocity, an angular velocity, and a tensor variable representing the symmetry of the helical director field of the droplet. We found that helical motions as well as other chiral motions appear in our model. By investigating bifurcation behaviors between each chiral motion, we found that the chiral coupling terms between the velocity and the angular velocity, the structural anisotropy of the CLC droplet, and the nonlinearity of model equations play a crucial role in the emergence of the helical motion of the CLC droplet.

  13. Extending Three-Dimensional Weighted Cone Beam Filtered Backprojection (CB-FBP) Algorithm for Image Reconstruction in Volumetric CT at Low Helical Pitches

    PubMed Central

    Hsieh, Jiang; Nilsen, Roy A.; McOlash, Scott M.

    2006-01-01

    A three-dimensional (3D) weighted helical cone beam filtered backprojection (CB-FBP) algorithm (namely, original 3D weighted helical CB-FBP algorithm) has already been proposed to reconstruct images from the projection data acquired along a helical trajectory in angular ranges up to [0, 2 π]. However, an overscan is usually employed in the clinic to reconstruct tomographic images with superior noise characteristics at the most challenging anatomic structures, such as head and spine, extremity imaging, and CT angiography as well. To obtain the most achievable noise characteristics or dose efficiency in a helical overscan, we extended the 3D weighted helical CB-FBP algorithm to handle helical pitches that are smaller than 1: 1 (namely extended 3D weighted helical CB-FBP algorithm). By decomposing a helical over scan with an angular range of [0, 2π + Δβ] into a union of full scans corresponding to an angular range of [0, 2π], the extended 3D weighted function is a summation of all 3D weighting functions corresponding to each full scan. An experimental evaluation shows that the extended 3D weighted helical CB-FBP algorithm can improve noise characteristics or dose efficiency of the 3D weighted helical CB-FBP algorithm at a helical pitch smaller than 1: 1, while its reconstruction accuracy and computational efficiency are maintained. It is believed that, such an efficient CB reconstruction algorithm that can provide superior noise characteristics or dose efficiency at low helical pitches may find its extensive applications in CT medical imaging. PMID:23165031

  14. Effect of the amyloid β hairpin's structure on the handedness of helices formed by its aggregates

    DOE PAGES

    GhattyVenkataKrishna, Pavan K.; Uberbacher, Edward C.; Cheng, Xiaolin

    2013-07-08

    Various structural models for amyloid β fibrils have been derived from a variety of experimental techniques. However, these models cannot differentiate between the relative position of the two arms of the β hairpin called the stagger. Amyloid fibrils of various hierarchical levels form left-handed helices composed of β sheets. However it is unclear if positive, negative and zero staggers all form the macroscopic left-handed helices. To address this issue we have conducted extensive molecular dynamics simulations of amyloid β sheets of various staggers and shown that only negative staggers lead to the experimentally observed left-handed helices while positive staggers generatemore » the incorrect right-handed helices. In conclusion, this result suggests that the negative staggers are physiologically relevant structure of the amyloid β fibrils.« less

  15. Conformational properties of two exopolysaccharides produced by Inquilinus limosus, a cystic fibrosis lung pathogen.

    PubMed

    Kuttel, Michelle; Ravenscroft, Neil; Foschiatti, Michela; Cescutti, Paola; Rizzo, Roberto

    2012-03-01

    Inquilinus limosus is a multi-resistant bacterium found in the respiratory tract of patients with cystic fibrosis. This bacterium produces two unique fully pyruvylated exopolysaccharides in similar quantities: an α-(1→2)-linked mannan and a β-(1→3)-linked glucan. We employed molecular modelling methods to probe the characteristic conformations and dynamics of these polysaccharides, with corroboration from potentiometric titrations and circular dichroism experiments. Our calculations reveal different structural motifs for the mannan and glucan polysaccharides: the glucan forms primarily right-handed helices with a wide range of extensions, while the mannan forms only left-handed helices. This finding is supported by our circular dichroism experiments. Our calculations also show that the (1→3)-β-d-Glcp linkage is more dynamically flexible than the (1→2)-α-d-Manp: the glucan characteristically forms a range of wide helices with large central cavities. In contrast, the mannan forms rigid regular 'bottlebrush' helices with a minimal central cavity. The widely different character of these two polymers suggests a possible differentiation of biological roles. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Computational Prediction of Atomic Structures of Helical Membrane Proteins Aided by EM Maps

    PubMed Central

    Kovacs, Julio A.; Yeager, Mark; Abagyan, Ruben

    2007-01-01

    Integral membrane proteins pose a major challenge for protein-structure prediction because only ≈100 high-resolution structures are available currently, thereby impeding the development of rules or empirical potentials to predict the packing of transmembrane α-helices. However, when an intermediate-resolution electron microscopy (EM) map is available, it can be used to provide restraints which, in combination with a suitable computational protocol, make structure prediction feasible. In this work we present such a protocol, which proceeds in three stages: 1), generation of an ensemble of α-helices by flexible fitting into each of the density rods in the low-resolution EM map, spanning a range of rotational angles around the main helical axes and translational shifts along the density rods; 2), fast optimization of side chains and scoring of the resulting conformations; and 3), refinement of the lowest-scoring conformations with internal coordinate mechanics, by optimizing the van der Waals, electrostatics, hydrogen bonding, torsional, and solvation energy contributions. In addition, our method implements a penalty term through a so-called tethering map, derived from the EM map, which restrains the positions of the α-helices. The protocol was validated on three test cases: GpA, KcsA, and MscL. PMID:17496035

  17. Topology of modified helical gears and Tooth Contact Analysis (TCA) program

    NASA Technical Reports Server (NTRS)

    Litvin, Faydor L.; Zhang, Jiao

    1989-01-01

    The contents of this report covers: (1) development of optimal geometries for crowned helical gears; (2) a method for their generation; (3) tooth contact analysis (TCA) computer programs for the analysis of meshing and bearing contact of the crowned helical gears; and (4) modelling and simulation of gear shaft deflection. The developed method for synthesis was used to determine the optimal geometry for a crowned helical pinion surface and was directed to localize the bearing contact and guarantee favorable shape and a low level of transmission errors. Two new methods for generation of the crowned helical pinion surface are proposed. One is based on the application of a tool with a surface of revolution that slightly deviates from a regular cone surface. The tool can be used as a grinding wheel or as a shaver. The other is based on a crowning pinion tooth surface with predesigned transmission errors. The pinion tooth surface can be generated by a computer-controlled automatic grinding machine. The TCA program simulates the meshing and bearing contact of the misaligned gears. The transmission errors are also determined. The gear shaft deformation was modelled and investigated. It was found that the deflection of gear shafts has the same effect as gear misalignment.

  18. Computational design of water-soluble α-helical barrels.

    PubMed

    Thomson, Andrew R; Wood, Christopher W; Burton, Antony J; Bartlett, Gail J; Sessions, Richard B; Brady, R Leo; Woolfson, Derek N

    2014-10-24

    The design of protein sequences that fold into prescribed de novo structures is challenging. General solutions to this problem require geometric descriptions of protein folds and methods to fit sequences to these. The α-helical coiled coils present a promising class of protein for this and offer considerable scope for exploring hitherto unseen structures. For α-helical barrels, which have more than four helices and accessible central channels, many of the possible structures remain unobserved. Here, we combine geometrical considerations, knowledge-based scoring, and atomistic modeling to facilitate the design of new channel-containing α-helical barrels. X-ray crystal structures of the resulting designs match predicted in silico models. Furthermore, the observed channels are chemically defined and have diameters related to oligomer state, which present routes to design protein function. Copyright © 2014, American Association for the Advancement of Science.

  19. Molecular Structure of a Helical ribbon in a Peptide Self-Assembly

    NASA Astrophysics Data System (ADS)

    Hwang, Wonmuk; Marini, Davide; Kamm, Roger D.; Zhang, Shuguang

    2002-03-01

    We have studied the molecular structure of nanometer scale helical ribbons observed during self-assembly of the peptide KFE8 (amino acid sequence: FKFEFKFE) (NanoLetters (2002, in press)). By analyzing the hydrogen bonding patterns between neighboring peptide backbones, we constructed a number of possible β-sheets. Using all possible combinations of these, we built helical ribbons with dimensions close to those found experimentally and performed molecular dynamics simulations to identify the most stable structure. Solvation effects were implemented by the analytic continuum electrostatics (ACE) model developed by Schaefer and Karplus (J. Phys. Chem. 100, 1578 (1996)). By applying electrostatic double layer theory, we incorporated the effect of pH by scaling the amount of charge on the sidechains. Our results suggest that the helical ribbon is comprised of a double β-sheet where the inner and the outer helices have distinct hydrogen bonding patterns. Our approach has general applicability to the study of helices formed by the self-assembly of β-sheet forming peptides with various amino acid sequences.

  20. Induced liquid-crystalline ordering in solutions of stiff and flexible amphiphilic macromolecules: Effect of mixture composition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glagolev, Mikhail K.; Vasilevskaya, Valentina V., E-mail: vvvas@polly.phys.msu.ru; Khokhlov, Alexei R.

    Impact of mixture composition on self-organization in concentrated solutions of stiff helical and flexible macromolecules was studied by means of molecular dynamics simulation. The macromolecules were composed of identical amphiphilic monomer units but a fraction f of macromolecules had stiff helical backbones and the remaining chains were flexible. In poor solvents the compacted flexible macromolecules coexist with bundles or filament clusters from few intertwined stiff helical macromolecules. The increase of relative content f of helical macromolecules leads to increase of the length of helical clusters, to alignment of clusters with each other, and then to liquid-crystalline-like ordering along a singlemore » direction. The formation of filament clusters causes segregation of helical and flexible macromolecules and the alignment of the filaments induces effective liquid-like ordering of flexible macromolecules. A visual analysis and calculation of order parameter relaying the anisotropy of diffraction allow concluding that transition from disordered to liquid-crystalline state proceeds sharply at relatively low content of stiff components.« less

  1. Comparative Study of the Mechanical Unfolding Pathways of α- and β-Peptides.

    PubMed

    Uribe, Lalita; Gauss, Jürgen; Diezemann, Gregor

    2015-07-02

    Using molecular simulations, we analyze the unfolding pathways of various peptides. We compare the mechanical unfolding of a β-alanine's octamer (β-HAla8) and an α-alanine's decamer (α-Ala10). Using force-probe molecular-dynamics simulations, to induce unfolding, we show that the 3(14)-helix formed by β-HAla8 is mechanically more stable than the α-helix formed by α-Ala10, although both structures are stabilized by six hydrogen bonds. Additionally, computations of the potential of mean force validate this result and show that also the thermal stability of the 3(14)-helix is higher. It is demonstrated that β-HAla8 unfolds in a two-step fashion with a stable intermediate. This is contrasted with the known single-step scenario of the unfolding of α-Ala10. Furthermore, we present a study of the chain-length dependence of the mechanical unfolding pathway of the 3(14)-helix. The calculation of the dynamic strength for oligomers with chain lengths ranging from 6 to 18 monomers shows that the unfolding pathway of helices with an integer and noninteger number of turns has m + 1 and m energy barriers, respectively, with m being the number of complete turns. The additional barrier for helices with an integer number of turns is shown to be related to the breaking of the N-terminus' hydrogen bond.

  2. Reconstruction of a helical prominence in 3D from IRIS spectra and images

    NASA Astrophysics Data System (ADS)

    Schmieder, B.; Zapiór, M.; López Ariste, A.; Levens, P.; Labrosse, N.; Gravet, R.

    2017-10-01

    Context. Movies of prominences obtained by space instruments e.g. the Solar Optical Telescope (SOT) aboard the Hinode satellite and the Interface Region Imaging Spectrograph (IRIS) with high temporal and spatial resolution revealed the tremendous dynamical nature of prominences. Knots of plasma belonging to prominences appear to travel along both vertical and horizontal thread-like loops, with highly dynamical nature. Aims: The aim of the paper is to reconstruct the 3D shape of a helical prominence observed over two and a half hours by IRIS. Methods: From the IRIS Mg II k spectra we compute Doppler shifts of the plasma inside the prominence and from the slit-jaw images (SJI) we derive the transverse field in the plane of the sky. Finally we obtain the velocity vector field of the knots in 3D. Results.We reconstruct the real trajectories of nine knots travelling along ellipses. Conclusions: The spiral-like structure of the prominence observed in the plane of the sky is mainly due to the projection effect of long arches of threads (up to 8 × 104 km). Knots run along more or less horizontal threads with velocities reaching 65 km s-1. The dominant driving force is the gas pressure. Movies associated to Figs. 1, 9, 10, and 13 are available at http://www.aanda.org

  3. Enhanced conformational sampling using enveloping distribution sampling.

    PubMed

    Lin, Zhixiong; van Gunsteren, Wilfred F

    2013-10-14

    To lessen the problem of insufficient conformational sampling in biomolecular simulations is still a major challenge in computational biochemistry. In this article, an application of the method of enveloping distribution sampling (EDS) is proposed that addresses this challenge and its sampling efficiency is demonstrated in simulations of a hexa-β-peptide whose conformational equilibrium encompasses two different helical folds, i.e., a right-handed 2.7(10∕12)-helix and a left-handed 3(14)-helix, separated by a high energy barrier. Standard MD simulations of this peptide using the GROMOS 53A6 force field did not reach convergence of the free enthalpy difference between the two helices even after 500 ns of simulation time. The use of soft-core non-bonded interactions in the centre of the peptide did enhance the number of transitions between the helices, but at the same time led to neglect of relevant helical configurations. In the simulations of a two-state EDS reference Hamiltonian that envelops both the physical peptide and the soft-core peptide, sampling of the conformational space of the physical peptide ensures that physically relevant conformations can be visited, and sampling of the conformational space of the soft-core peptide helps to enhance the transitions between the two helices. The EDS simulations sampled many more transitions between the two helices and showed much faster convergence of the relative free enthalpy of the two helices compared with the standard MD simulations with only a slightly larger computational effort to determine optimized EDS parameters. Combined with various methods to smoothen the potential energy surface, the proposed EDS application will be a powerful technique to enhance the sampling efficiency in biomolecular simulations.

  4. Unenhanced 320-row multidetector computed tomography of the brain in children: comparison of image quality and radiation dose among wide-volume, one-shot volume, and helical scan modes.

    PubMed

    Jeon, Sun Kyung; Choi, Young Hun; Cheon, Jung-Eun; Kim, Woo Sun; Cho, Yeon Jin; Ha, Ji Young; Lee, Seung Hyun; Hyun, Hyejin; Kim, In-One

    2018-04-01

    The 320-row multidetector computed tomography (CT) scanner has multiple scan modes, including volumetric modes. To compare the image quality and radiation dose of 320-row CT in three acquisition modes - helical, one-shot volume, and wide-volume scan - at pediatric brain imaging. Fifty-seven children underwent unenhanced brain CT using one of three scan modes (helical scan, n=21; one-shot volume scan, n=17; wide-volume scan, n=19). For qualitative analysis, two reviewers evaluated overall image quality and image noise using a 5-point grading system. For quantitative analysis, signal-to-noise ratio, image noise and posterior fossa artifact index were calculated. To measure the radiation dose, adjusted CT dose index per unit volume (CTDI adj ) and dose length product (DLP) were compared. Qualitatively, the wide-volume scan showed significantly less image noise than the helical scan (P=0.009), and less streak artifact than the one-shot volume scan (P=0.001). The helical mode showed significantly lower signal-to-noise ratio, with a higher image noise level compared with the one-shot volume and wide-volume modes (all P<0.05). The CTDI adj and DLP were significantly lower in the one-shot volume and wide-volume modes compared with those in the helical scan mode (all P<0.05). For pediatric unenhanced brain CT, both the wide-volume and one-shot volume scans reduced radiation dose compared to the helical scan mode, while the wide-volume scan mode showed fewer streak artifacts in the skull vertex and posterior fossa than the one-shot volume scan.

  5. Association of achondroplasia with Down syndrome: difficulty in prenatal diagnosis by sonographic and 3-D helical computed tomographic analyses.

    PubMed

    Kaga, Akimune; Murotsuki, Jun; Kamimura, Miki; Kimura, Masato; Saito-Hakoda, Akiko; Kanno, Junko; Hoshi, Kazuhiko; Kure, Shigeo; Fujiwara, Ikuma

    2015-05-01

    Achondroplasia and Down syndrome are relatively common conditions individually. But co-occurrence of both conditions in the same patient is rare and there have been no reports of fetal analysis of this condition by prenatal sonographic and three-dimensional (3-D) helical computed tomography (CT). Prenatal sonographic findings seen in persons with Down syndrome, such as a thickened nuchal fold, cardiac defects, and echogenic bowel were not found in the patient. A prenatal 3-D helical CT revealed a large head with frontal bossing, metaphyseal flaring of the long bones, and small iliac wings, which suggested achondroplasia. In a case with combination of achondroplasia and Down syndrome, it may be difficult to diagnose the co-occurrence prenatally without typical markers of Down syndrome. © 2014 Japanese Teratology Society.

  6. Structural analysis of a class III preQ1 riboswitch reveals an aptamer distant from a ribosome-binding site regulated by fast dynamics

    PubMed Central

    Liberman, Joseph A.; Suddala, Krishna C.; Aytenfisu, Asaminew; Chan, Dalen; Belashov, Ivan A.; Salim, Mohammad; Mathews, David H.; Spitale, Robert C.; Walter, Nils G.; Wedekind, Joseph E.

    2015-01-01

    PreQ1-III riboswitches are newly identified RNA elements that control bacterial genes in response to preQ1 (7-aminomethyl-7-deazaguanine), a precursor to the essential hypermodified tRNA base queuosine. Although numerous riboswitches fold as H-type or HLout-type pseudoknots that integrate ligand-binding and regulatory sequences within a single folded domain, the preQ1-III riboswitch aptamer forms a HLout-type pseudoknot that does not appear to incorporate its ribosome-binding site (RBS). To understand how this unusual organization confers function, we determined the crystal structure of the class III preQ1 riboswitch from Faecalibacterium prausnitzii at 2.75 Å resolution. PreQ1 binds tightly (KD,app 6.5 ± 0.5 nM) between helices P1 and P2 of a three-way helical junction wherein the third helix, P4, projects orthogonally from the ligand-binding pocket, exposing its stem-loop to base pair with the 3′ RBS. Biochemical analysis, computational modeling, and single-molecule FRET imaging demonstrated that preQ1 enhances P4 reorientation toward P1–P2, promoting a partially nested, H-type pseudoknot in which the RBS undergoes rapid docking (kdock ∼0.6 s−1) and undocking (kundock ∼1.1 s−1). Discovery of such dynamic conformational switching provides insight into how a riboswitch with bipartite architecture uses dynamics to modulate expression platform accessibility, thus expanding the known repertoire of gene control strategies used by regulatory RNAs. PMID:26106162

  7. User's guide for a large signal computer model of the helical traveling wave tube

    NASA Technical Reports Server (NTRS)

    Palmer, Raymond W.

    1992-01-01

    The use is described of a successful large-signal, two-dimensional (axisymmetric), deformable disk computer model of the helical traveling wave tube amplifier, an extensively revised and operationally simplified version. We also discuss program input and output and the auxiliary files necessary for operation. Included is a sample problem and its input data and output results. Interested parties may now obtain from the author the FORTRAN source code, auxiliary files, and sample input data on a standard floppy diskette, the contents of which are described herein.

  8. Conformational analysis of processivity clamps in solution demonstrates that tertiary structure does not correlate with protein dynamics.

    PubMed

    Fang, Jing; Nevin, Philip; Kairys, Visvaldas; Venclovas, Česlovas; Engen, John R; Beuning, Penny J

    2014-04-08

    The relationship between protein sequence, structure, and dynamics has been elusive. Here, we report a comprehensive analysis using an in-solution experimental approach to study how the conservation of tertiary structure correlates with protein dynamics. Hydrogen exchange measurements of eight processivity clamp proteins from different species revealed that, despite highly similar three-dimensional structures, clamp proteins display a wide range of dynamic behavior. Differences were apparent both for structurally similar domains within proteins and for corresponding domains of different proteins. Several of the clamps contained regions that underwent local unfolding with different half-lives. We also observed a conserved pattern of alternating dynamics of the α helices lining the inner pore of the clamps as well as a correlation between dynamics and the number of salt bridges in these α helices. Our observations reveal that tertiary structure and dynamics are not directly correlated and that primary structure plays an important role in dynamics. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Diagnosis and management of solitary pulmonary nodules.

    PubMed

    Jeong, Yeon Joo; Lee, Kyung Soo; Kwon, O Jung

    2008-12-01

    The advent of computed tomography (CT) screening with or without the help of computer-aided detection systems has increased the detection rate of solitary pulmonary nodules (SPNs), including that of early peripheral lung cancer. Helical dynamic (HD)CT, providing the information on morphologic and hemodynamic characteristics with high specificity and reasonably high accuracy, can be used for the initial assessment of SPNs. (18)F-fluorodeoxyglucose PET/CT is more sensitive at detecting malignancy than HDCT. Therefore, PET/CT may be selectively performed to characterize SPNs when HDCT gives an inconclusive diagnosis. Serial volume measurements are currently the most reliable methods for the tissue characterization of subcentimeter nodules. When malignant nodule is highly suspected for subcentimeter nodules, video-assisted thoracoscopic surgery nodule removal after nodule localization using the pulmonary nodule-marker system may be performed for diagnosis and treatment.

  10. Recent advances in engineering science; Proceedings of the A. Cemal Eringen Symposium, University of California, Berkeley, June 20-22, 1988

    NASA Technical Reports Server (NTRS)

    Koh, Severino L. (Editor); Speziale, Charles G. (Editor)

    1989-01-01

    Various papers on recent advances in engineering science are presented. Some individual topics addressed include: advances in adaptive methods in computational fluid mechanics, mixtures of two medicomorphic materials, computer tests of rubber elasticity, shear bands in isotropic micropolar elastic materials, nonlinear surface wave and resonator effects in magnetostrictive crystals, simulation of electrically enhanced fibrous filtration, plasticity theory of granular materials, dynamics of viscoelastic media with internal oscillators, postcritical behavior of a cantilever bar, boundary value problems in nonlocal elasticity, stability of flexible structures with random parameters, electromagnetic tornadoes in earth's ionosphere and magnetosphere, helicity fluctuations and the energy cascade in turbulence, mechanics of interfacial zones in bonded materials, propagation of a normal shock in a varying area duct, analytical mechanics of fracture and fatigue.

  11. Magnetic helicity and flux tube dynamics in the solar convection zone: Comparisons between observation and theory

    NASA Astrophysics Data System (ADS)

    Nandy, Dibyendu

    2006-12-01

    Magnetic helicity, a conserved topological parameter in ideal MHD systems, conditions close to which are realized in the solar plasma, is intimately connected to the creation and subsequent dynamics of magnetic flux tubes in the solar interior. It can therefore be used as a tool to probe such dynamics. In this paper we show how photospheric observations of magnetic helicity of isolated magnetic flux tubes, manifested as the twist and writhe of solar active regions, can constrain the creation and dynamics of flux tubes in the solar convection zone and the nature of convective turbulence itself. We analyze the observed latitudinal distribution of twists in photospheric active regions, derived from solar vector magnetograms, in the largest such sample studied till-date. We confirm and put additional constraints on the hemispheric twist helicity trend and find that the dispersion in the active region twist distribution is latitude-independent, implying that the amplitude of turbulent fluctuations does not vary with latitude in the convection zone. Our data set also shows that the amplitude and dispersion of twist decreases with increasing magnetic size of active regions, supporting the conclusion that larger flux tubes are less affected by turbulence. Among the various theoretical models that have been proposed till-date to explain the origin of twist, our observations best match the Σ effect model, which invokes helical turbulent buffeting of rising flux tubes as the mechanism for twist creation. Finally, we complement our analysis of twists with past observations of tilts in solar active regions and tie them in with theoretical modeling studies, to build up a comprehensive picture of the dynamics of twisted magnetic flux tubes throughout the solar convection zone. This general framework, binding together theory and observations, suggests that flux tubes have a wide range of twists in the solar convection zone, with some as high as to make them susceptible to the kink instability mechanism that results in the formation of δ spot or non-Hale active regions.

  12. Qweak Data Analysis for Target Modeling Using Computational Fluid Dynamics

    NASA Astrophysics Data System (ADS)

    Moore, Michael; Covrig, Silviu

    2015-04-01

    The 2.5 kW liquid hydrogen (LH2) target used in the Qweak parity violation experiment is the highest power LH2 target in the world and the first to be designed with Computational Fluid Dynamics (CFD) at Jefferson Lab. The Qweak experiment determined the weak charge of the proton by measuring the parity-violating elastic scattering asymmetry of longitudinally polarized electrons from unpolarized liquid hydrogen at small momentum transfer (Q2 = 0 . 025 GeV2). This target met the design goals of < 1 % luminosity reduction and < 5 % contribution to the total asymmetry width (the Qweak target achieved 2 % or 55 ppm). State of the art time dependent CFD simulations are being developed to improve the predictions of target noise on the time scale of the electron beam helicity period. These predictions will be bench-marked with the Qweak target data. This work is an essential ingredient in future designs of very high power low noise targets like MOLLER (5 kW, target noise asymmetry contribution < 25 ppm) and MESA (4.5 kW).

  13. Predicting the Noise of High Power Fluid Targets Using Computational Fluid Dynamics

    NASA Astrophysics Data System (ADS)

    Moore, Michael; Covrig Dusa, Silviu

    The 2.5 kW liquid hydrogen (LH2) target used in the Qweak parity violation experiment is the highest power LH2 target in the world and the first to be designed with Computational Fluid Dynamics (CFD) at Jefferson Lab. The Qweak experiment determined the weak charge of the proton by measuring the parity-violating elastic scattering asymmetry of longitudinally polarized electrons from unpolarized liquid hydrogen at small momentum transfer (Q2 = 0 . 025 GeV2). This target satisfied the design goals of < 1 % luminosity reduction and < 5 % contribution to the total asymmetry width (the Qweak target achieved 2 % or 55ppm). State of the art time dependent CFD simulations are being developed to improve the predictions of target noise on the time scale of the electron beam helicity period. These predictions will be bench-marked with the Qweak target data. This work is an essential component in future designs of very high power low noise targets like MOLLER (5 kW, target noise asymmetry contribution < 25 ppm) and MESA (4.5 kW).

  14. Constrained Unfolding of a Helical Peptide: Implicit versus Explicit Solvents.

    PubMed

    Bureau, Hailey R; Merz, Dale R; Hershkovits, Eli; Quirk, Stephen; Hernandez, Rigoberto

    2015-01-01

    Steered Molecular Dynamics (SMD) has been seen to provide the potential of mean force (PMF) along a peptide unfolding pathway effectively but at significant computational cost, particularly in all-atom solvents. Adaptive steered molecular dynamics (ASMD) has been seen to provide a significant computational advantage by limiting the spread of the trajectories in a staged approach. The contraction of the trajectories at the end of each stage can be performed by taking a structure whose nonequilibrium work is closest to the Jarzynski average (in naive ASMD) or by relaxing the trajectories under a no-work condition (in full-relaxation ASMD--namely, FR-ASMD). Both approaches have been used to determine the energetics and hydrogen-bonding structure along the pathway for unfolding of a benchmark peptide initially constrained as an α-helix in a water environment. The energetics are quite different to those in vacuum, but are found to be similar between implicit and explicit solvents. Surprisingly, the hydrogen-bonding pathways are also similar in the implicit and explicit solvents despite the fact that the solvent contact plays an important role in opening the helix.

  15. Non-solenoidal startup and low-β operations in Pegasus

    NASA Astrophysics Data System (ADS)

    Schlossberg, D. J.; Battaglia, D. J.; Bongard, M. W.; Fonck, R. J.; Redd, A. J.

    2009-11-01

    Non-solenoidal startup using point-source DC helicity injectors (plasma guns) has been achieved in the Pegasus Toroidal Experiment for plasmas with Ip in excess of 100 kA using Iinj<4,A. The maximum achieved Ip tentatively scales as √ITFIinj/w, where w is the radial thickness of the gun-driven edge. The Ip limits appear to conform to a simple stationary model involving helicity conservation and Taylor relaxation. However, observed MHD activity reveals the additional dynamics of the relaxation process, evidenced by intermittent bursts of n=1 activity correlated with rapid redistribution of the current channel. Recent upgrades to the gun system provide higher helicity injection rates, smaller w, a more constrained gun current path, and more precise diagnostics. Experimental goals include extending parametric scaling studies, determining the conditions where parallel conduction losses dominate the helicity dissipation, and building the physics understanding of helicity injection to confidently design gun systems for larger, future tokamaks.

  16. A Sidekick for Membrane Simulations: Automated Ensemble Molecular Dynamics Simulations of Transmembrane Helices

    PubMed Central

    Hall, Benjamin A; Halim, Khairul Abd; Buyan, Amanda; Emmanouil, Beatrice; Sansom, Mark S P

    2016-01-01

    The interactions of transmembrane (TM) α-helices with the phospholipid membrane and with one another are central to understanding the structure and stability of integral membrane proteins. These interactions may be analysed via coarse-grained molecular dynamics (CGMD) simulations. To obtain statistically meaningful analysis of TM helix interactions, large (N ca. 100) ensembles of CGMD simulations are needed. To facilitate the running and analysis of such ensembles of simulations we have developed Sidekick, an automated pipeline software for performing high throughput CGMD simulations of α-helical peptides in lipid bilayer membranes. Through an end-to-end approach, which takes as input a helix sequence and outputs analytical metrics derived from CGMD simulations, we are able to predict the orientation and likelihood of insertion into a lipid bilayer of a given helix of family of helix sequences. We illustrate this software via analysis of insertion into a membrane of short hydrophobic TM helices containing a single cationic arginine residue positioned at different positions along the length of the helix. From analysis of these ensembles of simulations we estimate apparent energy barriers to insertion which are comparable to experimentally determined values. In a second application we use CGMD simulations to examine self-assembly of dimers of TM helices from the ErbB1 receptor tyrosine kinase, and analyse the numbers of simulation repeats necessary to obtain convergence of simple descriptors of the mode of packing of the two helices within a dimer. Our approach offers proof-of-principle platform for the further employment of automation in large ensemble CGMD simulations of membrane proteins. PMID:26580541

  17. Sidekick for Membrane Simulations: Automated Ensemble Molecular Dynamics Simulations of Transmembrane Helices.

    PubMed

    Hall, Benjamin A; Halim, Khairul Bariyyah Abd; Buyan, Amanda; Emmanouil, Beatrice; Sansom, Mark S P

    2014-05-13

    The interactions of transmembrane (TM) α-helices with the phospholipid membrane and with one another are central to understanding the structure and stability of integral membrane proteins. These interactions may be analyzed via coarse grained molecular dynamics (CGMD) simulations. To obtain statistically meaningful analysis of TM helix interactions, large (N ca. 100) ensembles of CGMD simulations are needed. To facilitate the running and analysis of such ensembles of simulations, we have developed Sidekick, an automated pipeline software for performing high throughput CGMD simulations of α-helical peptides in lipid bilayer membranes. Through an end-to-end approach, which takes as input a helix sequence and outputs analytical metrics derived from CGMD simulations, we are able to predict the orientation and likelihood of insertion into a lipid bilayer of a given helix of a family of helix sequences. We illustrate this software via analyses of insertion into a membrane of short hydrophobic TM helices containing a single cationic arginine residue positioned at different positions along the length of the helix. From analyses of these ensembles of simulations, we estimate apparent energy barriers to insertion which are comparable to experimentally determined values. In a second application, we use CGMD simulations to examine the self-assembly of dimers of TM helices from the ErbB1 receptor tyrosine kinase and analyze the numbers of simulation repeats necessary to obtain convergence of simple descriptors of the mode of packing of the two helices within a dimer. Our approach offers a proof-of-principle platform for the further employment of automation in large ensemble CGMD simulations of membrane proteins.

  18. Steady-state helices of the actin homolog MreB inside bacteria: dynamics without motors.

    PubMed

    Allard, Jun F; Rutenberg, Andrew D

    2007-09-01

    Within individual bacteria, we combine force-dependent polymerization dynamics of individual MreB protofilaments with an elastic model of protofilament bundles buckled into helical configurations. We use variational techniques and stochastic simulations to relate the pitch of the MreB helix, the total abundance of MreB, and the number of protofilaments. By comparing our simulations with mean-field calculations, we find that stochastic fluctuations are significant. We examine the quasistatic evolution of the helical pitch with cell growth, as well as time scales of helix turnover and de novo establishment. We find that while the body of a polarized MreB helix treadmills toward its slow-growing end, the fast-growing tips of laterally associated protofilaments move toward the opposite fast-growing end of the MreB helix. This offers a possible mechanism for targeted polar localization without cytoplasmic motor proteins.

  19. Steady-state helices of the actin homolog MreB inside bacteria: Dynamics without motors

    NASA Astrophysics Data System (ADS)

    Allard, Jun F.; Rutenberg, Andrew D.

    2007-09-01

    Within individual bacteria, we combine force-dependent polymerization dynamics of individual MreB protofilaments with an elastic model of protofilament bundles buckled into helical configurations. We use variational techniques and stochastic simulations to relate the pitch of the MreB helix, the total abundance of MreB, and the number of protofilaments. By comparing our simulations with mean-field calculations, we find that stochastic fluctuations are significant. We examine the quasistatic evolution of the helical pitch with cell growth, as well as time scales of helix turnover and de novo establishment. We find that while the body of a polarized MreB helix treadmills toward its slow-growing end, the fast-growing tips of laterally associated protofilaments move toward the opposite fast-growing end of the MreB helix. This offers a possible mechanism for targeted polar localization without cytoplasmic motor proteins.

  20. De novo design of a transmembrane Zn²⁺-transporting four-helix bundle.

    PubMed

    Joh, Nathan H; Wang, Tuo; Bhate, Manasi P; Acharya, Rudresh; Wu, Yibing; Grabe, Michael; Hong, Mei; Grigoryan, Gevorg; DeGrado, William F

    2014-12-19

    The design of functional membrane proteins from first principles represents a grand challenge in chemistry and structural biology. Here, we report the design of a membrane-spanning, four-helical bundle that transports first-row transition metal ions Zn(2+) and Co(2+), but not Ca(2+), across membranes. The conduction path was designed to contain two di-metal binding sites that bind with negative cooperativity. X-ray crystallography and solid-state and solution nuclear magnetic resonance indicate that the overall helical bundle is formed from two tightly interacting pairs of helices, which form individual domains that interact weakly along a more dynamic interface. Vesicle flux experiments show that as Zn(2+) ions diffuse down their concentration gradients, protons are antiported. These experiments illustrate the feasibility of designing membrane proteins with predefined structural and dynamic properties. Copyright © 2014, American Association for the Advancement of Science.

  1. Energy and helicity of magnetic torus knots and braids

    NASA Astrophysics Data System (ADS)

    Oberti, Chiara; Ricca, Renzo L.

    2018-02-01

    By considering steady magnetic fields in the shape of torus knots and unknots in ideal magnetohydrodynamics, we compute some fundamental geometric and physical properties to provide estimates for magnetic energy and helicity. By making use of an appropriate parametrization, we show that knots with dominant toroidal coils that are a good model for solar coronal loops have negligible total torsion contribution to magnetic helicity while writhing number provides a good proxy. Hence, by the algebraic definition of writhe based on crossing numbers, we show that the estimated values of writhe based on image analysis provide reliable information for the exact values of helicity. We also show that magnetic energy is linearly related to helicity, and the effect of the confinement of magnetic field can be expressed in terms of geometric information. These results can find useful application in solar and plasma physics, where braided structures are often present.

  2. Studying the Transfer of Magnetic Helicity in Solar Active Regions with the Connectivity-based Helicity Flux Density Method

    NASA Astrophysics Data System (ADS)

    Dalmasse, K.; Pariat, É.; Valori, G.; Jing, J.; Démoulin, P.

    2018-01-01

    In the solar corona, magnetic helicity slowly and continuously accumulates in response to plasma flows tangential to the photosphere and magnetic flux emergence through it. Analyzing this transfer of magnetic helicity is key for identifying its role in the dynamics of active regions (ARs). The connectivity-based helicity flux density method was recently developed for studying the 2D and 3D transfer of magnetic helicity in ARs. The method takes into account the 3D nature of magnetic helicity by explicitly using knowledge of the magnetic field connectivity, which allows it to faithfully track the photospheric flux of magnetic helicity. Because the magnetic field is not measured in the solar corona, modeled 3D solutions obtained from force-free magnetic field extrapolations must be used to derive the magnetic connectivity. Different extrapolation methods can lead to markedly different 3D magnetic field connectivities, thus questioning the reliability of the connectivity-based approach in observational applications. We address these concerns by applying this method to the isolated and internally complex AR 11158 with different magnetic field extrapolation models. We show that the connectivity-based calculations are robust to different extrapolation methods, in particular with regard to identifying regions of opposite magnetic helicity flux. We conclude that the connectivity-based approach can be reliably used in observational analyses and is a promising tool for studying the transfer of magnetic helicity in ARs and relating it to their flaring activity.

  3. N =4 supergravity next-to-maximally-helicity-violating six-point one-loop amplitude

    NASA Astrophysics Data System (ADS)

    Dunbar, David C.; Perkins, Warren B.

    2016-12-01

    We construct the six-point, next-to-maximally-helicity-violating one-loop amplitude in N =4 supergravity using unitarity and recursion. The use of recursion requires the introduction of rational descendants of the cut-constructible pieces of the amplitude and the computation of the nonstandard factorization terms arising from the loop integrals.

  4. Swellix: a computational tool to explore RNA conformational space.

    PubMed

    Sloat, Nathan; Liu, Jui-Wen; Schroeder, Susan J

    2017-11-21

    The sequence of nucleotides in an RNA determines the possible base pairs for an RNA fold and thus also determines the overall shape and function of an RNA. The Swellix program presented here combines a helix abstraction with a combinatorial approach to the RNA folding problem in order to compute all possible non-pseudoknotted RNA structures for RNA sequences. The Swellix program builds on the Crumple program and can include experimental constraints on global RNA structures such as the minimum number and lengths of helices from crystallography, cryoelectron microscopy, or in vivo crosslinking and chemical probing methods. The conceptual advance in Swellix is to count helices and generate all possible combinations of helices rather than counting and combining base pairs. Swellix bundles similar helices and includes improvements in memory use and efficient parallelization. Biological applications of Swellix are demonstrated by computing the reduction in conformational space and entropy due to naturally modified nucleotides in tRNA sequences and by motif searches in Human Endogenous Retroviral (HERV) RNA sequences. The Swellix motif search reveals occurrences of protein and drug binding motifs in the HERV RNA ensemble that do not occur in minimum free energy or centroid predicted structures. Swellix presents significant improvements over Crumple in terms of efficiency and memory use. The efficient parallelization of Swellix enables the computation of sequences as long as 418 nucleotides with sufficient experimental constraints. Thus, Swellix provides a practical alternative to free energy minimization tools when multiple structures, kinetically determined structures, or complex RNA-RNA and RNA-protein interactions are present in an RNA folding problem.

  5. Model of driven and decaying magnetic turbulence in a cylinder.

    PubMed

    Kemel, Koen; Brandenburg, Axel; Ji, Hantao

    2011-11-01

    Using mean-field theory, we compute the evolution of the magnetic field in a cylinder with outer perfectly conducting boundaries and imposed axial magnetic and electric fields. The thus injected magnetic helicity in the system can be redistributed by magnetic helicity fluxes down the gradient of the local current helicity of the small-scale magnetic field. A weak reversal of the axial magnetic field is found to be a consequence of the magnetic helicity flux in the system. Such fluxes are known to alleviate so-called catastrophic quenching of the α effect in astrophysical applications. A stronger field reversal can be obtained if there is also a significant kinetic α effect. Application to the reversed field pinch in plasma confinement devices is discussed.

  6. Comparison of Radiation Dose and Image Quality of Triple-Rule-Out Computed Tomography Angiography Between Conventional Helical Scanning and a Strategy Incorporating Sequential Scanning

    PubMed Central

    Manheimer, Eric D.; Peters, M. Robert; Wolff, Steven D.; Qureshi, Mehreen A.; Atluri, Prashanth; Pearson, Gregory D.N.; Einstein, Andrew J.

    2011-01-01

    Triple-rule-out computed tomography angiography (TRO CTA), performed to evaluate the coronary arteries, pulmonary arteries, and thoracic aorta, has been associated with high radiation exposure. Utilization of sequential scanning for coronary computed tomography angiography (CCTA) reduces radiation dose. The application of sequential scanning to TRO CTA is much less well defined. We analyzed radiation dose and image quality from TRO CTA performed in a single outpatient center, comparing scans from a period during which helical scanning with electrocardiographically controlled tube current modulation was used for all patients (n=35) and after adoption of a strategy incorporating sequential scanning whenever appropriate (n=35). Sequential scanning was able to be employed in 86% of cases. The sequential-if-appropriate strategy, compared to the helical-only strategy, was associated with a 61.6% dose decrease (mean dose-length product [DLP] of 439 mGy×cm vs 1144 mGy×cm and mean effective dose of 7.5 mSv vs 19.4 mSv, respectively, p<0.0001). Similarly, there was a 71.5% dose reduction among 30 patients scanned with the sequential protocol compared to 40 patients scanned with the helical protocol under either strategy (326 mGy×cm vs 1141 mGy×cm and 5.5 mSv vs 19.4 mSv, respectively, p<0.0001). Although image quality did not differ between strategies, there was a non-statistically significant trend towards better quality in the sequential protocol compared to the helical protocol. In conclusion, approaching TRO CTA with a diagnostic strategy of sequential scanning as appropriate offers a marked reduction in radiation dose while maintaining image quality. PMID:21306693

  7. Helical Axis Data Visualization and Analysis of the Knee Joint Articulation.

    PubMed

    Millán Vaquero, Ricardo Manuel; Vais, Alexander; Dean Lynch, Sean; Rzepecki, Jan; Friese, Karl-Ingo; Hurschler, Christof; Wolter, Franz-Erich

    2016-09-01

    We present processing methods and visualization techniques for accurately characterizing and interpreting kinematical data of flexion-extension motion of the knee joint based on helical axes. We make use of the Lie group of rigid body motions and particularly its Lie algebra for a natural representation of motion sequences. This allows to analyze and compute the finite helical axis (FHA) and instantaneous helical axis (IHA) in a unified way without redundant degrees of freedom or singularities. A polynomial fitting based on Legendre polynomials within the Lie algebra is applied to provide a smooth description of a given discrete knee motion sequence which is essential for obtaining stable instantaneous helical axes for further analysis. Moreover, this allows for an efficient overall similarity comparison across several motion sequences in order to differentiate among several cases. Our approach combines a specifically designed patient-specific three-dimensional visualization basing on the processed helical axes information and incorporating computed tomography (CT) scans for an intuitive interpretation of the axes and their geometrical relation with respect to the knee joint anatomy. In addition, in the context of the study of diseases affecting the musculoskeletal articulation, we propose to integrate the above tools into a multiscale framework for exploring related data sets distributed across multiple spatial scales. We demonstrate the utility of our methods, exemplarily processing a collection of motion sequences acquired from experimental data involving several surgery techniques. Our approach enables an accurate analysis, visualization and comparison of knee joint articulation, contributing to the evaluation and diagnosis in medical applications.

  8. Dynamics and control of quadcopter using linear model predictive control approach

    NASA Astrophysics Data System (ADS)

    Islam, M.; Okasha, M.; Idres, M. M.

    2017-12-01

    This paper investigates the dynamics and control of a quadcopter using the Model Predictive Control (MPC) approach. The dynamic model is of high fidelity and nonlinear, with six degrees of freedom that include disturbances and model uncertainties. The control approach is developed based on MPC to track different reference trajectories ranging from simple ones such as circular to complex helical trajectories. In this control technique, a linearized model is derived and the receding horizon method is applied to generate the optimal control sequence. Although MPC is computer expensive, it is highly effective to deal with the different types of nonlinearities and constraints such as actuators’ saturation and model uncertainties. The MPC parameters (control and prediction horizons) are selected by trial-and-error approach. Several simulation scenarios are performed to examine and evaluate the performance of the proposed control approach using MATLAB and Simulink environment. Simulation results show that this control approach is highly effective to track a given reference trajectory.

  9. Finite element analysis of helical flows in human aortic arch: A novel index

    PubMed Central

    Lee, Cheng-Hung; Liu, Kuo-Sheng; Jhong, Guan-Heng; Liu, Shih-Jung; Hsu, Ming-Yi; Wang, Chao-Jan; Hung, Kuo-Chun

    2014-01-01

    This study investigates the helical secondary flows in the aortic arch using finite element analysis. The relationship between helical flow and the configuration of the aorta in patients of whose three-dimensional images constructed from computed tomography scans was examined. A finite element model of the pressurized root, arch, and supra-aortic vessels was developed to simulate the pattern of helical secondary flows. Calculations indicate that most of the helical secondary flow was formed in the ascending aorta. Angle α between the zero reference point and the aortic ostium (correlation coefficient (r) = −0.851, P = 0.001), the dispersion index of the cross section of the ascending (r = 0.683, P = 0.021) and descending aorta (r = 0.732, P = 0.010), all correlated closely with the presence of helical flow (P < 0.05). Stepwise multiple linear regression analysis confirmed angel α to be independently associated with the helical flow pattern in therein (standardized coefficients = −0.721, P = 0.023). The presence of helical fluid motion based on the atherosclerotic risks of patients, including those associated with diabetes, hypertension, hyperlipidemia, or renal insufficiency, was also evaluated. Numerical simulation of the flow patterns in aortas incorporating the atherosclerotic risks may better explain the mechanism of formation of helical flows and provide insight into causative factors that underlie them. PMID:24803960

  10. Biomimetic Hierarchical Assembly of Helical Supraparticles from Chiral Nanoparticles

    DOE PAGES

    Zhou, Yunlong; Marson, Ryan L.; van Anders, Greg; ...

    2016-02-22

    Chiroptical materials found in butterflies, beetles, stomatopod crustaceans, and other creatures are attributed to biocomposites with helical motifs and multiscale hierarchical organization. These structurally sophisticated materials self-assemble from primitive nanoscale building blocks, a process that is simpler and more energy efficient than many top-down methods currently used to produce similarly sized three-dimensional materials. In this paper, we report that molecular-scale chirality of a CdTe nanoparticle surface can be translated to nanoscale helical assemblies, leading to chiroptical activity in the visible electromagnetic range. Chiral CdTe nanoparticles coated with cysteine self-organize around Te cores to produce helical supraparticles. D-/L-Form of the aminomore » acid determines the dominant left/right helicity of the supraparticles. Coarse-grained molecular dynamics simulations with a helical pair-potential confirm the assembly mechanism and the origin of its enantioselectivity, providing a framework for engineering three-dimensional chiral materials by self-assembly. Finally, the helical supraparticles further self-organize into lamellar crystals with liquid crystalline order, demonstrating the possibility of hierarchical organization and with multiple structural motifs and length scales determined by molecular-scale asymmetry of nanoparticle interactions.« less

  11. Free-fall dynamics of a pair of rigidly linked disks

    NASA Astrophysics Data System (ADS)

    Kim, Taehyun; Chang, Jaehyeock; Kim, Daegyoum

    2018-03-01

    We investigate experimentally the free-fall motion of a pair of identical disks rigidly connected to each other. The three-dimensional coordinates of the pair of falling disks were constructed to quantitatively describe its trajectory, and the flow structure formed by the disk pair was identified by using dye visualization. The rigidly linked disk pair exhibits a novel falling pattern that creates a helical path with a conical configuration in which the lower disk rotates in a wider radius than the upper disk with respect to a vertical axis. The helical motion occurs consistently for the range of disk separation examined in this study. The dye visualization reveals that a strong, noticeable helical vortex core is generated from the outer tip of the lower disk during the helical motion. With an increasing length ratio, which is the ratio of the disk separation to the diameter of the disks, the nutation angle and the rate of change in the precession angle that characterize the combined helical and conical kinematics decrease linearly, whereas the pitch of the helical path increases linearly. Although all disk pairs undergo this helical motion, the horizontal-drift patterns of the disk pair depend on the length ratio.

  12. Single-pixel computational ghost imaging with helicity-dependent metasurface hologram.

    PubMed

    Liu, Hong-Chao; Yang, Biao; Guo, Qinghua; Shi, Jinhui; Guan, Chunying; Zheng, Guoxing; Mühlenbernd, Holger; Li, Guixin; Zentgraf, Thomas; Zhang, Shuang

    2017-09-01

    Different optical imaging techniques are based on different characteristics of light. By controlling the abrupt phase discontinuities with different polarized incident light, a metasurface can host a phase-only and helicity-dependent hologram. In contrast, ghost imaging (GI) is an indirect imaging modality to retrieve the object information from the correlation of the light intensity fluctuations. We report single-pixel computational GI with a high-efficiency reflective metasurface in both simulations and experiments. Playing a fascinating role in switching the GI target with different polarized light, the metasurface hologram generates helicity-dependent reconstructed ghost images and successfully introduces an additional security lock in a proposed optical encryption scheme based on the GI. The robustness of our encryption scheme is further verified with the vulnerability test. Building the first bridge between the metasurface hologram and the GI, our work paves the way to integrate their applications in the fields of optical communications, imaging technology, and security.

  13. Single-pixel computational ghost imaging with helicity-dependent metasurface hologram

    PubMed Central

    Liu, Hong-Chao; Yang, Biao; Guo, Qinghua; Shi, Jinhui; Guan, Chunying; Zheng, Guoxing; Mühlenbernd, Holger; Li, Guixin; Zentgraf, Thomas; Zhang, Shuang

    2017-01-01

    Different optical imaging techniques are based on different characteristics of light. By controlling the abrupt phase discontinuities with different polarized incident light, a metasurface can host a phase-only and helicity-dependent hologram. In contrast, ghost imaging (GI) is an indirect imaging modality to retrieve the object information from the correlation of the light intensity fluctuations. We report single-pixel computational GI with a high-efficiency reflective metasurface in both simulations and experiments. Playing a fascinating role in switching the GI target with different polarized light, the metasurface hologram generates helicity-dependent reconstructed ghost images and successfully introduces an additional security lock in a proposed optical encryption scheme based on the GI. The robustness of our encryption scheme is further verified with the vulnerability test. Building the first bridge between the metasurface hologram and the GI, our work paves the way to integrate their applications in the fields of optical communications, imaging technology, and security. PMID:28913433

  14. TLIFE: a Program for Spur, Helical and Spiral Bevel Transmission Life and Reliability Modeling

    NASA Technical Reports Server (NTRS)

    Savage, M.; Prasanna, M. G.; Rubadeux, K. L.

    1994-01-01

    This report describes a computer program, 'TLIFE', which models the service life of a transmission. The program is written in ANSI standard Fortran 77 and has an executable size of about 157 K bytes for use on a personal computer running DOS. It can also be compiled and executed in UNIX. The computer program can analyze any one of eleven unit transmissions either singly or in a series combination of up to twenty-five unit transmissions. Metric or English unit calculations are performed with the same routines using consistent input data and a units flag. Primary outputs are the dynamic capacity of the transmission and the mean lives of the transmission and of the sum of its components. The program uses a modular approach to separate the load analyses from the system life calculations. The program and its input and output data files are described herein. Three examples illustrate its use. A development of the theory behind the analysis in the program is included after the examples.

  15. Collective helicity switching of a DNA-coat assembly

    NASA Astrophysics Data System (ADS)

    Kim, Yongju; Li, Huichang; He, Ying; Chen, Xi; Ma, Xiaoteng; Lee, Myongsoo

    2017-07-01

    Hierarchical assemblies of biomolecular subunits can carry out versatile tasks at the cellular level with remarkable spatial and temporal precision. As an example, the collective motion and mutual cooperation between complex protein machines mediate essential functions for life, such as replication, synthesis, degradation, repair and transport. Nucleic acid molecules are far less dynamic than proteins and need to bind to specific proteins to form hierarchical structures. The simplest example of these nucleic acid-based structures is provided by a rod-shaped tobacco mosaic virus, which consists of genetic material surrounded by coat proteins. Inspired by the complexity and hierarchical assembly of viruses, a great deal of effort has been devoted to design similarly constructed artificial viruses. However, such a wrapping approach makes nucleic acid dynamics insensitive to environmental changes. This limitation generally restricts, for example, the amplification of the conformational dynamics between the right-handed B form to the left-handed Z form of double-stranded deoxyribonucleic acid (DNA). Here we report a virus-like hierarchical assembly in which the native DNA and a synthetic coat undergo repeated collective helicity switching triggered by pH change under physiological conditions. We also show that this collective helicity inversion occurs during translocation of the DNA-coat assembly into intracellular compartments. Translating DNA conformational dynamics into a higher level of hierarchical dynamics may provide an approach to create DNA-based nanomachines.

  16. Computational strategies to address chromatin structure problems

    NASA Astrophysics Data System (ADS)

    Perišić, Ognjen; Schlick, Tamar

    2016-06-01

    While the genetic information is contained in double helical DNA, gene expression is a complex multilevel process that involves various functional units, from nucleosomes to fully formed chromatin fibers accompanied by a host of various chromatin binding enzymes. The chromatin fiber is a polymer composed of histone protein complexes upon which DNA wraps, like yarn upon many spools. The nature of chromatin structure has been an open question since the beginning of modern molecular biology. Many experiments have shown that the chromatin fiber is a highly dynamic entity with pronounced structural diversity that includes properties of idealized zig-zag and solenoid models, as well as other motifs. This diversity can produce a high packing ratio and thus inhibit access to a majority of the wound DNA. Despite much research, chromatin’s dynamic structure has not yet been fully described. Long stretches of chromatin fibers exhibit puzzling dynamic behavior that requires interpretation in the light of gene expression patterns in various tissue and organisms. The properties of chromatin fiber can be investigated with experimental techniques, like in vitro biochemistry, in vivo imagining, and high-throughput chromosome capture technology. Those techniques provide useful insights into the fiber’s structure and dynamics, but they are limited in resolution and scope, especially regarding compact fibers and chromosomes in the cellular milieu. Complementary but specialized modeling techniques are needed to handle large floppy polymers such as the chromatin fiber. In this review, we discuss current approaches in the chromatin structure field with an emphasis on modeling, such as molecular dynamics and coarse-grained computational approaches. Combinations of these computational techniques complement experiments and address many relevant biological problems, as we will illustrate with special focus on epigenetic modulation of chromatin structure.

  17. Helical waves in easy-plane antiferromagnets

    NASA Astrophysics Data System (ADS)

    Semenov, Yuriy G.; Li, Xi-Lai; Xu, Xinyi; Kim, Ki Wook

    2017-12-01

    Effective spin torques can generate the Néel vector oscillations in antiferromagnets (AFMs). Here, it is theoretically shown that these torques applied at one end of a normal AFM strip can excite a helical type of spin wave in the strip whose properties are drastically different from characteristic spin waves. An analysis based on both a Néel vector dynamical equation and the micromagnetic simulation identifies the direction of magnetic anisotropy and the damping factor as the two key parameters determining the dynamics. Helical wave propagation requires the hard axis of the easy-plane AFM to be aligned with the traveling direction, while the damping limits its spatial extent. If the damping is neglected, the calculation leads to a uniform periodic domain wall structure. On the other hand, finite damping decelerates the helical wave rotation around the hard axis, ultimately causing stoppage of its propagation along the strip. With the group velocity staying close to spin-wave velocity at the wave front, the wavelength becomes correspondingly longer away from the excitation point. In a sufficiently short strip, a steady-state oscillation can be established whose frequency is controlled by the waveguide length as well as the excitation energy or torque.

  18. Toda-Lattice Solitons in α-Helical Proteins

    NASA Astrophysics Data System (ADS)

    Yomosa, Shigeo

    1984-10-01

    We propose a theory of Toda-lattice soliton in α-helical proteins which enables us to elucidate the molecular dynamics of muscle contraction. One-dimensional chain of peptide groups jointed together by H-bonds, which stabilizes α-helical structure of proteins, can be regarded as a Toda-lattice where the potential of H-bonding interaction between peptide groups has a remarkable nonlinearity. By using the results of theoretical studies for Toda-lattice soliton and for the initial value problem, we can describe the molecular mechanism of the transformation of the chemical energy to the mechanical work in the process of the muscle contraction.

  19. Molecular dynamics simulations of membrane deformation induced by amphiphilic helices of Epsin, Sar1p, and Arf1

    NASA Astrophysics Data System (ADS)

    Li, Zhen-Lu

    2018-03-01

    The N-terminal amphiphilic helices of proteins Epsin, Sar1p, and Arf1 play a critical role in initiating membrane deformation. The interactions of these amphiphilic helices with the lipid membranes are investigated in this study by combining the all-atom and coarse-grained simulations. In the all-atom simulations, the amphiphilic helices of Epsin and Sar1p are found to have a shallower insertion depth into the membrane than the amphiphilic helix of Arf1, but remarkably, the amphiphilic helices of Epsin and Sar1p induce higher asymmetry in the lipid packing between the two monolayers of the membrane. The insertion depth of amphiphilic helix into the membrane is determined not only by the overall hydrophobicity but also by the specific distributions of polar and non-polar residues along the helix. To directly compare their ability to deform the membrane, the coarse-grained simulations are performed to investigate the membrane deformation under the insertion of multiple helices. Project supported by the National Natural Science Foundation of China (Grant Nos. 91427302 and 11474155).

  20. Coupled lateral-torsional-axial vibrations of a helical gear-rotor-bearing system

    NASA Astrophysics Data System (ADS)

    Li, Chao-Feng; Zhou, Shi-Hua; Liu, Jie; Wen, Bang-Chun

    2014-10-01

    Considering the axial and radial loads, a mathematical model of angular contact ball bearing is deduced with Hertz contact theory. With the coupling effects of lateral, torsional and axial vibrations taken into account, a lumped-parameter nonlinear dynamic model of helical gearrotor-bearing system (HGRBS) is established to obtain the transmission system dynamic response to the changes of different parameters. The vibration differential equations of the drive system are derived through the Lagrange equation, which considers the kinetic and potential energies, the dissipative function and the internal/external excitation. Based on the Runge-Kutta numerical method, the dynamics of the HGRBS is investigated, which describes vibration properties of HGRBS more comprehensively. The results show that the vibration amplitudes have obvious fluctuation, and the frequency multiplication and random frequency components become increasingly obvious with changing rotational speed and eccentricity at gear and bearing positions. Axial vibration of the HGRBS also has some fluctuations. The bearing has self-variable stiffness frequency, which should be avoided in engineering design. In addition, the bearing clearance needs little attention due to its slightly discernible effect on vibration response. It is suggested that a careful examination should be made in modelling the nonlinear dynamic behavior of a helical gear-rotor-bearing system.

  1. Structural Properties of Human IAPP Dimer in Membrane Environment Studied by All-Atom Molecular Dynamics Simulations.

    PubMed

    Liu, Na; Duan, Mojie; Yang, Minghui

    2017-08-11

    The aggregation of human islet amyloid polypeptide (hIAPP) can damage the membrane of the β-cells in the pancreatic islets and induce type 2 diabetes (T2D). Growing evidences indicated that the major toxic species are small oligomers of IAPP. Due to the fast aggregation nature, it is hard to characterize the structures of IAPP oligomers by experiments, especially in the complex membrane environment. On the other side, molecular dynamics simulation can provide atomic details of the structure and dynamics of the aggregation of IAPP. In this study, all-atom bias-exchange metadynamics (BE-Meta) and unbiased molecular dynamics simulations were employed to study the structural properties of IAPP dimer in the membranes environments. A number of intermediates, including α-helical states, β-sheet states, and fully disordered states, are identified. The formation of N-terminal β-sheet structure is prior to the C-terminal β-sheet structure towards the final fibril-like structures. The α-helical intermediates have lower propensity in the dimeric hIAPP and are off-pathway intermediates. The simulations also demonstrate that the β-sheet intermediates induce more perturbation on the membrane than the α-helical and disordered states and thus pose higher disruption ability.

  2. Effect of the helicity injection rate and the Lundquist number on spheromak sustainment

    NASA Astrophysics Data System (ADS)

    García-Martínez, Pablo Luis; Lampugnani, Leandro Gabriel; Farengo, Ricardo

    2014-12-01

    The dynamics of the magnetic relaxation process during the sustainment of spheromak configurations at different helicity injection rates is studied. The three-dimensional activity is recovered using time-dependent resistive magnetohydrodynamic simulations. A cylindrical flux conserver with concentric electrodes is used to model configurations driven by a magnetized coaxial gun. Magnetic helicity is injected by tangential boundary flows. Different regimes of sustainment are identified and characterized in terms of the safety factor profile. The spatial and temporal behavior of fluctuations is described. The dynamo action is shown to be in close agreement with existing experimental data. These results are relevant to the design and operation of helicity injected devices, as well as to basic understanding of the plasma relaxation mechanism in quasi-steady state.

  3. Structure, Function, Self-Assembly and Origin of Simple Membrane Proteins

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew

    2003-01-01

    Integral membrane proteins perform such essential cellular functions as transport of ions, nutrients and waste products across cell walls, transduction of environmental signals, regulation of cell fusion, recognition of other cells, energy capture and its conversion into high-energy compounds. In fact, 30-40% of genes in modem organisms codes for membrane proteins. Although contemporary membrane proteins or their functional assemblies can be quite complex, their transmembrane fragments are usually remarkably simple. The most common structural motif for these fragments is a bundle of alpha-helices, but occasionally it could be a beta-barrel. In a series of molecular dynamics computer simulations we investigated self-organizing properties of simple membrane proteins based on these structural motifs. Specifically, we studied folding and insertion into membranes of short, nonpolar or amphiphatic peptides. We also investigated glycophorin A, a peptide that forms sequence-specific dimers, and a transmembrane aggregate of four identical alpha-helices that forms an efficient and selective voltage-gated proton channel was investigated. Many peptides are attracted to water-membrane interfaces. Once at the interface, nonpolar peptides spontaneously fold to a-helices. Whenever the sequence permits, peptides that contain both polar and nonpolar amino also adopt helical structures, in which polar and nonpolar amino acid side chains are immersed in water and membrane, respectively. Specific identity of side chains is less important. Helical peptides at the interface could insert into the membrane and adopt a transmembrane conformation. However, insertion of a single helix is unfavorable because polar groups in the peptide become completely dehydrated upon insertion. The unfavorable free energy of insertion can be regained by spontaneous association of peptides in the membrane. The first step in this process is the formation of dimers, although the most common are aggregates of 4-7 helices. The helices could arrange themselves such that they formed pores capable of transporting ions and small molecules across membranes. Stability of transmembrane aggregates of simple proteins is often only marginal and, therefore, it can be regulated by environmental signals or small sequence modifications in the region of interhelical interactions. A key step in the earliest evolution of membrane proteins was the emergence of selectivity for specific substrates. Many channels could become selective if one or only a few properly chosen amino acids are properly placed along the channel, acting as filters or gates. This is a convenient evolutionary solution because it does not require imposing conditions on the whole sequence.

  4. Deformation of a helical filament by flow and electric or magnetic fields

    NASA Astrophysics Data System (ADS)

    Kim, Munju; Powers, Thomas R.

    2005-02-01

    Motivated by recent advances in the real-time imaging of fluorescent flagellar filaments in living bacteria [Turner, Ryu, and Berg, J. Bacteriol. 82, 2793 (2000)], we compute the deformation of a helical elastic filament due to flow and external magnetic or high-frequency electric fields. Two cases of deformation due to hydrodynamic drag are considered: the compression of a filament rotated by a stationary motor and the extension of a stationary filament due to flow along the helical axis. We use Kirchhoff rod theory for the filament, and work to linear order in the deflection. Hydrodynamic forces are described first by resistive-force theory, and then for comparison by the more accurate slender-body theory. For helices with a short pitch, the deflection in axial flow predicted by slender-body theory is significantly smaller than that computed with resistive-force theory. Therefore, our estimate of the bending stiffness of a flagellar filament is smaller than that of previous workers. In our calculation of the deformation of a polarizable helix in an external field, we show that the problem is equivalent to the classical case of a helix deformed by forces applied only at the ends.

  5. Dynamic Structure of Bombolitin II Bound to Lipid Bilayers as Revealed by Solid-state NMR and Molecular-Dynamics Simulation

    PubMed Central

    Toraya, Shuichi; Javkhlantugs, Namsrai; Mishima, Daisuke; Nishimura, Katsuyuki; Ueda, Kazuyoshi; Naito, Akira

    2010-01-01

    Bombolitin II (BLT2) is one of the hemolytic heptadecapeptides originally isolated from the venom of a bumblebee. Structure and orientation of BLT2 bound to 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) membranes were determined by solid-state 31P and 13C NMR spectroscopy. 31P NMR spectra showed that BLT2-DPPC membranes were disrupted into small particles below the gel-to-liquid crystalline phase transition temperature (Tc) and fused to form a magnetically oriented vesicle system where the membrane surface is parallel to the magnetic fields above the Tc. 13C NMR spectra of site-specifically 13C-labeled BLT2 at the carbonyl carbons were observed and the chemical shift anisotropies were analyzed to determine the dynamic structure of BLT2 bound to the magnetically oriented vesicle system. It was revealed that the membrane-bound BLT2 adopted an α-helical structure, rotating around the membrane normal with the tilt angle of the helical axis at 33°. Interatomic distances obtained from rotational-echo double-resonance experiments further showed that BLT2 adopted a straight α-helical structure. Molecular dynamics simulation performed in the BLT2-DPPC membrane system showed that the BLT2 formed a straight α-helix and that the C-terminus was inserted into the membrane. The α-helical axis is tilted 30° to the membrane normal, which is almost the same as the value obtained from solid-state NMR. These results suggest that the membrane disruption induced by BLT2 is attributed to insertion of BLT2 into the lipid bilayers. PMID:21081076

  6. Deformation of a soft helical filament in an axial flow at low Reynolds number.

    PubMed

    Jawed, Mohammad K; Reis, Pedro M

    2016-02-14

    We perform a numerical investigation of the deformation of a rotating helical filament subjected to an axial flow, under low Reynolds number conditions, motivated by the propulsion of bacteria using helical flagella. Given its slenderness, the helical rod is intrinsically soft and deforms due to the interplay between elastic forces and hydrodynamic loading. We make use of a previously developed and experimentally validated computational tool framework that models the elasticity of the filament using the discrete elastic rod method and the fluid forces are treated using Lighthill's slender body theory. Under axial flow, and in the absence of rotation, the initially helical rod is extended. Above a critical flow speed its configuration comprises a straight portion connected to a localized helix near the free end. When the rod is also rotated about its helical axis, propulsion is only possible in a finite range of angular velocity, with an upper bound that is limited by buckling of the soft helix arising due to viscous stresses. A systematic exploration of the parameter space allows us to quantify regimes for successful propulsion for a number of specific bacteria.

  7. Reduced bispectrum seeded by helical primordial magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hortúa, Héctor Javier; Castañeda, Leonardo, E-mail: hjhortuao@unal.edu.co, E-mail: lcastanedac@unal.edu.co

    In this paper, we investigate the effects of helical primordial magnetic fields (PMFs) on the cosmic microwave background (CMB) reduced bispectrum. We derive the full three-point statistics of helical magnetic fields and numerically calculate the even contribution in the collinear configuration. We then numerically compute the CMB reduced bispectrum induced by passive and compensated PMF modes on large angular scales. There is a negative signal on the bispectrum due to the helical terms of the fields and we also observe that the biggest contribution to the bispectrum comes from the non-zero IR cut-off for causal fields, unlike the two-point correlationmore » case. For negative spectral indices, the reduced bispectrum is enhanced by the passive modes. This gives a lower value of the upper limit for the mean amplitude of the magnetic field on a given characteristic scale. However, high values of IR cut-off in the bispectrum, and the helical terms of the magnetic field relaxes this bound. This demonstrates the importance of the IR cut-off and helicity in the study of the nature of PMFs from CMB observations.« less

  8. Molecular dynamics simulations of conformation changes of HIV-1 regulatory protein on graphene

    NASA Astrophysics Data System (ADS)

    Zhao, Daohui; Li, Libo; He, Daohang; Zhou, Jian

    2016-07-01

    The fragment of viral protein R (Vpr), Vpr13-33, plays an important role in regulating nuclear importing of HIV genes through channel formation in which it adopts a leucine-zipper-like alpha-helical conformation. A recent experimental study reported that helical Vpr13-33 would transform to β-sheet or random coil structures and aggregate on the surface of graphene or graphene oxide through hydrophobic interactions. Due to experimental limitations, however, there is still a considerable lack of understanding on the adsorption dynamics at the early stage of the conformational transition at water-graphene interface and the underlying driving force at molecular level. In this study, atomistic molecular dynamics simulations were used to explore the conformation transition phenomena. Vpr13-33 kept α-helical structure in solution, but changed to β-sheet structure when strongly adsorbed onto graphene. Preferential adsorption of Vpr13-33 on graphene is dominated by hydrophobic interactions. The cluster analysis identified the most significant populated conformation and the early stage of structure conversion from α-helical to β-sheet was found, but the full β-sheet propagation was not observed. Free energy landscape analysis further complemented the transformation analysis of peptide conformations. These findings are consistent with experimental results, and give a molecular level interpretation for the reduced cytotoxicity of Vpr13-33 to some extent upon graphene exposure. Meanwhile, this study provides some significant insights into the detailed mechanism of graphene-induced protein conformation transition.

  9. An auto-inhibitory helix in CTP:phosphocholine cytidylyltransferase hijacks the catalytic residue and constrains a pliable, domain-bridging helix pair

    PubMed Central

    Ramezanpour, Mohsen; Lee, Jaeyong; Taneva, Svetla G.; Tieleman, D. Peter; Cornell, Rosemary B.

    2018-01-01

    The activity of CTP:phosphocholine cytidylyltransferase (CCT), a key enzyme in phosphatidylcholine synthesis, is regulated by reversible interactions of a lipid-inducible amphipathic helix (domain M) with membrane phospholipids. When dissociated from membranes, a portion of the M domain functions as an auto-inhibitory (AI) element to suppress catalysis. The AI helix from each subunit binds to a pair of α helices (αE) that extend from the base of the catalytic dimer to create a four-helix bundle. The bound AI helices make intimate contact with loop L2, housing a key catalytic residue, Lys122. The impacts of the AI helix on active-site dynamics and positioning of Lys122 are unknown. Extensive MD simulations with and without the AI helix revealed that backbone carbonyl oxygens at the point of contact between the AI helix and loop L2 can entrap the Lys122 side chain, effectively competing with the substrate, CTP. In silico, removal of the AI helices dramatically increased αE dynamics at a predicted break in the middle of these helices, enabling them to splay apart and forge new contacts with loop L2. In vitro cross-linking confirmed the reorganization of the αE element upon membrane binding of the AI helix. Moreover, when αE bending was prevented by disulfide engineering, CCT activation by membrane binding was thwarted. These findings suggest a novel two-part auto-inhibitory mechanism for CCT involving capture of Lys122 and restraint of the pliable αE helices. We propose that membrane binding enables bending of the αE helices, bringing the active site closer to the membrane surface. PMID:29519816

  10. Development of a higher-efficiency tubular cavity receiver for direct steam generation on a dish concentrator

    NASA Astrophysics Data System (ADS)

    Pye, John; Hughes, Graham; Abbasi, Ehsan; Asselineau, Charles-Alexis; Burgess, Greg; Coventry, Joe; Logie, Will; Venn, Felix; Zapata, José

    2016-05-01

    An integrated model for an axisymmetric helical-coil tubular cavity receiver is presented, incorporating optical ray-tracing for incident solar flux, radiosity analysis for thermal emissions, computational fluid dynamics for external convection, and a one-dimensional hydrodynamic model for internal flow-boiling of water. A receiver efficiency of 98.7% is calculated, for an inlet/outlet temperature range of 60-500 °C, which is the ratio of fluid heating to receiver incident irradiance. The high-efficiency design makes effective use of non-uniform flux in its non-isothermal layout, matching lower temperature regions to areas of lower flux. Full-scale testing of the design will occur in late 2015.

  11. Detailed analysis of dynamic evolution of three Active Regions at the photospheric level before flare and CME occurrence

    NASA Astrophysics Data System (ADS)

    Ye, Yudong; Korsós, M. B.; Erdélyi, R.

    2018-01-01

    We present a combined analysis of the applications of the weighted horizontal magnetic gradient (denoted as WGM in Korsós et al. (2015)) method and the magnetic helicity tool (Berger and Field, 1984) employed for three active regions (ARs), namely NOAA AR 11261, AR 11283 and AR 11429. We analysed the time series of photospheric data from the Solar Dynamics Observatory taken between August 2011 and March 2012. During this period the three ARs produced a series of flares (eight M- and six X-class) and coronal mass ejections (CMEs). AR 11261 had four M-class flares and one of them was accompanied by a fast CME. AR 11283 had similar activities with two M- and two X-class flares, but only with a slow CME. Finally, AR 11429 was the most powerful of the three ARs as it hosted five compact and large solar flare and CME eruptions. For applying the WGM method we employed the Debrecen sunspot data catalogue, and, for estimating the magnetic helicity at photospheric level we used the Space-weather HMI Active Region Patches (SHARP's) vector magnetograms from SDO/HMI (Solar Dynamics Observatory/Helioseismic and Magnetic Imager). We followed the evolution of the components of the WGM and the magnetic helicity before the flare and CME occurrences. We found a unique and mutually shared behaviour, called the U-shaped pattern, of the weighted distance component of WGM and of the shearing component of the helicity flux before the flare and CME eruptions. This common pattern is associated with the decreasing-receding phases yet reported only known to be a necessary feature prior to solar flare eruption(s) but found now at the same time in the evolution of the shearing helicity flux. This result leads to the conclusions that (i) the shearing motion of photospheric magnetic field may be a key driver for solar eruption in addition to the flux emerging process, and that (ii) the found decreasing-approaching pattern in the evolution of shearing helicity flux may be another precursor indicator for improving the forecasting of solar eruptions.

  12. Computer-aided diagnosis workstation and telemedicine network system for chest diagnosis based on multislice CT images

    NASA Astrophysics Data System (ADS)

    Satoh, Hitoshi; Niki, Noboru; Eguchi, Kenji; Ohmatsu, Hironobu; Kakinuma, Ryutaru; Moriyama, Noriyuki

    2009-02-01

    Mass screening based on multi-helical CT images requires a considerable number of images to be read. It is this time-consuming step that makes the use of helical CT for mass screening impractical at present. Moreover, the doctor who diagnoses a medical image is insufficient in Japan. To overcome these problems, we have provided diagnostic assistance methods to medical screening specialists by developing a lung cancer screening algorithm that automatically detects suspected lung cancers in helical CT images, a coronary artery calcification screening algorithm that automatically detects suspected coronary artery calcification and a vertebra body analysis algorithm for quantitative evaluation of osteoporosis likelihood by using helical CT scanner for the lung cancer mass screening. The functions to observe suspicious shadow in detail are provided in computer-aided diagnosis workstation with these screening algorithms. We also have developed the telemedicine network by using Web medical image conference system with the security improvement of images transmission, Biometric fingerprint authentication system and Biometric face authentication system. Biometric face authentication used on site of telemedicine makes "Encryption of file" and "Success in login" effective. As a result, patients' private information is protected. We can share the screen of Web medical image conference system from two or more web conference terminals at the same time. An opinion can be exchanged mutually by using a camera and a microphone that are connected with workstation. Based on these diagnostic assistance methods, we have developed a new computer-aided workstation and a new telemedicine network that can display suspected lesions three-dimensionally in a short time. The results of this study indicate that our radiological information system without film by using computer-aided diagnosis workstation and our telemedicine network system can increase diagnostic speed, diagnostic accuracy and security improvement of medical information.

  13. Spin-dependent post-Newtonian parameters from EMRI computation in Kerr background

    NASA Astrophysics Data System (ADS)

    Friedman, John; Le Tiec, Alexandre; Shah, Abhay

    2013-04-01

    Because the extreme mass-ratio inspiral (EMRI) approximation is accurate to all orders in v/c, it can be used to find high order post-Newtonian parameters that are not yet analytically accessible. We report here on progress in computing spin-dependent, conservative, post-Newtonian parameters from a radiation-gauge computation for a particle in circular orbit in a family of Kerr geometries. For a particle with 4-velocity u^α= U k^α, with k^α the helical Killing vector of the perturbed spacetime, the renormalized perturbation δU, when written as a function of the particle's angular velocity, is invariant under gauge transformations generated by helically symmetric vectors. The EMRI computations are done in a modified radiation gauge. Extracted parameters are compared to previously known and newly computed spin-dependent post-Newtonian terms. This work is modeled on earlier computations by Blanchet, Detweiler, Le Tiec and Whiting of spin-independent terms for a particle in circular orbit in a Schwarzschild geometry.

  14. Structural analysis of a class III preQ 1 riboswitch reveals an aptamer distant from a ribosome-binding site regulated by fast dynamics

    DOE PAGES

    Liberman, Joseph A.; Suddala, Krishna C.; Aytenfisu, Asaminew; ...

    2015-06-23

    PreQ 1-III riboswitches are newly identified RNA elements that control bacterial genes in response to preQ 1 (7-aminomethyl-7-deazaguanine), a precursor to the essential hypermodified tRNA base queuosine. Although numerous riboswitches fold as H-type or HL out-type pseudoknots that integrate ligand-binding and regulatory sequences within a single folded domain, the preQ 1-III riboswitch aptamer forms a HL out-type pseudoknot that does not appear to incorporate its ribosome-binding site (RBS). To understand how this unusual organization confers function, in this paper we determined the crystal structure of the class III preQ 1 riboswitch from Faecalibacterium prausnitzii at 2.75 Å resolution. PreQ 1more » binds tightly (K D,app 6.5 ± 0.5 nM) between helices P1 and P2 of a three-way helical junction wherein the third helix, P4, projects orthogonally from the ligand-binding pocket, exposing its stem-loop to base pair with the 3' RBS. Biochemical analysis, computational modeling, and single-molecule FRET imaging demonstrated that preQ 1 enhances P4 reorientation toward P1–P2, promoting a partially nested, H-type pseudoknot in which the RBS undergoes rapid docking (k dock ~0.6 s -1) and undocking (k undock ~1.1 s -1). Finally, discovery of such dynamic conformational switching provides insight into how a riboswitch with bipartite architecture uses dynamics to modulate expression platform accessibility, thus expanding the known repertoire of gene control strategies used by regulatory RNAs.« less

  15. Characterizing a partially ordered miniprotein through folding molecular dynamics simulations: Comparison with the experimental data.

    PubMed

    Baltzis, Athanasios S; Glykos, Nicholas M

    2016-03-01

    The villin headpiece helical subdomain (HP36) is one of the best known model systems for computational studies of fast-folding all-α miniproteins. HP21 is a peptide fragment-derived from HP36-comprising only the first and second helices of the full domain. Experimental studies showed that although HP21 is mostly unfolded in solution, it does maintain some persistent native-like structure as indicated by the analysis of NMR-derived chemical shifts. Here we compare the experimental data for HP21 with the results obtained from a 15-μs long folding molecular dynamics simulation performed in explicit water and with full electrostatics. We find that the simulation is in good agreement with the experiment and faithfully reproduces the major experimental findings, namely that (a) HP21 is disordered in solution with <10% of the trajectory corresponding to transiently stable structures, (b) the most highly populated conformer is a native-like structure with an RMSD from the corresponding portion of the HP36 crystal structure of <1 Å, (c) the simulation-derived chemical shifts-over the whole length of the trajectory-are in reasonable agreement with the experiment giving reduced χ(2) values of 1.6, 1.4, and 0.8 for the Δδ(13) C(α) , Δδ(13) CO, and Δδ(13) C(β) secondary shifts, respectively (becoming 0.8, 0.7, and 0.3 when only the major peptide conformer is considered), and finally, (d) the secondary structure propensity scores are in very good agreement with the experiment and clearly indicate the higher stability of the first helix. We conclude that folding molecular dynamics simulations can be a useful tool for the structural characterization of even marginally stable peptides. © 2015 The Protein Society.

  16. Triangular prism-shaped β-peptoid helices as unique biomimetic scaffolds

    NASA Astrophysics Data System (ADS)

    Laursen, Jonas S.; Harris, Pernille; Fristrup, Peter; Olsen, Christian A.

    2015-05-01

    β-Peptoids are peptidomimetics based on N-alkylated β-aminopropionic acid residues (or N-alkyl-β-alanines). This type of peptide mimic has previously been incorporated in biologically active ligands and has been hypothesized to be able to exhibit foldamer properties. Here we show, for the first time, that β-peptoids can be tuned to fold into stable helical structures. We provide high-resolution X-ray crystal structures of homomeric β-peptoid hexamers, which reveal right-handed helical conformations with exactly three residues per turn and a helical pitch of 9.6-9.8 Å between turns. The presence of folded conformations in solution is supported by circular dichroism spectroscopy showing length- and solvent dependency, and molecular dynamics simulations provide further support for a stabilized helical secondary structure in organic solvent. We thus outline a framework for future design of novel biomimetics that display functional groups with high accuracy in three dimensions, which has potential for development of new functional materials.

  17. Structure stability of lytic peptides during their interactions with lipid bilayers.

    PubMed

    Chen, H M; Lee, C H

    2001-10-01

    In this work, molecular dynamics simulations were used to examine the consequences of a variety of analogs of cecropin A on lipid bilayers. Analog sequences were constructed by replacing either the N- or C-terminal helix with the other helix in native or reverse sequence order, by making palindromic peptides based on both the N- and C-terminal helices, and by deleting the hinge region. The structure of the peptides was monitored throughout the simulation. The hinge region appeared not to assist in maintaining helical structure but help in motion flexibility. In general, the N-terminal helix of peptides was less stable than the C-terminal one during the interaction with anionic lipid bilayers. Sequences with hydrophobic helices tended to regain helical structure after an initial loss while sequences with amphipathic helices were less able to do this. The results suggests that hydrophobic design peptides have a high structural stability in an anionic membrane and are the candidates for experimental investigation.

  18. Temporal resolution measurement of 128-slice dual source and 320-row area detector computed tomography scanners in helical acquisition mode using the impulse method.

    PubMed

    Hara, Takanori; Urikura, Atsushi; Ichikawa, Katsuhiro; Hoshino, Takashi; Nishimaru, Eiji; Niwa, Shinji

    2016-04-01

    To analyse the temporal resolution (TR) of modern computed tomography (CT) scanners using the impulse method, and assess the actual maximum TR at respective helical acquisition modes. To assess the actual TR of helical acquisition modes of a 128-slice dual source CT (DSCT) scanner and a 320-row area detector CT (ADCT) scanner, we assessed the TRs of various acquisition combinations of a pitch factor (P) and gantry rotation time (R). The TR of the helical acquisition modes for the 128-slice DSCT scanner continuously improved with a shorter gantry rotation time and greater pitch factor. However, for the 320-row ADCT scanner, the TR with a pitch factor of <1.0 was almost equal to the gantry rotation time, whereas with pitch factor of >1.0, it was approximately one half of the gantry rotation time. The maximum TR values of single- and dual-source helical acquisition modes for the 128-slice DSCT scanner were 0.138 (R/P=0.285/1.5) and 0.074s (R/P=0.285/3.2), and the maximum TR values of the 64×0.5- and 160×0.5-mm detector configurations of the helical acquisition modes for the 320-row ADCT scanner were 0.120 (R/P=0.275/1.375) and 0.195s (R/P=0.3/0.6), respectively. Because the TR of a CT scanner is not accurately depicted in the specifications of the individual scanner, appropriate acquisition conditions should be determined based on the actual TR measurement. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  19. Origin and structures of solar eruptions II: Magnetic modeling

    NASA Astrophysics Data System (ADS)

    Guo, Yang; Cheng, Xin; Ding, MingDe

    2017-07-01

    The topology and dynamics of the three-dimensional magnetic field in the solar atmosphere govern various solar eruptive phenomena and activities, such as flares, coronal mass ejections, and filaments/prominences. We have to observe and model the vector magnetic field to understand the structures and physical mechanisms of these solar activities. Vector magnetic fields on the photosphere are routinely observed via the polarized light, and inferred with the inversion of Stokes profiles. To analyze these vector magnetic fields, we need first to remove the 180° ambiguity of the transverse components and correct the projection effect. Then, the vector magnetic field can be served as the boundary conditions for a force-free field modeling after a proper preprocessing. The photospheric velocity field can also be derived from a time sequence of vector magnetic fields. Three-dimensional magnetic field could be derived and studied with theoretical force-free field models, numerical nonlinear force-free field models, magnetohydrostatic models, and magnetohydrodynamic models. Magnetic energy can be computed with three-dimensional magnetic field models or a time series of vector magnetic field. The magnetic topology is analyzed by pinpointing the positions of magnetic null points, bald patches, and quasi-separatrix layers. As a well conserved physical quantity, magnetic helicity can be computed with various methods, such as the finite volume method, discrete flux tube method, and helicity flux integration method. This quantity serves as a promising parameter characterizing the activity level of solar active regions.

  20. Self-consistent analysis of radiation and relativistic electron beam dynamics in a helical wiggler using Lienard-Wiechert fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tecimer, M.; Elias, L.R.

    1995-12-31

    Lienard-Wiechert (LW) fields, which are exact solutions of the Wave Equation for a point charge in free space, are employed to formulate a self-consistent treatment of the electron beam dynamics and the evolution of the generated radiation in long undulators. In a relativistic electron beam the internal forces leading to the interaction of the electrons with each other can be computed by means of retarded LW fields. The resulting electron beam dynamics enables us to obtain three dimensional radiation fields starting from an initial incoherent spontaneous emission, without introducing a seed wave at start-up. Based on the formalism employed here,more » both the evolution of the multi-bucket electron phase space dynamics in the beam body as well as edges and the relative slippage of the radiation with respect to the electrons in the considered short bunch are naturally embedded into the simulation model. In this paper, we present electromagnetic radiation studies, including multi-bucket electron phase dynamics and angular distribution of radiation in the time and frequency domain produced by a relativistic short electron beam bunch interacting with a circularly polarized magnetic undulator.« less

  1. Experimental and theoretical developments in the Mochi project

    NASA Astrophysics Data System (ADS)

    You, Setthivoine; von der Linden, Jens; Vereen, Keon; Lavine, Eric Sander; Carroll, Evan; Card, Alexander; Azuara-Rosales, Manuel; Quinley, Morgan; Yun, Gunsu

    2015-11-01

    The Mochi project investigates the interaction between magnetic fields and plasma flows in cylindrical and toroidal geometries. The configuration is designed to tailor the radial electric field profile with three annular electrodes and allow for shear helical flows in magnetized plasma jets or merging spheromaks. First plasma has been achieved and characterization is in progress with images, magnetic probes, an energy analyzer, an interferometer, a fast ion gauge, and optical and RF spectroscopy. Vector tomography of ion Doppler spectroscopy is progressing with the design of the custom fiber bundle and implementation of the numerical code. The first experiments are investigating the coupling of sausage and kink instabilities, comparing measurements to a new stability criterion and a numerical stability code. A new canonical field theory has been developed to help interpret the dynamics of plasma self-organization. The theory augments the Lagrangian of general dynamical systems to rigourously demonstrate that canonical helicity transport is valid across single particle, kinetic and fluid regimes, that dynamical equations can be re-formulated as a form of Maxwell's equations, and that helicity is conserved only when density gradients are shallow. This work is supported by US DOE Grant DE-SC0010340.

  2. Polymorphism in Bacterial Flagella Suspensions

    NASA Astrophysics Data System (ADS)

    Schwenger, Walter J.

    Bacterial flagella are a type of biological polymer studied for its role in bacterial motility and the polymorphic transitions undertaken to facilitate the run and tumble behavior. The naturally rigid, helical shape of flagella gives rise to novel colloidal dynamics and material properties. This thesis studies methods in which the shape of bacterial flagella can be controlled using in vitro methods and the changes the shape of the flagella have on both single particle dynamics and bulk material properties. We observe individual flagellum in both the dilute and semidilute regimes to observe the effects of solvent condition on the shape of the filament as well as the effect the filament morphology has on reptation through a network of flagella. In addition, we present rheological measurements showing how the shape of filaments effects the bulk material properties of flagellar suspensions. We find that the individual particle dynamics in suspensions of flagella can vary with geometry from needing to reptate linearly via rotation for helical filaments to the prevention of long range diffusion for block copolymer filaments. Similarly, for bulk material properties of flagella suspensions, helical geometries show a dramatic enhancement in elasticity over straight filaments while block copolymers form an elastic gel without the aid of crosslinking agents.

  3. The National Lung Screening Trial (NLST) | Division of Cancer Prevention

    Cancer.gov

    The National Lung Screening Trial (NLST) compared two ways of detecting lung cancer: low-dose helical computed tomography (CT) and standard chest X-ray. Both chest X-rays and low-dose helical CT scans have been used to find lung cancer early, but the effects of these screening techniques on lung cancer mortality rates had not been determined. NLST enrolled 53,454 current or

  4. Computational analysis of protein-protein interfaces involving an alpha helix: insights for terphenyl-like molecules binding.

    PubMed

    Isvoran, Adriana; Craciun, Dana; Martiny, Virginie; Sperandio, Olivier; Miteva, Maria A

    2013-06-14

    Protein-Protein Interactions (PPIs) are key for many cellular processes. The characterization of PPI interfaces and the prediction of putative ligand binding sites and hot spot residues are essential to design efficient small-molecule modulators of PPI. Terphenyl and its derivatives are small organic molecules known to mimic one face of protein-binding alpha-helical peptides. In this work we focus on several PPIs mediated by alpha-helical peptides. We performed computational sequence- and structure-based analyses in order to evaluate several key physicochemical and surface properties of proteins known to interact with alpha-helical peptides and/or terphenyl and its derivatives. Sequence-based analysis revealed low sequence identity between some of the analyzed proteins binding alpha-helical peptides. Structure-based analysis was performed to calculate the volume, the fractal dimension roughness and the hydrophobicity of the binding regions. Besides the overall hydrophobic character of the binding pockets, some specificities were detected. We showed that the hydrophobicity is not uniformly distributed in different alpha-helix binding pockets that can help to identify key hydrophobic hot spots. The presence of hydrophobic cavities at the protein surface with a more complex shape than the entire protein surface seems to be an important property related to the ability of proteins to bind alpha-helical peptides and low molecular weight mimetics. Characterization of similarities and specificities of PPI binding sites can be helpful for further development of small molecules targeting alpha-helix binding proteins.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    L. Delgado-Aparicio, et. al.

    New observations of the formation and dynamics of long-lived impurity-induced helical "snake" modes in tokamak plasmas have recently been carried-out on Alcator C-Mod. The snakes form as an asymmetry in the impurity ion density that undergoes a seamless transition from a small helically displaced density to a large crescent-shaped helical structure inside q < 1, with a regularly sawtoothing core. The observations show that the conditions for the formation and persistence of a snake cannot be explained by plasma pressure alone. Instead, many features arise naturally from nonlinear interactions in a 3D MHD model that separately evolves the plasma densitymore » and temperature« less

  6. Formation and stability of impurity "snakes" in tokamak plasmas.

    PubMed

    Delgado-Aparicio, L; Sugiyama, L; Granetz, R; Gates, D A; Rice, J E; Reinke, M L; Bitter, M; Fredrickson, E; Gao, C; Greenwald, M; Hill, K; Hubbard, A; Hughes, J W; Marmar, E; Pablant, N; Podpaly, Y; Scott, S; Wilson, R; Wolfe, S; Wukitch, S

    2013-02-08

    New observations of the formation and dynamics of long-lived impurity-induced helical "snake" modes in tokamak plasmas have recently been carried out on Alcator C-Mod. The snakes form as an asymmetry in the impurity ion density that undergoes a seamless transition from a small helically displaced density to a large crescent-shaped helical structure inside q<1, with a regularly sawtoothing core. The observations show that the conditions for the formation and persistence of a snake cannot be explained by plasma pressure alone. Instead, many features arise naturally from nonlinear interactions in a 3D MHD model that separately evolves the plasma density and temperature.

  7. Unsteady numerical analysis of solid-liquid two-phase flow in stirred tank with double helical ribbon impeller

    NASA Astrophysics Data System (ADS)

    Bai, He; Chen, Xiangshan; Zhao, Guangyu; Xiao, Chenglei; Li, Chen; Zhong, Cheng; Chen, Yu

    2017-08-01

    In order to enhance the mixing process of soil contaminated by oil and water, one kind of double helical ribbon (DHR) impeller was developed. In this study, the unsteady simulation analysis of solid-liquid two-phase flow in stirring tank with DHR impeller was conducted by the the computational fluid dynamics and the multi-reference frame (MRF) method. It was found that at 0-3.0 s stage, the rate of liquid was greater than the rate of solid particles, while the power consumption was 5-6 times more than the smooth operation. The rates of the liquid and the solid particles were almost the same, and the required power was 32 KW at t > 3.0 s. The flow of the solid particles in the tank was a typical axial circle flow, and the dispersed sequence of the solid that was accumulated at the bottom of the tank was: the bottom loop region, the annular region near the wall of the groove and finally the area near axial center. The results show that the DHR impeller was suitable for the mixing of liquid-solid two-phase.

  8. 256 Slice Multi-detector Computed Tomography Thoracic Aorta Computed Tomography Angiography: Improved Luminal Opacification Using a Patient-Specific Contrast Protocol and Caudocranial Scan Acquisition.

    PubMed

    Saade, Charbel; El-Merhi, Fadi; El-Achkar, Bassam; Kerek, Racha; Vogl, Thomas J; Maroun, Gilbert Georges; Jamjoom, Lamia; Al-Mohiy, Hussain; Naffaa, Lena

    Caudocranial scan direction and contrast injection timing based on measured patient vessel dynamics can significantly improve arterial and aneurysmal opacification and reduce both contrast and radiation dose in the assessment of thoracic aortic aneurysms (TAA) using helical thoracic computed tomography angiography (CTA). To investigate opacification of the thoracic aorta and TAA using a caudocranial scan direction and a patient-specific contrast protocol. Thoracic aortic CTA was performed in 160 consecutive patients with suspected TAA using a 256-slice computed tomography scanner and a dual barrel contrast injector. Patients were subjected in equal numbers to one of two contrast protocols. Patient age and sex were equally distributed across both groups. Protocol A, the department's standard protocol, consisted of a craniocaudal scan direction with 100 mL of contrast, intravenously injected at a flow rate of 4.5 mL/s. Protocol B involved a caudocranial scan direction and a novel contrast formula based on patient cardiovascular dynamics, followed by 100 mL of saline at 4.5 mL/s. Each scan acquisition comprised of 120 kVp, 200 mA with modulation, temporal resolution 0.27 seconds, and pitch 0.889:1. The dose length product was measured between each protocol and data generated were compared using Mann-Whitney U nonparametric statistics. Receiver operating characteristic analysis, visual grading characteristic (VGC), and κ analyses were performed. Mean opacification in the thoracic aorta and aneurysm measured was 24 % and 55%, respectively. The mean contrast volume was significantly lower in protocol B (73 ± 10 mL) compared with A (100 ± 1 mL) (P<0.001). The contrast-to-noise ratio demonstrated significant differences between the protocols (protocol A, 18.2 ± 12.9; protocol B, 29.7 ± 0.61; P < 0.003). Mean effective dose in protocol B (2.6 ± 0.4 mSv) was reduced by 19% compared with A (3.2 ± 0.8 mSv) (P < 0.004). Aneurysmal detectability demonstrated significant increases by receiver operating characteristic and visual grading characteristic analysis for protocol B compared with A (P < 0.02), and reader agreement increased from poor to excellent. Significant increase in the visualization of TAAs following a caudocranial scan direction during helical thoracic CTA can be achieved using low-contrast volume based on patient-specific contrast formula.

  9. Reversible near-infrared light directed reflection in a self-organized helical superstructure loaded with upconversion nanoparticles.

    PubMed

    Wang, Ling; Dong, Hao; Li, Yannian; Xue, Chenming; Sun, Ling-Dong; Yan, Chun-Hua; Li, Quan

    2014-03-26

    Adding external, dynamic control to self-organized superstructures with desired functionalities is an important leap necessary in leveraging the fascinating molecular systems for applications. Here, the new light-driven chiral molecular switch and upconversion nanoparticles, doped in a liquid crystal media, were able to self-organize into an optically tunable helical superstructure. The resulting nanoparticle impregnated helical superstructure was found to exhibit unprecedented reversible near-infrared (NIR) light-guided tunable behavior only by modulating the excitation power density of a continuous-wave NIR laser (980 nm). Upon irradiation by the NIR laser at the high power density, the reflection wavelength of the photonic superstructure red-shifted, whereas its reverse process occurred upon irradiation by the same laser but with the lower power density. Furthermore, reversible dynamic NIR-light-driven red, green, and blue reflections in a single thin film, achieved only by varying the power density of the NIR light, were for the first time demonstrated.

  10. Dynamic clustering of dynamin-amphiphysin helices regulates membrane constriction and fission coupled with GTP hydrolysis

    PubMed Central

    Kozai, Toshiya; Yang, Huiran; Ishikuro, Daiki; Seyama, Kaho; Kumagai, Yusuke; Abe, Tadashi; Yamada, Hiroshi; Uchihashi, Takayuki

    2018-01-01

    Dynamin is a mechanochemical GTPase essential for membrane fission during clathrin-mediated endocytosis. Dynamin forms helical complexes at the neck of clathrin-coated pits and their structural changes coupled with GTP hydrolysis drive membrane fission. Dynamin and its binding protein amphiphysin cooperatively regulate membrane remodeling during the fission, but its precise mechanism remains elusive. In this study, we analyzed structural changes of dynamin-amphiphysin complexes during the membrane fission using electron microscopy (EM) and high-speed atomic force microscopy (HS-AFM). Interestingly, HS-AFM analyses show that the dynamin-amphiphysin helices are rearranged to form clusters upon GTP hydrolysis and membrane constriction occurs at protein-uncoated regions flanking the clusters. We also show a novel function of amphiphysin in size control of the clusters to enhance biogenesis of endocytic vesicles. Our approaches using combination of EM and HS-AFM clearly demonstrate new mechanistic insights into the dynamics of dynamin-amphiphysin complexes during membrane fission. PMID:29357276

  11. Computational model for simulation of sequences of helicity and angular momentum transfer in turbid tissue-like scattering medium (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Doronin, Alexander; Meglinski, Igor

    2017-02-01

    Current report considers development of a unified Monte Carlo (MC) -based computational model for simulation of propagation of Laguerre-Gaussian (LG) beams in turbid tissue-like scattering medium. With a primary goal to proof the concept of using complex light for tissue diagnosis we explore propagation of LG beams in comparison with Gaussian beams for both linear and circular polarization. MC simulations of radially and azimuthally polarized LG beams in turbid media have been performed, classic phenomena such as preservation of the orbital angular momentum, optical memory and helicity flip are observed, detailed comparison is presented and discussed.

  12. Initial experience in treating lung cancer with helical tomotherapy

    PubMed Central

    Yartsev, S; Dar, AR; Woodford, C; Wong, E; Bauman, G; Van Dyk, J

    2007-01-01

    Helical tomotherapy is a new form of image-guided radiation therapy that combines features of a linear accelerator and a helical computed tomography (CT) scanner. Megavoltage CT (MVCT) data allow the verification and correction of patient setup on the couch by comparison and image registration with the kilovoltage CT multi-slice images used for treatment planning. An 84-year-old male patient with Stage III bulky non-small cell lung cancer was treated on a Hi-ART II tomotherapy unit. Daily MVCT imaging was useful for setup corrections and signaled the need to adapt the delivery plan when the patient’s anatomy changed significantly. PMID:21614260

  13. Helicity dynamics in stratified turbulence in the absence of forcing.

    PubMed

    Rorai, C; Rosenberg, D; Pouquet, A; Mininni, P D

    2013-06-01

    A numerical study of decaying stably stratified flows is performed. Relatively high stratification (Froude number ≈10(-2)-10(-1)) and moderate Reynolds (Re) numbers (Re≈ 3-6×10(3)) are considered and a particular emphasis is placed on the role of helicity (velocity-vorticity correlations), which is not an invariant of the nondissipative equations. The problem is tackled by integrating the Boussinesq equations in a periodic cubical domain using different initial conditions: a nonhelical Taylor-Green (TG) flow, a fully helical Beltrami [Arnold-Beltrami-Childress (ABC)] flow, and random flows with a tunable helicity. We show that for stratified ABC flows helicity undergoes a substantially slower decay than for unstratified ABC flows. This fact is likely associated to the combined effect of stratification and large-scale coherent structures. Indeed, when the latter are missing, as in random flows, helicity is rapidly destroyed by the onset of gravitational waves. A type of large-scale dissipative "cyclostrophic" balance can be invoked to explain this behavior. No production of helicity is observed, contrary to the case of rotating and stratified flows. When helicity survives in the system, it strongly affects the temporal energy decay and the energy distribution among Fourier modes. We discover in fact that the decay rate of energy for stratified helical flows is much slower than for stratified nonhelical flows and can be considered with a phenomenological model in a way similar to what is done for unstratified rotating flows. We also show that helicity, when strong, has a measurable effect on the Fourier spectra, in particular at scales larger than the buoyancy scale, for which it displays a rather flat scaling associated with vertical shear, as observed in the planetary boundary layer.

  14. Modulating RNA Alignment Using Directional Dynamic Kinks: Application in Determining an Atomic-Resolution Ensemble for a Hairpin using NMR Residual Dipolar Couplings.

    PubMed

    Salmon, Loïc; Giambaşu, George M; Nikolova, Evgenia N; Petzold, Katja; Bhattacharya, Akash; Case, David A; Al-Hashimi, Hashim M

    2015-10-14

    Approaches that combine experimental data and computational molecular dynamics (MD) to determine atomic resolution ensembles of biomolecules require the measurement of abundant experimental data. NMR residual dipolar couplings (RDCs) carry rich dynamics information, however, difficulties in modulating overall alignment of nucleic acids have limited the ability to fully extract this information. We present a strategy for modulating RNA alignment that is based on introducing variable dynamic kinks in terminal helices. With this strategy, we measured seven sets of RDCs in a cUUCGg apical loop and used this rich data set to test the accuracy of an 0.8 μs MD simulation computed using the Amber ff10 force field as well as to determine an atomic resolution ensemble. The MD-generated ensemble quantitatively reproduces the measured RDCs, but selection of a sub-ensemble was required to satisfy the RDCs within error. The largest discrepancies between the RDC-selected and MD-generated ensembles are observed for the most flexible loop residues and backbone angles connecting the loop to the helix, with the RDC-selected ensemble resulting in more uniform dynamics. Comparison of the RDC-selected ensemble with NMR spin relaxation data suggests that the dynamics occurs on the ps-ns time scales as verified by measurements of R(1ρ) relaxation-dispersion data. The RDC-satisfying ensemble samples many conformations adopted by the hairpin in crystal structures indicating that intrinsic plasticity may play important roles in conformational adaptation. The approach presented here can be applied to test nucleic acid force fields and to characterize dynamics in diverse RNA motifs at atomic resolution.

  15. Origins of the helical wrapping of phenyleneethynylene polymers about single-walled carbon nanotubes.

    PubMed

    Von Bargen, Christopher D; MacDermaid, Christopher M; Lee, One-Sun; Deria, Pravas; Therien, Michael J; Saven, Jeffery G

    2013-10-24

    The highly charged, conjugated polymer poly[p-{2,5-bis(3-propoxysulfonicacidsodiumsalt)}phenylene]ethynylene (PPES) has been shown to wrap single-wall carbon nanotubes (SWNTs), adopting a robust helical superstructure. Surprisingly, PPES adopts a helical rather than a linear conformation when adhered to SWNTs. The complexes formed by PPES and related polymers upon helical wrapping of a SWNT are investigated using atomistic molecular dynamics (MD) simulations in the presence and absence of aqueous solvent. In simulations of the PPES/SWNT system in an aqueous environment, PPES spontaneously takes on a helical conformation. A potential of mean force, ΔA(ξ), is calculated as a function of ξ, the component of the end-to-end vector of the polymer chain projected on the SWNT axis; ξ is a monotonic function of the polymer's helical pitch. ΔA(ξ) provides a means to quantify the relative free energies of helical conformations of the polymer when wrapped about the SWNT. The aqueous system possesses a global minimum in ΔA(ξ) at the experimentally observed value of the helical pitch. The presence of this minimum is associated with preferred side chain conformations, where the side chains adopt conformations that provide van der Waals contact between the tubes and the aliphatic components of the side chains, while exposing the anionic sulfonates for aqueous solvation. The simulations provide a free energy estimate of a 0.2 kcal/mol/monomer preference for the helical over the linear conformation of the PPES/SWNT system in an aqueous environment.

  16. Nonlinear 3D MHD verification study: SpeCyl and PIXIE3D codes for RFP and Tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Bonfiglio, D.; Cappello, S.; Chacon, L.

    2010-11-01

    A strong emphasis is presently placed in the fusion community on reaching predictive capability of computational models. An essential requirement of such endeavor is the process of assessing the mathematical correctness of computational tools, termed verification [1]. We present here a successful nonlinear cross-benchmark verification study between the 3D nonlinear MHD codes SpeCyl [2] and PIXIE3D [3]. Excellent quantitative agreement is obtained in both 2D and 3D nonlinear visco-resistive dynamics for reversed-field pinch (RFP) and tokamak configurations [4]. RFP dynamics, in particular, lends itself as an ideal non trivial test-bed for 3D nonlinear verification. Perspectives for future application of the fully-implicit parallel code PIXIE3D to RFP physics, in particular to address open issues on RFP helical self-organization, will be provided. [4pt] [1] M. Greenwald, Phys. Plasmas 17, 058101 (2010) [0pt] [2] S. Cappello and D. Biskamp, Nucl. Fusion 36, 571 (1996) [0pt] [3] L. Chac'on, Phys. Plasmas 15, 056103 (2008) [0pt] [4] D. Bonfiglio, L. Chac'on and S. Cappello, Phys. Plasmas 17 (2010)

  17. Robust integer and fractional helical modes in the quantum Hall effect

    NASA Astrophysics Data System (ADS)

    Ronen, Yuval; Cohen, Yonatan; Banitt, Daniel; Heiblum, Moty; Umansky, Vladimir

    2018-04-01

    Electronic systems harboring one-dimensional helical modes, where spin and momentum are locked, have lately become an important field of their own. When coupled to a conventional superconductor, such systems are expected to manifest topological superconductivity; a unique phase hosting exotic Majorana zero modes. Even more interesting are fractional helical modes, yet to be observed, which open the route for realizing generalized parafermions. Possessing non-Abelian exchange statistics, these quasiparticles may serve as building blocks in topological quantum computing. Here, we present a new approach to form protected one-dimensional helical edge modes in the quantum Hall regime. The novel platform is based on a carefully designed double-quantum-well structure in a GaAs-based system hosting two electronic sub-bands; each tuned to the quantum Hall effect regime. By electrostatic gating of different areas of the structure, counter-propagating integer, as well as fractional, edge modes with opposite spins are formed. We demonstrate that, due to spin protection, these helical modes remain ballistic over large distances. In addition to the formation of helical modes, this platform can serve as a rich playground for artificial induction of compounded fractional edge modes, and for construction of edge-mode-based interferometers.

  18. Membrane-spanning α-helical barrels as tractable protein-design targets.

    PubMed

    Niitsu, Ai; Heal, Jack W; Fauland, Kerstin; Thomson, Andrew R; Woolfson, Derek N

    2017-08-05

    The rational ( de novo ) design of membrane-spanning proteins lags behind that for water-soluble globular proteins. This is due to gaps in our knowledge of membrane-protein structure, and experimental difficulties in studying such proteins compared to water-soluble counterparts. One limiting factor is the small number of experimentally determined three-dimensional structures for transmembrane proteins. By contrast, many tens of thousands of globular protein structures provide a rich source of 'scaffolds' for protein design, and the means to garner sequence-to-structure relationships to guide the design process. The α-helical coiled coil is a protein-structure element found in both globular and membrane proteins, where it cements a variety of helix-helix interactions and helical bundles. Our deep understanding of coiled coils has enabled a large number of successful de novo designs. For one class, the α-helical barrels-that is, symmetric bundles of five or more helices with central accessible channels-there are both water-soluble and membrane-spanning examples. Recent computational designs of water-soluble α-helical barrels with five to seven helices have advanced the design field considerably. Here we identify and classify analogous and more complicated membrane-spanning α-helical barrels from the Protein Data Bank. These provide tantalizing but tractable targets for protein engineering and de novo protein design.This article is part of the themed issue 'Membrane pores: from structure and assembly, to medicine and technology'. © 2017 The Author(s).

  19. Helicity and singular structures in fluid dynamics

    PubMed Central

    Moffatt, H. Keith

    2014-01-01

    Helicity is, like energy, a quadratic invariant of the Euler equations of ideal fluid flow, although, unlike energy, it is not sign definite. In physical terms, it represents the degree of linkage of the vortex lines of a flow, conserved when conditions are such that these vortex lines are frozen in the fluid. Some basic properties of helicity are reviewed, with particular reference to (i) its crucial role in the dynamo excitation of magnetic fields in cosmic systems; (ii) its bearing on the existence of Euler flows of arbitrarily complex streamline topology; (iii) the constraining role of the analogous magnetic helicity in the determination of stable knotted minimum-energy magnetostatic structures; and (iv) its role in depleting nonlinearity in the Navier-Stokes equations, with implications for the coherent structures and energy cascade of turbulence. In a final section, some singular phenomena in low Reynolds number flows are briefly described. PMID:24520175

  20. Synthesis of Norbornene Derived Helical Copolymer by Simple Molecular Marriage Approach to Produce Smart Nanocarrier

    NASA Astrophysics Data System (ADS)

    Mane, Shivshankar R.; Sathyan, Ashlin; Shunmugam, Raja

    2017-03-01

    A novel library of norbornene derived helical copolymer has been synthesized through the coupling of two homopolymers via Molecular Marriage Approach. The helicity is governed by the non-covalent interactions like hydrogen bonding, π-π stacking and the influence of hydrophobic and hydrophilic motifs. The detailed characterization of the copolymer (Copoly 1) has been provided and the super structures are confirmed through dynamic light scattering (DLS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The observed size of the aggregates was about 200 nm. The density functional theory (DFT) is favorably supported for the formation of proposed structure of Copoly 1. Circular dichroism (CD) measurement has confirmed the one handed helical structure of the copolymer. Reservoir capability of this pH responsive polymer (Copoly 1) to encapsulate anti-cancer drug doxorubicin (DOX) warrants its potential applications in the field of bio-medical sciences.

  1. A field theory approach to the evolution of canonical helicity and energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    You, S.

    A redefinition of the Lagrangian of a multi-particle system in fields reformulates the single-particle, kinetic, and fluid equations governing fluid and plasma dynamics as a single set of generalized Maxwell's equations and Ohm's law for canonical force-fields. The Lagrangian includes new terms representing the coupling between the motion of particle distributions, between distributions and electromagnetic fields, with relativistic contributions. The formulation shows that the concepts of self-organization and canonical helicity transport are applicable across single-particle, kinetic, and fluid regimes, at classical and relativistic scales. The theory gives the basis for comparing canonical helicity change to energy change in general systems.more » For example, in a fixed, isolated system subject to non-conservative forces, a species' canonical helicity changes less than total energy only if gradients in density or distribution function are shallow.« less

  2. Synthesis of Norbornene Derived Helical Copolymer by Simple Molecular Marriage Approach to Produce Smart Nanocarrier.

    PubMed

    Mane, Shivshankar R; Sathyan, Ashlin; Shunmugam, Raja

    2017-03-22

    A novel library of norbornene derived helical copolymer has been synthesized through the coupling of two homopolymers via Molecular Marriage Approach. The helicity is governed by the non-covalent interactions like hydrogen bonding, π-π stacking and the influence of hydrophobic and hydrophilic motifs. The detailed characterization of the copolymer (Copoly 1) has been provided and the super structures are confirmed through dynamic light scattering (DLS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The observed size of the aggregates was about 200 nm. The density functional theory (DFT) is favorably supported for the formation of proposed structure of Copoly 1. Circular dichroism (CD) measurement has confirmed the one handed helical structure of the copolymer. Reservoir capability of this pH responsive polymer (Copoly 1) to encapsulate anti-cancer drug doxorubicin (DOX) warrants its potential applications in the field of bio-medical sciences.

  3. Measurements of the canonical helicity evolution of a gyrating kinked plasma column

    NASA Astrophysics Data System (ADS)

    von der Linden, Jens; Sears, Jason; Intrator, Thomas; You, Setthivoine

    2017-10-01

    Conversions between kinetic and magnetic energy occur over a wide range of plasma scales as exhibited in astrophysical and solar dynamos, and reconnection in the solar corona and laboratory experiments. Canonical flux tubes present the distinct advantage of reconciling all plasma regimes - e.g. kinetic, two-fluid, and MHD - with the topological concept of helicity: twists, writhes, and linkages. This poster presents the first visualization and analysis of the 3D dynamics of canonical flux tubes and their relative helicity evolution from experimental measurements. Ion and electron canonical flux tubes are visualized from Mach, triple, and Ḃ probe measurements at over 10,000 spatial locations of a gyrating kinked plasma column. The flux tubes co-gyrate with the peak density and electron temperature in and out of a measurement volume. The electron and ion canonical flux tubes twist with opposite handedness and the ion flux tube writhes around the electron flux tube. The relative cross helicity between the magnetic and ion flow vorticity flux tubes dominates the relative ion canonical helicity and is anticorrelated with the relative magnetic helicity. The 3D nature of the kink and a reverse eddy current affect the helicity evolution. This work is supported by DOE Grant DE-SC0010340 and the DOE Office of Science Graduate Student Research Program and prepared in part by LLNL under Contract DE-AC52-07NA27344. LLNL-ABS-734669.

  4. Towards a Predictive Capability for Local Helicity Injection Startup

    NASA Astrophysics Data System (ADS)

    Barr, J. L.; Bongard, M. W.; Burke, M. G.; Fonck, R. J.; Hinson, E. T.; Lewicki, B. T.; Perry, J. M.; Redd, A. J.; Schlossberg, D. J.

    2014-10-01

    Local helicity injection (LHI) is a non-solenoidal tokamak startup technique under development on the Pegasus ST. New designs of the injector cathode geometry and plasma-facing shield rings support high-voltage operation up to 1.5 kV. This leads to reduced requirements in injector area for a given helicity input rate. Near-term experiments in Pegasus are testing the gain in Ip obtained with a 1 . 5 × increase in the helicity input rate and the efficacy of helicity injection in the lower divertor region. A predictive model for LHI is needed to project scalable scenarios for larger devices. A lumped-parameter circuit model using power and helicity balance is being developed for LHI on Pegasus-U and NSTX-U. The model indicates that MA-class startup on NSTX-U will require operating in a regime where the drive from LHI dominates the inductive effects arising from dynamically evolving plasma geometry. The physics of this new regime can be tested in Pegasus-U at Ip ~ 0 . 3 MA. The LHI systems on the proposed Pegasus-U will be expanded to provide 3 - 4 × helicity injection rate and the toroidal field doubled to reach this regime. Predictive models to be validated on Pegasus-U include the 0-D power balance model, NIMROD, and TSC. Work supported by US DOE Grants DE-FG02-96ER54375 and DE-SC0006928.

  5. Ribbons characterize magnetohydrodynamic magnetic fields better than lines: a lesson from dynamo theory

    NASA Astrophysics Data System (ADS)

    Blackman, Eric G.; Hubbard, Alexander

    2014-08-01

    Blackman and Brandenburg argued that magnetic helicity conservation in dynamo theory can in principle be captured by diagrams of mean field dynamos when the magnetic fields are represented by ribbons or tubes, but not by lines. Here, we present such a schematic ribbon diagram for the α2 dynamo that tracks magnetic helicity and provides distinct scales of large-scale magnetic helicity, small-scale magnetic helicity, and kinetic helicity involved in the process. This also motivates our construction of a new `2.5 scale' minimalist generalization of the helicity-evolving equations for the α2 dynamo that separately allows for these three distinct length-scales while keeping only two dynamical equations. We solve these equations and, as in previous studies, find that the large-scale field first grows at a rate independent of the magnetic Reynolds number RM before quenching to an RM-dependent regime. But we also show that the larger the ratio of the wavenumber where the small-scale current helicity resides to that of the forcing scale, the earlier the non-linear dynamo quenching occurs, and the weaker the large-scale field is at the turnoff from linear growth. The harmony between the theory and the schematic diagram exemplifies a general lesson that magnetic fields in magnetohydrodynamic are better visualized as two-dimensional ribbons (or pairs of lines) rather than single lines.

  6. Thermodynamic confinement and alpha-helix persistence length in poly(gamma-benzyl-L-glutamate)-b-poly(dimethyl siloxane)-b-poly(gamma-benzyl-L-glutamate) triblock copolymers.

    PubMed

    Papadopoulos, P; Floudas, G; Schnell, I; Lieberwirth, I; Nguyen, T Q; Klok, H-A

    2006-02-01

    The structure and the associated dynamics of a series of poly(gamma-benzyl-L-glutamate)-b-poly(dimethyl siloxane)-b-poly(gamma-benzyl-L-glutamate) (PBLG-b-PDMS-b-PBLG) triblock copolymers were investigated using small- and wide-angle X-ray scattering, NMR, transmission electron microscopy, and dielectric spectroscopy, respectively. The structural analysis revealed phase separation in the case of the longer blocks with defected alpha-helical segments embedded within the block copolymer nanodomains. The alpha-helical persistence length was found to depend on the degree of segregation; thermodynamic confinement and chain stretching results in the partial annihilation of helical defects.

  7. ON THE INJECTION OF HELICITY BY THE SHEARING MOTION OF FLUXES IN RELATION TO FLARES AND CORONAL MASS EJECTIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vemareddy, P.; Ambastha, A.; Maurya, R. A.

    An investigation of helicity injection by photospheric shear motions is carried out for two active regions (ARs), NOAA 11158 and 11166, using line-of-sight magnetic field observations obtained from the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory. We derived the horizontal velocities in the ARs from the differential affine velocity estimator (DAVE) technique. Persistent strong shear motions at maximum velocities in the range of 0.6-0.9 km s{sup -1} along the magnetic polarity inversion line and outward flows from the peripheral regions of the sunspots were observed in the two ARs. The helicities injected in NOAA 11158 and 11166more » during their six-day evolution period were estimated as 14.16 Multiplication-Sign 10{sup 42} Mx{sup 2} and 9.5 Multiplication-Sign 10{sup 42} Mx{sup 2}, respectively. The estimated injection rates decreased up to 13% by increasing the time interval between the magnetograms from 12 minutes to 36 minutes, and increased up to 9% by decreasing the DAVE window size from 21 Multiplication-Sign 18 to 9 Multiplication-Sign 6 pixel{sup 2}, resulting in 10% variation in the accumulated helicity. In both ARs, the flare-prone regions (R2) had inhomogeneous helicity flux distribution with mixed helicities of both signs and coronal mass ejection (CME) prone regions had almost homogeneous distribution of helicity flux dominated by a single sign. The temporal profiles of helicity injection showed impulsive variations during some flares/CMEs due to negative helicity injection into the dominant region of positive helicity flux. A quantitative analysis reveals a marginally significant association of helicity flux with CMEs but not flares in AR 11158, while for the AR 11166, we find a marginally significant association of helicity flux with flares but not CMEs, providing evidence of the role of helicity injection at localized sites of the events. These short-term variations of helicity flux are further discussed in view of possible flare-related effects. This study suggests that flux motions and spatial distribution of helicity injection are important to understanding the complex nature of the magnetic flux system of the AR, and how it can lead to conditions favorable for eruptive events.« less

  8. Helical screw viscometer

    DOEpatents

    Aubert, J.H.; Chapman, R.N.; Kraynik, A.M.

    1983-06-30

    A helical screw viscometer for the measurement of the viscosity of Newtonian and non-Newtonian fluids comprising an elongated cylindrical container closed by end caps defining a circular cylindrical cavity within the container, a cylindrical rotor member having a helical screw or ribbon flight carried by the outer periphery thereof rotatably carried within the cavity whereby the fluid to be measured is confined in the cavity filling the space between the rotor and the container wall. The rotor member is supported by axle members journaled in the end caps, one axle extending through one end cap and connectable to a drive source. A pair of longitudinally spaced ports are provided through the wall of the container in communication with the cavity and a differential pressure meter is connected between the ports for measuring the pressure drop caused by the rotation of the helical screw rotor acting on the confined fluid for computing viscosity.

  9. On the validity of the use of a localized approximation for helical beams. I. Formal aspects

    NASA Astrophysics Data System (ADS)

    Gouesbet, Gérard; André Ambrosio, Leonardo

    2018-03-01

    The description of an electromagnetic beam for use in light scattering theories may be carried out by using an expansion over vector spherical wave functions with expansion coefficients expressed in terms of Beam Shape Coefficients (BSCs). A celebrated method to evaluate these BSCs has been the use of localized approximations (with several existing variants). We recently established that the use of any existing localized approximation is of limited validity in the case of Bessel and Mathieu beams. In the present paper, we address a warning against the use of any existing localized approximation in the case of helical beams. More specifically, we demonstrate that a procedure used to validate any existing localized approximation fails in the case of helical beams. Numerical computations in a companion paper will confirm that existing localized approximations are of limited validity in the case of helical beams.

  10. Crystallographic and Computational Analyses of AUUCU Repeating RNA That Causes Spinocerebellar Ataxia Type 10 (SCA10).

    PubMed

    Park, HaJeung; González, Àlex L; Yildirim, Ilyas; Tran, Tuan; Lohman, Jeremy R; Fang, Pengfei; Guo, Min; Disney, Matthew D

    2015-06-23

    Spinocerebellar ataxia type 10 (SCA10) is caused by a pentanucleotide repeat expansion of r(AUUCU) within intron 9 of the ATXN10 pre-mRNA. The RNA causes disease by a gain-of-function mechanism in which it inactivates proteins involved in RNA biogenesis. Spectroscopic studies showed that r(AUUCU) repeats form a hairpin structure; however, there were no high-resolution structural models prior to this work. Herein, we report the first crystal structure of model r(AUUCU) repeats refined to 2.8 Å and analysis of the structure via molecular dynamics simulations. The r(AUUCU) tracts adopt an overall A-form geometry in which 3 × 3 nucleotide (5')UCU(3')/(3')UCU(5') internal loops are closed by AU pairs. Helical parameters of the refined structure as well as the corresponding electron density map on the crystallographic model reflect dynamic features of the internal loop. The computational analyses captured dynamic motion of the loop closing pairs, which can form single-stranded conformations with relatively low energies. Overall, the results presented here suggest the possibility for r(AUUCU) repeats to form metastable A-from structures, which can rearrange into single-stranded conformations and attract proteins such as heterogeneous nuclear ribonucleoprotein K (hnRNP K). The information presented here may aid in the rational design of therapeutics targeting this RNA.

  11. Crystallographic and Computational Analyses of AUUCU Repeating RNA That Causes Spinocerebellar Ataxia Type 10 (SCA10)

    PubMed Central

    Park, HaJeung; González, Àlex L.; Yildirim, Ilyas; Tran, Tuan; Lohman, Jeremy R.; Fang, Pengfei; Guo, Min; Disney, Matthew D.

    2016-01-01

    Spinocerebellar ataxia type 10 (SCA10) is caused by a pentanucleotide repeat expansion of r(AUUCU) within intron 9 of the ATXN10 pre-mRNA. The RNA causes disease by a gain-of-function mechanism in which it inactivates proteins involved in RNA biogenesis. Spectroscopic studies showed that r(AUUCU) repeats form a hairpin structure; however, there were no high-resolution structural models prior to this work. Herein, we report the first crystal structure of model r(AUUCU) repeats refined to 2.8 Å and analysis of the structure via molecular dynamics simulations. The r(AUUCU) tracts adopt an overall A-form geometry in which 3 × 3 nucleotide 5′UCU3′/3′UCU5′ internal loops are closed by AU pairs. Helical parameters of the refined structure as well as the corresponding electron density map on the crystallographic model reflect dynamic features of the internal loop. The computational analyses captured dynamic motion of the loop closing pairs, which can form single-stranded conformations with relatively low energies. Overall, the results presented here suggest the possibility for r(AUUCU) repeats to form metastable A-from structures, which can rearrange into single-stranded conformations and attract proteins such as heterogeneous nuclear ribonucleoprotein K (hnRNP K). The information presented here may aid in the rational design of therapeutics targeting this RNA. PMID:26039897

  12. Computer simulation of flagellar movement VIII: coordination of dynein by local curvature control can generate helical bending waves.

    PubMed

    Brokaw, Charles J

    2002-10-01

    Computer simulations have been carried out with a model flagellum that can bend in three dimensions. A pattern of dynein activation in which regions of dynein activity propagate along each doublet, with a phase shift of approximately 1/9 wavelength between adjacent doublets, will produce a helical bending wave. This pattern can be termed "doublet metachronism." The simulations show that doublet metachronism can arise spontaneously in a model axoneme in which activation of dyneins is controlled locally by the curvature of each outer doublet microtubule. In this model, dyneins operate both as sensors of curvature and as motors. Doublet metachronism and the chirality of the resulting helical bending pattern are regulated by the angular difference between the direction of the moment and sliding produced by dyneins on a doublet and the direction of the controlling curvature for that doublet. A flagellum that is generating a helical bending wave experiences twisting moments when it moves against external viscous resistance. At high viscosities, helical bending will be significantly modified by twist unless the twist resistance is greater than previously estimated. Spontaneous doublet metachronism must be modified or overridden in order for a flagellum to generate the planar bending waves that are required for efficient propulsion of spermatozoa. Planar bending can be achieved with the three-dimensional flagellar model by appropriate specification of the direction of the controlling curvature for each doublet. However, experimental observations indicate that this "hard-wired" solution is not appropriate for real flagella. Copyright 2002 Wiley-Liss, Inc.

  13. Positional preference of proline in alpha-helices.

    PubMed Central

    Kim, M. K.; Kang, Y. K.

    1999-01-01

    Conformational free energy calculations have been carried out for proline-containing alanine-based pentadecapeptides with the sequence Ac-(Ala)n-Pro-(Ala)m-NHMe, where n + m = 14, to figure out the positional preference of proline in alpha-helices. The relative free energy of each peptide was calculated by subtracting the free energy of the extended conformation from that of the alpha-helical one, which is used here as a measure of preference. The highest propensity is found for the peptide with proline at the N-terminus (i.e., Ncap + 1 position), and the next propensities are found at Ncap, N' (Ncap - 1), and C' (Ccap + 1) positions. These computed results are reasonably consistent with the positional propensities estimated from X-ray structures of proteins. The breaking in hydrogen bonds around proline is found to play a role in destabilizing alpha-helical conformations, which, however, provides the favored hydration of the corresponding N-H and C=O groups. The highest preference of proline at the beginning of alpha-helix appears to be due to the favored electrostatic and nonbonded energies between two residues preceding proline and the intrinsic stability of alpha-helical conformation of the proline residue itself as well as no disturbance in hydrogen bonds of alpha-helix by proline. The average free energy change for the substitution of Ala by Pro in a alpha-helix is computed to be 4.6 kcal/mol, which is in good agreement with the experimental value of approximately 4 kcal/mol estimated for an oligopeptide dimer and proteins of barnase and T4 lysozyme. PMID:10422838

  14. Metadynamics Enhanced Markov Modeling of Protein Dynamics.

    PubMed

    Biswas, Mithun; Lickert, Benjamin; Stock, Gerhard

    2018-05-31

    Enhanced sampling techniques represent a versatile approach to account for rare conformational transitions in biomolecules. A particularly promising strategy is to combine massive parallel computing of short molecular dynamics (MD) trajectories (to sample the free energy landscape of the system) with Markov state modeling (to rebuild the kinetics from the sampled data). To obtain well-distributed initial structures for the short trajectories, it is proposed to employ metadynamics MD, which quickly sweeps through the entire free energy landscape of interest. Being only used to generate initial conformations, the implementation of metadynamics can be simple and fast. The conformational dynamics of helical peptide Aib 9 is adopted to discuss various technical issues of the approach, including metadynamics settings, minimal number and length of short MD trajectories, and the validation of the resulting Markov models. Using metadynamics to launch some thousands of nanosecond trajectories, several Markov state models are constructed that reveal that previous unbiased MD simulations of in total 16 μs length cannot provide correct equilibrium populations or qualitative features of the pathway distribution of the short peptide.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mei, Yang; Ramanathan, Arvind; Glover, Karen

    BECN1 is essential for autophagy, a critical eukaryotic cellular homeostasis pathway. Here we delineate a highly conserved BECN1 domain located between previously characterized BH3 and coiled-coil domains and elucidate its structure and role in autophagy. The 2.0 angstrom sulfur-single-wavelength anomalous dispersion X-ray crystal structure of this domain demonstrates that its N-terminal half is unstructured while its C-terminal half is helical; hence, we name it the flexible helical domain (FHD). Circular dichroism spectroscopy, double electron electron resonance electron paramagnetic resonance, and small-angle X-ray scattering (SAXS) analyses confirm that the FHD is partially disordered, even in the context of adjacent BECN1 domains.more » Molecular dynamic simulations fitted to SAXS data indicate that the FHD transiently samples more helical conformations. FHD helicity increases in 2,2,2-trifluoroethanol, suggesting it may become more helical upon binding. Lastly, cellular studies show that conserved FHD residues are required for starvation-induced autophagy. Thus, the FHD likely undergoes a binding-associated disorder to-helix transition, and conserved residues critical for this interaction are essential for starvation-induced autophagy.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mei, Yang; Ramanathan, Arvind; Glover, Karen

    BECN1 is essential for autophagy, a critical eukaryotic cellular homeostasis pathway. Here in this study, we delineate a highly conserved BECN1 domain located between previously characterized BH3 and coiled-coil domains and elucidate its structure and role in autophagy. The 2.0 Å sulfur-single-wavelength anomalous dispersion X-ray crystal structure of this domain demonstrates that its N-terminal half is unstructured while its C-terminal half is helical; hence, we name it the flexible helical domain (FHD). Circular dichroism spectroscopy, double electron–electron resonance–electron paramagnetic resonance, and small-angle X-ray scattering (SAXS) analyses confirm that the FHD is partially disordered, even in the context of adjacent BECN1more » domains. Molecular dynamic simulations fitted to SAXS data indicate that the FHD transiently samples more helical conformations. FHD helicity increases in 2,2,2-trifluoroethanol, suggesting it may become more helical upon binding. Finally, cellular studies show that conserved FHD residues are required for starvation-induced autophagy. Thus, the FHD likely undergoes a binding-associated disorder-to-helix transition, and conserved residues critical for this interaction are essential for starvation-induced autophagy.« less

  17. The Writhe of Helical Structures in the Solar Corona

    NASA Technical Reports Server (NTRS)

    Toeroek, T.; Berger, M. A.; Kliem, B.

    2010-01-01

    Context. Helicity is a fundamental property of magnetic fields, conserved in ideal MHD. In flux rope topology, it consists of twist and writhe helicity. Despite the common occurrence of helical structures in the solar atmosphere, little is known about how their shape relates to the writhe, which fraction of helicity is contained in writhe, and how much helicity is exchanged between twist and writhe when they erupt. Aims. Here we perform a quantitative investigation of these questions relevant for coronal flux ropes. Methods. The decomposition of the writhe of a curve into local and nonlocal components greatly facilitates its computation. We use it to study the relation between writhe and projected S shape of helical curves and to measure writhe and twist in numerical simulations of flux rope instabilities. The results are discussed with regard to filament eruptions and coronal mass ejections (CMEs). Results. (1) We demonstrate that the relation between writhe and projected S shape is not unique in principle, but that the ambiguity does not affect low-lying structures, thus supporting the established empirical rule which associates stable forward (reverse) S shaped structures low in the corona with positive (negative) helicity. (2) Kink-unstable erupting flux ropes are found to transform a far smaller fraction of their twist helicity into writhe helicity than often assumed. (3) Confined flux rope eruptions tend to show stronger writhe at low heights than ejective eruptions (CMEs). This argues against suggestions that the writhing facilitates the rise of the rope through the overlying field. (4) Erupting filaments which are S shaped already before the eruption and keep the sign of their axis writhe (which is expected if field of one chirality dominates the source volume of the eruption), must reverse their S shape in the course of the rise. Implications for the occurrence of the helical kink instability in such events are discussed.

  18. Aerodynamic analysis of a horizontal axis wind turbine by use of helical vortex theory, volume 2: Computer program users manual

    NASA Technical Reports Server (NTRS)

    Keith, T. G., Jr.; Afjeh, A. A.; Jeng, D. R.; White, J. A.

    1985-01-01

    A description of a computer program entitled VORTEX that may be used to determine the aerodynamic performance of horizontal axis wind turbines is given. The computer code implements a vortex method from finite span wind theory and determines the induced velocity at the rotor disk by integrating the Biot-Savart law. It is assumed that the trailing helical vortex filaments form a wake of constant diameter (the rigid wake assumption) and travel downstream at the free stream velocity. The program can handle rotors having any number of blades which may be arbitrarily shaped and twisted. Many numerical details associated with the program are presented. A complete listing of the program is provided and all program variables are defined. An example problem illustrating input and output characteristics is solved.

  19. Investigation of accelerating ion triode with magnetic insulation for neutron generation

    NASA Astrophysics Data System (ADS)

    Shikanov, A. E.; Kozlovskij, K. I.; Vovchenko, E. D.; Rashchikov, V. I.; Shatokhin, V. L.; Isaev, A. A.

    2017-12-01

    Vacuum accelerating tube (AT) for neutron generation with the secondary electron emission suppressed by helical line pulse magnetic field which allocated inside accelerating gap in front of hollow conical cathodeis discussed. The central anode was covered by the hollow cathode. This technical solution of AT is an ion triode in which helical line serve as a grid. Computer simulation results of longitudinal magnetic field distributional along the axis are presented.

  20. Molecular mechanism of melting of a helical polymer crystal: Role of conformational order, packing and mobility of polymers

    NASA Astrophysics Data System (ADS)

    Cheerla, Ramesh; Krishnan, Marimuthu

    2018-03-01

    The molecular mechanism of melting of a superheated helical polymer crystal has been investigated using isothermal-isobaric molecular dynamics simulation that allows anisotropic deformation of the crystal lattice. A detailed microscopic analysis of the onset and progression of melting and accompanying changes in the polymer conformational order, translational, and orientation order of the solid along the melting pathway is presented. Upon gradual heating from room temperature to beyond the melting point at ambient pressure, the crystal exhibits signatures of premelting well below the solid-to-liquid melting transition at the melting point. The melting transition is manifested by abrupt changes in the crystal volume, lattice energy, polymer conformation, and dynamical properties. In the premelting stage, the crystal lattice structure and backbone orientation of the polymer chains are retained but with the onset of weakening of long-range helical order and interchain packing of polymers perpendicular to the fibre axis of the crystal. The premelting also marks the onset of conformational defects and anisotropic solid-state diffusion of polymers along the fibre axis. The present study underscores the importance of the interplay between intermolecular packing, interactions, and conformational dynamics at the atomic level in determining the macroscopic melting behavior of polymer crystals.

  1. Buckling Instabilities and Complex Dynamics in a Model of Uniflagellar Bacterial Locomotion

    NASA Astrophysics Data System (ADS)

    Nguyen, Frank; Graham, Michael

    2015-11-01

    Locomotion of microorganisms at low Reynolds number is a long studied problem. Of particular interest are organisms using a single flagellum to undergo a wide range of motions: pushing, pulling, and tumbling or flicking. Recent experiments have connected the stability of the hook protein, connecting cell motor and flagellum, to deviations from typical straight swimming trajectories. We seek physical explanations to these phenomena by developing a computationally inexpensive, rigid-body dynamic model of a uniflagellated organism with a flexible hook connection that captures the fundamental dynamics, kinematics, and configurations. Furthermore, the model addresses the effects of hook loading and geometry on the stability of the system. Simulations with low hook flexibility produce the classic straight trajectory, but a large flexibility produces helical trajectories, leading to directional changes when coupled with transient hook stiffening. Minima for critical flexibilities are found in certain subsets of parameter space, implying preferred geometries for certain swimming dynamics. The model verifies proposed mechanisms for swimming in various modes and highlights the role of flexibility in the biology of real organisms and the engineering of artificial microswimmers. This work was supported by NSF grant PHY-1304942.

  2. NMR investigations of molecular dynamics

    NASA Astrophysics Data System (ADS)

    Palmer, Arthur

    2011-03-01

    NMR spectroscopy is a powerful experimental approach for characterizing protein conformational dynamics on multiple time scales. The insights obtained from NMR studies are complemented and by molecular dynamics (MD) simulations, which provide full atomistic details of protein dynamics. Homologous mesophilic (E. coli) and thermophilic (T. thermophilus) ribonuclease H (RNase H) enzymes serve to illustrate how changes in protein sequence and structure that affect conformational dynamic processes can be monitored and characterized by joint analysis of NMR spectroscopy and MD simulations. A Gly residue inserted within a putative hinge between helices B and C is conserved among thermophilic RNases H, but absent in mesophilic RNases H. Experimental spin relaxation measurements show that the dynamic properties of T. thermophilus RNase H are recapitulated in E. coli RNase H by insertion of a Gly residue between helices B and C. Additional specific intramolecular interactions that modulate backbone and sidechain dynamical properties of the Gly-rich loop and of the conserved Trp residue flanking the Gly insertion site have been identified using MD simulations and subsequently confirmed by NMR spin relaxation measurements. These results emphasize the importance of hydrogen bonds and local steric interactions in restricting conformational fluctuations, and the absence of such interactions in allowing conformational adaptation to substrate binding.

  3. Four dimensional imaging of E. coli nucleoid organization and dynamics in living cells

    PubMed Central

    Fisher, J. K.; Bourniquel, A.; Witz, G.; Weiner, B.; Prentiss, M.; Kleckner, N.

    2013-01-01

    Visualization of living E. coli nucleoids, defined by HupA-mCherry, reveals a discrete, dynamic helical ellipsoid. Three basic features emerge. (i) Nucleoid density efficiently coalesces into longitudinal bundles, giving a stiff, low DNA density ellipsoid. (ii) This ellipsoid is radially confined within the cell cylinder. Radial confinement gives helical shape and drives and directs global nucleoid dynamics, including sister segregation. (iii) Longitudinal density waves flux back and forth along the nucleoid, with 5–10% of density shifting within 5s, enhancing internal nucleoid mobility. Furthermore, sisters separate end-to-end in sequential discontinuous pulses, each elongating the nucleoid by 5–15%. Pulses occur at 20min intervals, at defined cell cycle times. This progression is mediated by sequential installation and release of programmed tethers, implying cyclic accumulation and relief of intra-nucleoid mechanical stress. These effects could comprise a chromosome-based cell cycle engine. Overall, the presented results suggest a general conceptual framework for bacterial nucleoid morphogenesis and dynamics. PMID:23623305

  4. Four-stranded mini microtubules formed by Prosthecobacter BtubAB show dynamic instability.

    PubMed

    Deng, Xian; Fink, Gero; Bharat, Tanmay A M; He, Shaoda; Kureisaite-Ciziene, Danguole; Löwe, Jan

    2017-07-18

    Microtubules, the dynamic, yet stiff hollow tubes built from αβ-tubulin protein heterodimers, are thought to be present only in eukaryotic cells. Here, we report a 3.6-Å helical reconstruction electron cryomicroscopy structure of four-stranded mini microtubules formed by bacterial tubulin-like Prosthecobacter dejongeii BtubAB proteins. Despite their much smaller diameter, mini microtubules share many key structural features with eukaryotic microtubules, such as an M-loop, alternating subunits, and a seam that breaks overall helical symmetry. Using in vitro total internal reflection fluorescence microscopy, we show that bacterial mini microtubules treadmill and display dynamic instability, another hallmark of eukaryotic microtubules. The third protein in the btub gene cluster, BtubC, previously known as "bacterial kinesin light chain," binds along protofilaments every 8 nm, inhibits BtubAB mini microtubule catastrophe, and increases rescue. Our work reveals that some bacteria contain regulated and dynamic cytomotive microtubule systems that were once thought to be only useful in much larger and sophisticated eukaryotic cells.

  5. A More Accurate and Efficient Technique Developed for Using Computational Methods to Obtain Helical Traveling-Wave Tube Interaction Impedance

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.

    1999-01-01

    The phenomenal growth of commercial communications has created a great demand for traveling-wave tube (TWT) amplifiers. Although the helix slow-wave circuit remains the mainstay of the TWT industry because of its exceptionally wide bandwidth, until recently it has been impossible to accurately analyze a helical TWT using its exact dimensions because of the complexity of its geometrical structure. For the first time, an accurate three-dimensional helical model was developed that allows accurate prediction of TWT cold-test characteristics including operating frequency, interaction impedance, and attenuation. This computational model, which was developed at the NASA Lewis Research Center, allows TWT designers to obtain a more accurate value of interaction impedance than is possible using experimental methods. Obtaining helical slow-wave circuit interaction impedance is an important part of the design process for a TWT because it is related to the gain and efficiency of the tube. This impedance cannot be measured directly; thus, conventional methods involve perturbing a helical circuit with a cylindrical dielectric rod placed on the central axis of the circuit and obtaining the difference in resonant frequency between the perturbed and unperturbed circuits. A mathematical relationship has been derived between this frequency difference and the interaction impedance (ref. 1). However, because of the complex configuration of the helical circuit, deriving this relationship involves several approximations. In addition, this experimental procedure is time-consuming and expensive, but until recently it was widely accepted as the most accurate means of determining interaction impedance. The advent of an accurate three-dimensional helical circuit model (ref. 2) made it possible for Lewis researchers to fully investigate standard approximations made in deriving the relationship between measured perturbation data and interaction impedance. The most prominent approximations made in the analysis were addressed and fully investigated for their accuracy by using the three-dimensional electromagnetic simulation code MAFIA (Solution of Maxwell's Equations by the Finite Integration Algorithm) (refs. 3 and 4). We found that several approximations introduced significant error (ref. 5).

  6. Predicting Transmembrane Helix Packing Arrangements using Residue Contacts and a Force-Directed Algorithm

    PubMed Central

    Nugent, Timothy; Jones, David T.

    2010-01-01

    Alpha-helical transmembrane proteins constitute roughly 30% of a typical genome and are involved in a wide variety of important biological processes including cell signalling, transport of membrane-impermeable molecules and cell recognition. Despite significant efforts to predict transmembrane protein topology, comparatively little attention has been directed toward developing a method to pack the helices together. Here, we present a novel approach to predict lipid exposure, residue contacts, helix-helix interactions and finally the optimal helical packing arrangement of transmembrane proteins. Using molecular dynamics data, we have trained and cross-validated a support vector machine (SVM) classifier to predict per residue lipid exposure with 69% accuracy. This information is combined with additional features to train a second SVM to predict residue contacts which are then used to determine helix-helix interaction with up to 65% accuracy under stringent cross-validation on a non-redundant test set. Our method is also able to discriminate native from decoy helical packing arrangements with up to 70% accuracy. Finally, we employ a force-directed algorithm to construct the optimal helical packing arrangement which demonstrates success for proteins containing up to 13 transmembrane helices. This software is freely available as source code from http://bioinf.cs.ucl.ac.uk/memsat/mempack/. PMID:20333233

  7. Hierarchical Nanostructures Self-Assembled from a Mixture System Containing Rod-Coil Block Copolymers and Rigid Homopolymers

    PubMed Central

    Li, Yongliang; Jiang, Tao; Lin, Shaoliang; Lin, Jiaping; Cai, Chunhua; Zhu, Xingyu

    2015-01-01

    Self-assembly behavior of a mixture system containing rod-coil block copolymers and rigid homopolymers was investigated by using Brownian dynamics simulations. The morphologies of formed hierarchical self-assemblies were found to be dependent on the Lennard-Jones (LJ) interaction εRR between rod blocks, lengths of rod and coil blocks in copolymer, and mixture ratio of block copolymers to homopolymers. As the εRR value decreases, the self-assembled structures of mixtures are transformed from an abacus-like structure to a helical structure, to a plain fiber, and finally are broken into unimers. The order parameter of rod blocks was calculated to confirm the structure transition. Through varying the length of rod and coil blocks, the regions of thermodynamic stability of abacus, helix, plain fiber, and unimers were mapped. Moreover, it was discovered that two levels of rod block ordering exist in the helices. The block copolymers are helically wrapped on the homopolymer bundles to form helical string, while the rod blocks are twistingly packed inside the string. In addition, the simulation results are in good agreement with experimental observations. The present work reveals the mechanism behind the formation of helical (experimentally super-helical) structures and may provide useful information for design and preparation of the complex structures. PMID:25965726

  8. Comparative analysis of the folding dynamics and kinetics of an engineered knotted protein and its variants derived from HP0242 of Helicobacter pylori

    NASA Astrophysics Data System (ADS)

    Wang, Liang-Wei; Liu, Yu-Nan; Lyu, Ping-Chiang; Jackson, Sophie E.; Hsu, Shang-Te Danny

    2015-09-01

    Understanding the mechanism by which a polypeptide chain thread itself spontaneously to attain a knotted conformation has been a major challenge in the field of protein folding. HP0242 is a homodimeric protein from Helicobacter pylori with intertwined helices to form a unique pseudo-knotted folding topology. A tandem HP0242 repeat has been constructed to become the first engineered trefoil-knotted protein. Its small size renders it a model system for computational analyses to examine its folding and knotting pathways. Here we report a multi-parametric study on the folding stability and kinetics of a library of HP0242 variants, including the trefoil-knotted tandem HP0242 repeat, using far-UV circular dichroism and fluorescence spectroscopy. Equilibrium chemical denaturation of HP0242 variants shows the presence of highly populated dimeric and structurally heterogeneous folding intermediates. Such equilibrium folding intermediates retain significant amount of helical structures except those at the N- and C-terminal regions in the native structure. Stopped-flow fluorescence measurements of HP0242 variants show that spontaneous refolding into knotted structures can be achieved within seconds, which is several orders of magnitude faster than previously observed for other knotted proteins. Nevertheless, the complex chevron plots indicate that HP0242 variants are prone to misfold into kinetic traps, leading to severely rolled-over refolding arms. The experimental observations are in general agreement with the previously reported molecular dynamics simulations. Based on our results, kinetic folding pathways are proposed to qualitatively describe the complex folding processes of HP0242 variants.

  9. Structural elucidation of transmembrane transporter protein bilitranslocase: conformational analysis of the second transmembrane region TM2 by molecular dynamics and NMR spectroscopy.

    PubMed

    Roy Choudhury, Amrita; Perdih, Andrej; Zuperl, Spela; Sikorska, Emilia; Solmajer, Tom; Jurga, Stefan; Zhukov, Igor; Novič, Marjana

    2013-11-01

    Membrane proteins represent about a third of the gene products in most organisms, as revealed by the genome sequencing projects. They account for up to two thirds of known drugable targets, which emphasizes their critical pharmaceutical importance. Here we present a study on bilitranslocase (BTL) (TCDB 2.A.65), a membrane protein primarily involved in the transport of bilirubin from blood to liver cells. Bilitranslocase has also been identified as a potential membrane transporter for cellular uptake of several drugs and due to its implication in drug uptake, it is extremely important to advance the knowledge about its 3D structure. However, at present, only a limited knowledge is available beyond the primary structure of BTL. It has been recently confirmed experimentally that one of the four computationally predicted transmembrane segments of bilitranslocase, TM3, has a helical structure with hydrophilic amino acid residues oriented towards one side, which is typical for transmembrane domains of membrane proteins. In this study we confirmed by the use of multidimensional NMR spectroscopy that the second transmembrane segment, TM2, also appears in a form of α-helix. The stability of this polypeptide chain was verified by molecular dynamics (MD) simulation in dipalmitoyl phosphatidyl choline (DPPC) and in sodium dodecyl sulfate (SDS) micelles. The two α-helices, TM2 corroborated in this study, and TM3 confirmed in our previous investigation, provide reasonable building blocks of a potential transmembrane channel for transport of bilirubin and small hydrophilic molecules, including pharmaceutically active compounds. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Microsecond kinetics in model single- and double-stranded amylose polymers.

    PubMed

    Sattelle, Benedict M; Almond, Andrew

    2014-05-07

    Amylose, a component of starch with increasing biotechnological significance, is a linear glucose polysaccharide that self-organizes into single- and double-helical assemblies. Starch granule packing, gelation and inclusion-complex formation result from finely balanced macromolecular kinetics that have eluded precise experimental quantification. Here, graphics processing unit (GPU) accelerated multi-microsecond aqueous simulations are employed to explore conformational kinetics in model single- and double-stranded amylose. The all-atom dynamics concur with prior X-ray and NMR data while surprising and previously overlooked microsecond helix-coil, glycosidic linkage and pyranose ring exchange are hypothesized. In a dodecasaccharide, single-helical collapse was correlated with linkages and rings transitioning from their expected syn and (4)C1 chair conformers. The associated microsecond exchange rates were dependent on proximity to the termini and chain length (comparing hexa- and trisaccharides), while kinetic features of dodecasaccharide linkage and ring flexing are proposed to be a good model for polymers. Similar length double-helices were stable on microsecond timescales but the parallel configuration was sturdier than the antiparallel equivalent. In both, tertiary organization restricted local chain dynamics, implying that simulations of single amylose strands cannot be extrapolated to dimers. Unbiased multi-microsecond simulations of amylose are proposed as a valuable route to probing macromolecular kinetics in water, assessing the impact of chemical modifications on helical stability and accelerating the development of new biotechnologies.

  11. Biot-Savart helicity versus physical helicity: A topological description of ideal flows

    NASA Astrophysics Data System (ADS)

    Sahihi, Taliya; Eshraghi, Homayoon

    2014-08-01

    For an isentropic (thus compressible) flow, fluid trajectories are considered as orbits of a family of one parameter, smooth, orientation-preserving, and nonsingular diffeomorphisms on a compact and smooth-boundary domain in the Euclidian 3-space which necessarily preserve a finite measure, later interpreted as the fluid mass. Under such diffeomorphisms the Biot-Savart helicity of the pushforward of a divergence-free and tangent to the boundary vector field is proved to be conserved and since these circumstances present an isentropic flow, the conservation of the "Biot-Savart helicity" is established for such flows. On the other hand, the well known helicity conservation in ideal flows which here we call it "physical helicity" is found to be an independent constant with respect to the Biot-Savart helicity. The difference between these two helicities reflects some topological features of the domain as well as the velocity and vorticity fields which is discussed and is shown for simply connected domains the two helicities coincide. The energy variation of the vorticity field is shown to be formally the same as for the incompressible flow obtained before. For fluid domains consisting of several disjoint solid tori, at each time, the harmonic knot subspace of smooth vector fields on the fluid domain is found to have two independent base sets with a special type of orthogonality between these two bases by which a topological description of the vortex and velocity fields depending on the helicity difference is achieved since this difference is shown to depend only on the harmonic knot parts of velocity, vorticity, and its Biot-Savart vector field. For an ideal magnetohydrodynamics (MHD) flow three independent constant helicities are reviewed while the helicity of magnetic potential is generalized for non-simply connected domains by inserting a special harmonic knot field in the dynamics of the magnetic potential. It is proved that the harmonic knot part of the vorticity in hydrodynamics and the magnetic field in MHD is presented by constant coefficients (fluxes) when expanded in terms of one of the time dependent base functions.

  12. Probing topology and dynamics of the second transmembrane domain (M2δ) of the acetyl choline receptor using magnetically aligned lipid bilayers (bicelles) and EPR spectroscopy.

    PubMed

    Sahu, Indra D; Mayo, Daniel J; Subbaraman, Nidhi; Inbaraj, Johnson J; McCarrick, Robert M; Lorigan, Gary A

    2017-08-01

    Characterizing membrane protein structure and dynamics in the lipid bilayer membrane is very important but experimentally challenging. EPR spectroscopy offers a unique set of techniques to investigate a membrane protein structure, dynamics, topology, and distance constraints in lipid bilayers. Previously our lab demonstrated the use of magnetically aligned phospholipid bilayers (bicelles) for probing topology and dynamics of the membrane peptide M2δ of the acetyl choline receptor (AchR) as a proof of concept. In this study, magnetically aligned phospholipid bilayers and rigid spin labels were further utilized to provide improved dynamic information and topology of M2δ peptide. Seven TOAC-labeled AchR M2δ peptides were synthesized to demonstrate the utility of a multi-labeling amino acid substitution alignment strategy. Our data revealed the helical tilts to be 11°, 17°, 9°, 17°, 16°, 11°, 9°±4° for residues I7TOAC, Q13TOAC, A14TOAC, V15TOAC, C16TOAC, L17TOAC, and L18TOAC, respectively. The average helical tilt of the M2δ peptide was determined to be ∼13°. This study also revealed that the TOAC labels were attached to the M2δ peptide with different dynamics suggesting that the sites towards the C-terminal end are more rigid when compared to the sites towards the N-terminus. The dynamics of the TOAC labeled sites were more resolved in the aligned samples when compared to the randomly disordered samples. This study highlights the use of magnetically aligned lipid bilayer EPR technique to determine a more accurate helical tilt and more resolved local dynamics of AchR M2δ peptide. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Relaxation processes in a low-order three-dimensional magnetohydrodynamics model

    NASA Technical Reports Server (NTRS)

    Stribling, Troy; Matthaeus, William H.

    1991-01-01

    The time asymptotic behavior of a Galerkin model of 3D magnetohydrodynamics (MHD) has been interpreted using the selective decay and dynamic alignment relaxation theories. A large number of simulations has been performed that scan a parameter space defined by the rugged ideal invariants, including energy, cross helicity, and magnetic helicity. It is concluded that time asymptotic state can be interpreted as a relaxation to minimum energy. A simple decay model, based on absolute equilibrium theory, is found to predict a mapping of initial onto time asymptotic states, and to accurately describe the long time behavior of the runs when magnetic helicity is present. Attention is also given to two processes, operating on time scales shorter than selective decay and dynamic alignment, in which the ratio of kinetic to magnetic energy relaxes to values 0(1). The faster of the two processes takes states initially dominant in magnetic energy to a state of near-equipartition between kinetic and magnetic energy through power law growth of kinetic energy. The other process takes states initially dominant in kinetic energy to the near-equipartitioned state through exponential growth of magnetic energy.

  14. Local conformational dynamics in alpha-helices measured by fast triplet transfer.

    PubMed

    Fierz, Beat; Reiner, Andreas; Kiefhaber, Thomas

    2009-01-27

    Coupling fast triplet-triplet energy transfer (TTET) between xanthone and naphthylalanine to the helix-coil equilibrium in alanine-based peptides allowed the observation of local equilibrium fluctuations in alpha-helices on the nanoseconds to microseconds time scale. The experiments revealed faster helix unfolding in the terminal regions compared with the central parts of the helix with time constants varying from 250 ns to 1.4 micros at 5 degrees C. Local helix formation occurs with a time constant of approximately 400 ns, independent of the position in the helix. Comparing the experimental data with simulations using a kinetic Ising model showed that the experimentally observed dynamics can be explained by a 1-dimensional boundary diffusion with position-independent elementary time constants of approximately 50 ns for the addition and of approximately 65 ns for the removal of an alpha-helical segment. The elementary time constant for helix growth agrees well with previously measured time constants for formation of short loops in unfolded polypeptide chains, suggesting that helix elongation is mainly limited by a conformational search.

  15. Diffusion with finite-helicity field tensor: A mechanism of generating heterogeneity

    NASA Astrophysics Data System (ADS)

    Sato, N.; Yoshida, Z.

    2018-02-01

    Topological constraints on a dynamical system often manifest themselves as breaking of the Hamiltonian structure; well-known examples are nonholonomic constraints on Lagrangian mechanics. The statistical mechanics under such topological constraints is the subject of this study. Conventional arguments based on phase spaces, Jacobi identity, invariant measure, or the H theorem are no longer applicable since all these notions stem from the symplectic geometry underlying canonical Hamiltonian systems. Remembering that Hamiltonian systems are endowed with field tensors (canonical 2-forms) that have zero helicity, our mission is to extend the scope toward the class of systems governed by finite-helicity field tensors. Here, we introduce a class of field tensors that are characterized by Beltrami vectors. We prove an H theorem for this Beltrami class. The most general class of energy-conserving systems are non-Beltrami, for which we identify the "field charge" that prevents the entropy to maximize, resulting in creation of heterogeneous distributions. The essence of the theory can be delineated by classifying three-dimensional dynamics. We then generalize to arbitrary (finite) dimensions.

  16. Progress and Plans for the HIT--SI Experiment

    NASA Astrophysics Data System (ADS)

    Sieck, P. E.; Gu, P.; Hamp, W. T.; Izzo, V. A.; Jarboe, T. R.; Nelson, B. A.; O'Neill, R. G.; Redd, A. J.; Rogers, J. A.; Smith, R. J.

    2002-11-01

    The next step in the Helicity Injected Torus (HIT) program is HIT--SI, a ``bow tie'' spheromak to be formed and sustained by Steady Inductive Helicity Injection (SIHI). SIHI injects helicity at a nearly constant rate with no open field lines intersecting the boundary.(T. R. Jarboe, Fusion Technology 36) (1), p. 85, 1999 HIT--SI has been designed with a bow tie geometry to achieve stable high-β (>10%) spheromak equilibria.(U. Shumlak and T. R. Jarboe, Phys. Plasmas 7) (7), p. 2959, 2000 Injector dynamics depend greatly on reconnection rates in two locations: deep in the injector, and at the edge of the spheromak equilibrium. The first stage of HIT--SI operation concentrates on formation of a spheromak and sustainment for 1 ms, where the injector dynamics can be studied and the formation parameter space can be explored. Once these goals are met, the experiment will move into the second stage of operation, where the discharge duration will be extended and the device will inherit a suite of diagnostics from the existing HIT--II device.

  17. Biopolymer dynamics driven by helical flagella

    NASA Astrophysics Data System (ADS)

    Balin, Andrew K.; Zöttl, Andreas; Yeomans, Julia M.; Shendruk, Tyler N.

    2017-11-01

    Microbial flagellates typically inhabit complex suspensions of polymeric material which can impact the swimming speed of motile microbes, filter feeding of sessile cells, and the generation of biofilms. There is currently a need to better understand how the fundamental dynamics of polymers near active cells or flagella impacts these various phenomena, in particular, the hydrodynamic and steric influence of a rotating helical filament on suspended polymers. Our Stokesian dynamics simulations show that as a stationary rotating helix pumps fluid along its long axis, polymers migrate radially inward while being elongated. We observe that the actuation of the helix tends to increase the probability of finding polymeric material within its pervaded volume. This accumulation of polymers within the vicinity of the helix is stronger for longer polymers. We further analyze the stochastic work performed by the helix on the polymers and show that this quantity is positive on average and increases with polymer contour length.

  18. Dynamic Coupling and Allosteric Networks in the α Subunit of Heterotrimeric G Proteins.

    PubMed

    Yao, Xin-Qiu; Malik, Rabia U; Griggs, Nicholas W; Skjærven, Lars; Traynor, John R; Sivaramakrishnan, Sivaraj; Grant, Barry J

    2016-02-26

    G protein α subunits cycle between active and inactive conformations to regulate a multitude of intracellular signaling cascades. Important structural transitions occurring during this cycle have been characterized from extensive crystallographic studies. However, the link between observed conformations and the allosteric regulation of binding events at distal sites critical for signaling through G proteins remain unclear. Here we describe molecular dynamics simulations, bioinformatics analysis, and experimental mutagenesis that identifies residues involved in mediating the allosteric coupling of receptor, nucleotide, and helical domain interfaces of Gαi. Most notably, we predict and characterize novel allosteric decoupling mutants, which display enhanced helical domain opening, increased rates of nucleotide exchange, and constitutive activity in the absence of receptor activation. Collectively, our results provide a framework for explaining how binding events and mutations can alter internal dynamic couplings critical for G protein function. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Folding and stability of helical bundle proteins from coarse-grained models.

    PubMed

    Kapoor, Abhijeet; Travesset, Alex

    2013-07-01

    We develop a coarse-grained model where solvent is considered implicitly, electrostatics are included as short-range interactions, and side-chains are coarse-grained to a single bead. The model depends on three main parameters: hydrophobic, electrostatic, and side-chain hydrogen bond strength. The parameters are determined by considering three level of approximations and characterizing the folding for three selected proteins (training set). Nine additional proteins (containing up to 126 residues) as well as mutated versions (test set) are folded with the given parameters. In all folding simulations, the initial state is a random coil configuration. Besides the native state, some proteins fold into an additional state differing in the topology (structure of the helical bundle). We discuss the stability of the native states, and compare the dynamics of our model to all atom molecular dynamics simulations as well as some general properties on the interactions governing folding dynamics. Copyright © 2013 Wiley Periodicals, Inc.

  20. On the Magnetism and Dynamics of Prominence Legs Hosting Tornadoes

    NASA Astrophysics Data System (ADS)

    Martínez González, M. J.; Asensio Ramos, A.; Arregui, I.; Collados, M.; Beck, C.; de la Cruz Rodríguez, J.

    2016-07-01

    Solar tornadoes are dark vertical filamentary structures observed in the extreme ultraviolet associated with prominence legs and filament barbs. Their true nature and relationship to prominences requires an understanding of their magnetic structure and dynamic properties. Recently, a controversy has arisen: is the magnetic field organized forming vertical, helical structures or is it dominantly horizontal? And concerning their dynamics, are tornadoes really rotating or is it just a visual illusion? Here we analyze four consecutive spectro-polarimetric scans of a prominence hosting tornadoes on its legs, which helps us shed some light on their magnetic and dynamical properties. We show that the magnetic field is very smooth in all the prominence, which is probably an intrinsic property of the coronal field. The prominence legs have vertical helical fields that show slow temporal variation that is probably related to the motion of the fibrils. Concerning the dynamics, we argue that (1) if rotation exists, it is intermittent, lasting no more than one hour, and (2) the observed velocity pattern is also consistent with an oscillatory velocity pattern (waves).

  1. ON THE MAGNETISM AND DYNAMICS OF PROMINENCE LEGS HOSTING TORNADOES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martínez González, M. J.; Ramos, A. Asensio; Arregui, I.

    2016-07-10

    Solar tornadoes are dark vertical filamentary structures observed in the extreme ultraviolet associated with prominence legs and filament barbs. Their true nature and relationship to prominences requires an understanding of their magnetic structure and dynamic properties. Recently, a controversy has arisen: is the magnetic field organized forming vertical, helical structures or is it dominantly horizontal? And concerning their dynamics, are tornadoes really rotating or is it just a visual illusion? Here we analyze four consecutive spectro-polarimetric scans of a prominence hosting tornadoes on its legs, which helps us shed some light on their magnetic and dynamical properties. We show thatmore » the magnetic field is very smooth in all the prominence, which is probably an intrinsic property of the coronal field. The prominence legs have vertical helical fields that show slow temporal variation that is probably related to the motion of the fibrils. Concerning the dynamics, we argue that (1) if rotation exists, it is intermittent, lasting no more than one hour, and (2) the observed velocity pattern is also consistent with an oscillatory velocity pattern (waves).« less

  2. Dynamics and allostery of the ionotropic glutamate receptors and the ligand binding domain.

    PubMed

    Tobi, Dror

    2016-02-01

    The dynamics of the ligand-binding domain (LBD) and the intact ionotropic glutamate receptor (iGluR) were studied using Gaussian Network Model (GNM) analysis. The dynamics of LBDs with various allosteric modulators is compared using a novel method of multiple alignment of GNM modes of motion. The analysis reveals that allosteric effectors change the dynamics of amino acids at the upper lobe interface of the LBD dimer as well as at the hinge region between the upper- and lower- lobes. For the intact glutamate receptor the analysis show that the clamshell-like movement of the LBD upper and lower lobes is coupled to the bending of the trans-membrane domain (TMD) helices which may open the channel pore. The results offer a new insight on the mechanism of action of allosteric modulators on the iGluR and support the notion of TMD helices bending as a possible mechanism for channel opening. In addition, the study validates the methodology of multiple GNM modes alignment as a useful tool to study allosteric effect and its relation to proteins dynamics. © 2015 Wiley Periodicals, Inc.

  3. Achieving Rigorous Accelerated Conformational Sampling in Explicit Solvent.

    PubMed

    Doshi, Urmi; Hamelberg, Donald

    2014-04-03

    Molecular dynamics simulations can provide valuable atomistic insights into biomolecular function. However, the accuracy of molecular simulations on general-purpose computers depends on the time scale of the events of interest. Advanced simulation methods, such as accelerated molecular dynamics, have shown tremendous promise in sampling the conformational dynamics of biomolecules, where standard molecular dynamics simulations are nonergodic. Here we present a sampling method based on accelerated molecular dynamics in which rotatable dihedral angles and nonbonded interactions are boosted separately. This method (RaMD-db) is a different implementation of the dual-boost accelerated molecular dynamics, introduced earlier. The advantage is that this method speeds up sampling of the conformational space of biomolecules in explicit solvent, as the degrees of freedom most relevant for conformational transitions are accelerated. We tested RaMD-db on one of the most difficult sampling problems - protein folding. Starting from fully extended polypeptide chains, two fast folding α-helical proteins (Trpcage and the double mutant of C-terminal fragment of Villin headpiece) and a designed β-hairpin (Chignolin) were completely folded to their native structures in very short simulation time. Multiple folding/unfolding transitions could be observed in a single trajectory. Our results show that RaMD-db is a promisingly fast and efficient sampling method for conformational transitions in explicit solvent. RaMD-db thus opens new avenues for understanding biomolecular self-assembly and functional dynamics occurring on long time and length scales.

  4. Beam-Helicity Asymmetries in Double-Charged-Pion Photoproduction on the Proton

    NASA Astrophysics Data System (ADS)

    Strauch, S.; Berman, B. L.; Adams, G.; Ambrozewicz, P.; Anghinolfi, M.; Asavapibhop, B.; Asryan, G.; Audit, G.; Avakian, H.; Bagdasaryan, H.; Baillie, N.; Ball, J. P.; Baltzell, N. A.; Barrow, S.; Batourine, V.; Battaglieri, M.; Beard, K.; Bedlinskiy, I.; Bektasoglu, M.; Bellis, M.; Benmouna, N.; Bennhold, C.; Biselli, A. S.; Boiarinov, S.; Bouchigny, S.; Bradford, R.; Branford, D.; Briscoe, W. J.; Brooks, W. K.; Bültmann, S.; Burkert, V. D.; Butuceanu, C.; Calarco, J. R.; Careccia, S. L.; Carman, D. S.; Carnahan, B.; Chen, S.; Cole, P. L.; Coleman, A.; Coltharp, P.; Cords, D.; Corvisiero, P.; Crabb, D.; Crannell, H.; Cummings, J. P.; Degtyarenko, P. V.; Denizli, H.; Dennis, L.; de Sanctis, E.; Deur, A.; Devita, R.; Dharmawardane, K. V.; Dhuga, K. S.; Djalali, C.; Dodge, G. E.; Donnelly, J.; Doughty, D.; Dragovitsch, P.; Dugger, M.; Dytman, S.; Dzyubak, O. P.; Egiyan, H.; Egiyan, K. S.; Elouadrhiri, L.; Empl, A.; Eugenio, P.; Fatemi, R.; Fedotov, G.; Feldman, G.; Feuerbach, R. J.; Fix, A.; Forest, T. A.; Funsten, H.; Gavalian, G.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guler, N.; Guo, L.; Gyurjyan, V.; Hadjidakis, C.; Hakobyan, R. S.; Hardie, J.; Heddle, D.; Hersman, F. W.; Hicks, K.; Hleiqawi, I.; Holtrop, M.; Hu, J.; Huertas, M.; Hyde-Wright, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Ito, M. M.; Jenkins, D.; Jo, H. S.; Joo, K.; Juengst, H. G.; Kellie, J. D.; Khandaker, M.; Kim, K. Y.; Kim, K.; Kim, W.; Klein, A.; Klein, F. J.; Klimenko, A. V.; Klusman, M.; Kossov, M.; Kramer, L. H.; Kubarovsky, V.; Kuhn, J.; Kuhn, S. E.; Lachniet, J.; Laget, J. M.; Langheinrich, J.; Lawrence, D.; Lee, T.; Lima, A. C. S.; Livingston, K.; Lukashin, K.; Manak, J. J.; Marchand, C.; McAleer, S.; McKinnon, B.; McNabb, J. W. C.; Mecking, B. A.; Mestayer, M. D.; Meyer, C. A.; Mibe, T.; Mikhailov, K.; Minehart, R.; Mirazita, M.; Miskimen, R.; Mokeev, V.; Morrow, S. A.; Muccifora, V.; Mueller, J.; Mutchler, G. S.; Nadel-Turonski, P.; Napolitano, J.; Nasseripour, R.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Niczyporuk, B. B.; Niyazov, R. A.; Nozar, M.; O'Rielly, G. V.; Osipenko, M.; Ostrovidov, A. I.; Park, K.; Pasyuk, E.; Paterson, C.; Philips, S. A.; Pierce, J.; Pivnyuk, N.; Pocanic, D.; Pogorelko, O.; Polli, E.; Pozdniakov, S.; Preedom, B. M.; Price, J. W.; Prok, Y.; Protopopescu, D.; Qin, L. M.; Raue, B. A.; Riccardi, G.; Ricco, G.; Ripani, M.; Ritchie, B. G.; Roberts, W.; Ronchetti, F.; Rosner, G.; Rossi, P.; Rowntree, D.; Rubin, P. D.; Sabatié, F.; Salgado, C.; Santoro, J. P.; Sapunenko, V.; Schumacher, R. A.; Serov, V. S.; Shafi, A.; Sharabian, Y. G.; Shaw, J.; Skabelin, A. V.; Smith, E. S.; Smith, L. C.; Sober, D. I.; Stavinsky, A.; Stepanyan, S. S.; Stepanyan, S.; Stokes, B. E.; Stoler, P.; Strakovsky, I. I.; Suleiman, R.; Taiuti, M.; Taylor, S.; Tedeschi, D. J.; Thoma, U.; Thompson, R.; Tkabladze, A.; Tkachenko, S.; Todor, L.; Tur, C.; Ungaro, M.; Vineyard, M. F.; Vlassov, A. V.; Wang, K.; Weinstein, L. B.; Weygand, D. P.; Williams, M.; Wolin, E.; Wood, M. H.; Yegneswaran, A.; Yun, J.; Zana, L.; Zhang, J.

    2005-10-01

    Beam-helicity asymmetries for the two-pion-photoproduction reaction γ→p→pπ+π- have been studied for the first time in the resonance region for center-of-mass energies between 1.35 and 2.30 GeV. The experiment was performed at Jefferson Lab with the CEBAF Large Acceptance Spectrometer using circularly polarized tagged photons incident on an unpolarized hydrogen target. Beam-helicity-dependent angular distributions of the final-state particles were measured. The large cross-section asymmetries exhibit strong sensitivity to the kinematics and dynamics of the reaction. The data are compared with the results of various phenomenological model calculations, and show that these models currently do not provide an adequate description for the behavior of this new observable.

  5. Charged particle dynamics in the presence of non-Gaussian Lévy electrostatic fluctuations

    DOE PAGES

    Del-Castillo-Negrete, Diego B.; Moradi, Sara; Anderson, Johan

    2016-09-01

    Full orbit dynamics of charged particles in a 3-dimensional helical magnetic field in the presence of -stable Levy electrostatic fluctuations and linear friction modeling collisional Coulomb drag is studied via Monte Carlo numerical simulations. The Levy fluctuations are introduced to model the effect of non-local transport due to fractional diffusion in velocity space resulting from intermittent electrostatic turbulence. The probability distribution functions of energy, particle displacements, and Larmor radii are computed and showed to exhibit a transition from exponential decay, in the case of Gaussian fluctuations, to power law decay in the case of Levy fluctuations. The absolute value ofmore » the power law decay exponents are linearly proportional to the Levy index. Furthermore, the observed anomalous non-Gaussian statistics of the particles' Larmor radii (resulting from outlier transport events) indicate that, when electrostatic turbulent fluctuations exhibit non-Gaussian Levy statistics, gyro-averaging and guiding centre approximations might face limitations and full particle orbit effects should be taken into account.« less

  6. The dominant interaction between peptide and urea is electrostatic in nature: a molecular dynamics simulation study.

    PubMed

    Tobi, Dror; Elber, Ron; Thirumalai, Devarajan

    2003-03-01

    The conformational equilibrium of a blocked valine peptide in water and aqueous urea solution is studied using molecular dynamics simulations. Pair correlation functions indicate enhanced concentration of urea near the peptide. Stronger hydrogen bonding of urea-peptide compared to water-peptide is observed with preference for helical conformation. The potential of mean force, computed using umbrella sampling, shows only small differences between urea and water solvation that are difficult to quantify. The changes in solvent structure around the peptide are explained by favorable electrostatic interactions (hydrogen bonds) of urea with the peptide backbone. There is no evidence for significant changes in hydrophobic interactions in the two conformations of the peptide in urea solution. Our simulations suggest that urea denatures proteins by preferentially forming hydrogen bonds to the peptide backbone, reducing the barrier for exposing protein residues to the solvent, and reaching the unfolded state. Copyright 2003 Wiley Periodicals, Inc. Biopolymers: 359-369, 2003

  7. Charged particle dynamics in the presence of non-Gaussian Lévy electrostatic fluctuations

    NASA Astrophysics Data System (ADS)

    Moradi, Sara; del-Castillo-Negrete, Diego; Anderson, Johan

    2016-09-01

    Full orbit dynamics of charged particles in a 3-dimensional helical magnetic field in the presence of α-stable Lévy electrostatic fluctuations and linear friction modeling collisional Coulomb drag is studied via Monte Carlo numerical simulations. The Lévy fluctuations are introduced to model the effect of non-local transport due to fractional diffusion in velocity space resulting from intermittent electrostatic turbulence. The probability distribution functions of energy, particle displacements, and Larmor radii are computed and showed to exhibit a transition from exponential decay, in the case of Gaussian fluctuations, to power law decay in the case of Lévy fluctuations. The absolute value of the power law decay exponents is linearly proportional to the Lévy index α. The observed anomalous non-Gaussian statistics of the particles' Larmor radii (resulting from outlier transport events) indicate that, when electrostatic turbulent fluctuations exhibit non-Gaussian Lévy statistics, gyro-averaging and guiding centre approximations might face limitations and full particle orbit effects should be taken into account.

  8. Ab initio modeling of CW-ESR spectra of the double spin labeled peptide Fmoc-(Aib-Aib-TOAC)2-Aib-OMe in acetonitrile.

    PubMed

    Zerbetto, Mirco; Carlotto, Silvia; Polimeno, Antonino; Corvaja, Carlo; Franco, Lorenzo; Toniolo, Claudio; Formaggio, Fernando; Barone, Vincenzo; Cimino, Paola

    2007-03-15

    In this work we address the interpretation, via an ab initio integrated computational approach, of the CW-ESR spectra of the double spin labeled, 310-helical, peptide Fmoc-(Aib-Aib-TOAC)2-Aib-OMe dissolved in acetonitrile. Our approach is based on the determination of geometric and local magnetic parameters of the heptapeptide by quantum mechanical density functional calculations taking into account solvent and, when needed, vibrational averaging contributions. The system is then described by a stochastic Liouville equation for the two electron spins interacting with each other and with two 14N nuclear spins, in the presence of diffusive rotational dynamics. Parametrization of the diffusion rotational tensor is provided by a hydrodynamic model. CW-ESR spectra are simulated with minimal resorting to fitting procedures, proving that the combination of sensitive ESR spectroscopy and sophisticated modeling can be highly helpful in providing 3D structural and dynamic information on molecular systems.

  9. [Computed tomography of the lungs. A step into the fourth dimension].

    PubMed

    Dinkel, J; Hintze, C; Rochet, N; Thieke, C; Biederer, J

    2009-08-01

    To discuss the techniques for four dimensional computed tomography of the lungs in tumour patients. The image acquisition in CT can be done using respiratory gating in two different ways: the helical or cine mode. In the helical mode, the couch moves continuously during image and respiratory signal acquisition. In the cine mode, the couch remains in the same position during at least one complete respiratory cycle and then moves to next position. The 4D images are either acquired prospectively or reconstructed retrospectively with dedicated algorithms in a freely selectable respiratory phase. The time information required for motion depiction in 4D imaging can be obtained with tolerable motion artefacts. Partial projection and stepladder-artifacts are occurring predominantly close to the diaphragm, where the displacement is most prominent. Due to the long exposure times, radiation exposure is significantly higher compared to a simple breathhold helical acquisition. Therefore, the use of 4D-CT is restricted to only specific indications (i.e. radiotherapy planning). 4D-CT of the lung allows evaluating the respiration-correlated displacement of lungs and tumours in space for radiotherapy planning.

  10. Brickworx builds recurrent RNA and DNA structural motifs into medium- and low-resolution electron-density maps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chojnowski, Grzegorz, E-mail: gchojnowski@genesilico.pl; Waleń, Tomasz; University of Warsaw, Banacha 2, 02-097 Warsaw

    2015-03-01

    A computer program that builds crystal structure models of nucleic acid molecules is presented. Brickworx is a computer program that builds crystal structure models of nucleic acid molecules using recurrent motifs including double-stranded helices. In a first step, the program searches for electron-density peaks that may correspond to phosphate groups; it may also take into account phosphate-group positions provided by the user. Subsequently, comparing the three-dimensional patterns of the P atoms with a database of nucleic acid fragments, it finds the matching positions of the double-stranded helical motifs (A-RNA or B-DNA) in the unit cell. If the target structure ismore » RNA, the helical fragments are further extended with recurrent RNA motifs from a fragment library that contains single-stranded segments. Finally, the matched motifs are merged and refined in real space to find the most likely conformations, including a fit of the sequence to the electron-density map. The Brickworx program is available for download and as a web server at http://iimcb.genesilico.pl/brickworx.« less

  11. A predictive model of asymmetric morphogenesis from 3D reconstructions of mouse heart looping dynamics

    PubMed Central

    Le Garrec, Jean-François; Ivanovitch, Kenzo D; Raphaël, Etienne; Bangham, J Andrew; Torres, Miguel; Coen, Enrico; Mohun, Timothy J

    2017-01-01

    How left-right patterning drives asymmetric morphogenesis is unclear. Here, we have quantified shape changes during mouse heart looping, from 3D reconstructions by HREM. In combination with cell labelling and computer simulations, we propose a novel model of heart looping. Buckling, when the cardiac tube grows between fixed poles, is modulated by the progressive breakdown of the dorsal mesocardium. We have identified sequential left-right asymmetries at the poles, which bias the buckling in opposite directions, thus leading to a helical shape. Our predictive model is useful to explore the parameter space generating shape variations. The role of the dorsal mesocardium was validated in Shh-/- mutants, which recapitulate heart shape changes expected from a persistent dorsal mesocardium. Our computer and quantitative tools provide novel insight into the mechanism of heart looping and the contribution of different factors, beyond the simple description of looping direction. This is relevant to congenital heart defects. PMID:29179813

  12. Structure of an E. coli integral membrane sulfurtransferase and its structural transition upon SCN- binding defined by EPR-based hybrid method

    NASA Astrophysics Data System (ADS)

    Ling, Shenglong; Wang, Wei; Yu, Lu; Peng, Junhui; Cai, Xiaoying; Xiong, Ying; Hayati, Zahra; Zhang, Longhua; Zhang, Zhiyong; Song, Likai; Tian, Changlin

    2016-01-01

    Electron paramagnetic resonance (EPR)-based hybrid experimental and computational approaches were applied to determine the structure of a full-length E. coli integral membrane sulfurtransferase, dimeric YgaP, and its structural and dynamic changes upon ligand binding. The solution NMR structures of the YgaP transmembrane domain (TMD) and cytosolic catalytic rhodanese domain were reported recently, but the tertiary fold of full-length YgaP was not yet available. Here, systematic site-specific EPR analysis defined a helix-loop-helix secondary structure of the YagP-TMD monomers using mobility, accessibility and membrane immersion measurements. The tertiary folds of dimeric YgaP-TMD and full-length YgaP in detergent micelles were determined through inter- and intra-monomer distance mapping and rigid-body computation. Further EPR analysis demonstrated the tight packing of the two YgaP second transmembrane helices upon binding of the catalytic product SCN-, which provides insight into the thiocyanate exportation mechanism of YgaP in the E. coli membrane.

  13. Numerical investigation of fluid-particle interactions for embolic stroke

    NASA Astrophysics Data System (ADS)

    Mukherjee, Debanjan; Padilla, Jose; Shadden, Shawn C.

    2016-04-01

    Roughly one-third of all strokes are caused by an embolus traveling to a cerebral artery and blocking blood flow in the brain. The objective of this study is to gain a detailed understanding of the dynamics of embolic particles within arteries. Patient computed tomography image is used to construct a three-dimensional model of the carotid bifurcation. An idealized carotid bifurcation model of same vessel diameters was also constructed for comparison. Blood flow velocities and embolic particle trajectories are resolved using a coupled Euler-Lagrange approach. Blood is modeled as a Newtonian fluid, discretized using the finite volume method, with physiologically appropriate inflow and outflow boundary conditions. The embolus trajectory is modeled using Lagrangian particle equations accounting for embolus interaction with blood as well as vessel wall. Both one- and two-way fluid-particle coupling are considered, the latter being implemented using momentum sources augmented to the discretized flow equations. It was observed that for small-to-moderate particle sizes (relative to vessel diameters), the estimated particle distribution ratio—with and without the inclusion of two-way fluid-particle momentum exchange—were found to be similar. The maximum observed differences in distribution ratio with and without the coupling were found to be higher for the idealized bifurcation model. Additionally, the distribution was found to be reasonably matching the volumetric flow distribution for the idealized model, while a notable deviation from volumetric flow was observed in the anatomical model. It was also observed from an analysis of particle path lines that particle interaction with helical flow, characteristic of anatomical vasculature models, could play a prominent role in transport of embolic particle. The results indicate therefore that flow helicity could be an important hemodynamic indicator for analysis of embolus particle transport. Additionally, in the presence of helical flow, and vessel curvature, inclusion of two-way momentum exchange was found to have a secondary effect for transporting small to moderate embolus particles—and one-way coupling could be used as a reasonable approximation, thereby causing substantial savings in computational resources.

  14. Soliton excitations and interactions for the three-coupled fourth-order nonlinear Schrödinger equations in the alpha helical proteins

    NASA Astrophysics Data System (ADS)

    Sun, Wen-Rong; Tian, Bo; Wang, Yu-Feng; Zhen, Hui-Ling

    2015-06-01

    Three-coupled fourth-order nonlinear Schrödinger equations describe the dynamics of alpha helical proteins with the interspine coupling at the higher order. Through symbolic computation and binary Bell-polynomial approach, bilinear forms and N-soliton solutions for such equations are constructed. Key point lies in the introduction of auxiliary functions in the Bell-polynomial expression. Asymptotic analysis is applied to investigate the elastic interaction between the two solitons: two solitons keep their original amplitudes, energies and velocities invariant after the interaction except for the phase shifts. Soliton amplitudes are related to the energy distributed in the solitons of the three spines. Overtaking interaction, head-on interaction and bound-state solitons of two solitons are given. Bound states of three bright solitons arise when all of them propagate in parallel. Elastic interaction between the bound-state solitons and one bright soliton is shown. Increase of the lattice parameter can lead to the increase of the soliton velocity, that is, the interaction period becomes shorter. The solitons propagating along the neighbouring spines are found to interact elastically. Those solitons, exhibited in this paper, might be viewed as a possible carrier of bio-energy transport in the protein molecules.

  15. Three-dimensional observation of an helical hot structure during a sawtooth crash in the WT-3 tokamak.

    PubMed

    Yamaguchi, S; Igami, H; Tanaka, H; Maekawa, T

    2004-07-23

    Sawtooth crashes in an Ohmically heated plasma in the WT-3 tokamak have been observed by using soft x-ray computer tomography at three different poloidal cross sections around the torus. Initially, collapsing proceeds slowly with keeping the helical structure of an m = 1/n = 1 hot core around the torus. It accelerates as the helical hot structure is strongly deformed and fades away in the manner that the hot core at the high field side becomes obscure and disappears, while that at the low field side is deformed into a thin crescent aligned along the inversion circle, which survives even at the completion of the crash. Copyright 2004 The American Physical Society

  16. High-pitch Helical Dual-source Computed Tomographic Pulmonary Angiography: Comparing Image Quality in Inspiratory Breath-hold and During Free Breathing.

    PubMed

    Ajlan, Amr M; Binzaqr, Salma; Jadkarim, Dalia A; Jamjoom, Lamia G; Leipsic, Jonathon

    2016-01-01

    The purpose of this study was to compare qualitative and quantitative image parameters of dual-source high-pitch helical computed tomographic pulmonary angiography (CTPA) in breath-holding (BH) versus free-breathing (FB) patients. Ninety-nine consented patients (61 female individuals; mean age±SD, 49±18.7 y) were randomized into BH (n=45) versus FB (n=54) high-pitch helical CTPA. Patient characteristics and CTPA radiation doses were analyzed. Two readers assessed for pulmonary embolism (PE), transient interruption of contrast, and respiratory and cardiac motion. The readers used a subjective 3-point scale to rate the pulmonary artery opacification and lung parenchymal appearance. A single reader assessed mean pulmonary artery signal intensity, noise, contrast, signal to noise ratio, and contrast to noise ratio. PE was diagnosed in 16% BH and 19% FB patients. CTPAs of both groups were of excellent or acceptable quality for PE evaluation and of similar mean radiation doses (1.3 mSv). Transient interruption of contrast was seen in 5/45 (11%) BH and 5/54 (9%) FB patients (not statistically significant, P=0.54). No statistically significant difference was noted in cardiac, diaphragmatic, and lung parenchymal motion. Lung parenchymal assessment was excellent in all cases, except for 5/54 (9%) motion-affected FB cases with acceptable quality (statistically significant, P=0.03). No CTPA was considered nondiagnostic by any of the readers. No objective image quality differences were noted between both groups (P>0.05). High-pitch helical CTPA acquired during BH or in FB yields comparable image quality for the diagnosis of PE and lung pathology, with low radiation exposure. Only a modest increase in lung parenchymal artifacts is encountered in FB high-pitch helical CTPA.

  17. Assessment of temporal resolution of multi-detector row computed tomography in helical acquisition mode using the impulse method.

    PubMed

    Ichikawa, Katsuhiro; Hara, Takanori; Urikura, Atsushi; Takata, Tadanori; Ohashi, Kazuya

    2015-06-01

    The purpose of this study was to propose a method for assessing the temporal resolution (TR) of multi-detector row computed tomography (CT) (MDCT) in the helical acquisition mode using temporal impulse signals generated by a metal ball passing through the acquisition plane. An 11-mm diameter metal ball was shot along the central axis at approximately 5 m/s during a helical acquisition, and the temporal sensitivity profile (TSP) was measured from the streak image intensities in the reconstructed helical CT images. To assess the validity, we compared the measured and theoretical TSPs for the 4-channel modes of two MDCT systems. A 64-channel MDCT system was used to compare TSPs and image quality of a motion phantom for the pitch factors P of 0.6, 0.8, 1.0 and 1.2 with a rotation time R of 0.5 s, and for two R/P combinations of 0.5/1.2 and 0.33/0.8. Moreover, the temporal transfer functions (TFs) were calculated from the obtained TSPs. The measured and theoretical TSPs showed perfect agreement. The TSP narrowed with an increase in the pitch factor. The image sharpness of the 0.33/0.8 combination was inferior to that of the 0.5/1.2 combination, despite their almost identical full width at tenth maximum values. The temporal TFs quantitatively confirmed these differences. The TSP results demonstrated that the TR in the helical acquisition mode significantly depended on the pitch factor as well as the rotation time, and the pitch factor and reconstruction algorithm affected the TSP shape. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  18. Photoreactive Stapled BH3 Peptides to Dissect the BCL-2 Family Interactome

    PubMed Central

    Braun, Craig R.; Mintseris, Julian; Gavathiotis, Evripidis; Bird, Gregory H.; Gygi, Steven P.; Walensky, Loren D.

    2010-01-01

    SUMMARY Defining protein interactions forms the basis for discovery of biological pathways, disease mechanisms, and opportunities for therapeutic intervention. To harness the robust binding affinity and selectivity of structured peptides for interactome discovery, we engineered photoreactive stapled BH3 peptide helices that covalently capture their physiologic BCL-2 family targets. The crosslinking α-helices covalently trap both static and dynamic protein interactors, and enable rapid identification of interaction sites, providing a critical link between interactome discovery and targeted drug design. PMID:21168768

  19. Scalable nanohelices for predictive studies and enhanced 3D visualization.

    PubMed

    Meagher, Kwyn A; Doblack, Benjamin N; Ramirez, Mercedes; Davila, Lilian P

    2014-11-12

    Spring-like materials are ubiquitous in nature and of interest in nanotechnology for energy harvesting, hydrogen storage, and biological sensing applications. For predictive simulations, it has become increasingly important to be able to model the structure of nanohelices accurately. To study the effect of local structure on the properties of these complex geometries one must develop realistic models. To date, software packages are rather limited in creating atomistic helical models. This work focuses on producing atomistic models of silica glass (SiO₂) nanoribbons and nanosprings for molecular dynamics (MD) simulations. Using an MD model of "bulk" silica glass, two computational procedures to precisely create the shape of nanoribbons and nanosprings are presented. The first method employs the AWK programming language and open-source software to effectively carve various shapes of silica nanoribbons from the initial bulk model, using desired dimensions and parametric equations to define a helix. With this method, accurate atomistic silica nanoribbons can be generated for a range of pitch values and dimensions. The second method involves a more robust code which allows flexibility in modeling nanohelical structures. This approach utilizes a C++ code particularly written to implement pre-screening methods as well as the mathematical equations for a helix, resulting in greater precision and efficiency when creating nanospring models. Using these codes, well-defined and scalable nanoribbons and nanosprings suited for atomistic simulations can be effectively created. An added value in both open-source codes is that they can be adapted to reproduce different helical structures, independent of material. In addition, a MATLAB graphical user interface (GUI) is used to enhance learning through visualization and interaction for a general user with the atomistic helical structures. One application of these methods is the recent study of nanohelices via MD simulations for mechanical energy harvesting purposes.

  20. ALOHA: Automatic libraries of helicity amplitudes for Feynman diagram computations

    NASA Astrophysics Data System (ADS)

    de Aquino, Priscila; Link, William; Maltoni, Fabio; Mattelaer, Olivier; Stelzer, Tim

    2012-10-01

    We present an application that automatically writes the HELAS (HELicity Amplitude Subroutines) library corresponding to the Feynman rules of any quantum field theory Lagrangian. The code is written in Python and takes the Universal FeynRules Output (UFO) as an input. From this input it produces the complete set of routines, wave-functions and amplitudes, that are needed for the computation of Feynman diagrams at leading as well as at higher orders. The representation is language independent and currently it can output routines in Fortran, C++, and Python. A few sample applications implemented in the MADGRAPH 5 framework are presented. Program summary Program title: ALOHA Catalogue identifier: AEMS_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEMS_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: http://www.opensource.org/licenses/UoI-NCSA.php No. of lines in distributed program, including test data, etc.: 6094320 No. of bytes in distributed program, including test data, etc.: 7479819 Distribution format: tar.gz Programming language: Python2.6 Computer: 32/64 bit Operating system: Linux/Mac/Windows RAM: 512 Mbytes Classification: 4.4, 11.6 Nature of problem: An effcient numerical evaluation of a squared matrix element can be done with the help of the helicity routines implemented in the HELAS library [1]. This static library contains a limited number of helicity functions and is therefore not always able to provide the needed routine in the presence of an arbitrary interaction. This program provides a way to automatically create the corresponding routines for any given model. Solution method: ALOHA takes the Feynman rules associated to the vertex obtained from the model information (in the UFO format [2]), and multiplies it by the different wavefunctions or propagators. As a result the analytical expression of the helicity routines is obtained. Subsequently, this expression is automatically written in the requested language (Python, Fortran or C++) Restrictions: The allowed fields are currently spin 0, 1/2, 1 and 2, and the propagators of these particles are canonical. Running time: A few seconds for the SM and the MSSM, and up to a few minutes for models with spin 2 particles. References: [1] Murayama, H. and Watanabe, I. and Hagiwara, K., HELAS: HELicity Amplitude Subroutines for Feynman diagram evaluations, KEK-91-11, (1992) http://www-lib.kek.jp/cgi-bin/img_index?199124011 [2] C. Degrande, C. Duhr, B. Fuks, D. Grellscheid, O. Mattelaer, et al., UFO— The Universal FeynRules Output, Comput. Phys. Commun. 183 (2012) 1201-1214. arXiv:1108.2040, doi:10.1016/j.cpc.2012.01.022.

  1. α-Helix Unwinding as Force Buffer in Spectrins.

    PubMed

    Takahashi, Hirohide; Rico, Felix; Chipot, Christophe; Scheuring, Simon

    2018-03-27

    Spectrins are cytoskeletal proteins located at the inner face of the plasma membrane, making connections between membrane anchors and the actin cortex, and between actin filaments. Spectrins share a common structure forming a bundle of 3 α-helices and play a major role during cell deformation. Here, we used high-speed force spectroscopy and steered molecular dynamics simulations to understand the mechanical stability of spectrin, revealing a molecular force buffering function. We find that spectrin acts as a soft spring at short extensions (70-100 Å). Under continuous external stretching, its α-helices unwind, leading to a viscous mechanical response over larger extensions (100-300 Å), represented by a constant-force plateau in force/extension curves. This viscous force buffering emerges from a quasi-equilibrium competition between disruption and re-formation of α-helical hydrogen bonds. Our results suggest that, in contrast to β-sheet proteins, which unfold in a catastrophic event, α-helical spectrins dominantly unwind, providing a viscous force buffer over extensions about 5 times their folded length.

  2. Photochemically and Thermally Driven Full-Color Reflection in a Self-Organized Helical Superstructure Enabled by a Halogen-Bonded Chiral Molecular Switch.

    PubMed

    Wang, Hao; Bisoyi, Hari Krishna; Wang, Ling; Urbas, Augustine M; Bunning, Timothy J; Li, Quan

    2018-02-05

    Supramolecular approaches toward the fabrication of functional materials and systems have been an enabling endeavor. Recently, halogen bonding has been harnessed as a promising supramolecular tool. Herein we report the synthesis and characterization of a novel halogen-bonded light-driven axially chiral molecular switch. The photoactive halogen-bonded chiral switch is able to induce a self-organized, tunable helical superstructure, that is, cholesteric liquid crystal (CLC), when doped into an achiral liquid crystal (LC) host. The halogen-bonded switch as a chiral dopant has a high helical twisting power (HTP) and shows a large change of its HTP upon photoisomerization. This light-driven dynamic modulation enables reversible selective reflection color tuning across the entire visible spectrum. The chiral switch also displays a temperature-dependent HTP change that enables thermally driven red, green, and blue (RGB) reflection colors in the self-organized helical superstructure. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Analytical study on the generalized Davydov model in the alpha helical proteins

    NASA Astrophysics Data System (ADS)

    Wang, Pan; Xiao, Shu-Hong; Chen, Li; Yang, Gang

    2017-06-01

    In this paper, we investigate the dynamics of a generalized Davydov model derived from an infinite chain of alpha helical protein molecules which contain three hydrogen bonding spines running almost parallel to the helical axis. Through the introduction of the auxiliary function, the bilinear form, one-, two- and three-soliton solutions for the generalized Davydov model are obtained firstly. Propagation and interactions of solitons have been investigated analytically and graphically. The amplitude of the soliton is only related to the complex parameter μ and real parameter 𝜃 with a range of [0, 2π]. The velocity of the soliton is only related to the complex parameter μ, real parameter 𝜃, lattice parameter 𝜀, and physical parameters β1, β3 and β4. Overtaking and head-on interactions of two and three solitons are presented. The common in the interactions of three solitons is the directions of the solitons change after the interactions. The soliton derived in this paper is expected to have potential applications in the alpha helical proteins.

  4. Right-Handed Helical Foldamers Consisting of De Novo d -AApeptides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teng, Peng; Ma, Ning; Cerrato, Darrell Cole

    New types of foldamer scaffolds are formidably challenging to design and synthesize, yet highly desirable as structural mimics of peptides/proteins with a wide repertoire of functions. In particular, the development of peptidomimetic helical foldamers holds promise for new biomaterials, catalysts, and drug molecules. Unnatural l-sulfono-γ-AApeptides were recently developed and shown to have potential applications in both biomedical and material sciences. However, d-sulfono-γ-AApeptides, the enantiomers of l-sulfono-γ-AApeptides, have never been studied due to the lack of high-resolution three-dimensional structures to guide structure-based design. Herein, we report the first synthesis and X-ray crystal structures of a series of 2:1 l-amino acid/d-sulfono-γ-AApeptide hybridmore » foldamers, and elucidate their folded conformation at the atomic level. Single-crystal X-ray crystallography indicates that this class of oligomers folds into well-defined right-handed helices with unique helical parameters. The helical structures were consistent with data obtained from solution 2D NMR, CD studies, and molecular dynamics simulations. Our findings are expected to inspire the structure-based design of this type of unique folding biopolymers for biomaterials and biomedical applications.« less

  5. Conformational Flexibility Enables the Function of a BECN1 Region Essential for Starvation-Mediated Autophagy

    DOE PAGES

    Mei, Yang; Ramanathan, Arvind; Glover, Karen; ...

    2016-03-03

    BECN1 is essential for autophagy, a critical eukaryotic cellular homeostasis pathway. Here in this study, we delineate a highly conserved BECN1 domain located between previously characterized BH3 and coiled-coil domains and elucidate its structure and role in autophagy. The 2.0 Å sulfur-single-wavelength anomalous dispersion X-ray crystal structure of this domain demonstrates that its N-terminal half is unstructured while its C-terminal half is helical; hence, we name it the flexible helical domain (FHD). Circular dichroism spectroscopy, double electron–electron resonance–electron paramagnetic resonance, and small-angle X-ray scattering (SAXS) analyses confirm that the FHD is partially disordered, even in the context of adjacent BECN1more » domains. Molecular dynamic simulations fitted to SAXS data indicate that the FHD transiently samples more helical conformations. FHD helicity increases in 2,2,2-trifluoroethanol, suggesting it may become more helical upon binding. Finally, cellular studies show that conserved FHD residues are required for starvation-induced autophagy. Thus, the FHD likely undergoes a binding-associated disorder-to-helix transition, and conserved residues critical for this interaction are essential for starvation-induced autophagy.« less

  6. ADP/ATP mitochondrial carrier MD simulations to shed light on the structural-dynamical events that, after an additional mutation, restore the function in a pathological single mutant.

    PubMed

    Di Marino, Daniele; Oteri, Francesco; Morozzo Della Rocca, Blasco; Chillemi, Giovanni; Falconi, Mattia

    2010-12-01

    Molecular dynamics simulations of the wild type bovine ADP/ATP mitochondrial carrier, and of the single Ala113Pro and double Ala113Pro/Val180Met mutants, embedded in a lipid bilayer, have been carried out for 30ns to shed light on the structural-dynamical changes induced by the Val180Met mutation restoring the carrier function in the Ala113Pro pathologic mutant. Principal component analysis indicates that, for the three systems, the protein dynamics is mainly characterized by the motion of the matrix loops and of the odd-numbered helices having a conserved proline in their central region. Analysis of the motions shows a different behaviour of single pathological mutant with respect of the other two systems. The single mutation induces a regularization and rigidity of the H3 helix, lost upon the introduction of the second mutation. This is directly correlated to the salt bridge distribution involving residues Arg79, Asp134 and Arg234, hypothesized to interact with the substrate. In fact, in the wild type simulation two stable inter-helices salt bridges, crucial for substrate binding, are present almost over all the simulation time. In line with the impaired ADP transport, one salt interaction is lost in the single mutant trajectory but reappears in the double mutant simulation, where a salt bridge network matching the wild type is restored. Other important structural-dynamical properties, such as the trans-membrane helices mobility, analyzed via the principal component analysis, are similar for the wild type and double mutant while are different for the single mutant, providing a mechanistic explanation for their different functional properties. Copyright © 2010 Elsevier Inc. All rights reserved.

  7. On the Use of Enveloping Distribution Sampling (EDS) to Compute Free Enthalpy Differences between Different Conformational States of Molecules: Application to 310-, α-, and π-Helices.

    PubMed

    Lin, Zhixiong; Liu, Haiyan; Riniker, Sereina; van Gunsteren, Wilfred F

    2011-12-13

    Enveloping distribution sampling (EDS) is a powerful method to compute relative free energies from simulation. So far, the EDS method has only been applied to alchemical free energy differences, i.e., between different Hamiltonians defining different systems, and not yet to obtain free energy differences between different conformations or conformational states of a system. In this article, we extend the EDS formalism such that it can be applied to compute free energy differences of different conformations and apply it to compute the relative free enthalpy ΔG of 310-, α-, and π-helices of an alanine deca-peptide in explicit water solvent. The resulting ΔG values are compared to those obtained by standard thermodynamic integration (TI) and from so-called end-state simulations. A TI simulation requires the definition of a λ-dependent pathway which in the present case is based on hydrogen bonds of the different helical conformations. The values of ⟨(∂VTI)/(∂λ)⟩λ show a sharp change for a particular range of λ values, which is indicative of an energy barrier along the pathway, which lowers the accuracy of the resulting ΔG value. In contrast, in a two-state EDS simulation, an unphysical reference-state Hamiltonian which connects the parts of conformational space that are relevant to the different end states is constructed automatically; that is, no pathway needs to be defined. In the simulation using this reference state, both helices were sampled, and many transitions between them occurred, thus ensuring the accuracy of the resulting free enthalpy difference. According to the EDS simulations, the free enthalpy differences of the π-helix and the 310-helix versus the α-helix are 5 kJ mol(-1) and 47 kJ mol(-1), respectively, for an alanine deca-peptide in explicit SPC water solvent using the GROMOS 53A6 force field. The EDS method, which is a particular form of umbrella sampling, is thus applicable to compute free energy differences between conformational states as well as between systems and has definite advantages over the traditional TI and umbrella sampling methods to compute relative free energies.

  8. Interaction of collagen with chlorosulphonated paraffin tanning agents: Fourier transform infrared spectroscopic analysis and molecular dynamics simulations.

    PubMed

    Monti, Susanna; Bramanti, Emilia; Della Porta, Valentina; Onor, Massimo; D'Ulivo, Alessandro; Barone, Vincenzo

    2013-09-21

    The binding of chlorosulphonated paraffins to collagen triple helices is studied by means of classical molecular dynamics simulations and experimental spectroscopic techniques in order to disclose the principal characteristics of their interaction during the leather fattening process. Indeed, collagen is the main target to develop new leather modifying agents with specific characteristics, and an accurate design of the collagen binders, supported by predictive computational strategies, could be a successful tool to obtain new effective eco-compatible compounds able to impart to the leather the required functionalities and distinctive mechanical properties. Possible effects caused by the tanning agents on the collagen matrix have been identified from both experimental and theoretical points of view. Computational data in agreement with experiment have revealed that chlorosulphonated paraffins can interact favorably with the collagen residues having amine groups in their side chains (Arg, Lys, Asn and Gln) and reduce the tendency of the solvated collagen matrix to swell. However, the interference of chlorosulphonated paraffins with the unfolding process, which is operated mainly by the action of water, can be due both to covalent cross-linking of the collagen chains and intermolecular hydrogen bonding interactions involving also the hydroxyl groups of Hyp, Ser and Thr residues.

  9. Pore Helices Play a Dynamic Role as Integrators of Domain Motion during Kv11.1 Channel Inactivation Gating*

    PubMed Central

    Perry, Matthew D.; Ng, Chai Ann; Vandenberg, Jamie I.

    2013-01-01

    Proteins that form ion-selective pores in the membrane of cells are integral to many rapid signaling processes, including regulating the rhythm of the heartbeat. In potassium channels, the selectivity filter is critical for both endowing an exquisite selectivity for potassium ions, as well as for controlling the flow of ions through the pore. Subtle rearrangements in the complex hydrogen-bond network that link the selectivity filter to the surrounding pore helices differentiate conducting (open) from nonconducting (inactivated) conformations of the channel. Recent studies suggest that beyond the selectivity filter, inactivation involves widespread rearrangements of the channel protein. Here, we use rate equilibrium free energy relationship analysis to probe the structural changes that occur during selectivity filter gating in Kv11.1 channels, at near atomic resolution. We show that the pore helix plays a crucial dynamic role as a bidirectional interface during selectivity filter gating. We also define the molecular bases of the energetic coupling between the pore helix and outer helix of the pore domain that occurs early in the transition from open to inactivated states, as well as the coupling between the pore helix and inner helix late in the transition. Our data demonstrate that the pore helices are more than just static structural elements supporting the integrity of the selectivity filter; instead they play a crucial dynamic role during selectivity filter gating. PMID:23471968

  10. Advanced Computational Techniques for Power Tube Design.

    DTIC Science & Technology

    1986-07-01

    fixturing applications, in addition to the existing computer-aided engineering capabilities. o Helix TWT Manufacturing has Implemented a tooling and fixturing...illustrates the ajor features of this computer network. ) The backbone of our system is a Sytek Broadband Network (LAN) which Interconnects terminals and...automatic network analyzer (FANA) which electrically characterizes the slow-wave helices of traveling-wave tubes ( TWTs ) -- both for engineering design

  11. Quantum correlations of helicity entangled states in non-inertial frames beyond single mode approximation

    NASA Astrophysics Data System (ADS)

    Harsij, Zeynab; Mirza, Behrouz

    2014-12-01

    A helicity entangled tripartite state is considered in which the degree of entanglement is preserved in non-inertial frames. It is shown that Quantum Entanglement remains observer independent. As another measure of quantum correlation, Quantum Discord has been investigated. It is explicitly shown that acceleration has no effect on the degree of quantum correlation for the bipartite and tripartite helicity entangled states. Geometric Quantum Discord as a Hilbert-Schmidt distance is computed for helicity entangled states. It is shown that living in non-inertial frames does not make any influence on this distance, either. In addition, the analysis has been extended beyond single mode approximation to show that acceleration does not have any impact on the quantum features in the limit beyond the single mode. As an interesting result, while the density matrix depends on the right and left Unruh modes, the Negativity as a measure of Quantum Entanglement remains constant. Also, Quantum Discord does not change beyond single mode approximation.

  12. Hydrogen bonds and heat diffusion in α-helices: a computational study.

    PubMed

    Miño, German; Barriga, Raul; Gutierrez, Gonzalo

    2014-08-28

    Recent evidence has shown a correlation between the heat diffusion pathways and the known allosteric communication pathways in proteins. Allosteric communication in proteins is a central, yet unsolved, problem in biochemistry, and the study and characterization of the structural determinants that mediate energy transfer among different parts of proteins is of major importance. In this work, we characterized the role of hydrogen bonds in diffusivity of thermal energy for two sets of α-helices with different abilities to form hydrogen bonds. These hydrogen bonds can be a constitutive part of the α-helices or can arise from the lateral chains. In our in vacuo simulations, it was observed that α-helices with a higher possibility of forming hydrogen bonds also had higher rates of thermalization. Our simulations also revealed that heat readily flowed through atoms involved in hydrogen bonds. As a general conclusion, according to our simulations, hydrogen bonds fulfilled an important role in heat diffusion in structural patters of proteins.

  13. Bifurcated helical core equilibrium states in tokamaks

    NASA Astrophysics Data System (ADS)

    Cooper, W. A.; Chapman, I. T.; Schmitz, O.; Turnbull, A. D.; Tobias, B. J.; Lazarus, E. A.; Turco, F.; Lanctot, M. J.; Evans, T. E.; Graves, J. P.; Brunetti, D.; Pfefferlé, D.; Reimerdes, H.; Sauter, O.; Halpern, F. D.; Tran, T. M.; Coda, S.; Duval, B. P.; Labit, B.; Pochelon, A.; Turnyanskiy, M. R.; Lao, L.; Luce, T. C.; Buttery, R.; Ferron, J. R.; Hollmann, E. M.; Petty, C. C.; van Zeeland, M.; Fenstermacher, M. E.; Hanson, J. M.; Lütjens, H.

    2013-07-01

    Tokamaks with weak to moderate reversed central shear in which the minimum inverse rotational transform (safety factor) qmin is in the neighbourhood of unity can trigger bifurcated magnetohydrodynamic equilibrium states, one of which is similar to a saturated ideal internal kink mode. Peaked prescribed pressure profiles reproduce the ‘snake’ structures observed in many tokamaks which has led to a novel explanation of the snake as a bifurcated equilibrium state. Snake equilibrium structures are computed in simulations of the tokamak à configuration variable (TCV), DIII-D and mega amp spherical torus (MAST) tokamaks. The internal helical deformations only weakly modulate the plasma-vacuum interface which is more sensitive to ripple and resonant magnetic perturbations. On the other hand, the external perturbations do not alter the helical core deformation in a significant manner. The confinement of fast particles in MAST simulations deteriorate with the amplitude of the helical core distortion. These three-dimensional bifurcated solutions constitute a paradigm shift that motivates the applications of tools developed for stellarator research in tokamak physics investigations.

  14. Magnetic Energy and Helicity in Two Emerging Active Regions in the Sun

    NASA Technical Reports Server (NTRS)

    Liu, Y.; Schuck, P. W.

    2012-01-01

    The magnetic energy and relative magnetic helicity in two emerging solar active regions, AR 11072 and AR 11158,are studied. They are computed by integrating over time the energy and relative helicity fluxes across the photosphere. The fluxes consist of two components: one from photospheric tangential flows that shear and braid field lines (shear term), the other from normal flows that advect magnetic flux into the corona (emergence term). For these active regions: (1) relative magnetic helicity in the active-region corona is mainly contributed by the shear term,(2) helicity fluxes from the emergence and the shear terms have the same sign, (3) magnetic energy in the corona (including both potential energy and free energy) is mainly contributed by the emergence term, and(4) energy fluxes from the emergence term and the shear term evolved consistently in phase during the entire flux emergence course.We also examine the apparent tangential velocity derived by tracking field-line footpoints using a simple tracking method. It is found that this velocity is more consistent with tangential plasma velocity than with the flux transport velocity, which agrees with the conclusion by Schuck.

  15. A Prospective Evaluation of Helical Tomotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauman, Glenn; Yartsev, Slav; Rodrigues, George

    2007-06-01

    Purpose: To report results from two clinical trials evaluating helical tomotherapy (HT). Methods and Materials: Patients were enrolled in one of two prospective trials of HT (one for palliative and one for radical treatment). Both an HT plan and a companion three-dimensional conformal radiotherapy (3D-CRT) plan were generated. Pretreatment megavoltage computed tomography was used for daily image guidance. Results: From September 2004 to January 2006, a total of 61 sites in 60 patients were treated. In all but one case, a clinically acceptable tomotherapy plan for treatment was generated. Helical tomotherapy plans were subjectively equivalent or superior to 3D-CRT inmore » 95% of plans. Helical tomotherapy was deemed equivalent or superior in two thirds of dose-volume point comparisons. In cases of inferiority, differences were either clinically insignificant and/or reflected deliberate tradeoffs to optimize the HT plan. Overall imaging and treatment time (median) was 27 min (range, 16-91 min). According to a patient questionnaire, 78% of patients were satisfied to very satisfied with the treatment process. Conclusions: Helical tomotherapy demonstrated clear advantages over conventional 3D-CRT in this diverse patient group. The prospective trials were helpful in deploying this technology in a busy clinical setting.« less

  16. Deceleration of arginine kinase refolding by induced helical structures.

    PubMed

    Li, Hai-Long; Zhou, Sheng-Mei; Park, Daeui; Jeong, Hyoung Oh; Chung, Hae Young; Yang, Jun-Mo; Meng, Fan-Guo; Hu, Wei-Jiang

    2012-04-01

    Arginine kinase (AK) is a key metabolic enzyme for keeping energy balance in invertebrates. Therefore, regulation of the enzymatic activity and the folding studies of AK from the various invertebrates have been the focus of investigation. We studied the effects of helical structures by using hexafluoroisopropanol (HFIP) on AK folding. Folding kinetic studies showed that the folding rates of the urea-denatured AKs were significantly decelerated after being induced in various concentrations of HFIP. AK lost its activity completely at concentrations greater than 60%. The results indicated that the HFIP-induced helical structures in the denatured state play a negative role in protein folding, and the helical structures induced in 5% (v/v) HFIP act as the most effective barrier against AK taking its native structure. The computational docking simulations (binding energies for -2.19 kcal/mol for AutoDock4.2 and -20.47 kcal/mol for Dock6.3) suggested that HFIP interacts with the several important residues that are predicted by both programs. The excessively pre-organized helical structures not only hampered the folding process, but also ultimately brought about changes in the three-dimensional conformation and biological function of AK.

  17. Atomistic model of the spider silk nanostructure

    NASA Astrophysics Data System (ADS)

    Keten, Sinan; Buehler, Markus J.

    2010-04-01

    Spider silk is an ultrastrong and extensible self-assembling biopolymer that outperforms the mechanical characteristics of many synthetic materials including steel. Here we report atomic-level structures that represent aggregates of MaSp1 proteins from the N. Clavipes silk sequence based on a bottom-up computational approach using replica exchange molecular dynamics. We discover that poly-alanine regions predominantly form distinct and orderly beta-sheet crystal domains while disorderly structures are formed by poly-glycine repeats, resembling 31-helices. These could be the molecular source of the large semicrystalline fraction observed in silks, and also form the basis of the so-called "prestretched" molecular configuration. Our structures are validated against experimental data based on dihedral angle pair calculations presented in Ramachandran plots, alpha-carbon atomic distances, as well as secondary structure content.

  18. EVOLUTION OF SPINNING AND BRAIDING HELICITY FLUXES IN SOLAR ACTIVE REGION NOAA 10930

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ravindra, B.; Yoshimura, Keiji; Dasso, Sergio, E-mail: ravindra@iiap.res.in, E-mail: yosimura@solar.physics.montana.edu, E-mail: dasso@df.uba.ar

    2011-12-10

    The line-of-sight magnetograms from Solar Optical Telescope Narrowband Filter Imager observations of NOAA Active Region 10930 have been used to study the evolution of spinning and braiding helicities over a period of five days starting from 2006 December 9. The north (N) polarity sunspot was the follower and the south (S) polarity sunspot was the leader. The N-polarity sunspot in the active region was rotating in the counterclockwise direction. The rate of rotation was small during the first two days of observations and it increased up to 8 Degree-Sign hr{sup -1} on the third day of the observations. On themore » fourth and fifth days it remained at 4 Degree-Sign hr{sup -1} with small undulations in its magnitude. The sunspot rotated about 260 Degree-Sign in the last three days. The S-polarity sunspot did not complete more than 20 Degree-Sign in five days. However, it changed its direction of rotation five times over a period of five days and injected both the positive and negative type of spin helicity fluxes into the corona. Through the five days, both the positive and negative sunspot regions injected equal amounts of spin helicity. The total injected helicity is predominantly negative in sign. However, the sign of the spin and braiding helicity fluxes computed over all the regions were reversed from negative to positive five times during the five-day period of observations. The reversal in spinning helicity flux was found before the onset of the X3.4-class flare, too. Though, the rotating sunspot has been observed in this active region, the braiding helicity has contributed more to the total accumulated helicity than the spinning helicity. The accumulated helicity is in excess of -7 Multiplication-Sign 10{sup 43} Mx{sup 2} over a period of five days. Before the X3.4-class flare that occurred on 2006 December 13, the rotation speed and spin helicity flux increased in the S-polarity sunspot. Before the flare, the total injected helicity was larger than -6 Multiplication-Sign 10{sup 43} Mx{sup 2}. The observed reversal in the sign of spinning and braiding helicity fluxes could be the signature of the emergence of a twisted flux tube, which acquires the writhe of an opposite sign. The magnetic cloud associated with the ejected mass has carried about -7 Multiplication-Sign 10{sup 41} Mx{sup 2} of helicity. A time integration of helicity flux of about 1.2 hr integrated backward in time of the observation of the coronal mass ejection is sufficient for this event.« less

  19. Solution structure of the C-terminal X domain of the measles virus phosphoprotein and interaction with the intrinsically disordered C-terminal domain of the nucleoprotein.

    PubMed

    Gely, Stéphane; Lowry, David F; Bernard, Cédric; Jensen, Malene R; Blackledge, Martin; Costanzo, Stéphanie; Bourhis, Jean-Marie; Darbon, Hervé; Daughdrill, Gary; Longhi, Sonia

    2010-01-01

    In this report, the solution structure of the nucleocapsid-binding domain of the measles virus phosphoprotein (XD, aa 459-507) is described. A dynamic description of the interaction between XD and the disordered C-terminal domain of the nucleocapsid protein, (N(TAIL), aa 401-525), is also presented. XD is an all alpha protein consisting of a three-helix bundle with an up-down-up arrangement of the helices. The solution structure of XD is very similar to the crystal structures of both the free and bound form of XD. One exception is the presence of a highly dynamic loop encompassing XD residues 489-491, which is involved in the embedding of the alpha-helical XD-binding region of N(TAIL). Secondary chemical shift values for full-length N(TAIL) were used to define the precise boundaries of a transient helical segment that coincides with the XD-binding domain, thus shedding light on the pre-recognition state of N(TAIL). Titration experiments with unlabeled XD showed that the transient alpha-helical conformation of N(TAIL) is stabilized upon binding. Lineshape analysis of NMR resonances revealed that residues 483-506 of N(TAIL) are in intermediate exchange with XD, while the 475-482 and 507-525 regions are in fast exchange. The N(TAIL) resonance behavior in the titration experiments is consistent with a complex binding model with more than two states.

  20. The role of proline residues in the dynamics of transmembrane helices: the case of bacteriorhodopsin.

    PubMed

    Perálvarez-Marín, Alex; Bourdelande, José-Luis; Querol, Enric; Padrós, Esteve

    2006-01-01

    Proline residues in transmembrane helices have been found to have important roles in the functioning of membrane proteins. Moreover, Pro residues occur with high frequency in transmembrane alpha-helices, as compared to alpha-helices for soluble proteins. Here, we report several properties of the bacteriorhodopsin mutants P50A (helix B), P91A (helix C) and P186A (helix F). Compared to wild type, strongly perturbed behaviour has been found for these mutants. In the resting state, increased hydroxylamine accessibility and altered Asp-85 pKa and light-dark adaptation were observed. On light activation, hydroxylamine accessibility was increased and proton transport activity, M formation kinetics and FTIR difference spectra of M and N intermediates showed clear distortions. On the basis of these alterations and the near identity of the crystalline structures of mutants with that of wild type, we conclude that the transmembrane proline residues of bacteriorhodopsin fulfil a dynamic role in both the resting and the light-activated states. Our results are consistent with the notion that mutation of Pro to Ala allows the helix to increase its flexibility towards the direction originally hindered by the steric clash between the ring Cgamma and the carbonyl O of the i-4 residue, at the same time decreasing the mobility towards the opposite direction. Due to their properties, transmembrane Pro residues may serve as transmission elements of conformational changes during the transport process. We propose that these concepts can be extended to other transmembrane proteins.

  1. DEPENDENCE OF STELLAR MAGNETIC ACTIVITY CYCLES ON ROTATIONAL PERIOD IN A NONLINEAR SOLAR-TYPE DYNAMO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pipin, V. V.; Kosovichev, A. G.

    2016-06-01

    We study the turbulent generation of large-scale magnetic fields using nonlinear dynamo models for solar-type stars in the range of rotational periods from 14 to 30 days. Our models take into account nonlinear effects of dynamical quenching of magnetic helicity, and escape of magnetic field from the dynamo region due to magnetic buoyancy. The results show that the observed correlation between the period of rotation and the duration of activity cycles can be explained in the framework of a distributed dynamo model with a dynamical magnetic feedback acting on the turbulent generation from either magnetic buoyancy or magnetic helicity. Wemore » discuss implications of our findings for the understanding of dynamo processes operating in solar-like stars.« less

  2. Holliday Triangle Hunter (HolT Hunter): Efficient Software for Identifying Low Strain DNA Triangular Configurations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sherman, W.B.

    2012-04-16

    Synthetic DNA nanostructures are typically held together primarily by Holliday junctions. One of the most basic types of structures possible to assemble with only DNA and Holliday junctions is the triangle. To date, however, only equilateral triangles have been assembled in this manner - primarily because it is difficult to figure out what configurations of Holliday triangles have low strain. Early attempts at identifying such configurations relied upon calculations that followed the strained helical paths of DNA. Those methods, however, were computationally expensive, and failed to find many of the possible solutions. I have developed a new approach to identifyingmore » Holliday triangles that is computationally faster, and finds well over 95% of the possible solutions. The new approach is based on splitting the problem into two parts. The first part involves figuring out all the different ways that three featureless rods of the appropriate length and diameter can weave over and under one another to form a triangle. The second part of the computation entails seeing whether double helical DNA backbones can fit into the shape dictated by the rods in such a manner that the strands can cross over from one domain to the other at the appropriate spots. Structures with low strain (that is, good fit between the rods and the helices) on all three edges are recorded as promising for assembly.« less

  3. Direct observation of a single nanoparticle-ubiquitin corona formation

    NASA Astrophysics Data System (ADS)

    Ding, Feng; Radic, Slaven; Chen, Ran; Chen, Pengyu; Geitner, Nicholas K.; Brown, Jared M.; Ke, Pu Chun

    2013-09-01

    The advancement of nanomedicine and the increasing applications of nanoparticles in consumer products have led to administered biological exposure and unintentional environmental accumulation of nanoparticles, causing concerns over the biocompatibility and sustainability of nanotechnology. Upon entering physiological environments, nanoparticles readily assume the form of a nanoparticle-protein corona that dictates their biological identity. Consequently, understanding the structure and dynamics of a nanoparticle-protein corona is essential for predicting the fate, transport, and toxicity of nanomaterials in living systems and for enabling the vast applications of nanomedicine. Here we combined multiscale molecular dynamics simulations and complementary experiments to characterize the silver nanoparticle-ubiquitin corona formation. Notably, ubiquitins competed with citrates for the nanoparticle surface, governed by specific electrostatic interactions. Under a high protein/nanoparticle stoichiometry, ubiquitins formed a multi-layer corona on the particle surface. The binding exhibited an unusual stretched-exponential behavior, suggesting a rich binding kinetics. Furthermore, the binding destabilized the α-helices while increasing the β-sheet content of the proteins. This study revealed the atomic and molecular details of the structural and dynamic characteristics of nanoparticle-protein corona formation.The advancement of nanomedicine and the increasing applications of nanoparticles in consumer products have led to administered biological exposure and unintentional environmental accumulation of nanoparticles, causing concerns over the biocompatibility and sustainability of nanotechnology. Upon entering physiological environments, nanoparticles readily assume the form of a nanoparticle-protein corona that dictates their biological identity. Consequently, understanding the structure and dynamics of a nanoparticle-protein corona is essential for predicting the fate, transport, and toxicity of nanomaterials in living systems and for enabling the vast applications of nanomedicine. Here we combined multiscale molecular dynamics simulations and complementary experiments to characterize the silver nanoparticle-ubiquitin corona formation. Notably, ubiquitins competed with citrates for the nanoparticle surface, governed by specific electrostatic interactions. Under a high protein/nanoparticle stoichiometry, ubiquitins formed a multi-layer corona on the particle surface. The binding exhibited an unusual stretched-exponential behavior, suggesting a rich binding kinetics. Furthermore, the binding destabilized the α-helices while increasing the β-sheet content of the proteins. This study revealed the atomic and molecular details of the structural and dynamic characteristics of nanoparticle-protein corona formation. Electronic supplementary information (ESI) available: Experimental and computational methods as well as supporting figures. See DOI: 10.1039/c3nr02147e

  4. Relationship between helix stability and binding affinities: molecular dynamics simulations of Bfl-1/A1-binding pro-apoptotic BH3 peptide helices in explicit solvent.

    PubMed

    Modi, Vivek; Lama, Dilraj; Sankararamakrishnan, Ramasubbu

    2013-01-01

    The anti-apoptotic protein Bfl-1, also known as A1, belongs to the Bcl-2 family of proteins and interacts with pro-apoptotic Bcl-2 counterparts to regulate programmed cell death. As demonstrated for other anti-apoptotic Bcl-2 proteins, Bfl-1/A1 has also been shown to be overexpressed in various human cancers and hence they are attractive targets for anticancer drugs. Peptides derived from the BH3 region of pro-apoptotic Bcl-2 proteins have been shown to elicit similar biological response as that of parent proteins. BH3 peptides from different pro-apoptotic proteins have wide range of affinities for Bfl-1/A1. Experimentally determined complex structures show that the hydrophobic side of amphipathic BH3 peptides binds to the hydrophobic groove formed by the α-helical bundle of Bfl-1/A1 protein. Apart from the length and amino acid composition, a BH3 peptide's ability to form a stable helical structure has been suggested to be important for its high binding affinity. Molecular dynamics simulations of three BH3 peptides derived from the pro-apoptotic proteins Bak, Bid, and Bmf were carried out each for a period of at least 100 ns after 2 ns equilibration run. The length of simulated BH3 peptides varied from 22 to 24 residues and their binding affinities for Bfl-1/A1 varied from 1 to 180 nM. Our results show that the hydrophobic residues from the hydrophobic face of BH3 peptides tend to cluster together quickly to avoid being exposed to the solvent. This resulted in either reduction of helix length or complete loss of helical character. Bak and Bid BH3 peptides with high affinities for Bf1-1/A1 have stable helical segments in the N-terminal region. The highly conserved Leu residue lies just outside the helical region at the C-terminal end. Capping interactions arising out of N-cap residues seem to be extremely important to maintain the helical stability. Favorable hydrophilic interactions between residues also give further stability to the helix fragment and at least one of the interacting residues resides within the helical region. Bmf BH3 peptide with a weaker binding affinity for Bmf-1/A1 completely lost its helical character at the end of 100 ns production run and a further 50 ns simulation showed that the Bmf peptide continues to remain in random conformation. The present study clearly establishes a link between a BH3 peptide's ability to form a stable helical segment and its high binding affinity for an anti-apoptotic protein. To further test this hypothesis, we simulated a mutant Bmf peptide for 100 ns in which two residues R129 and H146 were substituted by Asn in silico in the wild-type peptide. Introduction of N-terminal Asn clearly enabled the formation of capping interactions at the N-terminus and resulted in a stable N-terminal helical segment. This demonstrates that the knowledge of interactions that help to maintain stable helical segments in a high-affinity BH3 peptide will help in designing highly specific peptide-based drugs/inhibitors. Such molecules will have the ability to bind a particular anti-apoptotic protein with high affinity.

  5. SU-E-T-197: Helical Cranial-Spinal Treatments with a Linear Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, J; Bernard, D; Liao, Y

    2014-06-01

    Purpose: Craniospinal irradiation (CSI) of systemic disease requires a high level of beam intensity modulation to reduce dose to bone marrow and other critical structures. Current helical delivery machines can take 30 minutes or more of beam-on time to complete these treatments. This pilot study aims to test the feasibility of performing helical treatments with a conventional linear accelerator using longitudinal couch travel during multiple gantry revolutions. Methods: The VMAT optimization package of the Eclipse 10.0 treatment planning system was used to optimize pseudo-helical CSI plans of 5 clinical patient scans. Each gantry revolution was divided into three 120° arcsmore » with each isocenter shifted longitudinally. Treatments requiring more than the maximum 10 arcs used multiple plans with each plan after the first being optimized including the dose of the others (Figure 1). The beam pitch was varied between 0.2 and 0.9 (couch speed 5- 20cm/revolution and field width of 22cm) and dose-volume histograms of critical organs were compared to tomotherapy plans. Results: Viable pseudo-helical plans were achieved using Eclipse. Decreasing the pitch from 0.9 to 0.2 lowered the maximum lens dose by 40%, the mean bone marrow dose by 2.1% and the maximum esophagus dose by 17.5%. (Figure 2). Linac-based helical plans showed dose results comparable to tomotherapy delivery for both target coverage and critical organ sparing, with the D50 of bone marrow and esophagus respectively 12% and 31% lower in the helical linear accelerator plan (Figure 3). Total mean beam-on time for the linear accelerator plan was 8.3 minutes, 54% faster than the tomotherapy average for the same plans. Conclusions: This pilot study has demonstrated the feasibility of planning pseudo-helical treatments for CSI targets using a conventional linac and dynamic couch movement, and supports the ongoing development of true helical optimization and delivery.« less

  6. Molecular Dynamics Analysis of Lysozyme Protein in Ethanol-Water Mixed Solvent Environment

    NASA Astrophysics Data System (ADS)

    Ochije, Henry Ikechukwu

    Effect of protein-solvent interaction on the protein structure is widely studied using both experimental and computational techniques. Despite such extensive studies molecular level understanding of proteins and some simple solvents is still not fully understood. This work focuses on detailed molecular dynamics simulations to study of solvent effect on lysozyme protein, using water, alcohol and different concentrations of water-alcohol mixtures as solvents. The lysozyme protein structure in water, alcohol and alcohol-water mixture (0-12% alcohol) was studied using GROMACS molecular dynamics simulation code. Compared to water environment, the lysozome structure showed remarkable changes in solvents with increasing alcohol concentration. In particular, significant changes were observed in the protein secondary structure involving alpha helices. The influence of alcohol on the lysozyme protein was investigated by studying thermodynamic and structural properties. With increasing ethanol concentration we observed a systematic increase in total energy, enthalpy, root mean square deviation (RMSD), and radius of gyration. a polynomial interpolation approach. Using the resulting polynomial equation, we could determine above quantities for any intermediate alcohol percentage. In order to validate this approach, we selected an intermediate ethanol percentage and carried out full MD simulation. The results from MD simulation were in reasonably good agreement with that obtained using polynomial approach. Hence, the polynomial approach based method proposed here eliminates the need for computationally intensive full MD analysis for the concentrations within the range (0-12%) studied in this work.

  7. Non-linearity of the collagen triple helix in solution and implications for collagen function.

    PubMed

    Walker, Kenneth T; Nan, Ruodan; Wright, David W; Gor, Jayesh; Bishop, Anthony C; Makhatadze, George I; Brodsky, Barbara; Perkins, Stephen J

    2017-06-16

    Collagen adopts a characteristic supercoiled triple helical conformation which requires a repeating (Xaa-Yaa-Gly) n sequence. Despite the abundance of collagen, a combined experimental and atomistic modelling approach has not so far quantitated the degree of flexibility seen experimentally in the solution structures of collagen triple helices. To address this question, we report an experimental study on the flexibility of varying lengths of collagen triple helical peptides, composed of six, eight, ten and twelve repeats of the most stable Pro-Hyp-Gly (POG) units. In addition, one unblocked peptide, (POG) 10unblocked , was compared with the blocked (POG) 10 as a control for the significance of end effects. Complementary analytical ultracentrifugation and synchrotron small angle X-ray scattering data showed that the conformations of the longer triple helical peptides were not well explained by a linear structure derived from crystallography. To interpret these data, molecular dynamics simulations were used to generate 50 000 physically realistic collagen structures for each of the helices. These structures were fitted against their respective scattering data to reveal the best fitting structures from this large ensemble of possible helix structures. This curve fitting confirmed a small degree of non-linearity to exist in these best fit triple helices, with the degree of bending approximated as 4-17° from linearity. Our results open the way for further studies of other collagen triple helices with different sequences and stabilities in order to clarify the role of molecular rigidity and flexibility in collagen extracellular and immune function and disease. © 2017 The Author(s).

  8. Measurements of the Canonical Helicity Evolution of a Gyrating Kinked Flux Rope

    NASA Astrophysics Data System (ADS)

    von der Linden, J.; Sears, J.; Intrator, T.; You, S.

    2017-12-01

    Magnetic structures in the solar corona and planetary magnetospheres are often modelled as magnetic flux ropes governed by magnetohydrodynamics (MHD); however, inside these structures, as exhibited in reconnection, conversions between magnetic and kinetic energies occur over a wide range of scales. Flux ropes based on the flux of canonical momentum circulation extend the flux rope concept to include effects of finite particle momentum and present the distinct advantage of reconciling all plasma regimes - e.g. kinetic, two-fluid, and MHD - with the topological concept of helicity: twists, writhes, and linkages. This presentation shows the first visualization and analysis of the 3D dynamics of canonical flux ropes and their relative helicity evolution from laboratory measurements. Ion and electron canonical flux ropes are visualized from a dataset of Mach, triple, and Ḃ probe measurements at over 10,000 spatial locations of a gyrating kinked flux rope. The flux ropes co-gyrate with the peak density and electron temperature in and out of a measurement volume. The electron and ion canonical flux ropes twist with opposite handedness and the ion flux ropes writhe around the electron flux ropes. The relative cross helicity between the magnetic and ion flow vorticity flux ropes dominates the relative ion canonical helicity and is anti-correlated with the relative magnetic helicity. The 3D nature of the kink and a reverse eddy current affect the helicity evolution. This work is supported by DOE Grant DE-SC0010340 and the DOE Office of Science Graduate Student Research Program and prepared in part by LLNL under Contract DE-AC52-07NA27344. LLNL-ABS-735426

  9. The Green's matrix and the boundary integral equations for analysis of time-harmonic dynamics of elastic helical springs.

    PubMed

    Sorokin, Sergey V

    2011-03-01

    Helical springs serve as vibration isolators in virtually any suspension system. Various exact and approximate methods may be employed to determine the eigenfrequencies of vibrations of these structural elements and their dynamic transfer functions. The method of boundary integral equations is a meaningful alternative to obtain exact solutions of problems of the time-harmonic dynamics of elastic springs in the framework of Bernoulli-Euler beam theory. In this paper, the derivations of the Green's matrix, of the Somigliana's identities, and of the boundary integral equations are presented. The vibrational power transmission in an infinitely long spring is analyzed by means of the Green's matrix. The eigenfrequencies and the dynamic transfer functions are found by solving the boundary integral equations. In the course of analysis, the essential features and advantages of the method of boundary integral equations are highlighted. The reported analytical results may be used to study the time-harmonic motion in any wave guide governed by a system of linear differential equations in a single spatial coordinate along its axis. © 2011 Acoustical Society of America

  10. Chaotic coordinates for the Large Helical Device

    NASA Astrophysics Data System (ADS)

    Hudson, Stuart; Suzuki, Yasuhiro

    2014-10-01

    The study of dynamical systems is facilitated by a coordinate framework with coordinate surfaces that coincide with invariant structures of the dynamical flow. For axisymmetric systems, a continuous family of invariant surfaces is guaranteed and straight-fieldline coordinates may be constructed. For non-integrable systems, e.g. stellarators, perturbed tokamaks, this continuous family is broken. Nevertheless, coordinates can still be constructed that simplify the description of the dynamics. The Poincare-Birkhoff theorem, the Aubry-Mather theorem, and the KAM theorem show that there are important structures that are invariant under the perturbed dynamics; namely the periodic orbits, the cantori, and the irrational flux surfaces. Coordinates adapted to these invariant sets, which we call chaotic coordinates, provide substantial advantages. The regular motion becomes straight, and the irregular motion is bounded by, and dissected by, coordinate surfaces that coincide with surfaces of locally-minimal magnetic-fieldline flux. The chaotic edge of the magnetic field, as calculated by HINT2 code, in the Large Helical Device (LHD) is examined, and a coordinate system is constructed so that the flux surfaces are ``straight'' and the islands become ``square.''

  11. Electronic Band Structure of Helical Polyisocyanides.

    PubMed

    Champagne, Benoît; Liégeois, Vincent; Fripiat, Joseph G; Harris, Frank E

    2017-10-19

    Restricted Hartree-Fock computations are reported for a methyl isocyanide polymer (repeating unit -C═N-CH 3 ), whose most stable conformation is expected to be a helical chain. The computations used a standard contracted Gaussian orbital set at the computational levels STO-3G, 3-21G, 6-31G, and 6-31G**, and studies were made for two line-group configurations motivated by earlier work and by studies of space-filling molecular models: (1) A structure of line-group symmetry L9 5 , containing a 9-fold screw axis with atoms displaced in the axial direction by 5/9 times the lattice constant, and (2) a structure of symmetry L4 1 that had been proposed, containing a 4-fold screw axis with translation by 1/4 of the lattice constant. Full use of the line-group symmetry was employed to cause most of the computational complexity to depend only on the size of the asymmetric repeating unit. Data reported include computed bond properties, atomic charge distribution, longitudinal polarizability, band structure, and the convoluted density of states. Most features of the description were found to be insensitive to the level of computational approximation. The work also illustrates the importance of exploiting line-group symmetry to extend the range of polymer structural problems that can be treated computationally.

  12. Dynamics of a flexible helical filament rotating in a viscous fluid near a rigid boundary

    NASA Astrophysics Data System (ADS)

    Jawed, M. K.; Reis, P. M.

    2017-03-01

    We study the effect of a no-slip rigid boundary on the dynamics of a flexible helical filament rotating in a viscous fluid, at low Reynolds number conditions (Stokes limit). This system is taken as a reduced model for the propulsion of uniflagellar bacteria, whose locomotion is known to be modified near solid boundaries. Specifically, we focus on how the propulsive force generated by the filament, as well as its buckling onset, are modified by the presence of a wall. We tackle this problem through numerical simulations that couple the elasticity of the filament, the hydrodynamic loading, and the wall effect. Each of these three ingredients is respectively modeled by the discrete elastic rods method (for a geometrically nonlinear description of the filament), Lighthill's slender body theory (for a nonlocal fluid force model), and the method of images (to emulate the boundary). The simulations are systematically validated by precision experiments on a rescaled macroscopic apparatus. We find that the propulsive force increases near the wall, while the critical rotation frequency for the onset of buckling usually decreases. A systematic parametric study is performed to quantify the dependence of the wall effects on the geometric parameters of the helical filament.

  13. Cyclic fatigue resistance of ProTaper Universal instruments when subjected to static and dynamic tests.

    PubMed

    Lopes, Hélio P; Britto, Izabelle M O; Elias, Carlos N; Machado de Oliveira, Julio C; Neves, Mônica A S; Moreira, Edson J L; Siqueira, José F

    2010-09-01

    This study evaluated the number of cycles to fracture of ProTaper Universal S2 instruments when subjected to static and dynamic cyclic fatigue tests. ProTaper Universal S2 instruments were used until fracture in an artificial curved canal under rotational speed of 300 rpm in either a static or a dynamic test model. Afterward, the length of the fractured segments was measured and fractured surfaces and helical shafts analyzed by scanning electron microscopy (SEM). The number of cycles to fracture was significantly increased when instruments were tested in the dynamic model (P<.001). Instrument separation occurred at the point of maximum flexure within the artificial canals, i.e., the midpoint of the curved canal segment. SEM analysis revealed that fractured surfaces exhibited characteristics of the ductile mode. Plastic deformation was not observed in the helical shaft of fractured instruments. The number of cycles to fracture ProTaper Universal S2 instruments significantly increased with the use of instruments in a dynamic cyclic fatigue test compared with a static model. These findings reinforce the need for performing continuous pecking motions during rotary instrumentation of curved root canals. Copyright (c) 2010 Mosby, Inc. All rights reserved.

  14. All two-loop maximally helicity-violating amplitudes in multi-Regge kinematics from applied symbology

    NASA Astrophysics Data System (ADS)

    Prygarin, Alexander; Spradlin, Marcus; Vergu, Cristian; Volovich, Anastasia

    2012-04-01

    Recent progress on scattering amplitudes has benefited from the mathematical technology of symbols for efficiently handling the types of polylogarithm functions which frequently appear in multiloop computations. The symbol for all two-loop maximally helicity violating amplitudes in planar supersymmetric Yang-Mills theory is known, but explicit analytic formulas for the amplitudes are hard to come by except in special limits where things simplify, such as multi-Regge kinematics. By applying symbology we obtain a formula for the leading behavior of the imaginary part (the Mandelstam cut contribution) of this amplitude in multi-Regge kinematics for any number of gluons. Our result predicts a simple recursive structure which agrees with a direct Balitsky-Fadin-Kuraev-Lipatov computation carried out in a parallel publication.

  15. Generation and Computerized Simulation of Meshing and Contact of Modified Involute Helical Gears

    NASA Technical Reports Server (NTRS)

    Litvin, Faydor L.; Chen, Ningxin; Lu, Jian

    1995-01-01

    The design and generation of modified involute helical gears that have a localized and stable bearing contact, and reduced noise and vibration characteristics are described. The localization of the bearing contact is achieved by the mismatch of the two generating surfaces that are used for generation of the pinion and the gear. The reduction of noise and vibration will be achieved by application of a parabolic function of transmission errors that is able to absorb the almost linear function of transmission errors caused by gear misalignment. The meshing and contact of misaligned gear drives can be analyzed by application of computer programs that have been developed. The computations confirmed the effectiveness of the proposed modification of the gear geometry. A numerical example that illustrates the developed theory is provided.

  16. Nullspace Sampling with Holonomic Constraints Reveals Molecular Mechanisms of Protein Gαs.

    PubMed

    Pachov, Dimitar V; van den Bedem, Henry

    2015-07-01

    Proteins perform their function or interact with partners by exchanging between conformational substates on a wide range of spatiotemporal scales. Structurally characterizing these exchanges is challenging, both experimentally and computationally. Large, diffusional motions are often on timescales that are difficult to access with molecular dynamics simulations, especially for large proteins and their complexes. The low frequency modes of normal mode analysis (NMA) report on molecular fluctuations associated with biological activity. However, NMA is limited to a second order expansion about a minimum of the potential energy function, which limits opportunities to observe diffusional motions. By contrast, kino-geometric conformational sampling (KGS) permits large perturbations while maintaining the exact geometry of explicit conformational constraints, such as hydrogen bonds. Here, we extend KGS and show that a conformational ensemble of the α subunit Gαs of heterotrimeric stimulatory protein Gs exhibits structural features implicated in its activation pathway. Activation of protein Gs by G protein-coupled receptors (GPCRs) is associated with GDP release and large conformational changes of its α-helical domain. Our method reveals a coupled α-helical domain opening motion while, simultaneously, Gαs helix α5 samples an activated conformation. These motions are moderated in the activated state. The motion centers on a dynamic hub near the nucleotide-binding site of Gαs, and radiates to helix α4. We find that comparative NMA-based ensembles underestimate the amplitudes of the motion. Additionally, the ensembles fall short in predicting the accepted direction of the full activation pathway. Taken together, our findings suggest that nullspace sampling with explicit, holonomic constraints yields ensembles that illuminate molecular mechanisms involved in GDP release and protein Gs activation, and further establish conformational coupling between key structural elements of Gαs.

  17. Nullspace Sampling with Holonomic Constraints Reveals Molecular Mechanisms of Protein Gαs

    PubMed Central

    Pachov, Dimitar V.; van den Bedem, Henry

    2015-01-01

    Proteins perform their function or interact with partners by exchanging between conformational substates on a wide range of spatiotemporal scales. Structurally characterizing these exchanges is challenging, both experimentally and computationally. Large, diffusional motions are often on timescales that are difficult to access with molecular dynamics simulations, especially for large proteins and their complexes. The low frequency modes of normal mode analysis (NMA) report on molecular fluctuations associated with biological activity. However, NMA is limited to a second order expansion about a minimum of the potential energy function, which limits opportunities to observe diffusional motions. By contrast, kino-geometric conformational sampling (KGS) permits large perturbations while maintaining the exact geometry of explicit conformational constraints, such as hydrogen bonds. Here, we extend KGS and show that a conformational ensemble of the α subunit Gαs of heterotrimeric stimulatory protein Gs exhibits structural features implicated in its activation pathway. Activation of protein Gs by G protein-coupled receptors (GPCRs) is associated with GDP release and large conformational changes of its α-helical domain. Our method reveals a coupled α-helical domain opening motion while, simultaneously, Gαs helix α5 samples an activated conformation. These motions are moderated in the activated state. The motion centers on a dynamic hub near the nucleotide-binding site of Gαs, and radiates to helix α4. We find that comparative NMA-based ensembles underestimate the amplitudes of the motion. Additionally, the ensembles fall short in predicting the accepted direction of the full activation pathway. Taken together, our findings suggest that nullspace sampling with explicit, holonomic constraints yields ensembles that illuminate molecular mechanisms involved in GDP release and protein Gs activation, and further establish conformational coupling between key structural elements of Gαs. PMID:26218073

  18. Modeling hydrodynamic self-propulsion with Stokesian Dynamics. Or teaching Stokesian Dynamics to swim

    NASA Astrophysics Data System (ADS)

    Swan, James W.; Brady, John F.; Moore, Rachel S.; ChE 174

    2011-07-01

    We develop a general framework for modeling the hydrodynamic self-propulsion (i.e., swimming) of bodies (e.g., microorganisms) at low Reynolds number via Stokesian Dynamics simulations. The swimming body is composed of many spherical particles constrained to form an assembly that deforms via relative motion of its constituent particles. The resistance tensor describing the hydrodynamic interactions among the individual particles maps directly onto that for the assembly. Specifying a particular swimming gait and imposing the condition that the swimming body is force- and torque-free determine the propulsive speed. The body's translational and rotational velocities computed via this methodology are identical in form to that from the classical theory for the swimming of arbitrary bodies at low Reynolds number. We illustrate the generality of the method through simulations of a wide array of swimming bodies: pushers and pullers, spinners, the Taylor/Purcell swimming toroid, Taylor's helical swimmer, Purcell's three-link swimmer, and an amoeba-like body undergoing large-scale deformation. An open source code is a part of the supplementary material and can be used to simulate the swimming of a body with arbitrary geometry and swimming gait.

  19. De Novo Proteins with Life-Sustaining Functions Are Structurally Dynamic.

    PubMed

    Murphy, Grant S; Greisman, Jack B; Hecht, Michael H

    2016-01-29

    Designing and producing novel proteins that fold into stable structures and provide essential biological functions are key goals in synthetic biology. In initial steps toward achieving these goals, we constructed a combinatorial library of de novo proteins designed to fold into 4-helix bundles. As described previously, screening this library for sequences that function in vivo to rescue conditionally lethal mutants of Escherichia coli (auxotrophs) yielded several de novo sequences, termed SynRescue proteins, which rescued four different E. coli auxotrophs. In an effort to understand the structural requirements necessary for auxotroph rescue, we investigated the biophysical properties of the SynRescue proteins, using both computational and experimental approaches. Results from circular dichroism, size-exclusion chromatography, and NMR demonstrate that the SynRescue proteins are α-helical and relatively stable. Surprisingly, however, they do not form well-ordered structures. Instead, they form dynamic structures that fluctuate between monomeric and dimeric states. These findings show that a well-ordered structure is not a prerequisite for life-sustaining functions, and suggests that dynamic structures may have been important in the early evolution of protein function. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Sinogram restoration in computed tomography with an edge-preserving penalty

    PubMed Central

    Little, Kevin J.; La Rivière, Patrick J.

    2015-01-01

    Purpose: With the goal of producing a less computationally intensive alternative to fully iterative penalized-likelihood image reconstruction, our group has explored the use of penalized-likelihood sinogram restoration for transmission tomography. Previously, we have exclusively used a quadratic penalty in our restoration objective function. However, a quadratic penalty does not excel at preserving edges while reducing noise. Here, we derive a restoration update equation for nonquadratic penalties. Additionally, we perform a feasibility study to extend our sinogram restoration method to a helical cone-beam geometry and clinical data. Methods: A restoration update equation for nonquadratic penalties is derived using separable parabolic surrogates (SPS). A method for calculating sinogram degradation coefficients for a helical cone-beam geometry is proposed. Using simulated data, sinogram restorations are performed using both a quadratic penalty and the edge-preserving Huber penalty. After sinogram restoration, Fourier-based analytical methods are used to obtain reconstructions, and resolution-noise trade-offs are investigated. For the fan-beam geometry, a comparison is made to image-domain SPS reconstruction using the Huber penalty. The effects of varying object size and contrast are also investigated. For the helical cone-beam geometry, we investigate the effect of helical pitch (axial movement/rotation). Huber-penalty sinogram restoration is performed on 3D clinical data, and the reconstructed images are compared to those generated with no restoration. Results: We find that by applying the edge-preserving Huber penalty to our sinogram restoration methods, the reconstructed image has a better resolution-noise relationship than an image produced using a quadratic penalty in the sinogram restoration. However, we find that this relatively straightforward approach to edge preservation in the sinogram domain is affected by the physical size of imaged objects in addition to the contrast across the edge. This presents some disadvantages of this method relative to image-domain edge-preserving methods, although the computational burden of the sinogram-domain approach is much lower. For a helical cone-beam geometry, we found applying sinogram restoration in 3D was reasonable and that pitch did not make a significant difference in the general effect of sinogram restoration. The application of Huber-penalty sinogram restoration to clinical data resulted in a reconstruction with less noise while retaining resolution. Conclusions: Sinogram restoration with the Huber penalty is able to provide better resolution-noise performance than restoration with a quadratic penalty. Additionally, sinogram restoration with the Huber penalty is feasible for helical cone-beam CT and can be applied to clinical data. PMID:25735286

  1. Sinogram restoration in computed tomography with an edge-preserving penalty

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Little, Kevin J., E-mail: little@uchicago.edu; La Rivière, Patrick J.

    2015-03-15

    Purpose: With the goal of producing a less computationally intensive alternative to fully iterative penalized-likelihood image reconstruction, our group has explored the use of penalized-likelihood sinogram restoration for transmission tomography. Previously, we have exclusively used a quadratic penalty in our restoration objective function. However, a quadratic penalty does not excel at preserving edges while reducing noise. Here, we derive a restoration update equation for nonquadratic penalties. Additionally, we perform a feasibility study to extend our sinogram restoration method to a helical cone-beam geometry and clinical data. Methods: A restoration update equation for nonquadratic penalties is derived using separable parabolic surrogatesmore » (SPS). A method for calculating sinogram degradation coefficients for a helical cone-beam geometry is proposed. Using simulated data, sinogram restorations are performed using both a quadratic penalty and the edge-preserving Huber penalty. After sinogram restoration, Fourier-based analytical methods are used to obtain reconstructions, and resolution-noise trade-offs are investigated. For the fan-beam geometry, a comparison is made to image-domain SPS reconstruction using the Huber penalty. The effects of varying object size and contrast are also investigated. For the helical cone-beam geometry, we investigate the effect of helical pitch (axial movement/rotation). Huber-penalty sinogram restoration is performed on 3D clinical data, and the reconstructed images are compared to those generated with no restoration. Results: We find that by applying the edge-preserving Huber penalty to our sinogram restoration methods, the reconstructed image has a better resolution-noise relationship than an image produced using a quadratic penalty in the sinogram restoration. However, we find that this relatively straightforward approach to edge preservation in the sinogram domain is affected by the physical size of imaged objects in addition to the contrast across the edge. This presents some disadvantages of this method relative to image-domain edge-preserving methods, although the computational burden of the sinogram-domain approach is much lower. For a helical cone-beam geometry, we found applying sinogram restoration in 3D was reasonable and that pitch did not make a significant difference in the general effect of sinogram restoration. The application of Huber-penalty sinogram restoration to clinical data resulted in a reconstruction with less noise while retaining resolution. Conclusions: Sinogram restoration with the Huber penalty is able to provide better resolution-noise performance than restoration with a quadratic penalty. Additionally, sinogram restoration with the Huber penalty is feasible for helical cone-beam CT and can be applied to clinical data.« less

  2. Contribution of energy values to the analysis of global searching molecular dynamics simulations of transmembrane helical bundles.

    PubMed Central

    Torres, Jaume; Briggs, John A G; Arkin, Isaiah T

    2002-01-01

    Molecular interactions between transmembrane alpha-helices can be explored using global searching molecular dynamics simulations (GSMDS), a method that produces a group of probable low energy structures. We have shown previously that the correct model in various homooligomers is always located at the bottom of one of various possible energy basins. Unfortunately, the correct model is not necessarily the one with the lowest energy according to the computational protocol, which has resulted in overlooking of this parameter in favor of experimental data. In an attempt to use energetic considerations in the aforementioned analysis, we used global searching molecular dynamics simulations on three homooligomers of different sizes, the structures of which are known. As expected, our results show that even when the conformational space searched includes the correct structure, taking together simulations using both left and right handedness, the correct model does not necessarily have the lowest energy. However, for the models derived from the simulation that uses the correct handedness, the lowest energy model is always at, or very close to, the correct orientation. We hypothesize that this should also be true when simulations are performed using homologous sequences, and consequently lowest energy models with the right handedness should produce a cluster around a certain orientation. In contrast, using the wrong handedness the lowest energy structures for each sequence should appear at many different orientations. The rationale behind this is that, although more than one energy basin may exist, basins that do not contain the correct model will shift or disappear because they will be destabilized by at least one conservative (i.e. silent) mutation, whereas the basin containing the correct model will remain. This not only allows one to point to the possible handedness of the bundle, but can be used to overcome ambiguities arising from the use of homologous sequences in the analysis of global searching molecular dynamics simulations. In addition, because clustering of lowest energy models arising from homologous sequences only happens when the estimation of the helix tilt is correct, it may provide a validation for the helix tilt estimate. PMID:12023229

  3. The influence of fatty acids on the GpA dimer interface by coarse-grained molecular dynamics simulation.

    PubMed

    Flinner, Nadine; Mirus, Oliver; Schleiff, Enrico

    2014-08-15

    The hydrophobic thickness of membranes, which is manly defined by fatty acids, influences the packing of transmembrane domains of proteins and thus can modulate the activity of these proteins. We analyzed the dynamics of the dimerization of Glycophorin A (GpA) by molecular dynamics simulations to describe the fatty acid dependence of the transmembrane region assembly. GpA represents a well-established model for dimerization of single transmembrane helices containing a GxxxG motif in vitro and in silico. We performed simulations of the dynamics of the NMR-derived dimer as well as self-assembly simulations of monomers in membranes composed of different fatty acid chains and monitored the formed interfaces and their transitions. The observed dimeric interfaces, which also include the one known from NMR, are highly dynamic and converted into each other. The frequency of interface formation and the preferred transitions between interfaces similar to the interface observed by NMR analysis strongly depend on the fatty acid used to build the membrane. Molecular dynamic simulations after adaptation of the helix topology parameters to better represent NMR derived structures of single transmembrane helices yielded an enhanced occurrence of the interface determined by NMR in molecular dynamics simulations. Taken together we give insights into the influence of fatty acids and helix conformation on the dynamics of the transmembrane domain of GpA.

  4. The Influence of Fatty Acids on the GpA Dimer Interface by Coarse-Grained Molecular Dynamics Simulation

    PubMed Central

    Flinner, Nadine; Mirus, Oliver; Schleiff, Enrico

    2014-01-01

    The hydrophobic thickness of membranes, which is manly defined by fatty acids, influences the packing of transmembrane domains of proteins and thus can modulate the activity of these proteins. We analyzed the dynamics of the dimerization of Glycophorin A (GpA) by molecular dynamics simulations to describe the fatty acid dependence of the transmembrane region assembly. GpA represents a well-established model for dimerization of single transmembrane helices containing a GxxxG motif in vitro and in silico. We performed simulations of the dynamics of the NMR-derived dimer as well as self-assembly simulations of monomers in membranes composed of different fatty acid chains and monitored the formed interfaces and their transitions. The observed dimeric interfaces, which also include the one known from NMR, are highly dynamic and converted into each other. The frequency of interface formation and the preferred transitions between interfaces similar to the interface observed by NMR analysis strongly depend on the fatty acid used to build the membrane. Molecular dynamic simulations after adaptation of the helix topology parameters to better represent NMR derived structures of single transmembrane helices yielded an enhanced occurrence of the interface determined by NMR in molecular dynamics simulations. Taken together we give insights into the influence of fatty acids and helix conformation on the dynamics of the transmembrane domain of GpA. PMID:25196522

  5. On the flow through the normal fetal aortic arc at late gestation

    NASA Astrophysics Data System (ADS)

    Pekkan, Kerem; Nourparvar, Paymon; Yerneni, Srinivasu; Dasi, Lakshmi; de Zelicourt, Diane; Fogel, Mark; Yoganathan, Ajit

    2006-11-01

    During the fetal stage, the aortic arc is a complex junction of great vessels (right and left ventricular outflow tracks (RVOT, LVOT), pulmonary arteries (PA), ductus, head-neck vessels, decending aorta (Dao)) delicately distributing the oxygenated blood flow to the lungs and the body -preferential to the brain. Experimental and computational studies are performed in idealized models of the fetal aorta to understand and visualize the unsteady hemodynamics. Unsteady in vitro flow, generated by two peristaltic pumps (RVOT and LVOT) is visualized with two colored dyes and a red laser in a rigid glass model with physiological diameters. Helical flow patterns at the PA's and ductal shunting to the Dao are visualized. Computational fluid dynamics of the same geometry is modeled using the commercial code Fidap with porous boundary conditions representing systemic and pulmonary resistances (˜400000 tetrahedral elements). Combined (RVOT+LVOT) average flow rates ranging from 1.9 to 2.1-L/min for 34 to 38-weeks gestation were simulated with the Reynolds and Womersly numbers (Dao) of 500 and 8. Computational results are compared qualitatively with the flow visualizations at this target flow condition. Understanding fetal hemodynamics is critical for congenital heart defects, tissue engineering, fetal cardiac MRI and surgeries.

  6. Theoretical study of the Hoogsteen-Watson-Crick junctions in DNA.

    PubMed

    Cubero, Elena; Luque, F Javier; Orozco, Modesto

    2006-02-01

    A series of d (AT)(n) oligonucleotides containing mixtures of normal B-type Watson-Crick and antiparallel Hoogsteen helices have been studied using molecular dynamics simulation techniques to analyze the structural and thermodynamic impact of the junction between Watson-Crick and antiparallel Hoogsteen structures. Analysis of molecular dynamics simulations strongly suggests that for all oligonucleotides studied the antiparallel Hoogsteen appears as a reasonable conformation, only slightly less stable than the canonical B-type Watson-Crick one. The junctions between the Watson-Crick and Hoogsteen structures introduces a priori a sharp discontinuity in the helix, because the properties of each type of conformation are very well preserved in the corresponding fragments. However, and quite counterintuitively, junctions do not largely distort the duplex in structural, dynamics or energetic terms. Our results strongly support the possibility that small fragments of antiparallel Hoogsteen duplex might be embedded into large fragments of B-type Watson-Crick helices, making possible protein-DNA interactions that are specific of the antiparallel Hoogsteen conformation.

  7. Theoretical Study of the Hoogsteen–Watson-Crick Junctions in DNA

    PubMed Central

    Cubero, Elena; Luque, F. Javier; Orozco, Modesto

    2006-01-01

    A series of d (AT)n oligonucleotides containing mixtures of normal B-type Watson-Crick and antiparallel Hoogsteen helices have been studied using molecular dynamics simulation techniques to analyze the structural and thermodynamic impact of the junction between Watson-Crick and antiparallel Hoogsteen structures. Analysis of molecular dynamics simulations strongly suggests that for all oligonucleotides studied the antiparallel Hoogsteen appears as a reasonable conformation, only slightly less stable than the canonical B-type Watson-Crick one. The junctions between the Watson-Crick and Hoogsteen structures introduces a priori a sharp discontinuity in the helix, because the properties of each type of conformation are very well preserved in the corresponding fragments. However, and quite counterintuitively, junctions do not largely distort the duplex in structural, dynamics or energetic terms. Our results strongly support the possibility that small fragments of antiparallel Hoogsteen duplex might be embedded into large fragments of B-type Watson-Crick helices, making possible protein-DNA interactions that are specific of the antiparallel Hoogsteen conformation. PMID:16287814

  8. Molecular dynamics simulations of theoretical cellulose nanotube models.

    PubMed

    Uto, Takuya; Kodama, Yuta; Miyata, Tatsuhiko; Yui, Toshifumi

    2018-06-15

    Nanotubes are remarkable nanoscale architectures for a wide range of potential applications. In the present paper, we report a molecular dynamics (MD) study of the theoretical cellulose nanotube (CelNT) models to evaluate their dynamic behavior in solution (either chloroform or benzene). Based on the one-quarter chain staggering relationship, we constructed six CelNT models by combining the two chain polarities (parallel (P) and antiparallel (AP)) and three symmetry operations (helical right (H R ), helical left (H L ), and rotation (R)) to generate a circular arrangement of molecular chains. Among the four models that retained the tubular form (P-H R , P-H L , P-R, and AP-R), the P-R and AP-R models have the lowest steric energies in benzene and chloroform, respectively. The structural features of the CelNT models were characterized in terms of the hydroxymethyl group conformation and intermolecular hydrogen bonds. Solvent structuring more clearly occurred with benzene than chloroform, suggesting that the CelNT models may disperse in benzene. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. NMR structural and dynamic characterization of the acid-unfolded state of apomyoglobin provides insights into the early events in protein folding.

    PubMed

    Yao, J; Chung, J; Eliezer, D; Wright, P E; Dyson, H J

    2001-03-27

    Apomyoglobin forms a denatured state under low-salt conditions at pH 2.3. The conformational propensities and polypeptide backbone dynamics of this state have been characterized by NMR. Nearly complete backbone and some side chain resonance assignments have been obtained, using a triple-resonance assignment strategy tailored to low protein concentration (0.2 mM) and poor chemical shift dispersion. An estimate of the population and location of residual secondary structure has been made by examining deviations of (13)C(alpha), (13)CO, and (1)H(alpha) chemical shifts from random coil values, scalar (3)J(HN,H)(alpha) coupling constants and (1)H-(1)H NOEs. Chemical shifts constitute a highly reliable indicator of secondary structural preferences, provided the appropriate random coil chemical shift references are used, but in the case of acid-unfolded apomyoglobin, (3)J(HN,H)(alpha) coupling constants are poor diagnostics of secondary structure formation. Substantial populations of helical structure, in dynamic equilibrium with unfolded states, are formed in regions corresponding to the A and H helices of the folded protein. In addition, the deviation of the chemical shifts from random coil values indicates the presence of helical structure encompassing the D helix and extending into the first turn of the E helix. The polypeptide backbone dynamics of acid-unfolded apomyoglobin have been investigated using reduced spectral density function analysis of (15)N relaxation data. The spectral density J(omega(N)) is particularly sensitive to variations in backbone fluctuations on the picosecond to nanosecond time scale. The central region of the polypeptide spanning the C-terminal half of the E helix, the EF turn, and the F helix behaves as a free-flight random coil chain, but there is evidence from J(omega(N)) of restricted motions on the picosecond to nanosecond time scale in the A and H helix regions where there is a propensity to populate helical secondary structure in the acid-unfolded state. Backbone fluctuations are also restricted in parts of the B and G helices due to formation of local hydrophobic clusters. Regions of restricted backbone flexibility are generally associated with large buried surface area. A significant increase in J(0) is observed for the NH resonances of some residues located in the A and G helices of the folded protein and is associated with fluctuations on a microsecond to millisecond time scale that probably arise from transient contacts between these distant regions of the polypeptide chain. Our results indicate that the equilibrium unfolded state of apomyoglobin formed at pH 2.3 is an excellent model for the events that are expected to occur in the earliest stages of protein folding, providing insights into the regions of the polypeptide that spontaneously undergo local hydrophobic collapse and sample nativelike secondary structure.

  10. Ser/Thr Motifs in Transmembrane Proteins: Conservation Patterns and Effects on Local Protein Structure and Dynamics

    PubMed Central

    del Val, Coral; White, Stephen H.

    2014-01-01

    We combined systematic bioinformatics analyses and molecular dynamics simulations to assess the conservation patterns of Ser and Thr motifs in membrane proteins, and the effect of such motifs on the structure and dynamics of α-helical transmembrane (TM) segments. We find that Ser/Thr motifs are often present in β-barrel TM proteins. At least one Ser/Thr motif is present in almost half of the sequences of α-helical proteins analyzed here. The extensive bioinformatics analyses and inspection of protein structures led to the identification of molecular transporters with noticeable numbers of Ser/Thr motifs within the TM region. Given the energetic penalty for burying multiple Ser/Thr groups in the membrane hydrophobic core, the observation of transporters with multiple membrane-embedded Ser/Thr is intriguing and raises the question of how the presence of multiple Ser/Thr affects protein local structure and dynamics. Molecular dynamics simulations of four different Ser-containing model TM peptides indicate that backbone hydrogen bonding of membrane-buried Ser/Thr hydroxyl groups can significantly change the local structure and dynamics of the helix. Ser groups located close to the membrane interface can hydrogen bond to solvent water instead of protein backbone, leading to an enhanced local solvation of the peptide. PMID:22836667

  11. De novo self-assembling collagen heterotrimers using explicit positive and negative design.

    PubMed

    Xu, Fei; Zhang, Lei; Koder, Ronald L; Nanda, Vikas

    2010-03-23

    We sought to computationally design model collagen peptides that specifically associate as heterotrimers. Computational design has been successfully applied to the creation of new protein folds and functions. Despite the high abundance of collagen and its key role in numerous biological processes, fibrous proteins have received little attention as computational design targets. Collagens are composed of three polypeptide chains that wind into triple helices. We developed a discrete computational model to design heterotrimer-forming collagen-like peptides. Stability and specificity of oligomerization were concurrently targeted using a combined positive and negative design approach. The sequences of three 30-residue peptides, A, B, and C, were optimized to favor charge-pair interactions in an ABC heterotrimer, while disfavoring the 26 competing oligomers (i.e., AAA, ABB, BCA). Peptides were synthesized and characterized for thermal stability and triple-helical structure by circular dichroism and NMR. A unique A:B:C-type species was not achieved. Negative design was partially successful, with only A + B and B + C competing mixtures formed. Analysis of computed versus experimental stabilities helps to clarify the role of electrostatics and secondary-structure propensities determining collagen stability and to provide important insight into how subsequent designs can be improved.

  12. Mutational Analyses of HAMP Helices Suggest a Dynamic Bundle Model of Input-Output Signaling in Chemoreceptors

    PubMed Central

    Zhou, Qin; Ames, Peter; Parkinson, John S.

    2009-01-01

    SUMMARY To test the gearbox model of HAMP signaling in the E. coli serine receptor, Tsr, we generated a series of amino acid replacements at each residue of the AS1 and AS2 helices. The residues most critical for Tsr function defined hydrophobic packing faces consistent with a 4-helix bundle. Suppression patterns of helix lesions conformed to the the predicted packing layers in the bundle. Although the properties and patterns of most AS1 and AS2 lesions were consistent with both proposed gearbox structures, some mutational features specifically indicate the functional importance of an x-da bundle over an alternative a-d bundle. These genetic data suggest that HAMP signaling could simply involve changes in the stability of its x-da bundle. We propose that Tsr HAMP controls output signals by modulating destabilizing phase clashes between the AS2 helices and the adjoining kinase control helices. Our model further proposes that chemoeffectors regulate HAMP bundle stability through a control cable connection between the transmembrane segments and AS1 helices. Attractant stimuli, which cause inward piston displacements in chemoreceptors, should reduce cable tension, thereby stabilizing the HAMP bundle. This study shows how transmembrane signaling and HAMP input-output control could occur without the helix rotations central to the gearbox model. PMID:19656294

  13. Solution conformation of a peptide fragment representing a proposed RNA-binding site of a viral coat protein studied by two-dimensional NMR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van der Graaf, M.; van Mierlo, C.P.M.; Hemminga, M.A.

    1991-06-11

    The first 25 amino acids of the coat protein of cowpea chlorotic mottle virus are essential for binding the encapsidated RNA. Although an {alpha}-helical conformation has been predicted for this highly positively charged N-terminal region. No experimental evidence for this conformation has been presented so far. In this study, two-dimensional proton NMR experiments were performed on a chemically synthesized pentacosapeptide containing the first 25 amino acids of this coat protein. All resonances could be assigned by a combined use of two-dimensional correlated spectroscopy and nuclear Overhauser enhancement spectroscopy carried out at four different temperatures. Various NMR parameters indicate the presencemore » of a conformational ensemble consisting of helical structures rapidly converting into more extended states. Differences in chemical shifts and nuclear Overhauser effects indicate that lowering the temperature induces a shift of the dynamic equilibrium toward more helical structures. At 10{degrees}C, a perceptible fraction of the conformational ensemble consists of structures with an {alpha}-helical conformation between residues 9 and 17, likely starting with a turnlike structure around Thr9 and Arg10. Both the conformation and the position of this helical region agree well with the secondary structure predictions mentioned above.« less

  14. All conjugate-maximal-helicity-violating amplitudes from topological open string theory in twistor space.

    PubMed

    Roiban, Radu; Volovich, Anastasia

    2004-09-24

    It has recently been proposed that the D-instanton expansion of the open topological B model on P(3|4) is equivalent to the perturbative expansion of the maximally supersymmetric Yang-Mills theory in four dimensions. In this letter we show how to construct the gauge theory results for all n-point conjugate-maximal-helicity-violating amplitudes by computing the integral over the moduli space of curves of degree n-3 in P(3|4), providing strong support to the string theory construction.

  15. Fully interferometric controllable anomalous refraction efficiency using cross modulation with plasmonic metasurfaces.

    PubMed

    Liu, Zhaocheng; Chen, Shuqi; Li, Jianxiong; Cheng, Hua; Li, Zhancheng; Liu, Wenwei; Yu, Ping; Xia, Ji; Tian, Jianguo

    2014-12-01

    We present a method of fully interferometric, controllable anomalous refraction efficiency by introducing cross-modulated incident light based on plasmonic metasurfaces. Theoretical analyses and numerical simulations indicate that the anomalous and ordinary refracted beams generated from two opposite-helicity incident beams and following the generalized Snell's law will have a superposition for certain incident angles, and the anomalous refraction efficiency can be dynamically controlled by changing the relative phase of the incident sources. As the incident wavelength nears the resonant wavelength of the plasmonic metasurfaces, two equal-amplitude incident beams with opposite helicity can be used to control the anomalous refraction efficiency. Otherwise, two unequal-amplitude incident beams with opposite helicity can be used to fully control the anomalous refraction efficiency. This Letter may offer a further step in the development of controllable anomalous refraction.

  16. Computing the qg → qg cross section using the BCFW recursion and introduction to jet tomography in heavy ion collisions via MHV techniques

    NASA Astrophysics Data System (ADS)

    Rabemananajara, Tanjona R.; Horowitz, W. A.

    2017-09-01

    To make predictions for the particle physics processes, one has to compute the cross section of the specific process as this is what one can measure in a modern collider experiment such as the Large Hadron Collider (LHC) at CERN. Theoretically, it has been proven to be extremely difficult to compute scattering amplitudes using conventional methods of Feynman. Calculations with Feynman diagrams are realizations of a perturbative expansion and when doing calculations one has to set up all topologically different diagrams, for a given process up to a given order of coupling in the theory. This quickly makes the calculation of scattering amplitudes a hot mess. Fortunately, one can simplify calculations by considering the helicity amplitude for the Maximally Helicity Violating (MHV). This can be extended to the formalism of on-shell recursion, which is able to derive, in a much simpler way the expression of a high order scattering amplitude from lower orders.

  17. Evolution of relative magnetic helicity. New boundary conditions for the vector potential

    NASA Astrophysics Data System (ADS)

    Yang, Shangbin; Büchner, Jörg; Skála, Jan; Zhang, Hongqi

    2018-05-01

    Context. For a better understanding of the dynamics of the solar corona, it is important to analyse the evolution of the helicity of the magnetic field. Since the helicity cannot be directly determined by observations, we have recently proposed a method to calculate the relative magnetic helicity in a finite volume for a given magnetic field, which however required the flux to be balanced separately on all the sides of the considered volume. Aims: We developed a scheme to obtain the vector potential in a volume without the above restriction at the boundary. We studied the dissipation and escape of relative magnetic helicity from an active region. Methods: In order to allow finite magnetic fluxes through the boundaries, a Coulomb gauge was constructed that allows for global magnetic flux balance. The property of sinusoidal function was used to obtain the vector potentials at the 12 edges of the considered rectangular volume extending above an active region. We tested and verified our method in a theoretical fore-free magnetic field model. Results: We applied the new method to the former calculation data and found a difference of less than 1.2%. We also applied our method to the magnetic field above active region NOAA 11429 obtained by a new photospheric-data-driven magnetohydrodynamics (MHD) model code GOEMHD3. We analysed the magnetic helicity evolution in the solar corona using our new method. We find that the normalized magnetic helicity (H/Φ2) is equal to -0.038 when fast magnetic reconnection is triggered. This value is comparable to the previous value (-0.029) in the MHD simulations when magnetic reconnection happened and the observed normalized magnetic helicity (-0.036) from the eruption of newly emerging active regions. We find that only 8% of the accumulated magnetic helicity is dissipated after it is injected through the bottom boundary. This is in accordance with the Woltjer conjecture. Only 2% of the magnetic helicity injected from the bottom boundary escapes through the corona. This is consistent with the observation of magnetic clouds, which could take magnetic helicity into the interplanetary space. In the case considered here, several halo coronal mass ejections (CMEs) and two X-class solar flares originate from this active region.

  18. Stabilizing effect of helical current drive on tearing modes

    NASA Astrophysics Data System (ADS)

    Yuan, Y.; Lu, X. Q.; Dong, J. Q.; Gong, X. Y.; Zhang, R. B.

    2018-01-01

    The effect of helical driven current on the m = 2/n = 1 tearing mode is studied numerically in a cylindrical geometry using the method of reduced magneto-hydro-dynamic simulation. The results show that the local persistent helical current drive from the beginning time can be applied to control the tearing modes, and will cause a rebound effect called flip instability when the driven current reaches a certain value. The current intensity threshold value for the occurrence of flip instability is about 0.00087I0. The method of controlling the development of tearing mode with comparative economy is given. If the local helical driven current is discontinuous, the magnetic island can be controlled within a certain range, and then, the tearing modes stop growing; thus, the flip instability can be avoided. We also find that the flip instability will become impatient with delay injection of the driven current because the high order harmonics have been developed in the original O-point. The tearing mode instability can be controlled by using the electron cyclotron current drive to reduce the gradient of the current intensity on the rational surfaces.

  19. Optically active helical vinylterphenyl polymers: chiral teleinduction in radical polymerization and tunable stereomutation.

    PubMed

    Wang, Rong; Zhang, Jie; Wan, Xinhua

    2015-04-01

    Helical vinyl aromatic polymers are emerging as interesting chiral materials due to their dynamic tailorability, synthetic simplicity, and outstanding chemical and physical stabilities. This Personal Account discusses long-range chirality transfer in the radical polymerization of vinylterphenyl monomers and tunable stereomutation of the resultant polymers. It begins with a general introduction to the design, synthesis, and characterization of helical poly{(+)-2,5-bis[4'-((S)-2-methylbutyloxy)phenyl]styrene}, the first one of this series of polymers. Then, long-range chirality transfer during radical polymerization of terphenyl-based vinyl monomers is explained. After that, the chiroptical property control of the resultant polymers by means of the transition from kinetically controlled conformation to thermodynamically controlled conformation and external stimulus is described. This Personal Account concludes by discussing the advantages and disadvantages of the strategy of using vinylterphenyls to obtain optically active helical polymers and providing a short outlook, especially emphasizing the importance of tacticity on the chiroptical properties of polymers. Copyright © 2015 The Chemical Society of Japan and Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Current induced vortex wall dynamics in helical magnetic systems

    NASA Astrophysics Data System (ADS)

    Roostaei, Bahman

    2015-03-01

    Nontrivial topology of interfaces separating phases with opposite chirality in helical magnetic metals result in new effects as they interact with spin polarized current. These interfaces or vortex walls consist of a one dimensional array of vortex lines. We predict that adiabatic transfer of angular momentum between vortex array and spin polarized current will result in topological Hall effect in multi-domain samples. Also we predict that the motion of the vortex array will result in a new damping mechanism for magnetic moments based on Lenz's law. We study the dynamics of these walls interacting with electric current and use fundamental electromagnetic laws to quantify those predictions. On the other hand discrete nature of vortex walls affects their pinning and results in low depinning current density. We predict the value of this current using collective pinning theory.

  1. Hemispheric Patterns in Electric Current Helicity of Solar Magnetic Fields During Solar Cycle 24: Results from SOLIS, SDO and Hinode

    NASA Astrophysics Data System (ADS)

    Gusain, S.

    2017-12-01

    We study the hemispheric patterns in electric current helicity distribution on the Sun. Magnetic field vector in the photosphere is now routinely measured by variety of instruments. SOLIS/VSM of NSO observes full disk Stokes spectra in photospheric lines which are used to derive vector magnetograms. Hinode SP is a space based spectropolarimeter which has the same observable as SOLIS albeit with limited field-of-view (FOV) but high spatial resolution. SDO/HMI derives vector magnetograms from full disk Stokes measurements, with rather limited spectral resolution, from space in a different photospheric line. Further, these datasets now exist for several years. SOLIS/VSM from 2003, Hinode SP from 2006, and SDO HMI since 2010. Using these time series of vector magnetograms we compute the electric current density in active regions during solar cycle 24 and study the hemispheric distributions. Many studies show that the helicity parameters and proxies show a strong hemispheric bias, such that Northern hemisphere has preferentially negative and southern positive helicity, respectively. We will confirm these results for cycle 24 from three different datasets and evaluate the statistical significance of the hemispheric bias. Further, we discuss the solar cycle variation in the hemispheric helicity pattern during cycle 24 and discuss its implications in terms of solar dynamo models.

  2. The monomeric, tetrameric, and fibrillar organization of Fib: the dynamic building block of the bacterial linear motor of Spiroplasma melliferum BC3.

    PubMed

    Cohen-Krausz, Sara; Cabahug, Pamela C; Trachtenberg, Shlomo

    2011-07-08

    Spiroplasmas belong to the class Mollicutes, representing the minimal, free-living, and self-replicating forms of life. Spiroplasmas are helical wall-less bacteria and the only ones known to swim by means of a linear motor (rather than the near-universal rotary bacterial motor). The linear motor follows the shortest path along the cell's helical membranal tube. The motor is composed of a flat monolayered ribbon of seven parallel fibrils and is believed to function in controlling cell helicity and motility through dynamic, coordinated, differential length changes in the fibrils. The latter cause local perturbations of helical symmetry, which are essential for net directional displacement in environments with a low Reynolds number. The underlying fibrils' core building block is a circular tetramer of the 59-kDa protein Fib. The fibrils' differential length changes are believed to be driven by molecular switching of Fib, leading consequently to axial ratio and length changes in tetrameric rings. Using cryo electron microscopy, diffractometry, single-particle analysis of isolated ribbons, and sequence analyses of Fib, we determined the overall molecular organization of the Fib monomer, tetramer, fibril, and linear motor of Spiroplasma melliferum BC3 that underlies cell geometry and motility. Fib appears to be a bidomained molecule, of which the N-terminal half is apparently a globular phosphorylase. By a combination of reversible rotation and diagonal shift of Fib monomers, the tetramer adopts either a cross-like nonhanded conformation or a ring-like handed conformation. The sense of Fib rotation may determine the handedness of the linear motor and, eventually, of the cell. A further change in the axial ratio of the ring-like tetramers controls fibril lengths and the consequent helical geometry. Analysis of tetramer quadrants from adjacent fibrils clearly demonstrates local differential fibril lengths. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Weaving Knotted Vector Fields with Tunable Helicity.

    PubMed

    Kedia, Hridesh; Foster, David; Dennis, Mark R; Irvine, William T M

    2016-12-30

    We present a general construction of divergence-free knotted vector fields from complex scalar fields, whose closed field lines encode many kinds of knots and links, including torus knots, their cables, the figure-8 knot, and its generalizations. As finite-energy physical fields, they represent initial states for fields such as the magnetic field in a plasma, or the vorticity field in a fluid. We give a systematic procedure for calculating the vector potential, starting from complex scalar functions with knotted zero filaments, thus enabling an explicit computation of the helicity of these knotted fields. The construction can be used to generate isolated knotted flux tubes, filled by knots encoded in the lines of the vector field. Lastly, we give examples of manifestly knotted vector fields with vanishing helicity. Our results provide building blocks for analytical models and simulations alike.

  4. Solution structures, dynamics, and ice growth inhibitory activity of peptide fragments derived from an antarctic yeast protein.

    PubMed

    Shah, Syed Hussinien H; Kar, Rajiv K; Asmawi, Azren A; Rahman, Mohd Basyaruddin A; Murad, Abdul Munir A; Mahadi, Nor M; Basri, Mahiran; Rahman, Raja Noor Zaliha A; Salleh, Abu B; Chatterjee, Subhrangsu; Tejo, Bimo A; Bhunia, Anirban

    2012-01-01

    Exotic functions of antifreeze proteins (AFP) and antifreeze glycopeptides (AFGP) have recently been attracted with much interest to develop them as commercial products. AFPs and AFGPs inhibit ice crystal growth by lowering the water freezing point without changing the water melting point. Our group isolated the Antarctic yeast Glaciozyma antarctica that expresses antifreeze protein to assist it in its survival mechanism at sub-zero temperatures. The protein is unique and novel, indicated by its low sequence homology compared to those of other AFPs. We explore the structure-function relationship of G. antarctica AFP using various approaches ranging from protein structure prediction, peptide design and antifreeze activity assays, nuclear magnetic resonance (NMR) studies and molecular dynamics simulation. The predicted secondary structure of G. antarctica AFP shows several α-helices, assumed to be responsible for its antifreeze activity. We designed several peptide fragments derived from the amino acid sequences of α-helical regions of the parent AFP and they also showed substantial antifreeze activities, below that of the original AFP. The relationship between peptide structure and activity was explored by NMR spectroscopy and molecular dynamics simulation. NMR results show that the antifreeze activity of the peptides correlates with their helicity and geometrical straightforwardness. Furthermore, molecular dynamics simulation also suggests that the activity of the designed peptides can be explained in terms of the structural rigidity/flexibility, i.e., the most active peptide demonstrates higher structural stability, lower flexibility than that of the other peptides with lower activities, and of lower rigidity. This report represents the first detailed report of downsizing a yeast AFP into its peptide fragments with measurable antifreeze activities.

  5. Solution Structures, Dynamics, and Ice Growth Inhibitory Activity of Peptide Fragments Derived from an Antarctic Yeast Protein

    PubMed Central

    Asmawi, Azren A.; Rahman, Mohd Basyaruddin A.; Murad, Abdul Munir A.; Mahadi, Nor M.; Basri, Mahiran; Rahman, Raja Noor Zaliha A.; Salleh, Abu B.; Chatterjee, Subhrangsu; Tejo, Bimo A.; Bhunia, Anirban

    2012-01-01

    Exotic functions of antifreeze proteins (AFP) and antifreeze glycopeptides (AFGP) have recently been attracted with much interest to develop them as commercial products. AFPs and AFGPs inhibit ice crystal growth by lowering the water freezing point without changing the water melting point. Our group isolated the Antarctic yeast Glaciozyma antarctica that expresses antifreeze protein to assist it in its survival mechanism at sub-zero temperatures. The protein is unique and novel, indicated by its low sequence homology compared to those of other AFPs. We explore the structure-function relationship of G. antarctica AFP using various approaches ranging from protein structure prediction, peptide design and antifreeze activity assays, nuclear magnetic resonance (NMR) studies and molecular dynamics simulation. The predicted secondary structure of G. antarctica AFP shows several α-helices, assumed to be responsible for its antifreeze activity. We designed several peptide fragments derived from the amino acid sequences of α-helical regions of the parent AFP and they also showed substantial antifreeze activities, below that of the original AFP. The relationship between peptide structure and activity was explored by NMR spectroscopy and molecular dynamics simulation. NMR results show that the antifreeze activity of the peptides correlates with their helicity and geometrical straightforwardness. Furthermore, molecular dynamics simulation also suggests that the activity of the designed peptides can be explained in terms of the structural rigidity/flexibility, i.e., the most active peptide demonstrates higher structural stability, lower flexibility than that of the other peptides with lower activities, and of lower rigidity. This report represents the first detailed report of downsizing a yeast AFP into its peptide fragments with measurable antifreeze activities. PMID:23209600

  6. Symmetry, Statistics and Structure in MHD Turbulence

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    2007-01-01

    Here, we examine homogeneous MHD turbulence in terms of truncated Fourier series. The ideal MHD equations and the associated statistical theory of absolute equilibrium ensembles are symmetric under P, C and T. However, the presence of invariant helicities, which are pseudoscalars under P and C, dynamically breaks this symmetry. This occurs because the surface of constant energy in phase space has disjoint parts, called components: while ensemble averages are taken over all components, a dynamical phase trajectory is confined to only one component. As the Birkhoff-Khinchin theorem tells us, ideal MHD turbulence is thus non-ergodic. This non-ergodicity manifests itself in low-wave number Fourier modes that have large mean values (while absolute ensemble theory predicts mean values of zero). Therefore, we have coherent structure in ideal MHD turbulence. The level of non-ergodicity and amount of energy contained in the associated coherent structure depends on the values of the helicities, as well as on the presence, or not, of a mean magnetic field and/or overall rotation. In addition to the well known cross and magnetic helicities, we also present a new invariant, which we call the parallel helicity, since it occurs when mean field and rotation axis are aligned. The question of applicability of these results to real (i.e., dissipative) MHD turbulence is also examined. Several long-time numerical simulations on a 64(exp 3) grid are given as examples. It is seen that coherent structure begins to form before decay dominates over nonlinearity. The connection of these results with inverse spectral cascades, selective decay, and magnetic dynamos is also discussed.

  7. Competition between B-Z and B-L transitions in a single DNA molecule: Computational studies

    NASA Astrophysics Data System (ADS)

    Kwon, Ah-Young; Nam, Gi-Moon; Johner, Albert; Kim, Seyong; Hong, Seok-Cheol; Lee, Nam-Kyung

    2016-02-01

    Under negative torsion, DNA adopts left-handed helical forms, such as Z-DNA and L-DNA. Using the random copolymer model developed for a wormlike chain, we represent a single DNA molecule with structural heterogeneity as a helical chain consisting of monomers which can be characterized by different helical senses and pitches. By Monte Carlo simulation, where we take into account bending and twist fluctuations explicitly, we study sequence dependence of B-Z transitions under torsional stress and tension focusing on the interaction with B-L transitions. We consider core sequences, (GC) n repeats or (TG) n repeats, which can interconvert between the right-handed B form and the left-handed Z form, imbedded in a random sequence, which can convert to left-handed L form with different (tension dependent) helical pitch. We show that Z-DNA formation from the (GC) n sequence is always supported by unwinding torsional stress but Z-DNA formation from the (TG) n sequence, which are more costly to convert but numerous, can be strongly influenced by the quenched disorder in the surrounding random sequence.

  8. X-ray Crystallographic Structure of Thermophilic Rhodopsin

    PubMed Central

    Tsukamoto, Takashi; Mizutani, Kenji; Hasegawa, Taisuke; Takahashi, Megumi; Honda, Naoya; Hashimoto, Naoki; Shimono, Kazumi; Yamashita, Keitaro; Yamamoto, Masaki; Miyauchi, Seiji; Takagi, Shin; Hayashi, Shigehiko; Murata, Takeshi; Sudo, Yuki

    2016-01-01

    Thermophilic rhodopsin (TR) is a photoreceptor protein with an extremely high thermal stability and the first characterized light-driven electrogenic proton pump derived from the extreme thermophile Thermus thermophilus JL-18. In this study, we confirmed its high thermal stability compared with other microbial rhodopsins and also report the potential availability of TR for optogenetics as a light-induced neural silencer. The x-ray crystal structure of TR revealed that its overall structure is quite similar to that of xanthorhodopsin, including the presence of a putative binding site for a carotenoid antenna; but several distinct structural characteristics of TR, including a decreased surface charge and a larger number of hydrophobic residues and aromatic-aromatic interactions, were also clarified. Based on the crystal structure, the structural changes of TR upon thermal stimulation were investigated by molecular dynamics simulations. The simulations revealed the presence of a thermally induced structural substate in which an increase of hydrophobic interactions in the extracellular domain, the movement of extracellular domains, the formation of a hydrogen bond, and the tilting of transmembrane helices were observed. From the computational and mutational analysis, we propose that an extracellular LPGG motif between helices F and G plays an important role in the thermal stability, acting as a “thermal sensor.” These findings will be valuable for understanding retinal proteins with regard to high protein stability and high optogenetic performance. PMID:27129243

  9. Dynamic positioning configuration and its first-order optimization

    NASA Astrophysics Data System (ADS)

    Xue, Shuqiang; Yang, Yuanxi; Dang, Yamin; Chen, Wu

    2014-02-01

    Traditional geodetic network optimization deals with static and discrete control points. The modern space geodetic network is, on the other hand, composed of moving control points in space (satellites) and on the Earth (ground stations). The network configuration composed of these facilities is essentially dynamic and continuous. Moreover, besides the position parameter which needs to be estimated, other geophysical information or signals can also be extracted from the continuous observations. The dynamic (continuous) configuration of the space network determines whether a particular frequency of signals can be identified by this system. In this paper, we employ the functional analysis and graph theory to study the dynamic configuration of space geodetic networks, and mainly focus on the optimal estimation of the position and clock-offset parameters. The principle of the D-optimization is introduced in the Hilbert space after the concept of the traditional discrete configuration is generalized from the finite space to the infinite space. It shows that the D-optimization developed in the discrete optimization is still valid in the dynamic configuration optimization, and this is attributed to the natural generalization of least squares from the Euclidean space to the Hilbert space. Then, we introduce the principle of D-optimality invariance under the combination operation and rotation operation, and propose some D-optimal simplex dynamic configurations: (1) (Semi) circular configuration in 2-dimensional space; (2) the D-optimal cone configuration and D-optimal helical configuration which is close to the GPS constellation in 3-dimensional space. The initial design of GPS constellation can be approximately treated as a combination of 24 D-optimal helixes by properly adjusting the ascending node of different satellites to realize a so-called Walker constellation. In the case of estimating the receiver clock-offset parameter, we show that the circular configuration, the symmetrical cone configuration and helical curve configuration are still D-optimal. It shows that the given total observation time determines the optimal frequency (repeatability) of moving known points and vice versa, and one way to improve the repeatability is to increase the rotational speed. Under the Newton's law of motion, the frequency of satellite motion determines the orbital altitude. Furthermore, we study three kinds of complex dynamic configurations, one of which is the combination of D-optimal cone configurations and a so-called Walker constellation composed of D-optimal helical configuration, the other is the nested cone configuration composed of n cones, and the last is the nested helical configuration composed of n orbital planes. It shows that an effective way to achieve high coverage is to employ the configuration composed of a certain number of moving known points instead of the simplex configuration (such as D-optimal helical configuration), and one can use the D-optimal simplex solutions or D-optimal complex configurations in any combination to achieve powerful configurations with flexile coverage and flexile repeatability. Alternately, how to optimally generate and assess the discrete configurations sampled from the continuous one is discussed. The proposed configuration optimization framework has taken the well-known regular polygons (such as equilateral triangle and quadrangular) in two-dimensional space and regular polyhedrons (regular tetrahedron, cube, regular octahedron, regular icosahedron, or regular dodecahedron) into account. It shows that the conclusions made by the proposed technique are more general and no longer limited by different sampling schemes. By the conditional equation of D-optimal nested helical configuration, the relevance issues of GNSS constellation optimization are solved and some examples are performed by GPS constellation to verify the validation of the newly proposed optimization technique. The proposed technique is potentially helpful in maintenance and quadratic optimization of single GNSS of which the orbital inclination and the orbital altitude change under the precession, as well as in optimally nesting GNSSs to perform global homogeneous coverage of the Earth.

  10. A numerical study on swimming micro-organisms inside a capillary tube

    NASA Astrophysics Data System (ADS)

    Zhu, Lailai; Lauga, Eric; Brandt, Luca

    2011-11-01

    The locomotivity of micro-organisms is highly dependent on the surrounding environments such as walls, free surface and neighbouring cells. In our current work, we perform simulations of swimming micro-organisms inside a capillary tube based on boundary element method. We focus on the swimming speed, power consumption and locomotive trajectory of swimming cells for different levels of confinement. For a cell propelling itself by tangential surface deformation, we show that it will swim along a helical trajectory with a specified swimming gait. Such a helical trajectory was observed before by experiments on swimming Paramecium inside a capillary tube. Funding by VR (the Swedish Research Council) and the National Science Foundation (grant CBET-0746285 to E.L.) is gratefully acknowledged. Computer time provided by SNIC (Swedish National Infrastructure for Computing) is also acknowledged.

  11. High-resolution protein design with backbone freedom.

    PubMed

    Harbury, P B; Plecs, J J; Tidor, B; Alber, T; Kim, P S

    1998-11-20

    Recent advances in computational techniques have allowed the design of precise side-chain packing in proteins with predetermined, naturally occurring backbone structures. Because these methods do not model protein main-chain flexibility, they lack the breadth to explore novel backbone conformations. Here the de novo design of a family of alpha-helical bundle proteins with a right-handed superhelical twist is described. In the design, the overall protein fold was specified by hydrophobic-polar residue patterning, whereas the bundle oligomerization state, detailed main-chain conformation, and interior side-chain rotamers were engineered by computational enumerations of packing in alternate backbone structures. Main-chain flexibility was incorporated through an algebraic parameterization of the backbone. The designed peptides form alpha-helical dimers, trimers, and tetramers in accord with the design goals. The crystal structure of the tetramer matches the designed structure in atomic detail.

  12. Side-chain-side-chain interactions and stability of the helical state

    NASA Astrophysics Data System (ADS)

    Zangi, Ronen

    2014-01-01

    Understanding the driving forces that lead to the stability of the secondary motifs found in proteins, namely α-helix and β-sheet, is a major goal in structural biology. The thermodynamic stability of these repetitive units is a result of a delicate balance between many factors, which in addition to the peptide chain involves also the solvent. Despite the fact that the backbones of all amino acids are the same (except of that of proline), there are large differences in the propensity of the different amino acids to promote the helical structure. In this paper, we investigate by explicit-solvent molecular dynamics simulations the role of the side chains (modeled as coarse-grained single sites) in stabilizing α helices in an aqueous solution. Our model systems include four (six-mer-nine-mer) peptide lengths in which the magnitude of the effective attraction between the side chains is systematically increased. We find that these interactions between the side chains can induce (for the nine-mer almost completely) a transition from a coil to a helical state. This transition is found to be characterized by three states in which the intermediate state is a partially folded α-helical conformation. In the absence of any interactions between the side chains the free energy change for helix formation has a small positive value indicating that favorable contributions from the side chains are necessary to stabilize the helical conformation. Thus, the helix-coil transition is controlled by the effective potentials between the side-chain residues and the magnitude of the required attraction per residue, which is on the order of the thermal energy, reduces with the length of the peptide. Surprisingly, the plots of the population of the helical state (or the change in the free energy for helix formation) as a function of the total effective interactions between the side chains in the helical state for all peptide lengths fall on the same curve.

  13. Pseudoephedrine and guaifenesin urolithiasis: widening the differential diagnosis of radiolucent calculi on abdominal radiograph.

    PubMed

    Song, G Y; Lockhart, M E; Smith, J K; Burns, J R; Kenney, P J

    2005-01-01

    Unenhanced helical computed tomography has played an increasingly important role in the management of urinary tract stones, guiding diagnosis and control of calculus disease. We report computed tomographic and radiographic appearances of a renal calculus composed of pseudoephedrine and guaifenesin in a patient who abused over-the-counter allergy medication.

  14. Helical prospective ECG-gating in cardiac computed tomography: radiation dose and image quality.

    PubMed

    DeFrance, Tony; Dubois, Eric; Gebow, Dan; Ramirez, Alex; Wolf, Florian; Feuchtner, Gudrun M

    2010-01-01

    Helical prospective ECG-gating (pECG) may reduce radiation dose while maintaining the advantages of helical image acquisition for coronary computed tomography angiography (CCTA). Aim of this study was to evaluate helical pECG-gating in CCTA in regards to radiation dose and image quality. 86 patients undergoing 64-multislice CCTA were enrolled. pECG-gating was performed in patients with regular heart rates (HR) < 65 bpm; with the gating window set at 70-85% of the cardiac cycle. All patients received oral and some received additional IV beta-blockers to achieve HR < 65 bpm. In patients with higher or irregular HR, or for functional evaluation, retrospective ECG-gating (rECG) was performed. The average X-ray dose was estimated from the dose length product. Each arterial segment (modified AHA/ACC 17-segment-model) was evaluated on a 4-point image quality scale (4 = excellent; 3 = good, mild artefact; 2 = acceptable, some artefact, 1 = uninterpretable). pECG-gating was applied in 57 patients, rECG-gating in 29 patients. There was no difference in age, gender, body mass index, scan length or tube output settings between both groups. HR in the pECG-group was 54.7 bpm (range, 43-64). The effective radiation dose was significantly lower for patients scanned with pECG-gating with mean 6.9 mSv +/- 1.9 (range, 2.9-10.7) compared to rECG with 16.9 mSv +/- 4.1 (P < 0.001), resulting in a mean dose reduction of 59.2%. For pECG-gating, out of 969 coronary segments, 99.3% were interpretable. Image quality was excellent in 90.2%, good in 7.8%, acceptable in 1.3% and non-interpretable in 0.7% (n = 7 segments). For patients with steady heart rates <65 bpm, helical prospective ECG-gating can significantly lower the radiation dose while maintaining high image quality.

  15. Specific Amyloid Binding of Polybasic Peptides In Vivo Is Retained by β-Sheet Conformers but Lost in the Disrupted Coil and All D-Amino Acid Variants.

    PubMed

    Wall, Jonathan S; Williams, Angela; Richey, Tina; Stuckey, Alan; Wooliver, Craig; Christopher Scott, J; Donnell, Robert; Martin, Emily B; Kennel, Stephen J

    2017-10-01

    The heparin-reactive, helical peptide p5 is an effective amyloid imaging agent in mice with systemic amyloidosis. Analogs of p5 with modified secondary structure characteristics exhibited altered binding to heparin, synthetic amyloid fibrils, and amyloid extracts in vitro. Herein, we further study the effects of peptide helicity and chirality on specific amyloid binding using a mouse model of systemic inflammation-associated (AA) amyloidosis. Peptides with disrupted helical structure [p5 (coil) and p5 (Pro3) ], with an extended sheet conformation [p5 (sheet) ] or an all-D enantiomer [p5 (D) ], were chemically synthesized, radioiodinated, and their biodistribution studied in WT mice as well as transgenic animals with severe systemic AA amyloidosis. Peptide binding was assessed qualitatively by using small animal single-photon emission computed tomography/x-ray computed tomography imaging and microautoradiography and quantitatively using tissue counting. Peptides with reduced helical propensity, p5 (coil) and p5 (Pro3) , exhibited significantly reduced binding to AA amyloid-laden organs. In contrast, peptide p5 (D) was retained by non-amyloid-related ligands in the liver and kidneys of both WT and AA mice, but it also bound AA amyloid in the spleen. The p5 (sheet) peptide specifically bound AA amyloid in vivo and was not retained by healthy tissues in WT animals. Modification of amyloid-targeting peptides using D-amino acids should be performed cautiously due to the introduction of unexpected secondary pharmacologic effects. Peptides that adopt a helical structure, to align charged amino acid side chains along one face, exhibit specific reactivity with amyloid; however, polybasic peptides with a propensity for β-sheet conformation are also amyloid-reactive and may yield a novel class of amyloid-targeting agents for imaging and therapy.

  16. Passive scalars: Mixing, diffusion, and intermittency in helical and nonhelical rotating turbulence

    NASA Astrophysics Data System (ADS)

    Imazio, P. Rodriguez; Mininni, P. D.

    2017-03-01

    We use direct numerical simulations to compute structure functions, scaling exponents, probability density functions, and effective transport coefficients of passive scalars in turbulent rotating helical and nonhelical flows. We show that helicity affects the inertial range scaling of the velocity and of the passive scalar when rotation is present, with a spectral law consistent with ˜k⊥-1.4 for the passive scalar variance spectrum. This scaling law is consistent with a phenomenological argument [P. Rodriguez Imazio and P. D. Mininni, Phys. Rev. E 83, 066309 (2011), 10.1103/PhysRevE.83.066309] for rotating nonhelical flows, which follows directly from Kolmogorov-Obukhov scaling and states that if energy follows a E (k ) ˜k-n law, then the passive scalar variance follows a law V (k ) ˜k-nθ with nθ=(5 -n ) /2 . With the second-order scaling exponent obtained from this law, and using the Kraichnan model, we obtain anomalous scaling exponents for the passive scalar that are in good agreement with the numerical results. Multifractal intermittency models are also considered. Intermittency of the passive scalar is stronger than in the nonhelical rotating case, a result that is also confirmed by stronger non-Gaussian tails in the probability density functions of field increments. Finally, Fick's law is used to compute the effective diffusion coefficients in the directions parallel and perpendicular to rotation. Calculations indicate that horizontal diffusion decreases in the presence of helicity in rotating flows, while vertical diffusion increases. A simple mean field argument explains this behavior in terms of the amplitude of velocity fluctuations.

  17. Helical structure of the cardiac ventricular anatomy assessed by diffusion tensor magnetic resonance imaging with multiresolution tractography.

    PubMed

    Poveda, Ferran; Gil, Debora; Martí, Enric; Andaluz, Albert; Ballester, Manel; Carreras, Francesc

    2013-10-01

    Deeper understanding of the myocardial structure linking the morphology and function of the heart would unravel crucial knowledge for medical and surgical clinical procedures and studies. Several conceptual models of myocardial fiber organization have been proposed but the lack of an automatic and objective methodology prevented an agreement. We sought to deepen this knowledge through advanced computer graphical representations of the myocardial fiber architecture by diffusion tensor magnetic resonance imaging. We performed automatic tractography reconstruction of unsegmented diffusion tensor magnetic resonance imaging datasets of canine heart from the public database of the Johns Hopkins University. Full-scale tractographies have been built with 200 seeds and are composed by streamlines computed on the vector field of primary eigenvectors at the diffusion tensor volumes. We also introduced a novel multiscale visualization technique in order to obtain a simplified tractography. This methodology retains the main geometric features of the fiber tracts, making it easier to decipher the main properties of the architectural organization of the heart. Output analysis of our tractographic representations showed exact correlation with low-level details of myocardial architecture, but also with the more abstract conceptualization of a continuous helical ventricular myocardial fiber array. Objective analysis of myocardial architecture by an automated method, including the entire myocardium and using several 3-dimensional levels of complexity, reveals a continuous helical myocardial fiber arrangement of both right and left ventricles, supporting the anatomical model of the helical ventricular myocardial band described by F. Torrent-Guasp. Copyright © 2013 Sociedad Española de Cardiología. Published by Elsevier Espana. All rights reserved.

  18. Dislocation dynamics simulations of interactions between gliding dislocations and radiation induced prismatic loops in zirconium

    NASA Astrophysics Data System (ADS)

    Drouet, Julie; Dupuy, Laurent; Onimus, Fabien; Mompiou, Frédéric; Perusin, Simon; Ambard, Antoine

    2014-06-01

    The mechanical behavior of Pressurized Water Reactor fuel cladding tubes made of zirconium alloys is strongly affected by neutron irradiation due to the high density of radiation induced dislocation loops. In order to investigate the interaction mechanisms between gliding dislocations and loops in zirconium, a new nodal dislocation dynamics code, adapted to Hexagonal Close Packed metals, has been used. Various configurations have been systematically computed considering different glide planes, basal or prismatic, and different characters, edge or screw, for gliding dislocations with -type Burgers vectors. Simulations show various interaction mechanisms such as (i) absorption of a loop on an edge dislocation leading to the formation of a double super-jog, (ii) creation of a helical turn, on a screw dislocation, that acts as a strong pinning point or (iii) sweeping of a loop by a gliding dislocation. It is shown that the clearing of loops is more favorable when the dislocation glides in the basal plane than in the prismatic plane explaining the easy dislocation channeling in the basal plane observed after neutron irradiation by transmission electron microscopy.

  19. On the intrinsic flexibility of the opioid receptor through multiscale modeling approaches

    NASA Astrophysics Data System (ADS)

    Vercauteren, Daniel; FosséPré, Mathieu; Leherte, Laurence; Laaksonen, Aatto

    Numerous releases of G protein-coupled receptors crystalline structures created the opportunity for computational methods to widely explore their dynamics. Here, we study the biological implication of the intrinsic flexibility properties of opioid receptor OR. First, one performed classical all-atom (AA) Molecular Dynamics (MD) simulations of OR in its apo-form. We highlighted that the various degrees of bendability of the α-helices present important consequences on the plasticity of the binding site. Hence, this latter adopts a wide diversity of shape and volume, explaining why OR interacts with very diverse ligands. Then, one introduces a new strategy for parameterizing purely mechanical but precise coarse-grained (CG) elastic network models (ENMs). The CG ENMs reproduced in a high accurate way the flexibility properties of OR versus the AA simulations. At last, one uses network modularization to design multi-grained (MG) models. They represent a novel type of low resolution models, different in nature versus CG models as being true multi-resolution models, i . e ., each MG grouping a different number of residues. The three parts constitute hierarchical and multiscale approach for tackling the flexibility of OR.

  20. Structure of an E. coli integral membrane sulfurtransferase and its structural transition upon SCN− binding defined by EPR-based hybrid method

    PubMed Central

    Ling, Shenglong; Wang, Wei; Yu, Lu; Peng, Junhui; Cai, Xiaoying; Xiong, Ying; Hayati, Zahra; Zhang, Longhua; Zhang, Zhiyong; Song, Likai; Tian, Changlin

    2016-01-01

    Electron paramagnetic resonance (EPR)-based hybrid experimental and computational approaches were applied to determine the structure of a full-length E. coli integral membrane sulfurtransferase, dimeric YgaP, and its structural and dynamic changes upon ligand binding. The solution NMR structures of the YgaP transmembrane domain (TMD) and cytosolic catalytic rhodanese domain were reported recently, but the tertiary fold of full-length YgaP was not yet available. Here, systematic site-specific EPR analysis defined a helix-loop-helix secondary structure of the YagP-TMD monomers using mobility, accessibility and membrane immersion measurements. The tertiary folds of dimeric YgaP-TMD and full-length YgaP in detergent micelles were determined through inter- and intra-monomer distance mapping and rigid-body computation. Further EPR analysis demonstrated the tight packing of the two YgaP second transmembrane helices upon binding of the catalytic product SCN−, which provides insight into the thiocyanate exportation mechanism of YgaP in the E. coli membrane. PMID:26817826

  1. Coarse kMC-based replica exchange algorithms for the accelerated simulation of protein folding in explicit solvent.

    PubMed

    Peter, Emanuel K; Shea, Joan-Emma; Pivkin, Igor V

    2016-05-14

    In this paper, we present a coarse replica exchange molecular dynamics (REMD) approach, based on kinetic Monte Carlo (kMC). The new development significantly can reduce the amount of replicas and the computational cost needed to enhance sampling in protein simulations. We introduce 2 different methods which primarily differ in the exchange scheme between the parallel ensembles. We apply this approach on folding of 2 different β-stranded peptides: the C-terminal β-hairpin fragment of GB1 and TrpZip4. Additionally, we use the new simulation technique to study the folding of TrpCage, a small fast folding α-helical peptide. Subsequently, we apply the new methodology on conformation changes in signaling of the light-oxygen voltage (LOV) sensitive domain from Avena sativa (AsLOV2). Our results agree well with data reported in the literature. In simulations of dialanine, we compare the statistical sampling of the 2 techniques with conventional REMD and analyze their performance. The new techniques can reduce the computational cost of REMD significantly and can be used in enhanced sampling simulations of biomolecules.

  2. Exploring transmembrane transport through alpha-hemolysin with grid-steered molecular dynamics.

    PubMed

    Wells, David B; Abramkina, Volha; Aksimentiev, Aleksei

    2007-09-28

    The transport of biomolecules across cell boundaries is central to cellular function. While structures of many membrane channels are known, the permeation mechanism is known only for a select few. Molecular dynamics (MD) is a computational method that can provide an accurate description of permeation events at the atomic level, which is required for understanding the transport mechanism. However, due to the relatively short time scales accessible to this method, it is of limited utility. Here, we present a method for all-atom simulation of electric field-driven transport of large solutes through membrane channels, which in tens of nanoseconds can provide a realistic account of a permeation event that would require a millisecond simulation using conventional MD. In this method, the average distribution of the electrostatic potential in a membrane channel under a transmembrane bias of interest is determined first from an all-atom MD simulation. This electrostatic potential, defined on a grid, is subsequently applied to a charged solute to steer its permeation through the membrane channel. We apply this method to investigate permeation of DNA strands, DNA hairpins, and alpha-helical peptides through alpha-hemolysin. To test the accuracy of the method, we computed the relative permeation rates of DNA strands having different sequences and global orientations. The results of the G-SMD simulations were found to be in good agreement in experiment.

  3. Kinks and vortex-twister dynamics in type-II superconductors

    NASA Astrophysics Data System (ADS)

    D'Anna, G.; Benoit, W.; Sémoroz, A.; Berseth, V.

    1997-02-01

    We report magneto-optical observations of moving helicoidal vortex structures in high purity YBa 2Cu 3O 7-δ single cyrstals. We found that the dynamics of these ‘vortex-twisters’ is mainly controlled by localized instabilities (kinks) which stream along the helices. The kinks allow the motion of the twisters, or the annihilation of twisters with opposite chirality.

  4. Polymer dynamics driven by a helical filament

    NASA Astrophysics Data System (ADS)

    Balin, Andrew; Shendruk, Tyler; Zoettl, Andreas; Yeomans, Julia

    Microbial flagellates typically inhabit complex suspensions of extracellular polymeric material which can impact the swimming speed of motile microbes, filter-feeding of sessile cells, and the generation of biofilms. There is currently a need to better understand how the fundamental dynamics of polymers near active cells or flagella impacts these various phenomena. We study the hydrodynamic and steric influence of a rotating helical filament on suspended polymers using Stokesian Dynamics simulations. Our results show that as a stationary rotating helix pumps fluid along its long axis, nearby polymers migrate radially inwards and are elongated in the process. We observe that the actuation of the helix tends to increase the probability of finding polymeric material within its pervaded volume. At larger Weissenberg numbers, this accumulation of polymers within the vicinity of the helix is greater. Further, we have analysed the stochastic work performed by the helix on the polymers and we show that this quantity is positive on average and increases with polymer contour length. Our results provide a basis for understanding the microscopic interactions that govern cell dynamics in complex media. This work was supported through funding from the ERC Advanced Grant 291234 MiCE and we acknowledge EMBO funding to TNS (ALTF181-2013).

  5. Adiabatic Faraday effect in a two-level Hamiltonian formalism

    NASA Astrophysics Data System (ADS)

    Dasgupta, Basudeb; Raffelt, Georg G.

    2010-12-01

    The helicity of a photon traversing a magnetized plasma can flip when the B field along the trajectory slowly reverses. Broderick and Blandford have recently shown that this intriguing effect can profoundly change the usual Faraday effect for radio waves. We study this phenomenon in a formalism analogous to neutrino flavor oscillations: the evolution is governed by a Schrödinger equation for a two-level system consisting of the two photon helicities. Our treatment allows for a transparent physical understanding of this system and its dynamics. In particular, it allows us to investigate the nature of transitions at intermediate adiabaticities.

  6. Objective Molecular Dynamics with Self-consistent Charge Density Functional Tight-Binding (SCC-DFTB) Method

    NASA Astrophysics Data System (ADS)

    Dumitrica, Traian; Hourahine, Ben; Aradi, Balint; Frauenheim, Thomas

    We discus the coupling of the objective boundary conditions into the SCC density functional-based tight binding code DFTB+. The implementation is enabled by a generalization to the helical case of the classical Ewald method, specifically by Ewald-like formulas that do not rely on a unit cell with translational symmetry. The robustness of the method in addressing complex hetero-nuclear nano- and bio-fibrous systems is demonstrated with illustrative simulations on a helical boron nitride nanotube, a screw dislocated zinc oxide nanowire, and an ideal double-strand DNA. Work supported by NSF CMMI 1332228.

  7. Molecular dynamics simulations on discoidal HDL particles suggest a mechanism for rotation in the apo A-I belt model.

    PubMed

    Klon, Anthony E; Segrest, Jere P; Harvey, Stephen C

    2002-12-06

    Apolipoprotein A-I (apo A-I) is the major protein component of high-density lipoprotein (HDL) particles. Elevated levels of HDL in the bloodstream have been shown to correlate strongly with a reduced risk factor for atherosclerosis. Molecular dynamics simulations have been carried out on three separate model discoidal high-density lipoprotein particles (HDL) containing two monomers of apo A-I and 160 molecules of palmitoyloleoylphosphatidylcholine (POPC), to a time-scale of 1ns. The starting structures were on the basis of previously published molecular belt models of HDL consisting of the lipid-binding C-terminal domain (residues 44-243) wrapped around the circumference of a discoidal HDL particle. Subtle changes between two of the starting structures resulted in significantly different behavior during the course of the simulation. The results provide support for the hypothesis of Segrest et al. that helical registration in the molecular belt model of apo A-I is modulated by intermolecular salt bridges. In addition, we propose an explanation for the presence of proline punctuation in the molecular belt model, and for the presence of two 11-mer helical repeats interrupting the otherwise regular pattern of 22-mer helical repeats in the lipid-binding domain of apo A-I.

  8. Influence of Na+ and Mg2+ ions on RNA structures studied with molecular dynamics simulations.

    PubMed

    Fischer, Nina M; Polêto, Marcelo D; Steuer, Jakob; van der Spoel, David

    2018-06-01

    The structure of ribonucleic acid (RNA) polymers is strongly dependent on the presence of, in particular Mg2+ cations to stabilize structural features. Only in high-resolution X-ray crystallography structures can ions be identified reliably. Here, we perform molecular dynamics simulations of 24 RNA structures with varying ion concentrations. Twelve of the structures were helical and the others complex folded. The aim of the study is to predict ion positions but also to evaluate the impact of different types of ions (Na+ or Mg2+) and the ionic strength on structural stability and variations of RNA. As a general conclusion Mg2+ is found to conserve the experimental structure better than Na+ and, where experimental ion positions are available, they can be reproduced with reasonable accuracy. If a large surplus of ions is present the added electrostatic screening makes prediction of binding-sites less reproducible. Distinct differences in ion-binding between helical and complex folded structures are found. The strength of binding (ΔG‡ for breaking RNA atom-ion interactions) is found to differ between roughly 10 and 26 kJ/mol for the different RNA atoms. Differences in stability between helical and complex folded structures and of the influence of metal ions on either are discussed.

  9. Three-dimensional tomographic imaging for dynamic radiation behavior study using infrared imaging video bolometers in large helical device plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sano, Ryuichi; Iwama, Naofumi; Peterson, Byron J.

    A three-dimensional (3D) tomography system using four InfraRed imaging Video Bolometers (IRVBs) has been designed with a helical periodicity assumption for the purpose of plasma radiation measurement in the large helical device. For the spatial inversion of large sized arrays, the system has been numerically and experimentally examined using the Tikhonov regularization with the criterion of minimum generalized cross validation, which is the standard solver of inverse problems. The 3D transport code EMC3-EIRENE for impurity behavior and related radiation has been used to produce phantoms for numerical tests, and the relative calibration of the IRVB images has been carried outmore » with a simple function model of the decaying plasma in a radiation collapse. The tomography system can respond to temporal changes in the plasma profile and identify the 3D dynamic behavior of radiation, such as the radiation enhancement that starts from the inboard side of the torus, during the radiation collapse. The reconstruction results are also consistent with the output signals of a resistive bolometer. These results indicate that the designed 3D tomography system is available for the 3D imaging of radiation. The first 3D direct tomographic measurement of a magnetically confined plasma has been achieved.« less

  10. Structure elucidation of dimeric transmembrane domains of bitopic proteins.

    PubMed

    Bocharov, Eduard V; Volynsky, Pavel E; Pavlov, Konstantin V; Efremov, Roman G; Arseniev, Alexander S

    2010-01-01

    The interaction between transmembrane helices is of great interest because it directly determines biological activity of a membrane protein. Either destroying or enhancing such interactions can result in many diseases related to dysfunction of different tissues in human body. One much studied form of membrane proteins known as bitopic protein is a dimer containing two membrane-spanning helices associating laterally. Establishing structure-function relationship as well as rational design of new types of drugs targeting membrane proteins requires precise structural information about this class of objects. At present time, to investigate spatial structure and internal dynamics of such transmembrane helical dimers, several strategies were developed based mainly on a combination of NMR spectroscopy, optical spectroscopy, protein engineering and molecular modeling. These approaches were successfully applied to homo- and heterodimeric transmembrane fragments of several bitopic proteins, which play important roles in normal and in pathological conditions of human organism.

  11. Comparison of electron-beam and ungated helical CT in detecting coronary arterial calcification by using a working heart phantom and artificial coronary arteries.

    PubMed

    Hopper, Kenneth D; Strollo, Diane C; Mauger, David T

    2002-02-01

    To determine the sensitivity and specificity of cardiac gated electron-beam computed tomography (CT) and ungated helical CT in detecting and quantifying coronary arterial calcification (CAC) by using a working heart phantom and artificial coronary arteries. A working heart phantom simulating normal cardiac motion and providing attenuation equal to that of an adult thorax was used. Thirty tubes with a 3-mm inner diameter were internally coated with pulverized human cortical bone mixed with epoxy glue to simulate minimal (n = 10), mild (n = 10), or severe (n = 10) calcified plaques. Ten additional tubes were not coated and served as normal controls. The tubes were attached to the same location on the phantom heart and scanned with electron-beam CT and helical CT in horizontal and vertical planes. Actual plaque calcium content was subsequently quantified with atopic spectroscopy. Two blinded experienced radiologic imaging teams, one for each CT system, separately measured calcium content in the model vessels by using a Hounsfield unit threshold of 130 or greater. The sensitivity and specificity of electron-beam CT in detecting CAC were 66.1% and 80.0%, respectively. The sensitivity and specificity of helical CT were 96.4% and 95.0%, respectively. Electron-beam CT was less reliable when vessels were oriented vertically (sensitivity and specificity, 71.4% and 70%; 95% CI: 39.0%, 75.0%) versus horizontally (sensitivity and specificity, 60.7% and 90.0%; 95% CI: 48.0%, 82.0%). When a correction factor was applied, the volume of calcified plaque was statistically better quantified with helical CT than with electron-beam CT (P =.004). Ungated helical CT depicts coronary arterial calcium better than does gated electron-beam CT. When appropriate correction factors are applied, helical CT is superior to electron-beam CT in quantifying coronary arterial calcium. Although further work must be done to optimize helical CT grading systems and scanning protocols, the data of this study demonstrated helical CT's inherent advantage over currently commercially available electron-beam CT systems in CAC detection and quantification.

  12. Characterizing the structural ensemble of γ-secretase using a multiscale molecular dynamics approach† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc00980a Click here for additional data file.

    PubMed Central

    Aguayo-Ortiz, Rodrigo; Chávez-García, Cecilia; Straub, John E.

    2017-01-01

    γ-Secretase is an intramembrane-cleaving aspartyl protease that plays an essential role in the processing of a variety of integral membrane proteins. Its role in the ultimate cleavage step in the processing of amyloid precursor protein to form amyloid-β (Aβ) peptide makes it an important therapeutic target in Alzheimer's disease research. Significant recent advances have been made in structural studies of this critical membrane protein complex. However, details of the mechanism of activation of the enzyme complex remain unclear. Using a multiscale computational modeling approach, combining multiple coarse-grained microsecond dynamic trajectories with all-atom models, the structure and two conformational states of the γ-secretase complex were evaluated. The transition between enzymatic state 1 and state 2 is shown to critically depend on the protonation states of the key catalytic residues Asp257 and Asp385 in the active site domain. The active site formation, related to our γ-secretase state 2, is observed to involve a concerted movement of four transmembrane helices from the catalytic subunit, resulting in the required localization of the catalytic residues. Global analysis of the structural ensemble of the enzyme complex was used to identify collective fluctuations important to the mechanism of substrate recognition and demonstrate that the corresponding fluctuations observed were uncorrelated with structural changes associated with enzyme activation. Overall, this computational study provides essential insight into the role of structure and dynamics in the activation and function of γ-secretase. PMID:28970936

  13. Plasma Science and Innovation Center (PSI-Center) at Washington, Wisconsin, and Utah State, ARRA Supplement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sovinec, Carl

    The objective of the Plasma Science and Innovation Center (PSI-Center) is to develop and deploy computational models that simulate conditions in smaller, concept-exploration plasma experiments. The PSIC group at the University of Wisconsin-Madison, led by Prof. Carl Sovinec, uses and enhances the Non-Ideal Magnetohydrodynamics with Rotation, Open Discussion (NIMROD) code, to simulate macroscopic plasma dynamics in a number of magnetic confinement configurations. These numerical simulations provide information on how magnetic fields and plasma flows evolve over all three spatial dimensions, which supplements the limited access of diagnostics in plasma experiments. The information gained from simulation helps explain how plasma evolves.more » It is also used to engineer more effective plasma confinement systems, reducing the need for building many experiments to cover the physical parameter space. The ultimate benefit is a more cost-effective approach to the development of fusion energy for peaceful power production. The supplemental funds provided by the American Recovery and Reinvestment Act of 2009 were used to purchase computer components that were assembled into a 48-core system with 256 Gb of shared memory. The system was engineered and constructed by the group's system administrator at the time, Anthony Hammond. It was successfully used by then graduate student, Dr. John O'Bryan, for computing magnetic relaxation dynamics that occur during experimental tests of non-inductive startup in the Pegasus Toroidal Experiment (pegasus.ep.wisc.edu). Dr. O'Bryan's simulations provided the first detailed explanation of how the driven helical filament of electrical current evolves into a toroidal tokamak-like plasma configuration.« less

  14. Helical structures in a Rosette elephant trunk

    NASA Astrophysics Data System (ADS)

    Carlqvist, Per; Kristen, Helmuth; Gahm, Gosta F.

    1998-04-01

    We discuss small-scale, helical, interstellar filaments on the basis of optical observations of an elephant trunk in the Rosette nebula. The trunk studied is composed of a number of sinusoidal or serpentine-like dark filaments, preferentially in the outer part of the trunk, where their wavelength is 7-9 times the trunk radius. The diameters are down to the limit of resolution of 1.0 arcsec, corresponding to 1600 au, and ranging up to about 6400 au. At some positions filament crossings give rise to enhanced extinction. We suggest that the sinusoidal filaments are helices lined up by magnetic fields. We derive average extinctions of 0.5-1.0 mag in the filaments, implying molecular densities of n_H2 ~ 10(4) cm(-3) . From existing data on the Rosette HiI region, we conclude that the surrounding kinetic and dynamic pressure and the background radiation field suffice to balance even the denser filaments and to exert drag forces on the trunk as a whole, consistent with evidence of stretching of the trunk. The helical magnetic structures imply the presence of electric currents along the trunk axis. These currents should form a nearly force-free geometry and are consistent with a model consisting of 4-7 helical cables on the surface of a cylinder and which produce the observed wavelength of the helices. We suggest that the Rosette elephant trunks form an interconnected system of rope-like structures which are relics from filamentary skeletons of magnetic fields in the primordial cloud. Based on observations collected at the Nordic Optical Telescope, La Palma, Spain

  15. Structure of a peptide adsorbed on graphene and graphite.

    PubMed

    Katoch, Jyoti; Kim, Sang Nyon; Kuang, Zhifeng; Farmer, Barry L; Naik, Rajesh R; Tatulian, Suren A; Ishigami, Masa

    2012-05-09

    Noncovalent functionalization of graphene using peptides is a promising method for producing novel sensors with high sensitivity and selectivity. Here we perform atomic force microscopy, Raman spectroscopy, infrared spectroscopy, and molecular dynamics simulations to investigate peptide-binding behavior to graphene and graphite. We studied a dodecamer peptide identified with phage display to possess affinity for graphite. Optical spectroscopy reveals that the peptide forms secondary structures both in powder form and in an aqueous medium. The dominant structure in the powder form is α-helix, which undergoes a transition to a distorted helical structure in aqueous solution. The peptide forms a complex reticular structure upon adsorption on graphene and graphite, having a helical conformation different from α-helix due to its interaction with the surface. Our observation is consistent with our molecular dynamics calculations, and our study paves the way for rational functionalization of graphene using biomolecules with defined structures and, therefore, functionalities.

  16. High-efficiency helical traveling-wave tube with dynamic velocity taper and advanced multistage depressed collector

    NASA Technical Reports Server (NTRS)

    Curren, Arthur N.; Palmer, Raymond W.; Force, Dale A.; Dombro, Louis; Long, James A.

    1987-01-01

    A NASA-sponsored research and development contract has been established with the Watkins-Johnson Company to fabricate high-efficiency 20-watt helical traveling wave tubes (TWTs) operating at 8.4 to 8.43 GHz. The TWTs employ dynamic velocity tapers (DVTs) and advanced multistage depressed collectors (MDCs) having electrodes with low secondary electron emission characteristics. The TWT designs include two different DVTs; one for maximum efficiency and the other for minimum distortion and phase shift. The MDC designs include electrodes of untreated and ion-textured graphite as well as copper which has been treated for secondary electron emission suppression. Objectives of the program include achieving at least 55 percent overall efficiency. Tests with the first TWTs (with undepressed collectors) indicate good agreement between predicted and measured RF efficiencies with as high as 30 percent improvement in RF efficiency over conventional helix designs.

  17. Controlled Folding, Motional, and Constitutional Dynamic Processes of Polyheterocyclic Molecular Strands.

    PubMed

    Barboiu, Mihail; Stadler, Adrian-Mihail; Lehn, Jean-Marie

    2016-03-18

    General design principles have been developed for the control of the structural features of polyheterocyclic strands and their effector-modulated shape changes. Induced defined molecular motions permit designed enforcement of helical as well as linear molecular shapes. The ability of such molecular strands to bind metal cations allows the generation of coiling/uncoiling processes between helically folded and extended linear states. Large molecular motions are produced on coordination of metal ions, which may be made reversible by competition with an ancillary complexing agent and fueled by sequential acid/base neutralization energy. The introduction of hydrazone units into the strands confers upon them constitutional dynamics, whereby interconversion between different strand compositions is achieved through component exchange. These features have relevance for nanomechanical devices. We present a morphological and functional analysis of such systems developed in our laboratories. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Concerning neutral flux shielding in the U-3M torsatron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dreval, N. B., E-mail: mdreval@kipt.kharkov.ua

    2015-03-15

    The volume of the torsatron U-3M vacuum chamber is about 70 m{sup 3}, whereas the plasma volume is about 0.3 m{sup 3}. The large buffer volume of the chamber serves as a source of a substantial neutral flux into the U-3M plasma. A fraction of this flux falls onto the torsatron helical coils located in front of the plasma, due to which the dynamics of neutral influx into the plasma modifies. The shielding of the molecular flux from the buffer volume into the plasma is estimated using numerical calculations. Only about 10% of the incident flux reaches the plasma volume.more » Estimates show that about 20% of atoms escape beyond the helical coils without colliding with them. Under these conditions, the helical coils substantially affect the neutral flux. A discharge regime with a hot low-density plasma produced by a frame antenna is considered. The spatial distribution of the molecular density produced in this regime by the molecular flux from the chamber buffer volume after it has passed between the helical coils is calculated. The contributions of the fluxes emerging from the side and inner surfaces of the helical coils are considered. The calculations show that the shape of the spatial distribution of the molecular density differs substantially from the shape of the magnetic surfaces.« less

  19. Helical screw expander evaluation project

    NASA Technical Reports Server (NTRS)

    Mckay, R.

    1982-01-01

    A one MW helical rotary screw expander power system for electric power generation from geothermal brine was evaluated. The technology explored in the testing is simple, potentially very efficient, and ideally suited to wellhead installations in moderate to high enthalpy, liquid dominated field. A functional one MW geothermal electric power plant that featured a helical screw expander was produced and then tested with a demonstrated average performance of approximately 45% machine efficiency over a wide range of test conditions in noncondensing, operation on two-phase geothermal fluids. The Project also produced a computer equipped data system, an instrumentation and control van, and a 1000 kW variable load bank, all integrated into a test array designed for operation at a variety of remote test sites. Data are presented for the Utah testing and for the noncondensing phases of the testing in Mexico. Test time logged was 437 hours during the Utah tests and 1101 hours during the Mexico tests.

  20. Fast H-DROP: A thirty times accelerated version of H-DROP for interactive SVM-based prediction of helical domain linkers

    NASA Astrophysics Data System (ADS)

    Richa, Tambi; Ide, Soichiro; Suzuki, Ryosuke; Ebina, Teppei; Kuroda, Yutaka

    2017-02-01

    Efficient and rapid prediction of domain regions from amino acid sequence information alone is often required for swift structural and functional characterization of large multi-domain proteins. Here we introduce Fast H-DROP, a thirty times accelerated version of our previously reported H-DROP (Helical Domain linker pRediction using OPtimal features), which is unique in specifically predicting helical domain linkers (boundaries). Fast H-DROP, analogously to H-DROP, uses optimum features selected from a set of 3000 ones by combining a random forest and a stepwise feature selection protocol. We reduced the computational time from 8.5 min per sequence in H-DROP to 14 s per sequence in Fast H-DROP on an 8 Xeon processor Linux server by using SWISS-PROT instead of Genbank non-redundant (nr) database for generating the PSSMs. The sensitivity and precision of Fast H-DROP assessed by cross-validation were 33.7 and 36.2%, which were merely 2% lower than that of H-DROP. The reduced computational time of Fast H-DROP, without affecting prediction performances, makes it more interactive and user-friendly. Fast H-DROP and H-DROP are freely available from http://domserv.lab.tuat.ac.jp/.

  1. Feasibility of Whole-Body Functional Mouse Imaging Using Helical Pinhole SPECT

    PubMed Central

    Metzler, Scott D.; Vemulapalli, Sreekanth; Jaszczak, Ronald J.; Akabani, Gamal; Chin, Bennett B.

    2010-01-01

    Purpose Detailed in vivo whole-body biodistributions of radiolabeled tracers may characterize the longitudinal progression of disease, and changes with therapeutic interventions. Small-animal imaging in mice is particularly attractive due to the wide array of well characterized genetically and surgically created models of disease. Single Photon Emission Computed Tomography (SPECT) imaging using pinhole collimation provides high resolution and sensitivity, but conventional methods using circular acquisitions result in severe image truncation and incomplete sampling of data which prevent the accurate determination of whole-body radiotracer biodistributions. This study describes the feasibility of helical acquisition paths to mitigate these effects. Procedures Helical paths of pinhole apertures were implemented using an external robotic stage aligned with the axis of rotation (AOR) of the scanner. Phantom and mouse scans were performed using helical paths and either circular or bi-circular orbits at the same radius of rotation (ROR). The bi-circular orbits consisted of two 360-degree scans separated by an axial shift to increase the axial field of view (FOV) and to improve the complete-sampling properties. Results Reconstructions of phantoms and mice acquired with helical paths show good image quality and are visually free of both truncation and axial-blurring artifacts. Circular orbits yielded reconstructions with both artifacts and a limited effective FOV. The bi-circular scans enlarged the axial FOV, but still suffered from truncation and sampling artifacts. Conclusions Helical paths can provide complete sampling data and large effective FOV, yielding 3D full-body in vivo biodistributions while still maintaining a small distance from the aperture to the object for good sensitivity and resolution. PMID:19521736

  2. Quantum correlations of helicity entangled states in non-inertial frames beyond single mode approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harsij, Zeynab, E-mail: z.harsij@ph.iut.ac.ir; Mirza, Behrouz, E-mail: b.mirza@cc.iut.ac.ir

    A helicity entangled tripartite state is considered in which the degree of entanglement is preserved in non-inertial frames. It is shown that Quantum Entanglement remains observer independent. As another measure of quantum correlation, Quantum Discord has been investigated. It is explicitly shown that acceleration has no effect on the degree of quantum correlation for the bipartite and tripartite helicity entangled states. Geometric Quantum Discord as a Hilbert–Schmidt distance is computed for helicity entangled states. It is shown that living in non-inertial frames does not make any influence on this distance, either. In addition, the analysis has been extended beyond singlemore » mode approximation to show that acceleration does not have any impact on the quantum features in the limit beyond the single mode. As an interesting result, while the density matrix depends on the right and left Unruh modes, the Negativity as a measure of Quantum Entanglement remains constant. Also, Quantum Discord does not change beyond single mode approximation. - Highlights: • The helicity entangled states here are observer independent in non-inertial frames. • It is explicitly shown that Quantum Discord for these states is observer independent. • Geometric Quantum Discord is also not affected by acceleration increase. • Extending to beyond single mode does not change the degree of entanglement. • Beyond single mode approximation the degree of Quantum Discord is also preserved.« less

  3. Standard and Nonstandard Craniospinal Radiotherapy Using Helical TomoTherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, William, E-mail: william@medphys.mcgill.c; Brodeur, Marylene; Roberge, David

    2010-07-01

    Purpose: To show the advantages of planning and delivering craniospinal radiotherapy with helical TomoTherapy (TomoTherapy Inc., Madison, WI) by presenting 4 cases treated at our institution. Methods and Materials: We first present a standard case of craniospinal irradiation in a patient with recurrent myxopapillary ependymoma (MPE) and follow this with 2 cases requiring differential dosing to multiple target volumes. One of these, a patient with recurrent medulloblastoma, required a lower dose to be delivered to the posterior fossa because the patient had been previously irradiated to the full dose, and the other required concurrent boosts to leptomeningeal metastases as partmore » of his treatment for newly diagnosed MPE. The final case presented is a patient with pronounced scoliosis who required spinal irradiation for recurrent MPE. Results: The four cases presented were planned and treated successfully with Helical Tomotherapy. Conclusions: Helical TomoTherapy delivers continuous arc-based intensity-modulated radiotherapy that gives high conformality and excellent dose homogeneity for the target volumes. Increased healthy tissue sparing is achieved at higher doses albeit at the expense of larger volumes of tissue receiving lower doses. Helical TomoTherapy allows for differential dosing of multiple targets, resulting in very elegant dose distributions. Daily megavoltage computed tomography imaging allows for precision of patient positioning, permitting a reduction in planning margins and increased healthy tissue sparing in comparison with standard techniques.« less

  4. Dynamic control of laser driven proton beams by exploiting self-generated, ultrashort electromagnetic pulses

    NASA Astrophysics Data System (ADS)

    Kar, S.; Ahmed, H.; Nersisyan, G.; Brauckmann, S.; Hanton, F.; Giesecke, A. L.; Naughton, K.; Willi, O.; Lewis, C. L. S.; Borghesi, M.

    2016-05-01

    As part of the ultrafast charge dynamics initiated by high intensity laser irradiations of solid targets, high amplitude EM pulses propagate away from the interaction point and are transported along any stalks and wires attached to the target. The propagation of these high amplitude pulses along a thin wire connected to a laser irradiated target was diagnosed via the proton radiography technique, measuring a pulse duration of ˜20 ps and a pulse velocity close to the speed of light. The strong electric field associated with the EM pulse can be exploited for controlling dynamically the proton beams produced from a laser-driven source. Chromatic divergence control of broadband laser driven protons (upto 75% reduction in divergence of >5 MeV protons) was obtained by winding the supporting wire around the proton beam axis to create a helical coil structure. In addition to providing focussing and energy selection, the technique has the potential to post-accelerate the transiting protons by the longitudinal component of the curved electric field lines produced by the helical coil lens.

  5. The Mochi project: a field theory approach to plasma dynamics and self-organization

    NASA Astrophysics Data System (ADS)

    You, Setthivoine; von der Linden, Jens; Lavine, Eric Sander; Card, Alexander; Carroll, Evan

    2016-10-01

    The Mochi project is designed to study the interaction between plasma flows and magnetic fields from the point-of-view of canonical flux tubes. The Mochi Labjet experiment is being commissioned after achieving first plasma. Analytical and numerical tools are being developed to visualize canonical flux tubes. One analytical tool described here is a field theory approach to plasma dynamics and self-organization. A redefinition of the Lagrangian of a multi-particle system in fields reformulates the single-particle, kinetic, and fluid equations governing fluid and plasma dynamics as a single set of generalized Maxwell's equations and Ohm's law for canonical force-fields. The Lagrangian includes new terms representing the coupling between the motion of particle distributions, between distributions and electromagnetic fields, with relativistic contributions. The formulation shows that the concepts of self-organization and canonical helicity transport are applicable across single-particle, kinetic, and fluid regimes, at classical and relativistic scales. The theory gives the basis for comparing canonical helicity change to energy change in general systems. This work is supported by by US DOE Grant DE-SC0010340.

  6. Dynamic control of laser driven proton beams by exploiting self-generated, ultrashort electromagnetic pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kar, S., E-mail: s.kar@qub.ac.uk; Ahmed, H.; Nersisyan, G.

    As part of the ultrafast charge dynamics initiated by high intensity laser irradiations of solid targets, high amplitude EM pulses propagate away from the interaction point and are transported along any stalks and wires attached to the target. The propagation of these high amplitude pulses along a thin wire connected to a laser irradiated target was diagnosed via the proton radiography technique, measuring a pulse duration of ∼20 ps and a pulse velocity close to the speed of light. The strong electric field associated with the EM pulse can be exploited for controlling dynamically the proton beams produced from amore » laser-driven source. Chromatic divergence control of broadband laser driven protons (upto 75% reduction in divergence of >5 MeV protons) was obtained by winding the supporting wire around the proton beam axis to create a helical coil structure. In addition to providing focussing and energy selection, the technique has the potential to post-accelerate the transiting protons by the longitudinal component of the curved electric field lines produced by the helical coil lens.« less

  7. Molecular Dynamics of "Fuzzy" Transcriptional Activator-Coactivator Interactions

    PubMed Central

    Scholes, Natalie S.; Weinzierl, Robert O. J.

    2016-01-01

    Transcriptional activation domains (ADs) are generally thought to be intrinsically unstructured, but capable of adopting limited secondary structure upon interaction with a coactivator surface. The indeterminate nature of this interface made it hitherto difficult to study structure/function relationships of such contacts. Here we used atomistic accelerated molecular dynamics (aMD) simulations to study the conformational changes of the GCN4 AD and variants thereof, either free in solution, or bound to the GAL11 coactivator surface. We show that the AD-coactivator interactions are highly dynamic while obeying distinct rules. The data provide insights into the constant and variable aspects of orientation of ADs relative to the coactivator, changes in secondary structure and energetic contributions stabilizing the various conformers at different time points. We also demonstrate that a prediction of α-helical propensity correlates directly with the experimentally measured transactivation potential of a large set of mutagenized ADs. The link between α-helical propensity and the stimulatory activity of ADs has fundamental practical and theoretical implications concerning the recruitment of ADs to coactivators. PMID:27175900

  8. Drastic changes in conformational dynamics of the antiterminator M2-1 regulate transcription efficiency in Pneumovirinae

    PubMed Central

    Leyrat, Cedric; Renner, Max; Harlos, Karl; Huiskonen, Juha T; Grimes, Jonathan M

    2014-01-01

    The M2-1 protein of human metapneumovirus (HMPV) is a zinc-binding transcription antiterminator which is highly conserved among pneumoviruses. We report the structure of tetrameric HMPV M2-1. Each protomer features a N-terminal zinc finger domain and an α-helical tetramerization motif forming a rigid unit, followed by a flexible linker and an α-helical core domain. The tetramer is asymmetric, three of the protomers exhibiting a closed conformation, and one an open conformation. Molecular dynamics simulations and SAXS demonstrate a dynamic equilibrium between open and closed conformations in solution. Structures of adenosine monophosphate- and DNA- bound M2-1 establish the role of the zinc finger domain in base-specific recognition of RNA. Binding to ‘gene end’ RNA sequences stabilized the closed conformation of M2-1 leading to a drastic shift in the conformational landscape of M2-1. We propose a model for recognition of gene end signals and discuss the implications of these findings for transcriptional regulation in pneumoviruses. DOI: http://dx.doi.org/10.7554/eLife.02674.001 PMID:24842877

  9. Systematic Validation of Protein Force Fields against Experimental Data

    PubMed Central

    Eastwood, Michael P.; Dror, Ron O.; Shaw, David E.

    2012-01-01

    Molecular dynamics simulations provide a vehicle for capturing the structures, motions, and interactions of biological macromolecules in full atomic detail. The accuracy of such simulations, however, is critically dependent on the force field—the mathematical model used to approximate the atomic-level forces acting on the simulated molecular system. Here we present a systematic and extensive evaluation of eight different protein force fields based on comparisons of experimental data with molecular dynamics simulations that reach a previously inaccessible timescale. First, through extensive comparisons with experimental NMR data, we examined the force fields' abilities to describe the structure and fluctuations of folded proteins. Second, we quantified potential biases towards different secondary structure types by comparing experimental and simulation data for small peptides that preferentially populate either helical or sheet-like structures. Third, we tested the force fields' abilities to fold two small proteins—one α-helical, the other with β-sheet structure. The results suggest that force fields have improved over time, and that the most recent versions, while not perfect, provide an accurate description of many structural and dynamical properties of proteins. PMID:22384157

  10. Flow structures and sandbar dynamics in a canyon river during a controlled flood, Colorado River, Arizona

    USGS Publications Warehouse

    Wright, S.A.; Kaplinski, M.

    2011-01-01

    In canyon rivers, debris fan constrictions create rapids and downstream pools characterized by secondary flow structures that are closely linked to channel morphology. In this paper we describe detailed measurements of the three-dimensional flow structure and sandbar dynamics of two pools along the Colorado River in the Grand Canyon during a controlled flood release from Glen Canyon Dam. Results indicate that the pools are characterized by large lateral recirculation zones (eddies) resulting from flow separation downstream from the channel constrictions, as well as helical flow structures in the main channel and eddy. The lateral recirculation zones are low-velocity areas conducive to fine sediment deposition, particularly in the vicinity of the separation and reattachment points and are thus the dominant flow structures controlling sandbar dynamics. The helical flow structures also affect morphology but appear secondary in importance to the lateral eddies. During the controlled flood, sandbars in the separation and reattachment zones at both sites tended to build gradually during the rising limb and peak flow. Deposition in shallow water on the sandbars was accompanied by erosion in deeper water along the sandbar slope at the interface with the main channel. Erosion occurred via rapid mass failures as well as by gradual boundary shear stress driven processes. The flow structures and morphologic links at our study sites are similar to those identified in other river environments, in particular sharply curved meanders and channel confluences where the coexistence of lateral recirculation and helical flows has been documented. Copyright 2011 by the American Geophysical Union.

  11. NMR structure and localization of a large fragment of the SARS-CoV fusion protein: Implications in viral cell fusion.

    PubMed

    Mahajan, Mukesh; Chatterjee, Deepak; Bhuvaneswari, Kannaian; Pillay, Shubhadra; Bhattacharjya, Surajit

    2018-02-01

    The lethal Coronaviruses (CoVs), Severe Acute Respiratory Syndrome-associated Coronavirus (SARS-CoV) and most recently Middle East Respiratory Syndrome Coronavirus, (MERS-CoV) are serious human health hazard. A successful viral infection requires fusion between virus and host cells carried out by the surface spike glycoprotein or S protein of CoV. Current models propose that the S2 subunit of S protein assembled into a hexameric helical bundle exposing hydrophobic fusogenic peptides or fusion peptides (FPs) for membrane insertion. The N-terminus of S2 subunit of SARS-CoV reported to be active in cell fusion whereby FPs have been identified. Atomic-resolution structure of FPs derived either in model membranes or in membrane mimic environment would glean insights toward viral cell fusion mechanism. Here, we have solved 3D structure, dynamics and micelle localization of a 64-residue long fusion peptide or LFP in DPC detergent micelles by NMR methods. Micelle bound structure of LFP is elucidated by the presence of discretely folded helical and intervening loops. The C-terminus region, residues F42-Y62, displays a long hydrophobic helix, whereas the N-terminus is defined by a short amphipathic helix, residues R4-Q12. The intervening residues of LFP assume stretches of loops and helical turns. The N-terminal helix is sustained by close aromatic and aliphatic sidechain packing interactions at the non-polar face. 15 N{ 1 H}NOE studies indicated dynamical motion, at ps-ns timescale, of the helices of LFP in DPC micelles. PRE NMR showed that insertion of several regions of LFP into DPC micelle core. Together, the current study provides insights toward fusion mechanism of SARS-CoV. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. The Structure and Properties of Silica Glass Nanostructures using Novel Computational Systems

    NASA Astrophysics Data System (ADS)

    Doblack, Benjamin N.

    The structure and properties of silica glass nanostructures are examined using computational methods in this work. Standard synthesis methods of silica and its associated material properties are first discussed in brief. A review of prior experiments on this amorphous material is also presented. Background and methodology for the simulation of mechanical tests on amorphous bulk silica and nanostructures are later presented. A new computational system for the accurate and fast simulation of silica glass is also presented, using an appropriate interatomic potential for this material within the open-source molecular dynamics computer program LAMMPS. This alternative computational method uses modern graphics processors, Nvidia CUDA technology and specialized scientific codes to overcome processing speed barriers common to traditional computing methods. In conjunction with a virtual reality system used to model select materials, this enhancement allows the addition of accelerated molecular dynamics simulation capability. The motivation is to provide a novel research environment which simultaneously allows visualization, simulation, modeling and analysis. The research goal of this project is to investigate the structure and size dependent mechanical properties of silica glass nanohelical structures under tensile MD conditions using the innovative computational system. Specifically, silica nanoribbons and nanosprings are evaluated which revealed unique size dependent elastic moduli when compared to the bulk material. For the nanoribbons, the tensile behavior differed widely between the models simulated, with distinct characteristic extended elastic regions. In the case of the nanosprings simulated, more clear trends are observed. In particular, larger nanospring wire cross-sectional radii (r) lead to larger Young's moduli, while larger helical diameters (2R) resulted in smaller Young's moduli. Structural transformations and theoretical models are also analyzed to identify possible factors which might affect the mechanical response of silica nanostructures under tension. The work presented outlines an innovative simulation methodology, and discusses how results can be validated against prior experimental and simulation findings. The ultimate goal is to develop new computational methods for the study of nanostructures which will make the field of materials science more accessible, cost effective and efficient.

  13. X-ray diffraction from nonuniformly stretched helical molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prodanovic, Momcilo; Irving, Thomas C.; Mijailovich, Srboljub M.

    2016-04-18

    The fibrous proteins in living cells are exposed to mechanical forces interacting with other subcellular structures. X-ray fiber diffraction is often used to assess deformation and movement of these proteins, but the analysis has been limited to the theory for fibrous molecular systems that exhibit helical symmetry. However, this approach cannot adequately interpret X-ray data from fibrous protein assemblies where the local strain varies along the fiber length owing to interactions of its molecular constituents with their binding partners. To resolve this problem a theoretical formulism has been developed for predicting the diffraction from individual helical molecular structures nonuniformly strainedmore » along their lengths. This represents a critical first step towards modeling complex dynamical systems consisting of multiple helical structures using spatially explicit, multi-scale Monte Carlo simulations where predictions are compared with experimental data in a `forward' process to iteratively generate ever more realistic models. Here the effects of nonuniform strains and the helix length on the resulting magnitude and phase of diffraction patterns are quantitatively assessed. Examples of the predicted diffraction patterns of nonuniformly deformed double-stranded DNA and actin filaments in contracting muscle are presented to demonstrate the feasibly of this theoretical approach.« less

  14. Modeling polymorphic transformation of rotating bacterial flagella in a viscous fluid

    NASA Astrophysics Data System (ADS)

    Ko, William; Lim, Sookkyung; Lee, Wanho; Kim, Yongsam; Berg, Howard C.; Peskin, Charles S.

    2017-06-01

    The helical flagella that are attached to the cell body of bacteria such as Escherichia coli and Salmonella typhimurium allow the cell to swim in a fluid environment. These flagella are capable of polymorphic transformation in that they take on various helical shapes that differ in helical pitch, radius, and chirality. We present a mathematical model of a single flagellum described by Kirchhoff rod theory that is immersed in a fluid governed by Stokes equations. We perform numerical simulations to demonstrate two mechanisms by which polymorphic transformation can occur, as observed in experiments. First, we consider a flagellar filament attached to a rotary motor in which transformations are triggered by a reversal of the direction of motor rotation [L. Turner et al., J. Bacteriol. 182, 2793 (2000), 10.1128/JB.182.10.2793-2801.2000]. We then consider a filament that is fixed on one end and immersed in an external fluid flow [H. Hotani, J. Mol. Biol. 156, 791 (1982), 10.1016/0022-2836(82)90142-5]. The detailed dynamics of the helical flagellum interacting with a viscous fluid is discussed and comparisons with experimental and theoretical results are provided.

  15. Conformational and orientational order and disorder in solid polytetrafluoroethylene

    NASA Astrophysics Data System (ADS)

    Sprik, Michiel; Rothlisberger, Ursula; Klein, Michael L.

    The low pressure phase diagram of solid polytetrafluoroethylene (PTFE/Teflon) has been investigated using constant temperature-constant pressure molecular dynamics techniques and a new all-atom potential model for fluorocarbons. The simulation was started in an ordered low temperature phase in which the molecules are parallel and have a helical conformation with a pitch of uniform magnitude and sign (chirality). In accordance with experiment, a transition to an orientationally disordered state is observed upon heating. The coherent helical winding of CF2 groups also disappears abruptly at the transition but short helical segments remain and become equally distributed between left and right chirality with increasing temperature. The orientational and conformational disorder is accompanied by translational diffusion along the chain direction. At a still higher temperature melting sets in. On cooling, the disordered solid phase is recovered and its structure is shown to be identical to that generated on heating. On further cooling, a spontaneous ordering transition is observed but the system fails to recover a uniform helical ground state. Instead, the high pressure ordered monoclinic all- trans (alkane-like) structure is obtained: an observation that indicates a deficiency in the potential model.

  16. One Peptide Reveals the Two Faces of α-Helix Unfolding-Folding Dynamics.

    PubMed

    Jesus, Catarina S H; Cruz, Pedro F; Arnaut, Luis G; Brito, Rui M M; Serpa, Carlos

    2018-04-12

    The understanding of fast folding dynamics of single α-helices comes mostly from studies on rationally designed peptides displaying sequences with high helical propensity. The folding/unfolding dynamics and energetics of α-helix conformations in naturally occurring peptides remains largely unexplored. Here we report the study of a protein fragment analogue of the C-peptide from bovine pancreatic ribonuclease-A, RN80, a 13-amino acid residue peptide that adopts a highly populated helical conformation in aqueous solution. 1 H NMR and CD structural studies of RN80 showed that α-helix formation displays a pH-dependent bell-shaped curve, with a maximum near pH 5, and a large decrease in helical content in alkaline pH. The main forces stabilizing this short α-helix were identified as a salt bridge formed between Glu-2 and Arg-10 and the cation-π interaction involving Tyr-8 and His-12. Thus, deprotonation of Glu-2 or protonation of His-12 are essential for the RN80 α-helix stability. In the present study, RN80 folding and unfolding were triggered by laser-induced pH jumps and detected by time-resolved photoacoustic calorimetry (PAC). The photoacid proton release, amino acid residue protonation, and unfolding/folding events occur at different time scales and were clearly distinguished using time-resolved PAC. The partial unfolding of the RN80 α-helix, due to protonation of Glu-2 and consequent breaking of the stabilizing salt bridge between Glu-2 and Arg-10, is characterized by a concentration-independent volume expansion in the sub-microsecond time range (0.8 mL mol -1 , 369 ns). This small volume expansion reports the cost of peptide backbone rehydration upon disruption of a solvent-exposed salt bridge, as well as backbone intrinsic expansion. On the other hand, RN80 α-helix folding triggered by His-12 protonation and subsequent formation of a cation-π interaction leads to a microsecond volume contraction (-6.0 mL mol -1 , ∼1.7 μs). The essential role of two discrete side chain interactions, a salt bridge, and in particular a single cation-π interaction in the folding dynamics of a naturally occurring α-helix peptide is uniquely revealed by these data.

  17. Revisiting the NMR structure of the ultrafast downhill folding protein gpW from bacteriophage λ.

    PubMed

    Sborgi, Lorenzo; Verma, Abhinav; Muñoz, Victor; de Alba, Eva

    2011-01-01

    GpW is a 68-residue protein from bacteriophage λ that participates in virus head morphogenesis. Previous NMR studies revealed a novel α+β fold for this protein. Recent experiments have shown that gpW folds in microseconds by crossing a marginal free energy barrier (i.e., downhill folding). These features make gpW a highly desirable target for further experimental and computational folding studies. As a step in that direction, we have re-determined the high-resolution structure of gpW by multidimensional NMR on a construct that eliminates the purification tags and unstructured C-terminal tail present in the prior study. In contrast to the previous work, we have obtained a full manual assignment and calculated the structure using only unambiguous distance restraints. This new structure confirms the α+β topology, but reveals important differences in tertiary packing. Namely, the two α-helices are rotated along their main axis to form a leucine zipper. The β-hairpin is orthogonal to the helical interface rather than parallel, displaying most tertiary contacts through strand 1. There also are differences in secondary structure: longer and less curved helices and a hairpin that now shows the typical right-hand twist. Molecular dynamics simulations starting from both gpW structures, and calculations with CS-Rosetta, all converge to our gpW structure. This confirms that the original structure has strange tertiary packing and strained secondary structure. A comparison of NMR datasets suggests that the problems were mainly caused by incomplete chemical shift assignments, mistakes in NOE assignment and the inclusion of ambiguous distance restraints during the automated procedure used in the original study. The new gpW corrects these problems, providing the appropriate structural reference for future work. Furthermore, our results are a cautionary tale against the inclusion of ambiguous experimental information in the determination of protein structures.

  18. [Comparison of radiation dose reduction of prospective ECG-gated one beat scan using 320 area detector CT coronary angiography and prospective ECG-gated helical scan with high helical pitch (FlashScan) using 64 multidetector-row CT coronary angiography].

    PubMed

    Matsutani, Hideyuki; Sano, Tomonari; Kondo, Takeshi; Fujimoto, Shinichiro; Sekine, Takako; Arai, Takehiro; Morita, Hitomi; Takase, Shinichi

    2010-12-20

    A high radiation dose associated with 64 multidetector-row computed tomography (64-MDCT) is a major concern for physicians and patients alike. A new 320 row area detector computed tomography (ADCT) can obtain a view of the entire heart with one rotation (0.35 s) without requiring the helical method. As such, ADCT is expected to reduce the radiation dose. We studied image quality and radiation dose of ADCT compared to that of 64-MDCT in patients with a low heart rate (HR≤60). Three hundred eighty-five consecutive patients underwent 64-MDCT and 379 patients, ADCT. Patients with an arrhythmia were excluded. Prospective ECG-gated helical scan with high HP (FlashScan) in 64 was used for MDCT and prospective ECG-gated conventional one beat scan, for 320-ADCT. Image quality was visually evaluated by an image quality score. Radiation dose was estimated by DLP (mGy・cm) for 64-MDCT and DLP.e (mGy・cm) for 320-ADCT. Radiation dose of 320-ADCT (208±48 mGy・cm) was significantly (P<0.0001) lower than that of 64-MDCT (484±112 mGy・cm), and image quality score of 320-ADCT (3.0±0.2) was significantly (P=0.0011) higher than that of 64-MDCT (2.9±0.4). Scan time of 320-ADCT (1.4±0.1 s) was also significantly (P<0.0001) shorter than that of 64-MDCT (6.8±0.6 s). 320-ADCT can achieve not only a reduction in radiation dose but also a superior image quality and shortening of scan time compared to 64-MDCT.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miloshevich, George; Lingam, Manasvi; Morrison, Philip J.

    Recent progress regarding the noncanonical Hamiltonian formulation of extended magnetohydrodynamics (XMHD), a model with Hall drift and electron inertia, is summarized. The advantages of the Hamiltonian approach are invoked to study some general properties of XMHD turbulence, and to compare them against their ideal MHD counterparts. For instance, the helicity flux transfer rates for XMHD are computed, and Liouville's theorem for this model is also verified. The latter is used, in conjunction with the absolute equilibrium states, to arrive at the spectra for the invariants, and to determine the direction of the cascades, e.g., generalizations of the well-known ideal MHDmore » inverse cascade of magnetic helicity. After a similar analysis is conducted for XMHD by inspecting second order structure functions and absolute equilibrium states, a couple of interesting results emerge. When cross helicity is taken to be ignorable, the inverse cascade of injected magnetic helicity also occurs in the Hall MHD range-this is shown to be consistent with previous results in the literature. In contrast, in the inertial MHD range, viz at scales smaller than the electron skin depth, all spectral quantities are expected to undergo direct cascading. Finally, the consequences and relevance of our results in space and astrophysical plasmas are also briefly discussed.« less

  20. The vorticity of Solar photospheric flows on the scale of granulation

    NASA Astrophysics Data System (ADS)

    Pevtsov, A. A.

    2016-12-01

    We employ time sequences of images observed with a G-band filter (λ4305Å) by the Solar Optical Telescope (SOT) on board of Hinode spacecraft at different latitude along solar central meridian to study vorticity of granular flows in quiet Sun areas during deep minimum of solar activity. Using a feature correlation tracking (FCT) technique, we calculate the vorticity of granular-scale flows. Assuming the known pattern of vertical flows (upward in granules and downward in intergranular lanes), we infer the sign of kinetic helicity of these flows. We show that the kinetic helicity of granular flows and intergranular vortices exhibits a weak hemispheric preference, which is in agreement with the action of the Coriolis force. This slight hemispheric sign asymmetry, however, is not statistically significant given large scatter in the average vorticity. The sign of the current helicity density of network magnetic fields computed using full disk vector magnetograms from the Synoptic Optical Long-term Investigations of the Sun (SOLIS) does not show any hemispheric preference. The combination of these two findings suggests that the photospheric dynamo operating on the scale of granular flows is non-helical in nature.

  1. Stabilized helical peptides: overview of the technologies and its impact on drug discovery.

    PubMed

    Klein, Mark

    2017-11-01

    Protein-protein interactions are predominant in the workings of all cells. Until now, there have been a few successes in targeting protein-protein interactions with small molecules. Peptides may overcome some of the challenges of small molecules in disrupting protein-protein interactions. However, peptides present a new set of challenges in drug discovery. Thus, the study of the stabilization of helical peptides has been extensive. Areas covered: Several technological approaches to helical peptide stabilization have been studied. In this review, stapled peptides, foldamers, and hydrogen bond surrogates are discussed. Issues regarding design principles are also discussed. Furthermore, this review introduces select computational techniques used to aid peptide design and discusses clinical trials of peptides in a more advanced stage of development. Expert opinion: Stabilized helical peptides hold great promise in a wide array of diseases. However, the field is still relatively new and new design principles are emerging. The possibilities of peptide modification are quite extensive and expanding, so the design of stabilized peptides requires great attention to detail in order to avoid a large number of failed lead peptides. The start of clinical trials with stapled peptides is a promising sign for the future.

  2. Helical cone beam CT with an asymmetrical detector.

    PubMed

    Zamyatin, Alexander A; Taguchi, Katsuyuki; Silver, Michael D

    2005-10-01

    If a multislice or other area detector is shifted to one side to cover a larger field of view, then the data are truncated on one side. We propose a method to restore the missing data in helical cone-beam acquisitions that uses measured data on the longer side of the asymmetric detector array. The method is based on the idea of complementary rays, which is well known in fan beam geometry; in this paper we extend this concept to the cone-beam case. Different cases of complementary data coverage and dependence on the helical pitch are considered. The proposed method is used in our prototype 16-row CT scanner with an asymmetric detector and a 700 mm field of view. For evaluation we used scanned body phantom data and computer-simulated data. To simulate asymmetric truncation, the full, symmetric datasets were truncated by dropping either 22.5% or 45% from one side of the detector. Reconstructed images from the prototype scanner with the asymmetrical detector show excellent image quality in the extended field of view. The proposed method allows flexible helical pitch selection and can be used with overscan, short-scan, and super-short-scan reconstructions.

  3. Structural basis for dynamic mechanism of nitrate/nitrite antiport by NarK

    NASA Astrophysics Data System (ADS)

    Fukuda, Masahiro; Takeda, Hironori; Kato, Hideaki E.; Doki, Shintaro; Ito, Koichi; Maturana, Andrés D.; Ishitani, Ryuichiro; Nureki, Osamu

    2015-05-01

    NarK belongs to the nitrate/nitrite porter (NNP) family in the major facilitator superfamily (MFS) and plays a central role in nitrate uptake across the membrane in diverse organisms, including archaea, bacteria, fungi and plants. Although previous studies provided insight into the overall structure and the substrate recognition of NarK, its molecular mechanism, including the driving force for nitrate transport, remained elusive. Here we demonstrate that NarK is a nitrate/nitrite antiporter, using an in vitro reconstituted system. Furthermore, we present the high-resolution crystal structures of NarK from Escherichia coli in the nitrate-bound occluded, nitrate-bound inward-open and apo inward-open states. The integrated structural, functional and computational analyses reveal the nitrate/nitrite antiport mechanism of NarK, in which substrate recognition is coupled to the transport cycle by the concomitant movement of the transmembrane helices and the key tyrosine and arginine residues in the substrate-binding site.

  4. Antibacterial Activity Affected by the Conformational Flexibility in Glycine-Lysine Based α-Helical Antimicrobial Peptides.

    PubMed

    Rončević, Tomislav; Vukičević, Damir; Ilić, Nada; Krce, Lucija; Gajski, Goran; Tonkić, Marija; Goić-Barišić, Ivana; Zoranić, Larisa; Sonavane, Yogesh; Benincasa, Monica; Juretić, Davor; Maravić, Ana; Tossi, Alessandro

    2018-04-12

    Antimicrobial peptides often show broad-spectrum activity due to a mechanism based on bacterial membrane disruption, which also reduces development of permanent resistance, a desirable characteristic in view of the escalating multidrug resistance problem. Host cell toxicity however requires design of artificial variants of natural AMPs to increase selectivity and reduce side effects. Kiadins were designed using rules obtained from natural peptides active against E. coli and a validated computational algorithm based on a training set of such peptides, followed by rational conformational alterations. In vitro activity, tested against ESKAPE strains (ATCC and clinical isolates), revealed a varied activity spectrum and cytotoxicity that only in part correlated with conformational flexibility. Peptides with a higher proportion of Gly were generally less potent and caused less bacterial membrane alteration, as observed by flow cytometry and AFM, which correlate to structural characteristics as observed by circular dichroism spectroscopy and predicted by molecular dynamics calculations.

  5. Ion specific correlations in bulk and at biointerfaces.

    PubMed

    Kalcher, I; Horinek, D; Netz, R R; Dzubiella, J

    2009-10-21

    Ion specific effects are ubiquitous in any complex colloidal or biological fluid in bulk or at interfaces. The molecular origins of these 'Hofmeister effects' are not well understood and their theoretical description poses a formidable challenge to the modeling and simulation community. On the basis of the combination of atomistically resolved molecular dynamics (MD) computer simulations and statistical mechanics approaches, we present a few selected examples of specific electrolyte effects in bulk, at simple neutral and charged interfaces, and on a short α-helical peptide. The structural complexity in these strongly Coulomb-correlated systems is highlighted and analyzed in the light of available experimental data. While in general the comparison of MD simulations to experiments often lacks quantitative agreement, mostly because molecular force fields and coarse-graining procedures remain to be optimized, the consensus as regards trends provides important insights into microscopic hydration and binding mechanisms.

  6. Development of 1-year-old computational phantom and calculation of organ doses during CT scans using Monte Carlo simulation.

    PubMed

    Pan, Yuxi; Qiu, Rui; Gao, Linfeng; Ge, Chaoyong; Zheng, Junzheng; Xie, Wenzhang; Li, Junli

    2014-09-21

    With the rapidly growing number of CT examinations, the consequential radiation risk has aroused more and more attention. The average dose in each organ during CT scans can only be obtained by using Monte Carlo simulation with computational phantoms. Since children tend to have higher radiation sensitivity than adults, the radiation dose of pediatric CT examinations requires special attention and needs to be assessed accurately. So far, studies on organ doses from CT exposures for pediatric patients are still limited. In this work, a 1-year-old computational phantom was constructed. The body contour was obtained from the CT images of a 1-year-old physical phantom and the internal organs were deformed from an existing Chinese reference adult phantom. To ensure the organ locations in the 1-year-old computational phantom were consistent with those of the physical phantom, the organ locations in 1-year-old computational phantom were manually adjusted one by one, and the organ masses were adjusted to the corresponding Chinese reference values. Moreover, a CT scanner model was developed using the Monte Carlo technique and the 1-year-old computational phantom was applied to estimate organ doses derived from simulated CT exposures. As a result, a database including doses to 36 organs and tissues from 47 single axial scans was built. It has been verified by calculation that doses of axial scans are close to those of helical scans; therefore, this database could be applied to helical scans as well. Organ doses were calculated using the database and compared with those obtained from the measurements made in the physical phantom for helical scans. The differences between simulation and measurement were less than 25% for all organs. The result shows that the 1-year-old phantom developed in this work can be used to calculate organ doses in CT exposures, and the dose database provides a method for the estimation of 1-year-old patient doses in a variety of CT examinations.

  7. Development of 1-year-old computational phantom and calculation of organ doses during CT scans using Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Pan, Yuxi; Qiu, Rui; Gao, Linfeng; Ge, Chaoyong; Zheng, Junzheng; Xie, Wenzhang; Li, Junli

    2014-09-01

    With the rapidly growing number of CT examinations, the consequential radiation risk has aroused more and more attention. The average dose in each organ during CT scans can only be obtained by using Monte Carlo simulation with computational phantoms. Since children tend to have higher radiation sensitivity than adults, the radiation dose of pediatric CT examinations requires special attention and needs to be assessed accurately. So far, studies on organ doses from CT exposures for pediatric patients are still limited. In this work, a 1-year-old computational phantom was constructed. The body contour was obtained from the CT images of a 1-year-old physical phantom and the internal organs were deformed from an existing Chinese reference adult phantom. To ensure the organ locations in the 1-year-old computational phantom were consistent with those of the physical phantom, the organ locations in 1-year-old computational phantom were manually adjusted one by one, and the organ masses were adjusted to the corresponding Chinese reference values. Moreover, a CT scanner model was developed using the Monte Carlo technique and the 1-year-old computational phantom was applied to estimate organ doses derived from simulated CT exposures. As a result, a database including doses to 36 organs and tissues from 47 single axial scans was built. It has been verified by calculation that doses of axial scans are close to those of helical scans; therefore, this database could be applied to helical scans as well. Organ doses were calculated using the database and compared with those obtained from the measurements made in the physical phantom for helical scans. The differences between simulation and measurement were less than 25% for all organs. The result shows that the 1-year-old phantom developed in this work can be used to calculate organ doses in CT exposures, and the dose database provides a method for the estimation of 1-year-old patient doses in a variety of CT examinations.

  8. Nonlinear cascades in two-dimensional turbulent magnetoconvection.

    PubMed

    Skandera, Dan; Müller, Wolf-Christian

    2009-06-05

    The dynamics of spectral transport in two-dimensional turbulent convection of electrically conducting fluids is studied by means of direct numerical simulations in the frame of the magnetohydrodynamic Boussinesq approximation. The system performs quasioscillations between two different regimes of small-scale turbulence: one dominated by nonlinear magnetohydrodynamic interactions; the other governed by buoyancy forces. The self-excited change of turbulent states is reported here for the first time. The process is controlled by the ideal invariant cross helicity, H;{C}=integral_{S}dSv.b. The observations are explained by the interplay of convective driving with the nonlinear spectral transfer of total magnetohydrodynamic energy and cross helicity.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meot, F.; Ahrens, L.; Glenn, J.

    This Note reports on the first, and successful, simulations of particle and spin dynamics in the AGS in presence of the two helical snakes and of the tune-jump quadrupoles, using the ray-tracing code Zgoubi. It includes DA tracking in the absence or in the presence of the two helical snakes, simulation of particle and spin motion in the snakes using their magnetic field maps, spin flipping at integer resonances in the 36+Qy depolarizing resonance region, with and without tune-jump quadrupole gymnastics. It also includes details on the setting-up of Zgoubi input data files and on the various numerical methods ofmore » concern in and available from Zgoubi.« less

  10. High-Resolution Crystal Structures of Protein Helices Reconciled with Three-Centered Hydrogen Bonds and Multipole Electrostatics

    PubMed Central

    Kuster, Daniel J.; Liu, Chengyu; Fang, Zheng; Ponder, Jay W.; Marshall, Garland R.

    2015-01-01

    Theoretical and experimental evidence for non-linear hydrogen bonds in protein helices is ubiquitous. In particular, amide three-centered hydrogen bonds are common features of helices in high-resolution crystal structures of proteins. These high-resolution structures (1.0 to 1.5 Å nominal crystallographic resolution) position backbone atoms without significant bias from modeling constraints and identify Φ = -62°, ψ = -43 as the consensus backbone torsional angles of protein helices. These torsional angles preserve the atomic positions of α-β carbons of the classic Pauling α-helix while allowing the amide carbonyls to form bifurcated hydrogen bonds as first suggested by Némethy et al. in 1967. Molecular dynamics simulations of a capped 12-residue oligoalanine in water with AMOEBA (Atomic Multipole Optimized Energetics for Biomolecular Applications), a second-generation force field that includes multipole electrostatics and polarizability, reproduces the experimentally observed high-resolution helical conformation and correctly reorients the amide-bond carbonyls into bifurcated hydrogen bonds. This simple modification of backbone torsional angles reconciles experimental and theoretical views to provide a unified view of amide three-centered hydrogen bonds as crucial components of protein helices. The reason why they have been overlooked by structural biologists depends on the small crankshaft-like changes in orientation of the amide bond that allows maintenance of the overall helical parameters (helix pitch (p) and residues per turn (n)). The Pauling 3.613 α-helix fits the high-resolution experimental data with the minor exception of the amide-carbonyl electron density, but the previously associated backbone torsional angles (Φ, Ψ) needed slight modification to be reconciled with three-atom centered H-bonds and multipole electrostatics. Thus, a new standard helix, the 3.613/10-, Némethy- or N-helix, is proposed. Due to the use of constraints from monopole force fields and assumed secondary structures used in low-resolution refinement of electron density of proteins, such structures in the PDB often show linear hydrogen bonding. PMID:25894612

  11. High-resolution crystal structures of protein helices reconciled with three-centered hydrogen bonds and multipole electrostatics.

    PubMed

    Kuster, Daniel J; Liu, Chengyu; Fang, Zheng; Ponder, Jay W; Marshall, Garland R

    2015-01-01

    Theoretical and experimental evidence for non-linear hydrogen bonds in protein helices is ubiquitous. In particular, amide three-centered hydrogen bonds are common features of helices in high-resolution crystal structures of proteins. These high-resolution structures (1.0 to 1.5 Å nominal crystallographic resolution) position backbone atoms without significant bias from modeling constraints and identify Φ = -62°, ψ = -43 as the consensus backbone torsional angles of protein helices. These torsional angles preserve the atomic positions of α-β carbons of the classic Pauling α-helix while allowing the amide carbonyls to form bifurcated hydrogen bonds as first suggested by Némethy et al. in 1967. Molecular dynamics simulations of a capped 12-residue oligoalanine in water with AMOEBA (Atomic Multipole Optimized Energetics for Biomolecular Applications), a second-generation force field that includes multipole electrostatics and polarizability, reproduces the experimentally observed high-resolution helical conformation and correctly reorients the amide-bond carbonyls into bifurcated hydrogen bonds. This simple modification of backbone torsional angles reconciles experimental and theoretical views to provide a unified view of amide three-centered hydrogen bonds as crucial components of protein helices. The reason why they have been overlooked by structural biologists depends on the small crankshaft-like changes in orientation of the amide bond that allows maintenance of the overall helical parameters (helix pitch (p) and residues per turn (n)). The Pauling 3.6(13) α-helix fits the high-resolution experimental data with the minor exception of the amide-carbonyl electron density, but the previously associated backbone torsional angles (Φ, Ψ) needed slight modification to be reconciled with three-atom centered H-bonds and multipole electrostatics. Thus, a new standard helix, the 3.6(13/10)-, Némethy- or N-helix, is proposed. Due to the use of constraints from monopole force fields and assumed secondary structures used in low-resolution refinement of electron density of proteins, such structures in the PDB often show linear hydrogen bonding.

  12. Twisting and Writhing with George Ellery Hale

    NASA Astrophysics Data System (ADS)

    Canfield, Richard C.

    2013-06-01

    Early in his productive career in astronomy, George Ellery Hale developed innovative solar instrumentation that allowed him to make narrow-band images. Among the solar phenomena he discovered were sunspot vortices, which he attributed to storms akin to cyclones in our own atmosphere. Using the concept of magnetic helicity, physicists and mathematicians describe the topology of magnetic fields, including twisting and writhing. Our contemporary understanding of Hale's vortices as a consequence of large-scale twist in sunspot magnetic fields hinges on a key property of helicity: conservation. I will describe the critical role that this property plays, when applied to twist and writhe, in a fundamental aspect of global solar magnetism: the hemispheric and solar cycle dependences of active region electric currents with respect to magnetic fields. With the advent of unbroken sequences of high-resolution magnetic images, such as those presently available from the Helioseismic and Magnetic Imager on Solar Dynamics Observatory, the flux of magnetic helicity through the photosphere can be observed quantitatively. As magnetic flux tubes buoy up through the convection zone, buffeted and shredded by turbulence, they break up into fragments by repeated random bifurcation. We track these rising flux fragments in the photosphere, and calculate the flux of energy and magnetic helicity there. Using a quantitative model of coronal currents, we also track connections between these fragments to calculate the energy and magnetic helicity stored at topological interfaces that are in some ways analogous to the storage of stress at faults in the Earth's crust. Comparison of these values to solar flares and interplanetary coronal mass ejections implies that this is the primary storage mechanism for energy and magnetic helicity released in those phenomena, and suggests a useful tool for quantitative prediction of geomagnetic storms.

  13. Evidence for α-helices in the gas phase: a case study using Melittin from honey bee venom.

    PubMed

    Florance, Hannah V; Stopford, Andrew P; Kalapothakis, Jason M; McCullough, Bryan J; Bretherick, Andrew; Barran, Perdita E

    2011-09-07

    Gas phase methodologies are increasingly used to study the structure of proteins and peptides. A challenge to the mass spectrometrist is to preserve the structure of the system of interest intact and unaltered from solution into the gas phase. Small peptides are very flexible and can present a number of conformations in solution. In this work we examine Melittin a 26 amino acid peptide that forms the active component of honey bee venom. Melittin is haemolytic and has been shown to form an α-helical tetrameric structure by X-ray crystallography [M. Gribskov et al., The RCSB Protein Data Bank, 1990] and to be helical in high concentrations of methanol. Here we use ion mobility mass spectrometry, molecular dynamics and gas-phase HDX to probe its structure in the gas phase and specifically interrogate whether the helical form can be preserved. All low energy calculated structures possess some helicity. In our experiments we examine the peptide following nano-ESI from solutions with varying methanol content. Ion mobility gives collision cross sections (CCS) that compare well with values found from molecular modelling and from other reported structures, but with inconclusive results regarding the effect of solvent. There is only a slight increase in CCS with charge, showing minimal coloumbically driven unfolding. HDX supports preservation of some helical content into the gas phase and again shows little difference in the exchange rates of species sprayed from different solvents. The [M + 3H](3+) species has two exchanging populations both of which exhibit faster exchange rates than observed for the [M + 2H](2+) species. One interpretation for these results is that the time spent being analysed is sufficient for this peptide to form a helix in the 'ultimate' hydrophobic environment of a vacuum.

  14. Structural Ensemble of CD4 Cytoplasmic Tail (402-419) Reveals a Nearly Flat Free-Energy Landscape with Local α-Helical Order in Aqueous Solution.

    PubMed

    Ahalawat, Navjeet; Arora, Simran; Murarka, Rajesh K

    2015-08-27

    The human cluster determinant 4 (CD4), expressed primarily on the surface of T helper cells, serves as a coreceptor in T-cell receptor recognition of MHC II antigen complexes. Besides its cellular functions, CD4 serves as a primary receptor of human immunodeficiency virus (HIV) type 1. The cytoplasmic tail of CD4 (residues 402-419) is known to be involved in direct interaction with the HIV-1 proteins Vpu and Nef. These two viral accessory proteins (Vpu and Nef) downregulate CD4 in HIV-1 infected cells by multiple strategies and make the body susceptible to all forms of infections. In this work, we carried out extensive replica exchange molecular dynamics simulations in explicit water with three popular protein force fields Amber ff99SB, Amber ff99SB*-ILDN, and CHARMM36 to characterize the equilibrium conformational ensemble of CD4-tail (402-419) and further validated the simulated ensembles with known NMR data. We found that ff99SB*-ILDN gives a better description of the structural ensemble of this peptide compared with ff99SB and CHARMM36. The peptide adopts multiple distinct conformations with varying degree of residual secondary structures. In particular, we observed 28, 7, and 5% average α-helical, β-strand, and 3(10)-helix content, respectively, for ff99SB*-ILDN. The peptide chain shows the tendency of helix formation in a cooperative manner, seeding at residues 407-410, and subsequently extending toward both ends of the chain. Furthermore, we constructed Markov state model (MSM) from large-scale molecular dynamics simulations to study the dynamics of transitions between different metastable states explored by this peptide. The mean first passage times computed from MSM indicate rapid interconversion of these states, and the time scales of transitions range from several nanoseconds to hundreds of microseconds. Our results show good agreement with experimental data and could help to understand the key molecular mechanisms of T-cell activation and HIV-mediated receptor interference.

  15. Accurate Time-Dependent Traveling-Wave Tube Model Developed for Computational Bit-Error-Rate Testing

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.

    2001-01-01

    The phenomenal growth of the satellite communications industry has created a large demand for traveling-wave tubes (TWT's) operating with unprecedented specifications requiring the design and production of many novel devices in record time. To achieve this, the TWT industry heavily relies on computational modeling. However, the TWT industry's computational modeling capabilities need to be improved because there are often discrepancies between measured TWT data and that predicted by conventional two-dimensional helical TWT interaction codes. This limits the analysis and design of novel devices or TWT's with parameters differing from what is conventionally manufactured. In addition, the inaccuracy of current computational tools limits achievable TWT performance because optimized designs require highly accurate models. To address these concerns, a fully three-dimensional, time-dependent, helical TWT interaction model was developed using the electromagnetic particle-in-cell code MAFIA (Solution of MAxwell's equations by the Finite-Integration-Algorithm). The model includes a short section of helical slow-wave circuit with excitation fed by radiofrequency input/output couplers, and an electron beam contained by periodic permanent magnet focusing. A cutaway view of several turns of the three-dimensional helical slow-wave circuit with input/output couplers is shown. This has been shown to be more accurate than conventionally used two-dimensional models. The growth of the communications industry has also imposed a demand for increased data rates for the transmission of large volumes of data. To achieve increased data rates, complex modulation and multiple access techniques are employed requiring minimum distortion of the signal as it is passed through the TWT. Thus, intersymbol interference (ISI) becomes a major consideration, as well as suspected causes such as reflections within the TWT. To experimentally investigate effects of the physical TWT on ISI would be prohibitively expensive, as it would require manufacturing numerous amplifiers, in addition to acquiring the required digital hardware. As an alternative, the time-domain TWT interaction model developed here provides the capability to establish a computational test bench where ISI or bit error rate can be simulated as a function of TWT operating parameters and component geometries. Intermodulation products, harmonic generation, and backward waves can also be monitored with the model for similar correlations. The advancements in computational capabilities and corresponding potential improvements in TWT performance may prove to be the enabling technologies for realizing unprecedented data rates for near real time transmission of the increasingly larger volumes of data demanded by planned commercial and Government satellite communications applications. This work is in support of the Cross Enterprise Technology Development Program in Headquarters' Advanced Technology & Mission Studies Division and the Air Force Office of Scientific Research Small Business Technology Transfer programs.

  16. Conformational dynamics of the inner pore helix of voltage-gated potassium channels

    NASA Astrophysics Data System (ADS)

    Choe, Seungho; Grabe, Michael

    2009-06-01

    Voltage-gated potassium (Kv) channels control the electrical excitability of neurons and muscles. Despite this key role, how these channels open and close or gate is not fully understood. Gating is usually attributed to the bending and straightening of pore-lining helices at glycine and proline residues. In this work we focused on the role of proline in the Pro-Val-Pro (PVP) motif of the inner S6 helix in the Kv1.2 channel. We started by developing a simple hinged-rod model to fully explore the configurational space of bent helices and we related these configurations to the degree of pore opening. We then carried out fully atomistic simulations of the S6 helices and compared these simulations to the hinged-rod model. Both methods suggest that Kv1 channels are not tightly closed when the inner helices are straight, unlike what is seen in the non-PVP containing channels KcsA and KirBac. These results invite the possibility that the S6 helices may be kinked when Kv1 channels are closed. Our simulations indicate that the wild-type helix adopts multiple spatially distinct configurations, which is consistent with its role in adopting a closed state and an open state. The two most dominant configurational basins correspond to a 6 Å movement of the helix tail accompanied by the PVP region undergoing a local α-helix to 310-helix transition. We explored how single point mutations affect the propensity of the S6 helix to adopt particular configurations. Interestingly, mutating the first proline, P405 (P473 in Shaker), to alanine completely removed the bistable nature of the S6 helix possibly explaining why this mutation compromises the channel. Next, we considered four other mutations in the area known to affect channel gating and we saw similarly dramatic changes to the helix's dynamics and range of motion. Our results suggest a possible mechanism of helix pore closure and they suggest differences in the closed state of glycine-only channels, like KcsA, and PVP containing channels.

  17. Similarity in Shape Dictates Signature Intrinsic Dynamics Despite No Functional Conservation in TIM Barrel Enzymes

    PubMed Central

    Tiwari, Sandhya P.; Reuter, Nathalie

    2016-01-01

    The conservation of the intrinsic dynamics of proteins emerges as we attempt to understand the relationship between sequence, structure and functional conservation. We characterise the conservation of such dynamics in a case where the structure is conserved but function differs greatly. The triosephosphate isomerase barrel fold (TBF), renowned for its 8 β-strand-α-helix repeats that close to form a barrel, is one of the most diverse and abundant folds found in known protein structures. Proteins with this fold have diverse enzymatic functions spanning five of six Enzyme Commission classes, and we have picked five different superfamily candidates for our analysis using elastic network models. We find that the overall shape is a large determinant in the similarity of the intrinsic dynamics, regardless of function. In particular, the β-barrel core is highly rigid, while the α-helices that flank the β-strands have greater relative mobility, allowing for the many possibilities for placement of catalytic residues. We find that these elements correlate with each other via the loops that link them, as opposed to being directly correlated. We are also able to analyse the types of motions encoded by the normal mode vectors of the α-helices. We suggest that the global conservation of the intrinsic dynamics in the TBF contributes greatly to its success as an enzymatic scaffold both through evolution and enzyme design. PMID:27015412

  18. The biomechanical role of overall-shape transformation in a primitive multicellular organism: A case study of dimorphism in the filamentous cyanobacterium Arthrospira platensis.

    PubMed

    Chaiyasitdhi, Atitheb; Miphonpanyatawichok, Wirat; Riehle, Mathis Oliver; Phatthanakun, Rungrueang; Surareungchai, Werasak; Kundhikanjana, Worasom; Kuntanawat, Panwong

    2018-01-01

    Morphological transformations in primitive organisms have long been observed; however, its biomechanical roles are largely unexplored. In this study, we investigate the structural advantages of dimorphism in Arthrospira platensis, a filamentous multicellular cyanobacterium. We report that helical trichomes, the default shape, have a higher persistence length (Lp), indicating a higher resistance to bending or a large value of flexural rigidity (kf), the product of the local cell stiffness (E) and the moment of inertia of the trichomes' cross-section (I). Through Atomic Force Microscopy (AFM), we determined that the E of straight and helical trichomes were the same. In contrast, our computational model shows that I is greatly dependent on helical radii, implying that trichome morphology is the major contributor to kf variation. According to our estimation, increasing the helical radii alone can increase kf by 2 orders of magnitude. We also observe that straight trichomes have improved gliding ability, due to its structure and lower kf. Our study shows that dimorphism provides mechanical adjustability to the organism and may allow it to thrive in different environmental conditions. The higher kf provides helical trichomes a better nutrient uptake through advection in aquatic environments. On the other hand, the lower kf improves the gliding ability of straight trichomes in aquatic environments, enabling it to chemotactically relocate to more favorable territories when it encounters certain environmental stresses. When more optimal conditions are encountered, straight trichomes can revert to their original helical form. Our study is one of the first to highlight the biomechanical role of an overall-shape transformation in cyanobacteria.

  19. γ5 in the four-dimensional helicity scheme

    NASA Astrophysics Data System (ADS)

    Gnendiger, C.; Signer, A.

    2018-05-01

    We investigate the regularization-scheme dependent treatment of γ5 in the framework of dimensional regularization, mainly focusing on the four-dimensional helicity scheme (fdh). Evaluating distinctive examples, we find that for one-loop calculations, the recently proposed four-dimensional formulation (fdf) of the fdh scheme constitutes a viable and efficient alternative compared to more traditional approaches. In addition, we extend the considerations to the two-loop level and compute the pseudoscalar form factors of quarks and gluons in fdh. We provide the necessary operator renormalization and discuss at a practical level how the complexity of intermediate calculational steps can be reduced in an efficient way.

  20. A mechanism for the dynamo terms to sustain closed-flux current, including helicity balance, by driving current which crosses the magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jarboe, T. R.; Nelson, B. A.; Sutherland, D. A.

    2015-07-15

    An analysis of imposed dynamo current drive (IDCD) [T.R. Jarboe et al., Nucl. Fusion 52 083017 (2012)] reveals: (a) current drive on closed flux surfaces seems possible without relaxation, reconnection, or other flux-surface-breaking large events; (b) the scale size of the key physics may be smaller than is often computationally resolved; (c) helicity can be sustained across closed flux; and (d) IDCD current drive is parallel to the current which crosses the magnetic field to produce the current driving force. In addition to agreeing with spheromak data, IDCD agrees with selected tokamak data.

  1. Computation of parton distributions from the quasi-PDF approach at the physical point

    NASA Astrophysics Data System (ADS)

    Alexandrou, Constantia; Bacchio, Simone; Cichy, Krzysztof; Constantinou, Martha; Hadjiyiannakou, Kyriakos; Jansen, Karl; Koutsou, Giannis; Scapellato, Aurora; Steffens, Fernanda

    2018-03-01

    We show the first results for parton distribution functions within the proton at the physical pion mass, employing the method of quasi-distributions. In particular, we present the matrix elements for the iso-vector combination of the unpolarized, helicity and transversity quasi-distributions, obtained with Nf = 2 twisted mass cloverimproved fermions and a proton boosted with momentum |p→| = 0.83 GeV. The momentum smearing technique has been applied to improve the overlap with the proton boosted state. Moreover, we present the renormalized helicity matrix elements in the RI' scheme, following the non-perturbative renormalization prescription recently developed by our group.

  2. National Lung Screening Trial: Questions and Answers

    Cancer.gov

    Learn the results of the National Lung Screening Trial (NLST), which compared two ways of detecting lung cancer: low-dose helical (spiral) computed tomography and standard chest X-ray, for their effects on lung cancer death rates in a high-risk population.

  3. A Helical Structural Nucleus Is the Primary Elongating Unit of Insulin Amyloid Fibrils

    PubMed Central

    Roessle, Manfred; Kastrup, Jette S; van de Weert, Marco; Flink, James M; Frokjaer, Sven; Gajhede, Michael; Svergun, Dmitri I

    2007-01-01

    Although amyloid fibrillation is generally believed to be a nucleation-dependent process, the nuclei are largely structurally uncharacterized. This is in part due to the inherent experimental challenge associated with structural descriptions of individual components in a dynamic multi-component equilibrium. There are indications that oligomeric aggregated precursors of fibrillation, and not mature fibrils, are the main cause of cytotoxicity in amyloid disease. This further emphasizes the importance of characterizing early fibrillation events. Here we present a kinetic x-ray solution scattering study of insulin fibrillation, revealing three major components: insulin monomers, mature fibrils, and an oligomeric species. Low-resolution three-dimensional structures are determined for the fibril repeating unit and for the oligomer, the latter being a helical unit composed of five to six insulin monomers. This helical oligomer is likely to be a structural nucleus, which accumulates above the supercritical concentration used in our experiments. The growth rate of the fibrils is proportional to the amount of the helical oligomer present in solution, suggesting that these oligomers elongate the fibrils. Hence, the structural nucleus and elongating unit in insulin amyloid fibrillation may be the same structural component above supercritical concentrations. A novel elongation pathway of insulin amyloid fibrils is proposed, based on the shape and size of the fibrillation precursor. The distinct helical oligomer described in this study defines a conceptually new basis of structure-based drug design against amyloid diseases. PMID:17472440

  4. Using a Triple Helix Approach to Examine Interactions and Dynamics of Innovation in Less-Favoured Regions: The Case of the Portuguese Polytechnic of Guarda

    ERIC Educational Resources Information Center

    Natário, Manuela; Braga, Ascensão; Daniel, Ana; Rosa, Cecília; Salgado, Miguel

    2017-01-01

    Using the Triple Helix model, this article examines the contribution of a higher education institution, the Polytechnic of Guarda (PG), located in an inland, a less-favoured region of Portugal, to territorial innovation dynamics. The main goal is to explore how the interaction and cooperation between the three helices of the Guarda region (PG,…

  5. Toward structural dynamics: protein motions viewed by chemical shift modulations and direct detection of C'N multiple-quantum relaxation.

    PubMed

    Mori, Mirko; Kateb, Fatiha; Bodenhausen, Geoffrey; Piccioli, Mario; Abergel, Daniel

    2010-03-17

    Multiple quantum relaxation in proteins reveals unexpected relationships between correlated or anti-correlated conformational backbone dynamics in alpha-helices or beta-sheets. The contributions of conformational exchange to the relaxation rates of C'N coherences (i.e., double- and zero-quantum coherences involving backbone carbonyl (13)C' and neighboring amide (15)N nuclei) depend on the kinetics of slow exchange processes, as well as on the populations of the conformations and chemical shift differences of (13)C' and (15)N nuclei. The relaxation rates of C'N coherences, which reflect concerted fluctuations due to slow chemical shift modulations (CSMs), were determined by direct (13)C detection in diamagnetic and paramagnetic proteins. In well-folded proteins such as lanthanide-substituted calbindin (CaLnCb), copper,zinc superoxide dismutase (Cu,Zn SOD), and matrix metalloproteinase (MMP12), slow conformational exchange occurs along the entire backbone. Our observations demonstrate that relaxation rates of C'N coherences arising from slow backbone dynamics have positive signs (characteristic of correlated fluctuations) in beta-sheets and negative signs (characteristic of anti-correlated fluctuations) in alpha-helices. This extends the prospects of structure-dynamics relationships to slow time scales that are relevant for protein function and enzymatic activity.

  6. Dynamical Evolution of a Coronal Streamer-Flux Rope System: 2. A Self-Consistent Non-Planar Magnetohydrodynamic Simulation

    NASA Technical Reports Server (NTRS)

    Wu, S. T.; Guo, W. P.; Dryer, Murray

    1996-01-01

    The dynamical response of a helmet streamer to a flux rope escape from the sub-photosphere is examined in a physically self-consistent manner within the approximation of axisymmetric three-dimensional magnetohydrodynamics (i.e., so-called '2 1/2 D'). In contrast to the previous planar analyses of Paper 1 (Wu, Guo, and Wang), the present study shows, with the inclusion of out-of-plane components of magnetic and velocity fields, that the magnetic configuration represents a helical flux rope instead of a planar bubble as shown in Paper 1. Because of this more physically-realistic configuration, we are able to examine the dynamical evolution of the helical flux rope's interaction with the helmet streamer. This process leads to the formation of two parts of the solar mass ejection: (i) the expulsion of the helmet dome due to eruption of this flux rope, and (ii) the flux rope's eruption itself. When this two-part feature propagates out to the interplanetary space, it exhibits all the physical characteristics of observed interplanetary magnetic clouds. These numerical simulations also show that the dynamical behavior of the streamer-flux rope system has three distinct states: (i) quasi-equilibrium, (ii) non-equilibrium, and (iii) eruptive state depending on the energy level of the flux rope.

  7. X-ray Crystallographic Structure of Thermophilic Rhodopsin: IMPLICATIONS FOR HIGH THERMAL STABILITY AND OPTOGENETIC FUNCTION.

    PubMed

    Tsukamoto, Takashi; Mizutani, Kenji; Hasegawa, Taisuke; Takahashi, Megumi; Honda, Naoya; Hashimoto, Naoki; Shimono, Kazumi; Yamashita, Keitaro; Yamamoto, Masaki; Miyauchi, Seiji; Takagi, Shin; Hayashi, Shigehiko; Murata, Takeshi; Sudo, Yuki

    2016-06-03

    Thermophilic rhodopsin (TR) is a photoreceptor protein with an extremely high thermal stability and the first characterized light-driven electrogenic proton pump derived from the extreme thermophile Thermus thermophilus JL-18. In this study, we confirmed its high thermal stability compared with other microbial rhodopsins and also report the potential availability of TR for optogenetics as a light-induced neural silencer. The x-ray crystal structure of TR revealed that its overall structure is quite similar to that of xanthorhodopsin, including the presence of a putative binding site for a carotenoid antenna; but several distinct structural characteristics of TR, including a decreased surface charge and a larger number of hydrophobic residues and aromatic-aromatic interactions, were also clarified. Based on the crystal structure, the structural changes of TR upon thermal stimulation were investigated by molecular dynamics simulations. The simulations revealed the presence of a thermally induced structural substate in which an increase of hydrophobic interactions in the extracellular domain, the movement of extracellular domains, the formation of a hydrogen bond, and the tilting of transmembrane helices were observed. From the computational and mutational analysis, we propose that an extracellular LPGG motif between helices F and G plays an important role in the thermal stability, acting as a "thermal sensor." These findings will be valuable for understanding retinal proteins with regard to high protein stability and high optogenetic performance. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Noise reduction for low-dose helical CT by 3D penalized weighted least-squares sinogram smoothing

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Li, Tianfang; Lu, Hongbing; Liang, Zhengrong

    2006-03-01

    Helical computed tomography (HCT) has several advantages over conventional step-and-shoot CT for imaging a relatively large object, especially for dynamic studies. However, HCT may increase X-ray exposure significantly to the patient. This work aims to reduce the radiation by lowering the X-ray tube current (mA) and filtering the low-mA (or dose) sinogram noise. Based on the noise properties of HCT sinogram, a three-dimensional (3D) penalized weighted least-squares (PWLS) objective function was constructed and an optimal sinogram was estimated by minimizing the objective function. To consider the difference of signal correlation among different direction of the HCT sinogram, an anisotropic Markov random filed (MRF) Gibbs function was designed as the penalty. The minimization of the objection function was performed by iterative Gauss-Seidel updating strategy. The effectiveness of the 3D-PWLS sinogram smoothing for low-dose HCT was demonstrated by a 3D Shepp-Logan head phantom study. Comparison studies with our previously developed KL domain PWLS sinogram smoothing algorithm indicate that the KL+2D-PWLS algorithm shows better performance on in-plane noise-resolution trade-off while the 3D-PLWS shows better performance on z-axis noise-resolution trade-off. Receiver operating characteristic (ROC) studies by using channelized Hotelling observer (CHO) shows that 3D-PWLS and KL+2DPWLS algorithms have similar performance on detectability in low-contrast environment.

  9. Toward Improved Description of DNA Backbone: Revisiting Epsilon and Zeta Torsion Force Field Parameters

    PubMed Central

    Zgarbová, Marie; Luque, F. Javier; Šponer, Jiří; Cheatham, Thomas E.; Otyepka, Michal; Jurečka, Petr

    2013-01-01

    We present a refinement of the backbone torsion parameters ε and ζ of the Cornell et al. AMBER force field for DNA simulations. The new parameters, denoted as εζOL1, were derived from quantum-mechanical calculations with inclusion of conformation-dependent solvation effects according to the recently reported methodology (J. Chem. Theory Comput. 2012, 7(9), 2886-2902). The performance of the refined parameters was analyzed by means of extended molecular dynamics (MD) simulations for several representative systems. The results showed that the εζOL1 refinement improves the backbone description of B-DNA double helices and G-DNA stem. In B-DNA simulations, we observed an average increase of the helical twist and narrowing of the major groove, thus achieving better agreement with X-ray and solution NMR data. The balance between populations of BI and BII backbone substates was shifted towards the BII state, in better agreement with ensemble-refined solution experimental results. Furthermore, the refined parameters decreased the backbone RMS deviations in B-DNA MD simulations. In the antiparallel guanine quadruplex (G-DNA) the εζOL1 modification improved the description of non-canonical α/γ backbone substates, which were shown to be coupled to the ε/ζ torsion potential. Thus, the refinement is suggested as a possible alternative to the current ε/ζ torsion potential, which may enable more accurate modeling of nucleic acids. However, long-term testing is recommended before its routine application in DNA simulations. PMID:24058302

  10. Numerical analysis of the hemodynamic effect of plaque ulceration in the stenotic carotid artery bifurcation

    NASA Astrophysics Data System (ADS)

    Wong, Emily Y.; Milner, Jaques S.; Steinman, David A.; Poepping, Tamie L.; Holdsworth, David W.

    2009-02-01

    The presence of ulceration in carotid artery plaque is an independent risk factor for thromboembolic stroke. However, the associated pathophysiological mechanisms - in particular the mechanisms related to the local hemodynamics in the carotid artery bifurcation - are not well understood. We investigated the effect of carotid plaque ulceration on the local time-varying three-dimensional flow field using computational fluid dynamics (CFD) models of a stenosed carotid bifurcation geometry, with and without the presence of ulceration. CFD analysis of each model was performed with a spatial finite element discretization of over 150,000 quadratic tetrahedral elements and a temporal discretization of 4800 timesteps per cardiac cycle, to adequately resolve the flow field and pulsatile flow, respectively. Pulsatile flow simulations were iterated for five cardiac cycles to allow for cycle-to-cycle analysis following the damping of initial transients in the solution. Comparison between models revealed differences in flow patterns induced by flow exiting from the region of the ulcer cavity, in particular, to the shape, orientation and helicity of the high velocity jet through the stenosis. The stenotic jet in both models exhibited oscillatory motion, but produced higher levels of phase-ensembled turbulence intensity in the ulcerated model. In addition, enhanced out-of-plane recirculation and helical flow was observed in the ulcerated model. These preliminary results suggest that local fluid behaviour may contribute to the thrombogenic risk associated with plaque ulcerations in the stenotic carotid artery bifurcation.

  11. Role of geometrical shape in like-charge attraction of DNA.

    PubMed

    Kuron, Michael; Arnold, Axel

    2015-03-01

    While the phenomenon of like-charge attraction of DNA is clearly observed experimentally and in simulations, mean-field theories fail to predict it. Kornyshev et al. argued that like-charge attraction is due to DNA's helical geometry and hydration forces. Strong-coupling (SC) theory shows that attraction of like-charged rods is possible through ion correlations alone at large coupling parameters, usually by multivalent counterions. However for SC theory to be applicable, counterion-counterion correlations perpendicular to the DNA strands need to be sufficiently small, which is not a priori the case for DNA even with trivalent counterions. We study a system containing infinitely long DNA strands and trivalent counterions by computer simulations employing varying degrees of coarse-graining. Our results show that there is always attraction between the strands, but its magnitude is indeed highly dependent on the specific shape of the strand. While discreteness of the charge distribution has little influence on the attractive forces, the role of the helical charge distribution is considerable: charged rods maintain a finite distance in equilibrium, while helices collapse to close contact with a phase shift of π, in full agreement with SC predictions. The SC limit is applicable because counterions strongly bind to the charged sites of the helices, so that helix-counterion interactions dominate over counterion-counterion interactions. Thus DNA's helical geometry is not crucial for like-charge DNA attraction, but strongly enhances it, and electrostatic interactions in the strong-coupling limit are sufficient to explain this attraction.

  12. Traumatic rupture of the aortic isthmus: program of selective management.

    PubMed

    Pate, J W; Gavant, M L; Weiman, D S; Fabian, T C

    1999-01-01

    Two hypotheses were investigated: (1) helical computed tomography (CT) of the chest on victims of decelerating trauma can yield a diagnosis of, or "rule out," a traumatic rupture of the aorta (TRA) without the need for an aortogram; and (2) selective delay of aortic repair can be safely accomplished through a medical management protocol. Screening helical CT examinations were done on 6169 victims of blunt thoracic trauma; 47 were found to have TRA; in 8, indirect but nondiagnostic findings not clarified by an aortogram led to surgical exploration. The sensitivity of helical CT was higher than that of aortograms, and a "normal" helical CT scan was never associated with a proved TRA. It is estimated that the use of helical CT has resulted in at least a 40% to 50% decrease in the need for aortograms, in addition to yielding rapid, noninvasive valuable information about other injuries. Drugs (beta-blockers +/- vasodilators) to decrease the stress in the aortic wall were used in 93 patients when the diagnosis was suspected and were continued as necessary through the evaluation, stabilization, and until the aorta was cross-clamped at operation. Elective, delayed operation was done between 2 days and 25 months in 15 patients who were deemed to be excessive risks for emergency aortic repair; there were 2 deaths (13. 3%). Eleven patients never had aortic repair. No patient maintained on this protocol, whether repaired emergently, electively, or not at all, developed free rupture of the periaortic hematoma and death from TRA.

  13. Thermal- and urea-induced unfolding processes of glutathione S-transferase by molecular dynamics simulation.

    PubMed

    Li, Jiahuang; Chen, Yuan; Yang, Jie; Hua, Zichun

    2015-05-01

    The Schistosoma juponicum 26 kDa glutathione S-transferase (sj26GST) consists of the N-terminal domain (N-domain), containing three alpha-helices (named H1-H3) and four anti-parallel beta-strands (S1-S4), and the C-terminal domain (C-domain), comprising five alpha-helices (named H4-H8). In present work, molecular dynamics simulations and fluorescence spectroscopic were used to gain insights into the unfolding process of sj26GST. The molecular dynamics simulations on sj26GST subunit both in water and in 8 M urea were carried out at 300 K, 400 K and 500 K, respectively. Spectroscopic measurements were employed to monitor structural changes. Molecular dynamics simulations of sj26GST subunit induced by urea and temperature showed that the initial unfolding step of sj26GST both in water and urea occurred on N-domain, involving the disruption of helices H2, H3 and strands S3 and S4, whereas H6 was the last region exposed to solution and was the last helix to unfold. Moreover, simulations analyses combining with fluorescence and circular dichroism spectra indicated that N-domain could not fold independent, suggesting that correct folding of N-domain depended on its interactions with C-domain. We further proposed that the folding of GSTs could begin with the hydrophobic collapse of C-domain whose H4, H5, H6 and H7 could move close to each other and form a hydrophobic core, especially H6 wrapped in the hydrophobic center and beginning spontaneous formation of the helix. S3, S4, H3, and H2 could form in the wake of the interaction between C-domain and N-domain. The paper can offer insights into the molecular mechanism of GSTs unfolding. © 2014 Wiley Periodicals, Inc.

  14. Two-fluid flowing equilibria of spherical torus sustained by coaxial helicity injection

    NASA Astrophysics Data System (ADS)

    Kanki, Takashi; Steinhauer, Loren; Nagata, Masayoshi

    2007-11-01

    Two-dimensional equilibria in helicity-driven systems using two-fluid model were previously computed, showing the existence of an ultra-low-q spherical torus (ST) configuration with diamagnetism and higher beta. However, this computation assumed purely toroidal ion flow and uniform density. The purpose of the present study is to apply the two-fluid model to the two-dimensional equilibria of helicity-driven ST with non-uniform density and both toroidal and poloidal flows for each species by means of the nearby-fluids procedure, and to explore their properties. We focus our attention on the equilibria relevant to the HIST device, which are characterized by either driven or decaying λ profiles. The equilibrium for the driven λ profile has a diamagnetic toroidal field, high-β (βt = 32%), and centrally broad density. By contrast, the decaying equilibrium has a paramagnetic toroidal field, low-β (βt = 10%), and centrally peaked density with a steep gradient in the outer edge region. In the driven case, the toroidal ion and electron flows are in the same direction, and two-fluid effects are less important since the ExB drift is dominant. In the decaying case, the toroidal ion and electron flows are opposite in the outer edge region, and two-fluid effects are significant locally in the edge due to the ion diamagnetic drift.

  15. A Real-Time Imaging System for Stereo Atomic Microscopy at SPring-8's BL25SU

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsushita, Tomohiro; Guo, Fang Zhun; Muro, Takayuki

    2007-01-19

    We have developed a real-time photoelectron angular distribution (PEAD) and Auger-electron angular distribution (AEAD) imaging system at SPring-8 BL25SU, Japan. In addition, a real-time imaging system for circular dichroism (CD) studies of PEAD/AEAD has been newly developed. Two PEAD images recorded with left- and right-circularly polarized light can be regarded as a stereo image of the atomic arrangement. A two-dimensional display type mirror analyzer (DIANA) has been installed at the beamline, making it possible to record PEAD/AEAD patterns with an acceptance angle of {+-}60 deg. in real-time. The twin-helical undulators at BL25SU enable helicity switching of the circularly polarized lightmore » at 10Hz, 1Hz or 0.1Hz. In order to realize real-time measurements of the CD of the PEAD/AEAD, the CCD camera must be synchronized to the switching frequency. The VME computer that controls the ID is connected to the measurement computer with two BNC cables, and the helicity information is sent using TTL signals. For maximum flexibility, rather than using a hardware shutter synchronizing with the TTL signal we have developed software to synchronize the CCD shutter with the TTL signal. We have succeeded in synchronizing the CCD camera in both the 1Hz and 0.1Hz modes.« less

  16. Computer-aided diagnosis workstation and network system for chest diagnosis based on multislice CT images

    NASA Astrophysics Data System (ADS)

    Satoh, Hitoshi; Niki, Noboru; Mori, Kiyoshi; Eguchi, Kenji; Kaneko, Masahiro; Kakinuma, Ryutarou; Moriyama, Noriyuki; Ohmatsu, Hironobu; Masuda, Hideo; Machida, Suguru

    2007-03-01

    Multislice CT scanner advanced remarkably at the speed at which the chest CT images were acquired for mass screening. Mass screening based on multislice CT images requires a considerable number of images to be read. It is this time-consuming step that makes the use of helical CT for mass screening impractical at present. To overcome this problem, we have provided diagnostic assistance methods to medical screening specialists by developing a lung cancer screening algorithm that automatically detects suspected lung cancers in helical CT images and a coronary artery calcification screening algorithm that automatically detects suspected coronary artery calcification. Moreover, we have provided diagnostic assistance methods to medical screening specialists by using a lung cancer screening algorithm built into mobile helical CT scanner for the lung cancer mass screening done in the region without the hospital. We also have developed electronic medical recording system and prototype internet system for the community health in two or more regions by using the Virtual Private Network router and Biometric fingerprint authentication system and Biometric face authentication system for safety of medical information. Based on these diagnostic assistance methods, we have now developed a new computer-aided workstation and database that can display suspected lesions three-dimensionally in a short time. This paper describes basic studies that have been conducted to evaluate this new system.

  17. Structure and dynamics of Penetratin's association and translocation to a lipid bilayer

    NASA Astrophysics Data System (ADS)

    Ignacio J., General; Asciutto, Eliana K.

    2017-03-01

    Penetratin belongs to the important class of small and positively charged peptides, capable of entering cells. The determination of the optimal peptidic structure for translocation is challenging; results obtained so far are varied and dependent on several factors. In this work, we review the dynamics of association of Penetratin with a modeled dioleoyl-phosphatidylcholine (DOPC) lipid membrane using molecular dynamics simulations with last generation force fields. Penetratin's structural preferences are determined using a Markov state model. It is observed that the peptide retains a helical form in the membrane associated state, just as in water, with the exception of both termini which lose helicity, facilitating the interaction of terminal residues with the phosphate groups on the membrane's outer layer. The optimal orientation for insertion is found to be with the peptide's axis forming a small angle with the interface, and with R1 stretching toward the bilayer. The interaction between arginine side-chains and phosphate groups is found to be greater than the corresponding to lysine, mainly due to a higher number of hydrogen bonds between them. The free energy profile of translocation is qualitatively studied using Umbrella Sampling. It is found that there are different paths of penetration, that greatly differ in size of free energy barrier. The lowest path is compatible with residues R10 to K13 leading the way through the membrane and pulling the rest of the peptide. When the other side is reached, the C-terminus overtakes those residues, and finally breaks out of the membrane. The peptide's secondary structure during this traversal suffers some changes with respect to the association structure but, overall, conserves its helicity, with both termini in a more disordered state.

  18. Relaxation of flux ropes and magnetic reconnection in the Reconnection Scaling Experiment at LANL

    NASA Astrophysics Data System (ADS)

    Furno, I.; Intrator, T.; Hemsing, E.; Hsu, S.; Lapenta, G.; Abbate, S.

    2004-12-01

    Magnetic reconnection and plasma relaxation are studied in the Reconnection Scaling Experiment (RSX) with current carrying plasma columns (magnetic flux ropes). Using plasma guns, multiple flux ropes (Bθ ≤ 100 Gauss, L=90 cm, r≤3 cm) are generated in a three-dimensional (3D) cylindrical geometry and are observed to evolve dynamically during the injection of magnetic helicity. Detailed evolution of electron density, temperature, plasma potential and magnetic field structures is reconstructed experimentally and visible light emission is captured with a fast-gated, intensified CCD camera to provide insight into the global flux rope dynamics. Experiments with two flux ropes in collisional plasmas and in a strong axial guide field (Bz / Bθ > 10) suggest that magnetic reconnection plays an important role in the initial stages of flux rope evolution. During the early stages of the applied current drive (t≤ 20 τ Alfv´ {e}n), the flux ropes are observed to twist, partially coalesce and form a thin current sheet with a scale size comparable to that of the ion sound gyro-radius. Here, non-ideal terms in a generalized Ohm's Law appear to play a significant role in the 3D reconnection process as shown by the presence of a strong axial pressure gradient in the current sheet. In addition, a density perturbation with a structure characteristic of a kinetic Alfvén wave is observed to propagate axially in the current layer, anti-parallel to the induced sheet current. Later in the evolution, when a sufficient amount of helicity is injected into the system, a critical threshold for the kink instability is exceeded and the helical twisting of each individual flux rope can dominate the dynamics of the system. This may prevent the complete coalescence of the flux ropes.

  19. Relaxation of flux ropes and magnetic reconnection in the Reconnection Scaling Experiment at LANL

    NASA Astrophysics Data System (ADS)

    Furno, Ivo

    2004-11-01

    Magnetic reconnection and plasma relaxation are studied in the Reconnection Scaling Experiment (RSX) with current carrying plasma columns (magnetic flux ropes). Using plasma guns, multiple flux ropes (B_pol < 100 Gauss, L=90 cm, r < 3 cm) are generated in a three-dimensional (3D) cylindrical geometry and are observed to evolve dynamically during the injection of magnetic helicity. Detailed evolution of electron density, temperature, plasma potential and magnetic field structures is reconstructed experimentally and visible light emission is captured with a fast-gated, intensified CCD camera to provide insight into the global flux rope dynamics. Experiments with two flux ropes in collisional plasmas and in a strong axial guide field (Bz / B_pol > 10) suggest that magnetic reconnection plays an important role in the initial stages of flux rope evolution. During the early stages of the applied current drive (t < 20τ_Alfven), the flux ropes are observed to twist, partially coalesce and form a thin current sheet with a scale size comparable to that of the ion sound gyro-radius. Here, non-ideal terms in a generalized Ohm's Law appear to play a significant role in the 3D reconnection process as shown by the presence of a strong axial pressure gradient in the current sheet. In addition, a density perturbation with a structure characteristic of a kinetic Alfvén wave is observed to propagate axially in the current layer, anti-parallel to the induced sheet current. Later in the evolution, when a sufficient amount of helicity is injected into the system, a critical threshold for the kink instability is exceeded and the helical twisting of each individual flux rope can dominate the dynamics of the system. This may prevent the complete coalescence of the flux ropes.

  20. Probing Na+ Induced Changes in the HIV-1 TAR Conformational Dynamics using NMR Residual Dipolar Couplings: New Insights into the Role of Counterions and Electrostatic Interactions in Adaptive Recognition†

    PubMed Central

    Casiano-Negroni, Anette; Sun, Xiaoyan; Al-Hashimi, Hashim M.

    2012-01-01

    Many regulatory RNAs undergo large changes in structure upon recognition of proteins and ligands but the mechanism by which this occur remains poorly understood. Using NMR residual dipolar coupling (RDCs), we characterized Na+ induced changes in the structure and dynamics of the bulge-containing HIV-1 transactivation response element (TAR) RNA that mirror changes induced by small molecules bearing a different number of cationic groups. Increasing the Na+ concentration from 25 mM to 320 mM led to a continuous reduction in the average inter-helical bend angle (from 46° to 22°), inter-helical twist angle (from 66° to −18°) and inter-helix flexibility (as measured by an increase in the internal generalized degree of order from 0.56 to 0.74). Similar conformational changes were observed with Mg2+, indicating that non-specific electrostatic interactions drive the conformational transition, although results also suggest that Na+ and Mg2+ may associate with TAR in distinct modes. The transition can be rationalized based on a population-weighted average of two ensembles comprising an electrostatically relaxed bent and flexible TAR conformation that is weakly associated with counterions, and a globally rigid coaxial conformation which has stronger electrostatic potential and association with counterions. The TAR inter-helical orientations that are stabilized by small molecules fall around the metal-induced conformational pathway, indicating that counterions may help predispose the TAR conformation for target recognition. Our results underscore the intricate sensitivity of RNA conformational dynamics to environmental conditions and demonstrate the ability to detect subtle conformational changes using NMR RDCs. PMID:17488097

  1. Structure of the bacterial flagellar hook and implication for the molecular universal joint mechanism.

    PubMed

    Samatey, Fadel A; Matsunami, Hideyuki; Imada, Katsumi; Nagashima, Shigehiro; Shaikh, Tanvir R; Thomas, Dennis R; Chen, James Z; Derosier, David J; Kitao, Akio; Namba, Keiichi

    2004-10-28

    The bacterial flagellum is a motile organelle, and the flagellar hook is a short, highly curved tubular structure that connects the flagellar motor to the long filament acting as a helical propeller. The hook is made of about 120 copies of a single protein, FlgE, and its function as a nano-sized universal joint is essential for dynamic and efficient bacterial motility and taxis. It transmits the motor torque to the helical propeller over a wide range of its orientation for swimming and tumbling. Here we report a partial atomic model of the hook obtained by X-ray crystallography of FlgE31, a major proteolytic fragment of FlgE lacking unfolded terminal regions, and by electron cryomicroscopy and three-dimensional helical image reconstruction of the hook. The model reveals the intricate molecular interactions and a plausible switching mechanism for the hook to be flexible in bending but rigid against twisting for its universal joint function.

  2. Vorticity and helicity decompositions and dynamics with real Schur form of the velocity gradient

    NASA Astrophysics Data System (ADS)

    Zhu, Jian-Zhou

    2018-03-01

    The real Schur form (RSF) of a generic velocity gradient field ∇u is exploited to expose the structures of flows, in particular, our field decomposition resulting in two vorticities with only mutual linkage as the topological content of the global helicity (accordingly decomposed into two equal parts). The local transformation to the RSF may indicate alternative (co)rotating frame(s) for specifying the objective argument(s) of the constitutive equation. When ∇u is uniformly of RSF in a fixed Cartesian coordinate frame, i.e., ux = ux(x, y) and uy = uy(x, y), but uz = uz(x, y, z), the model, with the decomposed vorticities both frozen-in to u, is for two-component-two-dimensional-coupled-with-one-component-three-dimensional flows in between two-dimensional-three-component (2D3C) and fully three-dimensional-three-component ones and may help curing the pathology in the helical 2D3C absolute equilibrium, making the latter effectively work in more realistic situations.

  3. Thermodynamic and structural effect of urea and guanidine chloride on the helical and on a hairpin fragment of GB1 from molecular simulations.

    PubMed

    Meloni, R; Tiana, G

    2017-04-01

    With the help of molecular-dynamics simulations, we studied the effect of urea and guanidine chloride on the thermodynamic and structural properties of the helical fragment of protein GB1, comparing them with those of its second beta hairpin. We showed that the helical fragment in different solvents populates an ensemble of states that is more complex than that of the hairpin, and thus the associated experimental observables (circular-dichroism spectra, secondary chemical shifts, m values), that we back-calculated from the simulations and compared with the actual data, are more difficult to interpret. We observed that in the case of both peptides, urea binds tightly to their backbone, while guanidine exerts its denaturing effect in a more subtle way, strongly affecting the electrostatic properties of the solution. This difference can have consequences in the way denaturation experiments are interpreted. Proteins 2017; 85:753-763. © 2016 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  4. Formation and Sustainment of Flipped Spherical Torus Plasmas on HIST

    NASA Astrophysics Data System (ADS)

    Oguro, T.; Jinno, T.; Hasegawa, H.; Nagata, M.; Fukumoto, N.; Uyama, T.; Masamune, S.; Iida, M.; Katsurai, M.

    2002-11-01

    In order to understand comprehensively the relaxation and self-organization in the coaxial helicity injection system, we have investigated dynamics of ST plasmas produced in the HIST device by decreasing the external toroidal field (TF) and reversing its sign in time. In results, we have discovered that the ST relaxes towards flipped/reversed ST configurations. Surprisingly, it has been observed that not only toroidal flux but also poloidal flux reverses sign spontaneously during the relaxation process. This self-reversal of the poloidal field is thought to be evidence for global helicity conservation. Taylor helicity-driven relaxed theory predicts that there exists the relaxed state of the flipped ST plasma when the TF current is reversed. We found that when q_axis passes through the q_axis =1 rational barrier in the initial phase, the ST plasma becomes unstable and relaxes to flipped states through RFP states. The n=1 mode activities are essential in the formation and sustainment of the flipped ST.

  5. Design, synthesis, and biological evaluation of stable β6.3-Helices: Discovery of non-hemolytic antibacterial peptides.

    PubMed

    Reddy, Damodara N; Singh, Sukrit; Ho, Chris M W; Patel, Janki; Schlesinger, Paul; Rodgers, Stephen; Doctor, Allan; Marshall, Garland R

    2018-04-10

    Gramicidin A, a topical antibiotic made from alternating L and D amino acids, is characterized by its wide central pore; upon insertion into membranes, it forms channels that disrupts ion gradients. We present helical peptidomimetics with this characteristic wide central pore that have been designed to mimic gramicidin A channels. Mimetics were designed using molecular modeling focused on oligomers of heterochiral dipeptides of proline analogs, in particular azaproline (AzPro). Molecular Dynamics simulations in water confirmed the stability of the designed helices. A sixteen-residue Formyl-(AzPro-Pro) 8 -NHCH 2 CH 2 OH helix was synthesized as well as a full thirty-two residue Cbz-(AzPro-Pro) 16 -O t Bu channels. No liposomal lysis activity was observed suggesting lack of channel formation, possibly due to inappropriate hydrogen-bonding interactions in the membrane. These peptidomimetics also did not hemolyze red blood cells, unlike gramicidin A. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  6. On the Construction and Dynamics of Knotted Fields

    NASA Astrophysics Data System (ADS)

    Kedia, Hridesh

    Representing a physical field in terms of its field lines has often enabled a deeper understanding of complex physical phenomena, from Faraday's law of magnetic induction, to the Helmholtz laws of vortex motion, to the free energy density of liquid crystals in terms of the distortions of the lines of the director field. At the same time, the application of ideas from topology--the study of properties that are invariant under continuous deformations--has led to robust insights into the nature of complex physical systems from defects in crystal structures, to the earth's magnetic field, to topological conservation laws. The study of knotted fields, physical fields in which the field lines encode knots, emerges naturally from the application of topological ideas to the investigation of the physical phenomena best understood in terms of the lines of a field. A knot--a closed loop tangled with itself which can not be untangled without cutting the loop--is the simplest topologically non-trivial object constructed from a line. Remarkably, knots in the vortex (magnetic field) lines of a dissipationless fluid (plasma), persist forever as they are transported by the flow, stretching and rotating as they evolve. Moreover, deeply entwined with the topology-preserving dynamics of dissipationless fluids and plasmas, is an additional conserved quantity--helicity, a measure of the average linking of the vortex (magnetic field) lines in a fluid (plasma)--which has had far-reaching consequences for fluids and plasmas. Inspired by the persistence of knots in dissipationless flows, and their far-reaching physical consequences, we seek to understand the interplay between the dynamics of a field and the topology of its field lines in a variety of systems. While it is easy to tie a knot in a shoelace, tying a knot in the the lines of a space-filling field requires contorting the lines everywhere to match the knotted region. The challenge of analytically constructing knotted field configurations has impeded a deeper understanding of the interplay between topology and dynamics in fluids and plasmas. We begin by analytically constructing knotted field configurations which encode a desired knot in the lines of the field, and show that their helicity can be tuned independently of the encoded knot. The nonlinear nature of the physical systems in which these knotted field configurations arise, makes their analytical study challenging. We ask if a linear theory such as electromagnetism can allow knotted field configurations to persist with time. We find analytical expressions for an infinite family of knotted solutions to Maxwell's equations in vacuum and elucidate their connections to dissipationless flows. We present a design rule for constructing such persistently knotted electromagnetic fields, which could possibly be used to transfer knottedness to matter such as quantum fluids and plasmas. An important consequence of the persistence of knots in classical dissipationless flows is the existence of an additional conserved quantity, helicity, which has had far-reaching implications. To understand the existence of analogous conserved quantities, we ask if superfluids, which flow without dissipation just like classical dissipationless flows, have an additional conserved quantity akin to helicity. We address this question using an analytical approach based on defining the particle relabeling symmetry--the symmetry underlying helicity conservation--in superfluids, and find that an analogous conserved quantity exists but vanishes identically owing to the intrinsic geometry of complex scalar fields. Furthermore, to address the question of a ``classical limit'' of superfluid vortices which recovers classical helicity conservation, we perform numerical simulations of \\emph{bundles} of superfluid vortices, and find behavior akin to classical viscous flows.

  7. A Coherent vorticity preserving eddy-viscosity correction for Large-Eddy Simulation

    NASA Astrophysics Data System (ADS)

    Chapelier, J.-B.; Wasistho, B.; Scalo, C.

    2018-04-01

    This paper introduces a new approach to Large-Eddy Simulation (LES) where subgrid-scale (SGS) dissipation is applied proportionally to the degree of local spectral broadening, hence mitigated or deactivated in regions dominated by large-scale and/or laminar vortical motion. The proposed coherent-vorticity preserving (CvP) LES methodology is based on the evaluation of the ratio of the test-filtered to resolved (or grid-filtered) enstrophy, σ. Values of σ close to 1 indicate low sub-test-filter turbulent activity, justifying local deactivation of the SGS dissipation. The intensity of the SGS dissipation is progressively increased for σ < 1 which corresponds to a small-scale spectral broadening. The SGS dissipation is then fully activated in developed turbulence characterized by σ ≤σeq, where the value σeq is derived assuming a Kolmogorov spectrum. The proposed approach can be applied to any eddy-viscosity model, is algorithmically simple and computationally inexpensive. LES of Taylor-Green vortex breakdown demonstrates that the CvP methodology improves the performance of traditional, non-dynamic dissipative SGS models, capturing the peak of total turbulent kinetic energy dissipation during transition. Similar accuracy is obtained by adopting Germano's dynamic procedure albeit at more than twice the computational overhead. A CvP-LES of a pair of unstable periodic helical vortices is shown to predict accurately the experimentally observed growth rate using coarse resolutions. The ability of the CvP methodology to dynamically sort the coherent, large-scale motion from the smaller, broadband scales during transition is demonstrated via flow visualizations. LES of compressible channel are carried out and show a good match with a reference DNS.

  8. Geometric and computer-aided spline hob modeling

    NASA Astrophysics Data System (ADS)

    Brailov, I. G.; Myasoedova, T. M.; Panchuk, K. L.; Krysova, I. V.; Rogoza, YU A.

    2018-03-01

    The paper considers acquiring the spline hob geometric model. The objective of the research is the development of a mathematical model of spline hob for spline shaft machining. The structure of the spline hob is described taking into consideration the motion in parameters of the machine tool system of cutting edge positioning and orientation. Computer-aided study is performed with the use of CAD and on the basis of 3D modeling methods. Vector representation of cutting edge geometry is accepted as the principal method of spline hob mathematical model development. The paper defines the correlations described by parametric vector functions representing helical cutting edges designed for spline shaft machining with consideration for helical movement in two dimensions. An application for acquiring the 3D model of spline hob is developed on the basis of AutoLISP for AutoCAD environment. The application presents the opportunity for the use of the acquired model for milling process imitation. An example of evaluation, analytical representation and computer modeling of the proposed geometrical model is reviewed. In the mentioned example, a calculation of key spline hob parameters assuring the capability of hobbing a spline shaft of standard design is performed. The polygonal and solid spline hob 3D models are acquired by the use of imitational computer modeling.

  9. Computational fluid dynamics evaluation of the cross-limb stent graft configuration for endovascular aneurysm repair.

    PubMed

    Shek, Tina L T; Tse, Leonard W; Nabovati, Aydin; Amon, Cristina H

    2012-12-01

    The technique of crossing the limbs of bifurcated modular stent grafts for endovascular aneurysm repair (EVAR) is often employed in the face of splayed aortic bifurcations to facilitate cannulation and prevent device kinking. However, little has been reported about the implications of cross-limb EVAR, especially in comparison to conventional EVAR. Previous computational fluid dynamics studies of conventional EVAR grafts have mostly utilized simplified planar stent graft geometries. We herein examined the differences between conventional and cross-limb EVAR by comparing their hemodynamic flow fields (i.e., in the "direct" and "cross" configurations, respectively). We also added a "planar" configuration, which is commonly found in the literature, to identify how well this configuration compares to out-of-plane stent graft configurations from a hemodynamic perspective. A representative patient's cross-limb stent graft geometry was segmented using computed tomography imaging in Mimics software. The cross-limb graft geometry was used to build its direct and planar counterparts in SolidWorks. Physiologic velocity and mass flow boundary conditions and blood properties were implemented for steady-state and pulsatile transient simulations in ANSYS CFX. Displacement forces, wall shear stress (WSS), and oscillatory shear index (OSI) were all comparable between the direct and cross configurations, whereas the planar geometry yielded very different predictions of hemodynamics compared to the out-of-plane stent graft configurations, particularly for displacement forces. This single-patient study suggests that the short-term hemodynamics involved in crossing the limbs is as safe as conventional EVAR. Higher helicity and improved WSS distribution of the cross-limb configuration suggest improved flow-related thrombosis resistance in the short term. However, there may be long-term fatigue implications to stent graft use in the cross configuration when compared to the direct configuration.

  10. Lung Motion Model Validation Experiments, Free-Breathing Tissue Densitometry, and Ventilation Mapping using Fast Helical CT Imaging

    NASA Astrophysics Data System (ADS)

    Dou, Hsiang-Tai

    The uncertainties due to respiratory motion present significant challenges to accurate characterization of cancerous tissues both in terms of imaging and treatment. Currently available clinical lung imaging techniques are subject to inferior image quality and incorrect motion estimation, with consequences that can systematically impact the downstream treatment delivery and outcome. The main objective of this thesis is the development of the techniques of fast helical computed tomography (CT) imaging and deformable image registration for the radiotherapy applications in accurate breathing motion modeling, lung tissue density modeling and ventilation imaging. Fast helical CT scanning was performed on 64-slice CT scanner using the shortest available gantry rotation time and largest pitch value such that scanning of the thorax region amounts to just two seconds, which is less than typical breathing cycle in humans. The scanning was conducted under free breathing condition. Any portion of the lung anatomy undergoing such scanning protocol would be irradiated for only a quarter second, effectively removing any motion induced image artifacts. The resulting CT data were pristine volumetric images that record the lung tissue position and density in a fraction of the breathing cycle. Following our developed protocol, multiple fast helical CT scans were acquired to sample the tissue positions in different breathing states. To measure the tissue displacement, deformable image registration was performed that registers the non-reference images to the reference one. In modeling breathing motion, external breathing surrogate signal was recorded synchronously with the CT image slices. This allowed for the tissue-specific displacement to be modeled as parametrization of the recorded breathing signal using the 5D lung motion model. To assess the accuracy of the motion model in describing tissue position change, the model was used to simulate the original high-pitch helical CT scan geometries, employed as ground truth data. Image similarity between the simulated and ground truth scans was evaluated. The model validation experiments were conducted in a patient cohort of seventeen patients to assess the model robustness and inter-patient variation. The model error averaged over multiple tracked positions from several breathing cycles was found to be on the order of one millimeter. In modeling the density change under free breathing condition, the determinant of Jacobian matrix from the registration-derived deformation vector field yielded volume change information of the lung tissues. Correlation of the Jacobian values to the corresponding voxel Housfield units (HU) reveals that the density variation for the majority of lung tissues can be very well described by mass conservation relationship. Different tissue types were identified and separately modeled. Large trials of validation experiments were performed. The averaged deviation between the modeled and the reference lung density was 30 HU, which was estimated to be the background CT noise level. In characterizing the lung ventilation function, a novel method was developed to determine the extent of lung tissue volume change. Information on volume change was derived from the deformable image registration of the fast helical CT images in terms of Jacobian values with respect to a reference image. Assuming the multiple volume change measurements are independently and identically distributed, statistical formulation was derived to model ventilation distribution of each lung voxels and empirical minimum and maximum probability distribution of the Jacobian values was computed. Ventilation characteristic was evaluated as the difference of the expectation value from these extremal distributions. The resulting ventilation map was compared with an independently obtained ventilation image derived directly from the lung intensities and good correlation was found using statistical test. In addition, dynamic ventilation characterization was investigated by estimating the voxel-specific ventilation distribution. Ventilation maps were generated at different percentile levels using the tissue volume expansion metrics.

  11. Molecular dynamics simulations elucidate the mode of protein recognition by Skp1 and the F-box domain in the SCF complex.

    PubMed

    Chandra Dantu, Sarath; Nathubhai Kachariya, Nitin; Kumar, Ashutosh

    2016-01-01

    Polyubiquitination of the target protein by a ubiquitin transferring machinery is key to various cellular processes. E3 ligase Skp1-Cul1-F-box (SCF) is one such complex which plays crucial role in substrate recognition and transfer of the ubiquitin molecule. Previous computational studies have focused on S-phase kinase-associated protein 2 (Skp2), cullin, and RING-finger proteins of this complex, but the roles of the adapter protein Skp1 and F-box domain of Skp2 have not been determined. Using sub-microsecond molecular dynamics simulations of full-length Skp1, unbound Skp2, Skp2-Cks1 (Cks1: Cyclin-dependent kinases regulatory subunit 1), Skp1-Skp2, and Skp1-Skp2-Cks1 complexes, we have elucidated the function of Skp1 and the F-box domain of Skp2. We found that the L16 loop of Skp1, which was deleted in previous X-ray crystallography studies, can offer additional stability to the ternary complex via its interactions with the C-terminal tail of Skp2. Moreover, Skp1 helices H6, H7, and H8 display vivid conformational flexibility when not bound to Skp2, suggesting that these helices can recognize and lock the F-box proteins. Furthermore, we observed that the F-box domain could rotate (5°-129°), and that the binding partner determined the degree of conformational flexibility. Finally, Skp1 and Skp2 were found to execute a domain motion in Skp1-Skp2 and Skp1-Skp2-Cks1 complexes that could decrease the distance between ubiquitination site of the substrate and the ubiquitin molecule by 3 nm. Thus, we propose that both the F-box domain of Skp2 and Skp1-Skp2 domain motions displaying preferential conformational control can together facilitate polyubiquitination of a wide variety of substrates. © 2015 Wiley Periodicals, Inc.

  12. β N-O turns and helices induced by β2-aminoxy peptides: synthesis and conformational studies.

    PubMed

    Jiao, Zhi-Gang; Chang, Xiao-Wei; Ding, Wei; Liu, Guo-Jun; Song, Ke-Sheng; Zhu, Nian-Yong; Zhang, Dan-Wei; Yang, Dan

    2011-07-04

    Herein, we report an efficient route for the asymmetric synthesis of β(2)-aminoxy acids as well as experimental and theoretical studies of conformations of peptides composed of β(2)-aminoxy acids. The nine-membered-ring intramolecular hydrogen bonds, namely, β N-O turns, are generated between adjacent residues in those peptides, in accordance with our computational results. The presence of two consecutive homochiral β N-O turns leads to the formation of β N-O helical structures in solution, although both helical (composed of two β N-O turns of the same handedness) and reverse-turn (composed of two β N-O turns with opposite handedness) structures are of similar stability, as suggested by theoretical studies. Nevertheless, two slightly different conformations, with the same handedness, of β(2)-aminoxy monomers have been observed in the solid state and in solution according to our X-ray and 2D NOESY studies. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Navigating around the algebraic jungle of QCD: efficient evaluation of loop helicity amplitudes

    NASA Astrophysics Data System (ADS)

    Lam, C. S.

    1993-05-01

    A method is developed whereby spinor helicity techniques can be used to simlify the calculation of loop amplitudes. This is achieved by using the Feynman-parameter representation where the offending off-shell loop momenta do not appear. Other shortcuts motivated by the Bern-Kosower one-loop string calculations can be incorporated into the formalism. This includes color reorganization into Chan-Paton factors and the use of background Feynman gauge. This method is applicable to any Feynman diagram with any number of loops as long as the external masses can be ignored. In order to minimize the very considerable algebra encountered in non-abelian gauge theories, graphical methods are developed for most of the calculations. This enables the large number of terms encountered to be organized implicitly in the Feynman diagram without the necessity of writing down any of them algebraically. A one-loop four-gluon amplitude in a particular helicity configuration is computed explicitly to illustrate the method.

  14. Synthesis, optical properties, and helical self-assembly of a bivaline-containing tetraphenylethene

    NASA Astrophysics Data System (ADS)

    Li, Hongkun; Zheng, Xiaoyan; Su, Huimin; Lam, Jacky W. Y.; Sing Wong, Kam; Xue, Shan; Huang, Xuejiao; Huang, Xuhui; Li, Bing Shi; Tang, Ben Zhong

    2016-01-01

    A chiral tetraphenylethene derivative with two valine-containing attachments (TPE-DVAL), was synthesized by Cu(I)-catalyzed azide-alkyne “click” reaction. The optical properties and self-assembling behaviours of TPE-DVAL were investigated. The molecule is non-emissive and circular dichroism (CD)-silent in solution, but shows strong fluorescence and Cotton effects in the aggregation state, demonstrating aggregation-induced emission (AIE) and CD (AICD) characteristics. TPE-DVAL exhibits good circularly polarized luminescence (CPL) when depositing on the surface of quartz to allow the evaporation of its 1,2-dichloroethane solution. SEM and TEM images of the molecule show that the molecule readily self-assembles into right-handed helical nanofibers upon the evaporation of its solvent of DCE. The molecular alignments and interactions in assembling process are further explored through XRD analysis and computational simulation. The driving forces for the formation of the helical fibers were from the cooperative effects of intermolecular hydrogen bonding, π-π interactions and steric effect.

  15. Substrate-modulated unwinding of transmembrane helices in the NSS transporter LeuT.

    PubMed

    Merkle, Patrick S; Gotfryd, Kamil; Cuendet, Michel A; Leth-Espensen, Katrine Z; Gether, Ulrik; Loland, Claus J; Rand, Kasper D

    2018-05-01

    LeuT, a prokaryotic member of the neurotransmitter:sodium symporter (NSS) family, is an established structural model for mammalian NSS counterparts. We investigate the substrate translocation mechanism of LeuT by measuring the solution-phase structural dynamics of the transporter in distinct functional states by hydrogen/deuterium exchange mass spectrometry (HDX-MS). Our HDX-MS data pinpoint LeuT segments involved in substrate transport and reveal for the first time a comprehensive and detailed view of the dynamics associated with transition of the transporter between outward- and inward-facing configurations in a Na + - and K + -dependent manner. The results suggest that partial unwinding of transmembrane helices 1/5/6/7 drives LeuT from a substrate-bound, outward-facing occluded conformation toward an inward-facing open state. These hitherto unknown, large-scale conformational changes in functionally important transmembrane segments, observed for LeuT in detergent-solubilized form and when embedded in a native-like phospholipid bilayer, could be of physiological relevance for the translocation process.

  16. Exploring the pH-Dependent Substrate Transport Mechanism of FocA Using Molecular Dynamics Simulation

    PubMed Central

    Lv, Xiaoying; Liu, Huihui; Ke, Meng; Gong, Haipeng

    2013-01-01

    FocA belongs to the formate-nitrate transporter family and plays an essential role in the export and uptake of formate in organisms. According to the available crystal structures, the N-terminal residues of FocA are structurally featureless at physiological conditions but at reduced pH form helices to harbor the cytoplasmic entrance of the substrate permeation pathway, which apparently explains the cessation of electrical signal observed in electrophysiological experiments. In this work, we found by structural analysis and molecular dynamics simulations that those N-terminal helices cannot effectively preclude the substrate permeation. Equilibrium simulations and thermodynamic calculations suggest that FocA is permeable to both formate and formic acid, the latter of which is transparent to electrophysiological studies as an electrically neutral species. Hence, the cease of electrical current at acidic pH may be caused by the change of the transported substrate from formate to formic acid. In addition, the mechanism of formate export at physiological pH is discussed. PMID:24359743

  17. Holographic self-tuning of the cosmological constant

    NASA Astrophysics Data System (ADS)

    Charmousis, Christos; Kiritsis, Elias; Nitti, Francesco

    2017-09-01

    We propose a brane-world setup based on gauge/gravity duality in which the four-dimensional cosmological constant is set to zero by a dynamical self-adjustment mechanism. The bulk contains Einstein gravity and a scalar field. We study holographic RG flow solutions, with the standard model brane separating an infinite volume UV region and an IR region of finite volume. For generic values of the brane vacuum energy, regular solutions exist such that the four-dimensional brane is flat. Its position in the bulk is determined dynamically by the junction conditions. Analysis of linear fluctuations shows that a regime of 4-dimensional gravity is possible at large distances, due to the presence of an induced gravity term. The graviton acquires an effective mass, and a five-dimensional regime may exist at large and/or small scales. We show that, for a broad choice of potentials, flat-brane solutions are manifestly stable and free of ghosts. We compute the scalar contribution to the force between brane-localized sources and show that, in certain models, the vDVZ discontinuity is absent and the effective interaction at short distances is mediated by two transverse graviton helicities.

  18. Spatiotemporally resolved magnetic dynamics in B20 chiral FeGe

    NASA Astrophysics Data System (ADS)

    Gray, Isaiah; Turgut, Emrah; Bartell, Jason; Fuchs, Gregory

    Chiral magnetic materials have shown promise for ultra-low-power memory devices exploiting low critical currents for manipulation of spin textures. This motivates systematic studies of chiral dynamics in thin films, both for understanding magnetic properties and for developing devices. We use time-resolved anomalous Nernst effect (TRANE) microscopy to examine ferromagnetic resonance modes in 170 nm thin films of B20 chiral FeGe. Using 3 ps laser pulses with 1.2 μm resolution to generate a local thermal gradient, we measure the resulting Nernst voltage, which is proportional to the in-plane component of the magnetization. We first characterize and image the static magnetic moment as a function of temperature near the helical phase transition at 273 K. We then excite ferromagnetic resonance with microwave current and study the dynamical modes as a function of temperature, spatial position, and frequency. We identify both the uniform field-polarized mode and the helical spin-polarized mode and study the different spatial structures of the two modes. This work was supported by the Cornell Center for Materials Science with funding from the NSF MRSEC program (DMR-1120296), and also by the DOE Office of Science (Grant No. DE-SC0012245).

  19. Computational study of packing a collagen-like molecule: quasi-hexagonal vs "Smith" collagen microfibril model.

    PubMed

    Lee, J; Scheraga, H A; Rackovsky, S

    1996-01-01

    The lateral packing of a collagen-like molecule, CH3CO-(Gly-L-Pro-L-Pro)4-NHCH3, has been examined by energy minimization with the ECEPP/3 force field. Two current packing models, the Smith collagen microfibril twisted equilateral pentagonal model and the quasi-hexagonal packing model, have been extensively investigated. In treating the Smith microfibril model, energy minimization was carried out on various conformations including those with the symmetry of equivalent packing, i.e., in which the triple helices were arranged equivalently with respect to each other. Both models are based on the experimental observation of the characteristic axial periodicity, D = 67 nm, of light and dark bands, indicating that, if any superstructure exists, it should consist of five triple helices. The quasi-hexagonal packing structure is found to be energetically more favorable than the Smith microfibril model by as much as 31.2 kcal/mol of five triple helices. This is because the quasi-hexagonal packing geometry provides more nonbonded interaction possibilities between triple helices than does the Smith microfibril geometry. Our results are consistent with recent x-ray studies with synthetic collagen-like molecules and rat tail tendon, in which the data were interpreted as being consistent with either a quasi-hexagonal or a square-triangular structure.

  20. On the structure and statistical theory of turbulence of extended magnetohydrodynamics

    DOE PAGES

    Miloshevich, George; Lingam, Manasvi; Morrison, Philip J.

    2017-01-16

    Recent progress regarding the noncanonical Hamiltonian formulation of extended magnetohydrodynamics (XMHD), a model with Hall drift and electron inertia, is summarized. The advantages of the Hamiltonian approach are invoked to study some general properties of XMHD turbulence, and to compare them against their ideal MHD counterparts. For instance, the helicity flux transfer rates for XMHD are computed, and Liouville's theorem for this model is also verified. The latter is used, in conjunction with the absolute equilibrium states, to arrive at the spectra for the invariants, and to determine the direction of the cascades, e.g., generalizations of the well-known ideal MHDmore » inverse cascade of magnetic helicity. After a similar analysis is conducted for XMHD by inspecting second order structure functions and absolute equilibrium states, a couple of interesting results emerge. When cross helicity is taken to be ignorable, the inverse cascade of injected magnetic helicity also occurs in the Hall MHD range-this is shown to be consistent with previous results in the literature. In contrast, in the inertial MHD range, viz at scales smaller than the electron skin depth, all spectral quantities are expected to undergo direct cascading. Finally, the consequences and relevance of our results in space and astrophysical plasmas are also briefly discussed.« less

  1. Effect of oscillation dynamics on long-range electron transfer in a helical peptide monolayer.

    PubMed

    Matsushita, Daisuke; Uji, Hirotaka; Kimura, Shunsaku

    2018-06-06

    Electron transfer (ET) reactions via helical peptides composed of -(Aib-Pro)n- were studied in self-assembled monolayers and compared with -(Ala-Aib)n- peptides. Short Aib-Pro peptides showed slightly higher ET rates due to the better electronic coupling of the Pro residue. But, the 24mer Aib-Pro peptide showed a smaller ET rate than the corresponding Ala-Aib peptide. On the basis of DFT calculations, the deceleration of the ET rate of the longer Aib-Pro peptide is considered to be due to the smaller number of active modes of accordion-like oscillations than the Ala-Aib peptide, which has a strong influence on a long-range ET reaction.

  2. Application of MCR-ALS to reveal intermediate conformations in the thermally induced α-β transition of poly-L-lysine monitored by FT-IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Alcaráz, Mirta R.; Schwaighofer, Andreas; Goicoechea, Héctor; Lendl, Bernhard

    2017-10-01

    Temperature-induced conformational transitions of poly-L-lysine were monitored with Fourier-transform infrared (FT-IR) spectroscopy between 10 °C and 70 °C. Chemometric analysis of dynamic IR spectra was performed by multivariate curve analysis-alternating least squares (MCR-ALS) of the amide I‧ and amide II‧ spectral region. With this approach, the pure spectral and concentration profiles of the conformational transition were obtained. Beside the initial α-helical, the intermediate random coil/extended helices and the final β-sheet structure, an additional intermediate PLL conformation was identified and attributed to a transient β-sheet structure.

  3. HolT Hunter: Software for Identifying and Characterizing Low-Strain DNA Holliday Triangles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sherman W. B.

    2012-06-05

    Synthetic DNA nanostructures are most commonly held together via Holliday junctions. These junctions allow for a wide variety of different angles between the double helices they connect. Nevertheless, only constructs with a very limited selection of angles have been built, to date, because of the computational complexity of identifying structures that fit together with low strain at odd angles. I have developed an algorithm that finds over 95% of the possible solutions by breaking the problem down into two portions. First, there is a problem of how smooth rods can form triangles by lying across one another. This problem ismore » easily handled by numerical computation. Second, there is the question of how distorted DNA double helices would need to be to fit onto the rod structure. This strain is calculated directly. The algorithm has been implemented in a Mathematica 8 notebook called Holliday Triangle Hunter. A large database of solutions has been identified. Additional interface software is available to facilitate drawing and viewing models.« less

  4. Rib osteoblastic osteosarcoma in an African hedgehog (Atelerix albiventris).

    PubMed

    Benoit-Biancamano, Marie-Odile; D'Anjou, Marc-André; Girard, Christiane; Langlois, Isabelle

    2006-07-01

    A 3-year-old African hedgehog (Atelerix albiventris) was presented to the Exotic Animal Clinic of the University of Montreal for evaluation of a mass growing on the right thoracic wall. The diagnostic workup, which included helical computed tomography, confirmed the presence of a large mass, originating from the right 7th rib, infiltrating the thoracic wall and cavity. The animal was euthanized due to the poor prognosis. At necropsy, a well-demarcated mass penetrated the thoracic wall and incorporated the 6th to 8th ribs. Cut sections of the tumor were white, glistening, firm, and gritty. Microscopically, it was composed of polyhedral to elongated cells with interspersed trabeculae of osteoid and large areas of coagulative necrosis. On the basis of histopathologic findings, a diagnosis of osteoblastic osteosarcoma was made. To the authors' knowledge, this is the first report of an osteoblastic osteosarcoma on the thoracic wall of an African hedgehog, as well as the first report of the use of helical computed tomography in that species.

  5. Continuum Gyrokinetic Simulations of Turbulence in a Helical Model SOL with NSTX-type parameters

    NASA Astrophysics Data System (ADS)

    Hammett, G. W.; Shi, E. L.; Hakim, A.; Stoltzfus-Dueck, T.

    2017-10-01

    We have developed the Gkeyll code to carry out 3D2V full- F gyrokinetic simulations of electrostatic plasma turbulence in open-field-line geometries, using special versions of discontinuous-Galerkin algorithms to help with the computational challenges of the edge region. (Higher-order algorithms can also be helpful for exascale computing as they reduce the ratio of communications to computations.) Our first simulations with straight field lines were done for LAPD-type cases. Here we extend this to a helical model of an SOL plasma and show results for NSTX-type parameters. These simulations include the basic elements of a scrape-off layer: bad-curvature/interchange drive of instabilities, narrow sources to model plasma leaking from the core, and parallel losses with model sheath boundary conditions (our model allows currents to flow in and out of the walls). The formation of blobs is observed. By reducing the strength of the poloidal magnetic field, the heat flux at the divertor plate is observed to broaden. Supported by the Max-Planck/Princeton Center for Plasma Physics, the SciDAC Center for the Study of Plasma Microturbulence, and DOE Contract DE-AC02-09CH11466.

  6. Measurements of Some Properties on Non-Hookean Springs.

    ERIC Educational Resources Information Center

    Lancaster, G.

    1983-01-01

    Describes an experiment in which static/dynamic properties of a helical, steel spring are investigated. During the experiment students discover that the behavior of the springs is non-Hookean at small loads. Background information (including static deflection and period of oscillation) and typical results are provided. (JM)

  7. Computation of inverse magnetic cascades

    NASA Technical Reports Server (NTRS)

    Montgomery, D.

    1981-01-01

    Inverse cascades of magnetic quantities for turbulent incompressible magnetohydrodynamics are reviewed, for two and three dimensions. The theory is extended to the Strauss equations, a description intermediate between two and three dimensions appropriate to Tokamak magnetofluids. Consideration of the absolute equilibrium Gibbs ensemble for the system leads to a prediction of an inverse cascade of magnetic helicity, which may manifest itself as a major disruption. An agenda for computational investigation of this conjecture is proposed.

  8. Exploring Flexibility of Progesterone Receptor Ligand Binding Domain Using Molecular Dynamics

    PubMed Central

    Zheng, Liangzhen; Mu, Yuguang

    2016-01-01

    Progesterone receptor (PR), a member of nuclear receptor (NR) superfamily, plays a vital role for female reproductive tissue development, differentiation and maintenance. PR ligand, such as progesterone, induces conformation changes in PR ligand binding domain (LBD), thus mediates subsequent gene regulation cascades. PR LBD may adopt different conformations upon an agonist or an antagonist binding. These different conformations would trigger distinct transcription events. Therefore, the dynamics of PR LBD would be of general interest to biologists for a deep understanding of its structure-function relationship. However, no apo-form (non-ligand bound) of PR LBD model has been proposed either by experiments or computational methods so far. In this study, we explored the structural dynamics of PR LBD using molecular dynamics simulations and advanced sampling tools in both ligand-bound and the apo-forms. Resolved by the simulation study, helix 11, helix 12 and loop 895–908 (the loop between these two helices) are quite flexible in antagonistic conformation. Several residues, such as Arg899 and Glu723, could form salt-bridging interaction between helix 11 and helix 3, and are important for the PR LBD dynamics. And we also propose that helix 12 in apo-form PR LBD, not like other NR LBDs, such as human estrogen receptor α (ERα) LBD, may not adopt a totally extended conformation. With the aid of umbrella sampling and metadynamics simulations, several stable conformations of apo-form PR LBD have been sampled, which may work as critical structural models for further large scale virtual screening study to discover novel PR ligands for therapeutic application. PMID:27824891

  9. [Leonardo da Vinci the first human body imaging specialist. A brief communication on the thorax oseum images].

    PubMed

    Cicero, Raúl; Criales, José Luis; Cardoso, Manuel

    2009-01-01

    The impressive development of computed tomography (CT) techniques such as the three dimensional helical CT produces a spatial image of the thoracic skull. At the beginning of the 16th century Leonardo da Vinci drew with great precision the thorax oseum. These drawings show an outstanding similarity with the images obtained by three dimensional helical CT. The cumbersome task of the Renaissance genius is a prime example of the careful study of human anatomy. Modern imaging techniques require perfect anatomic knowledge of the human body in order to generate exact interpretations of images. Leonardo's example is alive for anybody devoted to modern imaging studies.

  10. Asynchronous Movements Prior to Pore Opening in NMDA Receptors

    PubMed Central

    Kazi, Rashek; Gan, Quan; Talukder, Iehab; Markowitz, Michael; Salussolia, Catherine L.

    2013-01-01

    Glutamate-gated ion channels embedded within the neuronal membrane are the primary mediators of fast excitatory synaptic transmission in the CNS. The ion channel of these glutamate receptors contains a pore-lining transmembrane M3 helix surrounded by peripheral M1 and M4 helices. In the NMDA receptor subtype, opening of the ion channel pore, mediated by displacement of the M3 helices away from the central pore axis, occurs in a highly concerted fashion, but the associated temporal movements of the peripheral helices are unknown. To address the gating dynamics of the peripheral helices, we constrained the relative movements of the linkers that connect these helices to the ligand-binding domain using engineered cross-links, either within (intra-GluN1 or GluN2A) or between subunits. Constraining the peripheral linkers in any manner dramatically curtailed channel opening, highlighting the requirement for rearrangements of these peripheral structural elements for efficient gating to occur. However, the magnitude of this gating effect depended on the specific subunit being constrained, with the most dramatic effects occurring when the constraint was between subunits. Based on kinetic and thermodynamic analysis, our results suggest an asynchrony in the displacement of the peripheral linkers during the conformational and energetic changes leading to pore opening. Initially there are large-scale rearrangements occurring between the four subunits. Subsequently, rearrangements occur within individual subunits, mainly GluN2A, leading up to or in concert with pore opening. Thus, the conformational changes induced by agonist binding in NMDA receptors converge asynchronously to permit pore opening. PMID:23864691

  11. Very-high-Reynolds-number vortex dynamics via Coherent-vorticity-Preserving (CvP) Large-eddy simulations

    NASA Astrophysics Data System (ADS)

    Chapelier, Jean-Baptiste; Wasistho, Bono; Scalo, Carlo

    2017-11-01

    A new approach to Large-Eddy Simulation (LES) is introduced, where subgrid-scale (SGS) dissipation is applied proportionally to the degree of local spectral broadening, hence mitigated in regions dominated by large-scale vortical motion. The proposed CvP-LES methodology is based on the evaluation of the ratio of the test-filtered to resolved (or grid-filtered) enstrophy: σ = ξ ∧ / ξ . Values of σ = 1 indicate low sub-test-filter turbulent activity, justifying local deactivation of any subgrid-scale model. Values of σ < 1 span conditions ranging from incipient spectral broadening σ <= 1 , to equilibrium turbulence σ =σeq < 1 , where σeq is solely as a function of the test-to-grid filter-width ratio Δ ∧ / Δ , derived assuming a Kolmogorov's spectrum. Eddy viscosity is fully restored for σ <=σeq . The proposed approach removes unnecessary SGS dissipation, can be applied to any eddy-viscosity model, is algorithmically simple and computationally inexpensive. A CvP-LES of a pair of unstable helical vortices, representative of rotor-blade wake dynamics, show the ability of the method to sort the coherent motion from the small-scale dynamics. This work is funded by subcontract KSC-17-001 between Purdue University and Kord Technologies, Inc (Huntsville), under the US Navy Contract N68335-17-C-0159 STTR-Phase II, Purdue Proposal No. 00065007, Topic N15A-T002.

  12. Molecular dynamics simulation of the last step of a catalytic cycle: product release from the active site of the enzyme chorismate mutase from Mycobacterium tuberculosis.

    PubMed

    Choutko, Alexandra; van Gunsteren, Wilfred F

    2012-11-01

    The protein chorismate mutase MtCM from Mycobacterium tuberculosis catalyzes one of the few pericyclic reactions known in biology: the transformation of chorismate to prephenate. Chorismate mutases have been widely studied experimentally and computationally to elucidate the transition state of the enzyme catalyzed reaction and the origin of the high catalytic rate. However, studies about substrate entry and product exit to and from the highly occluded active site of the enzyme have to our knowledge not been performed on this enzyme. Crystallographic data suggest a possible substrate entry gate, that involves a slight opening of the enzyme for the substrate to access the active site. Using multiple molecular dynamics simulations, we investigate the natural dynamic process of the product exiting from the binding pocket of MtCM. We identify a dominant exit pathway, which is in agreement with the gate proposed from the available crystallographic data. Helices H2 and H4 move apart from each other which enables the product to exit from the active site. Interestingly, in almost all exit trajectories, two residues arginine 72 and arginine 134, which participate in the burying of the active site, are accompanying the product on its exit journey from the catalytic site. Copyright © 2012 The Protein Society.

  13. Biomolecular dynamics studied with IR-spectroscopy using quantum cascade lasers combined with nanosecond perturbation techniques

    NASA Astrophysics Data System (ADS)

    Popp, Alexander; Scheerer, David; Heck, Benjamin; Hauser, Karin

    2017-06-01

    Early events of protein folding can be studied with fast perturbation techniques triggering non-equilibrium relaxation dynamics. A nanosecond laser-excited pH-jump or temperature-jump (T-jump) was applied to initiate helix folding or unfolding of poly-L-glutamic acid (PGA). PGA is a homopolypeptide with titratable carboxyl side-chains whose protonation degree determines the PGA conformation. A pH-jump was realized by the photochemical release of protons and induces PGA folding due to protonation of the side-chains. Otherwise, the helical conformation can be unfolded by a T-jump. We operated under conditions where PGA does not aggregate and temperature and pH are the regulatory properties of its conformation. The experiments were performed in such a manner that the folding/unfolding jump proceeded to the same PGA conformation. We quantified the increase/decrease in helicity induced by the pH-/T-jump and demonstrated that the T-jump results in a relatively small change in helical content in contrast to the pH-jump. This is caused by the strong pH-dependence of the PGA conformation. The conformational changes were detected by time-resolved single wavelength IR-spectroscopy using quantum cascade lasers (QCL). We could independently observe the kinetics for α-helix folding and unfolding in PGA by using different perturbation techniques and demonstrate the high sensitivity of time-resolved IR-spectroscopy to study protein folding mechanisms.

  14. Mechanical Coupling via the Membrane Fusion SNARE Protein Syntaxin 1A: A Molecular Dynamics Study

    PubMed Central

    Knecht, Volker; Grubmüller, Helmut

    2003-01-01

    SNARE trans complexes between membranes likely promote membrane fusion. For the t-SNARE syntaxin 1A involved in synaptic transmission, the secondary structure and bending stiffness of the five-residue juxtamembrane linker is assumed to determine the required mechanical energy transfer from the cytosolic core complex to the membrane. These properties have here been studied by molecular dynamics and annealing simulations for the wild-type and a C-terminal-prolongated mutant within a neutral and an acidic bilayer, suggesting linker stiffnesses above 1.7 but below 50 × 10−3 kcal mol−1 deg−2. The transmembrane helix was found to be tilted by 15° and tightly anchored within the membrane with a stiffness of 4–5 kcal mol−1 Å−2. The linker turned out to be marginally helical and strongly influenced by its lipid environment. Charged lipids increased the helicity and H3 helix tilt stiffness. For the wild type, the linker was seen embedded deeply within the polar region of the bilayer, whereas the prolongation shifted the linker outward. This reduced its helicity and increased its average tilt, thereby presumably reducing fusion efficiency. Our results suggest that partially unstructured linkers provide considerable mechanical coupling; the energy transduced cooperatively by the linkers in a native fusion event is thus estimated to be 3–8 kcal/mol, implying a two-to-five orders of magnitude fusion rate increase. PMID:12609859

  15. Molecular dynamics study of a nanotube-binding amphiphilic helical peptide at different water/hydrophobic interfaces.

    PubMed

    Chiu, Chi-Cheng; Dieckmann, Gregg R; Nielsen, Steven O

    2008-12-25

    Many potential applications of single-walled carbon nanotubes (SWNTs) require that they be isolated from one another. This may be accomplished through covalent or noncovalent SWNT functionalization. The noncovalent approach preserves the intrinsic electrical, optical, and mechanical properties of SWNTs and can be achieved by dispersing SWNTs in aqueous solution using surfactants, polymers, or biomacromolecules like DNA or polypeptides. The designed amphiphilic helical peptide nano-1, which contains hydrophobic valine and aromatic phenylalanine residues for interaction with SWNTs and glutamic acid and lysine residues for water solubility, has been shown to debundle and disperse SWNTs, although the details of the peptide-SWNT interactions await elucidation. Here we use fully atomistic molecular dynamics simulations to investigate the nano-1 peptide at three different water/hydrophobic interfaces: water/oil, water/graphite, and water/SWNT. The amphiphilic nature of the peptide is characterized by its secondary structure, peptide-water hydrogen bonding, and peptide-hydrophobic surface van der Waals energy. We show that nano-1 has reduced amphiphilic character at the water/oil interface because the peptide helix penetrates into the hydrophobic phase. The peptide alpha-helix cannot match its hydrophobic face to the rigid planar graphite surface without partially unfolding. In contrast, nano-1 can curve on the SWNT surface in an alpha-helical conformation to simultaneously maximize its hydrophobic contacts with the SWNT and its hydrogen bonds with water. The molecular insight into the peptide conformation at the various hydrophobic surfaces provides guidelines for future peptide design.

  16. Biomolecular dynamics studied with IR-spectroscopy using quantum cascade lasers combined with nanosecond perturbation techniques.

    PubMed

    Popp, Alexander; Scheerer, David; Heck, Benjamin; Hauser, Karin

    2017-06-15

    Early events of protein folding can be studied with fast perturbation techniques triggering non-equilibrium relaxation dynamics. A nanosecond laser-excited pH-jump or temperature-jump (T-jump) was applied to initiate helix folding or unfolding of poly-l-glutamic acid (PGA). PGA is a homopolypeptide with titratable carboxyl side-chains whose protonation degree determines the PGA conformation. A pH-jump was realized by the photochemical release of protons and induces PGA folding due to protonation of the side-chains. Otherwise, the helical conformation can be unfolded by a T-jump. We operated under conditions where PGA does not aggregate and temperature and pH are the regulatory properties of its conformation. The experiments were performed in such a manner that the folding/unfolding jump proceeded to the same PGA conformation. We quantified the increase/decrease in helicity induced by the pH-/T-jump and demonstrated that the T-jump results in a relatively small change in helical content in contrast to the pH-jump. This is caused by the strong pH-dependence of the PGA conformation. The conformational changes were detected by time-resolved single wavelength IR-spectroscopy using quantum cascade lasers (QCL). We could independently observe the kinetics for α-helix folding and unfolding in PGA by using different perturbation techniques and demonstrate the high sensitivity of time-resolved IR-spectroscopy to study protein folding mechanisms. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Propagation peculiarities of mean field massive gravity

    DOE PAGES

    Deser, S.; Waldron, A.; Zahariade, G.

    2015-07-28

    Massive gravity (mGR) describes a dynamical “metric” on a fiducial, background one. We investigate fluctuations of the dynamics about mGR solutions, that is about its “mean field theory”. Analyzing mean field massive gravity (m¯GR) propagation characteristics is not only equivalent to studying those of the full non-linear theory, but also in direct correspondence with earlier analyses of charged higher spin systems, the oldest example being the charged, massive spin 3/2 Rarita–Schwinger (RS) theory. The fiducial and mGR mean field background metrics in the m¯GR model correspond to the RS Minkowski metric and external EM field. The common implications in bothmore » systems are that hyperbolicity holds only in a weak background-mean-field limit, immediately ruling both theories out as fundamental theories; a situation in stark contrast with general relativity (GR) which is at least a consistent classical theory. Moreover, even though both m¯GR and RS theories can still in principle be considered as predictive effective models in the weak regime, their lower helicities then exhibit superluminal behavior: lower helicity gravitons are superluminal as compared to photons propagating on either the fiducial or background metric. Thus our approach has uncovered a novel, dispersive, “crystal-like” phenomenon of differing helicities having differing propagation speeds. As a result, this applies both to m¯GR and mGR, and is a peculiar feature that is also problematic for consistent coupling to matter.« less

  18. Elucidating Molecular Motion through Structural and Dynamic Filters of Energy-Minimized Conformer Ensembles

    PubMed Central

    2015-01-01

    Complex RNA structures are constructed from helical segments connected by flexible loops that move spontaneously and in response to binding of small molecule ligands and proteins. Understanding the conformational variability of RNA requires the characterization of the coupled time evolution of interconnected flexible domains. To elucidate the collective molecular motions and explore the conformational landscape of the HIV-1 TAR RNA, we describe a new methodology that utilizes energy-minimized structures generated by the program “Fragment Assembly of RNA with Full-Atom Refinement (FARFAR)”. We apply structural filters in the form of experimental residual dipolar couplings (RDCs) to select a subset of discrete energy-minimized conformers and carry out principal component analyses (PCA) to corroborate the choice of the filtered subset. We use this subset of structures to calculate solution T1 and T1ρ relaxation times for 13C spins in multiple residues in different domains of the molecule using two simulation protocols that we previously published. We match the experimental T1 times to within 2% and the T1ρ times to within less than 10% for helical residues. These results introduce a protocol to construct viable dynamic trajectories for RNA molecules that accord well with experimental NMR data and support the notion that the motions of the helical portions of this small RNA can be described by a relatively small number of discrete conformations exchanging over time scales longer than 1 μs. PMID:24479561

  19. Internal transport barrier in tokamak and helical plasmas

    NASA Astrophysics Data System (ADS)

    Ida, K.; Fujita, T.

    2018-03-01

    The differences and similarities between the internal transport barriers (ITBs) of tokamak and helical plasmas are reviewed. By comparing the characteristics of the ITBs in tokamak and helical plasmas, the mechanisms of the physics for the formation and dynamics of the ITB are clarified. The ITB is defined as the appearance of discontinuity of temperature, flow velocity, or density gradient in the radius. From the radial profiles of temperature, flow velocity, and density the ITB is characterized by the three parameters of normalized temperature gradient, R/{L}T, the location, {ρ }{ITB}, and the width, W/a, and can be expressed by ‘weak’ ITB (small R/{L}T) or ‘strong’ (large R/{L}T), ‘small’ ITB (small {ρ }{ITB}) or ‘large’ ITB (large {ρ }{ITB}), and ‘narrow’ (small W/a) or ‘wide’ (large W/a). Three key physics elements for the ITB formation, radial electric field shear, magnetic shear, and rational surface (and/or magnetic island) are described. The characteristics of electron and ion heat transport and electron and impurity transport are reviewed. There are significant differences in ion heat transport and electron heat transport. The dynamics of ITB formation and termination is also discussed. The emergence of the location of the ITB is sometimes far inside the ITB foot in the steady-state phase and the ITB region shows radial propagation during the formation of the ITB. The non-diffusive terms in momentum transport and impurity transport become more dominant in the plasma with the ITB. The reversal of the sign of non-diffusive terms in momentum transport and impurity transport associated with the formation of the ITB reported in helical plasma is described. Non-local transport plays an important role in determining the radial profile of temperature and density. The spontaneous change in temperature curvature (second radial derivative of temperature) in the ITB region is described. In addition, the key parameters of the control of the ITB and future prospects are discussed.

  20. Application of principal component analysis in protein unfolding: an all-atom molecular dynamics simulation study.

    PubMed

    Das, Atanu; Mukhopadhyay, Chaitali

    2007-10-28

    We have performed molecular dynamics (MD) simulation of the thermal denaturation of one protein and one peptide-ubiquitin and melittin. To identify the correlation in dynamics among various secondary structural fragments and also the individual contribution of different residues towards thermal unfolding, principal component analysis method was applied in order to give a new insight to protein dynamics by analyzing the contribution of coefficients of principal components. The cross-correlation matrix obtained from MD simulation trajectory provided important information regarding the anisotropy of backbone dynamics that leads to unfolding. Unfolding of ubiquitin was found to be a three-state process, while that of melittin, though smaller and mostly helical, is more complicated.

  1. Application of principal component analysis in protein unfolding: An all-atom molecular dynamics simulation study

    NASA Astrophysics Data System (ADS)

    Das, Atanu; Mukhopadhyay, Chaitali

    2007-10-01

    We have performed molecular dynamics (MD) simulation of the thermal denaturation of one protein and one peptide—ubiquitin and melittin. To identify the correlation in dynamics among various secondary structural fragments and also the individual contribution of different residues towards thermal unfolding, principal component analysis method was applied in order to give a new insight to protein dynamics by analyzing the contribution of coefficients of principal components. The cross-correlation matrix obtained from MD simulation trajectory provided important information regarding the anisotropy of backbone dynamics that leads to unfolding. Unfolding of ubiquitin was found to be a three-state process, while that of melittin, though smaller and mostly helical, is more complicated.

  2. Binding of anti-apoptotic Bcl-2 with different BH3 peptides: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Zhang, Dawei; Liu, Huihui; Cui, Jinglan

    2018-01-01

    In this work, molecular dynamics simulation and free energy calculations are utilized to study how different BH3 peptides originating from Bax, Bim, Bik and Noxa interact with Bcl-2, one of the main members of anti-apoptotic proteins. The effects of peptide length, sequence and helical content on the binding affinity are discussed, on which a novel BH3-like peptide is designed in silico with an improved binding property.

  3. Atomistic molecular dynamics simulations of bioactive engrailed 1 interference peptides (EN1-iPeps).

    PubMed

    Gandhi, Neha S; Blancafort, Pilar; Mancera, Ricardo L

    2018-04-27

    The neural-specific transcription factor Engrailed 1 - is overexpressed in basal-like breast tumours. Synthetic interference peptides - comprising a cell-penetrating peptide/nuclear localisation sequence and the Engrailed 1-specific sequence from the N-terminus have been engineered to produce a strong apoptotic response in tumour cells overexpressing EN1, with no toxicity to normal or non Engrailed 1-expressing cells. Here scaled molecular dynamics simulations were used to study the conformational dynamics of these interference peptides in aqueous solution to characterise their structure and dynamics. Transitions from disordered to α-helical conformation, stabilised by hydrogen bonds and proline-aromatic interactions, were observed throughout the simulations. The backbone of the wild-type peptide folds to a similar conformation as that found in ternary complexes of anterior Hox proteins with conserved hexapeptide motifs important for recognition of pre-B-cell leukemia Homeobox 1, indicating that the motif may possess an intrinsic preference for helical structure. The predicted NMR chemical shifts of these peptides are consistent with the Hox hexapeptides in solution and Engrailed 2 NMR data. These findings highlight the importance of aromatic residues in determining the structure of Engrailed 1 interference peptides, shedding light on the rational design strategy of molecules that could be adopted to inhibit other transcription factors overexpressed in other cancer types, potentially including other transcription factor families that require highly conserved and cooperative protein-protein partnerships for biological activity.

  4. Novel changes in discoidal high density lipoprotein morphology: a molecular dynamics study.

    PubMed

    Catte, Andrea; Patterson, James C; Jones, Martin K; Jerome, W Gray; Bashtovyy, Denys; Su, Zhengchang; Gu, Feifei; Chen, Jianguo; Aliste, Marcela P; Harvey, Stephen C; Li, Ling; Weinstein, Gilbert; Segrest, Jere P

    2006-06-15

    ApoA-I is a uniquely flexible lipid-scavenging protein capable of incorporating phospholipids into stable particles. Here we report molecular dynamics simulations on a series of progressively smaller discoidal high density lipoprotein particles produced by incremental removal of palmitoyloleoylphosphatidylcholine via four different pathways. The starting model contained 160 palmitoyloleoylphosphatidylcholines and a belt of two antiparallel amphipathic helical lipid-associating domains of apolipoprotein (apo) A-I. The results are particularly compelling. After a few nanoseconds of molecular dynamics simulation, independent of the starting particle and method of size reduction, all simulated double belts of the four lipidated apoA-I particles have helical domains that impressively approximate the x-ray crystal structure of lipid-free apoA-I, particularly between residues 88 and 186. These results provide atomic resolution models for two of the particles produced by in vitro reconstitution of nascent high density lipoprotein particles. These particles, measuring 95 angstroms and 78 angstroms by nondenaturing gradient gel electrophoresis, correspond in composition and in size/shape (by negative stain electron microscopy) to the simulated particles with molar ratios of 100:2 and 50:2, respectively. The lipids of the 100:2 particle family form minimal surfaces at their monolayer-monolayer interface, whereas the 50:2 particle family displays a lipid pocket capable of binding a dynamic range of phospholipid molecules.

  5. Novel Changes in Discoidal High Density Lipoprotein Morphology: A Molecular Dynamics Study

    PubMed Central

    Catte, Andrea; Patterson, James C.; Jones, Martin K.; Jerome, W. Gray; Bashtovyy, Denys; Su, Zhengchang; Gu, Feifei; Chen, Jianguo; Aliste, Marcela P.; Harvey, Stephen C.; Li, Ling; Weinstein, Gilbert; Segrest, Jere P.

    2006-01-01

    ApoA-I is a uniquely flexible lipid-scavenging protein capable of incorporating phospholipids into stable particles. Here we report molecular dynamics simulations on a series of progressively smaller discoidal high density lipoprotein particles produced by incremental removal of palmitoyloleoylphosphatidylcholine via four different pathways. The starting model contained 160 palmitoyloleoylphosphatidylcholines and a belt of two antiparallel amphipathic helical lipid-associating domains of apolipoprotein (apo) A-I. The results are particularly compelling. After a few nanoseconds of molecular dynamics simulation, independent of the starting particle and method of size reduction, all simulated double belts of the four lipidated apoA-I particles have helical domains that impressively approximate the x-ray crystal structure of lipid-free apoA-I, particularly between residues 88 and 186. These results provide atomic resolution models for two of the particles produced by in vitro reconstitution of nascent high density lipoprotein particles. These particles, measuring 95 Å and 78 Å by nondenaturing gradient gel electrophoresis, correspond in composition and in size/shape (by negative stain electron microscopy) to the simulated particles with molar ratios of 100:2 and 50:2, respectively. The lipids of the 100:2 particle family form minimal surfaces at their monolayer-monolayer interface, whereas the 50:2 particle family displays a lipid pocket capable of binding a dynamic range of phospholipid molecules. PMID:16581834

  6. Use of 13Cα Chemical-Shifts in Protein Structure Determination

    PubMed Central

    Vila, Jorge A.; Ripoll, Daniel R.; Scheraga, Harold A.

    2008-01-01

    A physics-based method, aimed at determining protein structures by using NOE-derived distances together with observed and computed 13C chemical shifts, is proposed. The approach makes use of 13Cα chemical shifts, computed at the density functional level of theory, to obtain torsional constraints for all backbone and side-chain torsional angles without making a priori use of the occupancy of any region of the Ramachandran map by the amino acid residues. The torsional constraints are not fixed but are changed dynamically in each step of the procedure, following an iterative self-consistent approach intended to identify a set of conformations for which the computed 13Cα chemical shifts match the experimental ones. A test is carried out on a 76-amino acid all-α-helical protein, namely the B. Subtilis acyl carrier protein. It is shown that, starting from randomly generated conformations, the final protein models are more accurate than an existing NMR-derived structure model of this protein, in terms of both the agreement between predicted and observed 13Cα chemical shifts and some stereochemical quality indicators, and of similar accuracy as one of the protein models solved at a high level of resolution. The results provide evidence that this methodology can be used not only for structure determination but also for additional protein structure refinement of NMR-derived models deposited in the Protein Data Bank. PMID:17516673

  7. Validating clustering of molecular dynamics simulations using polymer models.

    PubMed

    Phillips, Joshua L; Colvin, Michael E; Newsam, Shawn

    2011-11-14

    Molecular dynamics (MD) simulation is a powerful technique for sampling the meta-stable and transitional conformations of proteins and other biomolecules. Computational data clustering has emerged as a useful, automated technique for extracting conformational states from MD simulation data. Despite extensive application, relatively little work has been done to determine if the clustering algorithms are actually extracting useful information. A primary goal of this paper therefore is to provide such an understanding through a detailed analysis of data clustering applied to a series of increasingly complex biopolymer models. We develop a novel series of models using basic polymer theory that have intuitive, clearly-defined dynamics and exhibit the essential properties that we are seeking to identify in MD simulations of real biomolecules. We then apply spectral clustering, an algorithm particularly well-suited for clustering polymer structures, to our models and MD simulations of several intrinsically disordered proteins. Clustering results for the polymer models provide clear evidence that the meta-stable and transitional conformations are detected by the algorithm. The results for the polymer models also help guide the analysis of the disordered protein simulations by comparing and contrasting the statistical properties of the extracted clusters. We have developed a framework for validating the performance and utility of clustering algorithms for studying molecular biopolymer simulations that utilizes several analytic and dynamic polymer models which exhibit well-behaved dynamics including: meta-stable states, transition states, helical structures, and stochastic dynamics. We show that spectral clustering is robust to anomalies introduced by structural alignment and that different structural classes of intrinsically disordered proteins can be reliably discriminated from the clustering results. To our knowledge, our framework is the first to utilize model polymers to rigorously test the utility of clustering algorithms for studying biopolymers.

  8. Validating clustering of molecular dynamics simulations using polymer models

    PubMed Central

    2011-01-01

    Background Molecular dynamics (MD) simulation is a powerful technique for sampling the meta-stable and transitional conformations of proteins and other biomolecules. Computational data clustering has emerged as a useful, automated technique for extracting conformational states from MD simulation data. Despite extensive application, relatively little work has been done to determine if the clustering algorithms are actually extracting useful information. A primary goal of this paper therefore is to provide such an understanding through a detailed analysis of data clustering applied to a series of increasingly complex biopolymer models. Results We develop a novel series of models using basic polymer theory that have intuitive, clearly-defined dynamics and exhibit the essential properties that we are seeking to identify in MD simulations of real biomolecules. We then apply spectral clustering, an algorithm particularly well-suited for clustering polymer structures, to our models and MD simulations of several intrinsically disordered proteins. Clustering results for the polymer models provide clear evidence that the meta-stable and transitional conformations are detected by the algorithm. The results for the polymer models also help guide the analysis of the disordered protein simulations by comparing and contrasting the statistical properties of the extracted clusters. Conclusions We have developed a framework for validating the performance and utility of clustering algorithms for studying molecular biopolymer simulations that utilizes several analytic and dynamic polymer models which exhibit well-behaved dynamics including: meta-stable states, transition states, helical structures, and stochastic dynamics. We show that spectral clustering is robust to anomalies introduced by structural alignment and that different structural classes of intrinsically disordered proteins can be reliably discriminated from the clustering results. To our knowledge, our framework is the first to utilize model polymers to rigorously test the utility of clustering algorithms for studying biopolymers. PMID:22082218

  9. Numerical Simulation of Subsonic and Transonic Propeller Flow. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Snyder, Aaron

    1988-01-01

    The numerical simulation of 3-D transonic flow about a system of propeller blades is investigated. In particular, it is shown that the use of helical coordinates significantly simplifies the form of the governing equation when the propeller system is assumed to be surrounded by an irrotational flow field of an inviscid fluid. The unsteady small disturbance equation, valid for lightly loaded blades and expressed in helical coordinates, is derived from the general blade-fixed potential equation, given for an arbitrary coordinate system. The use of a coordinate system which inherently adapts to the mean flow results in a disturbance equation requiring relatively few terms to accurately model the physics of the flow. Furthermore, the helical coordinate system presented here is novel in that it is periodic in the circumferential direction while, simultaneously, maintaining orthogonal properties at the mean blade locations. The periodic characteristic allows a complete cascade of blades to be treated, and the orthogonality property affords straightforward treatment of blade boundary conditions. An ADI numerical scheme is used to compute the solution of the steady flow as an asymptotic limit of an unsteady flow. As an example of the method, solutions are presented for subsonic and transonic flow about a 5 percent thick bicircular arc blade of an 8-bladed cascade. Both high and low advance ratio cases are computed and include a lifting as well as nonlifting cases. The nonlifting solutions obtained are compared to solutions from a Euler code.

  10. Statistical Theory of the Ideal MHD Geodynamo

    NASA Technical Reports Server (NTRS)

    Shebalin, J. V.

    2012-01-01

    A statistical theory of geodynamo action is developed, using a mathematical model of the geodynamo as a rotating outer core containing an ideal (i.e., no dissipation), incompressible, turbulent, convecting magnetofluid. On the concentric inner and outer spherical bounding surfaces the normal components of the velocity, magnetic field, vorticity and electric current are zero, as is the temperature fluctuation. This allows the use of a set of Galerkin expansion functions that are common to both velocity and magnetic field, as well as vorticity, current and the temperature fluctuation. The resulting dynamical system, based on the Boussinesq form of the magnetohydrodynamic (MHD) equations, represents MHD turbulence in a spherical domain. These basic equations (minus the temperature equation) and boundary conditions have been used previously in numerical simulations of forced, decaying MHD turbulence inside a sphere [1,2]. Here, the ideal case is studied through statistical analysis and leads to a prediction that an ideal coherent structure will be found in the form of a large-scale quasistationary magnetic field that results from broken ergodicity, an effect that has been previously studied both analytically and numerically for homogeneous MHD turbulence [3,4]. The axial dipole component becomes prominent when there is a relatively large magnetic helicity (proportional to the global correlation of magnetic vector potential and magnetic field) and a stationary, nonzero cross helicity (proportional to the global correlation of velocity and magnetic field). The expected angle of the dipole moment vector with respect to the rotation axis is found to decrease to a minimum as the average cross helicity increases for a fixed value of magnetic helicity and then to increase again when average cross helicity approaches its maximum possible value. Only a relatively small value of cross helicity is needed to produce a dipole moment vector that is aligned at approx.10deg with the rotation axis.

  11. Folding domain B of protein A on a dynamically partitioned free energy landscape.

    PubMed

    Nelson, Erik D; Grishin, Nick V

    2008-02-05

    The B domain of staphylococcal protein A (BdpA) is a small helical protein that has been studied intensively in kinetics experiments and detailed computer simulations that include explicit water. The simulations indicate that BdpA needs to reorganize in crossing the transition barrier to facilitate folding its C-terminal helix (H3) onto the nucleus formed from helices H1 and H2. This process suggests frustration between two partially ordered forms of the protein, but recent varphi value measurements indicate that the transition structure is relatively constant over a broad range of temperatures. Here we develop a simplistic model to investigate the folding transition in which properties of the free energy landscape can be quantitatively compared with experimental data. The model is a continuation of the Muñoz-Eaton model to include the intermittency of contacts between structured parts of the protein, and the results compare variations in the landscape with denaturant and temperature to varphi value measurements and chevron plots of the kinetic rates. The topography of the model landscape (in particular, the feature of frustration) is consistent with detailed simulations even though variations in the varphi values are close to measured values. The transition barrier is smaller than indicated by the chevron data, but it agrees in order of magnitude with a similar alpha-carbon type of model. Discrepancies with the chevron plots are investigated from the point of view of solvent effects, and an approach is suggested to account for solvent participation in the model.

  12. WE-G-18A-06: Sinogram Restoration in Helical Cone-Beam CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Little, K; Riviere, P La

    2014-06-15

    Purpose: To extend CT sinogram restoration, which has been shown in 2D to reduce noise and to correct for geometric effects and other degradations at a low computational cost, from 2D to a 3D helical cone-beam geometry. Methods: A method for calculating sinogram degradation coefficients for a helical cone-beam geometry was proposed. These values were used to perform penalized-likelihood sinogram restoration on simulated data that were generated from the FORBILD thorax phantom. Sinogram restorations were performed using both a quadratic penalty and the edge-preserving Huber penalty. After sinogram restoration, Fourier-based analytical methods were used to obtain reconstructions. Resolution-variance trade-offs weremore » investigated for several locations within the reconstructions for the purpose of comparing sinogram restoration to no restoration. In order to compare potential differences, reconstructions were performed using different groups of neighbors in the penalty, two analytical reconstruction methods (Katsevich and single-slice rebinning), and differing helical pitches. Results: The resolution-variance properties of reconstructions restored using sinogram restoration with a Huber penalty outperformed those of reconstructions with no restoration. However, the use of a quadratic sinogram restoration penalty did not lead to an improvement over performing no restoration at the outer regions of the phantom. Application of the Huber penalty to neighbors both within a view and across views did not perform as well as only applying the penalty to neighbors within a view. General improvements in resolution-variance properties using sinogram restoration with the Huber penalty were not dependent on the reconstruction method used or the magnitude of the helical pitch. Conclusion: Sinogram restoration for noise and degradation effects for helical cone-beam CT is feasible and should be able to be applied to clinical data. When applied with the edge-preserving Huber penalty, sinogram restoration leads to an improvement in resolution-variance tradeoffs.« less

  13. Accurate determination of interfacial protein secondary structure by combining interfacial-sensitive amide I and amide III spectral signals.

    PubMed

    Ye, Shuji; Li, Hongchun; Yang, Weilai; Luo, Yi

    2014-01-29

    Accurate determination of protein structures at the interface is essential to understand the nature of interfacial protein interactions, but it can only be done with a few, very limited experimental methods. Here, we demonstrate for the first time that sum frequency generation vibrational spectroscopy can unambiguously differentiate the interfacial protein secondary structures by combining surface-sensitive amide I and amide III spectral signals. This combination offers a powerful tool to directly distinguish random-coil (disordered) and α-helical structures in proteins. From a systematic study on the interactions between several antimicrobial peptides (including LKα14, mastoparan X, cecropin P1, melittin, and pardaxin) and lipid bilayers, it is found that the spectral profiles of the random-coil and α-helical structures are well separated in the amide III spectra, appearing below and above 1260 cm(-1), respectively. For the peptides with a straight backbone chain, the strength ratio for the peaks of the random-coil and α-helical structures shows a distinct linear relationship with the fraction of the disordered structure deduced from independent NMR experiments reported in the literature. It is revealed that increasing the fraction of negatively charged lipids can induce a conformational change of pardaxin from random-coil to α-helical structures. This experimental protocol can be employed for determining the interfacial protein secondary structures and dynamics in situ and in real time without extraneous labels.

  14. Processive movement of MreB-associated cell wall biosynthetic complexes in bacteria.

    PubMed

    Domínguez-Escobar, Julia; Chastanet, Arnaud; Crevenna, Alvaro H; Fromion, Vincent; Wedlich-Söldner, Roland; Carballido-López, Rut

    2011-07-08

    The peptidoglycan cell wall and the actin-like MreB cytoskeleton are major determinants of cell shape in rod-shaped bacteria. The prevailing model postulates that helical, membrane-associated MreB filaments organize elongation-specific peptidoglycan-synthesizing complexes along sidewalls. We used total internal reflection fluorescence microscopy to visualize the dynamic relation between MreB isoforms and cell wall synthesis in live Bacillus subtilis cells. During exponential growth, MreB proteins did not form helical structures. Instead, together with other morphogenetic factors, they assembled into discrete patches that moved processively along peripheral tracks perpendicular to the cell axis. Patch motility was largely powered by cell wall synthesis, and MreB polymers restricted diffusion of patch components in the membrane and oriented patch motion.

  15. Validation of extended magnetohydrodynamic simulations of the HIT-SI3 experiment using the NIMROD code

    NASA Astrophysics Data System (ADS)

    Morgan, K. D.; Jarboe, T. R.; Hossack, A. C.; Chandra, R. N.; Everson, C. J.

    2017-12-01

    The HIT-SI3 experiment uses a set of inductively driven helicity injectors to apply a non-axisymmetric current drive on the edge of the plasma, driving an axisymmetric spheromak equilibrium in a central confinement volume. These helicity injectors drive a non-axisymmetric perturbation that oscillates in time, with relative temporal phasing of the injectors modifying the mode structure of the applied perturbation. A set of three experimental discharges with different perturbation spectra are modelled using the NIMROD extended magnetohydrodynamics code, and comparisons are made to both magnetic and fluid measurements. These models successfully capture the bulk dynamics of both the perturbation and the equilibrium, though disagreements related to the pressure gradients experimentally measured exist.

  16. IP3-mediated gating mechanism of the IP3 receptor revealed by mutagenesis and X-ray crystallography.

    PubMed

    Hamada, Kozo; Miyatake, Hideyuki; Terauchi, Akiko; Mikoshiba, Katsuhiko

    2017-05-02

    The inositol 1,4,5-trisphosphate (IP 3 ) receptor (IP 3 R) is an IP 3 -gated ion channel that releases calcium ions (Ca 2+ ) from the endoplasmic reticulum. The IP 3 -binding sites in the large cytosolic domain are distant from the Ca 2+ conducting pore, and the allosteric mechanism of how IP 3 opens the Ca 2+ channel remains elusive. Here, we identify a long-range gating mechanism uncovered by channel mutagenesis and X-ray crystallography of the large cytosolic domain of mouse type 1 IP 3 R in the absence and presence of IP 3 Analyses of two distinct space group crystals uncovered an IP 3 -dependent global translocation of the curvature α-helical domain interfacing with the cytosolic and channel domains. Mutagenesis of the IP 3 R channel revealed an essential role of a leaflet structure in the α-helical domain. These results suggest that the curvature α-helical domain relays IP 3 -controlled global conformational dynamics to the channel through the leaflet, conferring long-range allosteric coupling from IP 3 binding to the Ca 2+ channel.

  17. Triplex-forming oligonucleotides: a third strand for DNA nanotechnology

    PubMed Central

    2018-01-01

    Abstract DNA self-assembly has proved to be a useful bottom-up strategy for the construction of user-defined nanoscale objects, lattices and devices. The design of these structures has largely relied on exploiting simple base pairing rules and the formation of double-helical domains as secondary structural elements. However, other helical forms involving specific non-canonical base-base interactions have introduced a novel paradigm into the process of engineering with DNA. The most notable of these is a three-stranded complex generated by the binding of a third strand within the duplex major groove, generating a triple-helical (‘triplex’) structure. The sequence, structural and assembly requirements that differentiate triplexes from their duplex counterparts has allowed the design of nanostructures for both dynamic and/or structural purposes, as well as a means to target non-nucleic acid components to precise locations within a nanostructure scaffold. Here, we review the properties of triplexes that have proved useful in the engineering of DNA nanostructures, with an emphasis on applications that hitherto have not been possible by duplex formation alone. PMID:29228337

  18. Novel Structures of Self-Associating Stapled Peptides

    PubMed Central

    Bhattacharya, Shibani; Zhang, Hongtao; Cowburn, David; Debnath, Asim K.

    2012-01-01

    Hydrocarbon stapling of peptides is a powerful technique to transform linear peptides into cell-permeable helical structures that can bind to specific biological targets. In this study, we have used high resolution solution NMR techniques complemented by Dynamic Light Scattering to characterize extensively a family of hydrocarbon stapled peptides with known inhibitory activity against HIV-1 capsid assembly to evaluate the various factors that modulate activity. The helical peptides share a common binding motif but differ in charge, the length and position of the staple. An important outcome of the study was to show the peptides share a propensity to self-associate into organized polymeric structures mediated predominantly by hydrophobic interactions between the olefinic chain and the aromatic side-chains from the peptide. We have also investigated in detail the structural significance of the length and position of the staple, and of olefinic bond isomerization in stabilizing the helical conformation of the peptides as potential factors driving polymerization. This study presents the numerous challenges of designing biologically active stapled peptides and the conclusions have broad implications for optimizing a promising new class of compounds in drug discovery. PMID:22170623

  19. Trehalose radial networks protect Renilla luciferase helical layers against thermal inactivation.

    PubMed

    Liyaghatdar, Zahra; Emamzadeh, Rahman; Rasa, Sayed Mohammad Mahdi; Nazari, Mahboobeh

    2017-12-01

    Renilla luciferase (Rluc) from Renilla reniformis is an appropriate protein reporter for the detection of specific molecular targets due to its bioluminescent feature, although its relatively low stability limits the application. To investigate the effects of trehalose and sucrose as chemical chaperones on the kinetic stability of Rluc, we assayed the activity of the enzyme in the presence of these additives at high temperatures and to comprehend the mechanism of stability, molecular dynamic (MD) simulation was carried out. In the presence of trehalose a thermostabilizing effect which was considerable in comparison with other systems was observed. It is proposed that a wide radial like network of trehalose molecules supports α-helix structures that are located in the N-terminus and C-terminus of the protein. However, in the water simulation box, these helices alter to instable structures at high temperatures. Reduction of the fluctuation of these helices in the presence of trehalose molecules, may prevent the protein from unfolding and increase its shelf life. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Self-assembly of Janus particles into helices with tunable pitch

    NASA Astrophysics Data System (ADS)

    Fernández, M. Sobrino; Misko, V. R.; Peeters, F. M.

    2015-10-01

    Janus particles present an important class of building blocks for directional assembly. These are compartmentalized colloids with two different hemispheres. In this work we consider a three-dimensional model of Janus spheres that contain one hydrophobic and one charged hemisphere. Using molecular dynamics simulations, we study the morphology of these particles when confined in a channel-like environment. The interplay between the attractive and repulsive forces on each particle gives rise to a rich phase space where the relative orientation of each particle plays a dominant role in the formation of large-scale clusters. The interest in this system is primarily due to the fact that it could give a better understanding of the mechanisms of the formation of polar membranes. A variety of ordered membranelike morphologies is found consisting of single and multiple connected chain configurations. The helicity of these chains can be chosen by simply changing the salt concentration of the solution. Special attention is given to the formation of Bernal spirals. These helices are composed of regular tetrahedra and are known to exhibit nontrivial translational and rotational symmetry.

Top