Sample records for dynamic impact testing

  1. 16 CFR 1203.15 - Positional stability test (roll-off resistance).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... any slack. (3) Suspend the dynamic impact system from the helmet by positioning the flexible strap... positions. (3) Dynamic impact apparatus. A dynamic impact apparatus shall be used to apply a shock load to a helmet secured to the test headform. The dynamic impact apparatus shall allow a 4-kg (8.8-lb) drop weight...

  2. Dynamic Fracture of Concrete. Part 1

    DTIC Science & Technology

    1990-02-14

    unnotched) by Mindess and the Charpy type impact tests by Shah. In both cases, dynamic finite element modeling with the adjusted constitutive equavm for the...Mindess and the Charpy type impact tests by Shah. In both cases, dynamic finite element modeling with the adjusted constitutive equations for the...Modeling Shah’s Charpy Impact Tests ................ 190 Figure 7.20 Specimen Configuration and Finite Element Model for Concrete and Mortar Beam Impact

  3. Dynamic Crushing Response of Closed-cell Aluminium Foam at Variable Strain Rates

    NASA Astrophysics Data System (ADS)

    Islam, M. A.; Kader, M. A.; Escobedo, J. P.; Hazell, P. J.; Appleby-Thomas, G. J.; Quadir, M. Z.

    2015-06-01

    The impact response of aluminium foams is essential for assessing their crashworthiness and energy absorption capacity for potential applications. The dynamic compactions of closed-cell aluminium foams (CYMAT) have been tested at variable strain rates. Microstructural characterization has also been carried out. The low strain rate impact test has been carried out using drop weight experiments while the high strain compaction test has been carried out via plate impact experiments. The post impacted samples have been examined using optical and electron microscopy to observe the microstructural changes during dynamic loading. This combination of dynamic deformation during impact and post impact microstructural analysis helped to evaluate the pore collapse mechanism and impact energy absorption characteristics.

  4. A unique facility for V/STOL aircraft hover testing. [Langley Impact Dynamics Research Facility

    NASA Technical Reports Server (NTRS)

    Culpepper, R. G.; Murphy, R. D.; Gillespie, E. A.; Lane, A. G.

    1979-01-01

    The Langley Impact Dynamics Research Facility (IDRF) was modified to obtain static force and moment data and to allow assessment of aircraft handling qualities during dynamic tethered hover flight. Test probe procedures were also established. Static lift and control measurements obtained are presented along with results of limited dynamic tethered hover flight.

  5. Impact evaluation of composite floor sections

    NASA Technical Reports Server (NTRS)

    Boitnott, Richard L.; Fasanella, Edwin L.

    1989-01-01

    Graphite-epoxy floor sections representative of aircraft fuselage construction were statically and dynamically tested to evaluate their response to crash loadings. These floor sections were fabricated using a frame-stringer design typical of present aluminum aircraft without features to enhance crashworthiness. The floor sections were tested as part of a systematic research program developed to study the impact response of composite components of increasing complexity. The ultimate goal of the research program is to develop crashworthy design features for future composite aircraft. Initially, individual frames of six-foot diameter were tested both statically and dynamically. The frames were then used to construct built-up floor sections for dynamic tests at impact velocities of approximately 20 feet/sec to simulate survivable crash velocities. In addition, static tests were conducted to gain a better understanding of the failure mechanisms seen in the dynamic tests.

  6. Response of Metals and Metallic Structures to Dynamic Loading

    DTIC Science & Technology

    1978-05-01

    materials for service by testing under high rates of loading. Impact tests such as the Charpy test, the drop-weight tear test, and the dynamic tear...have clearly shown this for precracked charpy specimens and for the drop-weight tear test. Hence, there is a strong need for additional dynamic...dynamic fracture resistance ( Charpy , dynamic-tear, drop-weight tear test, etc.), normally assures that fracture in dynamically loaded structures is

  7. Response of DP 600 products to dynamic impact loads

    NASA Astrophysics Data System (ADS)

    Clark, Deidra Darcell

    The objective of this study was to compare the microstructural response of various DP 600 products subjected to low velocity, dynamic impact tests, typically encountered in a car crash. Since the response of steel is sensitive to its microstructure as controlled by the alloying elements, phase content, and processing; various DP 600 products may respond differently to crashes. The microstructure before and after dynamic impact deformation at 5 and 10 mph was characterized with regards to grain size, morphology, and phase content among vendors A, B, and C to evaluate efficiency in absorbing energy mechanisms during a crash simulated by dynamic impact testing in a drop tower.

  8. Impact Testing and Simulation of Composite Airframe Structures

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Littell, Justin D.; Horta, Lucas G.; Annett, Martin S.; Fasanella, Edwin L.; Seal, Michael D., II

    2014-01-01

    Dynamic tests were performed at NASA Langley Research Center on composite airframe structural components of increasing complexity to evaluate their energy absorption behavior when subjected to impact loading. A second objective was to assess the capabilities of predicting the dynamic response of composite airframe structures, including damage initiation and progression, using a state-of-the-art nonlinear, explicit transient dynamic finite element code, LS-DYNA. The test specimens were extracted from a previously tested composite prototype fuselage section developed and manufactured by Sikorsky Aircraft Corporation under the US Army's Survivable Affordable Repairable Airframe Program (SARAP). Laminate characterization testing was conducted in tension and compression. In addition, dynamic impact tests were performed on several components, including I-beams, T-sections, and cruciform sections. Finally, tests were conducted on two full-scale components including a subfloor section and a framed fuselage section. These tests included a modal vibration and longitudinal impact test of the subfloor section and a quasi-static, modal vibration, and vertical drop test of the framed fuselage section. Most of the test articles were manufactured of graphite unidirectional tape composite with a thermoplastic resin system. However, the framed fuselage section was constructed primarily of a plain weave graphite fabric material with a thermoset resin system. Test data were collected from instrumentation such as accelerometers and strain gages and from full-field photogrammetry.

  9. Impact Testing of a Stirling Converter's Linear Alternator

    NASA Technical Reports Server (NTRS)

    Suarez, Vicente J.; Goodnight, Thomas W.; Hughes, William O.; Samorezov, Sergey

    2002-01-01

    The U.S. Department of Energy (DOE), in conjunction with the NASA John H. Glenn Research Center and Stirling Technology Company, are currently developing a Stirling convertor for a Stirling Radioisotope Generator (SRG). NASA Headquarters and DOE have identified the SRG for potential use as an advanced spacecraft power system for future NASA deep-space and Mars surface missions. Low-level dynamic impact tests were conducted at NASA Glenn Research Center's Structural Dynamics Laboratory as part of the development of this technology. The purpose of this test was to identify dynamic structural characteristics of the Stirling Technology Demonstration Convertor (TDC). This paper addresses the test setup, procedure, and results of the impact testing conducted on the Stirling TDC in May 2001.

  10. Impact testing of a Stirling convertor's linear alternator

    NASA Astrophysics Data System (ADS)

    Suárez, Vicente J.; Goodnight, Thomas W.; Hughes, William O.; Samorezov, Sergey

    2002-01-01

    The U.S. Department of Energy (DOE), in conjunction with NASA John H. Glenn Research Center and Stirling Technology Company, are currently developing a Stirling convertor for a Stirling Radioisotope Generator (SRG). NASA Headquarters and DOE have identified the SRG for potential use as an advanced spacecraft power system for future NASA deep-space and Mars surface missions. Low-level dynamic impact tests were conducted at NASA Glenn Research Center's Structural Dynamics Laboratory as part of the development of this technology. The purpose of this test was to identify dynamic structural characteristics of the Stirling Technology Demonstration Convertor (TDC). This paper addresses the test setup, procedure and results of the impact testing conducted on the Stirling TDC in May 2001. .

  11. Validation of a Laboratory Method for Evaluating Dynamic Properties of Reconstructed Equine Racetrack Surfaces

    PubMed Central

    Setterbo, Jacob J.; Chau, Anh; Fyhrie, Patricia B.; Hubbard, Mont; Upadhyaya, Shrini K.; Symons, Jennifer E.; Stover, Susan M.

    2012-01-01

    Background Racetrack surface is a risk factor for racehorse injuries and fatalities. Current research indicates that race surface mechanical properties may be influenced by material composition, moisture content, temperature, and maintenance. Race surface mechanical testing in a controlled laboratory setting would allow for objective evaluation of dynamic properties of surface and factors that affect surface behavior. Objective To develop a method for reconstruction of race surfaces in the laboratory and validate the method by comparison with racetrack measurements of dynamic surface properties. Methods Track-testing device (TTD) impact tests were conducted to simulate equine hoof impact on dirt and synthetic race surfaces; tests were performed both in situ (racetrack) and using laboratory reconstructions of harvested surface materials. Clegg Hammer in situ measurements were used to guide surface reconstruction in the laboratory. Dynamic surface properties were compared between in situ and laboratory settings. Relationships between racetrack TTD and Clegg Hammer measurements were analyzed using stepwise multiple linear regression. Results Most dynamic surface property setting differences (racetrack-laboratory) were small relative to surface material type differences (dirt-synthetic). Clegg Hammer measurements were more strongly correlated with TTD measurements on the synthetic surface than the dirt surface. On the dirt surface, Clegg Hammer decelerations were negatively correlated with TTD forces. Conclusions Laboratory reconstruction of racetrack surfaces guided by Clegg Hammer measurements yielded TTD impact measurements similar to in situ values. The negative correlation between TTD and Clegg Hammer measurements confirms the importance of instrument mass when drawing conclusions from testing results. Lighter impact devices may be less appropriate for assessing dynamic surface properties compared to testing equipment designed to simulate hoof impact (TTD). Potential Relevance Dynamic impact properties of race surfaces can be evaluated in a laboratory setting, allowing for further study of factors affecting surface behavior under controlled conditions. PMID:23227183

  12. Dynamic testing of airplane shock-absorbing struts

    NASA Technical Reports Server (NTRS)

    Langer, P; Thome, W

    1932-01-01

    Measurement of perpendicular impacts of a landing gear with different shock-absorbing struts against the drum testing stand. Tests were made with pneumatic shock absorbers having various degrees of damping, liquid shock absorbers, steel-spring shock absorbers and rigid struts. Falling tests and rolling tests. Maximum impact and gradual reduction of the impacts in number and time in the falling tests. Maximum impact and number of weaker impacts in rolling tests.

  13. 75 FR 1179 - Passenger Equipment Safety Standards; Front End Strength of Cab Cars and Multiple-Unit Locomotives

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-08

    ... Dynamic and Quasi-Static Testing in 2008 a. Test Article Design b. Dynamic Testing of a Collision Post c... requirements concerning structural deformation and energy absorption by collision posts and corner posts at the... Testing in 2002 a. Test Article Designs b. Dynamic Impact Testing c. Analysis 2. Industry-Sponsored Quasi...

  14. Human-Robot Collaboration Dynamic Impact Testing and Calibration Instrument for Disposable Robot Safety Artifacts

    PubMed Central

    Dagalakis, Nicholas G.; Yoo, Jae Myung; Oeste, Thomas

    2017-01-01

    The Dynamic Impact Testing and Calibration Instrument (DITCI) is a simple instrument with a significant data collection and analysis capability that is used for the testing and calibration of biosimulant human tissue artifacts. These artifacts may be used to measure the severity of injuries caused in the case of a robot impact with a human. In this paper we describe the DITCI adjustable impact and flexible foundation mechanism, which allows the selection of a variety of impact force levels and foundation stiffness. The instrument can accommodate arrays of a variety of sensors and impact tools, simulating both real manufacturing tools and the testing requirements of standards setting organizations. A computer data acquisition system may collect a variety of impact motion, force, and torque data, which are used to develop a variety of mathematical model representations of the artifacts. Finally, we describe the fabrication and testing of human abdomen soft tissue artifacts, used to display the magnitude of impact tissue deformation. Impact tests were performed at various maximum impact force and average pressure levels. PMID:28579658

  15. Human-Robot Collaboration Dynamic Impact Testing and Calibration Instrument for Disposable Robot Safety Artifacts.

    PubMed

    Dagalakis, Nicholas G; Yoo, Jae Myung; Oeste, Thomas

    2016-01-01

    The Dynamic Impact Testing and Calibration Instrument (DITCI) is a simple instrument with a significant data collection and analysis capability that is used for the testing and calibration of biosimulant human tissue artifacts. These artifacts may be used to measure the severity of injuries caused in the case of a robot impact with a human. In this paper we describe the DITCI adjustable impact and flexible foundation mechanism, which allows the selection of a variety of impact force levels and foundation stiffness. The instrument can accommodate arrays of a variety of sensors and impact tools, simulating both real manufacturing tools and the testing requirements of standards setting organizations. A computer data acquisition system may collect a variety of impact motion, force, and torque data, which are used to develop a variety of mathematical model representations of the artifacts. Finally, we describe the fabrication and testing of human abdomen soft tissue artifacts, used to display the magnitude of impact tissue deformation. Impact tests were performed at various maximum impact force and average pressure levels.

  16. Dynamic Impact Behaviour of High Entropy Alloys Used in the Military Domain

    NASA Astrophysics Data System (ADS)

    Geantă, V.; Voiculescu, I.; Stefănoiu, R.; Chereches, T.; Zecheru, T.; Matache, L.; Rotariu, A.

    2018-06-01

    AlFeCrCoNi high entropy alloys (HEA) feature significant compressive strength characteristics, being usable for severe impact applications in the military domain. The research paper presents the results obtained by testing the impact resistance of four HEA samples of different chemical compositions at perforation with 7.62 mm calibre incendiary armour-piercing bullets. The dynamical behaviour was modelled by numerical simulation based on the results of the dynamic tests conducted in the firing range, thus allowing the development of more efficient high entropy alloys, to be used for collective/personal protection.

  17. Quasi-Uniform High Speed Foam Crush Testing Using a Guided Drop Mass Impact

    NASA Technical Reports Server (NTRS)

    Jones, Lisa E. (Technical Monitor); Kellas, Sotiris

    2004-01-01

    A relatively simple method for measuring the dynamic crush response of foam materials at various loading rates is described. The method utilizes a drop mass impact configuration with mass and impact velocity selected such that the crush speed remains approximately uniform during the entire sample crushing event. Instrumentation, data acquisition, and data processing techniques are presented, and limitations of the test method are discussed. The objective of the test method is to produce input data for dynamic finite element modeling involving crash and energy absorption characteristics of foam materials.

  18. Contact force history and dynamic response due to the impact of a soft projectile

    NASA Technical Reports Server (NTRS)

    Grady, J. E.

    1988-01-01

    A series of ballistic impact tests on several different instrumented targets was performed to characterize the dynamic contact force history resulting from the impact of a compliant projectile. The results show that the variation of contact force history with impact velocity does not follow the trends predicted by classical impact models. An empirical model was therefore developed to describe this behavior. This model was then used in a finite-element analysis to estimate the force history and calculate the resulting dynamic strain response in a transversely impacted composite laminate.

  19. Detailed modeling of the train-to-train impact test : rail passenger equipment impact tests

    DOT National Transportation Integrated Search

    2007-07-01

    This report describes the results of a finite element-based analysis of the train-to-train impact test conducted at the Federal Railroad Administrations Transportation Technology Center in Pueblo, CO, on January 31, 2002. The ABAQUS/Explicit dynam...

  20. Dynamic properties of a dirt and a synthetic equine racetrack surface measured by a track-testing device.

    PubMed

    Setterbo, J J; Fyhrie, P B; Hubbard, M; Upadhyaya, S K; Stover, S M

    2013-01-01

    Racetrack surface is a risk factor for Thoroughbred racehorse injury and death that can be engineered and managed. To investigate the relationship between surface and injury, the mechanical behaviour of dirt and synthetic track surfaces must be quantified. To compare dynamic properties of a dirt and a synthetic surface in situ using a track-testing device designed to simulate equine hoof impact; and to determine the effects of impact velocity, impact angle and repeated impact on dynamic surface behaviour. A track-testing device measured force and displacement during impact into a dirt and a synthetic surface at 3 impact velocities (1.91, 2.30, 2.63 m/s), 2 impact angles (0°, 20° from vertical), and 2 consecutive impacts (initial, repeat). Surfaces were measured at 3 locations/day for 3 days. The effects of surface type, impact velocity, impact angle and impact number on dynamic surface properties were assessed using analysis of variance. Synthetic surface maximum forces, load rates and stiffnesses were 37-67% of dirt surface values. Surfaces were less stiff with lower impact velocities, angled impacts and initial impacts. The magnitude of differences between dirt and synthetic surfaces increased for repeat impacts and higher impact velocities. The synthetic surface was generally softer than the dirt surface. Greatly increased hardness for repeat impacts corroborates the importance of maintenance. Results at different impact velocities suggest that surface differences will persist at higher impact velocities. For both surfaces it is clearly important to prevent horse exposure to precompacted surfaces, particularly during high-speed training when the surface has already been trampled. These data should be useful in coordinating racetrack surface management with racehorse training to prevent injuries. © 2012 EVJ Ltd.

  1. 30 CFR 7.46 - Impact test.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Impact test. 7.46 Section 7.46 Mineral... MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Battery Assemblies § 7.46 Impact test. (a) Test... individual cells. At the test temperature range of 65 °F -80 °F (18.3 °C-26.7 °C), apply a dynamic force of...

  2. 30 CFR 7.46 - Impact test.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Impact test. 7.46 Section 7.46 Mineral... MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Battery Assemblies § 7.46 Impact test. (a) Test... individual cells. At the test temperature range of 65 °F -80 °F (18.3 °C-26.7 °C), apply a dynamic force of...

  3. 30 CFR 7.46 - Impact test.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Impact test. 7.46 Section 7.46 Mineral... MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Battery Assemblies § 7.46 Impact test. (a) Test... individual cells. At the test temperature range of 65 °F -80 °F (18.3 °C-26.7 °C), apply a dynamic force of...

  4. A Study on the Mechanical Properties and Impact-Induced Initiation Characteristics of Brittle PTFE/Al/W Reactive Materials.

    PubMed

    Ge, Chao; Maimaitituersun, Wubuliaisan; Dong, Yongxiang; Tian, Chao

    2017-04-26

    Polytetrafluoroethylene/aluminum/tungsten (PTFE/Al/W) reactive materials of three different component mass ratios (73.5/26.5/0, 68.8/24.2/7 and 63.6/22.4/14) were studied in this research. Different from the PTFE/Al/W composites published elsewhere, the materials in our research were fabricated under a much lower sintering temperature and for a much shorter duration to achieve a brittle property, which aims to provide more sufficient energy release upon impact. Quasi-static compression tests, dynamic compression tests at room and elevated temperatures, and drop weight tests were conducted to evaluate the mechanical and impact-induced initiation characteristics of the materials. The materials before and after compression tests were observed by a scanning electron microscope to relate the mesoscale structural characteristics to their macro properties. All the three types of materials fail at very low strains during both quasi-static and dynamic compression. The stress-strain curves for quasi-static tests show obvious deviations while that for the dynamic tests consist of only linear-elastic and failure stages typically. The materials were also found to exhibit thermal softening at elevated temperatures and were strain-rate sensitive during dynamic tests, which were compared using dynamic increase factors (DIFs). Drop-weight test results show that the impact-initiation sensitivity increases with the increase of W content due to the brittle mechanical property. The high-speed video sequences and recovered sample residues of the drop-weight tests show that the reaction is initiated at two opposite positions near the edges of the samples, where the shear force concentrates the most intensively, indicating a shear-induced initiation mechanism.

  5. A Study on the Mechanical Properties and Impact-Induced Initiation Characteristics of Brittle PTFE/Al/W Reactive Materials

    PubMed Central

    Ge, Chao; Maimaitituersun, Wubuliaisan; Dong, Yongxiang; Tian, Chao

    2017-01-01

    Polytetrafluoroethylene/aluminum/tungsten (PTFE/Al/W) reactive materials of three different component mass ratios (73.5/26.5/0, 68.8/24.2/7 and 63.6/22.4/14) were studied in this research. Different from the PTFE/Al/W composites published elsewhere, the materials in our research were fabricated under a much lower sintering temperature and for a much shorter duration to achieve a brittle property, which aims to provide more sufficient energy release upon impact. Quasi-static compression tests, dynamic compression tests at room and elevated temperatures, and drop weight tests were conducted to evaluate the mechanical and impact-induced initiation characteristics of the materials. The materials before and after compression tests were observed by a scanning electron microscope to relate the mesoscale structural characteristics to their macro properties. All the three types of materials fail at very low strains during both quasi-static and dynamic compression. The stress-strain curves for quasi-static tests show obvious deviations while that for the dynamic tests consist of only linear-elastic and failure stages typically. The materials were also found to exhibit thermal softening at elevated temperatures and were strain-rate sensitive during dynamic tests, which were compared using dynamic increase factors (DIFs). Drop-weight test results show that the impact-initiation sensitivity increases with the increase of W content due to the brittle mechanical property. The high-speed video sequences and recovered sample residues of the drop-weight tests show that the reaction is initiated at two opposite positions near the edges of the samples, where the shear force concentrates the most intensively, indicating a shear-induced initiation mechanism. PMID:28772812

  6. Static and dynamic strain energy release rates in toughened thermosetting composite laminates

    NASA Technical Reports Server (NTRS)

    Cairns, Douglas S.

    1992-01-01

    In this work, the static and dynamic fracture properties of several thermosetting resin based composite laminates are presented. Two classes of materials are explored. These are homogeneous, thermosetting resins and toughened, multi-phase, thermosetting resin systems. Multi-phase resin materials have shown enhancement over homogenous materials with respect to damage resistance. The development of new dynamic tests are presented for composite laminates based on Width Tapered Double Cantilevered Beam (WTDCB) for Mode 1 fracture and the End Notched Flexure (ENF) specimen. The WTDCB sample was loaded via a low inertia, pneumatic cylinder to produce rapid cross-head displacements. A high rate, piezo-electric load cell and an accelerometer were mounted on the specimen. A digital oscilloscope was used for data acquisition. Typical static and dynamic load versus displacement plots are presented. The ENF specimen was impacted in three point bending with an instrumented impact tower. Fracture initiation and propagation energies under static and dynamic conditions were determined analytically and experimentally. The test results for Mode 1 fracture are relatively insensitive to strain rate effects for the laminates tested in this study. The test results from Mode 2 fracture indicate that the toughened systems provide superior fracture initiation and higher resistance to propagation under dynamic conditions. While the static fracture properties of the homogeneous systems may be relatively high, the apparent Mode 2 dynamic critical strain energy release rate drops significantly. The results indicate that static Mode 2 fracture testing is inadequate for determining the fracture performance of composite structures subjected to conditions such as low velocity impact. A good correlation between the basic Mode 2 dynamic fracture properties and the performance is a combined material/structural Compression After Impact (CAI) test is found. These results underscore the importance of examining rate-dependent behavior for determining the longevity of structures manufactured from composite materials.

  7. Impact Landing Dynamics Facility Crash Test

    NASA Image and Video Library

    1975-08-03

    Photographed on: 08/03/75. -- By 1972 the Lunar Landing Research Facility was no longer in use for its original purpose. The 400-foot high structure was swiftly modified to allow engineers to study the dynamics of aircraft crashes. "The Impact Dynamics Research Facility is used to conduct crash testing of full-scale aircraft under controlled conditions. The aircraft are swung by cables from an A-frame structure that is approximately 400 ft. long and 230 foot high. The impact runway can be modified to simulate other grand crash environments, such as packed dirt, to meet a specific test requirement." "In 1972, NASA and the FAA embarked on a cooperative effort to develop technology for improved crashworthiness and passenger survivability in general aviation aircraft with little or no increase in weight and acceptable cost. Since then, NASA has "crashed" dozens of GA aircraft by using the lunar excursion module (LEM) facility originally built for the Apollo program." This photograph shows Crash Test No. 7. Crash Test: Test #7

  8. Conventional fuel tank blunt impact tests : test and analysis results

    DOT National Transportation Integrated Search

    2014-04-02

    The Federal Railroad Administrations Office of Research : and Development is conducting research into fuel tank : crashworthiness. A series of impact tests are planned to : measure fuel tank deformation under two types of dynamic : loading conditi...

  9. Evaluation of a Singular Value Decomposition Approach for Impact Dynamic Data Correlation

    NASA Technical Reports Server (NTRS)

    Horta, Lucas G.; Lyle, Karen H.; Lessard, Wendy B.

    2003-01-01

    Impact dynamic tests are used in the automobile and aircraft industries to assess survivability of occupants during crash, to assert adequacy of the design, and to gain federal certification. Although there is no substitute for experimental tests, analytical models are often developed and used to study alternate test conditions, to conduct trade-off studies, and to improve designs. To validate results from analytical predictions, test and analysis results must be compared to determine the model adequacy. The mathematical approach evaluated in this paper decomposes observed time responses into dominant deformation shapes and their corresponding contribution to the measured response. To correlate results, orthogonality of test and analysis shapes is used as a criterion. Data from an impact test of a composite fuselage is used and compared to finite element predictions. In this example, the impact response was decomposed into multiple shapes but only two dominant shapes explained over 85% of the measured response

  10. The impact of rapid evolution on population dynamics in the wild: experimental test of eco-evolutionary dynamics.

    PubMed

    Turcotte, Martin M; Reznick, David N; Hare, J Daniel

    2011-11-01

    Rapid evolution challenges the assumption that evolution is too slow to impact short-term ecological dynamics. This insight motivates the study of 'Eco-Evolutionary Dynamics' or how evolution and ecological processes reciprocally interact on short time scales. We tested how rapid evolution impacts concurrent population dynamics using an aphid (Myzus persicae) and an undomesticated host (Hirschfeldia incana) in replicated wild populations. We manipulated evolvability by creating non-evolving (single clone) and potentially evolving (two-clone) aphid populations that contained genetic variation in intrinsic growth rate. We observed significant evolution in two-clone populations whether or not they were exposed to predators and competitors. Evolving populations grew up to 42% faster and attained up to 67% higher density, compared with non-evolving control populations but only in treatments exposed to competitors and predators. Increased density also correlates with relative fitness of competing clones suggesting a full eco-evolutionary dynamic cycle defined as reciprocal interactions between evolution and density. © 2011 Blackwell Publishing Ltd/CNRS.

  11. 78 FR 13853 - Federal Motor Vehicle Safety Standards; Denial of Petition for Rulemaking; Vehicle Rollover...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-01

    ... stability control systems,'' a copy of the preliminary regulatory impact analysis for FMVSS No. 126, and... directed NHTSA to develop a dynamic rollover test and to use information obtained in that test to help... policy establishing a ``fishhook'' test as the dynamic rollover test for NCAP. The fishhook test is an...

  12. Side impact test and analyses of a DOT-111 tank car : final report.

    DOT National Transportation Integrated Search

    2015-10-01

    Transportation Technology Center, Inc. conducted a side impact test on a DOT-111 tank car to evaluate the performance of the : tank car under dynamic impact conditions and to provide data for the verification and refinement of a computational model. ...

  13. Comparison of Hard Surface and Soft Soil Impact Performance of a Crashworthy Composite Fuselage Concept

    NASA Technical Reports Server (NTRS)

    Sareen, Ashish K.; Sparks, Chad; Mullins, B. R., Jr.; Fasanella, Edwin; Jackson, Karen

    2002-01-01

    A comparison of the soft soil and hard surface impact performance of a crashworthy composite fuselage concept has been performed. Specifically, comparisons of the peak acceleration values, pulse duration, and onset rate at specific locations on the fuselage were evaluated. In a prior research program, the composite fuselage section was impacted at 25 feet per second onto concrete at the Impact Dynamics Research Facility (IDRF) at NASA Langley Research Center. A soft soil test was conducted at the same impact velocity as a part of the NRTC/RITA Crashworthy and Energy Absorbing Structures project. In addition to comparisons of soft soil and hard surface test results, an MSC. Dytran dynamic finite element model was developed to evaluate the test analysis correlation. In addition, modeling parameters and techniques affecting test analysis correlation are discussed. Once correlated, the analytical methodology will be used in follow-on work to evaluate the specific energy absorption of various subfloor concepts for improved crash protection during hard surface and soft soil impacts.

  14. Multi-Dimensional Calibration of Impact Dynamic Models

    NASA Technical Reports Server (NTRS)

    Horta, Lucas G.; Reaves, Mercedes C.; Annett, Martin S.; Jackson, Karen E.

    2011-01-01

    NASA Langley, under the Subsonic Rotary Wing Program, recently completed two helicopter tests in support of an in-house effort to study crashworthiness. As part of this effort, work is on-going to investigate model calibration approaches and calibration metrics for impact dynamics models. Model calibration of impact dynamics problems has traditionally assessed model adequacy by comparing time histories from analytical predictions to test at only a few critical locations. Although this approach provides for a direct measure of the model predictive capability, overall system behavior is only qualitatively assessed using full vehicle animations. In order to understand the spatial and temporal relationships of impact loads as they migrate throughout the structure, a more quantitative approach is needed. In this work impact shapes derived from simulated time history data are used to recommend sensor placement and to assess model adequacy using time based metrics and orthogonality multi-dimensional metrics. An approach for model calibration is presented that includes metric definitions, uncertainty bounds, parameter sensitivity, and numerical optimization to estimate parameters to reconcile test with analysis. The process is illustrated using simulated experiment data.

  15. Multi-Terrain Impact Testing and Simulation of a Composite Energy Absorbing Fuselage Section

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Jackson, Karen E.; Lyle, Karen H.; Sparks, Chad E.; Sareen, Ashish K.

    2007-01-01

    Comparisons of the impact performance of a 5-ft diameter crashworthy composite fuselage section were investigated for hard surface, soft soil, and water impacts. The fuselage concept, which was originally designed for impacts onto a hard surface only, consisted of a stiff upper cabin, load bearing floor, and an energy absorbing subfloor. Vertical drop tests were performed at 25-ft/s onto concrete, soft-soil, and water at NASA Langley Research Center. Comparisons of the peak acceleration values, pulse durations, and onset rates were evaluated for each test at specific locations on the fuselage. In addition to comparisons of the experimental results, dynamic finite element models were developed to simulate each impact condition. Once validated, these models can be used to evaluate the dynamic behavior of subfloor components for improved crash protection for hard surface, soft soil, and water impacts.

  16. Multi-Terrain Impact Testing and Simulation of a Composite Energy Absorbing Fuselage Section

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Lyle, Karen H.; Sparks, Chad E.; Sareen, Ashish K.

    2004-01-01

    Comparisons of the impact performance of a 5-ft diameter crashworthy composite fuselage section were investigated for hard surface, soft soil, and water impacts. The fuselage concept, which was originally designed for impacts onto a hard surface only, consisted of a stiff upper cabin, load bearing floor, and an energy absorbing subfloor. Vertical drop tests were performed at 25-ft/s onto concrete, soft-soil, and water at NASA Langley Research Center. Comparisons of the peak acceleration values, pulse durations, and onset rates were evaluated for each test at specific locations on the fuselage. In addition to comparisons of the experimental results, dynamic finite element models were developed to simulate each impact condition. Once validated, these models can be used to evaluate the dynamic behavior of subfloor components for improved crash protection for hard surface, soft soil, and water impacts.

  17. Impact tensile testing of wires

    NASA Technical Reports Server (NTRS)

    Dawson, T. H.

    1976-01-01

    The test consists of fixing one end of a wire specimen and allowing a threaded falling weight to strike the other. Assuming the dynamic stress in the wire to be a function only of its strain, energy considerations show for negligible wire inertia effects that the governing dynamic stress-strain law can be determined directly from impact energy vs. wire elongation data. Theoretical calculations are presented which show negligible wire inertia effects for ratios of wire mass to striking mass of the order of .01 or less. The test method is applied to soft copper wires and the dynamic stress-strain curve so determined is found to be about 30 percent higher than the corresponding static curve.

  18. Properties of fiber reinforced plastics about static and dynamic loadings

    NASA Astrophysics Data System (ADS)

    Kudinov, Vladimir V.; Korneeva, Natalia V.

    2016-05-01

    A method for investigation of impact toughness of anisotropic polymer composite materials (reinforced plastics) with the help of CM model sample in the configuration of microplastic (micro plastic) and impact pendulum-type testing machine under static and dynamic loadings has been developed. The method is called "Break by Impact" (Impact Break IB). The estimation of impact resistance CFRP by this method showed that an increase in loading velocity ~104 times the largest changes occurs in impact toughness and deformation ability of a material.

  19. Modeling and Characterization of Dynamic Failure of Soda-lime Glass Under High Speed Impact

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wenning N.; Sun, Xin; Chen, Weinong W.

    2012-05-27

    In this paper, the impact-induced dynamic failure of a soda-lime glass block is studied using an integrated experimental/analytical approach. The Split Hopkinson Pressure Bar (SHPB) technique is used to conduct dynamic failure test of soda-lime glass first. The damage growth patterns and stress histories are reported for various glass specimen designs. Making use of a continuum damage mechanics (CDM)-based constitutive model, the initial failure and subsequent stiffness reduction of glass are simulated and investigated. Explicit finite element analyses are used to simulate the glass specimen impact event. A maximum shear stress-based damage evolution law is used in describing the glassmore » damage process under combined compression/shear loading. The impact test results are used to quantify the critical shear stress for the soda-lime glass under examination.« less

  20. Side impact test and analysis of a DOT-112 tank car.

    DOT National Transportation Integrated Search

    2016-12-01

    As part of a program to improve transportation safety for tank cars, Transportation Technology Center, Inc. (TTCI) has conducted a side impact test on a DOT-112 tank car to evaluate the performance of the DOT-112 under dynamic impact conditions and t...

  1. Modeling of light dynamic cone penetration test - Panda 3 ® in granular material by using 3D Discrete element method

    NASA Astrophysics Data System (ADS)

    Tran, Quoc Anh; Chevalier, Bastien; Benz, Miguel; Breul, Pierre; Gourvès, Roland

    2017-06-01

    The recent technological developments made on the light dynamic penetration test Panda 3 ® provide a dynamic load-penetration curve σp - sp for each impact. This curve is influenced by the mechanical and physical properties of the investigated granular media. In order to analyze and exploit the load-penetration curve, a numerical model of penetration test using 3D Discrete Element Method is proposed for reproducing tests in dynamic conditions in granular media. All parameters of impact used in this model have at first been calibrated by respecting mechanical and geometrical properties of the hammer and the rod. There is a good agreement between experimental results and the ones obtained from simulations in 2D or 3D. After creating a sample, we will simulate the Panda 3 ®. It is possible to measure directly the dynamic load-penetration curve occurring at the tip for each impact. Using the force and acceleration measured in the top part of the rod, it is possible to separate the incident and reflected waves and then calculate the tip's load-penetration curve. The load-penetration curve obtained is qualitatively similar with that obtained by experimental tests. In addition, the frequency analysis of the measured signals present also a good compliance with that measured in reality when the tip resistance is qualitatively similar.

  2. Fluid-structure interaction analysis of the drop impact test for helicopter fuel tank.

    PubMed

    Yang, Xianfeng; Zhang, Zhiqiang; Yang, Jialing; Sun, Yuxin

    2016-01-01

    The crashworthiness of helicopter fuel tank is vital to the survivability of the passengers and structures. In order to understand and improve the crashworthiness of the soft fuel tank of helicopter during the crash, this paper investigated the dynamic behavior of the nylon woven fabric composite fuel tank striking on the ground. A fluid-structure interaction finite element model of the fuel tank based on the arbitrary Lagrangian-Eulerian method was constructed to elucidate the dynamic failure behavior. The drop impact tests were conducted to validate the accuracy of the numerical simulation. Good agreement was achieved between the experimental and numerical results of the impact force with the ground. The influences of the impact velocity, the impact angle, the thickness of the fuel tank wall and the volume fraction of water on the dynamic responses of the dropped fuel tank were studied. The results indicated that the corner of the fuel tank is the most vulnerable location during the impact with ground.

  3. Theoretical and experimental investigation on the sudden unbalance and rub-impact in rotor system caused by blade off

    NASA Astrophysics Data System (ADS)

    Wang, Cun; Zhang, Dayi; Ma, Yanhong; Liang, Zhichao; Hong, Jie

    2016-08-01

    Blade loss from a running turbofan rotor will introduce sudden unbalance into the dynamical system, and as a consequence leads to the rub-impact, the asymmetry of rotor and a series of interesting dynamic characteristics. The paper focuses on the theoretical study on the sudden unbalance and rub-impact caused by blade loss, in particular investigates the response of the rotor on a rotor test rig with sudden unbalance and rub-impact device designed respectively. The results reveal that the sudden unbalance will induce impact effect on the rotor, and critical speed frequency is excited in frequency spectrum. Meantime, the impact effect is more obvious for the rotor operating above critical speed. The influence of rub-impact is considered as additional constraint to the rotor, analyzed by the theory of time-varying system for the first time, and the results are evaluated by experimental tests. The study shows that great attention should be paid to the dynamical design for the overhung rotor system, additional constraint and corresponding analysis method in rub-impact need to be intensively studied.

  4. Dynamic impact testing with servohydraulic testing machines

    NASA Astrophysics Data System (ADS)

    Bardenheier, R.; Rogers, G.

    2006-08-01

    The design concept of “Crashworthiness” requires the information on material behaviour under dynamic impact loading in order to describe and predict the crash behaviour of structures. Especially the transport related industries, like car, railway or aircraft industry, pursue the concept of lightweight design for a while now. The materials' maximum constraint during loading is pushed to permanently increasing figures. This means in terms of crashworthiness that the process of energy absorption in structures and the mechanical behaviour of materials must well understood and can be described appropriately by material models. In close cooperation with experts from various industries and research institutes Instron has developed throughout the past years a new family of servohydraulic testing machines specifically designed to cope with the dynamics of high rate testing. Main development steps are reflected versus their experimental necessities.

  5. Effects of Antiparasitic Treatment on Dynamically and Statically Tested Cognitive Skills over Time

    ERIC Educational Resources Information Center

    Grigorenko, Elena L.; Sternberg, Robert J.; Jukes, Mathew; Alcock, Katie; Lambo, Jane; Ngorosho, Damaris; Nokes, Catherine; Bundy, Donald A.

    2006-01-01

    The main objective of this work was to investigate two testing procedures, repeated static tests and dynamic testing, that can more clearly demonstrate the impact of treatment for parasites in children. Rural Tanzanian children were assessed for the presence/absence and burden of helminth parasites and assigned to one of three…

  6. Analysis of rock mass dynamic impact influence on the operation of a powered roof support control system

    NASA Astrophysics Data System (ADS)

    Szurgacz, Dawid; Brodny, Jaroław

    2018-01-01

    A powered roof support is a machine responsible for protection of an underground excavation against deformation generated by rock mass. In the case of dynamic impact of rock mass, the proper level of protection is hard to achieve. Therefore, the units of the roof support and its components are subject to detailed tests aimed at acquiring greater reliability, efficiency and efficacy. In the course of such test, however, it is not always possible to foresee values of load that may occur in actual conditions. The article presents a case of a dynamic load impacting the powered roof support during a high-energy tremor in an underground hard coal mine. The authors discuss the method for selecting powered roof support units proper for specific forecasted load conditions. The method takes into account the construction of the support and mining and geological conditions of an excavation. Moreover, the paper includes tests carried out on hydraulic legs and yield valves which were responsible for additional yielding of the support. Real loads impacting the support unit during tremors are analysed. The results indicated that the real registered values of the load were significantly greater than the forecasted values. The analysis results of roof support operation during dynamic impact generated by the rock mass (real life conditions) prompted the authors to develop a set of recommendations for manufacturers and users of powered roof supports. These include, inter alia, the need for innovative solutions for testing hydraulic section systems.

  7. Impacts Assessment of Dynamic Speed Harmonization with Queue Warning: Task 2 Impact Assessment Plan - Final

    DOT National Transportation Integrated Search

    2015-02-01

    The purpose of the Impact Assessment Plan is to take the results of the test track or field tests of the prototype, make reasonable extrapolations of those results to a theoretical full scale implementation, and answer the following 7 questions relat...

  8. Light airplane crash tests at impact velocities of 13 and 27 m/sec

    NASA Technical Reports Server (NTRS)

    Alfaro-Bou, E.; Vaughan, V. L., Jr.

    1977-01-01

    Two similar general aviation airplanes were crash tested at the Langley impact dynamics research facility at velocities of 13 and 27 m/sec. Other flight parameters were held constant. The facility, instrumentation, tests specimens, and test method are briefly described. Structural damage and accelerometer data are discussed.

  9. Occupant injury and fatality in general aviation aircraft for which dynamic crash testing is certification-mandated.

    PubMed

    Boyd, Douglas D

    2015-06-01

    Towards further improving general aviation aircraft crashworthiness, multi-axis dynamic tests have been required for aircraft certification (14CFR23.562) since 1985. The objective of this study was to determine if occupants in aircraft certified to these higher crashworthiness standards show a mitigated fraction of fatal accidents and/or injury severity. The NTSB aviation database was queried for accidents occurring between 2002 and 2012 involving aircraft certified to, or immune from, dynamic crash testing and manufactured after 1999. Only operations conducted under 14CFR Part 91 were considered. Statistical analysis employed proportion tests and logistic regression. Off-airport landings are associated with high decelerative forces; however for off-airport landings, the fraction of fatal accidents for aircraft subject to, or exempt from, dynamic crash testing was similar (0.53 and 0.60, respectively). Unexpectedly, for on-airport landings a higher fraction of fatalities was evident for aircraft whose certification mandated dynamic crash testing. Improved crashworthiness standards would be expected to translate into a reduced severity of accident injuries. For all accidents, as well as for those deemed survivable, the fraction of minor and serious injuries was reduced for occupants in aircraft certified to the higher crashworthiness standards. Surprisingly, the fraction of occupants fatally injured was not decreased for aircraft subject to dynamic crash tests. To shed light on this unexpected finding flight history, airman demographics and post-impact fires for aircraft for which dynamic crash testing is mandatory or exempt was examined. For the former cohort the median distance of the accident flight was nearly 44% higher. Aircraft subject to dynamic crash testing were also involved in a greater fraction (0.25 versus 0.12, respectively) of post-impact fires. Our data suggest that while the more stringent crashworthiness standards have mitigated minor and serious injuries, surprisingly the fraction of occupants fatally injured is unaltered. The unchanged fraction of fatal injuries may reflect partly (a) fatigue associated with longer flight distances and (b) a greater proportion of post-impact fires. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Full-field Deformation Measurement Techniques for a Rotating Composite Shaft

    NASA Technical Reports Server (NTRS)

    Kohlman, Lee W.; Ruggeri, Charles R.; Martin, Richard E.; Roberts, Gary D.; Handschuh, Robert F.; Roth, Don J.

    2012-01-01

    Test methods were developed to view global and local deformation in a composite tube during a test in which the tube is rotating at speeds and torques relevant to rotorcraft shafts. Digital image correlation (DIC) was used to provide quantitative displacement measurements during the tests. High speed cameras were used for the DIC measurements in order to capture images at sufficient frame rates and with sufficient resolution while the tube was rotating at speeds up to 5,000 rpm. Surface displacement data was resolved into cylindrical coordinates in order to measure rigid body rotation and global deformation of the tube. Tests were performed on both undamaged and impact damaged tubes in order to evaluate the capability to detect local deformation near an impact damaged site. Measurement of radial displacement clearly indicated a local buckling deformation near the impacted site in both dynamic and static tests. X-ray computed tomography (CT) was used to investigate variations in fiber architecture within the composite tube and to detect impact damage. No growth in the impact damage area was observed by DIC during dynamic testing or by x-ray CT in post test inspection of the composite tube.

  11. A new method for testing pile by single-impact energy and P-S curve

    NASA Astrophysics Data System (ADS)

    Xu, Zhao-Yong; Duan, Yong-Kang; Wang, Bin; Hu, Yi-Li; Yang, Run-Hai; Xu, Jun; Zhao, Jin-Ming

    2004-11-01

    By studying the pile-formula and stress-wave methods ( e.g., CASE method), the authors propose a new method for testing piles using the single-impact energy and P-S curves. The vibration and wave figures are recorded, and the dynamic and static displacements are measured by different transducers near the top of piles when the pile is impacted by a heavy hammer or micro-rocket. By observing the transformation coefficient of driving energy (total energy), the consumed energy of wave motion and vibration and so on, the vertical bearing capacity for single pile is measured and calculated. Then, using the vibration wave diagram, the dynamic relation curves between the force ( P) and the displacement ( S) is calculated and the yield points are determined. Using the static-loading test, the dynamic results are checked and the relative constants of dynamic-static P-S curves are determined. Then the subsidence quantity corresponding to the bearing capacity is determined. Moreover, the shaped quality of the pile body can be judged from the formation of P-S curves.

  12. Dynamic Finite Element Predictions for Mars Sample Return Cellular Impact Test #4

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Billings, Marcus D.

    2001-01-01

    The nonlinear, transient dynamic finite element code, MSC.Dytran, was used to simulate an impact test of an energy absorbing Earth Entry Vehicle (EEV) that will impact without a parachute. EEVOs are designed to return materials from asteroids, comets, or planets for laboratory analysis on Earth. The EEV concept uses an energy absorbing cellular structure designed to contain and limit the acceleration of space exploration samples during Earth impact. The spherical shaped cellular structure is composed of solid hexagonal and pentagonal foam-filled cells with hybrid graphite-epoxy/Kevlar cell walls. Space samples fit inside a smaller sphere at the center of the EEVOs cellular structure. Pre-test analytical predictions were compared with the test results from a bungee accelerator. The model used to represent the foam and the proper failure criteria for the cell walls were critical in predicting the impact loads of the cellular structure. It was determined that a FOAM1 model for the foam and a 20% failure strain criteria for the cell walls gave an accurate prediction of the acceleration pulse for cellular impact.

  13. Dynamic testing in schizophrenia: does training change the construct validity of a test?

    PubMed

    Wiedl, Karl H; Schöttke, Henning; Green, Michael F; Nuechterlein, Keith H

    2004-01-01

    Dynamic testing typically involves specific interventions for a test to assess the extent to which test performance can be modified, beyond level of baseline (static) performance. This study used a dynamic version of the Wisconsin Card Sorting Test (WCST) that is based on cognitive remediation techniques within a test-training-test procedure. From results of previous studies with schizophrenia patients, we concluded that the dynamic and static versions of the WCST should have different construct validity. This hypothesis was tested by examining the patterns of correlations with measures of executive functioning, secondary verbal memory, and verbal intelligence. Results demonstrated a specific construct validity of WCST dynamic (i.e., posttest) scores as an index of problem solving (Tower of Hanoi) and secondary verbal memory and learning (Auditory Verbal Learning Test), whereas the impact of general verbal capacity and selective attention (Verbal IQ, Stroop Test) was reduced. It is concluded that the construct validity of the test changes with dynamic administration and that this difference helps to explain why the dynamic version of the WCST predicts functional outcome better than the static version.

  14. Dynamic cone penetration tests in granular media: Determination of the tip's dynamic load-penetration curve

    NASA Astrophysics Data System (ADS)

    Escobar, E.; Benz, M.; Gourvès, R.; Breul, P.

    2013-06-01

    In this article a two-dimensional discrete numerical model, realized in PFC2D, is presented. This model is used in the dynamic penetration tests in a granular medium. Its objective being the validation of the measurement technique offered by Panda 3® (Benz et al. 2011) which is designed to calculate the tip's load-penetration curve for each impact in the soil where different parameters are used. To do so, we have compared the results obtained by calculation during the impacts to those measured directly in the model of a penetrometer through the installation of the gauges at the cone.

  15. Crashworthiness of light aircraft fuselage structures: A numerical and experimental investigation

    NASA Technical Reports Server (NTRS)

    Nanyaro, A. P.; Tennyson, R. C.; Hansen, J. S.

    1984-01-01

    The dynamic behavior of aircraft fuselage structures subject to various impact conditions was investigated. An analytical model was developed based on a self-consistent finite element (CFE) formulation utilizing shell, curved beam, and stringer type elements. Equations of motion were formulated and linearized (i.e., for small displacements), although material nonlinearity was retained to treat local plastic deformation. The equations were solved using the implicit Newmark-Beta method with a frontal solver routine. Stiffened aluminum fuselage models were also tested in free flight using the UTIAS pendulum crash test facility. Data were obtained on dynamic strains, g-loads, and transient deformations (using high speed photography in the latter case) during the impact process. Correlations between tests and predicted results are presented, together with computer graphics, based on the CFE model. These results include level and oblique angle impacts as well as the free-flight crash test. Comparisons with a hybrid, lumped mass finite element computer model demonstrate that the CFE formulation provides the test overall agreement with impact test data for comparable computing costs.

  16. Impact Damage and Strain Rate Effects for Toughened Epoxy Composite Structures

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Minnetyan, Levon

    2006-01-01

    Structural integrity of composite systems under dynamic impact loading is investigated herein. The GENOA virtual testing software environment is used to implement the effects of dynamic loading on fracture progression and damage tolerance. Combinations of graphite and glass fibers with a toughened epoxy matrix are investigated. The effect of a ceramic coating for the absorption of impact energy is also included. Impact and post impact simulations include verification and prediction of (1) Load and Impact Energy, (2) Impact Damage Size, (3) Maximum Impact Peak Load, (4) Residual Strength, (5) Maximum Displacement, (6) Contribution of Failure Modes to Failure Mechanisms, (7) Prediction of Impact Load Versus Time, and (8) Damage, and Fracture Pattern. A computer model is utilized for the assessment of structural response, progressive fracture, and defect/damage tolerance characteristics. Results show the damage progression sequence and the changes in the structural response characteristics due to dynamic impact. The fundamental premise of computational simulation is that the complete evaluation of composite fracture requires an assessment of ply and subply level damage/fracture processes as the structure is subjected to loads. Simulation results for the graphite/epoxy composite were compared with the impact and tension failure test data, correlation and verification was obtained that included: (1) impact energy, (2) damage size, (3) maximum impact peak load, (4) residual strength, (5) maximum displacement, and (6) failure mechanisms of the composite structure.

  17. Development of collision dynamics models to estimate the results of full-scale rail vehicle impact tests : Tufts University Master's Thesis

    DOT National Transportation Integrated Search

    2000-11-01

    In an effort to study occupant survivability in train collisions, analyses and tests were conducted to understand and improve the crashworthiness of rail vehicles. A collision dynamics model was developed in order to estimate the rigid body motion of...

  18. 16 CFR 1203.13 - Test schedule.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... environments, respectively) shall be tested in accordance with the dynamic retention system strength test at... Peripheral vision § 1203.15 Positional stability § 1203.16 Retention system strength § 1203.17 Impact tests...

  19. Rail-car impact tests with steel coil: collision dynamics

    DOT National Transportation Integrated Search

    2003-04-22

    Two full-scale oblique grade-crossing impact tests were conducted in June 2002 to compare the crashworthiness performance of alternative corner post designs on rail passenger cab cars. On June 4, 2002 a cab car fitted with an end structure built to p...

  20. The impact of dynamic balance measures on walking performance in multiple sclerosis

    PubMed Central

    Fritz, Nora E.; Marasigan, Rhul Evans R.; Calabresi, Peter A.; Newsome, Scott D.; Zackowski, Kathleen M.

    2014-01-01

    Background Static posture imbalance and gait dysfunction are common in individuals with multiple sclerosis (MS). Although the impact of strength and static balance on walking has been examined, little is known about the impact of dynamic standing balance on walking in MS. Objective To determine the impact of dynamic balance, static balance, sensation, and strength measures to walking in individuals with MS. Methods 52 individuals with MS (27 females; 26 relapsing-remitting; mean age 45.6±10.3 years; median EDSS 3.5 (range 0-7) participated in testing for dynamic and static posturography (Kistler 9281 force plate), hip flexion, hip extension, and ankle dorsiflexion strength (Microfet2 hand-held dynamometer), sensation (Vibratron II) and walk velocity (Optotrak Motion Analysis System). Mann-Whitney tests, Spearman correlation coefficients, and forward stepwise multiple regression were used to assess statistical significance. Results All measures were significantly abnormal in MS subjects when compared to age and sex-matched norms (p<0.05 for all). Static balance (eyes open, feet together [EOFT]), anterior- posterior (AP) dynamic sway, and hip extension strength were strongly correlated with fast walking velocity (AP sway r=0.68; hip extension strength r=0.73; EOFT r=-0.40). Together, AP dynamic sway (ρr=0.71, p<0.001), hip extension strength (ρr=0.54, p<0.001), and EOFT static balance (ρr=-0.41, p=0.01) explained more than 70% of the variance in fast walking velocity (p<0.001). Conclusions These data suggest that AP dynamic sway impacts walking performance in MS. A combined evaluation of dynamic balance, static balance and strength may lead to a better understanding of walking mechanisms as well as the development of strategies to improve walking. PMID:24795162

  1. Vibration Modal Characterization of a Stirling Convertor via Base-Shake Excitation

    NASA Technical Reports Server (NTRS)

    Suarez, Vicente J.; Goodnight, Thomas W.; Hughes, William O.; Samorezov, Sergey

    2003-01-01

    The U.S. Department of Energy (DOE), Lockheed Martin (LM), Stirling Technology Company (STC), and NASA John H. Glenn Research Center (GRC) are currently developing a high-efficiency Stirling convertor for use in a Stirling Radioisotope Generator (SRG). NASA and DOE have identified the SRG for potential use as an advanced power system for future NASA Space Science missions, providing spacecraft onboard electric power for deep space missions and power for unmanned Mars rovers. Low-level, baseshake sine vibration tests were conducted on the Stirling Technology Demonstration Convertor (TDC), at NASA GRC's Structural Dynamics Laboratory, in February 2001, as part of the development of this Stirling technology. The purpose of these tests was to provide a better understanding of the TDC's internal dynamic response to external vibratory base excitations. The knowledge obtained can therein be used to help explain the success that the TDC enjoyed in its previous random vibration qualification tests (December 1999). This explanation focuses on the TDC s internal dynamic characteristics in the 50 to 250 Hz frequency range, which corresponds to the maximum input levels of its qualification random vibration test specification. The internal dynamic structural characteristics of the TDC have now been measured in two separate tests under different motoring and dynamic loading conditions: (1) with the convertor being electrically motored, under a vibratory base-shake excitation load, and (2) with the convertor turned off, and its alternator internals undergoing dynamic excitation via hammer impact loading. This paper addresses the test setup, procedure and results of the base-shake vibration testing conducted on the motored TDC, and will compare these results with those results obtained from the dynamic impact tests (May 2001) on the nonmotored TDC.

  2. The impact of database quality on keystroke dynamics authentication

    NASA Astrophysics Data System (ADS)

    Panasiuk, Piotr; Rybnik, Mariusz; Saeed, Khalid; Rogowski, Marcin

    2016-06-01

    This paper concerns keystroke dynamics, also partially in the context of touchscreen devices. The authors concentrate on the impact of database quality and propose their algorithm to test database quality issues. The algorithm is used on their own as well as the well-known . Following specific problems were researched: classification accuracy, development of user typing proficiency, time precision during sample acquisition, representativeness of training set, sample length.

  3. Prediction of turning stability using receptance coupling

    NASA Astrophysics Data System (ADS)

    Jasiewicz, Marcin; Powałka, Bartosz

    2018-01-01

    This paper presents an issue of machining stability prediction of dynamic "lathe - workpiece" system evaluated using receptance coupling method. Dynamic properties of the lathe components (the spindle and the tailstock) are assumed to be constant and can be determined experimentally based on the results of the impact test. Hence, the variable of the system "machine tool - holder - workpiece" is the machined part, which can be easily modelled analytically. The method of receptance coupling enables a synthesis of experimental (spindle, tailstock) and analytical (machined part) models, so impact testing of the entire system becomes unnecessary. The paper presents methodology of analytical and experimental models synthesis, evaluation of the stability lobes and experimental validation procedure involving both the determination of the dynamic properties of the system and cutting tests. In the summary the experimental verification results would be presented and discussed.

  4. On Restructurable Control System Theory

    NASA Technical Reports Server (NTRS)

    Athans, M.

    1983-01-01

    The state of stochastic system and control theory as it impacts restructurable control issues is addressed. The multivariable characteristics of the control problem are addressed. The failure detection/identification problem is discussed as a multi-hypothesis testing problem. Control strategy reconfiguration, static multivariable controls, static failure hypothesis testing, dynamic multivariable controls, fault-tolerant control theory, dynamic hypothesis testing, generalized likelihood ratio (GLR) methods, and adaptive control are discussed.

  5. Dynamic Impact Testing and Model Development in Support of NASA's Advanced Composites Program

    NASA Technical Reports Server (NTRS)

    Melis, Matthew E.; Pereira, J. Michael; Goldberg, Robert; Rassaian, Mostafa

    2018-01-01

    The purpose of this paper is to provide an executive overview of the HEDI effort for NASA's Advanced Composites Program and establish the foundation for the remaining papers to follow in the 2018 SciTech special session NASA ACC High Energy Dynamic Impact. The paper summarizes the work done for the Advanced Composites Program to advance our understanding of the behavior of composite materials during high energy impact events and to advance the ability of analytical tools to provide predictive simulations. The experimental program carried out at GRC is summarized and a status on the current development state for MAT213 will be provided. Future work will be discussed as the HEDI effort transitions from fundamental analysis and testing to investigating sub-component structural concept response to impact events.

  6. Some Correlations between Plate Shatter and Fracture Toughness.

    DTIC Science & Technology

    1987-02-01

    temperatures. In this manner, any test for plate cracking should be akin to a Charpy test, where a series of notched test bars are broken over a...cracking under ballistic impact. The PSTT test is analogous to the transition temperature in a Charpy impact test, or to the nil ductility transition (NDT...210 C to -730 C. Standard Charpy specimens were machined from the plates and subsequently precracked in fatigue to about 2.5 mm and dynamically tested

  7. Experimental investigation of the crashworthiness of scaled composite sailplane fuselages

    NASA Technical Reports Server (NTRS)

    Kampf, Karl-Peter; Crawley, Edward F.; Hansman, R. John, Jr.

    1989-01-01

    The crash dynamics and energy absorption of composite sailplane fuselage segments undergoing nose-down impact were investigated. More than 10 quarter-scale structurally similar test articles, typical of high-performance sailplane designs, were tested. Fuselages segments were fabricated of combinations of fiberglass, graphite, Kevlar, and Spectra fabric materials. Quasistatic and dynamic tests were conducted. The quasistatic tests were found to replicate the strain history and failure modes observed in the dynamic tests. Failure modes of the quarter-scale model were qualitatively compared with full-scale crash evidence and quantitatively compared with current design criteria. By combining material and structural improvements, substantial increases in crashworthiness were demonstrated.

  8. Dynamic kinematic responses of female volunteers in rear impacts and comparison to previous male volunteer tests.

    PubMed

    Carlsson, Anna; Linder, Astrid; Davidsson, Johan; Hell, Wolfram; Schick, Sylvia; Svensson, Mats

    2011-08-01

    The objective was to quantify dynamic responses of 50th percentile females in rear impacts and compare to those from similar tests with males. The results will serve as a basis for future work with models, criteria, and safety systems. A rear impact sled test series with 8 female volunteers was performed at velocity changes of 5 and 7 km/h. The following dynamic response corridors were generated for the head, T1 (first thoracic vertebra) and head relative to T1: (1) accelerations in posterior-anterior direction, (2) horizontal and vertical displacements, (3) angular displacements for 6 females close to the 50th percentile in size. Additionally, the head-to-head restraint distance and contact time and neck injury criterion (NIC) were extracted from the data set. These data were compared to results from previously performed male volunteer tests, representing the 50th percentile male, in equivalent test conditions. T-tests were performed with the statistical significance level of .05 to quantify the significance of the parameter value differences for the males and females. At 7 km/h, the females showed 29 percent earlier head-to-head restraint contact time (p = .0072); 27 percent shorter horizontal rearward head displacement (p = .0017); 36 percent narrower head extension angle (p = .0281); and 52 percent lower NIC value (p = .0239) than the males in previous tests. This was mainly due to 35 percent shorter initial head-to-head restraint distance for the females (p = .0125). The peak head acceleration in the posterior-anterior direction was higher and occurred earlier for the females. The overall result indicated differences in the dynamic response for the female and male volunteers. The results could be used in developing and evaluating a mechanical and/or mathematical average-sized female dummy model for rear impact safety assessment. These models can be used as a tool in the design of protective systems and for further development and evaluation of injury criteria.

  9. Crash Testing of Helicopter Airframe Fittings

    NASA Technical Reports Server (NTRS)

    Clarke, Charles W.; Townsend, William; Boitnott, Richard

    2004-01-01

    As part of the Rotary Wing Structures Technology Demonstration (RWSTD) program, a surrogate RAH-66 seat attachment fitting was dynamically tested to assess its response to transient, crash impact loads. The dynamic response of this composite material fitting was compared to the performance of an identical fitting subjected to quasi-static loads of similar magnitude. Static and dynamic tests were conducted of both smaller bench level and larger full-scale test articles. At the bench level, the seat fitting was supported in a steel fixture, and in the full-scale tests, the fitting was integrated into a surrogate RAH-66 forward fuselage. Based upon the lessons learned, an improved method to design, analyze, and test similar composite material fittings is proposed.

  10. Dynamical and Physical Properties of 65803 Didymos, the AIDA Mission Target

    NASA Astrophysics Data System (ADS)

    Campo Bagatin, A.; Richardson, D. C.; Tsiganis, K.; Cheng, A. F.; Michel, P.

    2017-09-01

    The near-Earth asteroid (NEA) 65803 Didymos is a binary system and is the target of the proposed Asteroid Impact & Deflection Assessment (AIDA) mission, which combines an orbiter (Asteroid Impact Mission, AIM, or the reduced-scope AIM Deflection Demonstration, AIM-D2) [1, 2] and a kinetic impactor experiment (Double Asteroid Redirection Test, DART) planned to impact the secondary of the Didymos binary system in October, 2022 [3]. The Dynamical and Physical Properties of Didymos Working Group supports the AIDA mission by addressing questions related to understanding the dynamical state of the system and inferring the physical properties of the components

  11. Photogrammetric Measurements of CEV Airbag Landing Attenuation Systems

    NASA Technical Reports Server (NTRS)

    Barrows, Danny A.; Burner, Alpheus W.; Berry, Felecia C.; Dismond, Harriett R.; Cate, Kenneth H.

    2008-01-01

    High-speed photogrammetric measurements are being used to assess the impact dynamics of the Orion Crew Exploration Vehicle (CEV) for ground landing contingency upon return to earth. Test articles representative of the Orion capsule are dropped at the NASA Langley Landing and Impact Research (LandIR) Facility onto a sand/clay mixture representative of a dry lakebed from elevations as high as 62 feet (18.9 meters). Two different types of test articles have been evaluated: (1) half-scale metal shell models utilized to establish baseline impact dynamics and soil characterization, and (2) geometric full-scale drop models with shock-absorbing airbags which are being evaluated for their ability to cushion the impact of the Orion CEV with the earth s surface. This paper describes the application of the photogrammetric measurement technique and provides drop model trajectory and impact data that indicate the performance of the photogrammetric measurement system.

  12. Dynamic impact testing of hedgehog spines using a dual-arm crash pendulum.

    PubMed

    Swift, Nathan B; Hsiung, Bor-Kai; Kennedy, Emily B; Tan, Kwek-Tze

    2016-08-01

    Hedgehog spines are a potential model for impact resistant structures and material. While previous studies have examined static mechanical properties of individual spines, actual collision tests on spines analogous to those observed in the wild have not previously been investigated. In this study, samples of roughly 130 keratin spines were mounted vertically in thin substrates to mimic the natural spine layout on hedgehogs. A weighted crash pendulum was employed to induce and measure the effects of repeated collisions against samples, with the aim to evaluate the influence of various parameters including humidity effect, impact energy, and substrate hardness. Results reveal that softer samples-due to humidity conditioning and/or substrate material used-exhibit greater durability over multiple impacts, while the more rigid samples exhibit greater energy absorption performance at the expense of durability. This trend is exaggerated during high-energy collisions. Comparison of the results to baseline tests with industry standard impact absorbing foam, wherein the spines exhibit similar energy absorption, verifies the dynamic impact absorption capabilities of hedgehog spines and their candidacy as a structural model for engineered impact technology. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Dynamic Finite Element Predictions for Mars Sample Return Cellular Impact Test #4

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Billings, Marcus D.

    2001-01-01

    The nonlinear finite element program MSC.Dytran was used to predict the impact pulse for (he drop test of an energy absorbing cellular structure. This pre-test simulation was performed to aid in the design of an energy absorbing concept for a highly reliable passive Earth Entry Vehicle (EEV) that will directly impact the Earth without a parachute. In addition, a goal of the simulation was to bound the acceleration pulse produced and delivered to the simulated space cargo container. EEV's are designed to return materials from asteroids, comets, or planets for laboratory analysis on Earth. The EEV concept uses an energy absorbing cellular structure designed to contain and limit the acceleration of space exploration samples during Earth impact. The spherical shaped cellular structure is composed of solid hexagonal and pentagonal foam-filled cells with hybrid graphite-epoxy/Kevlar cell walls. Space samples fit inside a smaller sphere at the enter of the EEV's cellular structure. The material models and failure criteria were varied to determine their effect on the resulting acceleration pulse. Pre-test analytical predictions using MSC.Dytran were compared with the test results obtained from impact test #4 using bungee accelerator located at the NASA Langley Research Center Impact Dynamics Research Facility. The material model used to represent the foam and the proper failure criteria for the cell walls were critical in predicting the impact loads of the cellular structure. It was determined that a FOAMI model for the foam and a 20% failure strain criteria for the cell walls gave an accurate prediction of the acceleration pulse for drop test #4.

  14. The impact of chief executive officer personality on top management team dynamics:one mechanism by which leadership affects organizational performance.

    PubMed

    Peterson, Randall S; Smith, D Brent; Martorana, Paul V; Owens, Pamela D

    2003-10-01

    This article explores 1 mechanism by which leader personality affects organizational performance. The authors hypothesized and tested the effects of leader personality on the group dynamics of the top management team (TMT) and of TMT dynamics on organizational performance. To test their hypotheses, the authors used the group dynamics q-sort method, which is designed to permit rigorous, quantitative comparisons of data derived from qualitative sources. Results from independent observations of chief executive officer (CEO) personality and TMT dynamics for 17 CEOs supported the authors' hypothesized relationships both between CEO personality and TMT group dynamics and between TMT dynamics and organizational performance.

  15. Damage and fracture in fabric-reinforced composites under quasi-static and dynamic bending

    NASA Astrophysics Data System (ADS)

    Ullah, H.; Harland, A. R.; Silberschmidt, V. V.

    2013-07-01

    Fabric-reinforced polymer composites used in sports products can be exposed to different in-service conditions such as large deformations caused by quasi-static and dynamic loading. Composite materials subjected to such bending loads can demonstrate various damage modes - matrix cracking, delamination and, ultimately, fabric fracture. Damage evolution in composites affects both their in-service properties and performance that can deteriorate with time. Such behaviour needs adequate means of analysis and investigation, the main approaches being experimental characterisation and non-destructive examination of internal damage in composite laminates. This research deals with a deformation behaviour and damage in carbon fabric-reinforced polymer (CFRP) laminates caused by quasi-static and dynamic bending. Experimental tests were carried out to characterise the behaviour of a CFRP material under large-deflection bending, first in quasi-static and then in dynamic conditions. Izod-type impact bending tests were performed on un-notched specimens of CFRP using a Resil impactor to assess the transient response and energy absorbing capability of the material. X-ray micro computed tomography (micro-CT) was used to analyse various damage modes in the tested specimens. X-ray tomographs revealed that through-thickness matrix cracking, inter-ply and intra-ply delamination such as tow debonding, and fabric fracture were the prominent damage modes both in quasi-static and dynamic test specimens. However, the inter-ply damage was localised at impact location in dynamically tested specimens, whereas in the quasi-static specimens, it spread almost over the entire interface.

  16. Optimal design and dynamic impact tests of removable bollards

    NASA Astrophysics Data System (ADS)

    Chen, Suwen; Liu, Tianyi; Li, Guoqiang; Liu, Qing; Sun, Jianyun

    2017-10-01

    Anti-ram bollard systems, which are installed around buildings and infrastructure, can prevent unauthorized vehicles from entering, maintain distance from vehicle-borne improvised explosive devices (VBIED) and reduce the corresponding damage. Compared with a fixed bollard system, a removable bollard system provides more flexibility as it can be removed when needed. This paper first proposes a new type of K4-rated removable anti-ram bollard system. To simulate the collision of a vehicle hitting the bollard system, a finite element model was then built and verified through comparison of numerical simulation results and existing experimental results. Based on the orthogonal design method, the factors influencing the safety and economy of this proposed system were examined and sorted according to their importance. An optimal design scheme was then produced. Finally, to validate the effectiveness of the proposed design scheme, four dynamic impact tests, including two front impact tests and two side impact tests, have been conducted according to BSI Specifications. The residual rotation angles of the specimen are smaller than 30º and satisfy the requirements of the BSI Specification.

  17. Simulating the Response of a Composite Honeycomb Energy Absorber. Part 1; Dynamic Crushing of Components and Multi-Terrain Impacts

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Fasanella, Edwin L.; Polanco, Michael A.

    2012-01-01

    This paper describes the experimental and analytical evaluation of an externally deployable composite honeycomb structure that is designed to attenuate impact energy during helicopter crashes. The concept, designated the Deployable Energy Absorber (DEA), utilizes an expandable Kevlar (Registered Trademark) honeycomb to dissipate kinetic energy through crushing. The DEA incorporates a unique flexible hinge design that allows the honeycomb to be packaged and stowed until needed for deployment. Experimental evaluation of the DEA included dynamic crush tests of multi-cell components and vertical drop tests of a composite fuselage section, retrofitted with DEA blocks, onto multi-terrain. Finite element models of the test articles were developed and simulations were performed using the transient dynamic code, LSDYNA (Registered Trademark). In each simulation, the DEA was represented using shell elements assigned two different material properties: Mat 24, an isotropic piecewise linear plasticity model, and Mat 58, a continuum damage mechanics model used to represent laminated composite fabrics. DEA model development and test-analysis comparisons are presented.

  18. Real-time dynamics of high-velocity micro-particle impact

    NASA Astrophysics Data System (ADS)

    Veysset, David; Hsieh, Alex; Kooi, Steve; Maznev, Alex A.; Tang, Shengchang; Olsen, Bradley D.; Nelson, Keith A.

    High-velocity micro-particle impact is important for many areas of science and technology, from space exploration to the development of novel drug delivery platforms. We present real-time observations of supersonic micro-particle impacts using multi-frame imaging. In an all optical laser-induced projectile impact test, a monolayer of micro-particles is placed on a transparent substrate coated with a laser absorbing polymer layer. Ablation of a laser-irradiated polymer region accelerates the micro-particles into free space with speeds up to 1.0 km/s. The particles are monitored during the impact on the target with an ultrahigh-speed multi-frame camera that can record up to 16 images with time resolution as short as 3 ns. In particular, we investigated the high-velocity impact deformation response of poly(urethane urea) (PUU) elastomers to further the fundamental understanding of the molecular influence on dynamical behaviors of PUUs. We show the dynamic-stiffening response of the PUUs and demonstrate the significance of segmental dynamics in the response. We also present movies capturing individual particle impact and penetration in gels, and discuss the observed dynamics. The results will provide an impetus for modeling high-velocity microscale impact responses and high strain rate deformation in polymers, gels, and other materials.

  19. Full-Scale Crash Test of a MD-500 Helicopter with Deployable Energy Absorbers

    NASA Technical Reports Server (NTRS)

    Kellas, Sotiris; Jackson, Karen E.; Littell, Justin D.

    2010-01-01

    A new externally deployable energy absorbing system was demonstrated during a full-scale crash test of an MD-500 helicopter. The deployable system is a honeycomb structure and utilizes composite materials in its construction. A set of two Deployable Energy Absorbers (DEAs) were fitted on the MD-500 helicopter for the full-scale crash demonstration. Four anthropomorphic dummy occupants were also used to assess human survivability. A demonstration test was performed at NASA Langley's Landing and Impact Research Facility (LandIR). The test involved impacting the helicopter on a concrete surface with combined forward and vertical velocity components of 40-ft/s and 26-ft/s, respectively. The objectives of the test were to evaluate the performance of the DEA concept under realistic crash conditions and to generate test data for validation of dynamic finite element simulations. Descriptions of this test as well as other component and full-scale tests leading to the helicopter test are discussed. Acceleration data from the anthropomorphic dummies showed that dynamic loads were successfully attenuated to within non-injurious levels. Moreover, the airframe itself survived the relatively severe impact and was retested to provide baseline data for comparison for cases with and without DEAs.

  20. Evaluating effectiveness of dynamic soundfield system in the classroom.

    PubMed

    da Cruz, Aline Duarte; Alves Silvério, Kelly Cristina; Da Costa, Aline Roberta Aceituno; Moret, Adriane Lima Mortari; Lauris, José Roberto Pereira; de Souza Jacob, Regina Tangerino

    2016-01-01

    Research has reported on the use of soundfield amplification devices in the classroom. However, no study has used standardized tests to determine the potential advantages of the dynamic soundfield system for normally hearing students and for the teacher's voice. Our aim was to evaluate the impact of using dynamic soundfield system on the noise of the classroom, teacher's voice and students' academic performance. This was a prospective cohort study in which 20 student participants enrolled in the third year of basic education were divided into two groups (i.e., control and experimental); their teacher participated. The experimental group was exposed to the dynamic soundfield system for 3 consecutive months. The groups were assessed using standardized tests to evaluate their academic performance. Further, questionnaires and statements were collected on the participants' experience of using the soundfield system. We statistically analyzed the results to compare the academic performance of the control group with that of the experimental group. In all cases, a significance level of P < .05 was adopted. Use of the dynamic soundfield system was effective for improving the students' academic performance on standardized tests for reading, improving the teacher's speech intelligibility, and reducing the teacher's vocal strain. The dynamic soundfield system minimizes the impact of noise in the classroom as demonstrated by the mensuration of the signal-to-noise ratio (SNR) and pupil performance on standardized tests for reading and student and teacher ratings of amplification system effectiveness.

  1. Experimental test of an eco-evolutionary dynamic feedback loop between evolution and population density in the green peach aphid.

    PubMed

    Turcotte, Martin M; Reznick, David N; Daniel Hare, J

    2013-05-01

    An eco-evolutionary feedback loop is defined as the reciprocal impacts of ecology on evolutionary dynamics and evolution on ecological dynamics on contemporary timescales. We experimentally tested for an eco-evolutionary feedback loop in the green peach aphid, Myzus persicae, by manipulating initial densities and evolution. We found strong evidence that initial aphid density alters the rate and direction of evolution, as measured by changes in genotype frequencies through time. We also found that evolution of aphids within only 16 days, or approximately three generations, alters the rate of population growth and predicts density compared to nonevolving controls. The impact of evolution on population dynamics also depended on density. In one evolution treatment, evolution accelerated population growth by up to 10.3% at high initial density or reduced it by up to 6.4% at low initial density. The impact of evolution on population growth was as strong as or stronger than that caused by a threefold change in intraspecific density. We found that, taken together, ecological condition, here intraspecific density, alters evolutionary dynamics, which in turn alter concurrent population growth rate (ecological dynamics) in an eco-evolutionary feedback loop. Our results suggest that ignoring evolution in studies predicting population dynamics might lead us to over- or underestimate population density and that we cannot predict the evolutionary outcome within aphid populations without considering population size.

  2. Design and testing of an energy-absorbing crewseat for the F/FB-111 aircraft. Volume 3: Data from crew module testing

    NASA Technical Reports Server (NTRS)

    Shane, S. J.

    1985-01-01

    Over the past years, several papers and reports have documented the unacceptably high injury rate during the escape sequence (including the ejection and ground impact) of the crew module for F/FB-111 aircraft. This report documents a program to determine if the injury potential could be reduced by replacing the existing crewseats with energy absorbing crewseats. An energy absorbing test seat was designed using much of the existing seat hardware. An extensive dynamic seat test series, designed to duplicate various crew module ground impact conditions, was conducted at a sled test facility. Comparative tests with operational F-111 crewseats were also conducted. After successful dynamic testing of the seat, more testing was conducted with the seats mounted in an F-111 crew module. Both swing tests and vertical drop tests werre conducted. The vertical drop tests were used to obtain comparative data between the energy absorbing and operational seats.

  3. Enhancing Injury Protection Capabilities of Army Combat Helmets

    DTIC Science & Technology

    2006-11-01

    rate on each material’s energy attenuation characteristics, dynamic compression tests were conducted using a monorail drop tower conforming to ANSI...equipment. An Army combat helmet is fitted to the monorail drop tower (left). The variable weight, flat impactor (right) is fitted to the monorail ...3.3.1 Impact attenuation All impact tests were conducted using the USAARL vertical monorail drop tower (Figure 1, left). Impact sites along with

  4. Modeling of Local BEAM Structure for Evaluation of MMOD Impacts to Support Development of a Health Monitoring System

    NASA Technical Reports Server (NTRS)

    Lyle, Karen H.; Vassilakos, Gregory J.

    2015-01-01

    This report summarizes initial modeling of the local response of the Bigelow Expandable Activity Module (BEAM) to micrometeorite and orbital debris (MMOD) impacts using a structural, non-linear, transient dynamic finite element code. Complementary test results for a local BEAM structure are presented for both hammer and projectile impacts. Review of these data provided guidance for the transient dynamic model development. The local model is intended to support predictions using the global BEAM model, described in a companion report. Two types of local models were developed. One mimics the simplified Soft-Goods (fabric envelop) part of the BEAM NASTRAN model delivered by the project. The second investigates through-the-thickness modeling challenges for MMOD-type impacts. Both the testing and the analysis summaries contain lessons learned and areas for future efforts.

  5. Study on Mechanical Properties of Barite Concrete under Impact Load

    NASA Astrophysics Data System (ADS)

    Chen, Z. F.; Cheng, K.; Wu, D.; Gan, Y. C.; Tao, Q. W.

    2018-03-01

    In order to research the mechanical properties of Barite concrete under impact load, a group of concrete compression tests was carried out under the impact load by using the drop test machine. A high-speed camera was used to record the failure process of the specimen during the impact process. The test results show that:with the increase of drop height, the loading rate, the peak load, the strain under peak load, the strain rate and the dynamic increase factor (DIF) all increase gradually. The ultimate tensile strain is close to each other, and the time of impact force decreases significantly, showing significant strain rate effect.

  6. Behavior of plywood and fiberglass steel composite tube structures subjected to impact loading

    NASA Astrophysics Data System (ADS)

    Armaghani, Seyamend Bilind

    Paratransit buses are custom built as the major vehicle manufacturer produces the custom built passenger cage installed on the chassis for the Paratransit bus. In order for these Paratransit bus members to be sufficient, they have to be evaluated for crashworthiness and energy absorption. This has prompted Florida Department of Transportation (FDOT) to fund research for the safety evaluation of Paratransit busses consisting of crash and safety analysis. There has been a large body of research done on steel subjected to static loads, but more research is needed for steel applied under dynamic loading and high speeds in order to improve crashworthiness in events such as rollovers and side impacts. Bare steel Hollow Structural Section (HSS) tubing are used a lot as structural members of Paratransit buses because of their lightness and progressive buckling under loading. The research will be conducted on quantifying the tubing's behavior under bending by conducting static three point bending and impact loading tests. In addition to the bare tubing, plywood and fiberglass composites are investigated because they are both strong and lightweight and their behavior under dynamic loading hasn't been quantified. As a result, the main purpose of this research is to quantify the differences between the dynamic and static behavior of plywood steel composite and fiberglass steel composite tubing and compare these findings with those of bare steel tubing. The differences will be quantified using detailed and thorough experiments that will examine the composites behavior under both static and dynamic loading. These tests will determine if there are any advantages of using the composite materials and thus allow for recommendations to be made to the FDOT with the goal of improving the safety of Paratransit busses. Tensile tests were conducted to determine the material properties of the tested specimens. Before the static and dynamic experiments are run to investigate the differences between static and dynamic behavior, Preliminary three point bending testing was conducted to determine the parameters for the final experiments. Static bending testing was conducted on the bare, plywood composite, and fiberglass composite steel tubing. The point of these experiments was to produce a Moment vs. Rotation plot to determine the specimens' maximum moments and their associated rotation, as that is when the steel buckles and fails. The dynamic three point bending experiments were conducted using the impact loading apparatus and had the same purpose as the static experiments. For both static and dynamic experiments, the performances of the different types of specimens were compared based upon their Moment vs. Rotation plots. This will determine the effect that the composite has on the rotation and maximum moment at which the tubing fails. After conducting these experiments, amplification factors were established for each specimen by comparing the maximum moment and their associated rotation between static and dynamic testing. lambda was calculated to quantify the ratio between the static and dynamic maximum moments. beta was used to quantify the ratio between the rotation needed to produce the maximum moment between static and dynamic events. A small amplification factor denotes that material performs well under impact loading and the material doesn't experience dramatic change in behavior during dynamic events. Amplification factors were compared between the bare, plywood, and fiberglass composite steel tubing in order to evaluate the performance of the composites. After comparing the amplification factors of the different types of tubing, recommendations can be made. Fiberglass and plywood composite were shown to be valuable because it decreased the effect of dynamic forces as beta was reduced by a factor of 2 in comparison to bare tubing. Based upon the amplification factors, it was recommended to use 14 gauge fiberglass composite tubing as Paratransit bus structural members because it was affected the least by dynamic loading.

  7. Energy absorption capability of foam-based composite materials and their applications as seat cushions in aircraft crashworthiness

    NASA Astrophysics Data System (ADS)

    Kh. Beheshti, Hamid

    This study is focusing on the application of foam materials in aviation. These materials are being used for acoustic purposes, as padding in the finished interior panels of the aircraft, and as seat cushions. Foams are mostly used in seating applications. Since seat cushion is directly interacting with the body of occupant, it has to be ergonomically comfortable beside of absorbing the energy during the impact. All the seats and seat cushions have to pass regulations defined by Federal Aviation Administration (FAA). In fact, all airplane companies are required to certify the subcomponents of aircrafts before installing them on the main structure, fuselage. Current Federal Aviation Administration Regulations require a dynamic sled test of the entire seat system for certifying the seat cushions. This dynamic testing is required also for replacing the deteriorated cushions with new cushions. This involves a costly and time-consuming certification process. AGATE group has suggested a procedure based on quasi-static testing in order to certify new seat cushions without conducting full-scale dynamic sled testing. AGATE subcomponent methodology involves static tests of the energy-absorbing foam cushions and design validation by conducting a full-scale dynamic seat test. Microscopic and macroscopic studies are necessary to provide a complete understanding about performance of foams during the crash. Much investigation has been done by different sources to obtain the reliable modeling in terms of demonstration of mechanical behavior of foams. However, rate sensitivity of foams needs more attention. A mathematical hybrid dynamic model for the cushion underneath of the human body will be taken into consideration in this research. Analytical and finite element codes such as MADYMO and LS-DYNA codes have the potential to greatly speed up the crashworthy design process, to help certify seats and aircraft to dynamic crash loads, to predict seat and occupant response to impact with the probability of injury, and to evaluate numerous crash scenarios not economically feasible with full-scale crash testing. Therefore, these codes are being used to find the accurate response of spinal load during the impact of model including human body, seat cushion and seat under different acceleration pulses. (Abstract shortened by UMI.)

  8. 14 CFR 23.562 - Emergency landing dynamic conditions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... on the ATD's pelvis during the impact. (5) The results of the dynamic tests must show that the... acrobatic category airplanes need not exceed 5.0g. (2) The seat/restraint system test required by paragraph.../61)2 or gp=15.0 (VS0/61)2 (B) The peak deceleration need not exceed the value reached at a VS0 of 79...

  9. 14 CFR 23.562 - Emergency landing dynamic conditions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... on the ATD's pelvis during the impact. (5) The results of the dynamic tests must show that the... acrobatic category airplanes need not exceed 5.0g. (2) The seat/restraint system test required by paragraph.../61)2 or gp=15.0 (VS0/61)2 (B) The peak deceleration need not exceed the value reached at a VS0 of 79...

  10. Dynamic mobility applications, program evaluation : national-level impacts and costs estimation : final report.

    DOT National Transportation Integrated Search

    2016-07-01

    The vision of the Dynamic Mobility Applications (DMA) program is to expedite the development, testing, and deployment of innovative mobility applications that maximize system productivity and enhance mobility of individuals within the surface transpo...

  11. Modal and Impact Dynamics Analysis of an Aluminum Cylinder

    NASA Technical Reports Server (NTRS)

    Lessard, Wendy B.

    2002-01-01

    This paper presents analyses for the modal characteristics and impact response of an all-aluminum cylinder. The analyses were performed in preparation for impact tests of the cylinder at The Impact Dynamics Research Facility (IDRF) at the NASA Langley Research Center. Mode shapes and frequencies were computed using NASTRAN and compared with existing experimental data to assess the overall accuracy of the mass and stiffness of the finite element model. A series of non-linear impact analyses were then performed using MSC Dytran in which the weight distribution on the floor and the impact velocity of the cylinder were varied. The effects of impact velocity and mass on the rebound and gross deformation of the cylinder were studied in this investigation.

  12. Water impact test of aft skirt end ring, and mid ring segments of the Space Shuttle Solid Rocket Booster

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The results of water impact loads tests using aft skirt end ring, and mid ring segments of the Space Shuttle Solid Rocket Booster (SRB) are examined. Dynamic structural response data is developed and an evaluation of the model in various configurations is presented. Impact velocities are determined for the SRB with the larger main chute system. Various failure modes are also investigated.

  13. Simulating the Impact Response of Three Full-Scale Crash Tests of Cessna 172 Aircraft

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Fasanella, Edwin L.; Littell, Justin D.; Annett, Martin S.; Stimson, Chad M.

    2017-01-01

    During the summer of 2015, a series of three full-scale crash tests were performed at the Landing and Impact Research Facility located at NASA Langley Research Center of Cessna 172 aircraft. The first test (Test 1) represented a flare-to-stall emergency or hard landing onto a rigid surface. The second test (Test 2) represented a controlled-flight- into-terrain (CFIT) with a nose down pitch attitude of the aircraft, which impacted onto soft soil. The third test (Test 3) also represented a CFIT with a nose up pitch attitude of the aircraft, which resulted in a tail strike condition. Test 3 was also conducted onto soft soil. These crash tests were performed for the purpose of evaluating the performance of Emergency Locator Transmitters and to generate impact test data for model calibration. Finite element models were generated and impact analyses were conducted to simulate the three impact conditions using the commercial nonlinear, transient dynamic finite element code, LS-DYNA®. The objective of this paper is to summarize test-analysis results for the three full-scale crash tests.

  14. A Survey of Research Performed at NASA Langley Research Center's Impact Dynamics Research Facility

    NASA Technical Reports Server (NTRS)

    Jackson, K. E.; Fasanella, E. L.

    2003-01-01

    The Impact Dynamics Research Facility (IDRF) is a 240-ft-high gantry structure located at NASA Langley Research Center in Hampton, Virginia. The facility was originally built in 1963 as a lunar landing simulator, allowing the Apollo astronauts to practice lunar landings under realistic conditions. The IDRF was designated a National Historic Landmark in 1985 based on its significant contributions to the Apollo Program. In 1972, the facility was converted to a full-scale crash test facility for light aircraft and rotorcraft. Since that time, the IDRF has been used to perform a wide variety of impact tests on full-scale aircraft and structural components in support of the General Aviation (GA) aircraft industry, the US Department of Defense, the rotorcraft industry, and NASA in-house aeronautics and space research programs. The objective of this paper is to describe most of the major full-scale crash test programs that were performed at this unique, world-class facility since 1974. The past research is divided into six sub-topics: the civil GA aircraft test program, transport aircraft test program, military test programs, space test programs, basic research, and crash modeling and simulation.

  15. A Kolsky tension bar technique using a hollow incident tube

    NASA Astrophysics Data System (ADS)

    Guzman, O.; Frew, D. J.; Chen, W.

    2011-04-01

    Load control of the incident pulse profiles in compression Kolsky bar experiments has been widely used to subject the specimen to optimal testing conditions. Tension Kolsky bars have been used to determine dynamic material behavior since the 1960s with limited capability to shape the loading pulses due to the pulse-generating mechanisms. We developed a modified Kolsky tension bar where a hollow incident tube is used to carry the incident stress waves. The incident tube also acts as a gas gun barrel that houses the striker for impact. The main advantage of this new design is that the striker impacts on an impact cap of the incident tube. Compression pulse shapers can be attached to the impact cap, thus fully utilizing the predictive compression pulse-shaping capability in tension experiments. Using this new testing technique, the dynamic tensile material behavior for Al 6061-T6511 and TRIP 800 (transformation-induced plasticity) steel has been obtained.

  16. Dynamic testing and test anxiety amongst gifted and average-ability children.

    PubMed

    Vogelaar, Bart; Bakker, Merel; Elliott, Julian G; Resing, Wilma C M

    2017-03-01

    Dynamic testing has been proposed as a testing approach that is less disadvantageous for children who may be potentially subject to bias when undertaking conventional assessments. For example, those who encounter high levels of test anxiety, or who are unfamiliar with standardized test procedures, may fail to demonstrate their true potential or capabilities. While dynamic testing has proven particularly useful for special groups of children, it has rarely been used with gifted children. We investigated whether it would be useful to conduct a dynamic test to measure the cognitive abilities of intellectually gifted children. We also investigated whether test anxiety scores would be related to a progression in the children's test scores after dynamic training. Participants were 113 children aged between 7 and 8 years from several schools in the western part of the Netherlands. The children were categorized as either gifted or average-ability and split into an unguided practice or a dynamic testing condition. The study employed a pre-test-training-post-test design. Using linear mixed modelling analysis with a multilevel approach, we inspected the growth trajectories of children in the various conditions and examined the impact of ability and test anxiety on progression and training benefits. Dynamic testing proved to be successful in improving the scores of the children, although no differences in training benefits were found between gifted and average-ability children. Test anxiety was shown to influence the children's rate of change across all test sessions and their improvement in performance accuracy after dynamic training. © 2016 The British Psychological Society.

  17. 14 CFR 23.562 - Emergency landing dynamic conditions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... on the ATD's pelvis during the impact. (5) The results of the dynamic tests must show that the... category airplanes need not exceed 5.0g. (2) The seat/restraint system test required by paragraph (b)(1) of.../61)2 or gp=15.0 (VS0/61)2 (B) The peak deceleration need not exceed the value reached at a VS0 of 79...

  18. Evaluating effectiveness of dynamic soundfield system in the classroom

    PubMed Central

    da Cruz, Aline Duarte; Alves Silvério, Kelly Cristina; Da Costa, Aline Roberta Aceituno; Moret, Adriane Lima Mortari; Lauris, José Roberto Pereira; de Souza Jacob, Regina Tangerino

    2016-01-01

    Research has reported on the use of soundfield amplification devices in the classroom. However, no study has used standardized tests to determine the potential advantages of the dynamic soundfield system for normally hearing students and for the teacher's voice. Our aim was to evaluate the impact of using dynamic soundfield system on the noise of the classroom, teacher's voice and students’ academic performance. This was a prospective cohort study in which 20 student participants enrolled in the third year of basic education were divided into two groups (i.e., control and experimental); their teacher participated. The experimental group was exposed to the dynamic soundfield system for 3 consecutive months. The groups were assessed using standardized tests to evaluate their academic performance. Further, questionnaires and statements were collected on the participants’ experience of using the soundfield system. We statistically analyzed the results to compare the academic performance of the control group with that of the experimental group. In all cases, a significance level of P < .05 was adopted. Use of the dynamic soundfield system was effective for improving the students’ academic performance on standardized tests for reading, improving the teacher's speech intelligibility, and reducing the teacher's vocal strain. The dynamic soundfield system minimizes the impact of noise in the classroom as demonstrated by the mensuration of the signal-to-noise ratio (SNR) and pupil performance on standardized tests for reading and student and teacher ratings of amplification system effectiveness. PMID:26780961

  19. Dynamic Characterization and Modeling of Potting Materials for Electronics Assemblies

    NASA Astrophysics Data System (ADS)

    Joshi, Vasant; Lee, Gilbert; Santiago, Jaime

    2015-06-01

    Prediction of survivability of encapsulated electronic components subject to impact relies on accurate modeling. Both static and dynamic characterization of encapsulation material is needed to generate a robust material model. Current focus is on potting materials to mitigate high rate loading on impact. In this effort, encapsulation scheme consists of layers of polymeric material Sylgard 184 and Triggerbond Epoxy-20-3001. Experiments conducted for characterization of materials include conventional tension and compression tests, Hopkinson bar, dynamic material analyzer (DMA) and a non-conventional accelerometer based resonance tests for obtaining high frequency data. For an ideal material, data can be fitted to Williams-Landel-Ferry (WLF) model. A new temperature-time shift (TTS) macro was written to compare idealized temperature shift factor (WLF model) with experimental incremental shift factors. Deviations can be observed by comparison of experimental data with the model fit to determine the actual material behavior. Similarly, another macro written for obtaining Ogden model parameter from Hopkinson Bar tests indicates deviations from experimental high strain rate data. In this paper, experimental results for different materials used for mitigating impact, and ways to combine data from resonance, DMA and Hopkinson bar together with modeling refinements will be presented.

  20. Root dynamics in bottomland hardwood forests of the Southeastern United States Coastal Plain

    Treesearch

    Jim L. Chambers

    2003-01-01

    Effects of flooding on root dynamics appear nonlinear and therefore difficult to predict, leading to disparate and often contradictory reports of flooding impacts on production in bottomland hardwood forests. We explored root dynamics in two adjacent wetland habitats by comparing results obtained from several methods of estimating root processes. Also, we tested the...

  1. Analysis of Fragmentation During Dynamic Loading: Investigations in the Ries Impact Crater, Germany

    NASA Astrophysics Data System (ADS)

    Weimer, D.; Hergarten, S.; Kenkmann, T.

    2015-09-01

    We tested three methods to quantify fragmentation of rocks during dynamic loading and found a trend of decreasing fracture density with increasing distance from crater center. Fragmentation attenuation rates in the near- and far-field are different.

  2. A Computerized Asthma Outcomes Measure Is Feasible for Disease Management.

    PubMed

    Turner-Bowker, Diane M; Saris-Baglama, Renee N; Anatchkova, Milena; Mosen, David M

    2010-04-01

    OBJECTIVE: To develop and test an online assessment referred to as the ASTHMA-CAT (computerized adaptive testing), a patient-based asthma impact, control, and generic health-related quality of life (HRQOL) measure. STUDY DESIGN: Cross-sectional pilot study of the ASTHMA-CAT's administrative feasibility in a disease management population. METHODS: The ASTHMA-CAT included a dynamic or static Asthma Impact Survey (AIS), Asthma Control Test, and SF-8 Health Survey. A sample of clinician-diagnosed adult asthmatic patients (N = 114) completed the ASTHMA-CAT. Results were used to evaluate administrative feasibility of the instrument and psychometric performance of the dynamic AIS relative to the static AIS. A prototype aggregate (group-level) report was developed and reviewed by care providers. RESULTS: Online administration of the ASTHMA-CAT was feasible for patients in disease management. The dynamic AIS functioned well compared with the static AIS in preliminary studies evaluating response burden, precision, and validity. Providers found reports to be relevant, useful, and applicable for care management. CONCLUSION: The ASTHMA-CAT may facilitate asthma care management.

  3. A review of the analytical simulation of aircraft crash dynamics

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Carden, Huey D.; Boitnott, Richard L.; Hayduk, Robert J.

    1990-01-01

    A large number of full scale tests of general aviation aircraft, helicopters, and one unique air-to-ground controlled impact of a transport aircraft were performed. Additionally, research was also conducted on seat dynamic performance, load-limiting seats, load limiting subfloor designs, and emergency-locator-transmitters (ELTs). Computer programs were developed to provide designers with methods for predicting accelerations, velocities, and displacements of collapsing structure and for estimating the human response to crash loads. The results of full scale aircraft and component tests were used to verify and guide the development of analytical simulation tools and to demonstrate impact load attenuating concepts. Analytical simulation of metal and composite aircraft crash dynamics are addressed. Finite element models are examined to determine their degree of corroboration by experimental data and to reveal deficiencies requiring further development.

  4. An integrated draft gear model with the consideration of wagon body structural characteristics

    NASA Astrophysics Data System (ADS)

    Chang, Gao; Liangliang, Yang; Weihua, Ma; Min, Zhang; Shihui, Luo

    2018-03-01

    With the increase of railway wagon axle load and the growth of marshalling quantity, the problem caused by impact and vibration of vehicles is increasingly serious, which leads to the damage of vehicle structures and the components. In order to improve the reliability of longitudinal connection model for vehicle impact tests, a new railway wagon longitudinal connection model was developed to simulate and analyse vehicle impact tests. The new model is based on characteristics of longitudinal force transmission for vehicles and parts. In this model, carbodies and bogies were simplified to a particle system that can vibrate in the longitudinal direction, which corresponded to a stiffness-damping vibration system. The model consists of three sub-models, that is, coupler and draft gear sub-model, centre plate sub-model and carbody structure sub-model. Compared with conventional draft gear models, the new model was proposed with geometrical and mechanical relations of friction draft gears considered and with behaviours of sticking, sliding and impact between centre plate and centre bowl added. Besides, virtual springs between discrete carbodies were built to describe the structural deformation of carbody. A computation program for longitudinal dynamics based on vehicle impact tests was accomplished to simulate. Comparisons and analyses regarding the train dynamics outputs and vehicle impact tests were conducted. Simulation results indicate that the new wagon longitudinal connection model can provide a practical application environment for wagons, and the outputs of vehicle impact tests agree with those of field tests. The new model can also be used to study on longitudinal vibrations of different vehicles, of carbody and bogie, and of carbody itself.

  5. The breakage behaviour of Aspirin under quasi-static indentation and single particle impact loading: effect of crystallographic anisotropy.

    PubMed

    Olusanmi, D; Roberts, K J; Ghadiri, M; Ding, Y

    2011-06-15

    The influence of crystallographic structural anisotropy on the breakage behaviour of Aspirin under impact loading is highlighted. Under both quasi-static testing conditions, using nano-indentation, and dynamic impact tests, Aspirin demonstrates clear anisotropy in its slip and fracture behaviour. During nano-indentation on the (100) and (001) faces, cracks were propagated along the [010] direction. While the hardness was found to be comparatively similar for both these faces, it was observed that slip due to plastic deformation occurred more readily on the (100) than the (001) crystal planes suggesting the former as the preferred slip plane. Furthermore, the fracture toughness on the (001) planes was found to be distinctly lower than that of the (100) planes, indicating the former as the preferred cleavage plane. Observations of the crystal morphology of damaged particles after dynamic impact testing showed that both the chipping and fragmentation of Aspirin mostly occurred via cleavage in a manner consistent with the observed fracture behaviour following nano-indentation. This work highlights the importance of cleavage as a dominant factor underpinning the fracture mechanism of Aspirin under both quasi-static and impact loading conditions. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. A Prediction of Response of the Head and Neck of the U.S. Adult Military Population to Dynamic Impact Acceleration from Selected Dynamic Test Subjects.

    DTIC Science & Technology

    1976-05-01

    to Review Grants for Clinical Research and Investigation Involving Human Beings, Medical School, The University of Michigan. 3 of biomechanical models...human volunteers in dynamic sled tests found no clinically observable effects. due to acceleration on a subject in which the peak mouth angular...minutes cf rest between trials , and the average fo-ce of each set computed. Figure 2.7 shows typi- cal forcc curves and the EMG signal resulting from

  7. Mechanical, Thermal and Dynamic Mechanical Properties of PP/GF/xGnP Nanocomposites

    NASA Astrophysics Data System (ADS)

    Ashenai Ghasemi, F.; Ghorbani, A.; Ghasemi, I.

    2017-03-01

    The mechanical, thermal, and dynamic mechanical properties of ternary nanocomposites based on polypropylene, short glass fibers, and exfoliated graphene nanoplatelets were studied. To investigate the mechanical properties, uniaxial tensile and Charpy impact tests were carried out. To study the crystallinity of the compositions, a DSC test was performed. A dynamic mechanical analysis was used to characterize the storage modulus and loss factor (tan δ). The morphology of the composites was studied by a scanning electron microscope (SEM). The results obtained are presented in tables and graphics.

  8. A Summary of DOD-Sponsored Research Performed at NASA Langley's Impact Dynamics Research Facility

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Boitnott, Richard L.; Fasanella, Edwin L.; Jones, Lisa E.; Lyle, Karen H.

    2004-01-01

    The Impact Dynamics Research Facility (IDRF) is a 240-ft.-high gantry structure located at NASA Langley Research Center in Hampton, Virginia. The IDRF was originally built in the early 1960's for use as a Lunar Landing Research Facility. As such, the facility was configured to simulate the reduced gravitational environment of the Moon, allowing the Apollo astronauts to practice lunar landings under realistic conditions. In 1985, the IDRF was designated a National Historic Landmark based on its significant contributions to the Apollo Moon Landing Program. In the early 1970's the facility was converted into its current configuration as a full-scale crash test facility for light aircraft and rotorcraft. Since that time, the IDRF has been used to perform a wide variety of impact tests on full-scale aircraft, airframe components, and space vehicles in support of the General Aviation (GA) aircraft industry, the U.S. Department of Defense (DOD), the rotorcraft industry, and the NASA Space program. The objectives of this paper are twofold: to describe the IDRF facility and its unique capabilities for conducting structural impact testing, and to summarize the impact tests performed at the IDRF in support of the DOD. These tests cover a time period of roughly 2 1/2 decades, beginning in 1975 with the full-scale crash test of a CH-47 Chinook helicopter, and ending in 1999 with the external fuel system qualification test of a UH-60 Black Hawk helicopter. NASA officially closed the IDRF in September 2003; consequently, it is important to document the past contributions made in improved human survivability and impact tolerance through DOD-sponsored research performed at the IDRF.

  9. Ares I-X Separation and Reentry Trajectory Analyses

    NASA Technical Reports Server (NTRS)

    Tartabini, Paul V.; Starr, Brett R.

    2011-01-01

    The Ares I-X Flight Test Vehicle was launched on October 28, 2009 and was the first and only test flight of NASA s two-stage Ares I launch vehicle design. The launch was successful and the flight test met all of its primary and secondary objectives. This paper discusses the stage separation and reentry trajectory analysis that was performed in support of the Ares I-X test flight. Pre-flight analyses were conducted to assess the risk of stage recontact during separation, to evaluate the first stage flight dynamics during reentry, and to define the range safety impact ellipses of both stages. The results of these pre-flight analyses were compared with available flight data. On-board video taken during flight showed that the flight test vehicle successfully separated without any recontact. Reconstructed trajectory data also showed that first stage flight dynamics were well characterized by pre-flight Monte Carlo results. In addition, comparisons with flight data indicated that the complex interference aerodynamic models employed in the reentry simulation were effective in capturing the flight dynamics during separation. Finally, the splash-down locations of both stages were well within predicted impact ellipses.

  10. The dynamic properties behavior of high strength concrete under different strain rate

    NASA Astrophysics Data System (ADS)

    Abdullah, Hasballah; Husin, Saiful; Umar, Hamdani; Rizal, Samsul

    2005-04-01

    This paper present a number experimental data and numerical technique used in the dynamic behavior of high strength concrete. A testing device is presented for the experimental study of dynamic behavior material under high strain rates. The specimen is loaded by means of a high carbon steel Hopkinson pressure bar (40 mm diameter, 3000 mm long input bar and 1500 mm long out put bar) allowing for the testing of specimen diameter is large enough in relation to the size of aggregates. The other method also proposed for measuring tensile strength, the measurement method based on the superposition and concentration of tensile stress wave reflected both from the free-free ends of striking bar and the specimen bar. The compression Hopkinson bar test, the impact tensile test of high strength concrete bars are performed, together with compression static strength test. In addition, the relation between break position under finite element simulation and impact tensile strength are examined. The three-dimensional simulation of the specimen under transient loading are presented and comparisons between the experimental and numerical simulation on strain rate effects of constitutive law use in experimental are study.

  11. Crashworthy Evaluation of a 1/5-Scale Model Composite Fuselage Concept

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Fasanella, Edwin L.

    1999-01-01

    A 1/5-scale model composite fuselage concept for light aircraft and rotorcraft has been developed to satisfy structural and flight loads requirements and to satisfy design goals for improved crashworthiness. The 1/5-scale model fuselage consists of a relatively rigid upper section which forms the passenger cabin, a stiff structural floor, and an energy absorbing subfloor which is designed to limit impact forces during a crash event. The focus of the present paper is to describe the crashworthy evaluation of the fuselage concept through impact testing and finite element simulation using the nonlinear, explicit transient dynamic code, MSC/DYTRAN. The energy absorption behavior of two different subfloor configurations was determined through quasi-static crushing tests. For the dynamic evaluation, each subfloor configuration was incorporated into a 1/5-scale model fuselage section, which was impacted at 31 ft/s vertical velocity onto a rigid surface. The experimental data demonstrate that the fuselage section with a foam-filled subfloor configuration satisfied the impact design requirement. In addition, the fuselage section maintained excellent energy absorption behavior for a 31 ft/s vertical drop test with a 15 deg-roll impact attitude. Good correlation was obtained between the experimental data and analytical results for both impact conditions.

  12. Design and testing of an energy-absorbing crewseat for the F/FB-111 aircraft. Volume 2: Data from seat testing

    NASA Technical Reports Server (NTRS)

    Shane, S. J.

    1985-01-01

    The unacceptably high injury rate during the escape sequence (including the ejection and ground impact) of the crew module for F/FB-111 aircraft is reviewed. A program to determine if the injury potential could be reduced by replacing the existing crewseats with energy absorbing crewseats is presented. An energy absorbing test seat is designed using much of the existing seat hardware. An extensive dynamic seat test series, designed to duplicate various crew module ground impact conditions is conducted at a sled test facility. Comparative tests with operational F-111 crewseats are also conducted. After successful dynamic testing of the seat, more testing is conducted with the seats mounted in an F-111 crew module. Both swing tests and vertical drop tests are conducted. The vertical drop tests are used to obtain comparative data between the energy absorbing and operational seats. Volume 1 describes the energy absorbing test seat and testing conducted, and evaluates the data from both test series. Volume 2 presents the data obtained during the seat test series, while Volume 3 presents the data from the crew module test series.

  13. Simple go/no-go test for subcritical damage in body armor panels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisher, Jason; Chimenti, D. E.

    2011-06-23

    The development of a simple test for subcritical damage in body armor panels using pressure-sensitive dye-indicator film has been performed and demonstrated effective. Measurements have shown that static indicator levels are accurately reproduced in dynamic loading events. Impacts from hard blunt impactors instrumented with an accelerometer and embedded force transducer were studied. Reliable correlations between the indicator film and instrumented impact force are shown for a range of impact energies. Force and acceleration waveforms with corresponding indicator film results are presented for impact events onto damaged and undamaged panels. We find that panel damage can occur at impact levels farmore » below the National Institute of Justice acceptance test standard.« less

  14. Vertical Drop Testing and Analysis of the Wasp Helicopter Skid Gear

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Fuchs, Yvonne T.

    2007-01-01

    This report describes an experimental program to assess the impact performance of a skid gear for use on the Wasp kit-built helicopter, which is marketed by HeloWerks, Inc. of Hampton, Virginia. In total, five vertical drop tests were performed. The test article consisted of a skid gear mounted beneath a steel plate. A seating platform was attached to the upper surface of the steel plate, and two 95th percentile Hybrid III male Anthropomorphic Test Devices (ATDs) were seated on the platform and secured using a four-point restraint system. The test article also included ballast weights to ensure the correct position of the Center-of-Gravity (CG). Twenty-six channels of acceleration data were collected per test at 50,000 samples per second. The five drop tests were conducted on two different gear configurations. The details of these test programs are presented, as well as an occupant injury assessment. Finally, a finite element model of the skid gear test article was developed for execution in LS-DYNA, an explicit nonlinear transient dynamic code, for predicting the skid gear and occupant dynamic responses due to impact.

  15. Nonlinear elastic behavior of sub-critically damaged body armor panel

    NASA Astrophysics Data System (ADS)

    Fisher, Jason T.; Chimenti, D. E.

    2012-05-01

    A simple go/no-go test for body armor panels using pressure-sensitive, dye-indicator film (PSF) has been shown to be statistically effective in revealing subcritical damage to body armor panels. Previous measurements have shown that static indicator levels are accurately reproduced in dynamic loading events. Further impact tests on armor worn by a human resuscitation dummy using instrumented masses with an attached accelerometer and embedded force transducer have been performed and analyzed. New impact tests have shown a reliable correlation between PSF indication (as digitized images) and impact force for a wide range of impactor energies and masses. Numerical evaluation of digital PSF images is presented and correlated with impact parameters. Relationships between impactor mass and energy, and corresponding measured force are shown. We will also report on comparisons between ballistic testing performed on panels damaged under various impact conditions and tests performed on undamaged panels.

  16. The use of impact force as a scale parameter for the impact response of composite laminates

    NASA Technical Reports Server (NTRS)

    Jackson, Wade C.; Poe, C. C., Jr.

    1992-01-01

    The building block approach is currently used to design composite structures. With this approach, the data from coupon tests is scaled up to determine the design of a structure. Current standard impact tests and methods of relating test data to other structures are not generally understood and are often used improperly. A methodology is outlined for using impact force as a scale parameter for delamination damage for impacts of simple plates. Dynamic analyses were used to define ranges of plate parameters and impact parameters where quasi-static analyses are valid. These ranges include most low velocity impacts where the mass of the impacter is large and the size of the specimen is small. For large mass impacts of moderately thick (0.35 to 0.70 cm) laminates, the maximum extent of delamination damage increased with increasing impact force and decreasing specimen thickness. For large mass impact tests at a given kinetic energy, impact force and hence delamination size depends on specimen size, specimen thickness, boundary conditions, and indenter size and shape. If damage is reported in terms of impact force instead of kinetic energy, large mass test results can be applied directly to other plates of the same size.

  17. The use of impact force as a scale parameter for the impact response of composite laminates

    NASA Technical Reports Server (NTRS)

    Jackson, Wade C.; Poe, C. C., Jr.

    1992-01-01

    The building block approach is currently used to design composite structures. With this approach, the data from coupon tests are scaled up to determine the design of a structure. Current standard impact tests and methods of relating test data to other structures are not generally understood and are often used improperly. A methodology is outlined for using impact force as a scale parameter for delamination damage for impacts of simple plates. Dynamic analyses were used to define ranges of plate parameters and impact parameters where quasi-static analyses are valid. These ranges include most low-velocity impacts where the mass of the impacter is large, and the size of the specimen is small. For large-mass impacts of moderately thick (0.35-0.70 cm) laminates, the maximum extent of delamination damage increased with increasing impact force and decreasing specimen thickness. For large-mass impact tests at a given kinetic energy, impact force and hence delamination size depends on specimen size, specimen thickness, boundary conditions, and indenter size and shape. If damage is reported in terms of impact force instead of kinetic energy, large-mass test results can be applied directly to other plates of the same thickness.

  18. Grid-to-rod flow-induced impact study for PWR fuel in reactor

    DOE PAGES

    Jiang, Hao; Qu, Jun; Lu, Roger Y.; ...

    2016-06-10

    The source for grid-to-rod fretting in a pressurized water nuclear reactor (PWR) is the dynamic contact impact from hydraulic flow-induced fuel assembly vibration. In order to support grid-to-rod fretting wear mitigation research, finite element analysis (FEA) was used to evaluate the hydraulic flow-induced impact intensity between the fuel rods and the spacer grids. Three-dimensional FEA models, with detailed geometries of the dimple and spring of the actual spacer grids along with fuel rods, were developed for flow impact simulation. The grid-to-rod dynamic impact simulation provided insights of the contact phenomena at grid-rod interface. Finally, it is an essential and effectivemore » way to evaluate contact forces and provide guidance for simulative bench fretting-impact tests.« less

  19. Large-scale field testing on flexible shallow landslide barriers

    NASA Astrophysics Data System (ADS)

    Bugnion, Louis; Volkwein, Axel; Wendeler, Corinna; Roth, Andrea

    2010-05-01

    Open shallow landslides occur regularly in a wide range of natural terrains. Generally, they are difficult to predict and result in damages to properties and disruption of transportation systems. In order to improve the knowledge about the physical process itself and to develop new protection measures, large-scale field experiments were conducted in Veltheim, Switzerland. Material was released down a 30° inclined test slope into a flexible barrier. The flow as well as the impact into the barrier was monitored using various measurement techniques. Laser devices recording flow heights, a special force plate measuring normal and shear basal forces as well as load cells for impact pressures were installed along the test slope. In addition, load cells were built in the support and retaining cables of the barrier to provide data for detailed back-calculation of load distribution during impact. For the last test series an additional guiding wall in flow direction on both sides of the barrier was installed to achieve higher impact pressures in the middle of the barrier. With these guiding walls the flow is not able to spread out before hitting the barrier. A special constructed release mechanism simulating the sudden failure of the slope was designed such that about 50 m3 of mixed earth and gravel saturated with water can be released in an instant. Analysis of cable forces combined with impact pressures and velocity measurements during a test series allow us now to develop a load model for the barrier design. First numerical simulations with the software tool FARO, originally developed for rockfall barriers and afterwards calibrated for debris flow impacts, lead already to structural improvements on barrier design. Decisive for the barrier design is the first dynamic impact pressure depending on the flow velocity and afterwards the hydrostatic pressure of the complete retained material behind the barrier. Therefore volume estimation of open shallow landslides by assessing the thickness of the failure layer and the width of the possible failure are essential for the required barrier design parameter height and width. First results of the calculated drag coefficients of dynamic impact pressure measurements showed that the dynamic coefficient cw is much lower than 1.0 which is contradictory to most of existing dimensioning property protection guidelines. It appears to us that special adaptation to the system like smaller mesh sizes and special ground-barrier interface compared to normal rock-fall barriers and channelised debris flow barriers are necessary to improve the retention behavior of shallow landslide barriers. Detailed analysis of the friction coefficient in relationship with pore water pressure measurements gives interesting insights into the dynamic of fluid-solid mixed flows. Impact pressures dependencies on flow features are analyzed and discussed with respect to existing models and guidelines for shallow landslides.

  20. Dynamic Model Investigation of Water Pressures and Accelerations Encountered During Landings of the Apollo Spacecraft

    NASA Technical Reports Server (NTRS)

    Stubbs, Sandy M.

    1967-01-01

    An experimental investigation was made to determine impact water pressures, accelerations, and landing dynamics of a 1/4-scale dynamic model of the command module of the Apollo spacecraft. A scaled-stiffness aft heat shield was used on the model to simulate the structural deflections of the full-scale heat shield. Tests were made on water to obtain impact pressure data at a simulated parachute letdown (vertical) velocity component of approximately 30 ft/sec (9.1 m/sec) full scale. Additional tests were made on water, sand, and hard clay-gravel landing surfaces at simulated vertical velocity components of 23 ft/sec (7.0 m/sec) full scale. Horizontal velocity components investigated ranged from 0 to 50 ft/sec (15 m/sec) full scale and the pitch attitudes ranged from -40 degrees to 29 degrees. Roll attitudes were O degrees, 90 degrees, and 180 degrees, and the yaw attitude was 0 degrees.

  1. The performance of child restraint devices in transport airplane passenger seats.

    DOT National Transportation Integrated Search

    1994-09-01

    The performance of child restraint devices (CRDs) in commercial transport airplane passenger seats was evaluated by a dynamic impact test program. Background information on the policies and regulations related to child restraints is summarized. Tests...

  2. A unique facility for V/STOL aircraft hover testing

    NASA Technical Reports Server (NTRS)

    Culpepper, R. G.; Murphy, R. D.

    1979-01-01

    The paper discusses the Navy's XFV-12A tethered hover testing capabilities utilizing NASA's Impact Dynamic Research Facility (IDRF) at Langley. The facility allows for both static and dynamic tethered hover test operations to be undertaken with safety. The installation which consists of the 'Z' system (tether), restraint system, static tiedowns and the control room and console, is presented in detail. Among the capabilities demonstrated were the ability to recover the aircraft anytime during a test, to rapidly and safely define control limits, and to provide a realistic environment for pilot training and proficiency in VTOL flight.

  3. Mathematical model for predicting human vertebral fracture

    NASA Technical Reports Server (NTRS)

    Benedict, J. V.

    1973-01-01

    Mathematical model has been constructed to predict dynamic response of tapered, curved beam columns in as much as human spine closely resembles this form. Model takes into consideration effects of impact force, mass distribution, and material properties. Solutions were verified by dynamic tests on curved, tapered, elastic polyethylene beam.

  4. Effect of a viscoelastic target on the impact response of a flat-nosed projectile

    NASA Astrophysics Data System (ADS)

    Liu, Hu; Yang, Jialing; Liu, Hua

    2018-02-01

    Taylor impact is a widely used strategy in which a flat-nosed projectile is fired onto a rigid anvil directly to determine the dynamic strength of rod specimens. Nowadays, the rigid anvil is often replaced by an output target bar to ensure the accuracy of measurement via recording strain signals in the output bar. For testing the dynamic strength of low-density materials, a low-impedance target bar, which exhibits viscoelastic characteristics is often employed. In this paper, an extended Taylor model is proposed to improve the idealization of treating the target bar as perfectly rigid material in the classic Taylor model, and the viscoelastic effect of the target bar is incorporated. The viscoelastic target bar is depicted by two elastic springs and one dashpot. Based on the plastic shock wave theory in the flat-nosed projectile associated with the viscoelastic wave analysis in the target bar, the viscoelastic effect of the target bar on the impact response of the flat-nosed projectile is investigated. The finite element simulation is also carried out to verify the theoretical model, and good agreement is found. The present theoretical model is also called the Taylor-cylinder Hopkinson impact, which provides a more accurate way to identify the dynamic material parameters. The dynamic responses of the present model are further compared with previous elastic and rigid target bar models. It is found that the viscoelastic effect of the target bar should be taken into consideration in the Taylor-cylinder Hopkinson impact test for low-impedance materials.

  5. Use of piezoelectric dampers for improving the feel of golf clubs

    NASA Astrophysics Data System (ADS)

    Bianchini, Emanuele; Spangler, Ronald L., Jr.; Pandell, Tracy

    1999-06-01

    Several sports are based upon a tool (club, bat, stick) striking an object (ball, puck) across a field of play. Anytime two structures collide, vibration is created by the impact of the two. The impact of the objects excites the structural modes of the tool, creating a vibration that can be felt by the player, especially if the hit is not at a `sweet spot'. Vibration adversely affects both feel and performance. This paper explains how piezoelectric dampers were developed to reduce vibration and improve the feel of ball-impact sporting goods such as golf clubs. The paper describes how the dynamic characteristics of a golf club were calculated, at first in the free-free condition, and then during its operation conditions (the swing of the club, and the impact with the ball). The dynamic characteristics were used to develop a damper that addressed a specific, or multiple, modes of interest. The damper development and testing are detailed in this paper. Both objective laboratory tests and subjective player tests were performed to evaluate the effectiveness of the piezoelectric dampers. The results of the tests, along with published medical data on the sensitivity of the human body, were used to draw a correlation between human feel and vibration reduction.

  6. Soil analyses and evaluations at the impact dynamics research facility for two full-scale aircraft crash tests

    NASA Technical Reports Server (NTRS)

    Cheng, R. Y. K.

    1977-01-01

    The aircraft structural crash behavior and occupant survivability for aircraft crashes on a soil surface was studied. The results of placement, compaction, and maintenance of two soil test beds are presented. The crators formed by the aircraft after each test are described.

  7. Sand Impact Tests of a Half-Scale Crew Module Boilerplate Test Article

    NASA Technical Reports Server (NTRS)

    Vassilakos, Gregory J.; Hardy, Robin C.

    2012-01-01

    Although the Orion Multi-Purpose Crew Vehicle (MPCV) is being designed primarily for water landings, a further investigation of launch abort scenarios reveals the possibility of an onshore landing at Kennedy Space Center (KSC). To gather data for correlation against simulations of beach landing impacts, a series of sand impact tests were conducted at NASA Langley Research Center (LaRC). Both vertical drop tests and swing tests with combined vertical and horizontal velocity were performed onto beds of common construction-grade sand using a geometrically scaled crew module boilerplate test article. The tests were simulated using the explicit, nonlinear, transient dynamic finite element code LS-DYNA. The material models for the sand utilized in the simulations were based on tests of sand specimens. Although the LSDYNA models provided reasonable predictions for peak accelerations, they were not always able to track the response through the duration of the impact. Further improvements to the material model used for the sand were identified based on results from the sand specimen tests.

  8. The Dynamical Core Model Intercomparison Project (DCMIP-2016): Results of the Supercell Test Case

    NASA Astrophysics Data System (ADS)

    Zarzycki, C. M.; Reed, K. A.; Jablonowski, C.; Ullrich, P. A.; Kent, J.; Lauritzen, P. H.; Nair, R. D.

    2016-12-01

    The 2016 Dynamical Core Model Intercomparison Project (DCMIP-2016) assesses the modeling techniques for global climate and weather models and was recently held at the National Center for Atmospheric Research (NCAR) in conjunction with a two-week summer school. Over 12 different international modeling groups participated in DCMIP-2016 and focused on the evaluation of the newest non-hydrostatic dynamical core designs for future high-resolution weather and climate models. The paper highlights the results of the third DCMIP-2016 test case, which is an idealized supercell storm on a reduced-radius Earth. The supercell storm test permits the study of a non-hydrostatic moist flow field with strong vertical velocities and associated precipitation. This test assesses the behavior of global modeling systems at extremely high spatial resolution and is used in the development of next-generation numerical weather prediction capabilities. In this regime the effective grid spacing is very similar to the horizontal scale of convective plumes, emphasizing resolved non-hydrostatic dynamics. The supercell test case sheds light on the physics-dynamics interplay and highlights the impact of diffusion on model solutions.

  9. Hypervelocity Impact Test Fragment Modeling: Modifications to the Fragment Rotation Analysis and Lightcurve Code

    NASA Technical Reports Server (NTRS)

    Gouge, Michael F.

    2011-01-01

    Hypervelocity impact tests on test satellites are performed by members of the orbital debris scientific community in order to understand and typify the on-orbit collision breakup process. By analysis of these test satellite fragments, the fragment size and mass distributions are derived and incorporated into various orbital debris models. These same fragments are currently being put to new use using emerging technologies. Digital models of these fragments are created using a laser scanner. A group of computer programs referred to as the Fragment Rotation Analysis and Lightcurve code uses these digital representations in a multitude of ways that describe, measure, and model on-orbit fragments and fragment behavior. The Dynamic Rotation subroutine generates all of the possible reflected intensities from a scanned fragment as if it were observed to rotate dynamically while in orbit about the Earth. This calls an additional subroutine that graphically displays the intensities and the resulting frequency of those intensities as a range of solar phase angles in a Probability Density Function plot. This document reports the additions and modifications to the subset of the Fragment Rotation Analysis and Lightcurve concerned with the Dynamic Rotation and Probability Density Function plotting subroutines.

  10. Correlation of microstructure with dynamic deformation behavior and penetration performance of tungsten heavy alloys fabricated by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Kim, Dong-Kuk; Lee, Sunghak; Ryu, Ho Jin; Hyunghong, Soon; Noh, Joon-Woong

    2000-10-01

    In this study, tungsten heavy alloy specimens were fabricated by mechanical alloying (MA), and their dynamic torsional properties and penetration performance were investigated. Dynamic torsional tests were conducted on the specimens fabricated with different sintering temperatures after MA, and then the test data were compared with those of a conventionally processed specimen. Refinement of tungsten particles was obtained after MA, but contiguity was seriously increased, thereby leading to low ductility and impact energy. Specimens in which both particle size and contiguity were simultaneously reduced by MA and two-step sintering and those having higher matrix fraction by partial MA were successfully fabricated. The dynamic test results indicated that the formation of adiabatic shear bands was expected because of the plastic localization at the central area of the gage section. Upon highspeed impact testing of these specimens, self-sharpening was promoted by the adiabatic shear band formation, but their penetration performance did not improve since much of kinetic energy of the penetrators was consumed for the microcrack formation due to interfacial debonding and cleavage fracture of tungsten particles. In order to improve penetration performance as well as to achieve selfsharpening by applying MA, conditions of MA and sintering process should be established so that alloy densification, particle refinement, and contiguity reduction can be simultaneously achieved.

  11. A Computerized Asthma Outcomes Measure Is Feasible for Disease Management

    PubMed Central

    Turner-Bowker, Diane M.; Saris-Baglama, Renee N.; Anatchkova, Milena; Mosen, David M.

    2010-01-01

    Objective To develop and test an online assessment referred to as the ASTHMA-CAT (computerized adaptive testing), a patient-based asthma impact, control, and generic health-related quality of life (HRQOL) measure. Study Design Cross-sectional pilot study of the ASTHMA-CAT’s administrative feasibility in a disease management population. Methods The ASTHMA-CAT included a dynamic or static Asthma Impact Survey (AIS), Asthma Control Test, and SF-8 Health Survey. A sample of clinician-diagnosed adult asthmatic patients (N = 114) completed the ASTHMA-CAT. Results were used to evaluate administrative feasibility of the instrument and psychometric performance of the dynamic AIS relative to the static AIS. A prototype aggregate (group-level) report was developed and reviewed by care providers. Results Online administration of the ASTHMA-CAT was feasible for patients in disease management. The dynamic AIS functioned well compared with the static AIS in preliminary studies evaluating response burden, precision, and validity. Providers found reports to be relevant, useful, and applicable for care management. Conclusion The ASTHMA-CAT may facilitate asthma care management. PMID:20852675

  12. Impact Testing of Composites for Aircraft Engine Fan Cases

    NASA Technical Reports Server (NTRS)

    Roberts, Gary D.; Revilock, Duane M.; Binienda, Wieslaw K.; Nie, Walter Z.; Mackenzie, S. Ben; Todd, Kevin B.

    2001-01-01

    Before composite materials can be considered for use in the fan case of a commercial jet engine, the performance of a composite structure under blade-out loads needs to be demonstrated. The objective of this program is to develop an efficient test and analysis method for evaluating potential composite case concepts. Ballistic impact tests were performed on laminated glass/epoxy composites in order to identify potential failure modes and to provide data for analysis. Flat 7x7 in. panels were impacted with cylindrical titanium projectiles, and 15 in. diameter half-rings were impacted with wedge-shaped titanium projectiles. Composite failure involved local fiber fracture as well as tearing and delamination on a larger scale. A 36 in. diameter full-ring subcomponent was proposed for larger scale testing. Explicit, transient, finite element analyses were used to evaluate impact dynamics and subsequent global deformation for the proposed full-ring subcomponent test. Analyses on half-ring and quarter ring configurations indicated that less expensive smaller scale tests could be used to screen potential composite concepts when evaluation of local impact damage is the primary concern.

  13. Impact of Group Emotions on Student Collective Action Tendencies, Ties, and Task Performance

    ERIC Educational Resources Information Center

    Sundararajan, Malavika; Sundararajan, Binod; Manderson, Jill

    2016-01-01

    The authors tested the dynamics of collective action tendencies of student teams when trying to accomplish a shared goal, with a focus on the impact of member ties and team member interaction and emotional responses on team performance. The results show the direct and indirect impacts of both positive and negative group emotions on the student…

  14. Dynamics Impact Tolerance of Shuttle RCC Leading Edge Panels Using LS-DYNA

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Jackson, Karen E.; Lyle, Karen H.; Jones, Lisa E.; Hardy, Robin C.; Spellman, Regina L.; Carney, Kelly S.; Melis, Matthew E.; Stockwell, Alan E.

    2005-01-01

    This paper describes a research program conducted to enable accurate prediction of the impact tolerance of the shuttle Orbiter leading-edge wing panels using physics-based codes such as LS-DYNA, a nonlinear, explicit transient dynamic finite element code. The shuttle leading-edge panels are constructed of Reinforced-Carbon-Carbon (RCC) composite material, which is used because of its thermal properties to protect the shuttle during reentry into the Earth's atmosphere. Accurate predictions of impact damage from insulating foam and other debris strikes that occur during launch required materials characterization of expected debris, including strain-rate effects. First, analytical models of individual foam and RCC materials were validated. Next, analytical models of foam cylinders impacting 6- in. x 6-in. RCC flat plates were developed and validated. LS-DYNA pre-test models of the RCC flat plate specimens established the impact velocity of the test for three damage levels: no-detectable damage, non-destructive evaluation (NDE) detectable damage, or visible damage such as a through crack or hole. Finally, the threshold of impact damage for RCC on representative Orbiter wing panels was predicted for both a small through crack and for NDE-detectable damage.

  15. Dynamic Impact Tolerance of Shuttle RCC Leading Edge Panels using LS-DYNA

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin; Jackson, Karen E.; Lyle, Karen H.; Jones, Lisa E.; Hardy, Robin C.; Spellman, Regina L.; Carney, Kelly S.; Melis, Matthew E.; Stockwell, Alan E.

    2008-01-01

    This paper describes a research program conducted to enable accurate prediction of the impact tolerance of the shuttle Orbiter leading-edge wing panels using 'physics-based- codes such as LS-DYNA, a nonlinear, explicit transient dynamic finite element code. The shuttle leading-edge panels are constructed of Reinforced-Carbon-Carbon (RCC) composite material, which issued because of its thermal properties to protect the shuttle during re-entry into the Earth's atmosphere. Accurate predictions of impact damage from insulating foam and other debris strikes that occur during launch required materials characterization of expected debris, including strain-rate effects. First, analytical models of individual foam and RCC materials were validated. Next, analytical models of individual foam cylinders impacting 6-in. x 6-in. RCC flat plates were developed and validated. LS-DYNA pre-test models of the RCC flat plate specimens established the impact velocity of the test for three damage levels: no-detectable damage, non-destructive evaluation (NDE) detectable damage, or visible damage such as a through crack or hole. Finally, the threshold of impact damage for RCC on representative Orbiter wing panels was predicted for both a small through crack and for NDE-detectable damage.

  16. Dynamic Parameter Identification of Subject-Specific Body Segment Parameters Using Robotics Formalism: Case Study Head Complex.

    PubMed

    Díaz-Rodríguez, Miguel; Valera, Angel; Page, Alvaro; Besa, Antonio; Mata, Vicente

    2016-05-01

    Accurate knowledge of body segment inertia parameters (BSIP) improves the assessment of dynamic analysis based on biomechanical models, which is of paramount importance in fields such as sport activities or impact crash test. Early approaches for BSIP identification rely on the experiments conducted on cadavers or through imaging techniques conducted on living subjects. Recent approaches for BSIP identification rely on inverse dynamic modeling. However, most of the approaches are focused on the entire body, and verification of BSIP for dynamic analysis for distal segment or chain of segments, which has proven to be of significant importance in impact test studies, is rarely established. Previous studies have suggested that BSIP should be obtained by using subject-specific identification techniques. To this end, our paper develops a novel approach for estimating subject-specific BSIP based on static and dynamics identification models (SIM, DIM). We test the validity of SIM and DIM by comparing the results using parameters obtained from a regression model proposed by De Leva (1996, "Adjustments to Zatsiorsky-Seluyanov's Segment Inertia Parameters," J. Biomech., 29(9), pp. 1223-1230). Both SIM and DIM are developed considering robotics formalism. First, the static model allows the mass and center of gravity (COG) to be estimated. Second, the results from the static model are included in the dynamics equation allowing us to estimate the moment of inertia (MOI). As a case study, we applied the approach to evaluate the dynamics modeling of the head complex. Findings provide some insight into the validity not only of the proposed method but also of the application proposed by De Leva (1996, "Adjustments to Zatsiorsky-Seluyanov's Segment Inertia Parameters," J. Biomech., 29(9), pp. 1223-1230) for dynamic modeling of body segments.

  17. Development of a crashworthy seat for commuter aircraft.

    DOT National Transportation Integrated Search

    1990-09-01

    A series of dynamic impact tests were conducted using a prototype seat with an energy absorbing mechanism as part of the seat pan. The seat frame was designed to represent a typical commuter aircraft passenger seat. Tests were conducted in an orienta...

  18. Applications of computerized adaptive testing (CAT) to the assessment of headache impact.

    PubMed

    Ware, John E; Kosinski, Mark; Bjorner, Jakob B; Bayliss, Martha S; Batenhorst, Alice; Dahlöf, Carl G H; Tepper, Stewart; Dowson, Andrew

    2003-12-01

    To evaluate the feasibility of computerized adaptive testing (CAT) and the reliability and validity of CAT-based estimates of headache impact scores in comparison with 'static' surveys. Responses to the 54-item Headache Impact Test (HIT) were re-analyzed for recent headache sufferers (n = 1016) who completed telephone interviews during the National Survey of Headache Impact (NSHI). Item response theory (IRT) calibrations and the computerized dynamic health assessment (DYNHA) software were used to simulate CAT assessments by selecting the most informative items for each person and estimating impact scores according to pre-set precision standards (CAT-HIT). Results were compared with IRT estimates based on all items (total-HIT), computerized 6-item dynamic estimates (CAT-HIT-6), and a developmental version of a 'static' 6-item form (HIT-6-D). Analyses focused on: respondent burden (survey length and administration time), score distributions ('ceiling' and 'floor' effects), reliability and standard errors, and clinical validity (diagnosis, level of severity). A random sample (n = 245) was re-assessed to test responsiveness. A second study (n = 1103) compared actual CAT surveys and an improved 'static' HIT-6 among current headache sufferers sampled on the Internet. Respondents completed measures from the first study and the generic SF-8 Health Survey; some (n = 540) were re-tested on the Internet after 2 weeks. In the first study, simulated CAT-HIT and total-HIT scores were highly correlated (r = 0.92) without 'ceiling' or 'floor' effects and with a substantial reduction (90.8%) in respondent burden. Six of the 54 items accounted for the great majority of item administrations (3603/5028, 77.6%). CAT-HIT reliability estimates were very high (0.975-0.992) in the range where 95% of respondents scored, and relative validity (RV) coefficients were high for diagnosis (RV = 0.87) and severity (RV = 0.89); patient-level classifications were accurate 91.3% for a diagnosis of migraine. For all three criteria of change, CAT-HIT scores were more responsive than all other measures. In the second study, estimates of respondent burden, item usage, reliability and clinical validity were replicated. The test-retest reliability of CAT-HIT was 0.79 and alternate forms coefficients ranged from 0.85 to 0.91. All correlations with the generic SF-8 were negative. CAT-based administrations of headache impact items achieved very large reductions in respondent burden without compromising validity for purposes of patient screening or monitoring changes in headache impact over time. IRT models and CAT-based dynamic health assessments warrant testing among patients with other conditions.

  19. Research on mechanical and sensoric set-up for high strain rate testing of high performance fibers

    NASA Astrophysics Data System (ADS)

    Unger, R.; Schegner, P.; Nocke, A.; Cherif, C.

    2017-10-01

    Within this research project, the tensile behavior of high performance fibers, such as carbon fibers, is investigated under high velocity loads. This contribution (paper) focuses on the clamp set-up of two testing machines. Based on a kinematic model, weight optimized clamps are designed and evaluated. By analyzing the complex dynamic behavior of conventional high velocity testing machines, it has been shown that the impact typically exhibits an elastic characteristic. This leads to barely predictable breaking speeds and will not work at higher speeds when acceleration force exceeds material specifications. Therefore, a plastic impact behavior has to be achieved, even at lower testing speeds. This type of impact behavior at lower speeds can be realized by means of some minor test set-up adaptions.

  20. Impact Test and Simulation of Energy Absorbing Concepts for Earth Entry Vehicles

    NASA Technical Reports Server (NTRS)

    Billings, Marcus D.; Fasanella, Edwin L.; Kellas, Sotiris

    2001-01-01

    Nonlinear dynamic finite element simulations have been performed to aid in the design of an energy absorbing concept for a highly reliable passive Earth Entry Vehicle (EEV) that will directly impact the Earth without a parachute. EEV's are designed to return materials from asteroids, comets, or planets for laboratory analysis on Earth. The EEV concept uses an energy absorbing cellular structure designed to contain and limit the acceleration of space exploration samples during Earth impact. The spherical shaped cellular structure is composed of solid hexagonal and pentagonal foam-filled cells with hybrid graphite- epoxy/Kevlar cell walls. Space samples fit inside a smaller sphere at the center of the EEV's cellular structure. Comparisons of analytical predictions using MSC,Dytran with test results obtained from impact tests performed at NASA Langley Research Center were made for three impact velocities ranging from 32 to 40 m/s. Acceleration and deformation results compared well with the test results. These finite element models will be useful for parametric studies of off-nominal impact conditions.

  1. A dynamic motion simulator for future European docking systems

    NASA Technical Reports Server (NTRS)

    Brondino, G.; Marchal, PH.; Grimbert, D.; Noirault, P.

    1990-01-01

    Europe's first confrontation with docking in space will require extensive testing to verify design and performance and to qualify hardware. For this purpose, a Docking Dynamics Test Facility (DDTF) was developed. It allows reproduction on the ground of the same impact loads and relative motion dynamics which would occur in space during docking. It uses a 9 degree of freedom, servo-motion system, controlled by a real time computer, which simulates the docking spacecraft in a zero-g environment. The test technique involves and active loop based on six axis force and torque detection, a mathematical simulation of individual spacecraft dynamics, and a 9 degree of freedom servomotion of which 3 DOFs allow extension of the kinematic range to 5 m. The configuration was checked out by closed loop tests involving spacecraft control models and real sensor hardware. The test facility at present has an extensive configuration that allows evaluation of both proximity control and docking systems. It provides a versatile tool to verify system design, hardware items and performance capabilities in the ongoing HERMES and COLUMBUS programs. The test system is described and its capabilities are summarized.

  2. Design and testing of an energy-absorbing crewseat for the F/FB-111 aircraft, volume 1

    NASA Technical Reports Server (NTRS)

    Shane, S. J.

    1985-01-01

    A program to determine if the injury potential could be reduced by replacing the existing crewseats with energy absorbing crewseats is explored. An energy-absorbing test seat was designed using much of the existing seat hardware. An extensive dynamic seat test series, designed to duplicate various crew module ground impact conditions, was conducted at a sled test facility. Comparative tests with operational F-111 crewseats were also conducted. After successful dynamic testing of the seat, more testing was conducted with the seats mounted in an F-111 crew module. Both swing tests and vertical drop tests were conducted. The vertical drop tests were used to obtain comparative data between the energy-absorbing and operational seats. Volume 1 describes the energy absorbing test seat and testing conducted, and evaluates the data from both test series.

  3. Microcellular nanocomposite injection molding process

    Treesearch

    Mingjun Yuan; Lih-Sheng Turng; Rick Spindler; Daniel Caulfield; Chris Hunt

    2003-01-01

    This study aims to explore the processing benefits and property improvements of combining nanocomposites with microcellular injection molding. The molded parts produced based on the Design of Experiments (DOE) matrices were subjected to tensile testing, impact testing, and Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), Dynamic Mechanical...

  4. Drop Weight Impact Behavior of Al-Si-Cu Alloy Foam-Filled Thin-Walled Steel Pipe Fabricated by Friction Stir Back Extrusion

    NASA Astrophysics Data System (ADS)

    Hangai, Yoshihiko; Nakano, Yukiko; Utsunomiya, Takao; Kuwazuru, Osamu; Yoshikawa, Nobuhiro

    2017-02-01

    In this study, Al-Si-Cu alloy ADC12 foam-filled thin-walled stainless steel pipes, which exhibit metal bonding between the ADC12 foam and steel pipe, were fabricated by friction stir back extrusion. Drop weight impact tests were conducted to investigate the deformation behavior and mechanical properties of the foam-filled pipes during dynamic compression tests, which were compared with the results of static compression tests. From x-ray computed tomography observation, it was confirmed that the fabricated foam-filled pipes had almost uniform porosity and pore size distributions. It was found that no scattering of the fragments of collapsed ADC12 foam occurred for the foam-filled pipes owing to the existence of the pipe surrounding the ADC12 foam. Preventing the scattering of the ADC12 foam decreases the drop in stress during dynamic compression tests and therefore improves the energy absorption properties of the foam.

  5. On protection of Freedom's solar dynamic radiator from the orbital debris environment. Part 1: Preliminary analyses and testing

    NASA Technical Reports Server (NTRS)

    Rhatigan, Jennifer L.; Christiansen, Eric L.; Fleming, Michael L.

    1990-01-01

    A great deal of experimentation and analysis was performed to quantify penetration thresholds of components which will experience orbital debris impacts. Penetration was found to depend upon mission specific parameters such as orbital altitude, inclination, and orientation of the component; and upon component specific parameters such as material, density and the geometry particular to its shielding. Experimental results are highly dependent upon shield configuration and cannot be extrapolated with confidence to alternate shield configurations. Also, current experimental capabilities are limited to velocities which only approach the lower limit of predicted orbital debris velocities. Therefore, prediction of the penetrating particle size for a particular component having a complex geometry remains highly uncertain. An approach is described which was developed to assess on-orbit survivability of the solar dynamic radiator due to micrometeoroid and space debris impacts. Preliminary analyses are presented to quantify the solar dynamic radiator survivability, and include the type of particle and particle population expected to defeat the radiator bumpering (i.e., penetrate a fluid flow tube). Results of preliminary hypervelocity impact testing performed on radiator panel samples (in the 6 to 7 km/sec velocity range) are also presented. Plans for further analyses and testing are discussed. These efforts are expected to lead to a radiator design which will perform to requirements over the expected lifetime.

  6. Visual acuity and quality of life in dry eye disease: Proceedings of the OCEAN group meeting.

    PubMed

    Benítez-Del-Castillo, José; Labetoulle, Marc; Baudouin, Christophe; Rolando, Maurizio; Akova, Yonca A; Aragona, Pasquale; Geerling, Gerd; Merayo-Lloves, Jesús; Messmer, Elisabeth M; Boboridis, Kostas

    2017-04-01

    Dry eye disease (DED) results in tear film instability and hyperosmolarity, inflammation of the ocular surface and, ultimately, visual disturbance that can significantly impact a patient's quality of life. The effects on visual acuity result in difficulties with driving, reading and computer use and negatively impact psychological health. These effects also extend to the workplace, with a loss of productivity and quality of work causing substantial economic losses. The effects of DED and the impact on vision experienced by patients may not be given sufficient importance by ophthalmologists. Functional visual acuity (FVA) is a measure of visual acuity after sustained eye opening without blinking for at least 10 s and mimics the sustained visual acuity of daily life. Measuring dynamic FVA allows the detection of impaired visual function in patients with DED who may display normal conventional visual acuity. There are currently several tests and methods that can be used to measure dynamic visual function: the SSC-350 FVA measurement system, assessment of best-corrected visual acuity decay using the interblink visual acuity decay test, serial measurements of ocular and corneal higher order aberrations, and measurement of dynamic vision quality using the Optical Quality Analysis System. Although the equipment for these methods may be too large or unaffordable for use in clinical practice, FVA testing is an important assessment for DED. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Biomechanical responses of PMHS in moderate-speed rear impacts and development of response targets for evaluating the internal and external biofidelity of ATDS.

    PubMed

    Kang, Yun-Seok; Bolte, John H; Moorhouse, Kevin; Donnelly, Bruce; Herriott, Rodney; Mallory, Ann

    2012-10-01

    The objectives of this study were to obtain biomechanical responses of post mortem human subjects (PMHS) by subjecting them to two moderate-speed rear impact sled test conditions (8.5g, 17 km/h; 10.5g, 24 km/h) while positioned in an experimental seat system, and to create biomechanical targets for internal and external biofidelity evaluation of rear impact ATDs. The experimental seat was designed to measure external loads on the head restraint (4 load cells), seat back (6 load cells), and seat pan (4 load cells) such that subject dynamic interaction with the seat could be evaluated. This seat system was capable of simulating the dynamic characteristics of modern vehicle seat backs by considering the moment-rotation properties of a typical passenger vehicle, thus providing a more realistic test environment than using a rigid seat with a non-rotating seat back as done in previous studies. Instrumentation used to measure biomechanical responses of the PMHS included both accelerometers and angular rate sensors (ARS). A total of fourteen sled tests using eight PMHS (males 175.8 ± 6.2 cm of stature and 78.4 ± 7.2 kg of weight) provided data sets of seven PMHS for both test conditions. The biomechanical responses are described at both speeds, and cervical spine injuries are documented. Biomechanical targets are also created for internal and external biofidelity evaluation of rear impact anthropomorphic test devices (ATDs).

  8. Nonlinear price impact from linear models

    NASA Astrophysics Data System (ADS)

    Patzelt, Felix; Bouchaud, Jean-Philippe

    2017-12-01

    The impact of trades on asset prices is a crucial aspect of market dynamics for academics, regulators, and practitioners alike. Recently, universal and highly nonlinear master curves were observed for price impacts aggregated on all intra-day scales (Patzelt and Bouchaud 2017 arXiv:1706.04163). Here we investigate how well these curves, their scaling, and the underlying return dynamics are captured by linear ‘propagator’ models. We find that the classification of trades as price-changing versus non-price-changing can explain the price impact nonlinearities and short-term return dynamics to a very high degree. The explanatory power provided by the change indicator in addition to the order sign history increases with increasing tick size. To obtain these results, several long-standing technical issues for model calibration and testing are addressed. We present new spectral estimators for two- and three-point cross-correlations, removing the need for previously used approximations. We also show when calibration is unbiased and how to accurately reveal previously overlooked biases. Therefore, our results contribute significantly to understanding both recent empirical results and the properties of a popular class of impact models.

  9. Calibrating the system dynamics of LISA Pathfinder

    NASA Astrophysics Data System (ADS)

    Armano, M.; Audley, H.; Baird, J.; Binetruy, P.; Born, M.; Bortoluzzi, D.; Castelli, E.; Cavalleri, A.; Cesarini, A.; Cruise, A. M.; Danzmann, K.; de Deus Silva, M.; Diepholz, I.; Dixon, G.; Dolesi, R.; Ferraioli, L.; Ferroni, V.; Fitzsimons, E. D.; Freschi, M.; Gesa, L.; Gibert, F.; Giardini, D.; Giusteri, R.; Grimani, C.; Grzymisch, J.; Harrison, I.; Heinzel, G.; Hewitson, M.; Hollington, D.; Hoyland, D.; Hueller, M.; Inchauspé, H.; Jennrich, O.; Jetzer, P.; Karnesis, N.; Kaune, B.; Korsakova, N.; Killow, C. J.; Lobo, J. A.; Lloro, I.; Liu, L.; López-Zaragoza, J. P.; Maarschalkerweerd, R.; Mance, D.; Meshksar, N.; Martín, V.; Martin-Polo, L.; Martino, J.; Martin-Porqueras, F.; Mateos, I.; McNamara, P. W.; Mendes, J.; Mendes, L.; Nofrarias, M.; Paczkowski, S.; Perreur-Lloyd, M.; Petiteau, A.; Pivato, P.; Plagnol, E.; Ramos-Castro, J.; Reiche, J.; Robertson, D. I.; Rivas, F.; Russano, G.; Slutsky, J.; Sopuerta, C. F.; Sumner, T.; Texier, D.; Thorpe, J. I.; Vetrugno, D.; Vitale, S.; Wanner, G.; Ward, H.; Wass, P.; Weber, W. J.; Wissel, L.; Wittchen, A.; Zweifel, P.

    2018-06-01

    LISA Pathfinder (LPF) was a European Space Agency mission with the aim to test key technologies for future space-borne gravitational-wave observatories like LISA. The main scientific goal of LPF was to demonstrate measurements of differential acceleration between free-falling test masses at the sub-femto-g level, and to understand the residual acceleration in terms of a physical model of stray forces, and displacement readout noise. A key step toward reaching the LPF goals was the correct calibration of the dynamics of LPF, which was a three-body system composed by two test-masses enclosed in a single spacecraft, and subject to control laws for system stability. In this work, we report on the calibration procedures adopted to calculate the residual differential stray force per unit mass acting on the two test-masses in their nominal positions. The physical parameters of the adopted dynamical model are presented, together with their role on LPF performance. The analysis and results of these experiments show that the dynamics of the system was accurately modeled and the dynamical parameters were stationary throughout the mission. Finally, the impact and importance of calibrating system dynamics for future space-based gravitational wave observatories is discussed.

  10. Experimental and analytical determination of characteristics affecting light aircraft landing-gear dynamics

    NASA Technical Reports Server (NTRS)

    Fasanella, E. L.; Mcgehee, J. R.; Pappas, M. S.

    1977-01-01

    An experimental and analytical investigation was conducted to determine which characteristics of a light aircraft landing gear influence gear dynamic behavior significantly. The investigation focused particularly on possible modification for load control. Pseudostatic tests were conducted to determine the gear fore-and-aft spring constant, axial friction as a function of drag load, brake pressure-torque characteristics, and tire force-deflection characteristics. To study dynamic tire response, vertical drops were conducted at impact velocities of 1.2, 1.5, and 1.8 m/s onto a level surface; to determine axial-friction effects, a second series of vertical drops were made at 1.5 m/s onto surfaces inclined 5 deg and 10 deg to the horizontal. An average dynamic axial-friction coefficient of 0.15 was obtained by comparing analytical data with inclined surface drop test data. Dynamic strut bending and associated axial friction were found to be severe for the drop tests on the 10 deg surface.

  11. Coefficient of restitution of sports balls: A normal drop test

    NASA Astrophysics Data System (ADS)

    Haron, Adli; Ismail, K. A.

    2012-09-01

    Dynamic behaviour of bodies during impact is investigated through impact experiment, the simplest being a normal drop test. Normally, a drop test impact experiment involves measurement of kinematic data; this includes measurement of incident and rebound velocity in order to calculate a coefficient of restitution (COR). A high speed video camera is employed for measuring the kinematic data where speed is calculated from displacement of the bodies. Alternatively, sensors can be employed to measure speeds, especially for a normal impact where there is no spin of the bodies. This paper compares experimental coefficients of restitution (COR) for various sports balls, namely golf, table tennis, hockey and cricket. The energy loss in term of measured COR and effects of target plate are discussed in relation to the material and construction of these sports balls.

  12. Research and test facilities

    NASA Technical Reports Server (NTRS)

    1993-01-01

    A description is given of each of the following Langley research and test facilities: 0.3-Meter Transonic Cryogenic Tunnel, 7-by 10-Foot High Speed Tunnel, 8-Foot Transonic Pressure Tunnel, 13-Inch Magnetic Suspension & Balance System, 14-by 22-Foot Subsonic Tunnel, 16-Foot Transonic Tunnel, 16-by 24-Inch Water Tunnel, 20-Foot Vertical Spin Tunnel, 30-by 60-Foot Wind Tunnel, Advanced Civil Transport Simulator (ACTS), Advanced Technology Research Laboratory, Aerospace Controls Research Laboratory (ACRL), Aerothermal Loads Complex, Aircraft Landing Dynamics Facility (ALDF), Avionics Integration Research Laboratory, Basic Aerodynamics Research Tunnel (BART), Compact Range Test Facility, Differential Maneuvering Simulator (DMS), Enhanced/Synthetic Vision & Spatial Displays Laboratory, Experimental Test Range (ETR) Flight Research Facility, General Aviation Simulator (GAS), High Intensity Radiated Fields Facility, Human Engineering Methods Laboratory, Hypersonic Facilities Complex, Impact Dynamics Research Facility, Jet Noise Laboratory & Anechoic Jet Facility, Light Alloy Laboratory, Low Frequency Antenna Test Facility, Low Turbulence Pressure Tunnel, Mechanics of Metals Laboratory, National Transonic Facility (NTF), NDE Research Laboratory, Polymers & Composites Laboratory, Pyrotechnic Test Facility, Quiet Flow Facility, Robotics Facilities, Scientific Visualization System, Scramjet Test Complex, Space Materials Research Laboratory, Space Simulation & Environmental Test Complex, Structural Dynamics Research Laboratory, Structural Dynamics Test Beds, Structures & Materials Research Laboratory, Supersonic Low Disturbance Pilot Tunnel, Thermal Acoustic Fatigue Apparatus (TAFA), Transonic Dynamics Tunnel (TDT), Transport Systems Research Vehicle, Unitary Plan Wind Tunnel, and the Visual Motion Simulator (VMS).

  13. The impact of interface bonding efficiency on high-burnup spent nuclear fuel dynamic performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Hao; Wang, Jy-An John; Wang, Hong

    Finite element analysis (FEA) was used to investigate the impact of interfacial bonding efficiency at pellet-pellet and pellet-clad interfaces of high-burnup (HBU) spent nuclear fuel (SNF) on system dynamic performance. Bending moments M were applied to FEA model to evaluate the system responses. From bending curvature, κ, flexural rigidity EI can be estimated as EI = M/κ. The FEA simulation results were benchmarked with experimental results from cyclic integrated reversal bending fatigue test (CIRFT) of HBR fuel rods. The consequence of interface debonding between fuel pellets and cladding is a redistribution of the loads carried by the fuel pellets tomore » the clad, which results in a reduction in composite rod system flexural rigidity. Furthermore, the interface bonding efficiency at the pellet-pellet and pellet-clad interfaces can significantly dictate the SNF system dynamic performance. With the consideration of interface bonding efficiency, the HBU SNF fuel property was estimated with CIRFT test data.« less

  14. The impact of interface bonding efficiency on high-burnup spent nuclear fuel dynamic performance

    DOE PAGES

    Jiang, Hao; Wang, Jy-An John; Wang, Hong

    2016-09-26

    Finite element analysis (FEA) was used to investigate the impact of interfacial bonding efficiency at pellet-pellet and pellet-clad interfaces of high-burnup (HBU) spent nuclear fuel (SNF) on system dynamic performance. Bending moments M were applied to FEA model to evaluate the system responses. From bending curvature, κ, flexural rigidity EI can be estimated as EI = M/κ. The FEA simulation results were benchmarked with experimental results from cyclic integrated reversal bending fatigue test (CIRFT) of HBR fuel rods. The consequence of interface debonding between fuel pellets and cladding is a redistribution of the loads carried by the fuel pellets tomore » the clad, which results in a reduction in composite rod system flexural rigidity. Furthermore, the interface bonding efficiency at the pellet-pellet and pellet-clad interfaces can significantly dictate the SNF system dynamic performance. With the consideration of interface bonding efficiency, the HBU SNF fuel property was estimated with CIRFT test data.« less

  15. Transport composite fuselage technology: Impact dynamics and acoustic transmission

    NASA Technical Reports Server (NTRS)

    Jackson, A. C.; Balena, F. J.; Labarge, W. L.; Pei, G.; Pitman, W. A.; Wittlin, G.

    1986-01-01

    A program was performed to develop and demonstrate the impact dynamics and acoustic transmission technology for a composite fuselage which meets the design requirements of a 1990 large transport aircraft without substantial weight and cost penalties. The program developed the analytical methodology for the prediction of acoustic transmission behavior of advanced composite stiffened shell structures. The methodology predicted that the interior noise level in a composite fuselage due to turbulent boundary layer will be less than in a comparable aluminum fuselage. The verification of these analyses will be performed by NASA Langley Research Center using a composite fuselage shell fabricated by filament winding. The program also developed analytical methodology for the prediction of the impact dynamics behavior of lower fuselage structure constructed with composite materials. Development tests were performed to demonstrate that the composite structure designed to the same operating load requirement can have at least the same energy absorption capability as aluminum structure.

  16. Shake Test Results and Dynamic Calibration Efforts for the Large Rotor Test Apparatus

    NASA Technical Reports Server (NTRS)

    Russell, Carl R.

    2014-01-01

    Prior to the full-scale wind tunnel test of the UH-60A Airloads rotor, a shake test was completed on the Large Rotor Test Apparatus. The goal of the shake test was to characterize the oscillatory response of the test rig and provide a dynamic calibration of the balance to accurately measure vibratory hub loads. This paper provides a summary of the shake test results, including balance, shaft bending gauge, and accelerometer measurements. Sensitivity to hub mass and angle of attack were investigated during the shake test. Hub mass was found to have an important impact on the vibratory forces and moments measured at the balance, especially near the UH-60A 4/rev frequency. Comparisons were made between the accelerometer data and an existing finite-element model, showing agreement on mode shapes, but not on natural frequencies. Finally, the results of a simple dynamic calibration are presented, showing the effects of changes in hub mass. The results show that the shake test data can be used to correct in-plane loads measurements up to 10 Hz and normal loads up to 30 Hz.

  17. Investigation of Gearbox Vibration Transmission Paths on Gear Condition Indicator Performance

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.; Islam, AKM Anwarul; Feldman, Jason; Larsen, Chris

    2013-01-01

    Helicopter health monitoring systems use vibration signatures generated from damaged components to identify transmission faults. For damaged gears, these signatures relate to changes in dynamics due to the meshing of the damaged tooth. These signatures, referred to as condition indicators (CI), can perform differently when measured on different systems, such as a component test rig, or a full-scale transmission test stand, or an aircraft. These differences can result from dissimilarities in systems design and environment under dynamic operating conditions. The static structure can also filter the response between the vibration source and the accelerometer, when the accelerometer is installed on the housing. To assess the utility of static vibration transfer paths for predicting gear CI performance, measurements were taken on the NASA Glenn Spiral Bevel Gear Fatigue Test Rig. The vibration measurements were taken to determine the effect of torque, accelerometer location and gearbox design on accelerometer response. Measurements were taken at the housing and compared while impacting the gear set near mesh. These impacts were made at gear mesh to simulate gear meshing dynamics. Data measured on a helicopter gearbox installed in a static fixture were also compared to the test rig. The behavior of the structure under static conditions was also compared to CI values calculated under dynamic conditions. Results indicate that static vibration transfer path measurements can provide some insight into spiral bevel gear CI performance by identifying structural characteristics unique to each system that can affect specific CI response.

  18. Application of composite materials to impact-insensitive munitions

    NASA Technical Reports Server (NTRS)

    Neradka, Vincent F.; Chang, Yale; Grady, Joseph E.; Trowbridge, Daniel A.

    1992-01-01

    An approach is outlined for developing bullet-impact-insensitive munitions based on composite materials that provide rapid venting of the rocket-motor case. Impact experiments are conducted with test specimens of hybrid laminates of graphite/epoxy and epoxy reinforcing with woven glass fibers. The dynamic strain response and initial impact force are measured with strain gauges, and perforation damage is examined in the plates. The results show that impact damage can be designed by means of parametric variations of the fiber, matrix, and ply orientations. It is suggested that rocket-motor cases can be designed with composite materials to provide rapid venting during the failure mode. The experimental ballistic testing performed provides data that can be used comparatively with analytical data on composite materials.

  19. Size Effects in Impact Damage of Composite Sandwich Panels

    NASA Technical Reports Server (NTRS)

    Dobyns, Alan; Jackson, Wade

    2003-01-01

    Panel size has a large effect on the impact response and resultant damage level of honeycomb sandwich panels. It has been observed during impact testing that panels of the same design but different panel sizes will show large differences in damage when impacted with the same impact energy. To study this effect, a test program was conducted with instrumented impact testing of three different sizes of sandwich panels to obtain data on panel response and residual damage. In concert with the test program. a closed form analysis method was developed that incorporates the effects of damage on the impact response. This analysis method will predict both the impact response and the residual damage of a simply-supported sandwich panel impacted at any position on the panel. The damage is incorporated by the use of an experimental load-indentation curve obtained for the face-sheet/honeycomb and indentor combination under study. This curve inherently includes the damage response and can be obtained quasi-statically from a rigidly-backed specimen or a specimen with any support conditions. Good correlation has been obtained between the test data and the analysis results for the maximum force and residual indentation. The predictions can be improved by using a dynamic indentation curve. Analyses have also been done using the MSC/DYTRAN finite element code.

  20. Dynamic testing of a non-proprietary, high-tension, cable end terminal system.

    DOT National Transportation Integrated Search

    2014-03-01

    Two bogie tests were conducted on a high-tension cable end terminal to evaluate the performance of a new design. The : main goals of the new design were to promote quick cable release times, to retain the cable release lever during impact, to : susta...

  1. Development of Drop/Shock Test in Microelectronics and Impact Dynamic Analysis for Uniform Board Response

    NASA Astrophysics Data System (ADS)

    Kallolimath, Sharan Chandrashekar

    For the past several years, many researchers are constantly developing and improving board level drop test procedures and specifications to quantify the solder joint reliability performance of consumer electronics products. Predictive finite element analysis (FEA) by utilizing simulation software has become widely acceptable verification method which can reduce time and cost of the real-time test process. However, due to testing and metrological limitations it is difficult not only to simulate exact drop condition and capture critical measurement data but also tedious to calibrate the system to improve test methods. Moreover, some of the important ever changing factors such as board flexural rigidity, damping, drop height, and drop orientation results in non-uniform stress/strain distribution throughout the test board. In addition, one of the most challenging tasks is to quantify uniform stress and strain distribution throughout the test board and identify critical failure factors. The major contributions of this work are in the four aspects of the drop test in electronics as following. First of all, an analytical FEA model was developed to study the board natural frequencies and responses of the system with the consideration of dynamic stiffness, damping behavior of the material and effect of impact loading condition. An approach to find the key parameters that affect stress and strain distributions under predominate mode responses was proposed and verified with theoretical solutions. Input-G method was adopted to study board response behavior and cut boundary interpolation methods was used to analyze local model solder joint stresses with the development of global/local FEA model in ANSYS software. Second, no ring phenomenon during the drop test was identified theoretically when the test board was modeled as both discrete system and continuous system. Numerical analysis was then conducted by FEA method for detailed geometry of attached chips with solder-joints. No ring test conditions was proposed and verified for the current widely used JEDEC standard. The significance of impact loading parameters such as pulse magnitude, pulse duration, pulse shapes and board dynamic parameter such as linear hysteretic damping and dynamic stiffness were discussed. Third, Kirchhoff's plate theory by principle of minimum potential energy was adopted to develop the FEA formulation to consider the effect of material hysteretic damping for the currently used JEDEC board test and proposed no-ring response test condition. Fourth, a hexagonal symmetrical board model was proposed to address the uniform stress and strain distribution throughout the test board and identify the critical failure factors. Dynamic stress and strain of the hexagonal board model were then compared with standard JEDEC board for both standard and proposed no-ring test conditions. In general, this line of research demonstrates that advanced techniques of FEA analysis can provide useful insights concerning the optimal design of drop test in microelectronics.

  2. Design and Testing of Braided Composite Fan Case Materials and Components

    NASA Technical Reports Server (NTRS)

    Roberts, Gary D.; Pereira, J. Michael; Braley, Michael S.; Arnold, William a.; Dorer, James D.; Watson, William R/.

    2009-01-01

    Triaxial braid composite materials are beginning to be used in fan cases for commercial gas turbine engines. The primary benefit for the use of composite materials is reduced weight and the associated reduction in fuel consumption. However, there are also cost benefits in some applications. This paper presents a description of the braided composite materials and discusses aspects of the braiding process that can be utilized for efficient fabrication of composite cases. The paper also presents an approach that was developed for evaluating the braided composite materials and composite fan cases in a ballistic impact laboratory. Impact of composite panels with a soft projectile is used for materials evaluation. Impact of composite fan cases with fan blades or blade-like projectiles is used to evaluate containment capability. A post-impact structural load test is used to evaluate the capability of the impacted fan case to survive dynamic loads during engine spool down. Validation of these new test methods is demonstrated by comparison with results of engine blade-out tests.

  3. Traumatic eye injuries as a result of blunt impact

    NASA Astrophysics Data System (ADS)

    Clemente, Chiara; Esposito, Luca; Bonora, Nicola; Limido, Jerome; Lacome, Jean-Luc; Rossi, Tommaso

    2013-06-01

    The detachment or tearing of the retina in the human eye as a result of a collision is a phenomenon that occurs very often. This research is aimed at identifying and understanding the actual dynamic physical mechanisms responsible for traumatic eye injuries accompanying blunt impact, with particular attention to the damage processes that take place at the retina. To this purpose, a numerical and experimental investigation of the dynamic response of the eye during an impact event was performed. Numerical simulation of both tests was performed with IMPETUS-FEA, a general non-linear finite element software which offers NURBS finite element technology for the simulation of large deformation and fracture in materials. Computational results were compared with the experimental results on fresh enucleated porcine eyes impacted with airsoft pellets. The eyes were placed in a container filled with 10 percent ballistic gelatin simulating the fatty tissue surrounding the eye. A miniature pressure transducer was inserted into the eye bulb through the optic nerve in order to measure the pressure of the eye during blunt-projectile impacts. Each test was recorded using a high speed video camera. The ocular injuries observed in the impacted eyes were assessed by an ophthalmologist in order to evaluate the correlation between the pressure measures and the risk of retinal damage.

  4. The Influence of Cylinder Lubrication on Piston Slap

    NASA Astrophysics Data System (ADS)

    Gerges, S. N. Y.; de Luca, J. C.; Lalor, N.

    2002-10-01

    A model has been developed for determining the time history of piston slap impact force. This model takes into account the influence of the oil film on the impact behaviour, which was found to be an important factor. However, it was also found that entrapped gas bubbles in the oil are equally significant. Three test rigs were designed and built to study these effects on the impact phenomenon and extensive tests were carried out. The impact force time history has been determined using Reynolds' theory. Results have shown that Reynolds' theory for fluid film squeezing can be applied for oil film damping determination. However, the experimental results have also shown that when gas is entrapped during the impact, this theory considerably overpredicts the magnitude of the impact. An eight-degree-of-freedom lumped parameter model was developed through the dynamic analysis of each component of an internal combustion engine's reciprocating system. The effective damping factor derived from this model was found to be inversely proportional to the oil film thickness cubed, as expected from Reynolds' theory. A dynamic model has been proposed, where the oil film mixed with bubbles is considered to be analogous to a serial spring and damping system. By incorporating a spring in series with this damper, the effect of the bubbles can also be predicted.

  5. A Method for Testing the Dynamic Accuracy of Micro-Electro-Mechanical Systems (MEMS) Magnetic, Angular Rate, and Gravity (MARG) Sensors for Inertial Navigation Systems (INS) and Human Motion Tracking Applications

    DTIC Science & Technology

    2010-06-01

    32 2. Low-Cost Framework........................................................................33 3. Low Magnetic Field ...that have a significant impact on the magnetic field measured by a MARG, which could potentially add errors that are due entirely to the test...minimize the impact on the local magnetic field , and the apparatus was made as rigidly as possible using 2 x 4s to minimize any out of plane motions that

  6. Analysis of the dynamic avalanche of carrier stored trench bipolar transistor (CSTBT) during clamped inductive turn-off transient

    NASA Astrophysics Data System (ADS)

    Xue, Peng; Fu, Guicui

    2017-03-01

    The dynamic avalanche has a huge impact on the switching robustness of carrier stored trench bipolar transistor (CSTBT). The purpose of this work is to investigate the CSTBT's dynamic avalanche mechanism during clamped inductive turn-off transient. At first, with a Mitsubishi 600 V/150 A CSTBT and a Infineon 600 V/200 A field stop insulated gate bipolar transistor (FS-IGBT) utilized, the clamped inductive turn-off characteristics are obtained by double pulse test. The unclamped inductive switching (UIS) test is also utilized to identify the CSTBT's clamping voltage under dynamic avalanche condition. After the test data analysis, it is found that the CSTBT's dynamic avalanche is abnormal and can be triggered under much looser condition than the conventional buffer layer IGBT. The comparison between the FS-IGBT and CSTBT's experimental results implies that the CSTBT's abnormal dynamic avalanche phenomenon may be induced by the carrier storage (CS) layer. Based on the semiconductor physics, the electric field distribution and dynamic avalanche generation in the depletion region are analyzed. The analysis confirms that the CS layer is the root cause of the CSTBT's abnormal dynamic avalanche mechanism. Moreover, the CSTBT's negative gate capacitance effect is also investigated to clarify the underlying mechanism of the gate voltage bump observed in the test. In the end, the mixed-mode numerical simulation is utilized to reproduce the CSTBT's dynamic avalanche behavior. The simulation results validate the proposed dynamic avalanche mechanisms.

  7. Dynamic Mechanical Testing Techniques for Cortical and Cancellous Bone

    NASA Astrophysics Data System (ADS)

    Cloete, Trevor

    2017-06-01

    Bone fracture typically occurs as an impact loading event (sporting accidents, vehicle collisions), the simulation of which requires in-depth understanding of dynamic bone behavior. Bone is a natural composite material with a complex multi length-scale hierarchical microstructure. At a macroscopic level, it is classified into hard/compact cortical bone and soft/spongy cancellous (trabecular) bone, though both are low-impedance materials relative to steels. Cortical bone is predominant in long bones, while in complex bone geometries (joints, flat bones) a cancellous bone core supports a thin cortical shell. Bone has primarily been studied at quasi-static strain rates (ɛ˙ < 1s-1), with some dynamic studies (300s-1 <ɛ˙ < 3000s-1), but rarely at intermediate strain rates (ISR) (1s-1 <ɛ˙ < 100s-1). The data shows bone to be viscoelastic, which suggests that more dynamic and ISR data is required. Furthermore, bone exhibits quasi-brittle failure, with interrupted quasi-static tests revealing a strong microstructure dependence. However, bone specimens are typically destroyed during dynamic tests, leading to a lack of dynamic microstructural damage investigations. In this paper, a short overview of dynamic bone testing is presented to give context to the challenges of testing low impedance, strain-rate dependent, non-linear, visco-elastic-brittle materials. Recent state-of-the-art experimental developments in dynamic bone testing are reviewed, with emphasis on pulse shaping, momentum trapping and ISR testing. These techniques allow for dynamic bone testing at small strains and near-constant strain rates with intact specimen recovery. The results are compared to those obtained with varying strain rate tests. Interrupted dynamic test results with microstructural analysis of the recovered specimens are presented and discussed. The paper concludes with a discussion of the experimental and modeling challenges that lie ahead in the field of dynamic bone behavior. The financial assistance of the National Research Foundation and the University of Cape Town towards this research is hereby acknowledged. Opinions expressed and conclusions arrived at are those of the author alone.

  8. Forest fragmentation and bird community dynamics: inference at regional scales

    Treesearch

    Thierry Boulinier; James D. Nichols; James E. Hines; John R. Sauer; Curtis H. Flather; Kenneth H. Pollock

    2001-01-01

    With increasing fragmentation of natural areas and a dramatic reduction of forest cover in several parts of the world, quantifying the impact of such changes on species richness and community dynamics has been a subject of much concern. Here, we tested whether in more fragmented landscapes there was a lower number of area-sensitive species and higher local extinction...

  9. On the dynamic behavior of mineralized tissues

    NASA Astrophysics Data System (ADS)

    Kulin, Robb Michael

    Mineralized tissues, such as bone and antler, are complex hierarchical materials that have adapted over millennia to optimize strength and fracture resistance for their in vivo applications. As a structural support, skeletal bone primarily acts as a rigid framework that is resistant to fracture, and able to repair damage and adapt to sustained loads during its lifetime. Antler is typically deciduous and subjected to large bending moments and violent impacts during its annual cycle. To date, extensive characterization of the quasi-static mechanical properties of these materials has been performed. However, very little has been done to characterize their dynamic properties, despite the fact that the majority of failures in these materials occur under impact loads. Here, an in depth analysis of the dynamic mechanical behavior of these two materials is presented, using equine bone obtained post-mortem from donors ranging in age from 6 months to 28 years, and antler from the North American Elk. Specimens were tested under compressive strain rates of 10-3, 100, and 103 sec-1 in order to investigate their strain rate dependent compressive response. Fracture toughness experiments were performed using a four-point bending geometry on single and double-notch specimens in order to measure fracture toughness, as well as observe differences in crack propagation between dynamic (˜2x105 MPa˙m1/2/s) and quasi-static (˜0.25 MPa˙m1/2/s) loading rates. After testing, specimens were analyzed using a combination of optical, electron and confocal microscopy. Results indicated that the mechanical response of these materials is highly dependent on loading rate. Decreasing quasi-static fracture toughness is observed with age in bone specimens, while dynamic specimens show no age trends, yet universally decreased fracture toughness compared to those tested quasi-statically. For the first time, rising R-curve behavior in bone was also shown to exist under both quasi-static and dynamic loading. Antler demonstrated itself to be extremely resistant to impact loading, often requiring multiple impacts to fracture a specimen. Microscopy observations of deformation and crack propagation mechanisms indicate that differences in mechanical behavior between bone and antler, and at varying strain rates, are the result of subtle differences in bulk composition and active microstructural toughening mechanisms.

  10. Dynamic deformation of soft soil media: Experimental studies and mathematical modeling

    NASA Astrophysics Data System (ADS)

    Balandin, V. V.; Bragov, A. M.; Igumnov, L. A.; Konstantinov, A. Yu.; Kotov, V. L.; Lomunov, A. K.

    2015-05-01

    A complex experimental-theoretical approach to studying the problem of high-rate strain of soft soil media is presented. This approach combines the following contemporary methods of dynamical tests: the modified Hopkinson-Kolsky method applied tomedium specimens contained in holders and the method of plane wave shock experiments. The following dynamic characteristics of sand soils are obtained: shock adiabatic curves, bulk compressibility curves, and shear resistance curves. The obtained experimental data are used to study the high-rate strain process in the system of a split pressure bar, and the constitutive relations of Grigoryan's mathematical model of soft soil medium are verified by comparing the results of computational and natural test experiments of impact and penetration.

  11. Technology test bed review

    NASA Technical Reports Server (NTRS)

    Mcconnaughey, H. V.

    1992-01-01

    The topics are presented in viewgraph form and include the following: (1) Space Shuttle Main Engine (SSME) technology test bed (TTB) history; (2) TTB objectives; (3) TTB major accomplishments; (4) TTB contributions to SSME; (5) major impacts of 3001 testing; (6) some challenges to computational fluid dynamics (CFD); (7) the high pressure fuel turbopump (HPFTP); and (8) 3001 lessons learned in design and operations.

  12. Impact Behavior of Composite Fan Blade Leading Edge Subcomponent with Thermoplastic Polyurethane Interleave

    NASA Technical Reports Server (NTRS)

    Miller, Sandi G.; Roberts, Gary D.; Kohlman, Lee W.; Heimann, Paula J.; Pereira, J. Michael; Ruggeri, Charles R.; Martin, Richard E.; McCorkle, Linda S.

    2015-01-01

    Impact damage tolerance and damage resistance is a critical metric for application of polymer matrix composites where failure caused by impact damage could compromise structural performance and safety. As a result, several materials and/or design approaches to improve impact damage tolerance have been investigated over the past several decades. Many composite toughening methodologies impart a trade-off between increased fracture toughness and compromised in-plane strength and modulus. In large part, mechanical tests to evaluate composite damage tolerance include static methods such as Mode I, Mode II, and mixed mode failures. However, ballistic impact damage resistance does not always correlate with static properties. The intent of this paper is to evaluate the influence of a thermoplastic polyurethane veil interleave on the static and dynamic performance of composite test articles. Static coupon tests included tension, compression, double cantilever beam, and end notch flexure. Measurement of the resistance to ballistic impact damage were made to evaluate the composites response to high speed impact. The interlayer material showed a decrease of in-plane performance with only a moderate improvement to Mode I and Mode II fracture toughness. However, significant benefit to impact damage tolerance was observed through ballistic tests.

  13. Impact resistance of fiber composites - Energy-absorbing mechanisms and environmental effects

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Sinclair, J. H.

    1985-01-01

    Energy absorbing mechanisms were identified by several approaches. The energy absorbing mechanisms considered are those in unidirectional composite beams subjected to impact. The approaches used include: mechanic models, statistical models, transient finite element analysis, and simple beam theory. Predicted results are correlated with experimental data from Charpy impact tests. The environmental effects on impact resistance are evaluated. Working definitions for energy absorbing and energy releasing mechanisms are proposed and a dynamic fracture progression is outlined. Possible generalizations to angle-plied laminates are described.

  14. Impact resistance of fiber composites: Energy absorbing mechanisms and environmental effects

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Sinclair, J. H.

    1983-01-01

    Energy absorbing mechanisms were identified by several approaches. The energy absorbing mechanisms considered are those in unidirectional composite beams subjected to impact. The approaches used include: mechanic models, statistical models, transient finite element analysis, and simple beam theory. Predicted results are correlated with experimental data from Charpy impact tests. The environmental effects on impact resistance are evaluated. Working definitions for energy absorbing and energy releasing mechanisms are proposed and a dynamic fracture progression is outlined. Possible generalizations to angle-plied laminates are described.

  15. Developing Soil Models for Dynamic Impact Simulations

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Lyle, Karen H.; Jackson, Karen E.

    2009-01-01

    This paper describes fundamental soils characterization work performed at NASA Langley Research Center in support of the Subsonic Rotary Wing (SRW) Aeronautics Program and the Orion Landing System (LS) Advanced Development Program (ADP). LS-DYNA(Registered TradeMark)1 soil impact model development and test-analysis correlation results are presented for: (1) a 38-ft/s vertical drop test of a composite fuselage section, outfitted with four blocks of deployable energy absorbers (DEA), onto sand, and (2) a series of impact tests of a 1/2-scale geometric boilerplate Orion capsule onto soil. In addition, the paper will discuss LS-DYNA contact analysis at the soil/structure interface, methods used to estimate frictional forces, and the sensitivity of the model to density, moisture, and compaction.

  16. A new class of high-G and long-duration shock testing machines

    NASA Astrophysics Data System (ADS)

    Rastegar, Jahangir

    2018-03-01

    Currently available methods and systems for testing components for survival and performance under shock loading suffer from several shortcomings for use to simulate high-G acceleration events with relatively long duration. Such events include most munitions firing and target impact, vehicular accidents, drops from relatively high heights, air drops, impact between machine components, and other similar events. In this paper, a new class of shock testing machines are presented that can be used to subject components to be tested to high-G acceleration pulses of prescribed amplitudes and relatively long durations. The machines provide for highly repeatable testing of components. The components are mounted on an open platform for ease of instrumentation and video recording of their dynamic behavior during shock loading tests.

  17. Dynamic compressive behavior of Pr-Nd alloy at high strain rates and temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Huanran; Cai Canyuan; Chen Danian

    2012-07-01

    Based on compressive tests, static on 810 material test system and dynamic on the first compressive loading in split Hopkinson pressure bar (SHPB) tests for Pr-Nd alloy cylinder specimens at high strain rates and temperatures, this study determined a J-C type [G. R. Johnson and W. H. Cook, in Proceedings of Seventh International Symposium on Ballistics (The Hague, The Netherlands, 1983), pp. 541-547] compressive constitutive equation of Pr-Nd alloy. It was recorded by a high speed camera that the Pr-Nd alloy cylinder specimens fractured during the first compressive loading in SHPB tests at high strain rates and temperatures. From highmore » speed camera images, the critical strains of the dynamic shearing instability for Pr-Nd alloy in SHPB tests were determined, which were consistent with that estimated by using Batra and Wei's dynamic shearing instability criterion [R. C. Batra and Z. G. Wei, Int. J. Impact Eng. 34, 448 (2007)] and the determined compressive constitutive equation of Pr-Nd alloy. The transmitted and reflected pulses of SHPB tests for Pr-Nd alloy cylinder specimens computed with the determined compressive constitutive equation of Pr-Nd alloy and Batra and Wei's dynamic shearing instability criterion could be consistent with the experimental data. The fractured Pr-Nd alloy cylinder specimens of compressive tests were investigated by using 3D supper depth digital microscope and scanning electron microscope.« less

  18. Assessment of dynamic properties and stiffness of composite bridges with pavement defects

    NASA Astrophysics Data System (ADS)

    Kartopol'tsev, Vladimir; Kartopol'tsev, Andrei; Kolmakov, Boris

    2017-01-01

    This paper is aimed at assessing the dynamic properties and stiffness of the reinforced concrete roadway slab under live loads that impact composite bridge girders considering pavement defects. A special attention is paid to the reinforced concrete roadway slab as a transfer member of forced oscillations. The test results obtained for bridges with different spans ranging from 24 to 110 m are presented to assess the behavior of the reinforced concrete roadway slab and the dynamic stiffness of bridge span allowed for the pavement defects. Dynamic tests are carried out under controlled and random loads that simulate live load interaction with the span and the pavement with defects. The differential equations are presented for vertical oscillations of spans, pavement defect parameter, Eigen frequency and others. As a result of the experimental research the equation is derived to ascertain the dynamic stiffness of the vehicle-span system.

  19. Comparison of ALE and SPH Simulations of Vertical Drop Tests of a Composite Fuselage Section into Water

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Fuchs, Yvonne T.

    2008-01-01

    Simulation of multi-terrain impact has been identified as an important research area for improved prediction of rotorcraft crashworthiness within the NASA Subsonic Rotary Wing Aeronautics Program on Rotorcraft Crashworthiness. As part of this effort, two vertical drop tests were conducted of a 5-ft-diameter composite fuselage section into water. For the first test, the fuselage section was impacted in a baseline configuration without energy absorbers. For the second test, the fuselage section was retrofitted with a composite honeycomb energy absorber. Both tests were conducted at a nominal velocity of 25-ft/s. A detailed finite element model was developed to represent each test article and water impact was simulated using both Arbitrary Lagrangian Eulerian (ALE) and Smooth Particle Hydrodynamics (SPH) approaches in LS-DYNA, a nonlinear, explicit transient dynamic finite element code. Analytical predictions were correlated with experimental data for both test configurations. In addition, studies were performed to evaluate the influence of mesh density on test-analysis correlation.

  20. The impact of dynamic balance measures on walking performance in multiple sclerosis.

    PubMed

    Fritz, Nora E; Marasigan, Rhul Evans R; Calabresi, Peter A; Newsome, Scott D; Zackowski, Kathleen M

    2015-01-01

    Static posture imbalance and gait dysfunction are common in individuals with multiple sclerosis (MS). Although the impact of strength and static balance on walking has been examined, the impact of dynamic standing balance on walking in MS remains unclear. To determine the impact of dynamic balance, static balance, sensation, and strength measures on walking in individuals with MS. Fifty-two individuals with MS (27 women; 26 relapsing-remitting; mean age = 45.6 ± 10.3 years; median Expanded Disability Status Scale score = 3.5) participated in posturography testing (Kistler-9281 force plate), hip flexion, hip extension, ankle dorsiflexion strength (Microfet2 hand-held dynamometer), sensation (Vibratron II), and walk velocity (Optotrak Motion Analysis System). Analyses included, Mann-Whitney, Spearman correlation coefficients, and multiple regression. All measures were abnormal in individuals with MS when compared with norms (P < .05). Static balance (eyes open, feet together [EOFT]), anterior-posterior (AP) dynamic sway, and hip extension strength were strongly correlated with walking velocity (AP sway r = 0.68; hip extension strength r = 0.73; EOFT r = -0.40). Together, AP dynamic sway (ρr = 0.71; P < .001), hip extension strength (ρr = 0.54; P < .001), and EOFT static balance (ρr = -0.41; P = .01) explained more than 70% of the variance in walking velocity (P < .001). AP dynamic sway affects walking performance in MS. A combined evaluation of dynamic balance, static balance, and strength may lead to a better understanding of walking mechanisms and the development of strategies to improve walking. © The Author(s) 2014.

  1. Dynamic Loading of Carrara Marble in a Heated State

    NASA Astrophysics Data System (ADS)

    Wong, Louis Ngai Yuen; Li, Zhihuan; Kang, Hyeong Min; Teh, Cee Ing

    2017-06-01

    Useable land is a finite space, and with a growing global population, countries have been exploring the use of underground space as a strategic resource to sustain the growth of their society and economy. However, the effects of impact loading on rocks that have been heated, and hence the integrity of the underground structure, are still not fully understood and has not been included in current design standards. Such scenarios include traffic accidents and explosions during an underground fire. This study aims to provide a better understanding of the dynamic load capacity of Carrara marble at elevated temperatures. Dynamic uniaxial compression tests are performed on Carrara marble held at various temperatures using a split-Hopkinson Pressure Bar (SHPB) setup with varying input force. A customized oven is included in the SHPB setup to allow for testing of the marble specimens in a heated state. After the loading test, a three-wave analysis is performed to obtain the dynamic stress-strain curve of the specimen under loading. The fragments of the failed specimens were also collected and dry-sieved to obtain the particle size distribution. The results reveal that the peak stress of specimens that have been heated is negatively correlated with the heating temperature. However, the energy absorbed by the specimens at peak stress at all temperatures is similar, indicating that a significant amount of energy is dissipated via plastic deformation. Generally, fragment size is also found to show a negative correlation with heating temperature and loading pressure. However, in some cases this relationship does not hold true, probably due to the occurrence of stress shadowing. Linear Elastic Fracture Mechanics has been found to be generally applicable to specimens tested at low temperatures; but at higher temperatures, Elastic-Plastic Fracture Mechanics will give a more accurate prediction. Another contribution of this study is to show that other than the peak stress of the rock failure type, the strain history experienced by the rock during impact and the post-impact fragment size distribution are also significant distinguishing features of damage caused by dynamic loading on heated rocks.

  2. Virtual prototyping of drop test using explicit analysis

    NASA Astrophysics Data System (ADS)

    Todorov, Georgi; Kamberov, Konstantin

    2017-12-01

    Increased requirements for reliability and safety, included in contemporary standards and norms, has high impact over new product development. New numerical techniques based on virtual prototyping technology, facilitates imrpoving product development cycle, resutling in reduced time/money spent for this stage as well as increased knowledge about certain failure mechanism. So called "drop test" became nearly a "must" step in development of any human operated product. This study aims to demonstrate dynamic behaviour assessment of a structure under impact loads, based on virtual prototyping using a typical nonlinear analysis - explicit dynamics. An example is presneted, based on a plastic container that is used as cartridge for a dispenser machine exposed to various work conditions. Different drop orientations were analyzed and critical load cases and design weaknesses have been found. Several design modifications have been proposed, based on detailed analyses results review.

  3. Survey of NASA research on crash dynamics

    NASA Technical Reports Server (NTRS)

    Thomson, R. G.; Carden, H. D.; Hayduk, R. J.

    1984-01-01

    Ten years of structural crash dynamics research activities conducted on general aviation aircraft by the National Aeronautics and Space Administration (NASA) are described. Thirty-two full-scale crash tests were performed at Langley Research Center, and pertinent data on airframe and seat behavior were obtained. Concurrent with the experimental program, analytical methods were developed to help predict structural behavior during impact. The effects of flight parameters at impact on cabin deceleration pulses at the seat/occupant interface, experimental and analytical correlation of data on load-limiting subfloor and seat configurations, airplane section test results for computer modeling validation, and data from emergency-locator-transmitter (ELT) investigations to determine probable cause of false alarms and nonactivations are assessed. Computer programs which provide designers with analytical methods for predicting accelerations, velocities, and displacements of collapsing structures are also discussed.

  4. Simulations of hypervelocity impacts for asteroid deflection studies

    NASA Astrophysics Data System (ADS)

    Heberling, T.; Ferguson, J. M.; Gisler, G. R.; Plesko, C. S.; Weaver, R.

    2016-12-01

    The possibility of kinetic-impact deflection of threatening near-earth asteroids will be tested for the first time in the proposed AIDA (Asteroid Impact Deflection Assessment) mission, involving two independent spacecraft, NASAs DART (Double Asteroid Redirection Test) and ESAs AIM (Asteroid Impact Mission). The impact of the DART spacecraft onto the secondary of the binary asteroid 65803 Didymos, at a speed of 5 to 7 km/s, is expected to alter the mutual orbit by an observable amount. The velocity imparted to the secondary depends on the geometry and dynamics of the impact, and especially on the momentum enhancement factor, conventionally called beta. We use the Los Alamos hydrocodes Rage and Pagosa to estimate beta in laboratory-scale benchmark experiments and in the large-scale asteroid deflection test. Simulations are performed in two- and three-dimensions, using a variety of equations of state and strength models for both the lab-scale and large-scale cases. This work is being performed as part of a systematic benchmarking study for the AIDA mission that includes other hydrocodes.

  5. Impact Testing on Reinforced Carbon-Carbon Flat Panels with Ice Projectiles for the Space Shuttle Return to Flight Program

    NASA Technical Reports Server (NTRS)

    Melis, Matthew E.; Revilock, Duane M.; Pereira, Michael J.; Lyle, Karen H.

    2009-01-01

    Following the tragedy of the Orbiter Columbia (STS-107) on February 1, 2003, a major effort commenced to develop a better understanding of debris impacts and their effect on the space shuttle subsystems. An initiative to develop and validate physics-based computer models to predict damage from such impacts was a fundamental component of this effort. To develop the models it was necessary to physically characterize reinforced carbon-carbon (RCC) along with ice and foam debris materials, which could shed on ascent and impact the orbiter RCC leading edges. The validated models enabled the launch system community to use the impact analysis software LS-DYNA (Livermore Software Technology Corp.) to predict damage by potential and actual impact events on the orbiter leading edge and nose cap thermal protection systems. Validation of the material models was done through a three-level approach: Level 1--fundamental tests to obtain independent static and dynamic constitutive model properties of materials of interest, Level 2--subcomponent impact tests to provide highly controlled impact test data for the correlation and validation of the models, and Level 3--full-scale orbiter leading-edge impact tests to establish the final level of confidence for the analysis methodology. This report discusses the Level 2 test program conducted in the NASA Glenn Research Center (GRC) Ballistic Impact Laboratory with ice projectile impact tests on flat RCC panels, and presents the data observed. The Level 2 testing consisted of 54 impact tests in the NASA GRC Ballistic Impact Laboratory on 6- by 6-in. and 6- by 12-in. flat plates of RCC and evaluated three types of debris projectiles: Single-crystal, polycrystal, and "soft" ice. These impact tests helped determine the level of damage generated in the RCC flat plates by each projectile and validated the use of the ice and RCC models for use in LS-DYNA.

  6. Impact Testing on Reinforced Carbon-Carbon Flat Panels With BX-265 and PDL-1034 External Tank Foam for the Space Shuttle Return to Flight Program

    NASA Technical Reports Server (NTRS)

    Melis, Matthew E.; Revilock, Duane M.; Pereira, Michael J.; Lyle, Karen H.

    2009-01-01

    Following the tragedy of the Orbiter Columbia (STS-107) on February 1, 2003, a major effort commenced to develop a better understanding of debris impacts and their effect on the space shuttle subsystems. An initiative to develop and validate physics-based computer models to predict damage from such impacts was a fundamental component of this effort. To develop the models it was necessary to physically characterize reinforced carbon-carbon (RCC) along with ice and foam debris materials, which could shed on ascent and impact the orbiter RCC leading edges. The validated models enabled the launch system community to use the impact analysis software LS-DYNA (Livermore Software Technology Corp.) to predict damage by potential and actual impact events on the orbiter leading edge and nose cap thermal protection systems. Validation of the material models was done through a three-level approach: Level 1-fundamental tests to obtain independent static and dynamic constitutive model properties of materials of interest, Level 2-subcomponent impact tests to provide highly controlled impact test data for the correlation and validation of the models, and Level 3-full-scale orbiter leading-edge impact tests to establish the final level of confidence for the analysis methodology. This report discusses the Level 2 test program conducted in the NASA Glenn Research Center (GRC) Ballistic Impact Laboratory with external tank foam impact tests on flat RCC panels, and presents the data observed. The Level 2 testing consisted of 54 impact tests in the NASA GRC Ballistic Impact Laboratory on 6- by 6-in. and 6- by 12-in. flat plates of RCC and evaluated two types of debris projectiles: BX-265 and PDL-1034 external tank foam. These impact tests helped determine the level of damage generated in the RCC flat plates by each projectile and validated the use of the foam and RCC models for use in LS-DYNA.

  7. Integrating Telemedicine for Disaster Response: Testing the Emergency Telemedicine Technology Acceptance Model

    ERIC Educational Resources Information Center

    Davis, Theresa M.

    2013-01-01

    Background: There is little evidence that technology acceptance is well understood in healthcare. The hospital environment is complex and dynamic creating a challenge when new technology is introduced because it impacts current processes and workflows which can significantly affect patient care delivery and outcomes. This study tested the effect…

  8. Test and Analysis of Foam Impacting a 6x6 Inch RCC Flat Panel

    NASA Technical Reports Server (NTRS)

    Lessard, Wendy B.

    2006-01-01

    This report presents the testing and analyses of a foam projectile impacting onto thirteen 6x6 inch flat panels at a 90 degrees incidence angle. The panels tested in this investigation were fabricated of Reinforced-Carbon-Carbon material and were used to aid in the validation of an existing material model, MAT58. The computational analyses were performed using LS-DYNA, which is a physics-based, nonlinear, transient, finite element code used for analyzing material responses subjected to high impact forces and other dynamic conditions. The test results were used to validate LS-DYNA predictions and to determine the threshold of damage generated by the MAT58 cumulative damage material model. The threshold of damage parameter represents any external or internal visible RCC damage detectable by nondestructive evaluation techniques.

  9. Vibration testing of the JE-M-604-4-IUE rocket motor (Thiokol P/N E 28639-03)

    NASA Technical Reports Server (NTRS)

    Alt, R. E.; Tosh, J. T.

    1976-01-01

    The NASA International Ultraviolet Explorer (IUE) rocket motor (TE-M-604-4), a solid fuel, spherical rocket motor, was vibration tested in the Impact, Vibration, and Acceleration (IVA) Test Unit of the von Karman Gas Dynamics Facility (VKF). The objective of the test program was to subject the motor to qualification levels of sinusoidal and random vibration prior to the altitude firing of the motor in the Propulsion Development Test Cell (T-3), Engine Test Facility (ETF), AEDC. The vibration testing consisted of a low level sine survey from 5 to 2,000 Hz, followed by a qualification level sine sweep and qualification level random vibration. A second low level sine survey followed the qualification level testing. This sequence of testing was accomplished in each of three orthogonal axes. No motor problems were observed due to the imposition of these dynamic environments.

  10. Dynamic strength, particle deformation, and fracture within fluids with impact-activated microstructures

    NASA Astrophysics Data System (ADS)

    Petel, Oren E.; Ouellet, Simon

    2017-07-01

    The evolution of material strength within several dense particle suspensions impacted by a projectile is investigated and shown to be strongly dependent on the particle material in suspension. For stronger particles, such as silicon carbide, the shear strength of the fluid is shown to increase with the ballistic impact strength. For weaker particles, such as silica, the shear strength of the suspension is found to be independent of impact strength in this dynamic range of tests. A soft-capture technique is employed to collect ejecta samples of a silica-based shear thickening fluid, following a ballistic impact and penetration event. Ejecta samples that were collected from impacts at three different velocities are observed and compared to the benchmark particles using a Scanning Electron Microscope. The images show evidence of fractured and deformed silica particles recovered among the nominally 1 μm diameter monodisperse spheres. There is also evidence of particle fragments that appear to be the result of interparticle grinding. The trends observed in the shear strength estimates are interpreted with regards to the particle damage seen in the ejecta recovery experiments to develop a concept of the impact response of these fluids. The results suggest that particle slip through deformation is likely the dominant factor in limiting the transient impact strength of these fluids. Particularly, particle strength is important in the formation and collapse of dynamically jammed particle contact networks in the penetration process.

  11. The Dynamic Behaviour of Ballistic Gelatin

    NASA Astrophysics Data System (ADS)

    Shepherd, C. J.; Appleby-Thomas, G. J.; Hazell, P. J.; Allsop, D. F.

    2009-12-01

    In order to characterise the effect of projectiles it is necessary to understand the mechanism of both penetration and resultant wounding in biological systems. Porcine gelatin is commonly used as a tissue simulant in ballistic tests because it elastically deforms in a similar manner to muscular tissue. Bullet impacts typically occur in the 350-850 m/s range; thus knowledge of the high strain-rate dynamic properties of both the projectile and target materials are desirable to simulate wounds. Unlike projectile materials, relatively little data exists on the dynamic response of flesh simulants. The Hugoniot for a 20 wt.% porcine gelatin, which exhibits a ballistic response similar to that of human tissues at room temperature, was determined using the plate-impact technique at impact velocities of 75-860 m/s. This resulted in impact stresses around three times higher than investigated elsewhere. In US-uP space the Hugoniot had the form US = 1.57+1.77 uP, while in P-uP space it was essentially hydrodynamic. In both cases this was in good agreement with the limited available data from the literature.

  12. Effects of age and loading rate on equine cortical bone failure.

    PubMed

    Kulin, Robb M; Jiang, Fengchun; Vecchio, Kenneth S

    2011-01-01

    Although clinical bone fractures occur predominantly under impact loading (as occurs during sporting accidents, falls, high-speed impacts or other catastrophic events), experimentally validated studies on the dynamic fracture behavior of bone, at the loading rates associated with such events, remain limited. In this study, a series of tests were performed on femoral specimens obtained post-mortem from equine donors ranging in age from 6 months to 28 years. Fracture toughness and compressive tests were performed under both quasi-static and dynamic loading conditions in order to determine the effects of loading rate and age on the mechanical behavior of the cortical bone. Fracture toughness experiments were performed using a four-point bending geometry on single and double-notch specimens in order to measure fracture toughness, as well as observe differences in crack initiation between dynamic and quasi-static experiments. Compressive properties were measured on bone loaded parallel and transverse to the osteonal growth direction. Fracture propagation was then analyzed using scanning electron and scanning confocal microscopy to observe the effects of microstructural toughening mechanisms at different strain rates. Specimens from each horse were also analyzed for dry, wet and mineral densities, as well as weight percent mineral, in order to investigate possible influences of composition on mechanical behavior. Results indicate that bone has a higher compressive strength, but lower fracture toughness when tested dynamically as compared to quasi-static experiments. Fracture toughness also tends to decrease with age when measured quasi-statically, but shows little change with age under dynamic loading conditions, where brittle "cleavage-like" fracture behavior dominates. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Reinforced Carbon-Carbon Subcomponent Flat Plate Impact Testing for Space Shuttle Orbiter Return to Flight

    NASA Technical Reports Server (NTRS)

    Melis, Matthew E.; Brand, Jeremy H.; Pereira, J. Michael; Revilock, Duane M.

    2007-01-01

    Following the tragedy of the Space Shuttle Columbia on February 1, 2003, a major effort commenced to develop a better understanding of debris impacts and their effect on the Space Shuttle subsystems. An initiative to develop and validate physics-based computer models to predict damage from such impacts was a fundamental component of this effort. To develop the models it was necessary to physically characterize Reinforced Carbon-Carbon (RCC) and various debris materials which could potentially shed on ascent and impact the Orbiter RCC leading edges. The validated models enabled the launch system community to use the impact analysis software LS DYNA to predict damage by potential and actual impact events on the Orbiter leading edge and nose cap thermal protection systems. Validation of the material models was done through a three-level approach: fundamental tests to obtain independent static and dynamic material model properties of materials of interest, sub-component impact tests to provide highly controlled impact test data for the correlation and validation of the models, and full-scale impact tests to establish the final level of confidence for the analysis methodology. This paper discusses the second level subcomponent test program in detail and its application to the LS DYNA model validation process. The level two testing consisted of over one hundred impact tests in the NASA Glenn Research Center Ballistic Impact Lab on 6 by 6 in. and 6 by 12 in. flat plates of RCC and evaluated three types of debris projectiles: BX 265 External Tank foam, ice, and PDL 1034 External Tank foam. These impact tests helped determine the level of damage generated in the RCC flat plates by each projectile. The information obtained from this testing validated the LS DYNA damage prediction models and provided a certain level of confidence to begin performing analysis for full-size RCC test articles for returning NASA to flight with STS 114 and beyond.

  14. The Effect of Temperature and Nanoclay on the Low Velocity and Ballistic Behavior of Woven Glass-Fiber Reinforced Composites

    NASA Astrophysics Data System (ADS)

    Patrin, Lauren

    The objective of this research was to study the effect of nanoclay and temperature on the behavior of woven glass-fabric reinforced epoxy composite under low velocity and ballistic impacts. The materials used in manufacturing the composite were S2 (6181) glass-fibers, epoxy resin (EPON 828), hardener (Epikure 3230), nanoclay and Heloxy 61 modifier. The nanoclay addition was 0%, 1%, 3% and 5% by weight, with respect to the resin. All specimens were manufactured at the City College facilities using vacuum infusion. Tensile tests were conducted to characterize the material and obtain the Young's modulus, ultimate stress, failure strain, Poisson's ratio, shear modulus and shear strength and their variation with nanoclay percentage and temperature. The tests were conducted at room temperature (21°C/70°F), -54°C (-65°F), -20°C (-4°F), 49°C (120°F) and 71°C (160°F). Next composite specimens with 0%, 1%, 3% and 5% nanoclay by weight, with respect to the resin, were subjected to low velocity impact at the previously specified temperatures to determine dynamic force, displacement and energy correlations. The extent of damage was studied using the ultrasound technique. Then ballistic tests were conducted on the nanoclay infused specimens at room temperature to obtain the ballistic limit (V50) and the damage behavior of the composite. The dynamic finite element analysis (FEA) software LS-DYNA was used to model and simulate the results of low velocity impact tests. Good agreement was obtained between experimental and numerical (FEA) results. Analytical analyses were undertaken to compare the results from the tensile experiments. The finite element analysis (FEA) allowed for further analytical comparison of the results. The FEA platform used was LS-DYNA due to its proficient dynamic and damage capabilities in composite materials. The FEA was used to model and simulate the low velocity impacts and compare the results to experiments.

  15. Influence of High Energy Electromagnetic Pulses on the Dynamics of the Seismic Process Around the Bishkek Test Area (Central Asia)

    NASA Astrophysics Data System (ADS)

    Matcharashvili, Teimuraz N.; Chelidze, Tamaz L.; Zhukova, Natalia N.

    2015-07-01

    Investigation of dynamical features of the seismic process as well as the possible influence of different natural and man-made impacts on it remains one of the main interdisciplinary research challenges. The question of external influences (forcings) acquires new importance in the light of known facts on possible essential changes, which occur in the behavior of complex systems due to different relatively weak external impacts. Seismic processes in the complicated tectonic system are not an exclusion from this general rule. In the present research we continued the investigation of dynamical features of seismic activity in Central Asia around the Bishkek (Kyrgyzstan) test area, where strong electromagnetic (EM) soundings were performed in the 1980s. The unexpected result of these experiments was that they revealed the impact of strong electromagnetic discharges on the microseismic activity of investigated area. We used an earthquake catalogue of this area to investigate dynamical features of seismic activity in periods before, during, and after the mentioned man-made EM forcings. Different methods of modern time series analysis have been used, such as wavelet transformation, Hilbert Huang transformation, detrended fluctuation analysis, and recurrence quantification analysis. Namely, inter-event (waiting) time intervals, inter-earthquake distances and magnitude sequences, as well as time series of the number of daily occurring earthquakes have been analyzed. We concluded that man-made high-energy EM irradiation essentially affects dynamics of the seismic process in the investigated area in its temporal and spatial domains; namely, the extent of order in earthquake time and space distribution increase. At the same time, EM influence on the energetic distribution is not clear from the present analysis. It was also shown that the influence of EM impulses on dynamical features of seismicity differs in different areas of the examined territory around the test site. Clear changes have been indicated only in areas which, according to previous researches, have been characterized by anomalous increase of average rates of strain release and thus can be regarded as close to the critical state.

  16. 16 CFR 1203.1 - Scope, general requirements, and effective date.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... vision, positional stability, dynamic strength of retention system, and impact-attenuation tests described in §§ 1203.7 through 1203.17. (4) Units. The values stated in International System of Units (“SI...

  17. Structural Dynamics of Electronic Systems

    NASA Astrophysics Data System (ADS)

    Suhir, E.

    2013-03-01

    The published work on analytical ("mathematical") and computer-aided, primarily finite-element-analysis (FEA) based, predictive modeling of the dynamic response of electronic systems to shocks and vibrations is reviewed. While understanding the physics of and the ability to predict the response of an electronic structure to dynamic loading has been always of significant importance in military, avionic, aeronautic, automotive and maritime electronics, during the last decade this problem has become especially important also in commercial, and, particularly, in portable electronics in connection with accelerated testing of various surface mount technology (SMT) systems on the board level. The emphasis of the review is on the nonlinear shock-excited vibrations of flexible printed circuit boards (PCBs) experiencing shock loading applied to their support contours during drop tests. At the end of the review we provide, as a suitable and useful illustration, the exact solution to a highly nonlinear problem of the dynamic response of a "flexible-and-heavy" PCB to an impact load applied to its support contour during drop testing.

  18. Development of a Continuum Damage Mechanics Material Model of a Graphite-Kevlar(Registered Trademark) Hybrid Fabric for Simulating the Impact Response of Energy Absorbing Kevlar(Registered Trademark) Hybrid Fabric for Simulating the Impact Response of Energy Absorbing

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Fasanella, Edwin L.; Littell, Justin D.

    2017-01-01

    This paper describes the development of input properties for a continuum damage mechanics based material model, Mat 58, within LS-DYNA(Registered Trademark) to simulate the response of a graphite-Kevlar(Registered Trademark) hybrid plain weave fabric. A limited set of material characterization tests were performed on the hybrid graphite-Kevlar(Registered Trademark) fabric. Simple finite element models were executed in LS-DYNA(Registered Trademark) to simulate the material characterization tests and to verify the Mat 58 material model. Once verified, the Mat 58 model was used in finite element models of two composite energy absorbers: a conical-shaped design, designated the "conusoid," fabricated of four layers of hybrid graphite-Kevlar(Registered Trademark) fabric; and, a sinusoidal-shaped foam sandwich design, designated the "sinusoid," fabricated of the same hybrid fabric face sheets with a foam core. Dynamic crush tests were performed on components of the two energy absorbers, which were designed to limit average vertical accelerations to 25- to 40-g, to minimize peak crush loads, and to generate relatively long crush stroke values under dynamic loading conditions. Finite element models of the two energy absorbers utilized the Mat 58 model that had been verified through material characterization testing. Excellent predictions of the dynamic crushing response were obtained.

  19. Dynamic tensile fracture of mortar at ultra-high strain-rates

    NASA Astrophysics Data System (ADS)

    Erzar, B.; Buzaud, E.; Chanal, P.-Y.

    2013-12-01

    During the lifetime of a structure, concrete and mortar may be exposed to highly dynamic loadings, such as impact or explosion. The dynamic fracture at high loading rates needs to be well understood to allow an accurate modeling of this kind of event. In this work, a pulsed-power generator has been employed to conduct spalling tests on mortar samples at strain-rates ranging from 2 × 104 to 4 × 104 s-1. The ramp loading allowed identifying the strain-rate anytime during the test. A power law has been proposed to fit properly the rate-sensitivity of tensile strength of this cementitious material over a wide range of strain-rate. Moreover, a specimen has been recovered damaged but unbroken. Micro-computed tomography has been employed to study the characteristics of the damage pattern provoked by the dynamic tensile loading.

  20. Landscape-scale dynamics of aspen in Rocky Mountain National Park, Colorado

    Treesearch

    Margot W. Kaye; Kuni Suzuki; Dan Binkley; Thomas J. Stohlgren

    2001-01-01

    Past studies of quaking aspen in Rocky Mountain National Park suggested that the aspen population is declining due to intensive browsing by elk (Cervus elaphus). These studies were conducted in the elk winter range, an area of intensive elk impact. The elk summer range experiences less intense grazing pressure. We tested the hypothesis that impacts of elk would be...

  1. Review of Aircraft Crash Structural Response Research.

    DTIC Science & Technology

    1982-08-01

    structures consisting of conventional built-up metallic construction and those consisting of advanced composite materials were of interest. The latter...increasing importance. Some recent theoretical and experimental studies of the behavior of composite - material structures subjected to severe static...dynamic, and/or impact conditions are noted. Such topics as crashworthiness testing ot composite fuselage structures, the impact resistance of graphite and

  2. Characterization of Impact Initiation of Aluminum-Based Intermetallic-Forming Reactive Materials

    DTIC Science & Technology

    2011-12-01

    compressed intermetallic-forming aluminum-based reactive materials upon impact initiation, consisting of equi-volumetric tantalum-aluminum, tungsten-aluminum...18 2.3.4 Dynamic Energy Release Characterization using Pig Test . . . . . . 21 2.3.5 Shock Compression of Reactive Powder Mixtures...is to evaluate the reaction initiation characteristics of quasi-statically compressed intermetallic-forming aluminum-based reactive materials upon

  3. 14 CFR 23.562 - Emergency landing dynamic conditions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... impact. (4) The safety belt must remain on the ATD's pelvis during the impact. (5) The results of the... factor for acrobatic category airplanes need not exceed 5.0g. (2) The seat/restraint system test required... to 61 knots: gp=19.0 (VS0/61)2 or gp=15.0 (VS0/61)2 (B) The peak deceleration need not exceed the...

  4. Study of a Steel’s Energy Absorption System for Heavy Quadricycles and Nonlinear Explicit Dynamic Analysis of its Behavior under Impact by FEM

    PubMed Central

    López Campos, José Ángel; Segade Robleda, Abraham; Vilán Vilán, José Antonio; García Nieto, Paulino José; Blanco Cordero, Javier

    2015-01-01

    Current knowledge of the behavior of heavy quadricycles under impact is still very poor. One of the most significant causes is the lack of energy absorption in the vehicle frame or its steel chassis structure. For this reason, special steels (with yield stresses equal to or greater than 350 MPa) are commonly used in the automotive industry due to their great strain hardening properties along the plastic zone, which allows good energy absorption under impact. This paper presents a proposal for a steel quadricycle energy absorption system which meets the percentages of energy absorption for conventional vehicles systems. This proposal is validated by explicit dynamics simulation, which will define the whole problem mathematically and verify behavior under impact at speeds of 40 km/h and 56 km/h using the finite element method (FEM). One of the main consequences of this study is that this FEM–based methodology can tackle high nonlinear problems like this one with success, avoiding the need to carry out experimental tests, with consequent economical savings since experimental tests are very expensive. Finally, the conclusions from this innovative research work are given. PMID:28793607

  5. Study of a Steel's Energy Absorption System for Heavy Quadricycles and Nonlinear Explicit Dynamic Analysis of its Behavior under Impact by FEM.

    PubMed

    López Campos, José Ángel; Segade Robleda, Abraham; Vilán Vilán, José Antonio; García Nieto, Paulino José; Blanco Cordero, Javier

    2015-10-10

    Current knowledge of the behavior of heavy quadricycles under impact is still very poor. One of the most significant causes is the lack of energy absorption in the vehicle frame or its steel chassis structure. For this reason, special steels (with yield stresses equal to or greater than 350 MPa) are commonly used in the automotive industry due to their great strain hardening properties along the plastic zone, which allows good energy absorption under impact. This paper presents a proposal for a steel quadricycle energy absorption system which meets the percentages of energy absorption for conventional vehicles systems. This proposal is validated by explicit dynamics simulation, which will define the whole problem mathematically and verify behavior under impact at speeds of 40 km/h and 56 km/h using the finite element method (FEM). One of the main consequences of this study is that this FEM-based methodology can tackle high nonlinear problems like this one with success, avoiding the need to carry out experimental tests, with consequent economical savings since experimental tests are very expensive. Finally, the conclusions from this innovative research work are given.

  6. Experimental study on dynamic mechanical behaviors of polycarbonate

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Gao, Yubo; Ye, Nan; Huang, Wei; Li, Dacheng

    2017-01-01

    Polycarbonate (PC) is a widely used engineering material in aerospace field, since it has excellent mechanical and optical property. In present study, both compressive and tensile tests of PC were conducted at high strain rates by using a split Hopkinson pressure bar. The high-speed camera and 2D Digital Image Correlation method (DIC) were used to analyze the dynamic deformation behavior of PC. Meanwhile, the plate impact experiment was carried out to measure the equation of state of PC in a single-stage gas gun, which consists of asymmetric impact technology, manganin gauges, PVDF, electromagnetic particle velocity gauges. The results indicate that the yield stress of PC increased with the strain rates in both dynamic compression and tension tests. The same phenomenon was similar to elasticity modulus at different strain rate. A constitutive model was used to describe the mechanical behaviors of PC accurately in different strain rates by contrast with the results of 2D-DIC. At last, The D-u Hugoniot curve of polycarbonate in high pressure was fitted by the least square method.

  7. Initial Development of a Quadcopter Simulation Environment for Auralization

    NASA Technical Reports Server (NTRS)

    Christian, Andrew; Lawrence, Joseph

    2016-01-01

    This paper describes a recently created computer simulation of quadcopter flight dynamics for the NASA DELIVER project. The goal of this effort is to produce a simulation that includes a number of physical effects that are not usually found in other dynamics simulations (e.g., those used for flight controller development). These effects will be shown to have a significant impact on the fidelity of auralizations - entirely synthetic time-domain predictions of sound - based on this simulation when compared to a recording. High-fidelity auralizations are an important precursor to human subject tests that seek to understand the impact of vehicle configurations on noise and annoyance.

  8. Impact Properties of Metal Fan Containment Materials Being Evaluated for the High-Speed Civil Transport (HSCT)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Under the Enabling Propulsion Materials (EPM) program - a partnership between NASA, Pratt & Whitney, and GE Aircraft Engines - the Materials and Structures Divisions of the NASA Lewis Research Center are involved in developing a fan-containment system for the High-Speed Civil Transport (HSCT). The program calls for a baseline system to be designed by the end of 1995, with subsequent testing of innovative concepts. Five metal candidate materials are currently being evaluated for the baseline system in the Structures Division's Ballistic Impact Facility. This facility was developed to provide the EPM program with cost-efficient and timely impact test data. At the facility, material specimens are impacted at speeds up to 350 m/sec by projectiles of various sizes and shapes to assess the specimens' ability to absorb energy and withstand impact. The tests can be conducted at either room or elevated temperatures. Posttest metallographic analysis is conducted to improve understanding of the failure modes. A dynamic finite element program is used to simulate the events and both guide the testing as well as aid in designing the fan-containment system.

  9. Crash tests of four identical high-wing single-engine airplanes

    NASA Technical Reports Server (NTRS)

    Vaughan, V. L., Jr.; Hayduk, R. J.

    1980-01-01

    Four identical four place, high wing, single engine airplane specimens with nominal masses of 1043 kg were crash tested at the Langley Impact Dynamics Research Facility under controlled free flight conditions. These tests were conducted with nominal velocities of 25 m/sec along the flight path angles, ground contact pitch angles, and roll angles. Three of the airplane specimens were crashed on a concrete surface; one was crashed on soil. Crash tests revealed that on a hard landing, the main landing gear absorbed about twice the energy for which the gear was designed but sprang back, tending to tip the airplane up to its nose. On concrete surfaces, the airplane impacted and remained in the impact attitude. On soil, the airplane flipped over on its back. The crash impact on the nose of the airplane, whether on soil or concrete, caused massive structural crushing of the forward fuselage. The liveable volume was maintained in both the hard landing and the nose down specimens but was not maintained in the roll impact and nose down on soil specimens.

  10. High-strain rate tensile characterization of graphite platelet reinforced vinyl ester based nanocomposites using split-Hopkinson pressure bar

    NASA Astrophysics Data System (ADS)

    Pramanik, Brahmananda

    The dynamic response of exfoliated graphite nanoplatelet (xGnP) reinforced and carboxyl terminated butadiene nitrile (CTBN) toughened vinyl ester based nanocomposites are characterized under both dynamic tensile and compressive loading. Dynamic direct tensile tests are performed applying the reverse impact Split Hopkinson Pressure Bar (SHPB) technique. The specimen geometry for tensile test is parametrically optimized by Finite Element Analysis (FEA) using ANSYS Mechanical APDLRTM. Uniform stress distribution within the specimen gage length has been verified using high-speed digital photography. The on-specimen strain gage installation is substituted by a non-contact Laser Occlusion Expansion Gage (LOEG) technique for infinitesimal dynamic tensile strain measurements. Due to very low transmitted pulse signal, an alternative approach based on incident pulse is applied for obtaining the stress-time history. Indirect tensile tests are also performed combining the conventional SHPB technique with Brazilian disk test method for evaluating cylindrical disk specimens. The cylindrical disk specimen is held snugly in between two concave end fixtures attached to the incident and transmission bars. Indirect tensile stress is estimated from the SHPB pulses, and diametrical transverse tensile strain is measured using LOEG. Failure diagnosis using high-speed digital photography validates the viability of utilizing this indirect test method for characterizing the tensile properties of the candidate vinyl ester based nanocomposite system. Also, quasi-static indirect tensile response agrees with previous investigations conducted using the traditional dog-bone specimen in quasi-static direct tensile tests. Investigation of both quasi-static and dynamic indirect tensile test responses show the strain rate effect on the tensile strength and energy absorbing capacity of the candidate materials. Finally, the conventional compressive SHPB tests are performed. It is observed that both strength and energy absorbing capacity of these candidate material systems are distinctively less under dynamic tension than under compressive loading. Nano-reinforcement appears to marginally improve these properties for pure vinyl ester under dynamic tension, although it is found to be detrimental under dynamic compression.

  11. Dynamic Constitutive/Failure Models

    DTIC Science & Technology

    1988-12-01

    compressive failure--microfracture versus microplasticity . Actual traces observed in plate impact tests on ceramic targets are hardly ever as simple as the...observa- tions for microfracture and microplasticity . Unfortunately, each team of investigators has used slightly different experimental techniques and

  12. Dynamic Mechanical Properties and Fracture Surface Morphologies of Core-Shell Rubber (CSR) Toughened Epoxy at Liquid Nitrogen (Ln2) Temperatures

    NASA Technical Reports Server (NTRS)

    Wang, J.; Magee, D.; Schneider, J. A.

    2009-01-01

    The dynamic mechanical properties and fracture surface morphologies were evaluated for a commercial epoxy resin toughened with two types of core-shell rubber (CSR) toughening agents (Kane Ace(Registered TradeMark) MX130 and MX960). The impact resistance (R) was evaluated by the resulting breaking energy measured in Charpy impact tests conducted on an instrumented drop tower. The resulting fracture surface morphologies were examined using Scanning Electron Microscopy (SEM). Fractographic observations of the CSR toughened epoxy tested at ambient temperature, showed a fracture as characterized by slender dendrite textures with large voids. The increasing number of dendrites and decreasing size of scale-like texture with more CSR particles corresponded with increased R. As the temperature decreased to Liquid Nitrogen (LN 2), the fracture surfaces showed a fracture characterized by a rough, torn texture containing many river markings and deep furrows.

  13. A Human-in-the Loop Exploration of the Dynamic Airspace Configuration Concept

    NASA Technical Reports Server (NTRS)

    Homola, Jeffrey; Lee, Paul U.; Prevot, Thomas; Lee, Hwasoo; Kessell, Angela; Brasil, Connie; Smith, Nancy

    2010-01-01

    An exploratory human-in-the-loop study was conducted to better understand the impact of Dynamic Airspace Configuration (DAC) on air traffic controllers. To do so, a range of three progressively more aggressive algorithmic approaches to sectorizations were chosen. Sectorizations from these algorithms were used to test and quantify the range of impact on the controller and traffic. Results show that traffic count was more equitably distributed between the four test sectors and duration of counts over MAP were progressively lower as the magnitude of boundary change increased. However, taskload and workload were also shown to increase with the increase in aggressiveness and acceptability of the boundary changes decreased. Overall, simulated operations of the DAC concept did not appear to compromise safety. Feedback from the participants highlighted the importance of limiting some aspects of boundary changes such as amount of volume gained or lost and the extent of change relative to the initial airspace design.

  14. Constrained Laboratory vs. Unconstrained Steering-Induced Rollover Crash Tests.

    PubMed

    Kerrigan, Jason R; Toczyski, Jacek; Roberts, Carolyn; Zhang, Qi; Clauser, Mark

    2015-01-01

    The goal of this study was to evaluate how well an in-laboratory rollover crash test methodology that constrains vehicle motion can reproduce the dynamics of unconstrained full-scale steering-induced rollover crash tests in sand. Data from previously-published unconstrained steering-induced rollover crash tests using a full-size pickup and mid-sized sedan were analyzed to determine vehicle-to-ground impact conditions and kinematic response of the vehicles throughout the tests. Then, a pair of replicate vehicles were prepared to match the inertial properties of the steering-induced test vehicles and configured to record dynamic roof structure deformations and kinematic response. Both vehicles experienced greater increases in roll-axis angular velocities in the unconstrained tests than in the constrained tests; however, the increases that occurred during the trailing side roof interaction were nearly identical between tests for both vehicles. Both vehicles experienced linear accelerations in the constrained tests that were similar to those in the unconstrained tests, but the pickup, in particular, had accelerations that were matched in magnitude, timing, and duration very closely between the two test types. Deformations in the truck test were higher in the constrained than the unconstrained, and deformations in the sedan were greater in the unconstrained than the constrained as a result of constraints of the test fixture, and differences in impact velocity for the trailing side. The results of the current study suggest that in-laboratory rollover tests can be used to simulate the injury-causing portions of unconstrained rollover crashes. To date, such a demonstration has not yet been published in the open literature. This study did, however, show that road surface can affect vehicle response in a way that may not be able to be mimicked in the laboratory. Lastly, this study showed that configuring the in-laboratory tests to match the leading-side touchdown conditions could result in differences in the trailing side impact conditions.

  15. The Shock and Vibration Bulletin. Part 1. Summaries of Presented Papers

    DTIC Science & Technology

    1974-10-01

    15 S. Smith, R. C. Stroud, G. A. Hamma, W. L. Hallaver, R. C. Yee MODALAB-A NEW SYSTEM FOR STRUCTURAL DYNAMIC TESTING, II, ANALYSIS ...PV -A ........................................................... 33 A. Burkhard and R. Scott ANALYSIS AND FLIGHT TEST CORRELATION OF VIBROACOUSTIC...METHODS FOR THE ANALYSIS OF ELASTICALLY SUPPORTED ISOLATION SYSTEMS ............................................. 41 G. L. Fox IMPACT ON COMPLEX

  16. Mechanical performance of hemp fiber polypropylene composites at different operating temperatures

    Treesearch

    Mehdi Tajvidi; Nazanin Motie; Ghonche Rassam; Robert H. Falk; Colin Felton

    2010-01-01

    In order to quantify the effect of temperature on the mechanical properties of hemp fiber polypropylene composites, formulations containing 25% and 40% (by weight) hemp fiber were produced and tested at three representative temperatures of 256, 296, and 336 K. Flexural, tensile, and impact tests, as well as dynamic mechanical analysis, were performed and the reduction...

  17. Effect of Footwear on Dynamic Stability during Single-leg Jump Landings.

    PubMed

    Bowser, Bradley J; Rose, William C; McGrath, Robert; Salerno, Jilian; Wallace, Joshua; Davis, Irene S

    2017-06-01

    Barefoot and minimal footwear running has led to greater interest in the biomechanical effects of different types of footwear. The effect of running footwear on dynamic stability is not well understood. The purpose of this study was to compare dynamic stability and impact loading across 3 footwear conditions; barefoot, minimal footwear and standard running shoes. 25 injury free runners (21 male, 4 female) completed 5 single-leg jump landings in each footwear condition. Dynamic stability was assessed using the dynamic postural stability index and its directional components (mediolateral, anteroposterior, vertical). Peak vertical ground reaction force and vertical loadrates were also compared across footwear conditions. Dynamic stability was dependent on footwear type for all stability indices (ANOVA, p<0.05). Post-hoc tests showed dynamic stability was greater when barefoot than in running shoes for each stability index (p<0.02) and greater than minimal footwear for the anteroposterior stability index (p<0.01). Peak vertical force and average loadrates were both dependent on footwear (p≤0.05). Dynamic stability, peak vertical force, and average loadrates during single-leg jump landings appear to be affected by footwear type. The results suggest greater dynamic stability and lower impact loading when landing barefoot or in minimal footwear. © Georg Thieme Verlag KG Stuttgart · New York.

  18. Impact and residual fatigue behavior of ARALL and AS6/5245 composite materials

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.

    1986-01-01

    Aramide fiber reinforced aluminum laminates (ARALL) represent a cross between resin matrix composites and metals. The purpose of this study was to evaluate the impact sensitivity of this concept. Two types of ARALL (7075 aluminum prestrained and 2024 aluminum not prestrained) were tested through static indentation and the results compared to sheet 2024-T3 and 7075-T6 aluminum alloys. A state-of-the-art composite (AS6/5245) was also tested and compared to the ARALL. Further, the two types of ARALL material and the composite were dynamically impacted at two energy levels and fatigue tested to determine residual fatigue strength. Both forms of the ARALL material had worse impact resistance than monolithic sheet aluminum. The ARALL material made with 2024-T3 aluminum had better impact resistance than did the laminates made with 7075-T6 aluminum. The ARALL materials are at least equal to the composite material in impact damage resistance and are better for impact detection. The composite material has higher residual fatigue strength after impact than the ARALL material and is 25 percent lighter. The prestraining of the ARALL greatly reduces the fatigue growth of impact damage.

  19. Simulated combined abnormal environment fire calculations for aviation impacts.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Alexander L.

    2010-08-01

    Aircraft impacts at flight speeds are relevant environments for aircraft safety studies. This type of environment pertains to normal environments such as wildlife impacts and rough landings, but also the abnormal environment that has more recently been evidenced in cases such as the Pentagon and World Trade Center events of September 11, 2001, and the FBI building impact in Austin. For more severe impacts, the environment is combined because it involves not just the structural mechanics, but also the release of the fuel and the subsequent fire. Impacts normally last on the order of milliseconds to seconds, whereas the firemore » dynamics may last for minutes to hours, or longer. This presents a serious challenge for physical models that employ discrete time stepping to model the dynamics with accuracy. Another challenge is that the capabilities to model the fire and structural impact are seldom found in a common simulation tool. Sandia National Labs maintains two codes under a common architecture that have been used to model the dynamics of aircraft impact and fire scenarios. Only recently have these codes been coupled directly to provide a fire prediction that is better informed on the basis of a detailed structural calculation. To enable this technology, several facilitating models are necessary, as is a methodology for determining and executing the transfer of information from the structural code to the fire code. A methodology has been developed and implemented. Previous test programs at the Sandia National Labs sled track provide unique data for the dynamic response of an aluminum tank of liquid water impacting a barricade at flight speeds. These data are used to validate the modeling effort, and suggest reasonable accuracy for the dispersion of a non-combustible fluid in an impact environment. The capability is also demonstrated with a notional impact of a fuel-filled container at flight speed. Both of these scenarios are used to evaluate numeric approximations, and help provide an understanding of the quantitative accuracy of the modeling methods.« less

  20. Analytical Simulations of Energy-Absorbing Impact Spheres for a Mars Sample Return Earth Entry Vehicle

    NASA Technical Reports Server (NTRS)

    Billings, Marcus Dwight; Fasanella, Edwin L. (Technical Monitor)

    2002-01-01

    Nonlinear dynamic finite element simulations were performed to aid in the design of an energy-absorbing impact sphere for a passive Earth Entry Vehicle (EEV) that is a possible architecture for the Mars Sample Return (MSR) mission. The MSR EEV concept uses an entry capsule and energy-absorbing impact sphere designed to contain and limit the acceleration of collected samples during Earth impact without a parachute. The spherical shaped impact sphere is composed of solid hexagonal and pentagonal foam-filled cells with hybrid composite, graphite-epoxy/Kevlar cell walls. Collected Martian samples will fit inside a smaller spherical sample container at the center of the EEV's cellular structure. Comparisons were made of analytical results obtained using MSC.Dytran with test results obtained from impact tests performed at NASA Langley Research Center for impact velocities from 30 to 40 m/s. Acceleration, velocity, and deformation results compared well with the test results. The correlated finite element model was then used for simulations of various off-nominal impact scenarios. Off-nominal simulations at an impact velocity of 40 m/s included a rotated cellular structure impact onto a flat surface, a cellular structure impact onto an angled surface, and a cellular structure impact onto the corner of a step.

  1. Satellite remote sensing assessment of climate impact on forest vegetation dynamics

    NASA Astrophysics Data System (ADS)

    Zoran, M.

    2009-04-01

    Forest vegetation phenology constitutes an efficient bio-indicator of impacts of climate and anthropogenic changes and a key parameter for understanding and modelling vegetation-climate interactions. Climate variability represents the ensemble of net radiation, precipitation, wind and temperature characteristic for a region in a certain time scale (e.g.monthly, seasonal annual). The temporal and/or spatial sensitivity of forest vegetation dynamics to climate variability is used to characterize the quantitative relationship between these two quantities in temporal and/or spatial scales. So, climate variability has a great impact on the forest vegetation dynamics. Satellite remote sensing is a very useful tool to assess the main phenological events based on tracking significant changes on temporal trajectories of Normalized Difference Vegetation Index (NDVIs), which requires NDVI time-series with good time resolution, over homogeneous area, cloud-free and not affected by atmospheric and geometric effects and variations in sensor characteristics (calibration, spectral responses). Spatio-temporal vegetation dynamics have been quantified as the total amount of vegetation (mean NDVI) and the seasonal difference (annual NDVI amplitude) by a time series analysis of NDVI satellite images with the Harmonic ANalysis of Time Series algorithm. A climate indicator (CI) was created from meteorological data (precipitation over net radiation). The relationships between the vegetation dynamics and the CI have been determined spatially and temporally. The driest test regions prove to be the most sensitive to climate impact. The spatial and temporal patterns of the mean NDVI are the same, while they are partially different for the seasonal difference. The aim of this paper was to quantify this impact over a forest ecosystem placed in the North-Eastern part of Bucharest town, Romania, with Normalized Difference Vegetation Index (NDVI) parameter extracted from IKONOS and LANDSAT TM and ETM satellite images and meteorological data over l995-2007 period. For investigated test area, considerable NDVI decline was observed between 1995 and 2007 due to the drought events during 2003 and 2007 years. Under stress conditions, it is evident that environmental factors such as soil type, parent material, and topography are not correlated with NDVI dynamics. Specific aim of this paper was to assess, forecast, and mitigate the risks of climatic changes on forest systems and its biodiversity as well as on adjacent environment areas and to provide early warning strategies on the basis of spectral information derived from satellite data regarding atmospheric effects of forest biome degradation . The paper aims to describe observed trends and potential impacts based on scenarios from simulations with regional climate models and other downscaling procedures.

  2. JWST center of curvature test method and results

    NASA Astrophysics Data System (ADS)

    Saif, Babak; Chaney, David; Greenfield, Perry; Van Gorkom, Kyle; Brooks, Keira; Hack, Warren; Bluth, Marcel; Bluth, Josh; Sanders, James; Smith, Koby; Carey, Larkin; Chaung, Sze; Keski-Kuha, Ritva; Feinberg, Lee; Tournois, Severine; Smith, W. Scott; Kradinov, Vladimir

    2017-09-01

    The James Webb Space Telescope (JWST) recently saw the completion of the assembly process for the Optical Telescope Element and Integrated Science Instrument Module (OTIS). This integration effort was performed at Goddard Space Flight Center (GSFC) in Greenbelt, Maryland. In conjunction with this assembly process a series of vibration and acoustic tests were performed. To help assure the telescope's primary mirror was not adversely impacted by this environmental testing an optical center of curvature (CoC) test was performed to measure changes in the mirror's optical performance. The primary is a 6.5 meter diameter mirror consisting of 18 individual hexagonal segments. Each segment is an off-axis asphere. There are a total of three prescriptions repeated six times each. As part of the CoC test each segment was individually measured using a high-speed interferometer (HSI) designed and built specifically for this test. This interferometer is capable of characterizing both static and dynamic characteristics of the mirrors. The latter capability was used, with the aid of a vibration stinger applying a low-level input force, to measure the dynamic characteristic changes of the PM backplane structure. This paper describes the CoC test setup, an innovative alignment method, and both static and dynamic test results.

  3. Experimental analysis and constitutive modelling of steel of A-IIIN strength class

    NASA Astrophysics Data System (ADS)

    Kruszka, Leopold; Janiszewski, Jacek

    2015-09-01

    Fundamentally important is the better understanding of behaviour of new building steels under impact loadings, including plastic deformations. Results of the experimental analysis in wide range of strain rates in compression at room temperature, as well as constitutive modelling for and B500SP structural steels of new A-IIIN Polish strength class, examined dynamically by split Hopkinson pressure bar technique at high strain rates, are presented in table and graphic forms. Dynamic mechanical characteristics of compressive strength for tested building structural steel are determined as well as dynamic mechanical properties of this material are compared with 18G2-b steel of A-II strength class, including effects of the shape of tested specimens, i.e. their slenderness. The paper focuses the attention on those experimental tests, their interpretation, and constitutive semi-empirical modelling of the behaviour of tested steels based on Johnson-Cook's model. Obtained results of analyses presented here are used for designing and numerical simulations of reinforced concrete protective structures.

  4. Dynamic Brazilian Test of Rock Under Intermediate Strain Rate: Pendulum Hammer-Driven SHPB Test and Numerical Simulation

    NASA Astrophysics Data System (ADS)

    Zhu, W. C.; Niu, L. L.; Li, S. H.; Xu, Z. H.

    2015-09-01

    The tensile strength of rock subjected to dynamic loading constitutes many engineering applications such as rock drilling and blasting. The dynamic Brazilian test of rock specimens was conducted with the split Hopkinson pressure bar (SHPB) driven by pendulum hammer, in order to determine the indirect tensile strength of rock under an intermediate strain rate ranging from 5.2 to 12.9 s-1, which is achieved when the incident bar is impacted by pendulum hammer with different velocities. The incident wave excited by pendulum hammer is triangular in shape, featuring a long rising time, and it is considered to be helpful for achieving a constant strain rate in the rock specimen. The dynamic indirect tensile strength of rock increases with strain rate. Then, the numerical simulator RFPA-Dynamics, a well-recognized software for simulating the rock failure under dynamic loading, is validated by reproducing the Brazilian test of rock when the incident stress wave retrieved at the incident bar is input as the boundary condition, and then it is employed to study the Brazilian test of rock under the higher strain rate. Based on the numerical simulation, the strain-rate dependency of tensile strength and failure pattern of the Brazilian disc specimen under the intermediate strain rate are numerically simulated, and the associated failure mechanism is clarified. It is deemed that the material heterogeneity should be a reason for the strain-rate dependency of rock.

  5. A Unified Theory of Impact Crises and Mass Extinctions: Quantitative Tests

    NASA Technical Reports Server (NTRS)

    Rampino, Michael R.; Haggerty, Bruce M.; Pagano, Thomas C.

    1997-01-01

    Several quantitative tests of a general hypothesis linking impacts of large asteroids and comets with mass extinctions of life are possible based on astronomical data, impact dynamics, and geological information. The waiting of large-body impacts on the Earth derive from the flux of Earth-crossing asteroids and comets, and the estimated size of impacts capable of causing large-scale environmental disasters, predict that impacts of objects greater than or equal to 5 km in diameter (greater than or equal to 10 (exp 7) Mt TNT equivalent) could be sufficient to explain the record of approximately 25 extinction pulses in the last 540 Myr, with the 5 recorded major mass extinctions related to impacts of the largest objects of greater than or equal to 10 km in diameter (greater than or equal to 10(exp 8) Mt Events). Smaller impacts (approximately 10 (exp 6) Mt), with significant regional environmental effects, could be responsible for the lesser boundaries in the geologic record.

  6. Brazilian Amazon Roads and Parks: Temporal & Spatial Deforestation Dynamics

    NASA Astrophysics Data System (ADS)

    Pfaff, A.; Robalino, J.

    2011-12-01

    Heterogeneous Forest Impacts of Transport Infrastructure: spatial frontier dynamics & impacts of Brazilian Amazon road changes Prior research on road impacts has almost completely ignored heterogeneity of impacts and as a result both empirically understated potential impact and missed policy potential. We note von Thunen's model suggests not only heterogeneity with distance from market but also specifically road impacts rising then falling with distance ('non-monoThunicity') Endogenous development and partial adjustment dynamics support this for the short run. Causal effects result from studying Brazilian Amazon deforestation (1976-87, 2000-04) using matching for short-run responses to lagged new roads changes (1968-75, 1985-00). We show the critical role of prior development, proxied by 1968 and 1985 road distances, for which exact matching addresses development trends and transforms impact estimates. Splitting the sample on this measure finds confirmation of the nonmonotonic predictions: new road impacts are relatively low if a prior road was close, such that prior transport access and endogenous development dynamics compete with the new road for influence, but also if a prior road was far, since first-decade adjustment in pristine areas is limited; yet in between these bounds, investments immediately raise deforestation significantly. This pattern helps to explain lower estimates within research on a single average impact. It suggests potential for REDD if a country chooses to shift its spatial transport networks. Protected Areas & Brazilian Amazon Deforestation: modeling and testing the impacts of varied PA strategies We model and then estimate the impacts of multiple types of protected areas upon 2000 - 2004 deforestation in the Brazilian Amazon. Our modeling starts with federal versus state objectives and predicts differences in both choice and implementation of each PA strategy that we examine. Our empirical examination brings not only breakdowns sufficient to test the model's implications but also, critically, explicit controls for the influences of the characteristics of protected lands. Controlling for how PAs differ from unprotected lands cuts impact estimates roughly in half, implying that accounting for and planning around site characteristics should be a part of REDD. For instance, we highlight differences among the improved impacts estimates across PA subsets: Federal vs. State vs. Indigenous; 1980s vs. 1990s; and Integral Protection vs. Sustainable Use. Without correcting for the differences in land characteristics, each of the subsets we examine is estimated to cause significant reduction in deforestation. Corrections find Federal and Indigenous prevented more clearing than did State, while Sustainable Use areas blocked more deforestation than Integral Protection. The reason for these unequal shifts in estimates is that the different PA subsets were allocated to different types of locations. That protection's impact is not uniform is important for REDD and those designing institutions should note what local planners may favor.

  7. Dynamic tensile fracture of mortar at ultra-high strain-rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erzar, B., E-mail: benjamin.erzar@cea.fr; Buzaud, E.; Chanal, P.-Y.

    2013-12-28

    During the lifetime of a structure, concrete and mortar may be exposed to highly dynamic loadings, such as impact or explosion. The dynamic fracture at high loading rates needs to be well understood to allow an accurate modeling of this kind of event. In this work, a pulsed-power generator has been employed to conduct spalling tests on mortar samples at strain-rates ranging from 2 × 10{sup 4} to 4 × 10{sup 4} s{sup −1}. The ramp loading allowed identifying the strain-rate anytime during the test. A power law has been proposed to fit properly the rate-sensitivity of tensile strength of thismore » cementitious material over a wide range of strain-rate. Moreover, a specimen has been recovered damaged but unbroken. Micro-computed tomography has been employed to study the characteristics of the damage pattern provoked by the dynamic tensile loading.« less

  8. True Triaxial Experimental Study of Rockbursts Induced By Ramp and Cyclic Dynamic Disturbances

    NASA Astrophysics Data System (ADS)

    Su, Guoshao; Hu, Lihua; Feng, Xiating; Yan, Liubin; Zhang, Gangliang; Yan, Sizhou; Zhao, Bin; Yan, Zhaofu

    2018-04-01

    A modified rockburst testing system was utilized to reproduce rockbursts induced by ramp and cyclic dynamic disturbances with a low-intermediate strain rate of 2 × 10-3-5 × 10-3 s-1 in the laboratory. The experimental results show that both the ramp and cyclic dynamic disturbances play a significant role in inducing rockbursts. In the tests of rockbursts induced by a ramp dynamic disturbance, as the static stress before the dynamic disturbance increases, both the strength of specimens and the kinetic energy of the ejected fragments first increase and then decrease. In the tests of rockbursts induced by a cyclic dynamic disturbance, there exists a rockburst threshold of the static stress and the dynamic disturbance amplitude, and the kinetic energy of the ejected fragments first increases and then decreases as the cyclic dynamic disturbance frequency increases. The main differences between rockbursts induced by ramp dynamic disturbances and those induced by cyclic dynamic disturbances are as follows: the rockburst development process of the former is characterized by an impact failure feature, while that of the latter is characterized by a fatigue failure feature; the damage evolution curve of the specimen of the former has a leap-developing form with a significant catastrophic feature, while that of the latter has an inverted S-shape with a remarkable fatigue damage characteristic; the energy mechanism of the former involves the ramp dynamic disturbance giving extra elastic strain energy to rocks, while that of the latter involves the cyclic dynamic disturbance decreasing the ultimate energy storage capacity of rocks.

  9. A technique for measuring dynamic friction coefficient under impact loading

    NASA Astrophysics Data System (ADS)

    Lin, Y. L.; Qin, J. G.; Chen, R.; Zhao, P. D.; Lu, F. Y.

    2014-09-01

    We develop a novel setup based on the split Hopkinson pressure bar technique to test the dynamic friction coefficient under impact loading. In the setup, the major improvement is that the end of the incident bar near the specimen is wedge-shaped, which results in a combined compressive and shear loading applied to the specimen. In fact, the shear loading is caused by the interfacial friction between specimen and bars. Therefore, when the two loading force histories are measured, the friction coefficient histories can be calculated without any assumptions and theoretical derivations. The geometry of the friction pairs is simple, and can be either cuboid or cylindrical. Regarding the measurements, two quartz transducers are used to directly record the force histories, and an optical apparatus is designed to test the interfacial slip movement. By using the setup, the dynamic friction coefficient of PTFE/aluminum 7075 friction pairs was tested. The time resolved dynamic friction coefficient and slip movement histories were achieved. The results show that the friction coefficient changes during the loading process, the average data of the relatively stable flat plateau section of the friction coefficient curves is 0.137, the maximum normal pressure is 52 MPa, the maximum relative slip velocity is 1.5 m/s, and the acceleration is 8400 m2/s. Furthermore, the friction test was simulated using an explicit FEM code LS-DYNA. The simulation results showed that the constant pressure and slip velocity can both be obtained with a wide flat plateau incident pulse. For some special friction pairs, normal pressure up to a few hundred MPa, interfacial slip velocities up to 10 m/s, and slip movement up to centimeter-level can be expected.

  10. A technique for measuring dynamic friction coefficient under impact loading.

    PubMed

    Lin, Y L; Qin, J G; Chen, R; Zhao, P D; Lu, F Y

    2014-09-01

    We develop a novel setup based on the split Hopkinson pressure bar technique to test the dynamic friction coefficient under impact loading. In the setup, the major improvement is that the end of the incident bar near the specimen is wedge-shaped, which results in a combined compressive and shear loading applied to the specimen. In fact, the shear loading is caused by the interfacial friction between specimen and bars. Therefore, when the two loading force histories are measured, the friction coefficient histories can be calculated without any assumptions and theoretical derivations. The geometry of the friction pairs is simple, and can be either cuboid or cylindrical. Regarding the measurements, two quartz transducers are used to directly record the force histories, and an optical apparatus is designed to test the interfacial slip movement. By using the setup, the dynamic friction coefficient of PTFE/aluminum 7075 friction pairs was tested. The time resolved dynamic friction coefficient and slip movement histories were achieved. The results show that the friction coefficient changes during the loading process, the average data of the relatively stable flat plateau section of the friction coefficient curves is 0.137, the maximum normal pressure is 52 MPa, the maximum relative slip velocity is 1.5 m/s, and the acceleration is 8400 m(2)/s. Furthermore, the friction test was simulated using an explicit FEM code LS-DYNA. The simulation results showed that the constant pressure and slip velocity can both be obtained with a wide flat plateau incident pulse. For some special friction pairs, normal pressure up to a few hundred MPa, interfacial slip velocities up to 10 m/s, and slip movement up to centimeter-level can be expected.

  11. Impact Testing and Analysis of Composites for Aircraft Engine Fan Cases

    NASA Technical Reports Server (NTRS)

    Roberts, Gary D.; Revilock, Duane M.; Binienda, Wieslaw K.; Nie, Walter Z.; Mackenzie, S. Ben; Todd, Kevin B.

    2002-01-01

    The fan case in a jet engine is a heavy structure because of its size and because of the requirement that it contain a blade released during engine operation. Composite materials offer the potential for reducing the weight of the case. Efficient design, test, and analysis methods are needed to efficiently evaluate the large number of potential composite materials and design concepts. The type of damage expected in a composite case under blade-out conditions was evaluated using a subscale test in which a glass/epoxy composite half-ring target was impacted with a wedge-shaped titanium projectile. Fiber shearing occurred near points of contact between the projectile and target. Delamination and tearing occurred on a larger scale. These damage modes were reproduced in a simpler test in which flat glass/epoxy composites were impacted with a blunt cylindrical projectile. A surface layer of ceramic eliminated fiber shear fracture but did not reduce delamination. Tests on 3D woven carbon/epoxy composites indicated that transverse reinforcement is effective in reducing delamination. A 91 cm (36 in.) diameter full-ring sub-component was proposed for larger scale testing of these and other composite concepts. Explicit, transient, finite element analyses indicated that a full-ring test is needed to simulate complete impact dynamics, but simpler tests using smaller ring sections are adequate when evaluation of initial impact damage is the primary concern.

  12. Simulation of crash tests for high impact levels of a new bridge safety barrier

    NASA Astrophysics Data System (ADS)

    Drozda, Jiří; Rotter, Tomáš

    2017-09-01

    The purpose is to show the opportunity of a non-linear dynamic impact simulation and to explain the possibility of using finite element method (FEM) for developing new designs of safety barriers. The main challenge is to determine the means to create and validate the finite element (FE) model. The results of accurate impact simulations can help to reduce necessary costs for developing of a new safety barrier. The introductory part deals with the creation of the FE model, which includes the newly-designed safety barrier and focuses on the application of an experimental modal analysis (EMA). The FE model has been created in ANSYS Workbench and is formed from shell and solid elements. The experimental modal analysis, which was performed on a real pattern, was employed for measuring the modal frequencies and shapes. After performing the EMA, the FE mesh was calibrated after comparing the measured modal frequencies with the calculated ones. The last part describes the process of the numerical non-linear dynamic impact simulation in LS-DYNA. This simulation was validated after comparing the measured ASI index with the calculated ones. The aim of the study is to improve professional public knowledge about dynamic non-linear impact simulations. This should ideally lead to safer, more accurate and profitable designs.

  13. Static and Dynamic Compaction of CL-20 Powders

    NASA Astrophysics Data System (ADS)

    Cooper, Marcia; Brundage, Aaron; Dudley, Evan

    2009-06-01

    Hexanitrohexaazaisowurtzitane (CL-20) powders were compacted under quasi-static and dynamic loading conditions. A uniaxial compression apparatus quasi-statically compressed the powders to 90% theoretical maximum density with applied stresses up to 0.5 GPa. Dynamic compaction measurements using low-density pressings (62-70% theoretical maximum density) were obtained in a single-stage gas gun at impact velocities between 0.17-0.70 km/s. Experiments were conducted in a reverse ballistic arrangement in which the CL-20 ladened projectile impacted a target consisting of an aluminized window. VISAR-measured particle velocities at the explosive-window interface determined the shock Hugoniot states for pressures up to 0.9 GPa. The powder compaction behavior is found to be stiffer under dynamic loading than under quasi-static loading. Additional gas gun tests were conducted in which the low-density CL-20 pressings were confined within a target cup by the aluminized window. This arrangement enabled temporal measurement of the transmitted wave profiles in which elastic wave precursors were observed.

  14. Modeling and simulation of consumer response to dynamic pricing.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valenzuela, J.; Thimmapuram, P.; Kim, J

    2012-08-01

    Assessing the impacts of dynamic-pricing under the smart grid concept is becoming extremely important for deciding its full deployment. In this paper, we develop a model that represents the response of consumers to dynamic pricing. In the model, consumers use forecasted day-ahead prices to shift daily energy consumption from hours when the price is expected to be high to hours when the price is expected to be low while maintaining the total energy consumption as unchanged. We integrate the consumer response model into the Electricity Market Complex Adaptive System (EMCAS). EMCAS is an agent-based model that simulates restructured electricity markets.more » We explore the impacts of dynamic-pricing on price spikes, peak demand, consumer energy bills, power supplier profits, and congestion costs. A simulation of an 11-node test network that includes eight generation companies and five aggregated consumers is performed for a period of 1 month. In addition, we simulate the Korean power system.« less

  15. Moments of Inertia

    DTIC Science & Technology

    2017-08-03

    Army Test and Evaluation Command 2202 Aberdeen Boulevard Aberdeen Proving Ground, MD 21005-5001 10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR...properties that provide information on a vehicle’s mass distribution. The properties impact vehicle design and safety and are primary inputs to vehicle...also useful in the design and construction of vehicle safety outriggers needed during the conduct of dynamic handling tests. This document

  16. Simulation of an Impact Test of the All-Composite Lear Fan Aircraft

    NASA Technical Reports Server (NTRS)

    Stockwell, Alan E.; Jones, Lisa E. (Technical Monitor)

    2002-01-01

    An MSC.Dytran model of an all-composite Lear Fan aircraft fuselage was developed to simulate an impact test conducted at the NASA Langley Research Center Impact Dynamics Research Facility (IDRF). The test was the second of two Lear Fan impact tests. The purpose of the second test was to evaluate the performance of retrofitted composite energy-absorbing floor beams. A computerized photogrammetric survey was performed to provide airframe geometric coordinates, and over 5000 points were processed and imported into MSC.Patran via an IGES file. MSC.Patran was then used to develop the curves and surfaces and to mesh the finite element model. A model of the energy-absorbing floor beams was developed separately and then integrated into the Lear Fan model. Structural responses of components such as the wings were compared with experimental data or previously published analytical data wherever possible. Comparisons with experimental results were used to guide structural model modifications to improve the simulation performance. This process was based largely on qualitative (video and still camera images and post-test inspections) rather than quantitative results due to the relatively few accelerometers attached to the structure.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stefek, T.; Daugherty, W.; Estochen, E.

    Compaction of lower layers in the fiberboard assembly has been observed in 9975 packages that contain elevated moisture. Lab testing has resulted in a better understanding of the relationship between the fiberboard moisture level and compaction of the lower fiberboard assembly, and the behavior of the fiberboard during transport. In laboratory tests of cane fiberboard, higher moisture content has been shown to correspond to higher total compaction, greater rate of compaction, and continued compaction over a longer period of time. In addition, laboratory tests have shown that the application of a dynamic load results in higher fiberboard compaction compared tomore » a static load. The test conditions and sample geometric/loading configurations were chosen to simulate the regulatory requirements for 9975 package input dynamic loading. Dynamic testing was conducted to acquire immediate and cumulative changes in geometric data for various moisture levels. Two sample sets have undergone a complete dynamic test regimen, one set for 27 weeks, and the second set for 47 weeks. The dynamic input, data acquisition, test effects on sample dynamic parameters, and results from this test program are summarized and compared to regulatory specifications for dynamic loading. Compaction of the bottom fiberboard layers due to the accumulation of moisture is one possible cause of an increase in the axial gap at the top of the package. The net compaction of the bottom layers will directly add to the axial gap. The moisture which caused this compaction migrated from the middle region of the fiberboard assembly (which is typically the hottest). This will cause the middle region to shrink axially, which will also contribute directly to the axial gap. Measurement of the axial gap provides a screening tool for identifying significant change in the fiberboard condition. The data in this report provide a basis to evaluate the impact of moisture and fiberboard compaction on 9975 package performance during storage at the Savannah River Site (SRS).« less

  18. Study on mechanical properties of steel honeycomb panel three-point bending specimen under in-plane and out-plane transverse dynamic impact load

    NASA Astrophysics Data System (ADS)

    Zou, Guangping; Chang, Zhongliang; Xia, Xingyou; Zhang, Xueyi

    2010-03-01

    The metal honeycomb material has high strength and high stiffness, as a high-performance sandwich panel, it is an ideal lightweight structural material, and widely used in aviation, aerospace, shipbuilding and other fields. In this paper, the improved SHPB instrument is used for testing the in-plane and out-plane mechanical properties of the steel honeycomb panel three-point bending specimen, and also compare the results with the static in-plane and out-plane three-point bending experiments results which is tested by the INSTRON 4505 electronic universal testing machine, and then study the mechanical properties of the steel honeycomb panel three-point bending specimen under transverse dynamic impact load. From the results it can be see that, for the out-plane three point bending experiment, L direction mechanical properties is better than the W direction, and the honeycomb core play an important role during the specimen deformation, while for the in-plane three point bending experiment, the honeycomb core mechanical role is not distinctness.

  19. Modeling of Failure for Analysis of Triaxial Braided Carbon Fiber Composites

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Littell, Justin D.; Binienda, Wieslaw K.

    2010-01-01

    In the development of advanced aircraft-engine fan cases and containment systems, composite materials are beginning to be used due to their low weight and high strength. The design of these structures must include the capability of withstanding impact loads from a released fan blade. Relatively complex triaxially braided fiber architectures have been found to yield the best performance for the fan cases. To properly work with and design these structures, robust analytical tools are required that can be used in the design process. A new analytical approach models triaxially braided carbon fiber composite materials within the environment of a transient dynamic finite-element code, specifically the commercially available transient dynamic finite-element code LS-DYNA. The geometry of the braided composites is approximated by a series of parallel laminated composites. The composite is modeled by using shell finite elements. The material property data are computed by examining test data from static tests on braided composites, where optical strain measurement techniques are used to examine the local strain variations within the material. These local strain data from the braided composite tests are used along with a judicious application of composite micromechanics- based methods to compute the stiffness properties of an equivalent unidirectional laminated composite required for the shell elements. The local strain data from the braided composite tests are also applied to back out strength and failure properties of the equivalent unidirectional composite. The properties utilized are geared towards the application of a continuum damage mechanics-based composite constitutive model available within LS-DYNA. The developed model can be applied to conduct impact simulations of structures composed of triaxially braided composites. The advantage of this technology is that it facilitates the analysis of the deformation and damage response of a triaxially braided polymer matrix composite within the environment of a transient dynamic finite-element code such as LS-DYNA in a manner which accounts for the local physical mechanisms but is still computationally efficient. This methodology is tightly coupled to experimental tests on the braided composite, which ensures that the material properties have physical significance. Aerospace or automotive companies interested in using triaxially braided composites in their structures, particularly for impact or crash applications, would find the technology useful. By the development of improved design tools, the amount of very expensive impact testing that will need to be performed can be significantly reduced.

  20. Dynamic creation and evolution of gradient nanostructure in single-crystal metallic microcubes

    NASA Astrophysics Data System (ADS)

    Thevamaran, Ramathasan; Lawal, Olawale; Yazdi, Sadegh; Jeon, Seog-Jin; Lee, Jae-Hwang; Thomas, Edwin L.

    2016-10-01

    We demonstrate the dynamic creation and subsequent static evolution of extreme gradient nanograined structures in initially near-defect-free single-crystal silver microcubes. Extreme nanostructural transformations are imposed by high strain rates, strain gradients, and recrystallization in high-velocity impacts of the microcubes against an impenetrable substrate. We synthesized the silver microcubes in a bottom-up seed-growth process and use an advanced laser-induced projectile impact testing apparatus to selectively launch them at supersonic velocities (~400 meters per second). Our study provides new insights into the fundamental deformation mechanisms and the effects of crystal and sample-shape symmetries resulting from high-velocity impacts. The nanostructural transformations produced in our experiments show promising pathways to developing gradient nanograined metals for engineering applications requiring both high strength and high toughness—for example, in structural components of aircraft and spacecraft.

  1. A standardized tritrophic small-scale system (TriCosm) for the assessment of stressor-induced effects on aquatic community dynamics.

    PubMed

    Riedl, Verena; Agatz, Annika; Benstead, Rachel; Ashauer, Roman

    2018-04-01

    Chemical impacts on the environment are routinely assessed in single-species tests. They are employed to measure direct effects on nontarget organisms, but indirect effects on ecological interactions can only be detected in multispecies tests. Micro- and mesocosms are more complex and environmentally realistic, yet they are less frequently used for environmental risk assessment because resource demand is high, whereas repeatability and statistical power are often low. Test systems fulfilling regulatory needs (i.e., standardization, repeatability, and replication) and the assessment of impacts on species interactions and indirect effects are lacking. In the present study we describe the development of the TriCosm, a repeatable aquatic multispecies test with 3 trophic levels and increased statistical power. High repeatability of community dynamics of 3 interacting aquatic populations (algae, Ceriodaphnia, and Hydra) was found with an average coefficient of variation of 19.5% and the ability to determine small effect sizes. The TriCosm combines benefits of both single-species tests (fulfillment of regulatory requirements) and complex multispecies tests (ecological relevance) and can be used, for instance, at an intermediate tier in environmental risk assessment. Furthermore, comparatively quickly generated population and community toxicity data can be useful for the development and testing of mechanistic effect models. Environ Toxicol Chem 2018;37:1051-1060. © 2017 SETAC. © 2017 SETAC.

  2. A System Dynamics Model for Planning Cardiovascular Disease Interventions

    PubMed Central

    Homer, Jack; Evans, Elizabeth; Zielinski, Ann

    2010-01-01

    Planning programs for the prevention and treatment of cardiovascular disease (CVD) is a challenge to every community that wants to make the best use of its limited resources. Selecting programs that provide the greatest impact is difficult because of the complex set of causal pathways and delays that link risk factors to CVD. We describe a system dynamics simulation model developed for a county health department that incorporates and tracks the effects of those risk factors over time on both first-time and recurrent events. We also describe how the model was used to evaluate the potential impacts of various intervention strategies for reducing the county's CVD burden and present the results of those policy tests. PMID:20167899

  3. Unravelling the Impacts of Climate and People on Vegetation Dynamics in the Sahel 1982- 2002

    NASA Astrophysics Data System (ADS)

    Seaquist, J. W.; Hickler, T.; Eklundh, L.; Ardö, J.; Heumann, B. W.

    2009-05-01

    Satellite sensors have recently shown that much of the Sahel belt of north Africa has experienced significant increases in photosynthetic activity since the early 1980s. This has reignited old debates about the role that people play in shaping land surface status at broad geographical extents. If the human 'footprint' on Sahel vegetation dynamics is measurable, then such impacts may be significant enough alter broad-scale both carbon budgets and climate via land surface atmosphere feedbacks. We test the hypothesis that people have had a measurable impact on vegetation dynamics in the Sahel for the period 1982-2002. We accomplish this by mapping the agreement between potential natural vegetation dynamics predicted by a process-based ecosystem model (Lund Potsdam Jena-Dynamic Global Vegetation Model) and satellite-derived greenness observations (Global Inventory Modelling and Mapping Studies data set) across a geographic grid at a spatial resolution of 0.5 degrees. We then relate this agreement metric to state-of-the-art data sets on demographics, pasture, and cropping. Demographic and agricultural pressures in the Sahel are unable to account for differences between simulated and observed vegetation dynamics, even for the most densely populated areas. But we do identify a weak, positive correlation between data-model agreement and pasture intensity at the Sahel-wide level. This indicates that herding or grazing does not appreciably affect vegetation dynamics in the region. Either people have not had a significant impact on vegetation dynamics in the Sahel or the identification of a human 'footprint' is precluded by inconsistent or subtle vegetation response to complex socio-environmental interactions, and/or limitations in the data used for this study. This research showcases untapped potential for combining ecosystem process models with remote sensing at broad spatial extents for examining the underlying causes of ecosystem change.

  4. An analytical and experimental investigation of sandwich composites subjected to low-velocity impact

    NASA Astrophysics Data System (ADS)

    Anderson, Todd Alan

    1999-12-01

    This study involves an experimental and analytical investigation of low-velocity impact phenomenon in sandwich composite structures. The analytical solution of a three-dimensional finite-geometry multi-layer specially orthotropic panel subjected to static and transient transverse loading cases is presented. The governing equations of the static and dynamic formulations are derived from Reissner's functional and solved by enforcing the continuity of traction and displacement components between adjacent layers. For the dynamic loading case, the governing equations are solved by applying Fourier or Laplace transformation in time. Additionally, the static solution is extended to solve the contact problem between the sandwich laminate and a rigid sphere. An iterative method is employed to determine the sphere's unknown contact area and pressure distribution. A failure criterion is then applied to the sandwich laminate's stress and strain field to predict impact damage. The analytical accuracy of the present study is verified through comparisons with finite element models, other analyses, and through experimentation. Low-velocity impact tests were conducted to characterize the type and extent of the damage observed in a variety of sandwich configurations with graphite/epoxy face sheets and foam or honeycomb cores. Correlation of the residual indentation and cross-sectional views of the impacted specimens provides a criterion for the extent of damage. Quasi-static indentation tests are also performed and show excellent agreement when compared with the analytical predictions. Finally, piezoelectric polyvinylidene fluoride (PVF2) film sensors are found to be effective in detecting low-velocity impact.

  5. Instrumented Taylor anvil-on-rod impact tests for validating applicability of standard strength models to transient deformation states

    NASA Astrophysics Data System (ADS)

    Eakins, D. E.; Thadhani, N. N.

    2006-10-01

    Instrumented Taylor anvil-on-rod impact tests have been conducted on oxygen-free electronic copper to validate the accuracy of current strength models for predicting transient states during dynamic deformation events. The experiments coupled the use of high-speed digital photography to record the transient deformation states and laser interferometry to monitor the sample back (free surface) velocity as a measure of the elastic/plastic wave propagation through the sample length. Numerical continuum dynamics simulations of the impact and plastic wave propagation employing the Johnson-Cook [Proceedings of the Seventh International Symposium on Ballistics, 1983, The Netherlands (Am. Def. Prep. Assoc. (ADPA)), pp. 541-547], Zerilli-Armstrong [J. Appl. Phys. C1, 1816 (1987)], and Steinberg-Guinan [J. Appl. Phys. 51, 1498 (1980)] constitutive equations were used to generate transient deformation profiles and the free surface velocity traces. While these simulations showed good correlation with the measured free surface velocity traces and the final deformed sample shape, varying degrees of deviations were observed between the photographed and calculated specimen profiles at intermediate deformation states. The results illustrate the usefulness of the instrumented Taylor anvil-on-rod impact technique for validating constitutive equations that can describe the path-dependent deformation response and can therefore predict the transient and final deformation states.

  6. Effect of helicopter blade dynamics on blade aerodynamic and structural loads

    NASA Technical Reports Server (NTRS)

    Heffernan, Ruth M.

    1987-01-01

    The effect of rotor blade dynamics on aerodynamic and structural loads is examined for a conventional, main-rotor helicopter using a comprehensive rotorcraft analysis (CAMRAD) and flight-test data. The impact of blade dynamics on blade section lift-coefficient time histories is studied by comparing predictions from a rigid-blade analysis and an elastic-blade analysis with helicopter flight test data. The elastic blade analysis better predicts high-frequency behavior of section lift. In addition, components of the blade angle of attack such as elastic blade twist, blade flap rate, blade slope velocity, and inflow are examined as a function of blade mode. Elastic blade motion changed blade angle of attack by a few tenths of a degree, and up to the sixth rotor harmonic. A similar study of the influence of blade dynamics on bending and torsion moments was also conducted. A correlation study comparing predictions from several elastic-blade analyses with flight-test data revealed that an elastic-blade model consisting of only three elastic bending modes (first and second flap and first lag), and two elastic torsion modes was sufficient for good correlation.

  7. NASA experiments onboard the controlled impact demonstration

    NASA Technical Reports Server (NTRS)

    Hayduk, R. J.; Alfaro-Bou, E.; Fasanella, E. L.

    1985-01-01

    The structural crashworthiness tests conducted by NASA on the December 1, 1984 controlled impact demonstration are discussed. The components and locations of the data acquisition and photographic systems developed by NASA to evaluate impact loads throughout the aircraft structure and the transmission of loads into the dummies are described. The effectiveness of the NASA designed absorbing seats and the vertical, longitudinal, and transverse impact loads are measured. Data that is extremely applicable to crash dynamics structural research was obtained by the data acquisition system and very low load levels were measured for the NASA energy absorbing seats.

  8. Vibro-Impact Type Triboelectric Energy Harvester for Large Amplitude and Wideband Applications

    NASA Astrophysics Data System (ADS)

    Chen, J. M.; Bu, L.; Xu, W. Y.; Xu, B. J.; Song, L.

    2015-12-01

    This paper reports the design, fabrication and testing of a novel vibro-impact type triboelectric energy harvester. The dynamics of vibro-impact converts external vibration to large contact force for triboelectric power generation. Strong nonlinearities are measured for this vibro-impact system, and wideband frequency response under diverse structural parameters are analyzed. The proposed device is applied in two large amplitude scenarios, and generates maximal peak-to-peak voltage of 18V in foot swinging condition @2Hz 30cm, and maximal peak-to-peak voltage of 45 V in arm swinging condition during running @5Hz 40cm.

  9. Impact of mechanism vibration characteristics by joint clearance and optimization design of its multi-objective robustness

    NASA Astrophysics Data System (ADS)

    Zeng, Baoping; Wang, Chao; Zhang, Yu; Gong, Yajun; Hu, Sanbao

    2017-12-01

    Joint clearances and friction characteristics significantly influence the mechanism vibration characteristics; for example: as for joint clearances, the shaft and bearing of its clearance joint collide to bring about the dynamic normal contact force and tangential coulomb friction force while the mechanism works; thus, the whole system may vibrate; moreover, the mechanism is under contact-impact with impact force constraint from free movement under action of the above dynamic forces; in addition, the mechanism topology structure also changes. The constraint relationship between joints may be established by a repeated complex nonlinear dynamic process (idle stroke - contact-impact - elastic compression - rebound - impact relief - idle stroke movement - contact-impact). Analysis of vibration characteristics of joint parts is still a challenging open task by far. The dynamic equations for any mechanism with clearance is often a set of strong coupling, high-dimensional and complex time-varying nonlinear differential equations which are solved very difficultly. Moreover, complicated chaotic motions very sensitive to initial values in impact and vibration due to clearance let high-precision simulation and prediction of their dynamic behaviors be more difficult; on the other hand, their subsequent wearing necessarily leads to some certain fluctuation of structure clearance parameters, which acts as one primary factor for vibration of the mechanical system. A dynamic model was established to the device for opening the deepwater robot cabin door with joint clearance by utilizing the finite element method and analysis was carried out to its vibration characteristics in this study. Moreover, its response model was carried out by utilizing the DOE method and then the robust optimization design was performed to sizes of the joint clearance and the friction coefficient change range so that the optimization design results may be regarded as reference data for selecting bearings and controlling manufacturing process parameters for the opening mechanism. Several optimization objectives such as x/y/z accelerations for various measuring points and dynamic reaction forces of mounting brackets, and a few constraints including manufacturing process were taken into account in the optimization models, which were solved by utilizing the multi-objective genetic algorithm (NSGA-II). The vibration characteristics of the optimized opening mechanism are superior to those of the original design. In addition, the numerical forecast results are in good agreement with the test results of the prototype.

  10. Update on results of SPRE testing at NASA Lewis

    NASA Technical Reports Server (NTRS)

    Cairelli, James E.; Swec, Diane M.; Wong, Wayne A.; Doeberling, Thomas J.; Madi, Frank J.

    1991-01-01

    The Space Power Research Engine (SPRE), a free-piston Stirling engine with a linear alternator, is being tested at NASA Lewis Research Center as part of the Civilian Space Technology Initiative (CSTI) as a candidate for high capacity space power. Results are presented from recent SPRE tests designed to investigated the effects of variation in the displacer seal clearance and piston centering port area on engine performance and dynamics. The impact of these variations on PV power and efficiency are presented. Comparisons of the displacer seal clearance tests results with HFAST code predictions show good agreement for PV power, but show poor agreement for PV efficiency. Correlations are presented relating the piston midstroke position to the dynamic Delta P across the piston and the centering port area. Test results indicate that a modest improvement in PV power and efficiency may be realized with a reduction in piston centering port area.

  11. Dynamic fragmentation of cellular, ice-templated alumina scaffolds

    DOE PAGES

    Tan, Yi Ming; Cervantes, Octavio; Nam, SeanWoo; ...

    2016-01-08

    Here, we examine the dynamic failure of ice-templated freeze-cast alumina scaffolds that are being considered as biomimetic hierarchical structures. Three porosities of alumina freeze-cast structures were fabricated, and a systematic variation in microstructural properties such as lamellar width and thickness was observed with changing porosity. Dynamic impact tests were performed in a light-gas gun to examine the failure properties of these materials under high strain-rate loading. Nearly complete delamination was observed following impact, along with characteristic cracking across the lamellar width. Average fragment size decreases with increasing porosity, and a theoretical model was developed to explain this behavior based onmore » microstructural changes. Using an energy balance between kinetic, strain, and surface energies within a single lamella, we are able to accurately predict the characteristic fragment size using only standard material properties of bulk alumina.« less

  12. Real-time monitoring system of composite aircraft wings utilizing Fibre Bragg Grating sensor

    NASA Astrophysics Data System (ADS)

    Vorathin, E.; Hafizi, Z. M.; Che Ghani, S. A.; Lim, K. S.

    2016-10-01

    Embedment of Fibre Bragg Grating (FBG) sensor in composite aircraft wings leads to the advancement of structural condition monitoring. The monitored aircraft wings have the capability to give real-time response under critical loading circumstances. The main objective of this paper is to develop a real-time FBG monitoring system for composite aircraft wings to view real-time changes when the structure undergoes some static loadings and dynamic impact. The implementation of matched edge filter FBG interrogation system to convert wavelength variations to strain readings shows that the structure is able to response instantly in real-time when undergoing few loadings and dynamic impact. This smart monitoring system is capable of updating the changes instantly in real-time and shows the weight induced on the composite aircraft wings instantly without any error. It also has a good agreement with acoustic emission (AE) sensor in the dynamic test.

  13. Experiment and simulation study on unidirectional carbon fiber composite component under dynamic 3 point bending loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Guowei; Sun, Qingping; Zeng, Danielle

    In current work, unidirectional (UD) carbon fiber composite hatsection component with two different layups are studied under dynamic 3 point bending loading. The experiments are performed at various impact velocities, and the effects of impactor velocity and layup on acceleration histories are compared. A macro model is established with LS-Dyna for more detailed study. The simulation results show that the delamination plays an important role during dynamic 3 point bending test. Based on the analysis with high speed camera, the sidewall of hatsection shows significant buckling rather than failure. Without considering the delamination, current material model cannot capture the postmore » failure phenomenon correctly. The sidewall delamination is modeled by assumption of larger failure strain together with slim parameters, and the simulation results of different impact velocities and layups match the experimental results reasonable well.« less

  14. Acoustic emission: A useful tool for damage evaluation in composite materials

    NASA Astrophysics Data System (ADS)

    Mouzakis, Dionysios E.; Dimogianopoulos, Dimitrios G.

    2018-02-01

    High performance composites for aviation-related structures are prone to constant aging by environmental agents. Previous data from our work reported on the stiffening behaviour of glass fibre polyester composites used in the manufacturing of wind turbine blades. Airplanes from such composites are already on service nowadays. This justifies the detailed study of the exposure of high performance materials to environmental conditions such as varying temperature, humidity, ultraviolet radiation, in order to assess the impact of these important aging factors on their mechanical behaviour. The dramatic changes in the dynamic mechanical response of polymer matrix carbon fibre composites upon exposure to acceleration aging has been assessed in the present study. In order to assess the synergistic effect action of temperature and humidity on composites subjected to changes of temperature from -35 to +40 °C and humidity variations from <10% to 95% RH (non-condensing) specimens were stored in a climatic chamber for 60 days. Conditions were cycled, as if actual flight cycles of 3-4 hours per flight, were to be simulated. Dynamic mechanical analysis tests were performed in three point bending mode. Scanning of frequency and temperature were performed in order to determine both the viscoelastic response as well as the time-dependent behaviour of the aged materials. All tests were run both for aged and pristine materials for comparison purposes. Three point bending testing was performed in both static as well as in Dynamic mechanical analysis, for a range of temperatures and frequencies. Acoustic Emission damage detection was also performed during the three point bending test both in static and dynamic mode. The aged materials had gained in dynamic stiffness. In addition, that, the gain in the storage moduli, was accompanied by a decrease in the material damping ability, as determined by the tanδ parameter. In the final stages of the study, impact testing was performed on both pristine and aged specimens. The experimentally recorded force/time signals were utilized for concluding on the specimens' condition, by means of signal based damage detection methodologies. Effort was invested in utilizing signal analysis in order to get comparative aging-related information on the tested specimens in order to ultimately validate results of mechanical testing.

  15. Preliminary studies of the dynamic stiffness modules of soil samples from the Solvay Sodium Plant waste landfill in Krakow

    NASA Astrophysics Data System (ADS)

    Pilecka, Elżbieta; Zięba, Jakub

    2017-11-01

    The article presents the results of laboratory tests for determining the dynamic modules of the elasticity M and the shear G, for soil samples from the landfill of the closed Solvay Sodium Plant in Krakow. The tests were performed using a triaxial apparatus equipped with "bender" piezoelements. The samples subjected to these tests were taken from two boreholes, located in the area known as the "white seas", whose formation is the result of Solvay Plant activity throughout the 20th century. The location of the test holes was planned at the place in which a road known as the "Łagiewnicka route" was planned. Studies on soil stiffness were also conducted as part of the one of the dissertation from 2008 to 2010 in the Cracow University of Technology. The results of these tests and the results of the laboratory tests that are presented in the article will be used in the designing of a computer model. This model is intended to help in assessing the dynamic impact of motor vehicle traffic on the planned Łagiewnicka route on the structure of the existing buildings located in the former Solvay Plant.

  16. Dynamic testing of horseshoe designs at impact on synthetic and dirt Thoroughbred racetrack materials.

    PubMed

    Mahaffey, C A; Peterson, M L; Thomason, J J; McIlwraith, C W

    2016-01-01

    Different horseshoe designs have been developed in an attempt to optimise footing for equine athletes. Horseshoe performance is assumed to be dependent on the surface and gait, but there are limited data on horseshoe performance on different surfaces, independent of gait variation. To quantify the dynamic loading for 3 aluminium racing shoe designs on Thoroughbred racetrack surface materials, using a biomechanical surface tester. A flat racing plate, a serrated V-Grip and a shoe with a 6 mm toe grab and 10 mm heel calks were tested on synthetic and dirt surfaces under typical operating conditions of temperature and moisture content for the respective material samples. Samples were tested under laboratory conditions, replicating a track surface by compacting material into a latex-lined mould surrounded by silica sand for representative boundary conditions. Peak loading and loading rates were measured vertically and horizontally (craniocaudal), simulating aspects of primary and secondary impacts of the hoof in a galloping horse. Maximum vertical and shear loads and loading rates were not significantly different between shoe types, with the exception of a reduced craniocaudal loading rate for the V-Grip shoe on the synthetic surface. All other statistical significance was related to the surface material. These 3 different Thoroughbred racing shoes do not have a significant impact on loading and loading rate, with the exception of the V-Grip shoe on a synthetic surface. Although the V-Grip may reduce craniocaudal peak load rates in a synthetic material with relatively high wax and/or low oil content, the reduction in load rate is less than the difference found between materials. This study indicates that shoeing has little effect, and that a track's surface material and its preparation have a significant effect on the dynamic loading during the impact phase of the stance. © 2015 EVJ Ltd.

  17. Variable input observer for state estimation of high-rate dynamics

    NASA Astrophysics Data System (ADS)

    Hong, Jonathan; Cao, Liang; Laflamme, Simon; Dodson, Jacob

    2017-04-01

    High-rate systems operating in the 10 μs to 10 ms timescale are likely to experience damaging effects due to rapid environmental changes (e.g., turbulence, ballistic impact). Some of these systems could benefit from real-time state estimation to enable their full potential. Examples of such systems include blast mitigation strategies, automotive airbag technologies, and hypersonic vehicles. Particular challenges in high-rate state estimation include: 1) complex time varying nonlinearities of system (e.g. noise, uncertainty, and disturbance); 2) rapid environmental changes; 3) requirement of high convergence rate. Here, we propose using a Variable Input Observer (VIO) concept to vary the input space as the event unfolds. When systems experience high-rate dynamics, rapid changes in the system occur. To investigate the VIO's potential, a VIO-based neuro-observer is constructed and studied using experimental data collected from a laboratory impact test. Results demonstrate that the input space is unique to different impact conditions, and that adjusting the input space throughout the dynamic event produces better estimations than using a traditional fixed input space strategy.

  18. Static and dynamic response of a sandwich structure under axial compression

    NASA Astrophysics Data System (ADS)

    Ji, Wooseok

    This thesis is concerned with a combined experimental and theoretical investigation of the static and dynamic response of an axially compressed sandwich structure. For the static response problem of sandwich structures, a two-dimensional mechanical model is developed to predict the global and local buckling of a sandwich beam, using classical elasticity. The face sheet and the core are assumed as linear elastic orthotropic continua in a state of planar deformation. General buckling deformation modes (periodic and non-periodic) of the sandwich beam are considered. On the basis of the model developed here, validation and accuracy of several previous theories are discussed for different geometric and material properties of a sandwich beam. The appropriate incremental stress and conjugate incremental finite strain measure for the instability problem of the sandwich beam, and the corresponding constitutive model are addressed. The formulation used in the commercial finite element package is discussed in relation to the formulation adopted in the theoretical derivation. The Dynamic response problem of a sandwich structure subjected to axial impact by a falling mass is also investigated. The dynamic counterpart of the celebrated Euler buckling problem is formulated first and solved by considering the case of a slender column that is impacted by a falling mass. A new notion, that of the time to buckle, "t*" is introduced, which is the corresponding critical quantity analogous to the critical load in static Euler buckling. The dynamic bifurcation buckling analysis is extended to thick sandwich structures using an elastic foundation model. A comprehensive set of impact test results of sandwich columns with various configurations are presented. Failure mechanisms and the temporal history of how a sandwich column responds to axial impact are discussed through the experimental results. The experimental results are compared against analytical dynamic buckling studies and finite element based simulation of the impact event.

  19. Best Practices for Crash Modeling and Simulation

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Jackson, Karen E.

    2002-01-01

    Aviation safety can be greatly enhanced by the expeditious use of computer simulations of crash impact. Unlike automotive impact testing, which is now routine, experimental crash tests of even small aircraft are expensive and complex due to the high cost of the aircraft and the myriad of crash impact conditions that must be considered. Ultimately, the goal is to utilize full-scale crash simulations of aircraft for design evaluation and certification. The objective of this publication is to describe "best practices" for modeling aircraft impact using explicit nonlinear dynamic finite element codes such as LS-DYNA, DYNA3D, and MSC.Dytran. Although "best practices" is somewhat relative, it is hoped that the authors' experience will help others to avoid some of the common pitfalls in modeling that are not documented in one single publication. In addition, a discussion of experimental data analysis, digital filtering, and test-analysis correlation is provided. Finally, some examples of aircraft crash simulations are described in several appendices following the main report.

  20. Low-Velocity Impact Wear Behavior of Ball-to-Flat Contact Under Constant Kinetic Energy

    NASA Astrophysics Data System (ADS)

    Wang, Zhang; Cai, Zhen-bing; Chen, Zhi-qiang; Sun, Yang; Zhu, Min-hao

    2017-11-01

    The impact tests were conducted on metallic materials with different bulk hardness and Young's moduli. Analysis of the dynamics response during the tribological process showed that the tested materials had similar energy absorption, where the peak contact force increased as the tests continued. Moreover, wear volume decreased with the increase in Young's modulus of metals, except for Cr with a relatively low hardness. Wear rate was gradually reduced to a steady stage with increasing cycles, which was attributed to the decrease in contact stress and work-hardening effect. The main wear mechanism of impact was characterized by delamination, and the specific surface degradation mechanisms were depending on the mechanical properties of materials. The absorbed energy was used to the propagation of micro-cracks in the subsurface instead of plastic deformation, when resistance of friction wear and plastic behavior was improved. Hence, both the hardness and Young's modulus played important roles in the impact wear of metallic materials.

  1. Geological implications of impacts of large asteroids and comets on the earth

    NASA Technical Reports Server (NTRS)

    Silver, L. T. (Editor); Schultz, P. H. (Editor)

    1982-01-01

    The present conference discusses such topics as large object fluxes in near-earth space and the probabilities of terrestrial impacts, the geological record of impacts, dynamics modeling for large body impacts on continents and oceans, physical, chemical, and biological models of large impacts' atmospheric effects, dispersed impact ejecta and their signatures, general considerations concerning mass biological extinctions, the Cretaceous/Tertiary boundary event, geochemical signatures in the stratigraphic record, and other phanerozoic events. Attention is given to terrestrial impact rates for long- and short-period comets, estimates of crater size for large body impact, a first-order estimate of shock heating and vaporization in oceanic impacts, atmospheric effects in the first few minutes after an impact, a feasibility test for biogeographic extinction, and the planktonic and dinosaur extinctions.

  2. The impact of biostimulation on the fate of sulfate and associated sulfur dynamics in groundwater

    NASA Astrophysics Data System (ADS)

    Miao, Ziheng; Carreón-Diazconti, Concepcion; Carroll, Kenneth C.; Brusseau, Mark L.

    2014-08-01

    The impact of electron-donor addition on sulfur dynamics for a groundwater system with low levels of metal contaminants was evaluated with a pilot-scale biostimulation test conducted at a former uranium mining site. Geochemical and stable-isotope data collected before, during, and after the test were analyzed to evaluate the sustainability of sulfate reducing conditions induced by the test, the fate of hydrogen sulfide, and the impact on aqueous geochemical conditions. The results of site characterization activities conducted prior to the test indicated the absence of measurable bacterial sulfate reduction. The injection of an electron donor (ethanol) induced bacterial sulfate reduction, as confirmed by an exponential decrease of sulfate concentration in concert with changes in oxidation-reduction potential, redox species, alkalinity, production of hydrogen sulfide, and fractionation of δ34S-sulfate. High, stoichiometrically-equivalent hydrogen sulfide concentrations were not observed until several months after the start of the test. It is hypothesized that hydrogen sulfide produced from sulfate reduction was initially sequestered in the form of iron sulfides until the exhaustion of readily reducible iron oxides within the sediment. The fractionation of δ34S for sulfate was atypical, wherein the enrichment declined in the latter half of the experiment. It was conjectured that mixing effects associated with the release of sulfate from sulfate minerals associated with the sediments, along with possible sulfide re-oxidation contributed to this behavior. The results of this study illustrate the biogeochemical complexity that is associated with in-situ biostimulation processes involving bacterial sulfate reduction.

  3. THE IMPACT OF BIOSTIMULATION ON THE FATE OF SULFATE AND ASSOCIATED SULFUR DYNAMICS IN GROUNDWATER

    PubMed Central

    Miao, Ziheng; Carreón-Diazconti, Concepcion; Carroll, Kenneth C.; Brusseau, Mark L.

    2014-01-01

    The impact of electron-donor addition on sulfur dynamics for a groundwater system with low levels of metal contaminants was evaluated with a pilot-scale biostimulation test conducted at a former uranium mining site. Geochemical and stable-isotope data collected before, during, and after the test were analyzed to evaluate the sustainability of sulfate reducing conditions induced by the test, the fate of hydrogen sulfide, and the impact on aqueous geochemical conditions. The results of site characterization activities conducted prior to the test indicated the absence of measurable bacterial sulfate reduction. The injection of an electron donor (ethanol) induced bacterial sulfate reduction, as confirmed by an exponential decrease of sulfate concentration in concert with changes in oxidation-reduction potential, redox species, alkalinity, production of hydrogen sulfide, and fractionation of δ34S-sulfate. High, stoichiometrically-equivalent hydrogen sulfide concentrations were not observed until several months after the start of the test. It is hypothesized that hydrogen sulfide produced from sulfate reduction was initially sequestered in the form of iron sulfides until the exhaustion of readily reducible iron oxides associated with the sediment. The fractionation of δ34S for sulfate was atypical, wherein the enrichment declined in the latter half of the experiment. It was conjectured that mixing effects associated with the release of sulfate from sulfate minerals associated with the sediments, along with possible sulfide re-oxidation contributed to this behavior. The results of this study illustrate the biogeochemical complexity that is associated with in-situ biostimulation processes involving bacterial sulfate reduction. PMID:25016586

  4. Crash simulation of UNS electric vehicle under frontal front impact

    NASA Astrophysics Data System (ADS)

    Susilo, D. D.; Lukamana, N. I.; Budiana, E. P.; Tjahjana, D. D. D. P.

    2016-03-01

    Sebelas Maret University has been developing an Electric Vehicle namely SmarT-EV UNS. The main structure of the car are chasis and body. The chasis is made from steel and the body is made from fiberglass composite. To ensure the safety of the car, both static and dynamic tests were carried out to these structures, including their materials, like: tensile test, bending test, and impact test. Another test needed by this vehicle is crashworthiness test. To perform the test, it is needed complex equipments and it is quite expensive. Another way to obtain vehicle crashworthiness behaviour is by simulate it. The purpose of this study was to simulate the response of the Smart-EV UNS electric vehicle main structure when crashing rigid barrier from the front. The crash simulation was done in according to the NHTSA (National Highway Traffic Safety Administration) within the speed of the vehicle of 35 mph. The UNS Electric Vehicle was modelled using SolidWorks software, and the simulation process was done by finite element method using ANSYS software. The simulation result showed that the most internal impact energy was absorbed by chassis part. It absorbed 76.2% of impact energy, then the base absorbed 11.3 %, while the front body absorbed 2.5 %, and the rest was absorbed by fender, hood, and other parts.

  5. Simulating the Impact Response of Full-Scale Composite Airframe Structures

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Jackson, Karen E.; Littell, Justin D.; Seal, Michael D.

    2012-01-01

    NASA Langley Research Center obtained a composite helicopter cabin structure in 2010 from the US Army's Survivable Affordable Repairable Airframe Program (SARAP) that was fabricated by Sikorsky Aircraft Corporation. The cabin had been subjected to a vertical drop test in 2008 to evaluate a tilting roof concept to limit the intrusion of overhead masses into the fuselage cabin. Damage to the cabin test article was limited primarily to the roof. Consequently, the roof area was removed and the remaining structure was cut into test specimens including a large subfloor section and a forward framed fuselage section. In 2011, NASA and Sikorsky entered into a cooperative research agreement to study the impact responses of composite airframe structures and to evaluate the capabilities of the explicit transient dynamic finite element code, LS-DYNA®, to simulate these responses including damage initiation and progressive failure. Most of the test articles were manufactured of graphite unidirectional tape composite with a thermoplastic resin system. However, the framed fuselage section was constructed primarily of a plain weave graphite fabric material with a thermoset resin system. Test data were collected from accelerometers and full-field photogrammetry. The focus of this paper will be to document impact testing and simulation results for the longitudinal impact of the subfloor section and the vertical drop test of the forward framed fuselage section.

  6. Is the U.S. shale gas boom having an effect on the European gas market?

    NASA Astrophysics Data System (ADS)

    Yao, Isaac

    This thesis focuses on the impact of the American shale gas boom on the European natural gas market. The study presents different tests in order to analyze the dynamics of natural gas prices in the U.S., U.K. and German natural gas market. The question of cointegration between these different markets are analyzed using several tests. More specifically, the ADF tests for the presence of a unit root. The error correction model test and the Johansen cointegration procedure are applied in order to accept or reject the hypothesis of an integrated market. The results suggest no evidence of cointegration between these markets. There currently is no evidence of an impact of the U.S. shale gas boom on the European market.

  7. Impact of military on biofuels consumption and GHG emissions: the evidence from G7 countries.

    PubMed

    Bildirici, Melike

    2018-05-01

    It was aimed to test the relation among the greenhouse gases emissions, economic growth, biofuels consumption, and militarization in G7 countries during the 1985-2015 period by Pedroni 1995 and panel Johansen tests and two long-run estimators-dynamic OLS and fully modified OLS. Long-run estimators found that economic growth and militarization have statistically significant positive impact on CO 2 emission of G7 countries. Furthermore, the panel causality tests were applied: Dumitrescu and Hurlin (Econ Model 29(4):1450-1460, 2012) and panel Granger causality. These tests determined the causal relationship between the variables. The results of this paper implied that economic growth and biofuels consumption depend on militarization, and economic growth and militarization are granger causes of the greenhouse gases emissions.

  8. Effects of vehicle impact velocity and front-end structure on dynamic responses of child pedestrians.

    PubMed

    Liu, Xuejun; Yang, Jikuang

    2003-12-01

    To investigate the effects of vehicle impact velocity and front-end structure on the dynamic responses of child pedestrians, an extensive parametric study was carried out using two child mathematical models at 6 and 15 years old. The effect of the vehicle impact velocity was studied at 30, 40, and 50 km/h in terms of the head linear velocity, impact angle, and head angular velocity as well as various injury parameters concerning the head, chest, pelvis, and lower extremities. The variation of vehicle front-end shape was determined according to the shape corridors of modern vehicles, while the stiffness characteristics of the bumper, hood edge, and hood were varied within stiffness corridors obtained from dynamic component tests. The simulation results show that the vehicle impact speed is of great importance on the kinematics and resulting injury severity of child pedestrians. A significant reduction in all injury parameters can be achieved as the vehicle impact speed decreases to 30 km/h. The head and lower extremities of children are at higher injury risks than other body regions. Older children are exposed to higher injury risks to the head and lower leg, whereas younger ones sustain more severe impact loads to the pelvis and upper leg. The results from factorial analysis indicate that the hood-edge height has a significant effect on the kinematics and head impact responses of children. A higher hood edge could reduce the severity of head impact for younger children, but aggravate the risks of head injury for older ones. A significant interaction exists between the bumper height and the hood-edge height on the head impact responses of younger child. Nevertheless, improving the energy absorption performance of the hood seems effective for mitigating the severity of head injuries for children.

  9. Collisional model for granular impact dynamics.

    PubMed

    Clark, Abram H; Petersen, Alec J; Behringer, Robert P

    2014-01-01

    When an intruder strikes a granular material from above, the grains exert a stopping force which decelerates and stops the intruder. Many previous studies have used a macroscopic force law, including a drag force which is quadratic in velocity, to characterize the decelerating force on the intruder. However, the microscopic origins of the force-law terms are still a subject of debate. Here, drawing from previous experiments with photoelastic particles, we present a model which describes the velocity-squared force in terms of repeated collisions with clusters of grains. From our high speed photoelastic data, we infer that "clusters" correspond to segments of the strong force network that are excited by the advancing intruder. The model predicts a scaling relation for the velocity-squared drag force that accounts for the intruder shape. Additionally, we show that the collisional model predicts an instability to rotations, which depends on the intruder shape. To test this model, we perform a comprehensive experimental study of the dynamics of two-dimensional granular impacts on beds of photoelastic disks, with different profiles for the leading edge of the intruder. We particularly focus on a simple and useful case for testing shape effects by using triangular-nosed intruders. We show that the collisional model effectively captures the dynamics of intruder deceleration and rotation; i.e., these two dynamical effects can be described as two different manifestations of the same grain-scale physical processes.

  10. Neck injury tolerance under inertial loads in side impacts.

    PubMed

    McIntosh, Andrew S; Kallieris, Dimitrios; Frechede, Bertrand

    2007-03-01

    Neck injury remains a major issue in road safety. Current side impact dummies and side impact crashworthiness assessments do not assess the risk of neck injury. These assessments are limited by biofidelity and knowledge regarding neck injury criteria and tolerance levels in side impacts. Side impact tests with PMHS were performed at the Heidelberg University in the 1980s and 1990s to improve primarily the understanding of trunk dynamics, injury mechanisms and criteria. In order to contribute to the definition of human tolerances at neck level, this study presents an analysis of the head/neck biomechanical parameters that were measured in these tests and their relationship to neck injury severity. Data from 15 impact tests were analysed. Head accelerations, and neck forces and moments were calculated from 9-accelerometer array head data, X-rays and anthropometric data. Statistically significant relationships were observed between resultant head acceleration and neck force and neck injury severity. The average resultant head acceleration for AIS 2 neck injuries was 112 g, while resultant neck force was 4925 N and moment 241 Nm. The data compared well to other test data on cadavers and volunteers. It is hoped that the paper will assist in the understanding of neck injuries and the development of tolerance criteria.

  11. Using Dynamic Sensitivity Analysis to Assess Testability

    NASA Technical Reports Server (NTRS)

    Voas, Jeffrey; Morell, Larry; Miller, Keith

    1990-01-01

    This paper discusses sensitivity analysis and its relationship to random black box testing. Sensitivity analysis estimates the impact that a programming fault at a particular location would have on the program's input/output behavior. Locations that are relatively \\"insensitive" to faults can render random black box testing unlikely to uncover programming faults. Therefore, sensitivity analysis gives new insight when interpreting random black box testing results. Although sensitivity analysis is computationally intensive, it requires no oracle and no human intervention.

  12. Using Numerical Modeling to Simulate Space Capsule Ground Landings

    NASA Technical Reports Server (NTRS)

    Heymsfield, Ernie; Fasanella, Edwin L.

    2009-01-01

    Experimental work is being conducted at the National Aeronautics and Space Administration s (NASA) Langley Research Center (LaRC) to investigate ground landing capabilities of the Orion crew exploration vehicle (CEV). The Orion capsule is NASA s replacement for the Space Shuttle. The Orion capsule will service the International Space Station and be used for future space missions to the Moon and to Mars. To evaluate the feasibility of Orion ground landings, a series of capsule impact tests are being performed at the NASA Langley Landing and Impact Research Facility (LandIR). The experimental results derived at LandIR provide means to validate and calibrate nonlinear dynamic finite element models, which are also being developed during this study. Because of the high cost and time involvement intrinsic to full-scale testing, numerical simulations are favored over experimental work. Subsequent to a numerical model validated by actual test responses, impact simulations will be conducted to study multiple impact scenarios not practical to test. Twenty-one swing tests using the LandIR gantry were conducted during the June 07 through October 07 time period to evaluate the Orion s impact response. Results for two capsule initial pitch angles, 0deg and -15deg , along with their computer simulations using LS-DYNA are presented in this article. A soil-vehicle friction coefficient of 0.45 was determined by comparing the test stopping distance with computer simulations. In addition, soil modeling accuracy is presented by comparing vertical penetrometer impact tests with computer simulations for the soil model used during the swing tests.

  13. Impact Deformation of Thin-Walled Circular Tube Filled with Aluminum Foam in Lateral Compression

    NASA Astrophysics Data System (ADS)

    Kobayashi, Hidetoshi; Horikawa, Keitaro; Ogawa, Kinya; Hori, Masahiro

    In this study, the impact deformation of thin-walled circular tubes filled with aluminum foam in lateral compression was investigated using a special load cell for long time measurement and a high-speed video camera to check the displacement of specimens. It was found that the absorbed energy up to the deformation of 60% of the specimen diameter obtained from impact tests is greater than that obtained in static tests, because of strain rate dependency of aluminum foam. The loaddisplacement curve of circular tubes with aluminum foam just inserted was consistent with the sum of the curves individually obtained. In both dynamic and static tests, however, the load of the tube with the foam inserted and glued by adhesive resin became larger than the sum of the individual loads, because of the interaction between circular tubes and aluminum foam cores.

  14. Landing impact studies of a 0.3-scale model air cushion landing system for a Navy fighter airplane

    NASA Technical Reports Server (NTRS)

    Leland, T. J. W.; Thompson, W. C.

    1975-01-01

    An experimental study was conducted in order to determine the landing-impact behavior of a 0.3-scale, dynamically (but not physically) similar model of a high-density Navy fighter equipped with an air cushion landing system. The model was tested over a range of landing contact attitudes at high forward speeds and sink rates on a specialized test fixture at the Langley aircraft landing loads and traction facility. The investigation indicated that vertical acceleration at landing impact was highly dependent on the pitch angle at ground contact, the higher acceleration of approximately 5g occurring near zero body-pitch attitude. A limited number of low-speed taxi tests were made in order to determine model stability characteristics. The model was found to have good pitch-damping characteristics but stability in roll was marginal.

  15. High Energy Wide Area Blunt Impact on Composite Aircraft Structures

    NASA Astrophysics Data System (ADS)

    DeFrancisci, Gabriela K.

    The largest source of damage to commercial aircraft is caused by accidental contact with ground service equipment (GSE). The cylindrical bumper typically found on GSE distributes the impact load over a large contact area, possibly spanning multiple internal structural elements (frame bays) of a stiffened-skin fuselage. This type of impact can lead to damage that is widespread and difficult to detect visually. To address this problem, monolithic composite panels of various size and complexity have been modeled and tested quasi-statically and dynamically. The experimental observations have established that detectability is dependent on the impact location and immediately-adjacent internal structure of the panel, as well as the impactor geometry and total deformation of the panel. A methodology to model and predict damage caused by wide area blunt impact events was established, which was then applied to more general cases that were not tested in order to better understand the nature of this type of impact event and how it relates to the final damage state and visual detectability.

  16. High-Speed Photographic Study of Wave Propagation and Impact Damage in Fused Silica and AlON Using the Edge-On Impact (EOI) Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strassburger, E.; Patel, P.; McCauley, J. W.

    An Edge-on Impact (EOI) technique, developed at the Ernst-Mach-Institute (EMI), coupled with a Cranz-Schardin high-speed camera, has been successfully utilized to visualize dynamic fracture in many brittle materials. In a typical test, the projectile strikes one edge of a specimen and damage formation and fracture propagation is recorded during the first 20 {mu}s after impact. In the present study, stress waves and damage propagation in fused silica and AlON were examined by means of two modified Edge-on Impact arrangements. In one arrangement, fracture propagation was observed simultaneously in side and top views of the specimens by means of two Cranz-Schardinmore » cameras. In another arrangement, the photographic technique was modified by placing the specimen between crossed polarizers and using the photo-elastic effect to visualize the stress waves. Pairs of impact tests at approximately equivalent velocities were carried out in transmitted plane (shadowgraphs) and crossed polarized light.« less

  17. Occupant Responses in a Full-Scale Crash Test of the Sikorsky ACAP Helicopter

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Fasanella, Edwin L.; Boitnott, Richard L.; McEntire, Joseph; Lewis, Alan

    2002-01-01

    A full-scale crash test of the Sikorsky Advanced Composite Airframe Program (ACAP) helicopter was performed in 1999 to generate experimental data for correlation with a crash simulation developed using an explicit nonlinear, transient dynamic finite element code. The airframe was the residual flight test hardware from the ACAP program. For the test, the aircraft was outfitted with two crew and two troop seats, and four anthropomorphic test dummies. While the results of the impact test and crash simulation have been documented fairly extensively in the literature, the focus of this paper is to present the detailed occupant response data obtained from the crash test and to correlate the results with injury prediction models. These injury models include the Dynamic Response Index (DRI), the Head Injury Criteria (HIC), the spinal load requirement defined in FAR Part 27.562(c), and a comparison of the duration and magnitude of the occupant vertical acceleration responses with the Eiband whole-body acceleration tolerance curve.

  18. Dynamic Load Measurement of Ballistic Gelatin Impact Using an Instrumented Tube

    NASA Technical Reports Server (NTRS)

    Seidt, J. D.; Periira, J. M.; Hammer, J. T.; Gilat, A.; Ruggeri, C. R.

    2012-01-01

    Bird strikes are a common problem for the aerospace industry and can cause serious damage to an aircraft. Ballistic gelatin is frequently used as a surrogate for actual bird carcasses in bird strike tests. Numerical simulations of these tests are used to supplement experimental data, therefore it is necessary to use numerical modeling techniques that can accurately capture the dynamic response of ballistic gelatin. An experimental technique is introduced to validate these modeling techniques. A ballistic gelatin projectile is fired into a strike plate attached to a 36 in. long sensor tube. Dynamic load is measured at two locations relative to the strike plate using strain gages configured in a full Wheatstone bridge. Data from these experiments are used to validate a gelatin constitutive model. Simulations of the apparatus are analyzed to investigate its performance.

  19. A Structural Equation Model (SEM) of the Impact of Transformational, Visionary, Charismatic and Ethical Leadership Styles on the Development of Wise Leadership among Filipino Private Secondary School Principals

    ERIC Educational Resources Information Center

    Parco-Tropicales, Marishirl; de Guzman, Allan B.

    2014-01-01

    In recent years, wisdom is seen as a key resource for school leaders in dealing with the dynamics of the changing school environments. This study purports to expand the growing interest on wisdom by testing a model that describes the impact of transformational, visionary, charismatic and ethical leadership styles on wise leadership development…

  20. Assessment of Climate Impact Changes on Forest Vegetation Dynamics by Satellite Remote Sensing

    NASA Astrophysics Data System (ADS)

    Zoran, Maria

    Climate variability represents the ensemble of net radiation, precipitation, wind and temper-ature characteristic for a region in a certain time scale (e.g.monthly, seasonal annual). The temporal and/or spatial sensitivity of forest vegetation dynamics to climate variability is used to characterize the quantitative relationship between these two quantities in temporal and/or spatial scales. So, climate variability has a great impact on the forest vegetation dynamics. Forest vegetation phenology constitutes an efficient bio-indicator of climate and anthropogenic changes impacts and a key parameter for understanding and modelling vegetation-climate in-teractions. Satellite remote sensing is a very useful tool to assess the main phenological events based on tracking significant changes on temporal trajectories of Normalized Difference Vege-tation Index (NDVIs), which requires NDVI time-series with good time resolution, over homo-geneous area, cloud-free and not affected by atmospheric and geometric effects and variations in sensor characteristics (calibration, spectral responses). Spatio-temporal vegetation dynamics have been quantified as the total amount of vegetation (mean NDVI) and the seasonal difference (annual NDVI amplitude) by a time series analysis of NDVI satellite images with the Harmonic ANalysis of Time Series algorithm. A climate indicator (CI) was created from meteorological data (precipitation over net radiation). The relationships between the vegetation dynamics and the CI have been determined spatially and temporally. The driest test regions prove to be the most sensitive to climate impact. The spatial and temporal patterns of the mean NDVI are the same, while they are partially different for the seasonal difference. The aim of this paper was to quantify this impact over a forest ecosystem placed in the North-Eastern part of Bucharest town, Romania, with Normalized Difference Vegetation Index (NDVI) parameter extracted from IKONOS and LANDSAT TM and ETM satellite images and meteorological data over l995-2007 period. For investigated test area, considerable NDVI decline was observed between 1995 and 2008 due to the drought events during 2003 and 2007 years. Under stress conditions, it is evident that environmental factors such as soil type, parent material, and to-pography are not correlated with NDVI dynamics. Specific aim of this paper was to assess, forecast, and mitigate the risks of climatic changes on forest systems and its biodiversity as well as on adjacent environment areas and to provide early warning strategies on the basis of spectral information derived from satellite data regarding atmospheric effects of forest biome degradation . The paper aims to describe observed trends and potential impacts based on scenarios from simulations with regional climate models and other downscaling procedures.

  1. EFFECTS OF CLIMATE CHANGE ON WEATHER AND WATER

    EPA Science Inventory

    Information regarding weather and hydrological processes and how they may change in the future is available from a variety of dynamically downscaled climate models. Current studies are helping to improve the use of such models for regional climate impact studies by testing the s...

  2. Dynamic Open-Rotor Composite Shield Impact Test Report

    NASA Technical Reports Server (NTRS)

    Seng, Silvia; Frankenberger, Charles; Ruggeri, Charles R.; Revilock, Duane M.; Pereira, J. Michael; Carney, Kelly S.; Emmerling, William C.

    2015-01-01

    The Federal Aviation Administration (FAA) is working with the European Aviation Safety Agency to determine the certification base for proposed new engines that would not have a containment structure on large commercial aircraft. Equivalent safety to the current fleet is desired by the regulators, which means that loss of a single fan blade will not cause hazard to the aircraft. NASA Glenn and Naval Air Warfare Center (NAWC) China Lake collaborated with the FAA Aircraft Catastrophic Failure Prevention Program to design and test a shield that would protect the aircraft passengers and critical systems from a released blade that could impact the fuselage. This report documents the live-fire test from a full-scale rig at NAWC China Lake. NASA provided manpower and photogrammetry expertise to document the impact and damage to the shields. The test was successful: the blade was stopped from penetrating the shield, which validates the design analysis method and the parameters used in the analysis. Additional work is required to implement the shielding into the aircraft.

  3. The role of East Asian monsoon system in shaping population divergence and dynamics of a constructive desert shrub Reaumuria soongarica

    PubMed Central

    Yin, Hengxia; Yan, Xia; Shi, Yong; Qian, Chaoju; Li, Zhonghu; Zhang, Wen; Wang, Lirong; Li, Yi; Li, Xiaoze; Chen, Guoxiong; Li, Xinrong; Nevo, Eviatar; Ma, Xiao-Fei

    2015-01-01

    Both of the uplift of Qinghai-Tibet Plateau (QTP) and the development of East Asian monsoon system (EAMS) could have comprehensively impacted the formation and evolution of Arid Central Asia (ACA). To understand how desert plants endemic to ACA responded to these two factors, we profiled the historical population dynamics and distribution range shift of a constructive desert shrub Reaumuria soongarica (Tamaricaceae) based on species wide investigation of sequence variation of chloroplast DNA and nuclear ribosomal ITS. Phylogenetic analysis uncovered a deep divergence occurring at ca. 2.96 Mya between the western and eastern lineages of R. soongarica, and ecological niche modeling analysis strongly supported that the monsoonal climate could have fragmented its habitats in both glacial and interglacial periods and impelled its intraspecific divergence. Additionally, the population from the east monsoonal zone expanded rapidly, suggesting that the local monsoonal climate significantly impacted its population dynamics. The isolation by distance tests supported strong maternal gene flow along the direction of the East Asian winter monsoon, whose intensification induced the genetic admixture along the latitudinal populations of R. soongarica. Our results presented a new case that the development of EAMS had prominently impacted the intraspecific divergence and population dynamics of this desert plant. PMID:26510579

  4. Dynamic creation and evolution of gradient nanostructure in single-crystal metallic microcubes.

    PubMed

    Thevamaran, Ramathasan; Lawal, Olawale; Yazdi, Sadegh; Jeon, Seog-Jin; Lee, Jae-Hwang; Thomas, Edwin L

    2016-10-21

    We demonstrate the dynamic creation and subsequent static evolution of extreme gradient nanograined structures in initially near-defect-free single-crystal silver microcubes. Extreme nanostructural transformations are imposed by high strain rates, strain gradients, and recrystallization in high-velocity impacts of the microcubes against an impenetrable substrate. We synthesized the silver microcubes in a bottom-up seed-growth process and use an advanced laser-induced projectile impact testing apparatus to selectively launch them at supersonic velocities (~400 meters per second). Our study provides new insights into the fundamental deformation mechanisms and the effects of crystal and sample-shape symmetries resulting from high-velocity impacts. The nanostructural transformations produced in our experiments show promising pathways to developing gradient nanograined metals for engineering applications requiring both high strength and high toughness-for example, in structural components of aircraft and spacecraft. Copyright © 2016, American Association for the Advancement of Science.

  5. Structural response calculations for a reverse ballistics test of an earth penetrator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alves, D.F.; Goudreau, G.L.

    1976-08-01

    A dynamic response calculation has been performed on a half-scale earth penetrator to be tested on a reverse ballistics test in Aug. 1976. In this test a 14 in. dia sandstone target is fired at the EP at 1800 ft/sec at normal impact. Basically two types of calculations were made. The first utilized an axisymmetric, finite element code DTVIS2 in the dynamic mode and with materials having linear elastic properties. CRT's radial and axial force histories were smoothed to eliminate grid encounter frequency and applied to the nodal points along the nose of the penetrator. Given these inputs DTVIS2 thenmore » calculated the internal dynamic response. Secondly, SAP4, a structural analysis code, is utilized to calculate axial frequencies and mode shapes of the structure. A special one dimensional display facilitates interpretation of the mode shape. DTVIS2 and SAP4 use a common mesh description. Special considerations in the calculation are the assessment of the effect of gaps and preload and the internal axial sliding of components.« less

  6. Dynamic High-temperature Testing of an Iridium Alloy in Compression at High-strain Rates: Dynamic High-temperature Testing

    DOE PAGES

    Song, B.; Nelson, K.; Lipinski, R.; ...

    2014-08-21

    Iridium alloys have superior strength and ductility at elevated temperatures, making them useful as structural materials for certain high-temperature applications. However, experimental data on their high-strain -rate performance are needed for understanding high-speed impacts in severe environments. Kolsky bars (also called split Hopkinson bars) have been extensively employed for high-strain -rate characterization of materials at room temperature, but it has been challenging to adapt them for the measurement of dynamic properties at high temperatures. In our study, we analyzed the difficulties encountered in high-temperature Kolsky bar testing of thin iridium alloy specimens in compression. We made appropriate modifications using themore » current high-temperature Kolsky bar technique in order to obtain reliable compressive stress–strain response of an iridium alloy at high-strain rates (300–10 000 s -1) and temperatures (750 and 1030°C). The compressive stress–strain response of the iridium alloy showed significant sensitivity to both strain rate and temperature.« less

  7. Equations of motion of test particles for solving the spin-dependent Boltzmann–Vlasov equation

    DOE PAGES

    Xia, Yin; Xu, Jun; Li, Bao-An; ...

    2016-06-16

    A consistent derivation of the equations of motion (EOMs) of test particles for solving the spin-dependent Boltzmann–Vlasov equation is presented. The resulting EOMs in phase space are similar to the canonical equations in Hamiltonian dynamics, and the EOM of spin is the same as that in the Heisenburg picture of quantum mechanics. Considering further the quantum nature of spin and choosing the direction of total angular momentum in heavy-ion reactions as a reference of measuring nucleon spin, the EOMs of spin-up and spin-down nucleons are given separately. The key elements affecting the spin dynamics in heavy-ion collisions are identified. Themore » resulting EOMs provide a solid foundation for using the test-particle approach in studying spin dynamics in heavy-ion collisions at intermediate energies. Future comparisons of model simulations with experimental data will help to constrain the poorly known in-medium nucleon spin–orbit coupling relevant for understanding properties of rare isotopes and their astrophysical impacts.« less

  8. Influence of long-time stress relief treatments on the dynamic fracture toughness properties of ASME SA508 C1 2a and ASME SA533 GR B C12 pressure vessel steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Logsdon, W.A.

    1982-03-01

    Dynamic fracture toughness tests were performed on materials which had been subjected to one of three long-time post weld type stress relief heat treatments: 48 hours at 1000/degree/F (538/degree/C), 24 hours at 1125/degree/F (607/degree/C), and 48 hours at 1125/degree/F (607/degree/C). Linear elastic K/sub Id/ results were obtained at low temperatures while J-integral techniques were utilized to evaluate dynamic fracture toughness over the transition and upper shelf temperature ranges. Tensile, Charpy impact, and drop weight nil-ductility transition tests as well as room temperature, air environment fatigue crack growth rate tests (SA508 Cl 2a only) were also performed. The fracture toughness ofmore » both materials exceeded the ASME specified minimum reference toughness K/sub IR/ curve. 17 refs.« less

  9. Experimental Study and Numerical Modelling of Low Velocity Impact on Laminated Composite Reinforced with Thin Film Made of Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    El Moumen, A.; Tarfaoui, M.; Hassoon, O.; Lafdi, K.; Benyahia, H.; Nachtane, M.

    2018-04-01

    In this work, polymer laminated composites based on Epon 862 Epoxy resin, T300 6 k carbon fibers and carbon nanotubes (CNTs) were tested with the aim to elucidate the effect of CNTs on impact properties including impact force and capacity to absorb impact energy. The polymer matrix was reinforced by a random distribution of CNTs with fraction ranging from 0.5 to 4.wt%. Composite panels were manufactured by using the infusion process. Taylor impact test was used to obtain the impact response of specimens. Projectile manufactured from a high strength and hardened steel with a diameter of 20 mm and 1.5 kg of mass was launched by a compressed gas gun within the velocity of 3 m/s. Impact force histories and absorbed energy of specimens were recorded. A numerical model was employed to simulate the impact performance. This model has been accomplished by forming a user established subroutine (VUMAT) and executing it in ABAQUS software. Finally, the effect of CNTs amount on dynamic properties of laminated composites was discussed.

  10. Instrumentation and data acquisition for full-scale aircraft crash testing

    NASA Technical Reports Server (NTRS)

    Jones, Lisa E.; Fasanella, Edwin L.

    1993-01-01

    The Landing and Impact Dynamics Branch of the NASA Langley Research Center has been conducting full-scale aircraft crash tests since the 1970s. Using a pendulum method, aircraft are suspended by cables from a 240-ft high gantry and swung into the impact surface at various attitudes and velocities. Instrumentation for these tests include on-board high-speed cameras, strain gages, load cells, displacement transducers, and accelerometers. Transducers in the aircraft are hard-wired through a long umbilical cable to the data acquisition room. Up to 96 channels of data can be collected at a typical rate of 4000 samples per second. Data acquisition using an FM multiplexed analog system and a high-speed personal computer based digital system is described.

  11. Crash-test dummy and pendulum impact tests of ice hockey boards: greater displacement does not reduce impact

    PubMed Central

    Schmitt, Kai-Uwe; Muser, Markus H; Thueler, Hansjuerg; Bruegger, Othmar

    2018-01-01

    Background One injury mechanism in ice hockey is impact with the boards. We investigated whether more flexible hockey boards would provide less biomechanical loading on impact than did existing (reference) boards. Methods We conducted impact tests with a dynamic pendulum (mass 60 kg) and with crash test dummies (ES-2 dummy, 4.76 m/s impact speed). Outcomes were biomechanical loading experienced by a player in terms of head acceleration, impact force to the shoulder, spine, abdomen and pelvis as well as compression of the thorax. Results The more flexible board designs featured substantial displacement at impact. Some so-called flexible boards were displaced four times more than the reference board. The new boards possessed less stiffness and up to 90 kg less effective mass, reducing the portion of the board mass a player experienced on impact, compared with boards with a conventional design. Flexible boards resulted in a similar or reduced loading for all body regions, apart from the shoulder. The displacement of a board system did not correlate directly with the biomechanical loading. Conclusions Flexible board systems can reduce the loading of a player on impact. However, we found no correlation between the displacement and the biomechanical loading; accordingly, displacement alone was insufficient to characterise the overall loading of a player and thus the risk of injury associated with board impact. Ideally, the performance of boards is assessed on the basis of parameters that show a good correlation to injury risk. PMID:29084724

  12. Conifer ovulate cones accumulate pollen principally by simple impaction.

    PubMed

    Cresswell, James E; Henning, Kevin; Pennel, Christophe; Lahoubi, Mohamed; Patrick, Michael A; Young, Phillipe G; Tabor, Gavin R

    2007-11-13

    In many pine species (Family Pinaceae), ovulate cones structurally resemble a turbine, which has been widely interpreted as an adaptation for improving pollination by producing complex aerodynamic effects. We tested the turbine interpretation by quantifying patterns of pollen accumulation on ovulate cones in a wind tunnel and by using simulation models based on computational fluid dynamics. We used computer-aided design and computed tomography to create computational fluid dynamics model cones. We studied three species: Pinus radiata, Pinus sylvestris, and Cedrus libani. Irrespective of the approach or species studied, we found no evidence that turbine-like aerodynamics made a significant contribution to pollen accumulation, which instead occurred primarily by simple impaction. Consequently, we suggest alternative adaptive interpretations for the structure of ovulate cones.

  13. Conifer ovulate cones accumulate pollen principally by simple impaction

    PubMed Central

    Cresswell, James E.; Henning, Kevin; Pennel, Christophe; Lahoubi, Mohamed; Patrick, Michael A.; Young, Phillipe G.; Tabor, Gavin R.

    2007-01-01

    In many pine species (Family Pinaceae), ovulate cones structurally resemble a turbine, which has been widely interpreted as an adaptation for improving pollination by producing complex aerodynamic effects. We tested the turbine interpretation by quantifying patterns of pollen accumulation on ovulate cones in a wind tunnel and by using simulation models based on computational fluid dynamics. We used computer-aided design and computed tomography to create computational fluid dynamics model cones. We studied three species: Pinus radiata, Pinus sylvestris, and Cedrus libani. Irrespective of the approach or species studied, we found no evidence that turbine-like aerodynamics made a significant contribution to pollen accumulation, which instead occurred primarily by simple impaction. Consequently, we suggest alternative adaptive interpretations for the structure of ovulate cones. PMID:17986613

  14. Low temperature impact toughness of the main gas pipeline steel after long-term degradation

    NASA Astrophysics Data System (ADS)

    Maruschak, Pavlo O.; Danyliuk, Iryna M.; Bishchak, Roman T.; Vuherer, Tomaž

    2014-12-01

    The correlation of microstructure, temperature and Charpy V-notch impact properties of a steel 17G1S pipeline steel was investigated in this study. Within the concept of physical mesomechanics, the dynamic failure of specimens is represented as a successive process of the loss of shear stability, which takes place at different structural/scale levels of the material. Characteristic stages are analyzed for various modes of failure, moreover, typical levels of loading and oscillation periods, etc. are determined. Relations between low temperature derived through this test, microstructures and Charpy (V-notch) toughness test results are also discussed in this paper.

  15. HIV risk, partner violence, and relationship power among Filipino young women: testing a structural model.

    PubMed

    Lucea, Marguerite B; Hindin, Michelle J; Kub, Joan; Campbell, Jacquelyn C

    2012-01-01

    A person's ability to minimize HIV risk is embedded in a complex, multidimensional context. In this study, we tested a model of how relationship power impacts IPV victimization, which in turn impacts HIV risk behaviors. We analyzed data from 474 young adult women (aged 15-31) in Cebu Province, Philippines, using structural equation modeling, and demonstrated good fit for the models. High relationship power is directly associated with increased IPV victimization, and IPV victimization is positively associated with increased HIV risk. We highlight in this article the complex dynamics to consider in HIV risk prevention among these young women.

  16. HIV Risk, Partner Violence, and Relationship Power Among Filipino Young Women: Testing a Structural Model

    PubMed Central

    LUCEA, MARGUERITE B.; HINDIN, MICHELLE J.; KUB, JOAN; CAMPBELL, JACQUELYN C.

    2012-01-01

    A person’s ability to minimize HIV risk is embedded in a complex, multidimensional context. In this study, we tested a model of how relationship power impacts IPV victimization, which in turn impacts HIV risk behaviors. We analyzed data from 474 young adult women (aged 15–31) in Cebu Province, Philippines, using structural equation modeling, and demonstrated good fit for the models. High relationship power is directly associated with increased IPV victimization, and IPV victimization is positively associated with increased HIV risk. We highlight in this article the complex dynamics to consider in HIV risk prevention among these young women. PMID:22420674

  17. A prototypic mathematical model of the human hair cycle.

    PubMed

    Al-Nuaimi, Yusur; Goodfellow, Marc; Paus, Ralf; Baier, Gerold

    2012-10-07

    The human hair cycle is a complex, dynamic organ-transformation process during which the hair follicle repetitively progresses from a growth phase (anagen) to a rapid apoptosis-driven involution (catagen) and finally a relative quiescent phase (telogen) before returning to anagen. At present no theory satisfactorily explains the origin of the hair cycle rhythm. Based on experimental evidence we propose a prototypic model that focuses on the dynamics of hair matrix keratinocytes. We argue that a plausible feedback-control structure between two key compartments (matrix keratinocytes and dermal papilla) leads to dynamic instabilities in the population dynamics resulting in rhythmic hair growth. The underlying oscillation consists of an autonomous switching between two quasi-steady states. Additional features of the model, namely bistability and excitability, lead to new hypotheses about the impact of interventions on hair growth. We show how in silico testing may facilitate testing of candidate hair growth modulatory agents in human HF organ culture or in clinical trials. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Acoustic fatigue and sound transmission characteristics of a ram composite panel design

    NASA Technical Reports Server (NTRS)

    Cockburn, J. A.; Chang, K. Y.; Kao, G. C.

    1972-01-01

    An experimental study to determine the acoustic fatigue characteristics of a flat multi-layered structural panel is described. The test panel represented a proposed design for the outer skin of a research application module to be housed within the space shuttle orbiter vehicle. The test specimen was mounted in one wall of the Wyle 100,000 cu ft reverberation room and exposed to a broadband acoustic environment having an overall level of 145 db. The test panel was exposed to nine separate applications of the acoustic environment, each application consisting of 250 seconds duration. Upon completion of the ninth test run, the specimen was exposed to a simulated micrometeoroid impact near the panel center. One additional test run of 250 seconds duration was then performed to complete the overall simulation of 50 flight missions. The experimental results show that no significant fatigue damage occurred until the test specimen was exposed to a simulated micrometeoroid impact. The intermediate foam layer forming the core of the test specimen suffered considerable damage due to this impact, causing a marked variation in the dynamic characteristics of the overall test panel. During the final application of the acoustic environment, the strain and acceleration response spectra showed considerable variation from those spectra obtained prior to impact of the panel. Fatigue damage from acoustic loading however, was limited to partial de-bonding around the edges of the composite panel.

  19. Continuum Damage Modeling for Dynamic Fracture Toughness of Metal Matrix Composites

    NASA Astrophysics Data System (ADS)

    Lee, Intaek; Ochi, Yasuo; Bae, Sungin; Song, Jungil

    Short fiber reinforced metal-matrix composites (MMCs) have widely adopted as structural materials and many experimental researches have been performed to study fracture toughness of it. Fracture toughness is often referred as the plane strain(maximum constraint) fracture toughness KIc determined by the well-established standard test method, such as ASTM E399. But the application for dynamic fracture toughness KId has not been popular yet, because of reliance in capturing the crack propagating time. This paper deals with dynamic fracture toughness testing and simulation using finite element method to evaluate fracture behaviors of MMCs manufactured by squeeze casting process when material combination is varied with the type of reinforcement (appearance, size), volume fraction and combination of reinforcements, and the matrix alloy. The instrumented Charphy impact test was used for KId determination and continuum damage model embedded in commercial FE program is used to investigate the dynamic fracture toughness with the influence of elasto-visco-plastic constitutive relation of quasi-brittle fracture that is typical examples of ceramics and some fibre reinforced composites. With Compared results between experimental method and FE simulation, the determination process for KId is presented. FE simulation coupled with continuum damage model is emphasized single shot simulation can predict the dynamic fracture toughness, KId and real time evolution of that directly.

  20. Development of monofilar rotor hub vibration absorber

    NASA Technical Reports Server (NTRS)

    Duh, J.; Miao, W.

    1983-01-01

    A design and ground test program was conducted to study the performance of the monofilar absorber for vibration reduction on a four-bladed helicopter. A monofilar is a centrifugal tuned two degree-of-freedom rotor hub absorber that provides force attenuation at two frequencies using the same dynamic mass. Linear and non-linear analyses of the coupled monofilar/airframe system were developed to study tuning and attenuation characteristics. Based on the analysis, a design was fabricated and impact bench tests verified the calculated non-rotating natural frequencies and mode shapes. Performance characteristics were measured using a rotating absorber test facility. These tests showed significant attenuation of fixed-system 4P hub motions due to 3P inplane rotating-system hub forces. In addition, detuning effects of the 3P monofilar modal response were small due to the nonlinearities and tuning pin slippage. However, attenuation of 4P hub motions due to 5P inplane hub forces was poor. The performance of the 5P monofilar modal response was degraded by torsional motion of the dynamic mass relative to the support arm which resulted in binding of the dynamic components. Analytical design studies were performed to evaluate this torsional motion problem. An alternative design is proposed which may alleviate the torsional motion of the dynamic mass.

  1. Use of thin plastic films at cryogenic temperatures

    NASA Technical Reports Server (NTRS)

    Lark, R. F.; Hoggatt, J. T.; Wiedekamp, K. E.; Shdo, J. G.

    1972-01-01

    Commercially available plastic film materials that remain flexible at cryogenic temperatures and resist failures caused by folds and wrinkles created during expulsion were investigated for use in expulsion bladders for liquefied gases. Compatible adhesive systems, fabrication techniques, and results of impact and dynamic loading tests are summarized.

  2. Three-Dimensional, Inelastic Response of Single-Edge Notch Bend Specimens Subjected to Impact Loading

    DTIC Science & Technology

    1993-08-01

    measure the inherent fracture toughness of a material. A thor- ough understanding of the test specimen behavior is a prerequisite to the application of...measured material properties in structural applications . Three- dimensional dynamic analyses are performed for three different specimen configurations...derstanding of the test specimen behavior is a prerequisite to the application of measured ma- terial properties in structural applications . Three

  3. Benchmark model correction of monitoring system based on Dynamic Load Test of Bridge

    NASA Astrophysics Data System (ADS)

    Shi, Jing-xian; Fan, Jiang

    2018-03-01

    Structural health monitoring (SHM) is a field of research in the area, and it’s designed to achieve bridge safety and reliability assessment, which needs to be carried out on the basis of the accurate simulation of the finite element model. Bridge finite element model is simplified of the structural section form, support conditions, material properties and boundary condition, which is based on the design and construction drawings, and it gets the calculation models and the results.But according to the design and specification requirements established finite element model due to its cannot fully reflect the true state of the bridge, so need to modify the finite element model to obtain the more accurate finite element model. Based on Da-guan river crossing of Ma - Zhao highway in Yunnan province as the background to do the dynamic load test test, we find that the impact coefficient of the theoretical model of the bridge is very different from the coefficient of the actual test, and the change is different; according to the actual situation, the calculation model is adjusted to get the correct frequency of the bridge, the revised impact coefficient found that the modified finite element model is closer to the real state, and provides the basis for the correction of the finite model.

  4. A History of Full-Scale Aircraft and Rotorcraft Crash Testing and Simulation at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Boitnott, Richard L.; Fasanella, Edwin L.; Jones, Lisa E.; Lyle, Karen H.

    2004-01-01

    This paper summarizes 2-1/2 decades of full-scale aircraft and rotorcraft crash testing performed at the Impact Dynamics Research Facility (IDRF) located at NASA Langley Research Center in Hampton, Virginia. The IDRF is a 240-ft.-high steel gantry that was built originally as a lunar landing simulator facility in the early 1960's. It was converted into a full-scale crash test facility for light aircraft and rotorcraft in the early 1970 s. Since the first full-scale crash test was preformed in February 1974, the IDRF has been used to conduct: 41 full-scale crash tests of General Aviation (GA) aircraft including landmark studies to establish baseline crash performance data for metallic and composite GA aircraft; 11 full-scale crash tests of helicopters including crash qualification tests of the Bell and Sikorsky Advanced Composite Airframe Program (ACAP) prototypes; 48 Wire Strike Protection System (WSPS) qualification tests of Army helicopters; 3 vertical drop tests of Boeing 707 transport aircraft fuselage sections; and, 60+ crash tests of the F-111 crew escape module. For some of these tests, nonlinear transient dynamic codes were utilized to simulate the impact response of the airframe. These simulations were performed to evaluate the capabilities of the analytical tools, as well as to validate the models through test-analysis correlation. In September 2003, NASA Langley closed the IDRF facility and plans are underway to demolish it in 2007. Consequently, it is important to document the contributions made to improve the crashworthiness of light aircraft and rotorcraft achieved through full-scale crash testing and simulation at the IDRF.

  5. A centric/non-centric impact protocol and finite element model methodology for the evaluation of American football helmets to evaluate risk of concussion.

    PubMed

    Post, Andrew; Oeur, Anna; Walsh, Evan; Hoshizaki, Blaine; Gilchrist, Michael D

    2014-01-01

    American football reports high incidences of head injuries, in particular, concussion. Research has described concussion as primarily a rotation dominant injury affecting the diffuse areas of brain tissue. Current standards do not measure how helmets manage rotational acceleration or how acceleration loading curves influence brain deformation from an impact and thus are missing important information in terms of how concussions occur. The purpose of this study was to investigate a proposed three-dimensional impact protocol for use in evaluating football helmets. The dynamic responses resulting from centric and non-centric impact conditions were examined to ascertain the influence they have on brain deformations in different functional regions of the brain that are linked to concussive symptoms. A centric and non-centric protocol was used to impact an American football helmet; the resulting dynamic response data was used in conjunction with a three-dimensional finite element analysis of the human brain to calculate brain tissue deformation. The direction of impact created unique loading conditions, resulting in peaks in different regions of the brain associated with concussive symptoms. The linear and rotational accelerations were not predictive of the brain deformation metrics used in this study. In conclusion, the test protocol used in this study revealed that impact conditions influences the region of loading in functional regions of brain tissue that are associated with the symptoms of concussion. The protocol also demonstrated that using brain deformation metrics may be more appropriate when evaluating risk of concussion than using dynamic response data alone.

  6. Simulation of Foam Impact Effects on Components of the Space Shuttle Thermal Protection System. Chapter 7

    NASA Technical Reports Server (NTRS)

    Fahrenthold, Eric P.; Park, Young-Keun

    2004-01-01

    A series of three dimensional simulations has been performed to investigate analytically the effect of insulating foam impacts on ceramic tile and reinforced carbon-carbon components of the Space Shuttle thermal protection system. The simulations employed a hybrid particle-finite element method and a parallel code developed for use in spacecraft design applications. The conclusions suggested by the numerical study are in general consistent with experiment. The results emphasize the need for additional material testing work on the dynamic mechanical response of thermal protection system materials, and additional impact experiments for use in validating computational models of impact effects.

  7. Water walking - an evolution of water surface skipping

    NASA Astrophysics Data System (ADS)

    Hurd, Randy; Belden, Jesse; Jandron, Michael; Bower, Allan; Holekamp, Sean; Truscott, Tadd

    2017-11-01

    Previous work has shown that elastomeric spheres skip more easily than disk-shaped stones. This is due to increased lift stemming from sphere deformation, which provides an increased cross-sectional area and favorable attack angle upon impact. We extend lift models developed for individual impacts to long-range multiple impact events and compare the estimates to experimental results, which show good agreement. Additionally, a surprising new mode of skipping is observed that resembles water-walking, wherein a quickly rotating sphere produces small successive impacts allowing it to move parallel to the water surface. The dynamics of this new multiple skip behavior are rationalized analytically and tested experimentally.

  8. Non-Invasive Tension Measurement Devices for Parachute Cordage

    NASA Technical Reports Server (NTRS)

    Litteken, Douglas A.; Daum, Jared S.

    2016-01-01

    The need for lightweight and non-intrusive tension measurements has arisen alongside the development of high-fidelity computer models of textile and fluid dynamics. In order to validate these computer models, data must be gathered in the operational environment without altering the design, construction, or performance of the test article. Current measurement device designs rely on severing a cord and breaking the load path to introduce a load cell. These load cells are very reliable, but introduce an area of high stiffness in the load path, directly affecting the structural response, adding excessive weight, and possibly altering the dynamics of the parachute during a test. To capture the required data for analysis validation without affecting the response of the system, non-invasive measurement devices have been developed and tested by NASA. These tension measurement devices offer minimal impact to the mass, form, fit, and function of the test article, while providing reliable, axial tension measurements for parachute cordage.

  9. Development of a primary standard for dynamic pressure based on drop weight method covering a range of 10 MPa-400 MPa

    NASA Astrophysics Data System (ADS)

    Salminen, J.; Högström, R.; Saxholm, S.; Lakka, A.; Riski, K.; Heinonen, M.

    2018-04-01

    In this paper we present the development of a primary standard for dynamic pressures that is based on the drop weight method. At the moment dynamic pressure transducers are typically calibrated using reference transducers, which are calibrated against static pressure standards. Because dynamic and static characteristics of pressure transducers may significantly differ from each other, it is important that these transducers are calibrated against dynamic pressure standards. In a method developed in VTT Technical Research Centre of Finland Ltd, Centre for Metrology MIKES, a pressure pulse is generated by impact between a dropping weight and a piston of a liquid-filled piston-cylinder assembly. The traceability to SI-units is realized through interferometric measurement of the acceleration of the dropping weight during impact, the effective area of the piston-cylinder assembly and the mass of the weight. Based on experimental validation and an uncertainty evaluation, the developed primary standard provides traceability for peak pressures in the range from 10 MPa to 400 MPa with a few millisecond pulse width and a typical relative expanded uncertainty (k  =  2) of 1.5%. The performance of the primary standard is demonstrated by test calibrations of two dynamic pressure transducers.

  10. Infections on the move: how transient phases of host movement influence disease spread

    PubMed Central

    Fenton, A.; Dell, A. I.

    2017-01-01

    Animal movement impacts the spread of human and wildlife diseases, and there is significant interest in understanding the role of migrations, biological invasions and other wildlife movements in spatial infection dynamics. However, the influence of processes acting on infections during transient phases of host movement is poorly understood. We propose a conceptual framework that explicitly considers infection dynamics during transient phases of host movement to better predict infection spread through spatial host networks. Accounting for host transient movement captures key processes that occur while hosts move between locations, which together determine the rate at which hosts spread infections through networks. We review theoretical and empirical studies of host movement and infection spread, highlighting the multiple factors that impact the infection status of hosts. We then outline characteristics of hosts, parasites and the environment that influence these dynamics. Recent technological advances provide disease ecologists unprecedented ability to track the fine-scale movement of organisms. These, in conjunction with experimental testing of the factors driving infection dynamics during host movement, can inform models of infection spread based on constituent biological processes. PMID:29263283

  11. Assessing sustainability in real urban systems: the Greater Cincinnati Metropolitan Area in Ohio, Kentucky, and Indiana.

    PubMed

    Gonzalez-Mejía, Alejandra M; Eason, Tarsha N; Cabezas, Heriberto; Suidan, Makram T

    2012-09-04

    Urban systems have a number of factors (i.e., economic, social, and environmental) that can potentially impact growth, change, and transition. As such, assessing and managing these systems is a complex challenge. While, tracking trends of key variables may provide some insight, identifying the critical characteristics that truly impact the dynamic behavior of these systems is difficult. As an integrated approach to evaluate real urban systems, this work contributes to the research on scientific techniques for assessing sustainability. Specifically, it proposes a practical methodology based on the estimation of dynamic order, for identifying stable and unstable periods of sustainable or unsustainable trends with Fisher Information (FI) metric. As a test case, the dynamic behavior of the City, Suburbs, and Metropolitan Statistical Area (MSA) of Cincinnati was evaluated by using 29 social and 11 economic variables to characterize each system from 1970 to 2009. Air quality variables were also selected to describe the MSA's environmental component (1980-2009). Results indicate systems dynamic started to change from about 1995 for the social variables and about 2000 for the economic and environmental characteristics.

  12. Failure mechanism of coated biomaterials under high impact-sliding contact stresses

    NASA Astrophysics Data System (ADS)

    Chen, Ying

    This study uses a newly developed testing method--- inclined cyclic impact-sliding test to investigate the failure behaviors of different types of biomaterials, (SS316L, Ti6Al4V and CoCr) coated by different coatings (TiN, DLC and PEO), under extremely high dynamic contact stress conditions. This test method can simulate the combined impact and sliding/rolling loading conditions, which is very practical in many aspects of commercial usages. During the tests, fatigue cracking, chipping, peeling and material transferring were observed in damaged area. This research is mainly focused on the failure behaviors of load-bearing materials which cyclic impacting and sliding are always involved. This purpose was accomplished in the three stages: First, impact-sliding test was carried out on TiN coated unhardened M2. It was found that soft substrate can cause early failure of coating due to the considerable plastic deformation in the substrate. In this case, stronger substrate is required to support coating better when tested under high contact stresses. Second, PEO coated Ti-6Al-4V was tested under pure sliding and impact-sliding wear conditions. PEO coating was found not strong enough to afford the high contact pressure under cyclic impact-sliding wear test due to its porous surface structure. However, the wear performance of PEO coating was enhanced due to the sub-stoichiometric oxide. To sum up, for load-bearing biomedical implants involved in high impacting movement, PEO coating may not be a promising surface protection. Third, the dense, smooth PVD/CVD bio-inert coatings were reconsidered. DLC and TiN coatings, combined by different substrates together with different interface materials were tested under the cyclic impact-sliding test using a set of proper loading. The results show that to choose a proper combination of coating, interface and substrate based on their mechanical properties is of great importance under the test condition. Hard substrates provide support to coating better and a ductile and adhesive interface layer can delay the cracked coating from peeled-off.

  13. Robust Flutter Analysis for Aeroservoelastic Systems

    NASA Astrophysics Data System (ADS)

    Kotikalpudi, Aditya

    The dynamics of a flexible air vehicle are typically described using an aeroservoelastic model which accounts for interaction between aerodynamics, structural dynamics, rigid body dynamics and control laws. These subsystems can be individually modeled using a theoretical approach and experimental data from various ground tests can be combined into them. For instance, a combination of linear finite element modeling and data from ground vibration tests may be used to obtain a validated structural model. Similarly, an aerodynamic model can be obtained using computational fluid dynamics or simple panel methods and partially updated using limited data from wind tunnel tests. In all cases, the models obtained for these subsystems have a degree of uncertainty owing to inherent assumptions in the theory and errors in experimental data. Suitable uncertain models that account for these uncertainties can be built to study the impact of these modeling errors on the ability to predict dynamic instabilities known as flutter. This thesis addresses the methods used for modeling rigid body dynamics, structural dynamics and unsteady aerodynamics of a blended wing design called the Body Freedom Flutter vehicle. It discusses the procedure used to incorporate data from a wide range of ground based experiments in the form of model uncertainties within these subsystems. Finally, it provides the mathematical tools for carrying out flutter analysis and sensitivity analysis which account for these model uncertainties. These analyses are carried out for both open loop and controller in the loop (closed loop) cases.

  14. Dynamic Behavior and Optimization of Advanced Armor Ceramics: January-December 2012 Annual Report

    DTIC Science & Technology

    2015-03-01

    tasks are reviewed: Nanostructured Armor Ceramics: Focus on Boron Carbide; The Role of Microstructure in the Impact Resistance for Silicon Carbide...Task 2: The Role of Microstructure in the Impact Resistance for Silicon Carbide (SiC), Core Program 22 3.1 Long-Range Goals 22 3.2 Background 22 3.3...from a 2-gr drop test using corn starch as a C source; D(0.9) = 1.27 μm ....................................................................12 Fig

  15. Dynamic Testing of Laterally Confined Concrete

    DTIC Science & Technology

    1990-09-01

    for Intermediate Confining pressure (Dashed Curve). 31 23. Example of Regression Fit by Equation (6) for Highest Pressure Group (Dashed Curve... pressure group , loaded by a moderate striker-bar impact speed of 420 in/sec. (10.7 m/s). The peak stress of 124 MPa (18 ksi) occurs at a strain of...survived at one end. This was for the highest speed impact in the lowest confining pressure group . Curves are given in the Appendix Figure A-15. The

  16. Focused and Corrective Feedback Versus Structured and Supported Debriefing in a Simulation-Based Cardiac Arrest Team Training: A Pilot Randomized Controlled Study.

    PubMed

    Kim, Ji-Hoon; Kim, Young-Min; Park, Seong Heui; Ju, Eun A; Choi, Se Min; Hong, Tai Yong

    2017-06-01

    The aim of the study was to compare the educational impact of two postsimulation debriefing methods-focused and corrective feedback (FCF) versus Structured and Supported Debriefing (SSD)-on team dynamics in simulation-based cardiac arrest team training. This was a pilot randomized controlled study conducted at a simulation center. Fourth-year medical students were randomly assigned to the FCF or SSD group, with each team composed of six students and a confederate. Each team participated in two simulations and the assigned debriefing (FCF or SSD) sessions and then underwent a test simulation. Two trained raters blindly assessed all of the recorded simulations using checklists. The primary outcome was the improvement in team dynamics scores between baseline and test simulation. The secondary outcomes were improvements before and after training in team clinical performance scores, self-assessed comprehension of and confidence in cardiac arrest management and team dynamics, as well as evaluations of the postsimulation debriefing intervention. In total, 95 students participated [FCF (8 teams, n = 47) and SSD (8 teams, n = 48)]. The SSD team dynamics score during the test simulation was higher than at baseline [baseline: 74.5 (65.9-80.9), test: 85.0 (71.9-87.6), P = 0.035]. However, there were no differences in the improvement in the team dynamics or team clinical performance scores between the two groups (P = 0.328, respectively). There was no significant difference in improvement in team dynamics scores during the test simulation compared with baseline between the SSD and FCF groups in a simulation-based cardiac arrest team training in fourth-year Korean medical students.

  17. Laser-induced Microparticle Impact Experiments on Soft Materials

    NASA Astrophysics Data System (ADS)

    Kooi, Steven; Veysset, David; Maznev, Alexei; Yang, Yun Jung; Olsen, Bradley; Nelson, Keith

    High-velocity impact testing is used to study fundamental aspects of materials behavior under high strain rates as well as in applications ranging from armor testing to the development of novel drug delivery platforms. In this work, we study high-velocity impact of micron-size projectiles on soft viscoelastic materials including synthetic hydrogels and gelatin samples. In an all optical laser-induced projectile impact test (LIPIT), a monolayer of microparticles is placed on a transparent substrate coated with a laser absorbing polymer layer. Ablation of a laser-irradiated polymer region accelerates the microparticles which are ejected from the launching pad into free space, reaching controllable speeds up to 1.5 km/s depending on the laser pulse energy and particle characteristics. The particles are monitored while in free space and after impact on the target surface with an ultrahigh-speed multi-frame camera that can record up to 16 images with time resolution of each frame as short as 3 ns. We present images and movies capturing individual particle impact and penetration in gels, and discuss the observed dynamics in the case of high Reynolds and Weber numbers. The results can provide direct input for modeling of high-velocity impact responses and high strain rate deformation in gels and other soft materials..

  18. A Change Impact Analysis to Characterize Evolving Program Behaviors

    NASA Technical Reports Server (NTRS)

    Rungta, Neha Shyam; Person, Suzette; Branchaud, Joshua

    2012-01-01

    Change impact analysis techniques estimate the potential effects of changes made to software. Directed Incremental Symbolic Execution (DiSE) is an intraprocedural technique for characterizing the impact of software changes on program behaviors. DiSE first estimates the impact of the changes on the source code using program slicing techniques, and then uses the impact sets to guide symbolic execution to generate path conditions that characterize impacted program behaviors. DiSE, however, cannot reason about the flow of impact between methods and will fail to generate path conditions for certain impacted program behaviors. In this work, we present iDiSE, an extension to DiSE that performs an interprocedural analysis. iDiSE combines static and dynamic calling context information to efficiently generate impacted program behaviors across calling contexts. Information about impacted program behaviors is useful for testing, verification, and debugging of evolving programs. We present a case-study of our implementation of the iDiSE algorithm to demonstrate its efficiency at computing impacted program behaviors. Traditional notions of coverage are insufficient for characterizing the testing efforts used to validate evolving program behaviors because they do not take into account the impact of changes to the code. In this work we present novel definitions of impacted coverage metrics that are useful for evaluating the testing effort required to test evolving programs. We then describe how the notions of impacted coverage can be used to configure techniques such as DiSE and iDiSE in order to support regression testing related tasks. We also discuss how DiSE and iDiSE can be configured for debugging finding the root cause of errors introduced by changes made to the code. In our empirical evaluation we demonstrate that the configurations of DiSE and iDiSE can be used to support various software maintenance tasks

  19. Fluid-structural dynamics of ground-based and microgravity caloric tests

    NASA Technical Reports Server (NTRS)

    Kassemi, M.; Oas, J. G.; Deserranno, Dimitri

    2005-01-01

    Microgravity caloric tests aboard the 1983 SpaceLab1 mission produced nystagmus results with an intensity comparable to those elicited during post- and pre- flight tests, thus contradicting the basic premise of Barany's convection hypothesis for caloric stimulation. In this work, we present a dynamic fluid structural analysis of the caloric stimulation of the lateral semicircular canal based on two simultaneous driving forces for the endolymphatic flow: natural convection driven by the temperature-dependent density variation in the bulk fluid and expansive convection caused by direct volumetric displacement of the endolymph during the thermal irrigation. Direct numerical simulations indicate that on earth, the natural convection mechanism is dominant. But in the microgravity environment of orbiting spacecraft, where buoyancy effects are mitigated, expansive convection becomes the sole mechanism for producing cupular displacement. A series of transient 1 g and microgravity case studies are presented to delineate the differences between the dynamics of the 1 g and microgravity endolymphatic flows. The impact of these different flow dynamics on the endolymph-cupula fluid-structural interactions is also analyzed based on the time evolutions of cupular displacement and velocity and the transcupular pressure differences.

  20. Fluid-structural dynamics of ground-based and microgravity caloric tests.

    PubMed

    Kassemi, M; Oas, J G; Deserranno, Dimitri

    2005-01-01

    Microgravity caloric tests aboard the 1983 SpaceLab1 mission produced nystagmus results with an intensity comparable to those elicited during post- and pre- flight tests, thus contradicting the basic premise of Barany's convection hypothesis for caloric stimulation. In this work, we present a dynamic fluid structural analysis of the caloric stimulation of the lateral semicircular canal based on two simultaneous driving forces for the endolymphatic flow: natural convection driven by the temperature-dependent density variation in the bulk fluid and expansive convection caused by direct volumetric displacement of the endolymph during the thermal irrigation. Direct numerical simulations indicate that on earth, the natural convection mechanism is dominant. But in the microgravity environment of orbiting spacecraft, where buoyancy effects are mitigated, expansive convection becomes the sole mechanism for producing cupular displacement. A series of transient 1 g and microgravity case studies are presented to delineate the differences between the dynamics of the 1 g and microgravity endolymphatic flows. The impact of these different flow dynamics on the endolymph-cupula fluid-structural interactions is also analyzed based on the time evolutions of cupular displacement and velocity and the transcupular pressure differences.

  1. Large impacts and the evolution of Venus; an atmosphere/mantle coupled model.

    NASA Astrophysics Data System (ADS)

    Gillmann, Cedric; Tackley, Paul; Golabek, Gregor

    2014-05-01

    We investigate the evolution of atmosphere and surface conditions on Venus through a coupled model of mantle/atmosphere evolution by including meteoritic impacts mechanisms. Our main focuses are mechanisms that deplete or replenish the atmosphere: volcanic degassing, atmospheric escape and impacts. The coupling is obtained using feedback of the atmosphere on the mantle evolution. Atmospheric escape modeling involves two different aspects: hydrodynamic escape (dominant during the first few hundred million years) and non-thermal escape mechanisms as observed by the ASPERA instrument. Post 4 Ga escape is low. The atmosphere is replenished by volcanic degassing, using an adapted version of the StagYY mantle dynamics model (Armann and Tackley, 2012) and including episodic lithospheric overturn. Volatile fluxes are estimated for different mantle compositions and partitioning ratios. The evolving surface temperature is calculated from CO2 and water in the atmosphere with a gray radiative-convective atmosphere model. This surface temperature in turn acts as a boundary condition for the mantle dynamics model and has an influence on the convection, volcanism and subsequent degassing. We take into account the effects of meteorites in our simulations by adapting each relevant part of the model. They can bring volatiles as well as erode the atmosphere. Mantle dynamics are modified since the impact itself can also bring large amounts of energy to the mantle. A 2D distribution of the thermal anomaly due to the impact is used and can lead to melting. Volatile evolution due to impacts (especially the large ones) is heavily debated so we test a broad range of impactor parameters (size, velocity, timing) and test different assumptions related to impact erosion going from large eroding power (Ahrens 1993) to recent parameterization (Shuvalov, 2009, 2010). We are able to produce models leading to present-day-like conditions through episodic volcanic activity consistent with Venus observations. Without any impact, CO2 pressure only slightly increases due to degassing. On the other hand, water pressure varies rapidly leading to variations in surface temperatures of up to 200K, which have been identified to have an effect on volcanic activity. We observe a clear correlation between low temperature and mobile lid regime. We observe short term and long term effects of the impacts on planetary evolution. While small (less than kilometer scale) meteorites have a negligible effect, large ones (up to around 100 km) are able to bring volatiles to the planet and generate melt both at the impact and later on, due to volcanic events they triggered due to the changes they make to mantle dynamics. A significant amount of volatiles can be released on a short timescale. Depending on the timing of the impact, this can have significant long term effects on the surface condition evolution. Atmospheric erosion caused by impacts, on the other hand, and according to recent studies seems to have a marginal effect on the simulations, although the effects of the largest impactors is still debatable.

  2. The effect of leading edge tubercles on dynamic stall

    NASA Astrophysics Data System (ADS)

    Hrynuk, John

    The effect of the leading edge tubercles of humpback whales has been heavily studied for their static benefits. These studies have shown that tubercles inhibit flow separation, limit spanwise flow, and extend the operating angle of a wing beyond the static stall point while maintaining lift, all while having a comparatively low negative impact on drag. The current study extends the prior work to investigating the effect of tubercles on dynamic stall, a fundamental flow phenomenon that occurs when wings undergo dynamic pitching motions. Flow fields around the wing models tested were studied using Laser Induced Fluorescence (LIF) and Molecular Tagging Velocimetry (MTV).Resulting velocity fields show that the dynamics of the formation and separation of the leading edge vortex were fundamentally different between the straight wing and the tubercled wing. Tracking of the Dynamic Stall Vortex (DSV) and Shear Layer Vortices (SLVs), which may have a significant impact on the overall flow behavior, was done along with calculations of vortex circulation. Proximity to the wing surface and total circulation were used to evaluate potential dynamic lift increases provided by the tubercles. The effects of pitch rate on the formation process and benefits of the tubercles were also studied and were generally consistent with prior dynamic stall studies. However, tubercles were shown to affect the SLV formation and the circulation differently at higher pitch rates.

  3. Analysis-test correlation of airbag impact for Mars landing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salama, M.; Davis, G.; Kuo, C.P.

    1994-12-31

    The NASA Mars Pathfinder mission is intended to demonstrate key low cost technologies for use in future science missions to Mars. Among these technologies is the landing system. Upon entering in Martian atmosphere at about 7000 m/sec., the spacecraft will deploy a series of breaking devices (parachute and solid rockets) to slow down its speed to less than 20 m/sec. as it impacts with the Martian ground. To cushion science instruments form the landing impact, an airbag system is inflated to surround the lander approximately five seconds before impact. After multiple bounces, the lander/airbags comes to rest, the airbags aremore » deflated and retracted, and the lander opens up its petals to allow a microrover to begin exploration. Of interest here, is the final landing phase. Specifically, this paper will focus on the methodology used to simulate the nonlinear dynamics of lander/airbags landing impact, and how this simulation correlates with initial tests.« less

  4. Hypervelocity Impact of Unstressed and Stressed Titanium in a Whipple Configuration in Support of the Orion Crew Exploration Vehicle Service Module Propellant Tanks

    NASA Technical Reports Server (NTRS)

    Nahra, Henry K.; Christiansen, Eric; Piekutowski, Andrew; Lyons, Frankel; Keddy, Christopher; Salem, Jonathan; Miller, Joshua; Bohl, William; Poormon, Kevin; Greene, Nathanel; hide

    2010-01-01

    Hypervelocity impacts were performed on six unstressed and six stressed titanium coupons with aluminium shielding in order to assess the effects of the partial penetration damage on the post impact micromechanical properties of titanium and on the residual strength after impact. This work is performed in support of the definition of the penetration criteria of the propellant tanks surfaces for the service module of the crew exploration vehicle where such a criterion is based on testing and analyses rather than on historical precedence. The objective of this work is to assess the effects of applied biaxial stress on the damage dynamics and morphology. The crater statistics revealed minute differences between stressed and unstressed coupon damage. The post impact residual stress analyses showed that the titanium strength properties were generally unchanged for the unstressed coupons when compared with undamaged titanium. However, high localized strains were shown near the craters during the tensile tests.

  5. Hypervelocity Impact of Unstressed and Stressed Titanium in a Whipple Configuration in Support of the Orion Crew Exploration Vehicle Service Module Propellant Tanks

    NASA Technical Reports Server (NTRS)

    Nahra, Henry K.; Christiansen, Eric; Piekutowski, Andrew; Lyons, Frankel; Keddy, Christopher; Salem, Jonathan; Poormon, Kevin; Bohl, William; Miller, Joshua; Greene, Nathanael; hide

    2010-01-01

    Hypervelocity impacts were performed on six unstressed and six stressed titanium coupons with aluminium: shielding in order to assess the effects of the partial penetration damage on the post impact micromechanical properties of titanium and on the residual strength after impact. This work is performed in support of the defInition of the penetration criteria of the propellant and oxidizer tanks dome surfaces for the service module of the crew exploration vehicle where such a criterion is based on testing and analyses rather than on historical precedence. The objective of this work is to assess the effects of applied biaxial stress on the damage dynamics and morphology. The crater statistics revealed minute differences between stressed and unstressed coupon damage. The post impact residual stress analyses showed that the titanium strength properties were generally unchanged for the unstressed coupons when compared with undamaged titanium. However, high localized strains were shown near the craters during the tensile tests.

  6. Experiments, constitutive modeling and FE simulations of the impact behavior of Molybdenum

    NASA Astrophysics Data System (ADS)

    Kleiser, Geremy; Revil-Baudard, Benoit

    For polycrystalline high-purity molybdenum the feasibility of a Taylor test is questionable because the very large tensile stresses generated at impact would result in disintegration of the specimen. We report an experimental investigation and new model to account simultaneously for the experimentally observed anisotropy, tension-compression asymmetry and strain-rate sensitivity of this material. To ensure high-fidelity predictions, a fully-implicit algorithm was used for implementing the new model in the FE code ABAQUS. Based on model predictions, the impact velocity range was established for which specimens may be recovered. Taylor impact tests in this range (140-165 m/s) were successfully conducted for different specimen taken along the rolling direction (RD), the transverse direction and 45o to the RD. Comparison between the measured profiles of impact specimens and FE model predictions show excellent agreement. Furthermore, simulations were performed to gain understanding of the dynamic event: time evolution of the pressure, the extent of plastic deformation, distribution of plastic strain rates, and transition to quasi-stable deformation occurs.

  7. Liquid Aluminum: Atomic diffusion and viscosity from ab initio molecular dynamics

    PubMed Central

    Jakse, Noel; Pasturel, Alain

    2013-01-01

    We present a study of dynamic properties of liquid aluminum using density-functional theory within the local-density (LDA) and generalized gradient (GGA) approximations. We determine the temperature dependence of the self-diffusion coefficient as well the viscosity using direct methods. Comparisons with experimental data favor the LDA approximation to compute dynamic properties of liquid aluminum. We show that the GGA approximation induce more important backscattering effects due to an enhancement of the icosahedral short range order (ISRO) that impact directly dynamic properties like the self-diffusion coefficient. All these results are then used to test the Stokes-Einstein relation and the universal scaling law relating the diffusion coefficient and the excess entropy of a liquid. PMID:24190311

  8. Numerical simulation study on thermal response of PBX 9501 to low velocity impact

    NASA Astrophysics Data System (ADS)

    Lou, Jianfeng; Zhou, Tingting; Zhang, Yangeng; Zhang, Xiaoli

    2017-01-01

    Impact sensitivity of solid high explosives, an important index in evaluating the safety and performance of explosives, is an important concern in handling, storage, and shipping procedures. It is a great threat for either bare dynamite or shell charge when subjected to low velocity impact involved in traffic accidents or charge piece drops. The Steven test is an effective tool to study the relative sensitivity of various explosives. In this paper, we built the numerical simulation method involving mechanical, thermo and chemical properties of Steven test based on the thermo-mechanical coupled material model. In the model, the stress-strain relationship is described by dynamic plasticity model, the thermal effect of the explosive induced by impact is depicted by isotropic thermal material model, the chemical reaction of explosives is described by Arrhenius reaction rate law, and the effects of heating and melting on mechanical properties and thermal properties of materials are also taken into account. Specific to the standard Steven test, the thermal and mechanical response rules of PBX 9501 at various impact velocities were numerically analyzed, and the threshold velocity of explosive initiation was obtained, which is in good agreement with experimental results. In addition, the effect of confine condition of test device to the threshold velocity was explored.

  9. Dynamic flashing yellow arrow (FYA): a study on variable left-turn mode operational and safety impacts phase II - model expansion and testing : [summary].

    DOT National Transportation Integrated Search

    2016-05-01

    In phase two of this project, the UCF team further developed the DSS to automate selection of FYA left-turn modes based on traffic volumes at intersections acquired in real time from existing sensors.

  10. Determination of partition and diffusion coefficient of formaldehyde in selected building materials and impact of relative humidity

    EPA Science Inventory

    The partition and effective diffusion coefficients of formaldehyde were measured for three materials (conventional gypsum wallboard, "green" gypsum wallboard, and "green" carpet) under three relative humidity (RH) conditions (20%, 50% and 70% RH). A dynamic dual-chamber test meth...

  11. Determination of partition and diffusion coefficients of formaldehyde in selected building materials and impact of relative humidity (journal)

    EPA Science Inventory

    The partition and effective diffusion coefficients of formaldehyde were measured for three materials (conventional gypsum wallboard, "green" gypsum wallboard, and "green" carpet) under three relative humidity (RH) conditions (20%, 50% and 70% RH). A dynamic dual-chamber test meth...

  12. Crash simulation of UNS electric vehicle under frontal front impact

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Susilo, D. D., E-mail: djoksus-2010@yahoo.com; Lukamana, N. I., E-mail: n.indra.lukmana@gmail.com; Budiana, E. P., E-mail: budiana.e@gmail.com

    Sebelas Maret University has been developing an Electric Vehicle namely SmarT-EV UNS. The main structure of the car are chasis and body. The chasis is made from steel and the body is made from fiberglass composite. To ensure the safety of the car, both static and dynamic tests were carried out to these structures, including their materials, like: tensile test, bending test, and impact test. Another test needed by this vehicle is crashworthiness test. To perform the test, it is needed complex equipments and it is quite expensive. Another way to obtain vehicle crashworthiness behaviour is by simulate it. Themore » purpose of this study was to simulate the response of the Smart-EV UNS electric vehicle main structure when crashing rigid barrier from the front. The crash simulation was done in according to the NHTSA (National Highway Traffic Safety Administration) within the speed of the vehicle of 35 mph. The UNS Electric Vehicle was modelled using SolidWorks software, and the simulation process was done by finite element method using ANSYS software. The simulation result showed that the most internal impact energy was absorbed by chassis part. It absorbed 76.2% of impact energy, then the base absorbed 11.3 %, while the front body absorbed 2.5 %, and the rest was absorbed by fender, hood, and other parts.« less

  13. Rhythm is it: effects of dynamic body feedback on affect and attitudes

    PubMed Central

    Koch, Sabine C.

    2014-01-01

    Body feedback is the proprioceptive feedback that denominates the afferent information from position and movement of the body to the central nervous system. It is crucial in experiencing emotions, in forming attitudes and in regulating emotions and behavior. This paper investigates effects of dynamic body feedback on affect and attitudes, focusing on the impact of movement rhythms with smooth vs. sharp reversals as one basic category of movement qualities. It relates those qualities to already explored effects of approach vs. avoidance motor behavior as one basic category of movement shape. Studies 1 and 2 tested the effects of one of two basic movement qualities (smooth vs. sharp rhythms) on affect and cognition. The third study tested those movement qualities in combination with movement shape (approach vs. avoidance motor behavior) and the effects of those combinations on affect and attitudes toward initially valence-free stimuli. Results suggest that movement rhythms influence affect (studies 1 and 2), and attitudes (study 3), and moderate the impact of approach and avoidance motor behavior on attitudes (study 3). Extending static body feedback research with a dynamic account, findings indicate that movement qualities – next to movement shape – play an important role, when movement of the lived body is an independent variable. PMID:24959153

  14. Full-Scale Crash Test and Finite Element Simulation of a Composite Prototype Helicopter

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Fasanella, Edwin L.; Boitnott, Richard L.; Lyle, Karen H.

    2003-01-01

    A full-scale crash test of a prototype composite helicopter was performed at the Impact Dynamics Research Facility at NASA Langley Research Center in 1999 to obtain data for validation of a finite element crash simulation. The helicopter was the flight test article built by Sikorsky Aircraft during the Advanced Composite Airframe Program (ACAP). The composite helicopter was designed to meet the stringent Military Standard (MIL-STD-1290A) crashworthiness criteria and was outfitted with two crew and two troop seats and four anthropomorphic dummies. The test was performed at 38-ft/s vertical and 32.5-ft/s horizontal velocity onto a rigid surface. An existing modal-vibration model of the Sikorsky ACAP helicopter was converted into a model suitable for crash simulation. A two-stage modeling approach was implemented and an external user-defined subroutine was developed to represent the complex landing gear response. The crash simulation was executed with a nonlinear, explicit transient dynamic finite element code. Predictions of structural deformation and failure, the sequence of events, and the dynamic response of the airframe structure were generated and the numerical results were correlated with the experimental data to validate the simulation. The test results, the model development, and the test-analysis correlation are described.

  15. Experimental investigation and damage assessment in a post tensioned concrete beam

    NASA Astrophysics Data System (ADS)

    Limongelli, Maria; Siegert, Dominique; Merliot, Erick; Waeytens, Julien; Bourquin, Frederic; Vidal, Roland; Le Corvec, Veronique; Guegen, Ivan; Cottineau, Louis-Marie

    2017-04-01

    This paper presents the results of an experimental campaign carried out on a prestressed concrete beam in the realm of the project SIPRIS (Systèmes Intelligents pour la Prévention des Risques Structurels), aimed to develop intelligent systems for the prevention of structural risk related to the aging of large infrastructures. The specimen was tested in several configurations aimed to re-produce several different phases of the 'life' of the beam: in the original undamaged state, under an increasing loss of tension in the cables, during and after cracking induced by a point load, after a strengthening intervention, after new cracking of the 'repaired' beam. Damage was introduced in a controlled way by means of three-point static bending tests. The transverse point loads were ap-plied at several different sections along the beam axis. Before and after each static test, the dy-namical response of the beam was measured under sine-sweep and impact tests by an extensive set of accelerometers deployed along the beam axis. The availability of both static and dynamic tests allows to investigate and compare their effectiveness to detect damages in the tensioned beam and to reliably identify the evolution of damage. The paper discusses the tests program and some results relevant to the dynamic characterization of the beam in the different phases.

  16. Preliminary investigation on the suitablity of using fiber reinforced concrete in the construction of a hazardous waste disposal vessel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramey, M.R.; Daie-e, G.

    1988-07-01

    There are certain hazardous wastes that must be contained in an extremely secure vessel for transportation and disposal. The vessel, among other things, must be able to withstand relatively large impacts without rupturing. Such containment vessels therefore must be able to absorb substantial amounts of energy during an impact and still perform their function. One of the impacts that the vessel must withstand is a 30-foot fall onto an unyielding surface. For some disposal scenarios it is proposed to encase the waste in a steel enclosure which is to be surrounded by a thick layer of concrete which, in turn,more » is encased by a relatively thin steel shell. Tests on concrete in compression and flexure, including static, dynamic and impact tests, have shown that low modulus concretes tend to behave in a less brittle manner than higher modulus concretes. Tests also show that fiber reinforced concretes have significantly greater ductility, crack propagation resistance and toughness than conventional concretes. Since it is known that concrete is a reasonably brittle material, it is necessary to do impact tests on sample containment structures consisting of thin-walled metal containers having closed ends which are filled with concrete, grout, or fiber reinforced concrete. This report presents the results of simple tests aimed at observing the behavior of sample containment structures subjected to impacts due to a fall from 30 feet. 8 figs., 4 tabs.« less

  17. Review of the dynamic behaviour of sports balls during normal and oblique impacts

    NASA Astrophysics Data System (ADS)

    Haron, Muhammad Adli; Jailani, Azrol; Abdullah, Nik Ahmad Faris Nik; Ismail, Rafis Suizwan; Rahim, Shayfull Zamree Abd; Ghazali, Mohd Fathullah

    2017-09-01

    In this paper are review of impact experiment to study the dynamic behaviour of sports ball during oblique and normal impacts. In previous studies, the investigation was done on the dynamic behaviour of a sports ball during oblique and normal impacts from experimental, numerical, and theoretical viewpoints. The experimental results are analysed and compared with the theories, in order to understand the dynamics behaviours based on the phenomenological occurrence. Throughout the experimental studies previously, there are results of dynamics behaviours examined by many researchers such as the coefficient of restitution, tangential coefficient, local deformation, dynamic impact force, contact time, angle of impact (inbound and rebound), spin rate of the ball, ball stiffness and damping coefficient which dependable of the initial or impact velocity.

  18. The Recipient Venule in Supermicrosurgical Lymphaticovenular Anastomosis: Flow Dynamic Classification and Correlation with Surgical Outcomes.

    PubMed

    Visconti, Giuseppe; Salgarello, Marzia; Hayashi, Akitatsu

    2018-05-12

     Venules have been usually neglected in the literature on lymphaticovenular anastomosis (LVA). The aim of this study was to analyze the flow dynamic of recipient venules in LVA and their impact on the surgical outcomes.  Data from 128 patients affected by extremity lymphedema, who underwent LVA, were collected in two institutions from August 2014 to May 2016. Recipient venules were classified according to their flow dynamic into backflow, slack, and outlet (BSO classification). Quantitative (lower extremity lymphedema/upper extremity lymphedema index) and qualitative outcomes (needing of compression garment and compression garment class) were evaluated. Chi-square test or Fisher's exact test was used for categorical variables and independent-samples t -test for continuous variables. The association between lymphatic collector degeneration status (normal, ectasis, contractile, sclerotic type [NECST]) and BSO classification with the outcomes was analyzed by the Mantel-Haenszel test.  On a total of 128 patients, 37 suffered from upper and 91 from lower limb lymphedema. An average number of four LVA were performed for each patient (range: 2-8). A significant association was observed between NECST and BSO categories and the outcomes were evaluated. Patients with contractile and sclerotic collectors had 2.24 times the odd of having poor composite outcome compared with those with normal-to-ectasis collectors ( p  < 0.05). Patients with backflow venules had 3.32 times the odd of having poor composite outcome compared with those without outlet or slack pattern ( p  < 0.05).  The subtype of recipient venule flow dynamic has a significant impact on the surgical outcome of patients undergoing LVA for the treatment of lymphedema, regardless of the lymphatic collector degeneration status. Locating favorable venules in the preoperative mapping might enhance the surgical outcomes. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  19. [Effect of glyceryl triacetate on properties of PLA/PBAT blends].

    PubMed

    Yang, Nan; Wang, Xiyuan; Weng, Yunxuan; Jin, Yujuan; Zhang, Min

    2016-06-25

    Poly lactic acid (PLA)/Poly (butyleneadipate-co-terephthalate)(PBAT) and glyceryl triacetate (GTA) blend were prepared by torque rheometer, and the effect of GTA on thermodynamical performance, mechanical properties and microstructure of PLA/PBAT composites were studied using differential scanning calorimeter(DSC), dynamic mechanical analysis(DMA), universal testing machine, impact testing machine and scanning electron microscope(SEM). After adding GTA, Tg values of the two phases gradually became closer, blends cold crystallization temperature and melting temperature decreased. When with 3 phr GTA, the dispersed phase particle size of PLA/PBAT blend decreased. Mechanics performance test showed that the elongation at break and impact strength of the PLA/PBAT blend was greatly increased with 3 phr GTA, and the elongation at break increased 2.6 times, improved from 17.7% to 64.1%.

  20. Data Mining of Historical Human Data to Assess the Risk of Injury due to Dynamic Loads

    NASA Technical Reports Server (NTRS)

    Wells, Jesica; Somers, Jeffrey T.; Newby, N.; Gernhardt, Michael

    2014-01-01

    The NASA Occupant Protection Group is charged with ensuring crewmembers are protected during all dynamic phases of spaceflight. Previous work with outside experts has led to the development of a definition of acceptable risk (DAR) for space capsule vehicles. The DAR defines allowable probability rates for various categories of injuries. An important question is how to validate these probabilities for a given vehicle. One approach is to impact test human volunteers under projected nominal landing loads. The main drawback is the large number of subject tests required to attain a reasonable level of confidence that the injury probability rates would meet those outlined in the DAR. An alternative is to mine existing databases containing human responses to impact. Testing an anthropomorphic test device (ATD) at the same human-exposure levels could yield a range of ATD responses that would meet DAR. As one aspect of future vehicle validation, the ATD could be tested in the vehicle's seat and suit configuration at nominal landing loads and compared with the ATD responses supported by the human data set. This approach could reduce the number of human-volunteer tests NASA would need to conduct to validate that a vehicle meets occupant protection standards. METHODS: The U.S. Air Force has recorded hundreds of human responses to frontal, lateral, and spinal impacts at many acceleration levels and pulse durations. All of this data are stored on the Collaborative Biomechanics Data Network (CBDN), which is maintained by the Wright Patterson Air Force Base (WPAFB). The test device for human occupant restraint (THOR) ATD was impact tested on WPAFB's horizontal impulse accelerator (HIA) matching human-volunteer exposures on the HIA to 5 frontal and 3 spinal loading conditions. No human injuries occurred as a result of these impact conditions. Peak THOR response variables for neck axial tension and compression, and thoracic-spine axial compression were collected. Maximal chest deflection was determined from motion capture video of the impact test. HIC- 15 and BRIC were calculated from head acceleration responses. Given the number of human subjects for each test condition a confidence interval of injury probability will be obtained. RESULTS: Results will be discussed in terms of injury-risk probability estimates based on the human data set evaluated. Also, gaps in the data set will be identified. These gaps could be one of two types. One is areas where additional THOR testing would increase the comparable human data set, thereby improving confidence in the injury probability rate. The other is where additional human testing would assist in obtaining information on other acceleration levels or directions. DISCUSSION: The historical human data showed validity of the THOR ATD for supplemental testing. The historical human data are limited in scope, however. Further data are needed to characterize the effects of sex, age, anthropometry, and deconditioning due to spaceflight on risk of injury

  1. Crash-test dummy and pendulum impact tests of ice hockey boards: greater displacement does not reduce impact.

    PubMed

    Schmitt, Kai-Uwe; Muser, Markus H; Thueler, Hansjuerg; Bruegger, Othmar

    2018-01-01

    One injury mechanism in ice hockey is impact with the boards. We investigated whether more flexible hockey boards would provide less biomechanical loading on impact than did existing (reference) boards. We conducted impact tests with a dynamic pendulum (mass 60 kg) and with crash test dummies (ES-2 dummy, 4.76 m/s impact speed). Outcomes were biomechanical loading experienced by a player in terms of head acceleration, impact force to the shoulder, spine, abdomen and pelvis as well as compression of the thorax. The more flexible board designs featured substantial displacement at impact. Some so-called flexible boards were displaced four times more than the reference board. The new boards possessed less stiffness and up to 90 kg less effective mass, reducing the portion of the board mass a player experienced on impact, compared with boards with a conventional design. Flexible boards resulted in a similar or reduced loading for all body regions, apart from the shoulder. The displacement of a board system did not correlate directly with the biomechanical loading. Flexible board systems can reduce the loading of a player on impact. However, we found no correlation between the displacement and the biomechanical loading; accordingly, displacement alone was insufficient to characterise the overall loading of a player and thus the risk of injury associated with board impact. Ideally, the performance of boards is assessed on the basis of parameters that show a good correlation to injury risk. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  2. Injury tolerance of tibia for the car-pedestrian impact.

    PubMed

    Mo, Fuhao; Arnoux, Pierre Jean; Jure, Jean Jaques; Masson, Catherine

    2012-05-01

    Lower limbs are normally the first contacted body region during car-pedestrian accidents, and easily suffer serious injuries. The previous tibia bending tolerances for pedestrian safety were mainly developed from three-point bending tests on tibia mid-shaft. The tibia tolerances of other locations are still not investigated enough. In addition, tibia loading condition under the car-pedestrian impact should be explored to compare with the three-point bending. This work aims to investigate the injury tolerance of tibia fracture with combined experimental data and numerical simulation. Eleven new reported quasi-static bending tests of tibia mid-shaft, and additional eleven dynamic mid-shaft bending test results in the previous literature were used to define injury risk functions. Furthermore, to investigate the influence of tibia locations on bending tolerance, finite element simulations with lower limb model were implemented according to three-point bending and pedestrian impact conditions. The regressive curve of tibia bending tolerance was obtained from the simulations on the different impact locations, and indicated that tibia fracture tolerance could vary largely due to the impact locations for the car-pedestrian crash. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Evaluation of airfield pavement evenness

    NASA Astrophysics Data System (ADS)

    Pietruszewski, Paweł; Poświata, Adam; Wesołowski, Mariusz

    2018-05-01

    The evenness of airfield pavements is one of the basic operating parameters, which characterize them. The evenness determines not only comfort of traffic along an airfield pavement, but also influences the size of dynamic effect on the pavement, hence, the safety of air operations. In addition, the evenness condition changing as a result of dynamic loads, adverse weather conditions or inappropriate airfield pavement construction technology, lead to deviations from the desired condition in the form of longitudinal and transverse unevenness. As a result, systematic and correct performance of tests is a very significant and required factor impacting the improvement of traffic safety on airfield pavements. If the data obtained through the measurements are not sufficiently reliable, they may consequently lead to making incorrect decisions, which can ultimately impact the safety of air operations.

  4. The composition and organization of Drosophila heterochromatin are heterogeneous and dynamic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swenson, Joel M.; Colmenares, Serafin U.; Strom, Amy R.

    Heterochromatin is enriched for specific epigenetic factors including Heterochromatin Protein 1a (HP1a), and is essential for many organismal functions. To elucidate heterochromatin organization and regulation, we purified Drosophila melanogaster HP1a interactors, and performed a genome-wide RNAi screen to identify genes that impact HP1a levels or localization. The majority of the over four hundred putative HP1a interactors and regulators identified were previously unknown. We found that 13 of 16 tested candidates (83%) are required for gene silencing, providing a substantial increase in the number of identified components that impact heterochromatin properties. Surprisingly, image analysis revealed that although some HP1a interactors andmore » regulators are broadly distributed within the heterochromatin domain, most localize to discrete subdomains that display dynamic localization patterns during the cell cycle. We conclude that heterochromatin composition and architecture is more spatially complex and dynamic than previously suggested, and propose that a network of subdomains regulates diverse heterochromatin functions.« less

  5. The composition and organization of Drosophila heterochromatin are heterogeneous and dynamic

    DOE PAGES

    Swenson, Joel M.; Colmenares, Serafin U.; Strom, Amy R.; ...

    2016-08-11

    Heterochromatin is enriched for specific epigenetic factors including Heterochromatin Protein 1a (HP1a), and is essential for many organismal functions. To elucidate heterochromatin organization and regulation, we purified Drosophila melanogaster HP1a interactors, and performed a genome-wide RNAi screen to identify genes that impact HP1a levels or localization. The majority of the over four hundred putative HP1a interactors and regulators identified were previously unknown. We found that 13 of 16 tested candidates (83%) are required for gene silencing, providing a substantial increase in the number of identified components that impact heterochromatin properties. Surprisingly, image analysis revealed that although some HP1a interactors andmore » regulators are broadly distributed within the heterochromatin domain, most localize to discrete subdomains that display dynamic localization patterns during the cell cycle. We conclude that heterochromatin composition and architecture is more spatially complex and dynamic than previously suggested, and propose that a network of subdomains regulates diverse heterochromatin functions.« less

  6. Registration of a Dynamic Multimodal Target Image Test Set for the Evaluation of Image Fusion Techniques

    DTIC Science & Technology

    2013-10-17

    imagery. 2. Report describing the registration algorithms and parameters . 3.2 Deliverables from Phase 2 (current phase, ongoing) 1. Selected and...representation. To be submitted to Information Fusion [Impact factor 2.262 ] . 2. De Jong, M., Toet, A., Hogervorst, M.A., Hooge , I., Pinkus, A. R. (in...Impact factor 3.376] . 3. Koenderink, J.J., van Doorn, A., De Jong, M., Toet, A., Hogervorst, M.A., Hooge , I., Pinkus, A. R. (in preparation

  7. Impact Analyses and Tests of Metal Cask Considering Aircraft Engine Crash - 12308

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sanghoon; Choi, Woo-Seok; Kim, Ki-Young

    2012-07-01

    The structural integrity of a dual purpose metal cask currently under development by the Korea Radioactive Waste Management Cooperation (KRMC) is evaluated through analyses and tests under a high-speed missile impact considering the targeted aircraft crash conditions. The impact conditions were carefully chosen through a survey on accident cases and recommendations from the literature. The missile impact velocity was set at 150 m/s, and two impact orientations were considered. A simplified missile simulating a commercial aircraft engine is designed from an impact load history curve provided in the literature. In the analyses, the focus is on the evaluation of themore » containment boundary integrity of the metal cask. The analyses results are compared with the results of tests using a 1/3 scale model. The results show very good agreements, and the procedure and methodology adopted in the structural analyses are validated. While the integrity of the cask is maintained in one evaluation where the missile impacts the top side of the free standing cask, the containment boundary is breached in another case in which the missile impacts the center of the cask lid in a perpendicular orientation. A safety assessment using a numerical simulation of an aircraft engine crash into spent nuclear fuel storage systems is performed. A commercially available explicit finite element code is utilized for the dynamic simulation, and the strain rate effect is included in the modeling of the materials used in the target system and missile. The simulation results show very good agreement with the test results. It is noted that this is the first test considering an aircraft crash in Korea. (authors)« less

  8. Simulation of Shear and Bending Cracking in RC Beam: Material Model and its Application to Impact

    NASA Astrophysics Data System (ADS)

    Mokhatar, S. N.; Sonoda, Y.; Zuki, S. S. M.; Kamarudin, A. F.; Noh, M. S. Md

    2018-04-01

    This paper presents a simple and reliable non-linear numerical analysis incorporated with fully Lagrangian method namely Smoothed Particle Hydrodynamics (SPH) to predict the impact response of the reinforced concrete (RC) beam under impact loading. The analysis includes the simulation of the effects of high mass low-velocity impact load falling on beam structures. Three basic ideas to present the localized failure of structural elements are: (1) the accurate strength of concrete and steel reinforcement during the short period (dynamic), Dynamic Increase Factor (DIF) has been employed for the effect of strain rate on the compression and tensile strength (2) linear pressure-sensitive yield criteria (Drucker-Prager type) with a new volume dependent Plane-Cap (PC) hardening in the pre-peak regime is assumed for the concrete, meanwhile, shear-strain energy criterion (Von-Mises) is applied to steel reinforcement (3) two kinds of constitutive equation are introduced to simulate the crushing and bending cracking of the beam elements. Then, these numerical analysis results were compared with the experimental test results.

  9. Brittle materials at high-loading rates: an open area of research

    NASA Astrophysics Data System (ADS)

    Forquin, Pascal

    2017-01-01

    Brittle materials are extensively used in many civil and military applications involving high-strain-rate loadings such as: blasting or percussive drilling of rocks, ballistic impact against ceramic armour or transparent windshields, plastic explosives used to damage or destroy concrete structures, soft or hard impacts against concrete structures and so on. With all of these applications, brittle materials are subjected to intense loadings characterized by medium to extremely high strain rates (few tens to several tens of thousands per second) leading to extreme and/or specific damage modes such as multiple fragmentation, dynamic cracking, pore collapse, shearing, mode II fracturing and/or microplasticity mechanisms in the material. Additionally, brittle materials exhibit complex features such as a strong strain-rate sensitivity and confining pressure sensitivity that justify expending greater research efforts to understand these complex features. Currently, the most popular dynamic testing techniques used for this are based on the use of split Hopkinson pressure bar methodologies and/or plate-impact testing methods. However, these methods do have some critical limitations and drawbacks when used to investigate the behaviour of brittle materials at high loading rates. The present theme issue of Philosophical Transactions A provides an overview of the latest experimental methods and numerical tools that are currently being developed to investigate the behaviour of brittle materials at high loading rates. This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'.

  10. Brittle materials at high-loading rates: an open area of research

    PubMed Central

    2017-01-01

    Brittle materials are extensively used in many civil and military applications involving high-strain-rate loadings such as: blasting or percussive drilling of rocks, ballistic impact against ceramic armour or transparent windshields, plastic explosives used to damage or destroy concrete structures, soft or hard impacts against concrete structures and so on. With all of these applications, brittle materials are subjected to intense loadings characterized by medium to extremely high strain rates (few tens to several tens of thousands per second) leading to extreme and/or specific damage modes such as multiple fragmentation, dynamic cracking, pore collapse, shearing, mode II fracturing and/or microplasticity mechanisms in the material. Additionally, brittle materials exhibit complex features such as a strong strain-rate sensitivity and confining pressure sensitivity that justify expending greater research efforts to understand these complex features. Currently, the most popular dynamic testing techniques used for this are based on the use of split Hopkinson pressure bar methodologies and/or plate-impact testing methods. However, these methods do have some critical limitations and drawbacks when used to investigate the behaviour of brittle materials at high loading rates. The present theme issue of Philosophical Transactions A provides an overview of the latest experimental methods and numerical tools that are currently being developed to investigate the behaviour of brittle materials at high loading rates. This article is part of the themed issue ‘Experimental testing and modelling of brittle materials at high strain rates’. PMID:27956517

  11. Brittle materials at high-loading rates: an open area of research.

    PubMed

    Forquin, Pascal

    2017-01-28

    Brittle materials are extensively used in many civil and military applications involving high-strain-rate loadings such as: blasting or percussive drilling of rocks, ballistic impact against ceramic armour or transparent windshields, plastic explosives used to damage or destroy concrete structures, soft or hard impacts against concrete structures and so on. With all of these applications, brittle materials are subjected to intense loadings characterized by medium to extremely high strain rates (few tens to several tens of thousands per second) leading to extreme and/or specific damage modes such as multiple fragmentation, dynamic cracking, pore collapse, shearing, mode II fracturing and/or microplasticity mechanisms in the material. Additionally, brittle materials exhibit complex features such as a strong strain-rate sensitivity and confining pressure sensitivity that justify expending greater research efforts to understand these complex features. Currently, the most popular dynamic testing techniques used for this are based on the use of split Hopkinson pressure bar methodologies and/or plate-impact testing methods. However, these methods do have some critical limitations and drawbacks when used to investigate the behaviour of brittle materials at high loading rates. The present theme issue of Philosophical Transactions A provides an overview of the latest experimental methods and numerical tools that are currently being developed to investigate the behaviour of brittle materials at high loading rates.This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'. © 2016 The Author(s).

  12. Smart wearable Kevlar-based safeguarding electronic textile with excellent sensing performance.

    PubMed

    Wang, Sheng; Xuan, Shouhu; Liu, Mei; Bai, Linfeng; Zhang, Shuaishuai; Sang, Min; Jiang, Wanquan; Gong, Xinglong

    2017-03-29

    A novel S-ST/MWCNT/Kevlar-based wearable electronic textile (WET) with enhanced safeguarding performance and force sensing ability was fabricated. Stab resistance performance tests under quasi-static and dynamic conditions show that the maximum resistance force and penetration impact energy for the WET are 18 N and 11.76 J, which represent a 90% and 50% increment with respect to the neat Kevlar, respectively. Dynamic impact resistance tests show that the WET absorbs all the impact energy. The maximum resistance force of the WET is 1052 N, which represents an improvement of about 190% with respect to neat Kevlar. With the incorporation of multi-walled carbon nanotubes (MWCNTs), the WET can achieve a stable electrical conductivity of ∼10 -2 S m -1 , and the conductivity is highly sensitive to external mechanic forces. Notably, the sensing fabric also exhibits an outstanding ability to detect and analyze external forces. In addition, it can be fixed at any position of the human body and exhibits an ideal monitoring performance. Because of its flexibility, high sensitivity to various types of deformations and excellent safeguarding performance, the WET has a strong potential for wearable monitoring devices that simultaneously provide body protection and monitor the movements of the human body under various conditions.

  13. Design and Test of an Improved Crashworthiness Small Composite Airframe

    NASA Technical Reports Server (NTRS)

    Terry, James E.; Hooper, Steven J.; Nicholson, Mark

    2002-01-01

    The purpose of this small business innovative research (SBIR) program was to evaluate the feasibility of developing small composite airplanes with improved crashworthiness. A combination of analysis and half scale component tests were used to develop an energy absorbing airframe. Four full scale crash tests were conducted at the NASA Impact Dynamics Research Facility, two on a hard surface and two onto soft soil, replicating earlier NASA tests of production general aviation airplanes. Several seat designs and restraint systems including both an air bag and load limiting shoulder harnesses were tested. Tests showed that occupant loads were within survivable limits with the improved structural design and the proper combination of seats and restraint systems. There was no loss of cabin volume during the events. The analysis method developed provided design guidance but time did not allow extending the analysis to soft soil impact. This project demonstrated that survivability improvements are possible with modest weight penalties. The design methods can be readily applied by airplane designers using the examples in this report.

  14. Langley test highlights, 1982

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A 20 ft vertical spin tunnel, a 30 by 60 ft tunnel, a 7 by 10 ft high speed tunnel, a 4 by 7 meter tunnel, an 8 ft transonic pressure tunnel, a transonic dynamics tunnel, a 16 ft transonic tunnel, a national transonic facility, a 0.3 meter transonic cryogenic tunnel, a unitary plan wind tunnel, a hypersonic facilities complex, an 8 ft high temperature tunnel, an aircraft noise reduction lab, an avionics integration research lab, a DC9 full workload simulator, a transport simulator, a general aviation simulator, an advanced concepts simulator, a mission oriented terminal area simulation (MOTAS), a differential maneuvering simulator, a visual/motion simulator, a vehicle antenna test facility, an impact dynamics research facility, and a flight research facility are all reviewed.

  15. Influence of computational fluid dynamics on experimental aerospace facilities: A fifteen year projection

    NASA Technical Reports Server (NTRS)

    1983-01-01

    An assessment was made of the impact of developments in computational fluid dynamics (CFD) on the traditional role of aerospace ground test facilities over the next fifteen years. With improvements in CFD and more powerful scientific computers projected over this period it is expected to have the capability to compute the flow over a complete aircraft at a unit cost three orders of magnitude lower than presently possible. Over the same period improvements in ground test facilities will progress by application of computational techniques including CFD to data acquisition, facility operational efficiency, and simulation of the light envelope; however, no dramatic change in unit cost is expected as greater efficiency will be countered by higher energy and labor costs.

  16. Phenomenological study of a cellular material behaviour under dynamic loadings

    NASA Astrophysics Data System (ADS)

    Bouix, R.; Viot, Ph.; Lataillade, J.-L.

    2006-08-01

    Polypropylene foams are cellular materials, which are often use to fill structures subjected to crash or violent impacts. Therefore, it is necessary to know and to characterise in experiments their mechanical behaviour in compression at high strain rates. So, several apparatus have been used in order to highlight the influence of strain rate, material density and also temperature. A split Hopkinson Pressure Bar has been used for impact tests, a fly wheel to test theses materials at medium strain rate and an electro-mechanical testing machine associated to a climatic chamber for temperature tests. Then, a rheological model has been used in order to describe the material behaviour. The mechanical response to compression of these foams presents three typical domains: a linear elastic step, a wide collapse plateau stress, which leads to a densification, which are related to a standard rheological model.

  17. Design, Fabrication and Testing of a Crushable Energy Absorber for a Passive Earth Entry Vehicle

    NASA Technical Reports Server (NTRS)

    Kellas, Sotiris; Corliss, James M. (Technical Monitor)

    2002-01-01

    A conceptual study was performed to investigate the impact response of a crushable energy absorber for a passive Earth entry vehicle. The spherical energy-absorbing concept consisted of a foam-filled composite cellular structure capable of omni-directional impact-load attenuation as well as penetration resistance. Five composite cellular samples of hemispherical geometry were fabricated and tested dynamically with impact speeds varying from 30 to 42 meters per second. Theoretical crush load predictions were obtained with the aid of a generalized theory which accounts for the energy dissipated during the folding deformation of the cell-walls. Excellent correlation was obtained between theoretical predictions and experimental tests on characteristic cell-web intersections. Good correlation of theory with experiment was also found to exist for the more complex spherical cellular structures. All preliminary design requirements were met by the cellular structure concept, which exhibited a near-ideal sustained crush-load and approximately 90% crush stroke.

  18. Rapid evolution leads to differential population dynamics and top-down control in resurrected Daphnia populations.

    PubMed

    Goitom, Eyerusalem; Kilsdonk, Laurens J; Brans, Kristien; Jansen, Mieke; Lemmens, Pieter; De Meester, Luc

    2018-01-01

    There is growing evidence of rapid genetic adaptation of natural populations to environmental change, opening the perspective that evolutionary trait change may subsequently impact ecological processes such as population dynamics, community composition, and ecosystem functioning. To study such eco-evolutionary feedbacks in natural populations, however, requires samples across time. Here, we capitalize on a resurrection ecology study that documented rapid and adaptive evolution in a natural population of the water flea Daphnia magna in response to strong changes in predation pressure by fish, and carry out a follow-up mesocosm experiment to test whether the observed genetic changes influence population dynamics and top-down control of phytoplankton. We inoculated populations of the water flea D. magna derived from three time periods of the same natural population known to have genetically adapted to changes in predation pressure in replicate mesocosms and monitored both Daphnia population densities and phytoplankton biomass in the presence and absence of fish. Our results revealed differences in population dynamics and top-down control of algae between mesocosms harboring populations from the time period before, during, and after a peak in fish predation pressure caused by human fish stocking. The differences, however, deviated from our a priori expectations. An S-map approach on time series revealed that the interactions between adults and juveniles strongly impacted the dynamics of populations and their top-down control on algae in the mesocosms, and that the strength of these interactions was modulated by rapid evolution as it occurred in nature. Our study provides an example of an evolutionary response that fundamentally alters the processes structuring population dynamics and impacts ecosystem features.

  19. Disentangling the effects of climate and people on Sahel vegetation dynamics

    NASA Astrophysics Data System (ADS)

    Seaquist, J. W.; Hickler, T.; Eklundh, L.; Ardö, J.; Heumann, B. W.

    2008-08-01

    The Sahel belt of Africa has been the focus of intensive scientific research since the 1960s, spurred on by the chronic vulnerability of its population to recurring drought and the threat of long-term land degradation. But satellite sensors have recently shown that much of the region has experienced significant increases in photosynthetic activity since the early 1980s, thus re-energizing long-standing debates about the role that people play in shaping land surface status, and thus climate at regional scales. In this paper, we test the hypothesis that people have had a measurable impact on vegetation dynamics in the Sahel for the period 1982 2002. We compare potential natural vegetation dynamics predicted by a process-based ecosystem model with satellite-derived greenness observations, and map the agreement between the two across a geographic grid at a spatial resolution of 0.5°. As aggregated data-model agreement is very good, any local differences between the two could be due to human impact. We then relate this agreement metric to state-of-the-art data sets on demographics, pasture, and cropping. Our findings suggest that demographic and agricultural pressures in the Sahel are unable to account for differences between simulated and observed vegetation dynamics, even for the most densely populated areas. But we do identify a weak, positive correlation between data-model agreement and pasture intensity at the Sahel-wide level. This indicates that herding or grazing does not appreciably affect vegetation dynamics in the region. Either people have not had a significant impact on vegetation dynamics in the Sahel or the identification of a human "footprint" is precluded by inconsistent or subtle vegetation response to complex socio-environmental interactions, and/or limitations in the data used for this study.

  20. Dynamic Fracture Initiation Toughness at Elevated Temperatures With Application to the New Generation of Titanium Aluminide Alloys. Chapter 8

    NASA Technical Reports Server (NTRS)

    Shazly, Mostafa; Prakash, Vikas; Draper, Susan; Shukla, Arun (Editor)

    2006-01-01

    Recently, a new generation of titanium aluminide alloy, named Gamma-Met PX, has been developed with better rolling and post-rolling characteristics. I'revious work on this alloy has shown the material to have higher strengths at room and elevated temperatures when compared with other gamma titanium aluminides. In particular, this new alloy has shown increased ductility at elevated temperatures under both quasi-static and high strain rate uniaxial compressive loading. However, its high strain rate tensile ductility at room and elevated temperatures is limited to approx. 1%. In the present chapter, results of a study to investigate the effects of loading rate and test temperature on the dynamic fracture initiation toughness in Gamma-Met PX are presented. Modified split Hopkinson pressure bar was used along with high-speed photography to determine the crack initiation time. Three-point bend dynamic fracture experiments were conducted at impact speeds of approx. 1 m/s and tests temperatures of up-to 1200 C. The results show that thc dynamic fracture initiation toughness decreases with increasing test temperatures beyond 600 C. Furthermore, thc effect of long time high temperature air exposure on the fracture toughness was investigated. The dynamic fracture initiation toughness was found to decrease with increasing exposure time. The reasons behind this drop are analyzed and discussed.

  1. Computer-aided system for interactive psychomotor testing

    NASA Astrophysics Data System (ADS)

    Selivanova, Karina G.; Ignashchuk, Olena V.; Koval, Leonid G.; Kilivnik, Volodymyr S.; Zlepko, Alexandra S.; Sawicki, Daniel; Kalizhanova, Aliya; Zhanpeisova, Aizhan; Smailova, Saule

    2017-08-01

    Nowadays research of psychomotor actions has taken a special place in education, sports, medicine, psychology etc. Development of computer system for psychomotor testing could help solve many operational problems in psychoneurology and psychophysiology and also determine the individual characteristics of fine motor skills. This is particularly relevant issue when it comes to children, students, athletes for definition of personal and professional features. The article presents the dynamics of a developing psychomotor skills and application in the training process of means. The results of testing indicated their significant impact on psychomotor skills development.

  2. Reframing and Articulating Socio-Scientific Classroom Discourses on Genetic Testing from an STS Perspective

    ERIC Educational Resources Information Center

    Boerwinkel, Dirk Jan; Swierstra, Tsjalling; Waarlo, Arend Jan

    2014-01-01

    In recent decades, Science & Technology Studies (STS) have revealed the dynamic interaction between science and technology and society. Technology development is not an autonomous process and its artifacts are not socially inert. Society and technology shape each other. Technologies often have "soft impacts" in terms of unpredicted…

  3. Dynamic flashing yellow arrow (FYA): a study on variable left-turn mode operational and safety impacts phase II - model expansion and testing.

    DOT National Transportation Integrated Search

    2016-06-01

    The flashing yellow arrow (FYA) signal display creates an opportunity to enhance the left-turn phase with a : variable mode that can be changed on demand. The previously developed decision support system (DSS) in : phase I facilitated the selection o...

  4. Intimate Homicide between Asians and Non-Asians: The Impact of Community Context

    ERIC Educational Resources Information Center

    Wu, Bohsiu

    2009-01-01

    This study tests two competing hypotheses regarding the social structural dynamics of intimate homicide: backlash versus collective efficacy. This study also examines the role of race in how social factors specified in each hypothesis affect intimate homicide. Data are from the California Vital Statistics and Homicide Data, 1990-1999. Results from…

  5. Impacts of crop growth dynamics on soil quality at the regional scale

    NASA Astrophysics Data System (ADS)

    Gobin, Anne

    2014-05-01

    Agricultural land use and in particular crop growth dynamics can greatly affect soil quality. Both the amount of soil lost from erosion by water and soil organic matter are key indicators for soil quality. The aim was to develop a modelling framework for quantifying the impacts of crop growth dynamics on soil quality at the regional scale with test case Flanders. A framework for modelling the impacts of crop growth on soil erosion and soil organic matter was developed by coupling the dynamic crop cover model REGCROP (Gobin, 2010) to the PESERA soil erosion model (Kirkby et al., 2009) and to the RothC carbon model (Coleman and Jenkinson, 1999). All three models are process-based, spatially distributed and intended as a regional diagnostic tool. A geo-database was constructed covering 10 years of crop rotation in Flanders using the IACS parcel registration (Integrated Administration and Control System). Crop allometric models were developed from variety trials to calculate crop residues for common crops in Flanders and subsequently derive stable organic matter fluxes to the soil. Results indicate that crop growth dynamics and crop rotations influence soil quality for a very large percentage. soil erosion mainly occurs in the southern part of Flanders, where silty to loamy soils and a hilly topography are responsible for soil loss rates of up to 40 t/ha. Parcels under maize, sugar beet and potatoes are most vulnerable to soil erosion. Crop residues of grain maize and winter wheat followed by catch crops contribute most to the total carbon sequestered in agricultural soils. For the same rotations carbon sequestration is highest on clay soils and lowest on sandy soils. This implies that agricultural policies that impact on agricultural land management influence soil quality for a large percentage. The coupled REGCROP-PESERA-ROTHC model allows for quantifying the impact of seasonal and year-to-year crop growth dynamics on soil quality. When coupled to a multi-annual crop rotation database both spatial and temporal analysis becomes possible and allows for decision support at both farm and regional level. The framework is therefore suited for further scenario analysis and impact assessment. The research is funded by the Belgian Science Policy Organisation (Belspo) under contract nr SD/RI/03A.

  6. Does replacing coal with wood lower CO2 emissions? Dynamic lifecycle analysis of wood bioenergy

    NASA Astrophysics Data System (ADS)

    Sterman, John D.; Siegel, Lori; Rooney-Varga, Juliette N.

    2018-01-01

    Bioenergy is booming as nations seek to cut their greenhouse gas emissions. The European Union declared biofuels to be carbon-neutral, triggering a surge in wood use. But do biofuels actually reduce emissions? A molecule of CO2 emitted today has the same impact on radiative forcing whether it comes from coal or biomass. Biofuels can only reduce atmospheric CO2 over time through post-harvest increases in net primary production (NPP). The climate impact of biofuels therefore depends on CO2 emissions from combustion of biofuels versus fossil fuels, the fate of the harvested land and dynamics of NPP. Here we develop a model for dynamic bioenergy lifecycle analysis. The model tracks carbon stocks and fluxes among the atmosphere, biomass, and soils, is extensible to multiple land types and regions, and runs in ≈1s, enabling rapid, interactive policy design and sensitivity testing. We simulate substitution of wood for coal in power generation, estimating the parameters governing NPP and other fluxes using data for forests in the eastern US and using published estimates for supply chain emissions. Because combustion and processing efficiencies for wood are less than coal, the immediate impact of substituting wood for coal is an increase in atmospheric CO2 relative to coal. The payback time for this carbon debt ranges from 44-104 years after clearcut, depending on forest type—assuming the land remains forest. Surprisingly, replanting hardwood forests with fast-growing pine plantations raises the CO2 impact of wood because the equilibrium carbon density of plantations is lower than natural forests. Further, projected growth in wood harvest for bioenergy would increase atmospheric CO2 for at least a century because new carbon debt continuously exceeds NPP. Assuming biofuels are carbon neutral may worsen irreversible impacts of climate change before benefits accrue. Instead, explicit dynamic models should be used to assess the climate impacts of biofuels.

  7. Forecast horizon of multi-item dynamic lot size model with perishable inventory.

    PubMed

    Jing, Fuying; Lan, Zirui

    2017-01-01

    This paper studies a multi-item dynamic lot size problem for perishable products where stock deterioration rates and inventory costs are age-dependent. We explore structural properties in an optimal solution under two cost structures and develop a dynamic programming algorithm to solve the problem in polynomial time when the number of products is fixed. We establish forecast horizon results that can help the operation manager to decide the precise forecast horizon in a rolling decision-making process. Finally, based on a detailed test bed of instance, we obtain useful managerial insights on the impact of deterioration rate and lifetime of products on the length of forecast horizon.

  8. Forecast horizon of multi-item dynamic lot size model with perishable inventory

    PubMed Central

    Jing, Fuying

    2017-01-01

    This paper studies a multi-item dynamic lot size problem for perishable products where stock deterioration rates and inventory costs are age-dependent. We explore structural properties in an optimal solution under two cost structures and develop a dynamic programming algorithm to solve the problem in polynomial time when the number of products is fixed. We establish forecast horizon results that can help the operation manager to decide the precise forecast horizon in a rolling decision-making process. Finally, based on a detailed test bed of instance, we obtain useful managerial insights on the impact of deterioration rate and lifetime of products on the length of forecast horizon. PMID:29125856

  9. Gate frequency sweep: An effective method to evaluate the dynamic performance of AlGaN/GaN power heterojunction field effect transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santi, C. de; Meneghini, M., E-mail: matteo.meneghini@dei.unipd.it; Meneghesso, G.

    2014-08-18

    With this paper we propose a test method for evaluating the dynamic performance of GaN-based transistors, namely, gate-frequency sweep measurements: the effectiveness of the method is verified by characterizing the dynamic performance of Gate Injection Transistors. We demonstrate that this method can provide an effective description of the impact of traps on the transient performance of Heterojunction Field Effect Transistors, and information on the properties (activation energy and cross section) of the related defects. Moreover, we discuss the relation between the results obtained by gate-frequency sweep measurements and those collected by conventional drain current transients and double pulse characterization.

  10. A new testing station about full-scale testing for rockfall protection systems

    NASA Astrophysics Data System (ADS)

    Bost, Marion; Dubois, Laurent; Rocher-Lacoste, Frédéric

    2010-05-01

    Rock blocks which detach from slopes overhanging urban areas, roads, railways and other infrastructures create one of the most frequent hazards in mountainous areas. Some of protection systems against rockfalls are designed to mitigate the effects of a foreseen movement by intercepting and stopping falling rock blocks. Despite the worldwide application of this kind of protections, the global behaviour of such a system has been poorly investigated, for the time being, and only at a reduced scale. The behaviour of these protection systems at real scale has been widely extrapolated, however these theories have still not been investigated by performing relating test at scale 1. The French Public Work Laboratory (LCPC) has decided to build a new testing station to work on that topic. This new testing station located in French Alps is able to drop heavy loads (up to 20 tons) from the top of a cliff down to structural systems in order to test their resistance to big shocks and study their dynamical behaviour at this high energy level. As the fall height can reach near 70m, the impact velocity can actually reach 35 metres per second and the energy released during the impact can be as large as 13 500 kilojoules. The experimental area at the bottom of the cliff which can be impacted by a block is 12 metres wide. This allows to test not only rockfall protection systems at scale 1 but also some parts of building structures too. To avoid damaging test-structure during a block drop due to dynamical effects, the dropping hook was designed with a special system. This one consists of a reversed mass which can be adapted to the dropped block and dropped together with the block. Moreover, it is very important to pay attention on repeatability of results concerning new devices for experiments. Whatever fall height the impact point is hit so with a precision of 50 centimetres. Such an experimental facility needs to be equipped with a relevant instrumentation. High capacity stress sensors, accelerometers and high speed cameras are available for experiments. They have been chosen for their capacity to work with an important length of cables. The monitoring with these experimental devices is performed at a high sample frequency suitable and for a very short load like an impact. A radio controlled system allows triggering monitoring and dropping at the same time. Due to bounce risk with the dropped block the safety of personal is ensured by strict operating rules. An observation platform has been located on an embankment along the test-site in order to follow experiments without risk. Two years were necessary for the test-site construction and its equipment. First tests on rockfall nets fences were performed at the end of 2009.

  11. Effects of a hydrotherapy programme on symbolic and complexity dynamics of heart rate variability and aerobic capacity in fibromyalgia patients.

    PubMed

    Zamunér, Antonio Roberto; Andrade, Carolina P; Forti, Meire; Marchi, Andrea; Milan, Juliana; Avila, Mariana Arias; Catai, Aparecida Maria; Porta, Alberto; Silva, Ester

    2015-01-01

    To evaluate the effects of a hydrotherapy programme on aerobic capacity and linear and non-linear dynamics of heart rate variability (HRV) in women with fibromyalgia syndrome (FMS). 20 women with FMS and 20 healthy controls (HC) took part in the study. The FMS group was evaluated at baseline and after a 16-week hydrotherapy programme. All participants underwent cardiopulmonary exercise testing on a cycle ergometer and RR intervals recording in supine and standing positions. The HRV was analysed by linear and non-linear methods. The current level of pain, the tender points, the pressure pain threshold and the impact of FMS on quality of life were assessed. The FMS patients presented higher cardiac sympathetic modulation, lower vagal modulation and lower complexity of HRV in supine position than the HC. Only the HC decreased the complexity indices of HRV during orthostatic stimulus. After a 16-week hydrotherapy programme, the FMS patients increased aerobic capacity, decreased cardiac sympathetic modulation and increased vagal modulation and complexity dynamics of HRV in supine. The FMS patients also improved their cardiac autonomic adjustments to the orthostatic stimulus. Associations between improvements in non-linear dynamics of HRV and improvements in pain and in the impact of FMS on quality of life were found. A 16-week hydrotherapy programme proved to be effective in ameliorating symptoms, aerobic functional capacity and cardiac autonomic control in FMS patients. Improvements in the non-linear dynamics of HRV were related to improvements in pain and in the impact of FMS on quality of life.

  12. Impacts of small vestibular schwannoma on community ambulation, postural, and ocular control.

    PubMed

    Low Choy, Nancy L; Lucey, Mary-Therese M; Lewandowski, Susan L; Panizza, Benedict J

    2017-05-01

    To investigate balance, community mobility, gaze instability, and dizziness handicap and assess falls risk in people who are conservatively managed with small vestibular schwannoma (VS). Cross-sectional study with controls. The study involved 18 people (mean age 58.7 ± 12.2 years) diagnosed with VS (<12 mm) and 22 age-matched controls (mean age 56.9 ± 8.0 years). Measures included standing on firm and foam surfaces with feet apart, then together with eyes open and closed, Timed Up and Go (TUG) test and dual TUG test, Dynamic Gait Index, 6-Minute Walk Test, Halmagyi Impulse Test, Dynamic Visual Acuity Test, and the Dizziness Handicap Inventory. The clinical group failed more trials standing feet together on foam with eyes closed (P < .05); had inferior mobility and walked more slowly with divided attention (P < .05); had more difficulty walking with head movement, negotiating obstacles, and using stairs (P < .01); and walked shorter distances (P < .001) than controls. Reduced gaze stability (P < .01) and higher total (P = .007) and subcategory dizziness handicap scores (P < .05) were revealed compared to age-matched controls. Although outcomes for the clinical group are inferior to the control group across all measures and the dizziness impact is higher, the results fall in the low-risk category for falls. Preliminary data (level 4 evidence) support using a suite of clinical measures to monitor people with VS during conservative management. 4 Laryngoscope, 127:1147-1152, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  13. Constitutive modeling of the dynamic-tensile-extrusion test of PTFE

    NASA Astrophysics Data System (ADS)

    Resnyansky, A. D.; Brown, E. N.; Trujillo, C. P.; Gray, G. T.

    2017-01-01

    Use of polymers in defense, aerospace and industrial applications under extreme loading conditions makes prediction of the behavior of these materials very important. Crucial to this is knowledge of the physical damage response in association with phase transformations during loading and the ability to predict this via multi-phase simulation accounting for thermodynamical non-equilibrium and strain rate sensitivity. The current work analyzes Dynamic-Tensile-Extrusion (Dyn-Ten-Ext) experiments on polytetrafluoroethylene (PTFE). In particular, the phase transition during loading and subsequent tension are analyzed using a two-phase rate sensitive material model implemented in the CTH hydrocode. The calculations are compared with experimental high-speed photography. Deformation patterns and their link with changing loading modes are analyzed numerically and correlated to the test observations. It is concluded that the phase transformation is not as critical to the response of PTFE under Dyn-Ten-Ext loading as it is during the Taylor rod impact testing.

  14. Effect of Microscopic Damage Events on Static and Ballistic Impact Strength of Triaxial Braid Composites

    NASA Technical Reports Server (NTRS)

    Littell, Justin D.; Binienda, Wieslaw K.; Arnold, William A.; Roberts, Gary D.; Goldberg, Robert K.

    2010-01-01

    The reliability of impact simulations for aircraft components made with triaxial-braided carbon-fiber composites is currently limited by inadequate material property data and lack of validated material models for analysis. Methods to characterize the material properties used in the analytical models from a systematically obtained set of test data are also lacking. A macroscopic finite element based analytical model to analyze the impact response of these materials has been developed. The stiffness and strength properties utilized in the material model are obtained from a set of quasi-static in-plane tension, compression and shear coupon level tests. Full-field optical strain measurement techniques are applied in the testing, and the results are used to help in characterizing the model. The unit cell of the braided composite is modeled as a series of shell elements, where each element is modeled as a laminated composite. The braided architecture can thus be approximated within the analytical model. The transient dynamic finite element code LS-DYNA is utilized to conduct the finite element simulations, and an internal LS-DYNA constitutive model is utilized in the analysis. Methods to obtain the stiffness and strength properties required by the constitutive model from the available test data are developed. Simulations of quasi-static coupon tests and impact tests of a represented braided composite are conducted. Overall, the developed method shows promise, but improvements that are needed in test and analysis methods for better predictive capability are examined.

  15. High Strain Rate Testing of Rocks using a Split-Hopkinson-Pressure Bar

    NASA Astrophysics Data System (ADS)

    Zwiessler, Ruprecht; Kenkmann, Thomas; Poelchau, Michael; Nau, Siegfried; Hess, Sebastian

    2016-04-01

    Dynamic mechanical testing of rocks is important to define the onset of rate dependency of brittle failure. The strain rate dependency occurs through the propagation velocity limit (Rayleigh wave speed) of cracks and their reduced ability to coalesce, which, in turn, significantly increases the strength of the rock. We use a newly developed pressurized air driven Split-Hopkinson-Pressure Bar (SHPB), that is specifically designed for the investigation of high strain rate testing of rocks, consisting of several 10 to 50 cm long strikers and bar components of 50 mm in diameter and 2.5 meters in length each. The whole set up, composed of striker, incident- and transmission bar is available in aluminum, titanium and maraging steel to minimize the acoustic impedance contrast, determined by the change of density and speed of sound, to the specific rock of investigation. Dynamic mechanical parameters are obtained in compression as well as in spallation configuration, covering a wide spectrum from intermediate to high strain rates (100-103 s-1). In SHPB experiments [1] one-dimensional longitudinal compressive pulses of diverse shapes and lengths - formed with pulse shapers - are used to generate a variety of loading histories under 1D states of stress in cylindrical rock samples, in order to measure the respective stress-strain response at specific strain rates. Subsequent microstructural analysis of the deformed samples is aimed at quantification fracture orientation, fracture pattern, fracture density, and fracture surface properties as a function of the loading rate. Linking mechanical and microstructural data to natural dynamic deformation processes has relevance for the understanding of earthquakes, landslides, impacts, and has several rock engineering applications. For instance, experiments on dynamic fragmentation help to unravel super-shear rupture events that pervasively pulverize rocks up to several hundred meters from the fault core [2, 3, 4]. The dynamic, strain rate dependent behavior with strongly increasing strength and changing fracturing process has not been consequently considered in modeling of geo-hazards such as earthquakes, rock falls, landslides or even meteorite impacts [5]. Incorporation of dynamic material data therefore will contribute to improvements of forecast models and the understanding of fast geodynamic processes. References [1] Zhang, Q. B. & Zhao, J. (2013). A Review of Dynamic Experimental Techniques and Mechanical Behaviour of Rock Materials. Rock Mech Rock Eng. DOI 10.1007/s00603-013-0463-y [2] Doan, M. L., & Gary, G. (2009). Rock pulverization at high strain rate near the San Andreas fault. Nature Geosci., 2, 709-712. [3] Reches, Z. E., & Dewers, T. A. (2005). Gouge formation by dynamic pulverization during earthquake rupture. Earth Planet. Sci. Lett., 235, 361-374. [4] Fondriest, M., Aretusini, S., Di Toro, G., & Smith, S. A. (2015). Fracturing and rock pulverization along an exhumed seismogenic fault zone in dolostones: The Foiana Fault Zone (Southern Alps, Italy). Tectonophys.654, 56-74. [5] Kenkmann, T., Poelchau, M. H., & Wulf, G. (2014). Structural Geology of impact craters. J. .Struct. Geol., 62, 156-182.

  16. Factors Influencing Occupant-To-Seat Belt Interaction in Far-Side Crashes

    PubMed Central

    Douglas, C.A.; Fildes, B.N.; Gibson, T.J.; Boström, O.; Pintar, F.A.

    2007-01-01

    Seat belt interaction with a far-side occupant’s shoulder and thorax is critical to governing excursion towards the struck-side of the vehicle in side impact. In this study, occupant-to-belt interaction was simulated using a modified MADYMO human model and finite element belts. Quasi-static tests with volunteers and dynamic sled tests with PMHS and WorldSID were used for model validation and comparison. Parameter studies were then undertaken to quantify the effect of impact direction, seat belt geometry and pretension on occupant-to-seat belt interaction. Results suggest that lowering the D-ring and increasing pretension reduces the likelihood of the belt slipping off the shoulder. Anthropometry was also shown to influence restraint provided by the shoulder belt. Furthermore, the belt may slip off the occupant’s shoulder at impact angles greater than 40 degrees from frontal when no pretension is used. However, the addition of pretension allowed the shoulder to engage the belt in all impacts from 30 to 90 degrees. PMID:18184500

  17. Modelling Dynamic Behaviour and Spall Failure of Aluminium Alloy AA7010

    NASA Astrophysics Data System (ADS)

    Ma'at, N.; Nor, M. K. Mohd; Ismail, A. E.; Kamarudin, K. A.; Jamian, S.; Ibrahim, M. N.; Awang, M. K.

    2017-10-01

    A finite strain constitutive model to predict the dynamic deformation behaviour of Aluminium Alloy 7010 including shockwaves and spall failure is developed in this work. The important feature of this newly hyperelastic-plastic constitutive formulation is a new Mandel stress tensor formulated using new generalized orthotropic pressure. This tensor is combined with a shock equation of state (EOS) and Grady spall failure. The Hill’s yield criterion is adopted to characterize plastic orthotropy by means of the evolving structural tensors that is defined in the isoclinic configuration. This material model was developed and integration into elastic and plastic parts. The elastic anisotropy is taken into account through the newly stress tensor decomposition of a generalized orthotropic pressure. Plastic anisotropy is considered through yield surface and an isotropic hardening defined in a unique alignment of deviatoric plane within the stress space. To test its ability to describe shockwave propagation and spall failure, the new material model was implemented into the LLNL-DYNA3D code of UTHM’s. The capability of this newly constitutive model were compared against published experimental data of Plate Impact Test at 234m/s, 450m/s and 895m/s impact velocities. A good agreement is obtained between experimental and simulation in each test.

  18. Impact compressive and bending behaviour of rocks accompanied by electromagnetic phenomena.

    PubMed

    Kobayashi, Hidetoshi; Horikawa, Keitaro; Ogawa, Kinya; Watanabe, Keiko

    2014-08-28

    It is well known that electromagnetic phenomena are often observed preceding earthquakes. However, the mechanism by which these electromagnetic waves are generated during the fracture and deformation of rocks has not been fully identified. Therefore, in order to examine the relationship between the electromagnetic phenomena and the mechanical properties of rocks, uniaxial compression and three-point bending tests for two kinds of rocks with different quartz content, granite and gabbro, have been carried out at quasi-static and dynamic rates. Especially, in the bending tests, pre-cracked specimens of granite were also tested. Using a split Hopkinson pressure bar and a ferrite-core antenna in close proximity to the specimens, both the stress-strain (load-displacement) curve and simultaneous electromagnetic wave magnitude were measured. It was found that the dynamic compressive and bending strengths and the stress increase slope of both rocks were higher than those observed in static tests; therefore, there is a strain-rate dependence in their strength and stress increase rate. It was found from the tests using the pre-cracked bending specimens that the intensity of electromagnetic waves measured during crack extension increased almost proportionally to the increase of the maximum stress intensity factor of specimens. This tendency was observed in both the dynamic and quasi-static three-point bending tests for granite. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  19. Experimental investigation of particle surface interactions for turbomachinery application

    NASA Astrophysics Data System (ADS)

    Hamed, A.; Tabakoff, W.

    This paper describes an experimental investigation to determine the particle restitution characteristics after impacting solid targets in a particulate flow wind tunnel. The tests simulate the two phase flow conditions encountered in turbomachinery operating in particle laden flow environments. Both incoming and rebounding velocities are measured using a three color Argon Ion laser in backward scattered mode through a window in the tunnel section containing the impact target. The experimental results are presented for ash particles impinging on RENE 41 targets at different impact conditions. The presented results are applicable to particle dynamics simulations in gas turbine engines and to the prediction of the associated blade surface erosion.

  20. Repeatability of a dynamic rollover test system.

    PubMed

    Seppi, Jeremy; Toczyski, Jacek; Crandall, Jeff R; Kerrigan, Jason

    2016-08-17

    The goal of this study was to characterize the rollover crash and to evaluate the repeatability of the Dynamic Rollover Test System (DRoTS) in terms of initial roof-to-ground contact conditions, vehicle kinematics, road reaction forces, and vehicle deformation. Four rollover crash tests were performed on 2 pairs of replicate vehicles (2 sedan tests and 2 compact multipurpose van [MPV] tests), instrumented with a custom inertial measurement unit to measure vehicle and global kinematics and string potentiometers to measure pillar deformation time histories. The road was instrumented with load cells to measure reaction loads and an optical encoder to measure road velocity. Laser scans of pre- and posttest vehicles were taken to provide detailed deformation maps. Initial conditions were found to be repeatable, with the largest difference seen in drop height of 20 mm; roll rate, roll angle, pitch angle, road velocity, drop velocity, mass, and moment of inertia were all 7% different or less. Vehicle kinematics (roll rate, road speed, roll and pitch angle, global Z' acceleration, and global Z' velocity) were similar throughout the impact; however, differences were seen in the sedan tests because of a vehicle fixation problem and differences were seen in the MPV tests due to an increase in reaction forces during leading side impact likely caused by disparities in roll angle (3° difference) and mass properties (2.2% in moment of inertia [MOI], 53.5 mm difference in center of gravity [CG] location). Despite those issues, kinetic and deformation measures showed a high degree of repeatability, which is necessary for assessing injury risk in rollover because roof strength positively correlates with injury risk (Brumbelow 2009). Improvements of the test equipment and matching mass properties will ensure highly repeatable initial conditions, vehicle kinematics, kinetics, and deformations.

  1. Crash Simulation of a Boeing 737 Fuselage Section Vertical Drop Test

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Jackson, Karen E.; Jones, Yvonne T.; Frings, Gary; Vu, Tong

    2004-01-01

    A 30-ft/s vertical drop test of a fuselage section of a Boeing 737 aircraft was conducted in October of 1999 at the FAA Technical Center in Atlantic City, NJ. This test was performed to evaluate the structural integrity of a conformable auxiliary fuel tank mounted beneath the floor and to determine its effect on the impact response of the airframe structure and the occupants. The test data were used to compare with a finite element simulation of the fuselage structure and to gain a better understanding of the impact physics through analytical/experimental correlation. To perform this simulation, a full-scale 3-dimensional finite element model of the fuselage section was developed using the explicit, nonlinear transient-dynamic finite element code, MSC.Dytran. The emphasis of the simulation was to predict the structural deformation and floor-level acceleration responses obtained from the drop test of the B737 fuselage section with the auxiliary fuel tank.

  2. Specialized data analysis for the Space Shuttle Main Engine and diagnostic evaluation of advanced propulsion system components

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Marshall Space Flight Center is responsible for the development and management of advanced launch vehicle propulsion systems, including the Space Shuttle Main Engine (SSME), which is presently operational, and the Space Transportation Main Engine (STME) under development. The SSME's provide high performance within stringent constraints on size, weight, and reliability. Based on operational experience, continuous design improvement is in progress to enhance system durability and reliability. Specialized data analysis and interpretation is required in support of SSME and advanced propulsion system diagnostic evaluations. Comprehensive evaluation of the dynamic measurements obtained from test and flight operations is necessary to provide timely assessment of the vibrational characteristics indicating the operational status of turbomachinery and other critical engine components. Efficient performance of this effort is critical due to the significant impact of dynamic evaluation results on ground test and launch schedules, and requires direct familiarity with SSME and derivative systems, test data acquisition, and diagnostic software. Detailed analysis and evaluation of dynamic measurements obtained during SSME and advanced system ground test and flight operations was performed including analytical/statistical assessment of component dynamic behavior, and the development and implementation of analytical/statistical models to efficiently define nominal component dynamic characteristics, detect anomalous behavior, and assess machinery operational condition. In addition, the SSME and J-2 data will be applied to develop vibroacoustic environments for advanced propulsion system components, as required. This study will provide timely assessment of engine component operational status, identify probable causes of malfunction, and indicate feasible engineering solutions. This contract will be performed through accomplishment of negotiated task orders.

  3. Test and Analysis Correlation of High Speed Impacts of Ice Cylinders

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Boitnott, Richard L.; Kellas, Sotiris

    2006-01-01

    During the space shuttle return-to-flight preparations following the Columbia accident, finite element models were needed that could predict the threshold of critical damage to the orbiter s wing leading edge from ice debris impacts. Hence, an experimental program was initiated to provide crushing data from impacted ice for use in dynamic finite element material models. A high-speed drop tower was configured to capture force time-histories of ice cylinders for impacts up to approximately 100 ft/s. At low velocity, the force-time history depended heavily on the internal crystalline structure of the ice. However, for velocities of 100 ft/s and above, the ice fractured on impact, behaved more like a fluid, and the subsequent force-time history curves were much less dependent on the internal crystalline structure.

  4. Transport aircraft accident dynamics

    NASA Technical Reports Server (NTRS)

    Cominsky, A.

    1982-01-01

    A study was carried out of 112 impact survivable jet transport aircraft accidents (world wide) of 27,700 kg (60,000 lb.) aircraft and up extending over the last 20 years. This study centered on the effect of impact and the follow-on events on aircraft structures and was confined to the approach, landing and takeoff segments of the flight. The significant characteristics, frequency of occurrence and the effect on the occupants of the above data base were studied and categorized with a view to establishing typical impact scenarios for use as a basis of verifying the effectiveness of potential safety concepts. Studies were also carried out of related subjects such as: (1) assessment of advanced materials; (2) human tolerance to impact; (3) merit functions for safety concepts; and (4) impact analysis and test methods.

  5. Comparison of quasistatic to impact mechanical properties of multiwall carbon nanotube/polycarbonate composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brühwiler, Paul A.; Barbezat, Michel; Necola, Adly

    2010-10-22

    We report the quasistatic tensile and impact penetration properties (falling dart test) of injection-molded polycarbonate samples, as a function of multiwall carbon nanotube (MWNT) concentration (0.0-2.5%). The MWNT were incorporated by dilution of a commercial MWNT/polycarbonate masterbatch. The stiffness and quasistatic yield strength of the composites increased approximately linearly with MWNT concentration in all measurements. The energy absorbed in fracture was, however, a negative function of the MWNT concentration, and exhibited different dependencies in quasistatic and impact tests. Small-angle x-ray scattering (SAXS) showed that the dispersion of the MWNT was similar at all concentrations. The negative effects on energy absorptionmore » are attributed to agglomerates remaining in the samples, which were observed in optical microscopy and SAXS. Overall, there was a good correspondence between static and dynamic energy absorption.« less

  6. Quasi-Static 3-Point Reinforced Carbon-Carbon Bend Test and Analysis for Shuttle Orbiter Wing Leading Edge Impact Damage Thresholds

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Sotiris, Kellas

    2006-01-01

    Static 3-point bend tests of Reinforced Carbon-Carbon (RCC) were conducted to failure to provide data for additional validation of an LS-DYNA RCC model suitable for predicting the threshold of impact damage to shuttle orbiter wing leading edges. LS-DYNA predictions correlated well with the average RCC failure load, and were good in matching the load vs. deflection. However, correlating the detectable damage using NDE methods with the cumulative damage parameter in LS-DYNA material model 58 was not readily achievable. The difficulty of finding internal RCC damage with NDE and the high sensitivity of the mat58 damage parameter to the load near failure made the task very challenging. In addition, damage mechanisms for RCC due to dynamic impact of debris such as foam and ice and damage mechanisms due to a static loading were, as expected, not equivalent.

  7. Distributed dynamic load on composite laminates

    NASA Astrophysics Data System (ADS)

    Langella, A.; Lopresto, V.; Caprino, G.

    2016-05-01

    An experimental activity conducted in order to assess the impact behavior at room and low temperature of carbon fibre in vinylester resin laminates used in the shipbuilding industry, was reported. The conditions which reproduce the impact of a hull at low temperature with a solid body suspended in the water was reproduced. A test equipment was designed and realized to reproduce the real material behaviour in water to obtain a load distribution on the entire surface of the specimen. The results were obtained impacting the laminates placed between the cilyndrical steel impactor and a bag containing water. A falling weight machine, equipped with an instrumented steel impactor and a thermal chamber, was adopted for the experimental tests. The impact behaviour in hostile environments was compared to the behaviour at room temperature and the data obtained under distributed load conditions were compared with the results from concentrated loads: a completely different behaviour was observed between the two different loading conditions in terms of load-displacement curve. The effect of the impact on the laminates has been related with the delaminations, evaluated by ultrasonic scanning, and the indentation.

  8. A user-friendly, open-source tool to project impact and cost of diagnostic tests for tuberculosis

    PubMed Central

    Dowdy, David W; Andrews, Jason R; Dodd, Peter J; Gilman, Robert H

    2014-01-01

    Most models of infectious diseases, including tuberculosis (TB), do not provide results customized to local conditions. We created a dynamic transmission model to project TB incidence, TB mortality, multidrug-resistant (MDR) TB prevalence, and incremental costs over 5 years after scale-up of nine alternative diagnostic strategies. A corresponding web-based interface allows users to specify local costs and epidemiology. In settings with little capacity for up-front investment, same-day microscopy had the greatest impact on TB incidence and became cost-saving within 5 years if delivered at $10/test. With greater initial investment, population-level scale-up of Xpert MTB/RIF or microcolony-based culture often averted 10 times more TB cases than narrowly-targeted strategies, at minimal incremental long-term cost. Xpert for smear-positive TB had reasonable impact on MDR-TB incidence, but at substantial price and little impact on overall TB incidence and mortality. This user-friendly modeling framework improves decision-makers' ability to evaluate the local impact of TB diagnostic strategies. DOI: http://dx.doi.org/10.7554/eLife.02565.001 PMID:24898755

  9. Testing and injury potential analysis of rollovers with narrow object impacts.

    PubMed

    Meyer, Steven E; Forrest, Stephen; Herbst, Brian; Hayden, Joshua; Orton, Tia; Sances, Anthony; Kumaresan, Srirangam

    2004-01-01

    Recent statistics highlight the significant risk of serious and fatal injuries to occupants involved in rollover collisions due to excessive roof crush. The government has reported that in 2002. Sports Utility Vehicle rollover related fatalities increased by 14% to more than 2400 annually. 61% of all SUV fatalities included rollovers [1]. Rollover crashes rely primarily upon the roof structures to maintain occupant survival space. Frequently these crashes occur off the travel lanes of the roadway and, therefore, can include impacts with various types of narrow objects such as light poles, utility poles and/or trees. A test device and methodology is presented which facilitates dynamic, repeatable rollover impact evaluation of complete vehicle roof structures with such narrow objects. These tests allow for the incorporation of Anthropomorphic Test Dummies (ATDs) which can be instrumented to measure accelerations, forces and moments to evaluate injury potential. High-speed video permits for detailed analysis of occupant kinematics and evaluation of injury causation. Criteria such as restraint performance, injury potential, survival space and the effect of roof crush associated with various types of design alternatives, countermeasures and impact circumstances can also be evaluated. In addition to presentation of the methodology, two representative vehicle crash tests are also reported. Results indicated that the reinforced roof structure significantly reduced the roof deformation compared to the production roof structure.

  10. The impact of the luminance, size and location of LED billboards on drivers' visual performance-Laboratory tests.

    PubMed

    Zalesinska, Malgorzata

    2018-08-01

    A proper visual performance by drivers can be ensured by, among else, a correct distribution of luminance in their field of view. At night, when the driver's sight is adapted to low luminance levels, high luminance level objects located near the road may be a source of glare, which is not only a nuisance, but it may also blind the driver. For many years, LED billboards (light-emitting diode billboards) have been installed near roads. Such billboards are usually large, have high luminance and show dynamically changing images. These parameters have a significant impact on the drivers' visual performance and, in turn, on road traffic safety. The study on the impact of the luminance, size and location of LED billboards on the drivers' visual performance was conducted on a volunteer group. Testing the impact of LED billboards on the visual performance of drivers in real-life conditions is very difficult. Therefore, the tests have been conducted in laboratory conditions, using a car driving simulator. The paper describes the testing procedure and tests results. The permissible luminance and areas of LED screens in two locations near the road, which significantly reduce the drivers' visual performance in municipal traffic at night, were determined by conducting an analysis of the results. Recommendations on the permissible luminance and areas of LED billboards were formulated. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Detection of internal cracks in rubber composite structures using an impact acoustic modality

    NASA Astrophysics Data System (ADS)

    Shen, Q.; Kurfess, T. R.; Omar, M.; Gramling, F.

    2014-01-01

    The objective of this study is to investigate the use of impact acoustic signals to non-intrusively inspect rubber composite structures for the presence of internal cracks, such as those found in an automobile tyre. Theoretical contact dynamic models for both integral and defective rubber structures are developed based on Hertz's impact model, further modified for rubber composite materials. The model generates the prediction of major impact dynamic quantities, namely the maximum impact force, impact duration and contact deformation; such parameters are also theoretically proven to be correlated with the presence of internal cracks. The tyre structures are simplified into cubic rubber blocks, to mitigate complexity for analytical modelling. Both impact force and impact sound signals are measured experimentally, and extraction of useful features from both signals for defect identification is achieved. The impact force produces two direct measurements of theoretical impact dynamic quantities. A good correlation between these experimental discriminators and the theoretical dynamic quantities provide validation for the contact dynamics models. Defect discriminators extracted from the impact sound are dependent on both time- and frequency-domain analyses. All the discriminators are closely connected with the theoretical dynamic quantities and experimentally verified as good indicators of internal cracks in rubber composite structures.

  12. Fire spread probabilities for experimental beds composed of mixedwood boreal forest fuels

    Treesearch

    M.B. Dickinson; E.A. Johnson; R. Artiaga

    2013-01-01

    Although fuel characteristics are assumed to have an important impact on fire regimes through their effects on extinction dynamics, limited capabilities exist for predicting whether a fire will spread in mixedwood boreal forest surface fuels. To improve predictive capabilities, we conducted 347 no-wind, laboratory test burns in surface fuels collected from the mixed-...

  13. Effects of Steady-State Noise on Verbal Working Memory in Young Adults

    ERIC Educational Resources Information Center

    Marrone, Nicole; Alt, Mary; DeDe, Gayle; Olson, Sarah; Shehorn, James

    2015-01-01

    Purpose: We set out to examine the impact of perceptual, linguistic, and capacity demands on performance of verbal working-memory tasks. The Ease of Language Understanding model (Rönnberg et al., 2013) provides a framework for testing the dynamics of these interactions within the auditory-cognitive system. Methods: Adult native speakers of English…

  14. 76 FR 55230 - Special Conditions: Embraer S.A.; Model EMB 505; Single-Place Side-Facing Lavatory Seat Dynamic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-07

    ... will facilitate egress after an accident, including leaving the lavatory door locked open during taxi... (foam or equivalent), such as Ensolite. (c) Thoracic Trauma. Testing with a Side Impact Dummy (SID), as... pounds. (g) Emergency Evacuation. When occupied, the lavatory door must be latched open for takeoff and...

  15. Team Structure and Regulatory Focus: The Impact of Regulatory Fit on Team Dynamic

    ERIC Educational Resources Information Center

    Dimotakis, Nikolaos; Davison, Robert B.; Hollenbeck, John R.

    2012-01-01

    We report a within-teams experiment testing the effects of fit between team structure and regulatory task demands on task performance and satisfaction through average team member positive affect and helping behaviors. We used a completely crossed repeated-observations design in which 21 teams enacted 2 tasks with different regulatory focus…

  16. Membrane Vibration Studies Using a Scanning Laser Vibrometer

    NASA Technical Reports Server (NTRS)

    Gaspar, James L.; Solter, Micah J.; Pappa, Richard S.

    2001-01-01

    This paper summarizes on-going experimental work at NASA Langley Research Center to measure the dynamics of a 1.016 m (40 in.) square polyimide film Kapton membrane. A fixed fully automated impact hammer and Polytec PSV-300-H scanning laser vibrometer were used for non-contact modal testing of the membrane with zero-mass-loading. The paper discusses the results obtained by testing the membrane at various tension levels and at various excitation locations. Results obtained by direct shaker excitation to the membrane are also discussed.

  17. Debris flow impact estimation on a rigid barrier

    NASA Astrophysics Data System (ADS)

    Vagnon, Federico; Segalini, Andrea

    2016-07-01

    The aim of this paper is to analyse debris flow impact against rigid and undrained barrier in order to propose a new formulation for the estimation of acting force after the flow impact to safe design protection structures. For this reason, this work concentrates on the flow impact, by performing a series of small scale tests in a specifically created flume. Flow characteristics (flow height and velocity) and applied loads (dynamic and static) on barrier were measured using four ultrasonic devices, four load cells and a contact surface pressure gauge. The results obtained were compared with main existing models and a new equation is proposed. Furthermore, a brief review of the small scale theory was provided to analyse the scale effects that can affect the results.

  18. Fibrous cartilage of human menisci is less shock-absorbing and energy-dissipating than hyaline cartilage.

    PubMed

    Gaugler, Mario; Wirz, Dieter; Ronken, Sarah; Hafner, Mirjam; Göpfert, Beat; Friederich, Niklaus F; Elke, Reinhard

    2015-04-01

    To test meniscal mechanical properties such as the dynamic modulus of elasticity E* and the loss angle δ at two loading frequencies ω at different locations of the menisci and compare it to E* and δ of hyaline cartilage in indentation mode with spherical indenters. On nine pairs of human menisci, the dynamic E*-modulus and loss angle δ (as a measure of the energy dissipation) were determined. The measurements were performed at two different strain rates (slow sinusoidal and fast single impact) to show the strain rate dependence of the material. The measurements were compared to previous similar measurements with the same equipment on human hyaline cartilage. The resultant E* at fast indentation (median 1.16 MPa) was significantly higher, and the loss angle was significantly lower (median 10.2°) compared to slow-loading mode's E* and δ (median 0.18 MPa and 16.9°, respectively). Further, significant differences for different locations are shown. On the medial meniscus, the anterior horn shows the highest resultant dynamic modulus. In dynamic measurements with a spherical indenter, the menisci are much softer and less energy-dissipating than hyaline cartilage. Further, the menisci are stiffer and less energy-dissipating in the middle, intermediate part compared to the meniscal base. In compression, the energy dissipation of meniscus cartilage plays a minor role compared to hyaline cartilage. At high impacts, energy dissipation is less than on low impacts, similar to cartilage.

  19. Disentangling the effects of climate and people on Sahel vegetation dynamics

    NASA Astrophysics Data System (ADS)

    Seaquist, J. W.; Hickler, T.; Eklundh, L.; Ardö, J.; Heumann, B. W.

    2009-03-01

    The Sahel belt of Africa has been the focus of intensive scientific research since the 1960s, spurred on by the chronic vulnerability of its population to recurring drought and the threat of long-term land degradation. But satellite sensors have recently shown that much of the region has experienced significant increases in photosynthetic activity since the early 1980s, thus re-energizing long-standing debates about the role that people play in shaping land surface status, and thus climate at regional scales. In this paper, we test the hypothesis that people have had a measurable impact on vegetation dynamics in the Sahel for the period 1982-2002. We compare potential natural vegetation dynamics predicted by a process-based ecosystem model with satellite-derived greenness observations, and map the agreement between the two across a geographic grid at a spatial resolution of 0.5°. As aggregated data-model agreement is very good, any local differences between the two could be due to human impact. We then relate this agreement metric to state-of-the-art data sets on demographics, pasture, and cropping. Our findings suggest that demographic and agricultural pressures in the Sahel are unable to account for differences between simulated and observed vegetation dynamics, even for the most densely populated areas. But we do identify a weak, positive correlation between data-model agreement and pasture intensity at the Sahel-wide level. This indicates that herding or grazing does not appreciably affect vegetation dynamics in the region. Either people have not had a significant impact on vegetation dynamics in the Sahel or the identification of a human "footprint" is precluded by inconsistent or subtle vegetation response to complex socio-environmental interactions, and/or limitations in the data used for this study. We do not exclude the possibility of a greater human influence on vegetation dynamics over the coming decades with changing land use.

  20. Evaluation of the influence of velocity on dynamic passenger loads during a frontal minibus impact against an obstacle

    NASA Astrophysics Data System (ADS)

    Prochowski, L.; Dębowski, A.; Żuchowski, A.; Zielonka, K.

    2016-09-01

    The safety of people travelling by minibus is a very complex issue, in which the decisive role is played by load-bearing vehicle structure, passenger seats, and personal protection means. In order to maximize the number of people transported, the seats are spaced very closely to each other and this may pose a hazard to the passengers. Based on an analysis of experimental test results, a computer model representing a system composed of a minibus floor segment, seats, and dummies was built. For the analysis, seats integrated with seat belts were adopted. A seat of this type was based on a high-rigidity frame necessary to bear, inter alia, the strong force exerted (during a collision) by passenger's torso on the shoulder seat belt and transmitted to the upper seat belt anchorage point on the seat backrest. Within this work, the frontal minibus impact against an obstacle with velocities ranging from 20 km/h to 70 km/h was considered. The analysis covered the motion of, and dynamic loads on, a test dummy representing a 50th percentile adult male (Hybrid III dummy). Within the analysis, realizations of dynamic loads caused by inertial forces and reactions exerted by a three-point seat belt were taken into account. Special attention was paid to the extreme values of the loads that acted on dummy's head, neck, and torso when the head hit the backrest of the preceding seat in the culminating phase of the vehicle impact against an obstacle. The values of biomechanical indicators HIC, ThAC, Nij , and FAC and of the joint injury risk indicator were calculated.

  1. Characterization of the behavior under impact loading of a maraging steel strengthened by nano-precipitates

    NASA Astrophysics Data System (ADS)

    Lach, E.; Redjaïmia, A.; Leitner, H.; Clemens, H.

    2006-08-01

    Nanometer-sized precipitates are responsible for the high strength of steel alloys well known as maraging steels. The term maraging relates to aging reactions in very low-carbon martensitic steels. Due to precipitation hardening 0.2% yield stress values of up to 2.4 GPa can be achieved. The class of stainless maraging steels exhibits an excellent combination of very high strength and hardness, ductility and toughness, combined with good corrosion resistance. In many applications like crash worthiness or ballistic protection the materials are loaded at high strain-rates. The most important characteristic of material behavior under dynamic load is the dynamic yield stress. In this work compression tests had been conducted at strain-rates in the order of 5 x 10 - 3 s - 1 up to 3 x 103 s - 1 to study the materials behaviour. Additionally high dynamic compression tests had been performed in the temperature range from -40circC up to 300circC.

  2. Evaluation of nitrous oxide as a substitute for sulfur hexafluoride to reduce global warming impacts of ANSI/HPS N13.1 gaseous uniformity testing

    NASA Astrophysics Data System (ADS)

    Yu, Xiao-Ying; Barnett, J. Matthew; Amidan, Brett G.; Recknagle, Kurtis P.; Flaherty, Julia E.; Antonio, Ernest J.; Glissmeyer, John A.

    2018-03-01

    The ANSI/HPS N13.1-2011 standard requires gaseous tracer uniformity testing for sampling associated with stacks used in radioactive air emissions. Sulfur hexafluoride (SF6), a greenhouse gas with a high global warming potential, has long been the gas tracer used in such testing. To reduce the impact of gas tracer tests on the environment, nitrous oxide (N2O) was evaluated as a potential replacement to SF6. The physical evaluation included the development of a test plan to record percent coefficient of variance and the percent maximum deviation between the two gases while considering variables such as fan configuration, injection position, and flow rate. Statistical power was calculated to determine how many sample sets were needed, and computational fluid dynamic modeling was utilized to estimate overall mixing in stacks. Results show there are no significant differences between the behaviors of the two gases, and SF6 modeling corroborated N2O test results. Although, in principle, all tracer gases should behave in an identical manner for measuring mixing within a stack, the series of physical tests guided by statistics was performed to demonstrate the equivalence of N2O testing to SF6 testing in the context of stack qualification tests. The results demonstrate that N2O is a viable choice leading to a four times reduction in global warming impacts for future similar compliance driven testing.

  3. Impact of the dynamical core on the direct simulation of tropical cyclones in a high-resolution global model

    DOE PAGES

    Reed, K. A.; Bacmeister, J. T.; Rosenbloom, N. A.; ...

    2015-05-13

    Our paper examines the impact of the dynamical core on the simulation of tropical cyclone (TC) frequency, distribution, and intensity. The dynamical core, the central fluid flow component of any general circulation model (GCM), is often overlooked in the analysis of a model's ability to simulate TCs compared to the impact of more commonly documented components (e.g., physical parameterizations). The Community Atmosphere Model version 5 is configured with multiple dynamics packages. This analysis demonstrates that the dynamical core has a significant impact on storm intensity and frequency, even in the presence of similar large-scale environments. In particular, the spectral elementmore » core produces stronger TCs and more hurricanes than the finite-volume core using very similar parameterization packages despite the latter having a slightly more favorable TC environment. Furthermore, these results suggest that more detailed investigations into the impact of the GCM dynamical core on TC climatology are needed to fully understand these uncertainties. Key Points The impact of the GCM dynamical core is often overlooked in TC assessments The CAM5 dynamical core has a significant impact on TC frequency and intensity A larger effort is needed to better understand this uncertainty« less

  4. A Vertically Lagrangian Finite-Volume Dynamical Core for Global Models

    NASA Technical Reports Server (NTRS)

    Lin, Shian-Jiann

    2003-01-01

    A finite-volume dynamical core with a terrain-following Lagrangian control-volume discretization is described. The vertically Lagrangian discretization reduces the dimensionality of the physical problem from three to two with the resulting dynamical system closely resembling that of the shallow water dynamical system. The 2D horizontal-to-Lagrangian-surface transport and dynamical processes are then discretized using the genuinely conservative flux-form semi-Lagrangian algorithm. Time marching is split- explicit, with large-time-step for scalar transport, and small fractional time step for the Lagrangian dynamics, which permits the accurate propagation of fast waves. A mass, momentum, and total energy conserving algorithm is developed for mapping the state variables periodically from the floating Lagrangian control-volume to an Eulerian terrain-following coordinate for dealing with physical parameterizations and to prevent severe distortion of the Lagrangian surfaces. Deterministic baroclinic wave growth tests and long-term integrations using the Held-Suarez forcing are presented. Impact of the monotonicity constraint is discussed.

  5. Psychosocial aspects of genetic testing.

    PubMed

    Cameron, Linda D; Muller, Cecile

    2009-03-01

    With rapid advances in genetic testing for disease susceptibility, behavioral medicine faces significant challenges in identifying likely patterns of use, how individuals interpret test results, and psychosocial and health impacts of testing. We review recent research on these psychosocial aspects of genetic testing for disease risk. Individuals exhibit limited sensitivity in their perceptions of genetic risk information, and mental representations of disease risk appear to guide testing perceptions and behavioral responses. Motivations to undergo testing are complex, and efforts to develop decision aids are underway. Findings on psychological and behavioral impacts of genetic testing vary markedly, with some evidence of minimal or positive effects and other evidence indicating negative consequences that may be undetectable using common measures of general well being. Recent evidence suggests that genetic risk information can motivate health behavior change. Research demonstrates wide-ranging influences of testing on family dynamics, and use of genetic testing with children is of increasing concern. More research is needed to determine how to structure health communications and counseling to motivate informed use, promote positive responses, and optimize behavior change. Given the ramifications of genetic information for families, personalized genomics will demand a shift toward a family-based healthcare model.

  6. Dynamic impact force and association with structural damage to the knee joint: an ex-vivo study.

    PubMed

    Brill, Richard; Wohlgemuth, Walther A; Hempfling, Harald; Bohndorf, Klaus; Becker, Ursula; Welsch, Ulrich; Kamp, Alexander; Roemer, Frank W

    2014-12-01

    No systematic, histologically confirmed data are available concerning the association between magnitude of direct dynamic impact caused by vertical impact trauma and the resulting injury to cartilage and subchondral bone. The aim of this study was to investigate the association between dynamic impact and the resulting patterns of osteochondral injury in an ex-vivo model. A mechanical apparatus was employed to perform ex-vivo controlled dynamic vertical impact experiments in 110 pig knees with the femur positioned in a holding fixture. A falling body with a thrust plate and photo sensor was applied. The direct impact to the trochlear articular surface was registered and the resulting osteochondral injuries macroscopically and histologically correlated and categorized. The relationship between magnitude of direct impact and injury severity could be classified as stage I injuries (impact <7.3MPa): elastic deformation, no histological injury; stage II injuries (impact 7.3-9.6MPa): viscoelastic imprint of the cartilaginous surface, subchondral microfractures; stage III injuries (impact 9.6-12.7MPa): disrupted cartilage surface, chondral fissures and subchondral microfractures; stage IV injuries (impact >12.7MPa): osteochondral impression, histologically imprint and osteochondral macrofractures. The impact ranges and histologic injury stages determined from this vertical dynamic impact experiment allowed for a biomechanical classification of direct, acute osteochondral injury. In contrast to static load commonly applied in ex-vivo experiments, dynamic impact more realistically represents actual trauma to the knee joint.

  7. Particle-based solid for nonsmooth multidomain dynamics

    NASA Astrophysics Data System (ADS)

    Nordberg, John; Servin, Martin

    2018-04-01

    A method for simulation of elastoplastic solids in multibody systems with nonsmooth and multidomain dynamics is developed. The solid is discretised into pseudo-particles using the meshfree moving least squares method for computing the strain tensor. The particle's strain and stress tensor variables are mapped to a compliant deformation constraint. The discretised solid model thus fit a unified framework for nonsmooth multidomain dynamics simulations including rigid multibodies with complex kinematic constraints such as articulation joints, unilateral contacts with dry friction, drivelines, and hydraulics. The nonsmooth formulation allows for impact impulses to propagate instantly between the rigid multibody and the solid. Plasticity is introduced through an associative perfectly plastic modified Drucker-Prager model. The elastic and plastic dynamics are verified for simple test systems, and the capability of simulating tracked terrain vehicles driving on a deformable terrain is demonstrated.

  8. Climate Induced Spillover and Implications for U.S. Security.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tidwell, Vincent C.; Naugle, Asmeret Bier; Backus, George A.

    Developing nations incur a greater risk to climate change than the developed world due to poorly managed human/natural resources, unreliable infrastructure and brittle governing/economic institutions. These vulnerabilities often give rise to a climate induced “domino effect” of reduced natural resource production-leading to economic hardship, social unrest, and humanitarian crises. Integral to this cascading set of events is increased human migration, leading to the “spillover” of impacts to adjoining areas with even broader impact on global markets and security. Given the complexity of factors influencing human migration and the resultant spill-over effect, quantitative tools are needed to aid policy analysis. Towardmore » this need, a series of migration models were developed along with a system dynamics model of the spillover effect. The migration decision models were structured according to two interacting paths, one that captured long-term “chronic” impacts related to protracted deteriorating quality of life and a second focused on short-term “acute” impacts of disaster and/or conflict. Chronic migration dynamics were modeled for two different cases; one that looked only at emigration but at a national level for the entire world; and a second that looked at both emigration and immigration but focused on a single nation. Model parameterization for each of the migration models was accomplished through regression analysis using decadal data spanning the period 1960-2010. A similar approach was taken with acute migration dynamics except regression analysis utilized annual data sets limited to a shorter time horizon (2001-2013). The system dynamics spillover model was organized around two broad modules, one simulating the decision dynamics of migration and a second module that treats the changing environmental conditions that influence the migration decision. The environmental module informs the migration decision, endogenously simulating interactions/changes in the economy, labor, population, conflict, water, and food. A regional model focused on Mali in western Africa was used as a test case to demonstrate the efficacy of the model.« less

  9. iLIDS Simulations and Videos for Docking TIM

    NASA Technical Reports Server (NTRS)

    Lewis, James L.

    2010-01-01

    The video shows various aspects of the International Low Impact Docking System, including team members, some production, configuration, mated androgynous iLIDS, SCS Lockdown system, thermal analysis, electrical engineering aspects, the iLIDS control box and emulator, radiation testing at BNL, component environmental testing, component vibration testing, 3G processor board delivery system, GTA vibe test, EMA testbed, hook and hook disassembly, flex shaftdrive assembly, GSE cradle MISSE-6 Columbus, MISSE 6 and 7 seal experiments, actuated full scale seal test rig, LIDS on Hubble, dynamics test prep, EDU 54 mass emulation and SCS, load ring characterization, 6DOF proof test, SCS at 6DOF, machining EEMS and inner ring assembly, APAS assembly, inner ring fitting, rotation stand assembly, EEMS mating, and EEMS proof of concept demonstration.

  10. Long-term record of Argentine ant invasions reveals enduring ecological impacts.

    PubMed

    Menke, Sean B; Ward, Philip S; Holway, David A

    2018-05-01

    The ecological effects of species introductions can change in magnitude over time, but an understanding of how and why they do so remains incompletely understood. Clarifying this issue requires consideration of how temporal variation in invader traits affects invasion impacts (e.g., through differential effects on the diversity and composition of native species assemblages). We examine the temporal dynamics of Argentine ant invasions in northern California by resurveying 202 sites first sampled 30-40 yr ago. To test how invasion impacts change over time, we estimated native ant richness and species composition at 20 riparian woodland sites that span a 30-yr invasion chronosequence. We then use these data to test how variation in two invader traits (aggression and relative abundance) is related to time since invasion and invasion impact. Native ant assemblages along the chronosequence exhibited reduced native ant richness and altered species composition (compared to uninvaded control sites), but the magnitude of these impacts was independent of time since invasion. These results are corroborated by additional temporal comparisons of native ant assemblages at riparian sites sampled 20-30 yr ago. Our findings together illustrate that the impacts of invasions can persist undiminished over at least a 30-yr time frame and remain evident at regional scales. Although neither invader trait varied with time since invasion, native ant richness declined as the relative abundance of the Argentine ant increased. This latter result supports the hypothesis that factors reducing invader abundance at particular sites can decrease invasion impacts, but also that such changes may be due to site-specific factors (e.g., abiotic conditions) that affect invader abundance rather than time since invasion per se. Future studies should attempt to differentiate factors that are intrinsic to the process of invasion (e.g., changes in invader populations) from long-term environmental changes (e.g., climate change) that represent extrinsic influences on the dynamics of invasion. © 2018 by the Ecological Society of America.

  11. Sensitivity of head and cervical spine injury measures to impact factors relevant to rollover crashes.

    PubMed

    Mattos, G A; Mcintosh, A S; Grzebieta, R H; Yoganandan, N; Pintar, F A

    2015-01-01

    Serious head and cervical spine injuries have been shown to occur mostly independent of one another in pure rollover crashes. In an attempt to define a dynamic rollover crash test protocol that can replicate serious injuries to the head and cervical spine, it is important to understand the conditions that are likely to produce serious injuries to these 2 body regions. The objective of this research is to analyze the effect that impact factors relevant to a rollover crash have on the injury metrics of the head and cervical spine, with a specific interest in the differentiation between independent injuries and those that are predicted to occur concomitantly. A series of head impacts was simulated using a detailed finite element model of the human body, the Total HUman Model for Safety (THUMS), in which the impactor velocity, displacement, and direction were varied. The performance of the model was assessed against available experimental tests performed under comparable conditions. Indirect, kinematic-based, and direct, tissue-level, injury metrics were used to assess the likelihood of serious injuries to the head and cervical spine. The performance of the THUMS head and spine in reconstructed experimental impacts compared well to reported values. All impact factors were significantly associated with injury measures for both the head and cervical spine. Increases in impact velocity and displacement resulted in increases in nearly all injury measures, whereas impactor orientation had opposite effects on brain and cervical spine injury metrics. The greatest cervical spine injury measures were recorded in an impact with a 15° anterior orientation. The greatest brain injury measures occurred when the impactor was at its maximum (45°) angle. The overall kinetic and kinematic response of the THUMS head and cervical spine in reconstructed experiment conditions compare well with reported values, although the occurrence of fractures was overpredicted. The trends in predicted head and cervical spine injury measures were analyzed for 90 simulated impact conditions. Impactor orientation was the only factor that could potentially explain the isolated nature of serious head and spine injuries under rollover crash conditions. The opposing trends of injury measures for the brain and cervical spine indicate that it is unlikely to reproduce the injuries simultaneously in a dynamic rollover test.

  12. Nonlinear static and dynamic finite element analysis of an eccentrically loaded graphite-epoxy beam

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Jackson, Karen E.; Jones, Lisa E.

    1991-01-01

    The Dynamic Crash Analysis of Structures (DYCAT) and NIKE3D nonlinear finite element codes were used to model the static and implulsive response of an eccentrically loaded graphite-epoxy beam. A 48-ply unidirectional composite beam was tested under an eccentric axial compressive load until failure. This loading configuration was chosen to highlight the capabilities of two finite element codes for modeling a highly nonlinear, large deflection structural problem which has an exact solution. These codes are currently used to perform dynamic analyses of aircraft structures under impact loads to study crashworthiness and energy absorbing capabilities. Both beam and plate element models were developed to compare with the experimental data using the DYCAST and NIKE3D codes.

  13. Study of thermite mixture consolidated by the cold gas dynamic spray process

    NASA Astrophysics Data System (ADS)

    Bacciochini, A.; Maines, G.; Poupart, C.; Akbarnejad, H.; Radulescu, M.; Jodoin, B.; Zhang, F.; Lee, J. J.

    2014-05-01

    The present study focused on the cold gas dynamic spray process for manufacturing porosity free, finely structured energetic materials with high reactivity and structural integrity. The experiments have focused the reaction between the aluminium and metal oxide, such as Al-CuO system. The consolidation of the materials used the cold gas dynamic spray technique, where the particles are accelerated to high speeds and consolidated via plastic deformation upon impact. Reactive composites are formed in arbitrary shapes with close to zero porosity and without any reactions during the consolidation phase. Reactivity of mixtures has been investigated through flame propagation analysis on cold sprayed samples and compacted powder mixture. Deflagration tests showed the influence of porosity on the reactivity.

  14. Modeling Oblique Impact Dynamics of Particle-Laden Nanodroplets

    NASA Astrophysics Data System (ADS)

    Yong, Xin; Qin, Shiyi

    2016-11-01

    A fundamental understanding of the impact dynamics of nanoscopic droplets laden with nanoparticles has important implications for materials printing and thin film processing. Using many-body dissipative particle dynamics (MDPD), we model nanometer sized suspension droplets imping on dry solid substrate with oblique angles, and compare their behavior with pure liquid droplets. Equilibrated floating droplets containing two types of nanoparticles, namely fully-wetted hydrophilic particles and surface-active Janus particles, impact onto the solid surface with varying initial velocities and impact angles. The velocity components in the normal and tangential directions to the substrate defines normal and tangential Reynolds and Weber numbers, which are used to classify impact regimes. Droplets with nanoparticles dispersed in the bulk and covering the droplet surface (resembling liquid marbles) exhibit quite different behavior in the course of impact. We also reveal the influences of substrate wettability and its interaction with nanoparticles on the impact dynamics. In addition, the vapor film beneath an impinging droplet shows no significant effect on the impact dynamics in our MDPD simulations.

  15. Design of an active helicopter control experiment at the Princeton Rotorcraft Dynamics Laboratory

    NASA Technical Reports Server (NTRS)

    Marraffa, Andrew M.; Mckillip, R. M., Jr.

    1989-01-01

    In an effort to develop an active control technique for reducing helicopter vibrations stemming from the main rotor system, a helicopter model was designed and tested at the Princeton Rotorcraft Dynamics Laboratory (PRDL). A description of this facility, including its latest data acquisition upgrade, are given. The design procedures for the test model and its Froude scaled rotor system are also discussed. The approach for performing active control is based on the idea that rotor states can be identified by instrumenting the rotor blades. Using this knowledge, Individual Blade Control (IBC) or Higher Harmonic Control (HHC) pitch input commands may be used to impact on rotor dynamics in such a way as to reduce rotor vibrations. Discussed here is an instrumentation configuration utilizing miniature accelerometers to measure and estimate first and second out-of-plane bending mode positions and velocities. To verify this technique, the model was tested, and resulting data were used to estimate rotor states as well as flap and bending coefficients, procedures for which are discussed. Overall results show that a cost- and time-effective method for building a useful test model for future active control experiments was developed. With some fine-tuning or slight adjustments in sensor configuration, prospects for obtaining good state estimates look promising.

  16. Measles on the edge: coastal heterogeneities and infection dynamics.

    PubMed

    Bharti, Nita; Xia, Yingcun; Bjornstad, Ottar N; Grenfell, Bryan T

    2008-04-09

    Mathematical models can help elucidate the spatio-temporal dynamics of epidemics as well as the impact of control measures. The gravity model for directly transmitted diseases is currently one of the most parsimonious models for spatial epidemic spread. This model uses distance-weighted, population size-dependent coupling to estimate host movement and disease incidence in metapopulations. The model captures overall measles dynamics in terms of underlying human movement in pre-vaccination England and Wales (previously established). In spatial models, edges often present a special challenge. Therefore, to test the model's robustness, we analyzed gravity model incidence predictions for coastal cities in England and Wales. Results show that, although predictions are accurate for inland towns, they significantly underestimate coastal persistence. We examine incidence, outbreak seasonality, and public transportation records, to show that the model's inaccuracies stem from an underestimation of total contacts per individual along the coast. We rescue this predicted 'edge effect' by increasing coastal contacts to approximate the number of per capita inland contacts. These results illustrate the impact of 'edge effects' on epidemic metapopulations in general and illustrate directions for the refinement of spatiotemporal epidemic models.

  17. Time-dependent inertia analysis of vehicle mechanisms

    NASA Astrophysics Data System (ADS)

    Salmon, James Lee

    Two methods for performing transient inertia analysis of vehicle hardware systems are developed in this dissertation. The analysis techniques can be used to predict the response of vehicle mechanism systems to the accelerations associated with vehicle impacts. General analytical methods for evaluating translational or rotational system dynamics are generated and evaluated for various system characteristics. The utility of the derived techniques are demonstrated by applying the generalized methods to two vehicle systems. Time dependent acceleration measured during a vehicle to vehicle impact are used as input to perform a dynamic analysis of an automobile liftgate latch and outside door handle. Generalized Lagrange equations for a non-conservative system are used to formulate a second order nonlinear differential equation defining the response of the components to the transient input. The differential equation is solved by employing the fourth order Runge-Kutta method. The events are then analyzed using commercially available two dimensional rigid body dynamic analysis software. The results of the two analytical techniques are compared to experimental data generated by high speed film analysis of tests of the two components performed on a high G acceleration sled at Ford Motor Company.

  18. Dynamic field theory and executive functions: lending explanation to current theories of development.

    PubMed

    Morton, J Bruce

    2014-06-01

    Buss and Spencer's monograph is an impressive achievement that is sure to have a lasting impact on the field of child development. The dynamic field theory (DFT) model that forms the heart of this contribution is ambitious in scope, detailed in its implementation, and rigorously tested against data, old and new. As such, the ideas contained in this fine document represent a qualitative advance in our understanding of young children's behavior, and lay a foundation for future research into the developmental origins of executive functioning. © 2014 The Society for Research in Child Development, Inc.

  19. Dynamic Response and Residual Helmet Liner Crush Using Cadaver Heads and Standard Headforms.

    PubMed

    Bonin, S J; Luck, J F; Bass, C R; Gardiner, J C; Onar-Thomas, A; Asfour, S S; Siegmund, G P

    2017-03-01

    Biomechanical headforms are used for helmet certification testing and reconstructing helmeted head impacts; however, their biofidelity and direct applicability to human head and helmet responses remain unclear. Dynamic responses of cadaver heads and three headforms and residual foam liner deformations were compared during motorcycle helmet impacts. Instrumented, helmeted heads/headforms were dropped onto the forehead region against an instrumented flat anvil at 75, 150, and 195 J. Helmets were CT scanned to quantify maximum liner crush depth and crush volume. General linear models were used to quantify the effect of head type and impact energy on linear acceleration, head injury criterion (HIC), force, maximum liner crush depth, and liner crush volume and regression models were used to quantify the relationship between acceleration and both maximum crush depth and crush volume. The cadaver heads generated larger peak accelerations than all three headforms, larger HICs than the International Organization for Standardization (ISO), larger forces than the Hybrid III and ISO, larger maximum crush depth than the ISO, and larger crush volumes than the DOT. These significant differences between the cadaver heads and headforms need to be accounted for when attempting to estimate an impact exposure using a helmet's residual crush depth or volume.

  20. Differential influences of local subpopulations on regional diversity and differentiation for greater sage-grouse (Centrocercus urophasianus)

    USGS Publications Warehouse

    Row, Jeffery R.; Oyler-McCance, Sara J.; Fedy, Brad C.

    2016-01-01

    The distribution of spatial genetic variation across a region can shape evolutionary dynamics and impact population persistence. Local population dynamics and among-population dispersal rates are strong drivers of this spatial genetic variation, yet for many species we lack a clear understanding of how these population processes interact in space to shape within-species genetic variation. Here, we used extensive genetic and demographic data from 10 subpopulations of greater sage-grouse to parameterize a simulated approximate Bayesian computation (ABC) model and (i) test for regional differences in population density and dispersal rates for greater sage-grouse subpopulations in Wyoming, and (ii) quantify how these differences impact subpopulation regional influence on genetic variation. We found a close match between observed and simulated data under our parameterized model and strong variation in density and dispersal rates across Wyoming. Sensitivity analyses suggested that changes in dispersal (via landscape resistance) had a greater influence on regional differentiation, whereas changes in density had a greater influence on mean diversity across all subpopulations. Local subpopulations, however, varied in their regional influence on genetic variation. Decreases in the size and dispersal rates of central populations with low overall and net immigration (i.e. population sources) had the greatest negative impact on genetic variation. Overall, our results provide insight into the interactions among demography, dispersal and genetic variation and highlight the potential of ABC to disentangle the complexity of regional population dynamics and project the genetic impact of changing conditions.

  1. Dynamic characteristics of a wind turbine blade using 3D digital image correlation

    NASA Astrophysics Data System (ADS)

    Baqersad, Javad; Carr, Jennifer; Lundstrom, Troy; Niezrecki, Christopher; Avitabile, Peter; Slattery, Micheal

    2012-04-01

    Digital image correlation (DIC) has been becoming increasingly popular as a means to perform structural health monitoring because of its full-field, non-contacting measurement ability. In this paper, 3D DIC techniques are used to identify the mode shapes of a wind turbine blade. The blade containing a handful of optical targets is excited at different frequencies using a shaker as well as a pluck test. The response is recorded using two PHOTRON™ high speed cameras. Time domain data is transferred to the frequency domain to extract mode shapes and natural frequencies using an Operational Modal Approach. A finite element model of the blade is also used to compare the mode shapes. Furthermore, a modal hammer impact test is performed using a more conventional approach with an accelerometer. A comparison of mode shapes from the photogrammetric, finite element, and impact test approaches are presented to show the accuracy of the DIC measurement approach.

  2. Design for Verification: Enabling Verification of High Dependability Software-Intensive Systems

    NASA Technical Reports Server (NTRS)

    Mehlitz, Peter C.; Penix, John; Markosian, Lawrence Z.; Koga, Dennis (Technical Monitor)

    2003-01-01

    Strategies to achieve confidence that high-dependability applications are correctly implemented include testing and automated verification. Testing deals mainly with a limited number of expected execution paths. Verification usually attempts to deal with a larger number of possible execution paths. While the impact of architecture design on testing is well known, its impact on most verification methods is not as well understood. The Design for Verification approach considers verification from the application development perspective, in which system architecture is designed explicitly according to the application's key properties. The D4V-hypothesis is that the same general architecture and design principles that lead to good modularity, extensibility and complexity/functionality ratio can be adapted to overcome some of the constraints on verification tools, such as the production of hand-crafted models and the limits on dynamic and static analysis caused by state space explosion.

  3. Dampening prey cycle overrides the impact of climate change on predator population dynamics: a long-term demographic study on tawny owls.

    PubMed

    Millon, Alexandre; Petty, Steve J; Little, Brian; Gimenez, Olivier; Cornulier, Thomas; Lambin, Xavier

    2014-06-01

    Predicting the dynamics of animal populations with different life histories requires careful understanding of demographic responses to multifaceted aspects of global changes, such as climate and trophic interactions. Continent-scale dampening of vole population cycles, keystone herbivores in many ecosystems, has been recently documented across Europe. However, its impact on guilds of vole-eating predators remains unknown. To quantify this impact, we used a 27-year study of an avian predator (tawny owl) and its main prey (field vole) collected in Kielder Forest (UK) where vole dynamics shifted from a high- to a low-amplitude fluctuation regime in the mid-1990s. We measured the functional responses of four demographic rates to changes in prey dynamics and winter climate, characterized by wintertime North Atlantic Oscillation (wNAO). First-year and adult survival were positively affected by vole density in autumn but relatively insensitive to wNAO. The probability of breeding and number of fledglings were higher in years with high spring vole densities and negative wNAO (i.e. colder and drier winters). These functional responses were incorporated into a stochastic population model. The size of the predator population was projected under scenarios combining prey dynamics and winter climate to test whether climate buffers or alternatively magnifies the impact of changes in prey dynamics. We found the observed dampening vole cycles, characterized by low spring densities, drastically reduced the breeding probability of predators. Our results illustrate that (i) change in trophic interactions can override direct climate change effect; and (ii) the demographic resilience entailed by longevity and the occurrence of a floater stage may be insufficient to buffer hypothesized environmental changes. Ultimately, dampened prey cycles would drive our owl local population towards extinction, with winter climate regimes only altering persistence time. These results suggest that other vole-eating predators are likely to be threatened by dampening vole cycles throughout Europe. © 2014 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  4. Degradation modeling of high temperature proton exchange membrane fuel cells using dual time scale simulation

    NASA Astrophysics Data System (ADS)

    Pohl, E.; Maximini, M.; Bauschulte, A.; vom Schloß, J.; Hermanns, R. T. E.

    2015-02-01

    HT-PEM fuel cells suffer from performance losses due to degradation effects. Therefore, the durability of HT-PEM is currently an important factor of research and development. In this paper a novel approach is presented for an integrated short term and long term simulation of HT-PEM accelerated lifetime testing. The physical phenomena of short term and long term effects are commonly modeled separately due to the different time scales. However, in accelerated lifetime testing, long term degradation effects have a crucial impact on the short term dynamics. Our approach addresses this problem by applying a novel method for dual time scale simulation. A transient system simulation is performed for an open voltage cycle test on a HT-PEM fuel cell for a physical time of 35 days. The analysis describes the system dynamics by numerical electrochemical impedance spectroscopy. Furthermore, a performance assessment is performed in order to demonstrate the efficiency of the approach. The presented approach reduces the simulation time by approximately 73% compared to conventional simulation approach without losing too much accuracy. The approach promises a comprehensive perspective considering short term dynamic behavior and long term degradation effects.

  5. Evaluation of the internal and external biofidelity of current rear impact ATDs to response targets developed from moderate-speed rear impacts of PMHS.

    PubMed

    Moorhouse, Kevin; Donnelly, Bruce; Kang, Yun-Seok; Bolte, John H; Herriott, Rodney

    2012-10-01

    The goal of this study is to evaluate both the internal and external biofidelity of existing rear impact anthropomorphic test devices (BioRID II, RID3D, Hybrid III 50th) in two moderate-speed rear impact sled test conditions (8.5g, 17 km/h; 10.5g, 24 km/h) by quantitatively comparing the ATD responses to biomechanical response targets developed from PMHS testing in a corresponding study. The ATDs and PMHS were tested in an experimental seat system that is capable of simulating the dynamic seat back rotation response of production seats. The experimental seat contains a total of fourteen load cells installed such that external loads from the ATDs and PMHS can be measured to evaluate external biofidelity. The PMHS were instrumented to correspond to the instrumentation contained in the ATDs so that direct comparison between ATDs and PMHS could be made to evaluate internal biofidelity. The NHTSA Biofidelity Ranking system was used to quantitatively evaluate the biofidelity of the ATDs and an additional tool was introduced and utilized which allows for the biofidelity score to be partitioned into components of amplitude, phase, and shape. For internal biofidelity, the BioRID II and RID3D were more biofidelic than the Hybrid III in the 17 km/h test, and the BioRID II was most biofidelic in the 24 km/h test. For external biofidelity, the BioRID II was most biofidelic in the 17 km/h test, while both the BioRID II and the RID3D were more biofidelic than the Hybrid III in the 24 km/h test. Overall, the BioRID II demonstrated the best biofidelity in both the 17 km/h and 24 km/h tests.

  6. Experimental Verification of an Instrument to Test Flooring Materials

    NASA Astrophysics Data System (ADS)

    Philip, Rony; Löfgren, Hans, Dr

    2018-02-01

    The focus of this work is to validate the fluid model with different flooring materials and the measurements of an instrument to test flooring materials and its force attenuating capabilities using mathematical models to describe the signature and coefficients of the floor. The main contribution of the present work focus on the development of a mathematical fluid model for floors. The aim of the thesis was to analyze, compare different floor materials and to study the linear dynamics of falling impacts on floors. The impact of the hammer during a fall is captured by an accelerometer and response is collected using a picoscope. The collected data was analyzed using matlab least square method which is coded as per the fluid model. The finding from this thesis showed that the fluid model works with more elastic model but it doesn’t work for rigid materials like wood. The importance of parameters like velocity, mass, energy loss and other coefficients of floor which influences the model during the impact of falling on floors were identified and a standardized testing method was set.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swenson, Joel M.; Colmenares, Serafin U.; Strom, Amy R.

    Heterochromatin is enriched for specific epigenetic factors including Heterochromatin Protein 1a (HP1a), and is essential for many organismal functions. To elucidate heterochromatin organization and regulation, we purified Drosophila melanogaster HP1a interactors, and performed a genome-wide RNAi screen to identify genes that impact HP1a levels or localization. The majority of the over four hundred putative HP1a interactors and regulators identified were previously unknown. We found that 13 of 16 tested candidates (83%) are required for gene silencing, providing a substantial increase in the number of identified components that impact heterochromatin properties. Surprisingly, image analysis revealed that although some HP1a interactors andmore » regulators are broadly distributed within the heterochromatin domain, most localize to discrete subdomains that display dynamic localization patterns during the cell cycle. We conclude that heterochromatin composition and architecture is more spatially complex and dynamic than previously suggested, and propose that a network of subdomains regulates diverse heterochromatin functions.« less

  8. Development and Implementation of a Telecommuting Evaluation Framework, and Modeling the Executive Telecommuting Adoption Process

    NASA Astrophysics Data System (ADS)

    Vora, V. P.; Mahmassani, H. S.

    2002-02-01

    This work proposes and implements a comprehensive evaluation framework to document the telecommuter, organizational, and societal impacts of telecommuting through telecommuting programs. Evaluation processes and materials within the outlined framework are also proposed and implemented. As the first component of the evaluation process, the executive survey is administered within a public sector agency. The survey data is examined through exploratory analysis and is compared to a previous survey of private sector executives. The ordinal probit, dynamic probit, and dynamic generalized ordinal probit (DGOP) models of telecommuting adoption are calibrated to identify factors which significantly influence executive adoption preferences and to test the robustness of such factors. The public sector DGOP model of executive willingness to support telecommuting under different program scenarios is compared with an equivalent private sector DGOP model. Through the telecommuting program, a case study of telecommuting travel impacts is performed to further substantiate research.

  9. Land use, water and Mediterranean landscapes: modelling long-term dynamics of complex socio-ecological systems.

    PubMed

    Barton, C Michael; Ullah, Isaac I; Bergin, Sean

    2010-11-28

    The evolution of Mediterranean landscapes during the Holocene has been increasingly governed by the complex interactions of water and human land use. Different land-use practices change the amount of water flowing across the surface and infiltrating the soil, and change water's ability to move surface sediments. Conversely, water amplifies the impacts of human land use and extends the ecological footprint of human activities far beyond the borders of towns and fields. Advances in computational modelling offer new tools to study the complex feedbacks between land use, land cover, topography and surface water. The Mediterranean Landscape Dynamics project (MedLand) is building a modelling laboratory where experiments can be carried out on the long-term impacts of agropastoral land use, and whose results can be tested against the archaeological record. These computational experiments are providing new insights into the socio-ecological consequences of human decisions at varying temporal and spatial scales.

  10. LAMMPS integrated materials engine (LIME) for efficient automation of particle-based simulations: application to equation of state generation

    NASA Astrophysics Data System (ADS)

    Barnes, Brian C.; Leiter, Kenneth W.; Becker, Richard; Knap, Jaroslaw; Brennan, John K.

    2017-07-01

    We describe the development, accuracy, and efficiency of an automation package for molecular simulation, the large-scale atomic/molecular massively parallel simulator (LAMMPS) integrated materials engine (LIME). Heuristics and algorithms employed for equation of state (EOS) calculation using a particle-based model of a molecular crystal, hexahydro-1,3,5-trinitro-s-triazine (RDX), are described in detail. The simulation method for the particle-based model is energy-conserving dissipative particle dynamics, but the techniques used in LIME are generally applicable to molecular dynamics simulations with a variety of particle-based models. The newly created tool set is tested through use of its EOS data in plate impact and Taylor anvil impact continuum simulations of solid RDX. The coarse-grain model results from LIME provide an approach to bridge the scales from atomistic simulations to continuum simulations.

  11. Characterizing Hypervelocity Impact Plasma Through Experiments and Simulations

    NASA Astrophysics Data System (ADS)

    Close, Sigrid; Lee, Nicolas; Fletcher, Alex; Nuttall, Andrew; Hew, Monica; Tarantino, Paul

    2017-10-01

    Hypervelocity micro particles, including meteoroids and space debris with masses <1 ng, routinely impact spacecraft and create dense plasma that expands at the isothermal sound speed. This plasma, with a charge separation commensurate with different species mobilities, can produce a strong electromagnetic pulse (EMP) with a broad frequency spectrum. Subsequent plasma oscillations resulting from instabilities can also emit significant power and may be responsible for many reported satellite anomalies. We present theory and recent results from ground-based impact tests aimed at characterizing hypervelocity impact plasma. We also show results from particle-in-cell (PIC) and computational fluid dynamics (CFD) simulations that allow us to extend to regimes not currently possible with ground-based technology. We show that significant impact-produced radio frequency (RF) emissions occurred in frequencies ranging from VHF through L-band and that these emissions were highly correlated with fast (>20 km/s) impacts that produced a fully ionized plasma.

  12. Finite Element Simulation for Analysing the Design and Testing of an Energy Absorption System

    PubMed Central

    Segade, Abraham; López-Campos, José A.; Fernández, José R.; Casarejos, Enrique; Vilán, José A.

    2016-01-01

    It is not uncommon to use profiles to act as energy absorption parts in vehicle safety systems. This work analyses an impact attenuator based on a simple design and discusses the use of a thermoplastic material. We present the design of the impact attenuator and a mechanical test for the prototype. We develop a simulation model using the finite element method and explicit dynamics, and we evaluate the most appropriate mesh size and integration for describing the test results. Finally, we consider the performance of different materials, metallic ones (steel AISI 4310, Aluminium 5083-O) and a thermoplastic foam (IMPAXX500™). This reflects the car industry’s interest in using new materials to make high-performance, low-mass energy absorbers. We show the strength of the models when it comes to providing reliable results for large deformations and strong non-linearities, and how they are highly correlated with respect to the test results both in value and behaviour. PMID:28773778

  13. Contact law and impact responses of laminated composites

    NASA Technical Reports Server (NTRS)

    Sun, C. T.; Yang, S. H.

    1980-01-01

    Static identation tests were performed to determine the law of contact between a steel ball and glass/epoxy and graphite/epoxy laminated composites. For both composites the power law with an index of 1.5 was found to be adequate for the loading curve. Substantial permanent deformations were noted after the unloading. A high order beam finite element was used to compute the dynamic contact force and response of the laminated composite subjected to the impact of an elastic sphere. This program can be used with either the classical Hertzian contact law or the measured contact law. A simple method is introduced for estimating the contact force and contact duration in elastic impacts.

  14. Inverted drop testing and neck injury potential.

    PubMed

    Forrest, Stephen; Herbst, Brian; Meyer, Steve; Sances, Anthony; Kumaresan, Srirangam

    2003-01-01

    Inverted drop testing of vehicles is a methodology that has long been used by the automotive industry and researchers to test roof integrity and is currently being considered by the National Highway Traffic Safety Administration as a roof strength test. In 1990 a study was reported which involved 8 dolly rollover tests and 5 inverted drop tests. These studies were conducted with restrained Hybrid III instrumented Anthropometric Test Devices (ATD) in production and rollcaged vehicles to investigate the relationship between roof strength and occupant injury potential. The 5 inverted drop tests included in the study provided a methodology producing "repeatable roof impacts" exposing the ATDs to the similar impact environment as those seen in the dolly rollover tests. Authors have conducted two inverted drop test sets as part of an investigation of two real world rollover accidents. Hybrid-III ATD's were used in each test with instrumented head and necks. Both test sets confirm that reduction of roof intrusion and increased headroom can significantly enhance occupant protection. In both test pairs, the neck force of the dummy in the vehicle with less crush and more survival space was significantly lower. Reduced roof crush and dynamic preservation of the occupant survival space resulted in only minor occupant contact and minimal occupant loading, establishing a clear causal relationship between roof crush and neck injuries.

  15. Indentability of conventional and negative Poisson's ratio foams

    NASA Technical Reports Server (NTRS)

    Lakes, R. S.; Elms, K.

    1992-01-01

    The indentation resistance of foams, both of conventional structure and of reentrant structure giving rise to negative Poisson's ratio, is studied using holographic interferometry. In holographic indentation tests, reentrant foams had higher yield strength and lower stiffness than conventional foams of the same original relative density. Calculated energy absorption for dynamic impact is considerably higher for reentrant foam than conventional foam.

  16. Effects of chemical composition and test conditions on the dynamic tensile response of Zr-based metallic glasses

    NASA Astrophysics Data System (ADS)

    Wang, F.; Laws, K.; Martinez, D.; Trujillo, C. P.; Brown, A. D.; Cerreta, E. K.; Hazell, P. J.; Ferry, M.; Quadir, M. Z.; Jiang, J.; Escobedo, J. P.

    2017-01-01

    The effects of impact velocity and temperature on the dynamic mechanical behavior of two bulk metallic (BMG) alloys with slightly different elemental compositions (Zr55Cu30Ni5Al30 and Zr46Cu38Ag8Al38) have been investigated. Bullet-shaped samples were accelerated by a gas gun to speeds in the 400˜600m/s range and tested at both room temperature and 250°C. The samples impacted steel extrusion dies which subjected the bullets to high strains at relatively high strain-rates. The extruded fragments were subsequently soft recovered by using low density foams and examined by means of optical/scanning electron microscopy and differential scanning calorimetry. It was found that shear banding was the dictating mechanism responsible for the fracture of all BMGs. At room temperature, the Zr55Cu30Ni5Al30 alloy exhibited a higher resistance to fragmentation than the Zr46Cu38Ag8Al38 alloy. At 250°C, significant melting was observed in the recovered fragments of both alloys, which indicates that the BMG glassy structure undergoes a melting process and deformation likely occurs homogeneously.

  17. Experimental study on the dynamic mechanical behaviors of polycarbonate

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Gao, Yubo; Cai, Xuanming; Ye, Nan; Huang, Wei; Hypervelocity Impact Research Center Team

    2015-06-01

    Polycarbonate (PC) is a widely used engineering material in aerospace field, since it has excellent mechanical and optical property. In present study, both compress and tensile tests of PC were conducted at high strain rates by using a split Hopkinson pressure bar. The high-speed camera and 2D digital speckle correlation method (DIC) were used to analyze the dynamic deformation behavior of PC. Meanwhile, the plate impact experiment was carried out to measure the equation of state of PC in a single-stage gas gun, which consists of asymmetric impact technology, manganin gauges, PVDF, electromagnetic particle velocity gauges. The results indicate that the yield stress of PC increased with the strain rates. The strain softening occurred when the stress over yield point except the tensile tests in the strain rates of 1076s-1 and 1279s-1. The ZWT model can describe the constitutive behaviors of PC accurately in different strain rates by contrast with the results of 2D-DIC. At last, The D-u Hugoniot curve of polycarbonate in high pressure was fitted by the least square method. And the final results showed more closely to Cater and Mash than other previous data.

  18. Rib Geometry Explains Variation in Dynamic Structural Response: Potential Implications for Frontal Impact Fracture Risk.

    PubMed

    Murach, Michelle M; Kang, Yun-Seok; Goldman, Samuel D; Schafman, Michelle A; Schlecht, Stephen H; Moorhouse, Kevin; Bolte, John H; Agnew, Amanda M

    2017-09-01

    The human thorax is commonly injured in motor vehicle crashes, and despite advancements in occupant safety rib fractures are highly prevalent. The objective of this study was to quantify the ability of gross and cross-sectional geometry, separately and in combination, to explain variation of human rib structural properties. One hundred and twenty-two whole mid-level ribs from 76 fresh post-mortem human subjects were tested in a dynamic frontal impact scenario. Structural properties (peak force and stiffness) were successfully predicted (p < 0.001) by rib cross-sectional geometry obtained via direct histological imaging (total area, cortical area, and section modulus) and were improved further when utilizing a combination of cross-sectional and gross geometry (robusticity, whole bone strength index). Additionally, preliminary application of a novel, adaptive thresholding technique, allowed for total area and robusticity to be measured on a subsample of standard clinical CT scans with varied success. These results can be used to understand variation in individual rib response to frontal loading as well as identify important geometric parameters, which could ultimately improve injury criteria as well as the biofidelity of anthropomorphic test devices (ATDs) and finite element (FE) models of the human thorax.

  19. Rib Geometry Explains Variation in Dynamic Structural Response: Potential Implications for Frontal Impact Fracture Risk

    PubMed Central

    Murach, Michelle M.; Kang, Yun-Seok; Goldman, Samuel D.; Schafman, Michelle A.; Schlecht, Stephen H.; Moorhouse, Kevin; Bolte, John H.; Agnew, Amanda M.

    2018-01-01

    The human thorax is commonly injured in motor vehicle crashes, and despite advancements in occupant safety rib fractures are highly prevalent. The objective of this study was to quantify the ability of gross and cross-sectional geometry, separately and in combination, to explain variation of human rib structural properties. One hundred and twenty-two whole mid-level ribs from 76 fresh post-mortem human subjects were tested in a dynamic frontal impact scenario. Structural properties (peak force and stiffness) were successfully predicted (p<0.001) by rib cross-sectional geometry obtained via direct histological imaging (total area, cortical area, and section modulus) and were improved further when utilizing a combination of cross-sectional and gross geometry (robusticity, whole bone strength index). Additionally, preliminary application of a novel, adaptive thresholding technique, allowed for total area and robusticity to be measured on a subsample of standard clinical CT scans with varied success. These results can be used to understand variation in individual rib response to frontal loading as well as identify important geometric parameters, which could ultimately improve injury criteria as well as the biofidelity of anthropomorphic test devices (ATDs) and finite element (FE) models of the human thorax. PMID:28547660

  20. Experimental study of effects of forebody geometry on high angle of attack static and dynamic stability and control

    NASA Technical Reports Server (NTRS)

    Brandon, J. M.; Murri, D. G.; Nguyen, L. T.

    1986-01-01

    A series of low-speed wind tunnel tests on a generic airplane model with a cylindrical fuselage were made to investigate the effects of forebody shape and fitness ratio, and fuselage/wing proximity on static and dynamic lateral/directional stability. In addition, some preliminary testing to determine the effectiveness of deflectable forebody strakes for high angle of attack yaw control was conducted. During the stability investigation, 11 forebodies were tested including three different cross-sectional shapes with fineness ratios of 2, 3, and 4. In addition, the wing was tested at two longitudinal positions to provide a substantial variation in forebody/wing proximity. Conventional force tests were conducted to determine static stability characteristics, and single-degree-of-freedom free-to-roll tests were conducted to study the wing rock characteristics of the model with the various forebodies. Flow visualization data were obtained to aid in the analysis of the complex flow phenomena involved. The results show that the forebody cross-sectional shape and fineness ratio and forebody/wing proximity can strongly affect both static and dynamic (roll) stability at high angles of attack. These characteristics result from the impact of these factors on forebody vortex development, the behavior of the vortices in sideslip, and their interaction with the wing flow field. Preliminary results from the deflectable strake investigation indicated that forebody flow control using this concept can provide very large yaw control moments at stall and post-stall angles of attack.

  1. Testing modified gravity with globular clusters: the case of NGC 2419

    NASA Astrophysics Data System (ADS)

    Llinares, Claudio

    2018-05-01

    The dynamics of globular clusters has been studied in great detail in the context of general relativity as well as with modifications of gravity that strongly depart from the standard paradigm such as Modified Newtonian Dynamics. However, at present there are no studies that aim to test the impact that less extreme modifications of gravity (e.g. models constructed as alternatives to dark energy) have on the behaviour of globular clusters. This Letter presents fits to the velocity dispersion profile of the cluster NGC 2419 under the symmetron-modified gravity model. The data show an increase in the velocity dispersion towards the centre of the cluster which could be difficult to explain within general relativity. By finding the best-fitting solution associated with the symmetron model, we show that this tension does not exist in modified gravity. However, the best-fitting parameters give a model that is inconsistent with the dynamics of the Solar system. Exploration of different screening mechanisms should give us the chance to understand if it is possible to maintain the appealing properties of the symmetron model when it comes to globular clusters and at the same time recover the Solar system dynamics properly.

  2. Development and pilot testing of a kneeling ultralight wheelchair design.

    PubMed

    Mattie, Johanne L; Leland, Danny; Borisoff, Jaimie F

    2015-01-01

    "Dynamic wheeled mobility" offers "on the fly" seating adjustments for wheelchair users such that various activities performed throughout the day can be matched by an appropriate seat position. While this has benefits for user participation and health, the added weight in existing dynamic wheelchairs may impact the user's ability to transport the frame, e.g. into cars. Other dynamic features to enable more participation avenues are also desirable. This paper outlines the development of a "kneeling" ultralight wheelchair design that offers dynamic wheeled mobility functionality at a weight that is comparable to many existing ultralight wheelchairs. In addition, the wheelchair's kneeling function allows a lowered seat position to facilitate low-to-the-ground tasks such as floor transfers and other activities where sustained low level reaching may be required (e.g. playing with children, changing a tire, etc.). This paper also describes the development and pilot testing of an end user evaluation protocol designed to validate the wheelchair's functionality and performance. Successful realization and commercialization of the technology would offer a novel product choice for people with mobility disabilities, and that may support daily activities, health, improved quality of life, and greater participation in the community.

  3. Evaluation of Asphalt Mixture Low-Temperature Performance in Bending Beam Creep Test.

    PubMed

    Pszczola, Marek; Jaczewski, Mariusz; Rys, Dawid; Jaskula, Piotr; Szydlowski, Cezary

    2018-01-10

    Low-temperature cracking is one of the most common road pavement distress types in Poland. While bitumen performance can be evaluated in detail using bending beam rheometer (BBR) or dynamic shear rheometer (DSR) tests, none of the normalized test methods gives a comprehensive representation of low-temperature performance of the asphalt mixtures. This article presents the Bending Beam Creep test performed at temperatures from -20 °C to +10 °C in order to evaluate the low-temperature performance of asphalt mixtures. Both validation of the method and its utilization for the assessment of eight types of wearing courses commonly used in Poland were described. The performed test indicated that the source of bitumen and its production process (and not necessarily only bitumen penetration) had a significant impact on the low-temperature performance of the asphalt mixtures, comparable to the impact of binder modification (neat, polymer-modified, highly modified) and the aggregate skeleton used in the mixture (Stone Mastic Asphalt (SMA) vs. Asphalt Concrete (AC)). Obtained Bending Beam Creep test results were compared with the BBR bitumen test. Regression analysis confirmed that performing solely bitumen tests is insufficient for comprehensive low-temperature performance analysis.

  4. Evaluation of Asphalt Mixture Low-Temperature Performance in Bending Beam Creep Test

    PubMed Central

    Rys, Dawid; Jaskula, Piotr; Szydlowski, Cezary

    2018-01-01

    Low-temperature cracking is one of the most common road pavement distress types in Poland. While bitumen performance can be evaluated in detail using bending beam rheometer (BBR) or dynamic shear rheometer (DSR) tests, none of the normalized test methods gives a comprehensive representation of low-temperature performance of the asphalt mixtures. This article presents the Bending Beam Creep test performed at temperatures from −20 °C to +10 °C in order to evaluate the low-temperature performance of asphalt mixtures. Both validation of the method and its utilization for the assessment of eight types of wearing courses commonly used in Poland were described. The performed test indicated that the source of bitumen and its production process (and not necessarily only bitumen penetration) had a significant impact on the low-temperature performance of the asphalt mixtures, comparable to the impact of binder modification (neat, polymer-modified, highly modified) and the aggregate skeleton used in the mixture (Stone Mastic Asphalt (SMA) vs. Asphalt Concrete (AC)). Obtained Bending Beam Creep test results were compared with the BBR bitumen test. Regression analysis confirmed that performing solely bitumen tests is insufficient for comprehensive low-temperature performance analysis. PMID:29320443

  5. [Building an effective nonlinear three-dimensional finite-element model of human thoracolumbar spine].

    PubMed

    Zeng, Zhi-Li; Cheng, Li-Ming; Zhu, Rui; Wang, Jian-Jie; Yu, Yan

    2011-08-23

    To build an effective nonlinear three-dimensional finite-element (FE) model of T(11)-L(3) segments for a further biomechanical study of thoracolumbar spine. The CT (computed tomography) scan images of healthy adult T(11)-L(3) segments were imported into software Simpleware 2.0 to generate a triangular mesh model. Using software Geomagic 8 for model repair and optimization, a solid model was generated into the finite element software Abaqus 6.9. The reasonable element C3D8 was selected for bone structures. Created between bony endplates, the intervertebral disc was subdivided into nucleus pulposus and annulus fibrosus (44% nucleus, 56% annulus). The nucleus was filled with 5 layers of 8-node solid elements and annulus reinforced by 8 crisscross collagenous fiber layers. The nucleus and annulus were meshed by C3D8RH while the collagen fibers meshed by two node-truss elements. The anterior (ALL) and posterior (PLL) longitudinal ligaments, flavum (FL), supraspinous (SSL), interspinous (ISL) and intertransverse (ITL) ligaments were modeled with S4R shell elements while capsular ligament (CL) was modeled with 3-node shell element. All surrounding ligaments were represented by envelope of 1 mm uniform thickness. The discs and bone structures were modeled with hyper-elastic and elasto-plastic material laws respectively while the ligaments governed by visco-elastic material law. The nonlinear three-dimensional finite-element model of T(11)-L(3) segments was generated and its efficacy verified through validating the geometric similarity and disc load-displacement and stress distribution under the impact of violence. Using ABAQUS/ EXPLICIT 6.9 the explicit dynamic finite element solver, the impact test was simulated in vitro. In this study, a 3-dimensional, nonlinear FE model including 5 vertebrae, 4 intervertebral discs and 7 ligaments consisted of 78 887 elements and 71 939 nodes. The model had good geometric similarity under the same conditions. The results of FEM intervertebral disc load-displacement curve were similar to those of in vitro test. The stress distribution results of vertebral cortical bone, posterior complex and cancellous bone were similar to those of other static experiments in a dynamic impact test under the observation of stress cloud. With the advantages of high geometric and mechanical similarity and complete thoracolumbar, hexahedral meshes, nonlinear finite element model may facilitate the impact loading test for a further dynamic analysis of injury mechanism for thoracolumbar burst fracture.

  6. Effect of Helicopter Blade Dynamics on Blade Aerodynamic and Structural Loads

    NASA Technical Reports Server (NTRS)

    Heffernan, Ruth M.

    1987-01-01

    The effect of rotor blade dynamics on aerodynamic and structural loads is examined for a conventional, main- rotor helicopter using both a comprehensive rotorcraft analysis (CAMRAD) and night test data. The impact of blade dynamics on blade section lift-coefficient time histories is studied by comparing predictions from both a rigid blade analysis and an elastic blade analysis with helicopter flight test data. The elastic blade analysis better predicts high-frequency behavior of section lift. In addition, components of the blade angle of attack, such as elastic blade twist, blade nap rate, blade slope velocity, and inflow, are examined as a function of blade mode. Elastic blade motion affects the blade angle of attack by a few tenths of a degree, and up to the sixth rotor harmonic. A similar study of the influence of blade dynamics on bending and torsion moments was also conducted. The modal analysis of the predicted blade structural loads suggested that five elastic bending deg of freedom (four flap and one lag) and three elastic torsion deg of freedom contributed to calculations of the blade structural loads. However, when structural bending load predictions from several elastic blade analyses were compared with flight test data, an elastic blade model consisting of only three elastic bending modes (first and second flap, and first lag), and two elastic torsion modes was found to be sufficient for maximum correlation.

  7. Potential impacts of climate change on the ecology of dengue and its mosquito vector the Asian tiger mosquito (Aedes albopictus)

    NASA Astrophysics Data System (ADS)

    Erickson, R. A.; Hayhoe, K.; Presley, S. M.; Allen, L. J. S.; Long, K. R.; Cox, S. B.

    2012-09-01

    Shifts in temperature and precipitation patterns caused by global climate change may have profound impacts on the ecology of certain infectious diseases. We examine the potential impacts of climate change on the transmission and maintenance dynamics of dengue, a resurging mosquito-vectored infectious disease. In particular, we project changes in dengue season length for three cities: Atlanta, GA; Chicago, IL and Lubbock, TX. These cities are located on the edges of the range of the Asian tiger mosquito within the United States of America and were chosen as test cases. We use a disease model that explicitly incorporates mosquito population dynamics and high-resolution climate projections. Based on projected changes under the Special Report on Emissions Scenarios (SRES) A1fi (higher) and B1 (lower) emission scenarios as simulated by four global climate models, we found that the projected warming shortened mosquito lifespan, which in turn decreased the potential dengue season. These results illustrate the difficulty in predicting how climate change may alter complex systems.

  8. Shock, release and Taylor impact of the semicrystalline thermoplastic polytetrafluoroethylene

    NASA Astrophysics Data System (ADS)

    Bourne, N. K.; Brown, E. N.; Millett, J. C. F.; Gray, G. T.

    2008-04-01

    The high strain-rate response of polymers is a subject that has gathered interest over recent years due to their increasing engineering importance, particularly in load bearing applications subject to extremes of pressure and strain rate. The current work presents two specific sets of experiments interrogating the effect of dynamic, high-pressure loading in the regime of the phase II to phase III pressure-induced crystalline phase transition in polytetrafluoroethylene (PTFE). These are gas-gun driven plate- and Taylor impact. Together these experiments highlight several effects associated with the dynamic, pressure-induced phase transitions in PTFE. An elevated release wave speed shows evidence of a pressure-induced phase change at a stress commensurate with that observed statically. It is shown that convergence between analytic derivations of release wave speed and the data requires the phase II to III transition to occur. Taylor impact is an integrated test that highlights continuum behavior that has origin in mesoscale response. There is a rapid transition from ductile to brittle behavior observed that occurs at a pressure consistent with this phase transition.

  9. Mechanistic Representation of Soil C Dynamics: for Arctic Ecosystem

    NASA Astrophysics Data System (ADS)

    Dwivedi, D.; Riley, W. J.; Bisht, G.

    2013-12-01

    Arctic and sub-Arctic soils store vast amounts of carbon, approximately 1700 billion metric tones of frozen organic carbon. This carbon is susceptible to release to the atmosphere due to environmental changes (e.g., rapidly evolving landscape, warming); however, the mechanisms responsible for this susceptibility of soil organic matter (SOM) are not well understood, and uncertainties exist in terms of their representation in Earth System models. The representation of SOM dynamics in Earth System Models is critical for future climate prediction. To investigate the impacts of various physical (e.g., multi-phase transport, sorption, desorption, temperature), chemical (e.g., pH), and biological (e.g., microbial activity, enzyme dynamics) factors on SOM stability, we have developed CENTURY-like (describing labile and recalcitrant pools) and complex (describing multiple archetypal polymers and monomers C substrate groups) reaction networks. These reaction networks are integrated in a three-dimensional, multi-phase reactive transport solver (PFLOTRAN) and include representations of bacterial and fungal activity as well as population dynamics, gaseous and aqueous advection, and adsorption and desorption. We test and compare these reaction networks in PFLOTRAN to accurately predict depth-resolved soil organic matter (SOM) in the subsurface. We present results showing impacts of abiotic controls (e.g., surface interactions and temperature) on the long-term stabilization of SOM under permafrost conditions.

  10. Effects of cell culture media on the dynamic formation of protein-nanoparticle complexes and influence on the cellular response.

    PubMed

    Maiorano, Gabriele; Sabella, Stefania; Sorce, Barbara; Brunetti, Virgilio; Malvindi, Maria Ada; Cingolani, Roberto; Pompa, Pier Paolo

    2010-12-28

    The development of appropriate in vitro protocols to assess the potential toxicity of the ever expanding range of nanoparticles represents a challenging issue, because of the rapid changes of their intrinsic physicochemical properties (size, shape, reactivity, surface area, etc.) upon dispersion in biological fluids. Dynamic formation of protein coating around nanoparticles is a key molecular event, which may strongly impact the biological response in nanotoxicological tests. In this work, by using citrate-capped gold nanoparticles (AuNPs) of different sizes as a model, we show, by several spectroscopic techniques (dynamic light scattering, UV-visible, plasmon resonance light scattering), that proteins-NP interactions are differently mediated by two widely used cellular media (i.e., Dulbecco Modified Eagle's medium (DMEM) and Roswell Park Memorial Institute medium (RPMI), supplemented with fetal bovine serum). We found that, while DMEM elicits the formation of a large time-dependent protein corona, RPMI shows different dynamics with reduced protein coating. Characterization of these nanobioentities was also performed by sodium dodecyl sulfate polyacrylamide gel electrophoresis and mass spectroscopy, revealing that the average composition of protein corona does not reflect the relative abundance of serum proteins. To evaluate the biological impact of such hybrid bionanostructures, several comparative viability assays onto two cell lines (HeLa and U937) were carried out in the two media, in the presence of 15 nm AuNPs. We observed that proteins/NP complexes formed in RPMI are more abundantly internalized in cells as compared to DMEM, overall exerting higher cytotoxic effects. These results show that, beyond an in-depth NPs characterization before cellular experiments, a detailed understanding of the effects elicited by cell culture media on NPs is crucial for standardized nanotoxicology tests.

  11. Sediment-stabilizing and Destabilizing Ecoengineering Species from River to Estuary: the Case of the Scheldt System

    NASA Astrophysics Data System (ADS)

    Selakovic, S.; Cozzoli, F.; Leuven, J.; Van Braeckel, A.; Speybroeck, J.; Kleinhans, M. G.; Bouma, T.

    2017-12-01

    Interactions between organisms and landscape forming processes play an important role in evolution of coastal landscapes. In particular, biota has a strong potential to interact with important geomorphological processes such as sediment dynamics. Although many studies worked towards quantifying the impact of different species groups on sediment dynamics, information has been gathered on an ad hoc base. Depending on species' traits and distribution, functional groups of ecoengineering species may have differential effects on sediment deposition and erosion. We hypothesize that the spatial distributions of sediment-stabilizing and destabilizing species across the channel and along the whole salinity gradient of an estuary partly determine the planform shape and channel-shoal morphology of estuaries. To test this hypothesis, we analyze vegetation and macrobenthic data taking the Scheldt river-estuarine continuum as model ecosystem. We identify species traits with important effects on sediment dynamics and use them to form functional groups. By using linearized mixed modelling, we are able to accurately describe the distributions of the different functional groups. We observe a clear distinction of dominant ecosystem engineering functional groups and their potential effects on the sediment in the river-estuarine continuum. The first results of longitudinal cross section show the highest effects of stabilizing plant species in riverine and sediment bioturbators in weak polyhaline part of continuum. The distribution of functional groups in transverse cross sections shows dominant stabilizing effect in supratidal zone compared to dominant destabilizing effect in the lower intertidal zone. This analysis offers a new and more general conceptualization of distributions of sediment stabilizing and destabilizing functional groups and their potential impacts on sediment dynamics, shoal patterns, and planform shapes in river-estuarine continuum. We intend to test this in future modelling and experiments.

  12. Impact of visual and somatosensory deprivation on dynamic balance in adolescent idiopathic scoliosis.

    PubMed

    Kuo, Fang-Chuan; Wang, Nai-Hwei; Hong, Chang-Zern

    2010-11-01

    A cross-sectional study of balance control in adolescents with idiopathic scoliosis (AIS). To investigate the impact of visual and somatosensory deprivation on the dynamic balance in AIS patients and to discuss electromyographic (EMG) and posture sway findings. Most studies focus on posture sway in quiet standing controls with little effort on examining muscle-activated patterns in dynamic standing controls. Twenty-two AIS patients and 22 age-matched normal subjects were studied. To understand how visual and somatosensory information could modulate standing balance, balance tests with the Biodex stability system were performed on a moving platform under 3 conditions: visual feedback provided (VF), eyes closed (EC), and standing on a sponge pad with visual feedback provided (SV). Muscular activities of bilateral lumbar multifidi, gluteus medii, and gastrocnemii muscles were recorded with a telemetry EMG system. AIS patients had normal balance index and amplitude and duration of EMG similar to those of normal subjects in the balance test. However, the onset latency of right gastrocnemius was earlier in AIS patients than in normal subjects. In addition, body-side asymmetry was noted on muscle strength and onset latency in AIS subjects. Under EC condition, lumbar multifidi, and gluteus medii activities were higher than those under SV and VF conditions (P < 0.05). Under SV condition, the medial-lateral tilting angle was less than that under VF and EC conditions. In addition, the active duration of right gluteus medius was shorter under SV condition (P < 0.05). The dynamic balance control is particularly disruptive under visual deprivation with increasing lumbar multifidi and gluteus medii activities for compensation. Sponge pad can cause decrease in frontal plane tilting and gluteus medii effort. The asymmetric muscle strength and onset timing are attributed to anatomic deformation as opposed to neurologic etiological factors.

  13. Development of test methodology for dynamic mechanical analysis instrumentation

    NASA Technical Reports Server (NTRS)

    Allen, V. R.

    1982-01-01

    Dynamic mechanical analysis instrumentation was used for the development of specific test methodology in the determination of engineering parameters of selected materials, esp. plastics and elastomers, over a broad range of temperature with selected environment. The methodology for routine procedures was established with specific attention given to sample geometry, sample size, and mounting techniques. The basic software of the duPont 1090 thermal analyzer was used for data reduction which simplify the theoretical interpretation. Clamps were developed which allowed 'relative' damping during the cure cycle to be measured for the fiber-glass supported resin. The correlation of fracture energy 'toughness' (or impact strength) with the low temperature (glassy) relaxation responses for a 'rubber-modified' epoxy system was negative in result because the low-temperature dispersion mode (-80 C) of the modifier coincided with that of the epoxy matrix, making quantitative comparison unrealistic.

  14. How Well Does the Latest Anthropomorphic Test Device Mimic Human Impact Responses?

    NASA Technical Reports Server (NTRS)

    Newby, N.; Somers, J. T.; Caldwell, E.; Gernhardt, M.

    2014-01-01

    One of the goals of the NASA Occupant Protection Group is to understand the human tolerance to dynamic loading. This knowledge has to come through indirect approaches such as existing human response databases, anthropometric test devices (ATD), animal testing, post-mortem human subjects, and models. This study investigated the biofidelity of the National Highway Traffic Safety Administration's ATD named the THOR (test device for human occupant restraint). If THOR responds comparably to humans, then it could potentially be used as a human surrogate to help validate space vehicle requirements for occupant protection. The THOR responses to frontal and spinal impacts (ranging from 8 to 12 G with rise times of 40, 70, and 100 ms) were measured and compared to human volunteer responses (95 trials in frontal and 58 in spinal) previously collected by the U. S. Air Force on the same horizontal impact accelerator. The impact acceleration profiles tested are within the expected range of multi-purpose crew vehicle (MPCV) landing dynamics. A correlation score was calculated for each THOR to human comparison using CORA (CORrelation and Analysis) software. A two-parameter beta distribution model fit was obtained for each dependent variable using maximum likelihood estimation. For frontal impacts, the THOR head x-acceleration peak response correlated with the human response at 8 and 10-G 100 ms but not 10-G 70 ms. The phase lagged the human response. Head z-acceleration was not correlated. Chest x-acceleration was in phase, had a higher peak response, and was well correlated with lighter subjects (Cora = 0.8 for 46 kg vs. Cora = 0.4 for 126 kg). Head x-displacement had a leading phase. Several subjects responded with the same peak displacement but the mean of the group was lower. The shoulder x-displacement was in phase but had higher peaks than the human response. For spinal impacts, the THOR head x-acceleration was not well correlated. Head and chest z-acceleration was in phase but had a higher peak response. Chest z-acceleration was highly correlated with heavier subjects at lower G pulses (Cora = 0.86 for 125 kg at 8 G). The human response was variable in shoulder z-displacement but the THOR was in phase and was comparable to the mean peak response. Head xand z-displacement was in phase but had higher peaks. Seat pan forces were well correlated, were in phase, but had a larger peak response than most subjects. The THOR does not respond to frontal and spinal impacts exactly the same way that a human does. Some responses are well matched and others are not. Understanding the strengths and weaknesses of this ATD is an important first step in determining its usefulness in occupant protection at NASA

  15. Interplay Between Energy-Market Dynamics and Physical Stability of a Smart Power Grid

    NASA Astrophysics Data System (ADS)

    Picozzi, Sergio; Mammoli, Andrea; Sorrentino, Francesco

    2013-03-01

    A smart power grid is being envisioned for the future which, among other features, should enable users to play the dual role of consumers as well as producers and traders of energy, thanks to emerging renewable energy production and energy storage technologies. As a complex dynamical system, any power grid is subject to physical instabilities. With existing grids, such instabilities tend to be caused by natural disasters, human errors, or weather-related peaks in demand. In this work we analyze the impact, upon the stability of a smart grid, of the energy-market dynamics arising from users' ability to buy from and sell energy to other users. The stability analysis of the resulting dynamical system is performed assuming different proposed models for this market of the future, and the corresponding stability regions in parameter space are identified. We test our theoretical findings by comparing them with data collected from some existing prototype systems.

  16. Langmuir waveforms at interplanetary shocks: STEREO statistical analysis

    NASA Astrophysics Data System (ADS)

    Briand, C.

    2016-12-01

    Wave-particle interactions and particle acceleration are the two main processes allowing energy dissipation at non collisional shocks. Ion acceleration has been deeply studied for many years, also for their central role in the shock front reformation. Electron dynamics is also important in the shock dynamics through the instabilities they can generate which may impact the ion dynamics.Particle measurements can be efficiently completed by wave measurements to determine the characteristics of the electron beams and study the turbulence of the medium. Electric waveforms obtained from the S/WAVES instrument of the STEREO mission between 2007 to 2014 are analyzed. Thus, clear signature of Langmuir waves are observed on 41 interplanetary shocks. These data enable a statistical analysis and to deduce some characteristics of the electron dynamics on different shocks sources (SIR or ICME) and types (quasi-perpendicular or quasi-parallel). The conversion process between electrostatic to electromagnetic waves has also been tested in several cases.

  17. Evaluation of nitrous oxide as a substitute for sulfur hexafluoride to reduce global warming impacts of ANSI/HPS N13.1 gaseous uniformity testing

    DOE PAGES

    Yu, Xiao-Ying; Barnett, J. Matthew; Amidan, Brett G.; ...

    2017-12-12

    The ANSI/HPS N13.1–2011 standard requires gaseous tracer uniformity testing for sampling associated with stacks used in radioactive air emissions. Sulfur hexafluoride (SF 6), a greenhouse gas with a high global warming potential, has long been the gas tracer used in such testing. To reduce the impact of gas tracer tests on the environment, nitrous oxide (N 2O) was evaluated as a potential replacement to SF 6. The physical evaluation included the development of a test plan to record percent coefficient of variance and the percent maximum deviation between the two gases while considering variables such as fan configuration, injection position,more » and flow rate. Statistical power was calculated to determine how many sample sets were needed, and computational fluid dynamic modeling was utilized to estimate overall mixing in stacks. Results show there are no significant differences between the behaviors of the two gases, and SF 6 modeling corroborated N 2O test results. Although, in principle, all tracer gases should behave in an identical manner for measuring mixing within a stack, the series of physical tests guided by statistics was performed to demonstrate the equivalence of N 2O testing to SF 6 testing in the context of stack qualification tests. In conclusion, the results demonstrate that N 2O is a viable choice leading to a four times reduction in global warming impacts for future similar compliance driven testing.« less

  18. Evaluation of nitrous oxide as a substitute for sulfur hexafluoride to reduce global warming impacts of ANSI/HPS N13.1 gaseous uniformity testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Xiao-Ying; Barnett, J. Matthew; Amidan, Brett G.

    The ANSI/HPS N13.1–2011 standard requires gaseous tracer uniformity testing for sampling associated with stacks used in radioactive air emissions. Sulfur hexafluoride (SF 6), a greenhouse gas with a high global warming potential, has long been the gas tracer used in such testing. To reduce the impact of gas tracer tests on the environment, nitrous oxide (N 2O) was evaluated as a potential replacement to SF 6. The physical evaluation included the development of a test plan to record percent coefficient of variance and the percent maximum deviation between the two gases while considering variables such as fan configuration, injection position,more » and flow rate. Statistical power was calculated to determine how many sample sets were needed, and computational fluid dynamic modeling was utilized to estimate overall mixing in stacks. Results show there are no significant differences between the behaviors of the two gases, and SF 6 modeling corroborated N 2O test results. Although, in principle, all tracer gases should behave in an identical manner for measuring mixing within a stack, the series of physical tests guided by statistics was performed to demonstrate the equivalence of N 2O testing to SF 6 testing in the context of stack qualification tests. In conclusion, the results demonstrate that N 2O is a viable choice leading to a four times reduction in global warming impacts for future similar compliance driven testing.« less

  19. Impact analysis of air gap motion with respect to parameters of mooring system for floating platform

    NASA Astrophysics Data System (ADS)

    Shen, Zhong-xiang; Huo, Fa-li; Nie, Yan; Liu, Yin-dong

    2017-04-01

    In this paper, the impact analysis of air gap concerning the parameters of mooring system for the semi-submersible platform is conducted. It is challenging to simulate the wave, current and wind loads of a platform based on a model test simultaneously. Furthermore, the dynamic equivalence between the truncated and full-depth mooring system is still a tuff work. However, the wind and current loads can be tested accurately in wind tunnel model. Furthermore, the wave can be simulated accurately in wave tank test. The full-scale mooring system and the all environment loads can be simulated accurately by using the numerical model based on the model tests simultaneously. In this paper, the air gap response of a floating platform is calculated based on the results of tunnel test and wave tank. Meanwhile, full-scale mooring system, the wind, wave and current load can be considered simultaneously. In addition, a numerical model of the platform is tuned and validated by ANSYS AQWA according to the model test results. With the support of the tuned numerical model, seventeen simulation cases about the presented platform are considered to study the wave, wind, and current loads simultaneously. Then, the impact analysis studies of air gap motion regarding the length, elasticity, and type of the mooring line are performed in the time domain under the beam wave, head wave, and oblique wave conditions.

  20. Preliminary Investigation of Skull Fracture Patterns Using an Impactor Representative of Helmet Back-Face Deformation.

    PubMed

    Weisenbach, Charles A; Logsdon, Katie; Salzar, Robert S; Chancey, Valeta Carol; Brozoski, Fredrick

    2018-03-01

    Military combat helmets protect the wearer from a variety of battlefield threats, including projectiles. Helmet back-face deformation (BFD) is the result of the helmet defeating a projectile and deforming inward. Back-face deformation can result in localized blunt impacts to the head. A method was developed to investigate skull injury due to BFD behind-armor blunt trauma. A representative impactor was designed from the BFD profiles of modern combat helmets subjected to ballistic impacts. Three post-mortem human subject head specimens were each impacted using the representative impactor at three anatomical regions (frontal bone, right/left temporo-parietal regions) using a pneumatic projectile launcher. Thirty-six impacts were conducted at energy levels between 5 J and 25 J. Fractures were detected in two specimens. Two of the specimens experienced temporo-parietal fractures while the third specimen experienced no fractures. Biomechanical metrics, including impactor acceleration, were obtained for all tests. The work presented herein describes initial research utilizing a test method enabling the collection of dynamic exposure and biomechanical response data for the skull at the BFD-head interface.

  1. Evaluation of mounting bolt loads for Space Shuttle Get Away Special (GAS) adapter beam

    NASA Technical Reports Server (NTRS)

    Talapatra, D. C.

    1983-01-01

    During the prototype vibration tests of the GAS adapter beam, significant impacting of the beam at its support points was observed. The cause of the impacting was traced to gaps under the mounting bolt heads. Because of the nonlinear nature of the response, it was difficult to evaluate the effects which Shuttle launch dynamics might have on the mounting bolt loads. A series of tests were conducted on an electrodynamic exciter in which the transient acceleration time histories, which had been measured during the Space Transportation System-1 (STS-1; Space Shuttle mission 1) launch, were simulated. The actual flight data had to be filtered and compensated so that it could be reproduced on the shaker without exceeding displacement and velocity limitations. Mounting bolt loads were measured directly by strain gages applied to the bolts. Various gap thicknesses and bolt torques were investigated. Although increased gap thickness resulted in greater accelerations due to impacting, the bolt loads were not significantly affected. This is attributed to the fact that impacting excited mostly higher frequency modes which do not have significant modal mass.

  2. Acute effects of rearfoot manipulation on dynamic standing balance in healthy individuals.

    PubMed

    Wassinger, Craig A; Rockett, Ariel; Pitman, Lucas; Murphy, Matthew Matt; Peters, Charles

    2014-06-01

    Dynamic standing balance is essential to perform functional activities and is included in the treatment of many lower extremity injuries. Physiotherapists utilize many methods to restore standing balance including stability exercises, functional retraining, and manual therapy. The purpose of this study was to investigate the effects of a rearfoot distraction manipulation on dynamic standing balance. Twenty healthy participants (age: 24.4 ± 2.8 years; height: 162.9 ± 37.7 cm; mass: 68.0 ± 4.8 kg; right leg dominant = 20) completed this study. Following familiarization, dynamic standing balance was assessed during: (1) an experimental condition immediately following a rearfoot distraction manipulation, and (2) a control condition. Dominant leg balance was quantified using the Y-balance test which measures lower extremity reach distances. Reach distances were normalized to leg length and measured in the anterior, posteromedial and posterolateral directions. Overall balance was calculated through the summing of all normalized directions. Paired t-tests and Wilcoxon rank tests were used to compare balance scores for parametric and non-parametric data as appropriate. Significance was set at 0.05 a priori. Effect size (ES) was calculated to determine the clinical impact of the manipulation. Increased reach distances (indicating improved balance) were noted following manipulation for overall balance (p = 0.03, ES = 0.26) and in the posteromedial direction (p = 0.01, ES = 0.42). Reach distances did not differ for the anterior (p = 0.11, ES = 0.16) or posterolateral (p = 0.11, ES = 0.25) components. Dynamic standing balance improved after a rearfoot distraction manipulation in healthy participants. It is hypothesized that manual therapy applied to the foot and ankle may be beneficial to augment other therapeutic modalities when working with patients to improve dynamic standing balance. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Dynamic response of polyurea subjected to nanosecond rise-time stress waves

    NASA Astrophysics Data System (ADS)

    Youssef, George; Gupta, Vijay

    2012-08-01

    Shaped charges and explosively formed projectiles used in modern warfare can attain speeds as high as 30,000 ft/s. Impacts from these threats are expected to load the armor materials in the 10 to 100 ns timeframe. During this time, the material strains are quite limited but the strain rates are extremely high. To develop armors against such threats it is imperative to understand the dynamic constitutive behavior of materials in the tens of nanoseconds timeframe. Material behavior in this parameter space cannot be obtained by even the most sophisticated plate-impact and split-Hopkinson bar setups that exist within the high energy materials field today. This paper introduces an apparatus and a test method that are based on laser-generated stress waves to obtain such material behaviors. Although applicable to any material system, the test procedures are demonstrated on polyurea which shows unusual dynamic properties. Thin polyurea layers were deformed using laser-generated stress waves with 1-2 ns rise times and 16 ns total duration. The total strain in the samples was less than 3%. Because of the transient nature of the stress wave, the strain rate varied throughout the deformation history of the sample. A peak value of 1.1×105 s-1 was calculated. It was found that the stress-strain characteristics, determined from experimentally recorded incident and transmitted wave profiles, matched satisfactorily with those computed from a 2D wave mechanics simulation in which the polyurea was modeled as a linearly viscoelastic solid with constants derived from the quasi-static experiments. Thus, the test data conformed to the Time-Temperature Superposition (TTS) principle even at extremely high strain rates of our test. This then extends the previous observations of Zhao et al. (Mech. Time-Depend. Mater. 11:289-308, 2007) who showed the applicability of the TTS principle for polyurea in the linearly viscoelastic regime up to peak strain rates of 1200 s-1.

  4. A study of the use of abstract types for the representation of engineering units in integration and test applications

    NASA Technical Reports Server (NTRS)

    Johnson, Charles S.

    1986-01-01

    Physical quantities using various units of measurement can be well represented in Ada by the use of abstract types. Computation involving these quantities (electric potential, mass, volume) can also automatically invoke the computation and checking of some of the implicitly associable attributes of measurements. Quantities can be held internally in SI units, transparently to the user, with automatic conversion. Through dimensional analysis, the type of the derived quantity resulting from a computation is known, thereby allowing dynamic checks of the equations used. The impact of the possible implementation of these techniques in integration and test applications is discussed. The overhead of computing and transporting measurement attributes is weighed against the advantages gained by their use. The construction of a run time interpreter using physical quantities in equations can be aided by the dynamic equation checks provided by dimensional analysis. The effects of high levels of abstraction on the generation and maintenance of software used in integration and test applications are also discussed.

  5. Comparing Free-Free and Shaker Table Model Correlation Methods Using Jim Beam

    NASA Technical Reports Server (NTRS)

    Ristow, James; Smith, Kenneth Wayne, Jr.; Johnson, Nathaniel; Kinney, Jackson

    2018-01-01

    Finite element model correlation as part of a spacecraft program has always been a challenge. For any NASA mission, the coupled system response of the spacecraft and launch vehicle can be determined analytically through a Coupled Loads Analysis (CLA), as it is not possible to test the spacecraft and launch vehicle coupled system before launch. The value of the CLA is highly dependent on the accuracy of the frequencies and mode shapes extracted from the spacecraft model. NASA standards require the spacecraft model used in the final Verification Loads Cycle to be correlated by either a modal test or by comparison of the model with Frequency Response Functions (FRFs) obtained during the environmental qualification test. Due to budgetary and time constraints, most programs opt to correlate the spacecraft dynamic model during the environmental qualification test, conducted on a large shaker table. For any model correlation effort, the key has always been finding a proper definition of the boundary conditions. This paper is a correlation case study to investigate the difference in responses of a simple structure using a free-free boundary, a fixed boundary on the shaker table, and a base-drive vibration test, all using identical instrumentation. The NAVCON Jim Beam test structure, featured in the IMAC round robin modal test of 2009, was selected as a simple, well recognized and well characterized structure to conduct this investigation. First, a free-free impact modal test of the Jim Beam was done as an experimental control. Second, the Jim Beam was mounted to a large 20,000 lbf shaker, and an impact modal test in this fixed configuration was conducted. Lastly, a vibration test of the Jim Beam was conducted on the shaker table. The free-free impact test, the fixed impact test, and the base-drive test were used to assess the effect of the shaker modes, evaluate the validity of fixed-base modeling assumptions, and compare final model correlation results between these boundary conditions.

  6. Simulating the Response of a Composite Honeycomb Energy Absorber. Part 2; Full-Scale Impact Testing

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Annett, Martin S.; Jackson, Karen E.; Polanco, Michael A.

    2012-01-01

    NASA has sponsored research to evaluate an externally deployable composite honeycomb designed to attenuate loads in the event of a helicopter crash. The concept, designated the Deployable Energy Absorber (DEA), is an expandable Kevlar(Registered TradeMark) honeycomb. The DEA has a flexible hinge that allows the honeycomb to be stowed collapsed until needed during an emergency. Evaluation of the DEA began with material characterization of the Kevlar(Registered TradeMark)-129 fabric/epoxy, and ended with a full-scale crash test of a retrofitted MD-500 helicopter. During each evaluation phase, finite element models of the test articles were developed and simulations were performed using the dynamic finite element code, LS-DYNA(Registered TradeMark). The paper will focus on simulations of two full-scale impact tests involving the DEA, a mass-simulator and a full-scale crash of an instrumented MD-500 helicopter. Isotropic (MAT24) and composite (MAT58) material models, which were assigned to DEA shell elements, were compared. Based on simulations results, the MAT58 model showed better agreement with test.

  7. Overview Of Structural Behavior and Occupant Responses from Crash Test of a Composite Airplane

    NASA Technical Reports Server (NTRS)

    Jones, Lisa E.; Carden, Huey D.

    1995-01-01

    As part of NASA's composite structures crash dynamics research, a general aviation aircraft with composite wing, fuselage and empennage (but with metal subfloor structure) was crash tested at the NASA Langley Research Center Impact Research Facility. The test was conducted to determine composite aircraft structural behavior for crash loading conditions and to provide a baseline for a similar aircraft test with a modified subfloor. Structural integrity and cabin volume were maintained. Lumbar loads for dummy occupants in energy absorbing seats wer substantially lower than those in standard aircraft seats; however, loads in the standard seats were much higher that those recorded under similar conditions for an all-metallic aircraft.

  8. The Cascading Impacts of Technology Selection: Incorporating Ruby on Rails into ECHO

    NASA Astrophysics Data System (ADS)

    Pilone, D.; Cechini, M.

    2010-12-01

    NASA’s Earth Observing System (EOS) ClearingHOuse (ECHO) is a SOA based Earth Science Data search and order system implemented in Java with one significant exception: the web client used by 98% of our users is written in Perl. After several decades of maintenance the Perl based application had reached the end of its serviceable life and ECHO was tasked with implementing a replacement. Despite a broad investment in Java, the ECHO team conducted a survey of modern development technologies including Flex, Python/Django, JSF2/Spring and Ruby on Rails. The team ultimately chose Ruby on Rails (RoR) with Cucumber for testing due to its perceived applicability to web application development and corresponding development efficiency gains. Both positive and negative impacts on the entire ECHO team, including our stakeholders, were immediate and sometimes subtle. The technology selection caused shifts in our architecture and design, development and deployment procedures, requirement definition approach, testing approach, and, somewhat surprisingly, our project team structure and software process. This presentation discusses our experiences, including technical, process, and psychological, using RoR on a production system. During this session we will discuss: - Real impacts of introducing a dynamic language to a Java team - Real and perceived efficiency advantages - Impediments to adoption and effectiveness - Impacts of transition from Test Driven Development to Behavior Driven Development - Leveraging Cucumber to provide fully executable requirement documents - Impacts on team structure and roles

  9. Material Modeling of Space Shuttle Leading Edge and External Tank Materials For Use in the Columbia Accident Investigation

    NASA Technical Reports Server (NTRS)

    Carney, Kelly; Melis, Matthew; Fasanella, Edwin L.; Lyle, Karen H.; Gabrys, Jonathan

    2004-01-01

    Upon the commencement of the analytical effort to characterize the impact dynamics and damage of the Space Shuttle Columbia leading edge due to External Tank insulating foam, the necessity of creating analytical descriptions of these materials became evident. To that end, material models were developed of the leading edge thermal protection system, Reinforced Carbon Carbon (RCC), and a low density polyurethane foam, BX-250. Challenges in modeling the RCC include its extreme brittleness, the differing behavior in compression and tension, and the anisotropic fabric layup. These effects were successfully included in LS-DYNA Material Model 58, *MAT_LAMINATED_ COMPOSITE_ FABRIC. The differing compression and tension behavior was modeled using the available damage parameters. Each fabric layer was given an integration point in the shell element, and was allowed to fail independently. Comparisons were made to static test data and coupon ballistic impact tests before being utilized in the full scale analysis. The foam's properties were typical of elastic automotive foams; and LS-DYNA Material Model 83, *MAT_FU_CHANG_FOAM, was successfully used to model its behavior. Material parameters defined included strain rate dependent stress-strain curves for both loading and un-loading, and for both compression and tension. This model was formulated with static test data and strain rate dependent test data, and was compared to ballistic impact tests on load-cell instrumented aluminum plates. These models were subsequently utilized in analysis of the Shuttle leading edge full scale ballistic impact tests, and are currently being used in the Return to Flight Space Shuttle re-certification effort.

  10. Spin Testing for Durability Began on a Self-Tuning Impact Damper for Turbomachinery Blades

    NASA Technical Reports Server (NTRS)

    Duffy, Kirsten; Mehmed, Oral

    2003-01-01

    NASA and Pratt & Whitney will collaborate under a Space Act Agreement to perform spin testing of the impact damper to verify damping effectiveness and durability. Pratt & Whitney will provide the turbine blade and damper hardware for the tests. NASA will provide the facility and perform the tests. Effectiveness and durability will be investigated during and after sustained sweeps of rotor speed through resonance. Tests of a platform wedge damper are also planned to compare its effectiveness with that of the impact damper. Results from baseline tests without dampers will be used to measure damping effectiveness. The self-tuning impact damper combines two damping methods-the tuned mass damper and the impact damper. It consists of a ball located within a cavity in the blade. This ball rolls back and forth on a spherical trough under centrifugal load (tuned mass damper) and can strike the walls of the cavity (impact damper). The ball s rolling natural frequency is proportional to the rotor speed and can be designed to follow an engine-order line (integer multiple of rotor speed). Aerodynamic forcing frequencies typically follow these engineorder lines, and a damper tuned to the engine order will most effectively reduce blade vibrations when the resonant frequency equals the engine-order forcing frequency. This damper has been tested in flat plates and turbine blades in the Dynamic Spin Facility. During testing, a pair of plates or blades rotates in vacuum. Excitation is provided by one of three methods--eddy-current engine-order excitation (ECE), electromechanical shakers, and magnetic bearing excitation. The eddy-current system consists of magnets located circumferentially around the rotor. As a blade passes a magnet, a force is imparted on the blade. The number of magnets used can be varied to change the desired engine order of the excitation. The magnets are remotely raised or lowered to change the magnitude of the force on the blades. The other two methods apply force to the rotating shaft itself at frequencies independent of the rotor speed. During testing, blade vibration is monitored with strain gauges and laser displacement probes.

  11. Crash tests of four low-wing twin-engine airplanes with truss-reinforced fuselage structure

    NASA Technical Reports Server (NTRS)

    Williams, M. S.; Fasanella, E. L.

    1982-01-01

    Four six-place, low-wing, twin-engine, general aviation airplane test specimens were crash tested under controlled free flight conditions. All airplanes were impacted on a concrete test surface at a nomial flight path velocity of 27 m/sec. Two tests were conducted at a -15 deg flight path angle (0 deg pitch angle and 15 deg pitch angle), and two were conducted at a -30 deg flight path angle (-30 deg pitch angle). The average acceleration time histories (crash pulses) in the cabin area for each principal direction were calculated for each crash test. In addition, the peak floor accelerations were calculated for each test as a function of aircraft fuselage longitudinal station number. Anthropomorphic dummy accelerations were analyzed using the dynamic response index and severity index (SI) models. Parameters affecting the dummy restraint system were studied; these parameters included the effect of no upper torso restraint, measurement of the amount of inertia-reel strap pullout before locking, measurement of dummy chest forward motion, and loads in the restraints. With the SI model, the dummies with no shoulder harness received head impacts above the concussive threshold.

  12. Characterization of LaRC-CPI semicrystalline polyimide using thermal, dynamic mechanical and dielectric relaxation techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rich, D.C.; Huo, P.P.; Liu, C.

    1993-12-31

    The thermal, dynamic mechanical, and dielectric properties of the semicrystalline thermoplastic polyimide LaRC-CPI were studied. Using differential scanning calorimetry to measure heats of fusion and WAXS to measure crystallinity, the heat of fusion of perfect crystalline LaRC-CPI was determined to be 92 {+-} 2 J/g. DMA and dielectric measurements were performed on three LaRC-CPI films (as received, annealed, and amorphous). Crystallinity was found to reinforce the rubbery state resulting in a higher modulus and broader distribution of relaxation times. Broader relaxation for the crystalline LaRC-CPI was also observed in the dielectric tests. Processing strain and the thermal history were foundmore » to have a significant impact in both dynamic mechanical and dielectric relaxation measurements.« less

  13. Boxing headguard performance in punch machine tests.

    PubMed

    McIntosh, Andrew S; Patton, Declan A

    2015-09-01

    The paper presents a novel laboratory method for assessing boxing headguard impact performance. The method is applied to examine the effects of headguards on head impact dynamics and injury risk. A linear impactor was developed, and a range of impacts was delivered to an instrumented Hybrid III head and neck system both with and without an AIBA (Association Internationale de Boxe Amateur)-approved headguard. Impacts at selected speeds between 4.1 and 8.3 m/s were undertaken. The impactor mass was approximately 4 kg and an interface comprising a semirigid 'fist' with a glove was used. The peak contact forces were in the range 1.9-5.9 kN. Differences in head impact responses between the Top Ten AIBA-approved headguard and bare headform in the lateral and forehead tests were large and/or significant. In the 8.3 m/s fist-glove impacts, the mean peak resultant headform accelerations for bare headform tests was approximately 130 g compared with approximately 85 g in the forehead impacts. In the 6.85 m/s bare headform impacts, mean peak resultant angular head accelerations were in the range of 5200-5600 rad/s(2) and almost halved by the headguard. Linear and angular accelerations in 45° forehead and 60° jaw impacts were reduced by the headguard. The data support the opinion that current AIBA headguards can play an important role in reducing the risk of concussion and superficial injury in boxing competition and training. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  14. Overview of High Speed Close-Up Imaging in an Icing Environment

    NASA Technical Reports Server (NTRS)

    Miller, Dean R.; Lynch, Christopher J.; Tate, Peter A.

    2004-01-01

    The Icing Branch and Imaging Technology Center at NASA Glenn Research Center have recently been involved in several projects where high speed close-up imaging was used to investigate water droplet impact/splash, and also ice particle impact/bounce in an icing wind tunnel. The combination of close-up and high speed imaging capabilities were required because the particles being studied were relatively small (d < 1 mm in diameter), and the impact process occurred in a very short time period (t(sub impact) << 1 sec). High speed close-up imaging was utilized to study the dynamics of droplet impact and splash in simulated Supercooled Large Droplet (SLD) icing conditions. The objective of this test was to evaluate the capability of a ultra high speed camera system to acquire quantitative information about the impact process (e.g., droplet size, velocity). Imaging data were obtained in an icing wind tunnel for spray cloud MVD > 50 m. High speed close-up imaging was also utilized to characterize the impact of ice particles on an airfoil with a thermally protected leading edge. The objective of this investigation was to determine whether ice particles tend to "stick" or "bounce" after impact. Imaging data were obtained for cases where the airfoil surface was heated and unheated. Based on the results from this test, follow on tests were conducted to investigate ice particle impact on the sensing elements of water content measurement devices. This paper will describe the use of the imaging systems to support these experimental investigations, present some representative results, and summarize what was learned about the use of these systems in an icing environment.

  15. On the Impact Origin of Phobos and Deimos. II. True Polar Wander and Disk Evolution

    NASA Astrophysics Data System (ADS)

    Hyodo, Ryuki; Rosenblatt, Pascal; Genda, Hidenori; Charnoz, Sébastien

    2017-12-01

    Phobos and Deimos are the two small Martian moons, orbiting almost on the equatorial plane of Mars. Recent works have shown that they can accrete within an impact-generated inner dense and outer light disk, and that the same impact potentially forms the Borealis basin, a large northern hemisphere basin on the current Mars. However, there is no a priori reason for the impact to take place close to the north pole (Borealis present location), nor to generate a debris disk in the equatorial plane of Mars (in which Phobos and Deimos orbit). In this paper, we investigate these remaining issues on the giant impact origin of the Martian moons. First, we show that the mass deficit created by the Borealis impact basin induces a global reorientation of the planet to realign its main moment of inertia with the rotation pole (True Polar Wander). This moves the location of the Borealis basin toward its current location. Next, using analytical arguments, we investigate the detailed dynamical evolution of the eccentric inclined disk from the equatorial plane of Mars that is formed by the Martian-moon-forming impact. We find that, as a result of precession of disk particles due to the Martian dynamical flattening J 2 term of its gravity field and particle–particle inelastic collisions, eccentricity and inclination are damped and an inner dense and outer light equatorial circular disk is eventually formed. Our results strengthen the giant impact origin of Phobos and Deimos that can finally be tested by a future sample return mission such as JAXA’s Martian Moons eXploration mission.

  16. Impact dynamics of oxidized liquid metal drops

    NASA Astrophysics Data System (ADS)

    Xu, Qin; Brown, Eric; Jaeger, Heinrich M.

    2013-04-01

    With exposure to air, many liquid metals spontaneously generate an oxide layer on their surface. In oscillatory rheological tests, this skin is found to introduce a yield stress that typically dominates the elastic response but can be tuned by exposing the metal to hydrochloric acid solutions of different concentration. We systematically studied the normal impact of eutectic gallium-indium (eGaIn) drops under different oxidation conditions and show how this leads to two different dynamical regimes. At low impact velocity (or low Weber number), eGaIn droplets display strong recoil and rebound from the impacted surface when the oxide layer is removed. In addition, the degree of drop deformation or spreading during impact is controlled by the oxide skin. We show that the scaling law known from ordinary liquids for the maximum spreading radius as a function of impact velocity can still be applied to the case of oxidized eGaIn if an effective Weber number We is employed that uses an effective surface tension factoring in the yield stress. In contrast, no influence on spreading from different oxidations conditions is observed for high impact velocity. This suggests that the initial kinetic energy is mostly damped by bulk viscous dissipation. Results from both regimes can be collapsed in an impact phase diagram controlled by two variables, the maximum spreading factor Pm=R0/Rm, given by the ratio of initial to maximum drop radius, and the impact number K=We/Re4/5, which scales with the effective Weber number We as well as the Reynolds number Re. The data exhibit a transition from capillary to viscous behavior at a critical impact number Kc≈0.1.

  17. Impact dynamics of oxidized liquid metal drops.

    PubMed

    Xu, Qin; Brown, Eric; Jaeger, Heinrich M

    2013-04-01

    With exposure to air, many liquid metals spontaneously generate an oxide layer on their surface. In oscillatory rheological tests, this skin is found to introduce a yield stress that typically dominates the elastic response but can be tuned by exposing the metal to hydrochloric acid solutions of different concentration. We systematically studied the normal impact of eutectic gallium-indium (eGaIn) drops under different oxidation conditions and show how this leads to two different dynamical regimes. At low impact velocity (or low Weber number), eGaIn droplets display strong recoil and rebound from the impacted surface when the oxide layer is removed. In addition, the degree of drop deformation or spreading during impact is controlled by the oxide skin. We show that the scaling law known from ordinary liquids for the maximum spreading radius as a function of impact velocity can still be applied to the case of oxidized eGaIn if an effective Weber number We* is employed that uses an effective surface tension factoring in the yield stress. In contrast, no influence on spreading from different oxidations conditions is observed for high impact velocity. This suggests that the initial kinetic energy is mostly damped by bulk viscous dissipation. Results from both regimes can be collapsed in an impact phase diagram controlled by two variables, the maximum spreading factor P(m)=R(0)/R(m), given by the ratio of initial to maximum drop radius, and the impact number K=We*/Re(4/5), which scales with the effective Weber number We* as well as the Reynolds number Re. The data exhibit a transition from capillary to viscous behavior at a critical impact number K(c)≈0.1.

  18. Late Coupled Evolution of Venus' Atmosphere and the Effects of Meteoritic Impacts

    NASA Astrophysics Data System (ADS)

    Gillmann, C.; Tackley, P. J.; Golabek, G.

    2013-12-01

    We investigate what mechanisms and events could have led to the divergent evolution of Venus and Earth. We propose develop our investigation of the post-magma-ocean history of the atmosphere and surface conditions on Venus through a coupled model of mantle/atmosphere evolution by including meteoritic impacts in our previous work. Our main focuses are mechanisms that deplete or replenish the atmosphere: volcanic degassing, atmospheric escape and impacts. Atmospheric escape modeling involves two different aspects. During the first few hundreds of million years, hydrodynamic escape is dominant. A significant portion of the early atmosphere can be thus removed. For later evolution, on the other hand, non-thermal escape becomes the main process as observed by the ASPERA instrument and modeled in various recent numerical studies. The atmosphere is replenished by volcanic degassing, using an adapted version of the StagYY mantle dynamics model (Armann and Tackley, 2012) and including episodic lithospheric overturn. The evolving surface temperature is calculated from CO2 and water in the atmosphere with a gray radiative-convective atmosphere model. This surface temperature in turn acts as a boundary condition for the mantle dynamics model and has an influence on the convection, volcanism and subsequent degassing. We take into account the effects of meteorites in our simulations by adapting each relevant part of the model. They can bring volatiles as well as erode the atmosphere. Mantle dynamics are modified since the impact itself can also bring large amounts of energy to the mantle. A 2D distribution of the thermal anomaly due to the impact is used and can lead to melting. Volatile evolution due to impacts (especially the large ones) is heavily debated so we test a broad range of impactor parameters (size, velocity, timing) and test different assumptions related to impact erosion going from large eroding power (Ahrens 1993) to recent parameterization (Shuvalov, 2009, 2010). We obtain a Venus-like behavior for the solid planet and atmospheric evolution leading to present-day conditions. Without any impact, CO2 pressure seems unlikely to vary much over the history of the planet, only slightly increasing due to degassing. A late build-up of the atmosphere with several resurfacing events seems unlikely. On the other hand, water pressure is strongly sensitive to volcanic activity and varies rapidly leading to variations in surface temperatures of up to 200K, which have been identified to have an effect on volcanic activity. We observe a clear correlation between low temperature and mobile lid regime. Impacts can strongly change this picture. While small (less than kilometer scale) meteorites have a negligible effect, medium ones are able to bring volatiles to the planet and generate melt both at the impact and later on, due to volcanic events they triggered due to the changes they make to mantle dynamics. A significant amount of volatiles (compared to present-day atmosphere) can be released on a short timescale, which can increase the surface temperature by tens of Kelvin. Larger impactors (~100 km) have even stronger effects as they can blow upwards of 10% of the atmosphere away, depending on the parameters. Removing more than 80% of the atmosphere on the impact is clearly feasible. In these cases, later degassing is also massive, which mitigates the volatile sink.

  19. Characterization of the dynamic behaviour of ALGOTUF armour steel during impact and in torsion

    NASA Astrophysics Data System (ADS)

    Bassim, Nabil; Boakye-Yiadom, Solomon; Toussaint, Genevieve; Bolduc, Manon

    2015-09-01

    Algotuf is a new steel which is proposed as a candidate for armour material. To assess this application, a study of the impact properties of this steel was conducted at the University of Manitoba using two types of Hopkinson Bar systems, namely a torsional bar equipment and a direct impact system capable of producing high strain rates and large strains. Stress strain curves for the steels were obtained in pure shear and in compression. Temperatures of 25 ∘C, 200 ∘C and 500 ∘C were used in the testing. Following the testing, a microstructural examination of the specimens tested was carried out to investigate the effect of microstructure on the mechanism of failure of this material. It was found that, above a value of impact momentum corresponding to a high strain rate, adiabatic shear bands are formed. The microscopic examination showed that the initiation of these shear bands corresponded at locations where martensitic laths were present and around regions of maximum shear stresses. Generally, the shear bands act as precursors to the formation of microcracks that may lead to failure. On the other hand, the high strength and formability of the steel makes it suitable for use as an armour material.

  20. A multi-particle crushing apparatus for studying rock fragmentation due to repeated impacts

    NASA Astrophysics Data System (ADS)

    Huang, S.; Mohanty, B.; Xia, K.

    2017-12-01

    Rock crushing is a common process in mining and related operations. Although a number of particle crushing tests have been proposed in the literature, most of them are concerned with single-particle crushing, i.e., a single rock sample is crushed in each test. Considering the realistic scenario in crushers where many fragments are involved, a laboratory crushing apparatus is developed in this study. This device consists of a Hopkinson pressure bar system and a piston-holder system. The Hopkinson pressure bar system is used to apply calibrated dynamic loads to the piston-holder system, and the piston-holder system is used to hold rock samples and to recover fragments for subsequent particle size analysis. The rock samples are subjected to three to seven impacts under three impact velocities (2.2, 3.8, and 5.0 m/s), with the feed size of the rock particle samples limited between 9.5 and 12.7 mm. Several key parameters are determined from this test, including particle size distribution parameters, impact velocity, loading pressure, and total work. The results show that the total work correlates well with resulting fragmentation size distribution, and the apparatus provides a useful tool for studying the mechanism of crushing, which further provides guidelines for the design of commercial crushers.

  1. Correlations of Platooning Track Test and Wind Tunnel Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lammert, Michael P.; Kelly, Kenneth J.; Yanowitz, Janet

    In this report, the National Renewable Energy Laboratory analyzed results from multiple, independent truck platooning projects to compare and contrast track test results with wind tunnel test results conducted by Lawrence Livermore National Laboratory (LLNL). Some highlights from the report include compiled data, and results from four independent SAE J1321 full-size track test campaigns that were compared to LLNL wind tunnel testing results. All platooning scenarios tested demonstrated significant fuel savings with good correlation relative to following distances, but there are still unanswered questions and clear opportunities for system optimization. NOx emissions showed improvements from NREL tests in 2014 tomore » Auburn tests in 2015 with respect to J1321 platooning track testing of Peloton system. NREL evaluated data from Volpe's Naturalistic Study of Truck Following Behavior, which showed minimal impact of naturalistic background platooning. We found significant correlation between multiple track studies, wind tunnel tests, and computational fluid dynamics, but also showed that there is more to learn regarding close formation and longer-distance effects. We also identified potential areas for further research and development, including development of advanced aerodynamic designs optimized for platooning, measurement of platoon system performance in traffic conditions, impact of vehicle lateral offsets on platooning performance, and characterization of the national potential for platooning based on fleet operational characteristics.« less

  2. A Novel Approach for Dynamic Testing of Total Hip Dislocation under Physiological Conditions.

    PubMed

    Herrmann, Sven; Kluess, Daniel; Kaehler, Michael; Grawe, Robert; Rachholz, Roman; Souffrant, Robert; Zierath, János; Bader, Rainer; Woernle, Christoph

    2015-01-01

    Constant high rates of dislocation-related complications of total hip replacements (THRs) show that contributing factors like implant position and design, soft tissue condition and dynamics of physiological motions have not yet been fully understood. As in vivo measurements of excessive motions are not possible due to ethical objections, a comprehensive approach is proposed which is capable of testing THR stability under dynamic, reproducible and physiological conditions. The approach is based on a hardware-in-the-loop (HiL) simulation where a robotic physical setup interacts with a computational musculoskeletal model based on inverse dynamics. A major objective of this work was the validation of the HiL test system against in vivo data derived from patients with instrumented THRs. Moreover, the impact of certain test conditions, such as joint lubrication, implant position, load level in terms of body mass and removal of muscle structures, was evaluated within several HiL simulations. The outcomes for a normal sitting down and standing up maneuver revealed good agreement in trend and magnitude compared with in vivo measured hip joint forces. For a deep maneuver with femoral adduction, lubrication was shown to cause less friction torques than under dry conditions. Similarly, it could be demonstrated that less cup anteversion and inclination lead to earlier impingement in flexion motion including pelvic tilt for selected combinations of cup and stem positions. Reducing body mass did not influence impingement-free range of motion and dislocation behavior; however, higher resisting torques were observed under higher loads. Muscle removal emulating a posterior surgical approach indicated alterations in THR loading and the instability process in contrast to a reference case with intact musculature. Based on the presented data, it can be concluded that the HiL test system is able to reproduce comparable joint dynamics as present in THR patients.

  3. A Novel Approach for Dynamic Testing of Total Hip Dislocation under Physiological Conditions

    PubMed Central

    Herrmann, Sven; Kluess, Daniel; Kaehler, Michael; Grawe, Robert; Rachholz, Roman; Souffrant, Robert; Zierath, János; Bader, Rainer; Woernle, Christoph

    2015-01-01

    Constant high rates of dislocation-related complications of total hip replacements (THRs) show that contributing factors like implant position and design, soft tissue condition and dynamics of physiological motions have not yet been fully understood. As in vivo measurements of excessive motions are not possible due to ethical objections, a comprehensive approach is proposed which is capable of testing THR stability under dynamic, reproducible and physiological conditions. The approach is based on a hardware-in-the-loop (HiL) simulation where a robotic physical setup interacts with a computational musculoskeletal model based on inverse dynamics. A major objective of this work was the validation of the HiL test system against in vivo data derived from patients with instrumented THRs. Moreover, the impact of certain test conditions, such as joint lubrication, implant position, load level in terms of body mass and removal of muscle structures, was evaluated within several HiL simulations. The outcomes for a normal sitting down and standing up maneuver revealed good agreement in trend and magnitude compared with in vivo measured hip joint forces. For a deep maneuver with femoral adduction, lubrication was shown to cause less friction torques than under dry conditions. Similarly, it could be demonstrated that less cup anteversion and inclination lead to earlier impingement in flexion motion including pelvic tilt for selected combinations of cup and stem positions. Reducing body mass did not influence impingement-free range of motion and dislocation behavior; however, higher resisting torques were observed under higher loads. Muscle removal emulating a posterior surgical approach indicated alterations in THR loading and the instability process in contrast to a reference case with intact musculature. Based on the presented data, it can be concluded that the HiL test system is able to reproduce comparable joint dynamics as present in THR patients. PMID:26717236

  4. Diet shifts and population dynamics of estuarine foraminifera during ecosystem recovery after experimentally induced hypoxia crises

    NASA Astrophysics Data System (ADS)

    Brouwer, G. M.; Duijnstee, I. A. P.; Hazeleger, J. H.; Rossi, F.; Lourens, L. J.; Middelburg, J. J.; Wolthers, M.

    2016-03-01

    This study shows foraminiferal dynamics after experimentally induced hypoxia within the wider context of ecosystem recovery. 13C-labeled bicarbonate and glucose were added to the sediments to examine foraminiferal diet shifts during ecosystem recovery and test-size measurements were used to deduce population dynamics. Hypoxia-treated and undisturbed patches were compared to distinguish natural (seasonal) fluctuations from hypoxia-induced responses. The effect of timing of disturbance and duration of recovery were investigated. The foraminiferal diets and population dynamics showed higher fluctuations in the recovering patches compared to the controls. The foraminiferal diet and population structure of Haynesina germanica and Ammonia beccarii responded differentially and generally inversely to progressive stages of ecosystem recovery. Tracer inferred diet estimates in April and June and the two distinctly visible cohorts in the test-size distribution, discussed to reflect reproduction in June, strongly suggest that the ample availability of diatoms during the first month of ecosystem recovery after the winter hypoxia was likely profitable to A. beccarii. Enhanced reproduction itself was strongly linked to the subsequent dietary shift to bacteria. The distribution of the test dimensions of H. germanica indicated that this species had less fluctuation in population structure during ecosystem recovery but possibly reproduced in response to the induced winter hypoxia. Bacteria seemed to consistently contribute more to the diet of H. germanica than diatoms. For the diet and test-size distribution of both species, the timing of disturbance seemed to have a higher impact than the duration of the subsequent recovery period.

  5. Let Them Play: The Impact of Mechanics and Dynamics of a Serious Game on Student Perceptions of Learning Engagement

    ERIC Educational Resources Information Center

    Wang, Yichuan; Rajan, Pramod; Sankar, Chetan S.; Raju, P. K.

    2017-01-01

    Serious games are becoming important educational tools and are increasingly being integrated into courses in many different academic areas and widely portrayed as a means of helping individuals concentrate on the subject matter and enjoy learning. This paper discusses the development and testing of a serious game by using a research model where…

  6. Soft Body Armor: An Overview of Materials, Manufacturing, Testing, and Ballistic Impact Dynamics

    DTIC Science & Technology

    2011-08-01

    Atlantic Treaty Organization NIJ National Institute of Justice OTV Outer tactical vest PBI Polybenzimidazole PBO Polybenzobisoxazole PET ...grenades and mortar rounds, is performed in accordance with the North Atlantic Treaty Organization (NATO) Standardization Agreement (STANAG) 2920.6...LEVELS IN SOFT BODY ARMOR The design of woven fabrics for armor applications is complex because it requires an understanding of the related

  7. Relationships between Postsecondary Students' Instrumental Performance Fundamentals and Musical Independence: How Important are Tone, Intonation, Phrasing, Ensemble, Technique, Dynamics, Rhythm, History, Form, and Theory?

    ERIC Educational Resources Information Center

    Bobbett, Gordon C.; And Others

    This study examines the relationships among a variety of secondary/postsecondary experiences and activities and postsecondary students' musical independence (MI). The paper reports on the impact of 10 Performance Fundamentals (PFs) on the postsecondary student's MI as measured by Colwell's Musical Achievement Test 3 (MAT3) and Musical Achievement…

  8. Vehicle Dynamics Monitoring and Tracking System (VDMTS): Monitoring Mission Impacts in Support of Installation Land Management

    DTIC Science & Technology

    2012-05-01

    Hawaii (U.S. Army Environmental Command, 2008). The installation is located in the saddle between Mauna Loa and Mauna Kea volcanoes. PTA is located...17 5.2 SITE LOCATION, HISTORY , AND SITE CHARACTERISTICS...allowed the system to be tested and validated under different conditions and on different vehicle types. 5.2 SITE LOCATION, HISTORY , AND SITE

  9. The Effects of Specimen Geometry on the Plastic Deformation of AA 2219-T8 Aluminum Alloy Under Dynamic Impact Loading

    NASA Astrophysics Data System (ADS)

    Owolabi, G. M.; Bolling, D. T.; Odeshi, A. G.; Whitworth, H. A.; Yilmaz, N.; Zeytinci, A.

    2017-12-01

    The effects of specimen geometry on shear strain localization in AA 2219-T8 aluminum alloy under dynamic impact loading were investigated. The alloy was machined into cylindrical, cuboidal and conical (frustum) test specimens. Both deformed and transformed adiabatic shear bands developed in the alloy during the impact loading. The critical strain rate for formation of the deformed band was determined to be 2500 s-1 irrespective of the specimen geometry. The critical strain rate required for formation of transformed band is higher than 3000 s-1 depending on the specimen geometry. The critical strain rate for formation of transformed bands is lowest (3000 s-1) in the Ø5 mm × 5 mm cylindrical specimens and highest (> 6000 s-1) in the conical specimens. The cylindrical specimens showed the greatest tendency to form transformed bands, whereas the conical specimen showed the least tendency. The shape of the shear bands on the impacted plane was also observed to be dependent on the specimen geometry. Whereas the shear bands on the compression plane of the conical specimens formed elongated cycles, two elliptical shaped shear bands facing each other were observed on the cylindrical specimens. Two parallel shear bands were observed on the compression planes of the cuboidal specimens. The dynamic stress-strain curves vary slightly with the specimen geometry. The cuboidal specimens exhibit higher tendency for strain hardening and higher maximum flow stress than the other specimens. The microstructure evolution leading to the formation of transformed bands is also discussed in this paper.

  10. On the influence of dynamic stress variations on strain accumulation in fault zones

    NASA Astrophysics Data System (ADS)

    Grigoriev, A. S.; Shilko, E. V.; Astafurov, S. V.; Dimaki, A. V.; Vysotsky, E. M.; Psakhie, S. G.

    2015-10-01

    In this paper, a numerical study of the influence of the stress state of interface of the block medium structural elements on the deformation response of interface to the dynamic impacts. It is shown that the basic characteristics of the stress state determining the deformation response of the interface are the values of shear stress and mean stress. It is found that the dependence of the irreversible displacement at the interface zone initiated by dynamic impact on the reduced shear stress is described by the logistic function. Herewith, the influence of the mean stress and dynamic impact energy on the value of displacement initiated by dynamic impact can be taken into account by dependence of the logistic function numerator on these parameters.

  11. Carbon nano fibers reinforced composites origami inspired mechanical metamaterials with passive and active properties

    NASA Astrophysics Data System (ADS)

    Kshad, Mohamed Ali E.; D'Hondt, Clement; Naguib, Hani E.

    2017-10-01

    Core panels used for compression or impact damping are designed to dissipate energy and to reduce the transferred force and energy. They are designed to have high strain and deformation with low density. The geometrical configuration of such cores plays a significant role in redistributing the applied forces to dampen the compression and impact energy. Origami structures are renowned for affording large macroscopic deformation which can be employed for force redistribution and energy damping. The material selection for the fabrication of origami structures affects the core capacity to withstand compression and impact loads. Polymers are characterized by their high compression and impact resistance; the drawback of polymers is the low stiffness and elastic moduli compared with metallic materials. This work is focused on the study of the effect of Carbon Nano Fibers (CNF) on the global mechanical properties of the origami panel cores made of polymeric blends. The base matrix materials used were Polylactic Acid (PLA) and Thermoplastic Polyurethane (TPU) blends, and the percentages of the PLA/TPU were 100/0, 20/80, 65/35, 50/50, 20/80, and 0/100 as a percentage of weight. The weight percentages of CNF added to the polymeric blends were 1%, 3%, and 5%. This paper deals with the fabrication process of the polymeric reinforced blends and the origami cores, in order to predict the best fabrication conditions. The dynamic scanning calorimetry and the dynamic mechanical analyzer were used to test the reinforced blended base material for thermomechanical and viscoelastic properties. The origami core samples were fabricated using per-molded geometrical features and then tested for compression and impact properties. The results of the study were compared with previous published results which showed that there is considerable enhancement in the mechanical properties of the origami cores compared with the pure blended polymeric origami cores. The active properties of the origami unit cell made of composite polymers containing a low percentage of CNF were also investigated in this study, in which the shape memory effect test conducted on the origami unit cell.

  12. Spatio-temporal dynamics in phytobenthos structural properties reveal insights into agricultural catchment dynamics and nutrient fluxes

    NASA Astrophysics Data System (ADS)

    Reaney, S. M.; Snell, M. A.; Barker, P. A.; Aftab, A.; Barber, N. J.; Benskin, C.; Burke, S.; Cleasby, W.; Haygarth, P.; Jonczyk, J. C.; Owen, G. J.; Perks, M. T.; Quinn, P. F.; Surridge, B.

    2016-12-01

    Low order streams are spatially extensive, temporally dynamic, systems within the agricultural landscape. This dynamism extends to the aquatic communities within these streams, including the phytobentos, which demonstrates considerable resilience to diffuse anthropogenic nutrient pressures and changing climate dynamics. The phytobenthos community can substantially contribute to the food web, in particular diatoms, which dominate photo-autotrophic assemblages in low order streams. Diatoms are widely used in ecological monitoring because of their high sensitivity to environmental condition, but knowledge is limited on the ecological effects of winter disturbances and variance introduced by multiple and interacting pressures (N, P, sediment), introducing bias in understanding temporal dynamics in benthic diatom communities. Using the environmental time series data from long term monitoring within the River Eden Demonstration Test Catchment programme, we assess the impact of multiple hydro-chemical stressors on phytobenthic community resilience, and synthesize the impact of an extreme winter event. Monthly data from diatom communities collected in the Eden DTC from March 2011 to present show that river flow, strongly coupled to precipitation, is a key driver of these communities. Discharge has a direct effect on communities through scouring, but is also tightly correlated to nutrient delivery, such that 80% of the annual TP load arrives in 10% of the time. Trophic Diatom Index (TDI) values demonstrated considerable resilience by the stability of inter-monthly TDI scores over 5 seasonal cycles against the characterised highly variable hydrological regime. This research demonstrates that well characterised winter disturbances are critical to understanding drivers of aquatic dynamics. This has implications for catchment diffuse pollution policy, farm management and economics, given the climate projections of increases in frequency and intensity of extreme winter events, which may alter instream nutrient fluxes.

  13. Acceleration Measurements During Landings of a 1/5.5-Size Dynamic Model of the Columbia XJL-1 Amphibian in Smooth Water and in Waves: Langley Tank Model 208M, TED No. NACA 2336

    NASA Technical Reports Server (NTRS)

    Clement, Eugene P.; Havens, Robert F.

    1947-01-01

    A 1/5.5-size powered dynamic model of the Columbia XJL-1 amphibian was landed in Langley tank no. 1 in smooth water and in oncoming waves of heights from 2.1 feet to 6.4 feet (full-size) and lengths from 50 feet to 264 feet (full-size). The motions and the vertical accelerations of the model were continuously recorded. The greatest vertical acceleration measured during the smooth-water landings was 3.1g. During landings in rough water the greatest vertical acceleration measured was 15.4g, for a landing in 6.4-foot by 165-foot waves. The impact accelerations increased with increase in wave height and, in general, decreased with increase in wave length. During the landings in waves the model bounced into the air at stalled attitudes at speeds below flying speed. The model trimmed up to the mechanical trim stop (20 deg) during landings in waves of heights greater than 2.0 feet. Solid water came over the bow and damaged the propeller during one landing in 6.4-foot waves. The vertical acceleration coefficients at first impact from the tank tests of a 1/5.5-size model were in fair agreement with data obtained at the Langley impact basin during tests of a 1/2-size model of the hull.

  14. High Altitude Supersonic Decelerator Test Vehicle

    NASA Technical Reports Server (NTRS)

    Cook, Brant T.; Blando, Guillermo; Kennett, Andrew; Von Der Heydt, Max; Wolff, John Luke; Yerdon, Mark

    2013-01-01

    The Low Density Supersonic Decelerator (LDSD) project is tasked by NASA's Office of the Chief Technologist (OCT) to advance the state of the art in Mars entry and descent technology in order to allow for larger payloads to be delivered to Mars at higher altitudes with better accuracy. The project will develop a 33.5 m Do Supersonic Ringsail (SSRS) parachute, 6m attached torus, robotic class Supersonic Inflatable Aerodynamic Decelerator (SIAD-R), and an 8 m attached isotensoid, exploration class Supersonic Inflatable Aerodynamic Decelerator (SIAD-E). The SSRS and SIAD-R should be brought to TRL-6, while the SIAD-E should be brought to TRL-5. As part of the qualification and development program, LDSD must perform a Mach-scaled Supersonic Flight Dynamics Test (SFDT) in order to demonstrate successful free flight dynamic deployments at Mars equivalent altitude, of all three technologies. In order to perform these tests, LDSD must design and build a test vehicle to deliver all technologies to approximately 180,000 ft and Mach 4, deploy a SIAD, free fly to approximately Mach 2, deploy the SSRS, record high-speed and high-resolution imagery of both deployments, as well as record data from an instrumentation suite capable of characterizing the technology induced vehicle dynamics. The vehicle must also be recoverable after splashdown into the ocean under a nominal flight, while guaranteeing forensic data protection in an off nominal catastrophic failure of a test article that could result in a terminal velocity, tumbling water impact.

  15. The dynamics of masculine-agentic and feminine-communal traits: findings from a prospective study.

    PubMed

    Abele, Andrea E

    2003-10-01

    A reciprocal impact hypothesis posits an influence of gender-related traits (agency and communion) on role enactment and a reciprocal impact of role enactment on gender-related traits, for both men and women. Specifically, in this study it was predicted that agency influences career success and career success influences agency. In addition, the reciprocal influence of communion and family roles was examined. A prospective study with almost 2000 university graduates, who were tested after graduation and 1.5 years later, clearly supported the reciprocal impact hypothesis for agency and career success. Communion influenced family roles, but there was no reciprocal influence. Implications for theories of career success and of sex and gender are discussed.

  16. Simultaneous processing of photographic and accelerator array data from sled impact experiment

    NASA Astrophysics Data System (ADS)

    Ash, M. E.

    1982-12-01

    A Quaternion-Kalman filter model is derived to simultaneously analyze accelerometer array and photographic data from sled impact experiments. Formulas are given for the quaternion representation of rotations, the propagation of dynamical states and their partial derivatives, the observables and their partial derivatives, and the Kalman filter update of the state given the observables. The observables are accelerometer and tachometer velocity data of the sled relative to the track, linear accelerometer array and photographic data of the subject relative to the sled, and ideal angular accelerometer data. The quaternion constraints enter through perfect constraint observations and normalization after a state update. Lateral and fore-aft impact tests are analyzed with FORTRAN IV software written using the formulas of this report.

  17. Impact-Induced Glass Transition in Elastomeric Coatings

    NASA Astrophysics Data System (ADS)

    Roland, C. M.

    2013-03-01

    When an elastomer layer is applied to the front surface of steel, the resistance to penetration by hard projectiles increases significantly. It is not obvious why a soft polymer should affect this property of metals, and most rubbers do not. However, we have found that a few are very effective; the requirement is that the polymer undergo a viscoelastic phase transition upon impact. This means that the frequency of its segmental dynamics correspond to the impact frequency. The latter is estimated as the ratio of the projectile velocity to the coating thickness, and is on the order of 105 s-1 for the experiments herein. Our data and a non-linear dynamics finite-element analysis offer support for this resonance condition as a primary mechanism underlying the penetration-resistance of elastomer-coated metal substrates. The impact-induced phase transition causes large energy absorption, decreasing the kinetic energy of the impacting projectile. However, this energy absorption only accounts for about half the enhanced stopping power of the elastomer/steel bilayer. An additional mechanism is lateral spreading of the impact force, resulting from the transient hardening of the elastomeric during its transition to the glassy state - the modulus of the rubber increases 1000-fold over a time period of microseconds. The penetration-resistance is a very nonlinear function of the coating thickness. Moreover, tests on various metals show that hardness is the principal substrate parameter controlling the contribution of the coating. This work was supported by the Office of Naval Research.

  18. Calling in sick: impacts of fever on intra-urban human mobility.

    PubMed

    Perkins, T Alex; Paz-Soldan, Valerie A; Stoddard, Steven T; Morrison, Amy C; Forshey, Brett M; Long, Kanya C; Halsey, Eric S; Kochel, Tadeusz J; Elder, John P; Kitron, Uriel; Scott, Thomas W; Vazquez-Prokopec, Gonzalo M

    2016-07-13

    Pathogens inflict a wide variety of disease manifestations on their hosts, yet the impacts of disease on the behaviour of infected hosts are rarely studied empirically and are seldom accounted for in mathematical models of transmission dynamics. We explored the potential impacts of one of the most common disease manifestations, fever, on a key determinant of pathogen transmission, host mobility, in residents of the Amazonian city of Iquitos, Peru. We did so by comparing two groups of febrile individuals (dengue-positive and dengue-negative) with an afebrile control group. A retrospective, semi-structured interview allowed us to quantify multiple aspects of mobility during the two-week period preceding each interview. We fitted nested models of each aspect of mobility to data from interviews and compared models using likelihood ratio tests to determine whether there were statistically distinguishable differences in mobility attributable to fever or its aetiology. Compared with afebrile individuals, febrile study participants spent more time at home, visited fewer locations, and, in some cases, visited locations closer to home and spent less time at certain types of locations. These multifaceted impacts are consistent with the possibility that disease-mediated changes in host mobility generate dynamic and complex changes in host contact network structure. © 2016 The Author(s).

  19. The Impact of Structural Vibration on Flying Qualities of a Supersonic Transport

    NASA Technical Reports Server (NTRS)

    Raney, David L.; Jackson, E. Bruce; Buttrill, Carey S.; Adams, William M.

    2001-01-01

    A piloted simulation experiment has been conducted in the NASA Langley Visual/Motion Simulator facility to address the impact of dynamic aeroelastic effects on flying qualities of a supersonic transport. The intent of this experiment was to determine the effectiveness of several measures that may be taken to reduce the impact of aircraft flexibility on piloting tasks. Potential solutions that were examined included structural stiffening, active vibration suppression, and elimination of visual cues associated with the elastic modes. A series of parametric configurations was evaluated by six test pilots for several types of maneuver tasks. During the investigation, several incidents were encountered in which cockpit vibrations due to elastic modes fed back into the control stick through involuntary motions of the pilot's upper body and arm. The phenomenon, referred to as biodynamic coupling, is evidenced by a resonant peak in the power spectrum of the pilot's stick inputs at a structural mode frequency. The results of the investigation indicate that structural stiffening and compensation of the visual display were of little benefit in alleviating the impact of elastic dynamics on the piloting tasks, while increased damping and elimination of control-effector excitation of the lowest frequency modes offered great improvements when applied in sufficient degree.

  20. Calling in sick: impacts of fever on intra-urban human mobility

    PubMed Central

    Perkins, T. Alex; Paz-Soldan, Valerie A.; Stoddard, Steven T.; Morrison, Amy C.; Forshey, Brett M.; Long, Kanya C.; Halsey, Eric S.; Kochel, Tadeusz J.; Elder, John P.; Kitron, Uriel; Scott, Thomas W.; Vazquez-Prokopec, Gonzalo M.

    2016-01-01

    Pathogens inflict a wide variety of disease manifestations on their hosts, yet the impacts of disease on the behaviour of infected hosts are rarely studied empirically and are seldom accounted for in mathematical models of transmission dynamics. We explored the potential impacts of one of the most common disease manifestations, fever, on a key determinant of pathogen transmission, host mobility, in residents of the Amazonian city of Iquitos, Peru. We did so by comparing two groups of febrile individuals (dengue-positive and dengue-negative) with an afebrile control group. A retrospective, semi-structured interview allowed us to quantify multiple aspects of mobility during the two-week period preceding each interview. We fitted nested models of each aspect of mobility to data from interviews and compared models using likelihood ratio tests to determine whether there were statistically distinguishable differences in mobility attributable to fever or its aetiology. Compared with afebrile individuals, febrile study participants spent more time at home, visited fewer locations, and, in some cases, visited locations closer to home and spent less time at certain types of locations. These multifaceted impacts are consistent with the possibility that disease-mediated changes in host mobility generate dynamic and complex changes in host contact network structure. PMID:27412286

Top